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Abstract

Shall investments become more robust or more short-lived if unfavor-

able exogeneous conditions become more uncertain? What if the in-

vestments’ design is irreversible for its whole life time? Such decision

problems are frequently encountered, for example in infrastructure

construction. We analyze this problem by combining an irreversible

design decision when the investment starts with an irreversible deci-

sion to abandon an outdated investment. We formulate the second

decision as a stopping problem of stochastic dynamic control, derive

the value function, and the comparative statics for an optimal design.

We find a decreasing optimal expected life-time and decreasing robust-

ness for more rapidly changing conditions if the original life-time is not

too large. For rising uncertainty, originally shorter-lived investments’

life-times are expanded. For more long-lived investments, these effects

may reverse. There can be a case for making investments less robust

in the light of uncertain and ongoing change.

1 Introduction

This paper analyses a frequent and important decision problem for large-scale

infrastructure investors and other investors alike, be they private or public.

∗Humboldt-Universität zu Berlin and Carl von Ossietzky University Oldenburg, con-
tact: klaus.eisenack@hu-berlin.de.
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How shall we design irreversible investments with technology commitment if

they are exposed to uncertain change? How should long-lived infrastructure

be adapted to ongoing and uncertain trends? If uncertainty rises or trends

become faster: shall we adopt designs that are robust to a broader range

of conditions, or shall we reduce investments’ life-times? We analyze these

questions by determining the optimal life-time and design of an investment

in the presence of a Brownian motion with drift. The decision problem

combines a real option to abandon with an irreversible decision about a

design parameter at the beginning of the investment’s life-time.

There are various examples for decision problems of this kind. Invest-

ments in large construction projects, in chemical engineering, process tech-

nology or the steel industry require technology and design choices at the time

of investment that cannot easily be revised later on. The construction indus-

try makes up a share of about 5% to 11% of GDP globally, and megaprojects

might account for 8% of GDP (depending on estimate, e.g. Crosthwaite,

2000; Flyvbjerg, 2014; World Economic Forum, 2016; OECD, 2016). The

profitability of such investments depends on uncertain trends in demand,

and might suffer from the risk of becoming technologically outdated. Con-

sider, as another example, utilities investment in the light of demographic

change, economic growth or regulatory uncertainty. New water, transport

or electricity infrastructure components are typically associated with lumpy

investment, high sunk costs, and a technical design that is irreversible for

multiple decades (a retrofit of pipelines, rail track, airport runways, dams or

electricity grids, for example, can be prohibitively costly, e.g. Turvey, 2000;

Flyvbjerg, 2014; Ansar et al., 2014). On the other hand, the stream of

benefits obtained from infrastructures typically depends on the size of the

population or the scale of economic activity that is served. Over long time

scales, benefit streams are (i) likely not constant and (ii) quite difficult to

predict.

As a further example, take adaptation of infrastructures to climate change.

This issue has got increasing political attention during the last years (e.g.

OECD, 2008; UNEP, 2016). It is beneficial if infrastructure designs (e.g. the

chosen type of concrete or steel and the technological specification of machin-
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ery) are well fitted to climatic conditions (e.g. temperature, precipitation,

wind patterns), since infrastructure maintenance will be cheaper, its dura-

bility will be increased and service disruptions will be less likely (cf. IPCC,

2014). Extreme weather events have always threatened the reliability and

quality of infrastructure. Global warming will affect the statistics of such

events and other climatic parameters over the coming decades and centuries

(IPCC, 2013). It is thus reasonable to construct infrastructures in modified

ways. This may cost up to 100 b$ annually (or even more, depending on the

estimate, Stern, 2007; OECD, 2008; UNEP, 2016), or alone 70 b$ annually for

coastal protection (Hinkel et al., 2014). There are two additional challenges

here (cf. Hallegatte, 2009): (i) If the climate is subject to ongoing change, the

design of long-lived infrastructures need to fit to a broader range of climatic

conditions. (ii) Projections about the rate of climate change are prone to

different kinds of uncertainty (e.g. Weitzman, 2013; Heal and Millner, 2014;

IPCC, 2014). In addition to the examples mentioned so far, there are fur-

ther cases of the decision problem analyzed in this paper with less long-lived

investments, like choosing a new computer between an expensive device that

has high performance for a while, and a cheaper one that becomes outdated

earlier.

These examples have in common that an irreversible technology commit-

ment needs to be made once a new investment is undertaken. This design

decision in the beginning shapes the effects of uncertain changes in exoge-

nous conditions, and thus influences the ultimate life-time of the investment.

There are trade-offs involved here. It might be one intuitive option to design

the investment more robustly in order to remain profitable also under more

unlikely or more future conditions. Although that might increase costs in

the present, it will reduce losses in the future. A more robust design might

then increase the investment’s life-time. On the other hand, if more rapid

change is expected, the optimal design might be less robust in anticipation

of a shorter expected life-time. Finally, increasing uncertainty might lead to

a higher value of the option to abandon the investment, so that the expected

life-time rises, making a more robust design optimal. It is prima facie unclear

how these two decision variables (robustness and time to abandon) interact,
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and this paper shows that this relation is indeed non-trivial.

Irreversible design and abandonment together with uncertainty lends to

an analysis by real-options methods (cf. Dixit and Pindyck, 1994) that has

– to our knowledge – not been published so far in the vast literature. Tech-

nology commitment is studied in the context of the investment-uncertainty

relationship (e.g. Ramey and Ramey, 1995; Sarkar, 2000; Jovanovic, 2006).

This literature takes more a macro-perspective and focuses on the option to

invest instead of on the option to abandon. Some studies investigate flexibil-

ity instead of robustness by considering switching options between projects

(e.g. Farzin et al., 1998; Decamps et al., 2006). The investment’s life-time

or time to abandon is analyzed, but not by including an irreversible design

decision, by Farzin et al. (1998); Myers and Maid (2004); Dahlgren and Le-

ung (2015). Some publications investigate environmental decision problems,

but not with considering adaptation of investments (Pindyck, 2000, 2002).

Some papers address related questions on adapting investments as we do

(e.g. Fisher and Rubio, 1997; Callaway, 2004; Hallegatte, 2009; de Bruin and

Ansink, 2011; Felgenhauer and Webster, 2014; vander Pol et al., 2014), but

most of them do not explicitly focus on irreversible design and abandonment,

or follow a less formal approach. Our paper contributes to this literature by

investigating the interdependence of two irreversible decisions: design and

abandonment. We precisely show how more uncertainty and a faster trend

ambiguously affect optimal investment life-times, and derive conditions where

it is optimal to adapt with more robust or less robust investments.

Section 2 presents our general theoretical model and the essential deci-

sion structure. Section 3 investigates a specific optimal stochastic dynamic

control model to maximize an investment’s expected net value. Analytical

comparative statics results for different exogenous variables, in particular

uncertainty, are presented in Section 4, together with some numerical exper-

iments. Section 5 concludes.
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2 General model setup and decision struc-

ture

We analyze the decision for a long-lived investment that operates within

uncertain exogenous conditions x that influence the investment’s stream of

current benefits over time t, modeled by a geometric stochastic process

dx = µx dt+ σx dz, (1)

with x(0) = x0 > 0, trend parameter µ > 0, standard deviation σ > 0, and

(zt) being a standardized Wiener Process, so that x ≥ 0. We will call σ

uncertainty in this paper. The decision’s objective is to maximize

J(x0, a, µ, σ) = E[

∫ T ?

0

π(x, a)e−rtdt]− C(a), (2)

with respect to the technical design vector a that describes the investment’s

properties, and with respect to the stopping time T ∗ where the investment

is ultimately stopped. Here and in the following, E[·] is the expectation op-

erator, and π(x, a) denotes the current benefits, which depend on how the

design fits to the conditions. Current benefits are discounted to present val-

ues at rate r > 0. We assume technology commitment, i.e. that the technical

design is fixed over the complete investment’s life time. The investment costs

C(a) depend on this design and incur at the start. This kind of irreversibility

can be justified, for example, if the costs of a retrofitting the investment to

new conditions is prohibitively costly. After the investment is constructed

with the chosen design, the remaining decision is when to stop it’s life time.

We thus assume the following multi stage decision structure. First, the ir-

reversible design a is chosen. Second, it is decided at each point in time

whether to continue or stop operating the investment. Stopping at some

time T ? is an irreversible decision.

This problem will be solved by backward induction, where the second

stage is a standard stopping problem. At the time where the investment

starts, we do not know the stopping time yet, but we can, in principle, deter-
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mine the expected stopping time E[T ?], which depends on µ, σ and on a as

chosen in the first stage. In the first stage, the design decision will depend, in

turn, on the expected stopping time. We will actually determine, after some

more general considerations, the optimal design a? for an exemplary speci-

fication of π, and will determine its comparative statics, in particular with

respect to (µ, σ). This yields whether the expected life-time with optimally

design T ?? = E[T ?] with a = a? is extended or shortened if the conditions

are more rapidly changing, or more uncertain.

Some general implications can already be drawn from the decision struc-

ture without specifying the current benefits π(x, a), supposed that it is at

least specified in a well-posed way. In the second stage, stopping problems

typically yield decisions rule with a cutoff-value x?(a, µ, σ). At the opti-

mal stopping time T ?(x0, a, µ, σ) we have x(T ?) = x?(a, µ, σ) (cf. Dixit and

Pindyck, 1994). Note that E[x(t)] = x0e
µt, so that the expected stopping

time E[T ?](x0, a, µ, σ) can be obtained by solving x0e
µt = x?(a, µ, σ) for t.

Thus, the total differential yields

dE[T ?]

dµ
=

1

µ

(∂µx?
x?
− E[T ?]

)
, (3)

dE[T ?]

dσ
=

1

µ

∂σx
?

x?
, (4)

dE[T ?]

da
=

1

µ

∂ax
?

x?
. (5)

Here and in the following, ∂· denotes partial derivatives. This shows that

a rising design parameter a shifts the expected stopping time in the same

direction as the the cutoff-value, which is quite intuitive. Also the effect

of rising uncertainty on the cutoff-value goes in the same direction as the

effect on the expected stopping time. The effect of a faster trend is more

complicated. If the expected stopping time is ceteris paribus smaller, it is

more likely that cutoff-value and expected stopping time move in the same

direction.

In the first stage, a is selected to maximize J . Note that the cutoff-value

can be determined from a value function h(x) that expresses the expected
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value of not stopping the investment (yet) for given conditions and assum-

ing that the investment is stopped at the optimal time later (cf. Dixit and

Pindyck, 1994). Thus, J(x0, a, µ, σ) = h(x0)− C(a), and the first-order and

second-order conditions are

∂aJ(x0, a, µ, σ) =
d

da
h(x0)− C ′(a) = 0, (6)

∂aaJ(x0, a, µ, σ) =
d2

da2
h(x0)− C ′′(a) < 0. (7)

Now suppose that Eq. (7) holds. Solving Eq. (6) for a yields the optimal de-

sign a?(x0, µ, σ), and thus the optimally designed expected life-time T ??(x0, µ, σ) =

E[T ?](x0, a
?(x0, µ, σ), µ, σ). These functions have the following comparative

statics properties (with
.
= denoting equivalence in signs) by making use of

Eq. (3)-Eq. (5)):

∂µa
?(x0, µ, σ) = −∂aµJ

∂aaJ
.
= ∂aµJ(x0, a

?, µ, σ) =
d2

daµ
h(x0), (8)

∂σa
?(x0, µ, σ) = −∂aσJ

∂aaJ
.
= ∂aσJ(x0, a

?, µ, σ) =
d2

daσ
h(x0), (9)

∂µT
??(x0, µ, σ) =

d

dµ
E[T ?](x0, a

?(x0, µ, σ), µ, σ) =

= ∂µE[T ?] + ∂aE[T ?] · ∂µa? =

=
1

µx?
(
∂µx

? + ∂ax
?∂µa

? − E[T ?]x?
)
, (10)

∂σT
??(x0, µ, σ) =

d

dσ
E[T ?](x0, a

?(x0, µ, σ), µ, σ) =

= ∂σE[T ?] + ∂aE[T ?] · ∂σa? =

=
1

µx?
(∂σx

? + ∂ax
?∂σa

?). (11)

The last two equations show that the effect of uncertainty and the trend

on the optimal expected life-time can be decomposed into two effects. The

first summand is the direct effect. One might expect, for example, if the

conditions change with a faster trend (larger µ), that the expected stopping-

time E[T ?] is shortened. The time where the old investment’s design does

not fit the conditions so well any more can be expected to come earlier. The
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further summands refer to an indirect effect. Obviously, the design affects

the stopping time. We might expect, for example, that an investment that is

more robust to changes in the conditions (higher a) will be stopped at a later

time. On the other hand, more rapid change might lead to another optimal

design, and it is not obvious at this stage whether it is optimal to make the

investment more robust. If this would be the case, the direct and the indirect

effect would point in the opposite direction. A similar argument can be made

with respect to uncertainty. We expect ambiguous results depending on the

detailed specification of the optimization problem.

3 A model with optimal stopping and robust-

ness

This section analyses the model for an ideal type case with linear current

benefits and one design parameter. This specification has the advantage

that central results can be derived analytically, and that it covers a broad

set of possible applications. More complex specifications might either require

more numerical analysis, or a piecewise linear approximation with our model.

We first solve the optimal stopping problem, determine the direct effects in

Eq. (10), Eq. (11) by means of a comparative statics analysis. Subsequently,

the optimal design and the full comparative statics are studied.

The conditions x and the design parameter a are assumed to determine

the investment’s current benefit according to π(x, a) = γ − x/a with some

γ > 0. Therefore, we model that rising x reduces the current benefit over time

because the committed design needs to fit to increasingly worse conditions.

The current benefit derived from the investment is always below a maximum

γ, and diminishes to zero if x approaches γa. Designing an investment with

a larger a implies that it generates positive benefits for a broader interval of

conditions. We thus can conceive the design parameter as the investment’s

robustness. We further assume that a more robust design comes at constant

robustness unit costs c > 0, so that C = ca.
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3.1 Optimal stopping with arbitrary design

We now turn to the second stage of the decision problem

max
T

E

[∫ T

0

(γ − x(t)/a) e−rtdt

]
, (12)

subject to Eq. (1). This is an autonomous optimal stopping problem in

current-value formulation that ultimately determines T ?. We can solve this

problem by determining the value function h(x) that is required to satisfy

the Hamilton-Jacobi-Bellmann equation

−rh+ (γ − x

a
) + µx h′ +

1

2
σ2x2h′′ = 0. (13)

The optimal stopping rule is to continue operation as long as x(t) < x?, the

latter being the cutoff-value. At stopping time T ? the conditions reach x?,

which is characterized by the standard value matching and smooth pasting

conditions h(x?) = 0, h′(x?) = 0. We can show the following solution (see

Appendix):

Proposition 1 The optimal stopping problem Eq. (1), Eq. (12) is solved by

the value function

h(x) =
γ

r(β − 1)
(
x

x?
)β − 1

a(r − µ)
x+

γ

r
, (14)

with β > 0 being the positive root of the characteristic polynomial

1

2
σ2β2 + (µ− 1

2
σ2)β − r = 0, (15)

and the cutoff-value x? = ωγa, if x? > x0. We define the reappearing term

ω := r−µ
r

β
β−1

.

Since we consider a positive trend µ, the cutoff-value x? should be larger

than x0. Otherwise, the investment will not be undertaken at all. The root
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β can be explicitly written as

β =
1

2σ2

(
(σ2 − 2µ) + ((σ2 − 2µ)2 + 8rσ2)1/2

)
> 0.

It can be verified that

r > µ if and only if 1 < β < r/µ, (16)

r < µ if and only if r/µ < β < 1,

and always ω > 1, so that x? > 0. It is important to recognize that r < µ is,

in contrast to other optimal stopping problems in the literature, a reasonable

case. Since current benefits are decreasing in x, there are no problems with

a non-existing net value J . In our setting, both r and µ lead to less benefits

in the future. The size of β in relation to unity distinguishes between cases

where discounting or where changing conditions dominate in the long run.

Furthermore, it follows that x? > γa > 0, so that the current benefit π(x?, a)

is always negative when the investment is stopped at t = T ?. This is due to

the option value of postponing to stop the investment.

The option value and the interpretation of the value function Eq. (14) can

be further illuminated by comparing with the solution that maximizes the

net value in the absence of uncertainty, so that x(t) = x0e
µt (see Appendix):

Proposition 2 For σ = 0, the second stage decision problem is solved by

the value function

h◦(x) =
µγ

r(r − µ)
(
x

x◦
)
r
µ − 1

a(r − µ)
x+

γ

r
(17)

with cutoff-value x◦ = γa > 0, if x◦ > x0.

Obviously, when the investment is stopped at x = x◦, the current benefit π

is exactly zero. There is no gain from further operating the investment, and

also no option value. Since x◦ = γa < x?, uncertainty leads to stopping the

investment at a later time. The role of β in Prop. 1 is taken over by r/µ in

Prop. 2. Now consider the difference between the value functions for both
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Figure 1: Two examples for net value J depending on design a. Dashed
vertical lines for a0, ā, a? (left: r = 0.02, µ = 0.09, σ2 = 0.02, c = γ = x0 =
1, a0 = 0.89, ā = 1.67, a? = 7.64; right: r = 0.09, µ = 0.02, σ2 = 0.06, c = γ =
x0 = 1, a0 = 0.61, ā = 0.92, a? = 3.35).

cases, i.e. the option value

Θ(x) = h(x)− h◦(x) =
γ

r
(

µ

µ− r
(
x

x◦
)
r
µ +

1

β − 1
(
x

x?
)β). (18)

The difference is only in the first term of the value functions h, h◦. The

second and the third terms in both value functions represent the value of

the investment if it would never be stopped, while the first term represent

the gain from stopping at the best time, either with our without uncertainty.

Uncertainty has no effect on the value of a non-stopped investment, while a

faster trend µ decreases these components of the value function. The option

value, however, depends on both µ, σ in a non-linear way. We can conclude

that Θ(x◦) is positive due to Eq. (16). The effect of the design a on the option

value is completely captured by its influence on the cutoff-values x? = ωx◦,

so that the parameter ω captures the effects of uncertainty.

3.2 Optimal design

Now turn to the optimal design, that is robustness a?. After establishing

the existence of an optimum, its level is further characterized. This is not

straightforward as the net value J does not have a simple shape (see Fig. 1

for examples), and the optimum cannot be solved explicitly. Our analysis

is confined to the relevant cases where x? > x0. The first-order condition
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Eq. (6) then evaluates to

c
r − µ
x0

a2 = 1−
(x0

x?
)β−1

.

Observe that this is not a quadratic in a, since x? depends on a as well.

Also the second-order condition is not easy to confirm. The proof of the

following proposition (see Appendix) actually shows that J = h(x0) − ca

has an inflection point at a = ā := ( 2
β+1

)
1

1−β a0 > a0, where we define, for

convenience,

a0 :=
x0

ωγ
> 0. (19)

Note from Prop. 1 that
x∗

x0

=
a

a0

, (20)

so that the cutoff-value relates to the initial conditions in the same way as the

chosen design to a0. In other words, a0 denotes an extreme design choice so

that a > a0 needs to hold when the investment is not stopped immediately.

Proposition 3 There exists a global inner maximum a? > ā of J if and only

if

c <
γ2ω2

(µ− r)x0

(
(

2

β + 1
)
β+1
β−1 − (

2

β + 1
)

2
β−1

)
. (21)

This is, effectively, a kind of participation constraint. The right-hand side of

Eq. (21) expresses an upper limit for the unit costs of robustness. If robust-

ness would be more expensive, then the investment would yield a negative

net value even if robustness is optimally chosen. This upper limit is actually

the marginal value d
da
h(x0) at the inflection point ā.

At a = a0 the net value J is always negative. This follows from the value

matching condition and the definition of a0 according to J(x0, a0, µ, σ) =

h(x0) − ca0 = h(x?) − ca0 = −ca0 < 0. It further follows from the smooth

pasting condition that Ja(x0, a0, µ, σ) < 0. If a? exists, then J has exactly one

minimum and one maximum. The minimum lies between the extreme choice

a0 and the inflection point ā. The maximum lies to the right of the inflection

point. The proof establishes that there must be a design a? > a0 that

fulfills the first and second order conditions. It might be possible, however,
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that a corner solution a = a0 would yield a larger net value. The following

propositions shows that this can be ruled out when the optimally designed

investment yields a positive net value.

Proposition 4 If Prop. 3 applies and J(x0, a
?, µ, σ) > 0, then a? is a unique

global maximum.

The following proposition provides an explicit expression for a? from solving

an implicit equation.

Proposition 5 Assume that Prop. 3 holds and that J(x0, a
?, µ, σ) > 0. Then,

the optimal design can be expressed as

a? =

(
β + 1

2

) z
β−1

a0, (22)

where z > 1 is the unique solution of

(
2

β + 1

) z(1+β)
β−1

−
(

2

β + 1

) 2z
β−1

=
c

γ

µ− r
ω

a0. (23)

The maximum a? is the optimal robustness in the presence of uncertainty and

the trend, anticipating the expected stopping time at the beginning of the

investment. The investment’s net value J(a) increases in a if robustness is

low since the value for not stopping the investment outweighs the robustness

costs. If robustness becomes too large, the marginal costs of robustness

become too high. More intuition will be provided through the comparative

statics and numerical examples in the following section.

4 Comparative statics

We want to know how the optimal expected life-time, the optimal design and

the option value of an investment depend on various parameters, in particular

µ, σ2. We focus on the comparative statics of the stopping problem first, and

the proceed with the analysis of optimal design. Does the robustness and the

life time increase or decrease if there is a faster trend or more uncertainty?
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4.1 Arbitrary design

The comparative statics of the stopping time with respect to uncertainty

and robustness carry over from the effects on the cutoff-value x? according

to Eq. (4) - Eq. (5):

Proposition 6 Let x? and E[T ?] be the solution to the optimal stopping

problem from Prop. 1. Then,

∂µx
? < 0, ∂σ2x? > 0, ∂ax

? = γω > 0, (24)

and

∂µE[T ?] < 0, ∂σ2E[T ?] > 0, ∂aE[T ?] > 0, ∂x0E[T ?] < 0. (25)

If the trend is faster, the current benefits deteriorate earlier. This ultimately

leads to negative current benefits, and the gains from stopping the invest-

ment at a lower cut-off value (i.e. earlier) become larger. Similarly, if the

conditions are less favorable at the time where the investment starts, the

expected stopping time E[T ?] is earlier. More uncertainty means the more

information appears over time. As more information eases the stopping de-

cision, the premium for waiting to stop the investment raises. Thus, the

cut-off value becomes larger, i.e. less favorable conditions are accepted in

the end, and expected stopping is later. Intuitively, rising robustness makes

the investment more beneficial in the light of changing conditions. Thus, a

higher cut-off level and later stopping time is intuitive.

Eq. (25) also illuminates how the decision about robustness and expected

stopping time are inter-related. The second stage decision links the first

stage’s robustness choice to the expected life-time. The first stage can thus

also be conceived as choosing the optimal expected life-time in light of the

indirect effect’s costs and benefits of more long-lived investments, adjusted

by the option value.

It thus helps to interpret the interlinked effects of a faster trend and rising

uncertainty by further inspecting the option value Θ and how it depends on

the design. First observe that ∂ax
? > γ = ∂ax

◦ > 0 by Prop. 6 and Prop. 2.

Thus, uncertainty enlarges the positive effect of robustness on the expected
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stopping time. The effect of robustness on the option value

∂aΘ(x) =
γ

a(µ− r)
(
x

x◦
)
r
µ

(
(
(r − µ)β

r(β − 1)
)1−β(

x

x◦
)β−

r
µ − 1

)
, (26)

however, is ambiguous (see Appendix):

Proposition 7 Let x? and x◦ be the solution to the optimal stopping prob-

lems from Prop. 1 and Prop. 2. Then, ∂aΘ > 0 if and only if

γa < xω
µ(β−1)
r−µβ . (27)

Due to Eq. (16), the exponent is always positive. The inequality shows that

increasing robustness raises the option value up to a maximum. For even

more robustness, the value of the stopping option is decreasing again. It

also shows that robustness raises the option value if the conditions become

increasingly unfavorable.

4.2 Optimal expected life-time

Now turn to the comparative statics if the irreversible design a is optimally

chosen. By applying the general Eq. (8) and Eq. (9) to our robustness model,

the results are as follows (see Appendix):

Proposition 8 Assume that Prop. 4 holds. Then, ∂ca
? < 0. For changing

uncertainty, ∂σ2a? > 0 if and only if T ?? < (βµ)−1. For a changing trend,

∂µa
? > 0 if and only if T ?? > T̄ , where T̄ > 0 is the unique root of

(µ− r)( 1

β
− µT̄ )∂µβ + eµ(β−1)T̄ − β.

This highlights that the effect of uncertainty and the trend on the optimal

design is not a simple one. While a faster trend might intuitively imply more

robust design in some cases, it might not be worth it in other cases. Rising

uncertainty increases the option value, thus making a more robust design

ever more beneficial since it may be used for a longer time. Thus, the in-

direct effect amplifies the effect of the option value. However, uncertainty

15



can also devaluate robustness, in particular for quite long-lived investments

(T ?? > (µβ)−1, T̄ ). Then, less uncertainty and a faster trend imply more

robustness. For long-lived investments it might be particularly beneficial

to increase robustness in light of a faster trend because the gained flexibil-

ity outweighs higher robustness costs. More uncertainty does not leads to

increasing robustness for such investments, because the option value does

not rise sufficiently (or even decreases) to justify additional robustness costs.

These comparative statics of robustness to uncertainty are thus in line with

the option value decreasing once a certain threshold is crossed (cf. Prop. 7).

Conversely, if the optimal expected life-time is comparatively short, robust-

ness would be increased if there is more uncertainty or a slower trend. For

quite short-lived investments a faster trend leads to decreasing robustness be-

cause higher robustness costs do not balance the gains from robustness that

are only achieved for a relative limited time. These short-lived investments,

on the other hand, may substantially benefit from getting more information

due to rising uncertainty such that it might be worth to increase robustness

despite its additional costs. Other cases are possible for investments with

intermediate life-times.

The threshold (βµ)−1 gives some indication about what time scales might

make the difference between the cases. For the special case where the trend in

the conditions µ roughly balances the discount rate r, the parameter β comes

close to unity. Thus (βµ)−1 ≈ 1/r. For usual discount rates, the long-lived

investments with the ‘unconventional’ comparative statics are then those

with economic life times of more than 20 to 50 years. Even longer life-times

are quite common, e.g., for buildings or transport infrastructure.

We now assess changes of the expected life-time if the investment’s ro-

bustness is optimally chosen (see Appendix). This requires to add up the

direct and indirect effects in Eq. (10) and Eq. (11).

Proposition 9 Let Prop. 4 hold. Then, ∂cT
?? < 0. If T ?? ≤ (βµ)−1, then

∂σ2T ?? > 0, and if T ?? ≤ T̄ , then ∂µT
?? < 0.

For T ?? > T̄ , we do not obtain an analytical result for the effect of the trend,

and similarly for T ?? > (βµ)−1 with respect to uncertainty. Our numerical
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experiments (see below for examples) yet lend to the hypothesis that the

optimal expected life time of particularly long-lived investments further de-

creases for a faster trend, and further increases for rising uncertainty. We

summarize the main comparative statics results in Tab. 1. The effects of

Optimal expected Changing Effect on
life time parameters Robustness a? Life time T ??

Short
T ?? < T̄ Trend µ (–) (–)
T ?? < (βµ)−1 Uncertainty σ2 (+) (+)

Long
T ?? > T̄ Trend µ (+) (?)
T ?? > (βµ)−1 Uncertainty σ2 (–) (?)

Table 1: Comparative statics results.

rising trend or uncertainty are ambiguous as expected in section 2. They

depend on whether the chosen optimal life time of the investment is rela-

tively short or long. If the chosen life time is relatively short, the direct and

indirect effects on optimal life time, both due to trend and uncertainty, go in

the same direction. Thus, the overall effect of rising trend is then negative

while the one of rising uncertainty is then positive. If the chosen life time

is relatively long, the direct and indirect effects go in opposite directions.

Unfortunately, we cannot prove the overall effect analytically in this case.

When there is a faster trend there are gains from a lower expected cut-

off value from the negative direct effect as well as gains from decreasing

robustness and from the negative indirect effect, if the life-time is relatively

short. If the life-time is relatively long, the gains from the now positive

indirect effect might outweigh the gains from a still lower expected cut-off

value such that the expected optimal life-time might rise.

When there is more uncertainty there are gains from a larger option value

due to the positive direct and indirect effect, if the investment is relatively

short-lived. If the life-time is relatively long, a less robust design might

outweigh a larger option value, such that the expected optimal life-time is

shortened.
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Figure 2: Example for optimal robustness (left) and optimal expected life
time (right, blue) depending on the trend µ (with r = 0.041, σ2 = c = γ =
1, x0 = 4). At the dashed lines T ?? = T̄ , and T̄ as a function of µ (right,
yellow).

4.3 Numerical experiments

The analytical results show that the effect of uncertainty and trend on ex-

pected life-time of an optimally adapted investment can be ambiguous. For

some cases, we can make clear analytical predictions, while in other cases

the outcomes depend on the solutions of implicit equations that do not al-

low for a closed-form representation. We thus explore these cases by means

of numerical solutions in order to illustrate our results and to improve our

interpretation.

Fig. 2 shows optimal robustness and optimal expected life time depending

on rising trend for a specific scenario. In accordance with Tab. 1, ranges

with increasing and with decreasing robustness can be observed, separated

by a trend µ where the optimal expected life time equals the threshold T̄ .

Expected optimal life-time decreases if T ?? < T̄ as has been shown in Prop. 9.

The theory does not show the effect of a faster trend on investments with

a long life-time. Here it is decreasing. In the example, if µ = 0.4, then

T ?? = 5.06 < T̄ = 7.42, so that optimal robustness as well as optimal

expected life time decreases. If µ = 0.30, then T̄ = 7.53 > T ?? = 7.14, so

that optimal robustness increases.

If investments with a comparatively long (expected optimal) life-time are

exposed to a faster trend in detrimental exogenous conditions, the additional

costs of designing the investment in a more robust way pay off. This is
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Figure 3: Example for optimal robustness (left) and optimal expected life
time (right, blue) depending on uncertainty σ2 (with µ = 0.09, r = 0.02, x0 =
c = γ = 1). At the dashed lines T ?? = (βµ)−1, and (βµ)−1 as a function of
σ2 (right, yellow).

intuitive as the benefits from more robustness are obtained for a longer time.

Yet, increasing robustness is not sufficient to compensate the faster trend in

the conditions completely – the investment’s life-time become shorter and

shorter. So, if the trend becomes even faster, the life-time becomes so short

that more robustness is no longer justified. The decision rule switches to

less robust designs in light of heavily detrimental conditions. Ultimately, a

reduced life-time is the necessary consequence.

Fig. 3 shows optimal robustness and optimal expected life time depending

on uncertainty for a specific scenario. Again, the different cases according

to Tab. 1 can be observed. For low uncertainty, robustness is increased,

while the investment becomes less robust for high uncertainty. The expected

optimal life-time increases for low uncertainty with T ?? < (µβ)−1 as has been

shown in Prop. 9, and rises further on if uncertainty becomes so severe that

the robustness is decreased. In the example, if σ2 = 0.05, then T ?? = 26.61 <

(µβ)−1 = 40, and if σ2 = 0.2, then T ?? = 36.68 > (µβ)−1 = 22.22.

If an investment is designed for relative certain conditions, the expected

optimal life-time is comparatively short. There are only limited reasons to

keep an investment with negative current benefits running since the option

value is low. If uncertainty rises, a more robust design become beneficial

to even out random fluctuations. Then, the indirect effect of robustness on

life-time adds to the increasing option value, so that life-times are further
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extended. At some point, however, more uncertainty leads to decreasing

robustness. Although a longer (expected) life-time might be a good reason

to invest more robustly, two effects counterbalance this. First, there are

diminishing returns from robustness anyway. Second, as shown in Prop. 7,

the option value begins to decrease at some level of robustness. The overall

effects on life-time remain positive yet. The (negative) indirect effect of

reduced robustness is overcompensated by the (positive) direct effect from

uncertainty on the stopping times.

Interestingly, we were not able to find parameter sets for a case where

a faster trend leads to longer optimal expected life-times, or where rising

uncertainty implies shorter life-times. Our experiments showed both the

cases of positive and negative effects of rising uncertainty and a faster trend

on optimal robustness. Optimal life-time yet always seems to increase with

uncertainty, and decreases for faster trends. The direct effects on life-time

seem to dominate the indirect effects.

5 Conclusion

This paper started from the question whether the expected life-time of an

investment with irreversible technical design should become shorter or more

robust if detrimental exogeneous conditions change at a higher speed or with

more uncertainty. We first analyzed the problem from a general perspective,

and then focused on an application with geometric Brownian motion and

a technical design parameter that can be interpreted as the investment’s

robustness.

The effects of trends and uncertainty on optimal investment design and

life-time can generally be decomposed into direct and indirect effects. Di-

rectly, a faster trend leads to shorter life-times if the investment becomes

unprofitable earlier. In line with real options theory, more uncertainty leads

stopping the investment at a later time due to an increasing premium to wait.

The indirect effect stems from the adjustment of the technical design to dif-

ferent trends and levels of uncertainty, mediated through the influence of

design on life-time. These indirect effects generally introduce ambiguity. In
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the application, conditions for different cases can be identified, that particu-

larly depend on whether the investment is comparatively short- or long-lived.

In the short-lived cases, the direct effects dominate. One might say, if time

does not matter so much, everything is intuitive. In contrast, for compara-

tively long-lived investments, more complex and prima facie counterintuitive

designs can be optimal. More uncertainty then leads to less robust designs,

while faster trends make more robust designs optimal.

This analysis, although addressing a quite common decision problem,

thus shows some unexpected effects that have, to our knowledge, not been

investigated in the theoretical literature so far. Obviously, there are some

limitations to our analysis that lend to natural extensions. It showed up

to be complicated to derive the general comparative statics about the op-

timal life-time of particularly long-lived investments. Results likely depend

on the concrete numerical application. Geometric Brownian motion was de-

liberatively chosen as a case with substantial uncertainty. Further research

could focus on alternative stochastic processes such as arithmetic Brownian

motion, and other specifications of the current benefits. Our assumption of

completely irreversible design is admittedly an extreme one, chosen to put

the main effects to the surface. A more general model might include more

flexibility by considering subsequent investment cycles. A further interest-

ing extension would be to consider risk aversion, as this would balance the

effects from uncertainty and robustness in another way. Most of such ex-

tensions would likely require simulation methods as it is common in the real

options literature.

Although theoretical in nature, our results may be important for both

private and public decisions about long-lived investments. Guidelines for

wisely planning the design and life-time could avoid unnecessary excessive

expenditures in infrastructure development, construction projects, the energy

transition, and in dealing with the impacts of climate change. The general

considerations made in this paper can be the basis for applied numerical

computations. More generally, one take-home message for decision makers

is that uncertainty about unfavorable conditions does not necessarily require

more robust investment. Flexibility in terms of investments with shorter
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life-times can pay off.

Appendix

Proof. 1 (Optimal stopping with arbitrary design) We first show that

the function Eq. (14) satisfies the Hamilton-Jacobi-Bellmann equation. This

can be tested straightforwardly by differentiation. Note that

µxh′ =
µγ

r

β

β − 1

( x
x?

)β
− µx

a(r − µ)
, (28)

1

2
σ2x2h′′ =

σ2γ

2r
β
( x
x?

)β
, (29)

so that the Hamilton-Jacobi-Bellmann equation evaluates to σ2β2 + (2µ −
σ2)β − 2r, which vanishes according to the definition of β. Also the value

matching and smooth pasting conditions h(x?) = h′(x?) = 0 are straightfor-

ward to verify. Moreover, Eq. (29) shows that h′′ > 0, so that x? is the global

minimum of the value function. Thus, the investment would be immediately

be stopped if x0 ≤ x?.

Proof. 2 (Decision without uncertainty) We first show that the function

Eq. (17) satisfies the Hamilton-Jacobi-Bellmann equation when considering

the additional restriction σ = 0. This can be tested straightforwardly by

differentiation and substitution. Note that

µxh◦
′
=

γµ

r − µ
(
x

x◦
)
r
µ − µ

a(r − µ)
x, (30)

−rh◦ = − γµ

r − µ
(
x

x◦
)
r
µ +

r

a(r − µ)
x− γ, (31)

so that the Hamilton-Jacobi-Bellmann equation vanishes. Again the value

matching and smooth pasting conditions h(x◦) = h′(x◦) = 0 are straightfor-

ward to verify. Note also that

h◦
′′

=
γ

r − µ
(
r

µ
− 1)(

x

x◦
)
r
µx−2 > 0, (32)
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so that x◦ is the global minimum of this value function. Thus, the investment

would immediately be stopped if x0 ≤ x◦.

Proof. 3 (Optimal design: existence of inner maximum) Solve

max
a

J(x0, a, µ, σ) = h(x0)− ca. (33)

By considering that a0 is defined such that x0
x?

= a0
a

, the first-order condition

can be written, after some re-arranging, as

∂aJ = − γβ

r(β − 1)
aβ0a

−(1+β) − x0

a2(µ− r)
− c = 0. (34)

The second-order condition requires

∂aaJ =
γβ(β + 1)

r(β − 1)
aβ0a

−(2+β) +
2x0

a3(µ− r)
< 0. (35)

Yet, the second derivative ∂aaJ vanishes at a = ā (exactly once), since ∂aaJ

becomes negative if a exceeds ā. For a < ā, Eq. (35) cannot be satisfied.

We now show that the first and second-order condition will be satisfied at

some point a? > ā if Eq. (21) holds. First note that, by definition of a0, the

expected net value J(x0, a0, µ, σ) = h(x0) − ca0 = h(x?) − ca0 < 0. On the

other hand, it can easily be seen from Eq. (34) that lim
a→∞

J(x0, a, µ, σ)→ −∞.

Thus, since J is continuous, there must be a global inner maximum if J

increases at least at one point a > a0. This is indeed the case. In particular,

rearranging and evaluating Eq. (21) yields ∂aJ(x0, ā, µ, σ) > 0.

This implies, beyond existence, that the inner maximum a? > ā, since

a? have to be to the right of the inflection point, where J(a) is concave.

Moreover, a? > a0, since ā = a0( 2
β+1

)
1

1−β > a0 because ( 2
β+1

)
1

1−β > 1.

The additional assumption is also necessary. Suppose that ∂aJ(x0, ā, µ, σ) <

0. Then J will remain decreasing above ā since there is no further inflection

point. Since J is also monotonically decreasing for a < ā, we would only

obtain a corner solution a = 0 < a0, i.e. a situation where the investment

would be stopped immediately.
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Proof. 4 (Optimal design: existence of unique global maximum)

When Prop. 3 holds, then a? > ā > a0 is a global inner maximum of J(a, x0)

in the domain, where x? > x0 holds. If J(a?, x0) > 0 then J(a?) is also larger

than J(a0) in any case because J(a0) is always negative. a? would then be

a global maximum. Furthermore, a? is then the only maximum, since J(a)

has only one inflection point and only one domain where J(a) is concave.

Proof. 5 (Optimal robustness) We first show that Eq. (22) yields the

optimal design if Eq. (23) is fulfilled for some z > 1. In the second step,

existence of z is shown.

We know from the previous propositions that some global maximum a? >

ā exists, and that it satisfies the first-order condition Eq. (34). Substitute a?

from Eq. (22) into Eq. (34) to obtain βγ
a0r(β−1)

( 2
β+1

)z(−
1+β
1−β )− x0

(µ−r)a20
( 2
β+1

)z(−
2

1−β )−

c = 0. Rearranging gives Eq. (23). Moreover, since z > 1, we have (( 2
β+1

)
1

1−β )z >

( 2
β+1

)
1

1−β , so that a? > ā.

Now turn to existence and uniqueness of z. If there would be no z > 1

solving Eq. (23), then there would be no a > ā solving Eq. (34), which would

contradict Prop. 4. If there would be more than one z > 1 solving Eq. (23),

then there would also be more than one a > ā solving Eq. (34). This would

then contradict Prop. 4.

Proof. 6 (Comparative statics with arbitrary design) First turn to

the derivatives of the stopping rule x?. Recall that ω > 1, so that we directly

obtain

∂ax
? =

γ(r − µ)β

r(β − 1)
= γω > 0.

For the following it is helpful to know the derivative of the positive root

of characteristic polynomial Eq. (15) (see standard literature (e.g. Dixit and

Pindyck, 1994), which is extended here to µ > r). Totally differentiating the

polynomial and considering σ2 > 0 yields ∂µβ < 0. Furthermore, ∂σ2β > 0
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iff µ > r. We now obtain

∂σ2x? = −aγ(r − µ)

r(β − 1)2
∂σ2β > 0,

and

∂µx
? =

aγ

r(β − 1)2
α,

with α = −∂µβ(r − µ)− β(β − 1).

We show in the following that ∂µx
? < 0. The sign of ∂µx

? carries over

to the sign of α. Substituting the explicit expressions for the root β and its

partial derivative yields

α =
2σ2β(−4rσ2 − σ4 − 4µ2 + (σ2 + 2µ)

√
(σ2 − 2µ)2 + 8rσ2)

4σ4
√

(σ2 − 2µ)2 + 8rσ2
. (36)

The denominator is always positive, and the outer bracket of the numerator

can be rearranged to

(σ2 + 2µ)(
√

(σ2 − 2µ)2 + 8rσ2 − (σ2 + 2µ)) + 4σ2(µ− r).

If can be verified by some equivalence transformations that this expression

is negative iff 16σ4(µ−r)2
(σ2+2µ)2

> 0. The latter obviously holds. Thus, α and

consequently ∂µx
? are negative.

Finally, turn to the comparative statics for E[T ?]. With respect to σ, a

they can be determined directly from Eq. (4),Eq. (5). The derivative ∂µE[T ?]

becomes negative according to Eq. (3), because the expected stopping time is

substracted from the negative ∂µx
?. Finally, we obtain ∂x0E[T ?] = − 1

µx0
< 0

by considering E[x(t)] = x0e
µt.

Proof. 7 (Comparative statics of option value) The derivative Eq. (26)

can be written as ∂aΘ(x) = α1α2 with α1 := γ
µ−r (

x
x◦

)
r
µ 1
a
, and α2 := ω1−β( x

x◦
)β−

r
µ−

1.

If r < µ, then α1 > 0. Due to Eq. (16), β − r
µ
> 0, so that α2 > 0 is

equivalent to ω
µ(1−β)
r−µβ < x

x◦
.
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If r > µ, then α1 < 0. Due to Eq. (16), β − r
µ
< 0, so that α2 < 0 is

equivalent to the same expression ω
µ(1−β)
r−µβ < x

x◦
.

Since x◦ = γa, the expression (for any of both cases) is equivalent to

Eq. (27).

Proof. 8 (Comparative statics with optimal design) We know from

Eq. (8) and Eq. (9) that ∂µa
? .

= ∂aµJ(x0, a
?, µ, σ2) and ∂σ2a?

.
= ∂aσ2J(x0, a

?, µ, σ2).

In addition,

∂ca
? .

= ∂acJ(x0, a
?, µ, σ2, c) = −1 < 0. (37)

Considering the first-order condition for optimal design and Eq. (19) for a0

in section 3.2, the following holds:

∂aσ2J = − γ

r(β − 1)
a−β−1a0

β∂σ2β(β ln(
a0

a
) + 1), (38)

∂aµJ = − γ

r(β − 1)
a−β−1a0

β(β∂µβ ln(
a0

a
) +

β2

r − µ
+ ∂µβ) +

x0

a2(µ− r)2
.

(39)

In order to determine the sign of Eq. (38) and Eq. (39), we introduce a change

of variables. Let a? > ā > a0 be as defined in Eq. (19) and in Prop. 3. It

will be helpful to express a? as dependent of the optimal expected life-time,

so we define τ := 1
µ

ln( a
a0

). If the design is optimal, we have x0
x?

= a0
a?

due

to Eq. (20), so that T ?? = 1
µ

ln(x
?

x0
) = τ . Then, the optimal design can be

expressed as a? = a0e
µτ .

We now turn to Eq. (38). The factor before the bracket with the logarithm

is always positive since ∂σ2β > 0 iff µ > r (and β < 1). If we change variables

to τ in Eq. (38), the bracket is equivalent to 1− βµτ . This is decreasing in τ

with the zero at (βµ)−1. Thus, Eq. (38) is positive iff τ < (βµ)−1. Since we

need to evaluate at the optimal design a?, we can conclude that T ?? < (βµ)−1

if and only if ∂aµJ(a?) > 0.

Finally, turn to Eq. (39). The change of variables yields, after some trans-
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formations,

∂aµJ(a?)
.
= (µ− r)∂µβ(

1

β
− µτ) + eµ(β−1)τ − β. (40)

We now show that this expression has exactly one positive root for τ (which

cannot be solved explicitly) , denoted by T̄ . First, the expression is con-

tinuous in τ . Second, observe that the second derivative with respect to τ

is

µ2(β − 1)2eµ(β−1)τ > 0,

i.e. Eq. (40) is strictly convex in τ . Third, evaluate Eq. (40) at τ = 0 to

obtain

∂µβ
µ− r
β

+ 1− β.

By substituting the explicit expressions for ∂µβ, β, this is equivalent to

(σ2 + 2µ)(
√

(σ2 − 2µ)2 + 8rσ2 − (σ2 + 2µ)) + 4σ2(µ− r)
2σ2
√

(σ2 − 2µ)2 + 8rσ2
,

which is, in turn, equivalent to α from Eq. (36). It has been shown in the

proof of Prop. 6 that α < 0, so that Eq. (40) is always negative at τ = 0. We

can thus summarize that Eq. (40) is convexly increasing from some negative

value, so it needs to vanish exactly once, and becomes positive for higher

values of τ .

We have thus shown that the root T̄ > 0 is well-defined, and that Eq. (40)

is negative iff τ < T̄ . Thus, since we evaluated at a = a?, this implies that

T ?? > T̄ iff ∂aµJ(a?) > 0.

Proof. 9 (Comparative statics of optimal expected life-time) Con-

sider Eq. (10) - Eq. (11) and the comparative statics results from Prop. 6 and

Prop. 8. If T ?? ≤ (βµ)−1 then

∂σ2T ??(x0, µ, σ
2) = ∂σ2E[T ?] + ∂aE[T ?] · ∂σ2a? > 0, (41)
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and if T ?? ≤ T̄ then

∂µT
??(x0, µ, σ

2) = ∂µE[T ?] + ∂aE[T ?] · ∂µa? < 0. (42)

Finally, ∂cT
??(x0, µ, σ

2, c) = ∂aE[T ?] · ∂ca? < 0.
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