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Abstract 

Germany has been the front-runner in the introduction of feed-in tariffs. Under the Renewable 

Energy Sources Act, the so-called Erneuerbare-Energien-Gesetz (EEG), a massive expansion 

of electricity from renewable energy sources in Germany occurred over the last decade. The 

increase in non-competitive renewable power generation though went hand in hand with a 

substantial rise in electricity prices - with consumers paying for the renewable energy 

subsidies. The high cost burden has provoked an intense public debate on the benefits of 

renewable energy promotion. In this paper, we assess one popular justification for the feed-in 

tariff scheme, i.e., the demand-side effect of the EEG induced innovation. The aggregate 

results do lend support to the proposition that the feed-in tariff scheme under the EEG spur 

innovation. However, the technology-specific findings cast doubts on the aggregate effect as 

only yearly additions to subsidies earmarked for biomass technologies contribute significantly 

to renewable innovation.  
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1. Introduction 

Subsidies for electricity production from renewable energy sources have been on the agenda 

of German energy policies since the early 1990s. A central justification for renewable energy 

promotion policy is climate protection, i.e., the reduction of anthropogenic greenhouse gas 

emissions emerging to a large extent from the combustion of fossil fuels. Germany aims at 

curbing greenhouse gas emissions compared to 1990 levels by 40% by the year 2020, and by 

80% to 90% by 2050. A major contribution to emission reduction should thereby stem from 

the “greening” of the power sector with a target share of renewable electricity production in 

total electricity consumption of 35% by 2020 and 80% by 2050. 

The primary policy instrument for pushing power generation from renewable energy sources 

in Germany is a feed-in tariff scheme that guarantees purchases of green power at fixed prices 

over longer periods. Feed-in tariffs (FITs) are differentiated by technology to outweigh 

technology-specific cost disadvantages compared to conventional power generation based on 

fossil or nuclear fuels. Between 1991 and 1999, feed-in tariffs were prescribed through the 

Electricity Feed-in Law, the so-called Stromeinspeisungsgesetz (SEG). The SEG obligated 

grid operators to purchase green power at a minimum price calculated as a share of the 

average revenue for electricity in past years.  

In 2000, the SEG was replaced by the Renewable Energy Sources Act, the so-called 

Erneuerbare-Energien-Gesetz (EEG). Compared to the preceding SEG, the EEG increased 

feed-in-tariffs in particular for solar photovoltaic and included additional technologies such as 

geothermal energy into the promotion scheme. The EEG guarantees investors above-market 

fees for renewable energy for 20 years from the point of installation. An EEG surcharge – 

equal to the difference between feed-in tariffs paid by utilities for renewable energy and the 

revenue from electricity fed into the grid – is added to the bills of electricity consumers.
1
 

                                                            
1 Energy-intensive companies pay a reduced EEG surcharge so as to remain competitive. 
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The subsidies granted under the SEG and EEG triggered a massive growth in renewable 

electricity production. The share of renewables increased from 3.4% in 1990 to 6.2% in 2000 

and to 27.8% in 2014. Within the various renewable energy technologies, wind power 

currently commands the highest share (34.8%) followed by biomass (30.6%), photovoltaic 

(21.7%) and hydropower (12.8%) (BMWi 2015). The increase in non-competitive renewable 

power generation went hand in hand with a substantial rise in electricity prices. Between 2000 

and 2014 the effective subsidies under the EEG increased from less than a billion Euro to 

roughly 24 billion Euro in 2014. As a consequence, the EEG surcharge on households’ 

electric bills reached 6.24 Eurocent/kWh in 2014. The EEG surcharge thus accounts roughly 

for one fourth of the average household electricity price in Germany. 

Given its high cost burden to consumers, the EEG has been particularly criticized due to its 

ineffectiveness with respect to greenhouse gas emission abatement. As a matter of fact, 

greenhouse gas emissions for energy-intensive industries (including the power sector) in the 

EU are capped through an emissions trading system. Subsidies to renewable power production 

will simply reallocate emissions across these energy-intensive industries while the overall cost 

of the emission cap will rise due to excessive abatement from expansion of renewable 

energies and too little abatement from other mitigation opportunities such as fuel switching 

(Böhringer et al. 2009, 2014; Frondel et al. 2010).  

As the argument of climate protection fails, protagonists of renewable energy promotion 

strive after additional reasons to justify green subsidies. In the context of renewable 

innovation, theory suggests that the development of renewable energy technologies (RETs) is 

subject to two main externalities or market failures: environmental externality and knowledge 

externality due to low appropriability of innovation. Incomplete appropriation of knowledge 

spillovers to competitors may result in substantial underinvestment in technological 

innovation by firms relative to the social optimum (Mitchell et al. 2011). Expansion of 
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renewable power capacity and production could generate spillovers that are external to the 

individual firm thereby justifying subsidies to correct such a market failure. In this vein, the 

EEG with its long-term take-and-pay provisions is envisaged to encourage research and 

development (R&D) and to spur technological innovation. 

In the present paper we scrutinize the innovation argument for renewable energy promotion. 

Our analysis investigates the impact of the feed-in-tariff scheme in Germany on technological 

innovation measured by patent counts in renewables. While the aggregate results based on 

regressions with a fixed effect negative binomial model point to positive innovation effects, 

the findings based on technology-specific policy variables cast doubts on the positive 

innovation hypothesis of the differentiated feed-in tariff scheme under the EEG. Innovation 

impacts of solar technology subsidies are generally insignificant while in some specifications 

the coefficients for the policy variables consistently show significant negative innovation 

impacts particularly for biogas and geothermal technologies. Note however that yearly 

increases in biomass subsidies which reflect new technologies drives innovation while the 

coefficients for the remaining technologies remain largely insignificant.   

The innovation impacts of promotion policies for renewable energy have been investigated in 

various empirical studies. Johnstone et al. (2010) examine the effects of environmental 

policies on technological innovations in renewable energy using a panel dataset across 25 

countries and across several sources of renewable energy.
2
 They provide evidence that the 

effectiveness of alternative policy measures depends on the specific energy source.
3
 

Furthermore, they conclude that broader market-based regulation such as tradable green 

certificates are more likely to induce innovation in renewable technologies which are close to 

competitive while technology-specific measures are needed to induce innovation in more 

                                                            
2 These include wind, solar, ocean, geothermal, biomass, and waste-to-energy. 
3 Price-based instruments such as tax measures and investment subsidies are found to be most effective in 

encouraging innovation in solar, biomass, and waste-to-energy. Quantity-based policy instruments such as 

standards or tradable certificates turn out to be most effective in spurring innovation in wind power. 
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costly energy technologies such as solar power. They find that renewable-specific public 

R&D spending is a significant determinant of innovation in renewable energy overall, with its 

effects most noticeable for wind, solar, and geothermal technologies. 

The cross-country study by Walz et al. (2011) focuses on wind power only, but accounts for 

international spillovers via trade. The study includes additional explanatory variables beyond 

public R&D spending such as characteristics of green policy legitimacy and stability. The 

results indicate that a stable and favorable green policy environment encourages patenting in 

wind power. Furthermore, there are significant trade effects – proxied by the volume of 

exports in wind power – on innovation. Peters et al. (2012a) for photovoltaic as well as 

Dechezlepretre and Glachant (2013) for wind power show that domestic and foreign demand-

pull policies (e.g., production tax credits) in OECD countries trigger innovation within 

national borders and also create cross-country innovation spillovers in renewable energies.
4
 

Both cross-country studies by Walz et al. (2011) and Peters et al. (2012a) find that public 

R&D expenditures on specific renewable technologies have significant positive impact on 

innovation in renewable energy. As to Germany, Wangler (2012) identifies a positive 

correlation between renewable energy promotion and innovation at the aggregate technology 

level.  

However, all the above studies except Wangler (2012) focus on cross-country analysis 

without considering the innovative effects of specific renewable policies at the individual 

country level. Additionally, most of the empirical studies so far bundle all demand pull 

policies together and thus fall short of differentiating the specific innovative effects of the 

different demand pull policies (e.g., cap-and-trade systems, renewable portfolio standards, 

feed-in-tariff etc.).   

                                                            
4 The two studies differ with regard to the marginal effect of domestic and foreign demand (policies) on patented 

innovation. Dechezlepretre and Glachant (2013) identify factors driving the international diffusion of inventions. 

They are able to show that local demand for wind power exerts a positive influence on technology inflows. 
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The remainder of this paper is organized as follows. In section 2, we lay out data sources and 

describe the econometric model settings underlying our econometric estimations. In section 3, 

we discuss results. In section 4, we draw policy conclusions.  

2. Empirical framework: data and model specifications 

Our empirical analysis is based on a panel dataset with annual observations from 1990-2014. 

The entire dataset integrates both SEG and EEG regulatory policies whereas the period from 

2000-2014 focuses on the EEG regulation only. Seven different renewable technologies can 

be distinguished in our dataset: solar, onshore wind, offshore wind, biomass, biogas, 

geothermal and hydro. Table A1 and A2 in the appendix show the descriptive statistics and 

the correlation matrix of all variables used in the regression analysis.  

2.1. Measuring innovation activity 

Consistent with prior studies on innovations in renewables, we use annual patent counts to 

proxy innovation in renewable energy technologies. Patent-based indicators are in wide-

spread use for assessing the rate of technical change, measuring the competitive positions of 

firms and evaluating scientific progress as well as knowledge spillovers (Danguy et al. 2014). 

One concern in using patent counts as an indicator for innovation output is that patents differ 

significantly in quality (value) and a number of ground-breaking technologies developed by 

firms are often not patented to safeguard their competitive advantage. Furthermore, the 

propensity to patent varies across sectors and countries. That notwithstanding, only a few 

examples of inventions with substantial economic values have not been patented (Dernis and 

Guellec 2002; Dernis and Kahn 2004). Patent data therefore is usually perceived as an 

appropriate indicator for innovation output or knowledge production (Schmookler 1966; 

Griliches 1990; Wakasugi and Koyata 1997).  

Our patent data consists of patent applications to the European Patent Office (EPO), which 

were filed by applicants with residence in Germany. We obtain patent counts for seven groups 
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of renewable technologies based on the Cooperative Patent Classification (CPC) system 

developed by the EPO and United States Patent and Trademark Office for Environment-

Related Technologies (ENV-TECH).
5
 We use the priority date of the patent filings since it 

allows us to abstract any differences in filing strategies. Our focus on patent applications 

reflects the notion that we are interested in mapping innovation activity rather than successes 

in the filing process which would be captured in granted patents. 

 

Figure 1: Patent count for renewable energy technologies (RETs) 

Figure 1 depicts patent applications in renewable energy filed by applicants with residence in 

Germany to the EPO from 1990 to 2014. For Solar PV, wind, solar thermal and biofuel, we 

observe a relatively smooth increase in patenting activities between 1990 and 2004; but there 

is a sharp increase in patenting from 2005 onwards for these technologies.
6
 This trend is 

however not unique to patent filings by German applicants but the increase in patenting in 

RETs is also observed in other countries with different support schemes (e.g. USA, Japan, 

                                                            
5 See http://www.cooperativepatentclassification.org/cpc/scheme/Y/scheme-Y02E.pdf 
6 Solar thermal energy technologies have a different support scheme that is not tied to the EEG FIT scheme. 

http://www.cooperativepatentclassification.org/cpc/scheme/Y/scheme-Y02E.pdf
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China, Denmark, France etc.).
7
 Patent applications for geothermal and hydro on the other 

hand, remained relatively stable throughout the observation period. 

2.2. Determinants of innovation 

Our central policy variables for innovation in RETs include the overall annual cost (million €) 

for electricity produced from each technology, cost differential/compensation payment and 

technology-specific feed-in tariff rate (FITs). The annual technology-specific cost differential 

denotes the sum of the difference between the amount paid to renewable energy producers 

(feed-in tariffs) and the market value of renewable electricity on the spot market. Given that 

the subsidy scheme has been the underlying cause of the sharp increase in installed capacities, 

we focus on these technology-specific subsidy/cost variables in the regression analysis for the 

EEG period (2000-2014). For the integral analysis of the SEG and EEG regimes captured by 

the dataset ranging from 1990 to 2014, we use installed capacity as the only policy variable 

since both policies aimed at increasing the deployment of the technologies. Installed capacity 

thus measures the market size or diffusion of renewable energy technologies. This helps us to 

investigate how the promotion of renewables under the two policy environments incentivizes 

technological innovation.
8
 Data on EEG policy variables (overall cost, market value and cost 

differential) are obtained from the Federal Ministry for Economic Affairs and Energy (BMWi 

2014) while installed capacity data stems from the Working Group on Renewable Energies - 

Statistics (AGEE-Stat 2015).  

As illustrated in Table A2 in the appendix, all other explanatory variables except patent 

intensity correlate positively with patent filings. There is also a positive correlation between 

overall costs, cost differential, FITs and installed capacity. Note that increasing capacity 

installations coupled with decreasing spot prices and exemptions for energy-intensive 

                                                            
7 See http://stats.oecd.org/index.aspx?queryid=29068# 
8 The EEG adopted much higher feed-in tariffs (above-market price) than the SEG. Contrary to the SEG where 

annual tariff rates are set as a fraction of the consumers’ electricity price paid in the preceding last-but-one year, 

the EEG fixes tariff rates exogenously over a 20 year horizon.  
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industries from the EEG surcharge increases the total compensation payment. On the other 

hand, RETs are noted to follow the so-called “price learning curve” where increases in 

capacity results in substantial cost reductions per unit of installed capacity. The EEG 

legislation, thus, seeks to take into account such scale effects with an annual degression rate 

for all the technology-specific FITs. 

Figure 2 displays the technology-specific installed capacities (measured in MW) from 1990 to 

2014 in Germany. For the period under consideration, hydro energy remained the most 

important renewable energy source until 2000 when wind became more prominent than the 

other renewable energy sources. Installed capacity for hydro, however, remained fairly 

constant throughout the SEG and EEG periods. Installed capacity for wind on the other hand 

increased drastically under the EEG from 2000 onwards, while the strong increase of biomass 

and photovoltaic capacities is observed after 2004.  

 

Figure 2: Installed capacity for renewable technologies 

As laid out in other cross-country studies (Johnstone et al. 2010; Walz et al. 2011; Peters et al. 

2012a), public R&D expenditures might be a significant driver of innovation in renewable 

technologies. Hence, we include public R&D (measured in million Euro) as a control variable 
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in our estimations. For the parameterization of public R&D we use government expenditures 

on energy R&D disaggregated by type of renewable technology (IEA 2015).
9
 Since data on 

private R&D energy expenditures are unavailable, we rather include an intensity measure 

relating total patent filings to the EPO by all applicants with residence in Germany to overall 

industrial R&D expenditures in Germany as a control variable.
10

 Although this intensity 

variable is not specific to renewables, its inclusion partly captures the patenting potential of 

industrial R&D expenditures as well as possible spillover effects of private R&D investments 

from other sectors especially in cases where patents classified under renewables may have 

alternate uses in other sectors.  

We also include Brent spot price of crude oil since the development of crude oil prices may as 

well determine the extent of innovation in renewable energy technologies. Crude oil price 

serves as an essential price signal in the energy market, influences input prices for electricity 

generation and also correlate strongly with electricity prices. Thus, sustained increases in 

crude oil prices or fluctuations in it supply should increase incentives for innovation in 

renewable power technologies. The data for Brent crude oil price (in Euro/barrel) is obtained 

from the EIA´s International Energy Statistics Database (EIA 2015). Note that all explanatory 

variables are log-transformed.  

2.3. Model specification 

Due to the count data characteristics of our dependent variable (patents), we use a fixed effect 

negative binomial model to estimate the relationship between patent filings and possible 

determinants of innovation (Maddala 1983; Hausman et al. 1984; Cameron and Trivedi 1998). 

The presence of overdispersion in the patent data warrants the use of a negative binomial 

model which has also been found to be generally more efficient (Lawless 1987; Blundell et al. 

                                                            
9 The IEA database comprises all programs that focus on sourcing energy, transporting energy, using energy and 

enhancing energy efficiency. 
10 Industrial R&D expenditure (in million Euro) is obtained from OECD (2015): http://stats.oecd.org 



10 
 

1995). The fixed effect also applies to the distribution of the dispersion parameter such that 

the dispersion remains the same within a group or technology. 

The relationship between patent counts for renewable technologies and our policy variables is 

modeled as follows: 

 , 1 , 2 4 , ,expi t i t i t i i tPatent Policy Z   
       (1) 

where i = 1,..,7 indexes the seven different renewable technologies (solar, on/offshore wind, 

biomass, biogas, geothermal and hydro) and t = 1990, .., 2014 indexes the observation year. Zt 

represents all other control variables, in our case: public R&D funding, patent intensity of 

private R&D and crude oil price. We include a linear time trend to control for aggregate time 

trends in patenting dynamics that are common across technologies. Given the differences 

among technologies, i  captures technology fixed effects which control time-invariant 

technology-specific unobservable effects – allowing us to explore the within variation of the 

data. All other residual variation is captured in the error term 
,( ).i t   

To ascertain the contribution of technology-specific policies on innovation in RETs, we 

define a model variant as specified in Equation (2) where the individual policy variables are 

segregated into technology-specific variables.  

 , 1 , 2 , 3 5 , ,exp tech

i t i t i i t i t i i tPatent Policy Policy Z     
        (2) 

where ,

tech

i i tPolicy  represent technology-specific variables. This model specification permits 

us to determine the innovation effects of technology-specific policy variables i.e., annual 

overall cost, cost differential, FITs and installed capacity.  

For the complete dataset (i.e., the data ranging from 1990 to 2014), we set up a further variant 

of our regression model for testing the effect of the different feed-in tariff schemes under the 

SEG and the EEG. 
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  , 1 , 2 , 3 5 , ,exp EEG

i t i t i t i t i i tPatent CAP D CAP Z    
           (3) 

In Equation (3) we generate EEG dummy (DEEG) taking the value 1 for the EEG period (2000-

2014) and zero for the SEG period (1990-1999). The regime dummy is interacted with the 

installed capacity variable (CAP) which serves as the only policy variable for the longer 

dataset. This allows us to estimate the impact of the switch from the SEG to the EEG 

regulatory regime. 

3. Empirical results  

In Table 1 and 2, we report results for the regression models that use the longer dataset 

thereby covering both the SEG and the EEG regimes. We test the effect of the growing 

market size or increasing diffusion of renewable technologies promoted using feed-in tariffs 

under both the SEG and EEG as specified in Equation (1) and (2). As mentioned before, there 

are substantial differences in the feed-in regulations between SEG and EEG. Under the SEG, 

the feed-in tariff rates in a particular year are specified as a fixed share of the average 

electricity price that final consumers paid two years ago. The EEG on the other hand grants 

fixed tariffs over 20 years. The tariff rates under the EEG are much more differentiated by 

specific technologies with a particularly high rate for solar photovoltaic. Both subsidy 

schemes are geared towards increasing the diffusion of renewable technologies; hence, we use 

installed capacity as our market size or diffusion variable across the two promotion systems. 

Column 1 of Table 1 displays the estimates from Equation (1) without the differentiation of 

technology-specific installed capacity while the remaining columns report the estimates for 

Equation (2) where we include technology-specific policy variables.
11

 The estimated 

coefficient for installed capacity in column 1 (CAP-All) is positive and statistically significant 

at the 5% level. This implies that the increasing diffusion of renewable energy technologies 

                                                            
11 Note that the column headings (e.g., Solar, Windl etc.) in these cases refer to the technology-specific policy 

variable under consideration. Results remain qualitatively similar if year dummies (time fixed effect) are 

included in all models.   
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which is triggered by the SEG and EEG policies drives technological innovation. However, 

the results in column 2-8 reveal heterogeneous impacts of technology-specific policies on 

patent applications. The coefficients for onshore wind (WindL), offshore wind (WindS) and 

hydro installed capacities are positive and significant while that of biomass is also positive but 

insignificant at all conventional significance levels. Thus, the increasing market size for wind 

and hydro technologies appears to stimulate patenting activities in renewable technologies. In 

contrast, the estimated coefficients for the increasing market sizes for solar, biogas and 

geothermal are all negative. But only biogas installed capacity exerts significant negative 

innovation effects. 

The results in Table 2 confirm the positive and significant coefficient of installed capacity in 

Table 1. The dummy variable which reflects the EEG policy regime in model 1 is 

insignificant. Model 2 and 3, however, differentiate installed capacity by the EEG regulatory 

regime, but the estimated coefficient for installed capacity under the EEG is again 

insignificant in both models. Thus at the aggregate level, the switch to the EEG regime seems 

not to have significant positive impact on patenting activities. 

Among the core control variables, the results for patent intensity and crude oil price are very 

robust with statistically significant coefficients across all models. Consistent with the results 

in Tables 1 and 2, persistent increases in crude oil price and high patent applications per unit 

of overall industrial R&D expenditures appear to be important determinants of patenting 

activities in RETs. However, we cannot detect significant positive effect of public R&D 

funding on patent applications. Hence, the positive innovation hypothesis for public R&D 

funding in RETs is not supported by the regressions results. 
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Table 1: Estimates of the innovation effects of renewable policies (SEG & EEG) 

 CAP_All Solar CAP WindL CAP WindS CAP Biomass CAP Biogas CAP Geothermal 

CAP 

Hydro CAP 

Tech Capacity#  -0.0235 0.2279 0.0692 0.0203 -0.3821 -0.1637 2.6861 

  [0.0347] [0.0867]** [0.0345]* [0.1745] [0.0734]** [0.1086] [1.3989]+ 

Installed Capacity 0.0666 0.0729 0.0609 0.0095 0.0685 0.0508 0.0620 0.0889 

 [0.0296]* [0.0300]* [0.0298]* [0.0400] [0.0339]* [0.0270]+ [0.0290]* [0.0310]** 
Public R&D 0.0024 -0.0295 0.0413 -0.0622 -0.0019 0.1891 0.0076 0.0366 

 [0.0948] [0.1055] [0.0958] [0.0979] [0.1014] [0.0992]+ [0.0944] [0.0963] 
Patent Intensity 0.8688 0.8052 0.7133 0.7674 0.8711 1.0647 0.8412 0.8993 

 [0.2782]** [0.2934]** [0.2798]* [0.2762]** [0.2787]** [0.2636]** [0.2776]** [0.2645]** 
Crude Oil Price 0.5997 0.6052 0.5605 0.6388 0.5994 0.6452 0.5947 0.5969 

 [0.1607]** [0.1609]** [0.1577]** [0.1623]** [0.1606]** [0.1535]** [0.1603]** [0.1588]** 

Tech Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Time Trend Yes Yes Yes Yes Yes Yes Yes Yes 

Log Likelihood -582.77 -582.55 -579.57 -580.83 -582.77 -571.47 -581.65 -580.95 

No. of Observations 175 175 175 175 175 175 175 175 

No. of Technologies 7 7 7 7 7 7 7 7 

Note: Standard errors in parentheses. +, * and ** denote 10%, 5% and 1% significance levels.  

# Tech Capacity denotes technology-specific installed capacities (as indicated by the headings of column 2-7) 
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Table 2: Estimates of the innovation effects of EEG feed-in tariff scheme 

 (1) (2) (3) 

Capacity 0.0646 0.0893  

 [0.0299]* [0.0354]*  
DummyEEG -0.0997   

 [0.1918]   
Capacity*DummyEEG  -0.0291 0.0087 

  [0.0256] [0.0218] 

Public R&D -0.0100 -0.0087 -0.0375 

 [0.0975] [0.0946] [0.0967] 
Patent Intensity 0.9386 0.9446 0.6203 

 [0.3098]** [0.2903]** [0.2613]* 
Crude Oil Price 0.6456 0.6722 0.5498 

 [0.1838]** [0.1730]** [0.1693]** 

Tech Fixed Effects Yes Yes Yes 

Time Trend Yes Yes Yes 

Log Likelihood  -582.64 -582.14 -585.26 

No. of Observations  175 175 175 

No. of Technologies 7 7 7 

Note: Standard errors in parentheses. +, * and ** denote 10%, 5% and 1% significance levels.  

Table 3 reports the estimated coefficients of the innovation effects of the feed-in tariff scheme 

exclusively under the EEG framework (2000-2014). As indicated before, three main policy 

variables namely: overall cost, cost differential and feed-in tariffs (eurocent/kWh) all 

differentiated by technologies are used to proxy the EEG policy regime. In addition to these 

variables, we also include the market value of renewable electricity and installed capacity to 

respectively, enable us to compare their innovation impacts with the main policy variables 

and the results of Table 1 where we use installed capacity as the policy variable for the longer 

dataset. Focusing on these variables, the significant coefficient on the overall cost variable 

indicates its positive impact on innovation. It is worth noting that the estimated coefficient for 

the market value of renewable electricity excluding the compensation payment is also positive 

and significant at the 1% level.  

The positive innovative effect of the market value for renewable electricity is therefore 

suggestive of the indirect effect of EEG-FITs. The promotion of non-competitive renewable 

power generation has resulted in a substantial rise in electricity prices due to increasing EEG 

surcharge paid by consumers and used as a subsidy to defray the cost difference between the 
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fixed FITs and spot prices of electricity. Thus, the effect of the market value on patenting 

activities may partly be related to the impact of the EEG surcharge on electricity prices. 

The cost differential alone, however, has an insignificant effect on patent applications, albeit 

having a positive coefficient. That is, in spite of the high cost of the EEG scheme the subsidy 

or additional payment to renewable electricity producers does not incentivize patent 

applications. The finding that the cost differential has insignificant effect while the market 

value exerts significant innovation effect is suggestive of the fact that the significant results of 

the overall cost is driven by the portion of the total cost which stems from the market value of 

renewable electricity.  

The coefficients for both the differentiated feed-in tariff and the installed capacity variables 

are however, positive and statistically significant at the 5% level. All in all, the estimates are 

suggestive of the positive effect of the feed-in tariff scheme under the EEG on patent filings 

in renewable technologies, albeit the insignificant innovative effects of the top-up payment 

(subsidy). This outcome is not surprising given that the feed-in tariff scheme ensures above-

market payments for a 20-year time horizon and also creates a well-protected market that 

enhances innovation efforts.  

Furthermore, the coefficient for domestic public R&D funding is only significant in one out of 

the five models, notwithstanding being positive in all cases. Consequently, the results do not 

generally support the notion that domestic public R&D expenditure on renewable energy 

technologies triggers patenting activities. Given the high level of uncertainty, appropriability 

problems as well as financing difficulties that characterizes private R&D investments in high 

cost technologies, we would have expected public R&D funding to significantly influence 

renewable innovation. Possibly, the role of public R&D funding is more evident at the very 

early stages of technological development when there is less private investment due to 

uncertainties.  
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Given the heterogeneous effects of similar policies or market stimulus, e.g., FITs or subsidies 

on patent filings in different RETs, we expand our analysis by investigating the innovation 

impacts of technology-specific EEG policy variables (see Equation 2). The results of this 

analysis are presented in Table 4-8. We first consider the innovation effects of the market 

value of electricity for each of the technologies in Table 4.  

The estimated coefficients indicate that the respective market value of electricity for the 

individual technologies i.e., solar, onshore wind, offshore wind, biomass and hydro are all 

positive but statistically insignificant. The coefficients for biogas and geothermal technologies 

on the other hand are negative but only significant at the 5% level in the case of biogas. In 

effect, even though the aggregate results in Table 3 suggest significant innovation effects, the 

technology-specific variables suggest otherwise with significant negative effects in the case of 

biogas. In the absence of the EEG policy variables, the coefficient for public R&D 

surprisingly remains positive and significant in models. 

In Table 5 where we consider the overall cost of the EEG per each technology, the estimates 

again show mixed effects. The coefficients for solar, onshore wind and hydro are all positive 

but only significant at the 10% level in the case of onshore wind. The estimates for the 

remaining technologies are negative but statistically insignificant. In terms of cost differential 

(Table 6), we find insignificant innovation effects in the case of onshore and offshore wind, 

biomass and hydro. Moreover, the estimated coefficients for biogas and geothermal subsidies 

are both negative and significant at the 5% and 10% levels, respectively. Thus, the 

production-based subsidies for these technologies rather stifle innovation.   
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Table 3: Estimates of the innovation effects of the EEG policy (2000-2014) 

 Market Value Overall Cost Differential FITs Capacity 

Policy variable# 0.1872 0.1137 0.0620 0.1395 0.0768 

 [0.0322]** [0.0353]** [0.0461] [0.0570]* [0.0372]* 
Public R&D 0.2416 0.1392 0.0365 0.0222 0.1256 

 [0.1134]* [0.1307] [0.1465] [0.1535] [0.1384] 
Patent Intensity 1.5614 1.4802 1.3794 0.9699 1.4161 

 [0.3437]** [0.4161]** [0.5024]** [0.4681]* [0.5159]** 
Crude Oil Price 0.3523 0.4691 0.6060 0.5335 0.5389 

 [0.1809]+ [0.2092]* [0.2385]* [0.2211]* [0.2219]* 

Tech Fixed Effect Yes Yes Yes Yes Yes 

Time Trend Yes Yes Yes Yes Yes 

Log Likelihood  -381.49 -387.07 -384.42 -387.56 -388.37 

No. of Observations  105.0 105 105 105 105 

No. of Technologies 7 7 7 7 7 

Note: Standard errors in parentheses. +, * and ** denote 10%, 5% and 1% significance levels. 

# The heading of the columns represents the policy variable. 
 

Table 4: Estimates of the innovation effects of the market value of renewable electricity 

 Solar WindL WindS Biomass Biogas Geothermal Hydro 

Tech-specific# 0.0446 0.2446 0.0049 0.0066 -0.0950 -0.1025 0.1567 

 [0.0415] [0.1748] [0.0464] [0.0621] [0.0472]* [0.2673] [0.4867] 

Market Value 0.1775 0.1887 0.1858 0.1870 0.2360 0.1845 0.1885 

 [0.0325]** [0.0318]** [0.0349]** [0.0321]** [0.0387]** [0.0333]** [0.0323]** 

Public R&D 0.3099 0.2528 0.2399 0.2376 0.3122 0.2333 0.2475 

 [0.1264]* [0.1130]* [0.1147]* [0.1192]* [0.1120]** [0.1161]* [0.1145]* 

Patent Intensity 1.6476 1.4858 1.5664 1.5590 1.7765 1.5633 1.5515 

 [0.3435]** [0.3465]** [0.3472]** [0.3438]** [0.3382]** [0.3446]** [0.3446]** 

Crude Oil Price 0.3312 0.3333 0.3560 0.3509 0.3546 0.3571 0.3497 

 [0.1750]+ [0.1790]+ [0.1847]+ [0.1809]+ [0.1720]* [0.1823]+ [0.1807]+ 

Tech Fixed Effect Yes Yes Yes Yes Yes Yes Yes 

Time Trend Yes Yes Yes Yes Yes Yes Yes 

Log Likelihood  -380.96 -380.50 -381.49 -381.49 -379.65 -381.42 -381.44 

No. of Observations  105 105 105 105 105 105 105 

No. of Technologies 7 7 7 7 7 7 7 

Note: Standard errors in parentheses. +, * and ** denote 10%, 5% and 1% significance levels.  
# Tech-specific represents the market value of technology-specific electricity (as indicated by the column headings). 
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Table 5: Estimates of the innovation effects of tech-specific EEG policy variables: Overall Cost 

 Solar WindL WindS Biomass Biogas Geothermal Hydro 

Tech-specific# 0.0800 0.4571 -0.0025 -0.0534 -0.0553 -0.1849 0.2285 

 [0.0504] [0.2437]+ [0.0435] [0.0734] [0.0541] [0.1255] [0.9031] 
Overall Cost 0.1174 0.1288 0.1156 0.1099 0.1380 0.1054 0.1142 

 [0.0331]** [0.0333]** [0.0477]* [0.0380]** [0.0426]** [0.0379]** [0.0351]** 

Public R&D 0.2635 0.1774 0.1412 0.1708 0.1633 0.1088 0.1400 

 [0.1464]+ [0.1318] [0.1354] [0.1391] [0.1325] [0.1321] [0.1307] 

Patent Intensity 1.6341 1.4036 1.4763 1.4827 1.6514 1.4536 1.4786 

 [0.3935]** [0.4051]** [0.4207]** [0.4248]** [0.4392]** [0.4237]** [0.4168]** 

Crude Oil Price 0.4006 0.4307 0.4655 0.4778 0.4842 0.4844 0.4732 

 [0.2042]* [0.2052]* [0.2182]* [0.2110]* [0.2068]* [0.2107]* [0.2099]* 

Tech Fixed Effect Yes Yes Yes Yes Yes Yes Yes 
Time Trend Yes Yes Yes Yes Yes Yes Yes 
Log Likelihood  -385.87 -385.29 -387.07 -386.80 -386.62 -386.04 -387.04 

No. of Observations  105 105 105 105 105 105 105 

No. of Technologies 7 7 7 7 7 7 7 

Note: Standard errors in parentheses. +, * and ** denote 10%, 5% and 1% significance levels.  

# Tech-specific represents the technology-specific overall cost of electricity (as indicated by the column headings). 
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Table 6: Estimates of the innovation effects of tech-specific EEG policy variables: Cost differential 

 Solar WindL WindS Biomass Biogas Geothermal Hydro 

Tech-specific# 0.0610 0.1583 0.0642 -0.1257 -0.1137 -0.2536 0.1976 

 [0.0558] [0.2064] [0.0493] [0.0915] [0.0494]* [0.1359]+ [0.2141] 
Cost Differential 0.0624 0.0708 0.0039 0.0272 0.1075 0.0428 0.0468 

 [0.0439] [0.0437] [0.0791] [0.0585] [0.0463]* [0.0536] [0.0530] 

Public R&D 0.1157 0.0404 0.0101 0.1792 0.0522 0.0225 0.0099 

 [0.1589] [0.1432] [0.1579] [0.1810] [0.1347] [0.1546] [0.1528] 
Patent Intensity 1.5658 1.4268 1.2938 1.1009 1.7410 1.2426 1.3561 

 [0.4789]** [0.4733]** [0.6579]* [0.6471]+ [0.4848]** [0.5819]* [0.5307]* 
Crude Oil Price 0.5821 0.6112 0.6685 0.5356 0.7392 0.5937 0.6177 

 [0.2371]* [0.2366]** [0.2571]** [0.2371]* [0.2550]** [0.2397]* [0.2423]* 

Tech Fixed Effect Yes Yes Yes Yes Yes Yes Yes 
Time Trend Yes Yes Yes Yes Yes Yes Yes 
Log Likelihood  -383.83 -384.11 -383.55 -383.53 -382.48 -382.76 -383.99 

No. of Observations  105 105 105 105 105 105 105 

No. of Technologies 7 7 7 7 7 7 7 

Note: Standard errors in parentheses. +, * and ** denote 10%, 5% and 1% significance levels.  
# Tech-specific represents the cost differential (overall cost – market value) of technology-specific electricity (as indicated by the column headings).
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Table 7: Estimates of the innovation effects of tech-specific EEG policy variables: Feed-in tariff 

 Solar WindL WindS Biomass Biogas Geothermal Hydro 

Tech-specific# 0.5361 1.7228 0.1364 -0.7672 -0.2704 -0.0123 4.2077 

 [0.6034] [2.1120] [0.1141] [0.4485]+ [0.1436]+ [0.1691] [0.9208]** 

FITs# 0.0952 0.1489 0.0295 0.1082 0.1565 0.1406 0.1727 

 [0.0761] [0.0578]* [0.1072] [0.0575]+ [0.0586]** [0.0587]* [0.0602]** 

Public R&D -0.0110 0.0044 0.0369 0.1624 0.0366 0.0204 0.0170 

 [0.1622] [0.1525] [0.1509] [0.1702] [0.1542] [0.1554] [0.1457] 

Patent Intensity 0.7298 1.0351 1.1057 0.9140 1.0803 0.9699 1.3962 

 [0.4964] [0.4766]* [0.4930]* [0.4506]* [0.4803]* [0.4677]* [0.4648]** 

Crude Oil Price 0.4814 0.5446 0.5811 0.5189 0.5801 0.5348 0.5663 

 [0.2210]* [0.2212]* [0.2256]* [0.2167]* [0.2228]** [0.2218]* [0.2144]** 

Tech Fixed Effect Yes Yes Yes Yes Yes Yes Yes 

Time Trend Yes Yes Yes Yes Yes Yes Yes 

Log Likelihood  -387.22 -387.23 -386.91 -386.16 -386.04 -387.56 -377.59 

No. of Observations  105 105 105 105 105 105 105 

No. of Technologies 7 7 7 7 7 7 7 

Note: Standard errors in parentheses. +, * and ** denote 10%, 5% and 1% significance levels.  
# Tech-specific represents the technology-specific feed-in tariffs (as indicated by the column headings).  
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Table 8: Estimates of the innovation effects of tech-specific EEG policy variables: Installed Capacity 

 Solar WindL WindS Biomass Biogas Geothermal Hydro 

Tech-specific# 0.0422 0.5390 0.0424 0.0241 -0.3909 -0.1715 11.6424 

 [0.0533] [0.2937]+ [0.0726] [0.3089] [0.1327]** [0.1214] [2.1931]** 

Installed Capacity 0.0777 0.0954 0.0243 0.0796 0.0444 0.0703 0.1161 

 [0.0365]* [0.0353]** [0.0993] [0.0515] [0.0398] [0.0383]+ [0.0335]** 

Public R&D 0.1877 0.1413 0.0779 0.1202 0.2633 0.1085 0.1715 

 [0.1575] [0.1371] [0.1608] [0.1539] [0.1442]+ [0.1387] [0.1345] 

Patent Intensity 1.5531 1.3872 1.2704 1.4327 1.3616 1.3534 1.5854 

 [0.5211]** [0.4864]** [0.6137]* [0.5530]** [0.5588]* [0.5271]* [0.4216]** 

Crude Oil Price 0.5198 0.5402 0.5632 0.5410 0.5564 0.5457 0.5849 

 [0.2208]* [0.2160]* [0.2290]* [0.2228]* [0.2200]* [0.2222]* [0.2075]** 

Tech Fixed Effect Yes Yes Yes Yes Yes Yes Yes 

Time Trend Yes Yes Yes Yes Yes Yes Yes 

Log Likelihood  -388.06 -386.62 -388.18 -388.36 -384.01 -387.41 -376.47 

No. of Observations  105 105 105 105 105 105 105 

No. of Technologies 7 7 7 7 7 7 7 

Note: Standard errors in parentheses. +, * and ** denote 10%, 5% and 1% significance levels.  
# Tech-specific represents the technology-specific installed capacities (as indicated by the column headings).
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The estimates in Table 7 also reflect both negative and positive technology-specific feed-in 

tariff effects. The results indicate that even the high feed-in tariff rates assigned to solar 

photovoltaic under the EEG have insignificant effects on innovative output as measured by 

patent filings. Likewise, the coefficients for onshore and offshore wind and geothermal FITs 

are also insignificant while the feed-in tariffs for hydro technologies appear to spur renewable 

patent applications. The estimates for biomass and biogas on the other hand show significant 

negative effects on patent applications. For installed capacity exclusively under the EEG 

regime (see Table 8), the coefficients for onshore wind and hydro capacities are again positive 

and hence exert significant influence on renewable patents. In contrast, capacity increases for 

biogas suppresses innovation in renewable technologies.  

Note, however, that a huge part of the annual cost of the feed-in tariff scheme (overall cost 

and cost differential) is largely determined by pre-existing installed capacities that has less 

room for innovation. As such, incremental or annual changes in the cost/subsidy variables 

may most likely reflect new technologies. Table A3 and A4 in the appendix display the results 

of using the changes in the overall cost and cost differential as our policy variables. The 

estimates show that the year-to-year increases in the cost of the feed-in tariff scheme for 

biomass significantly drive patenting activities while the effects of subsidies for the other 

technologies remain insignificant.  

We also conduct similar analysis by combining onshore and offshore wind technologies 

together considering the fact that these two technologies are fundamentally the same based on 

the Cooperative Patent Classification (CPC) system.
12

 But again, the results remain 

qualitatively consistent with the results obtained by differentiating onshore and offshore wind 

technologies. 

                                                            
12 The only difference is in terms of the Cooperative Patent Classification for onshore and offshore towers. The 

estimation results for this analysis is not presented but would be made available if needed. 
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One economic explanation for the missing and in some cases negative impacts of the EEG 

may be related to the limited incentives for developing more radical technological 

innovations. While the EEG encourages expansion of renewable production capacities 

alongside with cost degression through learning-by-doing or scale economies, it does not 

necessarily foster incentives for radical innovation or advanced technologies that are captured 

in patent statistics.
13

 Since the EEG remuneration is calculated based on the average cost of 

the respective technology, it is thus more attractive for renewable electricity producers to 

install already established technologies in the market rather than taking the risk to deploy 

uncertain breakthrough new technologies. 

For a potential innovator on the other hand, the revenue from an (ex-post) cost-effective new 

technology might be less or just the same as the revenue generated through pre-existing 

established technologies; consequently, it does not pay to embark on risky technological 

innovations. The EEG thus primarily acts as a production subsidy for electricity with strong 

short-run incentives for exploitative rather than explorative investment by firms. The EEG-

induced market growth with its high profit margins induces firms with relatively mature 

technologies to shift resources from intensive, risky explorative research activities towards 

exploitative activities (in terms of increased production). The increase in exploitative behavior 

of firms can also raise market entry barriers for less mature technologies, while at the same 

time facilitating lock-in effects in favor of established renewable energy technologies (Peters 

et al., 2012b).
14

 

For the control variables, patenting intensity of R&D investment by business enterprises and 

crude oil prices again appear to be important drivers of technological change in renewable 

technologies under the EEG regime. The estimated coefficients for the intensity variable show 

                                                            
13 Note that (efficiency) improvements of existing technologies would in general not be captured in patent 

statistics. 
14 The incentives towards exploitative market expansion can create a risk of reduced competitiveness if firms no 

longer pursue vigorous R&D investments (as may be evidenced along the example of the German solar industry 

over the last years). 
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significant innovation effect across all models. This suggests that renewable energy 

technologies not only benefits from direct industrial R&D investments but R&D investments 

and accumulation of knowledge in other technological fields also seem to spur innovation in 

renewable energy technologies. Similarly, the estimated coefficient for crude oil price is 

widely significant across models. Since fossil fuel i.e., crude oil remains an important input in 

electricity production, the positive innovative effect of crude prices is suggestive of how the 

development in the global energy market spurs technological improvements in renewables. 

4. Conclusions 

Over the last decades policies to promote renewable energy have become increasingly popular 

in OECD countries. Policy makers embrace support schemes for renewable energy as a 

panacea to address the problem of climate change and spur innovation. A prime example is 

Germany with its feed-in tariffs for electricity produced from renewable energy sources. The 

feed-in tariffs were established under the Electricity Feed-in Law (Stromeinspeisungsgesetz - 

SEG) in 1991, followed by the Renewable Energy Sources Act (Erneuerbare-Energien-Gesetz 

- EEG) since 2000. The main pillars of the feed-in regulation is the grid operator’s obligation 

to renewable energy sources (as opposed to electricity from conventional sources), and the 

payment of fixed tariffs. An unrestricted take-and-pay clause for fixed and high feed-in tariffs 

led to a drastic expansion of renewable power production over the last decade. The cost of the 

feed-in tariff scheme amount to over 24 billion Euro in 2014 with the reallocation charge paid 

by electricity consumers rising to more than 6 cents/kWh in 2014, i.e., roughly a fourth of the 

average household’s consumer price.  

The drastic cost increase of the EEG over the last years has triggered substantial criticism. 

Climate protection as a wide-spread argument for renewable energy promotion has no bite in 

the German case: Greenhouse gas emissions of the power sector together with other energy-

intensive industries are capped through an EU-wide emissions trading system. Explicit 
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subsidies to renewable power production in Germany will thus simply reallocate emissions 

across energy-intensive industries in the EU. At the same time, feed-in tariffs increase the 

economy-wide cost of emission abatement thereby constituting an inefficient means of EU 

climate policy. 

Another popular justification for feed-in tariffs is innovation externalities. In this paper we 

have scrutinized the innovation argument based on empirical data of the German feed-in 

regulation over the last two decades. Overall, the estimates show that the deployment of wind 

technologies under the SEG and EEG spurs radical innovation in renewable energy 

technologies as measured by patent filings. Particularly under the EEG regime, our regression 

results also lend support to the proposition that the above-market price feed-in tariff scheme 

lead to higher innovative output at the aggregate level. Notwithstanding the aggregate 

innovative effect, only the increases/changes in biomass technology subsidies have significant 

positive effects on renewable patent applications. Given the drastic cost of the German EEG 

and less empirical evidence on positive and significant innovation impacts of the technology-

specific subsidies, we caution against the appraisal of the German feed-in tariff system on 

innovation grounds. 
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Appendix 

Table A1: Descriptive statistics of variables 

Variable N Mean Std. Dev. Min. Max. Unit  

Renewable patents 175 55.27 91.42 0 330 Counts 

Market value  105 387.81 609.25 0 2652 Million Euro 

Overall cost 105 1395.92 2318.05 0 10715 Million Euro 

Cost differential 105 982 1834.90 -4 9148 Million Euro 

Feed-in tariff (FITs) 105 14.64 14.42 0 53 Eurocent/kWh 

Installed capacity 175 4139.79 8032.70 0 38236 MW   

Public R&D  175 20.06 20.58 0 88.87 Million Euro 

Private R&D 175 67002.28 18019.24 23680.90 104920.70 Million Euro 

Total patents 175 18711.45 4473.32 11146.98 23670.99 Counts 

Patent intensity 175 0.51 0.08 0.34 0.62 Counts/Million Euro 

Crude oil Price 175 37.45 24.50 11.41 86.85 Euro/Barrel 

Note: N denotes No. of observations  

 

Table A2: Correlation matrix among variables 

  

RET 

patents 

Market 

value 

Overall 

cost 

Cost 

diff. FITs 

Installed 

capacity 

Public 

R&D 

Private 

R&D 

Total 

patent 

Patent 

intensity 

Crude 

price 

RET patents 1.000 

          Market value  0.457 1.000 

         Overall cost 0.513 0.782 1.000 

        Cost differential 0.485 0.631 0.977 1.000 

       FITs 0.329 0.037 0.299 0.361 1.000 

      Installed capacity 0.606 0.791 0.793 0.720 0.117 1.000 

     Public R&D  0.737 0.372 0.661 0.699 0.666 0.504 1.000 

    Private R&D 0.413 0.361 0.473 0.466 0.137 0.368 0.487 1.000 

   Total patents -0.143 -0.105 -0.225 -0.255 -0.024 -0.171 -0.274 -0.469 1.000 

  Patent intensity -0.410 -0.354 -0.446 -0.440 -0.131 -0.345 -0.486 -0.513 0.688 1.000 

 Crude oil Price 0.416 0.357 0.440 0.428 0.147 0.340 0.472 0.903 -0.386 -0.593 1.000 

No. of observations= 105  
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Table A3: Estimates of the innovation effects of changes in tech-specific overall EEG cost 

 Solar WindL WindS Biomass Biogas Geothermal Hydro 

∆Tech-specific# -0.1549 0.0532 0.0653 1.1265 -0.1087 -0.1930 0.1209 

 [0.3525] [0.5952] [0.1473] [0.3800]** [0.1291] [0.3526] [0.3565] 

∆Overall cost 0.1380 0.1295 0.0985 0.1122 0.1720 0.1349 0.1268 

 [0.0606]* [0.0582]* [0.0915] [0.0599]+ [0.0764]* [0.0583]* [0.0588]* 

Public R&D 0.2472 0.2163 0.1875 0.3410 0.1656 0.2070 0.2158 

 [0.1683] [0.1531] [0.1661] [0.1517]* [0.1635] [0.1529] [0.1526] 

Patent Intensity 0.9745 0.9270 0.9803 0.9853 0.9759 0.9350 0.8901 

 [0.5161]+ [0.5041]+ [0.5156]+ [0.4687]* [0.4971]* [0.4866]+ [0.4959]+ 

Crude Oil Price 0.6143 0.6103 0.6414 0.5183 0.6407 0.6166 0.5999 

 [0.2313]** [0.2313]** [0.2435]** [0.2226]* [0.2340]** [0.2312]** [0.2318]** 

Tech Fixed Effect Yes Yes Yes Yes Yes Yes Yes 

Time Trend Yes Yes Yes Yes Yes Yes Yes 

Log Likelihood  -365.47 -365.56 -365.47 -361.86 -365.20 -365.41 -365.51 

No. of Observations  98 98 98 98 98 98 98 

No. of Technologies 7 7 7 7 7 7 7 

Note: Standard errors in parentheses. +, * and ** denote 10%, 5% and 1% significance levels.  

# Tech-specific represents the technology-specific overall cost (as indicated by the column headings). 
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Table A4: Estimates of the innovation effects of changes in tech-specific cost differential 

 Solar WindL WindS Biomass Biogas Geothermal Hydro 

∆Tech-specific# -0.0997 0.1944 0.1046 0.9943 -0.1981 -0.2993 0.0013 

 [0.3510] [0.2231] [0.1523] [0.4492]* [0.1489] [0.3476] [0.1362] 

∆Cost differential 0.1328 0.1162 0.0858 0.1124 0.1768 0.1363 0.1280 

 [0.0578]* [0.0579]* [0.0846] [0.0554]* [0.0667]** [0.0554]* [0.0629]* 

Public R&D 0.1620 0.1298 0.1115 0.2222 0.0544 0.1248 0.1421 

 [0.1684] [0.1546] [0.1646] [0.1525] [0.1715] [0.1549] [0.1562] 

Patent Intensity 0.8673 0.8341 0.9464 0.8010 0.8709 0.8611 0.8287 

 [0.5097]+ [0.4853]+ [0.5319]+ [0.4517]+ [0.4925]+ [0.4833]+ [0.4842]+ 

Crude Oil Price 0.6409 0.6355 0.7076 0.5668 0.6800 0.6532 0.6374 

 [0.2358]** [0.2364]** [0.2602]** [0.2288]* [0.2405]** [0.2361]** [0.2359]** 

Tech Fixed Effect Yes Yes Yes Yes Yes Yes Yes 

Time Trend Yes Yes Yes Yes Yes Yes Yes 

Log Likelihood  -356.79 -356.46 -356.57 -354.54 -355.88 -356.44 -356.83 

No. of Observations  98 98 98 98 98 98 98 
No. of Technologies 7 7 7 7 7 7 7 

Note: Standard errors in parentheses. +, * and ** denote 10%, 5% and 1% significance levels.  
# Tech-specific represents the technology-specific cost differential (as indicated by the column headings). 
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