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Abstract

We consider an economy in which competitive firms use three technologies for electricity production: pollutive
fossils, intermittent renewables whose availability varies continuously over time, and storage. A Pigouvian tax
implements the first-best solution. This is also the case for an electricity consumption tax that is supplemented
by subsidies for renewables and a tax on storage, but not for high shares of renewables in the energy mix. We
then analyze second-best subsidies for renewables and storage capacities when carbon pricing is imperfect.
The subsidy rate for renewables decreases as electricity production becomes less reliant on fossils. The storage
subsidy is usually negative as long as fossils contribute to filling the storage, but turns positive (and remains
constant for linear demand) thereafter. This is because more storage capacity reduces the price during times
of destorage, but raises it when electricity is taken from the market to fill the storage. This has countervailing
effects on firms’ incentives to invest in fossil capacities, which are more pronounced for higher round-trip
efficiency losses during a storage cycle. A numerical simulation illustrates that substantial subsidy payments
are required even after fossils have been completely driven out of the market.

Keywords: intermittent renewable energies, electricity storage, carbon externality, subsidies, peak-load pri-
cing, optimal control

JEL Classification: H23, Q42, Q58, O33.

1 Introduction

Dramatic cost reductions and substantial subsidies have created a worldwide boom of renewable
energies. In most parts of the world, they now have lower LCOE (levelised cost of electricity) than
conventional fossil energies (IRENA, 2019). Therefore, intermittency of supply and low reliability
of wind and solar energies are increasingly becoming the main obstacles to transition to an energy
system based primarily on renewable energy sources.
∗This is a substantially revised and extended version of a working paper that was circulated under the title “Subsid-

ising Renewables but Taxing Storage? Second-Best Policies with Imperfect Carbon Pricing”. We gratefully acknowledge
helpful comments from participants at the 2019 Annual Conference of the German Economic Association, the 2019 An-
nual Meeting of the European Economic Association, the 2019 Conference of the European Association of Environmental
and Resource Economists, the 2019 Toulouse Conference on the Economics of Energy and Climate, 2018 Conference
on Sustainable Resource Use and Economic Dynamics (SURED), the 2018 International Energy Workshop, at the 2018
meeting of the German Association of Environmental and Resource Economists, and at research seminars and workshops
at the ETH Zurich and Hamburg University.
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This problem can be alleviated by technological improvements of wind turbines and solar panels,
as well as by enhanced power transmission grids that are able to exploit spatial differences in the
availability of intermittent renewables. Moreover, it is widely perceived that electricity storage is an
essential part of the solution. For example, according to IEA’s sustainable development scenarios
(SDS) generation capacity of energy storage must increase from 176.5 GW in 2017 to 266 GW in
2030 (see also IRENA, 2017). Such storage will probably be a mix of traditional pumped hydro
storage, small- (as in electric vehicles) and large-scale batteries, power-to-gas (mainly hydrogen), and
compressed air storage. Since the deployment of pumped hydro storage is limited (Gimeno-Gutiérrez
and Lacal-Arántegui, 2015; Sinn, 2017), much of the build-up must come from technologies that are
not competitive yet.1

We build on the peak-load pricing model to analyse policy interventions in an economy with three
types of firms: those that produce with a polluting fossil energy, those that use carbon-neutral but
intermittent renewable energies, and those that engage in electricity storage. Starting in a greenfield
setting, firms make long-term investments in their respective capacities. Thereafter, firms produce
electricity and interact with consumers in a perfectly competitive market. Storage firms have a dual
role. They buy electricity—that is, act like consumers—at the low prices that prevail during times
of high availability of renewables, but supply electricity at the high prices that obtain during times
of low availability. This exploitation of price differences and the increasing role of flexible pricing
schemes motivates our assumption of dynamic pricing.2

The first policy that we consider is a Pigouvian tax per unit of carbon emissions from fossils. Given
our assumptions of competitive markets, dynamic pricing, and lump-sum taxation, this instrument
would implement the first-best solution; at least as long as there is no other externality such as
R&D spillovers that requires a separate intervention. Since we neglect dynamic aspects of resource
extraction and of the climate system, the tax would even be constant for constant marginal damage
costs (see Lemoine and Rudik (2017) for dynamic taxing schemes).

However, a Pigouvian tax may not be implementable, for example, due to political economy
reasons.3 Abrell, Rausch, and Streitberger (2019) as well as Ambec and Crampes (2019) have shown
that a policy which combines subsidies for the renewable (and storage) technology with a consumption
tax can also decentralise the first-best solution. We also find this, but only until renewable capacities
have reached a level at which their supply at times of high availability exceeds electricity demand at
a price of zero. Such situations of excess capacities, that countries with a high market penetration
of renewables are already experiencing occasionally, cannot obtain in the different model set-ups of
the above contributions (see below). Moreover, the usual framing of this policy is to emphasize the
need to subsidise renewables and to consider the consumption tax as a complementary policy. We
show that the underlying economics suggest a reverse perspective. In particular, it is well known that
the tax incidence does not depend on who pays the tax. Therefore, a consumption tax at the same
level as a Pigouvian tax imposes the same tax burden on fossils. However, the consumption tax must
also be paid for electricity from renewables and from the storage. This distorts investment decisions,
which requires subsidies for renewables and, somewhat surprisingly, taxes for electricity storage as
complementary policy interventions.

In the real world, such transfer payments are nearly always costly so that we find it difficult to
1 Costs of batteries fell by 22% from 2016 to 2017 (https://www.iea.org/tcep/energy-integration/energystorage/).

Schmidt, Hawkes, Gambhir, and Staffell (2017) predict (using experience curves) that battery storage will be com-
petitive in the next 10 (electric vehicle transportation) to 20 years (residential energy storage) (see Kittner, Lill, and
Kammen (2017) for similar predictions), although other studies are less optimistic (e.g., Brouwer, van den Broek, Zappa,
Turkenburg, and Faaij, 2016).

2 Dynamic pricing of electricity is still often restricted to larger commercial customers (e.g., Borenstein and Holland,
2005; Joskow and Wolfram, 2012), but according to Helm and Mier (2019) this may be sufficient to create appropriate
price signals. Moreover, recent technological advances have dramatically lowered the costs of smart metering techno-
logies, and many regions have set ambitious targets for their deployment (e.g., in the EU Third Energy Package). In
addition, several studies have found evidence that households actually do respond to higher electricity prices by reducing
usage (e.g., Faruqui and Sergici, 2010; Jessoe and Rapson, 2014).

3 The literature discusses equity issues (e.g., Polinsky, 1979), lobbying and rent seeking (e.g., Fredriksson, 1997), and
distributional implications (see Goulder and Parry (2008) for a discussion and Reguant (2019) for empirical evidence).
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argue for such a disguised Pigouvian tax for fossils. Therefore, the focus of our analysis lies on optimal
support policies for renewables and storage technologies that are financed by lump-sum taxes. For
parsimony, we consider a per unit subsidy for capacity investments rather than the widely used feed-
in tariffs, market premiums, and, more recently, tenders.4 These instruments also imply an implicit
subsidy for investments in renewables and storage so that their effects are quite similar.5 Indeed,
we later argue that they are often identical within our specific modelling framework where support
policies are financed by lump-sum taxation.

Subsidies for renewables reduce pollution only indirectly. First, more renewables capacities lower
the expected electricity price and, thus, incentives to invest in fossils. Second, fossil capacities may
remain unused when the availability of intermittent renewables, which have lower variable costs, is
high. Storage capacities even out the intermittent supply of renewables and, thereby, raise their
competitiveness compared to fossils. This makes subsidising storage seem reasonable, but it turns out
that this intuition is wrong because a direct subsidy for renewables is better suited for this.

Storage reduces the electricity price when stored energy is supplied to the market, but it raises
the price when the storage is filled. This has countervailing effects on average electricity prices and,
therefore, on the incentives to invest in fossil capacities. Due to round-trip efficiency losses during
a storage cycle, more electricity has to be taken from the market than can be supplied to it during
times of destorage.6 Therefore, as long as fossils contribute to electricity production during times
of storage, the price increasing effect dominates and storage capacities should be taxed to make
investments in fossils less attractive. Once the level of renewable capacities is large enough to fill the
storage, fossils no longer benefit from the price increasing effect and it becomes optimal to subsidise
storage. This subsidy is constant until fossils are no longer used; under the same conditions that lead
to a decreasing renewable subsidy. Roughly speaking, as the market share of fossil energies falls, it is
optimal to gradually shift from the subsidisation of renewables to subsidising storage.

The analytical model is restricted to the most interesting case where all three technologies are
used. However, in a numerical simulation we also consider cost parameters for which fossils are no
longer employed in the efficient solution. We find that implementing this as a decentralized solution
still requires substantial subsidies in order to keep fossils out of the market. Finally, since renewable
energies are still a less mature technology than electricity generation from fossils, the model accounts
(in a very stylised way) for economy-wide economies of scale or learning spillovers that reduce unit
costs. Internalising this externality requires an additional subsidy, as one would expect. To summarize,
the main contribution of the paper is twofold. First, it extends the peak-load pricing model by
developing an analytically tractable model that integrates the optimal control problem of storage
firms and accounts for rather general intermittency patterns of renewables. Second, we use this model
to examine subsidies for storage and renewable technologies as an alternative to Pigouvian taxation
to address the carbon externality of fossils.

Accordingly, our paper is related to several literatures. First there is the literature on the eco-
nomics of intermittent sources of electricity production, of which Ambec and Crampes (2012, p. 321)
wrote some years ago that they are “still in their infancy”. Since then, the literature has grown sub-
stantially, but most contributions rely heavily on numerical simulations (e.g., Després, Mima, Kitous,
Criqui, Hadjsaid, and Noirot, 2017) or are empirical (e.g., Abrell, Kosch, and Rausch, 2019; Liski and
Vehviläinen, 2020). Ambec and Crampes (2019) share our focus on optimal support policies, and they
also consider a storage technology. However, the storage pattern is trivial because the availability of
renewables is restricted to be binary, i.e., either 0 or 1. In the scenarios without storage, this and
their assumption of non-reactive consumer demand imply that renewables must be fully backed up
by fossils. Therefore, if fossils turn out to be more harmful, the optimal policy response may be to

4 See, e.g., Eichner and Runkel (2014) for a similar approach. In 2016, 83 countries used feed-in tariffs or premiums
to promote renewable energy, 58 countries used investment subsidies (capital subsidies, grants, or rebates), and 73
countries used auctions that do not exclude the use of an investment subsidy (IRENA and CPI, 2018). Moreover, most
of storage subsidization is constructed as an investment subsidy (ESC, 2015).

5 Using data from a Belgian program, De Groote and Verboven (2019) find that investment subsidies are more effective
than production subsidies like feed-in tariffs because households significantly discount their future benefits.

6 Round-trip efficiency is usually in the range of 65 to 90 per cent, depending on storage technology (IRENA, 2017).

3



reduce renewable capacities so that less fossils are needed to back them up.
Abrell et al. (2019), using a simulation and a simpler analytical model, analyse a larger set of

renewables support policies but abstract from storage. More importantly, they deviate from the
standard peak-load pricing paradigm by not distinguishing between production and capacity choices
of fossil energies. This neglects that fossils need prices above their marginal costs to recoup capacity
costs, and that this becomes increasingly difficult as capacities are underutilised more often when
supply from renewable energies rises. Like Fell and Linn (2013), the authors include two renewable
technologies (wind and solar) with different times of binary availability. Our model could be extended
relatively straightforwardly to several renewable technologies too, but this would raise the notational
complexity. Moreover, the main effects are very intuitive; hence we only provide an informal discussion
in the concluding section. Andor and Voss (2016) also consider subsidies for renewables, but their
model includes neither fossils nor a storage technology. Finally, Helm and Mier (2019) use a peak-load
pricing model with a very general intermittency pattern similar to this paper. However, they do not
account for storage and do not examine policy instruments.

Another strand of literature to which this paper relates is the economics of storage. Traditional
applications include balancing stochastic production disturbances in agriculture (e.g., Newbery and
Stiglitz, 1979; Wright and Williams, 1984) and the combination of thermal capacity with mainly
pumped hydro storage (e.g., Crampes and Moreaux, 2001). In a seminal contribution, Gravelle (1976)
studies the implications of storage for peak-load pricing with variable demand. He finds that peak
consumption increases less than off-peak production increases, due to round-trip losses of storage.
This is similar to the effect of storage during times with high and low availability of intermittent
renewables in our model. More recently, the focus has shifted toward the role of pumped storage as a
natural complement to the intermittency of renewables (e.g., Crampes and Moreaux, 2010; Heal, 2016;
Schmalensee, 2019). Similar to us, Steffen and Weber (2013) determine optimal capacity investments,
but only for the fossil and storage technologies. They then use a load duration curve to determine
the effect of intermittent renewable energies and demonstrate their results numerically by using a
case study for Germany. In a related contribution, Steffen and Weber (2016) use optimal control
theory to provide a more precise representation of storage dynamics. However, like Horsley and
Wrobel (2002), they only consider the problem of an individual storage firm, and they focus on
differences between large (unconstrained) and small (constrained) reservoirs. Durmaz (2014) uses
discrete time and dynamic programming to determine the optimal storage pattern. However, he does
not consider policy instruments and his problem is analytically not fully tractable. Finally, Pommeret
and Schubert (2019) also integrate storage into a model with electricity production from renewable
and fossil technologies. Their focus is on the optimal allocation of a fixed carbon budget over time,
whereas the availability of sufficient storage capacities is taken as exogenously given.

Our paper also contributes to the more general literature on second-best policies and the ranking of
policy instruments to incentivize pollution abatement. For a given abatement cost function, pollution
taxes and abatement subsidies are usually seen as equivalent in the short run, whereas in the long
run subsidies lead to excessive firm entry (e.g., Kohn, 1992). In an extension of this literature that is
more similar to our approach, firms can decide whether to incur the fixed cost of a new technology
that reduces costs of emission abatement. In this framework, taxes on emissions and subsidies for
emission abatement are usually equivalent (e.g., Milliman and Prince, 1989; Requate and Unold,
2003). Although this literature is often motivated by the problem of mitigating CO2 emissions,
specific aspects of energy markets such as the intermittency of renewables and their interaction with
storage are usually neglected (see also Fischer, Preonas, and Newell, 2017). We show that accounting
for them fundamentally affects the comparison of instruments, as it compromises the efficiency of
subsidies, but not that of a Pigouvian tax.

In accordance with our results, there is a broad consensus that no additional subsidies are necessary
to tackle an environmental externality if perfect carbon taxation is possible (Golosov, Hassler, Krusell,
and Tsyvinski, 2014; Van Der Ploeg and Withagen, 2014). Positive externalities from R&D may
require renewables subsidisation (Acemoglu, Aghion, Bursztyn, and Hemous, 2012), but Parry, Pizer,
and Fischer (2003) argue that the welfare effect from tackling climate change externalities is greater
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than the positive effect of R&D subsidisation (see also Goulder and Parry, 2008). Other reasons that
have been put forward to motivate renewables subsidies are international tax competition with mobile
capital (Eichner and Runkel, 2014), learning externalities and imperfect competition (Reichenbach
and Requate, 2012), lumpy entry cost (Antoniou and Strausz, 2017), and imperfections in demand for
energy efficiency (Fischer et al., 2017). We account for learning externalities, but focus on the role of
intermittency of renewable energies and of storage when addressing the carbon externality.

The remainder of the paper is structured as follows. In Section 2, we introduce the model and the
timing of decisions. The game is then solved by backward induction, examining electricity production
and storage decisions in Section 3 and capacity choices in Section 4. We then turn to the analysis
of policy instruments in Section 5. A numerical simulation in Section 6 illustrates the results and
extends the analysis to the situations where storage is not yet efficient, and after fossils have left the
market. Section 7 concludes, and an appendix contains the proofs.

2 The Model

Consider an electricity market with three technologies, indexed j = f, r, s. Technology f represents a
dispatchable fossil technology—like conventional power plants that burn coal or gas. Dispatchability
means that electricity production can be freely varied at every point in time up to the limit of its
installed capacity (see Joskow, 2011). Since we abstract from uncertainty, we can ignore ramp-up times
because conventional power plants are well able to adapt production some time ahead. Technology
r is a renewable technology with intermittent supply—like wind turbines, solar PV, or solar thermal
plants. The third technology s does not generate electricity, but is able to store it for later usage.

For each of the three technologies there are a large number, nj , of identical firms that interact
on competitive markets. We use lower-case letters to denote choices of firms and upper-case letters
for aggregate values. Accordingly, the overall capacity level of firms that produces with technology
j is Qj = njqj . To avoid tedious case distinctions, the formal analysis is restricted to the most
interesting situation where strictly positive capacities are installed for all three technologies. The
numerical simulation in Section 6 extends this to situations where only a subset of technologies is
used. Obviously, which of the cases occurs depends on the relative costs of the technologies.

A firm operating with technology j has capacity costs cj(Qj)qj , where cj(Qj) > 0 are the costs
of providing one unit of capacity, which are constant from the perspective of an individual firm. If
one thinks of cj (Qj) as the unit costs of, e.g., solar panels or batteries for electricity storage, this
coincides with the standard assumption that firms on competitive markets are too small to affect
input prices. However, unit costs depend on the overall capacity level, which allows us to account
for different assumptions in the literature regarding to renewables. In particular, c′j (Qj) < 0 would
capture the idea that economy-wide economies of scale or learning reduces unit costs (as in Green
and Léautier, 2017).7 By contrast, if one wants to emphasize that the most efficient sites for wind
and solar energies are used first, then c′j (Qj) > 0 seems more appropriate (as in Abrell et al. (2019)
and Ambec and Crampes (2019)). Similarly, for storage, increasing unit costs could result from less
suitable pump storage locations and the scarcity of the rare earths that are needed for batteries.8
Note that due to our assumption that individual firms take unit costs as given, these effects would
constitute an externality. For the renewable and storage technology we impose no restriction on the
sign of c′j (Qj). For the established fossil technology we assume c′f (Qf ) = 0 and denote the unit costs
by cf .

Electricity produced by the fossil and renewable technology is yj ≥ 0, j = f, r. We assume constant
costs, kf > 0, of producing one unit of output with the fossil technology, which are mainly variable
costs for coal, oil, or natural gas. Moreover, fossil production leads to an environmental unit cost,
δ > 0 that may be (fully or partly) internalised by a carbon tax, τ . Hence a fossil firm’s total unit

7 In a seminal paper, Ghemawat and Spence (1985) argue that unit costs are decreasing in accumulated output of the
industry. The simple specification c′j (Qj) < 0 reflects this idea, but omits the time dimension of accumulating capacity.

8 For a simple 2-period model that accounts for learning and site scarcity see Lancker and Quaas (2019).
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costs are bf = kf + τ , which equals social costs if τ = δ. Variable costs of renewables are negligible
and, therefore, ignored.

Turning to the storage technology, ys (t) > 0 is supply of stored electricity, and ys (t) < 0 is
electricity taken from the market to fill the storage. Storage leads to conversion losses so that the
change in the level of stored electricity, s(t), differs from the quantity of electricity that is fed into
or taken out of the storage. Specifically, ṡ := ds

dt = −η (ys) ys (t), where the parameter η (ys) > 0
represents conversion losses per unit of ys that differ for storage and destorage. We assume that
η (ys) = ηs ∈ (0, 1] during times of storage (ys (t) < 0), and η (ys) = ηd ≥ 1 during destorage
(ys (t) > 0). Hence more than one unit of electricity is needed to fill the storage by one unit, and less
than one unit taken from the storage arrives at the market. For intermediate periods during which the
storage capacity is not used (ys (t) = 0), we assume that no electricity is lost (ṡ = 0) and η (ys) = 1.
Finally, we do not model limits or costs of the charging speed, but assume that firms prefer a smoother
storage pattern if this does not lead to additional costs.

Intermittency of renewables is represented by an availability factor α (t) ∈ [0, 1] that is a continuous
function of time. Therefore, renewable capacities available at time t are α (t)Qr. To keep the analysis
tractable, we assume that α (t) can be forecasted perfectly and follows an identical repetitive pattern,
described in more detail below.9 For example, this pattern could represent daily fluctuations of solar
power or seasonal fluctuations of wind. Storage serves to balance these fluctuations so that we choose
one cycle during which the storage is filled and emptied as a “representative” period. The lifetime of
installed capacities is the same for all technologies and consists of m such representative cycles.

The timing is as follows. In Stage 1, the government chooses one or several of the following
policy instruments: a tax on fossil production τ , a tax on electricity consumption χ, and subsidies
for renewable σr and storage capacities σs. In Stage 2, competitive firms build their respective
fossil, renewable, or storage capacities. In line with the literature on peak-load pricing, we assume
a greenfield setting that disregards any capacity that is currently in place. Finally, in Stage 3, firms
choose production levels and interact with consumers on a competitive electricity market.

3 Production and Consumption Decisions

3.1 Derivation of Optimality Conditions
The game is solved by backward induction, and we first analyse production and consumption decisions
during the lifetime of installed capacities for given subsidies and taxes on fossil production, τ , and
electricity consumption, χ. The competitive market equilibrium follows from firms’ profit maximisa-
tion and consumers’ utility maximisation, subject to electricity prices, p(t), that balance supply and
demand. The after-tax price is p(t)−τ for fossil producers and p(t)+χ for consumers, whereas storage
firms pay no taxes as this would lead to double taxation. Due to our assumption that the availability
of the renewable technology follows a repetitive pattern, the market outcome will be the same for each
representative storage cycle. We denote the initial and terminal time of a storage cycle by t0 and T,
respectively, and ignore discounting within a cycle for parsimony.

First, consider production decisions of fossil and renewable firms. Capacity costs are sunk so that
firms’ objective is to maximise revenues, p (t) yj (t) , over the length of a representative period, minus
variable production costs, bfyf (t), for fossil firms. Production is restricted by the (available) capacity,
yf (t) ≤ qf , yr (t) ≤ α (t) qr, and must be non-negative, yf (t) , yr (t) ≥ 0. The latter constraint can be
ignored because profit maximising renewable and fossil firms will never choose negative quantities in
the unconstrained equilibrium. Thus, a fossil firm’s profit maximisation problem for a representative
cycle in Stage 3 is

9 Short-term forecasts over a day-night cycle are actually quite accurate (e.g., Iversen, Morales, Møller, and Madsen,
2016), and seasonal wind availability is, at least in the historic average, well known. Moreover, in their empirical
study for southeastern Arizona, Gowrisankaran, Reynolds, and Samano (2016) find that social costs of unforecastable
intermittency are small in comparison to those of intermittency overall.
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πf
(
y∗f (qf )

)
:= max

yf (t)

∫ T

t0

(p (t)− τ − kf ) yf (t) dt such that (1)

yf (t) ≤ qf . (2)

Using asterisks to characterise values in the competitive market solution, πf (y∗f (qf )) denotes the
value function of this problem, that is, the maximum profits a firm can achieve by optimising produc-
tion yf for all t ∈ [t0, T ], given the fixed capacity parameter qf . Differentiation of the corresponding
Lagrangian yields the first-order and complementary slackness conditions (µf (t) is the Lagrangian
multiplier) for each t ∈ [t0, T ]:

p (t)− τ − kf − µf (t) ≤ 0
[
= 0, if y∗f (t) > 0

]
, (3)

qf − yf (t) ≥ 0, µf (t) ≥ 0, µf (t) [qf − yf (t)] = 0. (4)

Due to the linearity of the objective function, the first-order condition is sufficient and leads to
corner solutions. Specifically, if the price exceeds variable production costs, the firm produces at full
capacity; i.e., yf (t) = qf if p (t) > bf = kf + τ . By contrast, fossil firms do not produce during times
t for which p (t) < bf , while any yf (t) ∈ [0, qf ] is optimal if p (t) = bf .

Renewable firms face no variable costs, but their capacity constraint depends on the availability,
α (t), of renewable capacities. Thus, the profit maximisation problem is

πr (y∗r (qr)) := max
yr(t)

∫ T

t0

p (t) yr (t) dt such that (5)

yr (t) ≤ α (t) qr, (6)

and for each t ∈ [t0, T ] the first-order and complementary slackness conditions are

p (t)− µr (t) = 0, (7)
α (t) qr − yr ≥ 0, µr (t) ≥ 0, µr (t) [α (t) qr − yr (t)] = 0. (8)

Here, the binding condition (7) reflects that y∗r (t) > 0 for any α (t) , p (t) > 0 because, in contrast
to fossils, renewables have no variable costs. Moreover, the complementary slackness condition in (8)
then implies y∗r (t) = α (t) qr for all p (t) > 0, i.e., renewables are used at full capacity. However, if the
level of available renewable capacities is very large, supply at full capacity may exceed demand from
consumers and storage firms, leading to an equilibrium price of zero.

Storage firms control the level of stored electricity s(t) (the state variable) so as to exploit price
differences. They buy and store electricity (ys (t) < 0) during times of low prices, and they destore
(ys (t) > 0) when prices are high. Their optimal control problem is:

πs (y∗s (qs)) := max
ys(t)

∫ T

t0

p (t) ys (t) dt such that (9)

ṡ (t) = −η (ys) ys (t) , (10)
s (t0) = s (T ) , (11)
s (t) ≤ qs, (12)
s (t) ≥ 0. (13)

The first constraint (10) is the equation of motion for the level of stored energy, s(t). Condition
(11) requires that the initial and terminal storage level must be the same, which follows from our
assumption of a representative storage cycle. Finally, (12) is the capacity constraint of storage firms,
and (13) is the constraint that the level of stored energy must be non-negative. The Hamiltonian is
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Hs (ys (t)) = p (t) ys (t)− λ (t) η (ys) ys (t) , (14)

where λ (t) is the adjoint variable of s (t). Conditions (12) and (13) are pure state space constraints
that can be accounted for by forming the Lagrangian

Ls (t) = Hs (ys (t)) + ϕs (t) (qs − s (t)) + ϕd (t) s (t) , (15)

where ϕs (t) and ϕd (t) are the Lagrangian multipliers for the respective constraints. The Hamiltonian
Hs is linear in ys (t) and the constraints (12) and (13) are linear in s (t). Therefore, the following
conditions are sufficient for optimality, if λ(t) is continuous (see Seierstad and Sydsaeter (1987, p.
317-318) and Section 3.2 for the continuity of λ(t)):

max
ys(t)

Hs (ys (t)) = [p (t)− λ (t) η (ys)] ys (t) , (16)

ṡ (t) =
∂Ls(t)
∂λ (t)

= −η (ys) ys (t) , (17)

λ̇ (t) = −∂Ls(t)
∂s (t)

= ϕs (t)− ϕd (t) , (18)

∂Ls(t)
∂ϕs (t)

= qs − s (t) ≥ 0, ϕs (t) ≥ 0, ϕs (t) [qs − s (t)] = 0, (19)

∂Ls(t)
∂ϕd (t)

= s (t) ≥ 0, ϕd (t) ≥ 0, ϕd (t) s (t) = 0, (20)

s (t0) = s (T ) . (21)

Here, (16) is the optimality condition for the control variable ys (t), conditions (17) and (18) are
the differential equations for the state and adjoint variable, and conditions (19) and (20) account for
the pure state space constraints.

Turning to consumers, utility maximisation leads to a demand function x (t) = x (p (t) + χ), for
which we impose no restrictions other than ∂x

∂p < 0. Consumption choices on the competitive electricity
market maximise consumer surplus and are restricted by aggregate production. It is straightforward
to show that in equilibrium x (t) =

∑
j Yj (t), that is, demand equals supply. In conclusion, this

market clearing condition, the inverse demand function, p (x (t)), and the optimality conditions of fossil
firms, (3) and (4), renewable firms, (7) and (8), and storage firms, (16) to (21) determine electricity
production, demand and the electricity price as functions of the environmental and consumption tax
τ, χ, and of installed capacities Qj , which in turn depend on related subsidies and taxes σr, σs, τ, χ
(see Section 4).

3.2 Determination of Competitive Equilibrium
We can distinguish three outcomes: Storage periods (ys (t) < 0), destorage periods (ys (t) > 0), and
intermediate periods with neither storage nor destorage (ys (t) = 0). First, consider the two outcomes
with ys (t) 6= 0. If we had p (t) 6= λ (t) η (ys), it would be impossible for any y∗s (t) to maximize (16);
hence p (t) = λ (t) η (ys) during storage and destorage. Intuitively, the adjoint variable λ (t) is usually
interpreted as the change in the value function due to a unit increase in the state variable, s (t). Thus,
λ (t) is the value of stored electricity which, after being weighted by conversion losses, must equal
the price of electricity. Moreover, during storage and destorage periods the storage can neither be
full nor empty (except at the boundaries), i.e., s (t) < qs and s (t) > 0. Thus, ϕs (t) = ϕd (t) = 0
from the complementary slackness conditions in (19) and (20) so that λ̇ (t) = ϕs (t)−ϕd (t) = 0 from
(18). Finally, by assumption the round-trip efficiency loss parameter is constant at η (ys) = ηs during
storage and at η (ys) = ηd during destorage. Using p (t) = λ (t) η (ys) it follows that not only λ (t),
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but also prices are constant during each storage and destorage period. Otherwise, firms would have
arbitrage opportunities and use their storage to buy electricity at low prices and sell it at high prices.

To this point, we have not restricted the evolution of α (t) over time. To keep the model tract-
able, we need to impose more structure as otherwise nearly any sequence of storage, destorage, and
intermediate periods is conceivable. Therefore, the remainder of the paper is based on the following
additional assumption.

Assumption 1. For each representative cycle t ∈ [t0, T ], the availability of renewable energies, α (t),
is the same single-peaked function with α (t0) = α (T ) = min {α (t)} and maximum availability αmax.

The assumption α (t0) = α (T ) captures that, by continuity of α (t), the availability at the end of
the current and at the beginning of the next representative cycle must be the same. The black solid
curve in Figure 1 depicts the availability from a mix of solar PV, wind onshore, and wind offshore in
Germany, for a (representative) cycle of 24 hours.10 This distribution satifies Assumption 1, except
that there is a mild wind peak during the destorage period at night. Nevertheless, the subsequent
analysis would still hold as long as this peak is not too large (smaller than αd, see below) so that
destorage would remain optimal. The transparent segments to the left and to the right illustrate our
simplifying assumption that the availability of renewables is the same in periods prior and subsequent
to the depicted one.

Fig. 1: Availability of renewables and competitive equilibrium

Obviously, firms should destore electricity when the availability of renewables is low (lower bold
parts of the curve), and store electricity when the availability is high (upper bold part of the curve),
leading to the following sequence of periods: destorage, intermediate, storage, intermediate, destorage,
... . Together with our assumption that we consider a representative cycle, a repeated pattern of
identical destorage and storage periods obtains. Therefore, the storage should be completely emptied
at the end of each destorage period, and completely filled at the end of each storage period. Otherwise,
some stored electricity and/or some storage capacity would never be used, which cannot be optimal.
This property keeps the analysis tractable and is the reason for Assumption 1. In the remainder of

10 We calculate α (t) by aggregating production of solar PV, wind onshore, and wind offshore for every quarterly
hour of a day from 2016 to the end of 2018, and divide by the installed capacity. The data is downloaded from
https://data.open-power-system-data.org/time_series/ on 13 January 2020.
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this subsection, we derive an intuitive solution for the competitive equilibrium and show in Appendix
A that it satisfies all optimality conditions from Subsection 3.1. For later reference, we state the
solution in terms of aggregate values, Yj = njyj , Qj = njqj , and S = nss.

Dispatchable electricity from storage and fossils is most valuable when the availability of renewables
is minimal, i.e., at t0. Hence there is destorage and fossils are fully used as, otherwise, some capacities
would always lie idle. Moreover, we have already shown that the electricity price is constant at
pd = λ (t0) ηd during destorage (upper dashed curve in Figure 1). Therefore, fossils—and obviously
also renewables due to their lower variable costs—are fully used during the whole destorage interval. In
Figure 1, these are the two bold segments [t0, td] and [t′d, T ] that comprise all times with availabilities
below αd := α (td) = α (t′d). The level of destorage balances the fluctuation of renewables so as to
keep electricity supply and, thus, the price constant, i.e.,11

Ys (t) = (αd − α (t))Qr for all t ∈ [0, td] . (22)

Noting that we consider a representative cycle, the destorage interval [t′d, T ] is identical to the one
that precedes t0. Accordingly, the two destorage periods can be viewed as being connected. This
implies that the storage must be full at t = t′d and run empty at t = td (lower dashed curve in
Figure 1). Hence, integration of the equation of motion (17) over the destorage periods must satisfy
Qs = ηd

∫ td
t0
Ys (t) dt+ ηd

∫ T
t′
d
Ys (t) dt. Substitution from (22) gives

Qs = ηd

∫
d

(αd − α (t))Qrdt, (23)

where
∫
d
dt :=

∫ td
t0
dt+

∫ T
t′
d
dt denotes the combined duration of the two destorage periods. Condition

(23) implicitly determines the critical availability αd where destorage ends. Intuitively, the destorage
period is shorter when the storage capacity Qs is low, and when conversion losses, ηd, and the level
of renewable capacities that has to be substituted by destorage, (αd − α (t))Qr, are large. The first
line in Table 1 summarises production in the destorage period.

Tab. 1: Solution of production stage for fossils, renewables, and storage
period availability of renewables Yr (t) Yf (t) Ys (t)

d 0 ≤ α (t) ≤ αd α (t)Qr Qf (αd − α (t))Qr

case 1 αd < α (t) ≤ min {α1, αs} α (t)Qr Qf 0

case 2 α1 < α (t) ≤ min {α2, αs} α (t)Qr x
(
bf + χ

)
− α (t)Qr 0

case 3 α2 < α (t) ≤ αs α (t)Qr 0 0

s

αs <
x(0+χ)
Qr

αs < α (t) ≤ αmax, α (t)Qr Yf (αs) (αs − α (t))Qr

αs =
x(0+χ)
Qr

αs < α (t) ≤ αc α (t)Qr
0

x (0 + χ)− α (t)Qr

αc < α (t) ≤ αmax acQr x (0 + χ)− acQr
αd implicitly solves Qs = ηd

∫
d
(αd − α (t))Qrdt, α1 =

x(bf+χ)−Qf
Qr

, α2 =
x(bf+χ)
Qr

,

αs = min
{
αs that solves (25),

x(0+χ)
Qr

}
, and αc implicitly solves (26)

When α (t) starts to exceed αd, we enter the first intermediate period where neither storage nor
destorage occurs so that ys (t) = 0 (similar to Helm and Mier (2019)). By continuity of α(t), fossils
and renewables continue to be fully used initially. This is case 1 in Table 1. As renewable supply
rises together with α (t), the equilibrium price p (t) falls until it equals the total unit costs of fossils,

11 More formally, td is characterised by Yf (td) = Qf , Yr (td) = α (td)Qr, and Ys (td) = 0. By continuity of α (t)
and, thus, of available production capacities, we must have p (td) = pd. This implies x (td) = xd, where demand
xd is constant during destorage. Solving the market clearing condition for Ys (t) = xd − Yf (t) − Yr (t) and using
xd = x (td) = Qf + α (td)Qr yields (22).
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bf = kf + τ . Thereafter, case 2 obtains, for which the maximum feasible electricity output from
renewables and fossils exceeds demand at the constant after tax price p (t) + χ = bf + χ. Hence
only renewable capacities are fully used (due to lower variable costs), and fossils serve the remaining
demand, x (bf + χ) − α (t)Qr. For even larger values of α (t), the equilibrium price p (t) falls below
bf so that only renewables are used, but still at full capacity (case 3).

Let α1 < α2 denote the availabilities where the respective cases end, and t1 < t2 the associated
times. Hence αi = α (ti) for i = 1, 2. Depending on the size of storage and renewable capacities, not
all cases need obtain. Ceteris paribus, a larger storage capacity takes longer to fill so that storage
starts earlier, that is, already during case 1 or 2. Conversely, larger renewable capacities imply that a
given storage can be filled faster, hence storage starts later and more cases obtain. In Table 1, this is
represented by the minimum operator in the column for availability, where αs = α (ts) = α (t′s) is the
availability when the intermediate period ends and storage starts (t′s denotes the end of the storage
period; see Figure 1).

Accordingly, any one of cases 1 to 3 can prevail at the start of the storage period, during which the
price remains constant (see above). By continuity of the available production capacities, this price,
ps, must be the same as that at the end of the intermediate period, i.e., ps = p (ts). This results
in constant demand, xs = x (ts), and supply from fossils, Yf (t) = Yf (ts), during storage. Moreover,
supply of renewables, Yr (t), above the level required to satisfy demand, Yr (ts) = αsQr, is used to fill
the storage, i.e.,12

Ys (t) = αsQr − Yr (t) for all t ∈ [ts, t
′
s] . (24)

To determine Yr(t), we need to account for the possibility that the level of available renewable
capacities exceeds demand at an equilibrium price p(t) = 0 plus the quantity required to fill the
storage. First, consider the case where no such excess capacities exist. Accordingly, Yr (t) = α (t)Qr
for all t during storage and substitution into (24) yields Ys(t) = (αs − α (t))Qr.13 The empty storage
is completely filled during the storage period so that integration of the equation of motion (17) yields
Qs = −ηs

∫ t′s
ts
Ys (t) dt. After substitution for Ys, we obtain

Qs = −ηs
∫
s

(αs − α (t))Qrdt, (25)

where
∫
s
dt :=

∫ t′s
ts
dt denotes the duration of the storage period.

Second, consider the case of excess capacities. Obviously, this leads to an equilibrium price ps = 0
and demand xs = x (0 + χ) throughout the whole storage period, and also at its boundaries so
that αsQr = x (0 + χ).14 Given our assumption that firms prefer smoother storage patterns, only the
production peaks of renewables where storage would be maximal will be capped. This is illustrated by
the dotted bold line in Figure 1. In particular, let αc denote the critical availability that separates the
uncapped from the capped part of the storage period. Then renewable production is Yr (t) = α (t)Qr
in the uncapped region, i.e., for all α(t) ∈ [αs, αc], and Yr (t) = αcQr for all α (t) > αc. Substitution
of this into (24) yields Ys (t) for the uncapped and the capped region, which are stated in the last two
lines in Table 1. Moreover, substituting these expressions into Qs = −ηs

∫ t′s
ts
Ys (t) dt gives

Qs = −ηs
[∫ αc

αs

(x (0 + χ)− αQr) dα+

∫ αmax

αc

(x (0 + χ)− αcQr) dα
]
, (26)

12 More formally, solving the market clearing condition for Ys (t) = xs − Yf (t) − Yr (t) and noting that there is
no storage at ts so that xs = Yr (ts) + Yf (ts), we obtain Ys (t) = Yr (ts) + Yf (ts) − Yf (t) − Yr (t) during storage.
Substitution of Yf (t) = Yf (ts) and Yr (ts) = αsQr yields (24).

13 Note that if storage starts in case 2, the storage period is characterised by excess capacities of fossils and a price that
equals variable production costs. These idle fossil capacities could be used to reschedule some storage without affecting
profits. However, if fossil generators prefer a smooth pattern of production (due to ramping cost and constraints), the
suggested pattern is the only optimal one.

14 Remember that Yf (t) = 0 if p(t) = 0 and Ys(ts) = 0 so that at the boundary of the storage cycle available renewable
capacities are equal to demand.
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where we integrate over α to simplify notation.
It remains to determine αs, αc and which of the two cases obtains. Without excess capacities, the

critical availability, αs, when the storage period starts is implicitly determined by (25). With excess
capacities, it follows immediately from αsQr = x (0 + χ). Moreover, αsQr ≤ x (0 + χ) as otherwise
there would be excess capacities during case 3. Therefore, αs = min

{
αs that solves (25), x(0+χ)Qr

}
so

that for the case of no excess capacities αs <
x(0+χ)
Qr

. Finally, αc only exists for the situation with

excess capacities and follows implicitly from (26) after substitution of αs = x(0+χ)
Qr

. This completes
the derivation of the results summarised in Table 1.

For the second intermediate period from t′s to t′d (see Figure 1) the solution follows from the same
equilibrium conditions as for the first one. Thus, for each α (t), the solution is the same as already
summarised by cases 1 to 3 in Table 1, but the cases obtain in reverse order because α (t) is now
(weakly) decreasing in t. Lemma 1 summarises these results.

Lemma 1. Equilibrium levels for production and storage are as given in Table 1. Demand and prices
follow straightforwardly from the market clearing condition, x (t) =

∑
j Yj (t), the inverse demand

function p (x (t)).

The later analysis of optimal subsidies depends on how the triggered changes in capacities affect
production and demand. For the intermediate period, this follows from the expressions in Figure 1,
but for the storage and destorage periods it depends in a non-trivial way on effects via the boundaries
αd, αs that determine the lengths of these periods. Lemma 2 summarises the comparative statics.

Lemma 2. Marginal changes in capacities Qf , Qr, Qs have the following comparative static effects
for the storage and destorage periods.

(a) Fossil capacities: ∂xd
∂Qf

= 1 and ∂αs
∂Qf

= ∂αd
∂Qf

= 0. Moreover, ∂xs
∂Qf

= 1 if storage starts during case
1, whereas for all other cases ∂xs

∂Qf
= 0.

(b) Renewable and storage capacities for αsQr < x (0 + χ) (no excess capacities of renewables): If
case 2 obtains at the beginning of the storage period, then ∂xs

∂Qr
= ∂xs

∂Qs
= 0. Otherwise,

∂αd/∂ ∂xd/∂ ∂αs/∂ ∂xs/∂

Qr −
∫
d
(αd−α(t))dt

Qr
∫
d
dt

< 0

∫
d
α(t)dt∫
d
dt

> 0 −
∫
s
(αs−α(t))dt

Qr
∫
s
dt

> 0

∫
s
α(t)dt∫
s
dt

> 0

Qs
1

ηdQr
∫
d
dt
> 0 1

ηd
∫
d
dt
> 0 − 1

ηsQr
∫
s
dt
< 0 − 1

ηs
∫
s
dt
< 0

(c) Renewable and storage capacities for αsQr = x (0 + χ) (excess capacities of renewables): For
the destorage period, derivatives are as in (b). For the storage period, demand is constant at
x (0 + χ) so that ∂xs

∂Qr
= ∂xs

∂Qs
= 0, ∂αs

∂Qs
= 0, and ∂αs

∂Qr
= −x(0+χ)Q2

r
< 0.

The non-trivial effects that require some intuition are those in the table and concern the most
relevant case of no excess capacities. With higher capacities of renewables, storage starts later ( ∂αs∂Qr

>

0) because the storage can be filled faster. The magnitude of this effect is given by the additional
production of a marginal renewable capacity unit over the storage cycle,

∫
s

(αs − α (t)) dt, weighted
by the overall capacity, Qr, and the length of the storage period,

∫
s
dt. Similarly, the destorage period

lasts shorter ( ∂αd∂Qr
< 0) because a given level of stored electricity, Qs, has to substitute for a larger

amount of renewables over the destorage period. The corresponding marginal changes in demand
during destorage and storage, ∂xd

∂Qr
, ∂xs∂Qr

, are simply average additional renewable production over the
destorage and storage period.

An increase in storage capacities leads to longer storage and destorage periods ( ∂αs∂Qs
< 0 and

∂αd
∂Qs

> 0). The size of this effect is smaller if more intermittent renewables, Qr, have to be balanced
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by storage and destorage, and if the respective periods last longer. In addition, with larger conversion
losses of storage (small ηs) it takes longer to fill the storage, and with larger conversion losses of
destorage (high ηd) the storage is depleted more quickly. Turning to demand, a larger storage requires
more electricity to be filled. This raises the price and reduces demand ( ∂xs∂Qs

< 0), and conversion
losses (small ηs

∫
s
dt) accentuate this effect. Conversely, during the destorage period the additional

electricity feed-in of a larger storage reduces the price and raises demand ( ∂xd∂Qs
> 0). The effect is

smaller when conversion losses are high (large ηd
∫
d
dt).

4 Capacity Choices of Competitive Firms

We now turn to Stage 2, in which fossil, renewable, and storage firms choose their respective capacit-
ies, thereby anticipating the outcome of production decisions in Stage 3. Remember that the value
functions, πj

(
y∗j (qj)

)
, j = f, r, s as given by (1), (5), and (9), represent the maximum profits that the

respective firms firms can achieve for given capacities, qj , during one representative cycle, t ∈ [t0, T ].
By construction, production choices in one cycle have no effect on other cycles. Therefore, the net
present value of profits over the lifetime of capacities—which is m representative cycles—is simply∑m
z=1

1
(1+r)z πj

(
y∗j (qj)

)
= ρπj

(
y∗j (qj)

)
, where ρ := 1

r −
1

r(1+r)m and r is the discount factor. After
substitution for the value functions and accounting for capacity costs, cj (Qj) qj , as well as subsidies
and taxes (θ = (σr, σs, τ, χ) denotes the vector of policy instruments), the profits that the respective
firms maximise in Stage 2 are

πf
(
q∗f (θ),θ

)
:= max

qf
ρ

∫ T

t0

(p (t)− τ − kf ) y∗f (t, qf )dt− cfqf , (27)

πr (q∗r (θ),θ) := max
qr

ρ

∫ T

t0

p (t) y∗r (t, qr)dt− (cr(Qr)− σr) qr, (28)

πs (q∗s (θ),θ) := max
qs

ρ

∫ T

t0

p (t) y∗s (t, qs)dt− (cs(Qs)− σs) qs. (29)

When choosing capacity levels, competitive firms take as given the capacity choices of other firms,
unit capacity costs, cj(Qj), the equilibrium electricity demand and price, x (t) , p (t), as well as the
occurrence of cases and the t where they start (columns 1 and 2 of Table 1). Using this, differentiation
of the objective functions in (27) to (29) with respect to the respective capacities yields the following
first-order conditions for fossil, renewable, and storage firms (πjj := dπj

(
q∗j (θ),θ

)
/dqj for j = f, r, s):

πff = ρ

∫ T

t0

(p (t)− τ − kf )
∂y∗f (t, qf )

∂qf
dt− cf = 0, (30)

πrr = ρ

∫ T

t0

p (t)
∂y∗r (t, qr)

∂qr
dt− cr (Qr) + σr = 0, (31)

πss = ρ

∫ T

t0

p (t)
∂y∗s (t, qs)

∂qs
dt− cs (Qs) + σs = 0, (32)

where the derivatives ∂y∗j (t, qj) /∂qj follow straightforwardly from Table 1 for the respective cases.
Intuitively, firms equalise the net present value of additional production from a marginal capacity
unit—the integral terms—and its costs, cj (Qj), thereby accounting for subsidies, and a tax on fossils if
implemented. A priori, corner solutions might obtain. However, our focus on situations where optimal
capacity levels are positive for all three technologies excludes the case that πjj < 0. Conversely, πjj > 0
and, thus, positive marginal (and total) profits would lead to entry until the conditions bind. Indeed,
by substituting cj (Qj) , j = f, r, s and, thus, the equilibrium capacity levels from (30) to (32) into the
profit functions (27) to (29), it is straightforward to see that all firms make zero profits in equilibrium.
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5 First- and Second-best Policies

Now consider the regulator’s choice of the optimal tax-subsidy system for fossil production, electricity
consumption as well as renewable and storage capacities in Stage 1. Denote by Q = (Qf , Qr, Qs) the
vector of overall capacities and remember that θ = (σr, σs, τ, χ) is the vector of policy instruments.
We use (non-bold) θ = σr, σs, τ, χ to refer to an element of this vector. Assuming lump-sum taxation,
welfare is given by (we omit the asterisks for optimised values from stages 2 and 3)

W := ρ

∫ T

t0

(∫ x(t,χ,τ,Q)

0

p (x̃) dx̃

)
dt− ρ

∫ T

t0

(kf + δ)Yf (t, χ, τ,Q) dt−
∑

j=f,r,s

cj (Qj)Qj , (33)

where the notation clarifies that equilibrium demand, x (t, χ, τ,Q), and production of fossils, Yf (t, χ, τ,Q),
at time t depend directly on taxes χ, τ , but only indirectly via capacity levels Q on subsidies σr, σs
(see Table 1). The first term is the net present value of gross consumer surplus, i.e., the area under
the inverse demand function p (x). The second term is the net present value of variable production
costs and environmental damage costs. The third term are capacity costs. This takes into account
that revenues and costs of taxes and subsidies cancel in the aggregate.

The optimal policy vector maximises welfare W . Differentiation of (33) yields for θ = σr, σs, τ, χ
(skipping arguments for parsimony):15

dW

dθ
= ρ

∫ T

t0

(
dx (t)

dθ
(p (t) + χ)− (kf + δ)

dYf (t)

dθ

)
dt−

∑
j=f,r,s

cj (Qj)
dQj
dθ
−
∑
i=r,s

Qi
∂ci
∂Qi

dQi
dθ

. (34)

The first term under the integral reflects that the value of the inverse demand function at the equi-
librium consumption level equals the equilibrium price plus consumption tax, i.e., p (x (t, χ, τ,Q)) =
p (t) + χ. Accordingly, the integral terms stipulate that if capacity levels were exogenously given,
then policy instruments should be chosen such that the marginal value of electricity consumption
should be equal to marginal production cost after accounting for the environmental externality. The
remaining two terms extend this to effects via capacities, where the last term reflects our assumption
that ∂cf

∂Qf
= 0 for the established fossil technology. Using

∑
j Yj(t) = x (t), rearranging terms and

substituting from the conditions (30) to (32) for firms’ capacity choices, the four first-order conditions
dW
dθ = 0 for the optimal policy instruments θ = σr, σs, τ, χ are (see Appendix C for the calculations):

∑
i=r,s

(
σi +Qi

∂ci
∂Qi

− ρχ
∫ T

t0

∂Yi (t)

∂Qi
dt

)
dQi
dθ
− ρ (τ − δ + χ)

∫ T

t0

dYf (t)

dθ
dt− z = 0, (35)

where

z =


0 if αsQr < x (0 + χ)

ρχ 1
ηs

dQs
dθ if αsQr = x (0 + χ) for θ = σr, σs, τ

ρχ
(∫

s
∂x(0+χ)
∂χ dt+ 1

ηs

dQs
dχ

)
if αsQr = x (0 + χ) for θ = χ

(36)

Accordingly, z is only non-zero when there are excess capacities of renewables—i.e., if αsQr =
x (0 + χ)—and we explain the expression when we discuss this situation in Section 5.2. We now
examine the different options for policy interventions.

5.1 Pigouvian Taxation
First, suppose that the consumption tax is set at χ = 0 so that the related terms in (35) cancel and
z = 0. Hence the first-order conditions for the optimal policy instruments θ = σr, σs, τ simplify to

15 All terms under the integral as well as their derivatives are continuous so that one can apply the Leibniz rule and
differentiate under the integral sign (see Sydsaeter, Hammond, Seierstad, and Strom 2005, p. 156).
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∑
i=r,s

(
σi +Qi

∂ci
∂Qi

)
dQi
dθ

= ρ (τ − δ)
∫ T

t0

dYf (t)

dθ
dt. (37)

Intuitively, the effects of subsidies and taxes on capacity, production and consumption choices
should correct the environmental and the capacity cost externality. Abstracting from the latter by
first considering the case ∂ci

∂Qi
= 0, i = r, s, a Pigouvian tax τ = δ and σr = σs = 0 would solve (37).

Next, suppose that a cost externality obtains ( ∂ci∂Qi
6= 0), whereas the individual firms take unit costs

ci (Qi) as given. This provides a separate reason to subsidise capacities if it reduces unit costs—i.e., if
∂ci
∂Qi

< 0 due to economy-wide economies of scale or learning—and to tax capacities if ∂ci
∂Qi

> 0—e.g.,
due to the scarcity of suitable sites for wind and solar energies. It is straightforward to see that the
the tax/subsidy scheme, τ∗ = δ, χ∗ = 0, and σ∗i = −Q∗i ∂ci∂Qi

, i = r, s, satisfies the first-order conditions
as given in (37).

To see that this instrument mix even implements the first-best solution, note that production and
consumption choices on competitive markets as analysed in Section 3.2 were only distorted by the
pollution externality. Hence the resulting equilibrium levels in Lemma 1 are obviously first-best if no
consumption tax is levied and the environmental externality is internalised by a Pigouvian tax τ = δ,
provided that the underlying capacity levels are first-best. Welfare maximizing capacity levels follow
from maximizing welfare W in (33) with respect to capacities for χ = 0. Using ∂cf

∂Qf
= 0, we have for

j = f, r, s:

∂W

∂Qj
= ρ

∫ T

t0

(
∂x (t)

∂Qj
p (t)− (kf + δ)

∂Yf (t)

∂Qj

)
dt− cj (Qj)−

∂cj
∂Qj

Qj = 0. (38)

In the proof of Proposition 1, we show that imposing a Pigouvian tax and a capacity subsidy on
profit maximizing firms leads to exactly the same first-order conditions and, hence, the same capacity
levels. This leads to the following result.

Proposition 1. The social optimum can be implemented by a Pigouvian tax on fossils, τ∗ = δ,
subsidies for renewable and storage capacities that are equal to the cost externality, σ∗i = −Q∗i ∂ci∂Qi

,
i = r, s, and no consumption tax, χ∗ = 0.

Proposition 1 confirms the expectation that Pigouvian taxation also works in a model that accounts
for intermittency of renewables and storage. However, this provides no guidance for second-best
policies when Pigouvian taxes are not feasible—for example, due to political economy reasons. In
the next subsection, we consider the alternative policy option of subsidizing renewable and storage
capacities in combination with a consumption tax on electricity.

5.2 Consumption Taxation
Now suppose that—in contrast to the previous Section—an incomplete fossil tax, τ < δ, is taken
as given, but the regulator can implement a consumption tax χ. Remember that the first-order
conditions for policy instruments are as stated in (35). First, consider the situation without excess
capacities of renewables (αsQr < x(0 + χ)). For this case, we have z = 0, ∂Yr(t)

∂Qr
= α (t), and∫ T

t0

∂Ys(t)
∂Qs

dt =
∫
d
∂αd
∂Qs

Qrdt +
∫
s
∂αs
∂Qs

Qrdt = 1
ηd
− 1

ηs
≤ 0 (from Table 1 and Lemma 2). Hence the

optimal policy instruments θ = σr, σs, χ must satisfy

(
σr +Qr

∂cr
∂Qr

− ρχ
∫ T

t0

α (t) dt

)
dQr
dθ

+

(
σs +Qs

∂cs
∂Qs

− ρχ
(

1

ηd
− 1

ηs

))
dQs
dθ

= ρ (τ − δ + χ)

∫ T

t0

dYf (t)

dθ
dt.

(39)
Denoting the optimal tax/subsidy scheme with a consumption tax by superscript #, it is straight-

forward to see that χ# = δ−τ , σ#
r = −Qr ∂cr∂Qr

+ρχ#
∫ T
t0
α (t) dt, and σ#

s = −Qs ∂cs∂Qs
+ρχ#

(
1
ηd
− 1

ηs

)
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satisfies all three first-order conditions. Moreover, as shown in the proof of Proposition 2 it implements
the first-best solution if capacity levels are first-best.

For the fossil technology this is very intuitive because the combined tax level on electricity from
fossils is τ +χ# = δ—i.e., just at the Pigouvian level—and the tax incidence does not depend on who
pays the tax. Moreover, from Table 1 supply Yj (t) and, thus, also demand x (t) =

∑
j=f,r,s Yj (t)

are the same under the Pigouvian and under the consumption tax. Therefore, x
(
p# (t) + χ#

)
=

x (p∗ (t)), where p∗ (t) and p# (t) denote the (before tax) equilibrium prices with the Pigouvian or the
consumption tax, respectively. It follows that p# (t) = p∗ (t) − χ#, i.e., equilibrium prices under the
consumption tax are lower. This reflects that the consumption tax must also be paid for electricity from
renewables and for electricity that goes through the storage. For renewables, the subsidy component
ρχ#

∫ T
t0
α (t) dt compensates the net present value of losses from the lower equilibrium price. By

contrast, for storage firms p# (t) < p∗ (t) implies that they pay and receive a lower price during storage
and destorage, respectively. As the level of stored electricity exceeds that of destored electricity due to
conversion losses, this is beneficial for storage firms. To compensate this requires a tax, which explains
the subsidy component ρχ#

(
1
ηd
− 1

ηs

)
< 0. In particular, 1

ηs
− 1

ηd
represents conversion losses over a

storage cycle that determine the net benefit from the lower electricity price.16
Next, consider the situation with excess capacities of renewables (αsQr = x (0 + χ)). This does

not affect the above analysis with one exception. From Table 1, overall supply during storage is
now

∑
j Yj (t) = x (0 + χ) and, thus, lower with a consumption tax χ > 0 than with a Pigouvian

tax. Hence, less renewable capacities—which are now in excess supply—are needed to satisfy the
lower demand. Therefore, consumption and production decisions would be distorted and the social
optimum cannot be attained, even at first-best capacity levels. The proposition summarizes these
results.

Proposition 2. Suppose that we have an incomplete carbon tax τ < δ.

(a) If there are no excess capacities of renewables (αsQr < x (0 + χ)), then the social optimum can
still be implemented by a tax on electricity consumption, χ# = δ − τ , as well as subsidies for
renewable and storage capacities, σ#

r = −Q∗r ∂cr∂Qr
+ ρ (δ − τ)

∫ T
t0
α (t) dt and σ#

s = −Q∗s ∂cs∂Qs
+

ρχ#
(

1
ηd
− 1

ηs

)
, where 1

ηd
− 1

ηs
< 0.

(b) With excess capacities of renewables (αsQr = x (0 + χ)), no policy mix of consumption taxes
and capacity subsidies can attain the social optimum.

Accordingly, for a carbon tax below the Pigouvian level, τ < δ, a complementary consumption tax
χ# = δ − τ closes the gap and achieves that the carbon externality is fully internalised. However,
the consumption tax must also be paid for “clean” electricity from renewables, and for electricity
that has gone through a storage cycle with associated conversion losses. This creates distortions
that must be corrected by subsidising renewable capacities and—unless the cost externality Q∗s

∂cs
∂Qs

dominates—taxing storage capacities. This is an awkward policy. It results in Pigouvian taxation
of fossils, but as a by-product it also leads to unintended taxes for renewables and storage, which in
turn must be compensated by another round of subsidies and taxes. Moreover, in the real world these
tax/subsidy streams lead to costs that we have ignored in our simple model, and the policy fails for
excess capacities of renewables that we occasionally observe already now in some countries. Therefore,
it is hard to see any advantage over a simple Pigouvian tax, even if one accounts for political economy
issues that impede their implementation.

16 Remember that ηd ≥ 1 ≥ ηs. 1
ηs

is the quantity of electricity needed to fill the storage by one unit so that 1
ηs
− 1 is

electricity lost during storage. Similarly, 1
ηd

is the quantity of electricity that arrives at the market for each unit taken

from the storage so that 1− 1
ηd

is electricity lost during destorage. Summing up yields total conversion losses 1
ηs
− 1
ηd

.
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5.3 Renewable and Storage Subsidies
In this section, we assume that it is not possible to implement a tax that fully internalises the carbon
externality, neither directly by a Pigouvian tax nor through the backdoor by a consumption tax.
Instead, noting that subsidies for renewable energies and, more recently, also for storage capacities
have been the dominating policy instrument in many countries, we examine their optimal levels for a
given imperfect carbon tax and no tax on electricity consumption.

For χ = 0, τ < δ given, the first-order conditions (35) for optimal subsidy levels become(
σr +Qr

∂cr
∂Qr

)
dQr
dσr

+

(
σs +Qs

∂cs
∂Qs

)
dQs
dσs

= ρ (τ − δ)
∫ T

t0

dYf (t,Q)

dσi
dt, i = r, s, (40)

where dYf (t,Q)
dσi

=
∑
j=f,r,s

∂Yf
∂Qj

dQj
dσi

because subsidies have no direct effect on fossil production, i.e.,
∂Yf
∂σi

= 0. To evaluate this, we need a closer inspection of the effects of subsidies on the non-internalised
carbon externality from fossils, (τ − δ) dYfdσi

. These follow from Table 1 and depend on which of the
intermediate cases 1 to 3 obtain in equilibrium.

For full usage of fossils during storage (αs ≤ α1), only the intermediate case 1 obtains and fossil
always operate at full capacity so that (subscripts to the integral sign denote the periods over which
the integration applies) ∫ T

t0

dYf (t,Q)

dσi
dt =

∫
d,1,s

dt
dQf
dσi

, i = r, s. (41)

For partial usage of fossils during storage (α1 < αs ≤ α2), fossil capacities are only partly used
during case 2 of the intermediate period and during storage because renewables are increasingly
substituting them in these periods. Therefore, using Lemma 1, we obtain

∫ T

t0

dYf (t,Q)

dσi
dt =

∫
d,1

dt
dQf
dσi
−
∫
2

α (t) dt
dQr
dσi
−
∫
s

dt
d (αsQr)

dσi

=

∫
d,1

dt
dQf
dσi
−
∫
2

α (t) dt
dQr
dσi
−
∫
s

α (t) dt
dQr
dσi

+
1

ηs

dQs
dσi

, i = r, s, (42)

where the second line follows from Lemma 2.17
For no usage of fossils during storage (α2 < αs), the intermediate period extends to case 3, but

fossils do not produce in this case, nor in the storage period that follows them. Therefore, subsidies
have no effects on fossil production during these periods and expression (42) simplifies to

∫ T

t0

dYf (t,Q)

dσi
dt =

∫
d,1

dt
dQf
dσi
−
∫
2

α (t) dt
dQr
dσi

, i = r, s. (43)

Intuitively, subsidies for renewables and storage affect fossil capacities only indirectly, via changing
the incentives to invest in fossils if the level of renewable and storage capacities changes. Specifically,
in Appendix F we show that for j = r, s:

dQf
dσj

=
∂Qf
∂Qr

dQr
dσj

+
∂Qf
∂Qs

dQs
dσj

, (44)

17 In particular, ∂αs
∂Qf

= 0 so that total differentiation of αsQr and multiplication by
∫
s
dt gives

d (αsQr)

∫
s

dt =

[(
∂αs

∂Qr
Qr + αs

)
dQr +

∂αs

∂Qs
QrdQs

]∫
s

dt

=

(
−
∫
s

(αs − α (t)) dt+ αs

∫
s

dt

)
dQr −

1

ηs
dQs.
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where, using 1αs≤α1
to denote the indicator function that takes the value 1 if αs ≤ α1 and 0 otherwise,

∂Qf
∂Qr

= −

∫
1
∂p(t)
∂x(t)α(t)dt+ ∂pd

∂xd

∫
d
α (t) dt+ 1αs≤α1

· ∂ps∂xs

∫
s
α (t) dt∫

1
∂p(t)
∂x(t)dt+ ∂pd

∂xd

∫
d
dt+ 1αs≤α1

· ∂ps∂xs

∫
s
dt

, (45)

∂Qf
∂Qs

= −
∂pd
∂xd

1
ηd
− 1αs≤α1

· ∂ps∂xs
1
ηs∫

1
∂p(t)
∂x(t)dt+ ∂pd

∂xd

∫
d
dt+ 1αs≤α1 ·

∂ps
∂xs

∫
s
dt
. (46)

The case distinction captures that for αs ≤ α1 storage starts during case 1 so that fossils are
always fully used. By contrast, for αs > α1 fossils make no marginal profits because the equilibrium
price equals their variable costs (if α1 < αs ≤ α2), or they do not produce during storage (if α2 < αs).
Hence their profitability and, thus, capacities are not affected by changes in renewable and storage
capacities so that all terms concerning the storage period are dropped.

We can now use these expressions to evaluate the above three cases of full, partial, and no usage
of the fossil technology during storage. In particular, substituting the term

∫ T
t0

dYf (t,Q)
dθ dt for these

respective cases (i.e., (41), (42), and (43)) into the first-order conditions (40) for optimal subsidies,
thereby using (44) together with (45) and (46), yields after some transformations (see Appendix G)
the following result.

Proposition 3. For an incomplete carbon and no consumption tax (τ < δ, χ = 0), optimal subsidies
of renewable and storage capacities for the respective cases of full (αs ≤ α1), partial (αs ∈ (α1, α2])
and no (αs > α2) usage of the fossil technology during the storage period are

σ∗r = −Qr (θ)
∂cr
∂Qr

+ ρ (δ − τ)



(∫
d,1,s

dt

∫
d,1,s

∂p(t)
∂x(t)

α(t)dt∫
d,1,s

∂p(t)
∂x(t)

dt

)
if αs ≤ α1,(∫

d,1
dt

∫
d,1

∂p(t)
∂x(t)

α(t)dt∫
d,1

∂p(t)
∂x(t)

dt
+
∫
2,s
α (t) dt

)
if αs ∈ (α1, α2] ,(∫

d,1
dt

∫
d,1

∂p(t)
∂x(t)

α(t)dt∫
d,1

∂p(t)
∂x(t)

dt
+
∫
2
α (t) dt

)
if αs > α2,

and

σ∗s = −Qs (θ)
∂cs
∂Qs

+ ρ (δ − τ)



(∫
d,1,s

dt
∂pd
∂xd

1
ηd
− ∂ps∂xs

1
ηs∫

d,1

∂p(t)
∂x(t)

dt+ ∂ps
∂xs

∫
s
dt

)
if αs ≤ α1,(∫

d,1
dt

∂pd
∂xd

1
ηd∫

d,1

∂p(t)
∂x(t)

dt
− 1

ηs

)
if αs ∈ (α1, α2] ,(∫

d,1
dt

∂pd
∂xd

1
ηd∫

d,1

∂p(t)
∂x(t)

dt

)
if αs > α2.

All expressions have the same intuitive structure: Optimal subsidies account for the cost extern-
ality, Qi (θ) ∂ci

∂Qi
, and for the net present value of non-internalised avoided damages, ρ (δ − τ), from

the marginal effect of renewable respectively storage capacities on fossil production (the terms after
the curly bracket). Obviously, if economies of scale or learning reduce unit costs of renewable and/or
storage capacities so that ∂ci

∂Qi
< 0, then the optimal subsidy rises. The opposite result obtains if

∂ci
∂Qi

> 0. We now discuss the terms after the curly bracket.
Start with the renewable subsidy σ∗r . From (45), the fractions represent the marginal effect of

renewable capacities on fossils, −∂Qf∂Qr
, during the periods where fossils are fully used. Intuitively, this

effect and, thus, σr is larger when the availability of renewables, α (t), is large. The weighting by ∂p(t)
∂x(t)

captures that this availability is more relevant at times where it reduces the electricity price more

18



strongly because this makes fossils less attractive. The additional term in the second and third line
represent the marginal effect of renewable capacities on fossils when the latter are only partly used,
i.e., during case 2 and storage if αs ∈ (α1, α2] and during case 2 if αs > α2. Due to the constant
equilibrium price p (t) = kf + τ in these periods, there are no price effects. Hence a marginal increase
in renewable capacities simply raises renewable production by α(t) and replaces fossil production by
this amount.

Next, consider the storage subsidy σ∗s . The fractions now represent the marginal effect of storage
capacities on fossils, −∂Qf∂Qs

. A higher storage capacity reduces the price of the destorage period as more
electricity from the storage is fed into the market (

∫
d
∂pd
∂Qs

dt = ∂pd
∂xd

1
ηd
< 0). This makes investment in

fossils less attractive and provides an argument for subsidizing storage. Moreover, the effect is smaller
if efficiency losses are large (high ηd) so that only a small share of electricity from the storage arrives
in the market.

However, as long as fossils contribute to filling the storage—i.e., for αs ≤ α2—there is the following
countervailing effect: First, if fossils are fully used during storage (αs ≤ α1), a higherQs raises the price
of the storage period (

∫
s
∂ps
∂Qs

dt = − ∂ps
∂xs

1
ηs
> 0) and, thus, the profitability of investment in fossils. This

provides an argument for taxing storage, especially, when efficiency losses are large (low ηs) so that
more electricity has to be taken from the market to fill the storage. Moreover, one would expect that
demand is more price responsive when prices are high, that is, during destorage, than at the low prices
during storage (see Faruqui and Sergici, 2010). This implies that |∂xd∂pd

| > |∂xs∂ps
| ⇐⇒ | ∂pd∂xd

| < | ∂ps∂xs
|,

further supporting the rationale for taxing storage capacities. Second, no such price effects obtain
if fossils are only partly used during storage (αs ∈ (α1, α2]) because the storage price is constant at
ps = kf + τ in this case. However, now a marginal unit of storage capacities raises fossil production
by
∫
s
∂Yf
∂Qs

dt =
∫
s

(
− ∂αs
∂Qs

Qr

)
dt = 1

ηs
(from Lemma 2, see also (42)) because more fossils are needed to

supplement renewables in filling the larger storage. This provides another reason for taxing storage,
which again increases for higher efficiency losses during storage (low ηs).

Finally, if renewable capacities are large enough so that fossils not longer contribute to filling the
storage (αs > α2), the above effects and, thus, also the puzzling optimality of taxing storage vanish.

5.3.1 The case of no cost externality

Ignoring the cost externality, in all of the above cases the optimal subsidy σ∗s only depends on its
indirect effects on fossil capacities. In particular, the negative effect of tax-induced lower storage
capacities on investments in renewables turns out to be irrelevant. The reason is simply that the
second policy instrument—the subsidy for renewables—is used to compensate this effect. The following
corollary summarises the above results regarding the sign of the subsidies.

Corollary 1. Suppose that the cost externality does not dominate by assuming ∂cr
∂Qr

= ∂cs
∂Qs

= 0. Then
the optimal renewable subsidy, σ∗r , is always strictly positive. By contrast, the optimal storage subsidy,
σ∗s , is

• for αs ≤ α1 negative iff 1
ηd

∣∣∣ ∂pd∂xd

∣∣∣ < 1
ηs

∣∣∣ ∂ps∂xs

∣∣∣,
• for αs ∈ (α1, α2] negative iff 1

ηd

∣∣∣ ∂pd∂xd

∣∣∣ ∫d,1 dt < 1
ηs

∫
d,1

∣∣∣ ∂p(t)∂x(t)

∣∣∣ dt,
• for αs ≤ α2 strictly positive.

5.3.2 The case of linear demand

Price effects featured prominently in the above elaborations. If we simplify these by assuming linear
demand, the optimal subsidies have a very simple structure.
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Corollary 2. For an incomplete carbon and no consumption tax (τ < δ, χ = 0), linear demand,
∂2p
∂x2 = 0, and constant unit costs, ∂cr

∂Qr
, ∂cs∂Qs

= 0, optimal subsidies are

σ∗r = ρ (δ − τ)


∫ T
t0
α (t) dt > 0 if αs ≤ α1,∫ T

t0
α (t) dt > 0 if αs ∈ (α1, α2] ,∫

d,1,2
α (t) dt > 0 if αs > α2,

and

σ∗s = ρ (δ − τ)


(

1
ηd
− 1

ηs

)
≤ 0 if αs ≤ α1,(

1
ηd
− 1

ηs

)
≤ 0 if αs ∈ (α1, α2] ,

1
ηd
> 0 if αs > α2,

where the respective inequalities are strict if there are conversion losses of storage.

Intuitively, the renewable subsidy σ∗r reflects that an additional unit of renewable capacities dis-
places fossil production by α (t) as long as the latter are used. Accordingly, it is constant in the first
two lines where fossils produce for all t. By contrast, the period

∫
d,1,2

dt in the third line is shorter and
decreasing in Qr because the availability of renewables for which case 2 ends, α2 = x (bf + χ) /Qr, is
falling in Qr. Hence fossil capacities are used less often so that there is less reason to subsidise their
replacement by renewable capacities.

Turning to σ∗s , storage capacities should be taxed as long as their price increasing effect during
storage dominates their price reducing effect during destorage due to conversion losses. This reflects
that fossil capacities are more profitable if electricity prices are higher. For αs > α2, storage capacities
only contribute to destorage and, therefore, σ∗s turns strictly positive.

6 Numerical Illustration of Optimal Subsidies and Discussion

Figure 2 presents results of a numerical simulation of the optimal subsidy scheme with linear demand,
constant unit costs and no consumption tax, as in the Corollaries. The parameters are loosely calib-
rated to German data (see Appendix H for details). Values for optimal unit subsidies are depicted on
the right axis (in €/MW and €/MWh, respectively); capacities (in MW and MWh) and total sub-
sidy payments, Σ := σrQr + σsQs, on the left axis.18 The (small) diamonds show efficient capacities
(Q∗r , Q∗s, Q∗f ) that would occur with an efficient Pigouvian tax τ∗ = δ. As shown in Section 5.2, the
same capacities would also obtain for an imperfect carbon tax if it is complemented by a consumption
tax χ# = δ − τ , a renewable subsidy σ#

r = ρ (δ − τ)
∫ T
t0
α (t) dt = 136, 600 €/MW, and a storage tax

σ#
s = ρχ#

(
1
ηd
− 1

ηs

)
= −7, 490 €/MWh (not depicted).

The figure should be read from the right to the left. Then all values are depicted as a function
of unit capacity costs of renewables (cr) and storage (cs) that are falling at the same rate. Whereas
the preceding analysis was restricted to the case where positive quantities of all three technologies are
installed in equilibrium, we now consider a broader cost range. It also includes the situations where
renewables and storage enter the market, and where they have fully captured it.

Intuitively, renewable capacities enter the market first, supported by a subsidy that is constant
at the level 136,600 €/MW as long as fossils produce for all t (in line with Corollary 2). Storage
capacities follow once the resulting volume of intermittent supply is large enough to make buffering
electricity economically viable. Due to relatively high capacity costs and conversion losses (19 per
cent in our calibration), this only happens when renewables have reached a capacity of 224 GW. This
is large enough to completely satisfy electricity demand at times of high availability during which
storage takes place. Therefore, the situations where fossils profited from the higher electricity prices

18 Note that storage capacity is measured in MWh. This distinction between power and energy was irrelevant in the
theoretical model, but is important now.
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Fig. 2: Market diffusion and optimal subsidies

due to storage, which provided the rationale for taxing storage capacities, are leapfrogged.19 Once
storage capacities enter the market, they receive a constant subsidy, whereas the renewable subsidy is
gradually decreasing (both values are exactly those of Corollary 2 for αs > α2). However, the lower
rate is paid for larger capacities so that total subsidy payments, Σ, are even slightly increasing until
fossils are completely driven out of the market. Even thereafter, falling but still substantial subsidies
are required to prevent fossils from re-entering the market.

In the analytical model, this boundary case where subsidies are chosen such that they are just
sufficient to keep fossil firms out requires that their first-order condition (30) is satisfied at Qf = 0.
In particular, noting that a re-entering fossil firm would produce at full capacity during destorage and
case 1, the first-order condition becomes (during case 2 fossils make zero profits)

πff = ρ

∫
d,1

(p (t,Q)− kf − τ) dt− cf = 0, where Q = (0, Qr, Qs) . (47)

Obviously, this condition would be met if renewable and storage capacities, Qr, Qs, were kept
constant at the level that solves this equation, which is roughly the case in our numerical simulations.
From the first-order conditions (31) and (32) for capacity choices of renewable and storage firms, this
requires that falling capacity costs are balanced by lower subsidies; as in Figure 2. By contrast, when
renewable and storage capacities have become cheap enough to defend the market without subsidies,
both rise in response to further falling costs.

Finally, consider the evolution of capacities in the initial stages. The market diffusion of renewables
is slow in the beginning, then accelerates rapidly, and thereafter slows down again. The evolution of
fossil capacities matches this pattern in opposite direction. This is in line with the result in Helm

19 Results of a model calibration that leads to an earlier build-up of storage capacities and, thus, taxes in the initial
stages are available upon request. In a nutshell, they require lower costs and lower conversion losses of storages.
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and Mier (2019), but the additional storage technology accelerates the build-up of renewables and the
phase out of fossils. Storage capacities are increasing exponentially despite constant subsidies. The
reason is their rising market value as there are more variable renewables and less reliable fossils.

7 Concluding Remarks

Countries often fail to implement a Pigouvian tax that fully internalises the carbon externality. We
showed that a consumption tax of the same size imposes the same incentives on fossil producers
because the tax incidence is independent of who pays the tax. However, this result does not extend
to a model with several fossil technologies with different carbon intensities, as this would require
differentiated Pigouvian and, therefore, differentiated consumption taxes for the homogeneous good
electricity (see also Abrell et al. (2019)). Moreover, unlike the Pigouvian tax the consumption tax
must also be paid for electricity that comes from renewables and from the storage. This distorts
investment decisions that must be corrected by subsidising renewables and taxing storage capacities.

Given that an optimal consumption tax is basically a Pigouvian tax through the back-door, we
then analysed second-best subsidies for installing capacities of intermittent renewable energies and
storage. Renewables reduce the profitability of fossil investments by lowering expected prices and by
displacing fossil production at times of high availability. This provides a rationale for the subsidisation
of renewable energies. Storage capacities raise the electricity price when the storage is filled and lower
it during destorage. This has countervailing effects on the profitability of fossils, and the storage
subsidy is chosen on the basis of the relative strength of these effects. In particular, if fossil energies
produce at times when storage drives up electricity prices, it is usually optimal to tax storage. In
a stylised way, our analysis also accounts for a cost externality, e.g., from learning or economy-wide
economies of scale. Given the current technological progress in storage technologies such as batteries
and power-to-gas, these externalities may well provide an overriding argument for subsidising storage.

Under the stylised calibration of the model, storage capacities only enter the market when re-
newables capacities are sufficient to satisfy the whole electricity demand at times of high availability,
during which storage takes place. Hence it is always optimal to subsidise storage. However, in the
real world fossil capacities nearly always produce at times of electricity storage and, thus, benefit from
the price increase of the resulting higher electricity demand.20 Similarly, electric vehicles, which are
powered by stored electricity, are usually charged to a substantial extent with electricity from burning
fossil fuels. Even worse, currently the batteries in electric vehicles are almost never used for destorage.
Hence the price dampening effect, which hampers the competitiveness of fossil firms, does not occur.
Both effects weaken the case for subsidising electric vehicles to reduce CO2 emissions; although other
reasons such as reducing local air pollution may still justify subsidies (see Holland, Mansur, Muller,
and Yates, 2016). Moreover, real world availability patterns of renewables are more heterogeneous
than in our model. Therefore, even with a relatively large share of renewables in the energy system
there may be periods where fossils contribute to filling the storage. In conclusion, the rationale for
taxing storage that resulted from the analytical model may actually be stronger than the numerical
simulation suggests.

The subsidy scheme is only second-best and substantially more complex than a first-best Pigouvian
tax. In particular, optimal subsidies constitute a moving target because they vary, sometimes even in
their sign, depending on the relative shares of the three technologies in the electricity system. They also
require substantially more knowledge about the electricity market—such as demand sensitivity—than
does a Pigouvian tax, which, in our model, simply equals the environmental unit costs of fossil
production. Hence one should read the paper not so much as a call for taxing storage, but as a
lesson in the complexity of second-best policies that strengthens the case for directly addressing the
externality with a price on carbon.

Our results show that accounting for intermittency of renewables—an aspect that is still often
neglected in the analytical literature—has substantial implications for the design of policy instruments.

20 Note that the largest share of storage is done by commercial customers that face variable prices, as in our model.
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Moreover, given the substantial public funds that currently subsidise renewables, and, increasingly,
storage, this paper is of high policy relevance. At least under the simplifying assumptions in the
corollaries, it provides an argument for gradually reducing the subsidy for renewables as their market
penetration rises, and raising the subsidy for storage instead. However, the latter is not targeted at
supporting the rising share of renewables, because the market provides sufficient incentives to build
storage capacities if there is more fluctuating electricity from renewables. Rather, storage of electricity
is subsidised because it substitutes fossil production when the availability of renewables is low.

Let us now address some further limitations and potential extensions of the above analysis that
need be taken into account when drawing policy recommendations. First, we have ignored effects
that may result from the interaction with existing overlapping instruments. Most importantly, an
increasing number of countries are implementing cap-and-trade systems that substantially impact the
effectiveness of complementary subsidies for renewables (Jarke and Perino, 2017). Second, we only
considered subsidies for capacities, whereas the dominating instruments for renewables have been
feed-in-tariffs—that is, a subsidisation of electricity output. However, these are quite similar in that
both are paid independently of the price that obtains on the market for electricity. Moreover, in our
numerical simulation renewable capacities are always fully used due to a sufficient storage capacity. In
this case, a subsidy per unit of output is equivalent to a subsidy per unit of capacity that is available
on average.

Third, we have restricted the analysis to one renewable and one fossil technology. This could
be extended relatively straightforwardly to several renewable technologies—e.g., PV, offshore and
onshore wind—with technology specific availability factors, αl(t).21 There would then be a separate
optimal subsidy rate for each renewable technology such that technologies which (on average) reduce
electricity prices more strongly receive a higher subsidy rate.22 With peak prices around midday, this
would suggest a subsidy mark-up for solar power. By contrast, with high PV shares there may be
consistently higher prices during the winter season, which would suggest a subsidy mark-up for more
stable offshore wind power. If several fossil technologies were considered, then a different emission
intensity of the marginal technology during storage and destorage periods would affect the analysis
(see Carson and Novan, 2013). As destorage takes places during high price periods, one might expect
that it displaces primarily gas with comparatively low emission intensity.

A related extension would be to include several storage technologies (e.g., batteries, pumped hydro
storage, and power-to-gas). This would allow a more accurate distinction between the different storage
needs that result from daily and seasonal variations in the availability of intermittent renewables (see
Sinn (2017) and Zerrahn, Schill, and Kemfert (2018) for a discussion). Finally, the model could also
be extended by including other market failures—e.g., non-reactive consumer demand, distortionary
taxation, and imperfect competition—or further aspects of electricity markets, such as variable de-
mand, trade, and the transmission grid. However, the first extension would make it more difficult to
isolate the effects of the pollution externality that was the focus of this contribution, and the second
would probably come at the cost of greater reliance on numerical simulations.
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Appendix

A Proof of Lemma 1

As shown in the main text, the sufficient conditions for optimality are equations (3) and (4) for fossil
firms, (7) and (8) for renewable firms, and (16) to (21) for storage firms. We now prove that the
equilibrium values in Lemma 1 satisfy these conditions.

Starting with the destorage period, it is straightforward to see that the solution yr (t) = α (t) qr
and yf (t) = qf satisfies (3), (4), (7), and (8) for µr, µf > 0, and results in a price p (t) above the
total unit costs of fossils, bf .23 Turning to storage firms, conditions (16) and (18) to (20) have already
been used at the beginning of Section 3.2 to derive the result of a constant price during destorage.
The remaining condition (17) describes how storage is depleting (ṡ (t) < 0), where the length of the
destorage period that follows from (23) ensures that destorage levels are consistent with the quantity
of stored electricity.

Once the storage has run empty, we have s (t) = 0 so that ϕd (t) turns (weakly) positive (see
(20)). This initiates the first intermediate period, t ∈ (td, ts), during which ṡ (t) = ys (t) = 0 (eqs.
(17)). For renewables, (7) and (8) imply that yr (t) = α (t) qr for any p (t) > 0, whereas for p (t) = 0
any output yr (t) is profit maximizing due to marginal costs of zero. Moreover, the fact that α (t)

23 Note that firms are identical so that yr (t) = α (t) qr implies Yr (t) = nryr (t) = α(t)Qr, where nr is the number of
renewable firms. An equivalent argument applies to the other quantities in the proof.
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Fig. 3: Availability of renewables and resulting values of the adjoint variable

is increasing during the first intermediate period implies that, ceteris paribus, p (t) is decreasing. As
long as p (t) > bf , we have µf (t) > 0 from (3) so that yf (t) = qf from (4). This case 1 continues
until full usage of fossil and available renewable capacities have lowered the price to the total unit
costs of fossils, p (t) = bf .

Noting that consumers may face a consumption tax χ, case 2 starts when x (bf + χ) = α (t)Qr+Qf

which yields α (t1) = α1 =
x(bf+χ)−Qf

Qr
. During case 2, fossils continue to be used so that (3) still

binds. Hence, p (t) = bf implies µf (t) = 0 from (3) and so that 0 < yf (t) < qf by the complementary
slackness conditions in (4). Once available renewable capacities, α (t)Qr, are large enough to satisfy
demand at consumers’ after tax price bf + χ, we enter case 3. Accordingly, case 3 starts when
x (bf + χ) = α (t)Qr so that α (t2) = α2 =

x(bf+χ)
Qr

. For α (t) > α2, we have p (t) − bf < 0 so that
yf (t) = 0 from (3).

Turning to storage firms, condition (19) is met for ϕs (t) = 0 because qs > s (t) during the
first intermediate period, which implies λ̇ (t) = −ϕd (t) ≤ 0 (from (18)). At the beginning of the
preceding paragraph, we have already addressed conditions (20) and (17); hence it remains to show
that ys (t) = 0 maximizes [p (t)− λ (t) η (ys)] ys (t) (eqs. (16)). Using λ̇ (t) ≤ 0, ηd ≥ ηs, and noting
that continuity of λ(t) was a precondition for (16) to (21) being sufficient, we obtain a situation as
depicted by the bold lines in Figure 3. Moreover, during t ∈ [td, ts] the price p(t) is monotonically
decreasing from pd to ps, as represented by the dashed line in Figure 3. It is straightforward to see
that the values of the multiplier ϕd (t) which determines the course of λ (t) can be chosen such that
λ (t) ηd > p (t) > λ (t) ηs. Using this, ys (t) > 0 would lead to [p (t)− λ (t) ηd] ys (t) < 0, and ys (t) < 0
to [p (t)− λ (t) ηs] ys (t) < 0. Therefore, ys (t) = 0 must be optimal.

The storage period (ys (t) < 0) can start during either of the cases 1 to 3. As shown in the main
text, it has a price that equals the one at the end of the intermediate period, i.e., ps = p(ts). Hence,
Yf = Yf (ts) from (3) and (4). Moreover, for ps > 0 conditions (7) and (8) imply Yr = α(t)Qr,
whereas for ps = 0 any Yr is profit maximizing due to the assumption of no variable costs. Turning
to storage firms, the argument parallels that during the destorage period: Conditions (16) and (18)
to (20) have already been addressed and (17) now implies that ṡ (t) > 0. Moreover, the conditions
(25) for αs <

x(0+χ)
Qr

and (26) for αs = x(0+χ)
Qr

ensure that storage levels are consistent with the
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available storage capacity. Once the storage is completely filled, s(t) = qs and ϕs (t) turns (weakly)
positive (see (19)). Thereafter, the second intermediate and destorage periods follow. Their solution
and the critical availabilities that distinguish these solutions are the same as discussed above for each
respective α(t).

B Proof of Lemma 2

The statements in (c) that relate to the situation αsQr = x (0 + χ) (excess capacities of renewables)
follow immediately from implicit differentiation of this expression and the fact that demand is constant
at x (0 + χ). Hence we only need to prove the statements in (a) and (b) that concern the situation
without excess capacities (αsQr < x (0 + χ)).

Conditions (23) and (25) that implicitly determine αd and αs can be written as

fd := ηd

∫ td

t0

(αd − α (t))Qrdt+ ηd

∫ T

t′
d

(αd − α (t))Qrdt−Qs = 0, (48)

fs := −ηs
∫ t′s

ts

(αs − α (t))Qrdt−Qs = 0. (49)

The comparative static effects of a change in Qf , Qr, or Qs, thereby taking the other capacities
as given, follow from applying the implicit function theorem, i.e., ∂αu∂Qj

= − ∂fu
∂Qj

/ ∂fu∂αu
for u = d, s and

j = f, r, s. It follows that ∂αs
∂Qf

= ∂αd
∂Qf

= 0. Next, note that αd = α (td) = α (t′d) and αs = α (ts) =

α (t′s). This implies that the integral terms in (48) and (49) are zero if evaluated at the boundaries
of the integral, td, t′d and ts, t′s, respectively. Using this when applying the implicit function theorem
yields the comparative statics ∂αd

∂Qr
, ∂αd∂Qs

, ∂αs∂Qr
, and ∂αs

∂Qs
in Lemma 2.

Demand during destorage, xd =
∑
j Yj (t) = Qf + αdQr, follows straightforwardly from Lemma 1

and Table 1. Differentiation yields ∂xd
∂Qr

= αd + ∂αd
∂Qr

Qr and ∂xd
∂Qs

= ∂αd
∂Qs

Qr. Substitution of ∂αd
∂Qr

, ∂αd∂Qs
yields the values in Lemma 2, where we have used

∂xd
∂Qr

= αd −
∫
d

(αd − α (t)) dt∫
d
dt

= αd − αd
∫
d
dt∫

d
dt

+

∫
d
α (t) dt∫
d
dt

. (50)

For storage, demand depends on the case that obtains at the beginning of the storage period.
From Table 1, xs =

∑
j Yj (t) = Qf +αsQr if it starts during case 1, and xs = αsQr if it starts during

case 3. In both situations, ∂xs
∂Qr

= αs + ∂αs
∂Qr

Qr, and ∂xs
∂Qs

= ∂αs
∂Qs

. The values in the Table in Lemma 2
follow again after substituting for ∂αs

∂Qr
, ∂αs∂Qs

, thereby applying the same steps as in (50) to xs. Finally,
if storage starts during case 2, then xs =

∑
j Yj (t) = x (bf + χ) so that ∂xs

∂Qj
= 0 for j = f, r, s.

C Calculation of Equation (35)

In this proof we use the compact notations
∑
j and

∑
i for summation over all three technologies

j, i = f, r, s. Using x (t, χ, τ,Q) =
∑
j Yj(t, χ, τ,Q), the first integrand term in (34) can be written as

dx (t, χ, τ,Q)

dθ
=
∑
j

(
∂Yj (t, χ, τ,Q)

∂θ
+
∑
i

∂Yj (t, χ, τ,Q)

∂Qi

dQi
dθ

)
. (51)

The first term represents the direct effects of policy instruments θ on production (it is zero for
subsidies), and the second the indirect effects via capacity choices. Moreover, this latter effect can be
written out as (dropping the arguments)
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∑
j

(∑
i

∂Yj
∂Qi

dQi
dθ

)
=
∑
j

∂Yj
∂Qj

dQj
dθ

+
∂ (Yr + Ys)

∂Qf

dQf
dθ

+
∂ (Yf + Ys)

∂Qr

dQr
dθ

+
∂ (Yf + Yr)

∂Qs

dQs
dθ

, (52)

where the first term sums up the effects of capacity on production within type-j firms, whereas the
other terms summarise the cross effects. From Table 1, ∂(Yr(t)+Ys(t))

∂Qf
= 0 for all t. Moreover, also∫ T

t0
(p (t) + χ) ∂Ys(t)∂Qr

dQr
dθ dt = 0. To see this, note that Ys (t) = 0 during the intermediate period and, by

construction, the available storage capacity is completely filled during storage and completely emptied
during destorage, independent ofQr. Hence

∫
d

(p (t) + χ) ∂Ys(t)∂Qr

dQr
dθ dt = (pd + χ) dQrdθ

∂
∂Qr

(∫
d
Ys (t) dt

)
=

0 and equivalently for the storage period. These terms can be eliminated when substituting (51) to-
gether with (52) into (34). After rearranging terms, this yields

dW

dθ
=

∑
j

(
ρ

∫ T

t0

(p (t) + χ)
∂Yj (t)

∂Qj
dt− cj (Qj)

)
dQj
dθ
− ρ

∫ T

t0

(kf + δ)
dYf (t)

dθ
dt−

∑
i=r,s

Qi
∂ci
∂Qi

dQi
dθ

+ρ

∫ T

t0

(p (t) + χ)

∑
i=r,s

∂Yf (t)

∂Qi

dQi
dθ

+
∂Yr (t)

∂Qs

dQs
dθ

 dt+ ρ

∫ T

t0

(p (t) + χ)
∑
j

∂Yj (t)

∂θ
dt,

where the last integral sums up the direct effects. Noting that ∂Yj(t)
∂Qj

=
∂yj(t)
∂qj

, substitution from the
first-order conditions (30) to (32) for firms’ capacity choices and collecting terms gives

dW

dθ
=

∑
i=r,s

(
ρ

∫ T

t0

χ
∂Yi (t)

∂Qi
dt−Qi

∂ci
∂Qi

− σi

)
dQi
dθ

+ ρ

∫ T

t0

(τ + kf + χ)
∂Yf (t)

∂Qf

dQf
dθ

dt− ρ
∫ T

t0

(kf + δ)
dYf (t)

dθ
dt

+ρ

∫ T

t0

(p (t) + χ)

∑
i=r,s

∂Yf (t)

∂Qi

dQi
dθ

+
∂Yr (t)

∂Qs

dQs
dθ

 dt+ ρ

∫ T

t0

(p (t) + χ)
∑
j

∂Yj (t)

∂θ
dt. (53)

We can disaggregate dYf (t)
dθ into a direct and indirect effect, dYf (t,χ,τ,Q)

dθ =
∂Yf (t)
∂θ +

∑
j
∂Yf (t)
∂Qj

dQj
dθ .

Using this, we have

− (kf + δ)
dYf (t)

dθ
= (τ − δ + χ)

dYf (t)

dθ
−(τ + χ+ kf )

∂Yf (t)

∂θ
+
∂Yf (t)

∂Qf

dQf
dθ

+
∑
i=r,s

∂Yf (t)

∂Qi

dQi
dθ

 .

Substitution and using this to cancel the second term in (53) yields

dW

dθ
=

∑
i=r,s

(
ρ

∫ T

t0

χ
∂Yi (t)

∂Qi
dt−Qi

∂ci
∂Qi

− σi

)
dQi
dθ

+ ρ

∫ T

t0

(τ − δ + χ)
dYf (t)

dθ
dt

+ρ

∫ T

t0

(p (t)− kf − τ)
∑
i=r,s

∂Yf (t)

∂Qi

dQi
dθ

dt+ ρ

∫ T

t0

(p (t)− τ − kf )
∂Yf (t)

∂θ
dt

+ρ

∫ T

t0

(p (t) + χ)
∑
i=r,s

∂Yi (t)

∂θ
dt+ ρ

∫ T

t0

(p (t) + χ)
∂Yr (t)

∂Qs

dQs
dθ

dt.

Note that (p (t)− τ − kf )
∂Yf
∂Qi

= 0, i = r, s, because ∂Yf
∂Qi

= 0 except during stage 2 (and
during storage if the storage period starts in case 2) for which, however, p (t) = τ + kf . An
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equivalent argument yields (p (t)− τ − kf )
∂Yf
∂θ = 0, so that the second line vanishes. Defining

z := ρ
∫ T
t0

(p (t) + χ)
(∑

i=r,s
∂Yi(t)
∂θ + ∂Yr(t)

∂Qs

dQs
dθ

)
dt, we obtain the wanted expression in (35).

It remains to specify z for the different periods and policy instruments. From Table 1, we have
∂Ys(t)
∂θ , ∂Yr(t)∂θ = 0 for θ = σr, σs, τ . If αsQr < x (0 + χ), then also ∂Yr(t)

∂Qs
, ∂Ys(t)∂χ , ∂Yr(t)∂χ = 0. Therefore, z

can only be non-zero if there are excess capacities of renewables (αsQr = x (0 + χ)). From Table 1, for
this case

∑
i=r,s Yi (t) = x (0 + χ) for all α (t) > αs—i.e., during storage—so that

∫ T
t0

∑
i=r,s

∂Yi(t)
∂χ dt =∫ αmax

αs

∂x(0+χ)
∂χ dα, which takes into account that

∑
i=r,s Yi (t) does not directly depend on χ for α (t) ≤

αs. Moreover, Yr (t) = αcQr for all α (t) > αc, and implicit differentiation of (26) at αs = x(0+χ)
Qr

gives
∂ac
∂Qs

= 1

ηs
∫ αmax

αc
Qrdα

> 0. This reflects that with a larger storage capacity renewable production is

capped later. Using this,
∫ T
t0

∂Yr(t)
∂Qs

dt =
∫ αmax

αc

∂αcQr
∂Qs

dα =
∫ αmax

αc
1

ηs
∫ αmax

αc
dα
dα = 1

ηs
. Collecting terms

we obtain the expression for z in (36).

D Proof of Proposition 1

It remains to show that the policy mix in the Proposition leads to first-best capacity levels, which
we now determine. In equilibrium, demand equals supply so that ∂x(t,Q)

∂Qj
=
∑
i=f,r,s

∂Yi(t)
∂Qj

. We have∫ T
t0

∂Ys(t)
∂Qr

dt = 0 because the available storage capacity is completely filled (emptied) during storage

(destorage), independent of Qr. Moreover, from Table 1, ∂Yf (t)
∂Qs

= 0 and ∂(Yr(t)+Ys(t))
∂Qf

= 0 for all

t. Finally, p (t) ∂Yr(t,Q)
∂Qs

= 0 because ∂Yr(t,Q)
∂Qs

= 0 except for excess capacities of renewables during
storing (αsQr = x (0 + χ)), for which however p (t) = 0. Substitution of this into the first-order
conditions for welfare maximizing capacity choices (38) yields

∂W

∂Qf
= ρ

∫ T

t0

(p∗ (t)− δ − kf )
∂Y ∗f (t,Q)

∂Qf
dt− cf = 0, (54)

∂W

∂Qr
= ρ

∫ T

t0

p∗ (t)
∂Y ∗r (t,Q)

∂Qr
dt+

∫ T

t0

(p∗ (t)− δ − kf )
∂Y ∗f (t,Q)

∂Qr
dt− cr (Qr)−

∂cr
∂Qr

Qr = 0,(55)

∂W

∂Qs
= ρ

∫ T

t0

p∗ (t)
∂Y ∗s (t,Q)

∂Qs
dt+

∫ T

t0

(p∗ (t)− δ − kf )
∂Y ∗f (t,Q)

∂Qs
dt− cs (Qs)−

∂cs
∂Qs

Qs = 0,(56)

where superscript ∗ indicates that the outcome at the production stage is first-best.
Note that ∂Yj(t)

∂Qj
=

∂yj(t)
∂qj

. Moreover, ∂Y ∗f (t,Q)

∂Qr
=

∂Y ∗f (t,Q)

∂Qs
= 0 except during case 2 and during

storage if it starts during case 2, for which, however, p∗ (t)−δ−kf = 0. Using this, the above conditions
are exactly the same as the first-order conditions (30) to (32) for firms’ capacity choices if all conditions
are evaluated at the first-best policy instruments, τ∗ = δ,χ∗ = 0, σ∗i = −Qi (θ) ∂ci

∂Qi
, i = r, s.

E Proof of Proposition 2

The optimal values χ#, σ#
r , σ

#
s as stated under the first bullet point have already been determined

in the main text. It remains to prove that they implement the social optimum for the situation of
no excess capacities. Remember that production and consumption choices on competitive markets as
analysed in Section 3.2 were only distorted by the pollution externality. Therefore, with a Pigouvian
tax τ = δ production levels as summarised in Table 1 and, thus, demand x(t) =

∑
j=f,r,s Yj (t)

are obviously first-best, provided that the underlying capacity levels are first-best. In the main
text we have shown that the combination of an incomplete carbon tax, τ < δ, and a correcting
consumption tax χ# = δ − τ leads to exactly the same output and demand levels. Now we verify
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that for the policy vector in Proposition 2 also firms’ capacity choices are first-best, i.e., satisfy
conditions (54) to (56). In particular, upon substitution of σ#

r = −Q∗r ∂cr∂Qr
+ ρ (δ − τ)

∫ T
t0
α (t) dt and

σ#
s = −Q∗s ∂cs∂Qs

+ ρχ#
(

1
ηd
− 1

ηs

)
, the first-order conditions for firms’ capacity choices are

ρ

∫ T

t0

(
p# (t)− τ − kf

) ∂y∗f (t, qf )

∂qf
dt− cf = 0, (57)

ρ

∫ T

t0

p# (t)
∂y∗r (t, qr)

∂qr
dt− cr (Qr)−Q∗r

∂cr
∂Qr

+ ρ (δ − τ)

∫ T

t0

α (t) dt = 0, (58)

ρ

∫ T

t0

p# (t)
∂y∗s (t, qs)

∂qs
dt− cs (Qs)−Q∗s

∂cs
∂Qs

+ ρχ#

(
1

ηd
− 1

ηs

)
= 0, (59)

where p# (t) = p∗ (t)− (δ − τ) (see main text). Substituting this into (57) to (59), and using ∂yj(t)
∂qj

=

∂Yj(t)
∂Qj

as well as
∫ T
t0

∂Y ∗r (t,qr)
∂Qr

dt =
∫ T
t0
α (t) dt and

∫ T
t0

(δ− τ)
∂Y ∗s (t,qs)
∂Qs

dt = χ#
(

1
ηd
− 1

ηs

)
, the conditions

are the same as those for first-best capacity choices in (54) to (56).

F Calculation of Equation (44)

For each t, the equilibrium electricity price that obtains in Stage 3 is a function of capacities that
are given at this stage, i.e., p (t) = p (t,Q). Moreover, ∂y∗f (t)

∂qf
= 1 during destorage and case 1, but

∂y∗f (t)

∂qf
= 0 for cases 2 and 3 (see Table 1). Therefore, during storage ∂y∗f (t)

∂qf
depends on the case during

which it starts. Using this, total differentiation of firms’ first-order condition (30) for fossil capacities
yields

dπff =


∑
j=f,r,s ρ

(∫
1
∂p(t)
∂Qj

dt+ ∂pd
∂Qj

∫
d
dt+ ∂ps

∂Qj

∫
s
dt
)
dQj if αs ≤ α1,∑

j=f,r,s ρ
(∫

1
∂p(t)
∂Qj

dt+ ∂pd
∂Qj

∫
d
dt
)
dQj if αs > α1,

(60)

where pd, ps are the constant prices during destorage and storage. Storage capacities are not used
during case 1 so that

∫
1
∂p(t)
∂Qs

dt = 0. For the other derivatives in (60), applying the chain rule when

partially differentiating equilibrium prices with respect to Qj yields ∂p(t)
∂Qj

= ∂p(t)
∂x(t)

∂x(t)
∂Qj

, where ∂x(t)
∂Qj

follows from Lemma 2. In particular, ∂pd∂xd
∂xd
∂Qs

∫
d
dt = 1

ηd
and ∂ps

∂xs
∂xs
∂Qs

∫
d
dt = − 1

ηs
. Using this, setting

dπff = 0, dividing by dσj , and rearranging yields (44).

G Proof of Proposition 3

For αs ≤ α1, substitution of (41) together with (44) into the first-order conditions (40) for optimal
subsidies and collecting terms with dQr

dσi
and dQs

dσi
yields

∑
j=r,s

(
σj + ρ (δ − τ)

∫
d,1,s

dt
∂Qf
∂Qj

+Qj (θ)
∂cj
∂Qj

)
dQr
dσi

= 0, i = r, s. (61)

In these two first-order conditions with respect to σr and σs, the term
∑
j=r,s (·) has the same

value. Therefore, (61) is obviously satisfied if this term is equal to zero.24 Substitution from (45) and
(46) into (61) yields the optimal subsidies for αs ≤ α1.

Similarly, substitution of (42) for αs ∈ (α1, α2] and (43) for αs > α2 together with (44) into (61),
and collecting terms with dQr

dσi
, dQsdσi

yields the following two conditions:

24 For any given τ , this is the only solution if one abstracts from pathological cases.
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(
σr + ρ (δ − τ)

(∫
d,1

dt
∂Qf
∂Qr

−
∫
2,s

α (t) dt

)
+Qr (θ)

∂cr
∂Qr

)
dQr
dσi

+

(
σs + ρ (δ − τ)

(∫
d,1

dt
∂Qf
∂Qs

+
1

ηs

)
+Qs (θ)

∂cs
∂Qs

)
dQs
dσi

= 0, i = r, s, (62)

(
σr + ρ (δ − τ)

(∫
d,1

dt
∂Qf
∂Qr

−
∫
2

α (t) dt

)
+Qr (θ)

∂cr
∂Qr

)
dQr
dσi

+

(
σs + ρ (δ − τ)

(∫
d,1

dt
∂Qf
∂Qs

)
+Qs (θ)

∂cs
∂Qs

)
dQs
dσi

= 0, i = r, s. (63)

The optimal subsidies for αs ∈ (α1, α2] and αs > α2 follow after substitution from (45) and (46).

H Calibration for Section 6

We use German data to calibrate the model and make the following assumptions. 96 quarterly
hours represent one cycle. Each representative quarterly hour depicts the weighted average of the
hourly availability of solar PV (45%), wind offshore (5%), and wind onshore (50%) over an entire
year (min {α (t)} = 0.0976, max {α (t)} = 0.2918), which roughly presents the German capacity mix.
Demand is x (t) = 75, 000− 375 · p (t), where the sensitivity −375 reflects a price elasticity of demand
of −0.25 at a reference price of 40 €/MWh (e.g., Thimmapuram and Kim, 2013).25

We assume that fossil firms use a gas turbine technology and thus pay cf = 500, 000 €/MW for
capacity. Natural gas prices are around 7.5 €/MWh, the efficiency of the fossil technology is assumed
to be 50%, so that kf = 0.5 · 7.5 = 15 €/MWh are private production costs. On July 2, 2019, the
CO2 price in the EU ETS peaked at 29 €/ton, and we take this as the carbon tax. The emission
factor of natural gas is 0.2358 tons CO2/MWh (here MWh refers to the heat value of natural gas),
yielding a carbon tax of τ = 0.5 · 0.2358 · 29 = 13.68 €/MWh. For the social costs of carbon we take
a value that is 50% higher, i.e., δ = 1.5 · τ = 20.51 €/MWh.

Capacity costs of renewables and storage firms fall at the same rate, starting at cr = 800, 000
€/MW and cs = 80, 000 €/MWh, respectively. Actual costs of renewables are around 1, 000, 000
(solar PV), 2, 500, 000 (wind offshore), and 1, 200, 000 €/MW (wind onshore) (IEA, 2015; Schröder,
Kunz, Meiss, Mendelevitch, and Von Hirschhausen, 2013). However, renewables costs are expected
to fall further, and thus the depicted costs seem to be a good guess. Conversion losses of storage
operations are ηd = 1.1 and ηs = 0.9, reflecting total losses of 19%. There is no particular storage
technology that fits our synthetic one (see IRENA, 2017; Nykvist and Nilsson, 2015; Schmidt et al.,
2017, for different cost estimates). A good guess is pumped hydro with similar capacity costs (5,000
to 100,000 €/MWh, mean around 60,000 €/MWh) and efficiency losses (15 to 30%). Battery storage
systems cost around 200,000 €/MWh, but costs are expected to fall to 75,000 €/MWh (efficiency
losses of only 3%). Power-to-gas technologies face lower capacity costs (around 40,000 €/MWh in the
future), but fundamentally higher higher conversion losses (40 to 70%).

Finally, we use a discount rate of 3% and lifetimes of 30 years to calculate ρ, but deviate from
the theoretical model by abstracting from within-year discounting for parsimony. This yields ρ =

365 ·
(

1
r −

1
r(1+r)30

)
= 5, 430 with r = 0.03.

We set up the program in GAMS as a welfare maximization problem. The assumption of linear
demand makes the program quadratic with non-convex constraints from the three zero-profit condi-
tions of fossil, renewable, and storage firms. We therefore use the solver IPOPT, which is powerful
in solving non-convex programs and finding local maxima, but cannot ensure the global maximum.

25 See www.energy-charts.de/power_inst.htm for the German capacity mix and www.energy-charts.de/price.htm for
load data.

32



We therefore assist the solver by giving him the (linear) first-order conditions of firms production and
capacity choices, and by constraining the solution space. The code is available upon request.
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