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Abstract

Spurred by substantial subsidies, renewable energies have reduced their costs and captured a steadily growing
market share. However, the variability of solar and wind power leads to new challenges for power systems.
Policy instruments for steering the energy transition towards a zero-carbon future must account for this. We
consider an economy in which competitive firms use pollutive fossils, intermittent renewables, and storage
for electricity production. A Pigouvian tax is still efficient, because price fluctuations that result from inter-
mittent renewables provide sufficient incentives to invest in storage capacities. However, governments have
proved reluctant to impose carbon taxes. Therefore, we examine second-best subsidies when carbon pricing
is imperfect. The optimal subsidy rate for renewables decreases as electricity production becomes less reliant
on fossils. The optimal storage subsidy is usually negative as long as fossils are dispatched while filling the
storage, but turns positive thereafter. This is because more storage capacity reduces the price when stored
electricity is supplied to the market, but raises it when storage adds to demand. This has countervailing effects
on firms’ incentives to invest in fossil capacities. A numerical simulation illustrates that substantial subsidy
payments are required even after fossils have been completely driven out of the market.

Keywords: intermittent renewable energies, electricity storage, carbon externality, subsidies, peak-load pri-
cing, optimal control
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1 Introduction

Dramatic cost reductions and substantial subsidies have created a worldwide boom of renewable ener-
gies, especially wind and solar power. In most parts of the world, they now have lower LCOE (levelised
cost of electricity) than conventional fossil energies (IRENA, 2019). However, electricity from wind
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and solar power varies over time and depends on weather conditions. As its share rises, this inter-
mittency becomes the dominating obstacle for transitioning to an energy system based primarily on
renewables because supply must match demand at any time. For periods of low renewables avail-
ability, either a reduction of electricity demand or a back-up with fossil and/or electricity storage
capacities is needed. By contrast, if their availability is high, they may produce more electricity than
the market can absorb, leading to zero (or even negative) prices. For example, in Germany the number
of intervals with more than six hours of negative prices more than doubled from 55 in 2016 to 123
in 2019, whereas installed wind and solar capacity increased only from 90 to 110 GW.1 This makes
renewables more costly than it appears on the basis of their LCOE, and it hampers their further
market penetration. While this problem is now widely acknowledged, there is little research on how
renewable support policies, which were initially targeted at inducing innovation and costs reductions,
have to be adjusted as renewables make up an ever increasing share of our electricity supply. This
paper aims contributing to close this gap.

An obvious response to the intermittency problem are measures to reduce its extent. This includes
technological improvements such as taller wind turbines and sun tracking solar panels, enhanced power
transmission grids to exploit spatial differences in the availability of intermittent renewables, as well
as a mix of renewable energies whose temporal variations complement each other. However, such
measure will not be sufficient as renewables continue to grow. Therefore, it is widely perceived that
electricity storage is an essential part of the solution. For example, IRENA (2017) calculates that
electricity storage capacity need to grow from an estimated 4.67 TWh in 2017 to at least 11.89 TWh
if the share of renewable energy in the energy system doubles by 2030. Such storage will probably be
a mix of traditional pumped hydro storage, small- (as in electric vehicles) and large-scale batteries,
power-to-gas (mainly hydrogen), and compressed air storage. Since the deployment of pumped hydro
storage is limited (Gimeno-Gutiérrez and Lacal-Arántegui, 2015; Sinn, 2017), its share is projected to
fall from 97% to 51% in 2030 (IRENA, 2017), and much of the build-up must come from technologies
like batteries that are not competitive yet.2

In this paper, we analyse the optimal policy mix for supporting renewables as well as storage to
counterbalance their intermittency. In particular, we examine how these policies vary as the share
of renewables grows and, thus, the extent of intermittent supply that they bring with them. For
illustration, consider an initially low share of renewables. At times of high availability, they would
make part of the fossil capacities redundant. In this case, adding storage capacities would absorb
electricity from these idle fossil capacities and allow them to continue operating. This improves the
profitability of fossils and the optimal policy intervention is a tax on storage. By contrast, once having
attained a high enough share in the power system, renewables provide sufficient electricity to fill the
storage. In addition, storage replaces fossil capacities as a back-up for times with low availability of
renewables. The optimal policy intervention is now a subsidy for storage.

For our analysis, we build on the standard peak-load pricing model and extent it to an economy
with three types of firms: those that produce with a polluting fossil energy, those that use carbon-
neutral but intermittent renewable energies, and those that engage in electricity storage. We assume
that intermittency follows a repetitive pattern—like a day-night cycle of solar power—and is perfectly
forecastable. The latter is consistent with the empirical findings of Gowrisankaran, Reynolds, and
Samano (2016) that social costs of unforecastable intermittency are small in comparison to those of
intermittency overall. Moreover, short-term forecasts over a day-night cycle are quite accurate (e.g.,
Iversen, Morales, Møller, and Madsen, 2016), and seasonal wind availability is, at least in the historic
average, well known.

First, firms make long-term investments in their respective capacities. Thereafter, they produce
1 See https://www.smard.de/page/en/topic-article/5892/15618.
2 Costs of batteries fell by 22% from 2016 to 2017 (https://www.iea.org/tcep/energy-integration/energystorage/).

Schmidt, Hawkes, Gambhir, and Staffell (2017) predict (using experience curves) that battery storage will be com-
petitive in the next 10 (electric vehicle transportation) to 20 years (residential energy storage) (see Kittner, Lill, and
Kammen (2017) for similar predictions), although other studies are less optimistic (e.g., Brouwer, van den Broek, Zappa,
Turkenburg, and Faaij, 2016).
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electricity and interact with consumers in a perfectly competitive market. Storage firms have a dual
role. They buy electricity—that is, act like consumers—at the low prices that prevail during times of
high availability of renewables, but supply electricity at the high prices that obtain during times of
low availability. This exploitation of price differences, which we model as an optimal control problem,
as well as the increasing role of flexible pricing schemes motivate our assumption of dynamic pricing.3

The first policy that we consider is a Pigouvian tax per unit of carbon emissions from fossils. Given
our assumptions of competitive markets, dynamic pricing, and lump-sum taxation, this instrument
would implement the first-best solution; at least as long as there is no other externality such as
R&D spillovers that requires a separate intervention. Since we neglect dynamic aspects of resource
extraction and of the climate system, the tax would even be constant for constant marginal damage
costs (see Lemoine and Rudik (2017) for dynamic taxing schemes).

However, a Pigouvian tax may not be implementable, especially due to political economy reasons.4
For example, after popular protests by the “Yellow Vests” movement the French government suspended
its plans to raise the carbon tax from 44.6 €/ton in 2018 to 86.2 €/ton by 2022 (Douenne and Fabre,
2021). Indeed, most countries have relied on a mix of putting a price on carbon and extensive subsidies
for renewable energies. Abrell, Kosch, and Rausch (2019) estimate that for the period 2011-2015 the
implicit abatement costs for reducing CO2 through subsidies for wind have been in the range of 105
to 276 €/ton for Germany and 82 to 258 €/ton for Spain, with even substantially larger values for
solar. By contrast, the carbon price in the EU ETS was only around 5 to 10 €/ton in this period.

Therefore, our analysis focuses on subsidies for renewables and storage technologies, which reduce
pollution only indirectly. First, more renewables capacities lower the expected electricity price and,
thus, incentives to invest in fossils. Second, fossil capacities may remain unused when the availability
of intermittent renewables, which have lower variable costs, is high. As the share of fossils in the energy
system falls, these effects have less impact and the subsidy rate for renewables should be reduced.

Storage capacities even out the intermittent supply of renewables and, thereby, alleviate their main
disadvantage. But this intuition for subsidising storage is flawed. If the level of renewables is effi-
cient—as under a Pigouvian tax—the market provides sufficient incentives to exploit price variations
by investing in storage. If it is inefficiently low, then directly subsidising renewables, rather than
storage, is a better policy.

Nevertheless, there is a rationale for incentivising storage due to its effects on fossils. Storage
reduces the electricity price when stored energy is supplied to the market, and raises it when the
storage is filled. This has countervailing effects on average electricity prices and, therefore, on the
incentives to invest in fossil capacities. Due to round-trip efficiency losses during a storage cycle, more
electricity has to be taken from the market than can be supplied to it during times of destorage.5
Therefore, as long as fossils contribute to electricity production during times of storage, the price
increasing effect dominates and storage capacities raise the profitability of fossils. Hence storage
should be taxed. Once renewable capacities are sufficient to fill the storage, fossils no longer benefit
from the price increasing effect and it becomes optimal to subsidise storage. This subsidy is constant
until fossils are no longer used; under the same conditions that lead to a decreasing renewable subsidy.
Roughly speaking, as the market share of fossil energies falls, it is optimal to gradually shift from the
subsidisation of renewables to subsidising storage.

It has been argued that optimal subsidies for renewables (and storage) even implement the first-best
solution, provided that they are complemented by a consumption tax (Abrell, Rausch, and Streitberger
2019, Ambec and Crampes 2019). We show that this finding does no longer hold once renewables

3 Dynamic pricing of electricity is still often restricted to larger commercial customers (e.g., Borenstein and Holland,
2005; Joskow and Wolfram, 2012), but according to Helm and Mier (2019) this may be sufficient to create appropriate
price signals. Moreover, recent technological advances have dramatically lowered the costs of smart metering techno-
logies, and many regions have set ambitious targets for their deployment (e.g., in the EU Third Energy Package). In
addition, several studies have found evidence that households actually do respond to higher electricity prices by reducing
usage (e.g., Faruqui and Sergici, 2010; Jessoe and Rapson, 2014).

4 The literature discusses equity issues (e.g., Polinsky, 1979), lobbying and rent seeking (e.g., Fredriksson, 1997), and
distributional implications (see Goulder and Parry (2008) for a discussion and Reguant (2019) for empirical evidence).

5 Round-trip efficiency is usually in the range of 65 to 90 per cent, depending on storage technology (IRENA, 2017).
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have reached a capacity where supply at times of high availability exceeds electricity demand at a
price of zero.6

The analytical model is restricted to the most interesting case where all three technologies are
used. However, in a numerical simulation we also consider cost parameters for which fossils are no
longer employed in the efficient solution. We find that implementing this as a decentralised solution
still requires substantial subsidies in order to keep fossils out of the market.

The remainder of the paper is structured as follows. After discussing the related literature in Sec-
tion 2, we introduce the model and the timing of decisions (Section 3). We then examine electricity
production and storage decisions (Section 4), capacity choices (Section 5), and policy instruments (Sec-
tion 6). A numerical simulation in Section 7 illustrates and extends the results. Section 8 concludes,
and an appendix contains the proofs.

2 Related Literature

The first strand of literature to which our paper connects is the economics of intermittent sources of
electricity production, of which Ambec and Crampes (2012, p. 321) wrote some years ago that they are
“still in their infancy”. Since then, the literature has grown substantially, but most contributions rely
heavily on numerical simulations (e.g., Després, Mima, Kitous, Criqui, Hadjsaid, and Noirot, 2017)
or are empirical (e.g., Abrell et al., 2019; Liski and Vehviläinen, 2020). Ambec and Crampes (2019)
share our focus on optimal support policies, and they also consider a storage technology. However, the
storage pattern is trivial because the availability of renewables is restricted to be binary, i.e., either 0
or 1. This binary pattern and their assumption of non-reactive consumer demand imply that fossils
never contribute to filling the storage.

Abrell et al. (2019), using a simulation and a simpler analytical model, analyse a larger set of
renewables support policies but abstract from storage. More importantly, they deviate from the
standard peak-load pricing paradigm by not distinguishing between production and capacity choices
of fossil energies. This neglects that fossils need prices above their marginal costs to recoup capacity
costs, which becomes increasingly difficult as capacities are underutilised more often when supply from
renewable energies rises. Like Fell and Linn (2013), the authors include two renewable technologies
(wind and solar) with different times of binary availability. Our model could be extended relatively
straightforwardly to several renewable technologies too, but this would raise the notational complexity.
Moreover, the main effects are very intuitive; hence we only provide an informal discussion in the
concluding section. Andor and Voss (2016) also consider subsidies for renewables, but their model
includes neither fossils nor a storage technology. Finally, Helm and Mier (2019) use a peak-load pricing
model with a very general intermittency pattern similar to this paper. However, they do not account
for storage and do not examine policy instruments.

Another strand of literature to which this paper relates is the economics of storage. Traditional
applications include balancing stochastic production disturbances in agriculture (e.g., Newbery and
Stiglitz, 1979; Wright and Williams, 1984) and the combination of thermal capacity with mainly
pumped hydro storage (e.g., Crampes and Moreaux, 2001). In a seminal contribution, Gravelle (1976)
studies the implications of storage for peak-load pricing with variable demand. He finds that peak
consumption increases less than off-peak production increases, due to round-trip losses of storage.
This is similar to the effect of storage during times with high and low availability of intermittent
renewables in our model. More recently, the focus has shifted toward the role of pumped storage as a
natural complement to the intermittency of renewables (e.g., Crampes and Moreaux, 2010; Heal, 2016;
Schmalensee, 2019). Similar to us, Steffen and Weber (2013) determine optimal capacity investments,
but only for the fossil and storage technologies. They then use a load duration curve to determine
the effect of intermittent renewable energies and demonstrate their results numerically by using a
case study for Germany. In a related contribution, Steffen and Weber (2016) use optimal control

6 Such situations of excess generation, that countries with a high market penetration of renewables already experience
occasionally, cannot obtain in the different model set-ups of the just mentioned contributions.
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theory to provide a more precise representation of storage dynamics. However, like Horsley and
Wrobel (2002), they only consider the problem of an individual storage firm, and they focus on
differences between large (unconstrained) and small (constrained) reservoirs. Durmaz (2014) uses
discrete time and dynamic programming to determine the optimal storage pattern. However, he does
not consider policy instruments and his problem is analytically not fully tractable. Finally, Pommeret
and Schubert (2019) also integrate storage into a model with electricity production from renewable
and fossil technologies. Their focus is on the optimal allocation of a fixed carbon budget over time,
whereas the availability of sufficient storage capacities is taken as exogenously given.

Our paper also contributes to the more general literature on second-best policies and the ranking of
policy instruments to incentivize pollution abatement. For a given abatement cost function, pollution
taxes and abatement subsidies are usually seen as equivalent in the short run, whereas in the long
run subsidies lead to excessive firm entry (e.g., Kohn, 1992). In an extension of this literature that is
more similar to our approach, firms can decide whether to incur the fixed cost of a new technology
that reduces costs of emission abatement. In this framework, taxes on emissions and subsidies for
emission abatement are usually equivalent (e.g., Milliman and Prince, 1989; Requate and Unold,
2003). Although this literature is often motivated by the problem of mitigating CO2 emissions,
specific aspects of energy markets such as the intermittency of renewables and their interaction with
storage are usually neglected (see also Fischer, Preonas, and Newell, 2017). We show that accounting
for them fundamentally affects the comparison of instruments, as it compromises the efficiency of
subsidies, but not that of a Pigouvian tax. Recent empirical findings point in the same direction
(Gugler, Haxhimusa, and Liebensteiner, 2021).

In accordance with our results, there is a broad consensus that no additional subsidies are necessary
to tackle an environmental externality if perfect carbon taxation is possible (Golosov, Hassler, Krusell,
and Tsyvinski, 2014; Van Der Ploeg and Withagen, 2014). Positive externalities from R&D may
require renewables subsidisation (Acemoglu, Aghion, Bursztyn, and Hemous, 2012), but Parry, Pizer,
and Fischer (2003) argue that the welfare effect from tackling climate change externalities is greater
than the positive effect of R&D subsidisation (see also Goulder and Parry, 2008). Other reasons that
have been put forward to motivate renewables subsidies are international tax competition with mobile
capital (Eichner and Runkel, 2014), learning externalities and imperfect competition (Reichenbach
and Requate, 2012), lumpy entry cost (Antoniou and Strausz, 2017), and imperfections in demand for
energy efficiency (Fischer et al., 2017). We account for learning externalities, but focus on the role of
intermittency of renewable energies and of storage when addressing the carbon externality.

3 The Model

Consider an electricity market with three technologies, indexed j = f, r, s. Technology f represents a
dispatchable fossil technology—like conventional power plants that burn coal or gas. Dispatchability
means that electricity production can be freely varied at every point in time up to the limit of its
installed capacity (see Joskow, 2011). Technology r is a renewable technology with intermittent
supply—like wind turbines, solar PV, or solar thermal plants. The third technology s does not
generate electricity, but is able to store it for later usage.

For each of the three technologies there are a large number, nj , of identical firms that interact on
competitive markets. We use lower-case letters to denote choices of firms and upper-case letters for
aggregate values. Accordingly, qj are capacities of an individual firm that produce with technology j
and the overall capacity level is Qj = njqj . To avoid tedious case distinctions, the formal analysis is
restricted to the most interesting situation where strictly positive capacities are installed for all three
technologies. The numerical simulation in Section 7 extends this to situations where only a subset
of technologies is used. Obviously, which of the cases occurs depends on the relative costs of the
technologies.

The costs of one unit of capacity is cj(Qj) > 0. It is constant from the perspective of an individual
firm. If one thinks of cj (Qj) as the unit costs of, e.g., solar panels or batteries for electricity storage,
this coincides with the standard assumption that firms on competitive markets are too small to
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affect input prices. However, unit costs may depend on the overall capacity level, which allows us to
account for different assumptions in the literature regarding renewables. In particular, c′j (Qj) < 0
would capture the idea that economy-wide economies of scale or learning reduce unit costs (as in
Green and Léautier, 2017).7 By contrast, if one wants to emphasize that the most efficient sites for
wind and solar energies are used first, then c′j (Qj) > 0 seems more appropriate (as in Abrell et al.
(2019) and Ambec and Crampes (2019)).8 For storage, increasing unit costs could result from less
suitable pump storage locations and the scarcity of rare earths that are needed for batteries. Note
that due to our assumption that individual firms take unit costs as given, these effects constitute an
externality. For the renewable and storage technology, we impose no restriction on the sign of c′j (Qj).
For the established fossil technology, we assume c′f (Qf ) = 0 and often denote the unit costs simply
by cf .

For renewables, the actual output of installed capacities depends on the intensity of solar radiation
and wind conditions that vary over time. We represent this intermittency by an availability factor α (t)
that is a continuous function of time and satisfies α (t) ∈ [αmin, αmax], where αmin ≥ 0 and αmax ≤ 1.
Therefore, renewable capacities available at time t are α (t)Qr. We now specify the assumption
addressed in the introduction that α (t) can be forecasted perfectly and follows a repetitive pattern.

Assumption 1. The availability of renewable energies, α (t), follows a pattern of repetitive cycles
whose initial and terminal time are denoted t0 and T , respectively. For each such cycle, α (t) is the
same single-peaked function with α (t0) = α (T ) = αmin.

The bold α(t)-curve in Figure 1 depicts the availability from a mix of solar PV, wind onshore, and
wind offshore in Germany, for a (representative) cycle of 24 hours.9 The cycle has been normalized
such that the availability of the mix of renewables is the lowest at its initial and terminal point t0 and
T, that is α (t0) = α (T ) = αmin. The transparent segments to the left and to the right illustrate our
assumption that the availability follows a repetitive pattern. This distribution satisfies Assumption
1, except that there is a light wind peak during the night. Moreover, the reason for Assumption 1 is
that it leads to a regular pattern of completely filling and depleting the storage (see Subsection 4.2).
Minor violations of it—such as the light peak during night—do not affect this outcome and, thus, the
subsequent analysis would still hold.

Fig. 1: Availability of renewables

Annual seasonal fluctuations in the availability of wind power also roughly correspond to Assump-
tion 1 (see Sinn, 2017), but they are less regular. Moreover, pump storage capacities are limited
and new seasonal storage technologies (e.g., power-to-gas) are still very costly—mainly due to high
conversion losses. Hence we have written this paper with the storage of daily fluctuations in mind.

Electricity produced by the fossil and renewable technology is yj ≥ 0, j = f, r. Fossils have
constant costs, kf > 0, of producing one unit of output, which are mainly variable costs for coal,

7 In a seminal paper, Ghemawat and Spence (1985) argue that unit costs are decreasing in accumulated output of the
industry. The simple specification c′j (Qj) < 0 reflects this idea, but omits the time dimension of accumulating capacity.

8 For a simple two-period model that accounts for learning and site scarcity see Lancker and Quaas (2019).
9 We calculate α (t) by aggregating production of solar PV, wind onshore, and wind offshore for every quarterly

hour of a day from 2016 to the end of 2018, and divide by the installed capacity. The data is downloaded from
https://data.open-power-system-data.org/time_series/ on 13 January 2020.
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oil, or natural gas. Moreover, fossil production leads to an environmental unit cost, δ > 0, that can
be (fully or partly) internalised by a carbon tax, τ . Hence a fossil firm’s total unit production costs
are bf = kf + τ , which equals social costs if τ = δ. Variable costs of renewables are negligible and,
therefore, ignored.

For the storage technology, ys (t) > 0 is supply of stored electricity, ys (t) < 0 is demand for
electricity to fill the storage, and s(t) is the level of stored electricity. The change in this level,
ṡ := ds

dt , differs from the related demand and supply due to conversion losses over a storage cycle. In
particular, ṡ = −η (ys) ys (t) where

η (ys) =

 ηs ∈ (0, 1] if ys < 0
1 if ys = 0

ηd ≥ 1 if ys > 0
(1)

is a piecewise constant function that represents the conversion losses. This specification reflects that
during times of storage, for which ys < 0, less than one unit of electricity taken from the market
arrives in the storage, whereas supplying one unit of electricity to the market (ys > 0) requires more
than one unit from the storage. For intermediate periods during which the storage capacity is not
used (ys = 0), we assume that no electricity is lost (ṡ = 0) and η (ys) = 1. We do not model limits or
costs of the charging speed, but assume that firms prefer a smoother storage pattern if this does not
lead to additional costs.

The timing is as follows. In Stage 1, the government chooses one or several of the following policy
instruments: a tax on fossil production τ , a tax on electricity consumption χ, and subsidies σr, σs for
renewable and storage capacities. We focus on per unit subsidies for capacity investments rather than
feed-in tariffs, market premiums, and, more recently, tenders that are widely used for renewables.10
These instruments also provide incentives for capacity investments so that their effects are quite similar
if subsidies are financed by lump-sum taxation.11 In Stage 2, competitive firms build their respective
fossil, renewable, or storage capacities. In line with the literature on peak-load pricing, we assume
a greenfield setting that disregards any capacity that is currently in place. Finally, in Stage 3, firms
choose production levels and interact with consumers on a competitive electricity market. We now
solve the game backwards, starting with stage 3.

4 Production and Consumption Decisions

4.1 Derivation of Optimality Conditions
We now determine the optimality conditions for production and consumption decisions during a
representative cycle t ∈ [t0, T ]. They follow from firms’ profit maximisation and consumers’ utility
maximisation, subject to electricity prices, p(t), that balance supply and demand.

First, consider production decisions of fossil and renewable firms. Capacity costs are sunk so
that firms’ objective is to maximise revenues, p (t) yj (t), minus variable production and carbon tax
costs, (kf + τ)yf (t), for fossil firms. Production is restricted by the (available) capacity, yf (t) ≤ qf ,
yr (t) ≤ α (t) qr, and must be non-negative, yf (t) , yr (t) ≥ 0. The latter constraint can be ignored
because profit maximising renewable and fossil firms will never choose negative quantities in the
unconstrained equilibrium. Thus, a fossil firm’s profit maximisation problem for a representative
cycle is

10 See, e.g., Eichner and Runkel (2014) for a similar approach. In 2016, 83 countries used feed-in tariffs or premiums
to promote renewable energy, 58 countries used investment subsidies (capital subsidies, grants, or rebates), and 73
countries used auctions that do not exclude the use of an investment subsidy (IRENA and CPI, 2018). Moreover, most
of storage subsidisation is constructed as an investment subsidy (ESC, 2015).

11 Using data from a Belgian program, De Groote and Verboven (2019) find that investment subsidies are more effective
than production subsidies like feed-in tariffs because households significantly discount their future benefits.
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πf
(
y∗f (qf )

)
:= max

yf (t)

∫ T

t0

(p (t)− τ − kf ) yf (t) dt such that (2)

yf (t) ≤ qf . (3)

Using asterisks to characterise values in the competitive market solution, πf (y∗f (qf )) denotes the
value function of this problem, that is, the maximum profits a firm can achieve by optimising produc-
tion yf for all t ∈ [t0, T ], given the fixed capacity parameter qf . Differentiation of the corresponding
Lagrangian yields the first-order and complementary slackness conditions (µf (t) is the Lagrangian
multiplier) for each t ∈ [t0, T ]:

p (t)− τ − kf − µf (t) ≤ 0
[
= 0, if y∗f (t) > 0

]
, (4)

qf − yf (t) ≥ 0, µf (t) ≥ 0, µf (t) [qf − yf (t)] = 0. (5)

Due to the linearity of the objective function, the first-order condition is sufficient and leads to
corner solutions. Specifically, if the price exceeds variable production and carbon costs, the firm
produces at full capacity; i.e., yf (t) = qf if p (t) > bf = kf + τ . By contrast, fossil firms do not
produce during times t for which p (t) < bf , while any yf (t) ∈ [0, qf ] is optimal if p (t) = bf .

Renewable firms face no variable costs, but their output is constrained by the availability of
installed capacities. Thus, the profit maximisation problem and the resulting value function are

πr (y∗r (qr)) := max
yr(t)

∫ T

t0

p (t) yr (t) dt such that (6)

yr (t) ≤ α (t) qr. (7)

For each t ∈ [t0, T ], the first-order and complementary slackness conditions are

p (t)− µr (t) = 0, (8)
α (t) qr − yr(t) ≥ 0, µr (t) ≥ 0, µr (t) [α (t) qr − yr (t)] = 0. (9)

Here, the binding condition (8) reflects that y∗r (t) > 0 for any α (t) , p (t) > 0 because, in contrast
to fossils, renewables have no variable costs. Moreover, the complementary slackness condition in (9)
then implies y∗r (t) = α (t) qr for all p (t) > 0, i.e., renewables are used at full capacity. However, if the
level of available renewable capacities is very large, supply may exceed demand from consumers and
storage firms, leading to an equilibrium price of zero.

Storage firms control the level of stored electricity s(t) (the state variable) so as to exploit price
differences. They buy and store electricity (ys (t) < 0) during times of low prices, and they destore
(ys (t) > 0) when prices are high. To avoid double taxation, the consumption tax χ is only paid by
final consumers and not by storage firms when buying electricity. This yields the profit maximisation
problem

πs (y∗s (qs)) := max
ys(t)

∫ T

t0

p (t) ys (t) dt such that (10)

ṡ (t) = −η (ys) ys (t) , (11)
s (t0) = s (T ) , (12)
s (t) ≤ qs, (13)
s (t) ≥ 0. (14)

The first constraint (11) is the equation of motion for the level of stored energy, s(t). Condition (12)
requires that the initial and terminal storage level must be the same, which results from Assumption
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1 that α(t) follows an identical repetitive pattern. Finally, (13) is the capacity constraint of storage
firms, and (14) is the constraint that the level of stored energy must be non-negative. The Hamiltonian
is

Hs (ys (t)) = p (t) ys (t)− λ (t) η (ys) ys (t) , (15)

where λ (t) is the adjoint variable of s (t). Conditions (13) and (14) are pure state space constraints
that can be accounted for by forming the Lagrangian

Ls (t) = Hs (ys (t)) + ϕs (t) (qs − s (t)) + ϕd (t) s (t) , (16)

where ϕs (t) and ϕd (t) are the Lagrangian multipliers for the respective constraints. As we show in
Appendix A, the following conditions are sufficient for optimality:

max
ys(t)

Hs (ys (t)) = [p (t)− λ (t) η (ys)] ys (t) , (17)

ṡ (t) =
∂Ls(t)
∂λ (t)

= −η (ys) ys (t) , (18)

λ̇ (t) = −∂Ls(t)
∂s (t)

= ϕs (t)− ϕd (t) , (19)

∂Ls(t)
∂ϕs (t)

= qs − s (t) ≥ 0, ϕs (t) ≥ 0, ϕs (t) [qs − s (t)] = 0, (20)

∂Ls(t)
∂ϕd (t)

= s (t) ≥ 0, ϕd (t) ≥ 0, ϕd (t) s (t) = 0, (21)

s (t0) = s (T ) . (22)

Here, (17) is the optimality condition for the control variable ys (t), conditions (18) and (19) are
the differential equations for the state and adjoint variable, and conditions (20) and (21) account for
the pure state space constraints.

Turning to consumers, utility maximisation leads to a demand function x (t) = x (p (t) + χ), for
which we impose no restrictions other than ∂x

∂p < 0. Consumption choices on the competitive electricity
market maximise consumer surplus and are restricted by aggregate production. It is straightforward
to show that in equilibrium x (t) =

∑
j Yj (t), that is, demand equals supply. In conclusion, this

market clearing condition, the inverse demand function, p (x (t)), and the optimality conditions of fossil
firms, (4) and (5), renewable firms, (8) and (9), and storage firms, (17) to (22) determine electricity
production, demand and the electricity price as functions of the environmental and consumption tax
τ, χ, and of installed capacities Qj , which in turn depend on related subsidies and taxes σr, σs, τ, χ
(see Section 5).

In the next subsection, we derive an intuitive solution for the competitive equilibrium and show
in Appendix A that it satisfies all optimality conditions. For later reference, we state the solution in
terms of aggregate values, Yj = njyj , Qj = njqj , and S = nss.

4.2 Determination of Competitive Equilibrium
The middle panel in Figure 2 depicts again the availability function α(t) from Figure 1. Obviously,
firms should destore electricity when the availability of renewables is low (lower bold parts of α(t)-
curve), and store electricity when the availability is high (upper bold part of α(t)-curve). Denoting
the associated threshold levels by αd and αs, this leads to the depicted sequence of periods for a
representative cycle t ∈ [t0, T ]: destorage (Ys(t) > 0) for α ≤ αd, intermediate (Ys(t) = 0) for
α ∈ (αd, αs], storage (Ys(t) < 0) for α > αs; and as α decreases again intermediate and destorage.

Dispatchable electricity from storage and fossils is most valuable when the availability of renewables
is minimal, i.e., at t0. Hence the electricity price (top panel in Figure 2) is maximal, electricity is

9



Fig. 2: Availability of renewables and competitive equilibrium

Top panel shows electricity price p(t). It has the constant values ps during storage, bf when fossils are price setting,
and pd during destorage. Middle panel shows availability of renewables α(t), with destorage for α ≤ αd, storage for
α > αs and capped production of renewables for α > αc. Bottom panel shows stored electricity S (t). S0, ST are the
starting and final storage volume, at Qs the storage is fully filled.

destored (bottom panel), and fossils are fully used as, otherwise, some capacities would always lie idle.
Moreover, the price during destorage must be constant (denoted pd in Figure 2). If not, firms would
have arbitrage opportunities and shift their sales of stored electricity to times of higher prices. Given
the constant price, fossils—and obviously also renewables due to their lower variable costs—are fully
used during a whole destorage period.

From Figure 2, the two destorage intervals are the segments [t0, td] and [t′d, T ] that comprise
availabilities below the critical level αd := α (td) = α (t′d). The quantity of destored electricity balances
the variability of renewables so as to keep electricity supply from these two sources—and, thus, the
price—constant at the level at which the intermediate period starts, i.e., Ys (t) + α (t)Qr = αdQr.
Hence,

Ys (t) = (αd − α (t))Qr for all t ∈ [t0, td] and t ∈ [t′d, T ] . (23)

The first line in Table 1 summarises production in the destorage period. Noting that we consider a
representative cycle, the destorage interval [t′d, T ] is identical to the one that precedes t0. Accordingly,
the two destorage intervals can be viewed as being connected. This implies that the storage must be
full at t = t′d where destorage begins (i.e., S(t′d) = QS), and run empty at t = td where destorage
ends. Otherwise, some stored electricity and/or some storage capacity would never be used, which
cannot be optimal. This is represented by the S(t)-curve in the bottom panel in Figure 2.
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Tab. 1: Solution of production stage for fossils, renewables, and storage
period availability of renewables Yr (t) Yf (t) Ys (t)

d 0 ≤ α (t) ≤ αd α (t)Qr Qf (αd − α (t))Qr

case 1 αd < α (t) ≤ min {α1, αs} α (t)Qr Qf 0

case 2 α1 < α (t) ≤ min {α2, αs} α (t)Qr x
(
bf + χ

)
− α (t)Qr 0

case 3 α2 < α (t) ≤ αs α (t)Qr 0 0

s

αs <
x(0+χ)
Qr

αs < α (t) ≤ αmax, α (t)Qr Yf (αs) (αs − α (t))Qr

αs =
x(0+χ)
Qr

αs < α (t) ≤ αc α (t)Qr
0

x (0 + χ)− α (t)Qr

αc < α (t) ≤ αmax acQr x (0 + χ)− acQr
α1 =

x(bf+χ)−Qf
Qr

, α2 =
x(bf+χ)
Qr

, αd implicitly solves (40),

αs = min
{
αs that solves (41),

x(0+χ)
Qr

}
, αc implicitly solves (42)

When α (t) starts to exceed αd, we enter the first intermediate period where neither storage nor
destorage occurs so that Ys (t) = 0 (similar to Helm and Mier (2019)). By continuity of α(t), fossils
and renewables continue to be fully used initially. This is case 1 in Table 1. As renewable supply
rises together with α (t), the equilibrium price p (t) falls until it equals the total unit costs of fossils,
bf = kf + τ . Therefore, fossils would make losses for any further price reduction and respond to a
rising availability of renewables by taking some of their supply from the market. This keeps the price
constant at the after tax level p (t) +χ = bf +χ. Renewable capacities continue to be fully used (due
to lower variable costs), whereas fossils serve the remaining demand, x (bf + χ) − α (t)Qr. This is
case 2 in Table 1. Once α (t) is sufficiently large so that renewables can serve the whole demand at
the after tax price bf + χ, a further rising α(t) pushes p (t) below bf so that fossils drop out of the
market. Hence only renewables are used, but still at full capacity (case 3).

Let α1 and α2 denote the critical availabilities where case 1 (renewables and fossils fully used)
and case 2 (renewables fully and fossils partially used) start, with associated times t1 < t2. Hence
αi = α (ti) for i = 1, 2. Depending on the size of storage and renewable capacities, not all cases need
obtain. Ceteris paribus, a larger storage capacity takes longer to fill so that storage starts at a lower
α(t), that is, already during case 1 or 2. Conversely, larger renewable capacities imply that a given
storage can be filled faster; hence storage starts only at higher α(t) and more cases obtain. In Table 1,
this is represented by the minimum operator in the column for availability, where αs := α (ts) = α (t′s)
is the availability when the intermediate period ends and storage starts (t′s denotes the end of the
storage period; see Figure 2).

Accordingly, any one of cases 1 to 3 can prevail at the start of the storage period, during which
the price remains constant. Otherwise, firms would shift their storage to times of lower prices. By
continuity of the available production capacities, this price, ps, must be the same as that at the end of
the intermediate period, i.e., ps = p (ts). This results in constant demand, xs = x (ts), and constant
supply from fossils, Yf (t) = Yf (ts), during storage. Moreover, supply of renewables, Yr (t), above the
level required to satisfy constant demand, Yr (ts) = αsQr, is used to fill the storage, i.e.,

−Ys (t) = Yr (t)− αsQr for all t ∈ [ts, t
′
s] . (24)

To determine Yr(t), we need to account for the possibility that the level of available renewable
capacities exceeds demand at an equilibrium price p(t) = 0 plus the quantity required to fill the storage.
If this is not the case, renewables always produce at full capacity and substitution of Yr (t) = α (t)Qr
into (24) yields −Ys(t) = (α (t)− αs)Qr (first line of case s in Table 1).12 By contrast, excess

12 Note that if storage starts in case 2, the storage period is characterised by excess capacities of fossils and a price that
equals variable production costs. These idle fossil capacities could be used to reschedule some storage without affecting
profits. However, if fossil generators prefer a smooth pattern of production (due to ramping cost and constraints), the
pattern in Table 1 is the only optimal one.

11



capacities of renewables lead to an equilibrium price ps = 0, demand xs = x (0 + χ), and no production
of fossils throughout the whole storage period, including its boundaries so that αsQr = x (0 + χ).13
Given our assumption that firms prefer smoother storage patterns, only the production peaks of
renewables where storage would be maximal will be capped. Let αc denote the critical availability
that separates the uncapped from the capped part of the storage period. This is illustrated by
the horizontal dotted bold segment of the α(t)-curve in Figure 2. Then renewable production is
Yr (t) = α (t)Qr for α(t) ∈ [αs, αc], and Yr (t) = αcQr for α (t) > αc. Substitution of this into (24)
yields storage volumes, −Ys (t), for the uncapped and the capped region, which are stated in the last
two lines in Table 1. Finally, the threshold levels at which the various cases start are listed below the
table (see Appendix A for their derivation).

For the second intermediate period from t′s to t′d (see Figure 2) the solution follows from the same
equilibrium conditions as for the first one. Thus, for each α (t), the solution is the same as already
summarised by cases 1 to 3 in Table 1, but the cases obtain in reverse order because α (t) is now
(weakly) decreasing in t. Lemma 1 summarises these results.

Lemma 1. Equilibrium levels for production and storage are as given in Table 1. Demand and prices
follow straightforwardly from the market clearing condition, x (t) =

∑
j Yj (t), and the inverse demand

function p (x (t)). They are constant during each storage and destorage period.

4.3 Comparative Statics of Production and Demand
The later analysis of optimal subsidies depends on how the triggered changes in capacities affect pro-
duction and demand. For the intermediate period, this follows straightforwardly from the expressions
in Figure 1, but for the storage and destorage periods it depends in a non-trivial way on effects via
the boundaries αd, αs that determine the lengths of these periods. Lemma 2 summarises the relev-
ant comparative statics for later reference (

∫
s
dt :=

∫ t′s
ts
dt and

∫
d
dt :=

∫ td
t0
dt +

∫ T
t′
d
dt are shorthand

notation for the storage and destorage periods).

Lemma 2. Marginal changes in capacities Qf , Qr, Qs have the following comparative static effects
for the storage and destorage periods.

(a) Fossil capacities: ∂xd
∂Qf

= 1 and ∂αs
∂Qf

= ∂αd
∂Qf

= 0. Moreover, ∂xs
∂Qf

= 1 if storage starts during case
1, whereas for all other cases ∂xs

∂Qf
= 0.

(b) Renewable and storage capacities for αsQr < x (0 + χ) (no excess capacities of renewables): If
case 2 prevails at the beginning of the storage period, then ∂xs

∂Qr
= ∂xs

∂Qs
= 0. Otherwise,

∂αd/∂ ∂xd/∂ ∂αs/∂ ∂xs/∂

Qr −
∫
d
(αd−α(t))dt

Qr
∫
d
dt

< 0

∫
d
α(t)dt∫
d
dt

> 0 −
∫
s
(αs−α(t))dt

Qr
∫
s
dt

> 0

∫
s
α(t)dt∫
s
dt

> 0

Qs
1

ηdQr
∫
d
dt
> 0 1

ηd
∫
d
dt
> 0 − 1

ηsQr
∫
s
dt
< 0 − 1

ηs
∫
s
dt
< 0

(c) Renewable and storage capacities for αsQr = x (0 + χ) (excess capacities of renewables): For
the destorage period, derivatives are as in (b). For the storage period, demand is constant at
x (0 + χ) so that ∂xs

∂Qr
= ∂xs

∂Qs
= 0, ∂αs

∂Qs
= 0, and ∂αs

∂Qr
= −x(0+χ)Q2

r
< 0.

The non-trivial effects that require some intuition are those in the table and concern the most
relevant case of no excess capacities. With higher capacities of renewables, storage starts later ( ∂αs∂Qr

>

0) because the storage can be filled faster. The magnitude of this effect is given by the additional
13 Remember that Yf (t) = 0 if p(t) = 0 and Ys(ts) = 0 so that at the boundary of the storage cycle available renewable

capacities are equal to demand.
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production of a marginal renewable capacity unit over the storage cycle,
∫
s

(αs − α (t)) dt, weighted
by the overall available capacity during this cycle, Qr

∫
s
dt. Similarly, the destorage period lasts

shorter ( ∂αd∂Qr
< 0) because a given level of stored electricity, Qs, has to substitute for a larger amount

of renewables over the destorage period. The corresponding marginal changes in demand during
destorage and storage, ∂xd

∂Qr
, ∂xs∂Qr

, are simply average additional renewable production of a marginal
capacity unit over the destorage and storage period.

An increase in storage capacities leads to longer storage and destorage periods ( ∂αs∂Qs
< 0 and

∂αd
∂Qs

> 0). The size of this effect is smaller if more intermittent renewables, Qr, have to be balanced
during storage and destorage. In addition, with larger conversion losses of storage (small ηs) it takes
longer to fill the storage, and with larger conversion losses of destorage (high ηd) the storage is depleted
more quickly. Turning to demand, a larger storage requires more electricity to be filled. This raises
the price and reduces demand ( ∂xs∂Qs

< 0), and conversion losses (small ηs
∫
s
dt) accentuate this effect.

Conversely, during the destorage period the additional electricity feed-in from a larger storage reduces
the price and raises demand ( ∂xd∂Qs

> 0), especially when conversion losses, ηd, are low.

5 Capacity Choices of Competitive Firms

We now turn to Stage 2, in which fossil, renewable, and storage firms choose their respective ca-
pacities, thereby anticipating the outcome of production decisions in Stage 3. Remember that
the value functions, πj

(
y∗j (qj)

)
, j = f, r, s as given by (2), (6), and (10), represent the max-

imum profits that the respective firms can achieve for given capacities, qj , during one representative
cycle, t ∈ [t0, T ]. We assume that the lifetime of installed capacities is the same for all technolo-
gies and consists of m such cycles. Therefore, the net present value of profits over this lifetime is∑m
κ=1

1
(1+r)κπj

(
y∗j (qj)

)
= ρπj

(
y∗j (qj)

)
, where ρ := 1

r −
1

r(1+r)m and r is the discount factor. Sub-
stitution of the value functions from stage 3 and accounting for capacity costs, cj (Qj) qj , as well as
subsidies, σr, σs, yields firms’ profit maximization problem and the resulting value function at Stage
2 (θ = (σr, σs, τ, χ) denotes the vector of policy instruments):

πf
(
q∗f (θ),θ

)
:= max

qf
ρ

∫ T

t0

(p (t)− τ − kf ) y∗f (t, qf )dt− cfqf , (25)

πr (q∗r (θ),θ) := max
qr

ρ

∫ T

t0

p (t) y∗r (t, qr)dt− (cr(Qr)− σr) qr, (26)

πs (q∗s (θ),θ) := max
qs

ρ

∫ T

t0

p (t) y∗s (t, qs)dt− (cs(Qs)− σs) qs. (27)

When choosing capacity levels, competitive firms take as given the capacity choices of other firms,
unit capacity costs, cj(Qj), the equilibrium electricity demand and price, x (t) , p (t), as well as the
occurrence of cases and the t where they start (columns 1 and 2 of Table 1). Using this, differentiation
of the objective functions in (25) to (27) with respect to the respective capacities yields the following
first-order conditions for fossil, renewable, and storage firms:

ρ

∫ T

t0

(p (t)− τ − kf )
∂y∗f (t, qf )

∂qf
dt− cf = 0, (28)

ρ

∫ T

t0

p (t)
∂y∗r (t, qr)

∂qr
dt− cr (Qr) + σr = 0, (29)

ρ

∫ T

t0

p (t)
∂y∗s (t, qs)

∂qs
dt− cs (Qs) + σs = 0, (30)
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where the derivatives ∂y∗j (t, qj) /∂qj follow straightforwardly from Table 1 for the respective cases.
Intuitively, firms equalise the net present value of additional production from a marginal capacity
unit—the integral terms—and its costs, cj (Qj), thereby accounting for subsidies, and a tax τ on
fossils if implemented. A priori, corner solutions might obtain. However, our focus on situations
where optimal capacity levels are positive for all three technologies excludes the case that marginal
profits are negative. Conversely, positive marginal (and total) profits would lead to entry until the
conditions bind. Indeed, by solving (28) to (30) for cf , cr (Qr) and cs (Qs) and substituting this
into the profit functions (25) to (27), it is straightforward to see that all firms make zero profits in
equilibrium.

6 First- and Second-best Policies

Now consider the regulator’s choice of the optimal tax-subsidy scheme for fossil production, electricity
consumption as well as renewable and storage capacities in Stage 1. Denote by Q = (Qf , Qr, Qs) the
vector of overall capacities and remember that θ = (σr, σs, τ, χ) is the vector of policy instruments.
We use (non-bold) θ = σr, σs, τ, χ to refer to an element of this vector. Assuming lump-sum taxation,
welfare is given by (omitting asterisks for optimised values from stages 2 and 3)

W := ρ

∫ T

t0

(∫ x(t,χ,τ,Q)

0

p (x̃) dx̃

)
dt− ρ

∫ T

t0

(kf + δ)Yf (t, χ, τ,Q) dt−
∑

j=f,r,s

cj (Qj)Qj , (31)

where the notation clarifies that equilibrium demand, x (t, χ, τ,Q), and production of fossils, Yf (t, χ, τ,Q),
at time t depend directly on taxes χ, τ , but only indirectly via capacity levels Q on subsidies σr, σs
(see Table 1). The first term is the net present value of gross consumer surplus, i.e., the area under
the inverse demand function p (x). The second term is the net present value of variable production
and environmental damage costs. The third term are capacity costs. This takes into account that
revenues and costs of taxes and subsidies cancel in the aggregate.

The optimal policy vector maximises welfare W . Differentiation of (31) yields for θ = σr, σs, τ, χ
(skipping arguments for parsimony):14

dW

dθ
= ρ

∫ T

t0

(
dx (t)

dθ
(p (t) + χ)− (kf + δ)

dYf (t)

dθ

)
dt−

∑
j=f,r,s

cj (Qj)
dQj
dθ
−
∑
i=r,s

Qi
∂ci
∂Qi

dQi
dθ

. (32)

The first term under the integral reflects that the value of the inverse demand function at the equi-
librium consumption level equals the equilibrium price plus consumption tax, i.e., p (x (t, χ, τ,Q)) =
p (t) + χ. Accordingly, the integral terms give the difference between the marginal value of electricity
consumption and the marginal environmental and production cost that result from a marginal increase
in θ. The remaining two terms extend this to effects via capacity costs, where the summation in the
last term takes into account that ∂cf

∂Qf
= 0 for the established fossil technology. Using

∑
j Yj(t) = x (t),

rearranging terms and substituting from conditions (28) to (30) for firms’ capacity choices, the four
first-order conditions dW

dθ = 0 for the optimal policy instruments θ = σr, σs, τ, χ are (see Appendix C
for the calculations):∑

i=r,s

(
σi +Qi

∂ci
∂Qi

− ρχ
∫ T

t0

∂Yi (t)

∂Qi
dt

)
dQi
dθ

+ ρ (δ − τ − χ)

∫ T

t0

dYf (t)

dθ
dt− z = 0, (33)

where

z =


0 if αsQr < x (0 + χ)

ρχ 1
ηs

dQs
dθ if αsQr = x (0 + χ) for θ = σr, σs, τ

ρχ
(∫

s
∂x(0+χ)
∂χ dt+ 1

ηs

dQs
dχ

)
if αsQr = x (0 + χ) for θ = χ

(34)

14 All terms under the integral as well as their derivatives are continuous so that one can apply the Leibniz rule and
differentiate under the integral sign (see Sydsaeter, Hammond, Seierstad, and Strom 2005, p. 156).
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Accordingly, z is only non-zero when there are excess capacities of renewables—i.e., if αsQr =

x (0 + χ). Regarding the other terms in (33), ρ (δ − τ − χ)
∫ T
t0

dYf (t)
dθ dt represents the marginal effect

of the instrument θ on the net present value of damages from fossil production that are not internalised
by the taxes τ +χ. Similarly, the summation term adds up the marginal effect of θ on renewable and
storage capacities, dQi/dθ, weighted by extent to which the capacity subsidy, σi, fails to internalise
the capacity cost externality, Qi ∂ci∂Qi

, and the distortionary costs, ρχ
∫ T
t0

∂Yi(t)
∂Qi

dt, that result because
the consumption tax χ must also be paid for electricity from renewable production and from the
storage. We now examine the different options for policy interventions.

6.1 Pigouvian Taxation
If the consumption tax is set at χ = 0, all related terms in (33) cancel and the first-order optimality
conditions for the remaining policy instruments θ = σr, σs, τ simplify to

∑
i=r,s

(
σi +Qi

∂ci
∂Qi

)
dQi
dθ

= −ρ (δ − τ)

∫ T

t0

dYf (t)

dθ
dt. (35)

It is straightforward to see that these are satisfied by a Pigouvian tax on fossils, τ = δ, and subsidies
for renewable and storage capacities that equal the cost externality, σi = −Qi ∂ci∂Qi

. The latter may be
positive or negative, depending on whether ∂ci

∂Qi
< 0 (e.g., due to economy-wide economies of scale or

learning) or ∂ci
∂Qi

> 0 (e.g., due to the scarcity of suitable sites for wind and solar power).
To see that this instrument mix even implements the first-best solution, note that production

and consumption choices on competitive markets as analysed in Section 4.2 are only distorted by the
pollution externality. Hence the resulting equilibrium levels in Lemma 1 are obviously first-best if no
consumption tax is levied and the environmental externality is internalised by a Pigouvian tax τ = δ,
provided that the underlying capacity levels are first-best. These follow from maximizing welfare W
in (31) with respect to capacities for χ = 0. Using ∂cf

∂Qf
= 0, we have for j = f, r, s:

∂W

∂Qj
= ρ

∫ T

t0

(
∂x (t)

∂Qj
p (t)− (kf + δ)

∂Yf (t)

∂Qj

)
dt− cj (Qj)−

∂cj
∂Qj

Qj = 0. (36)

In the proof of Proposition 1, we show that with a Pigouvian tax and a subsidy that corrects the
capacity cost externality, profit maximizing firms have exactly the same first-order conditions and,
hence, choose the same capacity levels. This leads to the following result.

Proposition 1. The social optimum can be implemented by a Pigouvian tax on fossils, τ∗ = δ,
subsidies for renewable and storage capacities that equal the cost externality, σ∗i = −Q∗i ∂ci∂Qi

, i = r, s,
and no consumption tax, χ∗ = 0.

Proposition 1 confirms the expectation that Pigouvian taxation also works in a model that accounts
for intermittency of renewables and storage. However, this provides no guidance for second-best
policies when Pigouvian taxes are not feasible—for example, due to political economy reasons. In
the next subsection, we consider the alternative policy option of subsidising renewable and storage
capacities in combination with a consumption tax on electricity.

6.2 Consumption Taxation
Now suppose that—in contrast to the previous subsection—an incomplete fossil tax, τ < δ, is taken
as given. Remember that the first-order conditions for policy instruments are as stated in (33). First,
consider the situation without excess capacities of renewables (αsQr < x(0 + χ)) so that z = 0 (from
34). Moreover, from Table 1 and Lemma 2 the effect of renewable and storage capacities on associated
production values are ∂Yr(t)

∂Qr
= α (t) and

∫ T
t0

∂Ys(t)
∂Qs

dt =
∫
d
∂αd
∂Qs

Qrdt +
∫
s
∂αs
∂Qs

Qrdt = 1
ηd
− 1

ηs
≤ 0.
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Intuitively, additional storage and destorage volumes that result from a larger storage capacity cancel
each other over a cycle, except for conversion losses 1

ηs
− 1
ηd
.15 Substituting this into (33), the optimal

policy instruments θ = σr, σs, χ must satisfy

(
σr +Qr

∂cr
∂Qr

− ρχ
∫ T

t0

α (t) dt

)
dQr
dθ

+

(
σs +Qs

∂cs
∂Qs

− ρχ
(

1

ηd
− 1

ηs

))
dQs
dθ

= −ρ (δ − τ − χ)

∫ T

t0

dYf (t)

dθ
dt.

(37)
Denoting the optimal tax/subsidy scheme with a consumption tax by superscript #, it is straight-

forward to see that χ# = δ−τ , σ#
r = −Qr ∂cr∂Qr

+ρχ#
∫ T
t0
α (t) dt, and σ#

s = −Qs ∂cs∂Qs
+ρχ#

(
1
ηd
− 1

ηs

)
satisfies all three first-order conditions. Moreover, as shown in the proof of Proposition 2 it implements
the first-best solution.

For the fossil technology this is very intuitive. The total tax on electricity from fossils is the
Pigouvian level, τ +χ# = δ, and the tax incidence does not depend on who pays the tax; producers in
the case of τ or consumers in the case of χ. Moreover, from Table 1 supply Yj (t) and, thus, also demand
x (t) =

∑
j=f,r,s Yj (t) are the same under the Pigouvian and under the consumption tax (remember

that bf = kf + τ). Therefore, x
(
p# (t) + χ#

)
= x (p∗ (t)), where p∗ (t) and p# (t) denote the (before

tax) equilibrium prices with the Pigouvian and the consumption tax, respectively. It follows that
p# (t) = p∗ (t)− χ#, i.e., the equilibrium price under the consumption tax is lower. Ceteris paribus,
this distorts investment decisions. For renewables, the net present value of losses from the lower
equilibrium price is compensated by the subsidy component ρχ#

∫ T
t0
α (t) dt. By contrast, for storage

firms p# (t) < p∗ (t) implies that they pay and receive a lower price during storage and destorage,
respectively. As the level of stored electricity exceeds that of destored electricity by conversion losses
1
ηs
− 1
ηd
, this is beneficial for storage firms. To balance this requires a tax, which explains the “subsidy”

component ρχ#
(

1
ηd
− 1

ηs

)
< 0.

Next, consider the situation with excess capacities of renewables (αsQr = x (0 + χ)). The con-
sumption tax χ must also be paid during times when renewables are in excess supply. This reduces
demand, creating a standard tax distortion. In particular, from the last two lines in Table 1, overall
supply during storage is now

∑
j Yj (t) = x (0 + χ) and, thus, lower with a consumption tax χ > 0

than with a Pigouvian tax. Therefore, even at first-best capacity levels, consumption and production
decisions are distorted and the social optimum cannot be attained. The proposition summarizes these
results.

Proposition 2. Suppose that we have an incomplete carbon tax τ < δ.

(a) If there are no excess capacities of renewables (αsQr < x (0 + χ)), then the social optimum can
still be implemented by a combination of the following policies: (i) A tax on electricity consump-
tion, χ# = δ − τ , that closes the gap between the incomplete carbon tax and its Pigouvian level.
(ii) Subsidies for renewable and storage capacities, σ#

r = −Q∗r ∂cr∂Qr
+ ρ (δ − τ)

∫ T
t0
α (t) dt and

σ#
s = −Q∗s ∂cs∂Qs

+ ρχ#
(

1
ηd
− 1

ηs

)
, that internalize the capacity cost externality and compensate

the distortion that the consumption tax must also be paid for electricity from renewables and
for electricity that goes through the storage. As 1

ηd
− 1

ηs
< 0, storage capacities should be taxed

unless the capacity cost externality dominates.

(b) With excess capacities of renewables (αsQr = x (0 + χ)), no policy mix of consumption taxes
and capacity subsidies can attain the social optimum.

15 Remember that ηd ≥ 1 ≥ ηs. 1
ηs

is the quantity of electricity needed to fill the storage by one unit so that 1
ηs
− 1 is

electricity lost during storage. Similarly, 1
ηd

is the quantity of electricity that arrives at the market for each unit taken

from the storage so that 1− 1
ηd

is electricity lost during destorage. Summing up yields 1
ηs
− 1
ηd
≥ 0.
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This restricts the finding of Abrell et al. (2019) as well as Ambec and Crampes (2019) that
subsidies for the renewable (and storage) technology and a consumption tax can also decentralise the
first-best solution to situations in which maximal generation from renewables does not exceed demand
at a price equal to the consumption tax. Moreover, the usual framing of this policy is to emphasize
the need to subsidise renewables and to consider the consumption tax as a complementary policy.
The above analysis suggests a reverse perspective. The consumption tax brings the carbon tax to
the Pigouvian level. The subsidy for renewables and the tax on storage correct the distortions for
capacity investments that result because the consumption tax must also be paid for electricity from
renewables and from the storage.

Even though this policy shares some similarities with the financing of renewables subsidies by levies
on electricity consumption that some countries have implemented, from an economics perspective this
is an awkward policy. It results in Pigouvian taxation of fossils, but as a by-product leads to unintended
taxes for renewables and storage, which in turn must be compensated by another round of subsidies
and taxes. Moreover, in the real world these tax/subsidy streams lead to costs that we have ignored in
our simple model. In addition, the policy fails for excess capacities of renewables that we occasionally
observe already now in some countries. Therefore, it is hard to see any advantage over a simple
Pigouvian tax, even if one accounts for political economy issues that impede their implementation.

6.3 Renewable and Storage Subsidies
In this section, we assume that it is not possible to implement a tax that fully internalises the carbon
externality, neither directly by a Pigouvian tax nor through the backdoor by a consumption tax.
Instead, noting that subsidies for renewable energies and, more recently, also for storage capacities
have been the dominating policy instrument in many countries, we examine their optimal levels and
how these change as the share of renewables in the energy mix rises.

For a given imperfect carbon tax and no tax on electricity consumption (χ = 0, τ < δ), the
first-order conditions (33) for optimal subsidy levels become(

σr +Qr
∂cr
∂Qr

)
dQr
dσi

+

(
σs +Qs

∂cs
∂Qs

)
dQs
dσi

= −ρ (δ − τ)

∫ T

t0

dYf (t,Q)

dσi
dt, i = r, s. (38)

This is the same as condition (35) in the section on Pigouvian taxation, except that τ is no longer
available as a policy instrument. Therefore, subsidies for renewables and storage are not only targeted
at the capacity cost externality, but also at the non-internalised carbon externality from fossils. The
term (δ − τ)

∫ T
t0

dYf (t,Q)
dσi

dt that captures this can be written as (δ − τ)
∫ T
t0

∑
j=f,r,s

∂Yf
∂Qj

dQj
dσi

dt.16 From

Table 1, ∂Yf
∂Qj

depends on which of the intermediate cases 1 to 3 obtain in equilibrium, which also
affects the usage of fossils during storage. Therefore, also optimal subsidies hinge on this, as the fol-
lowing proposition shows (subscripts to the integral sign denote the periods over which the integration
applies).

Proposition 3. For an incomplete carbon and no consumption tax (τ < δ, χ = 0), optimal subsidies
of renewable and storage capacities for the respective cases of full (αs ≤ α1), partial (αs ∈ (α1, α2])
and no (αs > α2) usage of the fossil technology during the storage period are

σ∗r = −Qr
∂cr
∂Qr

+ ρ (δ − τ)



(∫
d,1,s

dt

∫
d,1,s

∂p(t)
∂x(t)

α(t)dt∫
d,1,s

∂p(t)
∂x(t)

dt

)
if αs ≤ α1,(∫

d,1
dt

∫
d,1

∂p(t)
∂x(t)

α(t)dt∫
d,1

∂p(t)
∂x(t)

dt
+
∫
2,s
α (t) dt

)
if αs ∈ (α1, α2] ,(∫

d,1
dt

∫
d,1

∂p(t)
∂x(t)

α(t)dt∫
d,1

∂p(t)
∂x(t)

dt
+
∫
2
α (t) dt

)
if αs > α2,

16 Note that renewable and storage subsidies have no direct effect on fossil production, i.e., ∂Yf
∂σi

= 0.
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and

σ∗s = −Qs
∂cs
∂Qs

+ ρ (δ − τ)



(∫
d,1,s

dt
∂pd
∂xd

1
ηd
− ∂ps∂xs

1
ηs∫

d,1

∂p(t)
∂x(t)

dt+ ∂ps
∂xs

∫
s
dt

)
if αs ≤ α1,(∫

d,1
dt

∂pd
∂xd

1
ηd∫

d,1

∂p(t)
∂x(t)

dt
− 1

ηs

)
if αs ∈ (α1, α2] ,(∫

d,1
dt

∂pd
∂xd

1
ηd∫

d,1

∂p(t)
∂x(t)

dt

)
if αs > α2.

All expressions for the subsidies have the same intuitive structure: The first term, Qi ∂ci∂Qi
, accounts

for the capacity cost externality. According to the other terms, optimal subsidies are higher if less
damages are internalised by a carbon tax (large δ−τ), and if the marginal effect of renewable respect-
ively storage capacities on reducing fossil production is higher (the terms after the curly brackets).
The parameter ρ converts this to the net-present value. We now examine the latter effect in more
detail.

Start with the renewable subsidy σ∗r . If αs ≤ α1 (first line), then fossils produce at full capacity
during storage, destorage, and in the intermediate period that consists of case 1 only (Table 1). This
explains the integration range. More renewable capacities crowd fossil capacities out of the market
(∂Qf∂Qr

< 0, see appendix) and, thus, reduce fossil production. This effect is larger when the availability

of renewables, α (t), is large. Finally, the weighting by ∂p(t)
∂x(t) captures that this availability is more

relevant at times where it reduces the electricity price more strongly because this makes investments
in fossils less attractive.

If αs ∈ (α1, α2] (second line), there are two changes. First, also case 2 where fossils produce only at
partial capacity obtains in the intermediate period, which is added to the integration range. Second,
during this case and during storage the equilibrium electricity price is constant at p (t) = kf+τ so that
there are no price effects. Hence a marginal increase in renewable capacities simply raises renewable
production by α(t) and replaces fossil production by this amount. Finally, for αs > α2 (third line),
there exist sufficient renewable capacities such that fossils no longer contribute to filling the storage.
Therefore, additional renewable capacities have no effect on fossil production during storage and this
period is dropped from the integration range.

Now consider the storage subsidy, σ∗s , for which the fractions after the curly bracket represent the
marginal effect of storage capacities on fossils, −∂Qf∂Qs

. A higher storage capacity reduces the price of the
destorage period as more electricity from the storage is fed into the market (

∫
d
∂pd
∂Qs

dt = ∂pd
∂xd

1
ηd
< 0).

This makes investment in fossils less attractive and provides an argument for subsidising storage.
Moreover, the effect is smaller if efficiency losses are large (high ηd) so that only a small share of
electricity from the storage arrives in the market.

However, as long as fossils contribute to filling the storage—i.e., for αs ≤ α2—there are coun-
tervailing effects. If fossils are fully used during storage (αs ≤ α1), a higher storage capacity raises
the price of the storage period (

∫
s
∂ps
∂Qs

dt = − ∂ps
∂xs

1
ηs

> 0) and, thus, the profitability of investment
in fossils. This provides an argument for taxing storage, especially when efficiency losses are large
(low ηs) so that more electricity has to be taken from the market to fill the storage. Moreover, one
would expect that demand is more price responsive when prices are high—that is, during destor-
age—than at the low prices during storage (see Faruqui and Sergici, 2010). This implies that
|∂xd∂pd
| > |∂xs∂ps

| ⇐⇒ | ∂pd∂xd
| < | ∂ps∂xs

|, further supporting the rationale for taxing storage capacities.
No such price effects obtain if fossils are only partly used during storage (αs ∈ (α1, α2]), because

the storage price is constant at ps = kf+τ in this case. Hence ∂ps
∂xs

= 0 and the corresponding terms for
the storage period are dropped. However, now an additional marginal unit of storage capacities allows
fossils to employ

∫
s
∂Yf
∂Qs

dt = 1
ηs

of their idle capacity because more fossils are needed to supplement
renewables in filling a larger storage.17 This provides another reason for taxing storage, which again

17 From Table 1, Yf = x(bf ) − αsQr during storage so that
∫
s

∂Yf
∂Qs

dt =
∫
s

(
− ∂αs
∂Qs

Qr
)
dt = 1

ηs
, where the last step
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increases for higher efficiency losses during storage (low ηs). Finally, in the third line (αs > α2)
renewable capacities are large enough so that fossils no longer contribute to filling the storage. Hence
the above effects and, thus, also the puzzling arguments for taxing storage vanish.

Price effects that captured differences in consumers’ price-responsiveness at times of low and high
prices featured prominently in the above elaborations. If we simplify by assuming linear demand, and
ignore the cost externalities, then optimal subsidies have a very simple structure.

Corollary 1. For linear demand, ∂2p
∂x2 = 0, and constant unit costs, ∂cr

∂Qr
, ∂cs∂Qs

= 0, optimal subsidies
are

σ∗r = ρ (δ − τ)

{ ∫ T
t0
α (t) dt > 0 if αs ≤ α2,∫

d,1,2
α (t) dt > 0 if αs > α2,

and

σ∗s = ρ (δ − τ)

{ (
1
ηd
− 1

ηs

)
≤ 0 if αs ≤ α2,

1
ηd
> 0 if αs > α2.

The respective inequalities are strict if there are conversion losses of storage so that storage capacities
should be taxed as long as fossils contribute to filling the storage (αs ≤ α2).

Intuitively, the renewable subsidy σ∗r reflects that an additional unit of renewable capacities dis-
places fossil production by α (t) as long as the latter are used. Accordingly, it is constant in the first
line where fossils produce for all t. By contrast, the period

∫
d,1,2

dt in the second line is shorter and
decreasing in Qr because the availability of renewables for which case 2 ends, α2 = x (bf + χ) /Qr, is
decreasing in Qr. Hence the optimal renewable subsidy σ∗r now falls in the level of installed renewable
capacities. This reflects that fossil capacities are used less often so that there is less reason to subsidise
their replacement by renewable.

Turning to σ∗s , storage capacities should be taxed as long as their price increasing effect during
storage dominates their price reducing effect during destorage due to conversion losses. This reflects
that fossil capacities are more profitable if electricity prices are higher. For αs > α2, storage capacities
only contribute to destorage and, therefore, σ∗s turns strictly positive.

7 Numerical Illustration of Optimal Subsidies and Discussion

Figure 3 presents results of a numerical simulation of the optimal subsidy scheme with linear demand,
constant unit costs and no consumption tax, as in Corollary 1. The parameters are loosely calibrated
to German data (see Appendix G for details). Values for optimal unit subsidies are depicted on the
right axis (in €/MW and €/MWh, respectively); capacities (in MW and MWh) and total subsidy
payments, Σ := σrQr + σsQs, on the left axis.18 The (small) diamonds show efficient capacities
(Q∗r , Q∗s, Q∗f ) that would occur with a Pigouvian tax τ∗ = δ.

The figure should be read from the right to the left. Then all values are depicted as a function
of unit capacity costs of renewables (cr) and storage (cs) that are falling at the same rate. Whereas
the preceding analysis was restricted to the case where positive quantities of all three technologies are
installed in equilibrium, we now consider a broader cost range. It also includes the situations where
renewables and storage enter the market, and where they have fully captured it.

Intuitively, renewable capacities enter the market first, supported by a subsidy that is constant at
the level 136,600 €/MW as long as fossils produce for all t (in line with Corollary 1). These are roughly
17% of initial capacity costs. Storage capacities follow once the resulting volume of intermittent supply
is large enough to make buffering electricity economically viable. Due to relatively high capacity costs
and conversion losses (19 per cent in our calibration), this only happens when renewables have reached

follows by substitution for ∂αs
∂Qs

from Lemma 2.
18 Note that storage capacity is measured in MWh. This distinction between power and energy was irrelevant in the

theoretical model, but is important now.
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Fig. 3: Market diffusion and optimal subsidies

Qr, Qs,Qf are capacities of renewables, storage and fossils that result from optimal subsidies (σr, σs), depicted as
functions of unit capacity costs cr, cs. Q∗r , Q∗s,Q∗f are efficient capacity levels. Σ are total subsidy payments.

a capacity of 224 GW.19 This is large enough to completely satisfy electricity demand at times of high
availability during which storage takes place. Therefore, the situations where fossils profited from
the higher electricity prices due to storage, which provided the rationale for taxing storage capacities,
are leapfrogged.20 Once storage capacities enter the market, they receive a constant subsidy that
initially makes up roughly 50% of their capacity costs. By contrast, the renewable subsidy is gradually
decreasing (both values are exactly those of Corollary 1 for αs > α2). However, the lower rate is paid
for larger capacities so that total subsidy payments, Σ, are even slightly increasing until fossils are
completely driven out of the market.

Even thereafter, falling but still substantial subsidies are required to prevent fossils from re-entering
the market. In the analytical model, this boundary case where subsidies are chosen such that they
are just sufficient to keep fossil firms out requires that their first-order condition (28) is satisfied at
Qf = 0. In particular, noting that a re-entering fossil firm would produce at full capacity during
destorage and case 1, the first-order condition becomes (during case 2 fossils make zero profits)

ρ

∫
d,1

(p (t,Q)− τ − kf ) dt− cf = 0, where Q = (0, Qr, Qs) . (39)

19 This value is similar to current wind and solar capacities in Germany, where di-
viding maximum production of 59 GW (attained on April 23, 2019, see https://energy-
charts.info/charts/power/chart.htm?l=de&c=DE&year=2019&interval=year) by αmax = 0.29 (see Appendix G)
yields 203 GW. Corresponding optimal subsidies for renewables of 136,600 €/MW translate into a market premia of
68.24 €/MWh when paid for 20 years (applying 3% discounting). The observed market premia in Germany in 2019
was 37.76 €/MWh (https://www.netztransparenz.de/EEG/Marktpraemie/Marktwerte).

20 Results of a model calibration that leads to an earlier build-up of storage capacities and, thus, taxes in the initial
stages are available upon request. In a nutshell, they require lower costs and lower conversion losses of storages.
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Obviously, this condition would be met if renewable and storage capacities, Qr, Qs, were kept
constant at the level that solves this equation, which is roughly the case in our numerical simulations.
From the first-order conditions (29) and (30) for capacity choices of renewable and storage firms, this
requires that falling capacity costs are balanced by lower subsidies; as in Figure 3. By contrast, when
renewable and storage capacities have become cheap enough to defend the market without subsidies,
both rise in response to further falling costs.

Next, consider the evolution of capacities in the initial stages. The market diffusion of renewables
is slow in the beginning, then accelerates rapidly, and thereafter slows down again. The evolution of
fossil capacities matches this pattern in opposite direction. This is in line with the result in Helm
and Mier (2019), but the additional storage technology accelerates the build-up of renewables and the
phase out of fossils. Storage capacities are increasing exponentially despite constant subsidies. The
reason is their rising market value as there are more variable renewables and less reliable fossils.

Finally, remember that for the situations analysed in Section 6.2, efficient capacities would also
obtain from a consumption tax χ# = δ−τ , if it is complemented by subsidies that correct the resulting
distortions. For storage firms, the benefits of a lower before tax price during storage dominate,
requiring a constant tax of σ#

s = ρχ#
(

1
ηd
− 1

ηs

)
= −7, 490 €/MWh. By contrast, renewables must

receive a constant subsidy σ#
r = ρ (δ − τ)

∫ T
t0
α (t) dt = 136, 600 €/MW (not depicted), which leads

to substantially higher subsidy costs than the second-best subsidies in Figure 3. This reflects that as
fossils are increasingly driven out of the market, the consumption tax must be paid for ever higher
shares of electricity from renewables, making the necessary compensation increasingly costly.

8 Concluding Remarks

Using a peak-load pricing model, we started by verifying that intermittent supply of renewable tech-
nologies and electricity storage do not compromise the efficiency of a Pigouvian tax on fossil electricity
production. Nonetheless, countries usually fail to impose such a first-best carbon tax. Instead, they
have often implemented subsidies, especially for renewables, that are financed by taxes on electricity
consumption. If the consumption tax is not determined by the aim to finance subsidies but set at the
Pigouvian level, then it provides the same incentives as a Pigouvian tax on fossil production; simply
because the tax incidence is independent of who pays it. However, the consumption tax also penalizes
electricity that comes from renewables and from the storage. This distorts investment decisions that
must be corrected by subsidising renewables and taxing storage capacities. Moreover, the efficiency
of this tax/subsidy scheme breaks down for high shares of renewables in the energy mix. Finally, a
model with several fossil technologies that have different carbon intensities would require differenti-
ated Pigouvian and, therefore, differentiated consumption taxes for the homogeneous good electricity
(see also Abrell et al. (2019)).

We then analysed second-best subsidies for installing capacities of intermittent renewable energies
and storage that are financed by lump-sum taxes. Renewables reduce the profitability of fossil invest-
ments by lowering expected prices and by displacing fossil production. This provides a rationale for
the subsidisation of renewable energies. However, these effects lose relevance as the share of fossils in
the energy mix falls; hence also the subsidy rate should fall. Storage capacities raise the electricity
price when the storage is filled and lower it during destorage. This has countervailing effects on the
profitability of fossils. Due to round-trip efficiency losses the volume of electricity taken from the mar-
ket during storage exceeds the volume provided during destorage. Hence the price increasing effect
during storage dominates, and as long as fossils benefit from this it is usually optimal to tax storage
capacities. As this result is driven by conversion losses over a storage cycle, technologies for which
these are low—like batteries—should be charged with a lower tax. Moreover, once renewables have
risen sufficiently so that fossils no longer contribute to electricity storage, it is optimal to switch to a
subsidy.

Thus, our results provide an argument for gradually reducing the subsidy for renewables as their
market penetration rises, and raising the subsidy for storage instead. Importantly, the latter is not
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targeted at supporting the rising share of renewables, because the market provides sufficient incentives
to build storage capacities if there is more fluctuating electricity from renewables. Rather, storage of
electricity is subsidised because it substitutes fossil production when the availability of renewables is
low.

Our analysis also accounts for a cost externality, e.g., from learning or economy-wide economies of
scale. Given the current technological progress in storage technologies such as batteries and power-to-
gas, these externalities may well provide an overriding argument for always subsidising storage. An
equivalent argument strengthens the initial case for subsiding renewables. However, as they become
more prevalent, problems such as the scarcity of suitable sites for wind gain relevance. These constitute
a negative cost externality, providing an additional argument to reduce the subsidy rate for renewables.

In a calibrated numerical optimization of our analytical model that abstracts from cost extern-
alities, storage capacities only enter the market once their electricity demand can be fully met by
renewables. Hence it is always optimal to subsidise storage. However, in the real world fossil capa-
cities nearly always produce at times of electricity storage and, thus, benefit from the price increase
of the resulting higher electricity demand.21 Similarly, electric vehicles are usually charged to a sub-
stantial extent with electricity from burning fossil fuels. Even worse, batteries in electric vehicles are
almost never used for destorage. Hence they never exert a price dampening effect that would erode
the competitiveness of fossils. Both effects currently weaken the case for subsidising electric vehicles
to reduce CO2 emissions; although other reasons such as reducing local air pollution may still justify
subsidies (see Holland, Mansur, Muller, and Yates, 2016).

In summary, even if capacity levels under the optimal subsidy scheme are relatively close to their
efficient values—as is the case in our numerical simulation—the required subsidies for renewables
and storage are substantially more complex than a first-best carbon tax. They vary, sometimes
even in their sign, depending on the relative shares of the three technologies in the power system.
They also require substantial knowledge about the electricity market—such as demand sensitivity.
This complexity is driven by the intermittency of renewables, an aspect that is still often neglected
in the analytical literature. Given the large public funds that currently subsidise renewables, and,
increasingly, storage, a better understanding of this is highly policy relevant. The Pigouvian tax,
by contrast, simply equals the environmental unit costs of fossil production. This reflects its central
advantage that it directly addresses the externality.

We now discuss some further limitations and potential extensions of our analysis that need be
taken into account when drawing policy recommendations. First, we have ignored effects that may
result from the interaction with existing overlapping instruments. Most importantly, an increasing
number of countries are implementing cap-and-trade systems that substantially impact the effective-
ness of subsidies for renewables (Jarke and Perino, 2017). Second, we only considered subsidies for
capacities, whereas the dominating instruments for renewables have been feed-in-tariffs and market
premia—that is, a subsidisation of electricity output. However, these are quite similar in that both are
paid independently of the price that obtains on the market for electricity. Moreover, in our numerical
simulation renewable capacities are always fully used due to a sufficient storage capacity. In this case,
a subsidy per unit of output is equivalent to a subsidy per unit of capacity that is available on average.
Note that this argument does not apply to the storage technology. The reason is that a subsidy per
unit of electricity that is stored or/and destored would not only affect decisions to build up capacity,
but also distort storage decisions—in contrast to renewables for which production is driven by the
exogenous availability parameter α(t).

Third, we have restricted the analysis to one renewable and one fossil technology. This could
be extended relatively straightforwardly to several renewable technologies—e.g., PV, offshore and
onshore wind—with technology specific availability factors, αl(t).22 There would then be a separate
optimal subsidy rate for each renewable technology such that technologies which (on average) reduce

21 Note that the largest share of storage is done by commercial customers that face variable prices, as in our model.
22 There would then be a profit maximisation problem for each type l of renewable firms (Eqs. (6) and (7)), and

supply from renewables would be given by the sum over all technologies,
∑

l
αl(t)Qlr.
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electricity prices more strongly receive a higher subsidy rate.23 With peak prices around midday, this
would suggest a subsidy mark-up for solar power. By contrast, with high PV shares there may be
consistently higher prices during the winter season, which would suggest a subsidy mark-up for more
stable offshore wind power. If several fossil technologies were considered, then a different emission
intensity of the marginal technology during storage and destorage periods would affect the analysis
(see Carson and Novan, 2013). As destorage takes places during high price periods, one might expect
that it displaces primarily gas with comparatively low emission intensity.

A related extension would include several storage technologies so as to better address the different
storage needs that result for different renewable technologies (see Sinn (2017) and Zerrahn, Schill, and
Kemfert (2018) for a discussion). For example, battery storage appears most suitable to buffer the
daily intermittency of solar power, whereas power-to-gas better fits the long-term storage requirements
of seasonal fluctuations. Just as for the case of several renewables, optimal subsidy rates would differ
across technologies. Moreover, due to cost considerations it is unlikely that fossils will contribute to
power-to-gas storage to any significant extent. This makes the optimality of a storage tax seem much
less likely for the seasonal storage technology.

Fourth, one could relax Assumption 1 that the availability of renewables follows an identical
repetitive pattern. As long as it remains optimal to completely fill and empty the storage during one
period, the optimisation problems at stage 3 (production, storage and consumption) would still be
as analysed in Section 4.1. Similarly, profits of capacity investments would still be based on the net
present value of the resulting profit streams, the only difference being that per period profits may
differ. This suggests that also the basic results regarding policy instruments should continue to hold.
Similar arguments apply to the integration of some unforcastability into the model.

Finally, the model could be extended by including other market failures—e.g., non-reactive con-
sumer demand, distortionary taxation, and imperfect competition—or further aspects of electricity
markets, such as variable demand, trade, and the transmission grid. However, the first extension
would make it more difficult to isolate the effects of the pollution externality that was the focus of
this contribution, and the second would probably come at the cost of greater reliance on numerical
simulations.

References

Abrell, J., M. Kosch, and S. Rausch (2019). Carbon abatement with renewables: Evaluating wind
and solar subsidies in Germany and Spain. Journal of Public Economics 169, 172–202.

Abrell, J., S. Rausch, and C. Streitberger (2019). The economics of renewable energy support. Journal
of Public Economics 176, 94–117.

Acemoglu, D., P. Aghion, L. Bursztyn, and D. Hemous (2012). The environment and directed technical
change. American Economic Review 102 (1), 131–166.

Ambec, S. and C. Crampes (2012). Electricity provision with intermittent sources of energy. Resource
and Energy Economics 34 (3), 319–336.

Ambec, S. and C. Crampes (2019). Decarbonizing electricity generation with intermittent sources of
energy. Journal of the Association of Environmental and Resource Economists 6 (6), 1105–1134.

Andor, M. and A. Voss (2016). Optimal renewable-energy promotion: Capacity subsidies vs. genera-
tion subsidies. Resource and Energy Economics 45, 144–158.

Antoniou, F. and R. Strausz (2017). Feed-in subsidies, taxation, and inefficient entry. Environmental
and Resource Economics 67 (4), 925–940.

Borenstein, S. and S. Holland (2005). On the efficiency of competitive electricity markets with time-
invariant retail prices. Rand Journal of Economics 36 (3), 469–493.

Brouwer, A. S., M. van den Broek, W. Zappa, W. C. Turkenburg, and A. Faaij (2016). Least-cost op-
tions for integrating intermittent renewables in low-carbon power systems. Applied Energy 161,
48–74.

23 For example, in Proposition 3 this would be captured by terms
∫ T
t0

∂p(t)
∂x(t)

αl (t) dt, where αl (t) is technology specific.

23



Carson, R. T. and K. Novan (2013). The private and social economics of bulk electricity storage.
Journal of Environmental Economics and Management 66 (3), 404–423.

Crampes, C. and M. Moreaux (2001). Water resource and power generation. International Journal
of Industrial Organization 19 (6), 975–997.

Crampes, C. and M. Moreaux (2010). Pumped storage and cost saving. Energy Economics 32 (2),
325–333.

De Groote, O. and F. Verboven (2019). Subsidies and time discounting in new technology adoption:
Evidence from solar photovoltaic systems. American Economic Review 109 (6), 2137–72.

Després, J., S. Mima, A. Kitous, P. Criqui, N. Hadjsaid, and I. Noirot (2017). Storage as a flexibility
option in power systems with high shares of variable renewable energy sources: a poles-based
analysis. Energy Economics 64, 638 – 650.

Douenne, T. and A. Fabre (2021). Yellow vests, pessimistic beliefs, and carbon tax aversion. American
Economic Journal: Economic Policy , forthcoming.

Durmaz, T. (2014). Energy storage and renewable energy. NHH Department of Economics Discussion
Paper No. 18/2014 .

Eichner, T. and M. Runkel (2014). Subsidizing renewable energy under capital mobility. Journal of
Public Economics 117, 50–59.

ESC (2015). Global energy storage market overview and regional summary report 2015. Technical
report, Energy Storage Council.

Faruqui, A. and S. Sergici (2010). Household response to dynamic pricing of electricity: A survey of
15 experiments. Journal of Regulatory Economics 38 (2), 193–225.

Fell, H. and J. Linn (2013). Renewable electricity policies, heterogeneity, and cost effectiveness.
Journal of Environmental Economics and Management 66 (3), 688–707.

Fischer, C., L. Preonas, and R. G. Newell (2017). Environmental and technology policy options in
the electricity sector: are we deploying too many? Journal of the Association of Environmental
and Resource Economists 4 (4), 959–984.

Fredriksson, P. G. (1997). The political economy of pollution taxes in a small open economy. Journal
of Environmental Economics and Management 33 (1), 44–58.

Ghemawat, P. and A. M. Spence (1985). Learning curve spillovers and market performance. The
Quarterly Journal of Economics 100, 839–852.

Gimeno-Gutiérrez, M. and R. Lacal-Arántegui (2015). Assessment of the european potential for
pumped hydropower energy storage based on two existing reservoirs. Renewable Energy 75,
856–868.

Golosov, M., J. Hassler, P. Krusell, and A. Tsyvinski (2014). Optimal taxes on fossil fuel in general
equilibrium. Econometrica 82 (1), 41–88.

Goulder, L. H. and I. W. Parry (2008). Instrument choice in environmental policy. Review of Envir-
onmental Economics and Policy 2 (2), 152–174.

Gowrisankaran, G., S. S. Reynolds, and M. Samano (2016). Intermittency and the value of renewable
energy. Journal of Political Economy 124 (4), 1187–1234.

Gravelle, H. (1976). The peak load problem with feasible storage. Economic Journal 86 (342), 256–277.
Green, R. and T.-O. Léautier (2017). Do costs fall faster than revenues? Dynamics of renewables

entry into electricity markets. TSE Working Paper n. 15-591, revised version.
Gugler, K., A. Haxhimusa, and M. Liebensteiner (2021). Effectiveness of climate policies: Carbon

pricing vs. subsidizing renewables. Journal of Environmental Economics and Management 106,
102405.

Heal, G. (2016). Notes on the economics of energy storage. NBER Working Paper 22752 .
Helm, C. and M. Mier (2019). On the efficient market diffusion of intermittent renewable energies.

Energy Economics 80, 812–830.
Holland, S. P., E. T. Mansur, N. Z. Muller, and A. J. Yates (2016). Are there environmental be-

nefits from driving electric vehicles? The importance of local factors. American Economic
Review 106 (12), 3700–3729.

Horsley, A. and A. J. Wrobel (2002). Efficiency rents of pumped-storage plants and their uses for

24



operation and investment decisions. Journal of Economic Dynamics and Control 27 (1), 109–142.
IEA (2015). Projected costs of generating electricity 2015 edition. Technical report, International

Energy Agency.
IRENA (2017). Electricity storage and renewables: Costs and markets to 2030. Technical report,

International Renewable Energy Agency, Abu Dhabi.
IRENA (2019). Renewable power generation costs in 2018. Technical report, International Renewable

Energy Agency, Abu Dhabi.
IRENA and CPI (2018). Global landscape of renewable energy finance. Technical report, International

Renewable Energy Agency, Abu Dhabi.
Iversen, E. B., J. M. Morales, J. K. Møller, and H. Madsen (2016). Short-term probabilistic forecasting

of wind speed using stochastic differential equations. International Journal of Forecasting 32 (3),
981–990.

Jarke, J. and G. Perino (2017). Do renewable energy policies reduce carbon emissions? on caps and
inter-industry leakage. Journal of Environmental Economics and Management 84, 102–124.

Jessoe, K. and D. Rapson (2014). Knowledge is (less) power: Experimental evidence from residential
energy use. American Economic Review 104 (4), 1417–1438.

Joskow, P. L. (2011). Comparing the costs of intermittent and dispatchable electricity generating
technologies. American Economic Review 101 (3), 238–241.

Joskow, P. L. and C. D. Wolfram (2012). Dynamic pricing of electricity. American Economic Re-
view 102 (3), 381–385.

Kittner, N., F. Lill, and D. M. Kammen (2017). Energy storage deployment and innovation for the
clean energy transition. Nature Energy 2 (17125), 1–9.

Kohn, R. E. (1992). When subsidies for pollution abatement increase total emissions. Southern
Economic Journal 59 (1), 77–87.

Lancker, K. and M. F. Quaas (2019). Increasing marginal costs and the efficiency of differentiated
feed-in tariffs. Energy Economics.

Lemoine, D. and I. Rudik (2017). Steering the climate system: Using inertia to lower the cost of
policy. American Economic Review 107 (10), 2947–2957.

Liski, M. and I. Vehviläinen (2020). Gone with the wind? An empirical analysis of the equilib-
rium impact of renewable energy. Journal of the Association of Environmental and Resource
Economists (forthcoming).

Milliman, S. R. and R. Prince (1989). Firm incentives to promote technological change in pollution
control. Journal of Environmental economics and Management 17 (3), 247–265.

Newbery, D. M. and J. E. Stiglitz (1979). The theory of commodity price stabilisation rules: Welfare
impacts and supply responses. Economic Journal 89 (356), 799–817.

Nykvist, B. and M. Nilsson (2015). Rapidly falling costs of battery packs for electric vehicles. Nature
Climate Change 5, 329–332.

Parry, I. W., W. A. Pizer, and C. Fischer (2003). How large are the welfare gains from technological
innovation induced by environmental policies? Journal of Regulatory Economics 23 (3), 237–255.

Polinsky, A. M. (1979). Notes on the symmetry of taxes and subsidies in pollution control. The
Canadian Journal of Economics 12 (1), 75–83.

Pommeret, A. and K. Schubert (2019). Energy Transition with Variable and Intermittent Renewable
Electricity Generation. CESifo Working Paper Series 7442, CESifo Group Munich.

Reguant, M. (2019). The efficiency and sectoral distributional impacts of large-scale renewable energy
policies. Journal of the Association of Environmental and Resource Economists 6 (S1), 129–168.

Reichenbach, J. and T. Requate (2012). Subsidies for renewable energies in the presence of learning
effects and market power. Resource and Energy Economics 34 (2), 236–254.

Requate, T. and W. Unold (2003). Environmental policy incentives to adopt advanced abatement
technology: Will the true ranking please stand up? European Economic Review 47 (1), 125–146.

Schmalensee, R. (2019). On the efficiency of competitive energy storage. Available at SSRN 3405058 .
Schmidt, O., A. Hawkes, A. Gambhir, and I. Staffell (2017). The future cost of electrical energy

storage based on experience rates. Nature Energy 2 (17110), 1–8.

25



Schröder, A., F. Kunz, J. Meiss, R. Mendelevitch, and C. Von Hirschhausen (2013). Current and
prospective costs of electricity generation until 2050. DIW Data Documentation 68, Deutsches
Institut für Wirtschaftsforschung.

Seierstad, A. and K. Sydsaeter (1987). Optimal control theory with economic applications. Elsevier
North-Holland, Inc.

Sinn, H.-W. (2017). Buffering volatility: A study on the limits of Germany’s energy revolution.
European Economic Review 99, 130–150.

Steffen, B. and C. Weber (2013). Efficient storage capacity in power systems with thermal and
renewable generation. Energy Economics 36, 556–567.

Steffen, B. and C. Weber (2016). Optimal operation of pumped-hydro storage plants with continuous
time-varying power prices. European Journal of Operational Research 252 (1), 308–321.

Sydsaeter, K., P. Hammond, A. Seierstad, and A. Strom (2005). Further mathematics for economic
analysis. Pearson Education.

Thimmapuram, P. R. and J. Kim (2013). Consumers’ price elasticity of demand modeling with
economic effects on electricity markets using an agent-based model. IEEE Transactions on
Smart Grid 4 (1), 390–397.

Van Der Ploeg, F. and C. Withagen (2014). Growth, renewables, and the optimal carbon tax. Inter-
national Economic Review 55 (1), 283–311.

Wright, B. D. and J. C. Williams (1984). The welfare effects of the introduction of storage. The
Quarterly Journal of Economics 99 (1), 169–192.

Zerrahn, A., W.-P. Schill, and C. Kemfert (2018). On the economics of electrical storage for variable
renewable energy sources. European Economic Review 108, 259–279.

Appendix

A Proof of Lemma 1

As shown in the main text, for fossil and renewable firms conditions (4) and (5) as well as (8) and
(9) are sufficient for optimality. For storage firms, note that η (ys) has the constant values ηd, ηs and
1 during the destorage, storage and intermediate period. Hence the Hamiltonian Hs as given in (15)
is piecewise linear in ys (t). Moreover, the constraints (13) and (14) are linear in s (t). Therefore,
conditions (17) to (22) are sufficient for optimality, if λ(t) is continuous (see Seierstad and Sydsaeter
(1987, p. 317-318)), which we show below.

We now prove that the equilibrium values in Lemma 1 satisfy these conditions, starting with the
constant electricity price during storage and destorage, that is, for ys (t) 6= 0. If p (t) 6= λ (t) η (ys),
there can be no y∗s (t) 6= 0 that maximizes (17); hence p (t) = λ (t) η (ys) during storage and destorage
periods. Intuitively, the adjoint variable λ (t) is usually interpreted as the change in the value function
due to a unit increase in the state variable, s (t). Thus, λ (t) is the value of stored electricity which, after
being weighted by conversion losses, must equal the price of electricity. Moreover, during storage and
destorage periods the storage can neither be full nor empty (except at the boundaries), i.e., s (t) < qs
and s (t) > 0. Thus, ϕs (t) = ϕd (t) = 0 from the complementary slackness conditions in (20) and
(21) so that λ̇ (t) = ϕs (t) − ϕd (t) = 0 from (19). Finally, by assumption the round-trip efficiency
loss parameter is constant at η (ys) = ηs during storage and at η (ys) = ηd during destorage. Using
p (t) = λ (t) η (ys) it follows that not only λ (t), but also prices and, therefore, demand, are constant.

Regarding the other values during the destorage period, it is straightforward to see that the solution
yr (t) = α (t) qr and yf (t) = qf satisfies (4), (5), (8), and (9) for µr, µf > 0, and results in a price
p (t) above the total unit costs of fossils, bf .24 Turning to storage firms, conditions (17) and (19) to
(21) have already been used to derive the result of a constant price during destorage. The remaining
condition (18) describes how an initially full storage is completely depleted during the destorage period

24 Note that firms are identical so that yr (t) = α (t) qr implies Yr (t) = nryr (t) = α(t)Qr, where nr is the number of
renewable firms. An equivalent argument applies to the other quantities in the proof.
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(see main text). Therefore, integrating this equation of motion (18) over the two destorage intervals
must satisfy Qs = ηd

∫ td
t0
Ys (t) dt + ηd

∫ T
t′
d
Ys (t) dt. Substitution from (23) yields the condition that

implicitly determines the critical availability αd below which destorage obtains (
∫
d
dt :=

∫ td
t0
dt+

∫ T
t′
d
dt

is a shorthand notation for the combined duration of the two destorage intervals):

Qs = ηd

∫
d

(αd − α (t))Qrdt. (40)

Once the storage has run empty, we have s (t) = 0 so that ϕd (t) turns (weakly) positive (see
(21)). This initiates the first intermediate period, t ∈ (td, ts), during which ṡ (t) = −ys (t) = 0 (eq.
(18)). For renewables, (8) and (9) imply that yr (t) = α (t) qr for any p (t) > 0, whereas for p (t) = 0
any output yr (t) is profit maximizing due to marginal costs of zero. Moreover, the fact that α (t)
is increasing during the first intermediate period implies that, ceteris paribus, p (t) is decreasing. As
long as p (t) > bf , we have µf (t) > 0 from (4) so that yf (t) = qf from (5). This case 1 continues until
full usage of fossil and available renewable capacities have lowered the price to the total unit costs of
fossils, p (t) = bf .

Noting that consumers may face a consumption tax χ, case 2 starts when x (bf + χ) = α (t)Qr+Qf

which yields α1 =
x(bf+χ)−Qf

Qr
. During case 2, fossils continue to be used so that (4) still binds. Hence,

p (t) = bf implies µf (t) = 0 from (4) so that 0 < yf (t) < qf by the complementary slackness conditions
in (5). Once available renewable capacities, α (t)Qr, are large enough to satisfy demand at consumers’
after tax price bf + χ, we enter case 3. Accordingly, case 3 starts when x (bf + χ) = α (t)Qr so that
α2 =

x(bf+χ)
Qr

. For α (t) > α2, we have p (t)− bf < 0 so that yf (t) = 0 from (4).
It remains to consider storage firms during the first intermediate period, for which qs > s (t)

so that ϕs (t) = 0 by condition (20). Two paragraphs above, we have already addressed conditions
(21) and (18). It remains to show that ys (t) = 0 maximizes [p (t)− λ (t) η (ys)] ys (t) (eq. (17)).
Using ϕs (t) = 0, condition (19) implies λ̇ (t) = −ϕd (t) ≤ 0. Moreover, ηd ≥ 1 and ηs ≤ 1 so that
λ (t) ηd ≥ λ (t) ≥ λ (t) ηs, with strict inequality if there are conversion losses. Figure 4 depicts this
situation during the first intermediate period, t ∈ [td, ts], such that λ(t) is continuous, which was
a precondition for (17) to (22) being sufficient (λd and λs are the constant values of λ(t) during
destorage and storage). Moreover, during t ∈ [td, ts] the price p(t) is monotonically decreasing from
its level during destorage, pd = λdηd, to its level during storage, ps = λsηs. This is represented by
the dashed line. Using λ̇ (t) = −ϕd (t) it is straightforward to see that the values of the multiplier
ϕd (t) can be chosen such that λ (t) ηd > p (t) > λ (t) ηs. Using this, ys (t) > 0 would lead to
[p (t)− λ (t) ηd] ys (t) < 0, and ys (t) < 0 to [p (t)− λ (t) ηs] ys (t) < 0. Therefore, ys (t) = 0 must be
optimal.

As shown in the main text, the storage period (ys (t) < 0) can start during either of the cases 1 to
3 and it has a price that equals the one at the end of the intermediate period, i.e., ps = p(ts). Hence,
Yf = Yf (ts) satisfies (4) and (5). Moreover, for ps > 0 conditions (8) and (9) imply Yr = α(t)Qr,
whereas for ps = 0 any Yr is profit maximizing due to the assumption of no variable costs. Turning to
storage firms, the argument parallels that during the destorage period: Conditions (17) and (19) to
(21) have already been addressed. The empty storage is completely filled during the storage period so
that integration of the equation of motion (18) yields Qs = −ηs

∫ t′s
ts
Ys (t) dt. In the case of no excess

capacities, −Ys(t) = (α (t)− αs)Qr and substitution yields (
∫
s
dt :=

∫ t′s
ts
dt denotes the duration of

the storage period)

Qs = ηs

∫
s

(α (t)− αs)Qrdt, (41)

Similarly, substitution of the storage values for the alternative case of excess capacities from Table
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Fig. 4: Availability of renewables and resulting values of the adjoint variable

1 gives

Qs = −ηs
[∫ αc

αs

(x (0 + χ)− αQr) dα+

∫ αmax

αc

(x (0 + χ)− αcQr) dα
]
, (42)

where we integrate over α to simplify notation.
It remains to determine αs, αc and which of the two cases obtains. Without excess capacities, the

critical availability, αs, when the storage period starts is implicitly determined by (41). With excess
capacities, it follows immediately from αsQr = x (0 + χ). Moreover, αsQr ≤ x (0 + χ) as otherwise
there would be excess capacities during case 3. Therefore, αs = min

{
αs that solves (41), x(0+χ)Qr

}
and for the case of no excess capacities αs <

x(0+χ)
Qr

. Finally, αc only exists for the situation with

excess capacities and follows implicitly from (42) after substitution of αs = x(0+χ)
Qr

.

B Proof of Lemma 2

The statements in (c) that relate to the situation αsQr = x (0 + χ) (excess capacities of renewables)
follow immediately from implicit differentiation of this expression and the fact that demand is constant
at x (0 + χ). Hence we only need to prove the statements in (a) and (b) that concern the situation
without excess capacities (αsQr < x (0 + χ)).

Conditions (40) and (41) that implicitly determine αd and αs can be written as

fd := ηd

∫ td

t0

(αd − α (t))Qrdt+ ηd

∫ T

t′
d

(αd − α (t))Qrdt−Qs = 0, (43)

fs := −ηs
∫ t′s

ts

(αs − α (t))Qrdt−Qs = 0. (44)

The comparative static effects of a change in Qf , Qr, or Qs, thereby taking the other capacities
as given, follow from applying the implicit function theorem, i.e., ∂αu∂Qj

= − ∂fu
∂Qj

/ ∂fu∂αu
for u = d, s and
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j = f, r, s. It follows that ∂αs
∂Qf

= ∂αd
∂Qf

= 0. Next, note that αd = α (td) = α (t′d) and αs = α (ts) =

α (t′s). This implies that the integral terms in (43) and (44) are zero if evaluated at the boundaries
of the integral, td, t′d and ts, t′s, respectively. Using this when applying the implicit function theorem
yields the comparative statics ∂αd

∂Qr
, ∂αd∂Qs

, and ∂αs
∂Qs

, ∂αs∂Qr
in Lemma 2.

Demand during destorage, xd =
∑
j Yj (t) = Qf + αdQr, follows straightforwardly from Lemma 1

and Table 1. Differentiation yields ∂xd
∂Qr

= αd + ∂αd
∂Qr

Qr and ∂xd
∂Qs

= ∂αd
∂Qs

Qr. Substitution of ∂αd
∂Qr

, ∂αd∂Qs
yields the values in Lemma 2, where we have used

∂xd
∂Qr

= αd −
∫
d

(αd − α (t)) dt∫
d
dt

= αd − αd
∫
d
dt∫

d
dt

+

∫
d
α (t) dt∫
d
dt

. (45)

For storage, demand depends on the case that obtains at the beginning of the storage period.
From Table 1, xs =

∑
j Yj (t) = Qf +αsQr if it starts during case 1, and xs = αsQr if it starts during

case 3. In both situations, ∂xs
∂Qr

= αs + ∂αs
∂Qr

Qr and ∂xs
∂Qs

= ∂αs
∂Qs

. The values in the Table in Lemma 2
follow again after substituting for ∂αs

∂Qr
, ∂αs∂Qs

, thereby applying the same steps as in (45) to xs. Finally,
if storage starts during case 2, then xs =

∑
j Yj (t) = x (bf + χ) so that ∂xs

∂Qj
= 0 for j = f, r, s.

C Derivation of Equation (33)

In this proof we use the compact notations
∑
j and

∑
i for summation over all three technologies

j, i = f, r, s. Using x (t, χ, τ,Q) =
∑
j Yj(t, χ, τ,Q), the first integrand term in (32) can be written as

dx (t, χ, τ,Q)

dθ
=
∑
j

(
∂Yj (t, χ, τ,Q)

∂θ
+
∑
i

∂Yj (t, χ, τ,Q)

∂Qi

dQi
dθ

)
. (46)

The first term represents the direct effects of policy instruments θ on production (it is zero for
subsidies), and the second the indirect effects via capacity choices. Moreover, this latter effect can be
written out as (dropping the arguments)

∑
j

(∑
i

∂Yj
∂Qi

dQi
dθ

)
=
∑
j

∂Yj
∂Qj

dQj
dθ

+
∂ (Yr + Ys)

∂Qf

dQf
dθ

+
∂ (Yf + Ys)

∂Qr

dQr
dθ

+
∂ (Yf + Yr)

∂Qs

dQs
dθ

, (47)

where the first term sums up the effects of capacity on production within type-j firms, whereas the
other terms summarise the cross effects. From Table 1, ∂(Yr(t)+Ys(t))

∂Qf
= 0 for all t. Moreover, also∫ T

t0
(p (t) + χ) ∂Ys(t)∂Qr

dQr
dθ dt = 0. To see this, note that Ys (t) = 0 during the intermediate period and, by

construction, the available storage capacity is completely filled during storage and completely emptied
during destorage, independent ofQr. Hence

∫
d

(p (t) + χ) ∂Ys(t)∂Qr

dQr
dθ dt = (pd + χ) dQrdθ

∂
∂Qr

(∫
d
Ys (t) dt

)
=

0, and equivalently for the storage period. These terms can be eliminated when substituting (46) to-
gether with (47) into (32). After rearranging terms, this yields

dW

dθ
=

∑
j

(
ρ

∫ T

t0

(p (t) + χ)
∂Yj (t)

∂Qj
dt− cj (Qj)

)
dQj
dθ
− ρ

∫ T

t0

(kf + δ)
dYf (t)

dθ
dt−

∑
i=r,s

Qi
∂ci
∂Qi

dQi
dθ

+ρ

∫ T

t0

(p (t) + χ)

∑
i=r,s

∂Yf (t)

∂Qi

dQi
dθ

+
∂Yr (t)

∂Qs

dQs
dθ

 dt+ ρ

∫ T

t0

(p (t) + χ)
∑
j

∂Yj (t)

∂θ
dt,

where the last integral sums up the direct effects. Noting that ∂Yj(t)
∂Qj

=
∂yj(t)
∂qj

, substitution from the
first-order conditions (28) to (30) for firms’ capacity choices and collecting terms gives
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dW

dθ
=

∑
i=r,s

(
ρ

∫ T

t0

χ
∂Yi (t)

∂Qi
dt−Qi

∂ci
∂Qi

− σi

)
dQi
dθ

+ ρ

∫ T

t0

(τ + kf + χ)
∂Yf (t)

∂Qf

dQf
dθ

dt

−ρ
∫ T

t0

(kf + δ)
dYf (t)

dθ
dt+ ρ

∫ T

t0

(p (t) + χ)

∑
i=r,s

∂Yf (t)

∂Qi

dQi
dθ

+
∂Yr (t)

∂Qs

dQs
dθ

 dt

+ρ

∫ T

t0

(p (t) + χ)
∑
j

∂Yj (t)

∂θ
dt. (48)

Using dYf (t,χ,τ,Q)
dθ =

∂Yf (t)
∂θ +

∑
j
∂Yf (t)
∂Qj

dQj
dθ , we have

− (kf + δ)
dYf (t)

dθ
= − (δ − τ − χ)

dYf (t)

dθ
−(τ + χ+ kf )

∂Yf (t)

∂θ
+
∂Yf (t)

∂Qf

dQf
dθ

+
∑
i=r,s

∂Yf (t)

∂Qi

dQi
dθ

 .

Substitution and using this to cancel the second term in (48) yields

dW

dθ
=

∑
i=r,s

(
ρ

∫ T

t0

χ
∂Yi (t)

∂Qi
dt−Qi

∂ci
∂Qi

− σi

)
dQi
dθ
− ρ

∫ T

t0

(δ − τ − χ)
dYf (t)

dθ
dt

+ρ

∫ T

t0

(p (t)− kf − τ)
∑
i=r,s

∂Yf (t)

∂Qi

dQi
dθ

dt+ ρ

∫ T

t0

(p (t)− τ − kf )
∂Yf (t)

∂θ
dt

+ρ

∫ T

t0

(p (t) + χ)
∑
i=r,s

∂Yi (t)

∂θ
dt+ ρ

∫ T

t0

(p (t) + χ)
∂Yr (t)

∂Qs

dQs
dθ

dt.

Note that (p (t)− τ − kf )
∂Yf
∂Qi

= 0, i = r, s, because ∂Yf
∂Qi

= 0 except during stage 2 (and
during storage if the storage period starts in case 2) for which, however, p (t) = τ + kf . An
equivalent argument yields (p (t)− τ − kf )

∂Yf
∂θ = 0, so that the second line vanishes. Defining

z := ρ
∫ T
t0

(p (t) + χ)
(∑

i=r,s
∂Yi(t)
∂θ + ∂Yr(t)

∂Qs

dQs
dθ

)
dt, we obtain the wanted expression in (33).

It remains to specify z for the different periods and policy instruments. From Table 1, we have
∂Ys(t)
∂θ , ∂Yr(t)∂θ = 0 for θ = σr, σs, τ . If αsQr < x (0 + χ), then also ∂Yr(t)

∂Qs
, ∂Ys(t)∂χ , ∂Yr(t)∂χ = 0. Therefore,

z can only be non-zero if there are excess capacities of renewables (αsQr = x (0 + χ)). Remember
that for this case p(t) = 0 and Yr (t) = αcQr for all α (t) > αc. Implicit differentiation of (42) at
αs = x(0+χ)

Qr
gives ∂ac

∂Qs
= 1

ηs
∫ αmax

αc
Qrdα

> 0. This reflects that with a larger storage capacity renewable

production is capped later. Using this,
∫ T
t0

∂Yr(t)
∂Qs

dt =
∫ αmax

αc

∂αcQr
∂Qs

dα =
∫ αmax

αc

Qr

ηs
∫ αmax

αc
Qrdα

dα = 1
ηs
,

which takes into account that ∂Yr(t)∂Qs
= 0 except during storage. Moreover, from Table 1, for α (t) ≤ αs

the term
∑
i=r,s Yi (t) does not directly depend on any instrument θ. This is also the case for α (t) > αs,

except for the instrument θ = χ. In particular,
∫ T
t0

∑
i=r,s

∂Yi(t)
∂χ dt =

∫ αmax

αs

∂x(0+χ)
∂χ dα, which explains

the difference in the second and third line of (34).

D Proof of Proposition 1

It remains to show that the policy mix in the Proposition leads to first-best capacity levels, which
we now determine. In equilibrium, demand equals supply so that ∂x(t,Q)

∂Qj
=
∑
i=f,r,s

∂Yi(t)
∂Qj

. We have
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∫ T
t0

∂Ys(t)
∂Qr

dt = 0 because the available storage capacity is completely filled (emptied) during storage

(destorage), independent of Qr. Moreover, from Table 1, ∂Yf (t)
∂Qs

= 0 and ∂(Yr(t)+Ys(t))
∂Qf

= 0 for all

t. Finally, p (t) ∂Yr(t,Q)
∂Qs

= 0 because ∂Yr(t,Q)
∂Qs

= 0 except for excess capacities of renewables during
storing (αsQr = x (0 + χ)), for which however p (t) = 0. Substitution of this into the first-order
conditions for welfare maximizing capacity choices (36) yields

∂W

∂Qf
= ρ

∫ T

t0

(p∗ (t)− δ − kf )
∂Y ∗f (t,Q)

∂Qf
dt− cf = 0, (49)

∂W

∂Qr
= ρ

∫ T

t0

p∗ (t)
∂Y ∗r (t,Q)

∂Qr
dt+

∫ T

t0

(p∗ (t)− δ − kf )
∂Y ∗f (t,Q)

∂Qr
dt− cr (Qr)−

∂cr
∂Qr

Qr = 0,(50)

∂W

∂Qs
= ρ

∫ T

t0

p∗ (t)
∂Y ∗s (t,Q)

∂Qs
dt+

∫ T

t0

(p∗ (t)− δ − kf )
∂Y ∗f (t,Q)

∂Qs
dt− cs (Qs)−

∂cs
∂Qs

Qs = 0,(51)

where superscript ∗ indicates that the outcome at the production stage is first-best.
Note that ∂Yj(t)

∂Qj
=

∂yj(t)
∂qj

. Moreover, ∂Y ∗f (t,Q)

∂Qr
=

∂Y ∗f (t,Q)

∂Qs
= 0 except during case 2 and during

storage if it starts during case 2, for which, however, p∗ (t)− δ−kf = 0 if τ = δ. Using this, the above
conditions are exactly the same as the first-order conditions (28) to (30) for firms’ capacity choices if all
conditions are evaluated at the first-best policy instruments, τ∗ = δ,χ∗ = 0, σ∗i = −Qi (θ) ∂ci

∂Qi
, i = r, s.

E Proof of Proposition 2

It remains to prove that the optimal values χ#, σ#
r , σ

#
s implement the social optimum for the situation

of no excess capacities. Remember that production and consumption choices on competitive markets as
analysed in Section 4.2 were only distorted by the pollution externality. Therefore, with a Pigouvian
tax τ = δ production levels as summarised in Table 1 and, thus, demand x(t) =

∑
j=f,r,s Yj (t)

are obviously first-best, provided that the underlying capacity levels are first-best. In the main
text we have shown that the combination of an incomplete carbon tax, τ < δ, and a correcting
consumption tax χ# = δ − τ leads to exactly the same output and demand levels. Now we verify
that for the policy vector in Proposition 2 also firms’ capacity choices are first-best, i.e., satisfy
conditions (49) to (51). In particular, upon substitution of σ#

r = −Q∗r ∂cr∂Qr
+ ρ (δ − τ)

∫ T
t0
α (t) dt and

σ#
s = −Q∗s ∂cs∂Qs

+ ρχ#
(

1
ηd
− 1

ηs

)
, the first-order conditions for firms’ capacity choices are

ρ

∫ T

t0

(
p# (t)− τ − kf

) ∂y∗f (t, qf )

∂qf
dt− cf = 0, (52)

ρ

∫ T

t0

p# (t)
∂y∗r (t, qr)

∂qr
dt− cr (Qr)−Q∗r

∂cr
∂Qr

+ ρ (δ − τ)

∫ T

t0

α (t) dt = 0, (53)

ρ

∫ T

t0

p# (t)
∂y∗s (t, qs)

∂qs
dt− cs (Qs)−Q∗s

∂cs
∂Qs

+ ρχ#

(
1

ηd
− 1

ηs

)
= 0. (54)

After substitution of p# (t) = p∗ (t)− (δ − τ) (see main text), and using ∂yj(t)
∂qj

=
∂Yj(t)
∂Qj

as well as∫ T
t0

∂Y ∗r (t,qr)
∂Qr

dt =
∫ T
t0
α (t) dt and

∫ T
t0

(δ − τ)
∂Y ∗s (t,qs)
∂Qs

dt = χ#
(

1
ηd
− 1

ηs

)
, these conditions are the same

as those for first-best capacity choices in (49) to (51).

F Proof of Proposition 3

We start by determining the effect of renewable and storage subsidies on fossil capacities, dQfdσj
. For

each t, the equilibrium electricity price that obtains in Stage 3 is a function of capacities that are
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given at this stage, i.e., p (t) = p (t,Q), where Q = (Qf , Qr, Qs) is the capacity vector. Moreover,
∂y∗f (t)

∂qf
= 1 during destorage and case 1, but ∂y∗f (t)

∂qf
= 0 for cases 2 and 3 (see Table 1). Therefore,

during storage ∂y∗f (t)

∂qf
= 1 if storage starts during case 1 (αs ≤ α1), and

∂y∗f (t)

∂qf
= 0 otherwise (αs > α1).

Using this, total differentiation of fossil firms’ first-order condition (28) for capacities yields (πff :=

dπf

(
q∗f (θ),θ

)
/dqf denotes the first-order derivative)

dπff =


∑
j=f,r,s ρ

(∫
1
∂p(t)
∂Qj

dt+ ∂pd
∂Qj

∫
d
dt+ ∂ps

∂Qj

∫
s
dt
)
dQj if αs ≤ α1,∑

j=f,r,s ρ
(∫

1
∂p(t)
∂Qj

dt+ ∂pd
∂Qj

∫
d
dt
)
dQj if αs > α1,

(55)

where pd, ps are the constant prices during destorage and storage. Storage capacities are not used
during case 1 so that

∫
1
∂p(t)
∂Qs

dt = 0. For the other derivatives in (55), applying the chain rule when

partially differentiating equilibrium prices with respect to Qj yields ∂p(t)
∂Qj

= ∂p(t)
∂x(t)

∂x(t)
∂Qj

, where ∂x(t)
∂Qj

follows from Lemma 1 and 2. In particular, ∂xd
∂Qs

∫
d
dt = 1

ηd
and ∂xs

∂Qs

∫
d
dt = − 1

ηs
. Using this, setting

dπff = 0, dividing by dσj , and rearranging yields

dQf
dσj

=
∂Qf
∂Qr

dQr
dσj

+
∂Qf
∂Qs

dQs
dσj

, j = r, s, (56)

where, using 1αs≤α1 to denote the indicator function that takes the value 1 if αs ≤ α1 and 0 otherwise,

∂Qf
∂Qr

= −

∫
1
∂p(t)
∂x(t)α(t)dt+ ∂pd

∂xd

∫
d
α (t) dt+ 1αs≤α1 ·

∂ps
∂xs

∫
s
α (t) dt∫

1
∂p(t)
∂x(t)dt+ ∂pd

∂xd

∫
d
dt+ 1αs≤α1

· ∂ps∂xs

∫
s
dt

, (57)

∂Qf
∂Qs

= −
∂pd
∂xd

1
ηd
− 1αs≤α1

· ∂ps∂xs
1
ηs∫

1
∂p(t)
∂x(t)dt+ ∂pd

∂xd

∫
d
dt+ 1αs≤α1

· ∂ps∂xs

∫
s
dt
. (58)

Expression (56) reflects that σr, σs affect fossil capacities only indirectly via their effects on renewable
and storage capacities.

The above calculations have been necessary to evaluate the term
∫ T
t0

dYf (t,Q)
dσi

dt in the first-order
conditions (38) for the three different cases. The expressions for optimal subsidies then follow straight-
forwardly. For full usage of fossils during storage (αs ≤ α1), only the intermediate case 1 obtains and
fossils always operate at full capacity so that∫ T

t0

dYf (t,Q)

dσi
dt =

∫
d,1,s

dt
dQf
dσi

, i = r, s. (59)

Substitution of (59) together with (56) into the first-order conditions (38) and collecting terms
with dQr

dσi
and dQs

dσi
yields

∑
j=r,s

(
σj + ρ (δ − τ)

∫
d,1,s

dt
∂Qf
∂Qj

+Qj
∂cj
∂Qj

)
dQr
dσi

= 0, i = r, s. (60)

In these two first-order conditions with respect to σr and σs, the term
∑
j=r,s (·) has the same

value. Therefore, (60) is obviously satisfied if this term is equal to zero.25 Substitution from (57) and
(58) into (60) yields the optimal subsidies for αs ≤ α1.

25 For any given τ , this is the only solution if one abstracts from pathological cases.
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Turning to the case of partial usage of fossils during storage (αs ∈ (α1, α2]), fossil capacities are
only partly used during case 2 of the intermediate period so that (using Lemma 1 and 2)26

∫ T

t0

dYf (t,Q)

dσi
dt =

∫
d,1

dt
dQf
dσi
−
∫
2

α (t) dt
dQr
dσi
−
∫
s

α (t) dt
dQr
dσi

+
1

ηs

dQs
dσi

, i = r, s. (61)

The first term on the right-hand side results from the full usage of fossils during destorage and
case 1. The second and third term reflect that additional renewable capacities, which are triggered by
the subsidies, substitute fossil production during case 2 and storage. The fourth term captures that
additional storage capacities require more fossil production to be filled.

Finally, for no usage of fossils during storage (α2 < αs), the intermediate period extends to case
3, but fossils do not produce in this case, nor in the storage period that follows them. Therefore,
subsidies have no effects on fossil production during these periods and expression (61) simplifies to

∫ T

t0

dYf (t,Q)

dσi
dt =

∫
d,1

dt
dQf
dσi
−
∫
2

α (t) dt
dQr
dσi

, i = r, s. (62)

Substitution of (61) for αs ∈ (α1, α2] and (62) for αs > α2 together with (56) into the first-order
conditions (38), and collecting terms with dQr

dσi
, dQsdσi

yields the following two conditions:

(
σr + ρ (δ − τ)

(∫
d,1

dt
∂Qf
∂Qr

−
∫
2,s

α (t) dt

)
+Qr

∂cr
∂Qr

)
dQr
dσi

+

(
σs + ρ (δ − τ)

(∫
d,1

dt
∂Qf
∂Qs

+
1

ηs

)
+Qs

∂cs
∂Qs

)
dQs
dσi

= 0, i = r, s, (63)

(
σr + ρ (δ − τ)

(∫
d,1

dt
∂Qf
∂Qr

−
∫
2

α (t) dt

)
+Qr

∂cr
∂Qr

)
dQr
dσi

+

(
σs + ρ (δ − τ)

(∫
d,1

dt
∂Qf
∂Qs

)
+Qs

∂cs
∂Qs

)
dQs
dσi

= 0, i = r, s. (64)

The optimal subsidies for αs ∈ (α1, α2] and αs > α2 follow after substitution from (57) and (58).

G Calibration for Section 7

We use German data to calibrate the model and make the following assumptions. 96 quarterly hours
represent one cycle. Each representative quarterly hour depicts the weighted average of the hourly
availability of solar PV (45%), wind offshore (5%), and wind onshore (50%) over an entire year
(αmin = 0.0976, αmax = 0.2918), which roughly represents the German capacity mix. Demand is
x (t) = 75, 000 − 375 · p (t), where the sensitivity −375 reflects a price elasticity of demand of −0.25
at a reference price of 40 €/MWh (e.g., Thimmapuram and Kim, 2013).27

26 The last two terms in (61) represent effects during storage, −
∫
s
dt
d(αsQr)
dσi

. In particular, ∂αs
∂Qf

= 0 so that total

differentiation of αsQr and multiplication by
∫
s
dt gives

d (αsQr)

∫
s

dt =

[(
∂αs

∂Qr
Qr + αs

)
dQr +

∂αs

∂Qs
QrdQs

]∫
s

dt

=

(
−
∫
s

(αs − α (t)) dt+ αs

∫
s

dt

)
dQr −

1

ηs
dQs.

27 See www.energy-charts.de/power_inst.htm for the German capacity mix and www.energy-charts.de/price.htm for
load data.
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We assume that fossil firms use a gas turbine technology and thus pay cf = 500, 000 €/MW for
capacity. Natural gas prices are around 7.5 €/MWh, the efficiency of the fossil technology is assumed
to be 50%, so that kf = 0.5 · 7.5 = 15 €/MWh are private production costs. On July 2, 2019, the
CO2 price in the EU ETS peaked at 29 €/ton, and we take this as the carbon tax. The emission
factor of natural gas is 0.2358 tons CO2/MWh (here MWh refers to the heat value of natural gas),
yielding a carbon tax of τ = 0.5 · 0.2358 · 29 = 13.68 €/MWh. For the social costs of carbon we take
a value that is 50% higher, i.e., δ = 1.5 · τ = 20.51 €/MWh.

Capacity costs of renewables and storage firms fall at the same rate, starting at cr = 800, 000
€/MW and cs = 80, 000 €/MWh, respectively. Actual costs of renewables are around 1, 000, 000
(solar PV), 2, 500, 000 (wind offshore), and 1, 200, 000 €/MW (wind onshore) (IEA, 2015; Schröder,
Kunz, Meiss, Mendelevitch, and Von Hirschhausen, 2013). However, renewables costs are expected
to fall further, and thus the depicted costs seem to be a good guess. Conversion losses of storage
operations are ηd = 1.1 and ηs = 0.9, reflecting total losses of 19%. There is no particular storage
technology that fits our synthetic one (see IRENA, 2017; Nykvist and Nilsson, 2015; Schmidt et al.,
2017, for different cost estimates). A good guess is pumped hydro with similar capacity costs (5,000
to 100,000 €/MWh, mean around 60,000 €/MWh) and efficiency losses (15 to 30%). Battery storage
systems cost around 200,000 €/MWh, but costs are expected to fall to 75,000 €/MWh (efficiency
losses of only 3%). Power-to-gas technologies face lower capacity costs (around 40,000 €/MWh in the
future), but fundamentally higher higher conversion losses (40 to 70%).

Finally, we use a discount rate of 3% and lifetimes of 30 years to calculate ρ, but deviate from
the theoretical model by abstracting from within-year discounting for parsimony. This yields ρ =

365 ·
(

1
r −

1
r(1+r)30

)
= 5, 430 with r = 0.03.

We set up the program in GAMS as a welfare maximization problem. The assumption of linear
demand makes the program quadratic with non-convex constraints from the three zero-profit condi-
tions of fossil, renewable, and storage firms. We therefore use the solver IPOPT, which is powerful
in solving non-convex programs and finding local maxima, but cannot ensure the global maximum.
We therefore assist the solver by giving him the (linear) first-order conditions of firms production and
capacity choices, and by constraining the solution space. The code is available upon request.
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