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Zusammenfassung

Bei der Petrinetz-Synthese soll ein gegebenes endliches beschriftetes Transitionssystem
(labelled transition system; LTS) durch ein injektiv beschriftetes Petrinetz gelöst werden,
was bedeutet, dass der Erreichbarkeitsgraph des Petrinetzes isomorph zum gegebenen
LTS ist. Petrinetz-Synthese fing mit den Arbeiten von Ehrenfeucht und Rozenberg im
Jahr 1990 an und wurde seitdem in verschiedene Richtungen erweitert.

Eine solche Erweiterung stellt diese Doktorarbeit dar. Ein generischer Algorithmus wird
vorgestellt, der es erlaubt Petrinetz-Synthese auf eine gegebene Kombination von Teil-
klassen einzuschränken, beispielsweise schlichte und schlingenfreie Petrinetze. Da für
eine gegebene Eingabe Petrinetz-Synthese nicht möglich sein könnte, wird ein Algorith-
mus zur minimalen Überapproximation eingeführt. Dieser Algorithmus funktioniert für
einige der zuvor behandelten Teilklassen, während er für andere Teilklassen eventuell
nicht terminiert. Die Überapproximation basiert auf dem Synthesealgorithmus, welcher
fehlschlägt falls ein so genanntes Separierungsproblem nicht lösbar ist. Die Information
über unlösbare Separierungsprobleme wird verwendet, um Zustände des aktuellen LTS
zusammen zu fassen, und um neue Kanten zum LTS hinzuzufügen

Außerdem wird die Synthese von modalen Spezifikationen untersucht, und zwar von mo-
dalen Transitionssystemen, dem modalem µ-Kalkül und einer Teilmenge des µ-Kalküls,
die konjunktiver ν-Kalkül heißt. Der ν-Kalkül und modale Transitionssysteme sind gleich
ausdrucksmächtig und durch eine Reduktion von Zwei-Zählermaschinen wird für beide
Spezifikationssprachen gezeigt, dass Petrinetz-Synthese unentscheidbar ist. Als nächstes
wird ein Algorithmus zur Synthese von k-beschränkten Petrinetzen aus dem kompletten
µ-Kalkül eingeführt, wobei k ∈ N a priori gegeben ist. Dies zeigt, dass diese Einschrän-
kung das Problem sogar für den ausdrucksmächtigeren modalen µ-Kalkül entscheidbar
macht. Der Algorithmus erweitert sein aktuelles LTS durch das Verhalten, das von der
gegebenen Spezifikation verlangt wird. Um Petrinetz-Lösbarkeit zu garantieren wird die
minimale Überapproximation aus dem ersten Teil der Arbeit verwendet.

Alle vorgestellten Algorithmen wurden in dem Tool APT implementiert. Diese Imple-
mentierung wird für eine Fallstudie zum sogenannten Philosophenproblem verwendet
und betont einige Vorteile der Petrinetz-Synthese aus modalen Spezifikationen.
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Abstract

In Petri net synthesis, a given finite labelled transition system (lts) should be solved by
an injectively labelled Petri net, which means that the reachability graph of the Petri net
is isomorphic to the given lts. Petri net synthesis goes back to the work of Ehrenfeucht
and Rozenberg in 1990, and has since then been extended in various directions.

This thesis continues this work. We present a generic algorithm that supports target-
ing Petri net synthesis into a given combination of subclasses, such as plain and pure
Petri nets. Since Petri net synthesis may not be possible for a given input, we intro-
duce an algorithm for minimal over-approximation. This algorithm works for some of
the subclasses that were previously handled, while for others the algorithm might not
terminate. The over-approximation is based on the synthesis algorithm, which fails if
some so-called separation problems are unsolvable. The information about unsolvable
separation problems is used to merge states and add new outgoing edges to the current
lts.

Furthermore, we investigate synthesis from modal specifications, namely modal trans-
ition systems, the modal µ-calculus, and a subset of the µ-calculus, which is called the
conjunctive ν-calculus. The ν-calculus and modal transition systems are equally ex-
pressive and we show via a reduction from two-counter machines for both specification
languages that Petri net synthesis is undecidable. Next, we introduce an algorithm
for synthesising k-bounded Petri nets from the full modal µ-calculus, where k ∈ N is
given a priori, showing that this restriction makes the problem decidable even for the
more expressive modal µ-calculus. The algorithm extends its current lts by the beha-
viour required by the given specification. To ensure Petri net solvability, the minimal
over-approximation from the first part of this thesis is used.

All presented algorithms were implemented in the tool APT. This implementation is used
for a case study with the dining philosophers problem that highlights some advantages
of Petri net synthesis from modal specifications.
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1. Introduction

Petri nets have applications in a variety of fields, for example, in business process mod-
elling [Aal16], and biology [PWM03]. They were reportedly invented for modelling of
chemical processes [PR08], and are a tool to model the behaviour of a system. Among
their advantages is their inherent notion of concurrency. This allows them to describe
distributed systems compactly [BCD02; BD11; GGS13].

There are various semantics for Petri nets, e.g. step, pomset, or interleaving semantics
[GGS11]. Given a Petri net, its interleaving behaviour is described by its reachability
graph. This graph contains all reachable states of the Petri net and the possible edges
between them. It allows defining properties of the behaviour of the Petri net, for example,
that every state has an outgoing edge, which is the absence of deadlocks. In system
analysis, a Petri net is used to model a system and the desired properties of the system
are then checked on this model. For example, a business process should be, among
other things, deadlock-free. Checking this property can be time-consuming and requires
advanced techniques to be efficient [Fah+09].

While in system analysis, a given system is analysed for its properties, system synthesis is
the opposite operation. The properties are given and a system enjoying these properties
should be produced. For Petri net synthesis, this can mean that a prototypical reachab-
ility graph—a labelled transition system—is given. The synthesis procedure should then
produce a Petri net that ‘has this behaviour’. This means that the reachability graph
of the resulting Petri net should be isomorphic to the given original labelled transition
system, but other notions of equivalence are possible as well, e.g. language equivalence.

One common requirement is that each label that exists in the given transition system
becomes exactly one transition in the resulting Petri net, i.e. no two transitions generate
the same label in the reachability graph. Such Petri nets are called unlabelled. In
contrast, multiple transitions can generate the same label in labelled Petri nets. Every
labelled transition system (lts) can be synthesised into a labelled Petri net, but we will
later see examples of lts that cannot be synthesised into unlabelled Petri nets. Thus,
labelled Petri nets are more expressive than unlabelled Petri nets. However, the trivial
translation of an lts into a labelled Petri net provides no insights. This translation
represents each state of the lts as a place of the Petri net. An edge is turned into a
transition. In contrast to this, in unlabelled Petri nets all edges with the same label
are represented by the same transition and the synthesis procedure has to ensure the
correct interplay between the transitions. Thus, these Petri nets tend to be smaller than
the original lts. They also provide information about the behaviour, for example about

1



1. Introduction

independent parts of the system. In practice, it would be desirable for Petri net synthesis
to produce labelled Petri nets with few transitions. This would combine the expressivity
of labelled Petri nets with the succinctness of unlabelled Petri nets. The existing results
in this direction are however not as advanced as the results for synthesis of unlabelled
Petri nets. So far, only heuristics are known and exact algorithms are missing [CKLY98;
CCK08; Car12]. In this thesis we will also focus on unlabelled Petri nets.

A labelled transition system precisely describes the interleaving behaviour of a system.
In practice, it is desirable to have more flexible specifications, e.g. allowing some part of
the behaviour to be left out. For example, when designing a communication protocol,
the loss of messages has to be handled. However, the specification should not require the
protocol to lose messages, but only specify how to deal with this, if it occurs [Bru97]. One
way to achieve this is via modal specifications. Here, the specification is split into required
and allowed behaviour. An implementation must present all the required behaviour and
its own behaviour must be within the behaviour allowed by the specification. In this
thesis, Petri net synthesis from modal specifications is investigated, which means that
the reachability graph of the resulting Petri net has to satisfy a given specification.
Examples for modal specifications are modal transition systems [Lar89; Kre17] and the
modal µ-calculus [Koz83; AN01]. Badouel, Bernardinello, and Darondeau mention Petri
net synthesis from modal transition systems as an interesting problem that is neither
known to be decidable nor undecidable [BBD15]. Also, one of the problems investigated
in [Dar05] is closely related to Petri net synthesis from modal transition systems. Their
paper investigates supervisory control via Petri nets, i.e. a Petri net is used to forbid some
behaviour in a system to ensure some property. Since it was not known whether Petri
net synthesis from modal transition systems is decidable, Darondeau used a stronger
constraint instead that is not related to modal transition systems.

In this thesis, the following problem is considered: Given a modal specification, is there
a Petri net with a finite reachability graph satisfying this specification? We will show
that the full problem is undecidable, but will identify a decidable subproblem that is still
quite expressive. These investigations are also made with respect to various subclasses
of Petri nets, for example, pure1 and k-bounded2 Petri nets. Approximate synthesis will
be a helpful tool for this goal. This means that an approximate solution is provided if
no exact solution is possible, instead of producing only a negative answer.

The structure of this thesis is as follows: The main content of this document is split
into two parts. In the first part, Petri net synthesis from labelled transition systems
up to isomorphism is investigated. In the second part, we consider Petri net synthesis
from modal specifications. For this, we will formally introduce Petri nets and labelled
transition systems in Chapter 2. The first part of this thesis begins in Chapter 3 with
an introduction to region theory as basis for the Petri net synthesis. This is based on
existing results from [BBD15; BD96]. Chapter 4 extends this for targeted Petri net
synthesis, which means that various properties, plus boolean combinations of these, can

1There are no flows in both directions between any transition and place.
2No place contains more than k tokens in any reachable marking.
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be required for the desired Petri net. In Chapter 5, we investigate approximative Petri
net synthesis. The author implemented the algorithms that are presented in this first
part of the document in the tool APT. This tool is discussed in Chapter 6.

The second part of the document starts in Chapter 7 by introducing modal transition
systems, the modal µ-calculus, and the conjunctive ν-calculus. The ν-calculus is a syn-
tactic subset of the modal µ-calculus that is expressively equivalent to modal transition
systems. In Chapter 8, we show that Petri net synthesis from the conjunctive ν-calculus
is undecidable. By their equivalence to the ν-calculus, synthesis from modal transition
systems is also undecidable. In Chapter 9, we present an algorithm for Petri net syn-
thesis from modal specifications by restricting the problem to k-bounded Petri nets for
a fixed number k. The author also implemented this algorithm and the resulting tool is
introduced in Chapter 10. Chapter 11 contains a case study, which explores some of the
possibilities that arise with Petri net synthesis from modal specifications instead of the
less expressive labelled transition systems. Finally, Chapter 12 summarises the results
of this thesis and indicates some open problems.
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2. Petri Nets and Labelled Transition
Systems

Petri nets consist of places and transitions, which are connected by flows. Flows can
have a number as their weight, and a weight of one is often left implicit. In figures,
the places are represented by circles and transitions by rectangles. A place can hold
tokens. The current state of a Petri net, called a marking, is the distribution of tokens
on places.

Definition 2.0.1 (Petri net [Rei85]). A Petri net is a tuple N = (P, T, F,M0), where P
and T are finite and disjoint sets of places and transitions, respectively, and F : ((P ×
T )∪ (T × P ))→ N is a flow relation specifying flow weights. M0 is the initial marking,
where a marking is a function P → N.

An example of a Petri net N = (P, T, F,M0) is shown on the left in Figure 2.1. It has the
places P = {p0, p1, p2, p3} and transitions T = {a, b, c}. Its initial marking is described
by the mapping M0 that satisfies M0(p0) = M0(p2) = 1 and M0(p1) = M0(p3) = 0.

Definition 2.0.2 (Pre- and postset). For a place p ∈ P of a Petri net N = (P, T, F,M0),
its preset is the set •p = {t ∈ T | F (t, p) > 0}, and its postset is p• = {t ∈ T | F (p, t) >
0}. Similarly, for a transition t ∈ T define •t = {p ∈ P | F (p, t) > 0} to be its preset,
and t• = {p ∈ P | F (t, p) > 0} to be its postset.

c

a

b

p0

p2

p1

p3


1
0
1
0




0
1
1
0

 
0
1
0
1


1
0
0
1



a b

b a

c ı

s1

s2

s3

a b

b a
c

Figure 2.1.: Example of a Petri net (left), its behaviour (middle), and an lts (right).
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2. Petri Nets and Labelled Transition Systems

The flows describe a relation between places and transitions. In the example there is a
flow from place p0 to transition a. We say that p0 is in the preset of a, and that a is in
the postset of p0. Since there are no flows from p0 to other transitions, nor from other
places to a, the postset of p0 is p0• = {a} and the preset of a is •a = {p0}.

Petri nets are not just static constructs. They have a current state, represented by
a marking, that assigns each place a number of tokens. Transitions can fire, which
changes the current marking, but only if enough tokens are available. The requirements
and effects of transitions are described by the flows: The incoming flows of a transition
describe how many tokens it consumes while the outgoing flows describe how many
tokens are produced.

Definition 2.0.3 (Enabledness and firing). A transition t ∈ T is enabled in a marking
M if ∀p ∈ P : F (p, t) ≤ M(p). This is written as M [t〉. An enabled transition can fire,
leading to the marking M ′ defined by ∀p ∈ P : M ′(p) = M(p) − F (p, t) + F (t, p). We
write M [t〉M ′, and this syntax is inductively extended to label sequences σ ∈ T ∗: M [ε〉M
is always true, and M [wt〉M ′ holds if there is a marking M ′′ with M [w〉M ′′[t〉M ′.

For example, in the Petri net from Figure 2.1, transition a can fire, because it only needs
a token from place p0, which currently has one token. The transition consumes the token
from place p0 and produces a token on place p1. The new marking M is M(p0) = 0,
M(p1) = 1 = M(p2), and M(p3) = 0.

The behaviour of a process, such as a Petri net, can be visualised by means of a labelled
transition system. Such a system consists of states and edges, where edges connect two
states and have a label, i.e. an lts is an edge-labelled directed graph. Two examples of
lts are shown in the centre and on the right of Figure 2.1. A special state, the initial
state, is marked by an incoming unlabelled arrow.

Definition 2.0.4 (Labelled transition system [Arn94]). A labelled transition system
(lts) is a structure A = (S,Σ,→, ı), where S is a set of states, Σ is an alphabet containing
labels or events, → ⊆ S × Σ× S is an edge relation and ı is its initial state.

For example, the lts on the right of Figure 2.1 has ı as its initial state. Its alphabet is
not explicitly given, but can be inferred to be at least Σ = {a, b, c}, since these are the
labels that appear on the edges.

The elements of a Petri net N and an lts A will be canonically called P, T, F,M0 and
S,Σ,→, ı, respectively.

Definition 2.0.5 (Paths). An edge (s, t, s′) ∈ → is written as s
t−→ s′, which means that

s′ is reachable from s through the execution of t. This is extended to words w ∈ Σ∗ via
s

ε−→ s and s
w−→ s′

a−→ s′′ ⇒ s
wa−−→ s′′. If some s′ ∈ S with s

w−→ s′ exists, we write s
w−→

and call this a path. If no such s′ exists, we write s �
w−→.

Our example lts has an edge from ı to s1 via a. This can be written as ı a−→ s1. There is
another edge from s1 to s2 via b. This means we can go from ı to s2 by first following
an a-labelled edge to s1 and then an edge with label b to s2. To express this briefly,
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we write ı
ab−→ s2. It is also possible to go from ı to s3 with the sequence abcb, hence

ı
abcb−−→ s3. Since the sequence abb is not possible, we can write ı �

abb−−→.

The behaviour of a Petri net can be represented as an lts, which is named its reachability
graph. Markings are the states and an edge from M to M ′ with label t exists if transition
t can fire in M and leads to M ′, i.e. M [t〉M ′. The reachability graph of the Petri net
shown on the left in Figure 2.1 is displayed in the middle of the same figure, with
markings M written as vectors M =

(
M(p0) M(p1) M(p2) M(p3)

)ᵀ.
Definition 2.0.6 (Reachability graph). The set of reachable markings of a Petri net
N = (P, T, F,M0) is E(N) = {M | ∃σ ∈ T ∗ : M0[σ〉M}. Its reachability graph is the lts
RG(N) = (E(N), T,→,M0) with → = {(M, t,M ′) ∈ E(N)× T × E(N) |M [t〉M ′}.

Reachability graphs of Petri nets satisfy some properties which not all lts enjoy. For
example, reachability graphs are deterministic. This means that in a marking, a trans-
ition t cannot lead to two different successor markings. Also, reachability graphs are
reachable by definition, meaning that it is possible to go to every state from the initial
state. If a Petri net only has finitely many reachable markings, it is called bounded. Not
every Petri net is bounded.

Definition 2.0.7 (Finite, deterministic, reachable, and bounded). An lts A is called
finite if S and Σ (and hence also →) are finite. It is deterministic if s a−→ s′ and s

a−→ s′′

implies s′ = s′′ for all a ∈ Σ and s, s′, s′′ ∈ S. It is called reachable if for every s ∈ S
there is a w ∈ Σ∗ so that ı

w−→ s. A Petri net N is bounded if its reachability graph
RG(N) is finite.

Lemma 2.0.8. The reachability graph of a Petri net is deterministic and reachable.

Proof. By the Petri net firing rule, M ′ is uniquely determined in M [t〉M ′, so reachability
graphs are deterministic. The definition of the reachability graph uses the set E(N) of
reachable markings, so reachability graphs are reachable by definition.

Some other common properties of Petri nets are defined next. The running example of
Figure 2.1 is plain, pure, and 1-bounded.

Definition 2.0.9 (Plain, pure, k-bounded). A Petri net N is plain if its flows have only
weights zero or one, i.e. cod(F ) ⊆ {0, 1}. A Petri net is pure if there are no flows in
both directions between some place and transition, i.e. ∀p ∈ P : •p∩p• = ∅. A Petri net
is k-bounded for k ∈ N if no place has more than k tokens in some reachable marking,
i.e. ∀M ∈ E(N) : ∀p ∈ P : M(p) ≤ k.

When we are not interested in the exact order of events in a sequence, we can use the
Parikh vector of the sequence. This vector describes how often each event appears in a
sequence. For example, since b appears twice in abcb, we have Ψ(abcb)(b) = 2.

Definition 2.0.10 (Parikh vector). The Parikh vector Ψ(w) : Σ→ N of a word w ∈ Σ∗

is defined for a ∈ Σ via Ψ(ε)(a) = 0 and Ψ(wb)(a) = Ψ(w)(a) +

{
0 if a 6= b

1 if a = b
.
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2. Petri Nets and Labelled Transition Systems

A well-known property of Petri nets is the marking equation. When a marking M ′ can
be reached from M via a sequence w, i.e. M [w〉M ′, then the marking equation relates
these three elements. This equation uses the incidence matrix C which describes the
change of tokens when a transition t fires.

Definition 2.0.11 (C(N)). The incidence matrix C(N) (or just C if N is clear) of a
Petri net N = (P, T, F,M0) is the (P × T )-matrix defined by C(p, t) = F (t, p)− F (p, t).

For example, the Petri net N from Figure 2.1 has the following incidence matrix:

C(N) =


a b c

p0 −1 0 1
p1 1 0 −1
p2 0 −1 1
p3 0 1 −1


Lemma 2.0.12 (Marking equation). Given a Petri net N with markings M and M ′. If
M [w〉M ′ for w ∈ T ∗, then M ′ = M + C ·Ψ(w).

Proof. By induction: If w = ε, then C · Ψ(ε) is the null vector and so the equation is
equivalent to M = M ′, which is true by definition of the firing rule.

If w = w′t with t ∈ T , then there is a marking M ′′ so that M [w′〉M ′′[t〉M ′. Consider
some place p ∈ P . By the Petri net firing rule, we haveM ′(p) = M ′′(p)−F (p, t)+F (t, p).
Since F (t, p) − F (p, t) = C(p, t), the difference between the two markings is the t-row
of the matrix C, i.e. C · Ψ(t), and we have M ′ = M ′′ + C · Ψ(t). By the induction
assumption we have M ′′ = M+C ·Ψ(w′), so M ′ = M+C ·Ψ(w′)+C ·Ψ(t). By linearity
and since Ψ(w′) +Ψ(t) = Ψ(w′t) = Ψ(w) this results in M ′ = M +C ·Ψ(w), which was
to be shown.

In the initial marking M0 of N of Figure 2.1, the sequence ab can occur, and leads
to some marking M , i.e. M0[ab〉M . The marking equation can express this relation as
follows:

M =


0
1
0
1

 =


1
0
1
0

+


−1 0 1
1 0 −1
0 −1 1
0 1 −1

 ·
1
1
0

 = M0 + C ·Ψ(ab)

With these definitions, we can start from a given Petri net and visualise its behaviour as
an lts. We might not be interested in the exact markings that are reached in the Petri
net, but only in the possible firing of transitions. Isomorphisms allow to abstract away
from markings. For example, the reachability graph shown in the middle of Figure 2.1
and the lts on the right in the same figure are isomorphic.

Definition 2.0.13 (Isomorphism). Two lts A1, A2 with Ai = (Si,Σ,→i, ıi) are iso-
morphic if there exists a bijection f : S1 → S2 so that f(ı1) = ı2 and for all s, s′ ∈
S1, a ∈ Σ: s

a−→1 s′ ⇐⇒ f(s)
a−→2 f(s′). In this case, f is an isomorphism and we

abstract away from state names and write A1 = A2.
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Petri Net Synthesis from
Labelled Transition Systems
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3. Introduction to Region Theory

The previous chapter introduced Petri nets and lts. The reachability graph defines an
lts based on a Petri net. This lts describes the Petri net’s behaviour. The opposite
operation, constructing a Petri net from an lts, is Petri net synthesis, and is the topic of
this chapter.

Problem 3.0.1 (Petri net synthesis from finite lts). Given a finite lts A, is there a Petri
net N with RG(N) = A, i.e. a Petri net N with a reachability graph isomorphic to A?

If the reachability graph of N is isomorphic to A, we say that N solves A. Of course,
this problem should not just be decided, but a Petri net N is sought. The concept of
a region allows to do this, so this chapter introduces region theory. A region of an lts
describes a potential place of a Petri net that solves this lts.

This chapter is based on [BBD15; BD96] while the definition of a region goes back to
[ER90a; ER90b]. Only the basic concepts needed for the algorithm will be introduced.
For a description of some of the possible optimisations, the author recommends to look
into [BBD15].

3.1. Regions

A region is defined based on an lts. It defines a possible place in a Petri net that solves
the lts. A region has three parts: R assigns a number of tokens to each state, while B
and F assign weights to each event in the alphabet. The number of tokens of the initial
state, R(ı), corresponds to the initial marking of the place, while B(t) and F(t) describe
how many tokens transition t consumes and produces, respectively.

Definition 3.1.1 (Region). A region of an lts A = (S,Σ,→, ı) is a triple of functions
r = (R,B,F) ∈ (NS) × (NΣ) × (NΣ) such that for all (s, t, s′) ∈ →, both R(s) ≥ B(t)
and R(s′) = R(s)− B(t) + F(t) hold.

The first requirement above describes that (the place described by) the region may not
prevent an occurrence that is present in the lts. The second requirement expresses that
the number of tokens R(s) is consistent with the token change F(t) − B(t), e.g. if this
value is three, then R(s) must increase by three along any edge with event t. These
requirements are similar to the requirements on a place for enabling a transition (M [t〉)
and for the firing of a transition (M [t〉M ′).
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3. Introduction to Region Theory

ı

s1

s2

s3

a b

b a
c

R1(ı) = 0 R1(s1) = 0
R1(s2) = 1 R1(s3) = 1
B1(a) = 0 F1(a) = 0
B1(b) = 0 F1(b) = 1
B1(c) = 1 F1(c) = 0

R2(ı) = 1 R2(s1) = 1
R2(s2) = 0 R2(s3) = 0
B2(a) = 0 F2(a) = 0
B2(b) = 1 F2(b) = 0
B2(c) = 0 F2(c) = 1

Figure 3.1.: An lts and two of its regions r1 = (R1,B1,F1) and r2 = (R2,B2,F2).

Two examples for regions are shown in Figure 3.1. The region r1 corresponds to place
p3 of the Petri net from Figure 2.1, while region r2 corresponds to place p2.

Since the expression F(t) − B(t), which describes the change in tokens for transition t,
is needed often, this is called the effect of t and gets its own symbol E(t). Also, these
functions are lifted to vectors to express the total outcome of each path with that Parikh
vector, as follows.

Definition 3.1.2 (Effect, vector extension). Given an lts A and one of its regions
(R,B,F), the effect function is the derived function E defined by E(t) = F(t)− B(t).

The function B (F and E, resp.) is inductively extended to Σ-vectors π : Σ → N by
defining B(π) =

∑
t∈Σ π(t) · B(t) (analogously for F and E).

Some fundamental properties of regions are shown next.

Lemma 3.1.3. If s
w−→ s′ in some lts, then for any region (R,B,F) it holds that

R(s′) = R(s) + E(Ψ(w)).

Proof. By induction on the length of w. For the base case s ε−→ s by definition E(Ψ(ε)) =

0 holds. The induction step follows from the definition of a region and of E (s t−→ s′ ⇒
R(s′) = R(s)− B(t) + F(t) = R(s) + E(t)).

A corollary is possible, because every state of a reachable lts can be reached from its
initial state:

Corollary 3.1.4. In a reachable lts, the function R of a region (R,B,F) is fully de-
termined by R(ı).

For another corollary, consider a so-called cycle s
w−→ s, which is a sequence which leads

from s back to s. The above Lemma 3.1.3 implies that w cannot change the number of
tokens in this situation:

Corollary 3.1.5. If s w−→ s, then E(Ψ(w))(t) = 0 for all t ∈ Σ.

It is well known that in a (bounded) Petri net a complement place can be constructed
for a given place. This place behaves opposite to the original place, for example, gaining
as many tokens as the other place loses in the firing of a transition. A consequence is
that the sum of the number of tokens on a place and its complement is invariant when
firing transitions. A similar construction is also possible for regions.

12



3.2. Separation Problems

Lemma 3.1.6. For a region r = (R,B,F) of a finite lts A = (S,Σ,→, ı), there is a
complementary region r = (R,B,F) and a number k ∈ N with B = F and F = B, such
that for all s ∈ S we have R(s) = k −R(s).

Proof. Only a suitable k has to be found so that R does not produce negative numbers
and so that for each edge s

t−→ s′ we have R(s) ≥ B(t). Since A is finite, there are only
finitely many states and edges. This means we can e.g. choose k to be the minimum
value so that r is a region. The remaining properties of a region are inherited by r from
r. For example, for an edge s

t−→ s′, it automatically holds that R(s′) = k − R(s′) =
k − (R(s)− B(t) + F(t)) = R(s)− B(t) + F(t), as required.

For example, the two regions in Figure 3.1 are complements of each other with k = 1.

Intuitively, a region of an lts A is a possible place that can be added to a Petri net that
should solve A. In this way we can construct a Petri net from regions. This intuition is
formalised next.

Definition 3.1.7 (Corresponding Petri net). Let A = (S,Σ,→, ı) be an lts and R a set
of regions of A. The corresponding Petri net N(R) = (R,Σ, F,M0) has the regions R as
places and the alphabet Σ of A as its set of transitions. Its flow function F is defined by
F ((R,B,F), t) = B(t) and F (t, (R,B,F)) = F(t), and the initial marking M0 is defined
by M0((R,B,F)) = R(ı).

A place of a Petri net also defines a region on the reachability graph of the Petri net.
This leads to a Galois connection further investigated in [BBD15].

Lemma 3.1.8. Let N = (P, T, F,M0) be a bounded Petri net and p ∈ P one of its places.
The extension [[p]] of p is the region (R,B,F) of RG(N) defined by R(M) = M(p),
B(t) = F (p, t), and F(t) = F (t, p).

Proof. We show that [[p]] is indeed a region. We have to show that for all M [t〉M ′ in
the reachability graph of N , both R(M) ≥ B(t) and R(M ′) = R(M)−B(t)+F(t) hold.
By definition of [[p]], this is equivalent to M(p) ≥ F (p, t) and M ′(p) = M(p)−F (p, t) +
F (t, p), which holds by definition of the firing of transitions (Def. 2.0.3).

This definition and this lemma allow to freely switch between a Petri net and a set
of regions without loss of information. In other words, a place and a region can be
considered to be equivalent.

3.2. Separation Problems

This section deals with the question which regions are actually needed so that the con-
structed Petri net solves A. The question we want to answer is: For which sets R of
regions of an lts A does A = RG(N(R)) hold? This will solve Problem 3.0.1.

13



3. Introduction to Region Theory

To answer this, we define separation problems. There are two kinds of separation prob-
lems: A state separation problem consists of two states and is solved by a region which
assigns different numbers of tokens to the two states. This region ensures that the two
states correspond to different markings in a Petri net, and are not identified into the
same marking. An event/state separation problem has a state and a label that is not
enabled in that state. It is solved by a region which prevents the corresponding trans-
ition to fire in the state. For the corresponding Petri net, this means that the transition
cannot fire in the marking that represents the state.

Definition 3.2.1 (Separation problems). Let A = (S,Σ,→, ı) be an lts. A state sep-
aration problem (SSP) {s, s′} is a pair of states s, s′ ∈ S with s 6= s′. It is solved by a
region (R,B,F) when R(s) 6= R(s′). An event/state separation problem (ESSP) (s, t)
consists of a state s ∈ S and a label t ∈ Σ so that s �

t−→. It is solved by a region (R,B,F)
when R(s) < B(t).

The sets SSPA and ESSPA contain all SSP instances of A, and all ESSP instances of
A, respectively. The set of all separation problems of A is SPA = SSPA ∪ESSPA.

Each pair of states is a state separation problem, so the lts from Figure 3.1 has SSPA =
{{ı, s1}, {ı, s2}, {ı, s3}, {s1, s2}, {s1, s3}, {s2, s3}}, and its event/state separation prob-
lems are ESSPA = {(ı, c), (s1, a), (s1, c), (s2, a), (s2, b), (s3, b), (s3, c)}. In the example
from Figure 3.1, among others, region r1 solves the state separation problems {ı, s2}
and {s1, s3}, but not {ı, s1}. r1 also solves the event/state separation problem (s1, c),
because R1(ı) = 0, which is smaller than B1(c) = 1. The region r2 does not solve this
problem, but for example, solves (s2, b), which is not solved by r1.

The answer to the above question, about when a set of regions solves an lts, is that every
separation problem has to be solved:

Theorem 3.2.2 ([BBD15]). A set of regions R of a reachable lts A satisfies A =
RG(N(R)) if and only if each state separation problem and each event/state separation
problem of A is solved by some region in R.

Proof sketch. (⇒): Assuming A is solved by the Petri net N(R), it can easily be seen
that each separation problem is solved by a region in R: If ¬(s[t〉), then in the markingM
corresponding to s, there is a place of the Petri netN(R), i.e. a region r ∈ R, that disables
transition t. This means the region r solves the ESSP instance (s, t). Analogously, for
two different markings M 6= M ′ there is a place solving the corresponding SSP instance.

(⇐): For the other direction, assume each separation problem is solved by a region in
R, A is reachable, and let A = (S,Σ,→, ı). Let f be a function mapping states of A to
markings of N(R) defined by f(s)((R,B,F)) = R(s), i.e. the state s ∈ S of A is mapped
to the marking of N(R) in which a place (R,B,F) is assigned R(s) tokens. It can be
shown that f is indeed an isomorphism, as follows.

If s t−→ s′ in A, we have to show that f(s)
t−→ f(s′) in RG(N). This follows from the

definition of regions: No place in f(s) may disable transition t and firing the transition
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has the expected effect on the function R, which was used to define f . For the other
direction, if s �

t−→, then (s, t) is an ESSP instance of A. By assumption there is a
region r solving this instance, so disabling transition t in the marking f(s). Thus,
s

t−→ s′ ⇔ f(s)
t−→ f(s′).

It remains to show that f is a bijection. It is injective, because all state separation
problems have a solution in R, thus s 6= s′ ⇒ ∃(R,B,F) ∈ R : R(s) 6= R(s′) ⇒ f(s) 6=
f(s′). f is surjective, because Petri net reachability graphs are reachable by Lemma 2.0.8.
Thus, any marking M in RG(N) is reachable via some path M0

w−→ M . It was already
shown that edges in RG(N) are also present in A, so there must be some state s of A
with ı

w−→ s and f(s) = M .

Note that the previous theorem does not assume A to be finite, but the condition that A
is reachable cannot be left out. For example, consider the lts A = ({ı, s1}, ∅, ∅, ı), which
consists of just two disconnected states. This lts has no event/state separation problems
and just one state separation problem {ı, s1}. This state separation problem can easily
be solved by some region r, but A = RG(N({r})) will not hold.

3.3. An Algorithm for Petri Net Synthesis

While the previous section characterised when an lts can be solved by a Petri net, it did
not answer the question how to find such a Petri net. An algorithm taken from [BBD15],
that answers this question, is presented next. The algorithm repeatedly computes a new
region of A that solves a given separation problem until solutions to all separation
problems are found.

We assume that we are given a finite and reachable lts A as input. Reachability is not a
restriction here, since by Lemma 2.0.8, an lts that is not reachable cannot be isomorphic
to the reachability graph of any Petri net. This assumption allows us to simplify the
following argument.

The first step of the algorithm is to fix an arbitrary spanning tree of the input A. This
spanning tree assigns to each state s a path to reach s from the initial state.

Definition 3.3.1 (Spanning tree). A spanning tree of a reachable lts (S,Σ,→, ı) is an
lts (S,Σ,→′, ı) with →′ ⊆ → so that for every s ∈ S there is a unique ws ∈ Σ∗ with
ı

ws−→′ s. The reaching Parikh vector Ψs of a state s in a spanning tree is Ψs = Ψ(ws).

The reaching Parikh vector is used as follows: By Lemma 3.1.3 and Definition 3.1.2
we now have R(s) = R(ı) + E(Ψs) = R(ı) +

∑
t∈ΣΨs(t) · (F(t) − B(t)) for any region

and any state s ∈ S. Thus, a region (R,B,F) is fully determined by R(ı), B, and F
(Corollary 3.1.4). These are 2|Σ|+1 natural numbers: R(ı) is a single number and B and
F are each described by one number per element in Σ. This means a region (R,B,F)
can be represented as a vector r ∈ N2n+1 where n = |Σ|. For this, fix an arbitrary
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3. Introduction to Region Theory

enumeration Σ = {t1, t2, . . . , tn} of Σ and define the vector representation via r0 = R(ı),
r1 = B(t1), …, rn = B(tn), rn+1 = F(t1), …, r2n = F(tn)).

Given such a vector, the formula R(s) = R(ı) +
∑

t∈ΣΨs(t) · (F(t) − B(t)) that was
mentioned above reconstructs the number of tokens R(s) for a state s ∈ S. In the
vectorial representation, this can be expressed as the following function:

tokens(r, s) := r0 +

n∑
i=1

Ψs(ti) · (rn+i − ri)

An arbitrary vector does not necessarily represent a region, because the requirements
from the definition of a region have to be fulfilled. Namely, if a state s has an outgoing
edge with label t, then there must not be less tokens available in s than required by t
(R(s) ≥ B(t)). Also, some consistency between the token differences between states and
the effect of edges is required, which means that if s t−→ s′, thenR(s′) = R(s)−B(t)+F(t).
However, R(s) is defined by the initial token count R(ı) and the subset of edges→′ that
represent the spanning tree. Thus, for these edges this requirement holds automatically
and just the remaining edges → \→′ explicitly need this requirement. Altogether, we
get the following predicate:

isRegion(r) :=
∧

(s,ti,s′)∈→

(tokens(r, s) ≥ ri)

∧
∧

(s,ti,s′)∈→\→′
(tokens(r, s′) = tokens(r, s)− ri + rn+i)

The next lemma will be used to restrict our search to vectors describing regions1.

Lemma 3.3.2. A vector r ∈ N2n+1 represents a region if and only if isRegion(r) holds.

Proof. (⇒) Assuming that r represents the region (R,B,F), we haveR(s) = tokens(r, s)
by Lemma 3.1.3 and the definition of Ψs as the Parikh vector of a path from ı to s.
isRegion(r) is now guaranteed to hold by the definition of a region.

(⇐) R is defined by R(s) = tokens(r, s) and the remaining functions are directly given
in the representation. We want to show that this is a region, which means that we have
to show that R(s) ≥ B(t) and R(s′) = R(s) − B(t) + F(t) for all (s, ti, s′) ∈ →. The
first condition is directly given in our assumptions, and so is the second condition for
(s, ti, s

′) ∈ →\→′. Thus, only R(s′) = R(s)−B(t) +F(t) for (s, ti, s′) ∈ →′ remains to
be shown.

This means that we are looking at an edge that is part of the spanning tree we are
considering. Thus, Ψs and Ψs′ are almost identical, except that Ψs′ contains one more
ti which means that E(Ψs′) = E(Ψs) − B(ti) + F(ti). We deduce that R(s′) = R(s) −
B(ti) + F(ti).

1This lemma also indirectly shows that the choice of spanning tree is not important.
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3.3. An Algorithm for Petri Net Synthesis

The predicate isRegion(r) characterises regions in a linear-algebraic fashion. The ques-
tion whether a given region solves a given separation problem can also be expressed al-
gebraically: A region r ∈ N2n+1 solves a given ESSP instance (s, ti) by Definition 3.2.1 if
tokens(r, s) < ri, while an SSP instance {s, s′} is solved when tokens(r, s) 6= tokens(r, s′)
holds. Thus, it makes sense to define the inequality SP(r, pr) that characterises when a
region r solves a separation problem pr ∈ SPA as:

SP(r, pr) :=

{
(tokens(r, s) < ri) if pr = (r, ti) ∈ ESSPA

(tokens(r, s) 6= tokens(r, s′)) if pr = {s, s′} ∈ SSPA

This definition allows to formulate a first generic algorithm for Petri net synthesis.
This algorithm considers each separation problem individually, formulates it as a linear
inequality system in the way outlined above, and collects regions from the solutions of
these systems. It is shown in Algorithm 1.

Algorithm 1 General algorithm for Petri net synthesis [BBD15].
1: procedure SynthesiseLts(A) . A is finite and reachable
2: Let R = ∅
3: for pr ∈ SPA do . For each separation problem
4: Find r ∈ N2|Σ|+1 satisfying isRegion(r) ∧ SP(r, pr)
5: if unsolvable then return error
6: else Add region r to R
7: end if
8: end for
9: return N(R) . Petri net corresponding to the regions R

10: end procedure . Its reachability graph will be isomorphic to A

This algorithm is correct, since by Lemma 3.3.2, isRegion(r) characterises regions while
the characterisation of separation problems by SP(r, pr) is derived directly from the
definition of separation problems. Thus, the algorithm finds a set of regions solving each
separation problem when such a set exists. By Theorem 3.2.2 such a set exists exactly
if the lts is Petri net solvable.

The algorithm produces linear-algebraic problems of the form A · x ≥ b that must be
solved2. Here, A is a given matrix over the integers, b is a vector of integers, and x is
the natural vector being sought.

Example 3.3.3. As an example, consider the lts from Figure 3.1 from page 12. This lts is
repeated in Figure 3.2, which also shows a spanning tree. This spanning tree assigns Ψı =
Ψ(ε), Ψs1 = Ψ(a), Ψs2 = Ψ(ab), and Ψs3 = Ψ(b) as the reaching Parikh vector for each
state (see Definition 3.3.1). In the following, an alphabetical order of events is assumed,
i.e. a region is represented by r0 = R(ı), r1 = B(a), r2 = B(b), r3 = B(c), r4 = F(a),

2An equality y = 0 can be expressed as two inequalities y ≥ 0 ∧ −y ≥ 0. The inequality tokens(r, s) 6=
tokens(r, s′) in the definition of SP(r, pr) can be strengthened to >, because either a region or its
complement will satisfy this requirement (see Lemma 3.1.6).
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ı

s1

s2

s3

a b

b a
c

Figure 3.2.: A spanning tree (in solid) of the lts from Figure 3.1. Other edges are dashed.

r5 = F(b), and r6 = F(c). For example, this means that for a given vector r ∈ N7, the
function tokens(r, s1) evaluates to tokens(r, s1) = r0+1·(r4−r1)+0·(r5−r2)+0·(r6−r3),
because ws1 has one a, but no b or c.

The first part of isRegion(r) requires that ri ≤ tokens(r, s) for each edge (s, ti, s
′) ∈ →,

resulting in the following inequalities:

For (ı, a, s1): r1 ≤ r0

For (ı, b, s3): r2 ≤ r0

For (s1, b, s2): r2 ≤ r0 − r1 + r4

For (s3, a, s2): r1 ≤ r0 − r2 + r5

For (s2, c, ı): r3 ≤ r0 − r1 + r4 − r2 + r5

The second part of isRegion(r) considers edges that are not part of the spanning tree.
For example, the edge (s2, c, ı) results in the equality tokens(r, s2)−r3+r6 = tokens(r, ı).
Expanding the definition of tokens, this results in r0+1 · (r4−r1)+1 · (r5−r2)+0 · (r6−
r3) − r3 + r6 = r0. Since r0 appears on both sides, the inequality can be simplified. In
more abstract terms, this inequality says that the effect of abc should be zero, i.e. going
through this cycle may not change the number of tokens.

For the edge (s3, a, s2), the equality is tokens(r, s3) − r1 + r4 = tokens(r, s2). After
expansion, the same formula appears on both sides of the equality sign. This will be-
come more prominent in the following matrix representation, because it results in rows
containing only zeros.

The following equations are constructed:

For (s3, a, s2): r0 − r2 + r5 − r1 + r4 = r0 − r1 + r4 − r2 + r5

For (s2, c, ı): r0 − r1 + r4 − r2 + r5 − r3 + r6 = r0

All these inequalities and equations can be collected into a matrix A so that A ·r ≥ 0 has
the same meaning as the individual inequalities. This results in the following system,
where rows in the matrix are ordered as above and each equality y = 0 is replaced with
the two inequalities y ≥ 0 and −y ≥ 0:
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(ı,a,s1): 1 −1 0 0 0 0 0
(ı,b,s3): 1 0 −1 0 0 0 0
(s1,b,s2): 1 −1 −1 0 1 0 0
(s3,a,s2): 1 −1 −1 0 0 1 0
(s2,c,ı): 1 −1 −1 −1 1 1 0
(s3,a,s2): 0 0 0 0 0 0 0
−(s3,a,s2): 0 0 0 0 0 0 0
(s2,c,ı): 0 −1 −1 −1 1 1 1
−(s2,c,ı): 0 1 1 1 −1 −1 −1


· r ≥ 0

This inequality system describes the predicate isRegion(r). A solution to a separation
problem pr can now be computed by solving isRegion(r) ∧ SP(r, pr). For example, the
event/state separation problem (ı, c) corresponds to the inequality r0 ≤ r3 and is solved
by the region r1 = (0, 0, 0, 1, 0, 1, 0) from Figure 3.1 on page 12.

3.4. Bibliographical Remarks

This chapter introduced region theory and presented an algorithm for Petri net synthesis.
A region of an lts describes a potential place of a Petri net that solves this lts. A
condition, based on so-called separation problems, was identified that guarantees that the
Petri net corresponding to a set of regions solves a given lts. This allowed to formulate an
algorithm for Petri net synthesis. This algorithm computes for each separation problem
a region that solves it.

The concepts introduced in this chapter are well known in the literature. This presenta-
tion is based on [BBD15]. The concept of a region originated in the work by Ehrenfeucht
and Rozenberg on representation theorems for partial (set) 2-structures [ER90a; ER90b].
This led to the investigation of morphisms between transition systems and elementary3

nets [NRT92], i.e. investigations related to category theory. The concepts were general-
ised to Petri nets that are not 1-bounded [Muk92], and Petri nets with different kinds
of flows [BD96], so called types of nets. The introduction of separation problems [DR96]
was an important step towards algorithms for Petri net synthesis.

The development of the first practical algorithm for elementary net synthesis [CKLY98;
CKLY95] lead to the development of the tool Petrify [Cor+99]. This tool is tailored
for applications in circuit design [Cor+97]. The resulting Petri net is used to represent
the current state of the circuit, where a place with a token represents a logical 1 for the
corresponding signal. It also allows to require properties like pure or free-choice from
the resulting Petri net.

Other tools for Petri net synthesis are Synet and Genet. These both produce Petri nets
instead of the elementary nets that Petrify produces. Synet [Cai99] can also produce

3Elementary nets are equivalent to plain, pure, and 1-bounded Petri nets.
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pure Petri nets and allows to specify so-called locations that further restrict the structure
of the resulting Petri net [BCD02]. Genet [CCK09] specifically targets k-bounded Petri
nets and is based on a novel algorithm that computes all minimal k-bounded regions
[CCK10; Car+08; CCK08]. Also, Genet supports a restriction to marked graphs and
can over-approximate its input if no exact solution is possible.

The above already suggests an interest in targeting specific subclasses of Petri nets, e.g.
k-bounded or pure. This was mainly done in the context of tool development, but also in
the general integer-linear-programming-based approach from [CGS07] and [WDHS08],
which come from a process-discovery context. Targeting specific subclasses will be the
topic of the next chapter.

Best and Devillers developed dedicated algorithms for targeted synthesis of marked
graphs, T-nets and choice-free Petri nets [BD14; BD15b; BD15a]. These algorithms
simplify the inequality systems that have to be solved, and for connected marked graphs
they even allow to eliminate these systems completely, which leads to very efficient al-
gorithms. Similar results exist for Petri net synthesis from binary words and lts with an
alphabet of size two [BESW16; EW17; Ero18].

The results mentioned so far considered finite labelled transition systems that should
be solved up to isomorphism. However, there are also other results. Darondeau invest-
igated the synthesis problem for regular and context-free languages [Dar98], where the
language4 of the synthesised net should be equal to a given input. This approach also
allows to synthesise unbounded Petri nets, i.e. Petri nets with infinitely many reachable
markings, thus removing the finiteness precondition [Dar03]. [LMJ07] is a survey on
Petri net synthesis from languages. There are also results on synthesis for context-free
graphs up to isomorphism [Dar01]. This approach was extended for path-automatic
specifications [BD04] and also allows to produce unbounded Petri nets. Synthesis of
languages is the topic of Section 5.5.

The state of the art was recently summarised by Badouel, Bernardinello, and Darondeau
in [BBD15].

4The language contains all initially enabled sequences, i.e. {w ∈ Σ∗ | M0[w〉}.
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The previous chapter introduced an algorithm for Petri net synthesis. This algorithm
computes a Petri net solution to a given lts, meaning that its input is an lts A and its
output is a Petri net N with A = RG(N(R)).

The present chapter will introduce a variant of this algorithm doing targeted synthesis.
This means that, instead of asking for any Petri net solution, a subclass of nets is
targeted. For example, plain Petri nets could be such a subclass, which means that no
weights may be present and each flow may have at most weight one.

For example, the tool Petrify [Cor+99] produces plain, pure, and 1-bounded Petri nets.
It has applications in circuit design, where the desired behaviour of a circuit is used as
specification. The Petri net synthesized by Petrify provides a possible encoding of the
internal states of the circuit, which means that a token on a place indicates that the
corresponding signal is activated. Other tools can target different subclasses of Petri
nets, but there is so far no completely generic approach to subclasses. What is missing
is a systematic approach, starting from a synthesis algorithm that allows the entire class
of P/T-nets and deriving an algorithm that can be used for a large class of targets, and
which may be useful in a variety of circumstances.

To accomplish targeted synthesis, the algorithm from the last chapter is extended with
another parameter, additionalProperties, which provides further inequalities that are
added to each inequality system. The resulting algorithm is shown in Algorithm 2. The
difference to Algorithm 1 is the addition of the predicate additionalProperties to the
arguments and Line 4.

This chapter is based on the author’s publications [BS15; Sch16b; SS17].

Algorithm 2 A variant of Algorithm 1 allowing targeted synthesis.
1: procedure SynthesiseLts(A, additionalProperties) . A is finite and reachable
2: Let R = ∅
3: for pr ∈ SPA do . For each separation problem
4: Find r satisfying isRegion(r) ∧ SP(r, pr) ∧ additionalProperties(r)
5: if unsolvable then return error
6: else Add region r to R end if
7: end for
8: return N(R) . Petri net corresponding to the regions R
9: end procedure . Its reachability graph will be isomorphic to A
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4.1. Targeted Subclasses

In this section, various subclasses with corresponding predicates are identified. The
predicates are for individual places/regions, because the algorithm computes a Petri net
one place/region at a time, These predicates restrict the inequality system so that only
places/regions belonging to the subclasses are found. This also restricts the Petri net
N(R) that is computed, because each region corresponds to a place. However, only
subclasses that can be checked on individual regions/places can be targeted this way.
We will later see examples for inexpressible subclasses that are not definable on single
places.

The predicates can be combined arbitrarily to produce the additionalProperties para-
meter of the algorithm. For example, by conjunctively combining the individual predic-
ates, the subclass of plain, pure, and 1-bounded Petri nets that was mentioned above
can be targeted.

The basic algorithm produces a linear inequality system that has to be solved in the
natural numbers. Here, we generalise to a satisfiability modulo theories problem for the
theory of integers. This means that first-order formulas can now be used, which allows,
for example, disjunction and quantification in the predicates.

4.1.1. Simple Subclasses

The following subclasses can be expressed by predicates directly:

Plain A Petri net is called plain if its flows have only weights zero or one. Formally,
this means that the flow function F of the Petri net satisfies cod(F ) ⊆ {0, 1}. The
corresponding predicate enforces an upper limit of one for each flow weight of a region:

isPlain(r) :=
2n∧
i=1

ri ≤ 1

Pure A Petri net is called pure if each of its places is pure. A place p is pure if no
transition is in both its preset and its postset, i.e. •p ∩ p• = ∅. Thus, at least one of the
two flow weights connecting a transition with p has to be zero:

isPure(r) :=
n∧

i=1

(ri = 0 ∨ rn+i = 0)
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Conflict-free A conflict-free [LR78] Petri net is plain and satisfies additionally ∀p ∈
P : |p•| > 1 ⇒ p• ⊆ •p. This means that for each place, there is either at most a single
transition ti consuming tokens from it, or all transitions ti consuming from p must also
produce a token there (ri ≤ ri+n).

isCF(r) := isPlain(r) ∧

(
n∑

i=1

ri ≤ 1 ∨
n∧

i=1

ri ≤ ri+n

)

Homogeneous In a homogeneous Petri net [JCL04; HDK15], the outgoing flows of each
place p have the same weight, i.e. ∀t1, t2 ∈ p• : F (p, t1) = F (p, t2). In the predicate for a
region, this is expressed as pairs of weights being either zero or equal to each other:

isHomogeneous(r) :=
n−1∧
i=1

n∧
j=i+1

(ri = 0 ∨ rj = 0 ∨ ri = rj)

Generalised T-net In a generalised T-net each place p ∈ P has at most one transition
in its preset and at most one in its postset, i.e. |•p| ≤ 1 ≥ |p•|. So, the weights of all but
one transition in each B and F (of the p-region) must be zero, which can be expressed
as a disjunction of all-but-one flow weight sums being zero:

isGTNet(r) :=
n∨

i=1

n∑
j=1
j 6=i

rj = 0 ∧
n∨

i=1

n∑
j=1
j 6=i

rj+n = 0

Generalised marked graph In addition to the predicate for a generalised T-net, each
place p ∈ P must be connected to two transitions, i.e. |•p| = 1 = |p•|. In the predicate,
we force the potentially non-zero weights to be truly positive:

isGMGraph(r) :=
n∨

i=1

ri > 0 ∧
n∑

j=1
j 6=i

rj = 0

 ∧ n∨
i=1

ri+n > 0 ∧
n∑

j=1
j 6=i

rj+n = 0


Standard T-net / marked graph combine the generalised subclass with plainness:

isTNet(r) := isPlain(r) ∧ isGTNet(r)
isMGraph(r) := isPlain(r) ∧ isGMGraph(r)

k-boundedness The number of tokens on any place can never exceed k ∈ N, i.e. ∀M ∈
E(N) : ∀p ∈ P : M(p) ≤ k. In the lts, a reachable marking corresponds to a state s ∈ S,
so we can simply use the existing function for counting tokens in a state:

iskBounded(r, k) :=
∧
s∈S

tokens(r, s) ≤ k
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k-marking The initial number of tokens on any place is divisible by k ∈ N:

iskMarking(r, k) := ∃` ∈ N : r0 = ` · k

Behavioural conflict-free (BCF) A Petri net is behaviourally conflict-free ([GGS11]
calls this semantically conflict-free) if for every place p and every reachable marking
activating two different transitions ti and tj , at most one of ti and tj consumes tokens
from p, i.e. ∀M ∈ E(N) : ∀ti, tj ∈ T : ti 6= tj ∧M [ti〉 ∧M [tj〉 ⇒ •ti ∩ •tj = ∅. To express
this, we use the set EN =

{
{ti, tj} ⊆ Σ | i 6= j ∧ ∃s ∈ S : s

ti−→ ∧ s
tj−→
}
of simultaneously

enabled transitions and require that for each entry of EN at most one transition consumes
tokens:

isBCF(r) :=
∧

{ti,tj}∈EN

ri = 0 ∨ rj = 0

Binary conflict-free (BiCF) The binary conflict-free [GGS11] subclass is similar to
BCF. A Petri net is BiCF if, whenever ti and tj are both enabled, then each place in
their common preset contains at least as many token as ti and tj consume together. We
have to consider every state of the lts, because the number of tokens on each place is
relevant. Define EN′ = {(s, {ti, tj}) ∈ S × 2Σ | i 6= j ∧ s

ti−→ ∧ s
tj−→} to be the set of

states with pairs of concurrently enabled transitions.

isBiCF(r) :=
∧

(s,{ti,tj})∈EN′
tokens(r, s) ≥ ri + rj

Distributed according to loc A distributed Petri net can be thought of as a structural
partition of the net into several locations. Locations can send messages to each other,
but these might take an arbitrary time to reach their destination. Each location has a
local state and cannot query the state of other locations. Based on [BD11], let LOCS
be some arbitrary, fixed, finite, and suitable large set of so-called locations. Given a
mapping loc : T → LOCS, a Petri net is distributed according to loc, if all t1, t2 ∈ T
with loc(t1) 6= loc(t2) satisfy •t1 ∩ •t2 = ∅ (no shared read access between locations).
This means, each place/region belongs to one location. A place belonging to more than
one location, or to none at all, would not allow any read access. This is also reflected
in the following predicate, which requires some location l ∈ LOCS to exist so that only
transitions with this location consume tokens. The predicate’s location-related parts can
be evaluated statically and eliminated before giving the inequality system to a solver:

isDistributed(r, loc) :=
∨

l∈LOCS

n∧
i=1

(loc(ti) 6= l⇒ ri = 0)

A similar approach is used in [BCD02], which deals specifically with the synthesis of
distributable Petri nets.
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Place-output-nonbranching (ON) This is defined as |p•| ≤ 1 for all places p ∈ P ,
i.e. only one transition can consume tokens from each place. This can be expressed by
putting each transition into its own location via the identity location mapping1 with
id(t) = t:

isON(r) := isDistributed(r, id)

4.1.2. Non-Trivial Subclass: Equal-Conflict Petri Nets

The subclasses of Petri nets that were previously defined could all be easily expressed in
a predicate. In this section, the more complicated subclass of equal-conflict Petri nets is
analysed and a suitable predicate is defined.

An equal-conflict Petri net is both homogeneous and weighted free-choice: Homogeneous
was already expressed as a predicate in the previous section and means that all outgoing
flows of a place have the same weight. In a weighted free-choice Petri net, transitions
with non-disjoint presets have the same preset.

Definition 4.1.1 (Equal-conflict). A Petri net N = (P, T, F,M0) is weighted free-choice
if ∀t1, t2 ∈ T : •t1 ∩ •t2 6= ∅ ⇒ •t1 = •t2. N is an equal-conflict Petri net if it is both
homogeneous and weighted free-choice.

We cannot directly express the equal-conflict subclass in a predicate due to the weighted
free-choiceness condition. It is possible to require one out of a set of chosen presets, as
was e.g. done for BCF and distributed Petri nets. However, how do we know what the
allowed presets for an equal-conflict Petri nets are? In the case of a distributed Petri
net, the assignment of transitions to locations provided the information about allowed
presets. For BCF nets the necessary information is derived from the structure of the lts.
For weighted free-choice it is not immediately clear what the allowed presets are. If we
simply require newly computed places to be consistent with earlier computed places, i.e.
no unequal conflicts may be introduced, then it could not be guaranteed that a solution
is found if one exists: A region that was found early, in a situation where many other
regions would solve the given separation problem, could forbid the only possibility to
solve a separation problem only considered later.

Thus, our approach has two phases, similar to the predicates for BCF and BiCF: First
structural constraints on the desired Petri net are identified based on the lts. This
corresponds to the calculation of the sets EN and EN′. Afterwards, this information is
used to fix the set of possible postsets of a computed region in the predicate.

Figure 4.1 shows that equal-conflict Petri nets are less expressive than general Petri nets.
It shows an lts A and a Petri net N so that RG(N) = A, but no equal-conflict Petri
net can generate A, as will be shown later. The Petri net N is not equal-conflict, for
example, because the presets of transitions t3 and t2 are neither disjoint nor equal.

1Equivalently, one could use isON′(r) :=
∨n

i=1

∑n
j∈{1,...,n}\{i} rj = 0, specifying that at most one

transition consumes tokens.
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Figure 4.1.: An lts A which is not isomorphic to the reachability graph of any equal-
conflict Petri net and a (non-equal-conflict) Petri net N with RG(N) = A.
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Figure 4.2.: An equal-conflict Petri net N and its reachability graph RG(N).

Enabling-Equivalent Transitions

This section investigates the following two properties of equal-conflict Petri nets:

Definition 4.1.2 (Preset-equal, enabling-equivalent). Two transitions t1, t2 ∈ T of a
Petri net N are preset-equal if they have the same preset, •t1 = •t2. Two labels t1, t2 ∈ Σ
of an lts A are enabling-equivalent if no state s ∈ S only enables one of the two labels,
i.e. ∀s ∈ S : (s

t1−→ ⇔ s
t2−→ ).

As an example of this definition, consider the Petri net N from Figure 4.2. The transition
t1 is not preset-equal with any other transition, but t2 and t3 are preset-equal. A similar
relationship can be seen in RG(N): There are states where only t1 is enabled, so it is
not enabling-equivalent with any other label, but t2 and t3 are enabling-equivalent.

The following lemmas show that these two properties imply each other in equal-conflict
Petri nets and their reachability graphs.

Lemma 4.1.3. Let N be a homogeneous Petri net. Then two preset-equal transitions
t1, t2 ∈ T of N are enabling-equivalent in RG(N).

Proof. Let t1, t2 ∈ T be two preset-equal transitions. Since N is homogeneous, we get
for each p ∈ P that F (p, t1) = F (p, t2). By the definition of enabledness, any given
marking enables either both transitions or none of them.
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t1 t2
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N1 :

t1 t2
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N ′1 :
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N2 :

t1 t2

N ′2 :

Figure 4.3.: Examples of the construction of Lemma 4.1.4.

This lemma allows us to show that the lts A from Figure 4.1 cannot be solved by an
equal-conflict Petri net N . Assume for a contradiction that an equal-conflict Petri net
N exists. We can see that t1 and t3 are not enabling-equivalent, because in s3 only t1 is
enabled. By the previous lemma, they are not preset-equal in N . Since we are desiring
an equal-conflict solution, they must thus have disjoint presets. However, in the initial
state both t1 and t3 are enabled, but firing one of them disables the other. This is only
possible if they have non-disjoint presets in N , hence we get a contradiction. This means
that there is no equal-conflict Petri net that solves A.

For the opposite implication, namely deriving preset-equality from enabling-equivalence,
we can only show a weaker result: There is a Petri net where enabling-equivalent trans-
itions are preset-equal. Examples of this construction are provided in Figure 4.3. In the
reachability graphs of N1 and N2, t1 and t2 are enabling-equivalent, but they are not
preset-equal in the Petri nets. In N1 both transitions are always enabled while in N2

neither transition can fire. The Petri nets N ′1 and N ′2 are produced by the construction
from the following Lemma.

Lemma 4.1.4. Let N be an equal-conflict Petri net. Then there is an equal-conflict
Petri net N ′ with RG(N) = RG(N ′) so that enabling-equivalent transitions in RG(N ′)
are preset-equal in N ′.

Proof. The following step can inductively be used to modify N so that any transitions,
which are enabling-equivalent but not preset-equal, become preset-equal. The result of
this construction will be the Petri net N ′.

Let t1, t2 ∈ T be enabling-equivalent, but not yet preset-equal. For any transition t3
preset-equal with t2 (including t2 itself) and any place p ∈ •t1, add a so-called side-
condition between t3 and p with weight F (p, t1): This means both F (p, t3) (previously
zero by assumption) and F (t3, p) (possibly non-zero) are increased by F (p, t1). Also, do
the analogous operation with t1 and t2 swapped. The resulting net will still be equal-
conflict by construction, but it will also satisfy •t1 = •t2. In particular, this means
that transitions that are not preset-equal have disjoint presets. Also, the behaviour
of the Petri net was not modified, because the effects of transitions were not modified
and no transition becomes disabled in a marking that previously enabled it, because by
enabling-equivalence enough tokens for the added flows are available.
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4. Synthesis for Subclasses of Petri Nets

By the previous two lemmas, we can restrict our attention to Petri nets where enabling-
equivalent transitions are preset-equal, without incorrectly classifying some lts as unsolv-
able by an equal-conflict Petri net. This can be used to define a predicate on regions, as
follows.

Let an lts A over the set of labels Σ be given that should be solved by an equal-conflict
Petri net N with A = RG(N). First, the enabling-equivalent labels in A are computed.
This produces a partitioning E ⊆ 2Σ of the set of labels into enabling-equivalent classes.
Next, we say that a region (R,B,F) is compatible with the desired equal-conflict Petri
net N = (P,Σ, F,M0), if it is homogeneous, meaning that for all transitions t1, t2 ∈ Σ
if B(t1) > 0 ∧ B(t2) > 0 then B(t1) = B(t2), and the postset of the corresponding
place is in E ∪ {∅}, i.e. we additionally allow the empty postset. These two conditions
(homogeneous and postset in E) are expressed by the following predicate:

isEC(r) :=
∨

e∈E∪{∅}

 ∧
ti,tj∈e

ri = rj ∧ rj > 0

 ∧
∧

ti 6∈e
ri = 0


Thus, we found a predicate to express equal-conflict Petri net synthesis.

Example 4.1.5. As an example of this predicate, let us return to the lts A from Fig-
ure 4.1. We already argued that this lts cannot be solved by an equal-conflict Petri net,
and we will now look more formally at this problem. Since no two labels are enabling-
equivalent, we have E = {{t1}, {t2}, {t3}}. Our predicate indicates that at most one
transition can consume tokens from any single place.

We will try to find a region (R,B,F) that solves the event/state separation problem
(s2, t1), i.e. that satisfies R(s2) < B(t1). From this formula we immediately conclude
0 < B(t1), because R(s2) ∈ N. By definition of a region and the edge ı

t3−→ s2, we
have R(ı) − B(t3) + F(t3) = R(s2) < B(t1). Because of the edge ı

t1−→ s1 we know
by definition of a region that B(t1) ≤ R(ı). Adding the last two inequalities produces
−B(t3)+F(t3) < 0, which implies that 0 < B(t3), because these values are non-negative.
Thus, we have shown that 0 < B(t1) and 0 < B(t3), i.e. both t1 and t3 are in the preset
of the sought place. This is not compatible with the predicate, because there is no
e ∈ E ∪ {∅} with t1, t3 ∈ e, since t1 and t3 are not enabling-equivalent at state s3. This
means that the event/state separation problem (s2, t1) is unsolvable and so A cannot be
solved by an equal-conflict Petri net.

Theorem 4.1.6. Given a finite lts A, the synthesis procedure produces an equal-conflict
Petri net N(R) with RG(N(R)) = A if and only if there is an equal-conflict Petri net
N with RG(N) = A.

Proof. (⇒): If the algorithm finds a Petri net N(R), then each place of N(R) corres-
ponds to a region satisfying the predicate. This means that N(R) is homogeneous and
the postset of each place is in E ∪ {∅}. Since elements of E are disjoint, N(R) is an
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4.1. Targeted Subclasses

equal-conflict Petri net. Since all separation problems were solved by the algorithm,
RG(N(R)) = A by Theorem 3.2.2.

(⇐): To show that a solution is always found if one exists, assume a suitable Petri net N
exists. By Lemma 4.1.4 we can assume that enabling-equivalent transitions in RG(N)
are preset-equal in N . The contraposition of Lemma 4.1.3 shows that non-enabling-
equivalent transitions must not be preset-equal, which means that their presets must
be disjoint by weighted free-choice. Thus, the extensions [[p]] of the places p ∈ P of N
satisfy the above predicate and are a possible result of the algorithm.

Incorporating Additional Subclasses

So far we can synthesise equal-conflict Petri nets via the new predicate. However, the
algorithm allows to combine multiple predicates so that, for example, pure equal-conflict
Petri nets are found. In this section, we show that these predicates can be combined
with the new predicate for equal-conflict synthesis.

Lemma 4.1.4 is not applicable for synthesising pure equal-conflict Petri nets, because it
only shows the existence of an equivalent non-pure Petri net, as the example N2 and
N ′2 in Figure 4.3 demonstrates. Additionally, Figure 4.4 has an example N3 and N ′3
showing that plainness is not preserved, either. All subclasses from Section 4.1, except
for plain and pure, are unaffected by the construction from Lemma 4.1.4, or are already
more restrictive than equal-conflictness. The following Theorem 4.1.7 closes this gap.
Examples of its constructions are given in Figure 4.4. The Petri nets N3 and N4 have
enabling-equivalent transitions t1 and t2 that are not preset-equal. The transitions in N3

both cannot fire, while in N4 the transitions are enabled after t3 fired. While N3 is plain
and pure, the construction from Lemma 4.1.4 would produce N ′3, which is neither plain
nor pure. Instead, Theorem 4.1.7 preserves these subclasses and produces the Petri net
N ′′3 . Similarly, N4 is transformed into N ′′4 and both nets are plain.

Theorem 4.1.7. Let N be a bounded equal-conflict Petri net that is pure or plain. Then
there is an equal-conflict Petri net N ′ with RG(N) = RG(N ′) so that enabling-equivalent
transitions in RG(N ′) are preset-equal in N ′. Additionally, N ′ is pure if N is pure, and
plain if N is plain.

Proof. First we modify the transitions which can never occur, so that we can assume
that all remaining transitions fire in at least one reachable marking. Let D ⊆ T be the
set of all such dead transitions. We construct N ′ by removing all flows connected to a
transition in D. Then, we add a new place p with M0(p) = 0 and add flows so that ∀t ∈
D : F (p, t) = 1. This place ensures that all transitions in D cannot occur. Because dead
transitions do not influence the behaviour of the Petri net, we have RG(N) = RG(N ′).
Also, this construction preserves plainness and pureness.

Next, let T ′ ⊆ T be a set of pairwise enabling-equivalent transitions containing t1, t2 ∈ T ′

that are not preset-equal. By simple liveness (each transition fires in some reachable
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Figure 4.4.: Motivating examples for the construction of Theorem 4.1.7.

marking), there are two cases: Either there are reachable markings M,M ′ with M [t1〉M ′
and ¬M ′[t1〉, or t1 can be fired infinitely often once it is enabled.

In the first case, by enabling-equivalence we get M [t2〉 and ¬M ′[t2〉. Thus, firing t1
disables t2 and by the firing rule we deduce •t1 ∩ •t2 6= ∅. Since N is weighted free-
choice, this implies that •t1 = •t2. Since t2 was arbitrary, all transitions that are
enabling-equivalent with t1 are in fact preset-equal with it, so the conclusion already
holds for the given Petri net N itself.

In the latter case, by the firing rule we have2 ∀p ∈ P : F (t1, p) ≥ F (p, t1). If N is pure
(and possibly plain), it follows that F (p, t1) = 0 and so t1 has an empty preset. By
enabling-equivalence we get analogously •t2 = ∅ and hence •t1 = ∅ = •t2. We can choose
N ′ = N again.

If N is plain, then by boundedness we get ∀p ∈ P : F (t1, p) = F (p, t1) ∧ F (t2, p) =
F (p, t2). By plainness, the only option for t1 and t2 not to be preset-equal is if (without
loss of generality) F (t1, p) = 1 and F (t2, p) = 0 for some place p ∈ P . Let T ′′ ⊆ T ′

contain all transitions t ∈ T ′ with F (t, p) = 0. We can add a side-condition between each
t ∈ T ′′ and p of weight one without modifying the behaviour of the Petri net, because
by enabling-equivalence with t1 there is always a token in p when t ∈ T ′′ is enabled in
N . This produces the plain and equal-conflict Petri net N ′ with RG(N ′) = RG(N).

4.2. An Unsupported Subclass

Many structural subclasses of a Petri net, such as plainness and pureness, but also beha-
vioural subclasses like k-boundedness, were expressed as a predicate already. However,

2We could even deduce equality from boundedness.
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there are subclasses for which this treatment is not possible, and the synthesis proced-
ure that was introduced cannot be targeted to them. An example of such a subclass are
P-nets, which are dual to T-nets: In a generalised P-net, each transition t ∈ T has at
most one place in its preset and at most one place in its postset. This means that each
transition t ∈ T satisfies |t•| ≤ 1 ≥ |•t|.

The algorithm that was introduced calculates individual regions, which correspond to
single places of the final Petri net solution. Thus, only subclasses that can be checked
locally on individual places can be expressed as predicates for the algorithm. Since the
P-net subclass cannot be checked locally on places, but instead requires the complete
surroundings of transitions, no predicate for P-nets can be defined directly.

Examples of other subclasses that cannot easily be expressed are graph-properties like
weak/strong connectedness. All of these subclasses cannot be decided on a single place,
i.e. they are not local to places, but instead require the surrounding of transitions or
even the full Petri net.

Equal-conflictness is not local to single places, either, and thus by the above argument it
should not be expressible. Still, in the previous section, a way to overcome this problem
was found. So, it might also be possible to incorporate other subclasses. For example,
weak connectivity in a non-pure Petri net can always be ensured by adding an otherwise
useless new place with a side-condition to every transition.

4.3. Conclusion

The previous chapter presented an algorithm for Petri net synthesis, which means that
for a given lts, a Petri net should be computed whose reachable graph is isomorphic
to the lts. This chapter extended the algorithm for targeted synthesis: Instead of com-
puting any Petri net solution, the Petri net should be from a specific subclass of Petri
nets. We identified predicates to express the subclasses plain, pure, conflict-free, homo-
geneous, generalised T-net, generalised marked graph, k-bounded, k-marking, behavi-
ourally conflict-free, binary conflict-free, distributed, and equal-conflict. Most of these
subclasses were easy to incorporate, but the case of equal-conflict Petri nets was more
complicated, because it required a preprocessing step that computes a structural prop-
erty of the desired Petri net based on the given lts. These subclasses can be combined,
for example, allowing the synthesis of free-choice Petri nets, which are plain and equal-
conflict Petri nets. Also, the subclass of P-nets was identified as being inexpressible for
the algorithm. A similar observation for the same subclass of Petri nets was made in
[WDHS08].

An open question for the algorithm is its complexity. While Petri net synthesis for general
and pure Petri nets is possible in polynomial time [BBD95; BBD15], elementary net
synthesis is NP-complete [BBD97]. Since elementary nets are equivalent to plain, pure,
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Figure 4.5.: An lts that can be solved exactly, but only if non-minimal regions are con-
sidered.

and 1-bounded Petri nets, this means that the complexity of the presented algorithm
depends on the specific subclass being targeted.

A construction similar to Lemma 4.1.4 is called equalisation in [RTS97], but used in
a different context. In [CKLY98] the synthesis of free-choice Petri nets is handled by
label splitting, which means that in the resulting Petri net, different transitions might
produce the same label, which our approach avoids. Another algorithm is sketched in
[WDHS08]. This is a recursive approach based on integer linear programming (ILP)
where the computation of a new place, which would violate the free-choice condition,
is handled by discarding the already-found places. The authors point out that their
approach negatively influences running times since places are computed repeatedly.

The tool Genet is based on [CCK10; Car+08; CCK08]. Genet can synthesise k-bounded
Petri nets, but the algorithm does not guarantee success, which means that it can fail to
find a Petri net solution even though one exists. This is because it only computes minimal
regions. A region (R,B,F) is minimal, if there is no other non-trivial region (R′,B′,F ′)
with either R′ ≤ R (pointwise), or R′ = R and B′ ≥ B and F ′ ≥ F (also pointwise).
Here, non-trivial means that there is some s ∈ S withR(s) 6= 0 and intuitively a region is
smaller than another region if it assigns less tokens to states, or, if the token assignment
is the same, then the number of side-conditions3 is higher. Figure 4.5 contains an lts,
which cannot be solved when just using minimal regions. The following list contains all
six minimal regions of this lts, where a region (R,B,F) is identified with the vector of
vectors4 ((R(ı),R(s1), . . . ,R(s6)), (B(a),B(b)), (F(a),F(b))):

r1 = ((1, 0, 1, 2, 1, 0, 0), (1, 0), (0, 1)) r2 = ((2, 2, 1, 0, 0, 0, 1), (0, 1), (0, 0))

r3 = ((1, 2, 1, 0, 1, 2, 2), (0, 1), (1, 0)) r4 = ((0, 2, 1, 0, 2, 4, 3), (0, 1), (2, 0))

r5 = ((0, 1, 1, 1, 2, 3, 2), (0, 1), (1, 1)) r6 = ((0, 0, 1, 2, 2, 2, 1), (0, 0), (0, 1))

It can easily be verified that for all of these regions we have R(s6) ≥ B(b), which
means that none of these regions solves the ESSP instance (s6, b). However, the region
r7 = ((3, 2, 2, 2, 1, 0, 1), (1, 2), (0, 2)) does prevent b in s6 (R(s6) = 1 < 2 = B(b)). This
region is not minimal because it is larger than r1, but only with this region can the lts
from Figure 4.5 be solved. Thus, Genet incorrectly declares the lts unsolvable.

3By the requirement on the token assignment, the effect E = F − B will be the same between both
regions. The effect stays the same if both F and B are increased by one, which represents the addition
of one side-condition.

4For readability, this does not use the vector representation that was introduced previously.
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In the previous chapters, a given lts was synthesised into a Petri net up to isomorphism.
When some lts was unsolvable, synthesis failed.

In this chapter, a possible way to handle failures is investigated. Instead of failing
synthesis, the lts is modified and amended so that it can be solved by a Petri net. We
will see that this is possible in a minimal way, where minimality is understood according
to a structural preorder called lts homomorphism, which is introduced next.

This chapter is based on the author’s publication [Sch18].

5.1. LTS Homomorphisms

To do minimally over-approximative synthesis into Petri nets, we first need to define the
notion according to which minimality is understood. This will be lts homomorphisms
(e.g. [AM98; BBD15]), which are presented in this section.

The simulation preorder (e.g. [Arn94]) between lts is well-known: A simulation is a
relation between states of two lts. When the first of two related states has an outgoing
edge with label a, the second state must have a suitable a-edge as well, so that the
states that are reached are in the relation again. An lts homomorphism is similar to a
simulation relation, but a function is used instead of a relation. This means that each
state of the first lts must have a simulating state in the second lts, and that this state
must be unique. As we will see later, this allows to transfer regions from one of the lts
to the other.

Definition 5.1.1 (Lts morphism [SW17; AD93]). An lts homomorphism from lts A1 to
lts A2 with Ai = (Si,Σ,→i, ıi) is a function f : S1 → S2 so that f(ı1) = ı2 and ∀(s, t, s′)
∈ →1 also (f(s), t, f(s′)) ∈ →2. If such a function f exists, write A1 v A2 (via f).

For example, the two lts in Figure 5.1 can simulate each other in the classic sense of
simulation preorder. The initial states ı and ı′ are related to each other and so are the
states s1 and s′1 reached via a. Both states in A1 that can be reached via b (s2 and s3)
are related to s′2 in A2, which is also reached via b. Thus, a possible simulation relation
is {(ı, ı′), (s1, s′1), (s2, s′2), (s3, s′2)}. Since the edges between related states are present in
both directions, this relation can be inverted by swapping the first and second element
of all pairs1.

1Thus, this is in fact a bisimulation [Arn94].
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Figure 5.1.: Two lts that simulate each other, but an lts homomorphism only exists in
one direction.

However, an lts homomorphism only exists from A1 to A2. The relation that was just
constructed is left-total and right-unique, thus a function and an lts homomorphism.
When trying to find an lts homomorphism from A2 to A1, the single state s′2 reached via
b in A2 must be mapped to two different states s2 and s3 in A2, which is not possible.

Similar to the simulation preorder, an lts homomorphism is also a preorder:

Lemma 5.1.2 (v is a preorder [SW17]). The relation v between lts is reflexive and
transitive.

Proof. Reflexivity means that for all lts A v A holds. This holds with the identity
homomorphism id. For transitivity we have to show that A1 v A2 v A3 implies A1 v A3.
Let f1 be the lts homomorphism witnessing A1 v A2 and f2 the function for A2 v A3.
It can easily be seen that2 f1 ◦ f2 witnesses A1 v A3 since homomorphisms are closed
under composition.

Another observation about lts homomorphisms is their relation to isomorphisms:

Lemma 5.1.3 ([SW17]). Two lts A1 and A2 are isomorphic via f if and only if f and
f−1 are lts homomorphisms.

Proof. By definition of isomorphisms (Def. 2.0.13) and homomorphisms (Def. 5.1.1).

By adding more constraints on the lts than just the existence of an lts homomorphism,
stronger results can be shown. The following lemma deals with a case where the lts
homomorphism is unique:

Lemma 5.1.4 ([SW17]). Let A1 and A2 be lts with Ai = (Si,Σ,→i, ıi) so that A1 v A2

via f and A1 v A2 via f ′. If A1 is reachable and A2 is deterministic, then f = f ′.

Proof. We prove, by induction on the length of words w ∈ Σ∗, that if ı1
w−→ s, then

f(s) = f ′(s). Since A1 is reachable, we reach all states of A1 in this way, showing
that f(s) = f ′(s) for all s ∈ S1. The induction basis follows from the definition of v:
f(ı1) = ı2 = f ′(ı1).

For the induction step, assume that ı1
w−→ s with f(s) = f ′(s) and consider any edge

s
a−→ s′. Since A1 v A2 via f and f ′, we have f(s)

a−→ f(s′) and f ′(s)
a−→ f ′(s′).

2In this this document, function composition is defined as (f ◦ g)(x) = g(f(x)).
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Because A2 is deterministic, there cannot be two different states that are reached from
f(s) = f ′(s) via label a. We conclude f(s′) = f ′(s′).

Lemma 5.1.2 showed that v is a preorder. The next lemma strengthens this by showing
that v is a partial order for reachable and deterministic lts. For this, antisymmetry is
missing and has to be shown.

Lemma 5.1.5 ([SW17]). Let A1 and A2 be reachable and deterministic lts so that
A1 v A2 via f1 and A2 v A1 via f2. Then A1 and A2 are isomorphic.

Proof. Consider A1 v A1 (via id) and A1 v A2 v A1 via f1 ◦ f2. Since Lemma 5.1.4 is
applicable, we conclude f1 ◦ f2 = id. Now, f1 must be injective, since otherwise f2 could
not recover the original element. Similarly, f2 must be surjective, since every element
appears in its image. With an analogous argument for f2 ◦ f1 = id we see that f1 and f2
are both bijective. Since their composition is the identity function, they are each other’s
inverses, i.e. f−11 = f2. By Lemma 5.1.3, this means that A1 and A2 are isomorphic.

In the beginning of this section, it was announced that lts homomorphisms allow to
translate regions to smaller lts. This is formalised in the next lemma.

Lemma 5.1.6 ([SW17]). Let A1 and A2 be lts with A1 v A2 via f . If r = (R,B,F) is
a region of A2, then f ◦ r := (f ◦ R,B,F) is a region of A1.

Proof. For an edge s t−→ s′ of A1, f(s)
t−→ f(s′) is an edge of A2. Since r is a region of A2,

we now have R(f(s)) ≥ B(t) in A2, which is the first condition for a region in A1. For
the second part the same argument is used: We have R(f(s′)) = R(f(s))−B(t) +F(t),
because r is a region of A2 and this formula is needed to show that f ◦ r is a region of
A1. Thus, (f ◦ R,B,F) is a region of A1.

The last lemma of this section shows that every set of regions of an lts produces an lts
larger than the original lts, according to lts homomorphisms.

Lemma 5.1.7. Let A be a reachable lts and R a set of regions of A, then A v RG(N(R)).

Proof. Let A = (S,Σ,→, ı) and define a function f : S → E(N(R)) via f(s)((R,B,F)) =
R(s) for each (R,B,F) ∈ R. This functions maps the state s to the marking of N(R)
where each place/region (R,B,F) ∈ R is assigned R(s) tokens. We show that f is an
lts homomorphism, i.e. satisfies f(ı) = M0 and s

a−→ s′ implies f(s)[a〉f(s′).

By definition of the initial markingM0 ofN(R), R(ı) = M0((R,B,F)) for all (R,B,F) ∈
R, which implies that f(ı) = M0. If s

a−→ s′ in A, then for any region (R,B,F) ∈ R, by
definition of a region R(s) ≥ B(a), i.e. transition a is enabled in the marking f(s), and
R(s′) = R(s)− B(a) + F(a), i.e. f(s)[a〉f(s′). Thus, f is an lts homomorphism.
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5.2. Existence of Minimal Petri Net Solvable
Over-Approximations

Now that lts homomorphisms were introduced, the goal of this chapter can be stated
more formally: In Theorem 5.2.2, it will be shown that, given a finite lts A, there is a
minimal over-approximation by a finite and Petri net solvable lts Approx(A), meaning
that there is a unique (up to isomorphism) lts larger than or equal to A that can be
solved by a Petri net and is minimal according to v with this property.

Lemma 5.2.1. For a finite lts A there is a set R of regions of A so that N(R) is bounded
and for any set R̂ of regions of A also RG(N(R)) v RG(N(R̂)) holds.

Proof. Let R′ be the set of all regions of A. This might be an infinite set, so N(R′) might
not be a (finite) Petri net, but for the moment we lift the restriction that a Petri net
has only finitely many places. The firing rule and the construction of the reachability
graph are not affected by this. RG(N(R′)) is finite, because by Lemma 3.1.6, for each
region (R,B,F) of A, there is a complement region (R,B,F) so that R(s) + R(s) is
constant. The same also holds for the corresponding places: The sum of their numbers
of tokens stays constant when firing transitions. Thus, for each place of N(R′), there
are only finitely many reachable numbers of tokens, which means that N(R′) is bounded
and RG(N(R′)) is finite.

RG(N(R′)) is solvable by a finite Petri net: Because the lts is finite, it has only finitely
many separation problems. Each separation problem is solvable by construction: If
two markings are different, then some region/place differs in its number of tokens and
so the corresponding SSP instance is solvable. If a transition is disabled in a given
marking, there is some region/place that prevents the transition from firing, and thus
solves the corresponding ESSP instance. Since the number of separation problems of a
finite lts is finite, there is a finite set of regions R so that N(R) solves RG(N(R′)) by
Theorem 3.2.2, which states that if all separation problems are solved by regions in R,
then RG(N(R)) = RG(N(R′)).

Finally, for any set of regions R̂ of A also RG(N(R)) v RG(N(R̂)) holds: Since R′

contains all regions, we have R̂ ⊆ R′. Define f to be the function that restricts markings
of N(R′) to those regions/places present in N(R̂). This function is an lts homomorphism
by construction, showing RG(N(R′)) v RG(N(R̂)). Since RG(N(R′)) and RG(N(R))
are isomorphic, it follows that RG(N(R)) v RG(N(R̂)).

The lts RG(N(R)) from this lemma is the minimal Petri net solvable over-approximation
Approx(A):

Theorem 5.2.2. Given a finite and reachable lts A, there is a minimal Petri net solvable
over-approximation Approx(A), that is finite, unique up to isomorphism, and satisfies
A v Approx(A). Minimality means that for any finite lts B with A v B, which can be
solved by a Petri net, also Approx(A) v B holds.
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Proof. Let Approx(A) be the finite lts RG(N(R)) as defined in the previous lemma.
By Lemma 5.1.7, A v Approx(A) holds. Now assume some lts B with A v B so that
B is solved by some Petri net N . Let R′ be the set of regions containing for each
place p of N its extension [[p]] (see Lemma 3.1.8). By definition of the corresponding
Petri net (Definition 3.1.7), we have N(R′) = N and by assumption A v B, hence also
A v RG(N(R′)) since RG(N(R′)) = B. Now Lemma 5.1.6 is applicable, which says
that each region of RG(N(R′)) can be transferred to A, so the set R′ of regions of B is
transferred into a set R′′ of regions of A. This step did not change the corresponding
Petri net, i.e. N(R′) = N(R′′), because the definition of the corresponding Petri net
only considers the number of tokens in the initial state and the weights of events, which
stayed the same. Now, the previous lemma is applicable, which says that Approx(A) =
RG(N(R)) v RG(N(R′′)) = B, which was to be shown.

For uniqueness, assume that there are two sets of regions R and R̃ according to the
previous lemma with Approx(A) = RG(N(R)) and Approx(A)′ = RG(N(R̃)). Since
they are over-approximations, we have Approx(A) v Approx(A)′ and Approx(A)′ v
Approx(A). By Lemma 2.0.8 both lts are deterministic and reachable since they are
reachability graphs of Petri nets. Thus, Lemma 5.1.5 is applicable and we conclude that
Approx(A) and Approx(A)′ are isomorphic.

5.3. Computing Minimal Over-Approximations

The previous section showed the existence of a minimal over-approximation by a Petri
net solvable lts via a brute-force construction: Use all regions to construct a Petri net.
This set is not necessarily finite, so this does not lend itself to actually computing an
over-approximation yet. This section will present an algorithm to compute this lts.

The computation will be done iteratively: We begin with the original lts and try to solve
it with a Petri net. If the lts is already solvable by a Petri net, then it is obviously its own
minimal over-approximation, since nothing was over-approximated yet. If it is instead
not solvable, then some separation problems must be unsolvable. This information will
be used to modify the lts.

In particular, if a state separation problem {s, s′} is unsolvable, then we know that the
states s and s′ cannot be differentiated by a Petri net place. In other words, these two
states must be the same in any Petri net solution, so we identify these two states.

If an event/state separation problem (s, t) is unsolvable, then by definition there is no
Petri net place that can disable transition t in the marking corresponding to state s
while allowing all desired behaviour. If the edge cannot be prevented, then it must be
allowed, so an outgoing edge with label t is added to state s. As the target of this edge,
a new state is added to the lts that has no other connections.

This process produces a modified lts. Petri net synthesis is then attempted with this
modified lts. This can again fail, in which case the whole process is repeated.
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Figure 5.2.: An lts A with unsolvable separation problem {s, s′} and the lts Merge(A).

5.3.1. The LTS Expansion Operator

To formalise this idea, we need symbols for the sets of unsolvable separation problems:

Definition 5.3.1 (Sets of unsolvable separation problems). For a reachable lts A =
(S,Σ,→, ı), define SSPunsolv(A) to be its set of unsolvable state separation problems
and ESSPunsolv(A) to contain all of its unsolvable event/state separation problems,
where a separation problem is unsolvable if no region solving it exists.

A further complication is that individual state separation problems do not provide
enough information: What if a state s should be merged with both state s′ and s′′?
It turns out that in this case s′ and s′′ cannot be separated either, because state separ-
ation actually produces equivalence classes of states:

Definition 5.3.2 (≡A). For a reachable lts A = (S,Σ,→, ı), the relation ≡A ⊆ S × S
is the following set: ≡A = {(s, s) | s ∈ S} ∪ {(s, s′) | {s, s′} ∈ SSPunsolv(A)}.

Lemma 5.3.3. For a reachable lts A, ≡A is an equivalence relation.

Proof. The relation is reflexive and symmetric by definition: s ≡A s always holds and if
s ≡A s′, then also s′ ≡A s, since {s, s′} = {s′, s}.

For transitivity, assume three states s, s′, s′′ so that s ≡A s′ and s′ ≡A s′′. If two of these
states are the same, then the conclusion holds automatically. Thus, assume that all three
states are different. This means that {s, s′} ∈ SSPunsolv(A) and {s′, s′′} ∈ SSPunsolv(A),
which in turns implies that R(s) = R(s′) = R(s′′) holds for every region (R,B,F).
Thus, no region can separate s and s′′, so {s, s′′} ∈ SSPunsolv(A) and s ≡A s′′.

The equivalence relation is used to define the state-merged lts Merge(A): Each state s
is replaced with its equivalence class [s].

Definition 5.3.4. For a reachable lts A = (S,Σ,→, ı), define the state-merged lts to be
Merge(A) = (S/≡A,Σ,→/≡A, [ı]), where →/≡A = {([s], t, [s′]) | (s, t, s′) ∈ →}.

An example of this construction is shown in Figure 5.2. The lts A has SSPunsolv(A) =
{{s, s′}}, so the construction of the state-merged lts identifies these two states to produce
the state [s] = {s, s′}.

The lts Merge(A) handles unsolvable state separation problems, so event/state separa-
tion problems remain to be handled. As outlined above, for each such problem, a new
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Figure 5.3.: An lts A′ with an unsolvable event/state separation problem (s, b) and the
lts Expand(A′).

state and edge is added to produce the expansion Expand(A). However, the merging of
states could already have added an outgoing edge with a suitable label, so this has to be
checked to avoid introducing non-determinism. Otherwise, the unsolvable event/state
separation problem (s′, c) from the lts A in Figure 5.2 could lead to the addition of
another outgoing c-edge to the state [s] of Merge(A).

Definition 5.3.5 (Expansion Expand(A)). For a reachable lts A = (S,Σ,→, ı), let
Merge(A) = (S′,Σ,→′, [ı]) and define the expansion Expand(A) = (S′ ∪ S′′,Σ,→′ ∪
→′′, [ı]), where S′′ = {s([s],t) | ([s], t) ∈ Λ} is the set of added states,→′′ = {([s], t, s([s],t)) |
([s], t) ∈ Λ} are added edges, and Λ = {([s], t) ∈ (S/≡A) × Σ | (s, t) ∈ ESSPunsolv(A) ∧
∀s′ ∈ [s] : s′ �

t−→ } is the set of remaining ESSP instances, where, without loss of general-
ity3, S′ ∩ S′′ = ∅ is assumed.

This construction is illustrated in Figure 5.3. The lts A′ has no unsolvable state sep-
aration problems, so no states are merged in Merge(A′). The ESSP instance (s, b) is
unsolvable, because b is enabled in the initial state, then has to be disabled by transition
a when going to state s, and then again enabled by the next a, which is not possible. This
unsolvable ESSP instance is handled by adding a new state and edge in Expand(A′). In
detail, Λ = {([s], b)} since the separation problem was not handled by merging states.
Thus, a state s([s],b) is added that is reachable from [s] via b.

The algorithm for computing the minimal Petri net solvable over-approximation is to
recursively apply the expansion operation until a fixed point is hopefully reached.

Definition 5.3.6 (Fixed point over-approximation). Given a reachable lts A, its fixed
point over-approximation is the lts A∗. This lts A∗ is the fixed point of the chain defined
by A0 = A and Ai+1 = Expand(Ai).

The next section will show that A∗ is isomorphic to Approx(A) from Theorem 5.2.2. This
means that the iterative definition of A∗ actually terminates and provides an algorithm
for computing Approx(A).

An example of this algorithm is shown in Figure 5.4. The lts A0 is to be minimally
over-approximated. Petri net synthesis of this lts fails and produces the following sets
of unsolvable separation problems: Because ı

ba−→ ı forms a cycle, ba cannot appear on
the non-cycle s2

ba−→ s4 and we have SSPunsolv(A0) = {{s2, s4}}. Event a is enabled in
3States can be suitably renamed if needed.
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Figure 5.4.: An example of the fixed point algorithm.

s1 and s3 and s1
b−→ s2

b−→ s3, so b has to first disable a and then enable it again, which
is not possible, i.e. (s2, a) is unsolvable. By the previous SSP instance, s2 and s4 have
the same number of tokens in any region. Since s2 enables b, s4 must, too. By the
first unsolvable ESSP instance, additionally (s4, a) is unsolvable, so ESSPunsolv(A0) =
{(s2, a), (s4, a), (s4, b)}. Since the lts is not solvable, the expansion operator has to be
applied. For this, first the lts Merge(A0) is constructed. This identifies the states s2 and
s4, resulting in the lts Merge(A0).

Next, the unsolvable event/state separation problems have to be handled. Thanks to
the identification of states, the unsolvable event/state separation problem (s4, b) was
already handled, because s4 was identified with state s2, which had an outgoing b-edge.
Thus, Λ = {([s2], a), ([s4], a)} remains. However, since [s2] = [s4] = {s2, s4} this really
is Λ = {([s2], a)} and only a single edge and state are added by the expansion operator.
The resulting lts Expand(A0) = A1 is shown in Figure 5.4 as well. To simplify the
following steps, its states were renamed.

Next, Petri net synthesis of A1 is attempted. This fails again due to unsolvable separation
problems, namely SSPunsolv(A1) = {{s′1, s′5}} and ESSPunsolv(A1) = {(s′5, a), (s′5, b)}.
Handling the state separation problems produces the lts Merge(A1) displayed in Fig-
ure 5.4. This step already handles the unsolvable event/state separation problems: The
events a and b cannot be prevented in s′5. However, this state is identified with s′1, which
has outgoing edges with these events. Thus, Λ = ∅ and Expand(A1) = Merge(A1).
Petri net synthesis for this lts succeeds, which means that SSPunsolv(Expand(A1)) = ∅ =
ESSPunsolv(Expand(A1)) and Expand(Expand(A1)) = Expand(A1), i.e. a fixed point is
reached. This lts can be solved by a Petri net, for example, the net N from Figure 5.5.

5.3.2. Fixed point Over-Approximation is Minimal Petri Net Solvable
Over-Approximation

We begin with some basic lemmas about Expand(A). These lemmas will then be
used to show that the fixed point over-approximation A∗ really is the minimal over-
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a

b

Figure 5.5.: A Petri net N with RG(N) = Merge(A1) with the lts from Figure 5.4.

approximation Approx(A) by a Petri net solvable lts according to Theorem 5.2.2.

Lemma 5.3.7. Let A = (S,Σ,→, ı) be a reachable lts, then A v Expand(A).

Proof. Let Expand(A) = (S′,Σ,→′, [ı]). The canonical homomorphism f : S → S′

defined via f(s) = [s] is an lts homomorphism, because the added edges in →′ are
not relevant: By definition we have f(ı) = [ı] and for each edge (s, t, s′) ∈ →, we have
([s], t, [s′]) ∈ →′ by definition of →′.

Lemma 5.3.8. For a reachable lts A = (S,Σ,→, ı), the expansion Expand(A) is de-
terministic and reachable.

Proof. First, we show that Merge(A) is deterministic and reachable. Reachability is
easily inherited from A: Any path ı

w−→ s in A can inductively be translated into [ı]
w−→ [s]

in Merge(A), and all its states can be reached in this way.

For determinism, assume that [s] a−→ [s′] and [s]
a−→ [s′′] in Merge(A). We want to show

that [s′] = [s′′]. Since we have the edges [s]
a−→ [s′] and [s]

a−→ [s′′] in Merge(A), there
must be states s̃, s̃′, s̃′′, and ŝ in A with edges s̃

a−→ s̃′ and ŝ
a−→ s̃′′ and s̃ ≡A s ≡A ŝ.

Let r = (R,B,F) be an arbitrary region of A. By transitivity, s̃ ≡A ŝ and so we have
R(s̃) = R(ŝ). Thus, by the definition of a region it follows that both target states have
the same token counts, R(s̃′) = R(s̃) − B(a) + F(a) = R(ŝ) − B(a) + F(a) = R(s̃′′).
Since the region r was arbitrary, this means that these two states cannot be separated
and we have s̃′ ≡A s̃′′. Since these states were chosen from [s′] and [s′′], respectively,
[s′] = [s′′] follows, showing that Merge(A) is deterministic.

For Expand(A), reachability is obviously inherited from Merge(A) since every new state
is reachable from an already reachable state of Merge(A). Also, the edges that are added
to Merge(A) to construct Expand(A) are constructed such that no non-determinism is
introduced. This is guaranteed through the set Λ in the definition (Definition 5.3.5).

Lemma 5.3.9. Let A = (S,Σ,→, ı) be a reachable lts. There is a bijection between
regions of A and regions of Expand(A) that preserves the value R(ı) of the initial state
and the functions B and F of a region (R,B,F).

Proof. By Lemma 5.3.7, A v Expand(A) via some function f holds. Thus, we can invoke
Lemma 5.1.6 on a region r = (R,B,F) of Expand(A) to get a region f ◦r = (f ◦R,B,F)
of A. We want to show that this mapping is a bijection.

41



5. Minimal Over-Approximations

For injectivity, assume two regions (R,B,F) and (R′,B′,F ′) of Expand(A) with (f ◦
R,B,F) = (f ◦ R′,B′,F ′). This directly provides B = B′ and F = F ′. It remains to
derive R = R′ from f ◦R = f ◦R′. In particular, this last condition means that R and
R′ assign the same value to the initial state f(ı). We can use Corollary4 3.1.4, which
states that the function R of a region is fully determined by R(ı) and arrive at R = R′.

For surjectivity, we need to construct a region r′ of Expand(A) from a region r =
(R,F ,B) of A so that r = f ◦ r′. By definition of f ◦ r′, this means that r′ = (R′,F ,B),
i.e. only R′ is still missing. Invoking Corollary 3.1.4 again, R′ is fully determined by
R′(ı) = R(f(ı)) and this will already imply R = f ◦ R′. Now that r′ is defined, we
need to show that r′ is indeed a region of Expand(A). This means we need to show that
R′ does not produce negative values and that for all edges s

a−→ s′ of Expand(A), both
R′(s) ≥ B(t) and R′(s′) = R′(s) − B(t) + F(t) hold. The initial state is not assigned
a negative value by definition and all other states have at least one incoming edge by
reachability, which we use below.

Consider some edge s
a−→ s′ of Expand(A). By construction of Expand(A), there must

be a state ŝ of A with f(ŝ) = s. Now, there are two possibilities. Either there is a state
ŝ′ of A so that f(ŝ′) = s′, and ŝ

a−→ ŝ′, or s′ was added in Expand(A) because (ŝ, a) is an
unsolvable ESSP instance in A. In the first case, r′ inherits the region properties from r
directly by R′(s) = R(f(ŝ)) and R′(s′) = R(f(ŝ′)). In the second case, because (ŝ, a) is
an unsolvable ESSP instance, there is no region of A with R′′(ŝ) ≤ B′′(a), so in our case
R′(s) = R(ŝ) > B(a) must hold. Also, R′(s′) = R′(s)− B(a) + F(a) holds since s

a−→ s′

is the only incoming edge to s′ and thus R(s′) is defined by this equation. This value is
non-negative by R′(s) > B(a).

Lemma 5.3.10. Let A = (S,Σ,→, ı) be a reachable lts and N = (P, T, F,M0) a Petri
net. If A v RG(N), then also Expand(A) v RG(N).

Proof. Let g be the homomorphism witnessing A v RG(N). Each place p of N cor-
responds to a region of RG(N) via its extension [[p]]. By Lemma 5.1.6, g ◦ [[p]] is a
region of A. By Lemma 5.3.9, there is an equivalent region of Expand(A). To sum-
marise, each place of N corresponds to a region of Expand(A). Let R be the set of all
regions of Expand(A) generated from N in this way. By Lemma 5.1.7, we now have
Expand(A) v RG(N(R)). The construction preserves the initial marking and weights
of events, so N = N(R) holds and the lemma follows.

These lemmas will now be used to show that the fixed point over-approximation A∗ is
the minimal Petri net solvable over-approximation Approx(A), and also that A∗ exists,
which means that the fixed point, as which it was defined, actually exists, i.e. the chain
(Ai)i∈N becomes stationary after finitely many steps.

Theorem 5.3.11. Given a finite and reachable lts A, the chain defined by A0 = A and
Ai+1 = Expand(Ai) reaches a fixed point A∗ (up to isomorphism), there is a Petri net N

4Expand(A) is reachable by Lemma 5.3.8, which is needed for this corollary.
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solving A∗, and RG(N) is isomorphic to the least Petri net solvable over-approximation
Approx(A) of A, i.e. for all Petri nets N ′ with A v RG(N ′), also A∗ v RG(N ′).

Proof. First we show that the fixed point always exists and then that it is the minimal
Petri net solvable over-approximation.

To show that the fixed point exists, consider an arbitrary lts Ai in the chain (Ai)i∈N. We
want to show that there are only finitely many possibilities for Ai and so the ascending
chain must eventually reach a fixed point. We begin by showing an upper bound on the
number of states of Ai. By Lemma 5.2.1, there is a minimal Petri net over-approximation
N(R′) of A, where N(R′) is bounded. Let m ∈ N be the number of reachable markings
in N(R′). In Lemma 5.2.1, N(R′) was constructed from all regions of A, so for each
region of A there is an equivalent region of RG(N(R′)), meaning that R(ı), B, and F
are the same.

We have A v Ai v RG(N(R′)) by iterative application of Lemma 5.3.7, which says that
A v Expand(A), and Lemma 5.3.10, A v RG(N(R′)) ⇒ Expand(A) v RG(N(R′)),
respectively. Let ni ∈ N be the number of states of Merge(Ai). We have ni ≤ m, i.e.
Merge(Ai) cannot have more states than RG(N(R′)), as follows: Pick a word ws for
each state s of Merge(Ai) so that ı ws−→ s. Each state separation problem in Merge(Ai) is
solvable by definition, so select a set of regions that solve all state separation problems
of Merge(Ai). Next, these regions are transferred to RG(N(R′)) as outlined above. By
Merge(Ai) v RG(N(R′)), every word ws is also enabled in the initial marking of N(R′).
The transferred regions ensure that none of these words reach the same marking in
N(R′). Thus, RG(N(R′)) has at least as many states as Merge(Ai). This also provides
an upper bound on the size of Expand(Ai): It has at most m · (1 + |T |) states, since at
most one state is added per state and label.

Since there are only finitely many different5 lts with an upper bound on the number
of states and a fixed alphabet, at least one lts A′ must appear infinitely often in the
chain (Ai)i∈N. By Lemma 5.3.8, each result of the expand function is deterministic and
reachable, which applies to each Ai with i > 0. Thus, by Lemma 5.1.5 the preorder v
is in fact a partial order in this setting. If some element appears twice in a partially
ordered sequence, it must also appear twice consecutively6 and is a fixed point of the
underlying function. Thus A′ = A∗ is a fixed point of the Expand-function.

Next we want to show that A∗ can be solved by a Petri net and that it is the least over-
approximation Approx(A) of A. Since Expand(A∗) = A∗ holds, we have SSPunsolv(A

∗) =
∅ = ESSPunsolv(A

∗) by definition of the Expand-function. By Theorem 3.2.2, an lts
without unsolvable separation problems is Petri net solvable, so A∗ can be solved by a
Petri net N(R) for a suitable set R of regions that solve all separation problems. By
iterated application of Lemma 5.3.10, we have that for all Petri netsN ′ with A v RG(N ′)
also A∗ v RG(N ′).

5Up to isomorphism.
6A v Aj v A ⇒ A = Aj by Lemma 5.1.5. So if Ai = Ak for i ≤ j ≤ k, then also Ai = Aj = Ak.
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Figure 5.6.: An lts A, an over-approximation A2 and two Petri nets N and N ′ further
over-approximating A.

5.4. Subclasses of Petri Nets

The algorithm for computing the minimal Petri net solvable over-approximation can
easily be defined for subclasses of nets: The construction of Expand(A) is based on the
sets of unsolvable separation problems. These sets can also be defined relatively to a
subclass. The basic arguments for the correctness of this construction stay the same,
but it is not guaranteed to terminate.

For example, consider place-output-nonbranching Petri nets, which means that for each
place, at most one transition consumes tokens from it. Repeatedly applying the ex-
pansion operation with respect to place-output-nonbranching synthesis to the lts A in
Figure 5.6 does not reach a fixed point7. This means that Merge(A) and Expand(A)
are defined as before, but the sets of unsolvable separation problems now contain all
separation problems which cannot be solved by any region satisfying the place-output-
nonbranching property. Because of the two parallel edges with labels a and b, these two
labels must have the same effect in any region. Place-output-nonbranching means that
each place has at most one transition in its postset, so it is not possible for a and b to
both consume tokens, which means these transitions must have empty presets. This,
in turn, means that they are always enabled. Thus, each expansion step appends two
new states to this lts that are reached via a and b, respectively. The next step will then
merge these two states since they correspond to an unsolvable state separation problem
and append two new states. An intermediate result A2 = Expand(Expand(A)) is shown
in Figure 5.6. If this operation were continued infinitely often, the result would be the
reachability graph of the Petri net N from the same figure. This Petri net is unbounded,
meaning that it has infinitely many reachable markings.

Thus, this example shows that Theorem 5.2.2, which states that the minimal over-
approximation is finite, i.e. by a bounded Petri net, does not hold for place-output-
nonbranching Petri net over-approximation. If the requirement for boundedness is added
to the definition of the minimal over-approximation, i.e. we ask for the minimal Petri net
solvable over-approximation by a bounded Petri net, the result is the Petri net N ′ from
Figure 5.6. This Petri net has two transitions that are always enabled and do not modify

7Without the restriction to place-output-nonbranching Petri nets, A is Petri net solvable, i.e.
Expand(A) = A.
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the marking. However, this Petri net cannot be computed by the presented algorithm.
This is because boundedness is shown based on Lemma 3.1.6, which introduced comple-
ment regions, i.e. regions where the forward and backward weight functions F and B are
swapped. This Lemma does not hold for arbitrary subclasses of nets. For example, the
place p of the Petri net N in Figure 5.6 is no longer place-output-nonbranching when
complemented, because the complement has two transitions in its postset. Complement-
ary regions were used to show that only finitely many markings are reachable. Without
complementary regions, it is possible that the minimal over-approximation has infin-
itely many reachable markings, as this example shows. Since the algorithm constructs
the minimal over-approximation iteratively, it cannot produce an infinite lts in a finite
number of steps.

In the remainder of the section we will show that the algorithm works for some other
subclasses. From the above considerations we can see that a subclass should allow the
complementation of regions to be compatible with the algorithm. Looking at the sub-
classes introduced in Section 4.1, only plain, pure, (generalised) T-net, (generalised)
marked graph, and k-bounded, plus combinations of these subclasses, allow comple-
mentation, because the other subclasses make different requirements for forward and
backward flows. Since all of these subclasses make the same requirements on the for-
ward and backward flows of a place, Lemma 3.1.6 holds for them:

Lemma 5.4.1. Let r be a region of a finite lts A and r its complement according
to Lemma 3.1.6. Then r belongs to a combination of the net subclasses plain, pure,
(generalised) T-net, (generalised) marked graph, and k-bounded, if and only if r does.

Proof. The construction of Lemma 3.1.6 transforms a region r = (R,B,F) into the
complement r = (k−R,F ,B). This construction preserves the considered subclasses.

Lemma 5.1.6 also holds with respect to these subclasses:

Lemma 5.4.2. Let A1 and A2 be finite lts with A1 v A2 via f , and let r = (R,B,F)
be a region of A2. Then the region f ◦ r := (f ◦R,B,F) of A1 belongs to a combination
of the net subclasses plain, pure, (generalised) T-net, (generalised) marked graph, and
k-bounded, if and only if r does.

Proof. Lemma 5.1.6 showed that f ◦ r is a region of A1. The functions B and F are the
same in r and f ◦ r. Since the subclasses plain, pure, T-net and marked graph restrict
only the functions B and F , these subclasses are preserved and only k-boundedness still
has to be considered. For k-boundedness we have to show that f ◦ R does not produce
values above k. However, the image of this function is a subset of the image of R, so
k-boundedness is preserved, too.

The above lemma is needed to show that Lemmas 5.3.9 and 5.3.10 also hold for our
subclasses:
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Lemma 5.4.3. Let A = (S,Σ,→, ı) be a reachable lts. There is a bijection between
regions of A and regions of Expand(A) that preserves the value R(ı) of the initial
state and the functions B and F of a region (R,B,F), where all regions belong to
a combination of the subclasses plain, pure, (generalised) T-net, (generalised) marked
graph, and k-bounded.

Lemma 5.4.4. Let A = (S,Σ,→, ı) be a reachable lts and N = (P, T, F,M0) a Petri
net. If A v RG(N), then also Expand(A) v RG(N), where the expansion operator is
understood relative to a combination of the subclasses plain, pure, (generalised) T-net,
(generalised) marked graph, and k-bounded and N is also a member of the same subclass.

Proof for Lemma 5.4.3 and 5.4.4. The details of both proofs are unchanged, so they will
not be repeated. The only new insight is for k-boundedness: If an unsolvable event/state
separation problem (s, t) exists, the expansion operator adds a new state s([s],t) that is
reachable from s via t. This state could be assigned more than k tokens, but then the
region’s complement would assign a negative number of tokens. Thus, the complement
region would in fact solve the event/state separation problem (s, t), which was assumed
to be unsolvable, and we arrive at a contradiction.

We can now prove the correctness of the algorithm with respect to subclasses:

Theorem 5.4.5. Given a finite and reachable lts A, the chain defined by A0 = A and
Ai+1 = Expand(Ai) with respect to a combination of the net subclasses plain, pure,
(generalised) T-net, (generalised) marked graph, and k-bounded, reaches a fixed point
A∗ (up to isomorphism), there is a Petri net N from the same subclass solving A∗, and
RG(N) is the least Petri net solvable over-approximation Approx(A) of A, i.e. for all
Petri nets N ′ with A v RG(N ′), also A∗ v RG(N ′).

Proof. The arguments from the proof of Theorem 5.3.11 can mostly be reused: By the
argument above, a minimal over-approximation exists, and since Lemma 5.4.1 allows
complementation of places, the minimal over-approximation must be finite (see proof of
Lemma 5.2.1).

We have A v Ai v RG(N(R′)) by iterative application of Lemma 5.3.7 (which says
that A v Expand(A) and is not influenced by subclasses), and Lemma 5.4.4 (A v
RG(N(R′)) ⇒ Expand(A) v RG(N(R′))), respectively. There is an upper bound on
the number of states of each lts Ai. Since there are only finitely many different lts with
an upper bound on the number of states and a fixed alphabet, at least some lts A′ must
appear infinitely often and this lts is then a fixed point A∗ of the expansion operator by
monotonicity. See the proof of Theorem 5.3.11 for more details.

Because A∗ is a fixed point of the expansion operator, it has no unsolvable separation
problems, which means by Theorem 3.2.2 that it can be solved by a Petri net. By iterative
application of Lemma 5.4.4, for all Petri nets N ′ with A v RG(N ′) and belonging to our
subclass, also A∗ v RG(N ′) holds, so that A∗ is the minimal over-approximation.
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Figure 5.7.: An lts A, its minimal over-approximation Approx(A), its limited unfolding
U(A), and a Petri net N with RG(N) = U(A).
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Figure 5.8.: An lts A and its limited unfolding U(A) [BBD15, Figure 2.6].

5.5. Over-Approximation of Regular Languages

The language of an lts is the set of sequences that are possible in its initial state, i.e.
L(A) = {w ∈ Σ∗ | ı w−→}. This definition can be extended to Petri nets through their
reachability graphs, i.e. L(N) = L(RG(N)). Language inclusion L(A) ⊆ L(B) is a
preorder between lts and can be used to define a minimal over-approximation, too.
By the definition above, the languages that are considered here are prefix closed, i.e.
if ww′ ∈ L, then also w ∈ L. Regular languages [HU79] are a well-known class of
languages. A regular language can be represented by an lts if and only if it is prefix
closed.

The minimal over-approximation according to v that was so far studied in this chapter
does not guarantee minimality according to language-inclusion. For example, on the left
of Figure 5.7, there is an lts A and its minimal over-approximation Approx(A). These
two lts do not have the same language, since L(A) = {ε, a, b, ab} and L(Approx(A)) =
{a}∗ ∪ {wb | w ∈ {a}∗}. For example, aa is only possible in Approx(A). However,
the Petri net N has a reachability graph isomorphic to U(A), both shown in the same
figure, and has the same language as A. Thus, A can be solved exactly up to language-
equivalence, but Approx(A), its minimal over-approximation according to v, is not a
Petri net with the same language. This means that minimality according to v does not
guarantee minimality according to language-inclusion.
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Minimal over-approximation with respect to language inclusion was already studied in
the literature. In [BBD15], a limited unfolding U(A) of an lts A is defined. It changes
the lts so that paths that reach the same state, e.g. ı b−→ s2 and ı

ab−→ s2 in A from
Figure 5.7, now reach different states in U(A). Examples of limited unfoldings are
shown in Figures 5.7 and 5.8. In detail, in Definition 5.5.1 the states of the given lts are
replaced with words that reach this state. Each state has the same outgoing edges as
in the original lts. However, when some state is visited twice by a given word, instead
of continuing the unfolding, a loop is introduced to the prefix that already reached the
current state. For example, in the lts A of Figure 5.8, both ab and abcef reach the same
state. Thus, there is no state abcef in U(A), but instead the outgoing edge with label f
from state abce goes to ab.

Definition 5.5.1 (Limited unfolding [BBD15]). Let A = (S,Σ,→, ı) be a deterministic
lts. Its limited unfolding U(A) is the lts U(A) = (S′,Σ,→′, ε) with S′ = {w ∈ L(A) |
∀w1, w2, w3 ∈ Σ∗, s, s′ ∈ S : (w = w1w2w3 ∧ w2 6= ε ∧ ı

w1−→ s
w2−→ s′) ⇒ s 6= s′} being

the set of words from L(A) that do not visit any state twice and →′ = {(w, t, w′) ∈
S′×Σ×S′ | w′ = wt ∈ S′ ∨∃s ∈ S,w′′ ∈ Σ∗ : w′w′′ = w ∧ ı wt−→ s∧ ı w′−→ s}, which either
appends a label to the current word if the corresponding state was not visited before, or
else goes back to the (unique) prefix that corresponds to the new state.

The interest in the limited unfolding stems from the following theorem, which relates
the unfolding to lts homomorphisms:

Theorem 5.5.2 ([BBD15, Proposition 7.10]). Let A be a finite, deterministic, and
reachable lts. For any bounded Petri net N , L(A) ⊆ L(N) if and only if U(A) v RG(N).

Proof. (⇐): Assuming U(A) v RG(N) via f , we have L(U(A)) ⊆ L(N): For any
ı

w−→ in U(A), also f(ı)
w−→ in RG(N) by definition of an lts homomorphism. Since

L(A) = L(U(A)) by construction, the conclusion follows.

(⇒): Assuming L(A) ⊆ L(N), we define a function f from states of U(A) to markings of
N . The states of U(A) are words w ∈ L(A) ⊆ L(N), so w can be mapped to the marking
M of N that is reached via w, i.e. M0[w〉f(w). Such a marking exists by assumption
and is unique since RG(N) is deterministic by Lemma 2.0.8 and U(A) is deterministic
by construction. We want to show that f is an lts homomorphism, in which case it
witnesses U(A) v RG(N). Obviously f(ε) = M0, so it only remains to show that if
w

t−→ w′ in U(A), then also f(w)[t〉f(w′) in RG(N). If w′ = wt, then f(w′) is determined
via f(w)[t〉f(w′) and nothing remains to show.

Thus, assume that w can be decomposed into w = w′w′′ so that there is a state s of A
with ı

wt−→ s and ı
w′−→ s. In this case there is a cycle s w′′t−−→ s in U(A). Since s is reached

via w′, for all k ∈ N we have w′(w′′t)k ∈ L(U(A)) = L(A) ⊆ L(N). Now, w′′t may not
change the marking of the Petri net by the marking equation from Lemma 2.0.12: The
change in number of tokens when firing w′′t is C · Ψ(w′′t) by this lemma. Since every
w′(w′′t)k can be fired from the initial marking of N , we get infinitely many different
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reachable markings if w′′t changes the marking of the Petri net. This contradicts the
assumption that N is a bounded Petri net. Thus, C · Ψ(w′′t) is the null vector, which
means that wt = w′w′′t reaches the same marking in N as w′, i.e. f(w)[t〉f(w′).

Combining the above theorem with Theorem 5.2.2, which showed that Approx(A) is
the minimal Petri net solvable over-approximation according to v, allows to do minimal
over-approximation up to language-inclusion by calculating Approx(U(A)):

Corollary 5.5.3. Given a finite and deterministic lts A, for any bounded Petri net N
with L(A) ⊆ L(N), also L(Approx(U(A))) ⊆ L(N).

Furthermore, this can be used for synthesis up to language equivalence, because if any
Petri net is language-equivalent to A, then by the previous corollary, also L(A) =
L(Approx(U(A))):

Corollary 5.5.4. Given a finite and deterministic lts A, there is a bounded Petri net
N with L(A) = L(N) if and only if L(A) = L(Approx(U(A))).

Since the arguments in this section are based on languages and not specific subclasses
of Petri nets, these two corollaries also hold with respect to the subclasses of nets that
were considered in Section 5.4.

Another attempt at minimal over-approximation with respect to language inclusion was
made in [CCK10; Car+08], but their result is incorrect. The algorithm from these papers
generate the lts Approx(A) as the minimal language-based over-approximation of the lts
A in Figure 5.7. However, its limited unfolding U(A), and thus its language L(A), can
be solved exactly as shown by the Petri net N from the same figure. The error is in a
statement similar to Lemma 5.1.6, but for language inclusion: If L(A) ⊆ L(B) for two
deterministic lts, then every region of B can be transferred into a region of A8. However,
the extension [[p]] of the place p of N in Figure 5.7 is a region of U(A) that cannot be
transferred into a region of A, since it would have to assign two different token counts
to the state s2 of A: By ı

b−→ s2, s2 gets one token, but by ı
ab−→ s2 it has no tokens.

Thus, this approach for over-approximating regular languages with bounded Petri nets
does not work.

5.6. Conclusion

In this chapter, an algorithm for minimal Petri net over-approximation was introduced.
The algorithm modifies a given lts so that it becomes solvable by a Petri net. Minimality
is here understood with respect to a structural preorder, which we call lts homomorphism.
This procedure is also possible for some, but not all, of the subclasses of nets that

8The papers actually use the classic simulation preorder. Lemma 3 and Lemma 11.3 show that L(A) ⊆
L(B) implies that B can simulate A. Lemma 2 and Lemma 11.2 then claim that simulation implies
that regions can be transferred.
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were introduced in the previous chapter. This construction was lifted to minimal over-
approximation up to language-inclusion via a construction from [BBD15].

In future work, more subclasses of Petri nets for which this algorithm works should
be identified. For example, even though we have seen that targeting place-output-
nonbranching Petri nets introduces problems, it might very well be possible that k-
bounded place-output-nonbranching Petri nets can be produced. The intuition here is
that no arbitrarily long paths can be generated since at some point the k-boundedness
condition causes state separation problems to become unsolvable. This would then result
in a shorter path and thus enforce an upper bound on the length of paths, which would
ensure termination of the algorithm.

In the literature, mainly approximation according to language inclusion was investigated
[BBD95; Dar98; Dar03; LMJ07], which is different to our preorder that also considers
the structure of the lts. An exception is [BBD15], which calls an lts homomorphism
a simulation and introduces an algorithm for minimal over-approximation. For this,
extremal regions are introduced and it is shown that taking all extremal regions produces
a minimal over-approximation. Their algorithm works for bounded Petri nets, which is
the setting that was examined here, as well as for unbounded Petri nets, which our
algorithm cannot produce. It can also be amended for pure, distributed and place-
output-nonbranching Petri nets [BBD15; Dar00], but most9 of the subclasses considered
in Section 5.4 are not expressible. For language-based over-approximation based on
extremal regions, they introduced the limited unfolding that was also presented here.

There is also the field of process discovery, where observations are used to generate
a model of a business process [Aal16]. Such a model can be a Petri net that only
approximates the observations. However, the focus in process discovery is to generate
simple Petri nets with e.g. few places, instead of having a minimal approximation.

An open question about the algorithm that was introduced in this chapter is its com-
plexity. As indicated in Section 3.4, this will depend on the specific subclass of Petri
nets that is used. For simplicity, we now consider only general Petri nets without further
restrictions. The approach based on extremal regions has at least exponential complex-
ity since there can be exponentially many extremal regions for an lts [BBD15]. Our
approach needs the sets SSPunsolv(A) and ESSPunsolv(A), which can be computed in
polynomial time [BBD95; BD96], so a single application of the expansion operator can
be performed in polynomial time. However, the number of iterations that the algorithm
needs is unknown and therefore needs to be approximated. Also, it might be possible to
directly approximate the size of Approx(A) based on the size of A.

One promising approach for this are geometrical characterisations of separation problems
[EW17; BDS17; SW18]. These characterisations use the reaching Parikh vectors Ψs for a
state s according to an arbitrary spanning tree that were introduced in Definition 3.3.1.
In an lts with only trivial cycles10 this characterisation shows that all state separation

9Binary conflict-free Petri nets might be possible, but this was not examined in the literature.
10The lts must be a directed acyclic graph and no two different states s and s′ may have Ψs = Ψs′ .
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problems are solvable and that an event/state separation problem (s, t) is unsolvable if
Ψs is in the convex hull of all Ψs′ for states s′ with s′

t−→. The size of the convex hull
provides an upper bound for the number of states that have to enable t, thus the size of
the union of all the convex hulls provide an upper bound on the size of the minimal over-
approximation. The size of a convex hull is polynomial. To summarise, the conjecture
is that Approx(A) has polynomial size in the size of the input and can be computed in
polynomial time when not targeting a subclass.

Another interesting challenge is maximal under-approximations of lts, i.e. instead of
adding behaviour to the input, some behaviour is removed. However, it is easy to find
examples that have no unique under-approximation. For example, consider an lts where
ab reaches another state than ba. Since these two paths have the same Parikh vector,
they must reach the same marking in a Petri net by Lemma 2.0.12 (marking equation),
and this behaviour cannot be reproduced by a Petri net. To under-approximate this, the
last event from either of the paths can be removed. Thus, there is no unique maximal
under-approximation.
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In 2012 and 2013, twelve master students at the University of Oldenburg, among them
the author of this document, developed the tool APT [Bor+13; BS15]. This group was
founded, instructed and supervised by Prof. Dr. Eike Best with help from PD. Dr. Elke
Wilkeit, Dr. Hans Fleischhack, and Dipl.-Inform. Thomas Strathmann. APT stands for
Analysis of Petri nets and Transition systems and provides various algorithms dealing
with Petri nets and lts, for example, computing the reachability graph of a Petri net or
checking an lts for determinism. Besides providing algorithms, of course it also provides
the necessary data structures to represent Petri nets and lts and supports various file
formats. It is available online at https://github.com/CvO-Theory/apt as a command
line application, plus a graphical user interface is available at https://github.com/
CvO-Theory/apt-gui.

Beginning in 2014, the author of this thesis extended APT with an implementation of
Petri net synthesis. This led to synthesis targeting subclasses as presented in Chapter 4
and the algorithm for minimal Petri net solvable over-approximation from Chapter 5. In
this chapter, we will see how this implementation can be used and the design is briefly
presented.

6.1. The User Interface

APT is organised into modules. The synthesis algorithm from Chapter 4 is available in
the synthesize-module. Since describing the exact file format is beyond the scope of
this document, the following examples will use the regular_language_to_lts-module
to generate an lts from the unique minimal automaton1 of a regular language. The
resulting lts is given via a pipe to another invocation of APT, which then reads it from
its standard input, which is requested via the parameter -.

For example, the extended2 regular expression ((ab|ba)c){2} produces the lts shown in
Figure 6.1. This lts can be synthesised into a Petri net via:3

./apt.sh reg '((ab|ba)c){2}' | ./apt.sh synthesize pure -

1Since finite automata have final states while lts do not, this module actually generates an lts whose
language is the prefix closure of the given regular language.

2For a regular expression r, r{n} is equivalent to n repetitions of r.
3This assumes a Unix system. Under Windows a temporary file is needed since pipes are not supported.

Also, APT allows to use a prefix of the name of a module as long as this is unique.
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Figure 6.1.: Lts generated from the extended regular expression ((ab|ba)c){2}.
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Figure 6.2.: Pure Petri net generated for the lts in Figure 6.1.

This command first uses APT to generate an lts from the given regular expression and
then passes that on to the synthesize-module. The next argument, pure, requests
that a pure solution to this lts is produced. This call produces the Petri net shown in
Figure 6.2.

If we want more information about this Petri net, we can request the pseudo-property
verbose, which means that APT lists the event/state separation problems that are
solved by each region:

$ ./apt.sh reg '((ab|ba)c){2}' | ./apt.sh synthesize pure,verbose -
success: Yes
solvedEventStateSeparationProblems:
Region { init=0, 0:a:0, 0:b:1, 1:c:0 }:

separates event c at states [s0, s1, s4, s5, s8]
[...]

The region shown in this example disables transition c in, for example, state s0. It has
no token initially (init=0), but transition b produces one (0:b:1) while transition c
consumes one (1:c:0). It corresponds to the place p in Figure 6.2.

If, instead of asking for a pure solution, we want a 1-bounded solution, then synthesis
fails, because some separation problems are unsolvable.

$ ./apt.sh reg '((ab|ba)c){2}' | ./apt.sh synthesize 1-bounded -
success: No
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failedStateSeparationProblems:
[[s1, s5], [s2, s6], [s0, s4, s8], [s3, s7]]

failedEventStateSeparationProblems: {a=[s8], b=[s8]}

Here we can see that a variety of separation problems were not solvable. The module
provides the equivalence classes for unsolvable state separation problems and it provides
the list of unsolvable event/state separation problems.

Chapter 5 introduced an algorithm for dealing with unsolvable lts by over-approximating
the input. This algorithm is implemented in the overapproximate_synthesize-module
and can be used via ./apt.sh reg '((ab|ba)c){2}' | ./apt.sh over 1-bounded -.
With this invocation, APT produces the Petri net which was already shown in Figure 2.1
on page 5 and that is equivalent to the Petri net in Figure 6.2, except for the two places
that limit a and b to fire at most twice.

To see a full list of supported properties, the modules can be called without providing
an input, e.g. ./apt.sh synth. For example, this shows that the synthesize-module
supports the option upto-language-equivalence, which internally computes the lim-
ited unfolding mentioned in Section 5.5. This operation is also available directly as
the limited_unfolding-module. Thus, even though minimal over-approximation up to
language equivalence is not available directly, it can be achieved by over-approximating
the limited unfolding of an lts (see Corollary 5.5.3):4

./apt.sh reg 'b|ab' | ./apt.sh limited - - | ./apt.sh over none -

This command first calls the regular_language_to_lts-module to generate an lts. This
lts is unfolded by the next invocation of APT. Finally, the minimal over-approximation
according to Petri nets without any restrictions—subclass none—is computed.

6.2. Implemented Synthesis Algorithms

The synthesis approach that was developed in Chapters 3 and 4 supports a large variety
of subclasses. It characterises regions via a satisfiability modulo theories (SMT) problem
for the theory of integers, i.e. linear inequalities together with boolean combinations that
have to be solved in the integers. Specifically, the implementation uses the QF_LIA logic
defined in the SMT-LIB standard [BST10] and uses the SMTInterpol library [CHN13]
to solve the constructed systems.

While this approach is very generic and supports many subclasses, it is also not very
efficient. Thus, a variety of algorithms from the literature were implemented addition-
ally. Based on the input lts and the selected subclass, the best applicable algorithm

4The input here is the lts A from Figure 5.7 on page 47.
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is selected. The implementation of the following classes can be found in the sub-
folder src/module/uniol/apt/analysis/synthesize/separation/ of the APT source
code.

• For pure and distributed Petri nets, BasicPureSeparation implements a dedicated
algorithm from [BBD15] that could have polynomial performance5.

• BasicImpureSeparation extends BasicPureSeparation to also provide solutions
that are not pure [BBD15].

• PlainPureSeparation can produce pure and plain Petri nets. This algorithm is a
trivial extension of BasicPureSeparation that is not found in the literature.

• A dedicated algorithm for 1-bounded synthesis based on [CKLY98; BBD15] is im-
plemented in ElementarySeparation. This algorithm also supports the subclasses
plain, pure, and distributed.

• The algorithm for 1-bounded synthesis was extended by its authors to k-bounded
synthesis [Car+08; CCK10]. This is implemented in KBoundedSeparation. The
minimisation step of this algorithm is not implemented for reasons outlined in
Section 4.3.

• The state spaces of connected marked graph Petri nets were characterised graph
theoretically in [BD14] in such a way that a solution can be directly constructed
based on the distance between special states that are only reached by, or are only
left by a single event. This is implemented in MarkedGraphSeparation and is the
only implementation which does not reduce the existence of regions to an inequality
system or a combinatorial problem, which means that it can be a lot faster than
the other implementations. Thus, this implementation is used when the input lts
satisfies the needed structural conditions even when no marked graph solution is
explicitly requested.

• Synthesis of place-output-nonbranching nets is examined in [BDS18]. This al-
gorithm is implemented in OutputNonbranchingSeparation and consists of struc-
tural preconditions as well as smaller inequality systems that need to be solved.

• The general algorithm used when no specialised implementation exists can be found
in InequalitySystemSeparation.

In addition to these implementations of algorithms that directly produce regions, there
is also the FactorisationSynthesizer. This class is based on the concepts of products
of lts and sums of Petri nets, which will be formally introduced in Section 8.3.4. Given
two Petri nets N1 and N2, their disjoint6 sum N1 ⊕N2 is produced by placing the two

5The algorithm produces homogeneous inequality systems which can be solved in polynomial time.
However, the actually used solver does not have this time guarantee.

6Disjointness refers to their alphabets, meaning that e.g. only one of the Petri nets has a transition for
label a.
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Petri nets next to each other in a single Petri net. The equivalent operation on lts is the
disjoint7 product A1 ⊗A2.

In [Dev18], conditions for factorising an lts A into factors A1 and A2 so that A = A1⊗A2

were developed. Checking these conditions efficiently is an open problem and instead
in [DS18] an efficient algorithm for the context of Petri net synthesis was developed.
This algorithm is implemented in APT. It allows to decompose a complicated input
into two smaller lts that can be synthesised separately and faster. If a factorisation is
not possible, this is detected quickly, so that there is only a low overhead due to the
attempted factorisation.

Even though the characterisation used for MarkedGraphSeparation only works for con-
nected marked graphs, the factorisation allows APT to also synthesise unconnected
marked graphs efficiently.

6.3. Optimisation Strategies

The general algorithm outlined in Chapters 3 and 4 is neither very efficient nor does it
produce simple Petri nets. For example, the Petri nets can have redundant places whose
removal does not modify the shape of the reachability graph. As a first optimisation,
before calculating a new region to solve a given separation problem, the list of already
found regions is checked for a region that already solves this separation problem. This
is a lot faster than computing a new region and leads to smaller Petri nets since each
region corresponds to a place.

Next, for an lts A = (S,Σ,→, ı) there are at most |S| × |Σ| event/state separation
problems while there are 1

2 |S|× (|S|+1) state separation problems. This means that, in
practice, many more state separation problems exist, so the implementation first solves
all event/state separation problems and then computes the equivalence classes of states
that are not yet separated. Most of the time no unsolvable state separation problems
remain.

The two heuristics above improve the performance of APT. The next heuristic specifically
reduces the number of places in a Petri net solution. The intuition is that regions
computed later might also solve separation problems that were already considered earlier.
Thus, as a post-processing step, for each separation problem the list of solving regions
is computed. From each of these sets one region is picked so that the number of regions
is heuristically minimised.

More details on these optimisation strategies can be found in [Sch16b].

7Their alphabets are disjoint.
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6.4. Minimising the Number of Places

The algorithm that was explained in Chapters 3 and 4 produces a system isRegion(r)∧
SP(r, pr) solvable by some vector r, if r is a region and solves the separation problem
pr . The following variant of this algorithm calculates the minimal possible number of
places for a given input. It is implemented in the synthesize-module via the minimize
option.

To find the minimal number of places, first an upper bound ` on the number of places
is needed. This bound can be found by doing normal synthesis as previously explained.
This produces a Petri net with some number ` of places. Now, a system is constructed
to find a solution with `− 1 places: This means that r1 to r`−1 are regions and for each
separation problem pr ∈ SPA, one of the regions r1 to r`−1 solves it. This system is:∧

1≤i≤`−1
isRegion(ri) ∧

∧
pr∈SPA

∨
1≤i≤`−1

SP(ri, pr)

If this system is unsolvable, then there is no Petri net with `− 1 places that solves the
given lts. Otherwise, such a solution is found and the procedure is retried with ` − 2
places. This continues until the minimal number of necessary places is found.

If the minimal number of places according to some subclass from Chapter 4 is sought,
we can simply replace isRegion(ri) with isRegion(ri) ∧ additionalProperties(ri).

One may be tempted to use a binary search for the minimal number of places instead of
the linear search outlined above. However, experimental results suggest that this leads
to a longer running time, because the solver—here that is SMTInterpol—needs a lot
longer to conclude unsolvability of an inequality system than to find a solution, if one
exists. Thus, the number of unsolvable inputs to the solver should be kept small.

6.5. Conclusion and Performance of the Implementation

APT is a tool for working with Petri nets and lts. Originally, APT could only call other
tools for Petri net synthesis. The author extended APT with implementations of Petri
net synthesis and over-approximation. These implementations were presented in this
chapter.

The performance of APT was compared with other implementations and some pro-
posed algorithms in some publications. In [BS15], the basic algorithm implemented
in InequalitySystemSeparation was compared with Synet [Cai99; BCD02], Petrify
[Cor+99; CKLY98; CKLY95], and Genet [CCK09; CCK10; Car+08; CCK08]. Here,
APT showed comparable performance and was for some of the considered examples
faster than some of its competitors. An example for this is shown in Table 6.1, which
shows measurements of the time to synthesise a bit net Petri net. A bit is a Petri net
with two places and two transitions that swap a single token between the places. A bit
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n APT APT-pure Synet Petrify Genet
8 0.60 0.86 138.49 0.13 0.05
10 1.56 2.32 — 1.25 0.31
12 5.71 6.31 — 17.73 2.28
14 24.69 30.48 — 403.67 16.10
16 183.76 212.23 crash — 132.13
18 — — crash OOM —

Table 6.1.: Time in seconds for synthesising a bit net Petri net of size n. Dashes indicate
that the 10 minutes time limit was exceeded. OOM means out of memory.

net of size n has n disconnected bits. APT produces unrestricted Petri nets while APT-
pure targeted pure Petri nets. For large inputs, Synet crashed with a stack overflow and
Petrify exited with a memory allocation error.

In [BDS18], an implementation of a proposed algorithm was compared with other al-
gorithms. The implementation based on the characterisation of marked graphs from
[BD14] won almost all cases. However, it was not applicable in all the considered situ-
ations. The heuristics from Section 6.3 and the minimisation from Section 6.4 were
evaluated in [Sch16b]. Here, it was shown that the optimisation strategy improves per-
formance immensely, while minimisation is expensive.

A new synthesis algorithm was proposed in [Wol18]. A prototype implementation of this
algorithm was compared only with APT, because, after some experimentation, it was
concluded that APT has the strongest performance among the considered tools.
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Part II.

Petri Net Synthesis from
Modal Specifications
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7. Introduction to Modal Specifications

In the first part of this thesis, a given labelled transition system (lts) was assumed. The
task at hand was to find a Petri net with a reachability graph isomorphic to the lts—or
over-approximating the lts if no exact solution exists. This is called Petri net synthesis.
However, lts are quite limited as a specification language used to describe a system that
should be produced. The input already describes the exact behaviour of the system and
no possible choices remain. To allow for more flexibility in the synthesis procedure, the
second part of the document investigates modal specifications as the starting point for
synthesis. So far, there are few1 approaches for this, even though Petri net synthesis from
modal specifications was already desired in the literature, both for an actual application
[Dar05] and out of theoretical interest [BBD15].

In an lts, there are two possibilities for a label in some state: Either an edge with the
label is present, and then the solution must also have it, or there is no edge with the
label and so the label is also not allowed in a solution. Modal specifications add a third
possibility: Some behaviour can be allowed without requiring it to be present.

For example, a simple model of a vending machine is that, after a coin was inserted,
a product, for example, a cup of coffee, is made available and the machine returns to
its initial state. The behaviour of this vending machine could be modelled via an lts.
Such an lts is shown on the left of Figure 7.1. However, when we want to generalise this
model, we run into problems. For example, we cannot allow the machine to also offer
tea without requiring this. Also, we cannot model the possibility for a machine to clean
itself when it is currently not serving a customer. We need a new kind of edge that
allows some label without requiring it.

The needed new kind of edges are the must and may modalities in modal specifications.
On the right of Figure 7.1, a modal transition system is depicted. Its dashed arrows

1The author only knows about [BD04].

coin

coffee

coin

coffee

clean

tea

Figure 7.1.: Models of a vending machine [Kre17].
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Figure 7.2.: The relation between implementation, realisation, and solution.

represent may edges. The meaning of these edges still requires the extended model of
a vending machine to offer coffee, but it could additionally also offer tea. Also, the
machine may clean itself when it is in its initial state, but this is just a possibility and
not a requirement. Also, cleaning and serving tea are independent of each other and the
relation between these is not specified.

While previously lts were solved up to isomorphism, the interpretation of modal trans-
ition systems is closer to bisimulation. This can be seen in the left half of Figure 7.2:
The lts in the middle is an implementation of the modal transition system on the left,
but they are clearly not isomorphic to each other.

The concept of modal specifications is not new and goes back to Hennessy-Milner-Logic
[HM80; HM85], but in the literature these concepts are used to specify families of lts: A
modal specification language comes with a notion expressing that a given lts implements
the modal specification. Thus, there is a notion of implementation that relates modal
specifications and lts, and there is a notion of solution as a Petri net that relates lts and
Petri nets. We combine these notions to define Petri net realisations of modal specifica-
tions: A Petri net realises a modal specification if its reachability graph implements the
specification. This relation is visualised in Figure 7.2 and is a natural combination of
modal specifications and Petri nets.

Modal specifications are already well established in the literature. In this thesis, two
flavours of modal specifications will be used: The modal transition systems that were
already outlined above, and the modal µ-calculus, which consists of formulas.

There are reasons to use both of these specification languages. The modal µ-calculus is
quite expressive and, for example, more powerful than the well-known logics LTL, CTL,
and CTL* [CGR11], as well as modal transition systems. So, by providing algorithms for
this really expressive language, a variety of other specification languages can be handled
as well.

A downside of the modal µ-calculus is that it gives specifications as formulas. It is well
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known that graphical specifications are easier to understand and to reason about than
formulas (see e.g. [Sat+15]). For this reason, modal transition systems (mts) are also
used.

The µ-calculus is more expressive than mts. For example, every mts can be implemented,
i.e. false is not expressible, and a modal transition system cannot express disjunctive
properties, such as a vending machine that should sell at least either tea or coffee, without
requiring both options. There are extensions of mts that allow to express this [Kre17],
for example, disjunctive modal transition systems [LX90], but they will not be used
here. Instead, the limitations of mts will be used to show more general results. We show
that Petri net synthesis from mts is undecidable. This result automatically transfers to
the modal µ-calculus and other specification languages that are more expressive than
mts. This proof will actually be done on a subset of the modal µ-calculus that is just as
expressive as mts, so that conjunction can be used for better readability.

In the following Section 7.1, modal transition systems are formally introduced. Sec-
tion 7.2 presents the modal µ-calculus, and finally Section 7.3 restricts the modal
µ-calculus syntactically, so that the result is equivalent to mts.

7.1. Modal Transition Systems

Modal transition systems [Lar89] are an extension of lts. A single mts specifies a family
of lts, which are called its implementations. Similar to an lts, an mts has states and
labelled edges between these states. Mts generalise this by having two kinds of edges,
must edges and may edges. Roughly speaking, a must edge has to be present in any
implementation while a may edge is optional and can be left out. These edges are
similar to edges in lts in that they have a source state, a label, and a target state.

Definition 7.1.1 (Modal transition system). A modal transition system (mts) M is a
tuple M = (S,Σ, , , ı), where S is a finite set of states, Σ is an alphabet, ı ∈ S is
the initial state, ⊆ S × Σ × S is the set of may edges and ⊆ S × Σ × S is the
set of must edges satisfying ⊆ . Both s

w
s′ and s

w
s′ are defined analogously to

s
w−→ s′ in lts for words w ∈ Σ∗.

An example of an mts is given on the left of Figure 7.2. Its initial state ı is indicated
with an incoming arrow. The other states are s1 to s5. May edges are drawn in grey
and are dashed. An example of a may edge is the edge going from s5 to ı with label
c. Must edges are drawn as solid lines and implicitly also represent the underlying may
edge. Formally, this mts is (S,Σ, , , ı) with states S = {ı, s1, s2, s3, s4, s5}, alphabet
Σ = {a, b, c}, must edges = {(ı, a, s1), (s1, b, s2), (s2, c, s3), (ı, b, s4), (s4, a, s5)}, and
may edges = ∪ {(s3, a, s3), (s3, b, s3), (s3, c, s3), (s5, c, ı)}.

Some possible implementations of this mts are shown in Figure 7.3. The first lts has
the minimal required behaviour from the specification. The implementation relation
for mts only considers the presence of allowed (may edges) and required (must edges)
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Figure 7.3.: Example implementations for the mts on the left of Figure 7.2.

behaviour, but, e.g., does not require that paths that lead to the same state in the spe-
cification also do so in the implementation. Put differently, the implementation relation
is similar to bisimulation and not to isomorphism. The second example highlights this.
Each state implements the corresponding state of the specification, e.g. ı̂′ implements ı.
Additionally, state ŝ′2 also implements state s5. Plus, the path ı

abc
s3 corresponds to a

loop ı̂′
abc−−→ ı̂′ in the implementation. Thus, ı̂′ also implements s3. Since every label has

a may edge around s3, all states that are reachable from ı̂′ in the implementation, i.e.
all states, also implement s3.

The next definition formally introduces when an lts implements an mts. It is based
on the definition of refinement of [Lar89], but is specialised to the case that the more
concrete specification is an lts. This definition uses a relation between states of the mts
and the lts. For two related states, if the state of the mts has a must edge, then the state
of the lts must have an edge with the same label, and these two edges lead to states that
are again in relation to each other. Similarly, each edge of the implementation must be
allowed by a may edge in the specification.

Definition 7.1.2 (Implementation). An lts A = (SA,Σ,→, ıA) is an implementation
via R ⊆ SA×SM of an mts M = (SM ,Σ, , , ıM ) if (ıA, ıM ) ∈ R and for all (q, s) ∈ R
and all a ∈ Σ:

• ∀q′ ∈ SA : q
a−→ q′ ⇒ ∃s′ ∈ SM : s

a
s′ ∧ (q′, s′) ∈ R,

• ∀s′ ∈ SM : s
a

s′ ⇒ ∃q′ ∈ SA : q
a−→ q′ ∧ (q′, s′) ∈ R.

If (q, s) ∈ R, we say that q implements s (via R). If A is an implementation of M via
some relation R, we call R an implementation relation and write A |= M (via R).

For example, the second lts in Figure 7.3 implements the mts from Figure 7.2 via the rela-
tion R = {(̂ı′, ı), (ŝ4′, s4), (ŝ2′, s5), (ŝ1′, s1), (ŝ2′, s2), (̂ı′, s3), (ŝ1′, s3), (ŝ2′, s3), (ŝ4′, s3)}.

It was already announced above that every mts can be implemented. This is formalised
in the following lemma.

Lemma 7.1.3. Given an mts M = (S,Σ, , , ı), both (S,Σ, , ı) and (S,Σ, , ı)
implement M .
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Proof. The implementation is with the identity relation id = {(s, s) | s ∈ S}. This
satisfies (ı, ı) ∈ id, as required, and each edge s

a−→ s′ in the lts is also a may edge in the
mts, since by definition of mts ⊆ holds. For the same reason, every must edge of
the mts is implemented correctly.

Similar to lts, an mts is called deterministic if no state has two different outgoing edges
with the same label.

Definition 7.1.4 (Determinism). An mts M = (S,Σ, , , ı) is deterministic if the lts
(S,Σ, , ı) is deterministic.

7.2. Modal µ-Calculus

The modal µ-calculus [Koz83; AN01] is an extension of the Hennessy-Milner-Logic
[HM80; HM85] with fixed points. Just like modal transition systems, the µ-calculus can
be used to describe classes of lts. While modal transition systems are an automaton-
based specification language, meaning that they have states and edges, the µ-calculus is
a logical specification language based on formulas.

An example of a formula of the modal µ-calculus is false, the inconsistent specification
that is never satisfied. This already highlights a difference to modal transition systems,
because every modal transition system is implementable (see Lemma 7.1.3). We will
later see that the µ-calculus is indeed more expressive than mts, meaning that every mts
can be translated into a formula of the µ-calculus, but not vice versa.

The modalities that are available in the modal µ-calculus are the box modality [a],
which is the universal modality, and the diamond modality 〈a〉, which is the existential
modality, where a ∈ Σ is some label. These modalities specify what should happen after
a label a occurred. In terms of an lts, this means that the state, in which we currently
evaluate the formula, is left via an a-edge leading to another state. For example, [a]false
expresses that after label a the inconsistent specification must hold, which, of course, is
not possible. Thus, this formula asserts that no a-edge is present.

The difference between the two modalities is similar to the difference between an exist-
ential and an universal quantifier: [a]false means that after all possible a-edges false
holds while 〈a〉false represents that there is an a-edge that leads to a state satisfying
false. For deterministic lts, which will be our focus, this corresponds2 to the may and
must edges of mts: An existential modality and a must edge both require some edge to
be present in the lts, while a universal modality and a may edge do not require it.

The logic outlined so far, together with the usual logical connectives of disjunction,
conjunction, and negation, is the Hennessy-Milner-Logic [HM80]. Since all formulas
must be finite and a formula can only have finitely many modalities, this logic only

2This is only a rough correspondence, because the µ-calculus implicitly allows everything that is not
forbidden, while mts forbid everything not explicitly allowed (cf. Figure 7.5 on page 76).
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allows to specify finite behaviour. For example, 〈b〉true ∨ 〈a〉〈b〉true ∨ 〈a〉〈a〉〈b〉true
expresses that after at most two a-edges, b is possible, but the logic cannot express that
after a finite number of a-edges, b becomes possible. The addition to the calculus that
makes this possible are the fixed point operators µ and ν, together with variables such
as X. They allow to write recursive formulas such as µX.(〈a〉X∨〈b〉true). This formula
holds in a state that enables label b, i.e. which satisfies 〈b〉true, but this formula also
holds in a state that allows a sequence of a’s and then enables b.

Definition 7.2.1 (Syntax of µ-calculus). Given a set of variables Var and an alphabet
Σ, the set of all formulas of the modal µ-calculus is defined recursively:

β1, β2 ::= true | false | X | β1 ∧ β2 | β1 ∨ β2 | 〈a〉β1 | [a]β1 | νX.β1 | µX.β1

where X ∈ Var is a variable and a ∈ Σ is an event. A variable X ∈ Var is free in β, if
it is not under the scope of any fixed point operator µX or νX. A formula without free
variables is closed.

This definition does not include negation. Negation is later introduced as an abbreviation
in Definition 7.2.5.

Definition 7.2.2 (Precedence rules). To avoid ambiguity, we assume that the unary
operators negation (defined later) and the modalities have highest precedence, followed
by binary operators (conjunction and disjunction). The fixed point operators have lowest
precedence. Where necessary, parentheses can be used.

For example, νX.¬[a]¬X ∨ 〈b〉true is interpreted as νX.((¬([a](¬X))) ∨ (〈b〉true)).

The recursive interpretation of the formula µX.(〈a〉X ∨〈b〉true) is as follows: The inner
formula of the fixed point is 〈a〉X ∨ 〈b〉true and the fixed point binds the variable X.
Substituting false for X results in the formula 〈a〉false ∨ 〈b〉true, which requires a
b-edge to be present, because the first part of the disjunction, 〈a〉false, is unsatisfiable,
since it requires an a-edge to a state satisfying false, which is not possible. Thus, this
formula is equivalent to its second part, which is 〈b〉true. A state satisfies 〈a〉〈b〉true ∨
〈b〉true if it allows either of the sequences ab or b. This second formula was generated
from the first by a substitution from our specification: In 〈a〉X ∨ 〈b〉true, we substitute
〈b〉true for the variable X. If we continue like this, in the next iteration we get the
formula 〈a〉(〈a〉〈b〉true ∨ 〈b〉true) ∨ 〈b〉true. This formula now requires either of the
sequences aab, ab, or b to be present. If this substitution were continued infinitely often,
the resulting (infinite) formula would express that after a finite sequence of label a, label b
becomes enabled. This is the meaning of the fixed point formula µX.(〈a〉X∨〈b〉true).

The difference between the fixed points ν and µ is intuitively in whether they allow
infinite sequences. For example, µX.(〈a〉X∨〈b〉true) only holds if after a finite sequence
consisting only of event a, event b becomes possible. However, νX.(〈a〉X ∨ 〈b〉true) is
also satisfied by a system in which an infinite a-sequence is possible, which means that
the fixed point is recursed infinitely often.
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The interpretation of a formula of the µ-calculus is defined as a set of states of an lts. This
set will contain all states satisfying the formula. Since the syntax allows free occurrence
of variables, a valuation val will be needed that assigns states to free variables.

Definition 7.2.3 (Semantics of µ-calculus). The interpretation JβKval
A of a formula β of

the modal µ-calculus with respect to an lts A = (S,Σ,→, ı) and a valuation val : Var→ 2S

is defined inductively:

JtrueKval
A = S

JfalseKval
A = ∅

JXKval
A = val(X)

J〈a〉β1Kval
A = {s ∈ S | ∃s′ ∈ S : s

a−→ s′ ∧ s′ ∈ Jβ1Kval
A }

J[a]β1Kval
A = {s ∈ S | ∀s′ ∈ S : s

a−→ s′ ⇒ s′ ∈ Jβ1Kval
A }

Jβ1 ∧ β2Kval
A = Jβ1Kval

A ∩ Jβ2Kval
A

Jβ1 ∨ β2Kval
A = Jβ1Kval

A ∪ Jβ2Kval
A

JνX.β1Kval
A =

⋃
{V ⊆ S | Jβ1Kval[V←X]

A ⊇ V }

JµX.β1Kval
A =

⋂
{V ⊆ S | Jβ1Kval[V←X]

A ⊆ V }

where val[V ← X] for V ⊆ S and X ∈ Var is equivalent to the valuation val, except for
val[V ← X](X) = V . If β has no free variables, then the valuation can be left out and
we write JβKA = JβKval

A .

A state s and a valuation val together implement a formula β, written s, val |= β, if and
only if s ∈ JβKval

A . An lts A = (S,Σ,→, ı) and a valuation val implement a formula β,
written A, val |= β, if and only if ı, val |= β. If β has no free variables, the valuation
does not influence the result and we write s |= β for a state s, and A |= β for an lts A.
For a Petri net N , define realisation via its reachability graph: N, val |= β if and only if
RG(N), val |= β, and N |= β if and only if RG(N) |= β. Then, N realises β.

As an example, consider the mts from Figure 7.4. It has two paths. In the upper
path, the word abc is required to be present and this reaches a state where everything is
allowed, which corresponds to true. So, this path roughly corresponds to 〈a〉〈b〉〈c〉true.
In the lower path, the word ba is required and afterwards, if a c-edge is present, we reach
the initial state ı again. This can be expressed as νX.〈b〉〈a〉[c]X, which uses the greatest
fixed point operator since this loop can be taken infinitely often. Combining these two
parts, we arrive at the formula νX.〈a〉〈b〉〈c〉true ∧ 〈b〉〈a〉[c]X.

Note however that this formula does not have the same meaning as the mts from Fig-
ure 7.4. This is, for example, because the mts forbids c in the initial state, because
in an mts a may edge has to be present for some behaviour to be allowed, while in the
µ-calculus, everything not explicitly forbidden is allowed. Thus, the subformula [c]false
needs to be added to the above formula. Doing this in all required places results in a
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Figure 7.4.: An example of an mts that was already shown in Figure 7.2.

quite large and unwieldy formula, so this will only be provided here for the upper path
containing states ı, s1, s2, and s3:

〈a〉([a]false ∧ [c]false ∧ 〈b〉([a]false ∧ [b]false ∧ 〈c〉true)) ∧ [c]false ∧ 〈b〉(. . . )

The relation between mts and the µ-calculus will be further examined in Section 7.3.

The recursive meaning of fixed points that was informally introduced above, namely that
we can unroll a fixed point like µX.β(X) into β(false), β(β(false)), etc., has a formal
basis shown in the next Theorem:

Theorem 7.2.4 (Theorem 1.2.11 of [AN01]). Let A = (S,Σ,→, ı) be a finite lts, X ∈ Var
a variable, val : Var→ 2S a valuation, and β a formula of the modal µ-calculus. Define the
sequences (xi)i∈N and (yi)i∈N via x0 = JfalseKval

A , y0 = JtrueKval
A , xi+1 = JβKval[xi←X]

A ,
and yi+1 = JβKval[yi←X]

A . Then JµX.βKval
A ⊇ xi+1 ⊇ xi and JνX.βKval

A ⊆ yi+1 ⊆ yi for all
i ∈ N. Furthermore, there is an i ∈ N so that JµX.βKval

A = xi and JνX.βKval
A = yi.

The definition of the µ-calculus does not include negation, because negation is defined
as an abbreviation (e.g. [MSS99; BW15]).

Definition 7.2.5 (Negation). Negation in the µ-calculus is defined by the following
rules, where β[V ← X] is the formula β with all free occurrences of X replaced3 by V :

¬true ≡ false ¬false ≡ true ¬(β1 ∧ β2) ≡ ¬β1 ∨ ¬β2
¬〈a〉β ≡ [a]¬β ¬[a]β ≡ 〈a〉¬β ¬(β1 ∨ β2) ≡ ¬β1 ∧ ¬β2
¬νX.β ≡ µX.¬β[¬X ← X] ¬µX.β ≡ νX.¬β[¬X ← X] ¬¬β ≡ β

It is possible to define negation directly and leave out some other operators, but that re-
quires introducing some well-nestedness condition: Any occurrence of a variableX bound
by a fixed point νX or µX must have an even number of negations, e.g. νX.〈a〉¬X is not
allowed. This condition is imposed for the following technical reason: The semantics of a
formula violating the condition is not well-defined, because negation is not monotonous
and thus fixed points involving negation might not exist.

As an example for negation, consider the formula ¬[a]false. Intuitively [a]false means
that a is not possible, or more precisely that after any a-edge we reach an inconsistent

3Previously, this syntax was used for semantic substitution while here it means syntactic substitution.
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state. Its intuitive negation is that an edge with label a is required, and indeed the
above rules produce ¬[a]false ≡ 〈a〉true, which expresses that an a-edge is present.

The formula νX.〈a〉X expresses that an infinite sequence of a-edges exists. Its negation
evaluates to ¬νX.〈a〉X ≡ µX.¬〈a〉¬X ≡ µX.[a]¬¬X ≡ µX.[a]X. This formula follows
all edges with label a, due to the box modality. Since the least fixed point intuitively
only allows finite recursion, this formula does not hold if an infinite sequence of a-edges
exists, since then the fixed point is iterated infinitely often. Thus, this formula states
that all paths labelled exclusively with a are finite.

7.2.1. Vectorial Fixed Points and Systems of Equations

In this section, vector equality systems with formulas of the modal µ-calculus are solved.
This means that a vectorial system is turned into several independent and closed formu-
las, that each describe one component of the solution of the system.

Namely, we are dealing with the semantics of terms such asΨ1
...

Ψn

 = ν

X1
...

Xn

 .

Φ1(X1, . . . , Xn)
...

Φn(X1, . . . , Xn)


where Φ1 to Φn are formulas of the modal µ-calculus that can use the variables X1 to
Xn, which in turn are bound by the fixed point operator, in this case ν. We are looking
for formulas Ψ1 to Ψn, which describe a closed solution to this fixed point, meaning that
they describe a common greatest fixed point of the whole equation system.

Our running example is the following system:Ψ1

Ψ2

Ψ3

 = ν

X1

X2

X3

 .

[a]X1 ∧ [b]X2

〈c〉(X2 ∧X3)
[b]X1


In a solution to this system, Ψ1 expresses that all a-successors of a state satisfying Ψ1

also satisfy Ψ1, while all its b-successors also satisfy Ψ2, due to the requirements in the
first row of the system. For a state to satisfy Ψ2, it has to have a c-edge leading to a
state which satisfies Ψ2 and Ψ3. Finally, all b-successors of states satisfying Ψ3 must
satisfy Ψ1.

Similar to Gaussian elimination in linear algebra, it is possible to eliminate variables in
a vectorial fixed point to find closed formulas for the Ψi.

Theorem 7.2.6 (Gaussian elimination principle [AN01]). Let a vectorial fixed point
with θ ∈ {µ, ν} and n > 1 be given, which we write as:Ψ1

...
Ψn

 = θ

X1
...

Xn

 .

Φ1
...
Φn
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Then with Φ′i = θXi.Φi for 1 ≤ i ≤ n the system is equivalent to:

Ψ1
...
Ψn

 = θ

X1
...

Xn

 .



Φ1[Φ
′
i ← Xi]
...

Φi−1[Φ
′
i ← Xi]
Φ′i

Φi+1[Φ
′
i ← Xi]
...

Φn[Φ
′
i ← Xi]


The above theorem provides a way to eliminate a variable Xi from the system by substi-
tuting Xi with θXi.Φi and replacing the i-th row of the system with this expression.

As an example of this theorem, we calculate closed formula solutions to our example.
We begin with i = 1 and apply the theorem to eliminate variable X1. This means we
substitute X1 with Φ′1 = νX1.[a]X1 ∧ [b]X2 and replace the formula in the first row with
this formula (the highlighted block is where X1 was replaced with Φ′1):Ψ1

Ψ2

Ψ3

 = ν

X1

X2

X3

 .

 νX1.[a]X1 ∧ [b]X2

〈c〉(X2 ∧X3)

[b] (νX1.[a]X1 ∧ [b]X2)


Next, we pick4 i = 3 and substitute Φ′3 = νX3.[b](νX1.[a]X1 ∧ [b]X2) for X3. Since
X3 does not actually appear inside the fixed point, we can instead use the equivalent
formula without the fixed point, Φ′3 ≡ [b](νX1.[a]X1 ∧ [b]X2).Ψ1

Ψ2

Ψ3

 = ν

X1

X2

X3

 .

 νX1.[a]X1 ∧ [b]X2

〈c〉(X2 ∧ [b](νX1.[a]X1 ∧ [b]X2) )

[b](νX1.[a]X1 ∧ [b]X2)


Finally we handle i = 2 to get a solution without free variables in the right part:Ψ1

Ψ2

Ψ3

 = ν

X1

X2

X3

 .

 νX1.[a]X1 ∧ [b] (νX2.〈c〉(X2 ∧ [b](νX1.[a]X1 ∧ [b]X2)))

νX2.〈c〉(X2 ∧ [b](νX1.[a]X1 ∧ [b]X2))

[b](νX1.[a]X1 ∧ [b] (νX2.〈c〉(X2 ∧ [b](νX1.[a]X1 ∧ [b]X2))) )


Since the vectorial fixed point no longer binds any variables, we arrived at a closed
solution to the vectorial fixed point:

Ψ1 = νX1.[a]X1 ∧ [b](νX2.〈c〉(X2 ∧ [b](νX1.[a]X1 ∧ [b]X2)))

Ψ2 = νX2.〈c〉(X2 ∧ [b](νX1.[a]X1 ∧ [b]X2))

Ψ3 = [b](νX1.[a]X1 ∧ [b](νX2.〈c〉(X2 ∧ [b](νX1.[a]X1 ∧ [b]X2))))

This example shows that the resulting formulas can be quite large, compared to the
input. In fact, an exponential blow-up is possible.

4This highlights that we do not have to process the variables in order. Plus, for this example, this
results in a smaller solution.
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7.3. Equivalence of Deterministic Modal Transition Systems
and the Conjunctive ν-Calculus

Both mts and the modal µ-calculus are modal specifications. In this section we relate
them to each other. Namely, a syntactic subset of the modal µ-calculus, which is called
the conjunctive ν-calculus, is shown to be similarly expressive as deterministic modal
transition systems.

Definition 7.3.1 (Conjunctive ν-calculus [Feu05b; FP07; Feu05a]). A formula of the
conjunctive ν-calculus is defined recursively as follows, where X ∈ Var and a ∈ Σ:

β1, β2 ::= true | X | →a | 6→a | β1 ∧ β2 | 〈a〉β1 | [a]β1 | νX.β1

A formula of the ν-calculus can be translated into the modal µ-calculus via→a ≡ 〈a〉true
and 6→a ≡ [a]false. The semantics of a formula of the ν-calculus is the semantics of
its translation into the µ-calculus.

The conjunctive ν-calculus does not allow negation, disjunctions, or least fixed points.
Some new atomic operations are introduced for expressions that are no longer possible,
but still needed. Their semantics is defined via syntactic substitution into the modal
µ-calculus. For example, one of these operators is 6→a, which is replaced with [a]false
and expresses that no a-edge is present. Since false is not expressible by mts, it cannot
be allowed in the ν-calculus and thus 6→a has to be introduced to express this specific
situation, i.e. [a]false, which is expressible in mts.

Compared to the full modal µ-calculus, some things are missing5. There is no least fixed
point, disjunction, and no negation, so the ν-calculus is not a complete predicate logic.
There are two weak exceptions to this: 6→a contains some flavour of negation, in that
it forbids an edge with label a, and [a]β1 expresses that either a is not enabled, or β1
holds afterwards, which is a kind of disjunction.

7.3.1. Translating Deterministic Modal Transition Systems into the
Conjunctive ν-Calculus

There are various translations for similar settings in the literature, e.g. [Lar89; Ben+13;
FLT14]. The basic idea of the translation is to associate to each state s of the mts a
variable Xs. This variable will be part of a vectorial fixed point system used to connect
the formulas for the individual states to each other. The solution for the variable Xı,
which corresponds to the initial state of the mts, will be the equivalent formula of the
conjunctive ν-calculus.

To formalise this, let a deterministic mts M = (S,Σ, , , ı) be given. For a state
s ∈ S and an event a ∈ Σ, there are three possibilities: Either there is a must edge with

5We will see in Section 7.3.2 that false is expressible in the conjunctive ν-calculus.
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label a emanating from s, or a may edge but no must edge is present, or neither a must
edge nor a may edge exists. Due to determinism, there cannot be multiple such edges.
If a may edge s

a
s′ is present, then the formula for Xs must contain [a]Xs′ , which

expresses that with label a we may go to the formula corresponding to state s′. If this
is additionally a must edge s

a
s′, then the formula will be →a ∧ [a]Xs′ . The additional

part →a expresses the requirement that an a-edge must be present. If no may edge is
present, then a can be forbidden via 6→a.

Definition 7.3.2 (From mts to ν-calculus). The formula for event a and state s is:

edgea(s) =


[a]Xs′ if ∃s′ ∈ S : (s, a, s′) ∈ \
[a]Xs′ ∧→a if ∃s′ ∈ S : (s, a, s′) ∈
6→a if ∀s′ ∈ S : (s, a, s′) /∈

The formula states =
∧

a∈Σ edgea(s) for state s is the conjunction of the individual
formulas for the edges. This leads to the vectorial fixed point system in the variables Xs

with s ∈ S, where the definition of the variable Xs for state s is states: Ψı
...

Ψsn

 = ν

 Xı
...

Xsn

 .

 stateı
...

statesn


A solution to this vectorial fixed point system produces a closed formula Φı that describes
the behaviour of the initial state. For a deterministic modal transition system M , the
corresponding formula ΦM is the solution Φı for its initial state.

Theorem 7.3.3. Given a deterministic mts M = (SM ,Σ, , , ıM ) and a deterministic
lts A = (SA,Σ,→, ıA), then A |= M if and only if A |= ΦM .

Proof. (⇒) Assume that A |= M via R. By the definition above, ΦM is a fixed point
with variables Xs for each state s ∈ S of the mts. We define a valuation val via val(Xs) =
{q ∈ SA | (q, s) ∈ R} that assigns to the variable Xs the set of all states of the lts that
are in relation to state s. It can now be verified that with this valuation, (q, s) ∈ R
implies that state q of the lts satisfies the formula states, i.e. q ∈ JstatesKval

A : Since states
is just the conjunction of the formulas edgea(s) of the individual edges, it is enough to
verify that each of these formulas are satisfied.

If the state s in the mts has no outgoing a-edge, then by A |= M via R, the state q of
the lts cannot have an outgoing a-edge either. Thus, it satisfies edgea(s) = 6→a.

If the state s in the mts has an outgoing must edge for a ((s, a, s′) ∈ for some state
s′), then by A |= M via R, there must be an edge q

a−→ q′ in the lts for some state q′, so
that (q′, s′) ∈ R. Thus, q′ ∈ val(Xs′) and s satisfies edgea(s) = [a]Xs′ ∧→a.

If the state s in the mts has an outgoing may edge for a, but no must edge, ((s, a, s′) ∈
\ for some state s′), then there are two possibilities. If q has no outgoing a-edge,

it satisfies edgea(s) = [a]Xs′ and nothing remains to be shown. If there is a state q′ so
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that q
a−→ q′, then by A |= M via R the element (q′, s′) must be in R. Thus, as in the

previous case, q′ ∈ val(Xs′) and s satisfies edgea(s).

(⇐) Assume that A |= ΦM . Since ΦM was constructed as a vectorial fixed point system,
A must also satisfy the fixed point system itself. This means that there is a valuation val
so that ıA ∈ JstateıM Kval

A . We define a relation R via R = {(q, s) ∈ SA×SM | q ∈ val(Xs)}
and will show that A |= M via R. By ıA ∈ JstateıM Kval

A = val(XıM ), we now have
(ıA, ıM ) ∈ R, as required for A |= M .

Let (q, s) ∈ R be an arbitrary element. We have to show that ∀q a−→ q′ : ∃s a
s′ : (q′, s′) ∈

R and ∀s a
s′ : ∃q a−→ q′ : (q′, s′) ∈ R. We begin with the second condition.

Let (s, a, s′) ∈ be a must edge of M . By definition we have edgea(s) = [a]Xs′ ∧→a.
Since this formula is part of states, which is satisfied by q, q must have an outgoing
a-edge (→a). By the first part of the formula, the state q′, that is reached via a, must
satisfy Xs′ . Thus, q′ ∈ val(Xs′) and (q′, s′) ∈ R, as required.

For the first condition, let q a−→ q′ be an edge of A. By assumption q ∈ Jedgea(s)Kval
A . If

edgea(s) = 6→a, then q could not have an outgoing a-edge, so this is not the case. This
means by definition of edgea(s) that s must have an outgoing may edge with label a, i.e.
there is a state s′ of M with (s, a, s′) ∈ . Thus, [a]Xs′ necessarily appears in edgea(s).
Since q satisfies this formula and q

a−→ q′ is an edge in A, we must have q′ ∈ val(Xs′) and
so (q′, s′) ∈ R.

7.3.2. Translating Closed Formulas of the Conjunctive ν-Calculus into
Deterministic Modal Transition Systems

Translating a free variable X into an mts makes no sense, because the meaning of X is
only given by the valuation when the formula is evaluated. Thus, only closed formulas,
i.e. formulas without free variables, can be translated into mts.

The construction for translating a closed formula into an mts is inspired by [FP07;
Feu05b; Feu05a], where formulas are translated into a language-based model called modal
specifications. The construction is a bit involved, because subformulas with free variables
have to be handled appropriately. The translation will only be sketched here.

One complication is that the conjunctive ν-calculus is more expressive than mts: The
formula →a ∧ 6→a requires the event a to be enabled, but at the same time forbids this.
This formula is unsatisfiable and thus expresses false, which cannot be expressed by
an mts (see Lemma 7.1.3). This is handled by only providing a translation for formulas
which are not equivalent to false. Thus, the translation either produces a deterministic
mts, or concludes that the given formula is unsatisfiable.

Translating most formulas is relatively straightforward: The atomic propositions specify
paths that must be present and paths after which some event may not be possible. For
example, true corresponds to a single-state mts in which each event has a may edge
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a

b

c
true :

a

b, c

a

b

c
→a : b, c

a

b

c
6→a :

a

b, c

a

b

c
νX.〈a〉X :

Figure 7.5.: Examples of the translations into mts assuming an alphabet of Σ = {a, b, c}.

that goes back to the initial state. An example of this construction that assumes that
the alphabet is Σ = {a, b, c} is shown on the left of Figure 7.5.

While the mts so far have only a single state, the mts for →a requires two states and
is interpreted as 〈a〉true: The initial state has a must edge for a going to a state that
represents true. All other labels go via may edges to a state for true, from both the
initial state as well as the state for true itself. An example is shown in the middle of
Figure 7.5. The modalities 〈a〉β, [a]β, and 6→a are handled like this as well: Either a
must and a may edge, just a may edge, or no may edge, respectively, with label a goes
to the state for formula β, depending on the kind of modality that is present. All other
events have may edges going to the state for true. An example for 6→a is shown in
Figure 7.5.

The only remaining operators are the conjunction β1∧β2 and the fixed point νX.β. These
are more complicated to handle. For a fixed point νX.β, the formula β is translated
and the free variable X corresponds to a single state. Afterwards, the state for X is
identified with the initial state of the resulting mts. This captures the intuition that
when reaching the formula X, the whole fixed point formula may be traversed again.
Figure 7.5 has an example for the formula νX.〈a〉X.

A conjunction β1∧β2 can be handled by constructing the mts for the individual formulas.
Then, a synchronised product of the two mts is constructed, meaning that each state of
the mts for β1∧β2 is a pair (s1, s2) of states of β1 and β2. The edges between these states
are constructed as dictated by the individual mts, meaning that both s1 and s2 must
participate in an a-edge for (s1, s2) and the edge is not possible if one of the underlying
states does not allow it. An edge is a must edge if at least one of the underlying edges
is a must edge. This is very similar to the standard construction for the union and
intersection of languages of deterministic finite automata [HU79].

As outlined above, this construction fails when a must edge is present on one state, but
the other state of the pair does not have a corresponding may edge. In this case, the
resulting state is said to be inconsistent and is equivalent to false. Any state with a
must edge to an inconsistent state is also inconsistent. All inconsistent states and their
connected edges are removed in the final mts, i.e. any edge which would lead to false
is handled by forbidding the edge. If the initial state is inconsistent, the full formula
is unsatisfiable and equivalent to false. For example, when constructing the mts for
→a ∧ 6→a, we can use the two mts for →a and 6→a from Figure 7.5. We see that one
of them has a must edge with label a emanating from the initial state, while the other
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one does not have a may edge with that label. Thus, the initial state of the product
automaton is inconsistent and the formula →a ∧ 6→a is equivalent to false.

The direct construction that was sketched so far is a simplification of the actual construc-
tion from [FP07; Feu05b; Feu05a], which translates between the conjunctive ν-calculus
and so-called modal specifications. The presented construction sketch could inductively
be proven correct, but this will not be done here.

7.4. Bibliographical Remarks

This chapter introduced modal transition systems and the modal µ-calculus. A syn-
tactic fragment of the modal µ-calculus, which is called the conjunctive ν-calculus, was
presented and its equivalence with mts was shown via constructions inspired from [Lar89;
Ben+13; FLT14] and [Feu05b; FP07; Feu05a].

Modal transition systems were originally introduced by Larsen and Thomsen [LT88;
Lar89] and have been extended since then in various directions [Ant+08; Kre17], for
example, to express disjunction [LX90], and have been applied to specify e.g. network
protocols [Bru97].

A translation between mts and Hennessy-Milner-Logic without negation was already in-
troduced in [BL92] based on a normal form for formulas. A translation between mts with
disjunctive edges and the disjunctive ν-calculus was shown in [Ben+13] and [FLT14].
These translations are similar to the approach presented here, where states of an mts
are represented by variables. The converse translation is based on a conjunctive nor-
mal form of formulas. Restricted to deterministic mts, this last construction produces
formulas of the conjunctive ν-calculus.

Another specification that can be used as input for Petri net synthesis are path-automatic
specifications. While the implementation relation for mts and the interpretation of the
µ-calculus is related to bisimulation, path-automatic specifications have an interpretation
closer to isomorphism. Petri net synthesis for path-automatic specifications was shown
to be decidable by Badouel and Darondeau [BD04]. Since the next chapter shows that
this problem is undecidable for mts, path-automatic specifications are, in a sense, a
weaker specification language.

Petri nets were directly extended with modalities in [EHH12; Bri16], producing modal
Petri nets and turning Petri nets into a modal specification language. The present
document does not investigate such extensions that increase the expressivity of Petri
nets and even limits itself to injectively labelled Petri nets. The reachability graph
of such a net is deterministic. In deterministic systems, several problems on modal
transition systems become easier [BKLS09].

77
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Modal Realisation

In this chapter, Petri net synthesis from modal specifications is examined, meaning that
for a given modal specification, a Petri net realisation should be found. This problem
can be stated for mts, for the modal µ-calculus, and for the conjunctive ν-calculus. Since
satisfiable formulas of the conjunctive ν-calculus and mts are equivalent, as shown in
Section 7.3, and since the ν-calculus is less expressive than the full modal µ-calculus, it
is enough to derive undecidability for the conjunctive ν-calculus, because undecidability
results for other kinds of modal specifications follow.

To be precise, the following two problems are shown to be undecidable:

Problem 8.0.1 (Bounded realisation problem). Given a formula β of the conjunctive
ν-calculus, is there a bounded Petri net N so that N |= M?

Problem 8.0.2 (Bounded and pure realisation problem). Given a formula β of the
conjunctive ν-calculus, is there a pure and bounded Petri net N so that N |= M?

In this chapter, we present a reduction from the bounded execution problem of two-
counter machines, which is undecidable and introduced in Section 8.1. This problem
asks if there are bounds (b0, b1) that are not exceeded in the execution of the two-counter
machine.

For the reduction to ν-calculus, a family of Petri nets Nsim(b0, b1) is introduced in Sec-
tion 8.2. Petri nets from this family can simulate two counters as long as the first counter
does not exceed the value b0 and the second counter does not exceed b1. The program
of a two-counter machine C can be encoded into a formula ΦC so that Nsim(b0, b1) |= ΦC
if and only if the unique execution of the machine does not exceed the bounds. Thus,
the existence of values (b0, b1) so that Nsim(b0, b1) |= ΦC encodes the bounded execution
problem and is undecidable. Next, a formula ΦNsim is introduced in Section 8.3 that
characterises the Petri nets Nsim(b0, b1) independently of the concrete bounds of the
counter. This characterisation also works if only pure Petri nets are considered.

In the end, a bounded Petri net N satisfying N |= ΦNsim ∧ ΦC exists if and only if
the execution of the two-counter machine C is bounded. Since the latter problem is
undecidable, the existence of a suitable Petri net N is undecidable, too.

This chapter is based on the author’s publication [Sch16a], but we extend the approach
from bounded Petri nets to pure and bounded Petri nets.
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8.1. Two-Counter Machines

Two-counter machines, also known as Minsky machines, are a simple yet Turing-complete
model of computation. They are specified by a program, which is a list of instructions.
When the machine is started, its two counters are initialised to zero. Its execution
consists of a series of configurations, where each configuration describes the current
value of the two counters and a pointer to the next instruction to be executed. In our
setting there are three types of instructions: Increment instructions, test-and-decrement
instructions, and a halt instruction. An example of a program is given in Algorithm 3.

Algorithm 3 Example of the program of a two-counter machine.
1: INC0 2
2: INC1 3
3: DEC0 2 ELSE 4
4: DEC1 3 ELSE 5
5: HALT

When an increment instruction is executed, the counter that the instruction refers to
is incremented by one and execution continues at a specified instruction. We represent
such an instruction as INCi k, which means that counter i ∈ {0, 1} is incremented and the
next instruction to execute has index k. For example, the machine in Algorithm 3 begins
its execution with the first instruction. The execution of this instruction increments the
counter zero and continues execution with the second instruction.

A test-and-decrement instruction is represented as DECi k ELSE k′. If the value of counter
i is positive, it is decremented by one and execution continues with the k-th instruction.
Alternatively, if the value of counter i is zero, execution continues with instruction
k′1. For example, the third instruction in Algorithm 3 decrements counter zero. If the
counter was non-zero, execution continues with instruction two. Otherwise, the values
of the counters are not modified and execution continues with instruction four.

Finally, the halt instruction HALT terminates the execution of the machine.

Definition 8.1.1 (Two-counter machines [Min67]). A two-counter machine is a tuple
C = (`, γ), where ` ∈ N is the number of states and γ : {1, . . . , `} → Γ` maps states to
instructions, where Γ` = {INCi k | i ∈ {0, 1}, k ∈ {1, . . . , `}} ∪ {DECi k ELSE k′ | i ∈
{0, 1}, k, k′ ∈ {1, . . . , `}} ∪ {HALT} is the set of possible instructions.

A configuration of (`, γ) is a tuple c = (k, (j0, j1)), where k ∈ {1, . . . , `} is the current
state and j0, j1 ∈ N are the values of the counters. The execution of (`, γ) is the

1This was implicit in Minsky’s original definition. We give the next instruction explicitly in both cases.
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maximal sequence of configurations, which begins with (1, (0, 0)), and a configuration
c = (k, (j0, j1)) is followed by c′ = (k′, (j′0, j

′
1)) if γ(k) 6= HALT and

• if γ(k) = INCi k′′, then k′ = k′′, j′i = ji + 1, and j′1−i = j1−i,

• if γ(k) = DECi k′′ ELSE k′′′, then

– either ji = 0, k′ = k′′′, j′0 = j0, and j′1 = j1,

– or ji 6= 0, k′ = k′′, j′i = ji − 1, and j′1−i = j1−i.

Since the next configuration of a two-counter machine is uniquely determined, two-
counter machines are deterministic, i.e. there is a unique execution.

The execution of the two-counter machine from Algorithm 3 is the following sequence:
(1, (0, 0)), (2, (1, 0)), (3, (1, 1)), (2, (0, 1)), (3, (0, 2)), (4, (0, 2)),
(3, (0, 1)), (4, (0, 1)), (3, (0, 0)), (4, (0, 0)), (5, (0, 0)).

This machine begins by incrementing its first counter once (instruction 1). In a loop, it
then increments the second counter and decrements the first (instructions 2–3). When
the first counter reaches zero, another loop is done decrementing the second counter
(instructions 3–4). Instruction 5 terminates the execution.

Furthermore, the following notions will be important:

Definition 8.1.2 (Halt, bounded execution). A two-counter machine C halts if its
execution is finite, i.e. a configuration with instruction HALT is reached. The execution
is called bounded by (b0, b1) if all of its configurations (k, (j0, j1)) satisfy j0 ≤ b0 and
j1 ≤ b1. The execution is called bounded if such (b0, b1) exist.

The machine from Algorithm 3 halts, because we just saw that its execution reached an
instruction HALT. We can also see that its execution is bounded, for example, by (42, 42).
The tightest possible bound is (1, 2), meaning that both of these numbers are actually
reached. However, no configuration reaches both bounds at the same time.

While two-counter machines are quite a simple model of computation, they are still
Turing-complete. In particular, their halting problem is undecidable:

Theorem 8.1.3 ([Min67]). Given a two-counter machine C, it is undecidable if C halts.

For technical reasons, we are interested in a slightly different problem that is still un-
decidable: The bounded execution problem. This problem is to determine whether the
execution of a given two-counter machine is bounded.

While the halting problem cannot be encoded directly into the conjunctive ν-calculus,
because this would require a least fixed point operator, we will later see that the bounded
execution problem can be encoded into a formula.
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8. Undecidability of Bounded Modal Realisation

Theorem 8.1.4. Given a machine C, it is undecidable if its execution is bounded.

Proof. Assume for contradiction that we could decide whether a given two-counter ma-
chine has a bounded execution. This would allow to decide the halting problem as
follows. Since this problem is undecidable by Theorem 8.1.3, the bounded execution
problem must be undecidable as well.

Given a two-counter machine C, decide whether it has a bounded execution. If it does
not, then by definition this means that for any number n ∈ N there is a configuration
in its execution where some counter has a value ≥ n. Since there are infinitely many
natural numbers and two-counter machines can only increment their counters one step
at a time, the execution of C must also have infinitely many configurations. Thus, the
machine does not halt.

If the execution is bounded, we can decide the halting problem by brute force: All three
values k, j0, and j1 in an arbitrary configuration (k, (j0, j1)) in the execution of C are
bounded, hence there are only finitely many different configurations. We simulate the
execution of C and check if any configuration appears twice. If the simulation halts, then
C obvious halts. Otherwise, eventually some configuration is seen for a second time and
since two-counter machines are deterministic, we can be sure that C is in a loop and does
not halt.

8.2. Simulating Two-Counter Machines with Petri Nets and
the Conjunctive ν-Calculus

This section introduces a family of pure and bounded Petri nets Nsim(b0, b1) with trans-
itions Σ = { , , T , 0 , , , T , 0 } and parameters b0, b1 ∈ N. They are defined such
that a two-counter machine C can be simulated on the reachability graph of such a net
via a formula ΦC of the conjunctive ν-calculus if and only if its execution is bounded by
(b0, b1).

8.2.1. The Family of Petri Nets

A prototypical member of the family Nsim(b0, b1) is depicted in Figure 8.1. The Petri
nets from this family can simulate two bounded counters and have two disconnected
parts, each simulating one of the counters. The values of the counters are the number of
tokens on p0 and p1, respectively. Each counter has an initial value of zero, a capacity of
b0, and b1, respectively (this is because the complement places pi have bi tokens initially),
and can be incremented, decremented and tested for zero via transitions , and T

( , and T , respectively). After a zero test, transition 0 (or 0 ) has to fire before the
simulation can continue. Every reachable marking M satisfies, by the structure of the
net, either M(p0) +M(p0) = b0 or M(e0) = 1, and similarly either M(p1) +M(p1) = b1
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Figure 8.1.: The family of Petri nets Nsim(b0, b1) with b0, b1 ∈ N.
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Figure 8.2.: The reachability graph of Nsim(2, 3). For space reasons, the initial state is
highlighted in grey instead of being marked with an arrow. Additionally,
the firing sequence T 0 T 0 T 0 T 0 is highlighted.

or M(e1) = 1. As an example of the behaviour of these Petri nets, the reachability
graph RG(Nsim(2, 3)) is shown in Figure 8.2.

Lemma 8.2.1. For w ∈ { , , T 0 , , , T 0 } and M ∈ E(Nsim(b0, b1)) : M [w〉M ′ if
and only if:

• For w = we have M ′(p0) = M(p0) + 1 ≤ b0 and M ′(p1) = M(p1).

• For w = we have M ′(p0) = M(p0)− 1 ≥ 0 and M ′(p1) = M(p1).

• For w = T 0 we have M ′ = M and M(p0) = 0.

• Analogously for w ∈ { , , T 0 } (the second counter).

Proof. This lemma follows from the structure and behaviour of each net Nsim(b0, b1).

83



8. Undecidability of Bounded Modal Realisation

8.2.2. Formula for a Two-Counter Machine

We define a formula ΦC describing a two-counter machine C. By exploiting the structure
of Nsim(b0, b1), such a formula is satisfied on Nsim(b0, b1) if and only if the execution of
C is bounded by (b0, b1).

Definition 8.2.2 (Simulating formula). Given a two-counter machine C = (`, γ), the
formula Φk for a state k ∈ {1, . . . , `} in the variables X1 to X` is defined by:

Φk =



〈 〉Xk′ if γ(k) = INC0 k′

〈 〉Xk′ if γ(k) = INC1 k′

[ ]Xk′ ∧ [T ]〈 0 〉Xk′′ if γ(k) = DEC0 k′ ELSE k′′

[ ]Xk′ ∧ [T ]〈 0 〉Xk′′ if γ(k) = DEC1 k′ ELSE k′′

true if γ(k) = HALT

This is used to define the following vectorial equation. The formula ΨC of the machine
C is a closed solution for Ψ1, the formula for the initial state (see Theorem 7.2.6).Ψ1

...
Ψ`

 = ν

X1
...
X`

 .

Φ1
...
Φ`


Intuitively we can understand that Φk is fulfilled if the behaviour of state k can be
simulated. The free variables are used to connect the individual formulas for the states
with each other. For the increment operation, the corresponding event has to be possible
and afterwards the following state should be simulated. The decrement operation is more
complicated, because there are two possibilities for the following state. To implement
this, the structure of Nsim(b0, b1) is exploited. In every relevant reachable marking,
exactly one of the transitions and T ( and T , resp.) is enabled. Thus, the [a]-operator
can be used to express this choice, even though the conjunctive ν-calculus does not have
a disjunction operator. The increment operation uses the 〈a〉-operator instead, which
will make the simulation fail if a counter needs to be incremented beyond the bound b0
or b1 of Nsim(b0, b1), because this transition is disabled.

The following examples show the construction:

Example 8.2.3. We will construct ΦC for the two-counter machine from Algorithm 3
on page 80. We repeat its execution here, but this time we use the transition names that
are used in the family Nsim(b0, b1) to label the edge from one configuration to another:

(1, (0, 0)) −→ (2, (1, 0)) −→ (3, (1, 1)) −→ (2, (0, 1)) −→ (3, (0, 2))
T 0−−−→ (4, (0, 2)) −→

(3, (0, 1))
T 0−−−→ (4, (0, 1)) −→ (3, (0, 0))

T 0−−−→ (4, (0, 0))
T 0−−−→ (5, (0, 0))

The word T 0 T 0 T 0 T 0 is constructed from the individual edges above and
represents the execution of the machine. This path is highlighted in Figure 8.2.
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The individual formulas for each state are shown in the following system, where a closed
formula as a solution to Ψ1 is needed for ΦC :

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

 = ν


X1

X2

X3

X4

X5

 .


〈 〉X2

〈 〉X3

[ ]X2 ∧ [T ]〈 0 〉X4

[ ]X3 ∧ [T ]〈 0 〉X5

true


The Gaussian elimination principle (see Theorem 7.2.6) now eliminates variables. This
results in a formula that can be simplified2 into:

ΦC = 〈 〉(νX2.〈 〉(νX3.[ ]X2 ∧ [T ]〈 0 〉([ ]X3 ∧ [T ]〈 0 〉true)))

As we saw above, the execution of C is bounded by (2, 3). We can verify that Nsim(2, 3) |=
ΦC : This means that the initial state of the reachability graph from Figure 8.2 satisfies
the formula, i.e. we begin with the formula 〈 〉X2 for X1. The event leads to a state
where 〈 〉X3 has to hold, the formula for X2. After , the formula [ ]X2 ∧ [T ]〈 0 〉X4

is considered. Because T is not enabled in the current state, we continue with the state
reached by and the formula for X2. In this way we follow T 0 T 0 T 0 T 0

through the reachability graph of Nsim(2, 3) (compare Figure 8.2), which is the word
representing the execution of C.

Example 8.2.4. An example of a machine with a bounded execution, but which does
not halt, is the machine C′ whose only instruction is DEC0 1 ELSE 1. This machine
loops in its initial configuration by repeatedly testing its counter zero for value zero. Its
formula is ΦC′ = νX1.[ ]X1∧ [T ]〈 0 〉X1. Here we have Nsim(0, 0) |= ΦC′ and the ‘infinite
word’ representing a correct simulation is (T 0 )ω. This word is allowed by all simulating
Petri nets Nsim(b0, b1).

If instead we take the machine C′′ with the instruction INC0 1, which does infinitely
many increments, we get a machine with an unbounded execution. This execution is
represented by ω. No instance of Nsim(b0, b1) allows an infinite sequence of increments.
The corresponding formula is ΦC′′ = νX1.〈 〉X1.

The next two lemmas show that the formula ΦC simulates the machine C on Petri nets
Nsim(b0, b1). Together they show that ΦC holds on Nsim(b0, b1) exactly if C is bounded.

Lemma 8.2.5 ([Feu05b]). If the execution of a two-counter machine C is bounded by
(b0, b1) ∈ N× N, then Nsim(b0, b1) |= ΦC.

Proof. Given a two-counter machine C = (`, γ), inductively define a sequence of words
wi that describe its execution, as follows below. These words will all be in the language
of Nsim(b0, b1) and will witness that ΦC is fulfilled.

2The formulas νX.Φ and Φ are equivalent if X does not appear as a free variable in Φ. This is used to
remove variables X1, X4, and X5.
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The initial configuration is associated with the word w0 = ε. If the action done in
configuration ci is an increment of the first counter, then wi+1 = wi . Similarly, if
the counter is decremented, then wi+1 = wi . If instead a zero test was successful,
then wi+1 = wi T 0 . The corresponding operations on the second counter are handled
analogously.

By Lemma 8.2.1, all these words are in the language of the Petri net since, by assumption,
no bound of a counter is exceeded. Thus, we can define a marking Mi of Nsim(b0, b1)
for each i, namely the marking reached by wi. Note that the empty word w0 = ε
reaches the initial marking M0 of the Petri net. This gives us a relation between the i-th
configuration ci, the i-th reaching word wi, and the i-th marking Mi.

Next, the markings Mi are grouped into sets Vk = {Mi | ci = (k, (j0, j1))}, where k ∈
{1, . . . , `} is a state of C. The set Vk contains all markings Mi where the corresponding
configuration ci is in state k. Via this, define a valuation val by val(Xk) = Vk. This
valuations assigns a variable Xk representing state k to the set Vk.

With this valuation we want to show that JΦkKval
A ⊇ Vk for all k, where Φk is the

formula corresponding to state k (Definition 8.2.2) and A = RG(Nsim(b0, b1)) is the
lts under consideration. When this holds, then val(Xk) is a so called pre-fixed point3,
which is contained in the greatest fixed point, because the greatest fixed point is the
union of all pre-fixed points (cf. Definition 7.2.3). Because ΦC is defined to be the
greatest fixed point, this means that val(X1) ⊆ JΦCKA. By construction we now have
M0 ∈ V1 = val(X1) ⊆ JΦCKA, which by definition means that A |= ΦC and was to be
shown.

Thus, it remains to show that for Mi ∈ Vk also Mi ∈ JΦkKval
A . This is done by case

analysis on γ(k). If γ(k) = HALT, then Φk = true, so JΦkKval
A contains all states of A,

including Mi.

If γ(k) = INC0 k′, then Φk = 〈 〉Xk′ . By construction, Mi+1 ∈ Vk′ holds, because the
following configuration ci+1 exists and is in state k′. Also, Mi[ 〉Mi+1 by Lemma 8.2.1.
Since val(Xk′) = Vk′ we thus have Mi ∈ JΦkKval

A by definition of the semantics.

If γ(k) = DEC0 k′ ELSE k′′, then Φk = [ ]Xk′ ∧ [T ]〈 0 〉Xk′′ and a case analysis is needed.
If the first counter has a non-zero value in configuration ci, then transition T is disabled
in Mi (Lemma 8.2.1), so the second part of the conjunction is satisfied. For the first
part, the transition is enabled and reaches a marking Mi+1 ∈ Vk′ where the first
counter’s value was decremented by one (Lemma 8.2.1). Since val(Xk′) = Vk′ , we have
Mi ∈ JΦkKval

A . If the first counter has a value of zero in configuration ci, then transition
is disabled in Mi, so the first part of the conjunction is satisfied. The word T 0 is

enabled and reaches the marking Mi+1 = Mi again (Lemma 8.2.1). Since val(Xk′′) = Vk′′

we have Mi ∈ JΦkKval
A .

The remaining part for the second counter can be shown analogously.
3A pre-fixed point under X of β, val, and A is a set V so that JβKval[V←X]

A ⊇ V .
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Lemma 8.2.6 ([Feu05b]). Given a two-counter machine C and a pair of numbers
(b0, b1) ∈ N× N so that Nsim(b0, b1) |= ΦC, the execution of C is bounded by (b0, b1).

Proof. Let A = RG(Nsim(b0, b1)). By assumption we have M0 ∈ JΦCKA. Since ΦC is
defined to be the solution of a vectorial greatest fixed point, there is a valuation val so
that val(Xk) = JΦkKval

A for k ∈ {1, . . . , `} with M0 ∈ val(X1).

We want to show that ci = (ki, (v0,i, v1,i)), the i-th configuration in the execution of C, is
bounded by (b0, b1). We do this by inductively showing that ci corresponds to a marking
Mi ∈ val(Xki) where the marking Mi represents the counter values (v0,i, v1,i). Since the
counters modelled by Nsim(b0, b1) are bounded by (b0, b1), this means that all counter
values are bounded, too.

For the induction basis, the configuration c0 = (1, (0, 0)) is related to the initial marking
M0, which does indicate counter values (0, 0) and is by assumption in val(X1).

Next, assume that ci = (ki, (v0,1, v1,i)) corresponds suitably to a marking Mi ∈ val(Xki)
and show the same for i + 1. By assumption we have Mi ∈ val(Xk) = JΦkKval

A , where
Φk is defined based on the instruction γ(k). If γ(k) = HALT, then there is no following
configuration ci+1 and nothing remains to be shown. If γ(k) = INC0 k′, then Φk =
〈 〉Xk′ , so there is a marking Mi+1 ∈ val(Xk′) with Mi[ 〉Mi+1. By the structure of
Nsim(b0, b1) (see Lemma 8.2.1), the value of the first counter was incremented in Mi+1

compared to Mi, i.e. Mi+1 corresponds to the counter values in configuration ci+1. To
summarise, Mi+1 ∈ val(Xk′) with Mi+1 modelling the counter values for ci+1 and k′

being the state in ci+1, which was to be shown.

If γ(k) = DEC0 k′ ELSE k′′, then Φk = [ ]Xk′∧[T ]〈 0 〉Xk′′ . If the value of the first counter
in Mi is non-zero, then is enabled while T is disabled (see Lemma 8.2.1), so there is
a marking Mi+1 ∈ val(Xk′) with Mi[ 〉Mi+1. Similarly, if the first counter is zero in
M0, then T is enabled while is disabled, so there is a marking Mi+1 ∈ val(Xk′′) with
Mi[T 0 〉Mi+1. The rest of both cases is similar to the case for the increment instruction.
Also, the same result for the second counter can be shown analogously.

The last two lemmas showed that C is bounded by (b0, b1) if and only ifNsim(b0, b1) |= ΦC .
Because the bounded execution problem is undecidable (Theorem 8.1.4), a corollary
follows:

Corollary 8.2.7. Given C, it is undecidable if ∃b0, b1 ∈ N such that Nsim(b0, b1) |= ΦC.

8.3. Encoding the Family of Petri Nets Nsim(b0, b1)

In this section we will characterise the reachability graphs of Petri nets Nsim(b0, b1) with
a formula Φ2ctr of the conjunctive ν-calculus. To be precise, our goal is to construct a
formula Φ2ctr so that any bounded Petri net N with N |= Φ2ctr has isomorphic behaviour
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to some Petri net from the family Nsim(b0, b1), i.e. when N |= Φ2ctr, then there should
be b0, b1 ∈ N so that RG(N) = RG(Nsim(b0, b1)).

This will allow to show the bounded realisation problem of the conjunctive ν-calculus
to be undecidable: By Corollary 8.2.7, the existence of numbers (b0, b1) satisfying
Nsim(b0, b1) |= ΦC is undecidable. Since the formula Φ2ctr encodes Nsim(b0, b1) without
mentioning concrete bounds, but only their existence, it will be undecidable if a bounded,
or a bounded and pure, Petri net satisfying Φ2ctr ∧ ΦC exists.

8.3.1. Auxiliary Formulas

We begin by introducing some auxiliary formulas that will be useful in later sections for
encoding counters. The first formula signifies that some word a1a2 . . . an ∈ Σ∗ can be
fired infinitely often:

NoEffect(a1a2 . . . an) = νX1.(〈a1〉〈a2〉 . . . 〈an〉X1)

Lemma 8.3.1. N |= NoEffect(w) for a bounded Petri net N if and only if both M0[w〉
and C(N) ·Ψ(w) = 0 hold.

Proof. Let RG(N) = (E(N), T,→,M0) be the reachability graph of N . By definition
JNoEffect(w)KRG(N) =

⋃
{V ⊆ E(N) | {M ∈ E(N) | ∃M ′ ∈ V,M [w〉M ′} ⊇ V }. This

means it is the largest subset W of E(N) that satisfies M ∈W ⇒ ∃M ′ ∈W : M [w〉M ′,
i.e. if M is in W , then a marking M ′ is reachable from M via w that is also in W .

Thus, the premise M0 ∈ JNoEffect(w)KRG(N) means that from M0 a marking M1 is
reachable via w, from which in turn a marking M2 is reachable via w, etc. Since N
is a bounded Petri net, there are only finitely many reachable markings in N . Thus,
infinitely many of the Mi must be equal. However, if some of them are equal, then by
the marking equation (Lemma 2.0.12), if M + C · Ψ(wi) = M , then 0 = C · Ψ(wi) =
C · i ·Ψ(w) = C ·Ψ(w), meaning that firing w does not change the current marking, and
all Mi are equal.

For the opposite direction, if M0[w〉 and C ·Ψ(w) = 0, then M0[w〉M0 (Lemma 2.0.12)
and all words wi with i ∈ N are enabled in N . By the reasoning above this means that
M0 ∈ JNoEffect(w)KRG(N), i.e. N |= NoEffect(w).

Note that the µ-calculus can only differentiate lts up to bisimulation [Pop94; Arn94],
while the above actually expresses a stronger property. The key insight is that a sequence
wω is only possible in a bounded Petri net if the sequence w returns to the initial marking.
This lemma is a crucial ingredient for the characterisation of Nsim(b0, b1) later.

Next, we define a formula Global(β) that requires a formula β to hold in all reachable
states. Here, X1 is a fresh variable which does not appear in β.

Global(β) = νX1(β ∧
∧
a∈Σ

[a]X1)
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Lemma 8.3.2. For a reachable lts A = (S,Σ,→, ı), we have ı ∈ JGlobal(β)Kval
A if and

only if S = JβKval
A .

Proof. By the semantics Jβ ∧
∧

a∈Σ[a]X1Kval
A = {s ∈ JβKval

A | ∀a ∈ Σ, s′ ∈ S : s
a−→ s′ ⇒

s′ ∈ val(X1)}, meaning that this formula holds in a state s if β holds and each directly
reachable state satisfies X1. The fixed point produces JGlobal(β)Kval

A =
⋃
{V ⊆ S |

{s ∈ JβKval
A | ∀a ∈ Σ, s′ ∈ S : s

a−→ s′ ⇒ s′ ∈ V } ⊇ V }. This set contains a state
s if s satisfies β and each recursive successor of s does, too. This is equivalent to
JGlobal(β)Kval

A = {s ∈ JβKval
A | ∀w ∈ Σ∗, s′ ∈ S : s

w−→ s′ ⇒ s′ ∈ JβKval
A }: The latter set is

a superset of the earlier set by induction on w, while the subset relation can be shown
directly. So for a state s to be in this set, s and all states reachable from it have to
satisfy β.

Thus, if ı ∈ JGlobal(β)Kval
A , then all states of A satisfy β, because A is reachable by

assumption. When all states satisfy β, then they also satisfy Global(β). To summarise,
ı ∈ JGlobal(β)Kval

A if and only if S = JβKval
A .

The last auxiliary formula that we define expresses that some events are independent.
Namely, given two disjoint sets A,B ⊆ Σ, we express that along any path in the lts,
the order of events from these two sets can be swapped. To achieve this, the formula
needs for each event a ∈ A ∪B an inverse event δ(a) that, in a sense, undoes the event
a. This means that in a Petri net, transitions a and δ(a) must have opposite effects,
i.e. C · Ψ(a) = −C · Ψ(δ(a)), so that the sequence aδ(a) does not change the current
marking.

Indeph(A,B, δ) = Global(
∧
a∈A

∧
b∈B

[a][b]〈δ(b)〉〈δ(a)〉〈b〉〈a〉true)

Indep(A,B, δ) = Indeph(A,B, δ) ∧ Indeph(B,A, δ)

What the formula Indeph(A,B, δ) actually expresses is that in a state, where the word
ab is enabled ([a][b]), also abδ(b)δ(a)ba has to be possible. By the assumption about
effects, δ(b) undoes the previous b and δ(a) undoes a, so that in the state where ab is
possible, also ba has to be enabled. Indep(A,B, δ) then uses this formula to express that
swapping in both directions is possible

Lemma 8.3.3. Let N = (P, T, F,M0) be a Petri net and A and B be two disjoint subsets
of T . Then N |= Indeph(A,B, δ) if and only if for all reachable markings M ∈ E(N)
and all a ∈ A and b ∈ B it holds that M [ab〉 implies M [abδ(b)δ(a)ba〉.

Proof. By the semantics of the µ-calculus and Lemma 8.3.2.

Lemma 8.3.4. Let N = (P, T, F,M0) be a Petri net, A and B be two disjoint subsets
of T , and δ : A ∪B → T be a function so that the effect of a is the opposite of δ(a): for
all a ∈ A ∪ B : C · Ψ(a) = −C · Ψ(δ(a)). Then N |= Indep(A,B, δ) implies that for all
reachable markings M ∈ E(N) and all a ∈ A and b ∈ B it holds that M [ab〉 if and only
if M [ba〉.
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Figure 8.3.: A single counter N0
sim(b0) from the Petri net Nsim(b0, b1) from Figure 8.1

and the reachability graph of the counter with bound b0 = 2.

Proof. Since b and δ(b) are assumed to have opposite effects, for all markings M , if
M [bδ(b)〉, then M [bδ(b)〉M . By the same argument M [abδ(b)δ(a)〉M , i.e. the effect
C ·Ψ(abδ(b)δ(a)) of this sequence is zero. Thus, the previous lemma can be restated as:
For all reachable markings M , if M [ab〉, then M [ba〉. Since Indep(A,B, δ) is defined to
make this requirement also with the meaning of A and B swapped, both directions are
shown.

8.3.2. Encoding a Single Counter

To begin with a simpler problem than two bounded counters, this section will introduce
a formula that characterises a single bounded counter N0

sim(b0). Such a counter and
a possible reachability graph is shown in Figure 8.3. Our characterising formula Φ1ctr
will be independent of the bound of the counter and will consist of three parts: Φ1ctr =
Φinit ∧ Φpositive ∧ Φzero.

The formula Φinit characterises the initial state s0 of the counter:

Φinit = NoEffect( ) ∧NoEffect(T 0 ) ∧ 6→ ∧ 6→ 0

By Lemma 8.3.1, the first two subformulas express that M0[ 〉M0 and M0[T 0 〉M0, i.e.
initially the counter can both be incremented and tested for zero, and the two transitions

and (T and 0 , resp.) have opposite effects. Also, the events and 0 are disabled
in the initial state.

The next formula, Φpositive, characterises the state of the counter when its value is
positive:

Φpositive = νX.[ ](X ∧→ ∧ 6→T ∧ 6→ 0
)

A state with a non-zero counter is reached after transition fired arbitrary often. Any
such state must enable the decrement transition and may not allow either of the zero
test transitions. The state of is unknown: It could be enabled or not. This is what
makes the formula independent of the actual bound of the counter.

The last formula is Φzero, which characterises the state sz reached by T :

Φzero = [ T ](→ 0 ∧ 6→T ∧ 6→ ∧ 6→ )
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In this state, 0 must be enabled4 and all other transitions of this counter must be
disabled.

To show that the formula Φ1ctr characterises the reachability graph of N0
sim(b0), we define

the bound of the counter for an arbitrary Petri net N :

Definition 8.3.5 (Counter bound). Given any Petri net N , define5 b0(N) = sup{n ∈
N |M0[

n〉} (⊆ N ∪ {∞}).

Theorem 8.3.6 (Φ1ctr characterises N0
sim(b0)). For any bounded Petri net N with trans-

itions T = { , , T , 0 }, if N |= Φ1ctr then b0(N) 6=∞ and RG(N) = RG(N0
sim(b0(N))).

Proof. Let M be an arbitrary reachable marking in N via w ∈ Σ∗, i.e. M0[w〉M . By
N |= Φinit and Lemma 8.3.1, we have C ·Ψ( ) = −C ·Ψ( ) and C ·Ψ(T ) = −C ·Ψ( 0 ).
Thus firing these transitions cancels any change to the current marking and any subwords
of the form , , T 0 , and 0 T can be removed iteratively from w without affecting
the reached marking. By Φinit, w can only begin with or T . If w begins with T , then
by Φzero, the only possibility for the next event is 0 . However, subwords of the form
T 0 were removed, so in this case w = T . If w begins with , then by Φpositive, only
or are possible next events. However, since subwords of the form were removed,
in this case only w = i for a suitable i ∈ N is possible.

To summarise, all reachable markings in N are reached by words from {T}∪{ i | i ∈ N}.

Next, observe that M0[T 〉, but not M0[ T 〉. Thus, must consume a token that is
needed to activate T . Since has a negative effect on some place, the number of
tokens on this place provides an upper bound on how often can fire consecutively. We
conclude b0(N) 6=∞.

We can now compare RG(N) and RG(N0
sim(b0(N))). By the reasoning above, the set of

reachable states of these Petri nets can be identified. To conclude that the reachability
graphs are isomorphic, it only remains to be shown that this mapping between states is
an isomorphism, i.e. preserves edges.

For the initial state, the same set of transitions is enabled and they lead to the expected
state by definition of the mapping. For the state reached by T , the only enabled event
is 0 and this leads back to the initial state by the structure of N0

sim(b0(N)), since
NoEffect(T 0 ) requires T 0 not to change the current marking (Lemma 8.3.1). For any
state reached by , only transitions and could be enabled. If is enabled, it
reaches the expected state by the definition of the mapping; if is enabled, it reaches
the expected state by the structure of N0

sim(b0(N)), or by Φpositive and NoEffect( ),
respectively.

We will later need that Nsim(b0, b1) implements Φ1ctr:
4This part of the formula could be dropped since the same requirement is already expressed by

NoEffect(T 0 ) above.
5If is not a transition of N , then b0(N) = 0.
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T

0

T0

Figure 8.4.: An lts that does not model two independent counters.

Lemma 8.3.7. For b0, b1 ∈ N+, Nsim(b0, b1) |= Φ1ctr.

Proof. This follows as a corollary of the argumentation in the above proof: Only the
transitions allowed by Φ1ctr are enabled in the Petri net and they reach the expec-
ted states again. This needs b0 > 0, because otherwise is not initially enabled and
NoEffect( ) is not fulfilled.

8.3.3. Encoding Two Counters: The Naïve Approach

The previous section introduced a formula Φ1ctr that encodes a single counter N0
sim(b0).

An obvious way to encode two counters would be to create a copy Φ′1ctr of Φ1ctr, where
all symbols for the first counter are replaced with symbols for the second counter. Now
the expectation might be that Φ = Φ1ctr ∧ Φ′1ctr encodes the two-counters Petri net
Nsim(b0, b1), but this is not correct.

For example, the lts from Figure 8.4 satisfies this formula Φ, but does not model two
independent counters, since when one counter is incremented, the other can no longer
be incremented. Similarly, the zero tests disable each other. This is not a desired
behaviour.

Instead, we want the two counters to be independent.

8.3.4. Products of Transition Systems

The two counters that are modelled should be independent in the following way:

Given two lts A1 and A2 with disjoint alphabets, we can define a product lts A1 ⊗ A2.
Each state of the product consists of a pair of states of A1 and A2. A label of A1 is
possible if the underlying state of A1 allows it and the new state is the target state in
A1 while the component for lts A2 is not modified. Labels of A2 can occur in a similar
way.
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Figure 8.5.: A visualisation of the general diamond property. Each of the situations (1),
(2), and (3) must be completable to (R).

Definition 8.3.8 (Disjoint product of lts [Dev18]). Given two lts A1 = (S1,Σ1,→1, ı1)
and A2 = (S2,Σ2,→2, ı2) with Σ1 ∩Σ2 = ∅, their product A1 ⊗A2 is the lts A1 ⊗A2 =
(S1 × S2,Σ1 ∪ Σ2,→, (ı1, ı2)) with → = {((s1, s2), t1, (s′1, s2)) | (s1, t1, s′1) ∈ →1, s2 ∈
S2} ∪ {((s1, s2), t2, (s1, s′2)) | (s2, t2, s′2) ∈ →2, s1 ∈ S1}.

The corresponding operation for Petri nets is called the disjoint sum of Petri nets.
Informally speaking, this operation puts the two Petri nets next to each other to produce
their Petri net sum. The reachability graph of this sum is the disjoint product of the
reachability graphs of the individual Petri nets.

We do not need products, but the opposite operation, called factorisation: Given an lts
A and a subset Σ1 ⊆ Σ of its alphabet, under what condition is A the product of two lts
with alphabets Σ1 and Σ \ Σ1? More specifically, we have seen that our formula Φ1ctr
for the characterisation of a single counter cannot easily be extended to two counters.
However, if a condition for factorisability could be expressed as a formula, this would
allow us to express that an lts is the product of two independent counters.

Since our interest is not just in lts, but in lts that are the reachability graphs of Petri
nets, we can use a result from [Dev18; DS18]. This result is based on the general
diamond property, which is illustrated in Figure 8.5. If two events from different factors
are enabled in a state (situation (1)), then they must not interfere with each other in the
sense that after one of them is executed, the other one is still possible. Also, executing
both of them in sequence must reach the same state, independent of the order in which
they occurred (situation (R)).

The same requirement is also made when events reach the same state (situation (2)): If
both a and b, which are from different factors, can be used to reach a state s, then the
state from which a originates also has an incoming edge with label b, and vice versa.
Furthermore, following both events backwards reaches the same state independent from
the order.

Finally, this requirement is also made when one event is followed in forward direction
and the other in backward direction (situation (3)).

Definition 8.3.9 (General diamond property). Given an lts A = (S,Σ,→, ı) and two
distinct labels a, b ∈ Σ, A has the general diamond property for a and b, if for all states
s, s1, s2 ∈ S,

• if s a−→ s1 and s
b−→ s2, then there is a state s′ ∈ S so that s1

b−→ s′ and s2
a−→ s′,
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8. Undecidability of Bounded Modal Realisation

• if s a−→ s1 and s2
b−→ s, then there is a state s′ ∈ S so that s′ b−→ s1 and s2

a−→ s′,

• if s1
a−→ s and s

b−→ s2, then there is a state s′ ∈ S so that s1
b−→ s′ and s′

a−→ s2,

• if s1
a−→ s and s2

b−→ s, then there is a state s′ ∈ S so that s′ b−→ s1 and s′
a−→ s2.

Given a subset Σ1 ⊆ Σ of the alphabet, A is called Σ1-gdiam if it presents the general
diamond property for each pair a ∈ Σ1 and b ∈ Σ \ Σ1.

This definition can now be used to characterise when factorisation is possible:

Theorem 8.3.10. Let N = (P, T, F,M0) be a Petri net and T1 ⊆ T be a subset of the
transitions so that RG(N) is T1-gdiam. Then there are Petri nets N1 = (P1, T1, F1,M0,1)
and N2 = (P2, T \ T1, F2,M0,2) so that RG(N) = RG(N1)⊗ RG(N2).

Proof sketch. This follows from the main result of [DS18]6: By Lemma 2.0.8, RG(N) is
deterministic and reachable. With the same proof it can be shown that RG(N) is also
backwards deterministic, which means that if M ′[t〉M and M ′′[t〉M , then M ′ = M ′′. We
now have the preconditions for Theorem 2 of [DS18], which states that RG(N) is the
product of the parts of it reachable via T1 and the parts reachable via T2, and that each
of these parts can be solved by a Petri net, i.e. RG(N) = RG(N1)⊗ RG(N2).

8.3.5. Encoding the General Diamond Property

Our first attempt for encoding two counters by just duplicating the formula for a single
counter did not work, because there was a possibility of unwanted dependencies between
the counters. These dependencies will be forbidden via a formula, which ensures that
the resulting Petri net is { , , T , 0 }-gdiam. By the results above, this ensures that
any bounded Petri net satisfying this formula is the disjoint product of two counters.

In Section 8.3.1 an auxiliary formula was already introduced that will be used now: The
formula Indep(Σ0,Σ1, δ) expresses that events from Σ0 and Σ1 are independent in the
sense that they can be swapped with each other on paths. However, in addition to this
formula, we will need something more to express the general diamond property.

Define Σ0 = { , , T , 0 } and Σ1 = { , , T , 0 } to be a partition of our alphabet into
the events of the individual counters. Also, define δ : Σ→ Σ as the function that maps
each event to its inverse, i.e. δ( ) = , δ( ) = , δ(T ) = 0 , δ( 0 ) = T , δ( ) = ,
δ( ) = , δ(T ) = 0 , and δ( 0 ) = T . The formula for characterising the general diamond
property is:

Φgdiam = Indep(Σ0,Σ1, δ) ∧Global(
∧
a∈Σ

[a]→δ(a))

In addition to the already mentioned independence requirement, this formula also re-
quires that in a state reached by some event a, the inverse event δ(a) is enabled.

6Providing the full proof would require several new notions. Thus, only the following theorem is cited.
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Theorem 8.3.11. Let N be a bounded Petri net with N |= Φgdiam ∧ Φ where7 Φ =
NoEffect( ) ∧ NoEffect(T 0 ) ∧ NoEffect( ) ∧ NoEffect(T 0 ). Then RG(N) is Σ1-
gdiam.

Proof. By Lemma 8.3.1, NoEffect(w) implies that firing the word w does not change
the current marking of the Petri net. Thus, Φ expresses that various transitions have
opposite effects, namely C · Ψ( ) = −C · Ψ( ), C · Ψ(T ) = −C · Ψ( 0 ), C · Ψ( ) =
−C ·Ψ( ), and C ·Ψ(T ) = −C ·Ψ( 0 ). This means that the preconditions for Lemma 8.3.4
are satisfied and this lemma states that in all reachable markings M , M [ab〉 if and only
if M [ba〉, for all a ∈ Σ0 and b ∈ Σ1.

By the Petri net marking equation from Lemma 2.0.12, this already guarantees the
second and third condition in the definition of the general diamond property, because
M [a〉M ′[b〉 is given and we conclude that M [ba〉.

Next, let M be a marking with M [a〉M ′ and M [b〉M ′′. We want to show the first
condition in the definition of the general diamond property holds, which is that M ′[b〉M
and M ′′[a〉M for a suitable marking M . By Global(

∧
a∈Σ[a]→δ(a)), Lemma 8.3.2 and

the semantics of the µ-calculus, from M [a〉M ′, we conclude M ′[δ(a)〉M . Since for all
a ∈ Σ1, also δ(a) ∈ Σ1, we are now in a similar position than before: Marking M ′

enables the word δ(a)b, which can be swapped into M ′[bδ(a)〉 via Lemma 8.3.4. Let M
be the marking reached by b: M ′[b〉M , which was to be shown. With the same steps on
M [b〉M ′′ we also get that M ′′[a〉M ′, and M = M

′ because Ψ(ab) = Ψ(ba) and the Petri
net marking equation (Lemma 2.0.12).

For the last condition in the definition of the general diamond property, we assume
markings so that M ′[a〉M , M ′′[b〉M , and have to show that there is a marking M
with M [b〉M ′ and M [a〉M ′′. This works similarly as before: We get M ′[aδ(b)〉M ′′ from
Global(

∧
a∈Σ[a]→δ(a)). Lemma 8.3.4 allows us to produce M ′[δ(b)〉M [a〉M ′′, and we can

reverse the δ(b) again to arrive at M [b〉M ′ and M [a〉M ′′.

Let ΦNsim = Φ1ctr∧Φ′1ctr∧Φgdiam, where Φ′1ctr is equivalent to Φ1ctr, but with the events
of the second counter instead of the first, and b1(N) is defined analogously to b0(N), but
for the second counter. We can now show that this formula characterises Nsim:

Theorem 8.3.12. For any bounded Petri net N , if N |= ΦNsim, then b0(N) 6= ∞ 6=
b1(N) and RG(N) = RG(Nsim(b0(N), b1(N))).

Proof. For a bounded Petri net N with N |= ΦNsim , by the previous theorem we know
that N is Σ1-gdiam. By Theorem 8.3.10, there are two Petri nets N0 and N1 so that
RG(N) = RG(N0) ⊗ RG(N1) and the alphabet of N0 is Σ0, while the alphabet of N1

is Σ1. Since the combined lts satisfies the formula Φ1ctr ∧ Φ′1ctr, N0 must satisfy Φ1ctr
and N1 must satisfy Φ′1ctr, because each of those formulas only contains events that

7This formula is part of Φinit, which in turn is part of Φ1ctr.
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appear in the respective Petri net. By Theorem 8.3.6, we conclude that RG(N0) =
RG(N0

sim(b0(N))) and RG(N1) = RG(N1
sim(b1(N))), where b0(N) 6= ∞ 6= b1(N), thus

RG(N) = RG(N0
sim(b0(N))) ⊗ RG(N1

sim(b1(N))). The disjoint product of two one-
counter Petri nets is the two-counter Petri net Nsim(b0(N), b1(N)).

Using Corollary 8.2.7, which states that, given a two-counter machine C, it is undecidable
if b0, b1 ∈ N exist so that Nsim(b0, b1) |= ΦC , we arrive at the following result:

Theorem 8.3.13. Given a two-counter machine C, it is undecidable if a bounded Petri
net N exists such that N |= ΦC ∧ ΦNsim.

Proof. By Corollary 8.2.7 it is undecidable if b0, b1 ∈ N exist so that Nsim(b0, b1) |= ΦC .
However, this is the case if and only if a bounded Petri net N satisfying N |= ΦC ∧ΦNsim

exists, as follows.

Assume b0, b1 ∈ N exists so that Nsim(b0, b1) |= ΦC . To arrive at Nsim(b0, b1) |= ΦC ∧
ΦNsim , we only have to show that Nsim(b0, b1) |= ΦNsim We have ΦNsim = Φ1ctr ∧ Φ′1ctr ∧
Φgdiam. By Lemma 8.3.7 the first two subformulas hold8 and by Lemma 8.3.3 and the
structure of Nsim(b0, b1) also Φgdiam holds.

Conversely, assume that a bounded Petri net N satisfying N |= ΦC ∧ ΦNsim exists. By
Theorem 8.3.12, there are numbers b0 = b0(N) and b1 = b1(N) so that RG(N) =
RG(Nsim(b0, b1)), so Nsim(b0, b1) |= ΦC follows, which was to be shown.

This also shows that bounded Petri net synthesis from the conjunctive ν-calculus is
undecidable, since we have found a family of formulas for which this problem is unde-
cidable:

Corollary 8.3.14. The bounded realisation problem (Problem 8.0.1) is undecidable.

Since the nets Nsim(b0, b1) are all pure and the characterisation in Theorem 8.3.12 is
based on the shape of the reachability graph, and not on the precise shape of the Petri
net, we have indeed proven that the problem stays undecidable even when asking for
pure Petri nets.

Corollary 8.3.15. The bounded and pure realisation problem (Problem 8.0.2) is unde-
cidable.

In fact, the undecidability result applies for any subclass of Petri nets that contains
Nsim(b0, b1). For example, the nets Nsim are distributed, and so the synthesis problem
for this subclass is undecidable as well. However, we cannot infer anything about the
decidability for e.g. plain, place-output-nonbranching, or k-bounded Petri nets.

8If one of the bounds is zero, use a higher bound instead for Lemma 8.3.7.
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8.4. Conclusion

This chapter showed that, given a formula of the conjunctive ν-calculus, it is undecid-
able if a bounded Petri net realisation exists, where a realisation is a Petri net with a
reachability graph satisfying the formula. This result easily extends to bounded and
pure Petri nets.

The approach was inspired by [Feu05b]. The behaviour of a two-counter machine C
[Min67] is encoded into a formula ΦC . A special family of Petri nets simulating bounded
counters was presented, and it was shown that satisfaction of ΦC by a net of this family
is linked to an undecidable problem of two-counter machines. Next, the family of Petri
nets was encoded into another formula ΦNsim , so that a Petri net satisfying ΦNsim behaves
identically to a Petri net of our family of nets. Thus, satisfaction of ΦNsim ∧ ΦC by a
bounded Petri net encodes an undecidable problem.

In contrast to other undecidability results for Petri nets based on two-counter machines,
e.g. [Jan01], instead of simulating the complete two-counter machine with a Petri net, the
presented approach only simulates the two counters with a Petri net, while the program
of the machine is encoded into a formula.

Compared to the approach of [Feu05b], which shows the same problem9 undecidable for
pure and possibly unbounded Petri nets, the approach to encode the family of nets is
completely new. While [Feu05b] encodes the individual places of a Petri net in a formula,
our approach encodes the behaviour of the net, i.e. the shape of its reachability graph.
The main insight for this new encoding was a formula for encoding that some sequence
forms a loop in the lts. This is a property normally not expressible in the µ-calculus since
bisimilar lts satisfy the same formulas [Pop94; Arn94]. However, due to the interplay
with the semantics of Petri nets, this allowed us to construct a formula that encodes a
family of reachability graphs up to isomorphism.

Compared to [Sch16a], which is the basis for this chapter and which shows the unde-
cidability for bounded, but possibly impure, Petri nets, the use of factorisation is new.
In [Sch16a], only independence of counter bounds was needed to show the equivalent of
factorisability. This means that when both counters can be incremented in the current
marking of the Petri net, they can also be incremented sequentially, i.e. when the values
(3, 4) and (4, 3) are reachable, then (4, 4) must also be reachable. Since we also show
undecidability for pure Petri nets, the zero test was split into two transitions. In this
setting, not only increments have to be independent, but the interplay between incre-
ments and the transitions for the zero test also has to be modelled. The characterisation
of factorisability in a formula simplified this a lot, and is more general.

In Section 7.3.2, it was argued that the conjunctive ν-calculus and deterministic mts
are equally expressive. Thus, the presented results apply to deterministic mts, too. It
would have been possible to do the constructions directly as deterministic mts instead

9Note that neither result implies the other.
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of formulas. However, this would have been more cumbersome and less intuitive. For
example, logical conjunction allowed to combine partial specifications into larger ones.
Conjunction can be defined on mts, but the ν-calculus provides this operation directly.
Another reason is that in the formulas, any behaviour not explicitly forbidden is allowed.
This means that for a partial specification, e.g. the formula that encoded a single counter,
the rest of the system does not have to be taken into account. In mts we have to allow
everything explicitly instead. As a small example, the formula 6→a simply requires that
the event a is not enabled initially. As an mts, this would require two states and 2|Σ|−1
may edges (cf. Figure 7.5 on page 76). The formula 6→a is less cluttered and therefore
easier to understand than the equivalent mts.

The state-based semantics of the µ-calculus that were used here are equivalent to a
similar, language-based semantics [Feu05b]. For this semantics, [Esp94; Esp97] showed
that model checking for the linear time µ-calculus is decidable even for unbounded Petri
nets, while the branching time µ-calculus is more powerful and has an undecidable model
checking problem.
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Modal Realisation

In the previous chapter it was shown that finding bounded Petri net realisations from
the conjunctive ν-calculus and mts is undecidable. Since Petri net synthesis from lts
is possible and mts are an extension of lts, this raises the question where exactly the
border to decidability lies.

In this chapter, we restrict the problem to k-bounded Petri nets, where the number k
is another input to the problem. With this restriction, the problem becomes decidable
not only for the conjunctive ν-calculus and mts, but also for the full modal µ-calculus,
which is more expressive. Additionally, k-boundedness can be combined with arbitrary
other subclasses, e.g. k-bounded and pure Petri nets. The reason for this is that model
checking for finite lts is decidable. With a fixed bound k, there are only finitely many
Petri nets over the given alphabet Σ. Each of these Petri nets can be checked against the
specification by checking if it is indeed k-bounded, computing its reachability graph, and
model-checking against the specification. Thus, a brute force algorithm is possible.

Theorem 9.0.1. Given a fixed alphabet Σ and a number k ∈ N, there are at most
2(k+1)1+2|Σ| structurally different reachability graphs of k-bounded Petri nets.

Proof. First we consider the number of possible places. Each place has an initial marking
in the range {0, . . . , k} and for each transition t ∈ Σ, there are two flow weights in the
same range, since otherwise the bound would be violated when the transition fires1.
Thus, there are (k + 1)1+2|Σ| possible places.

Each k-bounded Petri net has a subset of these places, where exact duplicates do not
affect the structure of the reachability graph. Thus, there are 2(k+1)1+2|Σ| Petri nets
to consider. Some of them are not k-bounded, or have reachability graphs that are
isomorphic to each other, but every possible reachability graph is covered.

Corollary 9.0.2. The k-bounded realisation problem for the µ-calculus is decidable.

This decidability result is not really satisfactory as an algorithm, because it is based on
a brute-force approach. In this chapter, we introduce a more efficient goal-oriented al-
gorithm that actually uses information from the specification to incrementally construct
a realisation.

1If necessary, transitions can be prevented from firing at all with flow weights ≤ k.

99



9. Decidability of k-bounded Modal Realisation
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Figure 9.1.: On the left is a deterministic mts M used as an example, and on the right
is a first implementation of M .

This chapter is loosely based on the author’s publication [SW17], but we will develop an
algorithm for formulas of the modal µ-calculus instead of the more limited disjunctive
modal transition systems used in [SW17].

9.1. Introduction

To introduce the basic idea of the algorithm, this section presents a simplified example.
The task will be to produce a 1-bounded realisation of the mts M depicted on the left
of Figure 9.1. For this motivating example, a modal transition system, a state-based
model, is used instead of a formula of the modal µ-calculus.

The current state of the algorithm is an lts, which is enlarged into an implementation
of the input mts. This lts begins with just an initial state and no edges. It can easily be
checked that this lts is not an implementation of M since the sequences abc and ba are
required, but missing from the lts. Thus, new states and edges are added to this lts for
the missing behaviour. The result is the lts shown on the right side of Figure 9.1.

However, this lts is not Petri net solvable, because the two sequences ab and ba are
supposed to reach different states from the initial state. By the marking equation from
Lemma 2.0.12, they must reach the same marking in a Petri net. Since our implementa-
tion needs to be the reachability graph of some Petri net, this lts has to be modified. We
do that with the minimal over-approximation that was introduced earlier in Chapter 5.
This will be the only place where the bound k = 1 is used in the algorithm. The
1-bounded minimal over-approximation of the current lts is shown on the left side of
Figure 9.2.

Next, this lts is compared with the specification M . It is not an implementation of M ,
since again some required behaviour is missing: After the sequence bac the initial state
of the specification is reached, which requires the sequences abc and ba to be present.
Thus, the lts is modified again to add the missing behaviour, resulting in the lts on the
right side of Figure 9.2.

Again, this lts is not the reachability graph of any Petri net, so another minimal over-
approximation is generated. This time, due to the bound k = 1, the shape of the lts
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Figure 9.2.: The minimal over-approximation of the lts from the right of Figure 9.1 and
the result of adding required behaviour to this lts.
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Figure 9.3.: A realisation of the mts M . On the left as an implementing lts and on the
right a realising Petri net generating this lts.

changes more drastically: The sequence abcabc is enabled in this lts’ initial state. If the
subsequence abc would generate or consume tokens, then the whole sequence would only
be possible if more than k = 1 token existed in some marking. Thus, the sequence abc
cannot change the current marking and must instead form a circle in the reachability
graph. This leads to the minimal over-approximation shown in Figure 9.3.

This lts is now an implementation of the specification M and is generated by a Petri
net, so a realisation of M was found.

Next, we consider an example where the algorithm fails. The mts from Figure 9.4 is
identical to the mts from Figure 9.1, except that the may edge s5

c
ı was removed. The

first iteration of the algorithm would proceed as before, constructing the lts from the left
side of Figure 9.2. Next, this lts is compared with the new, restricted specification and
the algorithm fails: In the lts, ı ba−→ s2 reaches a state with an outgoing edge for label

ı

s1 s2 s3

s4 s5

a
b c

b
a

a, b, c

Figure 9.4.: A variant of the mts from Figure 9.1 where a may edge emanating from
state s5 was removed.
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9. Decidability of k-bounded Modal Realisation

c. However, in the mts, ı ba
s5 reaches a state with no outgoing may edge for the label

c. Since no allowing may edge exists, this lts cannot implement the mts. Adding more
behaviour to it would not change this observation. Thus, the lts cannot be extended to
construct an implementation of the specification and we conclude that the modified mts
cannot be realised by a Petri net.

Since the example from Figure 9.1 will be reused as an example later, it will now be
translated into the modal µ-calculus. We use 6→a,b to express [a]false ∧ [b]false suc-
cinctly:

νX. 6→c ∧ 〈a〉( 6→a,c ∧ 〈b〉(6→a,b ∧ 〈c〉true)) ∧ 〈b〉( 6→b,c ∧ 〈a〉(6→a,b ∧ [c]X))

The inner part 〈a〉( 6→a,c ∧ 〈b〉(6→a,b ∧ 〈c〉true)) of this formula expresses that after a,
only b is possible, then only c is possible and then anything is allowed. This corresponds
to the upper path in the mts. Similarly, the second half of the formula requires the
existence of a path labelled with ba that reaches a state where c, if it is enabled, recurses
back to the whole formula. At the outer level, those two formulas are combined with
6→c and a fixed point operator.

However, to keep the example manageable, we allow an inexact translation: We leave
out subformulas of the kind 6→a and arrive at the following formula:

νX.〈a〉〈b〉〈c〉true ∧ 〈b〉〈a〉[c]X

9.2. Local Model Checking

Before the idea of the previous section can be turned into an algorithm, some details
have to be clarified. Given a modal specification and an lts A, the idea is to add new
edges to A for behaviour that is required by the specification, but that is not yet present
in A. However, how is missing behaviour identified? For this, we need to relate states
of A to the modal specification in some way.

Since the goal for the algorithm is to find realisations not only for modal transition
systems, but also for formulas of the more expressive modal µ-calculus, this section will
deal with the µ-calculus. We investigate local model checking for the µ-calculus, which
is the following problem:

Problem 9.2.1. Given a formula β, a finite lts A, and a state s of A, does s |= β?

A brute-force approach to this problem could compute all states in A that satisfy β via
the semantics JβKA of the µ-calculus and check if s is in the set, but this algorithm would
be inefficient, which is why local model checking was investigated in the literature. We
will later see that one possibility for a negative result is that some required behaviour,
〈a〉β, is not implemented in A. This is exactly the information that the algorithm that
was outlined in the previous section needs to extend its current lts.
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Stirling and Walker [SW91; SW89] have introduced a tableau method for local model
checking in the modal µ-calculus. Its rules are inverse natural deduction type rules,
meaning that, for example, there is a rule that decomposes “Does s satisfy β1 ∧ β2?’’
into the two subproblems “Does s satisfy β1?’’ and “Does s satisfy β2?’’. Each node in
the resulting tree is labelled by a sequent, which is of the form s,∆ ` β, where s is a
state of the lts, β a formula, and ∆ a definition list, which will be explained later.

The rules for the tableau method are shown in Figure 9.5. They naturally capture the
meaning of formulas, as was just outlined for conjunction. A complication in this scheme
are fixed points, for which a decomposition is harder. The intuitive idea to overcome
this is to use fixed point induction, which can also be considered an unrolling of fixed
points: If we can derive from the assumption s ∈ JνX.〈a〉XKval

A that s ∈ J〈a〉νX.〈a〉XKval
A ,

then s ∈ JνX.〈a〉XKval
A is indeed true. Here, 〈a〉νX.〈a〉X is generated by taking the inner

formula of the fixed point and substituting the full formula for X. Similarly, for a least
fixed point, s ∈ J〈a〉µX.〈a〉XKval

A has to be derived from s /∈ JµX.〈a〉XKval
A . The soundness

of this argument is based on the fixed point induction introduced in Theorem 7.2.4, which
begins with true for greatest fixed points, but false for least fixed points.

To track this unrolling of fixed points, definition lists ∆ and constant symbols Ui are
introduced. A constant Ui is similar in meaning to a variable, but is used specially in the
evaluation of fixed points. A constant Ui is associated with a (fixed point) formula Ψi

and a set of states Ji. The set of states tracks in which states this constant was already
expanded, ensuring that it is not expanded twice in some state.

Definition 9.2.2 (Definition list). A definition list ∆ is a list of constant definitions
(Ui = Ψi, Ji) of the form ∆ = 〈(U1 = Ψ1, J1), . . . , (Un = Ψn, Jn)〉, where each Ψi is a
formula that can contain constants U1 to Ui−1, and Ji ⊆ S tracks the set of states where
Ui was already expanded.

There are two operations that will be needed on definition lists: Adding a new constant
for a formula β is written as ∆ · (U = β), where U represents a new constant which was
not yet expanded anywhere. Adding a state s to Ji is done by ∆s

i , which updates the
definition list to indicate that the constant Ui was expanded in state s.

Definition 9.2.3 (Operations ∆ · (U = β) and ∆s
i ). Given a definition list ∆ = 〈(U1 =

Ψ1, J1), . . . , (Un = Ψn, Jn)〉, the operation ∆ · (U = β) = 〈(U1 = Ψ1, J1), . . . , (Un =
Ψn, Jn), (U = β, ∅)〉 appends the element (U = β, ∅) to ∆, and ∆s

i replaces the element
(Ui = Ψi, Ji) in ∆ with (Ui = Ψi, Ji ∪ {s}).

The interpretation β∆ of a formula β relative to a definition list ∆ treats the constants
as variables whose definition is provided by the definition list. In detail, this means
that if a definition list ∆ contains all constants occurring in a formula β, then define
Jβ∆Kval

A = JβKvaln
A , where val0 = val, vali+1 = vali[JΨi+1Kvali

A /Ui] up to the length n
of the definition list. The next lemma shows that with this definition, β∆ has the
same interpretation as the formula β with each constant symbol Ui substituted with the
associated fixed point formula Φi.
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s,∆ ` 〈a〉β
s′,∆ ` β

where
s

a−→ s′
s,∆ ` [a]β

s1,∆ ` β . . . sn,∆ ` β
where {s1, . . . , sn}
= {s′ | s a−→ s′}

s,∆ ` θX.β

s,∆ · (U = θX.β) ` U
s,∆ ` Ui

s,∆s
i ` β[Ui ← X]

where (Ui = θX.β, Ji)
∈ ∆ and s /∈ Ji

s,∆ ` β1 ∨ β2
s,∆ ` β1

s,∆ ` β1 ∨ β2
s,∆ ` β2

s,∆ ` β1 ∧ β2
s,∆ ` β1 s,∆ ` β2

Figure 9.5.: The rules for the tableau system. θ ∈ {ν, µ} is an arbitrary fixed point.

Lemma 9.2.4 ([SW91]). Jβ∆·(U=Φ)Kval
A = J(β[Φ← U ])∆Kval

A .

Proof. By structural induction. The only non-trivial case is if β = U , because otherwise
the induction hypothesis directly shows the conclusion. For β = U , the definition above
evaluates the left hand side to JU∆·(U=Φ)Kval

A = JUKvaln+1

A = JΦKvaln
A , where n is the length

of the definition list. We can replace Φ with U [Φ← U ] and then use the above definition
to arrive at the right hand side J(U [Φ← U ])∆Kval

A .

With these notations, we can now give the rules of the tableau system. The rules are
shown in Figure 9.5. Each rule is applicable if the current sequent matches the pattern
shown above the line, in which case the list of new sequents below the line is produced.
This can be subject to some side condition. When no more rules are applicable, the
resulting leaves2 can be used to decide if the original state satisfies the original formula.
For example, this is the case when all leaves have the formula true, but a single leaf
with formula false indicates a failure. However, since e.g. disjunctions are handled by
picking one disjunct, this failure does not necessarily mean that the original formula
does not hold, because picking the other disjunct of a disjunction could succeed.

The rule for the existential modality 〈a〉β in state s (top left) requires to pick one
edge s

a−→ s′ and produces a sequent for state s′ with formula β. The rule for the
universal modality [a]β (top right) proceeds similarly, but produces one sequent for each
state reachable via a. The last row of the figure shows the rules for disjunction and
conjunction: For disjunction, one of the disjuncts is picked, while conjunction produces
two sequents that both must hold.

The remaining two rules in the middle row are for fixed points and constant symbols.
A fixed point νX.〈a〉X is handled by the rule on the left by introducing a new constant
symbol U for it, adding it to the definition list, and also using U as the new formula to
check. A constant symbol on the other hand is handled by looking up the definition of
the constant symbol in the definition list. The inner formula of the original fixed point
is used as the new formula, but the bound variable X is substituted with the constant
symbol. In the example, this would result in the formula 〈a〉U .

2A leaf of a tableau is a sequent where no rules can be applied.
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The rule for constant symbols can only be applied if the symbol was not yet expanded in
the current state. When a constant symbol appears a second time in a state s, the rule
cannot be applied again. Thus, the constant symbol is a leaf. If the constant symbol
belongs to a least fixed point, then the algorithm fails, while for a greatest fixed point
such a leaf indicates success. This is the implementation of the fixed point unrolling
that was mentioned above.

There is no rule for negation in Figure 9.5. Negation in the modal µ-calculus is not a
fundamental operation, but was defined in Definition 7.2.5 as an abbreviation. It cannot
be incorporated into this tableau method directly, since that would require tableaux to
be able to show that a formula does not hold.

Applying these rules produces a proof tree, as follows.

Definition 9.2.5 (Proof tree, tableau). A proof tree for s ` β is a rooted tree T =
(V,E, r, l) with vertices V , edges E, root r ∈ V and a labelling function l that assigns
to each vertex v ∈ V a sequent, so that the sequent s, 〈〉 ` β is the label l(r) of the
root. An edge (v1, v2) ∈ E may only exist if it corresponds to an application of a rule
from Figure 9.5. This means that the children of a vertex are labelled by the result of
applying one of the rules from Figure 9.5. Also, all children are generated by the same
rule application. A tableau is a maximal proof tree, which means that none of the rules
can be applied to its leaves, where a leaf is a is sequent without rule applications.

Applying the rules is not necessarily deterministic: There are two rules for disjunction
allowing to pick either disjunct. The existential modality 〈a〉 allows to pick one out of
possibly multiple successors. This means there can be multiple tableaux for the same
input.

An example from [SW91] for a tableau is shown in Figure 9.6. This figure also shows the
lts that was used, which has two states that can be reached from each other via a, only one
of which has label b enabled. The formula that is checked is νX.µY.[a]((X∧〈b〉true)∨Y ),
which expresses that label b is enabled infinitely often along all a-paths, i.e. the loop
through Y , which is bound by a least fixed point, may only be taken finitely often until
the case of the disjunction without Y holds, which requires label b to be enabled.

The tableau in Figure 9.6 has its root at the top. It contains a state ı, the empty
definition list and the full formula to check. Since the outermost syntactic element of
the formula is a fixed point, only the rule that introduces constant symbols can be used.
This rule introduces a new constant symbol U1 and records its definition as the full
formula in the definition list. For space reasons, the full formula was abbreviated as
Φ1. Next, this constant symbol is expanded. Writing the original formula as νX.β, this
produces β[U1 ← X], i.e. the inner formula of the fixed point with all free occurrences
of X substituted with the constant symbol U1. This procedure is repeated for the inner
formula, because it is another fixed point formula.

The fifth row in the tableau is now a universal modality [a]β for some formula β. This
sequent still contains the initial state ı, so its outgoing a-edges are considered. This is
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only ı
a−→ s1, so the only possible child is labelled with a sequent for s1 and formula β. The

resulting child is a disjunction. This allows to pick one disjunct non-deterministically.
Here, the left disjunct is taken. It would also be possible to take the right disjunct,
but this would lead to an unsuccessful tableau, because the constant symbol U2 would
again be considered in state ı. Since U2 belongs to a least fixed point, this would be an
unsuccessful leaf.

Next, a conjunction appears, so now two children are produced. The right sequent has
the formula 〈b〉true and belongs to state s1. This produces one sequent for true in s2.
The left sequent has the constant symbol U1. This constant symbol was already expanded
previously, but in state ı. Since it was not yet expanded in s1, the corresponding rule is
applicable. This produces a sequent similar to the one in the third row of the proof tree,
but this time for state s1 instead of ı. This results in a part of the tree to be repeated.
Note that this repetition introduces a new constant symbol U3. Also, this time the other
disjunct in the disjunction is taken. It would also be possible to take the same disjunct
as previously, but this would again lead to an unsuccessful proof tree. The remaining
rule applications are straightforward.

The tableau has three leaves, two of which are labelled with the formula true and one
with the constant symbol U1. The rule for constant symbols cannot be applied here,
because the constant symbol was already expanded before in the current state, as tracked
in the definition list.

Coming back to the tableau system, all the rules are backwards sound, i.e. when the
children of a node are true, then so is the node itself. To see this, interpret a sequent
s,∆ ` β as s ∈ Jβ∆KA. For all rules except for fixed points, backward soundness is
then easy to see. Fixed points are unrolled, meaning that e.g. νX.β is replaced with
β[νX.β ← X], i.e. the formula β where all free occurrences of X are replaced with the
fixed point itself. This unrolling only happens implicitly in the handling of constant
symbols, which are introduced when a fixed point occurs first. The unrolling is sound
by Lemma 9.2.4.

The side condition for fixed point unrolling guarantees that all proof trees are finite.
All other rules decrease the length of the formula under consideration, so they cannot
lead to non-termination, while fixed points in general could. However, since constant
symbols are only expanded once per state (and contain only finitely many inner fixed
points), they again cannot produce infinite paths. Thus:

Lemma 9.2.6 ([SW91]). Every tableau is finite.

So far we can construct tableaux. The next definition uses tableaux for model-checking.
For this, the leaves of a tableau are examined: By the argument above, if they hold,
then the root of the tableau is true, i.e. the state at the root is a model of the formula.

Definition 9.2.7 (Successful leaf, witnessing tableau). A tableau for s ` β witnesses
that s |= β if all its leaves are successful. A leaf is successful if it is labelled with true,
a universal modality [a]β (which is only possible as a leaf if no outgoing edge with the
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9. Decidability of k-bounded Modal Realisation

label a exists), or a constant Ui for a greatest fixed point formula νX.β (which means
the constant was already expanded before in the current state).

The following possibilities for unsuccessful leaves exist: They can be labelled with false,
a free variable X, an existential modality 〈a〉β (in which case no outgoing edge with the
label a exists), or a constant symbol for a least fixed point (in which case fixed point
induction failed and the constant would need expansion infinitely often). The other
possibilities (conjunction, disjunction, or a fixed point) cannot appear as leaves in a
tableau since their rules are always applicable and have no side condition.

Tableaux can be used for model checking in the following way:

Theorem 9.2.8 ([SW91]). s |= β if and only if there is a successful tableau whose root
is labelled with s, 〈〉 ` β.

Note that this theorem only requires the existence of a successful tableau. Thus, in prac-
tice, it will be necessary to construct all tableaux to get a definitive negative answer.

9.3. Computing Petri Net Realisations of the µ-Calculus

The tableaux introduced in the previous section allow to identify missing edges: If a leaf
of the tableau has an existential formula 〈a〉β, then the corresponding state needs an
outgoing edge with label a. With this insight, we can now formulate the algorithm that
was sketched in Section 9.1.

In the previous section it was mentioned that there can be multiple tableaux for a given
input. This is one source for non-determinism for the algorithm. For example, in a
formula like 〈a〉true ∨ 〈b〉true, we have a choice between adding an a-edge or a b-edge
to the lts. However, some of these choices might not lead to realisation, for example,
because the required behaviour cannot be reproduced by a Petri net. Thus, the algorithm
for synthesis will have to follow all possibilities.

This means that the current state of the algorithm will not be just a single lts, as was
indicated in the introduction, but instead a set of pairs of lts and tableaux. The tableaux
track the decision between the possible branches of a disjunction3.

So far, the algorithm starts with the lts that consists of just an initial state. All possible
tableaux for this lts and the given formula are calculated. Then, the leaves with exist-
ential modalities are used to extend the lts with new states and edges. The resulting lts
are minimally over-approximated with a Petri net. The already existing tableaux are
then transferred to this new lts. This produces non-maximal proof trees, so the resulting
proof trees are extended again into tableaux. Extending a proof tree can again produce

3The only other non-determinism in the construction of tableaux is the rule for existential modalities.
However, in deterministic lts, such as reachability graphs, this rule is deterministic.
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multiple tableaux. These steps are repeated until either a successful tableau is found,
or there is no way to continue.

Before this sketch can be formalised into an algorithm, we have to clarify the abort condi-
tion of the algorithm, i.e. when can a given lts not be completed into an implementation,
and how are tableaux transferred to other lts.

As an abort condition, leaves which are labelled with false, a free variable, or a constant
symbol for a least fixed point are used:

Definition 9.3.1 (Surely false). A leaf is surely false if it is unsuccessful and not labelled
with an existential modality. A tableau is surely false if one of its leaves is.

Thus, if the algorithm produces a surely false tableau, this tableau and the corresponding
lts can be discarded. If all pairs of lts and tableaux are either discarded or completed
into implementations, the algorithm found all minimal realisations and terminates.

Another open problem is how to transfer a tableau to a different lts. For this, the concept
of lts homomorphisms from Section 5.1 is used. In fact, this concept is the partial order
for the minimality in the minimal over-approximation. The transformation will replace
each state s appearing in the tableau by the state f(s) to which the lts homomorphism
f maps s.

Definition 9.3.2 (Transferred proof tree). Given a proof tree T = (V,E, r, l) for the lts
A1 and an lts A2 with A1 v A2 via f , the transferred proof tree f(T ) is f(T ) = (V,E, r, l′)
where l′ is defined by l′(v) = [f(s), f(∆) ` β] if l(v) = [s,∆ ` β]. Here, f(∆) = 〈(U1 =
Ψ1, f(J1)), . . . , (Un = Ψn, f(Jn))〉 when ∆ = 〈(U1 = Ψ1, J1), . . . , (Un = Ψn, Jn)〉.

A problem with this definition is that it may produce proof trees which cannot be
constructed ordinarily, or even invalid proof trees. This is because lts homomorphisms
can identify two states and states can have new outgoing edges. For example, a constant
could have been first expanded in state s and later in a different state s′, but these two
states are identified by the lts homomorphism. However, the condition that constants
can only be expanded once in a state is only needed so that tableaux are finite and not
for soundness. Thus, this deviation from the proof rules is not actually a problem and
could e.g. be fixed by removing the part of the tree between the two expansions, even
though this is not really needed.

The remaining problem concerns the modalities: Some state s of A1 could have less
outgoing edges with label a than the state f(s) of A2. In this case, the rule for the
existential and universal modalities can produce different sequents. However, we sidestep
this problem by restricting our attention to deterministic lts, since Petri net reachability
graphs are deterministic by Lemma 2.0.8: If s already has an outgoing a-edge, then f(s)
cannot have additional outgoing a edges by determinism and there is no problem. If
s has no outgoing a-edges, then the corresponding sequent must have been a leaf, so
further rules can be applied to enlarge the mapped proof tree f(T ) into a tableau.

The above considerations amount to a proof of:
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9. Decidability of k-bounded Modal Realisation

Lemma 9.3.3. Given deterministic lts A1 and A2 with A1 v A2 via f and a tableau T
for some state s of A1, there is a proof tree T ′ of A2 for state f(s), which is equivalent4

to the transferred proof tree f(T ).

The algorithm that was so far only sketched is now formalised as Algorithm 4. Its
execution begins in the procedure RealiseFormula. The arguments to this procedure
are the bound k for k-bounded over-approximation, and the formula β that should be
solved. In Line 2 the minimal lts according to v is constructed, which is the lts with
just an initial state and no edges. Then, in Line 3, all tableaux for this lts and the
formula β are constructed. For each of them the procedure Recurse is called in Line 4
to produce all minimal realisations. The algorithm actually produces Petri net solvable
implementing lts instead of realisations. We will not differentiate between these.

Algorithm 4 Algorithm for finding Petri net realisations for a formula.
1: procedure RealiseFormula(k, β) . k ∈ N+ and β of the µ-calculus
2: Let A = ({ı},Σ, ∅, ı) be the lts consisting of just an initial state ı
3: Let T be the set of all tableaux for ı ` β
4: return

⋃
T∈T Recurse(k,A, T )

5: end procedure
6: procedure Recurse(k,A, T )
7: if T is surely false then return ∅ end if
8: for T has a leaf labelled s,∆ ` 〈a〉β for some ∆ and some β do
9: Add a new state snew and an additional edge s

a−→ snew to A
10: end for
11: if no edges were added then return {(A, T )} end if
12: return

⋃
(A′,T ′)∈PNApprox(k,A,T ) Recurse(k,A′, T ′)

13: end procedure
14: procedure PNApprox(k,A, T )
15: A′ = Approxk(A) . Minimal over-approximation
16: f = (unique) homomorphism witnessing A v A′

17: T ′ = f(T ) . Transfer tableau from A to A′

18: Calculate a set T of new tableaux by applying proof rules to T ′ as long as possible
19: return {(A′, T ′′) | T ′′ ∈ T }
20: end procedure

The procedure Recurse checks if the given tableau is surely false (Line 7), which indic-
ates that no implementations can be found based on it. Then, for each leaf that indicates
that some state s needs an outgoing edge with label a, a new state and a corresponding
edge is added. If no such leaf exists, then the tableau must be successful, because all
possibilities for unsuccessful leaves were excluded. Thus, Line 11 returns the lts and its
tableau as one possible Petri net solvable implementation. The original call to Real-
iseFormula will return a set containing all these implementations. Otherwise, Line 12

4When ignoring duplicate constant unrolling, as explained above.

110



9.4. Example

ı, 〈〉 ` νX.(〈a〉〈b〉〈c〉true ∧ 〈b〉〈a〉[c]X)

ı, 〈(U1 = Φ1, ∅)〉 ` U1

ı, 〈(U1 = Φ1, {ı})〉 ` 〈a〉〈b〉〈c〉true ∧ 〈b〉〈a〉[c]U1

ı, 〈(U1 = Φ1, {ı})〉 ` 〈a〉〈b〉〈c〉true ı, 〈(U1 = Φ1, {ı})〉 ` 〈b〉〈a〉[c]U1

Figure 9.7.: First tableau for the example.
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Figure 9.8.: The lts generated in the first few iterations of the algorithm.

will call PNApprox to compute a minimal over-approximation of the extended lts and
to compute new tableaux. For each of these results, Recurse will call itself again.

The procedure PNApprox first computes the minimal over-approximation Approxk(A)
of the given lts A with respect to k-bounded Petri nets. By Theorem 5.2.2 and Theorem
5.4.5, which showed the existence of minimal Petri net solvable over-approximations,
there is an lts homomorphism between an lts and its minimal over-approximation, and
by Lemma 5.1.4, there is at most one such homomorphism for reachable and deterministic
lts, which our lts are. In line 16, this unique lts homomorphism f is computed and then
used to produce a new proof tree f(T ). Finally, all extensions of this proof tree into
tableaux are computed and returned to Recurse, together with the over-approximating
lts.

9.4. Example

Section 9.1 motivated the algorithm with an example. The example was an mts that was
translated into the modal µ-calculus at the end of that section, producing the formula
Φ1 = νX.〈a〉〈b〉〈c〉true∧〈b〉〈a〉[c]X. This formula, together with k = 1 as the bound for
Petri nets, will now be used for an example of the algorithm.

The function call RealiseFormula(k, β) begins by constructing an lts with just an
initial state ı together with all possible corresponding tableaux. For the given formula,
there is only a single tableau. It is shown in Figure 9.7. In the tableau, a constant symbol
is introduced and then the inner conjunction is decomposed. This tableau is given to
Recurse. No leaf of the tableau is surely false, so the following loop is reached. This
adds outgoing edges for labels a and b to the initial state in Line 9, because there are
leaves for the formulas 〈a〉〈b〉〈c〉true, and 〈b〉〈a〉[c]U1, respectively. The resulting lts A1
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9. Decidability of k-bounded Modal Realisation

ı, 〈〉 ` νX.(〈a〉〈b〉〈c〉true ∧ 〈b〉〈a〉[c]X)

ı, 〈(U1 = Φ1, ∅)〉 ` U1

ı, 〈(U1 = Φ1, {ı})〉 ` 〈a〉〈b〉〈c〉true ∧ 〈b〉〈a〉[c]X
ı, 〈(U1 = Φ1, {ı})〉 ` 〈a〉〈b〉〈c〉true

s1, 〈(U1 = Φ1, {ı})〉 ` 〈b〉〈c〉true
s3, 〈(U1 = Φ1, {ı})〉 ` 〈c〉true

ı, 〈(U1 = Φ1, {ı})〉 ` 〈b〉〈a〉[c]U1

s2, 〈(U1 = Φ1, {ı})〉 ` 〈a〉[c]U1

s3, 〈(U1 = Φ1, {ı})〉 ` [c]U1

Figure 9.9.: Second tableau for the example. The corresponding lts is A3 in Figure 9.8.

s3, 〈(U1 = Φ1, {ı})〉 ` [c]U1

s4, 〈(U1 = Φ1, {ı})〉 ` U1

s4, 〈(U1 = Φ1, {ı, s4})〉 ` 〈a〉〈b〉〈c〉true ∧ 〈b〉〈a〉[c]X
s4, 〈(U1 = Φ1, {ı, s4})〉 ` 〈a〉〈b〉〈c〉true s4, 〈(U1 = Φ1, {ı, s4})〉 ` 〈b〉〈a〉[c]X

Figure 9.10.: A subtree added to the right leaf of the tableau in Figure 9.9 in later
iterations of the algorithm.

is shown on the left of Figure 9.8. The following over-approximation in PNApprox does
not modify the lts, but the tableau can be continued by adding sequents for state s1 with
the formula 〈b〉〈c〉true, and state s2 and the formula 〈a〉[c]U1, respectively, to the leaves
of the tableau from Figure 9.7. The result is given to a recursive call of Recurse.

This call to Recurse proceeds similarly to the previous one. The new leaves cause new
additions, and the lts A2 shown in the middle of Figure 9.8 is produced. This time,
the minimal over-approximation in PNApprox changes the lts, producing A3 from the
same figure. Transferring the tableau to this new lts leads to the tableau from Figure 9.9.
This only entails replacing the states, i.e. no new nodes are generated in Line 18 of the
algorithm.

The lts A3 and the tableau from Figure 9.9 are again given to Recurse. The leaf with
the formula 〈c〉true causes a c-edge to be added to s3. The following over-approximation
does not modify this lts further, but now the tableau can be continued in the other leaf:
There is now a tableau rule that can be applied to [c]U3 in state s3. Figure 9.10 only
shows the subtree that begins in the formula [c]U1 and assumes that s3

c−→ s4 was added
to A3, i.e. the new state is s4.

The following development closely mirrors what happened initially: The paths ab and
ba have to be added due to the existential modalities. The over-approximation makes
these two paths reach the same state and next an outgoing c-edge is added. This results
in an lts similar to what was already generated in the introductory example. It is shown
in Figure 9.11. Next, over-approximation generates the same lts as in the introductory
example, which is repeated Figure 9.12.
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ı
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Figure 9.11.: An intermediate lts generated by the algorithm.
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Figure 9.12.: The implementation and realisation found by the algorithm. This repeats
Figure 9.3.

The tableau that corresponds to this lts is shown completely in Figure 9.13. Since all of
its leaves are successful, the following call to Recurse will not modify the lts and instead
returns it as an implementation of the input formula. Thus, the algorithm terminates
with an lts and a tableau. The tableau witnesses that the lts really implements the
formula that was given to the algorithm.

Note that the final tableau from Figure 9.13 cannot be generated by applying the tableau
rules, because the constant symbol U1 is expanded twice in state ı, which is not allowed
by the tableau rules. A proper tableau could be generated by removing the part of the
tableau between the two expansions of U1. However, this side condition on the rule only
exists to ensure that all tableaux are finite, and the correctness proof will argue that it
can be removed as long as no infinitely large tableaux are produced.

The algorithm needed six iterations5 to calculate an implementation for the given ex-
ample, i.e. until the lts of Figure 9.11 was generated. Compared to the brute-force ap-
proach based on Theorem 9.0.1, which would generate and examine up to 2(k+1)1+2|Σ|

=
22

7
= 2128 Petri nets, this is clearly faster.

9.5. Correctness of the Algorithm

In this section, three results will be shown: The algorithm terminates; the algorithm
is correct in the sense that it produces implementations of the given formula; and the

5A longest path in the lts from Figure 9.11 is labelled with abcabc, which has six labels. The algorithm
generates one label of this path per iteration, so six iterations are needed to generate it.
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9.5. Correctness of the Algorithm

algorithm is complete in the sense that it finds a Petri net solvable implementation if
one exists.

Lemma 9.5.1. For a formula β and k ∈ N+, RealiseFormula(k, β) terminates.

Proof. If the algorithm does not terminate, this must be due to Recurse, because all
loops are finite and no other procedures recursively call themselves. Since no infinitely
large objects can be constructed by the algorithm, there must be an infinite recursion of
Recurse with arguments (Ai)i∈N and (Ti)i∈N (k is always the same value). All argu-
ments to Recurse can be solved by Petri nets by construction. By Theorem 9.0.1, there
are only finitely many k-bounded Petri net reachability graphs over a fixed alphabet.
Thus, there are also only finitely many lts that can be solved by k-bounded Petri nets.
This means that the Ai are all elements of a finite set, i.e. some lts A (up to isomorph-
ism) will occur infinitely often. Also Ai v Ai+1 for i ∈ N, because in Recurse, only
new states and edges are added, which preserves v, and the minimal Petri net solvable
over-approximation Approxk(A), calculated in PNApprox, satisfies A v Approxk(A)
by Theorem 5.2.2.

Since Petri net reachability graphs are reachable and deterministic by Lemma 2.0.8,
Lemmas 5.1.2 and 5.1.5 are applicable, which together state that v is a partial order. In
a partially ordered sequence, if some element A occurs infinitely often, then the sequence
must become stationary: If A v B v A, then A = B. This means that there is some
j ∈ N so that for all i ≥ j, Ai = A holds.

Consider now some i ≥ j. Let Ãi be the lts constructed in Recurse from Ai. We have
Ai v Ãi via the identity homomorphism id, because only new states and edges are added
in the construction. Now, by assumption PNApprox(k, Ãi, Ti) recreates the original lts,
i.e. Ãi v Ai+1 via some homomorphism f . Overall, A = Ai v Ãi v Ai+1 = A via id ◦f .
In this context, Lemma 5.1.4 about the uniqueness of lts homomorphisms states that we
can conclude id = id ◦f from A v A via id and A v A via id ◦f . Thus, f must already
be the identity mapping on all states except for the added states snew.

If Recurse would add an edge s
a−→ snew to Ai to construct Ãi, then f(s)

a−→ f(snew)
would also be an edge in Ai+1. Since we already know that f is the identity mapping
on states from Ai, this new edge actually is s

a−→ f(snew) in Ai+1. Since Ai = Ai+1,
s must already have an outgoing edge with label a in Ai. However, then there cannot
be a leaf with the sequent s,∆ ` 〈a〉β in Ti, because this can only be a leaf in a
tableau if s has no outgoing edge with label a, because otherwise a proof rule would be
applicable. Thus, Recurse does not modify the lts, which means that it is returned as
an implementation.

The next lemma shows that RealiseFormula only produces Petri net solvable imple-
mentations of its input:

Lemma 9.5.2. Let a formula β and a number k ∈ N+ be given. Then, for each tuple
(A, T ) ∈ RealiseFormula(k, β), the tableau T witnesses A |= β and A can be solved
by a k-bounded Petri net.
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ı

aM :

ı

aA :

ı s

a

A′ :

Figure 9.14.: An mts M , an implementation A, and an intermediate lts A′ constructed
while attempting to solve M .

ı, 〈〉 ` νX.〈a〉X
ı, 〈(U1 = νX.〈a〉X, ∅)〉 ` U1

ı, 〈(U1 = νX.〈a〉X, {ı})〉 ` 〈a〉U1

ı, 〈(U1 = νX.〈a〉X, {ı})〉 ` U1

ı, 〈〉 ` νX.〈a〉X
ı, 〈(U1 = νX.〈a〉X, ∅)〉 ` U1

ı, 〈(U1 = νX.〈a〉X, {ı})〉 ` 〈a〉U1

s, 〈(U1 = νX.〈a〉X, {ı})〉 ` U1

s, 〈(U1 = νX.〈a〉X, {ı, s})〉 ` 〈a〉U1

Figure 9.15.: Tableaux for the lts A (left) and A′ (right) from Figure 9.14.

Proof. For (A, T ) to be returned by RealiseFormula, it must be returned by Line 11
of the algorithm in a call to Recurse. This means that it has no leaves with existential
modalities and no surely false leaves (Line 7). By definition, this means that only
successful leaves remain. By Theorem 9.2.8 the tableau6 T witnesses A |= β.

It remains to show that A can be solved by a k-bounded Petri net. This is the case
because every lts A given to Recurse is either the trivial lts having no edges or was
generated by PNApprox as a minimal Petri net solvable over-approximation.

We showed termination and correctness, but completeness is still missing. This means
that RealiseFormula(k, β) = ∅ can only occur if there are no realisations of β. The
idea for this proof is to assume that a realisation exists and to show that the current
state of the algorithm always contains an lts and a proof tree which are ‘smaller’ than
the realisation. For lts, the relation v already exists to formalise ‘smaller’. For proof
trees, a prefix will be defined, the idea of which is that a proof tree can be constructed
from another one by repeatedly removing leaves.

However, there is one complication. Figure 9.14 shows an mts M that requires a to
be possible infinitely often. This mts corresponds to the formula νX.〈a〉X. A possible
implementation is the lts A. The algorithm will initially conclude that the initial state
needs an outgoing edge with label a and construct the lts A′ from the same figure. We
now want that A′ is smaller than the implementation A, i.e. the algorithm can still
construct A from A′. This holds, because of A′ v A.

However, the algorithm also tracks tableaux together with the lts that it constructs. In
this case the tableaux are unique and shown in Figure 9.15. We can see that the intuitive

6See also Lemma 9.3.3 for why the constructed tableau is indeed a valid tableau even though fixed
points are possibly expanded multiple times in the same state.
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definition of a prefix of a tableau, the removal of leaves, is not possible here, because the
tableau for A′ has more nodes than the tableau for A. Making the tableau of A even
shorter will not result in two equivalent tableaux.

The problem is that in the tableau for A, the edge with label a forms a loop. Thus,
the constant U1 can only be unrolled once. For A′ however, a does not form a loop
and so the constant can be expanded once more. To overcome this problem, tableaux
themselves will be unrolled: In the tableau on the left of Figure 9.15, there is a leaf with
formula U1. This constant symbol cannot be expanded, because it was already expanded
previously in the current state. The expanded tableau will be constructed by expanding
U1 again and continuing with the same subtree as before to construct an infinitely large
tree.

Definition 9.5.3 (Expanded proof tree). The expanded proof tree of a tableau T is
constructed from T by replacing each leaf for a constant symbol by the subtree where this
constant symbol was previously expanded. This process is repeated recursively, i.e. the
result is infinitely large.

We can now define the prefix relation for tableaux and proof trees as an embedding into
the expanded proof tree:

Definition 9.5.4 (Prefix). Given a proof tree T1 = (V1, E1, r1, l1) and a tableau T2

whose expanded proof tree is T ′2 = (V2, E2, r2, l2), T1 is a prefix of T2, if there is a
function f : V1 → V2 so that f(r1) = r2, (v, v′) ∈ E1 ⇒ (f(v), f(v′)) ∈ E2, and for all
v ∈ V1 : l1(v) = l2(v).

We can now show the announced result that the algorithm will produce a realisation
whenever one exists.

Lemma 9.5.5. Let β be a formula, k ∈ N+ a number, N a Petri net, and T a tableau
witnessing that RG(N) |= β. Then there is (A, T ′) ∈ RealiseFormula(k, β) so that
A v RG(N) and T ′ is a prefix of T .

Proof. We show the following invariant of the algorithm: There is always an lts A with
an associated tableau T ′ so that A v RG(N) via f and f(T ′) is a prefix of T .

Initially, the algorithm begins with the lts A that consists of just an initial state. Ob-
viously A v RG(N). A proof tree T ′ for A can be constructed by cutting T at every
point where a rule for a modality is applied. Since A does not have any edges, none of
these rules are applicable for A. Thus, the resulting proof tree T ′ is indeed a tableau for
A and the invariant holds initially, because all tableaux are constructed.

Given a pair (A, T ′) fulfilling the invariant, Recurse either returns this pair, or con-
structs a new pair fulfilling the invariant. In the first case, nothing remains to be shown,
so assume that Recurse modifies A in Line 9. By assumption A v RG(N) via f and

117



9. Decidability of k-bounded Modal Realisation

f(T ′) is a prefix of T , so the leaf of T ′ that causes a new edge to be added is also present
in T . Thus, RG(N) must have an outgoing edge with label a in the corresponding
marking. This shows that after modifying A, we still have A v RG(N).

Next, PNApprox is called. This computes A′, a minimal Petri net solvable over-
approximation of A. Since RG(N) is the reachability graph of a Petri net, A′ v
RG(N) (via some function g) still holds (see Theorem 5.3.11 on minimality of the over-
approximation). Transferring the tableau to A′ only renames the states7, so g(T ′) will
still be a prefix of T . Finally, this function creates all possible tableaux starting from
T ′. One of these tableaux will be a prefix of T , so the invariant still holds.

The following corollary is derived via contraposition:

Corollary 9.5.6. For a formula β and a number k ∈ N+, if RealiseFormula(k, β) =
∅, then there is no k-bounded Petri net N with RG(N) |= β.

9.6. Conclusion

In Chapter 8, it was shown that finding pure and bounded Petri net realisations for the
conjunctive ν-calculus is undecidable. The current chapter added another parameter
k ∈ N to the problem and introduced an algorithm for finding k-bounded Petri net
realisations. This algorithm not only works for the ν-calculus, but also for the full modal
µ-calculus. It proceeds by iteratively adding the behaviour required by the given formula
to an lts. The lts is minimally over-approximated via the algorithm from Chapter 5 at
each step to guarantee Petri net solvability.

Because the only step specific to Petri nets is the minimal over-approximation, the
presented algorithm is compatible with all subclasses from Section 5.4 for which over-
approximation is possible. For example, this means that it is possible to ask for k-bounded
and pure marked graph implementations of a formula of the modal µ-calculus. As men-
tioned in Section 5.6, it might even be possible to ask for k-bounded and place-output-
nonbranching Petri nets even though the over-approximation itself might not terminate
when targeting just place-output-nonbranching Petri nets.

An open question about the algorithm is its complexity, since the complexity of the
underlying minimal over-approximation is not known. Because the µ-calculus allows
disjunctions, the algorithm has to explore each possible branch of a disjunction separ-
ately. This allows to construct formulas like µX.〈a〉X∨〈b〉X∨ ([a]false∧ [b]false) that
have exponentially many realisations8. However, for a formula without disjunctions the

7Up to multiple unrolling of fixed points.
8The formula is satisfied by any lts where no infinite sequences of a and b are possible. For example,

just considering strings, i.e. lts with at most one outgoing edge in a state, there are already 2k+1 − 1
possible strings over {a, b} with length ≤ k, but not all of them can be solved by a Petri net [Ero18;
BESW16]. However, there are more realisations that do not correspond to a string.
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algorithm can produce at most one realisation, i.e. does not branch. Still, even with this
limitation it is not clear how many iterations are needed for termination.

There is also still potential to improve the algorithm. The presented version com-
putes an over-approximation every time the lts was modified. Since computing the
over-approximation will very likely be more complex than extending the lts, it makes
sense to do multiple steps of appending new behaviour before computing a new over-
approximation. This would not interfere with the presented correctness proofs. For
example, it might make sense to append new behaviour to the lts until a constant sym-
bol needs to be expanded for the second time. With this modification, the example from
Section 9.4 could be solved in just two iterations. Further optimisations of the algorithm
will be proposed in the case study in Chapter 11.
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10. Implementation

In Chapter 6, an implementation of the algorithms from the first part of this document
was presented. This implementation was done in the tool APT. The author of this
thesis also implemented the algorithms introduced in the second part of this document.
However, since this implementation deals with modal specifications and since the focus
of APT is on Petri nets and lts, this implementation was not added to APT. Instead it
is available at https://github.com/CvO-Theory/apt-modal-mu-synthesis in a tool
that uses APT as a library.

This tool provides data structures and a parser for formulas of the modal µ-calculus, as
well as some related utility functions. In addition to the modules that are already
part of APT, the author implemented the modules mts_to_formula, model_check,
realise_pn, deadlock_free_realise_pn, and call_expansion. They will be ex-
plained in this chapter.

10.1. Syntax for Formulas of the Modal µ-Calculus

Formulas need to be specified in plain text. Basic operations like true and false,
parentheses, as well as the modalities <a> and [a], and negation !, have obvious repres-
entations. The remaining operations cannot be easily entered directly. Conjunction ∧
has to be entered as && and a disjunction ∨ as ||. Variables are finite strings of letters
and numbers, e.g. X is a possible variable, but also Step5. While the fixed point operators
µ and ν are supported directly, it is easier to type these as mu and nu. For example, the
formula νX.〈a〉〈b〉〈c〉true∧〈b〉〈a〉[c]X is represented by the string nu X.<a><b><c>true
&& <b><a>[c]X.

Additionally, the parser supports /* C-style comments */, let-expressions and unin-
terpreted function calls. Comments allow to annotate parts of a formula with an ex-
planation, which can make formulas easier to understand. Uninterpreted function calls
are interpreted by the call_expansion module. This is further detailed in the next
chapter.

An example of a let-expression is let X = true||false in X&&!X. The interpretation
of such a formula is syntactic substitution, i.e. the free variableX inX∧¬X is substituted
with true∨false to produce the formula (true∨false)∧¬(true∨false). The original
formula with a let-expression above is interpreted via this expansion. This addition
does not change the expressive power of the modal µ-calculus, but allows to represent
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Figure 10.1.: Our running example for an mts.

the solution of vectorial fixed points more succinctly, which means that the formulas
produced by the translation from mts into the ν-calculus (see Section 7.3.1) can be
represented more efficiently.

10.2. Translating Modal Transition Systems into the
µ-Calculus

The mts_to_formula-module that was implemented is based on the translation intro-
duced in Section 7.3.1, but extended to also support non-deterministic mts. Due to this
extension, the resulting formula may not be expressible in the conjunctive ν-calculus, so
the µ-calculus is used.

The APT file format is only specified for lts. However, it allows to specify arbitrary
extensions on edges of an lts and this is used to mark may edges. Specifically, an edge
from s1 to s2 via a in an lts is specified as s1 a s2. As-is, the edge would be interpreted
as a must edge together with an underlying may edge, as required by the definition of
mts. To turn this into a may edge, the string [may] is appended.

As an example, consider the mts from Figure 10.1. It is a deterministic mts and it was
translated at the end of Section 9.1 into the formula1 νX.([c]false ∧ 〈a〉([a]false ∧
[c]false ∧ 〈b〉([a]false ∧ [b]false ∧ 〈c〉true)) ∧ 〈b〉([b]false ∧ [c]false ∧ 〈a〉([a]false ∧
[b]false∧ [c]X))) of the modal µ-calculus. Doing the same translation with the module
mts_to_formula results in the following formula2:

(let cse0 = [c]false in ((let cse1 = [b]false in (let cse2 = [a]false in
(let cse3 = (cse2&&cse1) in (let cse4 = <a>((cse2&&<b>(cse3&&<c>(
nu s5.(([a]s5&&[b]s5)&&[c]s5))))&&cse0) in (cse4&&<b>(nu s2.((<a>(cse3&&
[c]((cse4&&<b>s2)&&cse0))&&cse1)&&cse0)))))))&&cse0))

It can be seen that the formula produced by the module is a lot larger than the formula
from Section 9.1. This is because the equation system that was constructed internally

1The actual translation in Section 9.1 used 6→a,b as an abbreviation.
2cse stands for common subexpression elimination, which is used to introduce let-expressions.
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was solved in a non-optimal order. Another reason is that the implementation cannot
derive that the subformula3 nu s5.(([a]s5&&[b]s5)&&[c]s5) is equivalent to true.

The translation from Section 7.3.1 only holds if the lts under consideration is determin-
istic. For non-deterministic lts, the original mts and its translation into a formula are
not necessarily equivalent.

This module can also produce generic translations, i.e. translations that are also equi-
valent for non-deterministic lts. For the present example, this results in an even larger
formula, because every must edge s

a
s′ has to be translated into [a]Xs′ ∧ 〈a〉Xs′ while

in the deterministic case 〈a〉Xs′ is enough since only one outgoing edge with label a can
exist. This equivalent formula is:

(let cse0 = [c]false in ((let cse1 = [b]false in (let cse2 = [a]false in
(let cse3 = (cse2&&cse1) in (let cse4 = (let cse7 = ((cse2&&(let cse8 =
(cse3&&(let cse9 = (nu s5.(([a]s5&&[b]s5)&&[c]s5)) in (<c>cse9&&[c]cse9)
)) in (<b>cse8&&[b]cse8)))&&cse0) in (<a>cse7&&[a]cse7)) in (cse4&&(let
cse5 = (nu s2.(((let cse6 = (cse3&&[c]((cse4&&(<b>s2&&[b]s2))&&cse0)) in
(<a>cse6&&[a]cse6))&&cse1)&&cse0)) in (<b>cse5&&[b]cse5)))))))&&cse0))

Here, a subformula equivalent to true is generated again. This time it is bound to the
variable cse9, which only appears in the expression <c>cse9&&[c]cse9. This expression
must be the translation of the c-labelled must edge reaching state s5.

It can be seen that the resulting formulas are very complicated, but also that let-
expressions avoid the repetition of some large parts of the translation.

10.3. Model Checking

The local model checking that was presented in Section 9.2 was implemented in the
model_check module. This module receives an lts and a formula as input and decides
if the initial state of the lts satisfies the formula. To do so it generates all possible
tableaux that relate the two, and checks if any of them are successful. These tableaux
can also be outputted into a file in the DOT file format [GN00]. Tools for working
with this file format and e.g. to visualise a DOT file in an image are available at http:
//www.graphviz.org/.

For efficiency reasons, it is possible to generate only successful tableaux instead of all
tableaux. This allows the implementation to discard proof trees with unsuccessful leaves
early before the full tableau is computed.

3Note that the variable name s5 refers to the state s5 of the input mts.
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10.4. Finding Petri Net Realisations

The module realise_pn realises a formula of the modal µ-calculus with a Petri net via
the algorithm that was presented in Chapter 9. This module gets two arguments, the
subclass of Petri nets that should be targeted and a formula that should be realised. Its
output is a list of realising Petri nets represented by their reachability graphs. Internally
this uses the implementation of the minimal over-approximation that was presented in
Chapter 6, as well as the local model checking that is also used for the model_check
module.

So far the possible optimisations that were mentioned in Section 9.6 are not imple-
mented. This means that the algorithm spends a lot of time in computing minimal
over-approximations and its performance could likely be improved, for example, by over-
approximating less often, or by trying to re-use regions that were previously computed
for the next over-approximation. To optimise memory usage, only leaves of proof trees
are saved and internal nodes are discarded.

The module deadlock_free_realise_pn also realises a formula with a Petri net. How-
ever, another requirement is that in each and every reachable marking, some transition
is enabled, i.e. there are no deadlocks. Deadlocks can also be forbidden with a formula
of the modal µ-calculus, but this module uses a more efficient approach. This module
is necessary for the case study that is presented in the next chapter and is explained in
Sections 11.3.4 and 11.3.5.
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11. Case Study: Dining Philosophers

The previous chapters presented an algorithm for realising formulas via Petri nets and
an implementation of this algorithm. Realising the modal µ-calculus with Petri nets was
not analysed before. This chapter will explore a possible application of this algorithm.

Dijkstra’s dining philosophers [Dij71] are a well-known distributed synchronisation prob-
lem with the possibility of deadlock. In this problem, there are a number of philosophers
sitting at a round table. In front of each philosopher, there is a plate with an infinite
supply of spaghetti. To eat spaghetti, a philosopher needs two forks. However, there is
just one fork between every two neighbouring philosophers. This means that any single
philosopher has to share a fork with his left neighbour and another fork with his right
neighbour. Each philosopher is thinking for some individual amount of time until he
becomes hungry. Then he grabs each of the two forks to eat spaghetti. When he is
no longer hungry, he puts the forks back on the table and starts thinking again. The
situation is illustrated in Figure 11.1.

This model can produce a deadlock. For example, if each philosopher grabs his left fork
at the same time, then no progress is possible. Each philosopher needs his right fork to
continue, but no philosopher has a right fork available. Another problem that can occur
is starvation, which means that some philosopher would like to eat, but does not get a
chance to do so. One possibility for this is that this philosopher is too slow, which means
that his neighbours always grab the forks first whenever they become available.

In this chapter, the goal is to synthesise a Petri net model of the dining philosophers
that does not have deadlocks nor starvation. This will be done without dictating how
these goals are achieved so that a suitable algorithm has to be derived by the synthesis
procedure.

1

2

34

5

Figure 11.1.: Five dining philosophers at a table.
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Figure 11.2.: Two philosophers modelled as an lts. Deadlock states are shown in grey.

For our model, we assume that there are n philosophers. The three possible actions of
the i-th philosopher are represented by events: The philosopher can grab his left fork,
which we model with the event lefti, he can grab his right fork modelled by righti, and he
can put both forks back on the table by executing the event backi. The philosophers are
sitting in clockwise ascending order, e.g. philosopher 4 is to the left of philosopher 3.

11.1. Modelling as a Labelled Transition System

We begin by examining how this problem can be modelled as an lts. The lts in Fig-
ure 11.2 visualises the behaviour of n = 2 philosophers. We can see that initially either
philosopher can grab either fork. When only one fork is remaining, only the correspond-
ing events stay enabled. When both forks are in use, there is either a deadlock, or there
is one philosopher who can eat and then put the forks back on the table.

There are two deadlocks in this system. They are shown in grey in Figure 11.2. One
is reached when both philosophers grab their right fork and the other deadlock occurs
when they each grab their left fork. Removing both of these states results in an lts
without deadlocks.

Starvation is harder to handle. In the lts as it is specified, it is possible that just
one philosopher eats all the time, for example, by doing the sequence left1right1back1
in a loop. If we wanted to remove this starvation sequence, the result would be that
the philosophers take turns in eating, i.e. after philosopher 1 has eaten, philosopher 2
must eat next. Specifying this in the lts would require to split the lts from Figure 11.2
into two parts, one part for each philosopher, by removing the behaviour of the other
philosopher. These parts could then be connected appropriately, e.g. when philosopher 1
finished eating, the corresponding edge would be redirected to the initial state of the
other lts instead, because philosopher 2 may now eat.

Clearly, this is non-trivial. If we wanted to do the same task for n > 2 philosophers, more
work would be necessary and we would not be able to easily reuse solutions from n philo-
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Figure 11.3.: A model of a single philosopher (left) and a model of a single fork (right).

sophers for n+ 1 philosophers. Moreover, with n philosophers, the lts has at least 4b
n
2
c

reachable states1. So, our approach does not scale to larger number of philosophers.

11.2. Modelling as a Distributed System in the Modal
µ-calculus

In this section we model the dining philosophers with a modal specification, specifically a
formula of the modal µ-calculus. At first, modalities do not make this problem any easier
than the previous approach for an lts as specification. However, the modal µ-calculus has
a conjunction operator that allows us to combine multiple partial specifications. Thus,
we will exploit the distributed nature of the system and create a separate specification
for each philosopher and each fork. These specifications are then later combined into
the final specification.

The operation of a single philosopher is only loosely influenced by the actions of other
philosophers. On a large table, the actions of philosophers that are at opposite sides of
the table have no immediate consequences for each other. The only information that
a single philosopher needs is the availability of his left and right fork. In fact, a single
philosopher has just the four states that are visualised in the lts on the left side of
Figure 11.3: Initially a philosopher is thinking. If he becomes hungry, he grabs his two
neighbouring forks in arbitrary order. When he has both forks he can start eating, and,
after eating, he puts them back and starts thinking again. The lts is closely related to
the informal specification of the problem from the beginning of this chapter, while the
lts from Figure 11.2 is not.

Figure 11.3 also shows the model of a single fork: Either the philosopher i grabs this fork
as his left fork, or the philosopher i+1 grabs this fork as his right fork. In both cases the
fork becomes unavailable until the philosopher puts it back. Here, i + 1 is understood
as wrapping around, i.e. the philosopher to the left of fork n is the first philosopher and
rightn+1 is interpreted as right1.

These models only consider the local events and ignore non-local events. For a single
philosopher these are the actions that he executes on his neighbouring forks, while for

1Each philosopher has four states: thinking, eating, and having only one of the two forks. When only
allowing every second philosopher to act, the given number of states is reached.
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a single fork these are the actions done by the neighbouring philosophers. Therefore,
an event righti will change the local state of the i-th philosopher so that he knows that
he has another fork, but a far away event like righti+100 does not change his state. The
actions on the opposite side of the table do not matter for the local state. Thus, problems
of arbitrary size can easily be specified by combining the specifications of n philosophers
and forks conjunctively.

If we wanted to add the event righti+100 to the specification for the i-th philosopher from
Figure 11.3, the event should not modify the state, so edges with this event form a loop
at every state. The philosopher i does not influence permissibility of the event, so this
corresponds to a may edge in an mts. So formally we interpret Figure 11.3 as an mts,
amended so that each non-local event forms a may loop around every state, i.e. does
not lead to another state. In [BFLV16], this operation is called an alphabet extension.
This intuitive description on how non-local events are handled and how they are locally
ignored will be formalised next.

11.2.1. The Hiding Operator

We develop a function hide that modifies a specification as outlined above: Non-local
events are ignored. The function will be defined for the modal µ-calculus since it is the
most expressive specification language that we consider. The function will translate a
given formula β into another formula hide(β).

To do this, we first have to define which events are local. In the example from the
previous section, the local events of the i-th philosopher were {righti, lefti, backi}, and
the i-th fork had {lefti, backi, righti+1, backi+1} as its local events. These are the events
that appear in Figure 11.3. For an arbitrary formula, we will use the events appearing
in its modalities as its local alphabet.

Definition 11.2.1 (Local alphabet). The local alphabet Σ(β) of a formula β of the
modal µ-calculus is defined recursively via syntactic induction as follows, where X ∈ Var
is an arbitrary variable, a ∈ Σ is an event, and β1 and β2 are subformulas.

• Σ(true) = Σ(false) = Σ(X) = ∅,

• Σ(νX.β1) = Σ(µX.β1) = Σ(β1),

• Σ(β1 ∧ β2) = Σ(β1 ∨ β2) = Σ(β1) ∪ Σ(β2), and

• Σ(〈a〉β1) = Σ([a]β1) = Σ(β1) ∪ {a}.

Next, formulas have to be translated. In the modal µ-calculus, 〈a〉β expresses that an
edge with event a must be possible next. We want hide(〈a〉β) to express that a is not
only possible as the next event, but that it must also be possible after some sequence
of non-local events. Here, the existence of one such sequence is enough since this is an
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11.2. Modelling as a Distributed System in the Modal µ-calculus

existential modality, but it is not allowed for a to never happen, for example, because
the rest of the system does infinitely many steps.

Analogously, the universal modality [a]β expresses that whenever a happens, afterwards
β holds. If a does not happen, then this is fine as well. Thus, by duality, hide([a]β) has
to express that after all sequences of non-local events, if afterwards a is enabled, then β
holds next. An infinite sequence of non-local events is allowed, too.

These ideas can be represented via fixed points as follows, where σ = Σ \Σ(β) is the set
of non-local events:

Definition 11.2.2 (Hiding operator). Given a formula β of the modal µ-calculus with al-
phabet Σ, the hiding operator hide(β) is defined as hide(β) = h(β,Σ\Σ(β)), where h(β, σ)
is defined inductively as follows: The base cases are h(true, σ) = true, h(false, σ) =
false, and h(X,σ) = X for a variable X ∈ Var. Inductively, define h(νX.β, σ) =
νX.h(β, σ), h(µX.β, σ) = µX.h(β, σ), h(β1 ∧ β2, σ) = h(β1, σ) ∧ h(β2, σ), and h(β1 ∨
β2, σ) = h(β1, σ) ∨ h(β2, σ). Modalities introduce a fresh variable X ∈ Var as follows:

h([a]β, σ) = νX.[a]h(β, σ) ∧
∧
b∈σ

[b]X

h(〈a〉β, σ) = µX.〈a〉h(β, σ) ∨
∨
b∈σ
〈b〉X

It is worth noting that this definition is compatible with negation, which was defined as
an abbreviation in the modal µ-calculus. Negation was introduced in Definition 7.2.5
via a number of dualities. It can easily be verified2 that hide(¬β) = ¬hide(β), which
means that the hiding operator is compatible with these dualities. In particular, this
means that ¬hide([a]β) = hide(〈a〉¬β).

As an example of this definition, consider the formula Φ = 〈a〉[a]false, which ex-
presses (in a deterministic system) that the event a is possible exactly once. We con-
struct hide(Φ) for the alphabet Σ = {a, b}. The local alphabet of Φ is Σ(Φ) = {a},
thus hide(Φ) evaluates to h(Φ, {b}). Next, the existential modality 〈a〉β is replaced via
h(〈a〉β, σ) = µX.〈a〉h(β, σ) ∨ 〈b〉X. In the remaining formula, β = [a]false is replaced
via h([a]false, σ) = νY.[a]false ∧ [b]Y . Altogether we arrive at:

hide(〈a〉[a]false) = µX.〈a〉(νY.[a]false ∧ [b]Y ) ∨ 〈b〉X

Informally, this formula expresses that the event a can occur at most once while event b
is ignored. More formally, the outer fixed point expresses that there is a sequence of b’s,
after which a is possible and the inner fixed point holds. The inner fixed point forbids
a along any sequence of b’s.

2To actually prove this, formulas have to be considered up to renaming of bound variables, i.e. νX.[a]X
and νY.[a]Y are equivalent.
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11.2.2. Concurrent Dining Philosophers in the Modal µ-Calculus

Figure 11.3 provided a specification for the behaviour of a single philosopher and a
single fork. We can now understand this behaviour as an mts where every edge is a may
edge, because this only specifies the allowed edges between states of the system, but is
not meant to require these edges to be present. These mts can be translated into the
modal µ-calculus via the construction from Section 7.3. This produces formulas phili for
specifying the behaviour of the i-th philosopher and forki for specifying the behaviour
of the i-th fork. The abbreviation 6→a,b is used to express [a]false ∧ [b]false.

phili = νX. 6→backi ∧ [righti](6→righti,backi ∧ [lefti](6→lefti,righti ∧ [backi]X))

∧ [lefti](6→lefti,backi ∧ [righti](6→lefti,righti ∧ [backi]X))

forki = νX. 6→backi,backi+1 ∧ [lefti](6→backi+1,lefti,righti+1 ∧ [backi]X)

∧ [righti+1](6→backi,lefti,righti+1 ∧ [backi+1]X)

Thus, the two philosophers that were specified in Figure 11.2 can alternatively be spe-
cified as hide(phil1)∧hide(phil2)∧hide(fork1)∧hide(fork2). This specification can easily
be extended to more philosophers, in contrast to the lts that was considered previously.

An additional requirement is deadlock-freedom. For this we use the formula Global(β)
from Section 8.3.1, which expresses that β holds in all reachable states. This allows to
express deadlock-freedom as no-deadlock = Global(

∨
a∈Σ〈a〉true), i.e. in every reachable

state there is at least one possible event.

Also, starvation should be forbidden. This can be done via the formula Eventually(a),
which expresses that along every path, eventually a ∈ Σ has to occur. This formula can
be defined as Eventually(a) = µX.

∧
b∈Σ\{a}[b]X, i.e. there are no infinite3 paths that

do not contain a. This formula does not exclude starvation due to deadlocks, but this
case was already handled via no-deadlock. Starvation-freedom for the i-th philosopher
can now be expressed as no-starvationi = Global(Eventually(backi)), which means that
in every state, eventually philosopher i will be done eating4.

The formula Φn for modelling n dining philosophers without deadlock nor starvation
combines all these individual parts:

Φn = no-deadlock ∧
n∧

i=1

hide(phili) ∧ hide(forki) ∧ no-starvationi

In Section 11.1, the behaviour of philosophers was specified as an lts. It was observed that
this approach does not generalise to more philosophers. Also, the size of the lts grows
exponentially in the number of philosophers. In contrast, the formula-based approach
scales easily. The length of the formula grows linearly with the number of philosophers.

3This is forbidden by the least fixed point.
4This formula contains two fixed points that both follow most events. A more efficient, but less intuitive,

representation would be νG.µE.[backi]G ∧ [lefti]E ∧ [righti]E ∧
∧

j 6=i([leftj ]E ∧ [rightj ]E ∧ [backj ]E).
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Figure 11.4.: An intermediate lts generated by the algorithm.
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Figure 11.5.: The minimal over-approximation by the reachability graph of a 1-bounded
Petri net of the lts from Figure 11.4. New states are shown in grey.

Because the size of the alphabet grows linearly with the number of philosophers, the full
formula after expanding the hide function grows quadratically. Additionally, the formula
only specifies that deadlocks and starvation are not allowed. It does not express how
these goals shall be achieved and is thus more generic.

11.3. Finding Realisations

The formula Φ2 can now be realised with a Petri net via the implementation that was
presented in Chapter 10. Since this problem is only decidable for k-bounded Petri nets,
we also have to provide a bound. We pick k = 1 for simplicity.

11.3.1. First Attempt at Finding Realisations

When trying to realise Φ2 with a 1-bounded Petri net, the implementation quickly runs
out of memory. Further examinations reveal that, for example5, the lts from Figure 11.4
is generated. In this lts, first the second philosopher eats, then the first, and finally the
second philosopher eats again. The first time he eats, the second philosopher grabs his
right fork first. The second time he begins with his left fork. Clearly this lts is one of
the many possibilities that are generated by the formula that forbids deadlocks, which
means that this lts can be generated by repeatedly picking some event and using it to
eliminate a deadlock state.

The minimal over-approximation by a 1-bounded Petri net reachability graph for this
lts is shown in Figure 11.5. Because the forks were grabbed in both possible orders, the
Petri net has to allow an arbitrary order of grabbing forks for the second philosopher.
Specifically, this means that, for example, there is no 1-bounded Petri net place that
does not allow the event left2 in the initial marking and still has all the edges of the lts
in its reachability graph.

5The exact problem depends on some non-deterministic choices in the implementation and so another
lts could cause the same problem.
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Next, the tableau that the algorithm constructed for the lts from Figure 11.4 has to be
transferred to the lts from Figure 11.5. The formula from which the tableau is generated
contains the term Global(

∨
a∈Σ〈a〉true) to express that there are no deadlocks. This

formula expands to νX.
∨

a∈Σ〈a〉true ∧
∧

a∈Σ[a]X, i.e. the full formula holds in a state
if the inner disjunction holds and each successor fulfils the full formula. Because the
formula has to hold in each successor, the newly added states in the lts from Figure 11.5
have to fulfil this as well. Also, recursively, each of their successors has to fulfil this
formula. This means that even though the sequences right2left2 and left2right2 reach
the same state, the inner formula is evaluated twice in the reached state, because the
tableau method only considers the specific path that was used to reach a state and not
other branches in the proof tree.

Thus, the inner disjunction is evaluated on all following states again. This disjunction
contains one disjunct per event in the alphabet, thus the algorithm creates six branches
for each following state. This happens eleven times, once for each reachable state, so
there are |Σ|11 = 611 ≈ 228 tableaux6 that need to be continued next.

Clearly, this lts results in too many possibilities, and it is just one specific situation where
such a state explosion occurs. It is very likely that similar state explosions happen with
different lts. Thus, the program will not finish its computation in a sensible time, nor
within a realistic amount of space.

11.3.2. Evaluating Closed Formulas Only Once

The state space explosion in the previous section happens, because the inner part of
Global(

∨
a∈Σ〈a〉true), that forbids deadlocks, is evaluated multiple times in the same

state. This occurs because the state is reachable via different paths. However, the inner
formula only requires some event to be enabled. This condition does not depend on the
path that reached the current state. In fact, in the tableau method, only the evaluation
of constant symbols is path dependent, because it ensures that a constant symbol is only
expanded once per state.

This insight was used to change the implementation to avoid state explosion due to
multiple paths reaching the same state. A tableau now also tracks for each state the
closed formulas, which means formulas without constant symbols, that were already
expanded in the state. This is used to compute the subtree for such a closed formula only
once. If this does not result in any successful tableaux, the whole tableau is discarded.
Thus, when a closed formula is seen for the second time in a state, it can simply be
assumed to hold.

6There are actually more tableaux than this, since the last three states are reached via a total of
four different paths, thus multiplying this number by 63·3 and the inner branch that ends early in a
deadlock adds another 6 possibilities.
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Figure 11.6.: Another intermediate lts generated by the algorithm.
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Figure 11.7.: The minimal over-approximation by the reachability graph of a 1-bounded
Petri net of the lts from Figure 11.6. New states are shown in grey.

11.3.3. Second Attempt at Finding Realisations

Even with this improvement, the algorithm will still run out of memory. An example for
this problem is shown in Figure 11.6. This lts is generated iteratively by the algorithm
to realise the given formula. The next step is to minimally over-approximate this lts
with the reachability graph of a Petri net. The resulting lts is shown in Figure 11.7. The
over-approximation added ten new states—shown in gray—to the lts where the formula
no-deadlocks has to be evaluated. This results in |Σ|10 = 610 ≈ 226 possible tableaux.
Even when ignoring states which are not a deadlock, which the implementation does not
do, there are seven states to consider, which leads to 67 ≈ 218 tableaux. Because the
formula no-deadlock is also evaluated in states which already have an outgoing edge, in
reality also non-existing deadlocks are eliminated.

Thus, while evaluating closed formulas only once per state helps, it is not enough to
find realisations. The problem is that the algorithm works greedily: All deadlocks are
eliminated independently and at the same time. A good approach to handle this problem
would be to make the algorithm less greedy, i.e. to eliminate one deadlock, check the
repercussions of the newly added edges, and then continue with other deadlocks. For the
tableau method, this means that only one former leaf of the tableau should be continued
in each iteration instead of all leaves at the same time. Also, information from other
parts of the tableau could be used so that no attempt is made to remove the deadlock
by enabling left1 when the formula [left1]false also has to hold in the current state.
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11.3.4. Finding Deadlock-Free Realisations of Formulas

The optimisations proposed in the last section cannot easily be added to the current
implementation. Since the state explosion problem stems from the branching caused by
the disjunctions inside the formula no-deadlock, we take a different approach that works
without this formula:

When Φ∧ no-deadlock should be realised, i.e. a deadlock-free realisation of Φ is wanted,
we can just realise Φ. The resulting lts may contain deadlocks. One such state with a
deadlock is picked and the deadlock is eliminated by adding a new state that is reached
from the deadlock state. This is done |Σ| times, once for each event in the alphabet.
Next, finding realisations is continued with this lts and the corresponding tableau. If a
realisation of Φ is found that has no deadlocks, then this lts also satisfies Φ∧no-deadlock.
If all branches fail to produce results, then we can be sure that no realisations without
deadlocks exist. This approach avoids the state space explosion problem by only elimin-
ating a single deadlock in each iteration. If an event is not allowed by the specification
in the current state, this will be noticed immediately and this unhelpful branch of the
computation is discarded.

11.3.5. Third Attempt at Finding Realisations

The modified algorithm was implemented in the module deadlock_free_realise_pn.
It works in the same way as realise_pn, but when a realisation containing a deadlock
is found, this deadlock is eliminated as explained above and the search for realisations
continues. The modified algorithm can now easily handle the given formula and finds
32 realisations in about 20 seconds.

Since the problem is symmetric in the sense that all left and right events can be swapped
with each other, and the identities of philosophers can be swapped, the input formula
was extended with the conjunct 〈left1〉true, which enforces that the first philosopher
has to begin by grabbing his left fork. This addition eliminates some solutions that are
identical up to the renaming that was just explained.

The implementation now finds six minimal realisations7 of the formula in six seconds.
Each realisation consists in the philosophers taking turns in eating, with the first philo-
sopher beginning. The differences are in whether the philosophers have to begin grabbing
their left or right fork, or if they can grab their forks in arbitrary order. These are three
possibilities per philosopher, so nine possibilities in total. However, the additional for-
mula 〈left1〉true means that the first philosopher cannot begin by grabbing his right
fork, so only six realisations remain.

Three philosophers still cannot be handled within a reasonable amount of memory.
7Actually, eight realisations are found, but three realisations are isomorphic to each other.
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11.4. Conclusion

In this chapter we modelled the dining philosophers problem in the modal µ-calculus.
To exploit the distributed nature of this problem, a generic hiding operator was defined.
This operator can be used to model parts of a system while ignoring other parts. We used
this operator to model the behaviour of individual philosophers and the forks between
them. These individual specifications were then combined conjunctively to produce
the final specification. We also modelled the problem as an lts. While the lts grows
exponentially in the number of philosophers, the formula only has quadratic growth.

The complete specification for two dining philosopher was then given to the implement-
ation that was presented in the previous chapter. The task was to find 1-bounded Petri
net realisations. However, the formula that should forbid deadlocks caused a state space
explosion problem, and the program ran out of available computer memory. To overcome
this problem, several improvements were proposed and some of them implemented:

The evaluation of a closed formula does not depend on its context. Thus, the imple-
mentation was changed to evaluate such a formula only once per state. Still, the greedy
approach for handling all deadlocks at once caused problems. One approach to overcome
this could be to make the algorithm less greedy, which means that instead of calculating
complete tableaux in each step, only one branch of the proof tree could be computed.
While this approach sounds promising, it is not easily implementable in the existing
program. Thus, a different approach was followed that works specifically for finding
realisations without deadlocks and works by eliminating one deadlock at a time instead
of all of them at once.

More optimisations are possible for the algorithm. While the implementation already
defers handling of disjunctions so that the two branches created by a disjunction do not
compute the same, unrelated subtree, more optimisations in the construction of proof
trees should be possible. Another idea is to integrate minimal over-approximations more
closely into the algorithm. Right now it is only used as a subroutine. In Chapter 5, an
algorithm for computing this minimal over-approximation was presented that applied an
expansion operator until a fixed point is reached. This expansion operator was based on
the set of unsolvable separation problems. If the specification requires some event to be
enabled in a given state, then the corresponding event/state separation problem could
just be considered to be unsolvable. This saves the time needed to check the solvability of
the separation problem. Also, the current implementation only saves an lts. Regions that
were found for a previous lts could possibly be transferred to later lts, which would again
save some computations. Finally, a single over-approximation step will likely still require
more time than a single tableau-based extension step. Thus, it might be worthwhile to
add multiple tableau-based extensions before a single over-approximation is performed.
Alternatively, instead of computing the full over-approximation, it is also possible to only
do a single step in the computation of the over-approximation. This would interleave
the over-approximation algorithm with the algorithm for finding realisations.
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11. Case Study: Dining Philosophers

All of these proposed heuristics only improve the computing time of the algorithm.
However, it was seen that memory usage is actually the limiting factor, at least for this
case study. Thus, most of these optimisations were not pursued further.

With the implemented improvements it was possible to realise the dining philosopher’s
problem for two philosophers with a 1-bounded Petri net, while avoiding deadlocks
and starvation. However, the implementation still requires too much memory for three
philosophers, while Petri net synthesis from lts is possible for this problem. Still, this
case study shows some of the possibilities of using modal specifications for Petri net
synthesis, especially for distributed and concurrent systems.
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In this thesis, Petri net synthesis for subclasses of nets and for modal specifications was
studied.

In the first part, we have introduced a generic algorithm that supports targeting Petri
net synthesis into a given combination of subclasses, such as plain and pure Petri nets.
To deal with unsolvable inputs, an algorithm for minimal over-approximation was intro-
duced. This algorithm works for some of the subclasses that were previously handled,
while for others the minimal over-approximation is not necessarily a finite lts. The
over-approximation is based on the synthesis algorithm, which fails if some separation
problems are unsolvable. The information about unsolvable separation problems is used
to merge states and add new outgoing edges to the current lts. These algorithms were
implemented in the tool APT.

The second part of the document investigated synthesis from modal specifications,
namely modal transition systems, the modal µ-calculus and a subset of the µ-calculus,
which is called the conjunctive ν-calculus. The ν-calculus and modal transition systems
are equally expressive and we have shown via a reduction from two-counter machines for
both specification languages that Petri net synthesis is undecidable. Next, we introduced
an algorithm for synthesising k-bounded Petri nets from the full modal µ-calculus, where
k ∈ N is given a priori, showing that this restriction makes the problem decidable even
for the more expressive modal µ-calculus. The algorithm extends its current lts by the
behaviour required by the given specification. To ensure solvability by a Petri net, the
minimal over-approximation from the first part of this thesis is used. All subclasses sup-
ported by the minimal over-approximation can be combined with k-boundedness and
are supported for synthesis from modal specifications. This synthesis algorithm was
implemented as an extension to APT and used for a case study of the dining philosoph-
ers problem. The modal µ-calculus allowed to express this problem succinctly, but the
implementation ran into state space explosion when realising the resulting formula.

To summarise, synthesising pure and unbounded Petri nets from modal specifications is
undecidable [Feu05b]. We have shown that this problem stays undecidable for bounded
Petri nets and for pure and bounded Petri nets, but becomes decidable for k-bounded
Petri nets and combinations of k-boundedness and some other subclasses.

The relation of this document with the author’s publications is as follows: Chapter 4
is based on [BS15; Sch16b], except for Section 4.1.2, which appeared in [SS17] and was
created together with Valentin Spreckels. Chapter 5 is based on [Sch18], with most
ideas about lts homomorphisms from [SW17] written together with Harro Wimmel.
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Some parts of the description of the implementation in Chapter 6 were also published
in [BS15], which was written together with Eike Best, but a substantial part of this
chapter is new. Chapter 8 is loosely based on [Sch16a], but the result was lifted from
bounded Petri nets to pure and bounded Petri nets. Similarly, Chapter 9 is loosely
based on [SW17], which is joint work with Harro Wimmel, but the construction that
was originally defined for disjunctive modal transition systems was reformulated for
the more expressive modal µ-calculus. The description of the implementation of this
algorithm in Chapter 10 and the case study in Chapter 11 were not published before.

The author also participated in the investigation of Petri net solvability of binary words,
i.e. transition systems with an alphabet of size two and at most one outgoing edge in
every state [BESW16]. The main result of [BBSS17] is a list of necessary conditions
for an lts to be solvable by plain, pure, and 1-bounded Petri nets. An efficient Petri
net synthesis algorithm targeting the subclass of place-output-nonbranching Petri nets,
also known as choice-free, is investigated in [BDS18]. In [BS17], incrementality of Petri
net synthesis in a process discovery context was investigated. Its main contribution is
an algorithm to efficiently incorporate new information, i.e. newly observed behaviour,
into a synthesis algorithm without redoing all calculations from scratch. Solvability
of separation problems was characterised geometrically in [BDS17; SW18]. This can
hopefully be used to estimate the size of a minimal over-approximation, as mentioned
in Section 5.6. Factorisation of lts to speed up Petri net synthesis was investigated
in [DS18]. A result from this paper was used in Section 8.3.4 to encode two-counter
machines.

There are still many open problems in the context of this thesis. We investigated Petri
net solvability for subclasses of nets, but the complexity of this problem remains open.
There are polynomial algorithms for general Petri net synthesis [BBD95], but for plain,
pure, and 1-bounded Petri nets the problem is NP-complete [BBD97]. Thus, the ex-
act complexity can vary wildly depending on the specific targeted subclass. Also, the
complexity of both the minimal over-approximation and the realisation of modal spe-
cifications are unknown.

Another interesting problem is maximal under-approximation of lts. However, while
a unique minimal over-approximation exists, the maximal under-approximation is not
unique. Also, it is not clear how such under-approximations could be computed.

The approach for realising formulas of the modal µ-calculus can also be applied to
other specification languages. It merely needs a mechanism to amend an lts so that it
becomes an implementation. For example, monadic second order logic (mso) is more
expressive than the µ-calculus [JW96] and allows to require equality of states. This
could be handled by merging states, similarly to how states are merged in the minimal
over-approximation. However, local model checking seems not to be investigated for
mso, so a new approach for identifying missing edges is needed. Still, this thesis could
serve as a base for finding Petri net realisations from monadic second order logic.
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M [t〉, see Transition, enabled
M [t〉M’, see Transition, fire
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JβK, see µ-calculus, interpretation
[[p]], see Place, extension
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v, see Labelled transition system, homo-
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, see Modal transition system
, see Modal transition system

→, see Labelled transition system
s �

w−→, 6
s

w−→, 6
s

w−→ s′, 6
x•, see Petri net, postset
•x, see Petri net, preset

Approx(A), 36, 39
APT, 53

B, see Region
b0(N), 91
b1(N), 95
BCF, see Behavioural conflict-free
Behavioural conflict-free, 24
BiCF, see Binary conflict-free
Binary conflict-free, 24
Bounded, 7

C, see Petri net, incidence matrix
C, see Two-counter machine
Closed formula, 68
Conflict-free, 23
Conjunctive ν-calculus, 73
Corresponding Petri net, 13

Definition list, 103
Deterministic, 7, 67
Disjoint product, 93
Disjoint sum, 93
Distributed, 24

Enabledness, 6
Enabling-equivalent, 26
Equal-conflict, 25
ESSP, see Event/state separation prob.
ESSPunsolv(A), 38
ESSPA, 14
Event, 6
Event/State separation problem, 14
Expand(A), 39

F , see Region
f(T ), see Proof tree, transferred
Factorisation, 93
Firing, 6
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Flow, see Petri net

General diamond property, 93
Generalised marked graph, 23
Generalised T-net, 23
Global(β), 88

hide(β), see Hiding operator
Hiding operator, 129
Homogeneous, 23
Homomorphism, 33

Implementation, 66, 69
Indep(A,B, δ), 89
Initial marking, 5
Isomorphism, 8
isRegion(r), 16

k-bounded, 7, 23
k-marking, 24

L(A), see lts, language
Label, 6
Labelled transition system, 6

deterministic, 7
disjoint product, 93
factorisation, 93
finite, 7
homomorphism, 33
isomorphic, 8
language, 47
limited unfolding, 48
path, 6
reachable, 7
solution, 11

Limited unfolding, 48
L(N), see Petri net, language
Local alphabet, 128
lts, see Labelled transition system

M , see Petri net, see Modal transition
system

M0, see Petri net
Marked graph, 23
Marking, 5

Merge(A), 38
Minimal over-approximation, 36
Modal transition system, 65

Deterministic, 67
Implementation, 66

mts, see Modal transition system
mu-calculus, see µ-calculus

N , see Petri net
N(R), 13
Negation, 70
NoEffect(w), 88
Nsim(b0, b1), 82
nu-calculus, see ν-calculus

ON, see Place-output-nonbranching
Over-approximation, 36

P , see Petri net
Parikh vector, 7
Path, 6
Petri net, 5

bounded, 7
disjoint sum, 93
distributed, 24
incidence matrix, 8
initial marking, 5
k-bounded, 7
language, 47
marking equation, 8
plain, 7
postset, 5
preset, 5
pure, 7
reachability graph, 7
reachable marking, 7
realises specifcation, 69
solves lts, 11

Place, see Petri net
extension, 13

Place-output-nonbranching, 25
Plain, 7, 22
Postset, 5
Preset, 5
Preset-equal, 26
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Proof tree, 105
expanded, 117
leaf, 105
prefix, 117
transferred, 109

Pure, 7, 22

R, see Region
Reachability graph, 7
Reachable, 6
Realisation, 64, 69
Realisation problem, 79, 99
Region, 11

complement, 13
corresponding Petri net, 13
effect function, 12

S, see Labelled transition system
Satisfiability modulo theories, 22
Separation problem, 14
Sequent, 103
SMT, see Satisfiability modulo theories
SP(r, pr), 17
SPA, 14
Spanning tree, 15
SSP, see State separation problem
SSPunsolv(A), 38
SSPA, 14
State separation problem, 14

T , see Petri net
T-net, 23
Tableau, 105

successful leaf, 107
surely false, 109
witnesses, 107

tokens(r, s), 16
Transition, see Petri net

enabled, 6
fire, 6
preset-equal, 26

Two-counter machine, 80
bounded, 81
configuration, 80
execution, 80

halt, 81

U(A), see Limited unfolding

Weighted free-choice, 25
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