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Abstract
As software systems grow more complex, there is a growing need for design concepts

that facilitate an intuitive overview of a system. This is usually achieved through
visual modeling techniques. Graph transformation systems are an established visual
modeling approach, modeling systems as graphs. Structural properties of the graphs
can be expressed by nested conditions as described by (Habel and Pennemann,
2009). However, nested conditions are not expressive enough to formulate non-local
properties often encountered in real-world problems, like the existence of arbitrary-
length paths, connectedness or circle-freeness.
We thus propose HR∗ conditions, an extension to nested conditions. HR∗ condi-

tions are enriched with hyperedges, which are then replaced by graphs according to
a hyperedge replacement system. The expressiveness of HR∗ conditions lies between
counting monadic second-order logic and second-order logic. Several variants of HR∗
conditions are introduced and their respective advantages and disadvantages are
discussed.
The correctness of a specification, i.e. a triple of graph program, pre- and post-

condition in the form of HR∗ conditions, can be checked. Basic transformations are
used on the graph program and the postcondition to generate a weakest precondition.
This can then be compared with the original precondition to check the correctness of
the specification.

HR∗ conditions are applied to the problem of instance generation for UML meta-
models with OCL constraints. The meta-model’s type graph can be transformed into
a graph grammar, as shown e.g. in (K. Ehrig et al., 2009). Essential OCL constraints
belonging to the type graph are transformed into HR∗ conditions. Using HR∗
conditions enables the translation of OCL constraints that go beyond first-order. The
conditions are then transformed into application conditions for the graph grammar’s
rules. This ensures that the grammar only generates instances which satisfy the OCL
constraints. The grammar-based approach enables the simple generation of a large
number of instances.
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Zusammenfassung
Die steigende Komplexität von Software-Systemen bedingt einen steigenden Bedarf

an Designkonzepten, die einen intuitiven Überblick auf das System erlauben. Dies
wird üblicherweise durch visuelle Modellierungstechniken erreicht. Einen solchen
Ansatz liefern Graphtransformationssysteme, die Systeme durch Graphen modellieren.
Strukturelle Eigenschaften des Systems können durch geschachtelte Graphbedin-
gungen, wie in (Habel und Pennemann, 2009) gezeigt, beschrieben werden. Die
Ausdruckskraft geschachtelter Graphbedingungen reicht jedoch nicht zur Beschrei-
bung nichtlokaler Eigenschaften aus, wie sie in praktischen Anwendungen häufig zu
finden sind. Beispielsweise ist es nicht möglich, Eigenschaften wie die Existenz beliebig
langer Pfade, Verbundenheit oder Kreisfreiheit mit geschachtelten Graphbedingungen
auszudrücken.
Diese Arbeit führt HR∗-Bedingungen ein, eine Erweiterung von geschachtelten

Graphbedingungen. HR∗-Bedingungen sind mit Hyperkanten angereichert, die an-
hand eines Hyperkantenersetzungssystems durch Graphen ersetzt werden. Die Aus-
druckskraft von HR∗-Bedingungen liegt zwischen Counting Monadic Second-Order-
Logik und Second-Order-Logik. Verschiedene Varianten von HR∗-Bedingungen wer-
den vorgestellt und ihre Vor- und Nachteile diskutiert.

Die Korrektheit einer Spezifikation, d.h. eines Tripels aus einem Graphprogramm
sowie Vor- und Nachbedingung in Form von HR∗-Bedingungen, kann geprüft werden.
Dazu wird aus Nachbedingung und Graphprogramm durch grundlegende Transforma-
tionen eine schwächste Vorbedingung erzeugt. Diese kann dann mit der ursprünglichen
Vorbedingung verglichen werden, um die Korrektheit der Spezifikation zu prüfen.

HR∗-Bedingungen werden auf das Problem der Erzeugung von Instanzen von UML-
Metamodellen mit OCL-Constraints angewandt. Der Typgraph des Metamodells kann
in eine Graphgrammatik umgewandelt werden, wie beispielsweise in (K. Ehrig u. a.,
2009) gezeigt. Die zum Typgraphen gehörigen Essential OCL-Constraints werden zu
HR∗-Bedingungen transformiert. Die Benutzung von HR∗-Bedingungen ermöglicht
dabei das Ausdrücken von OCL-Constraints jenseits von First-Order-Logik. Mit Hilfe
der eingeführten grundlegenden Transformationen werden die HR∗-Bedingungen
anschließend in Anwendungsbedingungen für die Graphgrammatik umgewandelt.
So wird sichergestellt, dass alle von der Grammatik erzeugten Graphen den OCL-
Constraints genügen. Die Verwendung einer solchen Grammatik ermöglicht die
einfache Erzeugung von Instanzen des Metamodells.
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Chapter 1
Introduction
As soft- and hardware grow in size and complexity, visual modeling techniques that give
an intuitive overview of a system are more and more important. Moreover, with the
increasing reliance on hard- and software systems in safety- and security-critical areas,
there is also a growing need for the verification of these systems. Therefore, it is desirable
to combine visual modeling with formal verification.
The approach taken in this PhD thesis is to model the states of a system with

graphs. Graphs are a well-known and established representation for the visualization of
relations between a set of elements. The dynamics of a system are modeled using graph
transformation rules (H. Ehrig, K. Ehrig, Prange, et al., 2006). Graph transformation has
many application areas in software engineering and in the design of structure-changing
or distributed systems.
Structural properties of a system are traditionally described using textual logical for-

mulas. This work focuses on a more visual notation to describe these properties. In
(Habel and Pennemann, 2009), structural properties are described visually by nested con-
ditions, equivalent to first-order logic on graphs. Nested graph conditions are expressively
equivalent to first-order graph formulas and can express local properties in the sense of
(Gaifman, 1982). However, there are many interesting non-local graph properties like the
existence of an arbitrary-length path between two nodes, connectedness or circle-freeness
of the graph.
We propose HR∗ conditions, an extension to nested conditions that facilitates the

formulation of such properties in a visual way. HR∗ conditions use hyperedge replacement
systems to describe recurring structures of arbitrary size, like paths or circles. Since HR∗
conditions can express such non-local properties, they are clearly more expressive than
nested conditions. We will show in this PhD thesis that HR∗ conditions can express any
counting monadic second-order property.

HR∗ conditions can be used together with graph programs to build graph specifications
with pre- and postconditions in the form of a Hoare triple. Our goal is to check the
correctness of such specifications, i.e. whether for all graphs that satisfy the precondition,
any graph that results from application of the program satisfies the postcondition.
Following the approach of (Dijkstra, 1976), we transform the postcondition into a weakest
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Chapter 1 Introduction

precondition. We can then check whether the original precondition implies the weakest
precondition.

Wp

Does pre imply Wp(Prog,post)?
Prog

post

pre

weakest
precondition

unknown
no
yes

Figure 1.1: Correctness relative to HR∗ conditions

HR∗ conditions fulfill a double role as general constraints for graphs and application
conditions for graph transformation rules. The basic transformations used to calculate
weakest preconditions also serve to transform constraints into application conditions
and vice versa. This enables us to transform e.g. a postcondition into an application
condition for a rule, ensuring that the rule can only be applied to a graph if the result
satisfies the postcondition.
Graph transformation has many applications in the area of software engineering. In

this thesis, we use graph grammars and HR∗ conditions to generate instances of a UML
meta-model. The combination of meta-modeling with graph grammars promises several
useful applications, including the testing of model transformations and the generation of
edit operations or model repair actions.

Structure
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Figure 1.2: Application to meta-modeling

The approach translates the meta-model into a graph grammar, with all its constraints
and restrictions. Instances can then be generated by deriving a terminal graph with
the rules of the graph grammar. Since meta-models are often further restricted with
Essential OCL (Object Constraint Language) invariants, the grammar has to be restricted
accordingly. We thus present a translation from Essential OCL invariants to HR∗
constraints, establishing a formal link between OCL and graph transformation.
The HR∗ constraints are further transformed into application conditions for the rules
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1.1 State of the art

of the grammar, guaranteeing that only valid models are generated that satisfy the OCL
constraints.

1.1 State of the art
In the following, we present a short state of the art. This subchapter consists of three
parts: The first part discusses various concepts for expressing graph properties in a mostly
visual way. In the second part, approaches for the verification of graph transformation
systems are commented. The third part surveys works that relate meta-models, and
especially OCL constraints, to graph grammars and graph constraints. At the end of
each chapter, there will be a more detailed discussion of the chapter’s relation to other
publications.

Languages for expressing graph properties
Visual languages Many concepts have been developed to express graph properties in
a formal way. They differ in their expressiveness, their exact purpose and style. While
some concepts stay close to logical formulas in order to facilitate reasoning about these
properties, other languages aim for a more visual, intuitive formalism.
The expressiveness of application conditions for graph transformation rules has been

steadily increased over the years. Some early graphical query languages supporting
transitive closure on edge relations can be found in (Cruz et al., 1987; Angelaccio et al.,
1990). In (Heckel and Wagner, 1995; Habel, Heckel, et al., 1996), consistency conditions
and their transformation into negative application conditions were presented. Negative
application conditions were more thoroughly regarded in (Lambers, 2010), and the concept
was lifted to weak adhesive HLR categories in (H. Ehrig, K. Ehrig, Habel, et al., 2006).
(Habel, Pennemann, and Rensink, 2006) introduced nested conditions, equivalent to first-
order logic on graphs, and showed how they could be used as application conditions. The
concept was generalized and equipped with basic transformations in (Habel, Pennemann,
and Rensink, 2006). The idea to use graph grammars in conditions was explored in
(B. König and Esparza, 2010).
However, many interesting graph properties lie beyond the scope of first-order logic,

as shown in (Gaifman, 1982). To address such properties, several extensions have
been proposed. (Poskitt and Plump, 2013) enhanced nested conditions to E-conditions,
facilitating the handling of nodes with multiple, typed labels and to perform operations
on these labels, e.g. integer arithmetic and string operations. An extension into a
different direction was proposed in (Bruggink and B. König, 2010; Bruggink, Hülsbusch,
et al., 2012): The logic on subobjects includes reasoning about subobjects in the regarded
category. In the category of graphs, these subobjects are subgraphs, and the resulting
formalism is exactly as expressive as monadic second-order logic on graphs. The M-
conditions defined in (Poskitt and Plump, 2014) are an extension of nested conditions to
monadic second-order logic, handling graphs in the visual way of nested conditions and
sets in a more abstract, textual way. The µ-conditions presented in (Flick, 2016) take a
recursive approach to express paths of arbitrary length.
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Non-visual languages Several logics on graphs, especially monadic second-order logic,
are presented in (Courcelle and Engelfriet, 2012). An insightful comparison of such
logics is given in (Courcelle, 1996). For the case of separation logic, (Dodds and Plump,
2009) show that a fragment of separation logic exactly corresponds to a subclass of
the languages defined by hyperedge replacement grammars. (Gadducci et al., 2012)
unites concepts from temporal logic with monadic second-order logic, in order to describe
properties of graphs and graph transformation systems.

Verification of graph transformation systems

A prominent application of languages expressing graph properties lies in the verification
of graph transformation systems. One approach to verification is model checking, where
a finite state space is systematically and exhaustively checked against constraints.
In (Varró, 2003), typed, attributed graph transformation rules with (negative) appli-

cation conditions are checked against reachability of “property graphs” by Spin after a
prior translation into Promela. The Groove tool of (Kastenberg and Rensink, 2006)
performs model checking of graph transformation rules and can verify properties formu-
lated in a modal logic over graphs, which is enhanced by a transitive closure operator. In
(Bauer, 2006), abstraction is used on a fixpoint approximation of graph relabeling rules.
This approach is implemented in the Hiralysis tool.
However, model checking can only check programs relative to a finite number of starting

states (i.e. graphs). Therefore, another approach is to translate the transformation
rules into logical formulas, as proposed in (Courcelle, 1990), and to use theorem proving
techniques on them. In (M. Strecker, 2008; M. Strecker, 2011), graph transformation rules
and programs, with respect to the Great language for graph properties, are translated
into formulas that can be checked with the Isabelle proof assistant.
The calculus developed in (Poskitt and Plump, 2013) can be used to verify properties

relative to the graph programming language GP. The ProCon theorem prover presented
in (Pennemann, 2008b) uses a similar technique and tries to solve implication problems
for logical formulas on graphs. The program SeekSat presented in (Pennemann, 2008a)
tries to find counter-examples to such formulas using SAT solving techniques. The
Augur2 tool (B. König and Kozioura, 2008a) analyzes and verifies graph transformation
systems by approximating them with Petri nets. In (Hildebrandt et al., 2012), model
transformation using triple graph grammars is enhanced by an invariant checker for
constraints that restrict the source and target graphs.

Meta-models and graph grammars

The idea to use graph transformation in the context of meta-modeling in general and
OCL in particular is not new. In (Lara and Vangheluwe, 2004), a framework and a tool
(ATOM3) are presented that use graph grammars to manipulate meta-models. (Klar
et al., 2007) explored special techniques to perform model transformation on large models,
and (Varró and Balogh, 2007) introduced the VIATRA2 framework integrating abstract
space machines with graph transformation. Techniques for dealing with attributed
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1.2 Thesis outline

graph transformation were refined in (B. König and Kozioura, 2008b). (Hermann et
al., 2010) discussed general techniques for model transformation and the use of triple
graph grammars. A transformation from meta-models, along with some constraints, was
presented in (Taentzer, 2012). Another option is explored in (Kuhlmann and Gogolla,
2012), where OCL constraints are transformed to and from a relational logic.
In (Winkelmann et al., 2008), it was shown how a restricted subset of OCL constraints

can be transformed into constraints for graph grammars. This work only translates a
subset of navigation expressions, size and attribute constraints and Boolean combinations
thereof. This work was extended to larger subclasses of OCL in (Bergmann, 2014),
(Richa, Borde, Pautet, et al., 2014; Richa, Borde, and Pautet, 2015) as well as (Arendt,
Habel, et al., 2014; Radke et al., 2015); a more detailed look at these papers will be given
at the end of Chapter 7.

1.2 Thesis outline
In Chapter 2, we recapitulate nested conditions. HR∗ conditions are introduced in
Chapter 3, and Chapter 4 discusses different variants of them. In Chapter 5, we look at
the expressiveness of HR∗ conditions in comparison to several logical formalisms and show
that it lies between monadic second-order and second-order graph formulas. Chapter 6 is
dedicated to transformations of HR∗ conditions over rules and programs, and to checking
correctness of programs with respect to HR∗ conditions. The developed concepts are
applied to UML meta-models with OCL constraints in Chapter 7, where HR∗ conditions
are used as application conditions in an instance-generating graph grammar. Chapter 8
summarizes the results of the thesis and discusses topics for future work.
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Chapter 2
Nested graph conditions and
graph transformation
Contents

2.1 Graphs and graph morphisms . . . . . . . . . . . . . . . . . . . 7
2.2 Nested graph conditions . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Graph transformation . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 A containment operator for nested conditions . . . . . . . . . 13

In this chapter, we recall the basic notions of graphs and graph morphisms, nested
graph conditions, and graph transformation. For a more detailed introduction, we refer
to (H. Ehrig, K. Ehrig, Prange, et al., 2006; Habel and Pennemann, 2009).

2.1 Graphs and graph morphisms

Graphs consist of labeled nodes and edges. Edges have one source and one target.

Definition 2.1 (graph). Let L = LV]LE
1 be a fixed, finite alphabet of node and edge

labels. A graph over L is a system G = (VG,EG, sG, tG, lvG, leG) consisting of finite sets
VG and EG of nodes (or vertices) and edges, source and target functions sG, tG : EG → VG,
and labeling functions lvG : VG → LV, leG : EG → LE. A node or edge is a-labeled if its
label is a. The set of all graphs is denoted by G. A graph G is empty, denoted by ∅, iff
VG = ∅. We denote the disjoint union of two graphs G,H by G+H. For graphs G,H
with H ⊆ G, G−H denotes the difference. 4

1For two sets A and B, A ] B := {(a, 0) | a ∈ A} ∪ {(b, 1) | b ∈ B} denotes the disjoint union of A
and B.
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Chapter 2 Nested graph conditions and graph transformation

Graph morphisms consist of a pair of mappings between the node and edge sets of
graphs.

Definition 2.2 (graph morphism). A graph morphism g : G → H consists of func-
tions gV : VG → VH and gE : EG → EH that preserve sources, targets and labels, i.e.
sH ◦gE = gV ◦ sG, tH ◦gE = gV ◦ tG, lvH ◦gV = lvG and leH ◦gE = leG, where ◦ denotes
the composition of functions. The graph G is called the domain of g, denoted Dom(g).
H is called the codomain of g, denoted Ran(g). The composition h ◦ g of g with a graph
morphism h : H →M consists of the composed functions hV ◦ gV and hE ◦ gE.
A graph morphism g is injective (surjective) if gV and gE are injective (surjective), and

an isomorphism if it is both injective and surjective. Injective/surjective morphisms are
also called monomorphisms and epimorphisms, respectively. LetM and E be the set of
all injective and surjective morphisms, respectively. If g is an isomorphism, its domain
and codomain G and H are isomorphic, which is denoted by G ∼= H.
An injective graph morphism m : G ↪→H is an inclusion, written G ⊆ H, if VG ⊆ VH

and EG ⊆ EH . For a graph G, the identity idG : G→ G consists of the identities idGV
and idGE on GV and GE, respectively. 4

Notation. Morphisms are written with a plain arrow→; injective morphisms are written
with a hooked arrow (↪→). The mapping of nodes by a morphism is conveyed by adding
small numbers to the side of the nodes; a node in the domain is mapped to the node
with the same number in the codomain.

Example 2.1. The following example shows an injective morphism g from a graph G to
a graph H. Graph G consists of five nodes with labels a and c and seven edges (including
one loop) with the (invisible) label �. Additionally, graph H contains an isolated node
with label c and another edge with label �.

c
1

a
2

c
3

c
4

c
5

G

g

c
1

a
2

c
3

c
4

c
5

c
H

Figure 2.1: A graph morphism

2.2 Nested graph conditions
We can combine graph morphisms with first-order logic to define nested graph conditions
(Habel and Pennemann, 2009). These conditions contain quantifiers over graph morphisms,
providing an intuitive, graphical way to formulate graph properties.

Definition 2.3 (nested graph condition). Nested (graph) conditions, or short con-
ditions, are inductively defined.
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2.2 Nested graph conditions

(1) For any graph P , true is a condition over P .
(2) For an injective morphism a : P ↪→C and a condition c over C, ∃(a, c) is a condition

over P .
(3) For conditions c, c′ over P , ¬c and c ∧ c′ are conditions over P .

A constraint is a condition over the empty graph ∅. 4

Remark. In contrast to (Habel and Pennemann, 2009), we consider finite nested condi-
tions only, i.e. conditions with finite conjunctions.

Abbreviations. To facilitate the use of nested conditions, we define some abbreviations,
similar to logics.

• @ abbreviates ¬exists,

• ∃a abbreviates ∃(a, true),

• ∀(a, c) abbreviates ¬∃(a,¬c),

• false abbreviates ¬true,

• c ∨ c′ abbreviates ¬(¬c ∧ ¬c′).

• The domain of a morphism may be omitted if no confusion arises: ∃(C) or ∃C can
replace ∃(P → C) in this case.

Example 2.2. The nested condition

∃(∅ ↪→ a 1, @( a 1 ↪→ a 1 c 2
e , true))

expresses the property “There exists an a-labeled node, which has no e-labeled, outgoing
edge to a c-labeled node”. With the above abbreviations, this can be shortened to

∃( a 1, @( a 1 c 2
e )). ♦

We now give a formal semantics for nested conditions.

Definition 2.4 (satisfaction of nested conditions). The satisfaction of a nested
condition c over P by a morphism p : P → G, written p |= c, is inductively defined
as follows.

(1) p satisfies true.

(2) p satisfies ∃(a, c) for a morphism a : P ↪→C if there is an injective morphism
q : C ↪→G such that q ◦ a = p and q satisfies c.

P C

G

a

p q

∃( , c)
|==
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Chapter 2 Nested graph conditions and graph transformation

(3) p satisfies ¬c if p does not satisfy c. p satisfies c ∧ c′ if p satisfies c and c′.

A graph G satisfies a constraint c if the morphism ∅ ↪→G satisfies c. We write G |= c
to denote that G satisfies c. 4

Example 2.3. The nested condition in Example 2.2 is satisfied by every graph which
has an a-labeled node without an e-labeled edge to a c-labeled node. ♦

Remark. Non-injective nested conditions and non-injective semantics can be defined
with non-injective morphisms a and q in rule (2). As shown by (Habel and Pennemann,
2009, Fact 6), the expressiveness is not changed by this choice. In the following, we only
consider injective nested conditions.

The expressive power of nested conditions can be compared with traditional logical
formulas on graphs.

Fact 2.1 (Habel and Pennemann (2009)). Nested graph conditions are expressively
equivalent to first-order graph formulas.

In (Gaifman, 1982) it is shown that first-order graph formulas can only express local
properties. However, many interesting properties of graphs are non-local. For example,
nested conditions are unable to express the properties “the graph contains an arbitrary-
length path from a node to another node”, “the graph is cycle-free” or modulo-counting
properties like EVEN (Libkin, 2004, p. 24) stating “the graph has an even number of
nodes”.

2.3 Graph transformation
We now explain the double-pushout (DPO) approach to graph transformation, as ex-
plained in (H. Ehrig, K. Ehrig, Prange, et al., 2006, Chapter 1.2.1). Some knowledge of
category theory, especially pushouts and pullbacks, might help the understanding and
can be found e.g. in the appendix of (H. Ehrig, K. Ehrig, Prange, et al., 2006). For
more details on category theory in general, consider e.g. (Adámek et al., 2004; Simmons,
2011).

Definition 2.5 (graph transformation rule). A plain (graph transformation) rule
p = 〈L l←↩K r

↪→R〉 is a pair of injective morphisms l, r and a common domain K called
interface. L is called the left-hand side and R the right-hand side. A left (right) application
condition is a condition over L (R). A (graph transformation) rule ρ = 〈p, acL, acR〉
consists of a plain rule p together with a left and a right application condition acL and
acR, respectively.
Given a plain rule p = 〈L←↩ K ↪→ R〉 and an injective morphism m : L ↪→G, a direct

derivation consists of two pushouts (1) and (2). We write G ⇒p,m,m′ H, G ⇒p H, or
short G ⇒ H. Morphism m is called match and m′ is called comatch. Given a rule
ρ = 〈p, acL, acR〉, there is a direct derivation G ⇒ρ,m,m′ H if G ⇒p,m,m′ H, m |= acL ,
and m′ |= acR. A derivation is a sequence of direct derivations.

10



2.3 Graph transformation

L Kl Rr

G

m

D H

m′(1) (2)

4

For brevity, the interface graph K of a rule can be omitted, writing L ⇒ R instead
of 〈L ←↩ K ↪→ R〉, provided that the corresponding nodes in L and R are marked by
indices to convey the mapping of items. A rule ρ = 〈p, acL, acR〉 can also be written as
acL p acR, with the application conditions indicated by gray triangles. For acR =
true, we write 〈p, acL〉 instead of 〈p, acL, true〉.
Pushout (1) dictates that the match must satisfy the dangling condition. This means

that any node to be deleted (i.e. in G−D) must not have an edge to a node which is
not deleted (i.e. a node in D). Otherwise, trying to construct pushout (1) would leave D
with “dangling” edges which have no source or target node and D would not be a proper
graph in G.

Remark. Application of a rule can also be explained with the use of set theory. The
set-theoretic construction yields the same results as the category-theoretic one. The
construction proceeds in two steps: (1) remove all vertices and edges in m(L−K) from
G. The resulting structure D = (G−m(L−K)) might not be a graph. In this case, the
dangling condition is not met and the application fails. If D is a valid graph, proceed by
(2) gluing graph D together with R−K to obtain graph H = D + (R−K).

Remark. In Definition 2.5, the match m is an injective morphism. One can also use
arbitrary matches instead: As shown by (Habel, Müller, et al., 2001), both approaches
are expressively equivalent.

Example 2.4. The rule delEdge =
〈
〈•

1
•
2
←↩ •

1
•
2
↪→ •

1
•
2
〉, @(•

1
•
2
), true

〉
deletes

an edge between two nodes 1 and 2 if there is no second edge from node 1 to node 2.
The application of this rule on a graph is shown below. The left application condition
forbids the deletion of the edges from 3 to 4.

•
1

•
2

L •
1

•
2

K •
1

•
2

R

•
1

•
2

•
3

•
4

G •
1

•
2

•
3

•
4

D •
1

•
2

•
3

•
4

H

@(•
1

•
2
) true

♦

Rules can be combined to form graph transformation systems, graph grammars and
graph programs.

11



Chapter 2 Nested graph conditions and graph transformation

Definition 2.6 (graph transformation system, graph grammar). A graph trans-
formation system is a finite set R of rules. Together with a starting graph S, a graph
transformation system R forms a graph grammar GG = (R,S). The language L(GG) of
a graph grammar GG = (R,S) consists of all graphs that can be derived from S using
the rules from R in an arbitrary number of steps:

L((R,S)) = {G | S ⇒∗R G}.

4

Example 2.5. Regard the graph transformation system {r1, r2, r3} displayed below
left. Together with the starting graph S = ∅, it constitutes the graph grammar GG =
({r1, r2, r3}, ∅). The language L(GG) is the set of bipartite graphs (e.g. the one displayed
below right) consisting of two disjoint sets Ma,Mc of a- and c-labeled nodes, respectively,
where each edge connects a node from MA with a node from MB.

S = ∅
r1 : ∅ ⇒ a
r2 : ∅ ⇒ c
r3 : a c ⇒ a c

a
a
a
a

c
c
c

♦

Graph programs are defined as in (Habel and Pennemann, 2009). The combination of
rules into programs allows for a better control of the program flow between execution of
the rules.

Definition 2.7 (graph program (Habel and Plump, 2001)).
Graph programs are defined as in (Habel and Plump, 2001):

1. Every rule is a program.

2. Every finite set S of programs is a program.

3. Given programs P and Q, sequential composition (P ;Q) and as-long-as-possible
iteration P ↓ are programs.

We also write P i for the i-fold sequential composition P ; . . . ;P︸ ︷︷ ︸
i times

of program P . 4

Example 2.6. The program reverse ↓; cleanup ↓ with

reverse = a c ⇒ a crev and
cleanup = a crev ⇒ a c

reverses all unlabeled edges from a- to c-labeled nodes. First, reverse ↓ deletes each
unlabeled edge and replaces it with a rev-labeled edge in the opposite direction. When all
unlabeled edges are reversed and labeled, cleanup ↓ replaces the temporary rev-labeled
edges with unlabeled ones. ♦

12



2.4 A containment operator for nested conditions

Definition 2.8 (semantics of graph programs). The semantics of a program is a
binary relation [[P ]] ⊆ G × G. For every rule ρ, every non-empty set S of programs, and
every pair of programs P and Q,

1. [[ρ]] = {〈G,H〉 | G⇒ρ H},

2. [[S]] = ⋃
P∈S [[P ]],

3. [[P ;Q]] = [[Q]] ◦ [[P ]], where ◦ is the composition of relations,

4. [[P ↓]] = {〈G,H〉 | 〈G,H〉 ∈ [[P ]]∗ ∧ @M. 〈H,M〉 ∈ [[P ]]},
where [[P ]]∗ is the reflexive-transitive closure of ◦.

We also write G⇒P H instead of (G,H) ∈ [[P ]]. 4

2.4 A containment operator for nested conditions
By the nature of nested conditions, in a condition of the form ∃(P ↪→C, c), the codomain C
is usually bigger than the domain P . The deeper the nesting gets, the bigger the codomain
gets, although only a small part of the graph is actually changing. One might wonder
whether a containment operator ∃(P w C, c) that “forgets” part of the graph might be
useful for nested conditions, as introduced in (Arendt, Habel, et al., 2014). This could
reduce the size of a condition, e.g. instead of

∀(•
1
•
2
•
3
,∃(•

1
•
2
•
3
) ∨ ∃(•

1
•
2
•
3
) ∨ ∃(•

1
•
2
•
3
) ∨ ∃(•

1
•
2
•
3
) ∨ ∃(•

1
•
2
•
3
) ∨ ∃(•

1
•
2
•
3
))

meaning “For every triple of nodes, there is an edge between two of them”, we could
write

∀(•
1
•
2
•
3
,∃(•

1
•
2
•
3
w •

4
•
5
,∃(•

4
•
5
))).

Before presenting this abbreviation, we repeat the definition of construction Shift from
(H. Ehrig et al., 2012).

Construction (Shift). Let Shift(b,∃(a, c)) = ∨
a′,b′∈F ∃(a′, Shift(b′, c)), where F =

{(a′, b′) | (a′, b′) jointly surjective, b injective, (1) commutes} 2.

P Ca

P ′

b

C ′

b′

a′

(1)

For Boolean conditions and true, the construction is straightforward: Shift(b, true) =
true, Shift(b,¬c) = ¬Shift(c) and Shift(b, c ∧ c′) = Shift(b, c) ∧ Shift(b, c′). l

With the help of Shift, we can reduce nested conditions with containment operator
into “pure” nested conditions, i.e. without containment operator.

2For graphs, the set F is always non-empty, as one can always construct a pushout.
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Chapter 2 Nested graph conditions and graph transformation

Fact 2.2 (nested + containment ≡ nested). There is a transformation Pure from
nested conditions with containment operator into equivalent (pure) nested conditions.

Construction.

Pure(c) =
{∨

b∈B Shift(b, c′) if c = ∃(P w C, c′)
c otherwise

where B is the set of injective morphisms from C to P . l

Example 2.7. Regard the condition c = ∃(•
1
•
2
w •

4
, ∃(•

4
•
3
)), meaning “There are two

nodes 1, 2, and one of them has an outgoing edge to another node”. We transform it into
a pure nested condition:

Pure(c) = ∃
(
•
1
•
2
,∃(•

1
•
2
•
3
) ∨ ∃( •

1
•
2

•
3

) ∨ ∃(•
1
•
2
) ∨ ∃(•

1
•
2
)
)

♦

Bibliographic notes
In the literature, many formalisms have been proposed to express properties of graphs as
constraints and as application conditions for graph transformation rules.
The concept of application conditions for rules of a graph transformation system was

introduced by (H. Ehrig and Habel, 1986). Conditions of the form ¬∃(a) were first
introduced in (Habel, Heckel, et al., 1996) as negative application conditions, and (Heckel
and Wagner, 1995) introduced consistency conditions of the form ∀(P,∃(P → C)). (Koch
et al., 2005) investigated how sets of positive and negative conditions can be checked
for consistency. A detailed study on negative application conditions can be found in
(Lambers, 2010). Application conditions and constraints were combined with Boolean
operations and merged into the first-order equivalent nested graph conditions by (H.
Ehrig, K. Ehrig, Habel, et al., 2006; Habel, Pennemann, and Rensink, 2006; Habel and
Pennemann, 2009).
An extensive study of nested conditions has been performed in (Pennemann, 2009).

The results include basic transformations of conditions over rules and the computation of
weakest preconditions (and strongest postconditions) for a specification.
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In this chapter, we introduce the main concept of this thesis: HR∗ conditions. As noted
in the previous chapter, nested conditions cannot express paths of arbitrary length or
other non-local conditions. HR∗ conditions use hyperedge replacement systems, short
HR systems, to remedy this deficiency while retaining the intuitive visual representation
of graphs in the conditions. We show that HR∗ conditions can be used to express the
existence or non-existence of paths or cycles, and that the problem whether a given
graph satisfies a given condition is decidable. The contents of this chapter are oriented
on (Habel and Radke, 2010; Radke, 2013).

3.1 HR systems

In order to express non-local structures of arbitrary size in a finite way, we need some
kind of placeholder for those structures. We thus enhance graphs with hyperedges, which
serve as placeholders and can later be replaced by graphs of arbitrary size.
Graphs with variables are similar to graphs as in Definition 2.1. They consist of labeled

nodes, edges and hyperedges. Edges have one source and one target and are labeled by a
symbol of an alphabet; hyperedges have an arbitrary long sequence of attachment nodes
(indicated by tentacles between the hyperedge and the attachment node) and are labeled
by ranked variables.

15



Chapter 3 HR∗ graph conditions

Definition 3.1 (graph with variables). Let L = LV]LE]Var be a fixed, finite label
alphabet where Var is a set of variables with a mapping rank : Var → N 1 assigning a
rank to each variable.
A graph (with variables) over L is a system G = (VG,EG,YG, sG, tG, attG, lvG, leG, lyG)

consisting of finite sets VG, EG, and YG of nodes (or vertices), edges and hyperedges,
source and target functions sG, tG : EG → VG, an attachment function attG : YG → V∗G 2,
and labeling functions lvG : VG → LV, leG : EG → LE, ly : YG → Var such that, for all
y ∈ YG, | attG(y)| = rank(lyG(y)). We call the set of all graphs with variables GVar and
write DG = VG ∪EG ∪YG to denote all items of a graph. A graph G is empty, denoted ∅,
if VG = ∅ and YG = ∅. We denote the disjoint union of two graphs G,H by G+H and
their difference by G−H for any H ⊆ G. For a graph G and item o, let G+ o designate
a graph consisting of G with o disjointly added to the graph (if o is a (hyper)edge, it is
attached to nodes in G). 4

A hyperedge y ∈ Y has rank(y) tentacles. The i th tentacle of a variable, where
1 ≤ i ≤ rank(y), connects the variable with the i th node of the sequence att(y). This
number i is also called the index of a tentacle, and the i th tentacle of y can be referred
to with att(y)i.

Notation. Nodes are drawn by circles carrying the node label inside. Edges are drawn
by arrows pointing from the source to the target node and the edge label is placed next
to the arrow. Hyperedges are drawn as boxes with attachment nodes where the i th
tentacle has its number i written next to it and is attached to the i th attachment node
and the label of the hyperedge is inscribed in the box. Nodes with the invisible � label
are drawn as points (•). For visibility reasons, we may abbreviate hyperedges of rank 2
by writing • •x instead of • •x1 2 (i.e. as an x-labeled arrow going from the first
to the second attachment node).

Example 3.1. Consider the graphs G,H in Figure 3.1 over the label alphabet L =
{a, c} ] {�} ] Var where the symbol � stands for the invisible edge label and is not
drawn and Var = {u, v} is a set of variables that have rank 4 and 2, respectively. The
graph G contains five nodes with the labels a and c, drawn as circles with the label inside,
seven edges with (invisible) label �, drawn as arrows, and one hyperedge of rank 4 with
label u, drawn as a square with the label inside. Additionally, the graph H contains a
node, an edge, and a hyperedge of rank 2 with label v. See also Figure 2.1 for a similar
example without variables. ♦

1N denotes the set of natural numbers, including 0.
2The ∗-operator denotes a sequence of arbitrary length. This also includes hyperedges with zero tentacles.
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3.1 HR systems

c

a

c

cc

u
1

2 3

4

G

g

c

a

c

cc c

u
1

2 3

4

v
1 2

H

Figure 3.1: A morphism between two graphs with variables

Remark. The definition extends the well-known definition of graphs (H. Ehrig, 1979)
by the concept of hyperedges in the sense of (Habel, 1992). Graphs with variables form a
special case of labeled hypergraphs. While edge variables resemble arbitrary hyperedges,
the “common” edges in EG are hyperedges with two tentacles. The labeling functions for
hyperedges and edges can be combined into a single hyperedge labeling function, keeping
the label sets for hyperedges and common edges disjoint.

Graph morphisms with variables consist of mappings between the sets of nodes, edges
and hyperedges of graphs, and are defined analogously to the graph morphisms in
Definition 2.2.

Definition 3.2 (graph morphism with variables). Let G and H be graphs with
variables. A graph morphism (with variables), short morphism, g : G → H consists of
functions gV : VG → VH , gE : EG → EH , and an injective mapping gY : YG ↪→YH that
preserve sources, targets, attachment nodes and labels, i.e. sH ◦gE = gV ◦ sG, tH ◦gE =
gV ◦ tG, attH ◦gY = g∗V ◦ attG 3, lvH ◦gV = lvG, leH ◦gE = leG, and lyH ◦gY = lyG. The
graph G is called the domain of g, denoted Dom(g). H is called the codomain of g,
denoted Ran(g). The composition h ◦ g of g with a graph morphism h : H → H ′ consists
of the composed functions hV ◦ gV, hE ◦ gE, and hY ◦ gY.
A morphism g is injective (surjective) if gV, gE, and gY are injective (surjective), and

an isomorphism if it is both injective and surjective. Injective/surjective morphisms
are also called monomorphisms and epimorphisms, respectively. LetM and E be the
set of all injective and surjective morphisms, respectively. If g is an isomorphism, its
domain and codomain G and H are isomorphic, which is denoted by G ∼= H. An injective
graph morphism m : G ↪→H is an inclusion, written G ⊆ H, if VG ⊆ VH , EG ⊆ EH and
YG ⊆ YH . For a graph G, the identity idG : G→ G consists of the identities idGV, idGE,
and idGY on GV, GE, and GY, respectively. 4

Example 3.2. The graph morphism g : G ↪→H in Figure 3.1 maps all nodes, edges and
hyperedges in G to corresponding objects in H, as indicated by the small numbers next
to the nodes. ♦

3For a mapping g : A→ B, the free symbol-wise extension g∗ : A∗ → B∗ is defined by g∗(a1 . . . ak) =
g(a1) . . . g(ak) for all k ∈ N.
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Chapter 3 HR∗ graph conditions

Notation. Arbitrary graph morphisms are drawn by the usual arrows “→”; the use of
“↪→” indicates an injective graph morphism. The actual mapping of items is conveyed by
indices, if necessary. The mapping of nodes by a morphism is displayed by adding small
numbers to the side of the nodes; a node in the domain is mapped to the node with the
same number in the codomain.

Further properties deal with pairs of morphisms.

Definition 3.3 (spans and cospans). A pair of morphisms (a, b) is called a span,
written A

a←− C
b−→ B, if a and b have a common domain C. Likewise, (a, b) is called

a cospan, written A
a−→ C

b←− B, if a and b have a common codomain C. A cospan
A

a−→ C
b←− B is jointly surjective if for each item v ∈ C, there is a preimage u ∈ A with

a(u) = v or u ∈ B with b(u) = v. Let E ′ denote the class of jointly surjective morphism
pairs. For a cospan A a−→ C

b←− B, an E ′-M pair factorization is a cospan A a′−→ C ′
b′←− B

and a morphism m : C ′ ↪→C with (a′, b′) ∈ E ′, m ∈M and a = m ◦ a′ and b = m ◦ b′ (see
diagram below). A partial morphism P ⇀ C is a span P ← I → C.

CA a

B

b

C ′
ma′

b′

=
=

4

Hyperedges do not only play a static part as building blocks of graphs with variables,
but also a more dynamic part as place holders for graphs. Before a graph can take the
place of a hyperedge, it needs some preparation. While a hyperedge is attached to a
sequence of attachment nodes, a graph has to be equipped with a sequence of nodes.

Definition 3.4 (pointed graph). A pointed graph 〈G,pinG〉 is a graph with variables
G together with a sequence pinG = v1 . . . vn of pairwise disjoint nodes from G called
pinpoints. We write rank(〈G,pinG〉) for the number n of nodes in pinG. For x ∈ Var
with rank(x) = n, x• denotes the pointed graph with the nodes v1, . . . , vn, an x-labeled
hyperedge attached to v1 . . . vn, and pinpoints v1 . . . vn, and 〈x〉 denotes x• with the
hyperedge removed, i.e. the pointed graph consisting of the node sequence v1 . . . vn only
(see Figure 3.2). 4

x• =
•
v1 •

v2

•
v3

•
vn

x
1 2

3n 〈x〉 =
•
v1 •

v2

•
v3

•
vn

Figure 3.2: Graphs x• and 〈x〉 for an x-labeled hyperedge with rank(x) = n.
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3.1 HR systems

With hyperedges and pointed graphs, we can now define the replacement of a hyperedge
in some graph G by a graph R. The replacement process connects the replacement graph
R with G, according to the tentacles of the hyperedge. Hyperedge replacement systems
can be combined with a start graph to form a grammar, generating a language of graphs,
see Chapter 2.3.

Definition 3.5 (hyperedge replacement system). A hyperedge replacement system
R, short HR system, is a finite set of replacement pairs of the form x/R, also written
x•/R, where x ∈ Var is a variable and R a pointed graph with rank(x) = rank(R).
Given a graph G, the application of the replacement pair x/R ∈ R to a hyperedge y

with label x proceeds in two steps (see Figures 3.3 and 3.4):

1. Remove the hyperedge y from G, yielding the graph G− {y} 4.

2. Construct the disjoint union (G− {y}) +R and fuse the i th node in attG(y) with
the i th attachment point of R, for i = 1, . . . , rank(y), yielding the graph H. 4

•

• •

•
G− {y} x

1

2 3

4 •

• •

•1

2 3

4

G− {y} R

Figure 3.3: Application of replacement pair x/R.

Rules can also be represented in Backus-Naur form x ::= R1 | R2 | . . . Rn.

Remark. A hyperedge replacement rule +/R can also be formulated as a special form
of double pushout graph transformation rules (see Chapter 2.3), where L = +• and
K = 〈+〉, so rules have the form 〈+• ←↩ 〈+〉 ↪→ R〉.

4For a graph G and a set Y ⊆ YG of hyperedges, G− Y denotes G without the hyperedges in Y .
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Chapter 3 HR∗ graph conditions

•
1
•
2

+
L = +•

•
1
•
2

K = 〈+〉
•
1
• •

2

+
R

•
1
•
2

+•
0

G

m

•
1
•
2

•
0

D
•
1
• •

2

+•
0

H

m′(1) (2)

Figure 3.4: Application of rule +/•
1
• •

2
+ .

Definition 3.6 (derivation). G directly derives H by x/R ∈ R, denoted by G⇒x/R H
or G ⇒R H. A sequence of direct derivations G ⇒R . . . ⇒R H is called a derivation
from G to H, denoted by G⇒∗R H. For every variable x, R(x) = {G ∈ GVar | x• ⇒∗R G}
denotes the set of all graphs derivable from x• by R. 4

Example 3.3. Starting from +• = •
1

•
2

+ , the hyperedge replacement system R with
the rules given in Backus-Naur form

•
1

•
2

+ ::= •
1

•
2
| •

1
• •

2
+

can derive the set of all directed paths from node 1 to node 2. ♦

In HR∗ conditions, we substitute all variables by graphs, which are generated according
to a hyperedge replacement system. Contrary to the replacement process defined above,
this is based on variables instead of individual hyperedges, i.e. all hyperedges with the
same label are replaced by isomorphic graphs simultaneously.

Definition 3.7 (substitution). A substitution induced by a hyperedge replacement
system R is a mapping σ : Var → G with σ(x) ∈ R(x) for all x ∈ Var. The set of all
substitutions induced by R is denoted by Σ. The substitution of all hyperedges with
label x in a graph G by σ(x) is obtained from G by applying the rule x/σ(x) to every
hyperedge with label x in G. Application of σ to a graph G, denoted σ(G) or Gσ, is
obtained by substitution of all hyperedges in G according to σ. 4
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3.2 HR∗ graph conditions

G− YG

• •

• •

•
•

•

•
•

•

•
•

x1
1 2

3
4

x
1

2

3

x2
1

2

x
1 2

3

σ=⇒ G− YG

• •

• •

•
•

•

•
•

•

•
•

R1

R

R2

R

Figure 3.5: Substitution of hyperedges.

The simultaneous substitution of hyperedges plays an important role in the next part,
defining the semantics of HR∗ conditions.

3.2 HR∗ graph conditions
Having defined hyperedge replacement, we can now extend nested conditions to contain
variables, which are replaced by graphs according to a hyperedge replacement system.
This provides a finite way to express structures of arbitrary size, with the variables acting
as placeholders. HR∗ conditions combine graphical notation with the usual first-order
logical operators. In addition, the containment operator w provides a means to focus on
a subgraph of a previously-defined graph and formulate constraints for this subgraph.

Assumption. In this PhD thesis, we consider injective HR∗ conditions, i.e. HR∗
conditions with injective morphisms, and injective / M-satisfaction. For technical
reasons, in Chapters 4 and 5, we also consider arbitrary / A-satisfaction to prove results
on the expressive power of HR∗ conditions.

Definition 3.8 (HR∗ condition). HR∗ (graph) conditions over an HR system R, short
conditions, are inductively defined:

1. For a graph P , true is a condition over P .

2. For an injective morphism a : P ↪→C and a condition c over C, ∃(a, c) is a condition
over P .

3. For an injective partial morphism a : C ⇀ P and a condition c over C, ∃(P w C, c)
is a condition over P 5.

4. For conditions c, c′ over P , ¬c and c ∧ c′ are conditions over P .
5Morphism a is usually conveyed by indices on the nodes of P and C.
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Chapter 3 HR∗ graph conditions

A (graph) constraint is an HR∗ condition over the empty graph ∅.
HR∗ conditions c over R are denoted by 〈c,R〉, or c if R is clear from the context. 4

Notation. The following abbreviations are used: ∃(a) abbreviates ∃(a, true), ∀(a, c)
abbreviates ¬∃(a,¬c) and likewise for ∀(P w C, c), false abbreviates ¬true, and c ∨ c′
abbreviates ¬(¬c ∧ ¬c′). The domain of a morphism may be omitted if no confusion
arises: ∃(C, c) can replace ∃(P → C, c) in this case. Nodes with an arbitrary label are
represented by ◦, e.g. for node label alphabet LV , ∃(◦1 ) abbreviates ∨a∈LV

∃( a 1). For

readability, we sometimes omit parentheses and write e.g. ∃•
1

•
2

+ instead of ∃(•
1

•
2

+ ).

Example 3.4. The following example shows an HR∗ condition intuitively expressing
the property “There exists a path from node 1 to node 2”.

∃(•1 •
2

+ ) with •
1

•
2

+ ::= •
1

•
2
| •

1
• •

2
+ .

HR∗ conditions can also express the fact that a graph contains an even number of
nodes:

∃(2 , @(2 •)) with 2 ::= ∅ | 2 ••.

Here, the zero-tentacle hyperedge 2 is substituted by a discrete graph with an even
number of nodes, and the condition states that the graph must contain this as a subgraph
and no further node. ♦

A more complicated example shows the use of the w operator.

Example 3.5. The following HR∗ condition has the intuitive meaning “There is a path,
and every inner node (i.e. every node that is part of the path except the first and the
last) has at least three more outgoing edges, in addition to the path’s edges”.

∃(•
1

•
2

+ , there is a path
∀(•

1
•
2

+ w •
1

•
3

•
2

+1 +2 , where every inner node

∃•
1

•
3

•
2

+1 +2
• • •

)) has (at least) 3 more outgoing edges

with •
1

•
2

+ ::= •
1

•
2

| •
1
• •

2
+ and •

1
•
2

+1 , •
1

•
2

+2 defined likewise.

The w operator is used here to “peek into” the graph generated from the +-labeled
hyperedge. It splits the path from node 1 to 2 into two subpaths from 1 to 3 and from 3
to 2. The universal quantifier ensures that the “three more outgoing edges” property
holds for every such decomposition of the path. We use three different hyperedge symbols
to represent three paths of independent length. ♦
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3.2 HR∗ graph conditions

To understand how the above examples are evaluated, we define the formal semantics
of HR∗ conditions. An HR∗ condition is checked by first substituting the occurring
hyperedges with graphs generated according to the HR system. The resulting condition
can then be checked in a way similar to nested conditions.

Definition 3.9 (satisfaction of HR∗ conditions). Let p : P ↪→G be an injective
morphism with P,G containing no hyperedges. The satisfaction of a condition c,
written p |= c, is inductively defined as follows.

1. p satisfies true.

2. p satisfies ∃(P a
↪→C, c) if there is a substitution σ with Dom(σ) = Var(C) and an

injective morphism q : Cσ ↪→G such that q ◦ aσ = p 6 and q satisfies cσ (left image
below).

P Cσ∃( , cσ)

G

aσ

p q |==
P Cσ

G

∃( , cσ)
p q

b

= |=

3. p satisfies ∃(P w C, c) with partial morphism C ⇀a P if there are a substitution
σ with Dom(σ) = Var(C), an injective morphism b : Cσ ↪→P with b restricted to
C−YC commuting with a and an injective morphism q : Cσ ↪→G such that p◦b = q
and q satisfies cσ (right image above).

4. p satisfies ¬c if p does not satisfy c. p satisfies c ∧ c′ if p satisfies c and c′.

A morphism p satisfies a condition c by substitution σ, written p |=σ c, iff p |= cσ. A
graph G satisfies a constraint c if the morphism ∅ ↪→G satisfies c. We write G |= c to
denote that a graph G satisfies c. 4

Example 3.6. Recall the HR∗ condition from Example 3.4 expressing the property
“There exists a path from node 1 to node 2”:

c = ∃(•1 •
2

+ ) with R = •
1

•
2

+ ::= •
1

•
2
| •

1
• •

2
+ .

We check whether the graph G = •
a
•
b
•
c
•
d
satisfies c.

We first expand the abbreviations and substitute G by morphism p : ∅ → G:

p |= ∃(∅ a−→ •1 •
2

+
, true).

By Definition 3.9, p satisfies the condition if there are a substitution σ and an injective
morphism q : (•1 •

2
+ )σ ↪→G such that q = p ◦ aσ and q |= true. Using the rules of the

HR system, we expand •
1

•
2

+ ⇒∗R •1 •
3
•
4
•
2
. This yields the condition

∃(∅ aσ−→ •
1
•
3
•
4
•
2
, true).

6For a : P → C, aσ : P → Cσ is the morphism induced from a with aσ(o) = a(o) for every vertex or
edge o ∈ P .
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Chapter 3 HR∗ graph conditions

We define morphism q with q(1)=a, q(3)=b, q(4)=c, q(2)=d and map the edges accordingly.
Now q = p ◦ aσ and, trivially, q |= true, so G satisfies c. ♦

One might ask why the above semantics is based on the simultaneous substitution
of variables and not on their individual replacement. Substitution makes it very easy
to formulate an HR∗ condition for a property like “there are two paths of equal length
between two nodes 1 and 2”:

∃(•
1
•
2

+
+ ) with •

1
•
2

+ ::= •
1

•
2
| •

1
• •

2
+

Substitution and replacement as basis for the semantics of HR∗ conditions are discussed
in detail in Chapter 4.3.

Remark. HR∗ conditions extend both the HR conditions from (Habel and Radke,
2010) and the nested conditions from (Habel and Pennemann, 2009). The extension is
straightforward, as the definition of HR conditions is equal to Definition 3.8 without
item 3, and nested conditions are defined equally to Definition 3.8 without item 3 and
without hyperedges. For nested conditions, it is possible to add a w-operator, see
Chapter 2.4.

3.3 Decidability of HR∗ conditions
We now show that the satisfaction of an HR∗ condition is decidable. This is based on
the monotonicity of HR systems. A replacement system is monotone if |x•| ≤ |R| 7 for
each rule x•/R ∈ R, i.e. each derivation step increases the size of the derived graph.

Fact 3.1 ((Habel, 1992)). For every hyperedge replacement system, there is an equiv-
alent monotone one.

Using the above fact, we show that checking the validity of a condition for a graph is
decidable.

Theorem 3.1 (decidability of HR∗ conditions).
The validity problem for HR∗ conditions is decidable, i.e. there is an algorithm that
determines, for a given HR∗ condition c and a graph G, whether G |= c.

Proof. Let c be a finite HR∗ condition with replacement system R and |G| = |VG|+ |EG|
be the size of a graph G. Without loss of generality, assume R to be monotone, so we
can enumerate the set Rn(C) = {H ∈ G | C ⇒∗R H ∧ |H| ≤ n} of all graphs derivable
from C by R which are not bigger than n.
For graph morphisms p : P ↪→G with |G|=n and HR∗ conditions of the form ∃(P ↪→C, c),
we have p |= ∃(P ↪→C, c) ⇔ p |= ∃(P ↪→Cσ, cσ) for some substitution σ iff there is an
injective morphism q : Cσ ↪→G such that p = a ◦ q. For any σ with Cσ ≥ |G|, there

7For graph G, |G| denotes G’s size, i.e. the sum of the number of G’s nodes, edges and hyperedges.
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3.4 Case study: car platooning

is no injective morphism q : Cσ ↪→G. Thus, it suffices to check p |= ∃(P ↪→Cσ, cσ) for
every σ such that |Cσ| ≤ n. The same argument applies for HR∗ conditions of the form
∃(P w C, c). Thus, the validity problem for HR∗ is decidable. �

Example 3.7. Suppose we want to check whether the graphG = • • • • satisfies
the HR∗ condition ∃(•

1
•
2

+ ) with •
1

•
2

+ ::= •
1

•
2
| •

1
• •

2
+ . By the semantics

from Definition 3.9, we need to find a substitution σ such that G satisfies ∃(•
1

•
2

+ )σ.
Since the replacement system R is monotone, we can check different substitutions σ in
order of size:

(1) • • • • |=? ∃(•
1
•
2
) X

(2) • • • • |=? ∃(•
1
• •

2
) X

(3) • • • • |=? ∃(•
1
• • •

2
) X

(4) • • • • |=? ∃(•
1
• • • •

2
) ×××

Any condition with a graph bigger than (3) cannot be satisfied by G, since there is no
injective mapping from a graph with more than four nodes to G. Thus, we do not need
to check any bigger substitutions. ♦

Theorem 3.1 is not only valid for HR∗ conditions. One can also define conditions with
a different replacement formalism, as long as the replacement systems are monotone.
This does not influence the decidability of the validity problem.

Fact 3.2 (decidability of conditions with monotone replacement system).
The validity problem for graph conditions with variables and an arbitrary monotone
replacement system is decidable, i.e. there is an algorithm that determines, for a given
condition c with monotone replacement system R and a graph G, whether G |= c.

3.4 Case study: car platooning
As a case study, we look at a the car platooning protocol suggested by (Hsu et al., 1991).
In order to reduce traffic jams on highways, cars are organized into platoons. These
platoons consist of cars driving on the same lane, at the same speed, and with narrow
distance to each other in order to conserve road space and energy by slipstreaming.

Figure 3.6: A car platoon

Figure 3.6 shows a typical car platoon consisting of four cars: a leader, two followers
and a terminator. The different types of cars are distinguished by their color. White
color is used to represent an arbitrary car regardless of its type. Each type of car has
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Chapter 3 HR∗ graph conditions

certain constraints, which are expressed with HR∗ conditions. Internally, the colors are
modeled by a looping edge with a label signifying the color (which also means a white
car can be represented by a node without such a looping edge). For visual clarity, we
draw the car in the appropriate color instead of drawing the loop edge.

Free Agent: A single car not associated with any platoon, drawn in blue color.
Free agents may have no in- or outgoing edges, including edges to itself:

@( ) ∧ @( ) ∧ @( )

Leader: The leading car of a platoon. Leaders are drawn in green.
Leaders have a path from a terminator (see below) and no further edges:

∀( , for all leaders,
∃( +

, there is a path from a terminator, and
∃( + w , for the leader and its immediate follower,
@( ) ∧ @( )∧ exactly one edge from follower to leader,
@( )∧ no further outgoing edge,
@( )∧ no further incoming edge and
@( )))) no loops on the leader.

Terminator: The last car of a platoon, drawn in red. Terminators have a path to a
leader and no further edges:

∀( , for all terminators,
∃( +

, there is a path to a leader, and
∃( + w , from the terminator and the car before,
@( ) ∧ @( )∧ there is exactly one edge,
@( )∧ no further incoming edge,
@( )∧ no further outgoing edge and
@( )))) no loops on the terminator.

Follower: Any member of a platoon except leader and terminator. Followers are drawn
in gray. Followers have an incoming path from a terminator and an outgoing path to a
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3.4 Case study: car platooning

leader, and no further edges:

∀( , all followers
∃( + + )∧ are on a path from a terminator to a leader, and

@( )∧ have no two incoming edges,

@( )∧ no two outgoing edges and

@( )) no loop edge.

The above constraints can be combined into one by forming a conjunction.

@( ) ∧ @( ) ∧ @( )∧

∀( ,∃( +
,∃( + w ,@( ) ∧ @( )∧

@( ) ∧ @( ) ∧ @( ))))∧

∀( , ∃( +
,∃( + w ,@( ) ∧ @( )∧

@( ) ∧ @( ) ∧ @( ))))∧

∀( ,∃( + + ) ∧ @( ) ∧ @( ) ∧ @( ))

This constraint can be simplified to

@( ) ∧ @( ) ∧ @( )∧ free agents have no edges,
∀( ,∃( + ))∧ leaders have a path to a terminator,
∀( ,∃( + ))∧ terminators have a path to a leader,

∀( ,∃( + + ))∧ followers are on a path between a
leader and a terminator, and

∀( ,@( ) ∧ @( ) no car has two outgoing or incom-
ing edges.

@( ) ∧ @( ))

The paths represented by “+”-labeled-edges are generated by the HR system

1 2
+ ::= 1 2 | 1 2

+ +
.

Note that the replacement rules can be applied to non-white cars because a node’s color
is modeled by a loop edge labeled with the color.
In the car platooning protocol, the cars can perform certain maneuvers. Cars can enter

or leave the road, form platoons or split them. These maneuvers are represented as graph
transformations rules.
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Chapter 3 HR∗ graph conditions

CreateFA This rule creates a new free agent.
∅ ⇒

DestroyFA Deletes a free agent. Since free agents have no in- or outgoing edges, deletion
of the node always succeeds.

⇒ ∅

Merge Merges two platoons (or free cars), given two suitable actors (i.e. leaders or
free agents). One of the nodes becomes leader of the new platoon; the other
node is (together with any followers it might have) appended to the end of the
platoon. Since both nodes might be leaders, terminators or free agents, there are
four different Merge rules.

1 2 ⇒ 1 2

1 2 ⇒ 1 2

1 2 ⇒ 1 2

1 2 ⇒ 1 2 , @( 1 2
+ )

PerformSplit Performs a split of a platoon. Since a split can happen at the first, the
last or an intermediate car, there are three rules, plus one for the fringe case of a
platoon of 2 cars.

1 2 ⇒ 1 2

1 2 ⇒ 1 2

1 2 ⇒ 1 2

1 2 ⇒ 1 2

Remark. In some of the above rules, the color of the car is changed. This is a kind of
relabeling and can either be solved by using a category with morphisms that support
relabeling likeM,N -adhesive categories (Habel and Plump, 2012), or, as done here, by
representing the color as a loop edge attached to the node.

The car platooning protocol introduced by (Hsu et al., 1991) was tackled and improved
in several papers, among them (Bauer, 2006) and (Pennemann, 2009). The mentioned
approaches have in common that they represent a platoon using a star topology, linking
every follower in a platoon directly to its leader:

· · ·

In this thesis, we take another, more realistic approach, linking the cars in a chain. In
practice, this facilitates the formation of longer platoons without the need to increase
transmission power of the wireless communication links and with less telecommunicative
collisions.

· · ·
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3.4 Case study: car platooning

Bibliographic notes
HR∗ graph conditions generalize nested graph conditions (Habel and Pennemann, 2009)
as well as HR conditions (Habel and Radke, 2010). While HR conditions support the
use of variables in the graphs of a condition, HR∗ conditions are built with an additional
operator ∃(P w C, c). This enables HR∗ conditions to “look into variables”, i.e. in an
HR∗ condition ∃(P w C, c), morphism b : Cσ ↪→P σ may map nodes and edges in C to
nodes and edges generated by a variable in P . Nested conditions, in turn, are based on
negative application conditions (Habel, Heckel, et al., 1996).
To describe languages of graphs which replace the variables, HR∗ conditions use

hyperedge replacement (Habel, 1992). More on the hyperedge replacement can be found
in (Habel, 1992; Drewes, Habel, et al., 1997). Furthermore, (Plump and Habel, 1996)
deals with graph unification and matching when substituting hyperedges.
As mentioned, any class of monotone replacement systems can be used for conditions

with variables. A particularly interesting replacement mechanism is contextual hyperedge
replacement (Drewes and Hoffmann, 2015), where the left-hand side of a rule might have
a context. This makes the formulation of some languages of graphs easier; the author
supposes that a variant of HR∗ conditions using contextual hyperedge replacement would
be more expressive than the hyperedge-replacement based approach of HR∗ conditions.
However, such an extension would also need more complicated matching algorithms and
constructions.
Other extensions of nested conditions have been proposed. E-conditions (Poskitt and

Plump, 2013) extend nested conditions with label variables, typed multi-labels and
expressions over label variables, forming a simple attribution concept. The logic on
subobjects from (Bruggink and B. König, 2010) introduces reasoning about subobjects
and an operator v which works similar to the w operator in HR∗ conditions. The logic on
subobjects is exactly as expressive as monadic second-order logic on graphs. In (Poskitt
and Plump, 2014), M-conditions were introduced as an extension to E-Conditions which
are also expressively equivalent to monadic second-order logic. The µ-conditions of
(Flick, 2016) use a fixpoint semantics to express non-local properties like the existence of
arbitrary-length paths. More on the expressiveness of HR∗ conditions can be found in
the next chapter.
Finally, HR∗ conditions have been applied in different contexts: (Kutz et al., 2012)

suggest the use of HR∗ conditions to represent classes of molecules in a chemical ontol-
ogy. The abstract syntax of the traffic diagrams in (Linker, 2015) is based on graph
transformation rules with HR∗ application conditions.
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Chapter 4
Normal forms and variants of
HR∗ conditions
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4.3 HR∗ conditions with replacement semantics . . . . . . . . . . . 42

HR∗ conditions can be used in different application scenarios. Each of these scenarios
may have different requirements or preferences regarding the expressiveness, matching or
substitution process. This part introduces several variants of HR∗ conditions, compares
them and shows, if possible, how they can be transformed into one another.
First, normal forms for HR∗ conditions will be studied. Then, we will compare injective

with arbitrary matching semantics, and substitution with replacement of variables.

4.1 Normal forms
Although the structure of HR∗ conditions is clearly defined, it is sometimes advisable to
have more rigid assumptions about the structure. This may make proofs and constructions
easier, as well as lead to shorter and easier to understand conditions. Implementations of
HR∗ conditions may also benefit from improved performance if the formula is in some
kind of normal form. For normal forms of nested conditions, see also (Pennemann, 2004,
Chapter 3.3) and (Pennemann, 2009, Table 6.3).

Equivalences for HR∗ conditions. The table below shows several (rather trivial) equiv-
alences for HR∗ conditions, which can be used to simplify conditions. Such simplifications
are especially useful to reduce the size of a condition blown up by some transformation
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Chapter 4 Normal forms and variants of HR∗ conditions

(e.g. the Shift* construction from Chapter 6.1). Let P be a graph, a, a′ be morphisms,
c, c′ be HR∗ conditions and Q ∈ {∀,∃} be a quantifier.

Q(idP , c) ≡ c
Q(a,Q(a′, c)) ≡ Q(a′ ◦ a, c)
¬¬c ≡ c
c ∧ c ≡ c
c ∨ c ≡ c

To improve the readability of an HR∗ condition and to simplify it, one can try to
“compress” it, i.e. aggregate nested subconditions ∃(a,∃(b, c)) to ∃(b◦a, c) (since Ran(a) =
Dom(b) per definition).

Definition 4.1 (compressed normal form). An HR∗ condition is in compressed nor-
mal form, or compressed, if it contains no subformulas of the form ∃(a,∃(b)) or ¬¬c. 4

It is easy to bring a formula into compressed normal form. Directly nested quantifiers
are combined and double negations eliminated.

Construction. We define the Compress operation inductively over the structure of HR∗
conditions. Let a, b be morphisms and c, c′ be HR∗ conditions.

Compress(true) = true,
Compress(∃(a,∃(b, c))) = Compress(∃(b ◦ a, c))
Compress(∃(a, c)) = ∃(a,Compress(c)) if c 6= ∃(b, c′)
Compress(∃(P w C, c)) = ∃(P w C,Compress(c)),
Compress(¬c) = Compress(c′) if c = ¬c′ and ¬Compress(c) otherwise,
Compress(c ∧ c′) = Compress(c) ∧ Compress(c′).

l

To be useful as a normal form, using Compress on an HR∗ condition must not change
the semantics of the condition.

Lemma 4.1 (Well-formedness of compressed normal form).
For every HR∗ condition c, Compress(c) is equivalent to c, i.e. for all morphisms p,
p |= c⇔ p |= Compress(c).

Proof. By induction over the structure of an HR∗ condition d.
Basis. Case true: Trivial. By construction, p |= Compress(true)⇔ p |= true.
Hypothesis. For condition c and morphism p, assume that p |= c⇔ p |= Compress(c).
Step.
Case ∃(a, c): Assume p |= Compress(∃(a, c)). For c 6= ∃(b, c′), by construction and

Definition 3.9, p |= Compress(∃(a, c)) iff p |= ∃(a,Compress(c)) iff ∃q.p = q ◦ a ∧ q |=
Compress(c). By the hypothesis, ∃q.p = q ◦ a ∧ q |= c and by Definition 3.9, p |= ∃(a, c).
For c = ∃(b, c′), by construction, p |= Compress(∃(a,∃(b, c′))) iff p |= Compress(∃(b ◦
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4.1 Normal forms

a, c′)). Without loss of generality, assume c′ 6= ∃(b′, c′′); otherwise, repeatedly apply the
construction. Then p |= ∃(b ◦ a,Compress(c′)), and by Definition 3.9 and the hypothesis,
∃q.p = q ◦ b ◦ a ∧ q |= Compress(c′) ⇔ ∃q.p = q ◦ b ◦ a ∧ q |= c′. Let q′ = q ◦ b. Then
∃q′.p = q′◦a∧∃q.q′ = q◦b∧q |= c′. By the semantics of HR∗ conditions, p |= ∃(a,∃(b, c′)).
Case ∃(P w C, c): By construction and HR∗ semantics, p |= ∃(P w C,Compress(c))

iff ∃a : C ↪→P, q.q = p ◦ a ∧ q |= Compress(c). By the hypothesis, ∃a : C ↪→P, q.q =
p ◦ a ∧ q |= c, and by HR∗ semantics, p |= ∃(P w C, c).
Case ¬c. For c = ¬c′, by construction and the hypothesis, p |= Compress(¬¬c′) ⇔

p |= Compress(c′) ⇔ p |= c′ ⇔ p |= ¬¬c′. For c 6= ¬c′, by construction and hypothesis,
p |= Compress(¬c)⇔ p |= ¬Compress(c)⇔ p |= ¬c.
Case c ∧ c′: By construction and the hypothesis, p |= Compress(c ∧ c′) ⇔ p |=

Compress(c) ∧ p |= Compress(c′)⇔ p |= c ∧ p |= c′ ⇔ p |= (c ∧ c′). �

Example 4.1. Let d = ∃(•
1
•
2
,¬¬∃(•

1
•
2
)). Then Compress(d) = ∃(•

1
•
2
). ♦

The compressed normal form shortens conditions ∃(a,∃(b, c)) to ∃(b ◦ a, c). For proofs
and constructions (such as the proof about substitution and replacement in Chapter 4.3),
the opposite strategy may be beneficial: Every ∃(P ↪→C, c) just adds a single node, edge
or hyperedge to C. A similar idea is used by (Pennemann, 2009, Chapter 3.3) in the
transformation Forms to translate nested conditions into first-order formulas.

Definition 4.2 (decompressed normal form). An HR∗ condition is in decompressed
normal form, or decompressed, if, for every subcondition ∃(P ↪→C, c), C ∼= P + o, where
o is a single item of a graph (i.e. a node, edge or hyperedge). 4

Note that uniqueness is not claimed for decompressed normal form. In fact, the decom-
pressed normal form is not deterministic, since a graph can generally be “decompressed”
into components in different ways. However, for a unique and deterministic normal form,
one can define an order over the items of each graph and perform the decompression
along this order.
It is easy to bring a formula into decompressed normal form by decomposing the

morphism a in a condition ∃(a, c) into several morphisms, each of whose codomains add
only a single item to their respective domain.

Construction. We define the Decomp operation inductively over the structure of HR∗
conditions.

Decomp(∃(P ↪→C, c)) = ∃(P ↪→P + o,Decomp(∃(P + o ↪→C, c))) if P 6∼= C and
Decomp(c) else
where o is a single node, edge or hyperedge in C

Decomp(true) = true
Decomp(∃(P w C, c)) = ∃(P w C,Decomp(c))
Decomp(¬c) = ¬Decomp(c)
Decomp(c ∧ c′) = Decomp(c) ∧Decomp(c′).

l
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Lemma 4.2 (Well-formedness of decompressed normal form).
For every HR∗ condition c, Decomp(c) is equivalent to c, i.e. for all morphisms p,
p |= c⇔ p |= Decomp(c).

Proof. By induction over the structure of an HR∗ condition d.
Basis. Case true: Trivial. By construction, p |= Decomp(true)⇔ p |= true.
Hypothesis. For condition c and morphism p, assume that p |= c⇔ p |= Decomp(c).
Step.
Case ∃(P a

↪→C, c): For P ∼= C, by the hypothesis, p |= Decomp(∃(P ↪→C, c)) iff p |= c⇔
p |= ∃(P ↪→C, c).
For P 6∼= C, by the construction and Definition 3.9, p |= Decomp(∃(P a

↪→C, c)) iff
p |= ∃(P b

↪→P +o,Decomp(∃(P +o b′
↪→C, c))). By the hypothesis, p |= ∃(P b

↪→P +o, ∃(P +
o
b′
↪→C, c)). Since a = b′ ◦ b, p |= ∃(P a

↪→C, c).
Case ∃(P w C, c): By construction and HR∗ semantics, p |= ∃(P w C,Decomp(c)) iff
∃a : C ↪→P, q.q = p◦a∧q |= Decomp(c). By the hypothesis, ∃a : C ↪→P, q.q = p◦a∧q |= c,
and by HR∗ semantics, p |= ∃(P w C, c).
Case ¬c. By construction and hypothesis, p |= Decomp(¬c) ⇔ p |= ¬Decomp(c) ⇔

p |= ¬c.
Case c∧c′: By construction and the hypothesis, p |= Decomp(c∧c′)⇔ p |= Decomp(c)∧

p |= Decomp(c′)⇔ p |= c ∧ p |= c′ ⇔ p |= (c ∧ c′). �

Example 4.2. Let d = ∃(•
1
•
2
,¬∃(•

1
•
2
)). Then Decomp(d) = ∃(•

1
,¬∃(•

1
•
2
, ∃(•

1
•
2
))),

meaning that there are no two nodes 1, 2 with an edge from 1 to 2. ♦

4.2 HR∗ conditions with arbitrary satisfaction
In Definition 3.9, the semantics of HR∗ conditions is defined using injective morphisms.
An alternative satisfaction definition for HR∗ conditions uses arbitrary instead of injective
morphisms. This provides a means to identify nodes or edges in the condition. The
concept of defining variables which may later be identified is nearer to logic formulas,
where constructions like “∃x, y.x = y ⇒ . . .” are common. We show that, for a subset
of HR∗ conditions, both the injective semantics from Definition 3.9 and the alternative
definition are expressively equivalent. The results of this chapter will be used in Chapter 5
to establish a relationship between HR∗ conditions and logical formulas.

Assumption. Let A be the class of (arbitrary) graph morphisms and recall thatM is
the class of injective graph morphisms.

Definition 4.3 (A-satisfaction). For an HR system R, a substitution σ ∈ Σ∗ and a
morphism p : P σ → G, HR∗ condition c is A-satisfied by p, written p |=A c, as defined
in Definition 3.9, except that morphisms p and q are in A (i.e. arbitrary). Let
M-satisfaction for HR∗ conditions be synonymous to the satisfaction in Definition 3.9.4
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4.2 HR∗ conditions with arbitrary satisfaction

Notation. In order to distinguish between arbitrary and injective satisfaction, we will
denote them as A-satisfaction andM-satisfaction, respectively. We write p |=A c and
p |=M c to denote that p A- orM-satisfies c, respectively.

For nested conditions, A- andM-satisfaction are equivalent (Habel and Pennemann,
2009). For HR∗ conditions in general, this seems not to be the case: With A-satisfiable
HR∗ conditions, it is quite easy to let a variable match an arbitrary graph by unifying
nodes and edges after substituting the hyperedges. Since the set of all graphs is not
expressible by hyperedge replacement, this is not possible with M-satisfiable HR∗
conditions. However, we can restrict hyperedges to represent sets of nodes only, without
any edges. These restricted HR∗ conditions are dubbed Set conditions. For Set conditions,
we will show that every A-satisfiable condition can be transformed into an equivalent
M-satisfiable condition.

Definition 4.4 (Set condition). An HR∗ condition is a Set condition if its replacement
system R generates, for each variable x, only discrete graphs, i.e. graphs without edges
(or hyperedges). 4

Remark. A Set condition can be regarded as an HR∗ condition 〈c,R〉, where R consists
only of set rules of the form x ::= ∅ | • x | x x. These rules only generate discrete
graphs.

We will now show that it is possible to transform an A-satisfiable Set condition into an
M-satisfiable Set condition.

Theorem 4.1 (from A- toM-satisfaction for Set conditions).
For every Set condition c, there is a Set condition CondM(c) such that for every
morphism n,

n |=A c ⇐⇒ n |=M CondM(c).

Likewise, for every graph G,

G |=A c ⇐⇒ G |=M CondM(c).

Before we can prove the above theorem, we need to prove an auxiliary lemma, which
ensures that a substitution σ followed by an arbitrary morphism b : Gσ → H can be
reached “the other way round”, i.e. by having a “small” substitution (in the sense that it
consists of a bounded number of derivation steps), followed by a morphism and another
substitution (with no bounds on the number of derivation steps).

Lemma 4.3 (commutativity of morphisms with set rules).
Let G be a graph, R a replacement system consisting of set rules only, σ a substitution
and b : Gσ → H a morphism. Then there are substitutions τ and σ′ consisting of set
rules only, and a morphism b′ : Gτ → G′ such that b′(σ(x)) = σ′(b(τ(x))) for all nodes
and edges x in G and τ consists of no more than |G| replacement steps.
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Chapter 4 Normal forms and variants of HR∗ conditions

G Gσ

G′ H

Gτ

σ

b

σ′

τ

b′
=

Every pair of items u, v that are identified by morphism b also have to be identified by
b′. The role of τ is to generate all items which are unified by b with another item not
part of G (i.e. generated from a hyperedge by σ).

Construction. Without loss of generality, we assume only a single pair u, v of items to
be identified by b; we can construct b′ and σ′ step-by-step for every such pair of identified
items.
If b is injective for a pair of items uσ, vσ ∈ Gσ with preimages u, v in G, then τ(u) = u,

b′(u) = b(u), σ′(b′(u′)) = b(uσ) and likewise for v′.
For every pair of items u, v in Gσ with b(u) = b(v), before the application of σ, we have

either

(a) u, v ∈ G. Then let τ(u) = u, τ(v) = v, b′(u) = b′(v) = b(u) and σ′(b(u)) = b(u):

•
u
•
v

•
u
•
v

•
u=v

•
u
•
v

•
u=v

σ

b

τ b′

σ′

(b) a hyperedge y ∈ G with both u, v ∈ σ(y). Then let τ(y) = y, b′(y) = y and
σ′(y) = b(σ(y)):

y

σ(y) b(σ(y))

y y

σ

b

τ b′

σ′

(c) a hyperedge y ∈ G with u ∈ σ(y) and v ∈ G (or vice versa). Then let τ(y) = y′ + u,
τ(v) = v, b′(u) = b′(v) = b(u), b′(y′) = y′, σ′(y′) = b(σ(y)− u) and σ′(b(u)) = b(u):

y •
v

σ(y) + •
v

σ(y)− •
u

+ •
u=v

y′ •
u
•
v

y′ •
u=v

σ

b

τ b′

σ′

(d) two non-identical hyperedges yu, yv ∈ G with u ∈ σ(yu) and v ∈ σ(yv). Then
let τ(yu) = y′u + u, b′(y′u) = y′u, σ′(y′u) = b(σ(yu) − u) and likewise for yv, and
b′(u) = b′(v) = b(u), σ′(b(u)) = b(u):
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4.2 HR∗ conditions with arbitrary satisfaction

yu yv

σ(yu) + σ(yv) σ(yu)− •
u

+ σ(yv)− •v + •
u=v

y′u •u y′v •v y′u •u=v y
′
v

σ

b

τ b′

σ′

l

Proof (of Lemma 4.3). We show that for every item u in G, σ′(b′(τ(u))) = b(σ(u)).
The proof proceeds along the cases given in the construction.
If u is not identified with another item v by b, by construction, σ′(b′(τ(u))) = σ′(b′(u)) =

σ′(b(u)) = b(σ(u)).

(a) By construction, σ′(b′(τ(u))) = σ′(b(u)) = b(u) = σ(b(u)). Likewise, σ′(b′(τ(v))) =
σ′(b(v)) = b(u) = b(v) = σ(b(v)).

(b) By construction, σ′(b′(τ(y))) = σ′(y) = b(σ(y)).

(c) By construction, σ′(b′(τ(y))) = σ′(b′(y′ + u)) = σ′(y′ + b(u)) = b(σ(y)− u) + b(u) =
b(σ(u)). For v, we have σ′(b′(τ(v))) = σ′(b(u)) = b(u) = σ(b(u)).

(d) By construction, σ′(b′(τ(yu))) = σ′(b′(y′u+u)) = σ′(y′u−b(u)) = b(σ(yu)+u)−b(u) =
b(σ(yu)). For yv, the proof is analogous.

Every item u that is unified with another item v adds zero (cases a,b) or one (cases c,d)
step from R to τ . A maximum of |G| − 1 items can be identified in a graph of size |G|,
so τ consists of no more than |G| derivation steps. �

Example 4.3. Let G = A B, σ(A) = •
1
•
2
, σ(B) = •

3
•
4
•
5
. Let b : Gσ → H be the

identity except for b(5) = 4 and b(2) = 3. The diagram below shows the construction of
τ , b′ and σ′.

A BG •
1
•
2
•
3
•
4
•
5 Gσ

A-B A∩B B-AG′ •
1

•
2 = 3

•
4 = 5 H

A-B A∩B B-AGτ

σ

b

σ′

τ

b′

=

We use “speaking” variable names to emphasize the way in which the construction
splits up the hyperedges labeled A and B into three hyperedges containing the nodes of
A−B, A∩B and B−A, respectively. ♦

We continue to prove that A-satisfiable Set conditions can be transformed into M-
satisfiable Set conditions.
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Chapter 4 Normal forms and variants of HR∗ conditions

Idea. Under A-satisfaction, items generated by a hyperedge may be identified with
items generated by another hyperedge or with items present before substitution. Hence,
a substitution τ is used to split up hyperedges into different parts (each represented by a
hyperedge with a fresh name), each of which may be identified with another part of the
graph. Replacement rules for the new hyperedge names are added as needed.

Construction. Let E(P ) denote the set of all surjective morphisms with domain P . For
spans C a←− P b−→ P ′, let E ′(a, b) be the set of all jointly surjective cospans C b′−→ C ′

a′←− P ′.

For every condition c over P , let CondM(c) = CondM(P → P, c) where the latter is
defined inductively as follows:
CondM(b,∃(P a→C, c)) = ∨

τ∈Σk,(a′,b′)∈E ′(aτ ,b) ∃(a
′,CondM(b′, c)), where k = |C−P | and

Σk is the set of all substitutions C ⇒≤k Cτ over C with no more than k steps,
CondM(b,∃(P w C, c)) = ∨

τ∈Sigmak,b′∈E(C) ∃(P w b(Cτ ),CondM(b′, cτ )).
The rest is straightforward:
CondM(b, true) = true
CondM(b,¬c) = ¬CondM(b, c), and
CondM(b, c ∧ d) = CondM(b, c) ∧ CondM(b, d).

P C

Cτ

P ′ C ′

a
aτ

a′

b
b′

τ

(1)

P C

Cτ

P ′ C ′

w

w

b
b′

τ

l

Example 4.4. In the following example, we convert the condition ∀(A , ∃(A •c )) from
A-satisfiable intoM-satisfiable form. There are many duplicate cases and cases which
are subsumed by others; we leave most of these out to clarify what is happening in the
construction.

∅

∅

A

∅ | A | A •a

∅ | A | A •a

•
c

| A •c | A •a •c

•
c

| A •c | A •a •c | . . .

•
c

| A •c | A •a=c | . . .

CondM(∅ → ∅,∀(A ,∃(A •c ))) =
∀(A ,CondM(A → A , ∃(A •c ))) ∧ ∀(∅,CondM(∅ → ∅,∃(•

c
))) =

∀(A , ∃(A •c ))) ∧ ∀(∅, ∃(•c ))
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4.2 HR∗ conditions with arbitrary satisfaction

In a similar fashion, we can convert ∃(A B) intoM-satisfiable form:

CondM(∅ → ∅,∃(A B)) =
∃(∅) ∨ ∃(A) ∨ ∃(B) ∨ ∃(A B) ∨ ∃(A−B A∩B B−A)
≡ ∃(A−B A∩B B−A) ♦

Proof (of Theorem 4.1). We proceed by induction over the structure of Set conditions.
The proof is straightforward for conditions of the form true, c ∧ d as well as ¬c.
Our induction hypothesis is that for any subcondition c and morphisms q′ : P ′ → G

and b′ : P → P ′, q′ ◦ b |=A c ⇐⇒ q′ |=M CondM(b, c).
Case ∃(a, c), “⇐”:

Assume p′ |=M CondM(∃(a, c)). By construction of CondM, this equals
p′ |=M CondM(b,∃(a, c))⇔ p′ |=M

∨
τ∈Σk,(a′,b′)∈E ′(Cτ ,P ′) ∃(a′,CondM(b′, cτ )).

By the semantics of HR∗ conditions, this is equivalent to
∃σ′, a′σ

′
: P ′ ↪→Cσ

′
, b′, q′ : Cσ′ ↪→G.p′ = q′ ◦ a′σ

′
∧ q′ |=M CondM(b′, cτ )σ′ .

We construct a substitution σ′′ and a morphism b′′ such that σ′′(b′(x)) = b′′(σ′(x)) for
all items x in Cτ . Now, we can construct σ = σ′′ ◦ τ , aσ : P → Cσ, q = q′ ◦ b′′. Then
q′ ◦ b′′ ◦ aσ = p′ ◦ b, thus p = q ◦ aσ.
By σ′′◦b′ = σ′◦b′′ and the induction hypothesis, we have q′ |=M CondM(b′, cτ )σ′ ⇔ q′ |=M
CondM(b′′, cσ′′◦τ )⇔ q′ ◦ b′′ |=A cσ

′′◦τ . Together, this yields ∃σ = σ′′ ◦ τ, aσ : P → Cσ, q =
q′ ◦ b′′.p = q ◦aσ ∧ q ◦ b′ |=A cσ

′′◦τ ⇔ ∃σ, aσ : P → Cσ, q : Cσ → G.p = q ◦aσ ∧ q |=A cσ ⇔
p |=A ∃(a, c).

P C

Cτ

P ′ C ′ C ′σ
′

G

Cσ=
=

a

aσ

a′

b

τ

b′

p

p′

q

a′σ
′

q′

σ′

σ

σ′′

b′′

Case ∃(a, c), “⇒”: Assume p′ ◦ b |=A ∃(a, c).
By the definition of A-satisfaction, this equals ∃σ, aσ, q.p′ ◦ b = q ◦ aσ ∧ q |= cσ.
Using epi-mono-factorization (see (H. Ehrig, K. Ehrig, Prange, et al., 2006)) on q, we
split q = q′h ◦ b′′h. Let (a′σ′ , b′′) be the pushout of the span (b, bh ◦ aσ) with pushout object
C ′σ

′ . Note that (a′σ′ , b′′) are jointly surjective. By Lemma 4.3, we construct morphism
bh : C → Ch and substitution σ′h such that σ′h(bh(x)) = b′′(σ(x)) for all x in C. We split
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Chapter 4 Normal forms and variants of HR∗ conditions

σ′h = σ′ ◦ τh, as per the Lemma. Note that τh consists of no more than |C| replacement
steps. Let C ′ = τh(Ch). We can now construct substitution τ and morphism b′ : Cτ → C ′

such that σ′h(bh(x)) = b′′(σ(x)) for all x in C. Since τh consists of no more than |C|
replacement steps, τ does, too, and τ ∈ σ|C|. Since the pair (a′σ′ , b′) is jointly surjective,
p′ satisfies ∃(a′,CondM(b′, cτ )) with (a′, b′) ∈ E(C). By the induction hypothesis, we
have q |=A c⇔ q′ |=M CondM(b′, cτ ). Together, this yields
∃σ′, a′σ′ : P → C ′σ

′
, q′ : C ′σ′ → G.p′ = q′ ◦ a′σ′ ∧ q′ |=M CondM(b′, cτ ) ≡

p′ |=M CondM(b,∃(a, c)).
Case ∃(P w C, c), “⇐”:

p′ |=M CondM(b,∃(P w C, c)) ⇔ p′ |=M
∨
τ∈Σk,b′∈E(C) ∃(P w b(Cτ ),CondM(b′, cτ )) ⇔

∃τ ∈ Σk, b
′ ∈ E(C).p′ |= ∃(P w b(Cτ ),CondM(b′, cτ )). Let C ′ = b(Cτ ). Then ∃τ ∈

Σk, b
′ ∈ E(C), σ′ ∈ Σ, a′ : C ′σ′ ↪→P σ

′
, q′ : C ′σ′ → G.q′ = p′ ◦ a′ ∧ q′ |=M CondM(b′, c).

We construct substitution σ′′ and morphism b′′ : (Cτ )σ′′ → C ′σ
′ such that σ′(b′(x)) =

b′′(σ′′(x)) for all x in Cτ . Let σ = σ′′ ◦ τ and q = q′ ◦ b′′.
By the induction hypothesis, q′ |=M CondM(b′, cτ )⇔ q |=A c. Then there is an injective
morphism a : Cσ ↪→P such that p′ ◦ b ◦ a = q and q |=A c ≡ p′ ◦ b |=A ∃(P w C, c).

P C

Cτ

P ′ C ′ C ′σ
′

G

Cσ

=

w
aσ

w

b

τ

b′

p

p′

q
a′σ
′

q′

σ′

σ

σ′′

b′′

Case ∃(P w C, c), “⇒”: Assume p′ ◦ b |=A ∃(P w C, c).
By the definition of A-satisfaction, this equals ∃σ, a : Cσ ↪→P, q.q = p′ ◦ b ◦ a ∧ q |= cσ.
Using epi-mono-factorization on q, we split q = q′h ◦ b′′h. By Lemma 4.3, we construct
morphism bh : C → Ch and substitution σ′h such that σ′h(bh(x)) = b′′(σ(x)) for all x in
C. We split σ′h = σ′ ◦ τh, as per the Lemma. Note that τh consists of no more than |C|
replacement steps. Let C ′ = τh(Ch). We can now construct substitution τ and morphism
b′ : Cτ → C ′ such that σ′h(bh(x)) = b′′(σ(x)) for all x in C. Since τh consists of no more
than |C| replacement steps, τ does, too, and τ ∈ σ|C|. By the induction hypothesis, we
have q |=A c⇔ q′ |=M CondM(b′, cτ ). Together, this yields ∃σ′, a′ : C ′σ′ → P ′, q′ : C ′σ′ →
G.q′ = p′ ◦ a′ ∧ q′ |=M CondM(b′, cτ )⇔ p′ |=M CondM(b,∃(P w C, c)).
For b = idP , we thus have n |=A c ⇐⇒ n |=M CondM(c).
G |=A c ⇐⇒ G |=M CondM(c) follows directly from the definition of satisfaction by

choosing n : ∅ ↪→G. �
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4.2 HR∗ conditions with arbitrary satisfaction

Theorem 4.1 shows that for Set conditions,M-satisfaction is (at least) as expressive
as A-satisfaction. This fact will be used in Chapter 5.2 to show that counting monadic
second-order formulas can be expressed as HR∗ conditions.
The consequence of Definition 4.3 is that nodes and edges inA-satisfiable HR∗ conditions

no longer have a disjoint image in graph G by default, but may be identified. We showed
A-satisfaction to be as expressive as M-satisfaction. We now show that the converse
is also true: it is possible to find an equivalent A-satisfiable HR∗ condition for every
M-satisfiable HR∗ condition.

Theorem 4.2 (fromM- to A-satisfaction).
For every HR∗ condition c over P , there is an HR∗ condition CondA(c) such that
for every morphism p : P ↪→G,

p |=M c ⇐⇒ p |=A CondA(c).

Likewise, for every graph G,

G |=M c ⇐⇒ G |=A CondA(c).

Idea. Each subcondition of the form ∃(P ↪→C, c) in the A-satisfiable condition is
supplemented with a condition noId(C), which ensures that no items in C are identified.

Construction (CondA). For a condition ∃(P ↪→C, c), let

CondA(∃(P ↪→C, c)) = ∃(P → C,CondA(c) ∧ noId(C))
withnoId(C) := ∀(C w ••,@(••→•)) ∧ ∀(C w

•
• ,@(

•
• →

•
•)).

noId is a condition over C ensuring that no two nodes or edges in C are identified in G
by a non-injective match q. For all other conditions, CondA is straightforwardly passed
on: CondA(true) = true, CondA(∃(P w C, c)) = ∃(P w C,CondA(c)), CondA(¬c) =
¬CondA(c) and CondA(c ∧ c′) = CondA(c) ∧ CondA(c′). l

Example 4.5. The HR∗ condition even = ∃(2 , @(2 •)) with 2 ::= ∅ | 2 •• expresses
the property “the graph has an even number of nodes” with M-satisfaction. With
A-satisfaction, the same condition would express “the graph has any number of nodes
(including zero)”, i.e. be equivalent to true. Using the construction of CondA, we get

CondA(∃(2 , @(2 •))) = ∃(2 ,noId(2) ∧ @(2 •,noId(2 •)))
≡ ∃(2 ,∀(2 w ••, @(•• →

•)) ∧ ∀(2 w
•
• ,@(

•
• →
•
•))

∧@(2 •, ∀(2 • w ••,@(••→
•)) ∧ ∀(2 • w

•
• ,@(

•
• →
•
•)))) ♦
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Chapter 4 Normal forms and variants of HR∗ conditions

Proof (of Theorem 4.2). For conditions true, ∃(P w C, c), ¬c and c ∧ c′, the proof
is trivial as CondA does not change the condition and just “passes on” the construction.
For a condition ∃(P ↪→C, c) and morphism p : P ↪→G, we can directly transform the
statement that two objects d, d′ must be disjoint into a condition that fits our construction:
By the semantics of HR∗ conditions, G satisfies ∃(P ↪→C, c) iff
∃σ, q : Cσ ↪→G.p = q ◦ aσ ∧ q |=M cσ, which is equivalent to
∃σ, q : Cσ → G.p = q ◦ aσ ∧ q |=M cσ ∧ @d, d′ ∈ DC .d 6= d′ ∧ q(d) = q(d′).
Since q is injective, this is equivalent to
∃σ, q : Cσ → G.p = q ◦ aσ ∧ q |=M cσ

∧ @v, v′ ∈ VC .v 6= v′ ∧ q(v) = q(v′) ∧ @e, e′ ∈ EC .e 6= e′ ∧ q(e) = q(e′)
By the semantics of HR∗ conditions, this yields
⇔ ∃σ, q : Cσ → G.p = q ◦ aσ ∧ q |=M cσ

∧ q |=M ∀(C w • v• v′ ,@(• v• v′→• v=v′ )) ∧ ∀(C w
•
•
e′e ,@(

•
•
e′e →
•
•
e=e′ )),

the latter part matches the construction of noId, so we get
⇔ ∃σ, q : Cσ → G.p = q ◦ aσ ∧ q |=M cσ ∧ q |=M noId.
By the definitions of CondA and A-satisfaction, this yields
⇔ G |=A CondA(∃(P ↪→C, c)).
G |=M c ⇐⇒ G |=A CondA(c) follows directly from the definition of satisfaction by

choosing p : ∅ ↪→G. �

With HR∗ conditions under A-satisfaction, one can express any property expressible
withM-satisfaction as per Definition 3.9. As a corollary from Theorems 4.1 and 4.2, for
Set conditions, A- andM-satisfaction are equivalent.

Corollary 4.1. Every A-satisfiable Set condition can be transformed into an equivalent
M-satisfiable Set condition and vice versa.

Set condition,
injective satis-
faction: |=, |=M

Set condition,
arbitrary satis-
faction: |=A

Theorem 4.1

Theorem 4.2

4.3 HR∗ conditions with replacement semantics
In Definition 3.9, we defined the semantics of HR∗ conditions using the simultaneous
substitution of all variables. Hyperedges with the same label are replaced by isomorphic
graphs. However, it is also possible to replace each variable separately, such that two
hyperedges with the same label might be replaced by different graphs.
As mentioned in the previous chapter, a substitution-based semantics has the advantage

of providing an easy way to formulate conditions like “there are two paths of equal length
between two nodes 1 and 2”. On the other hand, when using substitution-based semantics,
a property like “there are two paths of arbitrary length between two nodes 1 and 2” has
to be formulated with two different hyperedge labels for the path. With replacement
semantics, this can be formulated with the simple intuition of “the +-hyperedge stands
for a path of arbitrary length”.
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4.3 HR∗ conditions with replacement semantics

We will show that for HR∗ conditions under A-satisfaction, both semantics can be used
interchangeably, with the same expressiveness. This result will be used in Chapter 5.2 to
help express logical formulas with HR∗ conditions.

Definition 4.5 (replacement semantics for HR∗ conditions). The definition for
replacement semantics for HR∗ conditions follows Definition 3.9, with σ being a replace-
ment instead of a substitution. 4

This can be illustrated with a simple example.

Example 4.6. Regard the condition ∃(•
1

•
2

+

+
). Using substitution semantics as in

Definition 3.9, the condition means “there are two paths of equal length from node 1 to
node 2”. Using replacement semantics instead, the two +-labeled hyperedges may be
replaced by paths of different length, so the meaning becomes “there are two paths of
arbitrary length from node 1 to node 2”. ♦

For HR∗ conditions under A-satisfaction, the substitution of hyperedges (i.e. all edges
with the same label are replaced by isomorphic graphs) is equivalent to replacement of hy-
peredges (i.e. edges with the same label may be replaced by different graphs).

Theorem 4.3 (equivalence of substitution and replacement).
For A-satisfiability, HR∗ conditions with replacement semantics are expressively
equivalent to HR∗ conditions with substitution semantics.

substitution
A-satisfaction

replacement
A-satisfaction≡

Remark. Note that the above theorem is valid only for A-satisfaction. ForM-satisfac-
tion, it is unknown whether replacement and substitution are equivalent.

We prove Theorem 4.3 by proving a lemma for each direction.

Lemma 4.4 (from replacement to substitution).
For every HR∗ condition c, there is a condition Rep2Sub(c) such that any graph G ∈ G
A-satisfies c by replacement iff G A-satisfies Rep2Sub(c) by substitution.

We define Rep2Sub(c) simply by giving each hyperedge occurring in condition c a
unique label and cloning the rules accordingly.

Proof. The proof is straightforward: If every hyperedge in Rep2Sub(c) has a unique
name, it satisfies exactly the same graphs under substitution which are satisfied by c
under replacement. �

We now show that the converse of Lemma 4.4 is also true: We can convert any
HR∗ condition with substitution semantics into an equivalent formula with replacement
semantics.
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Chapter 4 Normal forms and variants of HR∗ conditions

Lemma 4.5 (from substitution to replacement).
There is a transformation Sub2Rep such that for any condition c and any graph G ∈ G,
A-satisfies c by substitution iff G A-satisfies Sub2Rep(c) by replacement.

The construction has to simulate the substitution of several hyperedges with the same
label by the same graph, using replacement. To ensure that the graphs for same-labeled
hyperedges are identical, the same derivation steps have to be performed for both
hyperedges. Two hyperedges with the same label are combined into “2-hyperedges” with
the double amount of tentacles to grab all the attachment points of both hyperedges.
Replacement rules are added for this hyperedge which copy the rule for the single
hyperedge twice. For three or more hyperedges with identical labels, the construction
works the same way as for two hyperedges.

Construction. Without loss of generality, all HR∗ conditions are in decompressed
normal form as per Definition 4.2. For a variable x ∈ Var, let x2 be a variable with
rank(x2) = n ∗ rank(x). For a graph G, let clone(G,n) be an n-fold copy of G:

clone(G,n) :=
〈
V′,E′,Y′, sG′ , tG′ , attG′ , lvG′ , leG′ , lyG′

〉
where V ′ is the set of pairs (k, v) with k ∈ [n] and v ∈ V (analogous for E′ and Y′), and
sG′((k, e)) = (k, sG(e)) (analogous for the other mappings).
Let Px = P + x , Pxx = P + x + x and Px2 = P + x2 .

• Sub2Rep(〈∃(Px ↪→Pxx, c),R〉) = 〈∃(Px ↪→Pxx,∃(Pxx w P2x ∧ Sub2Rep(c))),R′〉
with R′ = R] {x2/ clone(R, 2) | x/R ∈ R}.

• Sub2Rep(〈∃(P ↪→C, c),R〉) = ∃(P ↪→C,Sub2Rep(〈c, ,R〉)) if C contains no pair of
identically-labeled hyperedges

• Sub2Rep(〈∃(P w C, c),R〉) = ∃(P w C,Sub2Rep(〈c,R〉)),

• Sub2Rep(〈true,R〉) = true,

• Sub2Rep(〈¬c,R〉) = ¬Sub2Rep(〈c,R〉) and

• Sub2Rep(〈c ∧ c′,R〉) = Sub2Rep(〈c,R〉) ∧ Sub2Rep(〈c′,R〉).

l

Proof. By structural induction over HR∗ conditions. Assume that the proposition holds
for c, ci. Let p : Px → G. In this proof, p |=r

A c stands for “p A-satisfies c” and p |=s
A

stands for “p A-satisfies c by substitution”.
Basis. p |=r

A Sub2Rep(〈true,R〉)⇔ true⇔ p |=A.
Hypothesis. Assume that q |=r

A Sub2Rep(〈c,R〉) iff q |=s
A 〈c,R〉.

Step.
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4.3 HR∗ conditions with replacement semantics

Case ∃(Px ↪→Pxx, c).
p |=r

A Sub2Rep(〈∃(Px↪→Pxx, c),R〉) Construction
⇔ p |=r

A

〈
∃(Px

a
↪→Px2,∃(Px2 w Pxx, Sub2Rep(c))),R′

〉
Def. 4.3

⇔ ∃τ ∈ R′∗, q : Px2
τ → G.p = q ◦ aτ ∧ ∃b : P τxx ↪→P τx2,

q′ : P τxx → G.q′ = q ◦ b ∧ q′ |=r
A Sub2Rep(c)τ P σx2

∼= P σxx
1

⇔ ∃τ ∈ R′∗, q : Pxxτ → G.p = q ◦ aτ ∧ ∃b : P τxx ↪→P τxx,
q′ : P τxx → G.q′ = q ◦ b ∧ q′ |=r

A Sub2Rep(c)τ b=idPxx , q′=q
⇔ ∃τ ∈ R′∗, q : Pxxτ → G.p = q ◦ aτ ∧ q |=r

A Sub2Rep(c)τ τ(x)=σ(x) 2

⇔ ∃σ ∈ R∗.∃q : Pxxσ → G.p = q ◦ aσ ∧ τ ∈ R′∗, q |=s
A Sub2Rep(c)τ Ind. hyp.

⇔ ∃σ ∈ R∗.∃q : Pxxσ → G.p = q ◦ aσ ∧ q |=s
A c

σ Def. 4.3
⇔ p |=s

A,σ ∃(Px → Pxx, c).
Case ∃(P w C, 〈c,R〉).
p |=r

A Sub2Rep(∃(P w C, 〈c,R〉)) Construction
⇔ p |=r

A ∃(P w C,Sub2Rep(〈c,R〉)) Def. 4.3
⇔ ∃σ′ ∈ R′∗, b′ : Cσ′ → P.q′ = p ◦ b′ ∧ q′ |= Sub2Rep(〈c,R〉) Ind. hyp.
⇔ ∃σ ∈ R∗, b : Cσ → P.q = p ◦ b ∧ q |= 〈c,R〉 Def. 4.3
⇔ p |=s

A 〈∃(P w C, c),R〉 .
Case c ∧ c′.
p |=r

A Sub2Rep(〈c ∧ c′,R〉) Construction
⇔ p |=r

A Sub2Rep(〈c,R〉) ∧ p |=r
A 〈c′,R〉 Ind. hyp.

⇔ p |=s
A 〈c,R〉 ∧ p |=A 〈c′,R〉 Def. 4.3

⇔ p |=s
A 〈c ∧ c′,R〉 .

Case ¬c.
p |=r

A Sub2Rep(〈¬c,R〉) Construction
⇔ p |=r

A ¬Sub2Rep(〈c,R〉) Ind. hyp.
⇔ p |=s

A 〈¬c,R〉 .
This completes the proof. �

Example 4.7. The HR∗ condition ∃(•
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2
+ is A-satisfied by any graph which has a path between two nodes 1 and 2, but

no second path of the same length, since both “+” hyperedges are substituted by a path
of the same length. Using replacement instead of substitution, this is equivalent to the
HR∗ condition
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1 2

3 4
.

With replacement, the substitution of the two hyperedges by isomorphic graphs is
simulated by combining both hyperedges into a single one, where two isomorphic graphs
are generated in parallel. ♦

1This is valid since pinpoints in Pxx and Px2 are identical and b is injective.
2By construction of Sub2Rep, R′ contains the same replacement rules for x as R.
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Chapter 4 Normal forms and variants of HR∗ conditions

Since Lemmata 4.4 and 4.5 showed that HR∗ conditions with replacement semantics
can be transformed into equivalent HR∗ conditions with substitution semantics and
vice versa, Theorem 4.3 follows: Under A-satisfaction, HR∗ conditions with replacement
semantics are expressively equivalent to HR∗ condition with substitution semantics.

Conclusion. As we have just shown, substitution and replacement are both suitable
semantics for A-satisfaction of HR∗ conditions. Substitution offers some advantages over
replacement:

• Substitution is the more “natural” semantics for variables and corresponds to the
way variables are replaced e.g. in logic formulas.

• Using substitution, it is very easy to express properties like “two paths have equal
length”.

• Converting a condition from replacement semantics to substitution semantics is far
easier than the other way round.

However, replacement semantics has its benefits, too:

• Unique symbols can be used that stand for a certain kind of replacement system.
For example, a simple path can always be expressed by a hyperedge labeled with +,
even if several paths of independent length exists. For condition ∃(•

1
•
2

•+ + )
with •

1
•
2

+ ::= •
1

•
2

| •
1
• •

2
+ , with replacement semantics, both paths

may be of different length, as opposed to substitution, where one would have to
use different symbols (and according HR systems). For such cases, this notation
might be more intuitive.

• In larger HR∗ conditions, a user might forget about previous use of a variable
and involuntarily introduce dependencies into an HR∗ condition with substitution
semantics.

It is thus left up to the reader which semantics are preferable for one use or another.

Open question. ForM-satisfaction, the relationship between substitution and replace-
ment semantics is still unclear.

substitution
A-satisfaction

replacement
A-satisfaction≡

substitution
M-satisfaction

replacement
M-satisfaction

?≡
Figure 4.1: The relation of substitution and replacement semantics.
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Expressive power of HR∗
conditions
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In the following, we will investigate the expressive power of HR∗ conditions. This
chapter is based on the paper (Radke, 2013) by the author. We start with the definition
of first-order, (counting) monadic second-order and second-order formulas on graphs.
Chapter 5.2 then shows how to express any counting monadic second-order formula as
an HR∗ condition. In Chapter 5.3, we show how HR∗ conditions can be transformed into
second-order formulas.

5.1 Graph formulas
System properties are often expressed with logical formulas. The logic formalisms
presented here are all defined over the universe of directed graphs. However, the
formalisms differ in the sets of variables over which quantifiers range, yielding different
expressive power. In ascending expressive power, we recall first-order (FO), monadic
second-order (MSO), counting monadic second-order (CMSO) and second-order (SO)
formulas on graphs.
(Courcelle, 1994) compares the languages of graphs definable by monadic second-

order formulas, hyperedge replacement grammars and vertex replacement grammars, and
(Courcelle, 1996) investigates the expressive power of several logics between first-order and
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Chapter 5 Expressive power of HR∗ conditions

monadic second-order. For a comprehensive overview on the monadic second-order logic
of graphs, see (Courcelle and Engelfriet, 2012). For a general overview on second-order
logic, see e.g. (Dalen, 2004) or (Manzano, 2005).
The following presentation of the syntax for graph formulas is oriented at (Courcelle,

1990; Courcelle, 1997).

Notation. In the following, let L be a set of node and edge labels, and let DG = VG]EG
be the set of nodes and edges in a graph G over L. Let

V0 be the set of individual variables in graph formulas,

V1 be the set of set variables in graph formulas,

V2 be the set of second-order variables in graph formulas, together with a function
rank : V2 → N that maps each variable in V2 to its rank.

Individual variables are designated by lowercase latin letters x, y, z, while set and second-
order variables are designated by uppercase latin letters X,Y, Z. Note that second-order
variables include set variables.
Furthermore, let {labb | b ∈ L} ∪ {inc, .=} be the set of predicate symbols over V0,

where the unary predicate symbol labb assigns a label to a variable, the ternary predicate
symbol inc assigns to an edge its source and target, and the binary .= states the equality
of its elements. We are only interested in logical formulas on graphs, so we do not need
other predefined predicate symbols.
For any formula F , Free(F ) denotes the set of all free variables of F , as defined for

first-order formulas in (Huth and Ryan, 2004, p. 106). A formula is closed iff Free(F ) is
empty.
The existential closure of a formula F with free variables Free(F ) = {x1, . . . , xn},

written ∃F , is the formula F with an existential quantifier added for each free variable,
i.e. ∃x1, . . . , xn.F , yielding a closed formula. The universal closure of F is defined
analogously for the ∀ quantifier.

First-order graph formulas
First-order formulas are a very common way to formulate properties of systems in
computer science. With first-order graph formulas, many local properties of graphs can
be expressed.

Definition 5.1 (first-order graph formula). The set of first-order (graph) formulas,
short FO formulas, is inductively defined as follows:

(1) For b ∈ L and e, x, y ∈ V0, inc(e, x, y), x .= y and labb(x) are FO formulas.

(2) For FO formulas F , F ′ and x ∈ V0, true, ¬F , F ∧ F ′ and ∃x.F are FO formulas.

The semantics G[[F ]](θ) of a FO formula F in a non-empty graph G over L under
assignment θ : V0 → DG is inductively defined as follows:
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5.1 Graph formulas

(1) G[[labb(x)]](θ) = true iff lvG(θ(x)) = b or leG(θ(x)) = b,
G[[inc(e, x, y)]](θ) = true iff θ(e) ∈ EG, sG(θ(e)) = θ(x), and tG(θ(e)) = θ(y),
G[[x .= y]](θ) = true iff θ(x) = θ(y).

(2) G[[true]](θ) = true, G[[¬F ]](θ) = ¬G[[F ]](θ), G[[F ∧ F ′]](θ) = G[[F ]](θ) ∧G[[F ′]](θ),
G[[∃x.F ]](θ) = true iff G[[F ]](θ{x/d}) = true for some d ∈ DG, where θ{x/d} is
the modified assignment with θ{x/d}(x) = d and θ{x/d}(y) = θ(y) otherwise.

A non-empty graph G satisfies a FO formula F , denoted by G |= F , if for all assignments
θ : V0 → DG, G[[F ]](θ) = true. 4

Example 5.1. The FO formula

∃e, x, y. inc(e, x, y) ∧ ¬x .= y

is satisfied for all graphs which contain an edge from one node to another, disjoint node.
Without the “¬x .= y” part, it is also satisfied for all graphs which contain a loop edge.♦

Notation. In the following, we use the following abbreviations: edge(e) abbreviates
∃y.∃z. inc(e, x, y), node(v) abbreviates ¬ edge(v), edg(x, y) abbreviates ∃e. inc(e, x, y).
∃x1, . . . , xn.F abbreviates ∃x1.∃x2. . . .∃xn.F and likewise for the universal quantifier,
false abbreviates ¬true, F ∨F ′ abbreviates ¬(¬F ∧¬F ′), F ⇒ F ′ abbreviates ¬F ∨F ′,
∀x.F abbreviates ¬∃x.¬F , and x ˙6= y abbreviates ¬x .= y.

Monadic second-order graph formulas
As shown by (Gaifman, 1982), FO formulas are unable to express non-local properties.
Therefore, we look at stronger formalisms. Many interesting properties can be formulated
by extending the quantifiers: Instead of only quantifying over individual nodes and edges,
we allow them to quantify over sets of nodes and edges, and also add a predicate x ∈ X
to relate individual and set variables.

Definition 5.2 (monadic second-order graph formula). Let V = V0 ∪ V1 be the
set of all individual and set variables. The set of monadic second-order (graph) formulas,
short MSO formulas, is inductively defined as follows:

(1) Every FO formula is an MSO formula.

(2) For variables x ∈ V0, X ∈ V1, the expressions ∃X.F and x ∈ X are MSO formulas.

(3) For MSO formulas F and F ′, ¬F and F ∧ F ′ are MSO formulas.

The semantics G[[F ]](θ) of an MSO formula F in a non-empty graph G under assignment
θ : V0 ∪ V1 → DG ∪ 2VG ∪ 2EG 1 is inductively defined as follows:

(1) For an FO formula, the semantics is as for FO formulas.
1For a set M , 2M denotes the powerset of M , i.e. the set of all subsets of M .
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Chapter 5 Expressive power of HR∗ conditions

(2) G[[∃X.F ]](θ) = true iff G[[F ]](θ{X/D}) = true for some D ⊆ DG.
G[[x ∈ X]](θ) = true iff θ(x) ∈ θ(X).

(3) G[[¬F ]](θ) = ¬G[[F ]](θ) and G[[F ∧ F ′]](θ) = G[[F ]](θ) ∧G[[F ′]](θ).

A non-empty graph G satisfies an MSO formula F , denoted by G |= F , if for all
assignments θ, G[[F ]](θ) = true.
Node-MSO formulas are the subset of MSO formulas where quantification is only

allowed over nodes and the expression inc(e, x, y) is replaced by edg(x, y) (meaning “there
is an edge from node x to node y”). 4

Notation. We abbreviate ¬∃X.¬F with ∀X.F and use the other abbreviations as defined
for FO formulas.

Example 5.2. The MSO formula

∃X.(∀y, z.y ∈ X ∧ edg(y, z)⇒ z ∈ X) ∧ (∀y.(edg(x1, y)⇒ y ∈ X)⇒ x2 ∈ X)

expresses the property “There is a non-empty path of arbitrary length from node x1 to
node x2” (Courcelle, 1997). ♦

Remark. MSO formulas quantifying over nodes are less expressive than MSO formulas
quantifying over nodes and edges, even for the case of simple2 graphs: As shown by
(Courcelle, 1997), the property that an (undirected) graph has a Hamiltonian cycle can
not be expressed with an MSO formula with quantification over the universe of nodes,
but only with an MSO formula which quantifies over the universe of nodes and edges.

Counting monadic second-order graph formulas
With MSO formulas, many interesting graph properties can be formulated. However, the
inability of MSO formulas to “count” nodes or edges still leaves room for improvement.
We recall counting MSO formulas, which can count nodes and edges modulo some natural
number. This enables the formulation of properties like “The graph has an even number
of nodes”. Counting monadic second-order formulas are an extension of MSO formulas.

Definition 5.3 (counting monadic second-order formula). The set of counting
monadic second-order (graph) formulas, short CMSO formulas, is inductively defined as
follows:

(1) Every MSO formula is a CMSO formula.

(2) For a free variable x ∈ V0 and m ≥ 1 ∈ N, ∃(m)x.F (x) is a CMSO formula.

(3) For CMSO formulas F and F ′, ¬F and F ∧ F ′ are CMSO formulas.

The semantics of CMSO formulas under assignment θ : V0 ∪ V1 → DG ∪ 2VG ∪ 2EG is
inductively defined as follows.

2A graph is simple if it has neither multiple edges nor loops.
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5.1 Graph formulas

(1) For an MSO formula, the semantics is defined as for MSO formulas.

(2) G[[∃(m)x.F (x)]](θ) = true iff |{u ∈ VG ∪ EG : G[[F (x)]](θ{x/u})}| ≡ 0 (mod m),
for any formula F (x) over free variable x.

(3) G[[¬F ]](θ) = ¬G[[F ]](θ) and G[[F ∧ F ′]](θ) = G[[F ]](θ) ∧G[[F ′]](θ).

Node-CMSO formulas are the subset of CMSO formulas for which counting is only allowed
over nodes, i.e. G[[∃(m)x.F (x)]](θ) = true iff |{u ∈ VG : G |= F (u)}| ≡ 0 (mod m). 4

Example 5.3. The CMSO formula ∃(2)x.node(x) is satisfied for every non-empty graph
with an even number of nodes. ♦

Second-order graph formulas
Further increasing the expressive power is possible by allowing quantification over relations
of arbitrary arity.

Definition 5.4 (second-order graph formula). Let V = V0 ∪ V2 be the set of all
individual and second-order variables. The set of second-order (graph) formulas, short
SO formulas, is inductively defined.

(1) Every MSO formula is an SO formula.

(2) For a relation variable X ∈ V2 with rank(X) = k, an SO formula F and variables
x1, . . . xk ∈ V0, ∃X.F and X(x1, . . . , xk) are SO formulas.

(3) For SO formulas F and F ′, ¬F and F ∧ F ′ are SO formulas.

For a non-empty graph G, let D×G be the set of all relations over DG. The semantics
G[[F ]](θ) of an SO formula F under assignment θ : V → DG ∪D×G is inductively defined
as follows:

(1) For an MSO formula, the semantics is defined as for MSO formulas.

(2) G[[∃X.F ]](θ) = true iff G[[F ]](θ{X/D}) = true for some relation D ∈ D×G
G[[X(x1, . . . , xk)]](θ) = true iff (G[[x1]](θ), . . . , G[[xk]](θ)) ∈ θ(X).

(3) G[[¬F ]](θ) = ¬G[[F ]](θ) and G[[F ∧ F ′]](θ) = G[[F ]](θ) ∧G[[F ′]](θ).

A non-empty graphG satisfies an SO formula F , denoted byG |= F , iff, for all assignments
θ : V → DG ∪D×G, G[[F ]](θ) = true. 4

Example 5.4 (non-trivial automorphism). In graph theory, an automorphism is an
isomorphism from a graph to itself. We recall from Definition 2.2 that an isomorphism
is a total, surjective and injective mapping that preserves labels, nodes and edges. An
automorphism is non-trivial if it is not an identity morphism. The SO formula below is
true for every graph which has a non-trivial automorphism:

∃X.[βinj(X) ∧ βtot(X) ∧ βsurj(X) ∧ βntriv(X) ∧ βpredg(X) ∧ βprlab(X)]

where the subformulas are defined as follows:
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Chapter 5 Expressive power of HR∗ conditions

• βinj(X) = ∀x, y, z.(X(x, y) ∧X(x, z))⇒ y
.= z ∧ (X(x, z) ∧X(y, z))⇒ x

.= y
expresses the fact that relation X is injective and functional,

• βtot(X) = ∀x∃y.X(x, y) expresses the fact that X is total,

• βsurj(X) = ∀x∃y.X(y, x) expresses the fact that X is surjective,

• βntriv(X) = ∃x, y.x 6= y ∧X(x, y) expresses the fact that X is non-trivial,

• βpredg(X) = ∀e, x, y, ē, x̄, ȳ.(inc(e, x, y) ∧X(e, ē) ∧X(x, x̄) ∧X(y, ȳ))⇒ inc(ē, x̄, ȳ)
expresses the fact that X preserves edges, i.e. for every pair of nodes x, y connected
by an edge and related to nodes x̄, ȳ by relation X, x̄ and ȳ are connected by an
edge,

• βprlab(X) = ∀x, y.X(x, x′) ⇒ ∨
b∈L labb(x) ∧ labb(x′) expresses the fact that X

preserves labels, i.e. x and x′ have identical labels whenever they are related by X.
♦

5.2 Transforming counting monadic second-order formulas into
HR∗ conditions

One may ask about the relation between logical formulas and graph conditions. We show
that every CMSO formula can be translated into an equivalent HR∗ condition.

Theorem 5.1 (From CMSO to HR∗).
There is a transformation CondF such that for every CMSO graph formula F , there
is an HR∗ condition CondF(F ) such that for all graphs G,

G |= F ⇐⇒ G |= CondF(F ).

Instead of a direct translation from a CMSO graph formula into an HR∗ condition,
we first transform it into an A-satisfiable Set condition and use Theorem 4.1 to show
that this can be transformed into an (M-satisfiable) HR∗ condition. Figure 5.1 shows an
illustration of the proof idea.

Set cond.(|=s
M)

Set cond.(|=s
A) Set cond.(|=r

A) CMSO

HR∗ cond.

Corollary 4.1

Theorem 4.3

Definition 4.4

Lemma 5.1

Theorem 5.1

Figure 5.1: From CMSO graph formula to HR∗ condition: Proof idea
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5.2 Transforming counting monadic second-order formulas into HR∗ conditions

Lemma 5.1 (From CMSO to A-satisfiable Set conditions).
There is a transformation Cond such that for every CMSO formula F , there is an HR∗
condition Cond(F ) such that for all graphs G,

G |= F ⇐⇒ G |=A Cond(F ).

Idea. The following construction uses the inc and lab relations from a formula to construct
a graph. For counting CMSO formulas of the form ∃(m)v.F , hyperedge replacement
is used to represent the set and count its members: We construct a grammar which
generates the language {G ∈ G | |EG| = 0 and ∃k ∈ N.|VG| = k ∗ m} of all discrete
graphs (i.e. with no edges) with k ∗m nodes, where m is a fixed number given by the
formula and k ∈ N is variable. We then check that the property F to be counted holds
for all nodes inside and for none outside the generated subgraph. The existence of a node
or edge, represented by ∃x.F in the CMSO formula, is represented using the abbreviation
∃(◦

1
) := ∨

a∈LV
∃( a 1) from Chapter 3.2 to range over all possible labels. When the label

is fixed by a formula labb(x) in F , disjunctions with other labels evaluate to false and
can be removed from the resulting HR∗ condition.

Construction (Cond). For any natural number m ∈ N−{0}, let Dm be a discrete
graph with m nodes, and let Ym ::= ∅ | Ym Dm be a hyperedge replacement system
generating graphs with m ∗ k nodes for some k ∈ N.
For a node-CMSO formula F , Cond(F ) = Cond(∅, F ). For a graph P and a formula

F , Cond(P, F ) is defined inductively as follows:

Cond(P, inc(e, x, y)) = true if e ∈ EP , sP (e) = x, tP (e) = y and false otherwise
Cond(P, labb(x)) = true if lvP (x) = b or leP (x) = b and false otherwise
Cond(P, x .= y) = true if x, y ∈ P and x = y, and false otherwise
Cond(P, true) = true
Cond(P,∃x.F ) = ∃(P + ◦

x
,Cond(P + ◦

x
, F )) ∨ ∃(P + ◦

1
◦
2

x ,Cond(P + ◦
1
◦
2

x , F ))
Cond(P,∃X.F ) = ∃(P + Y1 ,Cond(P + Y1 , F ))
Cond(P, x ∈ X) = ∃(P w (x+ (P −X)))
Cond(P,∃(m)v.F ) = ∃(Ym ,∀(Ym w ◦v ,Cond(F (v))) ∧ @(Ym ◦v ,Cond(F (v))))
Cond(P,¬F ) = ¬Cond(P, F )
Cond(P, F ∧ F ′) = Cond(P, F ) ∧ Cond(P, F ′)

l

Remark. Concerning labels, the construction creates a disjoint union of every possible
label for every node or edge. When the formula gives a concrete label to an item x
using labb(x), all differently-labeled nodes x in the HR∗ condition evaluate to false and
can be removed from the condition. While theoretically sound, this is not particularly
efficient in practice. Instead, an implementation should keep the label of an item in a
special “uncertain” state and set it to a concrete label when given by the formula. An
item in the “uncertain” state can later be matched to an item with any label.

53



Chapter 5 Expressive power of HR∗ conditions

The following proof proceeds by induction over the structure of CMSO formulas. Aside
from the definition of CMSO and HR∗ satisfaction (Definitions 5.3 and 3.9, respectively)
and the induction hypothesis (called (ihyp) in the proof), it uses the fact that inclusions
are injective morphisms, as well as some simple arithmetic and set theory. For node-MSO
formulas, the proof is similar to the one in (Habel and Radke, 2010).

Proof (of Lemma 5.1). We proceed by induction over the structure of the formula.
Without loss of generality, we assume that the HR∗ conditions are interpreted with
A-satisfiable replacement semantics (see Definitions 4.3 and 4.5 and Theorems 4.2 and
4.3). In the following inductive proof, let P = Ran(θ) and let (ihyp) stand for the
inductive hypothesis.
Basis. By the definition of HR∗ conditions (Def. 3.9) and construction Cond, we have:
G[[true]](θ)⇔ G |=A true⇔ G |=A Cond(P, true).

Hypothesis. Assume that G[[F ]](θ) ⇐⇒ G |=A Cond(P, F ) with P = Ran(θ). (ihyp)
Step.
G[[inc(e, x, y)]](θ) = true Def. 5.3
⇔ θ(e) ∈ EG, sG(θ(e)) = θ(x) and tG(θ(e)) = θ(y) m(DP ):=θ(DP )
⇔ m(e) ∈ EG, sG(m(e)) = m(x) and tG(m(e)) = m(y) Def. 2.2
⇔ e ∈ EG ∧ x, y ∈ VG ∧m(sG(x)) = m(y) ∧m(tG(x)) = m(x) Constr., (ihyp)
⇔ m |=A Cond(P, inc(e, x, y)).

G[[labb(x)]](θ) = true Def. 5.3
⇔ lvG(θ(x)) = b or leG(θ(x)) = b m(DP ):=θ(DP )
⇔ lvP (m(x)) = b ∨ leP (m(x)) = b Constr., (ihyp)
⇔ m |=A Cond(P, labb(x)).

G[[x .= y]](θ) = true⇔ θ(x) = θ(y) m(P ):=θ(DP )
⇔ x, y ∈ P ∧m(x) = m(y) Constr., (ihyp)
⇔ Cond(P, x .= y).

G[[∃x.F ]](θ) = true⇔ ∃θ, d ∈ DG.G[[F ]](θ{x/d}) = true set theory
⇔ ∃P ⊆ G, x.x 6∈ P ∧ (x ∈ VG ∨ x ∈ EG) ∧ (P + x)[[F ]](θ{x/d}) Def. 3.9, (ihyp)
⇔ G |=A ∃(P+•

x
,Cond(P+•

x
, F ))∨∃(P+•

1
•
2

x ,Cond(P+•
1
•
2

x , F )) Construction
⇔ G |=A Cond(P,∃x.F ).

G[[∃X.F ]](θ) = true⇔ ∃θ,D ⊆ DG.G[[F ]](θ{X/D}) set theory
⇔ ∃P,X⊆G.P∩X = ∅ ∧ (X⊆VG ∨X⊆EG) ∧ (P +X)[[F ]](θ{X/D}) Def. 3.9, (ihyp)
⇔ G |=A ∃(P + Y1 ,Cond(P + Y1 , F )) Construction
⇔ G |=A Cond(P,∃X.F ).

G[[x ∈ X]](θ) = true⇔ θ(x) ∈ θ(X) Def. 5.3
⇔ ∃P.θ(x) ⊆ θ(X) ⊆ P set theory
⇔ ∃P.θ(x) + (P − θ(X)) ⊆ P Def. 2.2
⇔ ∃b : C ↪→P with C = θ(x) + (P − θ(X)) Def. 3.9
⇔ G |=A ∃(P w C)⇔ G |=A Cond(P, x ∈ X).
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5.2 Transforming counting monadic second-order formulas into HR∗ conditions

G[[¬F ]](θ) = true⇔ ¬G[[F ]](θ) Def. 3.9, (ihyp)
⇔ G |=A ¬Cond(P, F )⇔ G |=A Cond(P,¬F ).

G[[F ∧ F ′]](θ) = true⇔ G[[F ]](θ) ∧G[[F ′]](θ) Def. 3.9, (ihyp)
⇔ G |=A Cond(P, F ) ∧ Cond(P, F ′)⇔ G |=A Cond(P, F ∧ F ′).

G[[∃(m)x.F (x)]](θ) = true Construction
⇔ |{v ∈ VG : G |= φ(v)}| ≡ 0 (mod m) Arithmetic
⇔ ∃n ∈ N.|{v ∈ VG : G |= φ(v)}| = n∗m Ind. hyp.
⇔ ∃n ∈ N.|{v ∈ VG : G |=A Cond(φ(v))}| = n∗m Arithmetic
⇔ ∃n ∈ N.|{•

x
⊆ VG | •x |=A Cond(φ(x))σ}| ≥ n∗m

∧¬|{•
x
⊆ VG | •x |=A Cond(φ(x))σ}| ≥ n∗m+ 1 Set theory

⇔ ∃n ∈ N.∃Dn∗m ⊆ G.∀(•x ⊆ Dn∗m.•x |=A Cond(φ(x))σ)
∧@(Dn∗m + •

x
⊆ G.•

x
|=A Cond(φ(x))σ) Def. 2.2

⇔ ∃n ∈ N.∃qa : Dn∗m ↪→G.p = qa ◦ a∧
∀qb : ∅ ↪→•

x
.qb(•x) ⊆ qa(Dn∗m) ∧ qb |=A Cond(φ(x))σ∧

@(qc : Dn∗m + •
x
↪→G.qa = qc ◦ c ∧ qc |=A Cond(φ(x))σ) Def. 3.9

⇔ ∃n ∈ N.p |=A ∃(Dn∗m,∀(Dn∗m w •x ,
Cond(φ(x))) ∧ @(Dn∗m•x ,Cond(φ(x)))) Y σ=Dn∗m

⇔ p |=A ∃(Y ,∀(Y w •x ,Cond(φ(x))) ∧ @(Y ↪→ Y •x ,Cond(φ(x)))) Construction
⇔ G |=A Cond(∃(m)x.φ(x))⇔ p |=A Cond(∃(m)x.φ(x))

This concludes the proof. �

We can now use Theorem 4.1 and the definition of Set conditions to prove Theorem 5.1.

Proof (of Theorem 5.1). Given a CMSO graph formula F , we let CondF(F ) :=
CondM(Cond(F )). By Lemma 5.1, for any graph G, G |= F ⇔ G |=A Cond(F ), and by
Theorem 4.1, G |=M CondM(Cond(F )). Since, by Definition 4.4, every Set condition is
also an HR∗ condition, we have G |= F ⇔ G |= CondM(Cond(F ))⇔ G |= CondF(F ).�

Using node-counting, it is possible to simulate edge-counting. A property P (e) is valid
for a number n ≡ 0 (mod m) edges iff it is valid for n outgoing edges of k nodes. Thus,
one can group the nodes by the number of outgoing edges which fulfill P , and count the
nodes in each group.
We already showed that HR∗ condition can count nodes modulo m. (Outgoing) edges

can also be counted modulo m using an HR system which generates “stars”, i.e. graphs
with a node v0 in the middle, from which edges go out to otherwise isolated nodes, as seen
in Figure 5.2. HR systems for generating stars are described in more detail in (Habel,
1992). In our case, however, the star graphs may be “collapsed”, i.e. a node may have
more than one outgoing edge to a single node. This can also be described with an HR
system.
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•
1
∗1 ::= •

1
| •

1
∗1• • • •

•
•
••

• •
• •
•
••

•
•

Figure 5.2: A star-generating HR system and some exemplary (undirected) stars.

Example 5.5 (edge-counting modulo 2). For m = 2, the edge-CMSO formula
∃(2)e. edge(e) ∧ P (e) is valid if P (e) is valid for an even number of edges. The number of
edges satisfying P (e) is even iff (a) there is an arbitrary number k0 of nodes with an
even number of edges e satisfying P (e) and (b) an even number k1 ≡ 0 (mod 2) of nodes
with an odd number of edges e satisfying P (e) . This scheme can be translated into an
HR∗ condition, using the construction for node-counting and HR systems which equip a
node with an even (or uneven) number of edges, similar to the HR system in Figure 5.2.

∃(N0 N1 , ∃(N0 N1 w N0 , ∀(N0 w •
1
, e0(•

1
)))

∧ ∃(N0 N1 w N1 , ∀(N1 w •
1
, e1(•

1
))))

where e0(•
1
) = ∃(•

1 E01 , @( •
1 E01• ))

and e1(•
1
) = ∃(•

1 E11 , @( •
1 E11• ))

The HR systems N0 ::= ∅ | N0 •• and N1 ::= • | N1 •• generate discrete graphs with
an even (N0) or odd (N1) number of nodes.
The HR systems •

1 E01 ::= •
1
| •

1
• • and •

1 E11 ::= •
1

•
a

| •
1

• • add an even (for
E0) or uneven (E1) number of edges to node •

1
as explained above. Subconditions e0(•

1
)

and e1(•
1
) ensure that every node •

1
has an even (for e0) or an odd (for e1) number of

edges.
A similar scheme can be used for any m, although it gets rather complicated for larger

values of m. ♦

5.3 Transforming HR∗ conditions into second-order formulas
With a lower bound for the expressiveness of HR∗ conditions established, we shift our
attention to an upper bound. Second-order formulas are used to simulate HR∗ conditions.

Theorem 5.2 (from HR∗ conditions to SO formulas).
For every HR∗ condition c over ∅, there is a second-order graph formula SO(c) such
that for all graphs G ∈ G,

G |= c ⇐⇒ G |= SO(c).

Idea. The transformation SO from an HR∗ condition to a logical formula has to capture
several things, which are done by appropriate sub-constructions:
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5.3 Transforming HR∗ conditions into second-order formulas

1. The logical structure of the HR∗ condition has to be preserved. This is simple, as
the Boolean operators and quantifiers of HR∗ conditions can be represented by the
same operators in SO formulas.

2. The graph morphisms and graphs in HR∗ conditions have to be translated into an
SO formula. This is done by sub-construction SOgra(G,F ), where G is a graph to
be represented and F is some subformula (which may be yielded by some other
part of the construction). The mappings of morphisms are preserved through the
use of identical variable names.

3. The hyperedge replacement system, along with the process of hyperedge replacement,
have to be encoded in SO formulas. Sub-construction SOsys fulfills this task.
Hyperedges in the condition are represented by relations in the formula.

4. For HR∗ conditions of the form ∃(P w C, c), we need to represent the sets P σ and
Cτ for some substitutions σ, τ . This is done by sub-construction SOset.

Figure 5.3 shows the dependencies of the parts of construction SO.

SO

SOgra

SOnod SOedg SOhyp

SOsys

SOsys

SOrule

SOgra SOset

Figure 5.3: Overview of the parts of construction SO and their dependencies.

Construction. Without loss of generality, P ↪→C is an inclusion. For a condition c with
HR system R and hyperedge label set Var, we let SO(〈c,R〉) = ∧

x∈Var(∃x.SOsys(R) ∧
SO(c)) and define

(1) SO(true) = true.

(2) SO(∃(P ↪→C, c)) = SOgra(C−P,SO(c)).

(3) SO(∃(P w C, c)) = SOgra(C,∃XP , XC .(
SOset(P,XP ) ∧ SOset(C,XC) ∧XC ⊆ XP ∧ SO(c))),

where XP , XC are fresh second-order variables of rank 1 (i.e. set variables) and
the relation ⊆ is constructed in SO logic as usual: XC ⊆ XP = ∀x.x ∈ XC ⇒ ∃y ∈
XP .x

.= y.

(4) SO(¬c) = ¬SO(c) and SO(c ∧ c′) = SO(c) ∧ SO(c′).

l
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Chapter 5 Expressive power of HR∗ conditions

The construction is straightforward for HR∗ conditions of the form (1) and (4) as given
in Definition 3.8, as these have equivalent constructs in SO formulas. For HR∗ conditions
of form (2), it suffices to state the existence of the items in C − P and to translate
subcondition c into an SO formula, too. The construction gets a bit more complicated for
case (3). The SO formula has to state that graph C exists, that the sets XC of nodes and
edges in Cτ are subsets of the set XP of nodes and edges in P σ for some substitutions τ
and σ, and that P σ includes Cτ .
We show the construction SOgra and its sub-constructions SOnod, SOedg and SOhyp.

F constitutes an arbitrary subformula which may be nested inside.
The construction is split in three parts for nodes, edges and hyperedges, respectively.

The construction for nodes and edges is quite straightforward: we state the existence of
every node and edge and then specify the node and edge labels and the incidence relation
for the edges. For the hyperedges, we state the existence of each hyperedge label x with
rank(x) = k as a k-ary relation x(v1, . . . , vk), where the elements v1, . . . , vk represent the
attachment points of the tentacles.

Construction. For a set A and SO formula F , let ∃F be the existential closure of F
and ∃̇F = ∃F ∧ ∧a,b∈Aa6=b (¬a .= b) be the existential closure of F with disjointness check.
Define the universal closure ∀F analogously. For a graph with variables G and an SO
formula F , we define

SOgra(G,F ) = SOnod(G, SOedg(G) ∧ SOhyp(G) ∧ F )
SOnod(G,F ) = ∃

∧
v∈VR lablG(v)(v) ∧ F

SOedg(G) = ∃
∧
e∈ER lablG(e)(e) ∧ inc(e, sG(e), tG(e))

SOhyp(G) = ∃̇
∧

lyG(y)|y∈YR . lyG(y)(attG(y)1,...,k)

l

Before we can continue, we have to make sure that every hyperedge in the HR∗ condition
has at least one tentacle: Since we translate hyperedges of rank k into k-ary relations, we
would otherwise end up with 0-ary relations. An HR∗ condition where each hyperedge
has a minimum of one tentacle is in one-tentacle normal form.
Such a normal form is easily constructed: For each x-labeled hyperedge y ⊆ C with zero

tentacles in a condition ∃(P ↪→C, c) with replacement system R, replace the hyperedge
x with a hyperedge •

a x′1 with 1 tentacle and adapt the replacement system accordingly
by adding rules for x′ analogous to the rules for x. This can be seen as a special case of
the Integraten construction introduced later in Chapter 6.2.
If the replacement system contains the empty graph ∅ as right-hand side of a rule,

replace ∅ by •
a
and ∃(P ↪→C, c) by the disjunction ∃(P ↪→C, c) ∨ ∃(P ↪→Cy, cy), where

Cy is C with the image of y removed and likewise for cy.

Example 5.6. The HR∗ condition even = ∃(2 ,@(2 •)) from Example 4.5 is trans-
formed to the one-tentacle normal form

∃(•
1 2′1 ,@(•

1 2′1 •
2
)) ∨ ∃(∅, @(•

2
)) with 2′ ::= •

1
| 2′ •1• | 2′ ••

1
. ♦
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5.3 Transforming HR∗ conditions into second-order formulas

The following transformation SOsys(R) expresses the process of hyperedge replacement
for a given set R of HR rules using SO formulas.
The main idea of the construction is to represent hyperedges as relations over nodes.

A hyperedge with k nodes is represented as a k-ary predicate x(v1, . . . , vk), where the
elements v1, . . . , vk represent the nodes attached to the hyperedge by its k tentacles. In
order to keep track of all nodes and edges that replace each hyperedge in a graph Gσ,
we use (k + 1)-ary predicates Setx(v1, . . . , vk, o), representing a set of objects o which is
dependent on a x-labeled hyperedge attached to points v1, . . . , vk. Let o ∈ Setx(v1, . . . , vk)
abbreviate Setx(v1, . . . , vk, o), which denotes that o is element of a set dependent on x
and v1, . . . , vk.

Construction. For any rule x/R with rank(x) = k and every HR system R, let

SOsys(R) = ∧
x∈Var(Setx .∀v1, . . . , vk.x(v1, . . . , vk)⇒

∨
x/R∈R SOrule(x/R))

SOrule(x/R) = SOgra(R,SOset(R,Setx(v1, . . . , vk)))

where x and Setx are predicates in the formula. Construction SOset is needed to keep
track of the items in Gσ and will be explained in the following. l

In order to translate HR∗ conditions of the form ∃(P w C, c), we need sets of every
object in P σ and Cσ, i.e. after the substitution of the hyperedges by substitution σ.
This is the role of transformation SOset(R,X). For a graph with variables R, it ensures
that every node and edge in Rσ (i.e. after replacing any hyperedges left in R) is member
of the set X in the SO formula.
The construction begins by stating that all nodes and edges of graph R are in set

X. Then, for every hyperedge y in R, it uses the predicate Setx(u1, . . . , urank(y), o) with
x = lyR(y), representing the set of items o in yσ, and ensures that every item is an
element in X. Iteratively, this ensures that X contains every node and edge in Rσ.

Construction. For any graph R and unary variable X,

SOset(R,X) = ∧
o∈DR o ∈ X ∧

∧
y∈YR ∀v1, . . . , vk.∀o.o ∈ Setx(v1, . . . , vk)⇒ o ∈ X

where x = lyG(y) is the label and k = rank(y) the rank of hyperedge y. l

Example 5.7. For the left-hand graph G from Example 3.1, SOset yields the formula
below. The vi and ui are nodes, while the ei are edges, and u is the hyperedge.

SOset(G,X) = v1, . . . , v5, e1, . . . , e7 ∈ X ∧ u(v5, v1, v3, v4)
∧∀v′1, . . . , v′4, o.o ∈ Setu(v′1, . . . , v′4)⇒ o ∈ X ♦

These constructions simulate the derivation process of hyperedge replacement with an
SO formula. For SOrule, every hyperedge, i.e. every tuple x(v1, . . . , vrank(x)) implies the
existence of the right-hand side of a rule x/R. Since R can itself contain hyperedges, an
arbitrary number of derivations over R can be simulated by SOsys. Construction SOset
ensures that all equally-labeled hyperedges are substituted by identical graphs (up to
isomorphism).
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Example 5.8. We show the translation of the HR∗ condition c = ∃(∅ ↪→ a 1 c 2
+ d )

with HR system •
1

•
2

+ ::= •
1

•
2

| •
1
• •

2
+ . This condition is satisfied for every

graph which contains a path (of nodes and edges with the not-drawn � label) from an
a-labeled node to a c-labeled node with a d-labeled loop.

SO(c) = ∃+ . SOgra( a 1 c 2
+ d , true)∧

(∀u1, u2. SOrule(+/•
1

•
2
) ∨ SOrule(+/ • •

2
+•

1
))

≡ ∃+, v1, v2. laba(v1) ∧ labc(v2) ∧ ∃e1. labd(e1) ∧ inc(e1, v2, v2) ∧+(v1, v2)
∧(∀u1, u2.

+(u1, u2)⇒ ∃e′. lab�(e′) ∧ inc(e′, u1, u2)∨
+(u1, u2)⇒ ∃u3. lab�(u3) ∧ ∃e′. lab�(e′) ∧ inc(e′, u1, u3) ∧+(u3, u2))

Intuitively, this formula means that there are a relation +, two nodes v1, v2 labeled with
a and c, respectively, v2 has a d-labeled loop, v1 and v2 are in a relation +(v1, v2), and
for each pair u1, u2 of nodes in relation +, there is either an edge from u1 to u2 or an
edge from u1 to a �-labeled node which is in +-relation to u2, which effectively builds a
path between v1 and v2. Note that the set equality constraints are not needed, as there
is only one hyperedge to be substituted. ♦

We now prove the correctness of the constructions, and, therefore, Theorem 5.2. We
do this by first proving a two-part lemma.
The first part of the lemma states that the formula SOgra(R, true) is satisfied for every

graph G which has a (possibly non-injective) image of R as a subgraph, disregarding
the hyperedges. This part is used to transform conditions ∃(∅ ↪→R), where R has no
hyperedges (or we just disregard them).
The second part of the lemma intuitively states that constructions SOgra and SOsys

together simulate the derivation process of a graph grammar.

Lemma 5.2 (formulas for hypergraphs and replacement systems).
For every graph with variables R ∈ GVar, hyperedge replacement system R and graph
G ∈ G,

(1) G |=A ∃(R−YR) ⇐⇒ G |= SOgra(R−YR, true) and

(2) G |=A 〈∃(S),R〉 ⇐⇒ G |= SOgra(S, true) ∧ SOsys(R).

Proof. We prove both parts of the lemma separately.
Part (1): Let GH be the graph G with subgraph H removed.
Assume G |=A ∃(∅

a
↪→RYR).

By the semantics of HR∗ conditions, for p : ∅ → G, this is equivalent to
⇔ p |=A ∃(∅ a→RYR)
⇔ ∃q : RYR → G.p = q ◦ a ∧ q |=A true.
By the definition of morphisms, this equals
⇔ ∃q : RYR → G.∀o ∈ DR.p(o) = q(a(o))
⇔ ∃R′ ∈ G.∃q′ : RYR → R′ ∧R′ ⊆ G
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5.3 Transforming HR∗ conditions into second-order formulas

which can be expressed as an SO formula
⇔ ∃R′ ∈ G.∃v∈V′R .(

∧
v∈V′R

(lablv(v)(v)) ∧ ∃e∈E′R .(
∧
e∈E′R

(lable(e)(e)) ∧ inc(e, s(e), t(e))))
⇔ ∃R′ ∈ G.SOnod(R′, SOedg(R′) ∧ SOhyp(R′))
which equals the definition of SOgra:
⇔ G |= SOgra(R′, true)⇔ G |= SOgra(RYR , true).

Part (2): From the semantics of HR∗ conditions, it is clear that for p : ∅ → G,
G |=A

〈
∃(∅ a→S),R

〉
⇐⇒ p |=A

〈
∃(∅ a→S),R

〉
⇔ ∃σ, q : Sσ ↪→G.p = q ◦ a

⇔ ∃Sσ, q : Sσ ↪→G.S ⇒∗R Sσ.
We continue by induction over the length of derivations.
Basis. By the definition of derivations,
∃Sσ ∈ G, q : Sσ → G.S ⇒R Sσ ⇐⇒ ∃Sσ, q : Sσ → G.∃x/R ∈ R.S ⇒x/R S

σ

⇔ ∃Sσ, q : Sσ → G.∃y ∈ YS . ly(y) = x ∧ Sσ ∼= Sy ∪R ∧ ∀i ∈ [k].pinRi = attS(y)i
By Lemma 5.2, we can reduce this to
⇔ ∃y ∈ YS . ly(y) = x ∧G |= SOgra(Sy ∪RPin(R),

∧
i∈[k] pinRi

.= attS(y)i).
Since k ≥ 1 and vi = pinRi for i ∈ [k], we include the formula for SOgra(S, true):
⇔ G |= SOgra(S, true) ∧ ∀i∈[k]vi.x(v1, . . . , vk)⇒ SOgra(RPin(R),

∧
i∈[k] vi

.= attS(y)i)).
and by the definition of SOsys, we get
⇔ G |= SOgra(S, true) ∧ ∀i∈[k]vi.SOrule(x/R).
Since S has only a single hyperedge, x′(v1, . . . , vrank x′) is false for every x′ 6= x,
⇔ G |= SOgra(S, true) ∧ SOsys(R).
Hypothesis. For some S′ ∈ GVar with S ⇒R S′, assume
∃S′, q′ : S′ → G.S′ ⇒∗R Sσ ⇐⇒ G |= SOgra(S′, true) ∧ SOsys(R).
Step. Then
∃Sσ, q : Sσ → G.S ⇒∗R Sσ ⇐⇒ ∃Sσ, q : Sσ → G.∃S′.S ⇒R S′ ⇒∗R Sσ.
By Lemma 5.2, we can express S′ as an SO formula
⇔ ∃S′.G |= SOgra(S′, true) ∧∧x∈Var

∨
x/R∈R ∀vi. SOrule(x/R)

⇔ ∃S′.G |= SOgra(S′, true)∧SOsys(R)∧S ⇒R S′ ⇔ G |= SOgra(S, true)∧SOsys(R).
This completes the inductive proof. �

We can now prove Theorem 5.2: For every HR∗ condition c and for all graphs G ∈ G,

G |= c ⇐⇒ G |= SO(c).

Proof (of Theorem 5.2). We first show that G |=A c ⇐⇒ G |= SO(c) and conclude
by Theorem 4.1 that G |= c ⇐⇒ G |= SO(c). The proof proceeds by induction over
the structure of HR∗ conditions. The proofs for conditions true, ¬c and c ∧ c′ are
straightforward. For conditions ∃(a, c), we use Lemma 5.2 to show that graph morphisms
and substitution can be simulated by our construction. For conditions ∃(P w C, c),
Lemma 5.2 is used to show that the inclusion of Cσ in P σ is simulated by the constructed
formula.
Basis. c = true. Then SO(c) = true⇔ G |=A true⇔ true⇔ SO(c) |= true.
Hypothesis. Assume that for HR∗ conditions ci, i ∈ N, the statement holds:
G |=A ci ⇔ G |= SO(ci).
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Step.
Case c = ∃(P a

↪→C, c1). By the definition of HR∗ conditions and the induction hypothesis,
we have G |=A ∃(a, c1) ⇔ ∃σ, p : P ↪→G, q : Cσ → G.q ◦ aσ = p ∧ q |=A,σ c1.
Using constructions SOgra yields ⇔ G |= ∃+ .SOgra(C − P,SO(c1)) ∧ SOsys(R). The
graph C − P has no dangling edges, since C adds only a single object to P , either a
node or a (hyper-)edge connected to nodes in P . By the construction of SO, we have
G |= SO(∃(a, c1)).
Case c = ∃(P w C, c1). By the definition of HR∗ conditions and the induction

hypothesis, we have G |=A ∃(P w C, c1) ⇔ ∃p : P → G, σ, b : Cσ → P σ, q : Cσ →
G.p ◦ b = q ∧ q |=A,σ c1 ⇔ ∃σ.P σ ⊇ Cσ ∧ C |=A,σ c1 ⇔ ∃σ.P σ ⊇ Cσ ∧ SO(c1). We can
now use the constructions SOgra and then SO:
⇔ G |= SOgra(C,∃XP , XC .

∧
x∈DP (x ∈ XP ) ∧∧y∈DC (y ∈ XC) ∧XC ⊆ XP ∧ SO(c1))

⇔ G |= SOgra(C,∃XP , XC . SOset(P,XP ) ∧ SOset(C,XC) ∧XC ⊆ XP ∧ SO(c1))
⇔ G |= SO(∃(P w C, c1)).
Case c = ¬c1. SO(c) = ¬SO(c1). By the induction hypothesis and Theorem 4.1, we

have G |=A c⇔ G 6|=A c1 ⇔ G 6|= SO(c1)⇔ G |= SO(c).
Case c = c1 ∧ c2. SO(c) = SO(c1) ∧ SO(c2). Using the induction hypothesis and

Theorem 4.1, we get: G |=A c1 ∧ c2 ⇔ G |= SO(c1) ∧ SO(c2)⇔ G |= SO(c1 ∧ c2).
This concludes the proof of Theorem 5.2. �

Bibliographic notes

Several formalisms for graph properties have been proposed and examined with regard to
their expressive power. (Gaifman, 1982) showed that first-order formulas can express only
local properties. (Courcelle, 1997) compares several fragments of MSO formulas and their
expressive power. The expressive power of nested conditions is shown to be equivalent to
first-order formulas in (Habel and Pennemann, 2009), and several early types of conditions
are shown to be equivalent to nested conditions in (H. Ehrig, K. Ehrig, Habel, et al.,
2006). In (Habel and Radke, 2010), HR conditions are introduced as an extension to
nested conditions, and it is shown that HR+ conditions, a subset of HR∗ conditions, are
more expressive than monadic second-order formulas. In (Baldan et al., 2004), a modal
logic is presented which uses monadic second-order formulas to describe state properties
and temporal modalities to describe behavioral properties. Linear temporal logic is also
used in (Rensink, 2003), including the monadic second-order quantification over sets
of nodes. (Bruggink and B. König, 2010) present a logic on subobjects, a formalism
that is similar to nested conditions, which is equivalent to MSO formulas. Other types
of graph conditions going beyond first-order logic are the M-conditions of (Poskitt and
Plump, 2014) and the µ-conditions of (Flick, 2016). Both of these, however, cannot
express arbitrary counting monadic second-order properties. The language GPL of graph
properties with paths recently introduced in (Navarro et al., 2016) is an extension of
nested conditions that can also express properties over paths (i.e. the transitive hull of
the edge relation) and is thus between first-order and monadic second-order logic.
Figure 5.4 shows a diagram comparing the expressive power of graph formulas, nested
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5.3 Transforming HR∗ conditions into second-order formulas

FO graph formulas

MSO graph formulas

CMSO graph formulas

SO graph formulas

nested graph conditions

M-conditions

HR∗ graph conditions

Habel and Pennemann (2009)

Habel and Radke (2010)

Radke (2013)
open

Radke (2013)

Poskitt and Plump (2014)

Figure 5.4: Overview of the expressive power of graph formulas and conditions.

and HR∗ conditions. An arrow from A to B in the diagram signifies that A is less or
equally expressive than B.

1. Nested conditions are equivalent to first-order graph formulas (Habel and Penne-
mann, 2009).

2. HR∗ conditions are at least as expressive as monadic (Habel and Radke, 2010) and
counting monadic second-order logic (Radke, 2013).

3. HR∗ conditions are at most as expressive as second-order logic (Radke, 2013).

4. M-conditions are equivalent to monadic second-order graph formulas (Poskitt and
Plump, 2014).

Open questions.

1. It remains open whether HR∗ conditions are strictly less expressive than SO
formulas. The author suspects this to be the case: SO formulas allow quantification
over arbitrary relations, which seems to be more powerful than the replacing of
hyperedge variables according to a hyperedge replacement system, as used in HR∗
conditions.

2. The exact relation between HR∗ conditions and the µ-conditions from (Flick, 2016)
is not yet clear. While µ-conditions can express the language of string graphs (see
(Habel, 1992)) of the form a(4n), i.e. graphs of the form

•
0

•
1

•
2

•
4n

a a︸ ︷︷ ︸
4n a-labeled edges

,

63



Chapter 5 Expressive power of HR∗ conditions

it is probably impossible to express this language using HR∗ conditions. On the
other hand, as stated above, µ-conditions cannot express every counting monadic
second-order property. It is likely, but not yet proven, that the expressiveness of
both languages is incomparable.
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HR∗ conditions fulfill a double role as general constraints for graphs and application
conditions for graph transformation rules. The difference is easy to spot: application
conditions are HR∗ conditions over the left- or right-hand side of some rule. Constraints
are conditions over the empty graph and are usually not linked to a specific rule.
This chapter introduces basic transformations for HR∗ conditions, similar to the basic

transformations for nested conditions introduced in (Habel, Pennemann, and Rensink,
2006) and generalized in (H. Ehrig et al., 2012). These transformations are used to
transform constraints into application conditions for graph programs and vice versa, and
serve as building blocks for the construction of weakest preconditions.
First, two transformations are presented that transform an HR∗ constraint (i.e. a

condition over the empty graph ∅) over a morphism, yielding a (right) application
condition for a rule. The transformation in Chapter 6.1 is a simple one for special cases,
while the transformation in Chapter 6.2 can transform any HR∗ condition, but is more
complicated. Both transformations are combined into compound transformation A, using
the simple variant whenever possible and reverting to the general variant otherwise. In
Chapter 6.3, a transformation L (for “left”) is introduced that converts right into left
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Chapter 6 Correctness relative to HR∗ conditions

〈L←↩ K ↪→ R〉
acL acR

Precondition Postcondition

AAA

LLL

CCC

Figure 6.1: Basic transformations for HR∗ conditions.

application conditions. A third transformation, C, transforms a left application condition
into a constraint and is introduced in Chapter 6.4. Transformation Appl in Chapter 6.5
encodes the applicability of a rule into an HR∗ condition. These transformations are
useful on their own to convert between constraints over the empty graph and application
conditions, as well as between left and right application conditions. In combination, they
provide a conversion from a postcondition of some rule into a weakest precondition, which
is explained in Chapter 6.6. Figure 6.2 illustrates the relation of this chapter’s theorems.

Theorem 6.2: from postcondition to right
application condition

Theorem 6.4: from right to left application
condition

Theorem 6.5: from left application condi-
tion to weakest precondition

T
he

or
em

6.
6:

W
p

Prog post

Wp(Prog, post)

Figure 6.2: Illustration of constructions and theorems

As usual, this chapter uses HR∗ conditions with M-satisfaction and substitution
semantics.
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6.1 Shifting for path-like conditions

6.1 Shifting for path-like conditions
One of the most useful constructions for graph conditions is the so-called shifting of
a condition over an (injective) morphism. In (Pennemann, 2009), it is used on nested
conditions to simplify them, is an essential part of the ProCon theorem prover and, most
importantly, to translate a postcondition over the empty graph into a right application
condition for some rule.
We now establish a construction for HR∗ conditions that can serve the same purposes

that Shift serves for nested conditions. However, the presence of variables in HR∗
conditions makes this task considerably more difficult, and we restrict the kind of
morphisms we shift over: We only shift over morphisms that are injective, and also
isomorphic on hyperedges, i.e. over morphisms b : P ↪→P ′ where YP

∼= YP ′ .
For a certain subset of HR∗ conditions, shifting over morphisms is substantially easier

than for the whole class. These HR∗ conditions are restricted in the HR systems allowed
and are called path-like conditions, since they allow the construction of paths and similar
structures.

Definition 6.1 (path-like condition). A hyperedge replacement system R is path-like
if, for each rule x/R ∈ R, all of the following conditions hold:

1. The undirected graph R′ induced by R1 does not contain a circle involving a
hyperedge (see Figure 6.3).

2. Every pinpoint in Pin(R) is either directly incident to a hyperedge or has no path
to any hyperedge in the undirected induced graph R′.

3. Every hyperedge of rank ≥ 1 in R has at least one tentacle adjacent to a pinpoint
in Pin(R).

An HR∗ condition is path-like if its replacement system is path-like. 4

• •x1 2 •
•

•
•x

1

2 3

Figure 6.3: Two graphs whose undirected induced graphs both contain a circle over a
hyperedge.

Example 6.1 (path-like conditions). In order to illustrate path-like conditions, we
look at some examples.

• The set of discrete graphs is a very simple path-like condition:
∃(1) with 1 ::= ∅ | • 1

1Every directed graph R yields an undirected induced graph R′ by taking R, adding an edge in the
opposing direction for each edge in R, and replacing each hyperedge by a node and an undirected
edge for each tentacle.
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Chapter 6 Correctness relative to HR∗ conditions

• As is to be expected, paths are path-like:
∃(•

1
•
2

+1 2 ) with •
1

•
2

+1 2 ::= •
1

•
2
| •

1
• •

2
+1 2 +1 2

• Trees can also be expressed with path-like conditions, the replacement system is
only a slight extension of the one for paths:

∃(•
1

•
2

T1 2 ) with •
1

•
2

T1 2 ::= •
1

•
2
| •

1
• •

2
T1 2 T1 2 | •

1 •
2

•

T
1

2

T1
2

• However, a similar extension where the third rule contains a loop leads to series-
parallel graphs, which are not path-like, since the third rule includes a circle over
two hyperedges:

∃(•
1

•
2

sp1 2 ) with •
1

•
2

sp1 2 ::= •
1

•
2
| •

1
• •

2
sp1 2 sp1 2 | •

1
•
2sp1 2

sp
1 2

• The following alternative replacement system to generate trees is not path-like,
since the single pinpoint 1 in the second rule has a path to the hyperedge.

∃(•
1

T1 ) with •
1

T1 ::= •
1
| •

1
• T1 | •

1 T
1

T1 ♦

The intuition behind this definition, as can be seen in the examples, is to force the
grammar to generate new items “in the middle”, i.e. a replacement step can add to a path
in both directions. This makes the replacement system highly ambiguous, which is useful
in this case – it provides a way to generate the items of a path, tree or other allowed
structures in arbitrary sequence. Furthermore, loops that span over several tentacles
of a hyperedge are disallowed, since this would also constrain the possible sequences of
derivation steps.
The following lemma on arbitrary separability expresses the fact that a path-like

replacement system can generate the items of a graph in arbitrary order.

Lemma 6.1 (separability of path-like grammars).
Let (R, S) be a hyperedge replacement grammar with a path-like replacement system
R and start graph S. For every graph G ∈ L(〈R, S〉) and every item x in G, there is a
graph with variables S′ and a number k ≤ |R| limited by the number of rules, such that
x ∈ S′ and S ⇒k

R S
′ ⇒∗R G.

S G 3 x

S′ 3 x

∗
k ∗

Proof. Without loss of generality, we assume that R contains no unreachable rules. We
decompose G into graphs Ga, Gb and Gab such that Ga and Gb are disjoint up to a small
(i.e. no bigger than the right-hand side of a rule in R) environment Gab around item x.
This decomposition is always possible because R is path-like and there are no loops over
hyperedges, thus there can be no edge between nodes in Ga and Gb.
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6.1 Shifting for path-like conditions

S

S′a
•

•
v

•
• Gab

•
•
• S′b

Sa
•

•
v

•
• Gab

•
•
• Sb

Ga
•

•
v

•
• Gab

•
•
• Gb

k
⇒

∗⇒ ∗⇒

∗⇒ ∗⇒

Since x is an item in G, x (together with its environment Gab) is either in S or has to
be generated by some rule in R. If x is in S, it is also in any derived graph S′, since R is,
by assumption, monotone and cannot remove items. Otherwise, let Sx be the graph in
which Gab is generated, i.e. the first graph in the derivation S ⇒∗ Sx ⇒∗ G containing
x. Again, we can decompose Sx into two graphs Sa and Sb which are disjoint up to the
environment Sab that contains x. This decomposition always exists for the reasons given
above.
Since R is path-like, pinpoints in the rule’s right-hand side are either isolated from

or directly connected to a hyperedge, so Gab contains neither pinpoints nor hyperedges.
This implies that there is a derivation Sa ⇒∗R Ga, and that there is a hyperedge S′a with
S′a ⇒∗R Sa. The same goes for Gb.
Since R has no unreachable rules and is (as every HR system) context-free, the rule

generating S′a +Gab + S′b can be reached within no more than k = |R| steps2. �

Path-like conditions can be shifted over morphisms into corresponding conditions over
the codomain of the morphism.

Theorem 6.1 (Shifting of path-like conditions over morphisms).
There is a transformation Shift* such that for every path-like condition c over P
and every morphism b : P → P ′, there is a path-like condition Shift*(b, c) such that,
for all morphisms n : P ′ → G,

n ◦ b |= c ⇐⇒ n |= Shift*(b, c).

P

H

P ′
b

n ◦ b n

Shift*(b, c)c

The construction of transformation Shift* relies on the properties of path-like conditions,
in particular Lemma 6.1. A partial expansion of the condition along the replacement
system ensures that items in the (expanded) condition can be unified with items in the

2In the worst case, imagine hyperedges labeled A1, . . . , Ak and rules Ai/Ai+1, so that to reach rule
An−1/An from A1, one has to go through all rules A1, . . . , An to generate An.
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Chapter 6 Correctness relative to HR∗ conditions

codomain of the morphism to shift over, while at the same time keeping the condition
finite.

Construction. Shift* is defined inductively on the structure of conditions. For any
injective morphism b : P ↪→P ′ and replacement system R, we have:

• Shift*(b, true) = true.

• Shift*(b,∃(P ↪→C, c)) = ∨
τ∈Σb

∨
(a′,b′)∈F ∃(a′,Shift*(b′, cτ )), where

Σb is the (finite) set of all derivations along R with no more than |R| steps,
and F is the set of all jointly surjective morphism pairs (a′, b′) with a′ ◦ b = b′ ◦ aτ
(see left diagram below).

• Shift*(b,∃(P w C, c)) = ∃(P ′ w C ′,Shift*(b′, c)) as per the right diagram below.

• Shift*(b,¬c) = ¬Shift*(b, c).

• Shift*(b, c ∧ c′) = Shift*(b, c) ∧ Shift*(b, c′).

P C

Cτ

P ′ C ′

a
aτ

a′

b
b′

τ

=

IP C

I ′P ′ C ′

b b′(PO) (PO)

l

Example 6.2. We shift the path-like condition ∃(∅ → •
1

•
2

+ ) with replacement system

R = •
1

•
2

+ ::= •
1

•
2
| •

1
• •

2
+ + over morphism b : ∅ ↪→•

8
•
9
.

Since |Ran(b)| = 2, Σb(•1 •
2

+ ) = {•
1

•
2
, •

1
•
3
•
2

+ +
, •

1
•
3
•
2

+
, •

1
•
3
•
2

+
, •

1
•
3
•
4
•
2

+ + + }.
For the second element of Σb, we show the set F exemplary:
∅ •

1
•
2

+

•
1
•
3
•
2

+ +

•
8
•
9 C ′

a
aτ

a′

b

b′=

where C ′ ranges over (a) •
1
•
3
•
2
•
8
•
9

+ + , (b) •
1=a
•
3
•
2
•
9

+ + ,

(c) •
1=a
•

3=b
•
2

+ + , (d) •
1=a
•
3
•

2=b
+ + , (e) •

1
•

3=a
•
2
•
9

+ + , (f) •
1
•

3=a
•

2=b
+ + ,

(g) •
1
•
3
•

2=a
•
9

+ + , (h) •
1=b
•
3
•
2
•
8

+ + , (i) •
1=b
•

3=a
•
2

+ + , (j) •
1=b
•
3
•

2=a
+ + ,

(k) •
1
•

3=b
•
2
•
8

+ + , (l) •
1
•

3=b
•

2=a
+ + , (m) •

1
•
3
•

2=b
•
8

+ + ,
The condition is expanded considerably by the construction. However, many cases are

equivalent to or implied by other cases, so a simplification of the condition by eliminating
cases which are implied by others is advisable after using Shift*. ♦

Proof (of Theorem 6.1). By induction over the structure of conditions.
Basis. For the condition true, the equivalence holds trivially.
Hypothesis.Let n ◦ b |= c′ ⇐⇒ n |= Shift*(b, c′).
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6.1 Shifting for path-like conditions

Step.
Case true. See induction basis.
Case ∃(P a

↪→C, c). We do both directions of the proof separately.
“⇐”. Assume that n |= Shift*(b, c). By construction, this equals

n |= ∨
τ∈Σb

∨
(a′,b′)∈F ∃(a′, Shift*(b′ : Cτ ↪→C ′, cτ )). By the definition of satisfaction, this

implies there is a substitution ν and an injective morphism q′ : C ′ν ↪→G such that
q′ ◦ a′ν = n and q′ |= Shift*(b′, cτ )ν . Let C ′′ = C ′ν and σ = ν ◦ τ and Cσ = Cτ◦ν .
We construct b′′ : Cσ ↪→C ′′, with b′′(x) = b′(x) if x ∈ Cτ and b′′(x) = x else. Now
q′ |= Shift*(b′, cτ )ν is equivalent to q′ ◦ b′′ |= Shift*(b′, cν◦τ ). Let q = q′ ◦ b′′. By the
hypothesis, q′ |= Shift*(b′′, cσ) ⇔ q′ ◦ b′′ = q |= cσ. We now have a substitution σ
such that n ◦ b ◦ aσ = q and q |= cσ. By definition of satisfaction, this is equivalent to
n ◦ b |= ∃(P a

↪→C, c).

P

P ′

C

Cτ

C ′

Cσ

C ′′

G

n

a

aτ

a′

a′′

aσ
b

b′ b′′

τ σ

ν

ν

q′ q

“⇒”. Assume n ◦ b |= ∃(P a
↪→C, c).

By the semantics of HR∗ conditions, there are substitution σ and an injective morphism
q : Cσ ↪→G such that n ◦ b ◦ aσ = q and q |= cσ.
By E ′-M-pair factorization of the cospan P ′ n−→ G

q←− Cσ, we have unique morphisms
a′′ : P ′ → C ′′, b′′ : Cσ → C ′′ and q′ : C ′′ ↪→G such that a′′ and b′′ are jointly surjective,
n = q′ ◦ a′′ and q = q′ ◦ b′′ (see diagram). Note that b′′ is injective, since q and q′ are
injective.
By Lemma 6.1, we can split σ = τ ◦ ν with τ consisting of k ≤ |R| derivation steps of
R. Since b′′ is injective, we can construct morphism b′ : Cτ ↪→C ′ by restricting b′′ to Cτ .
This construction also implies C ′ν = C ′′.
For a morphism m : G→ H, let m−Y : G−YG → H −YH be the morphism restricted to
nodes and (non-hyper-)edges. Note that for C ′ ⇒ν C

′′, there is an underlying injective
morphism mν : C ′ −YC′ ↪→C ′′ (C ′′ contains no hyperedges, so C ′′ = C ′′ −YC′′).
By E ′-M pair factorization of a′′−Y and b′′−Y, we can construct morphisms a′−Y and b′−Y
such that a′′−Y = mν ◦ a′−Y, b′′−Y = mν ◦ b′−Y and (a′−Y, b

′
−Y) are jointly surjective.

By definition, b is isomorphic on hyperedges (i.e. b restricted to hyperedges is an
isomorphism); b′′ does not contain any hyperedges since ν replaced all hyperedges, and
by its construction, b′ is also isomorphic on hyperedges. This implies that there is a
morphism a′ : P ′ → C ′, that b′ ◦ aτ = a′ ◦ b, that b′ is also surjective on hyperedges,
and that (a′, b′) are jointly surjective. Since this matches the construction of Shift*,
n |= Shift*(b,∃(P ↪→C, c)).
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Chapter 6 Correctness relative to HR∗ conditions

Case ∃(P w C, c). By the satisfaction of HR∗ conditions, n ◦ b |= ∃(P w C, c) ⇔
∃a : C ↪→P, q : C ↪→G.q = n◦ b◦a∧ q |= c. Since q = n◦ b◦a, we also have n◦ b◦ l = q ◦ r
and thus, there is an injective a′ : C ↪→P ′ such that q′ = n ◦ a′. By the hypothesis,
q′ |= Shift*(b′, c) and thus we gain n |= Shift*(b,∃(P w C, c)).

P
I

C

P ′
I ′

C ′

G

b b′

n q
q′

a

a′

(1) (2)

Case ¬c. trivial.
Case c1 ∧ c2. trivial.
This concludes the proof. �

In order to motivate the next part, we illustrate why the above construction does not
work for non-pathlike HR∗ conditions, using the grammar for series-parallel graphs from
Example 6.1.

Example 6.3. We first recall the replacement system for series-parallel graphs from
Example 6.1.

R = {•
1

•
2

sp1 2 ::= •
1

•
2
| •

1
• •

2
sp1 2 sp1 2 | •

1
•
2sp1 2

sp
1 2 }

The graph below can be generated by alternatively using the parallel and the serial
rule on the rightmost hyperedge. This construction principle leads to a subclass of
series-parallel graph which all consist of a path with parallel edges to the last node from
every other node (except the last-but-one).

•
1

•
2

•
3

•
4

•
5

•
6

Suppose that during Shift*, we want to identify a node v with node 4 from the above
graph. It turns out that in order to generate node 4, we first have to generate all the
nodes left of it. Otherwise, it is impossible to generate the bent parallel edges. More
generally, in order to generate node n of a graph with n + 1 nodes, it is necessary to
generate n nodes before. Since the Shift* construction only allows a limited number of
derivation steps, it cannot work for series-parallel graphs. ♦
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6.2 Shifting for arbitrary HR∗ conditions

6.2 Shifting for arbitrary HR∗ conditions
The above construction Shift* works well in the case of path-like replacement systems.
However, HR∗ conditions are not path-like in general, and shifting over morphisms should
be possible for arbitrary conditions. We now show a transformation that shifts arbitrary
HR∗ conditions over morphisms. This transformation needs considerably more effort
than the version for path-like conditions. Whenever possible, that construction should be
used to shift conditions, and the below construction reserved for HR∗ conditions which
are not path-like.
The final goal of this subchapter is the following theorem, stating that any HR∗

constraint can be transformed into a right application condition for a rule.

Theorem 6.2 (from postcondition to right application condition).
There is a transformation A such that for any rule ρ = 〈L←↩ K ↪→ R〉, any HR∗
condition c over ∅, there is an HR∗ condition A(ρ, c) such that for any injective
morphism m′ : R ↪→H,

m′ |= A(ρ, c) ⇐⇒ H |= c.

Our goal is to identify “external” nodes with nodes generated by a substitution. We
do this by “integrating” the external nodes into the hyperedge with additional tentacles.
During the replacement process of the hyperedges, the additional nodes connected to
these tentacles can be identified with a generated node. The following construction
Shiva(R, k)3 is given a natural number k and an HR system R and equips the rules of
R with up to k additional tentacles. For hyperedge label x, we use the label (x, k) to
denote a “similar” hyperedge label with k more tentacles. This “similarity” means that
rules x/R and (x, k)/R′ should generate isomorphic graphs, minus some added tentacles
and their pinpoints in R′. The purpose of this construction is to generate an HR system
R′ such that each graph G of sufficient size (i.e. of at least k nodes) generated by an HR
grammar (R, x•) can also be generated by (Shiva(R, k), (x, k)•) and vice versa.
Let 〈R〉 be the graph R with all its hyperedges removed. The construction adds, for all

rules x/R ∈ R, rules xν/Rτ , where ν and τ are substitutions from a replacement system
Tk that adds from 0 up to k tentacles to hyperedges. So xν/Rτ is a rule x/R with some
tentacles (and their pinpoints) added. The set of these rules is filtered such that each
new pinpoint in xν should have an image in Rτ and vice versa. This means there is
an injective morphism α′ from 〈xν〉 to Rτ and each node in Rτ has a preimage in R or
xν − x, as expressed by the diagram in the construction below.

Construction. Let the HR system Tk consist of rules that add up to k tentacles to each
hyperedge x occurring as a left hand side in R, i.e.

Tk = {x/(x, i)• | x/R ∈ R, i ∈ [0, k]}

.
3The construction’s main characteristic is the addition of tentacles (arms) to the hyperedges, so it is
named after the many-armed Hindu god Shiva.
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Given an HR system R, let Shiva(R, k) be the set of all rules xν/Rτ such that x/R is
a rule in R and ν, τ ∈ Tk are substitutions adding tentacles such that every node that ν
adds to x, τ adds to R, i.e.

Shiva(R, k) := {xν/Rτ | x/R ∈ R, ν, τ ∈ Tk}

such that the diagram below commutes (i.e. α′ ◦ β = β′ ◦ α) and α′ and β′ are jointly
surjective.

〈x〉

〈xν〉

〈R〉

〈Rτ 〉

α

α′

β β′=

l

An example illustrates the way the construction works.

Example 6.4. Let k = 2 and R = •
1

•
2

+1 2 ::= •
1
•
2
| •

1
• •

2
+1 2 . Then Shiva(R, k)

yields the new set of rules

R′ =



•
1

•
2

(+, 0)1 2 ::= •
1

•
2
| •

1
• •

2
(+, 0)1 2 ,

•
1

•
2

•3

(+, 1)1 2

3

::= •
1
• •

2

•3

(+, 1)1 2

3

| •
1
•
3

•
2

(+, 0)1 2 ,

•
1

•
2

•3 • 4

(+, 2)1 2

3 4

::= •
1
• •

2

•3 • 4

(+, 2)1 2

3 4

| •
1
•
3

•
2

• 4

(+, 1)1 2

3

| •
1
•
4

•
2

•3

(+, 1)1 2

3


♦

The construction essentially does not change the languages that can be generated with
the help of the HR systems. The following lemma captures this property.

Lemma 6.2 (Shiva is language-invariant).
For any HR grammar (R, x•) with language L = L(R, x•) and any natural number k, the
HR grammar (Shiva(R, k), (x, k)•) generates the language {G ∈ L | |G| ≥ rank(x) + k},
i.e. the language of all graphs in L except those with less than rank(x) + k nodes.

Proof (of Lemma 6.2). Both directions of the proof are done separately. Let R′ =
Shiva(R, k) and L′ = L((Shiva(R, k), (x, k)•)).
Case G′ ∈ L′ =⇒ G′ ∈ L. Every graph G′ ∈ L′ is the result of a derivation

(x, k)• ⇒∗R′ G′. By the construction, for every derivation step G′i ⇒x′i/R
′
i
G′i+1, the

rule x′i/R′i ∈ R′ is constructed from a rule xi/Ri ∈ R, and there is a derivation step
Gi ⇒xi/Ri Gi+1. Since the only difference between x′i/R

′
i and xi/Ri is the adding of

tentacles or unifying of nodes, G′i ∼= Gi implies G′i+1
∼= Gi+1. By induction, it follows

that (x, k)• ⇒∗R′ G′ implies x• ⇒∗R G and G′ ∼= G.
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6.2 Shifting for arbitrary HR∗ conditions

Case G ∈ L =⇒ G ∈ L′. Every graph G ∈ L with |G| ≥ rank(x) + k is the result of
a derivation x• ⇒∗R G. By the construction, for every derivation step Gi ⇒xi/Ri Gi+1,
there are rules {(xi, l)/R′i ∈ R′ | 0 ≤ l ≤ k}, and a derivation G′i ⇒∗(xi,l)/R′i G

′
i+1. Since

|G| ≥ rank(x) + k, the derivation x• ⇒∗R G consists of enough steps such that the
additional nodes in (x, k)• can be unified with nodes on the RHS of the rules in R′, so
for x• ⇒R G1 ⇒R · · · ⇒R Gn = G, there is a sequence (x, k)• ⇒R′ G′1 ⇒R′ · · · ⇒R′
G′n = G′ such that G ∼= G′. �

We proceed with the shifting of HR∗ conditions over morphisms. For readability reasons,
this is split into two parts. The first construction, called Integraten, deals only with
nodes. The morphism bn : P ↪→Pn over which to shift may only add nodes, i.e. Pn − P
has no edges. The second construction, called Integratee, deals with edges, i.e. shifts
over morphisms b : P ↪→P ′ which add only edges.
The following Lemma states that HR∗ conditions can be shifted over injective morphisms

into corresponding conditions over the codomain of the morphism, provided the codomain,
compared to the domain, only contains additional nodes.

Lemma 6.3 (Integrating nodes into HR∗ conditions).
There is a transformation Integraten such that for all HR∗ conditions 〈c,R〉 over P and
morphisms b : P → P ′, n : P ′ → G, where P ′ − P is a discrete graph, there is a condition
Integraten(b, 〈c,R〉) such that

n ◦ b |= 〈c,R〉 ⇐⇒ n |= Integraten(b, 〈c,R〉).

Construction. Let k = |Ran(b) − Dom(b)| be the number of nodes added in the
codomain of b. Let Tk be defined as in Construction 6.2: Tk = {x/(x, i)• | x/R ∈ R, i ∈
[0, k]}, i.e. Tk consists of rules that add up to k tentacles to each hyperedge x occurring
as a left hand side in R.
Then Integraten(b, 〈c,R〉) =

〈∨
τ∈Tk Shiftn(b, cτ ), Shiva(R, k)

〉
, where Shiftn is defined

like Shift in Chapter 2.4 with the addition of Shiftn(b,∃(P w C, c)) = ∃(P ′ w C ′,
Shiftn(b′, c)), where P ← I → C is the partial morphism from C to P , I ′ is the pushout
complement of I → P ↪→P ′ and C ′ the pushout of I ′ ← I → C (see diagram below).

IP C

I ′P ′ C ′

b b′(PO) (PO)

l

Some explanation of the above construction is in order. Note that each node v in
P ′−P may be identified with a node in C −P , but also with a “hidden” node generated
from a hyperedge y in C. For the latter case, we add another tentacle to y with a new
node v′, so that v can be identified with v′. During derivation of σ(C), v′ has to be
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Chapter 6 Correctness relative to HR∗ conditions

identified with one of the generated nodes. This means that (a) this node is part of the
right-hand side R of some rule x/R and (b) is not a pinpoint of R.
Assume that hyperedge y has label x. Since we added a new tentacle to y and the

rank of each label is fixed, we need to use another label (x, 1) (the 1 signifies we added
1 additional tentacle) and according rules (x, 1)/R′, which generate the same graphs
(almost, except for the added node) as the rules for x, and also deal with the additional
tentacle. Two things can happen to the node v′ attached to that tentacle: (a) node v′ is
identified with a non-pinpoint node in R′, or (b) v′ is “passed on” to a later derivation
step, by adding a tentacle to a hyperedge in R′ and connecting it to v′. The left square of
the construction diagram ensures that every node in 〈(x, k)〉 − 〈x〉 can only be identified
with a non-pinpoint in R′, while the right square enumerates every combination of up to
k tentacles added to the hyperedges of R.

Example 6.5. As an example, we integrate the HR∗ condition

∃(•
1

•
2

+1 2 ) with R = •
1

•
2

+1 2 ::= •
1
•
2
| •

1
• •

2
+1 2

into the rule 〈L←↩ K ↪→ R〉 = 〈•
a
•
c
←↩ •

a
•
c
↪→ •

a
•
c
〉.

Since the rule’s RHS R = •
a
•
c
contains one edge, we expand R to

R′′ = •
1

•
2

+1 2 ::= •
1
•
2
| •

1
• •

2
+1 2 | •

1
• • •

2
+1 2

which is equivalent to R.
Since R contains two nodes and R has one hyperedge label, we let

Tk = {•
1

•
2

+1 2 ::= •
1

•
2

+,01 2 | •
1

•
2

•3

+,11 2

3

| •
1

•
2

•3 • 4

+,21 2

3 4

}

R′ is defined as in Example 6.4.
The condition ∃(•

1
•
2

+1 2 ) is transformed to

∃(•
1

•
2

•3 • 4

+,01 2 ) ∨ ∃( •
1=3

•
2

• 4

+,01 2 ) ∨ ∃(•
1

•
2=3

• 4

+,01 2 ) ∨ ∃( •
1=4

•
2

•3

+,01 2 ) ∨ ∃(•
1

•
2=4

•3

+,01 2 )∨

∃( •
1=3

•
2=4

+,01 2 ) ∨ ∃( •
1=4

•
2=3

+,01 2 ) ∨ ∃(•
1

•
2

•3 • 4

+,11 2
3

) ∨ ∃(•
1

•
2

•3 • 4

+,11 2
3

) ∨ ∃(•
1

•
2

•3 • 4

+,21 2
3 4

).
♦

Proof (of Lemma 6.3). The proof proceeds by induction over the structure of HR∗
conditions. Let 〈c′,R′〉 = Integraten(b, 〈c,R〉). Colors are used in the diagram for an
easier overview of the different stages of the proof.
Basis. n ◦ b |= true⇔ true⇔ n |= true⇔ n |= Integraten(b, 〈true,R〉).
Hypothesis. For any subcondition c, n ◦ b |= 〈c,R〉 ⇐⇒ n |= Integraten(b, 〈c,R〉).
Step.
Case true. See induction basis.
Case ¬c. By induction, n ◦ b 6|= c ⇔ n 6|= Integraten(b, 〈c,R〉), which is equivalent to
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6.2 Shifting for arbitrary HR∗ conditions

n |= Integraten(b, 〈¬c,R〉).
Case c ∧ c′. n ◦ b |= c ∧ c′ ⇔ n ◦ b |= c ∧ n ◦ b |= c′. By the induction hypothesis, this is
equivalent to n |= Integraten(b, 〈c,R〉) ∧ n |= Integraten(b, 〈c′,R〉), which is equivalent
to n |= Integraten(b, 〈c ∧ c′,R〉) by construction.
Case ∃(P a

↪→C, c). We prove both directions separately.
“⇐”. Assume that n |= Integraten(b, 〈∃(a, c),R〉). By construction, this is equivalent
to n |=

〈∨
τ,a′,b′ ∃(a′, Integraten(b′, 〈cτ ,R〉)),R′

〉
. By the definition of |= (Def. 3.9), this

implies ∃σ′ ∈ R′∗, q′ : C ′σ′ ↪→G.n = q◦a′σ′∧q′ |= Integraten(b′,
〈
cσ
′
,R
〉

). By Lemma 6.2,
there is a σ ∈ R∗ such that for every hyperedge (x, k) in C ′, there is a hyperedge x in C
such that σ(x) = σ′((x, k)•). By extension, we have σ(C) = σ′(C ′) = σ′(τ(C)). Using
σ, we construct morphism aσ : P ↪→Cσ. Since n = q′ ◦ a′σ′ , n ◦ b = q′ ◦ a′σ′ ◦ b. Let
q = q′, then q′ ◦ a′σ′ ◦ b = q ◦ aσ and, by the hypothesis, q |= cσ. By the definition of HR∗
satisfaction (Def. 3.9), this implies n ◦ b |= ∃(a, c).
“⇒”. Assume that n ◦ b |=

〈
∃(P a

↪→C, c),R
〉
. By the definition of |= (Def. 3.9), this

implies ∃σ ∈ R∗, q : Cσ ↪→G.n◦b = q◦aσ∧q |= cσ. By Lemma 6.2, for some τ ∈ Tk, there
is a derivation σ′ ∈ R′∗ such that σ′(τ(C)) = σ(C). We construct a′σ′ : P ′ ↪→Cσ such that
aσ = a′σ

′ ◦b and, since n◦b = q◦aσ and q = q′, get n = a′σ
′ ◦q′ by E ′-M pair factorization.

By the hypothesis, q′ ◦ b′ |= 〈cσ,R〉 ⇔ q |= Integraten(b, 〈cσ,R〉). Then we have ∃τ ∈
Tk, σ′ ∈ R′∗, q′ : C ′σ

′
↪→G.n = q′◦a′σ′∧q′ |= Shiftn(b′, cτ ). By the semantics of HR∗ condi-

tions, this equals n |=
〈∨

τ∈Tk,(a′,b′)∈F ∃(a
′,Shiftn(b′, cτ )),Shiva(R, k)

〉
. By the construc-

tion of Shiftn and Integraten, this equals n |=
〈∨

τ∈Tk Shiftn(b,∃(a, c)τ ), Shiva(R, k)
〉
⇔

n |= Integraten(b,
〈
∃(P a

↪→C, c),R
〉

).

P C

P ′ C ′ Cσ

G

a

aσ

a′

b τ

p

n

q

a′σ
′

q′

σ′

σ

Case ∃(P w C, c). We have n ◦ b |= 〈∃(P w C, c),R〉 ⇔ ∃σ ∈ R∗, q : Cσ ↪→G,
a : Cσ ↪→P.q = n ◦ b ◦a∧ q |= cσ. By Lemma 6.2, this equals ∃τ ∈ Tk, σ′ ∈ R′∗, q : C ′σ′◦τ ,
a : Cσ′◦τ ↪→P.q = n◦b◦a∧q |= cσ

′◦τ . Using the induction hypothesis and the construction,
this equals ∃τ ∈ Tk, σ′ ∈ R′∗, q′ : C ′σ

′
, a′ : C ′σ′ ↪→P.q′ = n ◦ a ∧ q′ |= Shiftn(b′, c′σ′). By

the semantics of HR∗ conditions, this equals n |= Integraten(b, 〈∃(P w C, c),R〉).
This concludes the proof. �
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Chapter 6 Correctness relative to HR∗ conditions

Handling edges. The above construction can only handle nodes. To handle edges, the
HR system R has to be in a form such that all edges in P ′ − P can be identified with
edges generated by a rule in x/R ∈ R. The basic idea is that whenever there is an edge
in P ′ − P between two nodes, an edge between corresponding pinpoints in a rule can be
deleted. This is done by remembering all such edges during the hyperedge replacement
process, as part of the hyperedge label.

Construction. Given a morphism b : P ↪→P ′, let k = |VP ′−P | and a HR system R,
expandR k∗|LHS(R)| times, yieldingRex = {x/R′ | ∃i.0 ≤ i ≤ k∗|LHS(R)|∧R⇒i R

′}.
The expansion ensures any subset of edges in P ′ − P can be integrated into a hyperedge
in one step.
Then perform Integraten(b, 〈c,Rex〉) = 〈cn,Rn〉.
For any hyperedge y with label (x, k) in condition c, let Py = 〈(x, k)〉−〈x〉 be the discrete
graph of all attachment points of y with index greater than rank(x). Let Gy be the graph
consisting of Py plus all edges in c with both source and target in Py (see the example
below).

c = ∀( •1 , ∃(
•1 • 2

• 3•4
x,3

1 2

34
y

)) Py = • 2
• 3•4 Gy = • 2

• 3•4

For a cospan P ′ a
′
−→ C ′

b′←− C, let τ(a′, b′) replace every hyperedge y with label (x, k) in
C ′ by a hyperedge (x, k,Gy) with the same rank and Gy = Py + {e | e ∈ EC′ ∧ s(e), t(e) ∈
Py ∧ ∃e′ ∈ EP ′ .e = a′(e′)} being the graph consisting of all of y’s attachment points with
index ≥ rank(x), plus all edges between them which have a preimage in P ′. We define
Shifte similar to Shiftn:

Shifte(b, true) = true, Shifte(b,¬c) = ¬Shifte(b, c), Shifte(b, c ∧ c′) = Shifte(b, c) ∧
Shifte(b, c′). Shifte(b,∃(P ↪→C, c)) = ∨

(a′,b′)∈F ∃(a′,Shifte(b′, c))τ(a′,b′), where F is the
set of all jointly surjective morphism pairs (a′, b′) with a′ ◦ b = b′ ◦ a (see left diagram
below) and τ(a′, b′) is defined as above. Shifte(b,∃(P w C, c)) = ∃(P ′ w C ′, Shifte(b′, c)),
where P ← I → C is the partial morphism from C to P , I ′ is the pushout complement
of I → P ↪→P ′ and C ′ the pushout of I ′ ← I → C as per the right diagram below.

P C

P ′ C ′ Cτn

a

a′
b

τ(a′, b′)
b′

IP C

I ′P ′ C ′

b b′(PO) (PO)

Let maxEdges be the maximum number of parallel edges between two nodes in c. For
each hyperedge label (x, k), let G(x,k) be the set of all graphs with k nodes and no more
than maxEdges parallel edges.
Then Integratee(b, 〈cn,Rn〉) = 〈Shifte(cn),R′〉, where R′ = {(x, k,Gy)/R′ | (x, k)/R ∈
Rn ∧Gy ∈ G(x,k)} and R′ being constructed from R as described below.
Given Gy and R, construct a partial morphism (symbolized by the span Gy ← I → R)

from Gy to R, mapping the nodes of Gy to the corresponding nodes (pinpoints) in R and
the edges between them (since not all edges in Gy may have corresponding edges in R,
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6.2 Shifting for arbitrary HR∗ conditions

the morphism is partial). Construct Py by removing all edges from Gy and for every I ′
with Gy ↪→ I ′ ↪→ I, construct the pushout complement R′.

Gy I R

Py I ′ R′

= (PO)

l

Example 6.6. We continue Example 6.5: We integrate condition ∃(•
1

•
2

+1 2 ) with HR
system R = •

1
•
2

+1 2 ::= •
1
•
2
| •

1
• •

2
+1 2 into rule 〈•

3
•
4
←↩ •

3
•
4
↪→ •

3
•
4
〉.

We split morphism b : ∅ ↪→•
3
•
4
into b = be ◦ bn with morphisms bn : ∅ ↪→•

3
•
4
and

be : •
3
•
4
↪→•

3
•
4
.

From Example 6.5, we get Integraten(bn, 〈c,R〉) = 〈cn, Rn〉.
The HR system R′, without superfluous rules, looks as follows:

R′ = •
1

•
2

•3 • 4

+,2,• 3
• 41 2

3 4

::= •
1
• •

2

•3 • 4

+,2,• 3
• 41 2

3 4

| •
1
•
3

•
2

•4

+,1,∅1 2

3

| •
1
•
4

•
2

•3

+,1,∅1 2

3

•
1
•
3
•
4

•
2

+,0,∅1 2 | •1 •3 •4 •
2

+,0,∅1 2 | •1 •4 •3 •
2

+,0,∅1 2 |

•
1

•
2

•3

+,1,∅1 2

3

::= •
1
• •

2

•3

+,1,∅1 2

3

| •
1
•
3

•
2

+,0,∅1 2 |

•
1

•
2

+,0,∅1 2 ::= •
1

•
2

+,0,∅1 2 | •1 •
2

The condition ∃(•
1

•
2

+1 2 ) becomes

∃(•
1

•
2

•3

+,1,∅1 2

3

) ∨ ∃(•
1

•
2

•3

+,1,∅1 2

3

) ∨ ∃(•
1
• •

2

•3

+,1,∅1 2

3

) ∨ ∃(•
1
•
3

•
2

+,0,∅1 2 )∨

∃(•
1
• • •

2

•3

+,1,∅1 2

3

) ∨ ∃(•
1
•
3
• •

2
+,0,∅1 2 ) ∨ ∃(•

1
• •

3
•
2

+,0,∅1 2 )

∃(•
1

•
2

•3 • 4

+,2,• 3
• 41 2

3 4

) ∨ ∃(•
1
• •

2

•3 • 4

+,2,• 3
• 41 2

3 4

) ∨ ∃(•
1
•
3

•
2

• 4

+,1,∅1 2

3

) ∨ ∃(•
1
•
4

•
2

•3

+,1,∅1 2

3

)∨

∃(•
1
• • •

2

•3 • 4

+,2,• 3
• 41 2

3 4

) ∨ ∃(•
1
•
3
• •

2

• 4

+,1,∅1 2

3

) ∨ ∃(•
1
•
4
• •

2

•3

+,1,∅1 2

3

)∨

∃(•
1
• •

3
•
2

• 4

+,1,∅1 2

3

) ∨ ∃(•
1
• •

4
•
2

•3

+,1,∅1 2

3

)∨

∃(•
1
•
3
•
4

•
2

+,0,∅1 2 ) ∨ ∃(•
1
•
3
•
4

•
2

+,0,∅1 2 ) ∨ ∃(•
1
•
4
•
3

•
2

+,0,∅1 2 ) ♦

The following theorem states that we can shift HR∗ conditions over any injective
morphism which does not add hyperedges.
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Theorem 6.3 (Shifting HR∗ conditions over morphisms).
There is a transformation Integrate such that for any HR∗ condition 〈c,R〉 over
P , any injective morphism b : P ↪→P ′ isomorphic on hyperedges, there is an HR∗
condition Integrate(b, 〈c,R〉) such that for any morphism n : P ′ → G,

n ◦ b |= 〈c,R〉 ⇐⇒ n |= Integrate(b, 〈c,R〉).

P

H

P ′
b

n ◦ b n

Integrate(b, c)c

The construction splits the morphism b into two parts for nodes and edges and then
uses Integraten and Integratee.

Construction. We split morphism b = be ◦ bn, where bn adds only nodes and be adds
only edges. Let Integrate(b, 〈c,R〉) = Integratee(be, Integraten(bn, 〈c,R〉)) . l

Proof. Without loss of generality, assume that R has been expanded k ∗ |LHS(R)|
times.
As in the construction, let b = be ◦ bn, where bn adds only nodes and be adds only

edges. By Lemma 6.3, we have n ◦ bn |= 〈c,R〉 ⇔ n |= 〈cn,Rn〉 with 〈cn,Rn〉 =
Integraten(bn, 〈c,R〉) = Integrate(bn, 〈c,R〉).
This leaves us to prove that n′ ◦ be |= 〈cn,Rn〉 ⇐⇒ n′ |= Integrate(be, 〈cn,Rn〉) with

n′ = n ◦ bn. This proof proceeds by induction over the structure of HR∗ conditions.
Assume that for any subcondition c, n ◦ b |= 〈c,R〉 ⇐⇒ n |= Integrate(b, 〈c,R〉).
Cases true, ¬c and c ∧ c′, proceed analogous to the proof of Lemma 6.3; see the

corresponding parts of the proof of Lemma 6.3.
For n′ ◦ be |= ∃(P → C, c), we do both directions of the proof separately.
“⇐”: Assume that n′ |= Integrate(be, 〈∃(a, c),Rn〉).

By construction of Integrate and Definition 3.9, this is equivalent to
∃σ′ ∈ R∗e, q′ : C ′σ

′
↪→G.n = q ◦ a′σ′ ∧ q′ |= Integrate(b′e,

〈
cσ
′
,Rn

〉
).

For every rule (x, k,Gy)/R′ in R′, there is a rule (x, k)/Rn in Rn, and Rn is isomorphic
to R′ up to some edges in Rn which are missing in R′. This implies that there is a
substitution σ ∈ Rn. By Lemma 6.3, this equals n ◦ bn ◦ be |= 〈c,R〉. By construction, for
each edge in Rn−R′, there is a corresponding edge in Gy, and furthermore a corresponding
edge in c′ and in be.
This implies ∃σ ∈ R∗, q : Cσ ↪→G.n = q′ ◦ aσ ∧ q′ |= Integrate(b, 〈cσ,R〉).
By the induction hypothesis, q |= 〈cσ,R〉.
By the definition of HR∗ satisfaction (Def. 3.9), this implies n′ ◦ be |= ∃(a, c).
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P C

Pn Cn

P ′

Cσ

G

a

aσ

a′

b τ

p

n
q

a′σ
′

q′

σ′

σ

“⇒”: Assume that n′ ◦ be |=
〈
∃(P a

↪→C, c),Rn
〉
.

By the definition of satisfaction (Def. 3.9), this implies ∃σ ∈ R∗n, q : Cσ ↪→G.n′ ◦ be =
q ◦ aσ ∧ q |= cσ.
By construction, for each of the edges in Ran(be)−Dom(be), there is a corresponding edge
in c′ and for each rule (x, k)/R, a rule in (x, k,Gy)/R′ ∈ Re with EGy = ERan(be)−Dom(be)
with R′ being R minus the edges in Gy.
This implies ∃σ′ ∈ R∗e, q′ : Cσ

′
↪→G.n′ = q′ ◦ a′σ′ ∧ q′ |= cσ. By the induction hy-

pothesis, q |= 〈cσ,Rn〉. By the definition of HR∗ satisfaction (Def. 3.9), this equals
n′ |= Integrate(be, 〈∃(a, c),Rn〉).
For n′ ◦ be |= ∃(P w C, c), the proof is analogous to the above for ∃(P ↪→C, c).
Case ∃(P w C, c). Assume that n′ ◦ be |= 〈∃(P w C, c),Rn〉 ⇔ ∃σ ∈ R∗n, q : Cσ ↪→G,

a : Cσ ↪→P.q = n′ ◦ be ◦ a and q |= cσ. By construction, for each of the edges in
Ran(be)−Dom(be), there is a corresponding edge in c′ and for each rule (x, k)/R, a rule
in (x, k,Gy)/R′ ∈ Re with EGy = ERan(be)−Dom(be) with R′ being R minus the edges in
Gy.
This means ∃σ′ ∈ R∗e, q′ : Cσ

′
↪→G.q′ = n′ ◦ a′σ′ ∧ q′ |= cσ. By the induction hy-

pothesis, q |= 〈cσ,Rn〉. By the definition of HR∗ satisfaction (Def. 3.9), this equals
n′ |= Integrate(be, 〈∃(P w C, c),Rn〉).
This concludes the proof. �

With the help of Shift* and Integrate, we can now define a construction A(ρ, c) that
transforms a postcondition c into a right application condition for rule ρ and prove
Theorem 6.2.

Construction. For any rule ρ = 〈〈L←↩ K ↪→ R〉, acL, acR〉 and any HR∗ condition c,
let

A(ρ, c) =
{

Shift*(b, c) ∧ acR if c is path-like
Integrate(b, c) ∧ acR otherwise

where b : ∅ ↪→R is the initial morphism to R. l

Proof (of Theorem 6.2). The proof follows directly from Theorems 6.1 and 6.3. �
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6.3 From right to left application conditions

The transformation L introduced in this chapter takes a rule ρ = 〈L←↩ K ↪→ R〉 and a
right application condition acR over R and constructs a left application condition acL
over L. With Shift and L, one can construct a left application condition from an HR∗
constraint c over ∅: acL = L(ρ, Shift(∅ ↪→R, c)).

Theorem 6.4 (from right to left HR∗ application conditions).
There is a transformation L such that, for every HR∗ application condition ac of a
rule ρ = 〈L ←↩ K ↪→ R〉 and for all direct derivations G =⇒

ρ,m,m′
H, m |= L(ρ, ac) ⇔

m′ |= ac.

For the construction of L, the HR∗ condition has to be in a special form, called full-
containment normal form. This normal form concerns the containment operator, i.e.
conditions of the form ∃(P w C, c), and enforces that C contains every node and edge of
P (but not necessarily the hyperedges), so that any items in C that are not in P may
only be mapped to items “hidden” in hyperedges of P .

Definition 6.2 (full-containment normal form). An HR∗ condition is said to be in
full-containment normal form if, for every subcondition ∃(P w C, c) in the condition,
P −YP (i.e. P without its hyperedges) is a subgraph of C. 4

To transform an HR∗ condition into full-containment normal form, subconditions of the
form ∃(P w C, c) are changed by merging all nodes and edges (but not the hyperedges)
in P with the nodes and edges in C.

Construction. The construction is inductively defined over HR∗ conditions. For a
condition ∃(P w C, c), let FC(∃(P w C, c)) = ∨

(a′,b′)∈F ∃(P w C ′,FC(Shift(b′, c))),
where a′, b′ and C ′ are the result of a Shift as given in Chapter 2.4, PY is P without
hyperedges and PY ← I → C is the partial morphism induced by the partial morphism
P ← I → C from C to P .

I

PY

C

C ′

b

a

a′

b′=

For all other conditions, FC is straightforwardly passed through: FC(true) = true,
FC(∃(a, c)) = ∃(a,FC(c)), FC(c ∧ c′) = FC(c) ∧ FC(c′) and FC(¬c) = ¬FC(c). l

It is easy to see that this construction puts the condition in full-containment normal
form, as every node and edge in P has an image in C, thus P without hyperedges is a
subgraph of C.

82



6.3 From right to left application conditions

Example 6.7. Regard the HR∗ condition c = ∀(•
1

•
2

+
,@(•

1
•
2

+ w •
3
,∃ •

3
• •))

expressing the property “On all paths, no inner node has two outgoing edges”. The
full-containment normal form of c would be

FC(c) = ∀(•
1

•
2

+ ,¬( ∃(•
1

•
2

+ w •
3

•
1
•
2
,∃ •

3
• ••

1
•
2
)

∨∃(•
1

•
2

+ w •
3=1
•
2
, ∃ •

3 = 1
• • •

2
)

∨∃(•
1

•
2

+ w •
3=2

•
1

, ∃ •
3 = 2

• ••
1

))) ♦

Lemma 6.4 (Well-formedness of full-containment normal form).
For every HR∗ condition c over P , FC(c) is an equivalent full-containment normal form
of c, i.e.

p |= c ⇐⇒ p |= FC(c) for every p : P ↪→G.

Proof. By induction over the structure of conditions.
For a condition of the form ∃(P w C, c), and a morphism p : P ↪→G, we have p |=
FC(∃(P w C, c)) = ∨

(a′,b′)∈F ∃(P w C ′,FC(Shift(b′, c))). By the semantics of HR∗
conditions, this means there exist morphisms f ′ : C ′ ↪→P and q′ : C ′ ↪→G such that
q′ = p ◦ f ′ and q′ |= FC(Shift(b′, c)). Let q = q′ ◦ b′ and f = f ′ ◦ b′. Then q = q′ ◦ b′ =
p ◦ f ′ ◦ b′ = p ◦ f and, by the induction hypothesis, q |= c, thus p |= ∃(P w C, c).
Conversely, assume that p |= ∃(P w C, c). By the semantics of HR∗ conditions, this

means there exist morphisms f : C ↪→P and q : C ↪→G such that q = p ◦ f and q |= c. By
E ′-M-pair factorization of (p ◦ j, q), we get the jointly surjective morphism pair (a′, b′)
and q′ : C ′ ↪→G such that p ◦ j = q′ ◦ a′ and q = b′ ◦ q′. A morphism f ′ : C ′ ↪→P can be
constructed analogously. Then we have q′ ◦ b′ = q = p ◦ f = p ◦ f ′ ◦ b′, thus q′ = p ◦ f ′.
By the induction hypothesis, q′ |= c, thus p |= FC(∃(P w C, c)).

P

I

PY

C

C ′

G

b

a

a′

b′

q′

j q

f ′

f

p

=

For all other forms of conditions, FC does not change the condition. This completes the
proof. �

Intuitively, the transformation L applies the reverse of the rule to each morphism and
object in the condition, yielding false whenever the dangling condition is not met.

Construction. L is defined inductively similar to (Habel and Pennemann, 2009): For
any rule ρ with (right) application condition of the form acR = ∃(a, c), L(ρ, ∃(a, c)) =
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∃(a′,L(ρ′, c)) as per the left diagram below if 〈r, a〉 has pushout complement (1) and
ρ′ = 〈L′ ←↩ K ′ ↪→ R′〉 is the derived rule by constructing pushout (2), and false
otherwise. L(ρ, ∃(R w CR, c)) = ∃(L w CL,L(ρ′, c)), where L ← L−YP → CL is the
partial morphism from C ′ to P ′ as per the right diagram below, if the lower right square
is a pushout, and false otherwise.

P ′ KP P

C ′ KC C

l r

a′ a(2) (1)

cL(ρ′, c)

ρ =

ρ′ =

L K R

L−YP K−YP R−YP

CL KC CR

(PO)(PO)

(PO)(PO)

cL(ρ′, c)

= ρ

= ρ′

For Boolean formulas over HR∗ conditions, the construction is straightforward:
L(ρ, true) = true, L(ρ,¬c) = ¬L(ρ, c) and L(ρ, c ∧ c′) = L(ρ, c) ∧ L(ρ, c′). l

Example 6.8. Regard the rule ρ = 〈•
2
•
4
←↩ •

2
↪→ •

2
〉 with right application con-

dition acR = ∃(•
2
↪→ •

1
•
2

+
,@(•

1
•
2

+ w •
1
•
3
•
2
,∃(•

1
•
3
•
2
))) , which is already in

full-containment normal form. Intuitively, acR ensures that there is a path from some
node 1 to node 2 from the rule, and no node 3 on the path has an edge going back to 1.
We compute L(ρ, acR) step by step, with the necessary constructions following the

formulas.
L(ρ, acR)
≡ ∃(•

2
•
4
↪→ •

1
•
2

+ •
4
,L(ρ1, @(•

1
•
3
•
2
w •

1
•
3
•
2
, ∃(•

1
•
3
•
2
))))

≡ ∃(•
2
•
4
↪→ •

1
•
2

+ •
4
,@(•

1
•
2

+ •
4
w •

1
•
3
•
2
•
4
,L(ρ2, ∃(•1 •

3
•
2
))))

≡ ∃(•
2
•
4
↪→ •

1
•
2

+ •
4
,@(•

1
•
2

+ •
4
w •

1
•
3
•
2
•
4
,∃(•

1
•
3
•
2
•
4
)))

•
2
•
4

•
2

•
2 ρ∃

•
1

•
2

+ •
4

•
1

•
2

+ •
1

•
2

+ ρ1

,@

•
1
•
2
•
4

•
1
•
2

•
1
•
2

w

•
1
•
3
•
2
•
4

•
1
•
3
•
2

•
1
•
3
•
2 ρ2

,∃

•
1
•
3
•
2
•
4

•
1
•
3
•
2

•
1
•
3
•
2
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6.3 From right to left application conditions

♦

Proof (of Theorem 6.4). By induction over the structure of ac.
Basis (Case ac = true). For any injective morphism m, we have m |= L(ρ, true) =
true⇔ true⇔ m′ |= true.
Hypothesis. Assume that m |= L(ρ, c)⇔ m′ |= c holds for application condition c.
Step. We proceed by case distinction over the structure of ac.
Case ac = ∃(a, c). Regard the left picture below. Let ρ = 〈P ′ ←↩ KP ↪→ P 〉

and ρ′ = 〈C ′ ←↩ KC ↪→ C〉. Assume that (r, a) has a pushout complement. Then
m |= L(ρ, ac)⇔ m |= ∃(a′,L(ρ′, c)). For the derivation, we can decompose the pushouts
of the derivation G =⇒

ρ,m,m′
H such that m = q ◦ a and m′ = q′ ◦ a′. By the hypothesis,

q′ |= L(ρ′, c) ⇔ q |= c, thus m′ |= ∃(a, c). If (m, a) has no pushout complement,
m |= L(m, ac)⇔ m |= false and there is no pushout such that m′ |= c, i.e. m′ |= false.

P ′ KP P

C ′ KC C

G D H

l r

a′ a

q q′

(2) (1)

L(ρ′, c) c

m m′

C ′τ Kτ
C Cτ

L0 K0 R0

P ′σ KP P σ

G D H

lC rC

l0 r0

lP rP

lG rG

b′C kC bC

b′P kP bP

m′ kG m

qq′

bb0b′

L(ρ′, c) c

Case ac = ∃(P w C, c). Regard the right picture above. Assume that some graph H
satisfies ∃(P w C, c), and that H results from applying rule ρ to G. This is equivalent to
the existence of substitutions σ, τ and injective morphisms b : Cτ ↪→P σ and q : Cτ ↪→H
such that P σ = P τ , q = m ◦ b and q |= c. The existence of b : Cτ ↪→P σ and P σ = P τ

imply that a (sub-)morphism bY : Yτ
C ↪→Yτ

P from the substituted hyperedges of C to
the substituted hyperedges of P exists, and that morphism b′ : C ′τ ↪→P ′σ exists. We
can now construct q′ : C ′τ ↪→G from q′ = m′ ◦ b′. Because of the induction hypothesis,
q′ |= L(ρ′, c). This is equivalent to ∃(P ′ w C ′,L(ρ′, c)), completing this part of the proof.
Case ac = ¬c. Then m |= L(ρ,¬c) ⇔ m |= ¬L(ρ, c) ⇔ ¬m |= L(ρ, c) ⇔ ¬m′ |= c ⇔

m′ |= ¬c.
Case ac = c ∧ c′. Then m |= L(ρ, c) ∧ c′ ⇔ m |= L(ρ, c) ∧ m |= L(ρ, c′) ⇔ m′ |=

c ∧m′ |= c′ ⇔ m′ |= c ∧ c′.
By induction, we have thus proven Theorem 6.4. �

Remark. By the symmetric nature of graph transformation rules, the above construction
can be easily reversed to transform a left into a right application condition.
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6.4 From left application conditions to preconditions
Having transformed a right application condition into a left one, the question remains
how to transform a left application condition (over the left-hand side L of some rule)
into a (pre-)condition over the empty graph. We now define such a transformation C.
As in (Habel, Pennemann, and Rensink, 2006), this is done by ensuring that the left
application condition is valid for every morphism ∅ → L.

Theorem 6.5 (from left application conditions to preconditions).
For every HR∗ application condition ac over L and all graphs G, there is an HR∗
condition C(ac) over ∅ such that

G |= C(ac) ⇐⇒ ∀m : L ↪→G.m |= ac .

The construction is the same as in (Habel, Pennemann, and Rensink, 2006); surprisingly,
it is not necessary to adapt it for graphs with variables or the containment operator.

Construction. For any condition ac over L, let C(ac) = ∀(∅ ↪→L, ac). l

The proof is similar to the one given in (Habel, Pennemann, and Rensink, 2006) for
nested conditions.

Proof. Let p : ∅ ↪→G be a morphism.
G |= C(ac) Def. 3.9
⇔ p |= C(ac) construction
⇔ p |= ∀(∅ iL↪→L, ac) Def. 3.9
⇔ ∀m : L ↪→G.p = m ◦ iL ∧m |= ac p = m ◦ iL true by construction
⇔ ∀m : L ↪→G.m |= ac .

�

Example 6.9. We apply transformation C to the rule 〈•
1
•
2
←↩ •

1
•
2
↪→ •

1
•
2
〉 with left

application condition acL = @(•
1
•
2
↪→•

1
•
2
).

C(acL) = ∀(∅ ↪→•
1
•
2
, @(•

1
•
2
↪→•

1
•
2
)) ≡ @(•

1
•
2
,∃(•

1
•
2
))

meaning that no pair of nodes is connected by an edge. ♦

6.5 Expressing the applicability of a rule as a condition
Furthermore, we need a transformation that expresses the applicability of a rule. Basically,
this amounts to checking whether the left-hand side of the rule has a match in the graph
that does not violate the dangling condition. Since rules do not contain hyperedges, this
construction is identical to the one presented in (Habel, Pennemann, and Rensink, 2006).

Lemma 6.5 (applicability of a rule).
There is a transformation Appl from rules into application conditions such that, for
every rule ρ and every morphism m : L→ G, m |= Appl(ρ)⇔ ∃H.G =⇒∗

ρ,m,m′
H.
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Construction (Appl). The construction is identical to the one for nested conditions
in (Habel, Pennemann, and Rensink, 2006). For a plain rule p = 〈L l←↩K r

↪→R〉, let
Appl(p) = ∧a∈A@a, where A is the set of all graph morphisms a : L → L′ such that
〈l, a〉 has no pushout complement and A is minimal, i.e. there is no decomposition
a = a′′ ◦ a′ with a′′ ∈M, a′′ 6= id such that 〈l, a′〉 has no pushout complement. For a rule
ρ = 〈p, acL, acR〉, let Appl(ρ) = Appl(p) ∧ acL ∧L(ρ, acR). l

Proof. Similar to the proof for nested constraints in (Habel, Pennemann, and Rensink,
2006, p. 30f). We first show that, for any plain rule q and morphism m : L → G,
m |= Appl(q) ⇐⇒ ∃H.G =⇒

q,m,m′
H.

“⇐”: Assume there is no direct derivation G =⇒
q,m,m′

H. Then the pair 〈l,m〉 has no
pushout complement, and there is a decomposition a : L → L′ such that 〈l, a〉 has no
pushout complement and m |= ∃a. This implies m 6|= Appl(q). Since this contradicts the
assumption, there is a direct derivation G =⇒

q,m,m′
H.

L

L′

G

K

K ′

D

l

a

m′

m

(1)

(2)

“⇒”: Let G =⇒
q,m,m′

H. Then, for every morphism a : L → L′, m |= ∃a iff there is as
m′ : L′ → G in M such that m = m′ ◦ a. By the pushout-pullback decomposition,
pushout (1) + (2) has a decomposition into two pushouts (1) and (2) and, in particular,
〈l, a〉 has a pushout complement. Thus, for every a ∈ A, m |= ¬∃a, and m |= Appl(q).
By the definition of L and the statement above, it follows for every rule ρ = (q, acL, acR)

and every morphismm : L→ G,m |= Appl(ρ) iffm |= Appl(q)∧m |= acL ∧m |= L(ρ, acR)
iff ∃H.G =⇒

q,m,m′
∧m |= acL ∧m′ |= acR iff ∃H.G =⇒

q,m,m′
H. This completes the proof. �

Example 6.10. For the plain rule q = 〈 a 1 ←↩ ∅ ↪→ c 〉,

Appl(q) = @( a 1 •) ∧ @( a 1 •) ∧ @( a 1 )

meaning that node a 1 has no incoming edge, no outgoing edge and no loop edge, i.e.
no adjacent edge at all. Otherwise, deletion of the node would violate the dangling
condition. ♦

6.6 Correctness of graph programs
Following the approach taken in (Habel and Pennemann, 2009) for nested conditions,
the constructions introduced in this chapter can be used to transform a postcondition
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over a graph program into a weakest precondition. Weakest preconditions are useful
in the context of specifications, i.e. a program P together with a precondition c and a
postcondition d. A specification is correct if for every graph G satisfying the precondition
c, any graph H resulting from execution of the program P on G satisfies the postcondition.
As suggested by (Dijkstra, 1976), we can check the correctness of a specification by
generating a weakest precondition from the program and the postcondition, and checking
whether the original precondition implies the weakest precondition.

Definition 6.3 (weakest precondition). A condition c is a liberal precondition of a
program P relative to condition d if for all graphs G |= c, G⇒P H implies H |= d for
all H. A liberal precondition c is a weakest liberal precondition of P relative to d if any
liberal precondition of P relative to d implies c. A weakest liberal precondition c of P is
a weakest precondition if there is at least one graph H such that G⇒P H and G |= c.4

The following theorem establishes that HR∗ conditions can be transformed over a
program into a weakest precondition.

Theorem 6.6 (weakest precondition).
For every graph program P and condition d, there are conditions Wlp(P, d) and

Wp(P, d) such that Wlp(P, d) is a weakest liberal precondition of P relative to d and
Wp(P, d) is a weakest precondition of P relative to d.

Given a graph program P , a precondition c and a postcondition d, we can check whether
the specification is correct by checking if the implication c =⇒ Wp(P, d) holds.

Construction. For any rule ρ, programs P, P1, . . . , Pn and condition d, let

1. Wlp(ρ, d) = C(Appl(ρ)⇒ L(ρ,A(ρ, d)))

2. Wlp({P1, . . . , Pn}, d) = Wlp(P1, d) ∨ · · · ∨Wlp(Pn, d)

3. Wlp(P1;P2, d) = Wlp(P1,Wlp(P2, d))

4. Wlp(P ↓, d) = ∧n
i=0 Wlp(P i,Wlp(P, false)⇒ d)

5. Wp(P, d) = Wlp(P, d) ∧ ¬Wlp(P, false).

l

Remark. Note that in general, the construction for Wlp(P ↓, d) yields an infinite
condition. This is ineffective for practical applications. One way to fix this is to
use the approximation wk = ∨

i=0k Wlp(P i, d) for some k ∈ N. If there is a k with
Wlp(P ↓, d)⇒ wk, then this approximation is equivalent (since wk ⇒Wlp(P ↓, d)) and
we have a finite weakest liberal precondition. Another approach might be counterexample-
guided refinement, as done in (Pennemann, 2009, Chapter 5.4).
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Proof (of Theorem 6.6). We first prove a small lemma (lem) stating that G |=
¬Wlp(P, false) iff G⇒P H for some graph H.
G |= ¬Wlp(P, false) Def. |=
⇔ ¬G |= Wlp(P, false) part (1)
⇔ ¬∀H.G⇒P H ⇒ H |= false Logic Axioms
⇔ ¬∀H.¬(G⇒P H ∧H |= true) Logic Axioms
⇔ ∃H.G⇒P H ∧H |= true Tautology
⇔ ∃H.G⇒P H

1. For all graphs G, we have:
G |= Wlp(ρ, d) Construction
⇔ G |= C(Appl(ρ)⇒ L(ρ,A(ρ, d))) Def. 3.9
⇔ ∀m : L→ G.m |= Appl(ρ)⇒ L(ρ,A(ρ, d)) Logic
⇔ ∀m : L→ G.m |= Appl(ρ) implies m |= L(ρ,A(ρ, d)) Theorem 6.4
⇔ ∀m : L→ G.m |= Appl(ρ) implies m |= L(ρ,A(ρ, d)) Def. 3.9
⇔ ∀m : L→ G,m′ : R→ H.m |= Appl(ρ)⇒ m′ |= A(ρ, d) Theorem 6.2
⇔ ∀m : L→ G,m′ : R→ H.m |= Appl(ρ)⇒ H |= d Lemma 6.5
⇔ ∀H.G⇒ρ H ⇒ H |= d

Thus, Wlp(ρ, d) is a weakest liberal precondition of ρ relative to d.

2. For all graphs G, we have
G |= Wlp({P1, . . . , Pn}, d) Construction
⇔ G |= Wlp(P1, d) ∨ · · · ∨Wlp(Pn, d) part (1)
⇔ ∀H.G⇒P1 H ⇒ H |= d ∨ · · · ∨G⇒Pn H ⇒ H |= d Def. 2.7
⇔ ∀H.G⇒{P1,...,Pn} H ⇒ H |= d.

3. For all graphs G, we have
G |= Wlp(P1;P2, d) Construction
⇔ G |= Wlp(P1,Wlp(P2, d)) part(1)
⇔ ∀G′, H.G⇒P1 G

′ ⇒ G′ |= Wlp(P2, d) ∧G′ ⇒p H ⇒ H |= d Def. 2.7
⇔ ∀H.G⇒P1;P2 H ⇒ H |= d.

4. Let Wi = Wlp(P i−1,Wlp(P,Wlp(P, false)⇒ d)). For all graphs G, we have:
G |= Wlp(P ↓, d) Construction
⇔ G |= ∧n

i=0 Wlp(P i,Wlp(P, false)⇒ d) Def. 2.7
⇔ G |= (Wlp(P, false)⇒ d)∧
∀i ∈ N−{0}.G |= Wi Logic

⇔ G |= (d ∨ ¬Wlp(P, false)) ∧ ∀i ∈ N−{0}.G |= Wi Lemma (lem)
⇔ (G |= d ∨ ∀H.G⇒P H ⇒ H |= d) ∧ ∀i ∈ N−{0}.G |= Wi.
By induction over i, we get
(G |= d ∨ ∀H.G⇒P H ⇒ H |= d) ∧ ∀i ∈ N−{0}.G |= Wi Def. Wi

⇔ (G |= d ∨ ∀H.G⇒P H ⇒ H |= d) ∧ ∀i ∈ N−{0}.
G |= Wlp(P i−1,Wlp(P,Wlp(P, false)⇒ d)) induction

⇔ (G |= d ∨ ∀H.G ⇒P H ⇒ H |= d) ∧ ∀i ∈ N−{0}(G |=
d ∨ ∀H i.G⇒P i H

i ⇒ H i |= Wlp(P i−1, d))
Logic

⇔ ∀H.G⇒P↓ H ⇒ H |= d.
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5. By construction, for any graph G, G |= Wp(P, false) iff G |= Wlp(P, d) ∧
¬Wlp(P, false). By the semantics of HR∗ conditions, this equals G |= Wlp(P, d)∧
G |= ¬Wlp(P, false). By part (1-4) of the proof, for any program P , we know
that G |= Wlp(P, d) iff Wlp(P, d) is a weakest precondition of P relative to d. By
part (0), G |= ¬Wlp(P, false) iff G ⇒P H for some graph H. Thus, for every
program P , Wp(P, d) = Wlp(P, d) ∧ ¬Wlp(P, false) is a weakest precondition of
P relative to d.

�

For illustration, we return to the car platooning example from Chapter 3.4.

Example 6.11. We check whether the constraint “a follower always has an incoming
path from a terminator and an outgoing path to a leader” is an invariant for the Merge
rule for a free agent and a platoon:

c = ∀( 2,∃( 1 2 3
+ + ))

ρ = a b ⇒ a b

with 1 2
+ ::= 1 2 | 1 2 3

+ +

Note that the replacement rules can be applied to non-white cars because, as stated in
Chapter 3.4, a node’s color is modeled by a loop edge labeled with the color.
We first construct a right application condition acR from our postcondition c by shifting

the rule’s right-hand side into the condition.

acR = ∀( a b

2

, ∃( a b

1 2 3
+ + ) ∨ ∃( a=1 b

2 3
+ + ))∧

∀( a b=2,∃(
a

b=2

1 3
+ + ) ∨ ∃( a=1 b=2 3

+ ))

Remark. There are more possibilities of identifying nodes a and b with nodes 1, 2 and 3
than those shown. However, only the two combinations above, i.e. unifying either a = 1
and b = 2 together or neither of them, do not contradict any of the constraints given for
the respective car types. Since we assume that the rule is applied to a valid model, these
invalid combination are left out.

We can now construct the left application condition acL from acR. Basically, this
amounts to applying the rule backwards on acR. In this case, the colors of the cars
change, and any part of the condition where this process would unify cars of different
colors evaluates to false (for colors encoded as node labels; since we use loop edges here,
an additional constraint forbidding nodes with more than one color is needed).

acL = ∀( a b

2

,∃( a b

1 2 3
+ + ) ∨ false) ∧ ¬false
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6.6 Correctness of graph programs

To construct the weakest precondition, we need to make sure that the left application
condition acL is satisfied for any possible match of the rule, under the condition that the
rule is applicable:

Appl(ρ) = @( a b) ∧ @( a b)∧
@( a b) ∧ @( a b) ∧ @( a b)∧
@( a b ) ∧ @( a b ) ∧ @( a b )

Wlp(ρ, c) = C(Appl(ρ)⇒ acL) = ∀(L,Appl(ρ)⇒ acL)

∀( a b,Appl(ρ)⇒ ∀( a b

2

, ∃( a b

1 2 3
+ + )))

Our original goal was to check whether condition c is an invariant for the Merge rule,
i.e. whether for all graphs G satisfying c, all graphs H resulting from application of
Merge to G also satisfy c. Following the approach from (Dijkstra, 1976), we computed
a weakest precondition cwlp and now have to check whether the original precondition c
implies the weakest precondition cwlp.

∀( 2, ∃( 1 2 3
+ + ))

⇒

∀( a b,Appl(ρ)⇒ ∀( a b

2

,∃( a b

1 2 3
+ + )))

♦

In this case, the implication holds: if every follower car is on a path from a terminator
to a leader, this is also true in the context of an additional free car a and a terminator b
with no in- or outgoing edges.

The (generally undecidable) problem of proving whether an implication imp := c⇒
Wlp(P, d) holds for an HR∗ precondition c, postcondition d and program P can be
approached in different ways. One way would be to use the transformation SO from
Chapter 5.3 to transform imp into a second-order graph formula and then use a higher-
order theorem prover, e.g. CoQ (Bertot and Castéran, 2004) or Isabelle (Nipkow et al.,
2002), to conduct the proof. Another way lies in the development of a dedicated calculus
and theorem prover for HR∗ conditions, similar to the ProCon prover for nested graph
conditions (Pennemann, 2008b), which can be supplemented by a SAT solver similar
to SeekSat (Pennemann, 2008a) looking for counterexamples. However, a calculus for
HR∗ conditions has to match graphs with variables and possibly different hyperedge
replacement systems. For example, it would have to check whether the condition

∃(•
1
•
2

+1 ) with •
1
•
2

+1 ::= •
1
• •

2
| •

1
• •

2

+1

is equivalent to the condition

∃(•
1
• •

2
+2 ) with •

1
•
2

+2 ::= •
1
•
2
| •

1
• •

2

+2 +2 ,

which both express the property “There is a path over at least two edges from node 1 to
node 2”. This difficult problem is beyond the scope of this PhD thesis and left as future
work.
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Bibliographic notes
The idea of calculating weakest preconditions to prove the adherence of a program to
given pre- and postconditions originates from (Dijkstra, 1976). (Heckel and Wagner,
1995) first described basic transformations over rules for consistency constraints (i.e.
constraints of the form ∀(P,∃(P → C))). Basic transformations for nested conditions
were first described in (Habel, Pennemann, and Rensink, 2006); an investigation for
strongest postconditions is given in (Habel and Pennemann, 2009). (Pennemann, 2009)
provides translation over programs with interfaces, a more fine-grained approach to graph
programs. (Blume, 2014) provides verification for graph transformation systems over
invariants specified by bounded graph automata, and gives counter-examples in the
negative case.

92



Chapter 7
Application to meta-modeling
Contents

7.1 An overview of the Object Constraint Language . . . . . . . . 94
7.2 Graphs and conditions for OCL . . . . . . . . . . . . . . . . . . 101
7.3 Translating Essential OCL to graph conditions . . . . . . . . . 110
7.4 Translating OCL constraints beyond first-order expressiveness120
7.5 Integration of graph constraints into graph grammars . . . . 124

The following chapter is largely oriented at the joint paper (Radke et al., 2015) of the
author with Thorsten Arendt, Jan Steffen Becker, Annegret Habel and Gabriele Taentzer.
The goal of this chapter is to apply graph transformation techniques to the problem of

meta-model instance generation. Usually, meta-models are formalized in a two-fold way:
Structure and typing of the meta-model are specified by a class diagram, and additional
constraints can be specified in the OCL (Object Constraint Language). OCL is part of
the industry-standard Unified Modeling Language (UML) used to graphically specify
meta-models.
This is a purely declarative way of specification. However, some tasks, such as generating

instances (K. Ehrig et al., 2009) or generating or recognizing edit operations (Kehrer
et al., 2013), are better suited for a constructive approach. Graph grammars provide
such a constructive approach and are a useful tool to design visual languages (Bardohl
et al., 1999).
Our approach is shown in Figure 7.1. We transform the type graph into a graph

grammar as in (Taentzer, 2012), and the OCL constraints into graph conditions. The
constraints are then integrated into the graph grammar as application conditions. This
grammar can then be used to generate instances of the meta-model that adhere to all
the constraints given in the type graph and the OCL constraints.
The chapter begins with an overview on the OCL and its semantics in Chapter 7.1. We

then introduce conditions over typed, attributed graphs with inheritance suitable for use
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Figure 7.1: Overview of the approach for instance generation

in the context of OCL constraints in Chapter 7.2. Chapter 7.3 contains the transformation
of a large part of Essential OCL into graph conditions. Special consideration for the
OCL iterate operation is taken in Chapter 7.4. Chapter 7.5 explains the integration of
the constraints into the grammar.

7.1 An overview of the Object Constraint Language
This subchapter gives a brief introduction and an overview of the syntax and semantics
of the Object Constraint Language (OCL). Throughout this chapter, we use the version
2.2 of the OCL standard as specified in (Object Management Group, 2010). The syntax
of OCL is covered in detail in chapters 7 and 8 of (Object Management Group, 2010).
The semantics of OCL used here, though, is the one from (Richters, 2002), as it is more
precise and less error-prone than the semantics presented in (Object Management Group,
2010). See (Brucker and Wolff, 2012) for a discussion of inconsistencies and contradictions
in OCL 2.3.
OCL is designed as a pure specification language and thus free of side-effects. The part

of OCL that this thesis aims to translate is Essential OCL as defined in Chapter 13 of
(Object Management Group, 2010).

Types and operations
OCL is a typed language, so every OCL expression has a type. A set of OCL constraints is
tied to a specific meta-model, usually specified by a UML class diagram. The constraints
use the types of the meta-model and supplement the constraints given by the diagram.

Definition 7.1 (Object Model). Let DSIG = (S,OP ) be a data signature with S =
{Int,Real, Bool, String} and corresponding operation symbols OP . An object model
over DSIG is a structure M = (CLS,ACLS,ENUM, attr, assoc,≺) with

• a finite set CLS of classes with a subset ACLS ⊆ CLS of abstract classes,

• a finite set ENUM of enumerations, where each enumeration E ∈ ENUM is a
non-empty, finite set of literals,
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7.1 An overview of the Object Constraint Language

• a function attr : (CLS × String) → (S ∪ ENUM) mapping from a class and an
attribute name to an attribute value,

• a function assoc : (CLS × CLS)→ (String ×N×N) is a function assoc(s, t) =
(name,min,max) signifying an association named name from s to t with multi-
plicity between min and max1, and

• a partial order ≺ on CLS reflecting the generalization hierarchy.

4

Example meta-model. As a running example, we use a meta-model for Petri nets.
Figure 7.2 shows a possible model for Petri nets, in the usual class diagram notation
(Object Management Group, 2003). A Petri net consists of places and transitions, each
of which have a name. Places are connected to Transitions (and vice versa) via weighted
arcs. Places also have a number of tokens, represented as a class for easy extensibility.

name: String

weight: Integer

NamedElement

Arc
Transition

TPArc

PTArc

Place

Token

PetriNet

Figure 7.2: Meta-model for Petri nets (adapted from (Wachsmuth, 2007))

OCL invariants. The OCL can be used for a number of different purposes. All OCL
expressions have some kind of context that specifies the scope for which the expression
should be valid. In this work, we are primarily concerned with the purpose of formulating
invariants of an object model. An OCL invariant has the form

context <Context> inv: <Formula>

1min = max = 0 signifies there is no association from s to t

95



Chapter 7 Application to meta-modeling

Types in OCL. The type hierarchy of OCL consists of a few built-in types together with
the types of the underlying model. OCL has the built-in basic types Boolean (also called
Bool here), Integer (also called Int here), Real and String. For each of these types,
the usual operations and infix operators are defined. OCL also has the type Collection
and its subtypes Set, OrderedSet, Bag and Sequence, as well as named Tuples.

Properties and Navigation. One of the most important operations in OCL expressions
is the navigation through the hierarchy of classes and their respective properties, i.e.
attributes, methods and associations. Navigation to a property B of an object A is
specified by the OCL expression A.B, and operations on the built-in OCL types (in most
cases, collections) are denoted by A->B. The special keyword self stands for an object
of the context type of the expression. As an example, the OCL expression context
Place inv: self.token->size() < 3 specifies that, for any object of type Place, the
number of tokens (i.e. associations of the kind token) should be less than three.

Formal semantics of OCL operations

In order to define and prove a formal transformation from Essential OCL to HR∗
conditions, we need a detailed semantics for Essential OCL. The following definitions
follow those from (Richters, 2002).
The evaluation of an OCL constraint on an instance (also called object model) M is

dependent on its system state at a given point in time. The system state consists of
a set of class objects, functions assigning the attribute values to each object and links
connecting the objects.

Definition 7.2 (system state). The system state of an object model M is a structure
S(M) = (SCls,SAtt,SAssoc), where

• SCls is a function assigning a finite set of object identifiers {o1 : C, o2 : C, . . .} to
each class C. Note that SCls(C) = ∅ for all abstract classes C.

• SAtt is a function assigning a value to each owned and inherited attribute attr of
an object in SCls.

• SAssoc is a finite set of directed links (o1, o2) between objects that respect the
constraints on links and their multiplicities of the meta-model. For a pair of classes
(C1, C2), let SAssoc((C1, C2)) ⊂ SAssoc be the set of all links from objects of type
C1 to objects of type C2.

4

We can now define the semantics for basic types and simple operations.

Definition 7.3 (Semantics of a signature). Let ΣM = (TM ,≤M ,ΩM ) be a signature
over an object model M . The semantics of M is a structure I(ΣM ) = (I(TM ), I(≤M ),
I(ΩM )) where
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• I(TM ) assigns to each type T ∈ TM an interpretation I(T ), e.g., I(Real) = R,
I(T ) = ⋃

T�T ′ SCls(T ′), I(Set(T )) = 2I(T ) where 2I(T ) is the set of all finite subsets
of I(T ),

• I(≤M ) implies for all types T, T ′ ∈ TM that I(T ) ⊂ I(T ′) if T ≤M T ′.

• I(ΩM ) assigns to each operation ω : t1 × · · · × tn → t ∈ ΩM a total function
I(ω) = I(t1)× · · · × I(tn)→ I(t), e.g., I(42) = 42, I(+Int)(i, j) = i+ j for integers
i and j, and I(=t)(v1, v2) = (v1 = v2) with values v1, v2 ∈ I(t).

4

Definition 7.4 (semantics of Essential OCL expressions). Let TM be the set of
types of a given object model M . Let Env = {τ | τ = (S, β)} be a set of environments
with system states S and variable assignments β which map variable names to values
of the corresponding type I(T ). The semantics of an Essential OCL expression e of
type T is a function I[[e]] : Env → I(T ) and is defined inductively as follows for each
τ = (S, β) ∈ Env.
Let τ{v/x} denote the substitution of all occurrences of v in τ by x.

• For a variable v, let I[[v]](τ) := β(v).

• For an operation op(e1, . . . , en), let
I[[op(e1,..., en)]](τ) := I(op)(τ)(I[[e1]](τ), . . . , I[[en]](τ)). The syntax and seman-
tics of concrete operations in Essential OCL are listed in Tables 7.1, 7.2 and
7.32.

• For an expression if e1 then e2 else e3, let I[[if e1 then e2 else e3]](τ) :=
I[[e2]](τ) if I[[e1]](τ) and I[[e3]](τ) otherwise.

• For an expression let v=e in e′, I[[let v=e in e′]](τ) := I[[e’]](S, β{v/I[[e]]}(τ)).

4

Remark. An invariant context v:C inv:expr can be expressed by the OCL constraint
C.allInstances->forAll(v|expr). Therefore, the semantics of this invariant is equal
to the semantics of the corresponding Essential OCL expression.

2For primitive types we present selected operations only.
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Table 7.1: OCL operations on single nodes and attributes.

Syntax Semantics
e, e1, e2 ∈ Expr I[[e]](τ) with τ = (S, β) ∈ Env

e1:T = e2:T → Bool I[[e1]](τ) = I[[e2]](τ)
e1:T <> e2:T → Bool I[[e1]](τ) 6= I[[e2]](τ)
e1 + e2 → Int I[[e1]](τ) + I[[e2]](τ)
e1 ≤ e2 → Bool I[[e1]](τ) ≤ I[[e2]](τ)
e1 and e2 → Bool I[[e1]](τ) ∧ I[[e2]](τ)
’a string’ → String ’a string’

e:C.allInstances() → Set(C) SCls(C)
e:C.attr → T

with attr ∈ SAtt(C) SAtt(attr)(I[[ec]](τ))

e:C.nav → C’

with (e, nav) ∈ SAssoc
nav with (I[[e]](τ), nav) ∈ SAssoc

e:C.nav → Set(C’) {nav | (I[[e]](τ), nav) ∈ SAssoc)}
e:T.oclIsTypeOf(T’) I[[e]](τ) ∈ I(T ′)−⋃T ′′≤MT ′ I(T ′′)
e:T.oclIsKindOf(T’) I[[e]](τ) ∈ I(T ′)
e:T.oclAsType(T’) I[[e]](τ) if I[[e]](τ) ∈ I(T ′)

and ∅ otherwise.
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Table 7.2: OCL operations on sets, yielding sets.

Syntax Semantics
e, e′ ∈ Expr, S = Set(T) I[[e]](τ) with τ = (S, β) ∈ Env

Set(e1, . . . , en) → S {I[[e1]](τ), . . . , I[[en]](τ)}
with e1, . . . , en of type T

e:S->union(e′:S) → S I[[e]](τ) ∪ I[[e’]](τ)
e:S->intersection(e′:S) → S I[[e]](τ) ∩ I[[e’]](τ)
e:S - e′:S → S I[[e]](τ)− I[[e’]](τ)

e:S->symmetricDifference(e′:S) → S
(I[[e]](τ) ∪ I[[e’]](τ))
−(I[[e]](τ) ∩ I[[e’]](τ))

e:S->including(e′:T) → S I[[e]](τ) ∪ {I[[e’]](τ)}
e:S->excluding(e′:T) → S I[[e]](τ)− {I[[e’]](τ)}
e:S->select(v:T|e′:Bool) → S {x | x ∈ I[[e]](τ) ∧ I[[e′]](τ{v/x})}
e:S->reject(v:T|e′:Bool) → S {x | x ∈ I[[e]](τ) ∧ ¬I[[e′]](τ{v/x})}
e:S->collect(v:T|e′:T’) → Set(T’) {I[[e′]](τ{v/x}) | x ∈ I[[e]](τ)}
e->iterate(v:T;a=e′|e′′) → S I[[e′′]](τ{a/a′}{v/xn}) with a’ =
with e:S and e′, e′′:T’ I[[{x1, . . . , xn−1}->iterate(v;a=e′|e′′)]]

if I[[e]](τ)={x1, . . . , xn} and I[[e′]](τ) else.
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Table 7.3: Further OCL operations on sets.

Syntax Semantics
e, e′ ∈ Expr, S = Set(T) I[[e]](τ) with τ = (S, β) ∈ Env

e:S->size() → Int |I[[e]](τ)|
e:S->one(v:T|e′:Bool) → Bool true if |I[[e->select(v:T|e′)]](τ)| = 1

else false

e:S->isEmpty() → Bool I[[e]](τ) = ∅
e:S->notEmpty() → Bool I[[e]](τ) 6= ∅
e:S->exists(v:T|e′:Bool) → Bool

∨
1≤i≤n

I[[e′]](τ{v/xi})

if I[[e]](τ) = {x1, . . . , xn}, else false

e:S->forAll(v:T|e′:Bool) → Bool
∧

1≤i≤n
I[[e′]](τ{v/xi})

if I[[e]](τ) = {x1, . . . , xn}, else true

e:S->any(v:T|e′:Bool) → T x if x ∈ I[[e]](τ) ∧ I[[e′]](τ{v/x})
and false otherwise

e:S->includes(e′:T) → Bool I[[e’]](τ) ∈ I[[e]](τ)
e:S->excludes(e′:T) → Bool I[[e’]](τ) /∈ I[[e′:T]](τ)
e:S->includesAll(e′:S) → Bool I[[e’]](τ) ⊆ I[[e]](τ)
e:S->excludesAll(e′:S) → Bool I[[e]](τ) ∩ I[[e’]](τ) = ∅
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7.2 Graphs and conditions for OCL
Representing meta-models and OCL constraints with graph conditions puts some special
requirements on the conditions.

Typing and inheritance. Types and their relation to each other are a core concept of
OCL. Thus, graph conditions also need to support typed nodes, including inheritance.

Attributes. Most objects will have one or more attributes, and OCL constraints often
reference attributes. Therefore, it is essential that our conditions offer a way to reference
attributes, too, and to compare them to other attributes or constants.

Notation. Nodes have to be annotated with their respective type and attributes. It is
also useful to give names to the nodes. A node named u of type PTArc, with the attribute

weight having a value of 2, is represented as
u:PTArc

weight = 2 . Edges are annotated with a
label representing the role name in the meta-model. Two edges in opposite directions
between the same nodes are written as a bidirectional edge; to discern the two labels, they
are positioned near the respective source node of the edge: Two nodes u and v of type T,
with an a-edge from u to v and a b-edge from v to a, are written as u:T v:Ta

b .

Compact conditions. Graph conditions have the tendency to become rather large and
cumbersome when the nesting gets deeper. Take, for example, the following property:
“There is a node u:T , such that for any other node v:T , there is an outgoing edge from
v:T to some other node w:T”. Note that u:T might be identified with w:T. As a nested
condition, this can be formulated as

∃(u:T ,∀(u:T v:T ,∃(u:T v:T w:T ,∃(u:T v:T w:T )) ∨ ∃(v:T u:T )))

The compact conditions we propose in this subchapter shorten the above to

∃(u:T ,∀(v:T ,∃(v:T w:T ))).

Typed graphs with inheritance and attributes

The definition of attributed graphs used here is loosely based on the concept given in
(H. Ehrig, K. Ehrig, Prange, et al., 2006). This concept is enhanced by allowing variables
for attribute values and formulas over these variables, similar to the symbolic graphs in
(Orejas, 2011). For an alternative concept for attributed graphs with inheritance, see e.g.
(Löwe et al., 2013). The definitions use some basic concepts of algebraic specifications.
For further lecture on this topic, consider e.g. (H. Ehrig, K. Ehrig, Prange, et al., 2006)
or (H. Ehrig and Mahr, 1985; Loeckx et al., 1996).
We first define A-graphs, graphs equipped with node attributes. Attributes are repre-

sented by an attribute edge from the graph node to a data node.
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Definition 7.5 (A-graphs). An A-graph is a tuple G = (GV , GD, GE , GA, srcG, tgtG,
srcA, tgtA) consisting of sets GV and GD, called graph and data nodes (or vertices),
respectively, GE and GA, called graph and node attribute edges, respectively, source and
target functions: srcG : GE → GV , tgtG : GE → GV for graph edges and srcA : GA →
GV , tgtA : GA → GD for node attribute edges (going from a graph to a data node). Given
two A-graphs G1 and G2, an A-graph morphism f : G1 → G2 is a tuple of functions
fV : G1

V → G2
V , fD : G1

D → G2
D, fE : G1

E → G2
E and fA : G1

A → G2
A such that f commutes

with all source and target functions, e.g. fV ◦ src1
G = src2

G ◦ fE . An A-graph morphism
f is injective (an inclusion) if the functions fV , fD, fE , and fA are injective.

G1
E G1

V G1
A G1

D

G2
E G2

V G2
A G2

D

src1
G(tgt1G) src1

A tgt1A

src2
G(tgt2G) src2

A tgt2A

fE fV fA fD= = =

4

The A-graphs are now enhanced with formulas over the attributes. Let DSIG = (S,OP )
be a data signature, X = {Xs}s∈S a family of variables, and TDSIG(X) the term algebra
with respect to DSIG and X, i.e. .

Definition 7.6 (attributed graphs). An attributed graph over DSIG and X is a tuple
AG = (G,D,Φ) where G is an A-graph, D is a DSIG-algebra with ∑s∈S Ds = GD, and
Φ is a finite set (i.e. a conjunction) of Boolean formulas over TDSIG(X). An attributed
graph AG = (G,D, ∅) with an empty set of formulas is basic and is shortly denoted by
AG = (G,D).
For attributed graphs AG1 and AG2, an attributed morphism f : AG1 → AG2 is a

pair f = (fG, fD) of an A-graph morphism fG : G1 → G2 and a DSIG-homomorphism
fD : D1 → D2 such that (1) commutes for all s ∈ S, fG,GD = ∑

s∈S fD,s, and Φ2 ⇒ f(Φ1)
where f(Φ1) is the set of formulas obtained when replacing in Φ1 every variable x in G1

by f(x). An attributed morphism f is injective (an inclusion) if fG and fD are injective
(inclusions).

G1
D

G2
D

D1
s

D2
s

fD,sfG,GD (1)

4

Example 7.1. For the Petri net model in Figure 7.2, the attributed graph
u:PTArc

weight ≥ 1
consists of an A-Graph with a single node u, a DSIG-algebra for natural numbers and
the formula set Φ = {weight ≥ 1}. ♦
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Our attributed graphs correspond to the basic attributed graphs in Chapter 8 of (H.
Ehrig, K. Ehrig, Prange, et al., 2006). The results from (H. Ehrig, K. Ehrig, Prange,
et al., 2006) for basic attributed graphs can be generalized to our attributed graphs:

Fact 7.1 (properties of attributed graphs).

1. Attributed graphs and attributed morphisms form the category AGraphs.

2. The category has pushouts and E ′-M pair factorization in the sense of (H. Ehrig,
K. Ehrig, Prange, et al., 2006) withM being the class of all injective morphisms
m : A→ B with ΦB ⇔ m(ΦA) and E ′ the class of all jointly surjective morphism
pairs.

Proof. The proof follows more or less from (H. Ehrig, K. Ehrig, Prange, et al., 2006).
The first statement is straightforward; the second one follows from the one in (H. Ehrig,
K. Ehrig, Prange, et al., 2006): Let r : K → R and d : K → D be attributed morphisms
on basic attributed graphs and ΦK ,ΦR,ΦD be the corresponding sets of formulas. By
(H. Ehrig, K. Ehrig, Prange, et al., 2006), there are a basic attributed graph H and basic
attributed morphisms r′ : R→ H and h : D → H such that the square (1) in the diagram
below is a pushout. Let ΦH be equivalent to r′(ΦD) ∪ h(ΦR). Then ΦH ⇒ r′(ΦD) and
ΦH ⇒ h(ΦR), i.e. r′ and h are attributed morphisms.

K

D

R

H

d r′(1)

r

h

For E ′-M pair factorization, we perform the construction suggested by (H. Ehrig, K.
Ehrig, Prange, et al., 2006, Remark 5.26): For morphisms f1 : A1 → C and f2 : A2 → C,
compute the coproduct injections ı1 : A1 → A1 +A2 and ı2 : A2 → A1 +A2 component-
wise on the node, edge and attribute sets and ΦA1+A2 = ΦA1 ∪ ΦA2 (see diagram below).
Define f : A1 + A2 → C as f(x) = ıj(x) for x ∈ ıj and compute K, e : A1 + A2 → K
and m : K → C as epi-mono factorization f = m ◦ e, i.e. K = f(A1 + A2), ΦK = ΦC

and m an injection. Finally, (e1, e2) = (e ◦ ı1, e ◦ ı2).

A1 +A2A1 A2

K

C

ı1

f1

e1

ı2

f2

e2e

f
m

�

The attributed graphs are now enhanced with types and inheritance.
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Definition 7.7 (attributed type graph with inheritance, ATGI-graph). An at-
tributed type graph with inheritance ATGI = (TG,Z, I) consists of an A-graph TG, a
final DSIG-algebra Z, and a simple3 inheritance graph I with IV = TGV . For each node
v ∈ IV , the inheritance clan, clanI(v), is the set of all nodes v′ ∈ IV with an outgoing
path to v of arbitrary length.
A typed attributed graph (AG, type) over ATGI, short ATGI-graph, consists of an

attributed graph AG = (G,D,Φ) and a clan morphism, type : AG→ ATGI.
A clan morphism type consists of typing functions typeV : GV → TGV , typeD : GD →

TGD for nodes, typeE : GE → TGE , typeA : GA → TGA for edges, and the unique final
DSIG-homomorphism typeDSIG : D → Z such that typeV ◦ srcGE � srcTGE ◦ typeE4,
typeV ◦ tgtGE � tgtTGE ◦ typeE , typeV ◦ srcGA � srcTGA ◦ typeA, typeD ◦ tgtGA =
tgtTGA ◦ typeA and typeDSIG,s = typeD|Ds for all s ∈ S.

TGE TGV TGA TGD

GE GV GA GD
srcG(tgtG) srcA tgtA

srcTGE(tgtTGE) srcGA

typeE typeV typeA typeD

tgtTGA

� � =

A clan morphism type is injective (an inclusion) if typeV , typeE , and typeDSIG are
injective (inclusions).
Given two ATGI-graphs AG1 = (G1, type1) and AG2 = (G2, type2), an ATGI-morphism
f : AG1 → AG2 is an attributed morphism such that type2 ◦ f � type1. An ATGI-
morphism is called (type-)strict if type2 ◦ f = type1.

ATGI

AG1 AG2
f

type1 type2
=

4

Remark. If I is a discrete graph (i.e. has no edges), there is no inheritance, so ATGI is
an attributed type graph.

Example 7.2. The typed attributed graph below consists of four nodes with attributes,
connected by three edges. It models a Petri net with one place, one transition and an
edge from the place to the transition.

3A graph is simple if it has neither multiple edges nor loops.
4For functions f : A → B, g : A → clanI(B), f � g means f(x) ∈ clanI(g(x)) for all x ∈ A where

clanI(B) = {clan(v) | v ∈ B}.
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:Tr
name=’tr01’

:PTArc
weight=1

:Pl
name=’pl01’

:PN
name=’pn01’

arc

place
transition

postArc srcpreArctgt

Figure 7.3: A simple attributed graph.

The corresponding type graph is shown in Figure 7.2. ♦

Fact 7.2 (properties of typed attributed graphs). ATGI-graphs and ATGI-mor-
phisms form the category AGraphsATGI. ForM being the class of all type-strict injective
morphisms and E ′ the class of all jointly surjective pairs, the category has pushouts along
M-morphisms and E ′-M pair factorization.

Proof. The first statement is straightforward. The other statements follow with the help
of Fact 7.1: For an injective morphism d : K → D and type-strict injective morphism
r : K → R with typing-morphisms typeK : K → ATGI, typeD : D → ATGI and
typeR : R→ ATGI compute the pushout (1), ignoring typing, in AGraphs as stated in
Fact 7.1 and choose the typing-morphism typeH : H → ATGI as follows: For y ∈ H
with x ∈ D and h(x) = y let typeH(y) = typeD(x). Let typeH(y) = typeR(z) with z ∈ R
and r′(z) = y otherwise. Morphisms h and r′ are valid morphisms in AGraphsATGI
since for all x ∈ K, typeH(h(d(x))) = typeD(d(x)) � typeK(x) = typeR(r(x))5 holds.
Furthermore, (1) in the diagram below is a pushout in AGraphsATGI since for any pair
(f : D → G, g : R → G) of morphisms with common co-domain G and f ◦ d = g ◦ r
there is a morphism m : H → G with m ◦ h = f , m ◦ r′ = g in AGraphs (since
(1) is pushout in AGraphs). Since for all y ∈ H there exists x ∈ D with h(x) = y
and typeH(x) = typeD(y) � typeG(f(x)) = typeG(m(y)) or z ∈ R with r′(z) = y
and typeR(z) = typeD(y) � typeG(g(r)) = typeG(m(x)), m is also a morphism in
AGraphsATGI.

K

D

R

H

d r′(1)

r

h

E ′-M pair factorization is similar: Let fi : Ai → C (i ∈ {1, 2}) with typing typei : Ai →
ATGI and typeC : C → ATGI. Compute the E ′-M pair factorization, ignoring typing, in
AGraphs as stated in Fact 7.1 and choose the typing-morphism typeK : K → ATGI such
that typeK = typeC ◦m, i.e. typeK(x) = typeC(m(x)) for x ∈ K. Morphisms e1 and
e2 respect typing since typeK(ei(x)) = typeC(fi(x)) � typei(x) for all x ∈ Ai, i ∈ {1, 2}
(see diagram below).

5We write x � y iff x ∈ clanI(y).
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KA1 A2

C
f1

e1

f2

e2

m

�

Compact conditions
As explained in the introduction, graph conditions tend to become rather large and
cumbersome with deeper nesting. This makes deeply nested graph conditions not only
hard to read, but also makes it difficult to use graph conditions in some step-by-step
construction which relies in later steps on the existence of some nodes added in earlier
steps. To alleviate this, we suggest so-called compact conditions, an abbreviated form
of nested conditions. We show that compact conditions are syntactic sugar and can be
converted into nested conditions.
In the following, the graphs in consideration are equipped with a name function

nG : Names→ VG assigning a set of names to nodes in the graph. Moreover, morphisms
are extended to these graphs as follows: A morphism f : G → H respects names if
nH(a) = fV(nG(a)) for all names a in Dom(nG).

Definition 7.8 (compact conditions). A compact condition on typed attributed
graphs is of the form

1. true, or

2. ∃(C, c) where C is a graph and c is a compact condition.

3. Boolean formulas over compact conditions yield compact conditions.

∃(C) abbreviates ∃(C, true). 4

Example 7.3. ∃(u:T , ∃(v:T , ∃(u:T v:Trole ))) is a compact condition, intuitively mean-
ing that there exist two nodes u, v of type T and an edge of type role between them.

The semantics of compact conditions is defined by the semantics of conditions. For
this purpose, we “complete” compact conditions to conditions. The construction yields
an injective nested condition with injective satisfaction.

Construction (From compact conditions to nested conditions). For a graph P
and a compact condition d, Uncomp(P, d) denotes the condition over P , inductively
defined as follows:

∅

P

C

C ′

b

a

c
Uncomp(P, true) = true.
Uncomp(P,∃(C, c)) = ∨

(a,b)∈F ∃(P →a C ′,Uncomp(C ′, c))
where F = {(a, b) | (a, b) jointly surjective, a, b respect names.}.
Uncomp(P,¬c) = ¬Uncomp(P, c).
Uncomp(P, c ∧ c′) = Uncomp(P, c) ∧Uncomp(P, c′).

l
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7.2 Graphs and conditions for OCL

Remark. The Uncomp and the Shift construction in (H. Ehrig et al., 2014) look very
similar. While Shift is based on injective morphisms, Uncomp is restricted to name-
respecting morphisms. Uncomp is based on empty morphisms and completes compact
conditions ∃(C, c) with empty morphism ∅ → C with respect to a morphism ∅ → P
(displayed by dotted lines in the diagram above). Instead of the empty morphisms, we
write the codomain of the morphisms.

Example 7.4. The property “There is a node u:T such that for any other node v:T,
there is an outgoing edge from v:T to some other node w:T” can be formulated as a com-
pact condition c = ∃(u:T ,∀(u:T v:T , ∃(v:T w:T ))). Using the Uncomp construction
yields the nested condition

Uncomp(∅, c) =
∃(u:T ,Uncomp(u:T , ∀(u:T v:T ,∃(v:T w:T )))) =
∃(u:T , ∀(u:T v:T ,Uncomp(u:T v:T ,∃(v:T w:T )))) =
∃(u:T ,∀(u:T v:T , ∃(u:T v:T w:T , ∃(u:T v:T w:T ) ∨ ∃(v:T u=w:T )))

with the same meaning. ♦

The semantics of compact conditions can also be defined directly without the Uncomp
construction.

Definition 7.9 (alternative semantics of compact conditions). The satisfaction
of a compact condition c by a morphism p : P → G, denoted p |=cmp c, is inductively
defined as follows:

P

C

C ′

G

a
b

p q

∃( , c)

=

p |=cmp true.
p |=cmp ∃(C, c) iff there exists some C ′ and morphisms q : C ′ → G, a : P → C ′ and
b : C → C ′ such that (a, b) are jointly surjective, q ◦ a = b and q |=cmp c.
p |=cmp ¬c iff not p |=cmp c.
p |=cmp c ∧ c′ iff p |=cmp c and p |=cmp c

′. 4

The semantics and the alternative semantics of compact conditions are equal.

Fact 7.3 (equality of the semantics). The semantics according to Definition 7.1 and
the alternative semantics according to Definition 7.9 are equal, i.e.,

p |=cmp c ⇐⇒ p |= Uncomp(∅, c).

Proof. For p : P → G, we show the statement by induction over the structure of
compact conditions c: For c = true, the fact is trivially true. For c = ∃(C, c′), we have
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p |= Uncomp(P,∃(C, c′)) Def. Uncomp
⇔ p |= ∨

(a,b)∈F ∃(a,Uncomp(C ′, c′)) Def. |=
⇔ ∃(a, b) ∈ F .p |= ∃(a,Uncomp(C ′, c′)) Def. |=
⇔ ∃(a, b) ∈ F .∃q : C ′ → G.q ◦ a = p and q |=cmp c

′ Ind. hyp.
⇔ p |=cmp ∃(C, c).

The remaining cases are straightforward. �

Compact conditions can be further simplified by the following equivalences.
Fact 7.4 (equivalences for compact conditions). Let C1⊕P C2 denote the pushout
of C1 and C2 along P and let P denote the set of all intersections of C1 and C2. Two
graphs C1 and C2 are clan-disjoint if the clans of the types of C1 and C2 are disjoint.
C1 ] C2 denotes the disjoint union of C1 and C2.
(E1) a) ∃(C1, ∃(C2)) ≡ ∨P∈P ∃(C1 ⊕P C2).

b) ∃(C1, ∃(C2)) ≡ ∃(C1 ] C2) if C1 and C2 are clan-disjoint.
c) ∃(C1, ∃(C2)) ≡ ∃(C2) if C1 ⊆ C2 and ≡ ∃(C1) if C2 ⊆ C1.

(E2) a) ∃(C1, ∃(C2) ∧ ∃(C3)) ≡ ∃(C1,
∨
P∈P ∃(C2 ⊕P C3)), if for all node names occur-

ring in both C2 and C3, a node with that name already exists in C1.
b) ∃(C1) ∧ ∃(C2) ≡ ∃(C1 + C2) if C1 and C2 are clan-disjoint and have disjoint

sets of node names.

(E3) ∃(u:T , ∃(C) ∧ ∃(u=v:T )) ≡ ∃(u:T , ∃(C[u=v])) provided that either u or v does
not exist in C and C[u=v] is the graph obtained from C by renaming u by u=v.

Proof. The proof of the equivalences makes use of the Pullback-Pushout-Lemma in (H.
Ehrig and Kreowski, 1979): The pushout of the pullback of a pair (b1, b2) ∈ F leads to
the pushout C1 ⊕P C2 of C1 and C2 along the pullback P . In the following, P denotes
the set of pairs (a1, a2) induced by the pairs (b1, b2) ∈ F . Let p : P0 → G.

P

C1

C2

C

a1

a2

b1

b2(1)

(E1) (a) follows with the help of the definition of Uncomp:

∃(C1,∃(C2))
≡ Uncomp(P0, ∃(C1, ∃(C2)))
≡

∨
(a,b)∈F ∃(a,Uncomp(C ′1,∃(C2, true)))

≡
∨

(a,b)∈F ∃(a,
∨

(a′,b′)∈F ′ ∃(a′,Uncomp(C ′, true)))
≡

∨
(a,b)∈F ∃(a,

∨
(a′,b′)∈F ′ ∃(a′, true))

≡
∨

(a,b)∈F
∨

(a′,b′)∈F ′ ∃(a′ ◦ a)
≡

∨
(a,b)∈F Uncomp(C ′1,

∨
P∈P ∃(C1 ⊕P C2))

≡ Uncomp(P0,
∨
P∈P ∃(C1 ⊕P C2))

≡
∨
P∈P ∃(C1 ⊕P C2).
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7.2 Graphs and conditions for OCL

where F = {(a, b)}, F ′ is the set of pairs a′ : C1 → C, and b′ : C2 → C such that (a′, b′) is
jointly surjective and a′, b′ are injective, P is the pullback of (a′, b′), and C is the pushout
of C1 and C2 along P . P̃ is the common part of C1 and C2, i.e. every pair of injective
and jointly surjective morphisms (a1, b1) such that (1) extended to P̃ commutes. Given
the morphisms (a′, b′), some C exists due to E ′-M pair factorization.

P0 C ′1 C ′

C1P ′

P C2

C

P̃

(1)

a a′

a1

b

b1

b2

b′

(b) If C1 and C2 are clan-disjoint, then ∃(C1, ∃(C2)) ≡ ∨P∈P ∃(C1⊕P C2) ≡ ∃(C1+C2)
because F consists of the pair C1 → C1 + C2 ← C2, P of the pair C1 ← ∅ → C2 and
C1 ⊕∅ C2 = C1+C2.
(c) If C1 ⊆ C2, then C1 is the pullback of C1 and C2 and C2 is the pushout of C1 and

C2 along C1. If C2 ⊆ C1, then C2 is the pullback of C1 and C2 and C1 is the pushout of
C1 and C2 along C2. Thus, ∃(C1, ∃(C2)) ≡ ∨P∈P ∃(C1 ⊕P C2) ≡ ∃(C2) if C1 ⊆ C2 and
≡ ∃(C1) if C2 ⊆ C1.
(E2) follow from the definition of Uncomp and |=. We show both directions separately.

For “⇒” consider the commutative diagram below.

P

P̃

C2

C3
(1)

C1

C

C ′1

C ′2

C ′3(2)
C ′

G

P0

p

Assume p |= ∃(C1, ∃(C2) ∧ ∃(C3)). By the definition of Uncomp, some C ′1, C ′2 and C ′3
exist. Let P̃ be the common part of (C2, C3), i.e. in every co-span C2 → C ← C3 of
injective and jointly surjective morphisms such that (1) extended by P̃ commutes, the
morphisms are name-respecting. Because all node names that are common in C2 and C3
are also contained in C1, C ′1 is the common part of C ′2 and C ′3. By E ′-M pair factorization
(consider (1)), some C ′ exists with C ′ → G injective. By E ′-M pair factorization again
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(consider (2) extended by P̃ ), some C exists with C → C ′ name-respecting. By definition
of Uncomp, p |= ∃(C1,

∨
P∈P ∃(C2 ⊕P C3)).

For the proof’s other direction consider the commutative diagram

P

C2

C3

C

P2

P3

C ′2

C ′3

C ′

C ′1

By definition of Uncomp, some P ∈ P, C, C ′ and C ′1 with C ′ → G exist. Let P2 and P3
be the common part of C ′1 and C2, C3 respectively. By E ′-M pair factorization, C ′2 and
C ′3 also exist and with the definition of |=, p |= ∃(C1,∃(C2) ∧ ∃(C3)).
In the case of clan-disjointness of C1 and C2, ∃(C1) ∧ ∃(C2) ≡ ∃(∅, ∃(C1 ∧ ∃(C2))) ≡
∃(∅,∨P∈P ∃(C1 ⊕P C2)) ≡ ∃(∅,∃(C1+C2)) ≡ ∃(C1+C2) because F consists of the pair
C1 → C1+C2 ← C2, P of the pair C1 ← ∅ → C2, and C1 ⊕∅ C2 = C1+C2.
(E3) is a special case of (E2)(a) since C[u=v]6 = C ⊕P u=v. �

7.3 Translating Essential OCL to graph conditions

This chapter of the thesis gives the translation tr from Essential OCL constraints to
graph constraints. Note that the translation does not support all of Essential OCL. A
thorough overview of the limitations will be given in Chapter 7.4. The translation itself
is quite large, since it has to be defined for the many different OCL operators. Before
heading right into the translation, an explanation should help to understand the overall
idea.
The goal of this chapter is the following theorem, stating that for any OCL invariant

that holds for a system state, the corresponding graph constraint is fulfilled by the
corresponding graph.

Theorem 7.1 (Correct Translation of Essential OCL invariants).
Given an object model M and its corresponding attributed type graph, for all
Essential OCL invariants inv and all environments (S, β),

I[[inv]](S, β) = true iff G = corrState(S) |= trI(inv).

Note that β only occurs on the left-hand side; since inv does not contain free variables,
Dom(β) = ∅, and the environment β is irrelevant.

6C[u = v] is the graph C with the nodes named u and v identified.
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7.3 Translating Essential OCL to graph conditions

• The translation proceeds along the abstract syntax tree of the OCL constraint. For
example, given a->union(b)->notEmpty(), we first translate notEmpty, followed
by union and then its arguments a and b.

• The set operations are translated with the characteristic function in mind, e.g.,
the characteristic function of a->union(b) is the disjunction of the characteristic
functions of a and b: v ∈ A ∪ B iff v ∈ A ∨ v ∈ B; node v here serves as a
representative of the set. Navigation expressions, which yield a single object, are
treated like single-element sets.

• When translating an OCL operation which yields a set of objects (translation trS),
we pass a single node as an extra parameter serving as representative of the set:
trS(a->union(b), v:T ) := trS(a, v:T ) ∨ trS(b, v:T ).

As an introductory example, regard OCL expressions of the form a->exists(v:T |
b) as part of an invariant. We start at the outermost part, that is exists(v:T | b).
This is translated in a first step to ∃(v:T , trE(b)), where trE denotes the translation
of a Boolean expression and depends solely on b. Now we have to formalize that v:T
comes from the set described by a. This is done by giving a predicate trS(a, v:T )
that describes the set precisely. Because we need the predicate over v:T , we pass v:T
as a parameter to trS . So the translation of the whole expression a->exists(v:T |
b) becomes ∃(v:T , trE(b) ∧ trS(a, v:T )), because v:T has to fulfill both trE(b) and
trS(v:T , a).

Definition 7.10 (constraint translation). Let DSIG be a data signature and M =
(CLS,ACLS,ENUM, attr, assoc,≺) be an object model over DSIG. Let t : Expr → T
be a typing function which returns the type of an OCL expression.
The translation functions

• trI for the translation of invariants,

• trE for OCL expressions yielding Bool,

• trN for navigation expressions yielding a single object, and

• trS for set expressions yielding a set of objects

are defined as follows:
Let expr, expr1 and expr2 be OCL expressions, u, v, v′ names of nodes (i.e. variables),

T = t(v) denote the type of v and likewise T′ = t(v’), attr1 and attr2 be attribute
names, op ∈ {<,>,≤,≥,=, <>} a comparison operator, and role be a role of a class.
Then

1. a) trI(context C inv: expr) := ∀( self:C , trE(expr))
b) trI(context var:C inv: expr) := ∀(var:C , trE(expr))

2. a) trE(true) := true
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b) trE(not expr) := ¬trE(expr)
c) trE(expr1 and expr2) := trE(expr1) ∧ trE(expr2)
d) trE(expr1 or expr2) := trE(expr1) ∨ trE(expr2)
e) trE(expr1 implies expr2) := ¬trE(expr1) ∨ trE(expr2)
f) trE(if cond then expr1 else expr2) :=

((trE(cond) ∧ trE(expr1)) ∨ (¬trE(cond) ∧ trE(expr2)))

3. a) trE(expr1->exists(v:T | expr2)) :=
∃(v:T , trS(expr1, v:T ) ∧ trE(expr2))

b) trE(expr1->forall(v:T | expr2)) :=
∀(v:T , trS(expr1, v:T )⇒ trE(expr2)) 7

4. a) trE(expr1->includesAll(expr2)) :=
∀(v:T , trS(expr2, v:T )⇒ trS(expr1, v:T ))

b) trE(expr1->excludesAll(expr2)) :=
∀(v:T , trS(expr2, v:T )⇒ ¬trS(expr1, v:T ))

where t(expr1) = t(expr2) = Set(T).

5. trE(expr->notEmpty()) := ∃(v:T , trS(expr, v:T ))

6. trE(expr->size() >= n) := ∃(v1:T · · · vn:T ,
∧n
i=1 trS(expr, vi:T ))

where n is an integer constant ≥ 0, t(expr) = Set(T) and v1, . . . , vn are fresh
variables of type T.

7. a) trE(expr1 = expr2) := ∃(v:T , trN (expr1, v:T ) ∧ trN (expr2, v:T ))
if t(expr1) = t(expr2) = T for some class T,

b) trE(expr1 = expr2) := ∀(v:T , trS(expr1, v:T )⇔ trS(expr2, v:T ))
if t(expr1) = t(expr2) = Set(T) for some class T.

8. trE(expr.attr1 op con) := ∃(v:T , trN (expr, v:T ) ∧ ∃(
v:T

attr1 op con ))
where con is a constant and t(expr) = T for some class T.

9. trE(expr1.attr1 op expr2.attr2) :=

∃(v:T , trN (expr1,
v:T

attr1 op x ) ∧ trN (expr2,
v:T

attr2 = x )) ∨8

∃(v:T v’:T’ , trN (expr1,
v:T

attr1 op x ) ∧ trN (expr2,
v’:t(v’)

attr2 = x ))

7We can express expr1->exists(v:T | expr2) as “there exist objects v of type T, such that v is
contained in the set described by expr1 and v satisfies expr2”, and expr1->forall(v:T | expr2) as
“for all nodes v of type T, if v is contained in the set described by expr1 then v also satisfies expr2”.

8The part before ∨ is omitted if clan(t(expr1)) ∩ clan(t(expr2)) = ∅, and the part after ∨ is omitted if
expr1 = expr2.
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where t(expr1) = T, t(expr2) = T′, t(x) = t(attr1) = t(attr2) and x, v and v’
are fresh variables.

10. a) trE(expr.oclIsKindOf(T)) := ∃(v:T’ ↪→ v:T , trN (expr, v:T’ ))
b) trE(expr.oclIsTypeOf(T)) :=
∃(v:T’ ↪→ v:T ,

∧
T′′∈ξ ¬∃(v:T ↪→ v:T” ) ∧ trN (expr, v:T’ ))

where T′ = t(expr), T ∈ clan(T′) and ξ = clan(T)− {T}.

11. trN (expr.oclAsType(T), v:T ) := ∃(v:T’ ↪→ v:T , trN (expr, v:T’ ))
where T′ = t(expr) and T ∈ clan(T′)

12. a) trN (v, v’:T ) := ∃(v=v’:T ) if v is a variable,
b) If role has a multiplicity of 1, trN (expr.role, v:T ) :=
∃(v’:T’ v:Trole , trN (expr, v’:T’ )) if T′ 6∈ clan(T) and
∃(v’:T’ v:Trole , trN (expr, v’:T’ )) ∨ ∃(v:T role, trN (expr, v:T )) else.

c) If role has a multiplicity > 1, trS(expr.role, v:T ) :=
∃(v’:T’ v:Trole , trN (expr, v’:T’ )) if T′ 6∈ clan(T) and
∃(v’:T’ v:Trole , trN (expr, v’:T’ )) ∨ ∃(v:T role, trN (expr, v:T )) else,
where v’ is a fresh variable and t(expr) = T′ 9.

13. a) trS(expr1->select(v:T | expr2), v’:T ) :=
trS(expr1, v’:T ) ∧ trE(expr2){v/v′} 10

b) trS(expr1->reject(v:T | expr2), v’:T ) :=
trS(expr1, v’:T ) ∧ ¬trE(expr2){v/v′}

where expr2{v/v′} means replacing v in expr2 with v′.

14. a) trS(expr1->collect(v:T | expr2), v’:T’ ) :=
∃(v:T , trS(expr1, v:T ) ∧ trS(expr2, v’:T’ )) if expr2 yields a set, and

b) trS(expr1->collect(v:T | expr2), v’:T’ ) :=
∃(v:T , trS(expr1, v:T ) ∧ trN (expr2, v’:T’ )) if expr2 yields an object. 11

15. a) trS(expr1->union(expr2), v:T ) := trS(expr1, v:T ) ∨ trS(expr2, v:T )
b) trS(expr1->intersect(expr2),v:T ):=trS(expr1,v:T ) ∧ trS(expr2,v:T )
c) trS(expr1 - expr2, v:T ) := trS(expr1, v:T ) ∧ ¬trS(expr2, v:T )

9Case (a) presents the final step in a chain of navigations, while cases (b) and (c) present the navigation
to single nodes and sets of nodes, respectively. Translations (b) and (c) are identical, since single
nodes are treated as single-element sets.

10The idea for select (point 13 in the definition) is to restrict the set of nodes described by expr1
by requiring that each node v′ satisfying expr1 also satisfies expr2. The construction for reject is
analogous.

11The translation trS(expr1->collect(v:T | expr2), v’:T’ ) (point 14) is a condition over v′ that is
true iff there is a node v such that (a) v is contained in the set described by expr1 (i.e. v satisfies
trS(expr1, v:T )) and (b) the relation between v and v′ given by expr2 is satisfied. This is described
by trS(expr2, v’:T’ ).
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d) trS(expr1->symmetricDifference(expr2), v:T ) :=
trS(expr1, v:T ) Y trS(expr2, v:T ) 12

16. trS(T.allInstances(), v:T ) := ∃(v:T ) 13

17. trS(Set{expr1, ..., exprN}, v:T ) :=
trN (expr1, v:T ) ∨ · · · ∨ trN (exprN, v:T )

where expr1, . . . , exprN are OCL expressions of type T.

This concludes the transformation. 4

Further translations of Essential OCL constraints can be derived from equivalences
of OCL expressions. Most of these equivalences follow from basic set theory and logic
axioms. See also (Richters, 2002, Tables 4.4 and 4.5 and page 73).

Definition 7.11 (further constraint translation).

1. trE(expr1->includes(expr2)) := trE(expr1->includesAll(Set{expr2}))
trE(expr1->excludes(expr2)) := trE(expr1->excludesAll(Set{expr2}))

2. trS(expr1->including(expr2), v:T ) := trS(expr1->union(Set{expr2}), v:T )
trS(expr1->excluding(expr2), v:T ) := trS(expr1 - Set{expr2}, v:T )

3. trE(expr1 <> expr2) := trE(not expr1 = expr2)

4. trE(expr1->isEmpty()) := trE(not expr1->notEmpty())

5. trE(expr->size() > n) := trE(expr->size() >= n+1)
trE(expr->size() = n) :=

trE(expr->size() >= n and not expr->size() >= n+1)
trE(expr->size() <= n) := trE(not expr->size() > n)
trE(expr->size() < n) := trE(not expr->size() >= n)
trE(expr->size() <> n) := trE(not expr->size() = n)

6. trN (expr1->any(v | expr2), v:T ) := trS(expr1->select(v | expr2), v:T )14

trE(expr1->one(v | expr2)) := trE(expr1->select(v | expr2)->size()=1)

7. tr(let v=e in e’) := tr(e’[v/e])

where expr, expr1 and expr2 are OCL expressions and n is an integer constant. 4

Example 7.5. In the following example, an index above the = sign refers to the trans-
lation rule used; an index at the equivalence sign ≡ refers to the used equivalence rule of
Proposition 7.4.
12c Y d denotes the exclusive disjunction operator.
13For T.allInstances(), the characteristic function is true for all nodes which are of type T.
14If expr1 is empty, the OCL expression would return null. Since we use two-valued logic, our translated

constraint returns false in this case.
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trI(context PetriNet inv:
self.place->select(p:Place|p.token->notEmpty())->notEmpty()) =1

∀( self:PN , trE(self.place->select(p:Place|p.token->notEmpty())->notEmpty())) =5

∀( self:PN , ∃(p:Pl , trS(self.place->select(p:Place|p.token->notEmpty()), p:Pl ))) =13

∀( self:PN , ∃(p:Pl , trS(self.place, p:Pl ) ∧ trE(p.token->notEmpty()))) =5

∀( self:PN , ∃(p:Pl , trS(self.place, p:Pl ) ∧ ∃( t:Tk , trS(p.token, t:Tk )))) =12

∀( self:PN , ∃(p:Pl ,∃( self:PN p:Plplace ) ∧ ∃( t:Tk ,∃(p:Pl t:Tktoken )))) ≡E1,E2

∀( self:PN , ∃( self:PN p:Pl t:Tkplace token ))
♦

To show the correctness of our translation, we also need to establish a correspondence
relation between system states and typed attributed graphs.

Definition 7.12 (state correspondence). Let DSIG be a data signature and M =
(CLS,ACLS,ENUM, attr, assoc,≺) be an object model over DSIG.
Let ATGI = (TG,Z, Inh) be an attributed type graph with inheritance and I(s) = Ds

for all sorts s ∈ S′ = S ∪ENUM . Given a system state S(M) = (SCls,SAtt,SAssoc), it
corresponds to an attributed graph AG = (G, type) with G = (GV , GD, GE , GA, srcG,
tgtG, srcA, tgtA) typed over ATGI by clan morphism type if there is a state correspondence
relation from corrState = (cCls, cAtt, cAssoc) defined by the following bijective mappings

• cCls : SCls → GV such that TGV = CLASS and typeGV (cCls(o)) = c for o ∈ SCls(c)
and for all c1, c2 ∈ CLS, c1 ≺ c2 iff there is an edge from c1 to c2 in Inh.

• cAtt : SAtt → GA such that for every class c, object o ∈ SCls(c) and attribute
a ∈ Dom(SAtt) of a class in clan(c), srcA(cAtt(a)) = cCls(o) and tgtA(cAtt(a)) =
SAtt(a).

• cAssoc : SAssoc → GE such that for every association A = (Cs, Ct) and every pair
of objects a = (os, ot) ∈ SAssoc(A), srcG(cAssoc(a)) = cCls(os), tgtG(cAssoc(a)) =
cCls(ot) and typeGE (cAssoc(SAssoc(A))) = name for assoc(A) = (name,min,max).

4

We can now prove Theorem 7.1: For a given model M , OCL invariant inv and
environment (S, β),

I[[inv]](S, β) = true iff G = corrState(S) |= trI(inv).

Proof (of Theorem 7.1). We prove, by induction over the structure of Essential OCL
invariants, the more general statement
(1) I[[expr]](S, β) = true⇔ p |= trE(expr),
(2) I[[expr]](S, β) = v ⇔ p⊕ idv |= trN (expr, v:T)15,
(3) I[[expr]](S, β) = {v1, . . . , vn} ⇔ ∀v ∈ {v1, . . . , vn}.p⊕ idv |= trS(expr, v:T).
15For morphisms p : P → G, let function composition p⊕ idv be the morphism p′ : P ⊕ v:T → G, with

p′(v) = p(v) if v ∈ Dom(p) and p′(v) = v otherwise. Note that P = ∅ for constraints.
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Basis. I[[context C inv: true]](S, β) = true = ∀v ∈ SCls(C).true
= ∀(v:C , true) = trI(context C inv: true).

Hypothesis. For subexpressions expr, objects v, v1, . . . , vn and morphisms p : {v:T ∈
cCls(β(v)) | v ∈ Dom(β)} → corrState(S), let statements (1), (2) and (3) be true.
Step.

(1) Let t(expr) = T.
I[[context var:T inv: expr]](S, β) Def. 7.4
⇔ I[[C.allInstances()->forAll(expr)]](S, β) Ind. hyp.
⇔ p |= ∀(v:T , trE(expr)) Def. |=
⇔ p |= trI(context var:T inv: expr)

Case context C inv: expr follows as a special case of the above with var = self.
(2) Since the Boolean operators of OCL have corresponding Boolean operators in graph

conditions, the proofs are straightforward.
(3) Let t(expr1) = T.
I[[expr1->exists(v:T| expr2)]](S, β) Def. 7.4
⇔ I[[expr1]](S, β) = {v1, . . . , vn} ∧

∨
1≤i≤n I[[expr2]](S, β{v/vi}) Set axioms

⇔ I[[expr1]](S, β) = {v1, . . . , vn}∧
∃vi ∈ {v1, . . . , vn}.I[[expr2]](S, β{v/vi}) Set axioms

⇔ ∃v ∈ SCls(T).I[[expr1]](S, β) ∧ I[[expr2]](S, β) Ind. hyp.
⇔ ∃(v:T ∈ cCls(SCls(T)).p⊕ idv |= trS(expr1, v:T)

∧p⊕ idv |= trE(expr2)) Def. |=
⇔ p |= ∃(v:T , trS(expr1, v:T) ∧ trE(expr2)) Def. 7.10.3)
⇔ p |= trE(expr1->exists(v:T| expr2))

The proof of forall is analogous.
(4) Let t(expr1) = t(expr2) = Set(T).
I[[expr1->includesAll(expr2)]](S, β) Def. 7.4
⇔ I[[expr2]](S, β) ⊆ I[[expr1]](S, β) Set axioms
⇔ ∀v ∈ S(T).v ∈ I[[expr2]](S, β) implies v ∈ I[[expr1]](S, β) Ind. hyp.
⇔ ∀v:T ∈ cCls(S(T)).p⊕ idv |= trS(expr2, v:T)

implies p⊕ idv |= trS(expr1, v:T) Def. |=
⇔ p |= ∀(v:T , trS(expr2, v:T) implies trS(expr1, v:T)) Def. 7.10.4
⇔ p |= trE(expr1->includesAll(expr2))

The proof of excludesall is analogous.
(5)
I[[expr->notEmpty()]](S, β) Def. 7.4
⇔ I[[expr]](S, β) 6= ∅ Set axioms
⇔ ∃v ∈ SCls(T).v ∈ I[[expr]](S, β) Ind. hyp.
⇔ ∃v:T ∈ cCls(SCls(T)).p⊕ idv |= trS(expr, v:T) Def. |=
⇔ p |= ∃(v:T , trS(expr, v:T)) Def. 7.10.5
⇔ p |= trE(expr->notEmpty())
(6)
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I[[expr->size() >= n]](S, β) Def. 7.4
⇔ |{v | I[[expr]](S, β)}| >= n Set axioms
⇔ ∃v1, . . . , vn ∈ S(T).∧ni,j=1,i 6=j(vi 6= vj)
∧
∧n
i=1(vi ∈ I[[expr]](S, β)) Ind. hyp.

⇔ ∃v1:T · · · vn:T∈cCls(S(T)).∧ni=1 p⊕idvi |=trS(expr, vi:T) Def. |=
⇔ p |= ∃(v1:T · · · vn:T ,

∧n
i=1 trS(expr, vi:T)) Def. 7.10.6

⇔ p |= trE(expr->size() >= n)

(7a) For t(expr1) = t(expr2) = T for some class T,
I[[expr1 = expr2]](S, β) Def. 7.4
⇔ I[[expr1]](S, β) = I[[expr2]](S, β) use variable
⇔ ∃v ∈ SCls(T).v = I[[expr1]](S, β) ∧ v = I[[expr2]](S, β) Ind. hyp.
⇔ ∃v:T ∈ cCls(SCls(T)).p⊕ idv |= trN (expr1, v:T)

∧p⊕ idv |= trN (expr2, v:T) Def. |=
⇔ p |= ∃(v:T , trN (expr1, v:T) ∧ trN (expr2, v:T)) Def. 7.10.7a
⇔ p |= trE(expr1 = expr2)

(7b) For t(expr1) = t(expr2) = Set(T) for some class T,
I[[expr1 = expr2]](S, β) Def. 7.4
⇔ I[[expr1]](S, β) = I[[expr2]](S, β) Set axioms
⇔ ∀v ∈ SCls(T).v ∈ I[[expr1]](S, β) iff v ∈ I[[expr2]](S, β) Ind. hyp.
⇔ ∀v:T ∈ cCls(S(T )).p⊕ idv |= trS(expr1, v:T) iff
p⊕ idv |= trS(expr2, v:T) Def. |=
⇔ p |= ∀(v:T , trS(expr1, v:T) iff trS(expr2, v:T)) Def. 7.10.7b
⇔ p |= trE(expr1 = expr2)

(8) Let t(v) = T.
I[[v.attr op x]] Def. 7.4
⇔ I(op)(S, β)(I[[v.attr]](S, β), I(x)(S, β))
⇔ I(op)(S, β)(SAtt(attr)(β(v)), x) Ind. hyp.

⇔ ∃q :
v:T

attr op x ↪→G.p = q ◦ (Dom(p)→
v:T

attr op x ) Def. |=

⇔ p |= ∃(
v:T

attr op x ) Def. 7.10.9

⇔ p |= trE(v.attr op x

(9) Let T = t(expr1),T′ = t(expr2) and att(v:T, attr) = SAtt(att)(I[[v:T]](S, β)),
Let pv = p⊕ idv and pv′ = p⊕ idv′ .
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I[[ex1.a1 op ex2.a2]](S, β) Def. 7.4
⇔ att(ex1, a1) op att(ex2, a2) Def. 7.4
⇔ ∃v, v′.v = I[[ex1]](S, β) ∧ v′ = I[[ex2]](S, β)

∧att(v, a1) op att(v’, a2) Ind. hyp.

⇔ ∃(v:T , v’:T’ .pv |= (trN (ex1, v:T) ∧ ∃(
v:T

a1 = x )))

∧pv′ |= trN (ex2, v’:T’ ) ∧ ∃(
v’:T’

a2 = x ) Fact. 7.4

⇔ ∃(v=v’:T .pv |= trN (ex1,
v=v’:T
a1 op x ) ∧ pv |= trN (ex2,

v=v’:T
a2 = x ))

∨∃(v:T v’:T’ , pv |= trN (ex1,
v:T

a1 op x ) ∧ pv′ |= trN (ex2,
v’:T’

a2 = x )) Def. |=

⇔ p |= ∃(v:T , trN (ex1,
v:T

a1 op x ) ∧ trN (ex2,
v:T

a2 = x ))

∨∃(v:T v’:T’ , trN (ex1,
v:T

a1 op x ) ∧ trN (ex2,
v’:T’

a2 = x )) Def. 7.10.9

⇔ p |= trE(ex1.a1 op ex2.a2)
(10a) Let t(expr) = T′ and T ∈ clan(T′).
I[[expr.oclIsTypeOf(T)]](S, β) Def. 7.4
⇔ I[[expr]](S, β) ∈ (I(T)−⋃T′′ 6=T

T′′≤MT I(T′′)) Set axioms
⇔ ∃v = I[[expr]](S, β).v ∈ I(T) ∧∧T′′ 6=T

T′′≤MT .v 6∈ I(T′′) Def. 7.12, 7.2
⇔ ∃v = I[[expr]](S, β).v ∈ S≺Cls(T) ∧∧T′′ 6=T

T′′≤MT .v 6∈ S
≺
Cls(T′′) Ind. hyp.

⇔ ∃(v:T’ .∃(v:T’ → v:T) ∧∧T′′ 6=T
T′′≤MT .¬∃(v:T’ → v:T” )) Def. |=

⇔ p |= ∃(v:T’ → v:T ,
∧T′′ 6=T

T′′∈clan(T) ¬∃(v:T → v:T” )
∧trN (expr, v:T’ )) Def. 7.10.10

⇔ p |= trE(expr.oclIsTypeOf(T))
(10b) The proof is analogous to the one for oclIsTypeOf (without the ⋃-part):

Let t(expr) = T′.
I[[expr.oclIsKindOf(T)]](S, β) Def. 7.4
⇔ I[[expr]](S, β) ∈ I(T) Set axioms
⇔ ∃v = I[[expr]](S, β).v ∈ I(T) Def. 7.12, 7.2
⇔ ∃v = I[[expr]](S, β).v ∈ SCls(T) Ind. hyp.
⇔ ∃(v:T’ , ∃(v:T’ → v:T)) Def. |=
⇔ ∃(v:T’ → v:T , trN (expr, v:T’ )) Def. 7.10.10
⇔ trE(expr.oclIsKindOf(T))
(11) Let t(expr) = T′.
v = I[[expr.oclAsType(T)]](S, β) Def. 7.4
⇔ v = I[[expr]](S, β) ∧ I[[expr]](S, β) ∈ I(T) Def. 7.12, 7.2
⇔ v = I[[expr]](S, β) ∧ v ∈ SCls(T) Ind. hyp.
⇔ ∃v:T’ ∈ cCls(S(T)). ∧ p⊕ idv |= trN (expr, v:T’ ) ∧ ∃(v:T’ → v:T) Def. |=
⇔ p |= ∃(v:T’ → v:T , trN (expr, v:T’ )) Def 7.10.11
⇔ p |= trN (expr.oclAsType(T), v:T’ )
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(12a) Let t(v) = t(v′) = T.
v′ = I[[v]](S, β) Def. 7.4
⇔ ∃v′ ∈ S(T).β(v) = v′ Def. 7.12
⇔ ∃v=v’:T ∈ cCls(S(T)) Def. |=
⇔ p |= ∃(v=v’:T) Def. trN
⇔ p |= trN (v, v’:T)
(12b) First, assume T 6∈ clan(T′) and let t(expr) = T′, t(expr.role) = T.
v = I[[expr.role]](S, β) Def. 7.4
⇔ (I[[expr]](S, β), v) ∈ SAssoc(role) Def. 7.12
⇔ ∃v′ = I[[expr]](S, β) ∧ t(v′) = T′
∧v’:T’ v:Trole ∈ cAssoc(SAssoc(role)) Ind. hyp.

⇔ ∃(v’:T’ ∈ cCls(S(T)).p⊕ idv′ |= trN (expr, v’:T’ )∧
p⊕ idv′ ⊕ idv |= v’:T’ v:Trole ) Def. |=

⇔ p |= ∃(v’:T’ v:Trole , trN (expr, v’:T’ )) Def. 7.10.12
⇔ p |= trN (expr.role, v’:T)

Now assume T ∈ clan(T′) and let t(expr) = T′, t(expr.role) = T.
v = I[[expr.role]](S, β) Def. 7.4
⇔ (I[[expr]](S, β), v) ∈ SAssoc(role) Def. 7.12
⇔ ∃v′ = I[[expr]](S, β).v’:T’ v:Trole ∈ cAssoc(SAssoc(role))
∨v=v’:T’ role Ind. hyp.

⇔ ∃(v’:T’ .p⊕ idv′ |= trN (expr, v’:T’ )∧
(p⊕ idv′ ⊕ idv |= v’:T’ v:Trole ∨ v=v’:T’ role)) Def. |=

⇔ p |= ∃(v’:T’ v:Trole , trN (expr, v’:T’ ))
∨∃(v:T role, trN (expr, v:T)) Def. 7.10.12

⇔ p |= trN (expr.role, v’:T)
The proof of the trS cases is analogous to the trN cases.
(13) Let t(expr1) = Set(T).
v ∈ I[[expr1->select(v:T| expr2)]](S, β) Def. 7.4
⇔ v ∈ {v | v ∈ I[[expr1]](S, β)} ∧ I[[expr2]](S, β)} Set axioms
⇔ ∃v ∈ S(T).v ∈ I[[expr1]](S, β) ∧ I[[expr2]](S, β) Ind. hyp.
⇔ p⊕ idv |= trS(expr1, v:T) ∧ p⊕ idv |= trE(expr2) Def. 7.10.13
⇔ p |= trS(expr1->select(v:T| expr2), v:T)

The proof for reject is analogous.
(14) Let t(expr1) = Set(T).
v ∈ I[[expr1->collect(v:T| expr2)]](S, β) Def. 7.4
⇔ v ∈ {I[[expr2]](S, β{v/v′})|v′ ∈ I[[expr1]](S, β)} Set axioms
⇔ ∃v′ ∈ I[[expr1]](S, β).v ∈ I[[expr]](S, β{v/v′}) Ind. hyp.
⇔ ∃(v:T , v’:T’ .p⊕ idv′ |= trS(expr1, v’:T’ )

∧p⊕ idv |= trS(expr2, v:T)) Def. |=
⇔ ∃(v:T , p |= ∃(v’:T’ , trS(expr1, v’:T’ )
∧p⊕ idv ⊕ idv′ |= trS(expr2, v:T))) Def. |=

⇔ p |= ∃(v:T , trS(expr1, v:T) ∧ trS(expr2, v’:T’ )) Def. 7.10.14
⇔ p |= trS(expr1->collect(v:T| expr2), v’:T’ )

The proof for expr2 yielding an object is analogous.

119



Chapter 7 Application to meta-modeling

(15) Let t(expr1) = Set(T).
v ∈ I[[expr1->union(expr2)]](S, β) Def. 7.4
⇔ v ∈ {v′ | v′ ∈ I[[expr1]](S, β)} ∪ {v′ | v′ ∈ I[[expr2]](S, β)} Set axioms
⇔ v ∈ I[[expr1]](S, β) ∨ v ∈ I[[expr2]](S, β) Ind. hyp.
⇔ p⊕ idv |= trS(expr1, v:T) ∨ p⊕ idv |= trS(expr2, v:T) Def. |=
⇔ p |= trS(expr1, v:T) ∨ trS(expr2, v:T) Def. 7.10.15
⇔ p |= trS(expr1->union(expr2), v:T)

The proofs for intersect, - and symmetricDifference are analogous.
(16)
v ∈ I[[T.allInstances]](S, β) = SCls(T ) Def. 7.4
⇔ v ∈ SCls(T) Def. 7.12
⇔ t(v) = T Def. |=
⇔ p |= ∃(v:T) Def. 7.10.16
⇔ p |= trS(T.allInstances(), v:T’ )
(17) Let t(expr1) = . . . = t(exprN) = T.
v ∈ I[[Set{expr1,...,exprN}]](S, β) Def. 7.4
⇔ v ∈ {I[[expr1]](S, β), . . . , I[[exprN]](S, β)} Set axioms
⇔ v = I[[expr1]](S, β) ∨ · · · ∨ v = I[[exprN]](S, β) Ind. hyp.
⇔ p⊕ idv |= trN (expr1, v:T) ∨ · · · ∨ p⊕ idv |= trN (exprN, v:T) Def. |=
⇔ p |= trN (expr1, v:T) ∨ · · · ∨ trN (exprN, v:T) Def. 7.10.17
⇔ p |= trS(Set{expr1, ..., exprN}, v:T)
This completes the induction proof.

We obtain Theorem 7.1 because for any OCL expression inv = context C inv: expr
and morphism p : ∅ → G, G |= trI(inv) iff p |= ∀( self:C , trE(expr)) . �

Translation tr is defined along the structure of Essential OCL constraints. However,
there are some parts of Essential OCL which go beyond the power of the translation.
The next part will deal with such cases.

7.4 Translating OCL constraints beyond first-order
expressiveness

With the above translation, most Essential OCL constraints can be translated into nested
conditions. However, the expressive power of Essential OCL goes beyond first-order logic.
Indeed, it is possible to express arbitrary primitive-recursive functions using the iterate
operation, as shown in (Mandel and Cengarle, 1999). With iterate, it is also possible
to formulate properties involving arbitrarily long paths.
This part extends the joint work from (Radke et al., 2015) by providing a translation

of iterate into HR∗ conditions (as usual, withM-satisfaction).

Example 7.6. The following constraint checks whether a Petri net contains a cycle,
i.e. there is a path from a place to itself. For a place pl, let pl.postPlace abbreviate
the expression pl.postArc.dst.postArc.dst of places which have incoming edges (via
some transition) from pl. The iterate body accumulates, for all Place objects pl in the

120



7.4 Translating OCL constraints beyond first-order expressiveness

set acc, all places pl.postPlace. The set acc is primed with all places acc.postPlace
reachable from p via a direct transition. The Petri net contains a cycle (of length ≥ 3) if
the set of places resulting from the iterate operation includes the starting place self:

context Place inv: Place.allInstances()->iterate(p:Place; acc=
self.postPlace | acc->union(acc.postPlace))->includes(self)

♦

The role of non-determinism in iterate expressions. Generally, the result of an
iterate expression might depend on the order in which the members of the collection
are processed. (Richters, 2002) writes on page 94 that “For operations where evaluation
order indeed makes a difference [...], a non-ordered collection first has to be transformed
into a sequence”. Concerning the operation asSequence: Set(t) → Sequence(t)
(Richters, 2002) notes on page 71 that “the semantics of the operation asSequence is
non-deterministic. Any sequence containing only the elements of the source set (in
arbitrary order) satisfies the operation specification in OCL”. In our case, we restrict
ourselves to iterate operations over flat sets, and the non-determinism of the iterate
operation fits well with the non-determinism of graph conditions.

Definition 7.13 (set-constructive iterate expression). Let expr and S0 be OCL
expressions yielding a set of type T’ and T, respectively. Let buildS,x be an OCL
expression of either the form S->union(navx) with some navigation expression navx
from x = v1 to a set of objects vn of type T, or of the form S->including(navx) with a
navigation expression navx from x = v1 to a single object vn of type T. Let

condx =
∨
i∈I

(
∧
j∈Ji

(ex(i,j)))

be an OCL expression of type Bool in DNF (disjoint normal form), where each literal
ex(i,j) is an attribute comparison of either the form vi.att1 op c for some constant c
or vi.att1 op vj.att2 for attributes att1, att2 and nodes vi, vj occurring in navx.
An OCL iterate expression expr->iterate(...) is called set-constructive if it has the

form expr->iterate(x:T’; S:Set(T)=S0 | if (condx) then buildS,x else S). 4

The translation works by representing the set S resulting from the iteration by a
hyperedge S of rank 0. At the same time, a hyperedge v1:T1 vn:TnP1 2 of rank 2
represents the navigation from an object v1 to an object vn. The goals of the navigation,
the nodes vn, are required to be in the set of nodes generated from hyperedge S . The
step-by-step generation of the set by the replacement rules of hyperedge P simulates the
iteration process. The replacement rules rely on the DNF structure of condx = ∨

i∈I(condi)
and the navigational expression navx inside of buildS,x to construct a set of graphs
G(navx, condi) that represent the structure and constraints expressed by navx and
condx.
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Construction. Because of the structure of set-constructive iteration expressions, nodes
v1 and vn have the same type T = T1 = Tn. Let

iter = expr->iterate(x:T’; S:Set(T)=S0 | if (condx) then buildS,x else S)

be a set-constructive OCL iteration expression. For every conjunction of expressions
condi = (∧j∈Ji(ex(i,j))) in condx, let condi,vj be the set of all literals in condi over16

vj , and let Ti = t(vi) be the type of OCL variable vi. For a navigation expression
navv1 = v1.role1.· · · .roleN and a conjunction condi of literals, let

G(navx, condi) =
v1:T1

condi,v1

v2:T2
condi,v2

role1
vn:Tn

condi,vn
.

We define trS(iter, v:T ) :=

∃(v:T , trS(expr, v:T ), trS(S0, v1:T ) ∧ ∃(v1:T vn:TP1 2 ,

∃(v1:T vn:TP1 2 w v1:T v:T vn:TP1 2 P1 2 )
∨∃(v=v1:T ) ∨ ∃(v=vn:T )))

with

R = ⋃
i∈I{ v1:T1 vn:TnP1 2 /

v1:T1
condi,v1

· · ·
vn:Tn

condi,vn

v1:T1 v′n:TnP1 2 /
v1:T1

condi,v1
· · ·

vn:Tn

condi,vn
v′n:TnP1 2

G(navx, condi)

}

l

Example 7.7. Let
p1:Pl p2:PlpostPlace abbreviate p1:Pl :ArcPTpostArc :Trdst :ArcTPpostArc p2:Pldst .
The cycle constraint

context Place inv:Place.allInstances()->iterate(p:Place;acc=
self.postPlace | acc->union(p.postPlace))->includes(self)

is first translated into the equivalent OCL constraint
context Place inv:Place.allInstances()->iterate(p:Place;acc=

self.postPlace | if true then acc->union(p.postPlace) else acc)
->includes(self)

and then into the HR∗ condition
∀( self:Pl , ∃(p:Pl , ∃( self:Pl p1:PlpostPlace ) ∧ ∃(p1:Pl p2:PlP1 2 ,

∃(p1:Pl p2:PlP1 2 w p1:Pl p:Pl p2:PlP1 2 P1 2 )
∨∃(p=p1:Pl ) ∨ ∃(p=p2:Pl )) ∧ ∃(p=self:Pl )))

16A literal is over some object v if it has the form v.att1 op ex for some expression ex, e.g.
v.name=v’.name is a literal over v.
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with

R = { v1:Pl v2:PlP1 2 ::= v1:Pl v2:PlpostPlace |

v1:Pl v2:PlpostPlace v′2:PlP1 2 }

This condition can be simplified to

∀( self:Pl , ∃( self:Pl v1:PlpostPlace ) ∧ ∃(v1:Pl v2:PlP1 2 ,

∃(v1:Pl v2:PlP1 2 w self:Pl )) ∨ ∃( self:Pl postPlace))

The meaning of the above formula can be explained as “There is a node self and a
node v1 with a postPlace edge from self, and there is a path (built with edges of type
postArc) from v1 to a node v2, such that self is a node on this path or a node reached
from self by a postPlace edge”. Put more simply, this means that a path of postPlace
edges beginning from self leads back to self, i.e. a cycle. ♦

Theorem 7.2 (Translating iterate expressions).
For every set-constructive OCL expression expr of type T , all environments (S, β) ∈
Env and every morphism p : v:T→ G,

v:T ∈ I[[expr]](τ) iff p |=r
A trS(expr, v:T ).

Proof. We proceed by induction over the size of the set expr in expr->iterate(...).
Let p : v:T → G be a morphism.
Basis. For I[[expr]](τ) = ∅,
u ∈ I[[expr->iterate(x;acc=S0 | expr2)]](τ) Def. 7.4
⇔ v ∈ I[[S0]](τ) Construction
⇔ p |=r

A trS(S0, v:T ) Def. 7.4
⇔ p |=r

A trS(expr->iterate(x;acc=S0 | expr2), v:T )
Hypothesis. Assume v:T ∈ I[[expr->iterate(x;acc=S0 | expr2)]](τ)

⇐⇒ p |=r
A trS(expr->iterate(x;acc=S0 | expr2)).

Step. Let τ ′ = τ{acc/I[[{x1, . . . , xn−1}->iterate(x;acc=S0 | expr2)]]}{x/xn} and
I[[expr]](τ) = {x1, . . . , xn}. Without loss of generality, expr2 is of the form if (condx)
then acc->union(navx) else acc. Otherwise, since the iteration expression is set-
constructive, expr2 is of the form if (condx) then acc->including(navx) else S,
and we can use Definition 7.11 to convert expr2 into the above form. By construction
and Definition 7.4,
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v ∈ I[[expr->iterate(x;acc=S0 | expr2)]](τ) Construction
⇔ v ∈ I[[expr2]](τ ′) Construction
⇔ I[[condx]](τ ′)∧ v ∈ I[[acc->union(navx)]](τ ′)∨¬I[[condx]](τ ′)∧ v ∈
I[[acc]](τ ′)

Def. 7.10

⇔ (I[[condx]](τ ′)∧(v ∈ I[[acc]](τ ′)∨v ∈ I[[navx]](τ ′)))∨(¬I[[condx]](τ ′)∧
(v ∈ I[[acc]])(τ ′))

Logic axioms

⇔ v ∈ I[[acc]](τ ′) ∨ (I[[condx]](τ ′) ∧ v ∈ I[[navx]](τ ′)).
We distinguish two cases v ∈ I[[acc]](τ ′) and I[[condx]](τ ′).
For v ∈ I[[acc]](τ ′),
p |=r

A trS({x1, . . . , xn−1}->iterate(x;acc=S0|expr2)). Ind. hyp.
For v ∈ I[[navx]](τ ′) ∧ I[[condx]](τ ′), Def. G(_,_)
v ∈ G(navx, condx) ∧G(navx, condx) ∈ G.
The rules in R ensure that G(navx, condx) ∈ v1:T vn:TP1 2 σ, so
⇔ v ∈ v1:T vn:TP1 2 σ ∈ G Construction
⇔ ∃σ.p |=r

A trS(expr->iterate(x;acc=S0 | expr2), v:T )σ Def. 7.4
⇔ p |=r

A trS(expr->iterate(x;acc=S0 | expr2), v:T ).
�

Limitations

The translation given on the last pages does not handle all of Essential OCL. As the
goal is to connect meta-modeling with graph transformation systems, the focus is on the
translation of OCL invariants only.
Concerning the OCL collection types, we restrict ourselves to flat sets of objects.

Operations like isUnique, which is only useful for bags and sequences, or sum, which is
only defined for sets of integers, are not considered. Since the sets are flat, the flatten
operation also becomes superfluous. (Kuhlmann and Gogolla, 2012) argue that sets of
objects are sufficient for language definition where order of objects and distinction of
duplicates are not crucial.
Furthermore, the results of Boolean expressions are restricted to two-valued logic,

as is the case for HR∗ conditions. The values void and invalid are not considered,
as well as the oclIsUndefined operation. As argued in (Schürr, 2001), the use of
three- or four-valued logic often leads to rather unexpected results; also, existing meta-
model specifications have shown that two-valued logic covers the substantial part of
well-formedness rules specified in OCL.
Finally, the translation of the iterate operator is restricted to set-constructive

iterate expressions as per Definition 7.13.

7.5 Integration of graph constraints into graph grammars
The previous pages described how to build a graph grammar from a UML class diagram
and how to transform OCL constraints into graph constraints. This yields a method
to generate instances that satisfy the model: First, we use the grammar to generate an
instance that respects the relations given in the class diagram. If this instance satisfies
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all the graph constraints generated from the OCL constraints, we keep it; otherwise, we
generate a new instance and recheck the constraints.
However, this generate-and-test approach is very inefficient and negates the advantages

gained by using grammars to generate instances. Many instances are generated in vain,
only to be rejected because they do not satisfy all the constraints.
In this chapter, we thus propose another approach: To integrate the graph constraints

into the grammar. In this way, we can check satisfaction of the constraints at every step
of the generation process, ensuring that only valid instances are generated.
The general idea is to use the transformations from Chapter 6. First, we use the Shift*

construction from Chapter 6.1 to transform the conjunction of all graph constraints into
right application conditions, and then use L to transform the right into left application
conditions. In this form, it is possible to check the constraints directly before the
application of a rule of the grammar.
However, there is one pitfall: Depending on the rules of the graph grammar, integration

of constraints might lead to a left application condition false.

Example 7.8. The rule ρ = 〈pn:PN ←↩ pn:PN ↪→ pn:PN :Plplace 〉 adds a place to
a given Petri net, and c = ∀(p:Pl ,∃(p:Pl :PTArc :Trpostarc dst )) is a graph condition
stating that every place has an outgoing edge to a transition. Translating c into a left
application condition for ρ yields false, since the rule generates a new place that is not
yet connected to a transition. ♦

This is an unfortunate situation, since a rule with false as left application condition
cannot be applied at all. This situation can be remedied in two ways.
One idea would be to introduce “composite” rules which combine several rules into

one rule that immediately satisfies all constraints. In the above example, such a rule
could simultaneously insert a place and a transition, connected by a PTArc. This idea
has two disadvantages. Firstly, depending on the constraints, the generation rules might
become overly large, slowing the generation process and making an interactive use difficult.
Secondly, finding these composite rules can be difficult for a large and complex set of
constraints.
As an alternative, we could allow rules to not satisfy all the constraints in each derivation

step, by transforming only a subset of the constraints into an application condition. In
the above example, condition c would not be part of the left application condition for rule
ρ, but for another rule which connects a new transition to a place. This means, however,
that not every derivation step leads to a valid model. In particular, a derivation step can
turn a valid model (e.g. a Petri net with all Places connected to at least one Transition)
into an invalid one (e.g. said Petri net with an new, isolated place). The derivation
process thus needs to be controlled in some way. A rough idea would be to start with
only a few constraints and enforce that a derivation step does not invalidate a constraint
already satisfied, but might satisfy a previously unsatisfied constraint. Controlling the
derivation process with a finite automaton also seems promising. However, a detailed
solution for this problem is beyond the scope of this thesis.
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Bibliographic notes
The idea of translating a class diagram into a graph grammar with the goal to create
instances has been discussed in several works, e.g. (K. Ehrig et al., 2009) or (Besova
et al., 2015).
Several approaches exist in the literature for the translation of OCL into a formal

framework. Most of them translate the constraints into logical formulas. Typical
motivations for such a translation include the definition of a clearer semantics for OCL,
formal verification of models or, as is this case, the generation of instances.

Logic-oriented approaches Logic-oriented approaches have in common that they trans-
late class models with OCL constraints into a textual representation with little or no
visual components. For such languages, many powerful tools are available.
(Beckert et al., 2002) present a translation of a UML meta-model with accompanying

OCL constraints into first-order logic and provide an implementation in the KeY system.
(Cabot et al., 2007) translate class models with OCL constraints into logical formulas.
The formal approach taken by the Alloy system (Jackson, 2006) can be used for instance
generation: After translating a class diagram to Alloy, an instance can be generated or it
can be shown that no instances exist. This generation relies on the use of SAT solvers
and can also enumerate an arbitrary number of instances. A similar approach is taken
by the Kodkod tool (Kuhlmann and Gogolla, 2012).
Another application for these techniques is the generation or recognition of edit opera-

tions. (Kehrer et al., 2013) lifts model change recognition and patching to recognizing
and packaging edit operations to patches. The approach taken here could assist this with
the automated generation of edit operations.
The EER/GRAL language in (Ebert et al., 1996) uses a combination of extended

entity-relationship diagrams and a Z -like specification language, in order to specify
classes of graphs that represent certain meta-model instances. Repositories of these
graphs can be queried using the textual, first-order query language GReQL.

Graph-based approaches Graph-based approaches translate OCL constraints into a
more visual formalism, e.g. graph patterns or graph constraints. Following this line,
models and meta-models (without OCL constraints) are translated to instance and
type graphs. Graph-based approaches keep the graph structure of models as units of
abstraction, hence, graph axioms are satisfied by default. (Pennemann, 2009) shows that
using a specialized theorem prover for graph conditions is more efficient than applying
general theorem provers to graph conditions. (Bardohl et al., 1999) arguments that graph
grammars are a suitable and natural way to specify visual languages in a constructive
way.
The hybrid query language HQL presented in (Andries and Engels, 1996) offers both

an SQL-like textual and a graphical syntax to specify properties of Extended Entity-
Relationship diagrams. In (Schürr, 2001), OCL constraints are expressed with the path
expression language of the PROGRES system, and extensions to OCL for functional
abstraction and transitive closure (which has since been added to OCL with the closure
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operation) are suggested. Furthermore, the paper suggests a visual representation of
OCL, collaboration constraint diagrams, similar to (Bottoni et al., 2000). In (Amelunxen
et al., 2007), OCL constraints are translated into SDM diagrams as supported by
Fujaba/MOFLON, a combination of graph transformation rules, Java code and constraints
on nodes and their attributes. (Winkelmann et al., 2008) shows the translation of a subset
of OCL constraints, restricted to navigation expressions, size and attribute constraints
and Boolean combinations thereof, into constraints for graph grammars.
In (Arendt, Habel, et al., 2014), we translate the Core subset of OCL into nested

graph constraints. This work was extended to a larger subset of OCL, including set
operations, in (Radke et al., 2015). (Bergmann, 2014) has implemented a translator of
OCL constraints to IncQuery graph patterns. The covered subset of OCL is similar
to the one presented here. The focus of that work, however, is not a formal translation
showing correctness and completeness, but an efficient implementation of constraint
checking, using the incremental VIATRA engine. (Richa, Borde, Pautet, et al., 2014)
have a similar idea of representing OCL with graph conditions, but can only translate to
positive application conditions without nesting. Thus this approach is not as expressive.
This was improved on in (Richa, Borde, and Pautet, 2015), which extends the approach
by a representation for sets and a limited representation for ordered sets. This thesis,
does not go into great detail on process of transforming a UML class diagram into a
graph grammar. One such approach using layered graph grammars can be found in
(Taentzer, 2012).
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In this final chapter, we summarize the results of the thesis and discuss several directions
in which the results of this work may be extended.

8.1 Summary
We motivated the use of graph conditions and showed the limits of nested conditions:
they cannot express non-local properties, such as the existence of paths or cycles of
arbitrary length.

New concept of HR∗ conditions. We generalized the well-known concept of nested
graph conditions to so-called HR∗ conditions. These conditions can also express non-local
conditions, such as paths of arbitrary length, cycle-freeness or the existence of an even
number of nodes. We introduced several variants of HR∗ conditions, discussed their
respective advantages and disadvantages and provided constructions to transform these
variants into one another.

Expressiveness of HR∗ conditions. We explored the expressiveness of HR∗ conditions,
and established that HR∗ conditions can express every counting monadic second-order
(CMSO) formula, and every HR∗ condition can be expressed by a second-order formula.

Correctness. The correctness of a graph program with respect to HR∗ pre- and post-
conditions can be checked by calculating a weakest precondition and checking whether
the original precondition implies the weakest precondition. We presented a construction
for weakest preconditions for graph programs with respect to HR∗ conditions. The
construction uses several basic transformations of HR∗ conditions over rules. Apart from
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their use in the construction of weakest preconditions, they can be used to transform
constraints into application conditions and vice versa, and to transform right into left
application conditions (and vice versa). The use of HR∗ conditions in verification was
demonstrated with a car platooning example. In contrast to other formalizations of that
example, HR∗ conditions allow the modeling of an actual chain of cars linked to one
another, instead of each car being linked directly to the platoon’s leader.

Application to meta-modeling. We used HR∗ conditions together with graph grammars
to generate instances of a meta-model with Essential OCL constraints and presented a
transformation from Essential OCL constraints into graph conditions. To facilitate the
transformation, we introduced compact conditions as a useful way to reduce redundancy
and complexity. For a part of Essential OCL which cannot be expressed with nested
conditions because it is beyond first-order, we provide a construction to express them
with HR∗ conditions.

8.2 Open problems and future work
Results on expressiveness. At present, we can only say that any property expressible
in counting MSO logic is expressible with HR∗ conditions and any property beyond SO
logic is not. It would be interesting to have an exact characterization of the expressive
power of HR∗ conditions. In particular, an in-depth comparison between HR∗ conditions
and the µ-conditions of (Flick, 2016) would be interesting. Furthermore, one could look
at the expressiveness of HR∗ conditions using a different replacement language than
hyperedge replacement. As long as the replacement language is monotone, this should not
change the decidability of a condition’s validity, as shown in Theorem 3.1. An interesting
candidate language would be contextual hyperedge replacement (Drewes and Hoffmann,
2015), which allows limited context in the replacement rules.

Automated correctness proofs. Similar to the correctness of graph programs with
respect to nested conditions in (Pennemann, 2009), one could develop a theorem prover
and / or a SAT solver trying to prove or refute whether a given HR∗ condition is a
tautology. The transformations of HR∗ conditions over rules and programs needed for
this are presented in this thesis. Developing a theorem prover for HR∗ conditions is
complicated by the HR systems. In order to check whether one literal implies another,
one has to check not only the graphs, but also the HR system used. This amounts to the
problem whether the language generated by one HR grammar is a subset of the language
generated by another HR grammar.

Implementation of HR∗ conditions. There is currently ongoing work to implement
HR∗ conditions in several frameworks. The ENFORCe framework (Azab et al., 2007) for
verifying graphical program specifications with respect to nested conditions was recently
extended by a component for hyperedge replacement. It would be interesting to extend
this to a full implementation of the algorithms and transformations of HR∗ condition
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presented in this thesis. Support for nested conditions was also recently added to the
Henshin framework (Arendt, Biermann, et al., 2010; Richa, Borde, and Pautet, 2015);
this could also be extended to HR∗ conditions in order to support the HR∗ translations
of iterate OCL constraints suggested in this thesis.

Translation of Essential OCL. In (Radke et al., 2015), we translated a substantial
part of Essential OCL into HR∗ conditions. This thesis extended the translation by
a translation of a subset of the iterate operation. As outlined in Chapter 7.4, the
translation still has several limits. With further research, the restriction on invariants
could be lifted to include query operations, and (Richa, Borde, and Pautet, 2015) outlined
a way to support ordered sets. It would also be desirable to support the iterate operation
without restrictions.

Efficient algorithms for instance generation. The application part of this thesis focuses
on the translation of Essential OCL constraints into HR∗ conditions. However, we showed
that naively translating the HR∗ conditions into left application conditions can evaluate
to false, rendering the rule obsolete. Chapter 7.5 gives some ideas on how to remedy
this; a thorough survey of this topic is beyond the scope of this work. For an efficient
way to generate valid instances using graph grammars, more research on this topic has
to be conducted.

131





Bibliography
Adámek, Jiří, Horst Herrlich, and George E. Strecker (2004). Abstract and concrete
Categories. Dover Publications.

Amelunxen, Carsten, Elodie Legros, Andy Schürr, and Ingo Stürmer (2007). „Checking
and Enforcement of Modeling Guidelines with Graph Transformations“. In: Applications
of Graph Transformations with Industrial Relevance (AGTIVE). Vol. 5088. LNCS,
pp. 313–328.

Andries, Marc and Gregor Engels (1996). „A Hybrid Query Language for an Extended
Entity-Relationship Model“. In: Journal of Visual Languages and Computing 7.3,
pp. 321–352.

Angelaccio, Michele, Tiziana Catarci, and Giuseppe Santucci (1990). „QBD*: A Graphical
Query Language with Recursion“. In: IEEE Trans. Software Eng. 16.10, pp. 1150–1163.

Arendt, Thorsten, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer (2010). „Henshin: Advanced Concepts and tools for In-Place EMF Model
Transformation“. In: Proceedings MoDELS 2010. Vol. 6394. LNCS, pp. 121–135.

Arendt, Thorsten, Annegret Habel, Hendrik Radke, and Gabriele Taentzer (2014). „From
Core OCL Invariants to Nested Graph Constraints“. In: Int. Conf. on Graph Transfor-
mations (ICGT). Vol. 8571. LNCS, pp. 97–112.

Azab, Karl, Annegret Habel, Karl-Heinz Pennemann, and Christian Zuckschwerdt (2007).
„ENFORCe: A System for Ensuring Formal Correctness of High-level Programs“. In:
Proc. of the Third Int. Workshop on Graph Based Tools (GraBaTs’06). Vol. 1. Electronic
Communications of the EASST, pp. 82–93.

Baldan, Paolo, Andrea Corradini, Barbara König, and Bernhard König (2004). „Verifying
a Behavioural Logic for Graph Transformation Systems“. In: Electronic Notes in
Theoretical Computer Science 104, pp. 5–24.

Bardohl, Roswitha, Mark Minas, Andy Schürr, and Gabriele Taentzer (1999). „Application
of Graph Transformation to Visual Languages“. In: Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. 2. World Scientific, pp. 105–180.

Bauer, Jörg (2006). „Analysis of Communication Topologies by Partner Abstraction“.
PhD thesis. Universität des Saarlandes.

133



Bibliography

Beckert, Bernhard, Uwe Keller, and Peter H. Schmitt (2002). „Translating the Object
Constraint Language into First-Order Predicate Logic“. In: Verification Workshop
VERIFY, Copenhagen. Ed. by Serge Autexier and Heiko Mantel. DIKU technical
reports, pp. 113–123.

Bergmann, Gábor (2014). „Translating OCL to Graph Patterns“. In: Proc. MoDELS.
Vol. 8767. LNCS, pp. 670–686.

Bertot, Yves and Pierre Castéran (2004). Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer-Verlag Berlin. isbn: 9783642058806.

Besova, Galina, Dominik Steenken, and Heike Wehrheim (2015). „Grammar-based model
transformations: Definition, execution, and quality properties“. In: Computer Languages,
Systems & Structures 43, pp. 116–138.

Blume, Christoph (2014). „Graph Automata and Their Application to the Verification of
Dynamic Systems“. PhD thesis. Universität Duisburg-Essen.

Bottoni, Paolo, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer (2000).
„Consistency Checking and Visualization of OCL Constraints“. In: Proc. UML 2000 -
The Unified Modeling Language. Vol. 1939. LNCS, pp. 294–308.

Brucker, Achim D. and Burkhart Wolff (2012). „Featherweight OCL: a study for the
consistent semantics of OCL 2.3 in HOL“. In: Proc. Workshop on OCL and Textual
Modelling. ACM, pp. 19–24.

Bruggink, H. J. Sander, Mathias Hülsbusch, and Barbara König (2012). „Towards
Alternating Automata for Graph Languages“. In: Electronic Communications of the
EASST 47.

Bruggink, H. J. Sander and Barbara König (2010). „A Logic on Subobjects and Recog-
nizability“. In: Theoretical Computer Science, pp. 197–212.

Cabot, Jordi, Robert Clarisó, and Daniel Riera (2007). „UMLtoCSP: A Tool for the
Formal Verification of UML/OCL Models using Constraint Programming“. In: 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
ACM, pp. 547–548.

Courcelle, Bruno (1990). „Graph Rewriting: An Algebraic and Logical Approach“. In:
Handbook of Theoretical Computer Science. Ed. by J. van Leeuwen. Vol. B. Amsterdam:
North Holland Publ. Comp., pp. 192–242.

Courcelle, Bruno (1994). „Monadic Second-Order Definable Graph Transductions: A Sur-
vey“. In: Theoretical Computer Science 126, pp. 53–75.

134



Bibliography

Courcelle, Bruno (1996). „On the Expression of Graph Properties in some Fragments of
Monadic Second-Order Logic“. In: Descriptive Complexity and Finite Models. Vol. 31.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, pp. 33–62.

Courcelle, Bruno (1997). „The Expression of Graph Properties and Graph Transformations
in Monadic Second-Order Logic“. In: Handbook of Graph Grammars and Computing
by Graph Transformation. World Scientific, pp. 313–400.

Courcelle, Bruno and Joost Engelfriet (2012). Graph Structure and Monadic Second-Order
Logic - A Language-Theoretic Approach. Vol. 138. Encyclopedia of Mathematics and
its applications. Cambridge University Press.

Cruz, Isabel F., Alberto O. Mendelzon, and Peter T. Wood (1987). „A Graphical Query
Language Supporting Recursion“. In: Proc. ACM Group on Management of Data
(SIGMOD). Vol. 33, pp. 323–330.

Dalen, Dirk van (2004). Logic and Structure. 4th edition. Springer-Verlag Berlin.

Dijkstra, Edsger Wybe (1976). A Discipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall.

Dodds, Mike and Detlef Plump (2009). „From Hyperedge Replacement to Separation
Logic and back“. In: Proc. Doctoral Symposium at the International Conference on
Graph Transformation. Vol. 16. Electronic Communications of the EASST.

Drewes, Frank, Annegret Habel, and Hans-Jörg Kreowski (1997). „Hyperedge Replacement
Graph Grammars“. In: Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 1. World Scientific, pp. 95–162.

Drewes, Frank and Berthold Hoffmann (2015). „Contextual Hyperedge Replacement“. In:
Acta Informatica 52.6, pp. 497–524.

Ebert, Jürgen, Andreas Winter, Peter Dahm, Angelika Franzke, and Roger Süttenbach
(1996). „Graph Based Modeling and Implementation with EER / GRAL“. In: Int.
Conf. on Conceptual Modeling - ER’96. Vol. 1157. LNCS, pp. 163–178.

Ehrig, Hartmut (1979). „Introduction to the Algebraic Theory of Graph Grammars“. In:
Graph-Grammars and Their Application to Computer Science and Biology. Vol. 73,
pp. 1–69.

Ehrig, Hartmut, Karsten Ehrig, Annegret Habel, and Karl-Heinz Pennemann (2006).
„Theory of Constraints and Application Conditions: From Graphs to High-Level Struc-
tures“. In: Fundamenta Informaticae 74(1), pp. 135–166.

135



Bibliography

Ehrig, Hartmut, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer (2006). Fundamen-
tals of Algebraic Graph Transformation. EATCS Monographs of Theoretical Computer
Science. Springer-Verlag Berlin.

Ehrig, Hartmut, Ulrike Golas, Annegret Habel, Leen Lambers, and Fernando Orejas
(2012). „M-Adhesive Transformation Systems with Nested Application Conditions.
Part 2: Embedding, Critical Pairs and Local Confluence“. In: Fundamenta Informaticae
118, pp. 35–63.

Ehrig, Hartmut, Ulrike Golas, Annegret Habel, Leen Lambers, and Fernando Orejas
(2014). „M-Adhesive Transformation Systems with Nested Application Conditions.
Part 1: Parallelism, Concurrency and Amalgamation“. In: Mathematical Structures in
Computer Science 24(4).

Ehrig, Hartmut and Annegret Habel (1986). „Graph Grammars with Application Condi-
tions“. In: The Book of L. Ed. by Grzegorz Rozenberg and Arto Salomaa. Springer-
Verlag Berlin, pp. 87–100.

Ehrig, Hartmut and Hans-Jörg Kreowski (1979). „Pushout-Properties: An Analysis of
Gluing Constructions for Graphs“. In: Mathematische Nachrichten 91, pp. 135–149.

Ehrig, Hartmut and Bernd Mahr (1985). Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics. Vol. 6. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag Berlin.

Ehrig, Karsten, Jochen Malte Küster, and Gabriele Taentzer (2009). „Generating instance
models from meta models“. In: Software and System Modeling 8.4, pp. 479–500.

Flick, Nils Erik (2016). „Proving Correctness of Graph Programs Relative to Recursively
Nested Conditions“. In: Electronic Communications of the EASST 73.

Gadducci, Fabio, Alberto Lluch-Lafuente, and Andrea Vandin (2012). „Exploiting Over-
and Under-Approximations for Infinite-State Counterpart Models“. In: Graph Trans-
formations (ICGT). Vol. 7562. LNCS, pp. 51–65.

Gaifman, Haim (1982). „On Local and Non-Local Properties“. In: Proc. of the Herbrand
Symposium: Logic Colloquium ’81. North Holland Pub. Co., pp. 105–135.

Habel, Annegret (1992). Hyperedge replacement: grammars and languages. Vol. 643.
LNCS.

Habel, Annegret, Reiko Heckel, and Gabriele Taentzer (1996). „Graph Grammars with
Negative Application Conditions“. In: Fundamenta Informaticae 26.3/4, pp. 287–313.

Habel, Annegret, Jürgen Müller, and Detlef Plump (2001). „Double-Pushout Graph
Transformation Revisited“. In: Mathematical Structures in Computer Science 11.5,
pp. 637–688.

136



Bibliography

Habel, Annegret and Karl-Heinz Pennemann (2009). „Correctness of High-Level Trans-
formation Systems Relative to Nested Conditions“. In: Mathematical Structures in
Computer Science 19, pp. 245–296.

Habel, Annegret, Karl-Heinz Pennemann, and Arend Rensink (2006). „Weakest Precon-
ditions for High-Level Programs“. In: Int. Conf. on Graph Transformations (2006).
Vol. 4178. LNCS, pp. 445–460.

Habel, Annegret and Detlef Plump (2001). „Computational Completeness of Programming
Languages Based on Graph Transformation“. In: Foundations of Software Science and
Computation Structures (FOSSACS). Vol. 2030. LNCS, pp. 230–245.

Habel, Annegret and Detlef Plump (2012). „M,N -adhesive transformation systems“.
In: Proc. International Conference on Graph Transformation (ICGT 2012). Vol. 7562.
LNCS, pp. 218–233.

Habel, Annegret and Hendrik Radke (2010). „Expressiveness of Graph Conditions with
Variables“. In: Electronic Communications of the EASST 30.

Heckel, Reiko and Annika Wagner (1995). „Ensuring consistency of conditional graph
rewriting - a constructive approach“. In: Electronic Notes in Theoretical Computer
Science 2, pp. 118–126.

Hermann, Frank, Mathias Hülsbusch, and Barbara König (2010). „Specification and
Verification of Model Transformations“. In: Electronic Communications of the EASST
30.

Hildebrandt, Stephan, Leen Lambers, Basil Becker, and Holger Giese (2012). „Integration
of Triple Graph Grammars and Constraints“. In: Electronic Communications of the
EASST 54.

Hsu, Ann, Farokh Eskafi, Sonia Sachs, and Pravin Varaiya (1991). The Design of Platoon
Maneuver Protocols for IVHS. Tech. Report. Institute of Transportation Studies,
University of California at Berkeley.

Huth, Michael and Mark Ryan (2004). Logic in Computer Science: Modelling and
reasoning about Systems. Vol. 73. Cambridge University Press, pp. 45–85.

Jackson, Daniel (2006). Software Abstractions - Logic, Language, and Analysis. MIT
Press.

Kastenberg, Harmen and Arend Rensink (2006). „Model Checking Dynamic States in
GROOVE“. In: Model Checking Software (SPIN). Vol. 3925. LNCS, pp. 299–305.

Kehrer, Timo, Udo Kelter, and Gabriele Taentzer (2013). „Consistency-preserving edit
scripts in model versioning“. In: Proc. 28th IEEE/ACM Int. Conf. on Automated

137



Bibliography

Software Engineering (ASE). Ed. by Ewen Denney, Tevfik Bultan, and Andreas Zeller.
IEEE, pp. 191–201.

Klar, Felix, Alexander Königs, and Andy Schürr (2007). „Model transformation in the
large“. In: ACM Symposium on Foundations of Software Engineering (SIGSOFT).
ACM, pp. 285–294.

Koch, Manuel, Luigi V. Mancini, and Francesco Parisi-Presicce (2005). „Graph-based
Specification of Access Control Policies“. In: Journal of Computer and System Sciences
71, pp. 1–33.

König, Barbara and Javier Esparza (2010). „Verification of Graph Transformation Systems
with Context-Free Specifications“. In: Graph Transformations (ICGT). Vol. 6372. LNCS,
pp. 107–122.

König, Barbara and Vitali Kozioura (2008a). „Augur 2 – A New Version of a Tool for
the Analysis of Graph Transformation Systems“. In: Electronic Notes in Theoretical
Computer Science 211, pp. 201–210.

König, Barbara and Vitali Kozioura (2008b). „Towards the Verification of Attributed
Graph Transformation Systems“. In: Graph Transformations (ICGT). Vol. 5214. LNCS,
pp. 305–320.

Kuhlmann, Mirco and Martin Gogolla (2012). „From UML and OCL to Relational Logic
and Back“. In: Model Driven Engineering Languages and Systems (MoDELS). Vol. 7590.
LNCS, pp. 415–431.

Kutz, Oliver, Janna Hastings, and Till Mossakowski (2012). „Modelling Highly Symmetri-
cal Molecules: Linking Ontologies and Graphs“. In: Artificial Intelligence: Methodology,
Systems, and Applications (AIMSA). Vol. 7557. LNCS, pp. 103–111.

Lambers, Leen (2010). Certifying rule-based models using graph transformation. Südwest-
deutscher Verlag für Hochschulschriften.

Lara, Juan de and Hans Vangheluwe (2004). „Defining visual notations and their ma-
nipulation through meta-modelling and graph transformation“. In: Journal of visual
Languages and Computing 15.3-4, pp. 309–330.

Libkin, Leonid (2004). Elements of Finite Model Theory. Springer-Verlag Berlin.

Linker, Sven (2015). „Proofs for traffic safety - combining diagrams and logic“. PhD thesis.
Universität Oldenburg. url: http://oops.uni-oldenburg.de/2337/.

Loeckx, Jacques, Hans-Dieter Ehrich, and Markus Wolf (1996). Specification of abstract
data types. Wiley.

138

http://oops.uni-oldenburg.de/2337/


Bibliography

Löwe, Michael, Harald König, Christoph Schulz, and Marius Schultchen (2013). „Algebraic
Graph Transformations with Inheritance“. In: Formal Methods: Foundations and
Applications. Vol. 8195. LNCS. Springer-Verlag Berlin, pp. 211–226.

Mandel, Luis and María Victoria Cengarle (1999). „On the Expressive Power of OCL“.
In: Formal Methods 1999, Toulouse, France, September 20-24, 1999. Vol. 1708. LNCS,
pp. 854–874.

Manzano, María (2005). Extensions of first order logic. Cambridge University Press.

Navarro, Marisa, Fernando Orejas, Elvira Pino, and Leen Lambers (2016). „A Logic of
Graph Conditions Extended with Paths“. In: Graph Computation Models (GCM 2016).
To appear.

Nipkow, Tobias, Lawrence C. Paulson, and Markus Wenzel (2002). Isabelle/HOL - A
Proof Assistant for Higher-Order Logic. Vol. 2283. LNCS. Springer-Verlag Berlin. isbn:
3540433767.

Object Management Group (2003). UML 2.0 superstructure final adopted specification.
OMG document pts/03-08-02.

Object Management Group (2010). Object Constraint Language, Version 2.2, OCL.

Orejas, Fernando (2011). „Symbolic Graphs for Attributed Graph Constraints“. In:
Journal of Symbolic Computing 46.3, pp. 294–315.

Pennemann, Karl-Heinz (2004). „Generalized Constraints and Application Conditions
for Graph Transformation Systems“. MA thesis. Dept. für Informatik, Universität
Oldenburg. url: http://formale- sprachen.informatik.uni- oldenburg.de/
~skript/fs-pub/Penn04-Dipl.pdf.

Pennemann, Karl-Heinz (2008a). „An Algorithm for Approximating the Satisfiability
Problem of High-level Conditions“. In: Proc. Int. Workshop on Graph Transformation
for Verification and Concurrency (GT-VC’07). Vol. 213. Electronic Notes in Theoretical
Computer Science, pp. 75–94.

Pennemann, Karl-Heinz (2008b). „Resolution-like theorem proving for high-level condi-
tions“. In: Int. Conf. on Graph Transformations (ICGT). Vol. 5214. LNCS, pp. 289–
304.

Pennemann, Karl-Heinz (2009). „Development of Correct Graph Transformation Systems“.
PhD thesis. Universität Oldenburg. url: http://oops.uni-oldenburg.de/884.

Plump, Detlef and Annegret Habel (1996). „Graph Unification and Matching“. In: Graph
Grammars and Their Application to Computer Science. Vol. 1073. LNCS, pp. 75–89.

139

http://formale-sprachen.informatik.uni-oldenburg.de/~skript/fs-pub/Penn04-Dipl.pdf
http://formale-sprachen.informatik.uni-oldenburg.de/~skript/fs-pub/Penn04-Dipl.pdf
http://oops.uni-oldenburg.de/884


Bibliography

Poskitt, Christopher M. and Detlef Plump (2013). „Verifying Total Correctness of Graph
Programs“. In: Electronic Communications of the EASST 61.

Poskitt, Christopher M. and Detlef Plump (2014). „Verifying Monadic Second-Order
Properties of Graph Programs“. In: Int. Conf. on Graph Transformations (ICGT).
Vol. 8571. LNCS, pp. 33–48.

Radke, Hendrik (2013). „HR∗ Graph Conditions Between Counting Monadic Second-
Order and Second-Order Graph Formulas“. In: Electronic Communications of the
EASST 61.

Radke, Hendrik, Thorsten Arendt, Jan Steffen Becker, Annegret Habel, and Gabriele
Taentzer (2015). „Translating Essential OCL Invariants to Nested Graph Constraints
Focusing on Set Operations“. In: Graph Transformations (ICGT 2015). Vol. 9151.
LNCS, pp. 155–170.

Rensink, Arend (2003). „Towards Model Checking Graph Grammars“. In: Workshop on
Automated Verification of Critical Systems (AVoCS). Tech. Report DSSE–TR–2003–2.
University of Southampton, pp. 150–160.

Richa, Elie, Etienne Borde, and Laurent Pautet (2015). „Translating ATL Model Trans-
formations to Algebraic Graph Transformations“. In: Proc. Theory and Practice of
Model Transformations (ICMT). Vol. 9151. LNCS, pp. 183–198.

Richa, Elie, Etienne Borde, Laurent Pautet, Matteo Bordin, and José F. Ruiz (2014).
„Towards Testing Model Transformation Chains Using Precondition Construction in
Algebraic Graph Transformation“. In: Proc. MoDELS 2014. Vol. 1277. CEUR Workshop
Proceedings, pp. 34–43.

Richters, Mark (2002). „A precise approach to validating UML models and OCL con-
straints“. PhD thesis. Universität Bremen, Logos Verlag, Berlin.

Schürr, Andy (2001). „Adding Graph Transformation Concepts to UML’s Constraint
Language OCL“. In: Electronic Notes in Theoretical Computer Science 44.4, pp. 93–106.

Simmons, H. (2011). An Introduction to Category Theory. Cambridge University Press.

Strecker, Martin (2008). „Modeling and Verifying Graph Transformations in Proof
Assistants“. In: Electronic Notes in Theoretical Computer Science 203.1, pp. 135–148.

Strecker, Martin (2011). „Locality in Reasoning about Graph Transformations“. In:
Applications of Graph Transformation With Industrial Relevance (AGTIVE). Vol. 7233.
LNCS, pp. 169–181.

Taentzer, Gabriele (2012). „Instance Generation from Type Graphs with Arbitrary
Multiplicities“. In: Electronic Communications of the EASST 47.

140



Bibliography

Varró, Daniel (2003). „Towards symbolic analysis of visual modeling languages“. In:
Electronic Notes in Theoretical Computer Science 72.3, pp. 51–64.

Varró, Dániel and András Balogh (2007). „The model transformation language of the
VIATRA2 framework“. In: Science of Computer Programming 68.3, pp. 214–234.

Wachsmuth, Guido (2007). „Metamodel Adaptation and Model Co-adaptation“. In: 21st
European Conference on Object-Oriented Programming (ECOOP’07). Vol. 4609. LNCS,
pp. 600–624.

Winkelmann, Jessica, Gabriele Taentzer, Karsten Ehrig, and Jochen Malte Küster (2008).
„Translation of Restricted OCL Constraints into Graph Constraints for Generating Meta
Model Instances by Graph Grammars“. In: Electronic Notes in Theoretical Computer
Science 211, pp. 159–170.

141





Symbol Glossary
2M The powerset of M 50
ACLS A set of abstract classes 95
Appl HR∗ condition ensuring a rule’s applicability 87
⇒x/R,y direct derivation of hyperedge y along rule x/R 20
⇒∗R derivation sequence along rules in rule set R 20
assoc Association function for classes 95
attG Hyperedge attachment function for graph G 16
att(y)i Designates the i th tentacle of hyperedge y 16
attr Attribution function 95
c Denotes a graph condition 9
h ◦ g Composition of graph morphisms g and h 8, 17
CLS A set of classes 95
Uncomp Transforms a compact condition into a nested condition 106
Compress Transformation for compacting HR∗ conditions 32
CondA Translate fromM- to A-satisfiable HR∗ condition 41
CondM Translate from A- toM-satisfiable HR∗ condition 38
Cond Translate node-counting MSO formulas to HR∗ conditions 53
G ∼= H Graphs G and H are isomorphic 8, 17
C Transform a left application condition into a precondition 86
d Denotes a graph condition 9
Decomp Transformation for expanding HR∗ conditions 33
DSIG A data signature for attributed graphs 102
DG Set of all items (i.e. nodes, edges and hyperedges) of graph G 16, 48
E Set of all surjective morphisms 8, 17
E ′(a,b) Set of all jointly surjective morphisms for span (a, b) 38
E(P ) Set of all surjective morphisms for an object P 38
edge(e) formula for “e is an edge” 49
edg(x, y) formula for “there is an edge from x to y 49
∅ Depending on context, an empty set, or the empty graph 7, 16
ENUM A set of enumerations 95
Env The environment of a meta-model instance 97
E ′ Set of all jointly surjective morphisms 18
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Symbol Glossary

.= x
.= y is the formula for “x equals y” 48

EG Set of directed edges of graph G 7, 16
∃F Existential closure of formula F 48
expr An OCL expression 111
F a logical formula over graphs 48
∀F Universal closure of formula F 48
Free(F ) Denotes that formula F is free 48
G Denotes a graph 7, 16
G Set of all graphs without variables 7
GVar Set of all graphs with variables over alphabet Var 16
GG A graph grammar 12
− Difference between two graphs 7, 16
+ Disjoint union of two graphs 7, 16
g∗ Symbol-wise extension for a graph morphism g 17
H Denotes a graph 7, 16
idG Identity morphism for graph G 8, 17
inc(e,x,y) formula for “e is an edge from x to y” 48
Integratee Integrates edges into HR∗ conditions 79
Integraten Integrates nodes into an HR∗ condition 75
I[[ex]] Interpretation of OCL expression ex 97
I(op) The semantics of an object model M 97
leG Labeling function for edges in graph G 7, 16
labb labb(x) is the formula for “x has label b” 48
lvG Labeling function for nodes in graph G 7, 16
lyG Labeling function for hyperedges in graph G 16
L Transforms a right application condition into a left one 84
L An alphabet of node and edge labels 48
LE Edge label alphabet for a graph 7, 16
LV Node label alphabet for a graph 7, 16
M Set of all injective morphisms 8, 17
|= G |= f denotes that G satisfies (condition, formula) f 10, 23
|=A Arbitrary satisfaction for HR∗ conditions 34, 35
|=r
A Arbitrary satisfaction with replacement for HR∗ conditions 44
|=s
A Arbitrary satisfaction with substitution for HR∗ conditions 44
|=M Injective satisfaction for HR∗ conditions 35
|=cmp Satisfaction for compact conditions 107
↪→ An injective morphism 8, 18
N The set of natural numbers, including 0 16
nG Naming function for nodes 106
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Symbol Glossary

node(v) formula for “v is a node” 49
P ↓ Execute program P as long as possible 13
Φ A set of formulas attached to an attributed graph 102
Pin(G) Set of pinpoints in a pointed graph 18
pinG Sequence of pinpoints in a pointed graph 18
x• An x-labeled hyperedge and its attachment points 18
〈x〉 The attachment points of an x-labeled hyperedge 18
≺ Inheritance relation between classes 95
� The clan relation for classes 104, 105
P ;Q Sequential execution of programs 13
Pure Removes containment operators in a nested condition 14
rank The rank of an edge variable or a hyperedge 16
rankG Number of pinpoints in a pointed graph 18
R Denotes a replacement system 19
R(x) set of all graphs derivable from x• by R 20
Rep2Sub Transform a condition from replacement to substitution 43
ρ A graph transformation rule 10
[[F ]](θ) The semantics of formula F under assignment θ 49–51
Shift* Shifts a path-like HR∗ condition over a morphism 70
Shift Shifts a nested condition over a morphism 13
Shifte Helper construction for Integratee 78
Shiftn Helper construction for Integraten 75
Shiva Construction that adds tentacles to a hyperedge 74
SAssoc Represents links between objects in a meta-model 96
SAtt Assigns values to attributes of an object 96
SCls Assigns a set of object identifiers to a class 96
Σ set of all substitutions induced by a set of rules 20
σ A substitution 20
σ(G) Application of substitution σ to graph G 20
Gσ Application of substitution σ to graph G 20
x/R Denotes a replacement pair 19
SOedg represent a graph edge as a second-order formula 58
SOgra represent a graph as a second-order formula 58
SOhyp represent a graph hyperedge as a second-order formula 58
SOnod represent a graph node as a second-order formula 58
SOrule Represent a graph transformation rule as an SO formula 59
SOset Represent a set of graph items as a second-order formula 59
SOsys Represent a graph transformation system as an SO formula 59
sG Maps an edge in graph G to its source node 7, 16
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Symbol Glossary

G ⊆ H Graph G is included in graph H 8, 17
Sub2Rep Translate an HR∗ condition from substitution to replacement 44
w Containment operator for conditions 22
tG Maps an edge in graph G to its target node 7, 16
τ{v/x} Substitute all occurrences of v in β by x 97
tr Translation from OCL constraints into graph conditions 111
] Disjoint union of two sets 7
V0 The set of individual variables in graph formulas 48
V1 The set of set variables in graph formulas 48
V2 The set of second-order variables in graph formulas 48
VG Set of nodes of a graph G 7, 16
Wlp Constructs a weakest liberal precondition 88
Wp Constructs a weakest precondition 88
Var Set of variable names for hyperedges 16
YG Set of hyperedges of graph G 16
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Index
A
A-graph, 101, 102
A-graph morphism, 102
application (of an HR rule), 19
application condition, 10
A-satisfaction, 34
ATGI, 104
ATGI-graph, 104
ATGI-morphism, 104
attachment function, 16
attributed graph, 102
attributed morphism, 102
attributed type graph, 104
automorphism, 51

B
basic attributed graph, 102

C
car platooning, 25
clan morphism, 104
clan-disjoint, 108
closed formula, 48
CMSO formula, 50
codomain, 8, 17
comatch, 10
compact condition, 106
composition, 17
composition (of morphisms), 8
compressed normal form, 32
condition, 21
consistency conditions, 3, 14
constraint, 9, 22
containment operator, 21
contextual hyperedge replacement, 29
correctness, 88

cospan, 18

D
dangling condition, 11
data signature, 94
decompressed normal form, 33
derivation, 10, 20
direct derivation, 10, 20
discrete graph, 35, 53
domain, 8, 17
DSIG, 102

E
E-conditions, 3, 29
E ′-M pair factorization, 18
empty graph, 7
epimorphism, 8, 17
existential closure, 48

F
first-order formula, 48
FO formula, 48
full-containment normal form, 82

G
graph, 7, 16
graph constraint, 22
graph grammar, 12
graph morphism, 8, 17
graph program, 12
graph transformation rule, 10
graph transformation system, 12
graph with variables, 16

H
HR system, 15, 19
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INDEX

HR∗ condition, 15, 21
HR conditions, 24
hyperedge replacement system, 19

I
identity morphism, 8, 17
inclusion, 8, 17, 102, 104
index (of a tentacle), 16
inheritance clan, 104
injective, 8, 17, 102, 104
invariant, OCL, 95
isomorphic, 8, 17
isomorphism, 8, 17

J
jointly surjective, 18

L
language, 12
liberal precondition, 88
logic on subobjects, 3, 29

M
match, 10
M-conditions, 3, 29
monadic second-order formula, 49
monomorphism, 8, 17
monotone, 24
morphism, 17
M-satisfaction, 23
MSO formula, 49
µ-conditions, 3, 29

N
name function, 106
name-respecting, 106
negative application conditions, 3, 14
nested graph condition, 8, 14
Node-CMSO formula, 51
Node-MSO formula, 50

O
object model, 96
one-tentacle normal form, 58

P
partial morphism, 18
path-like, 67

pinpoints, 18
plain rule, 10
pointed graph, 18
programs with interfaces, 92

R
rank, 16, 48
replacement semantics, 43
rule, 10

S
satisfaction
A-satisfaction, 34
by replacement, 44
by substitution, 44
decidability, 24
M-satisfaction, 23, 34
of compact conditions, 107
of HR∗ conditions, 23
of nested conditions, 9

second-order formula, 51
Set condition, 35
set rule, 35
set-constructive, 121
shifting, 90
simple graph, 50, 104
SO formula, 51
span, 18
specification, 88
state correspondence relation, 115
strict, 104
substitution, 20
surjective, 8, 17
system state, 96

T
tentacle, 15
translation functions, 111
type-strict, 104

U
undirected induced graph, 67
universal closure, 48

W
weakest liberal precondition, 88
weakest precondition, 88
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