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Abstract

When a system turns out to be exposed to faults, fault tolerance becomes necessary
to guarantee continuous and useful behavior of the system. Self-stabilization is a fault
tolerance concept which ensures that the system finally recovers itself from failures,
due to transient faults, without voluntarily running into such. In distributed systems,
self-stabilization is of a particular interest, as a system’s component usually does not have
full knowledge about the configuration (global state) and nevertheless, the reaction of the
component has to direct the system’s behavior towards preserving the system’s desired
properties. In the past 40 years, related work considered the design of self-stabilizing
distributed algorithms with low cost, in the sense that an algorithm recovers quickly to
a safe behavior, uses low space, and works under several topologies and schedulers.
In this work, the self-stabilization concept is generalized to pertain a sort of properties,

other than the classical ones. In this concept, a property is based on a measure, that
is defined as the ratio of configurations that satisfy some condition in each execution
of a system, which is signified as the recurrence of the condition in the execution.
Self-stabilization with respect to this property implies the convergence of a system to an
execution suffix that guarantees a minimum recurrence of a condition. This generalized
concept of self-stabilization provides the ability to consider the convergence of a system
to reach its highest performance or quality of service. To this end, this work concerns
designing, analyzing, and re-engineering self-stabilizing systems, that solve common
problems in distributed computing, to be efficient wrt. recurrence properties. First,
the mutual exclusion problem is tackled by presenting a self-stabilizing mutual exclusion
algorithm that has optimal stabilization time, and achieves optimal service time under
the synchronous scheduler. Second, the problem of educated unique process selection
is introduced. This problem concerns selecting processes to be granted a privilege
based on local or global criteria, with a special consideration of the fairness property.
With this consideration, self-stabilizing algorithms, that are based on token passing,
can be further optimized while preserving fairness under reasonable conditions. Two
algorithms providing educated and fast unique process selection are presented. Third,
the Time-Division-Multiple-Access (TDMA) slot assignment problem is considered for
networks having tree topology, where the components communicate through a limited
bandwidth. A formal analysis of the scheduling efficiency in terms of the cost of clock
synchronization, and optimizing the length of guard intervals is provided. Finally,
an automatic verification approach for recurrence properties over infinite executions is
presented. The approach reduces the problem of verifying recurrence properties over
infinite executions to finding counterexamples with a given fixed length.
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Zusammenfassung

Wenn ein System Fehlern ausgesetzt ist, dann ist Fehlertoleranz unerlässlich,
um kontinuierliches und nützliches Verhalten des Systems zu garantieren.
Selbststabilisierung ist ein Konzept der Fehlertoleranz, welches eine Wiederherstellung
des Systems von Ausfällen durch vorübergehende Fehler garantiert, ohne von sich
aus in einen solchen zu geraten. In verteilten Systemen ist Selbststabilisierung von
besonderem Interesse, da normalerweise keine Komponente des Systems völlige Kenntnis
über die Konfiguration (den globalen Zustand) des Systems hat. Trotzdem muss die
Reaktion einer Komponente das Systemverhalten so beeinflussen, dass die gewünschten
Eigenschaften des Systems bewahrt werden. In den letzten 40 Jahren wurde in der
Literatur das Design von effizienten selbststabilisierenden verteilten Algorithmen mit
geringen Kosten betrachtet, das heißt, dass das System schnell stabilisiert, wenig
Speicher verbraucht und auf mehrere Topologien und Scheduler anwendbar ist.
In dieser Arbeit wird das Konzept der Selbststabilisierung generalisiert, um mehrere

Eigenschaftsarten abzudecken. In diesem Konzept basieren die Eigenschaften auf einem
Maß, welches als das Verhältnis der Konfigurationen definiert ist, die eine bestimmte
Bedingung in jeder Systemausführung erfüllen zu allen möglichen Konfigurationen.
Dieses Verhältnis wird als Rekurrenz der Bedingung in der Ausführung bezeichnet.
Selbststabilisierung bezüglich dieser Eigenschaft impliziert die Konvergenz eines Systems
zu einem Ausführungssuffix, der eine minimale Rekurrenz der Bedingung garantiert.
Dieses generalisierte Konzept ermöglicht die Betrachtung der Konvergenz eines Systems
hin zu seiner maximalen Leistungsfähigkeit oder zu höchstmöglichen Servicequalität.
Hierzu wird das Design, die Analyse und das Re-engineering von selbststabilisierenden
Systemen, die bekannte Probleme in verteilten Systemen lösen, angewendet, um
effizient bezüglich der Rekurrenzeigenschaften zu sein. Als Erstes wird das Problem
des wechselseitigen Ausschlusses (engl. Mutual Exclusion) betrachtet. Es wird ein
selbststabilisierender Algorithmus präsentiert, der eine optimale Stabilisierungszeit und
optimale Service-Time unter einem synchronen Scheduler besitzt. Als Zweites wird
das Problem der Educated-Unique-Process-Selection eingeführt. Dieses Problem befasst
sich mit der Auswahl eines Prozesses, um ihm ein Privileg, basierend auf lokalen oder
globalen Kriterien und unter einer spezifischen Betrachtung der Fairness-Eigenschaft,
zu gewähren. Hierzu können selbststabilisierende Algorithmen basierend auf
Tokenweitergabe noch weiter optimiert werden, wobei Fairness, unter bestimmten
und vernünftigen Konditionen, erhalten bleibt. Es werden zwei selbststabilisierende
Algorithmen für dieses Problem präsentiert. Als Drittes wird das Problem der
Slot-Zuteilung in zeitbasierten Multiplexverfahren in Sensornetzen mit Baumtopologien
und begrenzten Bandbreiten betrachtet. Es wird eine formale Analyse der
Effizienz der Zeitplanung bezüglich der Taktsynchronisierung und die Optimierung der
Guard-Intervalle vorgestellt. Zum Schluss wird eine automatische Verifikationsmethode
für Rekurrenzeigenschaften auf unendlichen Ausführungen präsentiert. Diese Methode
reduziert das Problem der Verifikation von Rekurrenzeigenschaften für unendliche
Ausführungen auf das Nachweisen von Gegenbeispielen einer gegebenen festen Längen.
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1 Introduction

“I thought that in [Dij74] I had published three solutions, but later I learned that I had
also published three problems, as the programs had been given without a demonstration of
their correctness” – Dijkstra [Dij86]. This statement portrays how difficult it was, to find
correctness proof for the algorithms presented by Dijkstra in his seminal work [Dij74],
along 12 years. The algorithms – at that time – addressed systems having multiple
processes that do not share a common global memory. The aim of the algorithms
is to provide ability to the processes to achieve a global agreement or some sort of
synchronization between them without the need of a shared memory or even an initial
setting. Thus, both [Dij74, Dij86] provide a positive answer to the question, whether
it is possible for participating components in a distributed system to agree on some
specification, without the existence of a global control or an initial setting.
This thesis addresses a particular concept of fault tolerance in distributed systems.

In this concept, a system is required to recover itself from failures due to transient,
temporary, infrequent faults or dynamic topology changes, and to be able to finally
execute correctly starting from any initial configuration – or global state – given
enough time for recovery. This particular concept is called self-stabilization. The
thesis contributes in generalizing the concept of self-stabilization to cover some sort
of properties other than the classical ones. It applies the generalized concept to solve
and extend well-known problems in distributed computing, and presents an automatic
verification approach to verify properties of the generalized concept.
This chapter provides an introduction and motivation to this work. Section 1.1

provides an overview about fault tolerance in distributed systems. Next, Section 1.2
presents the concept of self-stabilization. After that, Section 1.3 demonstrates the
general problem statement of this work. Section 1.4 states the general contribution.
Finally, Section 1.5 presents the outline of this thesis.

1.1 Fault Tolerance in Distributed Systems

A distributed system can be viewed as a collection of components that operate
independently, communicate with each other by passing messages, and appear to the
users as a single system [TVS07]. The typical abstract model of a distributed system
is a graph of vertices linked with edges, where each vertex can communicate with some
vertices, namely its neighbors.
Distributed systems are found nowadays in numerous applications and industrial areas.

Some examples are as follows: a system with multiple processes that do not share a
common memory, a computer network with multiple diverse machines, the Internet,
a wireless sensor network, a database system with multiple storage media, and many
others. Some of the purposes of distributed systems are to distribute tasks among many
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1 Introduction

components towards reducing the burden on each component, to enable multiple users
at the same time, and to cover large geographical areas.
Distributed systems are usually exposed to many kinds of faults. As examples, memory

allocation problems may affect the performance of systems. Noises may interfere radio
signals and disturb communication in wireless sensor networks. Adding or removing
components in a network may affect the topological, routing, and scheduling schemes.
In addition, attacks may disrupt a system’s security. From this point, distributed systems
are supposed to be able to react against faults.
The challenge of overcoming runtime and dynamic changes of the topology, deviation

from correct execution due to faults, and renouncing external initialization in distributed
systems lies in the fact that each component may not be able to reach all other
components with one message or broadcast. This happens in many situations. For
example, in wireless sensor networks, there might exist large distances between the
components, such that one broadcast cannot reach all of them. In wired networks, there
might be diverse machines that develop some routing scheme for message delivery. Thus,
in many cases, a distributed system cannot recover itself easily as a non-distributed one.

Fault Tolerance

Fault tolerance concerns the ability of a system to continue functioning in the presence
of faults, and to which degree the system can do it [TVS07, Gär99]. The methodology
of applying fault tolerance to a system depends on many parameters of the system and
the system’s environment, such as the kind and duration of faults, and the consequences
of faults.
Fault tolerance considers the system’s reaction against faults, and therefore, it impacts

the notion of dependability of a system [TVS07]. Dependability is based on many criteria.
First, availability is a metric that indicates the probability at which a system provides
“useful output.” Second, reliability indicates whether a system can continue running
correctly for some amount of time without a failure. Third, safety states whether
failures cause catastrophic consequences. Fourth, integrity indicates whether the system
achieves its requirements without corrupted or unintended output. Fifth, maintainability
concerns the flexibility of overpassing modifications and changes. Naturally, fault
tolerance impacts these five criteria.
The classification of faults can be based on many criteria. Examples are given

in [Tix09]: first, faults are classified according to the timing at which a fault hits the
system. In this classification, faults are classified into transient faults which seldom
hit the system and disappear, intermittent faults which frequently hit the system and
disappear, and permanent faults which stay until the system is maintained. Second,
the classification can be based on whether a fault hits a state; i.e. changes some values
erroneously, or changes the system’s definition, implementation, or behavior. Third,
faults can be classified by whether they hit parts of a distributed system or the overall
system.
From an outside perspective, fault tolerance is classified into two main

categories [TVS07]. First, masking fault tolerance, which hides the consequences of
faults, and enables the system to continue functioning correctly. This is usually achieved
using replication. In replication, some components of the system are duplicated, and
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the same task can be done by many components, such that if one fails, others can
substitute it. Such an approach is often expensive. Second, non-masking fault tolerance,
which overcomes the consequences of faults on the system’s behavior in finite time,
however, the system’s behavior during the recovery may not be fully controllable.
Examples of non-masking fault tolerance are self-stabilization [Dij74, Dol00] and
region-adherence [BRT14]. Self-stabilization is described in the following section.

1.2 Self-Stabilization

Self-stabilization [Dij74, Dol00] is a non-masking fault tolerance concept. It is
particularly useful when the system’s initial configuration is arbitrary, or when the
system exhibits transient faults or changes at runtime, such as dynamic topology changes.
In other words, self-stabilization addresses systems’ failures described as being in an
illegitimate configuration, but not failures due to run-time changes in systems’ designs
or implementations.
Self-stabilization ensures that a system’s desired behavior is eventually obtained by

the system itself and then never voluntarily – i.e. by the system’s design – violated
regardless of the system’s initial behavior. This comprises two properties:

1. Convergence: if a system is in an illegitimate configuration, then the system
guarantees reaching a legitimate configuration in finite time.

2. Closure: if a system is in a legitimate configuration, then the system never reaches
an illegitimate configuration by itself.

In centralized systems, self-stabilization can be simply viewed as a reset of the values
of the system’s variables, to modify the (global) configuration. This can be achieved
for some systems by adding e.g. an if statement in the code, that checks whether the
(global) configuration is legitimate. However, self-stabilization is of a significant impact
in distributed systems, where each system component does not have full knowledge about
the global configuration of the system. Thus, the components’ reactions – with their local
knowledge – have to direct the behavior towards satisfying the desired properties of the
system [Dij74].
Self-stabilization has tackled many problems in distributed computing. Examples are

mutual exclusion [Dij74], spanning tree construction [CYH91], leader election [DIM91],
graph coloring [Tur14], token circulation [BGW89], phase clock synchronization
(unison) [CFG92], and many others.
There are different models of distributed systems, over which self-stabilization is

studied. Three of them are mentioned in the following:

• The first and typical model in this area is the shared memory model [Dij74]. This
model regards a distributed system as a connected graph of processes linked with
edges. Each process has read and write registers, and can read (write) the values
stored in the read (write) registers of its neighbors. The read and write actions
are composite atomic in this model; i.e. if a write action is executed in a step
based on some values, then these values are read in the same step. In practice,
this model may require some extra setting to guarantee the composite atomicity.

3
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A generalized model of this model has appeared in [DIM93], where the read and
write actions are atomic. The shared memory model is formalized in Chapter 2,
and is used in Chapters 4, 5, and 7.

• The message-passing model [KP90] is a more realistic and popular model. In this
model, each component may send (receive) a message to (from) one of its neighbors.
The send and receive actions are atomic.

• The write-all-with-collision (WAC) model [KA03b] fits wireless networks. In this
model, each component may send a message that is received by all its neighbors
in one atomic step. However, if two neighbors of a component send messages
simultaneously, the component does not react to any of the received messages.
The latter case models message collision in wireless networks. Relevant work to
this model is given in Chapter 6.

The order of executing actions is determined by the so-called scheduler or daemon. For
example, the centralized scheduler assumes that one process executes an action in each
step. The distributed scheduler assumes that at least one process executes an action in
each step. The synchronous scheduler assumes that in each step, all processes – intending
to execute actions – execute the actions in the same step. The relevant schedulers to
this work are formalized in Chapter 2.
Self-stabilization is dependent on the underlying model and scheduler. For example,

a self-stabilizing algorithm under the shared memory model with composite atomicity
of the read and write actions may not be self-stabilizing if the read and write
actions are atomic. Many transformational approaches between models are given
in [Dol00]. In addition, a self-stabilizing algorithm under the synchronous scheduler
may not be self-stabilizing under the asynchronous scheduler. A synchronizer preserving
self-stabilization can be a transformational approach for this case [BPV04].
A self-stabilizing system wrt. a property can be based on multiple layered

self-stabilizing algorithms, where each algorithm stabilizes wrt. its own property. The
algorithms are layered in a scheme, such that the self-stabilization of an algorithm at
some layer is not impacted by the algorithms in the upper layers. The stabilization of
the whole system, then, starts from the lowest layer, and goes upwards. This scheme
is called a fair composition of self-stabilizing algorithms [DIM93, Dol00]. For example,
a fair composition can be constructed of a spanning tree algorithm (lower layer) and a
wave algorithm designed for trees (upper layer). In this case, the wave algorithm may
not function correctly until the tree is constructed by the spanning tree algorithm.
The major criteria that define the efficiency of any system are time and space

requirements; a system is considered to be more efficient than another system in
the same environment if it requires less time and space to achieve its goals. For
self-stabilizing distributed systems, besides the space requirement (e.g. [BDPV99c,
BDPV99d, BPV04, BPV08]), efficiency is usually defined by two criteria. The first one
is the worst-case of convergence time among all possible executions to reach a legitimate
configuration, starting from any configuration. The time complexity can be measured
using many metrics. A metric can be number of rounds, where a round is defined
by a minimum subexecution, in which each process executes an action. Convergence
time complexity can also be measured by the number of synchronous or asynchronous

4
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steps, depending on the scheduler and the application of the algorithm. Examples
are [KK13, DG13]. In [KK13], the authors confirm the optimal convergence time for
any synchronous spanning tree algorithm. In [DG13], the optimal convergence time for
any synchronous mutual exclusion algorithm is shown. Second, efficiency is related to the
generality of the topologies or schedulers, over which the algorithm is applied. Examples
are [BPV08, LMV14]. In [BPV08], the authors show the minimal space required to
achieve a self-stabilizing phase-clock synchronization under several topologies using the
shared memory model. In [LMV14], the authors show a time-efficient self-stabilizing
wave algorithm for non-oriented trees (trees with directed edges but not necessarily
directed paths) using the message passing model.
The concept of self-stabilization is also extended to many other concepts. Two of

them are mentioned here. The first one is snap-stabilization [BDPV99d], in which
a specification over the system’s behavior is defined, and any behavior of the system
should adhere to this specification, starting from any configuration. The specification
could be, for example, that if a token is sent from a specific component, the message
reaches all components and returns to the initial sender. The second example is
superstabilization [DH97, Dol00], which has the same requirements as self-stabilization,
with an additional characterization to the time required to recover from dynamic
topology changes: the superstabilization time is the time required to reach a legitimate
configuration after a change only in the topology.

1.3 General Problem Statement

Answering a question in computer science is based on setting an environment, a model,
assumptions or restrictions, and applying some techniques to find the solution. The
solution can, then, be optimized by e.g. reducing the time and space required to perform
the solution’s tasks.
As mentioned in the previous section, fault tolerance, in general, impacts the

dependability of a system, and dependability is defined over a variety of properties. For
example, the availability measures the probability at which a system provides “useful
output.” Useful output, in this sense, requires that a system achieves its aims correctly,
on time, without breaking safety critical requirements. Intuitively, such properties are
usually correlated to the time required to accomplish specific tasks.
It is well known that a system’s failure due to a transient fault may stop the system

to provide its service for some time. Providing service is, however, not limited to safety
properties; a system can be safe, but idle forever. For example, a traffic light system
might be in a configuration, where it has “Red” light in all directions. This configuration
is safe; however, it does not allow the traffic to move. Properties defining a system’s
progress – to some extent – belong to the class of liveness properties [AS87]. A liveness
property guarantees that some condition is satisfied infinitely often. However, there is
no restriction on the waiting time until the condition is satisfied. In the traffic light
example, this condition implies that one direction has “Green” light.
The classical self-stabilization pertains properties that are defined over configurations.

The convergence and closure aspects guarantee reaching an execution suffix, in which
a property is satisfied by all configurations. Such properties are, in practice, safety
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properties. From this point, the stabilization of a system or the recovery from
transient faults is fixed to safety properties defined over configurations. Moreover,
the time efficiency issue in classical self-stabilization is usually a matter of reducing
the convergence time to achieve safety. Note that other concepts of self-stabilization
concern specifications over the systems’ behaviors, like snap-stabilization [BDPV99d].
These concepts, however, do not necessarily follow a specific pattern, and they study
particular cases.
In self-stabilization, there is an assumption that faults are transient. In addition,

a self-stabilizing system can be practical – e.g. by achieving high availability – under
the assumption that faults happen infrequently. With these two assumptions, there is
implicitly enough time for each system’s behavior to stabilize, and to satisfy the liveness
properties, before the next fault hits the system. In other words, these assumptions
provide an implicit conclusion that the satisfaction of liveness properties is neither
impacted by the length of the convergence time, nor by the time at which a fault hits
the system. This fact limits the study of self-stabilization to safety properties defined
over configurations, while neglecting the other aspects of a system’s performance.
The main question to be investigated in this work is, how can self-stabilization cover

properties other than safety properties, like performance: the amount of output the
system produces per time unit, efficiency: the amount of output wrt. the amount of
input, and quality of service? In other words, how can self-stabilization be generalized
to cover other kinds of properties, in which recovery implies not only being safe, but also
reaching the desired service? The following is the general problem statement for this
work.

Problem 1.1. Provide a generalized model of self-stabilization, that covers properties
reflecting efficiency, performance, and quality of service aspects. Study and apply the
model over problems in distributed computing. Next, provide an automatic verification
approach that simplifies verifying the correctness of systems adhering to this kind of
properties.

1.4 General Contribution

The contribution of this work – in light of the general problem statement – is as follows:

• A generalized model of self-stabilization covering performance aspects is
introduced. The model involves a general scheme of properties, that are signified
as recurrence properties. This generalized model of self-stabilization is defined not
only for discrete systems, but also for real-time systems to cover examples with
real-time aspects (cf. Chapter 6).

• Self-stabilization wrt. recurrence properties is applied to three problems in
distributed computing:

1. Mutual exclusion: the generalized concept studies the service time of
synchronous mutual exclusion algorithms; i.e. the frequency at which
processes are granted a privilege. The study shows trade-off between many
aspects: optimizing the convergence time wrt. the safety property of mutual

6



1.5 Outline

exclusion, optimizing the frequency to be achieved, and optimizing the
convergence time wrt. the achievable frequency. The study provides new
synchronous algorithms having new time and space complexities, where some
are optimal.

2. Unique process selection: this problem is a particular extension of mutual
exclusion introduced in this work. The problem differs from mutual exclusion
by customizing the fairness requirement: fairness is required to be achieved
only under given environments and circumstances. This problem is further
extended to educated unique process selection, in which a process is granted
a privilege only if its state satisfies some local or global requirements. The
study involves designing self-stabilizing wave algorithms, based on propagation
of information with feedback (PIF).

3. Time-Division-Multiple-Access (TDMA) slot assignment : this problem
concerns scheduling communication over time, between nodes in wireless
sensor networks. The study focuses on reducing and optimizing the length of
particular intervals used to avoid collision, namely the guard time, in order
to increase the communication’s throughput. The study tackles real-time
networks having tree topology, and provides a formal approach to optimize
the guard time for such networks. As a case study, the formal approach is
applied to a wireless fire alarm system that conforms to the European Norm
EN 54-25 [DIN05].

• An automatic verification approach for self-stabilizing systems wrt. recurrence
properties is introduced. The approach is based on reducing the problem of
verifying properties over infinite executions, to finding counterexamples with a
given fixed length. The approach is achieved with the help of model checking. A
case study of a mutual exclusion algorithm is provided.

1.5 Outline

The remainder of this thesis is structured as follows. Chapter 2 provides preliminaries,
definitions, and general notation. Next, Chapter 3 introduces recurrence properties
and the generalized model of self-stabilization. Then, Chapter 4 applies the generalized
concept to the mutual exclusion problem. After that, Chapter 5 introduces the educated
and unique process selection problems, and applies the generalized concept to solve it.
Next, Chapter 6 considers the TDMA slot assignment problem under the generalized
concept. After that, Chapter 7 presents the automatic verification approach. Finally,
Chapter 8 states the conclusion and future prospects.
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2 Preliminaries and Notation

This chapter presents preliminary information, formalism, and models of the topologies
and systems considered in the following chapters. The chapter is structured as follows.
Section 2.1 presents some basics of number systems. Section 2.2 formalizes graphs,
trees, and their properties. Section 2.3 presents a model of discrete systems. Finally,
Section 2.4 presents a model of real-time systems.

2.1 Basics

This section defines some notation in regard to number systems and some basic
mathematical functions. First, the number systems are given in the following table,
which in particular specifies notation for positive numbers including and excluding 0.

Number System Symbol Positive, Excluding 0 Positive, Including 0

Real Numbers R R+ R+
0

Rational Numbers Q Q+ Q+
0

Integers Z Z+ Z+
0

Natural Numbers N N N0

Next, notation of some basic mathematical functions over number systems is defined
in the following table. Let Num be a number system.

Function Description (if applicable) Notation
Minimum of Num min(Num)

Maximum of Num max(Num)

Infimum of Num inf(Num)

Supremum of Num sup(Num)

Average of Num avg(Num)

Other than the given basics, other expressions are defined. First, the word “iff” is
used to express “if and only if”. Second, the symbol “O” denotes the big O notation
that is used to describe complexity measures. Next, for each a, b ∈ N0, the expression
“a mod b” denotes “a modulo b”. Next, let ? ∈ {>,< . ≥,≤}. The expression a, b ? c
denotes a ? c∧ b ? c. Finally, for any quantified statement with ∀ or ∃ , the symbol “•” is
used to separate the quantifiers from the statement’s body, and subsequent quantifiers
in one statement are separated with commas. The following statement is an example.

∀x,∃ y • y ≥ x
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2 Preliminaries and Notation

2.2 Topology

This section defines general graphs and trees as underlying topologies for distributed
systems. Note that in each following chapter, the topology is specified in the beginning
of the chapter. In addition, for all topologies in this work, it is assumed that the vertices
have always unique id’s.

2.2.1 Vertex

A vertex v is a tuple (id,Vars), where id ∈ {0, . . . , n−1} ⊂ N0, and Vars is a set of
variables. A vertex v of id i is denoted by vi. A variable var that belongs to a vertex
vi, is denoted by var i or varvi . The domain of a variable var , denoted by Dom(var), is
the set of all possible values of var .
The variables are used to specify the states of the vertices, and therefore, the global

configuration of the system.

2.2.2 Graph

A graph is a tuple G = (V, E), where V is a non-empty set of vertices, E ⊆ {{v, v′} :
v, v′ ∈ V ∧ v 6= v′} is a set of edges, and each vertex in V has a unique id. Given a graph
G = (V, E):

• For each {v, v′} ∈ E , v and v′ are said to be neighbors. The set of neighbors of a
vertex v is denoted by Nv. The symbol N ∗v is used to denote Nv ∪ {v}.

• A path in G is a finite sequence of vertices v0, . . . , vu−1, such that there exists
{vi, vi+1} ∈ E for each 0 ≤ i < u− 1. For each path v0, . . . , vu−1:

– The vertex v0 is said to be linked to the vertex vu−1 by this path.

– The number of edges in the path – which equals u−1 – is said to be the length
of the path, denoted by len(v0, . . . , vu−1).

• The degree of a vertex v, denoted by degree(v), is the number of edges that are
adjacent to v. The distance between any two vertices v, v′ ∈ V, denoted by
dist(G, v, v′), is the length of the shortest path in G that links them. The diameter
of a graph G, denoted by diam(G), is the maximum distance between any two
vertices. The size of G is |V|, denoted by n (short version of n(G)).

Directed Connected Graph

A graph G = (V, E) is said to be directed iff E ⊆ V × V holds, and for each path
v0, . . . , vu−1, for each 0 ≤ i < u− 1, (vi, vi+1) ∈ E . G is said to be connected iff:

• if G is undirected, for each two vertices v, v′ ∈ V, there exists at least one path
that links them.

• If G is directed, the undirected version of G is connected.1

1Note that this meets the notion of weakly connected directed graph.
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2.2 Topology

Assumption. This work concerns distributed systems and related properties. For that,
the trivial cases where a graph has a unique node are w.l.o.g. neglected. It is assumed
that for each graph G, n ≥ 2 holds, which entails that if G is connected, then diam(G) ≥ 1.

Figure 2.1 presents three graphs as examples. Figure 2.1a shows an undirected
connected graph, where both sequences v5, v4, v2, v0 and v0, v2, v4, v5 are paths of length
3. The neighbors of v0 (Nv0) are v1 and v2. The diameter equals 4. The graph in
Figure 2.1b is directed, and the sequence v5, v4, v2, v0 is not a path. The graph in
Figure 2.1c is not connected since there is no path from any of v4, v5 to the others.

v0 v1

v2 v3

v4 v5

(a) Undirected and connected

v0 v1

v2 v3

v4 v5

(b) Directed and connected

v0 v1

v2 v3

v4 v5

(c) Directed and not connected

Figure 2.1: Examples of graphs of size n = 6

2.2.3 Tree

A tree is a directed connected graph T = (V, E) with a unique vertex v such that, for
each v′ ∈ V, there is a unique path from v to v′ in T ; v is called root of T , denoted by
root. Given a tree T = (V, E):

• Let v0 ∈ V be the root. For each path v0, . . . , vu−1, for each 0 ≤ i < u−1, vi is
said to be a parent of vi+1, denoted by parent(vi+1), and vi+1 is said to be a child
of vi. The set of children of vi is denoted by Ch(vi). Each vertex with no children
is called a leaf, and each vertex that is neither a root nor a leaf is called an inner
vertex. The set of leaves (resp. inner vertices) in V is denoted by Leaves(T ) (resp.
Inner(T )) – shortly, Leaves (resp. Inner).

• For each vertex v ∈ V, the depth of v, denoted by depth(v), is the length of the
path that links the root with v. The depth of T , denoted by depth(T ), is the
maximum depth observed for any vertex v ∈ V. T is said to have a branching
factor of f ∈ N iff ∀ v ∈ V \ Leaves(T ) • |Ch(v)| = f .

• A subtree of V, rooted by a vertex v, is a tree T ′ = (V ′, E ′), where v ∈ V ′ ⊆ V,
E ′ ⊆ E , and v is the root. The subtree T ′ is said to be maximal iff there is no
larger subtree rooted by v. A d-subtree of T = (V, E) is a subtree T ′ = (V ′, E ′) of
T , such that

1. T ′ is rooted by the root,

2. depth(T ′) = d, and

3. there is no larger subtree of T having depth d.
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2 Preliminaries and Notation

Following the assumption that diam(G) ≥ 1 holds for each connected graph G, for each
tree T , depth(T ) ≥ 1 also holds.
Figure 2.2 illustrates trees of size n = 15, depth 3, branching factor 2, and rooted

by v0. The gray vertices denote subtrees: in Figure 2.2a, the subtree is not maximal,
because it is not the largest subtree rooted by v1; the maximal subtree rooted by v1 is
given in Figure 2.2b. Figure 2.2c illustrates a 2-subtree: it has a depth 2, and there is
no larger subtree rooted by the root and having depth 2.

v0

v1

v2

v3 v4

v5

v6 v7

v8

v9

v10 v11

v12

v13 v14

v1

v2

v3 v4

v5

(a) Subtree

v0

v1

v2

v3 v4

v5

v6 v7

v8

v9

v10 v11

v12

v13 v14

v1

v2

v3 v4

v5

v6 v7

(b) Maximal subtree rooted by v1
v0

v1

v2

v3 v4

v5

v6 v7

v8

v9

v10 v11

v12

v13 v14

v0

v1

v2 v5

v8

v9 v12

(c) 2-subtree

Figure 2.2: Examples of trees of size n = 15 and depth 3

2.3 Discrete Systems

To formalize discrete systems over a graph, the shared memory model of Dijkstra [Dij74]
is used, with composite atomicity of the read and write actions. The model is formalized
in detail in the upcoming sub-sections. Briefly, the model reflects distributed algorithms
executed by processes forming a graph, where the registers of each process are visible to
its neighbors. For simplicity, the read and write registers are abstracted by variables.
Each process runs a sub-algorithm of a given distributed algorithm. A sub-algorithm is
a set of so-called guarded commands that are enabled depending on the states of the
process and its neighbors. If a process has an enabled guarded command, the process
executes an action that modifies the variables of the process. The order and concurrency
of executing actions is abstracted by the so-called scheduler.
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2.3 Discrete Systems

2.3.1 Configurations and Executions

A state s of a vertex vi is a vector of the values of the vertex’s variables and id:

s ∈ Dom(var0)× · · · × Dom(varn−1)× {0, . . . , n−1}.

A configuration of a graph G, denoted by γ, is a vector of the states of all vertices in
G. The set of all possible configurations is called the configuration space, denoted by Γ
(short version of Γ(G)). A configuration γ is said to satisfy a condition con, denoted by
γ |= con, iff con evaluates to true under γ.
An execution Ξ over a graph G is a sequence of configurations of G, which can be

finite γ0, . . . , γu−1 or infinite. Let Ξ : γ0, γ1, . . . be an execution, and let i, j ∈ N0.

• A step of Ξ is a pair (γi, γi+1).

• A subexecution of Ξ is a finite subsequence γi, . . . , γj of Ξ, where j ≥ i.

• An execution prefix of Ξ is a finite subexecution γ0, . . . , γj .

• An execution suffix of Ξ is a subexecution γi, γi+1, . . . .

Let Ξ : γ0, . . . , γu−1 be a finite execution.

• A strict subexecution of Ξ is a finite subsequence γi, . . . , γj of Ξ, such that i > 0
or j < u− 1.

• The length of Ξ, denoted by length(Ξ), is u; i.e., the number of configurations in
Ξ.1

A system Ω (discrete system) is a – possibly infinite – set of executions, such that for
each subexecution Ξ ′ of an execution Ξ ∈ Ω, Ξ ′ is an execution prefix of an execution
Ξ ′′ ∈ Ω. In other words, it is assumed that any configuration is initial configuration
of an execution in the system. This assumption is required to study the properties of
self-stabilization, where a fault may change the configuration arbitrarily, and the system
should stabilize starting from the new configuration as if it is initial.

2.3.2 Distributed Algorithms

A distributed algorithm is a set of sub-algorithms {A0, . . . , Au−1}. Each
sub-algorithm Ai is a set of guarded commands – shortly commands – {gc0, . . . , gcy−1},
such that gc : guard −→ action, where:

• gc is called a label . The label is any unique expression.

• guard is a Boolean expression over variables.

• action is a set of assignment functions.

1In contrast, the length of a path pa is the number of edges in the path, denoted by len(pa).
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2 Preliminaries and Notation

A process p is an extended vertex (idp,Varsp, Asubp), where Asubp is a sub-algorithm.
Let G = (P, E) be a graph, where P is a set of processes. Each process pi runs a
sub-algorithm Ai, such that for each command gc : guard −→ action of Ai, guard is a
Boolean expression over the variables of all pj ∈ Np∗i , and action can modify only the
values of the variables belonging to pi. A command gc : guard −→ action is said to be
enabled in a configuration γ iff guard evaluates to true in γ. A process pi is said to be
enabled in γ iff it has an enabled command in γ.
An execution of a distributed algorithm over a graph G = (V, E) is an execution

γ0, γ1, . . . where in each step (γi, γi+1) for i ≥ 0, a non-empty subset of enabled processes
in P execute the actions of their enabled commands, where each process of them may
execute actions of multiple enabled commands.1

2.3.3 Schedulers

A scheduler is simply a restriction on the set of executions. It can also be described as
a daemon that chooses which actions to be executed in each step. In this work, three
types of schedulers are formalized by describing the corresponding executions.
Let G be a graph, let A be a distributed algorithm, and let Ξ : γ0, γ1, . . . be an

execution of A over G.

• The execution Ξ is said to be asynchronous iff for each step (γi, γi+1) where
i ≥ 0, there exists at least one enabled process p in γi that executes the actions of
a subset of enabled commands of p in (γi, γi+1). Asynchronous executions refer to
the so-called distributed scheduler.

• The execution Ξ is said to be synchronous iff for each step (γi, γi+1) where i ≥ 0,
each enabled process executes actions in (γi, γi+1), given that at least one process
executes its actions. This refers to the synchronous scheduler.

• The execution Ξ is said to be fair iff for each process p, if p is enabled in a
configuration γi, then p executes actions in a step (γj , γj+1) for j ≥ i. This refers
to the fair scheduler.

2.3.4 Self-Stabilization

Self-stabilization wrt. some condition con comprises the two properties convergence and
closure. The former property denotes that a configuration satisfying con is reached
regardless of the initial configuration, and the latter denotes that a configuration
violating con is never reached starting from a configuration satisfying con. In the
following, self-stabilization is formalized in terms of executions.
A system Ω is said to be self-stabilizing wrt. a condition con iff for each execution

γ0, γ1, . . . , there exists finally a configuration γj , for j ≥ 0, such that:

• Each configuration of the execution suffix γj , γj+1, . . . satisfies con.

• Each configuration of the execution prefix γ0, . . . , γj−1 (if existing) violates con.
1This corresponds to the notion of concurrent executions, which contrasts serial executions where each
process may execute the actions of exactly one enabled command in each step.
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2.4 Real-Time Systems

The convergence time wrt. con – or the con-convergence time – of an execution
γ0, γ1, . . . is the minimum i ∈ N0 such that each of γi, γi+1, . . . satisfies con. The
con-convergence time of a system Ω is the minimum j ∈ N0, such that for each execution
Ξ : γ0, γ1, . . . in Ω, each of the configurations γj , γj+1, . . . satisfies con.
For example, let Ξ : γ0, γ1, .., γ5, γ6, ... be an infinite execution, where the

configurations γ5, γ6, ... satisfy a condition con, and the configurations γ0, ..., γ4 do not
satisfy con. The con-convergence time of Ξ is 5. If, for example, γ3 also satisfies con,
then Ξ does not converge wrt. con by the given classical definition, because γ4 does not
satisfy it.

2.4 Real-Time Systems

A real-time systems is defined by a set of evolutions – confronting executions in
discrete systems – over time. The following formalism of real-time systems is inspired
from [OD08]. Self-stabilization is also defined for real-time systems in terms of evolutions
over time.
By Time, the infinite set R+

0 = [0,∞) is denoted. Let G be a graph, and let Γ denote
the set of all configurations of G. An interpretation1 I of G at a point in time t ∈ Time
is the valuation of all the variables and ids observed in G at t; i.e.

I : Time −→ Γ

An interpretation over a time interval [t1, t2] ⊂ Time, denoted by I([t1, t2]), is the set
of interpretations at all points in [t1, t2]. An evolution over G is an interpretation of G
over time.
In the definition of discrete systems, it is assumed that each configuration is initial,

in order to consider self-stabilization. A similar assumption is included for real-time
systems as well. A real-time System RTS over G is a set of evolutions over a graph G,
under the assumption that for each evolution I ∈ RTS and each time point t ∈ Time,
there exists an evolution I ′ ∈ RTS such that I(t) = I ′(0).
A real-time system RTS is said to be self-stabilizing wrt. a condition con iff for each

evolution I ∈ RTS, there exists a time point t ∈ Time, such that:

• For each t′ ≥ t, the condition con is satisfied by I(t′).

• For each t′′ < t (if existing), the condition con is violated by I(t′′).

The convergence time of an evolution I wrt. a condition con is the minimum t ∈ Time
such that I(t) satisfies con. The convergence time of a real-time system Ω wrt. con is
the minimum t such that for each evolution I ∈ Ω, the condition con is satisfied by I(t).
Figure 2.3 illustrates an example of an evolution I over a topology G = (V, E), where

each vertex vi has a variable xi. It states that for all vertices vi, the value of xi equals
0 in the interval [0, t), and equals 1 starting from t. Let con be a condition defined as
follows:

con := ∀ v ∈ V • v.x = 1

By the definition of self-stabilization, the evolution I is self-stabilizing wrt. con in t time.
1“Interpretation” meets the notion of configuration in discrete systems.
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2 Preliminaries and Notation

Figure 2.3: An evolution I

The presented formalism in this chapter provides a basis for modelling the discrete
and real-time systems and algorithms in the following chapters, in addition to their
correctness proofs.
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3 Recurrence in Self-Stabilization

This chapter introduces a new property to be considered in the scope of self-stabilization,
which is the core property concerned in this thesis. The property comprises a
performance measure, defined over executions in contrast to the classical properties
defined over configurations in self-stabilization. Some of this chapter’s content has
appeared in [3, 7] of the author’s publications.
This chapter is structured as follows. Section 3.1 motivates the property. Next,

Section 3.2 formalizes the property and extends the definition of self-stabilization for
discrete systems. Lastly, Section 3.3 formalizes the property for real-time systems.

3.1 Beyond Safety in Self-Stabilization

System requirements or properties are usually categorized into safety and liveness
properties. On one hand, satisfying safety properties guarantees that the system does not
violate critical requirements. On the other hand, satisfying liveness properties ensures
that the system progresses, provides the aimed output, and executes useful actions.
Whether a system is efficient or not can be specified by many criteria. For examples,

this can be measured by how fast the system responds, how high the throughput is, how
available the system is, the amount of energy conserved by the system, and others. As a
comprehensive view, the efficiency can be defined by the degree of useful output provided
by the system, given some amount of time and energy. A useful output of a system is
usually the result of actions, that are executed when some certain liveness properties are
satisfied.
Liveness properties cannot be violated in finite time as safety properties. In detail,

satisfying liveness guarantees that some actions are executed, no matter when. However,
satisfying safety requires satisfying conditions within deadlines on time or number of
steps. This has two implicit impacts in self-stabilization:

1. The convergence time of a system is actually the time required to reach a behavior
in which the safety property always holds, no matter when the system satisfies
the conditions related to liveness properties. This fact limits the convergence time
optimization to safety-related properties.

2. A liveness property can be satisfied by two systems; however, not necessarily
providing the same performance, even if the performance measurement is based on
the conditions related to the liveness property. This fact limits the stabilization
behavior to satisfy safety and liveness, while neglecting the achieved performance.

The performance in this work is defined by how frequent some condition is satisfied
in an execution, which provides the opportunity to measure how frequent an action
is executed. Such a definition can be viewed as an abstraction to the typical notion
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3 Recurrence in Self-Stabilization

of throughput. The interesting point to consider for a self-stabilizing system is the
(convergence) time required to reach a minimum quality of service, starting from any
initial configuration. This provides a generalized view to self-stabilization, and highlights
a possible trade-off: in the design of self-stabilizing systems, minimizing the convergence
time wrt. safety may increase the convergence time wrt. the desired quality of service,
and vice versa.
Figure 3.1 illustrates this issue. It presents two executions Ξ1 and Ξ2 (represented

by right arrows), where two conditions con and con′ are satisfied by some configurations
(represented by the gray area and vertical bars) in the executions. The condition con
reflects a classical condition in self-stabilization: once con is satisfied by a configuration,
any following configuration satisfies con. The condition con′ is related to the property
reflecting the performance in this work. There are two phenomena to be concerned.
First, the convergence time wrt. con is in Ξ1 smaller than in Ξ2, while the time required
to start satisfying con′ in Ξ2 – from the beginning – is smaller than in Ξ1. Second, the
frequency of satisfying con′ at some point in Ξ2 is greater than in Ξ1. There is a clear
trade-off between the two executions: Ξ1 is more efficient wrt. con, while execution Ξ2 is
more efficient wrt. con′. In the following, two motivational examples map the conditions
con, con′, and the scenario in Figure 3.1 to well known problems.

Figure 3.1: Convergence wrt. many properties

The first example concerns the problem of self-stabilization wrt. mutual
exclusion [Dij74]. The safety property for mutual exclusion is that at most one process
is granted a privilege in each configuration (con). The performance is measured by how
often an arbitrary process is granted a privilege in any execution (con′ denotes that
one process is granted privilege.) Such a performance measure is usually referred to as
service time [Joh02, Joh04]. Considering mutual exclusion algorithms in synchronous
environments: the algorithms of Dijkstra [Dij74] converge wrt. the safety property in n
steps – n is the number of processes. If the algorithms are applied to ring topologies,
then in each step after convergence, one process is granted a privilege. In contrast, given
a graph G, the algorithm in [DG13] converges in ddiam(G)/2e steps, where diam(G) is
the diameter of G. This convergence time complexity improves the one of Dijkstra’s
algorithms. However, the algorithm in [DG13] achieves less performance than [Dij74]
for ring topologies. Mutual exclusion is considered in detail in Chapter 4, and a related
problem to mutual exclusion is presented in Chapter 5.
The second example concerns the slot assignment problem in Time Division Multiple
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Access (TDMA) protocols [KA04, HT04, AK05]. TDMA slot assignment is a known
problem in distributed computing. It concerns scheduling communication between nodes
of a network when there is a limited communication bandwidth. The schedule is achieved
by dividing time into slots, in each, a number of particular nodes are assigned to send
or listen to messages. The safety property in such systems is that at each point in time,
at most one node within some distance in the graph is allowed to send a message (con).
The liveness property is that each node frequently has a chance to send its messages.
For this example, the system converges when all nodes are assigned to slots. Optimizing
the convergence time implies having all nodes assigned as quickly as possible. However,
performance could be measured by how often a message of a particular sort is being sent
without collision (con′ denotes that one node is sending a message of a particular sort.)
This performance is usually impacted by the slot assignment order (cf. Chapter 6), and
an efficient message delivery in this sense may not be achieved together with fast slot
assignment. TDMA slot assignment is considered in detail in Chapter 6.
The following section summarizes related work.

3.1.1 Related Work

The general notion of performance or efficiency in self-stabilization is usually measured
according to the convergence time, the space requirement, and the generality of the
underlying topology and scheduler. Tremendous work focuses on minimizing the
convergence time of self-stabilizing algorithms, e.g. [KK13, DG13]. Other works consider
minimizing the space requirement, as in [BDPV99c, BDPV99d, BPV04, BPV08]. Others
exploit variant environments, e.g. underlying topologies or schedulers, to enhance the
performance [BPV08, CPVD01, LMV14].
There are other examples considering other notions of performance, such as [FBT13,

NKM06, DTW06, GGHP96]. The work of [FBT13] presents a metric for measuring
the expected mean value of the convergence time. This value reflects the average
convergence time, and it can be computed by probabilistic model checking. In [NKM06],
the occurrence of transient faults during convergence and their effect on the convergence
time is considered. The work of [DTW06] defines and applies fault tolerance metrics,
such as reliability and availability, to evaluate self-stabilizing systems, also under the
assumption of ongoing faults. The work of [GGHP96] considers the global consequences
of a local failure caused by a transient fault until the system converges. A space-efficient
transformational approach that reduces the impact of local failures on the global
performance is given in [KT12]. These approaches, and many others, basically address
performance aspects of self-stabilizing systems.

3.2 Recurrence in Discrete Systems

This section formalizes a property for discrete systems, and generalizes the definition of
self-stabilization to cover this property. The topologies considered in this chapter are
connected graphs.
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3 Recurrence in Self-Stabilization

3.2.1 Recurrence Property

The core measure, on which the performance depends, is basically applied to finite
executions: given a finite execution, this measure is the ratio of configurations that
satisfy some condition in the execution. This ratio is signified as the recurrence of the
condition in the execution.

Definition 3.1 (Recurrence). Let G be a topology, let con be a condition over the
configurations of G, and let Ξ be a finite execution over G. The recurrence of con in
Ξ, denoted by Reccon(Ξ), is the ratio ∆ ∈ [0, 1] ⊂ R of the configurations satisfying con
in Ξ. ♦

For example, let con be a condition defined over configurations of a topology. As
notation, let γ denote that γ satisfies con. For the following finite execution:

Ξ : γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ9, γ9, γ10, γ11,

the recurrence of con in Ξ is the result of a simple division operation

Reccon(Ξ) =
6

12
= 0.5.

Having the notion of recurrence over finite executions, the performance-related
property is defined over possibly infinite executions as follows: given an infinite execution
Ξ, the property indicates that each execution prefix of Ξ has at least ∆ recurrence of
the condition con. The property is denoted by con∆.

Definition 3.2 (con∆). Let con be a condition over the configurations of a topology,
and let ∆ ∈ [0, 1] ⊂ R. An execution Ξ : γ0, γ1, . . . over a topology is said to satisfy
con∆con∆con∆ iff for each i ≥ 0, the recurrence of con in γ0, . . . , γi (Reccon(γ0, . . . , γi)) is greater
or equal to ∆. ♦

Corollary 3.1. If an execution Ξ satisfies con∆ for any ∆ ≥ 0, it follows that for all
0 ≤ ∆′ ≤ ∆, Ξ satisfies con∆′ .

3.2.2 con∆-Convergence Time

Next, the definition of self-stabilization is generalized to cover the property con∆. The
main thing to be concerned with is the worst-case convergence time to a configuration
γc, from which any execution γc, γc+1, . . . satisfies con∆.

Definition 3.3 (con∆-Convergence Time). Given a system Ω over a topology, a
condition con over the configurations of the topology, and ∆ ∈ [0, 1] ⊂ R.

• An execution Ξ : γ0, γ1, · · · ∈ Ω is said to have a con∆-convergence time of c
steps iff c is the minimum number, such that the execution suffix γc, γc+1, . . . of
Ξ satisfies con∆.
It is also said that for each j ≥ c, the execution Ξ guarantees con∆-convergence
in j steps.

• The system Ω is said to have a con∆-convergence time of c steps iff c is the
maximum con∆-convergence time among all executions of Ω. ♦
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3.2 Recurrence in Discrete Systems

Figure 3.2: con∆-Convergence

Figure 3.2 illustrates the intuition of the given definitions by an example of an
execution, where the distance between configurations satisfying con is constant.

In Definition 3.3, the two terms have and guarantee are used to distinguish two slight
different meanings. This is done explicitly in the definition to highlight a major difference
between the classical self-stabilization wrt. con and self-stabilization wrt. con∆. In
classical self-stabilization, both having and guaranteeing a con-convergence time of c
steps imply that each configuration of the execution suffix γc, γc+1, . . . satisfies con.
However, in Definition 3.3, having con∆-convergence time of c steps implies that the
execution suffix γc, γc+1, . . . satisfies con∆, but guaranteeing does not necessarily imply
it for the exact suffix: guaranteeing implies that there exists 0 ≤ i ≤ c such that
γi, γi+1, . . . satisfy con∆. Note that in a self-stabilizing system wrt. con∆ in c steps, at
least one execution has con∆-convergence time of c steps (cf. Corollary 3.1).
To illustrate Definition 3.3, consider the three executions given in Table 3.1:

con0.25-Convergence
i Execution i (Ξi) Time for Ξi
1 Ξ1 : γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11, γ12, γ13, . . . 0

2 Ξ2 : γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11, γ12, γ13, . . . 5

3 Ξ3 : γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11, γ12, γ13, . . . 7

Table 3.1: Executions converging to con0.25. γ denotes that γ satisfies con.

1. Ξ1: the condition con is satisfied once in every four subsequent configurations,
starting from γ0. By Definitions 3.2 and 3.3, con0.25 is achieved in 0 steps. Indeed,
0.25 is the minimum ∆ guaranteed in Ξ1. If, for example, a transient fault happens
after any configuration, say γj where j > 0, a recurrence of 0.25 is still guaranteed
in γ0, . . . , γj .

2. Ξ2: the condition con is satisfied in every four subsequent configurations, starting
from γ5. This implies that con0.25 is achieved in five steps.

3. Ξ3: starting from γ7, the recurrence of con is 1.0. This case models the classical
self-stabilization; i.e. the con1.0-convergence time is 7. Note that by Definition 3.3
and Corollary 3.1, the con0.25-convergence time is also 7 in Ξ3.

Assuming that the three executions Ξ1, Ξ2, Ξ3 are the only ones for a system Ω, then
by Definition 3.3, the con∆-convergence time of Ω is 7.
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3 Recurrence in Self-Stabilization

3.2.3 con∆-WarmUp Time

In self-stabilization, it is usually assumed that faults do not happen very frequently. In
other words, the convergence time is assumed to be small enough such that some service
is delivered before another fault hits the system. This, in turn, directs the focus to
neglect the delivered service during convergence. In practice, there are environments –
like wireless sensor networks – where systems are exposed to high frequency of faults.
Naturally, for such environments, it is important that the system provides a reasonable
service, even during the convergence of the system.
Such environments are also considered in this work, together with the notion of

recurrence. To this end, the notion of con∆-warmup time is introduced. It denotes
the time required by an execution to reach a configuration γ, such that the recurrence
of con in the execution prefixes ending in γ and all following configurations is greater or
equals ∆. In contrast to the con∆-convergence time, the con∆-warmup time considers
the recurrence of con starting from the beginning of executions.

Definition 3.4 (con∆-WarmUp Time). Given a system Ω over a topology, a condition
con over the configurations of the topology, and ∆ ∈ [0, 1] ⊂ R.

• An execution Ξ : γ0, γ1, · · · ∈ Ω is said to have a con∆-warmup time of w steps
iff w is the minimum number, such that for each i ≥ w, the recurrence of con in
the execution prefix γ0, . . . , γi of Ξ (i.e. Reccon(γ0, . . . , γi)) is greater or equals ∆.
It is also said that the execution Ξ guarantees con∆-warmup in i steps.

• The system Ω is said to have a con∆-warmup time of w steps iff w is the
maximum con∆-warmup time among all executions of Ω. ♦

Figure 3.3 illustrates the warmup notion for an execution Ξ. In the early execution
prefixes of Ξ, the recurrence of con does not reach the value ∆. However, at some
configuration (say γw), the recurrence of con from the initial configuration (γ0) until γw
reaches ∆, and then, for any following configuration, the recurrence of con from γ0 is
greater than or equals ∆. This implies that the con∆-warmup time is w steps.

Figure 3.3: con∆-WarmUp
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3.3 Recurrence in Real-Time Systems

3.3 Recurrence in Real-Time Systems

Recurrence is defined for real-time systems similar to discrete systems, except that the
ratio is defined over finite time intervals instead of finite executions.
The evolutions of a real-time system are defined over time, which does not exist in the

model of discrete systems. For that, the following definition introduces a supplementary
function, which specifies whether an evolution satisfies a condition at some point in time.

Definition 3.5. Given an evolution I, a condition con, and a point in time t ∈ Time,
the function holds(I, t, con)holds(I, t, con)holds(I, t, con) is defined piecewise as follows:

holds(I, t, con) =

{
1 if I(t) |= con

0 if I(t) 6|= con ♦

In order to define the recurrence of con in an evolution I over a time interval, it is
required to measure the length of the sub-intervals in which the con holds; or in other
words, in which the function holds(I, ·, con) is equal to one. However, time is defined by
the set R+

0 , and this allows having infinite set of sub-intervals in which holds(I, ·, con)
is equal to one. In practice, the condition con is supposed to hold in a finite number of
sub-intervals of an interval. Therefore, it is assumed that for each interval, there is a
finite number of sub-intervals, in which holds(I, ·, con) equals 1. With this assumption,
the function holds(I, ·, con) is integrable.

The following definition formalizes the notions of recurrence and con∆ for real-time
systems.

Definition 3.6. Let con be a condition, and let G be a topology.

• Given an evolution I of G over an interval [t1, t2], the recurrence of con in
I([t1, t2]), denoted by Reccon(I([t1, t2])) is the ratio of the accumulative time in
which con holds in I([t1, t2]); i.e.

Reccon(I([t1, t2]) =

∫ t2
t1

holds(I, t, con) dt

t2 − t1
.

• Let ∆ ∈ [0, 1] ⊂ R. An evolution I of G over a finite interval [t1, t2] or an infinite
interval [t1,∞) is said to satisfy con∆ iff for each t ≥ t1 (and t ≤ t2 in the former
case), the recurrence of con in I([t1, t]) is greater than or equals ∆. ♦

The following definition models the notion of con∆-convergence for real-time systems.

Definition 3.7. Given a real-time system RTS over a topology, a condition con, and
∆ ∈ [0, 1] ⊂ R.

• An evolution I ∈ RTS is said to have a con∆-convergence time c ∈ Time iff c
is the minimum time point, such that I([c,∞)) satisfies con∆.
It is also said that for each j ≥ c, the evolution I guarantees con∆-convergence
at the time point j.
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3 Recurrence in Self-Stabilization

• RTS is said to have a con∆-convergence time c ∈ Time iff c is the maximum
con∆-convergence time for all evolutions of RTS. ♦

Similarly, the notion of warmup time is defined for real-time systems.

Definition 3.8. Given a real-time system RTS over a topology, a condition con, and
∆ ∈ [0, 1] ⊂ R.

• An evolution I ∈ RTS is said to have a con∆-warmup time w ∈ Time iff w is
the minimum time point, such that for each i ≥ w, the recurrence of con in I([0, i])
(i.e. Reccon(I([0, i]))) is greater or equals ∆.
It is also said that I guarantees con∆-warmup at the time point i.

• RTS is said to have a con∆-warmup time w ∈ Time iff w is the maximum
con∆-warmup time among all evolutions of the RTS. ♦

3.4 Remarks

Some remarks regarding recurrence properties are provided.

• The following remarks are directly implied from Definition 3.3 and the definition
of self-stabilization:

– The classical self-stabilization is a special case in which is reflected by setting
∆ = 1.0.

– If the concerned recurrence ∆ is greater than 0, the convergence time
wrt. con∆ guarantees reaching at least one configuration that satisfies the
condition.

– If the gap between two subsequent configurations satisfying con is constant,
say v, as in case Ξ2 in Table 3.1, the minimum recurrence ∆ to be guaranteed
after convergence can be computed by a simple division operation: 1

v .

– If a condition is not satisfied infinitely often; i.e. if a condition is never satisfied
after some configuration, there is no minimum recurrence to be guaranteed.
This also holds if the number of configurations between any two subsequent
configurations satisfying the condition keep increasing.

• There is a category of self-stabilizing systems, in which the executions of a system
are finite, and the system stabilizes at the terminal configurations. Such systems
are called silent self-stabilizing systems [DGS96, CD94]. For this category, the
recurrence notion may not be useful, since the executions are finite, and the system
does not need to execute actions after convergence. However, the case is still
covered by Definition 3.3.

• If the system is reactive, i.e. is based on requesting and serving actions, analyzing
the recurrence of serving may require to assume that there are always processes
that are requesting.

• The related work does not offer an explicit proving scheme for checking warmup
properties. However, in Chapter 7, automatic verification tools are shown to be
useful for this issue.
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3.4 Remarks

Recall that in this work, distributed algorithms are defined by guarded commands. To
measure the frequency of executing particular commands, it is sufficient to analyze the
recurrence of the conditions that guarantee their execution, where the conditions can be
defined according to the guards of the commands. This in turn provides the ability to
analyze the recurrence of running particular actions in a system. Note that considering
the recurrence of the actions is similar to considering the system throughput.
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4 Mutual Exclusion

In this chapter, the generalized concept of self-stabilization is applied to design efficient
self-stabilizing algorithms wrt. mutual exclusion, which is a well known problem in the
area of self-stabilization. In the scope of this work, the efficiency reflects having high
recurrence of granting a privilege to processes, which implies having a high service time
of the algorithms. The major contribution of this chapter is a self-stabilizing mutual
exclusion algorithm for connected graphs using the shared memory model under the
synchronous scheduler, where the algorithm guarantees two issues. First, the convergence
time complexity wrt. mutual exclusion is optimal. Second, the algorithm guarantees
that starting from any configuration, after finite number of steps, the recurrence of
granting a privilege to any process is 1.0; i.e. in each synchronous step, exactly one
process is granted a privilege. Furthermore, this chapter presents algorithms showing the
trade-off between the following complexity measures: the convergence time complexity
wrt. mutual exclusion, the convergence time wrt. ∆ recurrence of granting a privilege,
and the space requirement. Some of this chapter’s content has appeared in [3, 7] of the
author’s publications.
This chapter is structured as follows. Section 4.1 presents the mutual exclusion

problem and related work. Section 4.2 explains the problem statement, the assumptions,
and the contributions of this chapter. Next, Section 4.3 presents three mutual exclusion
algorithms, showing trade-off between their complexity measures. Section 4.4 provides
correctness proofs of the complexity measures of the algorithms. Next, Section 4.5 shows
the optimality proof of the convergence time complexity wrt. mutual exclusion under
the synchronous scheduler, which appears in two algorithms in Section 4.3. Finally,
Section 4.6 presents concluding remarks.

4.1 The Mutual Exclusion Problem

Mutual exclusion – shortly mutex – is a significant problem in concurrent and distributed
computing. Mutex is pioneered by Dijkstra in 1965 [Dij65]. It is also a significant topic
in self-stabilization since 1974 [Dij74]. The following parts in this section present the
mutex problem and related work.

4.1.1 Mutual Exclusion

Mutex is considered in systems having at least two processes performing concurrent
tasks. Given a set of multiple processes running tasks concurrently, mutex comprises
two properties. First, there exists a particular action that should not be executed, or
enabled, by two processes simultaneously. Such an action is referred to as an access to
a critical section, that should not be accessed by more than one process in each step.
This property is a safety property. Second, each process must be enabled to access
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4 Mutual Exclusion

the critical section infinitely often. This property is a liveness property, that is usually
called fairness, because it ensures that no process is blocked forever to access the critical
section.
There are two classical assumptions regarding mutex. First, the behavior of “accessing

the critical section” by a process does not block another process to access the critical
section. Second, no process may stay in the critical section forever.
The classical problem of mutex was first identified and addressed by Dijkstra in the

seminal work of [Dij65]. Here, Dijkstra introduced a mutex algorithm executed by
processes having access to shared variables. Each process executes the actions of the
algorithm in a sequential order. With this algorithm, mutex is guaranteed under two
assumptions. First, some variables must be initialized by some values before any process
accesses the critical section for the first time. Second, there exist no transient faults.
These two assumptions indicate that self-stabilization wrt. mutex is not concerned in
this algorithm. Many other solutions followed Dijkstra’s work [Dij65], such as Lamport’s
algorithm [Lam74], Peterson’s algorithm [Pet81], and others [Ray86].
In the example above, failing to satisfy the safety property of mutex is critical: it may

lead to having wrong outputs. Safety critical systems are required to guarantee mutex
under all circumstances. However, for other systems, mutex is needed to guarantee the
delivery of a certain quality of service, and is not safety critical. For example, if two
parallel processes are responsible for scheduling, prioritizing, or sorting entities stored in
a shared resource, then failing to satisfy mutex for a finite time may only delay the sorting
operation. This is usually not as critical as providing wrong outputs. Self-stabilization
wrt. mutex in this case is useful to overcome failures due to transient faults in sorting. In
relation to this, the pioneering work of self-stabilization by Dijkstra [Dij74] introduced
the first self-stabilizing distributed mutex algorithms for ring topologies that use the
shared memory model, in which there are no globally shared variables; i.e. the variables
of a process are read by only the process itself and its neighbors.
This chapter addresses self-stabilization wrt. mutex in the sense of [Dij74], i.e. when

a system is required to be self-stabilizing wrt. mutex.

4.1.2 Related Work

The early work concerning self-stabilization in spite of distributed control, which has
been pioneered by Dijkstra [Dij74], introduces three self-stabilizing mutex algorithms for
ring topologies using the shared memory model. The algorithms converge wrt. mutex
in O(n2) steps under the asynchronous scheduler [CSZ10], where n is the number of
processes. The three algorithms require three, four, and n values for each process,
respectively. A following work of Lamport considers mutex and its self-stabilization
in [Lam86]. This work takes into consideration many real-world requirements other
than the basic ones. For example, it considers prioritizing the actions by first-requested
first-served. It also considers having levels of the fairness requirement. Later, in [DIM93],
the authors present a self-stabilizing mutex algorithm for connected graphs using the
shared memory model, where the real/write operations are not atomic. The algorithm is
based on building a spanning tree through the graph, and passing a token in a depth-first
manner through the tree. The convergence time complexity is O(n · diam(G)) under the
synchronous scheduler.
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A later work extends mutex by many other properties. The first property is the group
mutex [Jou98]: for this property, it is assumed that there are many critical sections
that may have different types. The basic requirement is that if two processes access
two different critical sections, then both accessed critical sections must have the same
type. Examples of self-stabilizing algorithms covering this problem are [CP00, BB11].
The second property is the local mutex [HP92]: the requirement is that if a process
is in the critical section, then none of the process’s neighbors is also in the critical
section, but other processes are allowed to do so. Local mutex reflects the well-known
Dining Philosophers’ problem. Examples of self-stabilizing solutions wrt. this property
are [KY02, BDGM02]. Furthermore, there is the `-exclusion problem [FLBB79]: the
requirement is that at most ` processes can simultaneously access the critical section.
Examples of self-stabilizing solutions wrt. this property are [DDHL09, CDDL15].
In a recent work, Dubois et al. [DG13] exploit a particular approach to design a

self-stabilizing mutex algorithm for connected graph using the shared memory model.
The approach basically pertains the so-called phase clock or unison [GH90, CFG92,
BPV04, BPV08]. In a phase clock system, each process has an integer variable – a clock –
that is incremented within a range of values. The requirement of such a system is to keep
a bounded difference between the clocks belonging to all processes. Mutex is achieved as
follows: each process is assigned a constant value, such that the difference between the
constant values assigned to any two processes is greater than the difference between the
clock values belonging to the processes. Next, a process is granted a privilege to access
the critical section only if its clock value is equal to its constant value. The significance of
the approach [DG13] is that the convergence time complexity is ddiam(G)/2e under the
synchronous scheduler, which has not been achieved before. This complexity is claimed
to be optimal in [DG13]. Section 4.5 of this work points out a flaw in the optimality
proof of [DG13] and refines it.
The performance of self-stabilizing mutex algorithms has many aspects: it considers

the convergence time, e.g. [CSZ10], the space requirement, e.g. [BPV04], the generality of
the topology, e.g. [HMR94], the scheduler, e.g. [DGT00], and other aspects. Measuring
the recurrence of granting a privilege to processes is usually referred to as service
time. This aspect is considered explicitly for unidirectional anonymous ring topologies
in [Joh02, Joh04], in which a single token is circulated through processes in a ring. A
process is, then, granted a privilege if it owns the token. In [Joh02], the author provides
an algorithm that once has stabilized, it provides optimal service time; i.e. for each n
steps, each process obtains the single token once. The space requirement is optimized
for the same problem in [Joh04]. In comparison to Dijkstra’s approach [Dij74], the
algorithms of [Joh02, Joh04] do not assume the existence of process ids, nor an identified
process that executes a different sub-algorithm
Considering the recurrence of granting a privilege – in other words: the service time

– in connected graphs under the synchronous scheduler, there exists no approach that
provides optimal recurrence of granting a privilege – which equals the recurrence of 1.0
– together with optimal convergence time wrt. mutex. The approach of [BPV08] can be
applied straightforward to achieve optimal recurrence of granting a privilege. However,
the convergence time wrt. mutex using [BPV08] is diam(G)−1. In addition, the approach
of [DG13], which uses the asynchronous unison [BPV04], does not provide optimal
recurrence of granting a privilege, even when using the synchronous unison [BPV08].
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4.2 Problem Statement and Assumptions

In this section, the aim is to design an efficient self-stabilizing mutex algorithm, with a
focus on the recurrence of granting a privilege to processes.
Recall that the specification of mutex is that, in each configuration, at most one process

is privileged to access the critical section, and each process is privileged infinitely often.
This specification is formalized in the following definition.

Definition 4.1 (Mutual Exclusion – ME). Let G = (P, E) be a graph where P is a
set of processes, let A be an algorithm, and let privileged be a condition on each state
of each process p ∈ P (or shortly privilegedp). A specification ME, denoting mutual
exclusion (wrt. privileged), is said to be satisfied by an execution Ξ : γ0, γ1, . . . of A over
G iff:

1. Safety: if privileged holds for a process p ∈ P in a configuration γi, then for each
process q ∈ P \ {p}, privilegedq does not hold in γi.

2. Liveness: in Ξ, privileged holds for each process p ∈ P infinitely often. ♦

4.2.1 Problem Statement

The aim is to design a self-stabilizing mutex algorithm for connected graphs using the
shared memory model and working under the synchronous scheduler, such that the
algorithm has an optimal convergence time wrt. mutex, and reaches optimal recurrence
of granting a privilege to processes; i.e. a recurrence of 1.0.

Problem 4.1. Devise a self-stabilizing distributed mutual exclusion algorithm for
connected graphs using the shared memory model under the synchronous scheduler,
such that

1. The algorithm has an optimal convergence time wrt. mutex.

2. The algorithm converges to an optimal recurrence of granting unique privilege. ♦

The contributions of this chapter are as follows:

• A self-stabilizing mutex algorithm for connected graphs using the shared memory
model under the synchronous scheduler is presented. The algorithm is based on
an extended version of the synchronous unison [BPV08]. The convergence time
wrt. mutex is ddiam(G)/2e−1, which is optimal. The algorithm converges to 1.0
recurrence of granting a privilege in d2.5 · diam(G)e − 1 synchronous steps.

• Two other self-stabilizing mutex algorithms based on the synchronous
unison [BPV08] are presented. The algorithms, together with the first one, show
the trade-off between the convergence time wrt. mutex, the convergence time wrt.
∆ recurrence of granting a privilege, the value of ∆, and the space requirements.

• The optimality of the convergence time wrt. mutex, that equals ddiam(G)/2e−1,
is justified by refining the earlier proof of [DG13], which – wrongly – claims the
optimality of ddiam(G)/2e.
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4.2.2 Assumptions

The assumptions in this chapter are as follows:

• The topology is a connected graph G = (P, E), where P is a set of processes.

• The communication model used by any topology is the shared memory model, and
the used scheduler is the synchronous scheduler.

• The number of processes, n, and the diameter of the topology, diam(G), are known
parameters by each process.

4.3 Mutual Exclusion Algorithms

In this section, three self-stabilizing mutex algorithms, showing trade-off between
complexity measures, are presented. Two algorithms are based on the basic synchronous
unison algorithm given by Algorithm 3 of [BPV08]. The third one is based on an
extended version of Algorithm 3 of [BPV08]. Section 4.3.1 shows the synchronous unison
algorithm of [BPV08], and Section 4.3.2 presents the mutex algorithms.

4.3.1 Finite Incrementing System

Algorithm 3 of [BPV08] implements a synchronous incrementing system with a finite
domain of values. The aim of this system is to repeatedly increment a value belonging
to each process, in each synchronous step, while keeping the values of all processes equal.
The values are required to be equal only under the synchronous scheduler. Under the
asynchronous scheduler, this is not possible, and instead, a bounded difference between
the values is required to be preserved. The finite incrementing system is shown in
Figure 4.1. The system’s parameters are as follows:

• two natural numbers K, α ∈ N0. The number K will later represent an upper
bound on the domain of the incrementing system, and the number −α will define
a lower bound.

• a finite set X = {−α, . . . , 0, . . . ,K−1}
– a subset tailX = {−α, . . . , 0}
– a subset tail∗X = tailX \ {0}
– a subset stabX = {0, . . . ,K−1}

• a function ϕ : X −→ X , where ϕ(a) = (a + 1 mod K) if a ≥ 0, and ϕ(a) = a + 1
otherwise

The pair (X , ϕ) is called a finite incrementing system, whose domain is X , and its
incrementing function is ϕ. Note that the value of ϕ(K−1) is 0, which is also considered
an incrementation for having a finite domain.
This system is applied to connected graphs under the synchronous scheduler. Each

process p has one variable rp, whose domain is X . The aim of this system is twofold: first
to keep the values of r equal among all processes, and second, to increment the value of
rp in each step. This aim is the specification of the so-called synchronous unison.
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Figure 4.1: Finite incrementing system with α < 0 and K > 0

Definition 4.2 (Synchronous Unison – SU). Let G = (P, E) be a topology, and let
A be an algorithm. A specification SU, denoting synchronous unison (wrt. r), is said to
be satisfied by an execution γ0, γ1, . . . of A over G iff:

1. Safety: in each configuration γ0, γ1, . . . , for all p, q ∈ P, rp = rq.

2. Liveness: each process p ∈ P executes ϕ(rp) in each step of Ξ. ♦

The finite incrementing system is obtained by a distributed algorithm, where each
process p has three guarded commands, explained as follows (recall that Np denotes the
set of neighbors of a process p, and N ∗p denotes {p} ∪ Np):

1. NA (Normal Action): If for all q ∈ Np, rp = rq and p ∈ stabX hold, then p
increments rp within stabX .

2. CA (Converge Action): if there exists q ∈ N ∗p such that rq ∈ tail∗X , then rp is set
to rg + 1, where g ∈ N ∗p is the process with the minimum value of r in N ∗p .

3. RA (Reset Action): if for all q ∈ N ∗p , rq ∈ stabX , and there exists g ∈ Np such
that rg 6= rp, then rp is reset to −α.

The commands are illustrated using Figure 4.1 as follows: Let p be a process. The
command NA is executed when the value of rp is within the big circle, and equals the
values of r for all neighbors. This denotes the normal behavior of the process. Next,
the command CA is executed when the value of rp is in the dashed area; i.e. during
the convergence wrt. SU. Finally, the command RA is executed when the value of rp is
within the big circle, and one neighbor has a different value of r. This denotes a moment
when p detects a failure and resets its value.
The results of [BPV08] state that, choosing α ≥ diam(G), and K ≥ 2, implies that the

finite incrementing system is self-stabilizing wrt. SU in 2 · diam(G) steps. The intuition
behind these choices is as follows: α is required to be large enough, to be able to execute
CA for enough subsequent steps to equalize the values of r for all processes without any
reset. The choice of K should ensure that r is incremented infinitely often.
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Note that, for completeness, because the incrementing system of [BPV08] is modified
for one algorithm in the following section, the correctness proofs in Section 4.4 cover all
properties regardless of the mentioned results of [BPV08].

4.3.2 Algorithms

The finite incrementing system is used to design three self-stabilizing mutex algorithms.
This approach is inspired from [BPV04, DG13]. The basic idea is as follows:

• The condition privilegedp denotes that a process p has a privilege. It is defined as
a predicate over the value of rp and the id of p, in a way that if the value of r is
equal among all processes, the safety property of ME holds.

• The algorithms are self-stabilizing wrt. SU, which implies that the algorithms are
self-stabilizing wrt. the safety property of ME.

• The value K is set to be greater or equal to n. Next, for each process p, there exists
a unique value v in {0, . . . ,K−1}, such that p is privileged if rp = v. Once each of
the algorithms stabilizes, after a finite number of steps, the function ϕ increments
the values of r within stabX = {0, . . . ,K−1} repeatedly, which grants each process
a privilege infinitely often. This preserves the liveness property of ME.

The following sections present the algorithms.

Algorithm 4.1

Algorithm 4.1 uses the classical finite incrementing system defined in Section 4.3.1. The
values of α and K are set as follows: α = diam(G) and K = n. Given that n ≥ 2,
Algorithm 4.1 is self-stabilizing wrt. SU in 2 · diam(G) steps. Since K = n, each value
in stabX corresponds to a process id, and vice versa. A process pi is privileged iff two
conditions hold: (1) ri = i, and (2) ri = rj for each pj ∈ Npi . The values of r, in which
a process may be privileged, are marked by black circles in the figure of Algorithm 4.1.
The other values are marked by white circles. By this setting, since the incrementing
system converges to an execution satisfying SU and increments the value of r of each
process within {0, . . . , n−1}, it follows that ME holds.
Since each element of stabX corresponds to a process id, there exists exactly one

privileged process in each configuration. This implies that Algorithm 4.1 achieves ∆ =
1.0 recurrence of granting a privilege.
Algorithm 4.1 converges to ME in at most diam(G)−1 steps. In Figure 4.2, an example

shows that this convergence time complexity is a lower bound for Algorithm 4.1. The
example shows a bus topology G consisting of 6 processes, and having ids {0, . . . , 5},
where diam(G) = 5. The initial configuration is γ0. In the step (γ0, γ1), all processes
execute CA. In (γ1, γ2), p1, p3, p5 execute CA, and the others execute NA. In (γ2, γ3),
p1, p2, p3, p4 execute NA, and p0, p5 execute RA. In γ3, p1 and p2 are privileged, which
indicates that the safety property of ME does not hold. This implies that ME is not
guaranteed in 3 = diam(G)−2 steps. Note that after diam(G)−1 steps, in γ4, ME holds.
Section 4.4 provides a correctness proof about the convergence time complexity wrt. ME.
The following section presents Algorithm 4.2.
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4 Mutual Exclusion

Algorithm 4.1 Mutual exclusion algorithm based on the classical finite incrementing
system
// This represents the sub-algorithm for each process p

Constants
K = n
α = diam(G)
stabX = {0, . . . ,K − 1}
tailX = {−α, . . . , 0}
tail∗X = tailX \ {0}

Predicates
allCorrectp ≡ ∀ q ∈ Np • rp = rq
privilegedp ≡ allCorrectp ∧ rp = id
normalp ≡ rp ∈ stabX ∧ allCorrectp
convergep ≡ ∃ q ∈ N ∗p • rq ∈ tail∗X
resetp ≡ ∀ q ∈ N ∗p • rq ∈ stabX ∧ ¬allCorrectp
Guarded Commands
NA :: normalp −→ rp := ϕ(rp);
CA :: convergep −→ rp := min{ϕ(rq) | q ∈ N ∗p };
RA :: resetp −→ rp := −α;

1 3 5 0 4 2
γ0 −2 −1 −1 −1 −1 −1
γ1 −1 −1 0 0 0 0
γ2 0 0 0 1 1 1
γ3 1 1 −5 −5 2 2
γ4 2 −4 −4 −4 −4 3

Figure 4.2: Execution of Algorithm 4.1 over a topology with n = 6, and diam(G) = 5.
The processes p1 and p2 are privileged in γ3, i.e., after 3 = diam(G)−2 steps.
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4.3 Mutual Exclusion Algorithms

Algorithm 4.2

Algorithm 4.2 has a significance over Algorithm 4.1 that the convergence time of
Algorithm 4.2 to ME is ddiam(G)/2e−1. For convenient presentation, the value
ddiam(G)/2e−1 is denoted by ε in some positions.

This convergence time is achieved by re-defining the set stabX , such that scenarios
similar to the one in Figure 4.2 are avoided. In detail, first, stabX is defined to include
n + ε values. Next, it is asserted that no process p is privileged if rp has a value from
{0, . . . , ε−1}; i.e. a processes may be privileged only if it has a value in {ε, . . . , n+ε−1}.
With this setting, after the convergence wrt. SU by executing CA, there exists a gap in
which the values of r are in stabX but no process is privileged. This prevents the scenarios
where mutex is violated in the configurations γε, . . . , γdiam(G)−2 by Algorithm 4.1.

Since NA increments r within the values {0, . . . , n+ε−1}, and since no process p is
privileged if rp ∈ {0, . . . , ε−1}, the recurrence of privileged is less than 1.0 if diam(G) > 2.
In fact, Algorithm 4.2 guarantees that the recurrence of privileged is at least n/(n + ε).

Algorithm 4.2 Mutual exclusion algorithm with optimal ME-convergence time
ddiam(G)/2e−1

// This represents the sub-algorithm for each process p

Constants
ε = ddiam(G)/2e−1
K = n + ε
α = diam(G)
stabX = {0, . . . ,K − 1}
tailX = {−α, . . . , 0}
tail∗X = tailX \ {0}

Predicates
allCorrectp ≡ ∀ q ∈ Np • rp = rq
privilegedp ≡ allCorrectp ∧ rp = id + ε

normalp ≡ rp ∈ stabX ∧ allCorrectp
convergep ≡ ∃ q ∈ N ∗p • rq ∈ tail∗X
resetp ≡ ∀ q ∈ N ∗p • rq ∈ stabX ∧ ¬allCorrectp
Guarded Commands
NA :: normalp −→ rp := ϕ(rp);
CA :: convergep −→ rp := min{ϕ(rq) | q ∈ N ∗p };
RA :: resetp −→ rp := −α;

Algorithms 4.1 and 4.2 are based on the finite incrementing system that achieves
synchronous unison, given by Algorithm 3 of [BPV08]. Applying this finite incrementing
system with the ideas of designing mutex algorithms does not achieve both (1) optimal
convergence time wrt. mutex, and (2) convergence wrt. 1.0 recurrence of granting a
privilege. For this reason, in the following section, the finite incrementing system is
re-engineered to achieve the goal.
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4 Mutual Exclusion

Algorithm 4.3

The finite incrementing system is re-engineered as follows (cf. Algorithm 4.3): a subset
of stabX is defined to be out of the big circle, and it is set that no process is privileged
if its value of r belongs to this subset. This subset guarantees the optimal convergence
time wrt. ME, similar to Algorithm 4.2. Next, the function ϕ finally increments the
values of r within only the big circle whose values correspond to all processes’ ids. This
guarantees achieving 1.0 recurrence of privileged .

In detail, first, the sets tailX and stabX are defined as tailX = {−(diam(G)+ε), . . . ,−ε},
and stabX = {−ε, . . . , 0, . . . , n−1}. Second, it is set that no process p may be privileged
if rp has a value from {−ε, . . . ,−1}, and p may be privileged if rp is within {0, . . . , n−1}.
Next, after a finite number of steps of an execution, the command NA increments the
variables only within {0, . . . , n−1} to guarantee 1.0 recurrence of privileged .

Algorithm 4.3 Mutual exclusion algorithm with optimal ME-convergence time, and
achieving 1.0 recurrence of privileged
// This represents the sub-algorithm for each process p

Constants
ε = ddiam(G)/2e−1
K = n
α = diam(G) + ε
stabX = {−ε, . . . , 0, . . . ,K − 1}
tailX = {−α, . . . ,−ε}
tail∗X = tailX \ {−ε}

Predicates
allCorrectp ≡ ∀ q ∈ Np • rp = rq
privilegedp ≡ rp = id ∧ allCorrectp
normalp ≡ rp ∈ stabX ∧ allCorrectp
convergep ≡ ∃ q ∈ N ∗p • rq ∈ tail∗X
resetp ≡ ∀ q ∈ N ∗p • rq ∈ stabX ∧ ¬allCorrectp
Guarded Commands
NA :: normalp −→ rp := ϕ(rp);
CA :: convergep −→ rp := min{ϕ(rq) | q ∈ N ∗p };
RA :: resetp −→ rp := −α;

4.4 Correctness and Time Complexity

This section presents the correctness and time complexity proofs for Algorithms 4.1–4.3.
First, Section 4.4.1 addresses the property SU. Next, Section 4.4.2 addresses the property
ME. After that, Section 4.4.3 addresses recurrence properties.
For convenient presentation, some notation is presented as follows: for each process

pj , the notation rij as well as ripj is used to denote the value of rj in a configuration γi.
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4.4 Correctness and Time Complexity

4.4.1 Self-Stabilization wrt. SU

It is shown that Algorithms 4.1–4.3 are self-stabilizing wrt. SU in 2 ·diam(G) steps. Note
that this holds for Algorithms 4.1 and 4.2 following Corollary 3 of [BPV08]. However,
the proofs are re-constructed to cover Algorithm 4.3 and the other properties in the
following parts.
The following lemmata in this section apply to Algorithms 4.1–4.3. It is assumed that

there is a graph G = (P, E) using the shared memory model under the synchronous
scheduler.
The following lemma shows the closure of SU.

Lemma 4.1 (SUClosure). If SU holds in a configuration γi, then SU holds also in γi+1.

Proof. Let γi be a configuration in which SU holds. By Definition 4.2, for all p, q ∈ P,
rip = riq. Two cases are distinguished:

1. In the first case, rip ∈ tail∗X . In the step (γi, γi+1), each process executes CA,
implying that ri+1

p = ri+1
q .

2. In the second case, rip ∈ stabX . In the step (γi, γi+1), each process executes NA,
implying that ri+1

p = ri+1
q .

In both cases, the safety property of SU holds in γi+1. If the safety property holds in
a configuration, then each process has exactly one enabled command from NA and CA,
and the command RA is not enabled for any process. Each of the possibly enabled
commands increments the value of its corresponding process. The liveness property of
SU holds.

The following two lemmata and the corollary concern the command RA.

Lemma 4.2. Given an execution γ0, γ1, . . . , if no process executes RA within
(γ0, γ1), . . . , (γdiam(G)−1, γdiam(G)), then SU holds in γdiam(G).

Proof. Let (γ0, γ1), . . . , (γdiam(G)−1, γdiam(G)) be an execution, within which no process
executes RA. If SU holds in any configuration γe for e ∈ {0, . . . , γdiam(G)−1}, then by
Lemma 4.1 SU holds in all γe+1, γe+2, . . . , which implies the claim. Assume that SU
does not hold in γ0, and let pi ∈ P be a process where r0

i is the minimum among all
processes. Based on the value of r0

i , two cases are distinguished:

1. r0
i ∈ stabX holds. In this case, by assumption, for each process p′ ∈ P \ {pi}, p′ ∈

stabX holds. Since γ0 does not satisfy SU, there exist two neighboring processes
pa, pb, such that r0

a 6= r0
b , and r0

a, r
0
b ≥ min(stabX ). By definition, pa and pb execute

RA in (γ0, γ1), which contradicts the assumption. This case does not exist.

2. r0
i ∈ tail∗X holds. Given that no process executes RA in (γ0, γ1) by assumption, pi
executes either NA or CA, implying that r1

i = r0
i + 1. If r1

i ∈ stabX , then SU holds,
following the argument of the first case. Otherwise, r1

i ∈ tail∗X , and by definition of
CA and NA, each process pj ∈ Npi executes CA in (γ0, γ1), and therefore, r1

j = r1
i .

All other processes ps 6∈ N ∗pi execute either CA or NA. By definition of these
commands, and since r0

i is the minimum, it follows that r1
s ≥ r1

i . Now all processes
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4 Mutual Exclusion

at distance 1 of pi have the same value of r1
i , and r1

i is the minimum. Inductively,
the processes at distance 2, 3,. . . of pi perform similar steps. Since the distance
between pi and any process is bounded by diam(G), all processes have the same
value of ri after diam(G) steps.

This implies the safety property of SU in γdiam(G). This, by Lemma 4.1, implies the
liveness property of SU.

Lemma 4.3. For each execution γ0, γ1, . . . , in each of the configurations
γdiam(G), γdiam(G)+1, . . . , for all p, q ∈ P, if rp, rq ∈ stabX , then rp = rq.

Proof. If no process executes RA within γ0, . . . , γdiam(G), then by Lemma 4.2, SU holds
in γdiam(G), which by Lemma 4.1 implies that SU holds in γdiam(G), γdiam(G)+1, . . . . This
implies the claim.
Assume that there exists a process p which executes RA in a step (γi−1, γi) for (1 ≤

i ≤ diam(G)). The proof is based on two arguments.
First argument: By definition of RA, rip = −α holds. Since each command may

add at most 1 to the value of rp, and α−i < diam(G) by assumption, it follows that
r
diam(G)
p < min(stabX ) holds. In the step (γi, γi+1), each q ∈ Np may execute only CA.
By definition of CA, ri+1

q ≤ ri+1
p holds. Inductively, for each process g within a distance

diam(G)− i of p, r
diam(G)
g ≤ r

diam(G)
p < min(stabX ) holds.

Second argument: let p be a process, such that r0
p is the minimum among all other

processes in P. Let v = r0
p. By definition of the commands, if p executes either CA or

NA, then r1
p = ϕ(v). If p executes RA, then by the first argument, r

diam(G)
p < min(stabX ).

Since rp is the minimum value in γ0, by definition of the commands:

• either for each p′ within distance 1 of p, r1
p′ = ϕ(v) holds, or

• r
diam(G)
p′ < min(stabX ) by the first argument.

In the next configuration γ2, for each process p′′ within distance 2 of p, by definition of
the commands, either r2

p′′ = ϕ(ϕ(v)) holds, or r
diam(G)
p′′ < min(stabX ) holds, similar to the

previous case. Inductively, in configuration γdiam(G), for each process q within distance
diam(G) of p (which covers all processes), either r

diam(G)
q = ϕdiam(G)(v), or r

diam(G)
q <

min(stabX ). This implies that if there exists a process q where r
diam(G)
q ∈ stabX , then

r
diam(G)
q is equal to ϕdiam(G)(v).
The two arguments apply to any initial configuration, which implies the claim.

Corollary 4.1. For each execution γ0, γ1, . . . , no process executes RA after γdiam(G).

Proof. Follows from Lemma 4.3.

The following lemma proves self-stabilization wrt. SU.

Lemma 4.4. Algorithms 4.1–4.3 are self-stabilizing wrt. SU in 2 · diam(G) steps.

Proof. For each execution γ0, γ1, . . . , of the algorithms, Corollary 4.1 implies that no
process executes RA after γdiam(G). Lemma 4.2 implies that SU holds if no process
executes RA within diam(G) steps. This implies the claim.
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4.4.2 Self-Stabilization wrt. ME

This section concerns self-stabilization wrt. ME. It is shown that Algorithm 4.1
is self-stabilizing wrt. ME in diam(G)−1 steps, and each Algorithm 4.2 and 4.3 is
self-stabilizing wrt. ME in ddiam(G)/2e−1 steps.
The following lemma states that SU implies ME for the three algorithms.

Lemma 4.5. Given any Algorithm 4.1–4.3, if SU holds in a configuration γ0, then ME
holds in γ0.

Proof. If SU holds in a configuration γ0, then by Definition 4.2, ∀ p ∈ P, q ∈ Np • r0
p =

r0
q . A process p is privileged only if rp = idp (resp. rp = idp + ε) by the definition of
privileged , which implies that at most one process is privileged if SU holds (safety). By
Lemma 4.1, for each execution γ0, γ1, . . . , SU holds in all configurations γ1, γ2, . . . . By
definition of the commands, the possibly enabled commands for any process in any of
the configurations γ0, γ1, . . . are CA and NA. Each of the commands increments rp of
each process p by (1 mod K) in each step. By definition of ϕ, after finite steps, the values
of rp are incremented within {0, . . . ,K−1}. By definition of privileged , for each process
p, there exists a value v in {0, . . . ,K−1} such that, for each q ∈ N ∗p , if rq = v then p is
privileged. It follows that the predicate privileged holds infinitely often for each process
p (Liveness).

The following theorem states the convergence time complexity for Algorithm 4.1.

Theorem 4.1. Algorithm 4.1 is self-stabilizing wrt. ME in diam(G)−1 steps.

Proof. Since Algorithm 4.1 is self-stabilizing wrt. SU, and since – by Lemma 4.5 – ME
holds if SU holds in any configuration, it follows that the liveness property of ME holds.
Let γ0, γ1, . . . be an execution. It is shown that for all i ≥ diam(G)−1 steps, the safety
property of ME holds in the configurations γi, γi+1, . . . . Two cases are distinguished:

1. i ≥ diam(G). By Lemma 4.3, for each execution γ0, γ1, . . . , for each p, q ∈ P, if
r
diam(G)
p , r

diam(G)
q ≥ 0, it follows that r

diam(G)
p = r

diam(G)
q . By definition of privileged ,

processes p, q can be privileged in γdiam(G) only if r
diam(G)
p ≥ 0 holds. By the

uniqueness of the processes’ ids, the safety property of ME holds in configurations
γi, γi+1, . . . .

2. i = diam(G)−1. Assume by contradiction that there exist processes p, q ∈ P, where
both are privileged in configuration γi. This implies that rip 6= riq, and rip, r

i
q ≥ 0.

By definition of privileged, for all p′ ∈ Np, rip′ = rip. The same applies to q. By
definition of the commands, p and q execute NA in step (γi, γi+1). By definition of
NA, ri+1

p = ϕ(rip) holds. The same applies to q. This implies that ri+1
p 6= ri+1

q , and
ri+1
p , ri+1

q ≥ 0. By construction, i+1 = diam(G). This contradicts Lemma 4.3.

Concerning the Algorithms 4.2 and 4.3, the convergence time complexity wrt. ME
is shown to be equal to ddiam(G)/2e−1 steps. The proof idea is partially inspired
from [DG13]: basically, the term island is borrowed from [DG13] and is extended to be
used in the proofs. Note that it is not necessarily used the same way as in [DG13].
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An island denotes a maximal strict subset of processes, whose values of r are equal,
and are in stabX . Clearly, if SU holds, then there exists no island. In addition, by the
definition of privileged in Algorithms 4.1–4.3, at most one process may be privileged in
any island.

Definition 4.3 (Island). Given a configuration γi of a topology T = (P, E), an island
is a maximal (wrt. inclusion) non-empty strict subset I ( P, such that ∀ p, q ∈ I • rip =
riq ∧ rip ∈ stabX . ♦

The following definition specifies terms concerning the islands.

Definition 4.4. Let I be an Island in a topology G.

• I is said to be an init-island iff ∀ p ∈ I • rp = min(stabX ), and a non-init-island
otherwise.

• The border of I (Border(I)) is defined as follows: Border(I) = {p ∈ I | ∃ q ∈
P \ I • q ∈ Np}. The depth of I (idepth(I)) is defined as follows: idepth(I) =
max{min{dist(G, p, q) | q ∈ Border(I)} | p ∈ I}. ♦

The following two lemmata present properties of the islands.

Lemma 4.6. Let (γi−1, γi) be an execution step of Algorithm 4.2 or 4.3. If a process p
belongs to a non-init-island I in γi, then p belongs to an island of depth idepth(I) + 1
in γi−1.

Proof. Let p be a process belonging to a non-init-island I in γi. Assume, by
contradiction, that p does not belong to any island in γi−1. This implies that ri−1

p ∈ tail∗X
holds, implying that p may execute only CA in (γi−1, γi), and then rip ∈ tailX holds. By
Definition 4.3, this implies that p either belongs to an init-island or to no island in γi.
This contradicts that p belongs to a non-init-island in γi.
Let idepth(I) = h. Assume, by contradiction, that p belongs to an island I ′ in γi−1,

such that idepth(I ′) 6= h + 1. By Definition 4.4, each q ∈ Border(I ′) executes RA
or CA in (γi−1, γi). This decreases idepth(I ′) by 1 concerning that each process g ∈
I ′ \Border(I ′) executes NA in (γi−1, γi) – by definition of the commands – implying that
I ′\Border(I ′) = I. This – following the assumption that idepth(I ′) 6= h+1 – implies that
the depth of I that contains p in γi is not equal to h. This contradicts the assumption
that idepth(I) = h.

Lemma 4.7. Given Algorithm 4.2 or 4.3, in each configuration, there exists at most
one island I such that idepth(I) ≥ ddiam(G)

2 e.

Proof. Assume, by contradiction, that there exists a configuration with two different
islands I and I ′, such that idepth(I), idepth(I ′) ≥ ddiam(G)

2 e. By Definition 4.4, there
exists two processes p ∈ I, p′ ∈ I ′ such that: min{dist(p, q) | q ∈ Border(I)} ≥ ddiam(G)

2 e,
and min{dist(p′, q′) | q′ ∈ Border(I ′)} ≥ ddiam(G)

2 e. Let path1 : p, . . . , pi, . . . , p
′
i . . . , p

′

be the shortest path between p and p′, where pi ∈ Border(I), and p′i ∈ Border(I ′). By
definition of the graph, the length of path1 is less or equal to diam(G). By Definition 4.3,
dist(G, pi, p′i) ≥ 1. By construction, dist(G, p, pi), dist(G, p′, p′i) ≥ d

diam(G)
2 e. This implies

that the distance between p and p′ through this path is greater or equal to diam(G) + 1.
This contradicts that path1 is the shortest one between p and p′.
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In the following, a detailed proof for Algorithm 4.2 is given. The same proof applies
to Algorithm 4.3, with the difference that the stabX and tailX have different values.
Therefore, for Algorithm 4.3, only a proof sketch showing the difference is provided.

Theorem 4.2. Algorithm 4.2 is self-stabilizing wrt. ME in ddiam(G)/2e−1 steps.

Proof. Let γ0, γ1, . . . be an execution. By Lemma 4.4, SU holds in
γ2diam(G), γ2diam(G)+1, . . . , which, by Lemma 4.5, implies that ME holds in
γ2diam(G), γ2diam(G)+1, . . . . This implies that the liveness property of ME holds. It remains
to show that for ε ≤ i < 2 · diam(G), where ε = ddiam(G)

2 e−1, the safety property of ME
holds in γi; i.e. at most one process is privileged in γi.

Assume by contradiction that there exist two processes pa, pb ∈ P, such that pa and
pb are privileged in γi. Since

1. by definition of privileged : ria 6= rib, ria, r
i
b ≥ ε hold, and

2. by definition, stabX = {0, . . . , n+ε−1} holds,

it follows by definition of the commands that ra and rb have values greater or equal
to 0 in the configurations γi−ε, . . . , γi, and pa and pb execute only NA in each step of
(γi−ε, γi−ε+1), . . . , (γi−1, γi). By definition of NA:

ria = ϕ(ri−1
a ), and rib = ϕ(ri−1

b ),
ria = ϕ2(ri−2

a ), and rib = ϕ2(ri−2
b ),

...
ria = ϕε(ri−εa ), and rib = ϕε(ri−εb ).

Since ria 6= rib, it holds by the above analysis and by the definition of ϕ that ri−εa 6= ri−εb ,
which, by Definition 4.3, implies that pa and pb belong to two different islands in γi−ε
(first deduction).
By definition of privilegedpa , for each q ∈ Npa , riq = ria holds. The same holds for pb.

By Definition 4.4, this implies that each of the processes pa, pb belongs to an island of
depth greater or equal to 1. Let ha ≥ 1 (resp. hb ≥ 1) be the depth of the island to
which pa (resp. pb) belongs in γi. Since ria, r

i
b ≥ ε, it follows by Lemma 4.6 that:

in γi−1, pa (resp. pb) belongs to a non-init-island of depth ha + 1 (resp. hb + 1),
in γi−2, pa (resp. pb) belongs to a non-init-island of depth ha + 2 (resp. hb + 2),
...
in γi−ε, pa (resp. pb) belongs to an island of depth ha + ε (resp. hb + ε).

Since ha, hb ≥ 1, and ε = ddiam(G)
2 e−1 by construction, it follows that (ha+ ε), (hb+ ε) ≥

ddiam(G)
2 e. By Lemma 4.7, there exists at most one island I ′′, such that idepth(I ′′) ≥

ddiam(G)
2 e. This implies that pa and pb belong to the same island in γi−ε. This is a

contradiction to the first deduction that pa and pb belong to two different islands.

The following theorem concerns Algorithm 4.3 only.

Theorem 4.3. Algorithm 4.3 is self-stabilizing wrt. ME in ddiam(G)/2e−1 steps.

Proof Sketch. Similar to the proof argument for Theorem 4.2 with the following
difference: the set stabX is equal to {−ε, . . . , n−1} instead of {0, . . . , n+ε−1}, and tailX
is equal to {−(diam(G) + ε), . . . ,−ε} instead of {−diam(G), . . . , 0}.
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4.4.3 Self-Stabilization wrt. priv∆

In this section, it is shown that Algorithms 4.1–4.3 converge wrt. ∆ recurrence of
granting a unique privilege to any process p; i.e. ∆ recurrence of privileged for any
p, where ∆ equals 1.0 for each of Algorithms 4.1 and 4.3, and n/(n + ddiam(G)/2e−1)
for Algorithm 4.2. The convergence time complexity wrt. ∆ recurrence is also shown for
each algorithm.
A condition priv is used to denote that there exists a process p, such that predicate

privileged holds.

Definition 4.5 (priv). A condition priv is said to be satisfied in a configuration γ of
a topology G = (P, E) iff there exists a process p ∈ P such that privileged holds in γ. ♦

First, the recurrence in Algorithms 4.1 and 4.3 is considered.

Lemma 4.8. For each configuration γ0 of a topology G = (P, E), if SU holds, and for
each process p ∈ P, r0

p ∈ {0, . . . ,K−1}, then for each execution γ0, γ1, . . . of any of
Algorithms 4.1 and 4.3, the property priv1.0 (i.e. priv∆ where ∆ = 1.0) holds.

Proof. By Definition 3.2, priv1.0 holds in γ0, γ1, . . . iff priv holds for each configuration
γ0, γ1, . . . . This is proven by induction:

• For the base case γ0, by hypothesis, SU holds, and for each process p, rip ∈
{0, . . . ,K−1} holds. Given that each of {0, . . . ,K−1} belongs to a process id,
by definition of privileged , one process is privileged in γi, implying that priv holds
in γi.

• The inductive step: let γi be a configuration, in which SU and rip ∈ {0, . . . ,K−1}
hold. It is shown that priv holds in the following configuration γi+1. By Lemma 4.1,
SU holds in γi+1. By definition of the commands, only command NA is enabled,
whose result keeps ri+1

p ∈ {0, . . . ,K−1} for each process p. This implies that priv
holds in γi+1.

Theorem 4.4. Each Algorithm 4.1 and 4.3 is self-stabilizing wrt. priv1.0 in α+diam(G)
steps.

Proof. Let γ0 be a configuration. By Corollary 4.1, for each execution γ0, γ1, . . .
of any of Algorithms 4.1 and 4.3, no process executes RA after γdiam(G). Let p be a
process, such that rp is the minimum among all processes in γdiam(G). If rp ∈ stabX ,
then SU holds, because no process executes RA after γdiam(G). If rp ∈ tail∗X , in the
step (γdiam(G), γdiam(G)+1), r

diam(G)+1
p = r

diam(G)
p + 1, and since no process executes RA,

then by definition of the commands, for each process q ∈ P, r
diam(G)+1
q ≥ r

diam(G)+1
p

holds. Inductively, in γα+diam(G), it holds that r
α+diam(G)
q ≥ 0. By Lemma 4.4, each of

Algorithms 4.1 and 4.3 is self-stabilizing wrt. SU in 2 ·diam(G) steps. Since α ≥ diam(G),
it follows that SU holds in γα+diam(G). This, by Lemma 4.8, implies that priv1.0 holds in
γα+diam(G), γα+diam(G)+1, . . . .

Note that α = diam(G) in Algorithm 4.1, and α = d1.5 ·diam(G)e−1 in Algorithm 4.3.
This implies that priv1.0 holds in 2·diam(G) steps for Algorithm 4.1, and d2.5·diam(G)e−1
steps for Algorithm 4.3.
The following lemma and the theorem concern Algorithm 4.2.
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Lemma 4.9. Let ∆ = n/(n + ε). For each execution γ0, γ1, . . . of Algorithm 4.2 over a
topology T = (P, E), if for each process p ∈ P, r0

p = ε holds, then the condition priv∆

holds.

Proof. Assume that ∀ p ∈ P • r0
p = ε holds in γ0. By Definition 4.2, SU holds in γ0,

and by Lemma 4.1, SU holds in γ1, γ2, . . . . Given that r0
p ∈ stabX , by definition of the

commands, only the command NA is executed by all processes in the following steps.
This implies that for all 1 ≤ i ≤ n − 1, for all p ∈ P, rip = ϕi(r0

p). By definition of ϕ,
it follows that rip ∈ {ε, . . . , n+ε−1}, and rn−1

p = n+ε−1. By definition of privilegedp, in
each configuration γi, there exists one process that is privileged, which implies that the
number of configurations that satisfy privileged in γ0, . . . , γn−1 is n. This implies that
for each execution prefix γ0, . . . , γi, the recurrence of priv is 1.0, which is greater than
∆.

By definition of NA and by the above analysis, ϕn+ε(r0
p) = r0

p, and the recurrence of
privileged in γ0, . . . , γn+ε−1 is greater or equal to ∆. Now the configuration γn+ε is equal
to γ0. This, by definition of NA and ϕ, implies that the following execution suffix repeats
the cycle γ0, . . . , γn+ε−1. Since this cycle always starts with n configurations satisfying
priv , and is followed by only ε configurations, the recurrence of priv is greater or equals
∆ in any γ0, . . . , γj for j ≥ 0. This implies that priv∆ holds in γ0, γ1, . . . .

Theorem 4.5. Let ∆ = n/(n+ε). Algorithm 4.2 is self-stabilizing wrt. priv∆ in
max{(d2.5 · diam(G)e − 1), (n + ddiam(G)/2e − 2)} steps.

Proof. Let ∆ = n/(n+ε). By Lemma 4.9, any execution γ0, γ1, . . . of Algorithm 4.2
over a topology G = (P, E) satisfies priv∆ if for all p ∈ P, r0

p = ε. To show the
convergence time to reach a configuration, in which rp = ε for all p ∈ P, two cases are
distinguished:

1. SU holds in γ0. In this case, for all processes p, q, r0
p = r0

q , and in any
following configuration, only NA or CA may be enabled for any process. If
r0
p ∈ {−diam(G), . . . , ε}, then in at most diam(G)+ε (= d1.5 ·diam(G)e−1) steps, a
configuration is reached where rp = ε. Otherwise, if r0

p ∈ {ε+ 1, . . . , n+ε−1}, then
a configuration, where rp = ε is reached in at most n+ε−1 (= n+ ddiam(G)/2e−2)
steps.

2. SU does not hold in γ0. In this case, for any process p with the minimum value of
r in γ0, if r0

p ∈ stabX , then within diam(G) steps, at least one process executes RA.
Otherwise, r0

p ∈ tail∗X . In both situations, by Lemma 4.2 and Corollary 4.1, after
at most diam(G) + α = 2 · diam(G) steps, a configuration γj is reached, in which
SU holds and for each process p, rjp = 0. From γj , the processes execute NA, and
after ε steps, rj+εp = ε holds. This sums up to d2.5 · diam(G)e − 1 steps.

Considering both cases, the convergence time to achieve priv∆ is max{(d2.5 ·diam(G)e−
1), (n + ddiam(G)/2e − 2)}

Note that the convergence time complexity wrt. priv∆ for each of the Algorithms is a
lower bound. This can be shown by a straightforward construction of examples.
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4 Mutual Exclusion

4.5 Convergence Time Optimality under the Synchronous
Scheduler

The idea of the optimality proof of the ME-convergence time complexity under the
synchronous scheduler was given by Dubois et al. [DG13]. It shows that the optimal
convergence time wrt. ME is ddiam(G)/2e. However, as observed in Section 4.3, there
exist algorithms with an ME-convergence time of ddiam(G)/2e−1. In this section, the
lower bound proof of the ME-convergence time complexity of [DG13] is refined; it is
shown that ddiam(G)/2e−1 is the optimal one.
Two definitions and one Lemma are borrowed from [DG13].

Definition 4.6 (Local State [DG13]). Given a configuration γ, a process p and an
integer 0 ≤ k ≤ diam(G). The k -local state of p in γ (denoted by γp,k) is the configuration
of the communication subgraph G′ = (P ′, E ′) induced by P ′ = {p′ ∈ P | dist(G, p, p′) ≤
k} defined by ∀ p′ ∈ P ′ • γp,k(p′) = γ(p′).1 ♦

Definition 4.7 (Restrictions of an Execution [DG13]). Given an execution Ξ =
(γ0, γ1), (γ1, γ2), . . . and a process p, the restriction of Ξ to p (denoted by Ξp) is defined
by: Ξp = (γ0(p), γ1(p)), (γ1(p), γ2(p)), . . . . ♦

Lemma 4.10 ([DG13]). Let γ, γ′ be two configurations such that there exists a process
p and an integer 1 ≤ k ≤ diam(G) satisfying γp,k = γ′p,k. Let A be a self-stabilizing
algorithm wrt. ME for synchronous executions. The restrictions to p of the prefixes of
length k of the synchronous executions of A starting respectively from γ and γ′ are equal.

In the following, Theorem 4.6 is presented, which is a refined version of
Theorem 4 of [DG13]. Next, the flaw of Theorem 4 of [DG13] is pointed out. Theorem 4.6
shows that ddiam(G)/2e−1 is the optimal ME-convergence time.

Theorem 4.6. The ME-convergence time of any self-stabilizing distributed algorithm
wrt. ME is greater or equal to ddiam(G)/2e−1 (if diam(G) > 0) under the synchronous
scheduler.

Proof. The claim holds trivially for diam(G) = 1. In the following, cases where
diam(G) ≥ 2 are considered. Let A be a self-stabilizing distributed algorithm wrt.
ME, and let t be the ME-convergence time of A. Assume, by contradiction, that
t < ddiam(G)

2 e−1 (Note that ddiam(G)
2 e−1 = ddiam(G)−2

2 e).
Let G = (P, E) be an arbitrary graph, and let p, q be two processes in P such that

dist(G, p, q) = diam(G). Let Ξ = (γ0, γ1), (γ1, γ2), . . . be an execution starting from a
configuration γ0.
By the liveness property of ME, Ξ contains an infinite suffix in which p (resp. q) is

privileged infinitely often. Hence, there exists a configuration γi (resp. γj) such that p
(resp. q) is privileged in γi (resp. γj) and i > t (resp. j > t).
By construction, since dist(G, p, q) = diam(G), and diam(G) ≥ 2, it follows that there

exists a path p, p′, . . . , q′, q, such that dist(G, p′, q′) = diam(G)−2 (p′ and q′ might be
identical).

1By definition, γp,0 = γ(p).
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4.6 Remarks

Since t < ddiam(G)−2
2 e, there exists at least one configuration γ′0, such that (γ′0)p′,t =

(γi−t)p′,t and (γ′0)q′,t = (γj−t)q′,t. Let Ξ ′ = (γ′0, γ
′
1), (γ′1, γ

′
2), . . . be the synchronous

execution of A starting from γ′0.
By Lemma 4.10, one can deduce that the restriction to p′ of the prefix of length t of

Ξ ′ is the same as the one of the suffix of Ξ starting from γi−t. In addition, by definition
of the graph, for all g ∈ N ∗p , dist(G, g, q) ≥ dist(G, p′, q), because the path p, p′, . . . , q, q′

is the shortest between p and q. This, analogously, implies that the restriction to g of
the prefix of length t of Ξ ′ is the same as the one of the suffix of Ξ starting from γi−t.
By definition, a process’s variables are visible only to the process itself and its

neighbors. Hence, the privilege condition can be defined only over the variables of
the process and all its neighbors. This, by construction of γi, implies that p is privileged
in γ′t. By the same deduction, q is also privileged in γ′t. This contradiction leads to the
result.

In Theorem 4 of [DG13], the issue, that the privilege condition of a process p may
also cover the states of the neighbors of p, is missed. In other words, the privilege
condition is considered in [DG13] as if it covers only the local state of p. With this
consideration, Theorem 4 of [DG13] concluded that the ME-convergence time is lower
bounded by ddiam(G)/2e. This consideration is not necessarily required in the shared
memory model, formalized in Chapter 2.

4.6 Remarks

The three algorithms exploit a trade-off between many aspects of the performance of
self-stabilizing mutex algorithms: the convergence wrt. mutex, the ∆ recurrence that can
be achieved, the convergence wrt. ∆ recurrence, and the space requirement. Table 4.1
summarizes the time and space complexities of Algorithms 4.1–4.3. The space complexity
represents the size of the local state space for each process.

Algorithm 4.1 Algorithm 4.2 Algorithm 4.3
ME-Convergence Time diam(G)−1 ddiam(G)/2e−1 ddiam(G)/2e−1

Recurrence ∆ 1.0 n/(n + ddiam(G)/2e−1) 1.0
priv∆-Convergence Time 2 · diam(G) max{(d2.5 · diam(G)e − 1), d2.5 · diam(G)e − 1

(n + ddiam(G)/2e − 2)}
Space n + diam(G) n + d1.5 · diam(G)e − 1 n + d1.5 · diam(G)e − 1

Table 4.1: Time and space complexity for Algorithms 4.1–4.3

As observed, reducing the convergence time wrt. mutex or the space requirement
– which are the typical performance aspects that are usually considered – may affect
another aspect of the performance: a fast convergence wrt. mutex does not imply
a fast installation of the desired recurrence. This trade-off is obvious concerning
Algorithms 4.1 and 4.2, where both are based on the finite incrementing system presented
in Section 4.3.1. On one hand, Algorithm 4.1 guarantees that in 2 · diam(G) steps,
both ME and priv1.0 are achieved, while Algorithm 4.2 does not. On the other
hand, Algorithm 4.2 converges to ME faster than Algorithm 4.1 does. Algorithm 4.3
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4 Mutual Exclusion

is an enhanced version of Algorithm 4.2 (by re-engineering the incrementing system
of [BPV08]): it can still achieve 1.0 recurrence of priv . However, it may not converge
wrt. priv1.0 in 2 · diam(G) steps as Algorithm 4.1 guarantees.
The basic design of the finite incrementing system considered solving self-stabilization

wrt. mutex in the light of the synchronous unison property [BPV08]. By considering this
design, the authors followed an intuitive reset phase – represented by tail∗X – and a live
phase stabX in which the system is supposed to keep incrementing the values. By looking
into the design of Algorithm 4.3 regardless of the recurrence properties, it does not make
sense to have a subset of stabX , which is {−ε, . . . ,−1}, outside the incrementing phase
after the system converges. The significance of such a subset appeared in the light of
the recurrence properties.
Recurrence can be extended to evaluate other performance properties in relation to

mutex. For example, in the local mutex and group mutex problems, recurrence can be
extended to capture the number of privileged processes in one configuration. In other
words, the ratio ∆ can be redefined to capture more details about each configuration
rather than counting configurations satisfying some condition. This can be achieved by
considering the ratio of local states that satisfy a condition in each configuration, in the
calculation of ∆.
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5 Fast and Educated Unique Process
Selection

This chapter focuses on a particular problem that is correlated to mutual exclusion.
The problem is called unique process selection. The problem concerns granting a unique
privilege to processes to access the critical section, however, with a special consideration
of the fairness property. With respect to fairness, a basic and an extended case are
considered. In the basic case, the fairness property is neglected in the design of the
algorithm, such that fairness is still satisfied if the algorithm is highly recurrent in
selecting processes to be granted privilege. In the extended case, the choice of processes
to be granted a privilege are based on local or global criterion, which is referred to
as educated unique process selection. The notion of Propagation of Information with
Feedback (PIF) [Cha82, Seg83] is exploited to design self-stabilizing algorithms wrt.
unique process selection for each case. The algorithms are designed for tree topologies,
since exactly one process – namely the root – is required to do the selection. The aim
and challenge is to achieve a high recurrence of granting a privilege, given particular
environments. Some of this chapter’s content has appeared in [4, 5] of the author’s
publications.
The structure of this chapter is as follows. Section 5.1 introduces and motivates

the unique process selection problem. Section 5.2 presents the problem statement
and states the contributions. Next, Section 5.3 explains the PIF approach and its
related work. Section 5.4 presents an algorithm for fast unique process selection. Next,
Section 5.5 presents an algorithm for educated unique process selection. Section 5.6
provides correctness proofs. Finally, Section 5.7 presents a discussion.

5.1 The Unique Process Selection Problem

The fairness property in mutual exclusion ensures that each process is granted a privilege
to access the critical section infinitely often (cf. Section 4.1). The intuition of fairness is
to ensure that each process gets its chance to execute its action infinitely often, without
waiting forever. In general, without fairness, some processes may be blocked forever,
which may result in critical consequences.
To satisfy the fairness property by an algorithm, the algorithm’s design may be

impacted. For example, token-passing approaches require that the token is circulated
in some manner, such that it reaches all processes in each cycle. In the design of
self-stabilizing mutual exclusion algorithms, there is usually an implicit assumption
that each process continuously requests a privilege to access the critical section (cf.
Section 4.1.2). Due to this assumption, the impact of satisfying the fairness requirement
is seen to be positive from all aspects. However, if the number of processes requesting a
privilege is low, then the fairness impact may be negative regarding the algorithm’s
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5 Fast and Educated Unique Process Selection

performance; the process selection mechanism for granting a privilege may be low
recurrent if only few processes are request a privilege. Instead, searching for and selecting
requesting processes may be more efficient; the value of ∆ is then a factor of the topology
diameter or depth. Note that the issue of requesting a privilege or not by the processes
is not considered explicitly in the area of self-stabilization. A motivational example of
this follows.
The example concerns a wireless sensor network consisting of sensors that are all

linked to a central unit, forming a tree topology. The network is used to monitor
environmental actions that rarely happen, e.g. fire or earthquakes. When a sensor
detects an environmental action, then it is supposed to send an alarm message that is
forwarded through a path to the central unit. In this network, the sensors are required
to aggregate information fast given limited resources, such as a limited bandwidth or a
limited message size. This requires that each sensor performs its task separately. In such
a case, having fast selection of the sensors that are sending alarm messages to process
or deliver the information is more useful than having a slow selection of all sensors for
the sake of being fair. This trade-off is analyzed in detail in Section 5.7.
From this perspective, the problem of unique process selection is introduced. The

problem simply concerns granting a unique privilege to processes, where it is guaranteed
that granting a privilege happens infinitely often, but not necessarily for all processes. If
an algorithm satisfies unique process selection, and the recurrence of granting a privilege
is high enough, then the algorithm is useful in the environments, where processes rarely
request a privilege. In other words: if the achieved recurrence is higher than the
frequency of requesting a privilege by processes, then the classical fairness property
is satisfied. For example, if recurrence of selecting a process is equal to 0.5, and at most
one process requests a privilege every 10 steps, then fairness is satisfied anyway.

5.1.1 Educated Unique Process Selection

An extended version of unique process selection – presented in this section – addresses
some particular environments, in which the actions are prioritized to guarantee better
quality of service. An example of such an environment follows.
Consider the system given in [DT10]: it is a fair composition of three self-stabilizing

algorithms, where one of them is a mutual exclusion algorithm and another one is referred
to as a ‘use algorithm’ as follows:
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5.2 Problem Statement and Assumptions

In this composition, if the use algorithm is in an illegitimate configuration, the
convergence (stabilization) of the algorithm can be observed by the mutual exclusion
algorithm using a ranking function. Ranking functions are used to rank configurations,
such that the decrease of the ranking function value in any execution indicates
a convergence wrt. a legitimate configuration (e.g., [The00b, AKM+07]). In the
approach [DT10], the mutual exclusion algorithm’s task is to circulate a token that
reaches all processes infinitely often, and to enable processes to execute actions of the use
algorithm only if the ranking function’s value decreases. The mutual exclusion algorithm,
however, does not enforce priorities over the actions executed by the processes; it only
guarantees fair execution. In such a case, it is helpful if the mutual exclusion algorithm
would employ educated selection, based on which process is most promising to achieve
fast convergence of the use algorithm, which can be known by observing the decrease
of the ranking function value. Intuitively, during the convergence of the use algorithm,
satisfying the fairness property is not as important as reducing the convergence time
of the use algorithm, given that the safety property of mutual exclusion may anyway
not be satisfied during convergence. Moreover, the selection can additionally be realized
according to quality of service indicators after the system has stabilized.
From this point, the educated unique process selection problem is introduced. This

problem concerns selecting processes to be granted a privilege, such that if a process is
granted a privilege, then the process is distinguished from the others by some criterion.
The criterion is modelled by a real number variable owned by each process, and a process
is selected if it has the maximum value among all processes.
Since the criterion variable is owned by each process, the variable presents local

criterion. To have process selection based on global criterion, this variable is updated
according to a snapshot of the given configuration. A particular procedure of passing
the snapshot to all processes is given in Section 5.5.
Note that educated selection collects some aspects from the mutual exclusion and the

consensus problems [FLP85, DKS10]. However, it does not necessarily fulfill any of them.
Moreover, educated selection is not intended to solve the leader election problem [Awe87,
DIM97]; it aims to select potentially different processes frequently. In addition, educated
selection can still be controlled to preserve the classical fairness property of mutual
exclusion.

5.2 Problem Statement and Assumptions

The aim is to design two algorithms satisfying educated, and unique process selection,
respectively, and achieving high recurrence of granting a privilege to processes. The
specification of unique process selection is twofold. First, in each configuration, at most
one process is privileged to access the critical section. Second, granting a privilege to
an arbitrary process holds infinitely often, but not necessarily for all processes. This
specification is formalized in the following definition.

Definition 5.1 (Unique Process Selection – UPS ). Let G = (P, E) be a topology, let
A be an algorithm, and let privileged be a condition on each state of each process p (or
shortly privilegedp). A specification UPS , denoting unique process selection, is said
to be satisfied by an execution Ξ : γ0, γ1, . . . of A over G iff:
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5 Fast and Educated Unique Process Selection

1. Safety: if privileged holds for a process p ∈ P in a configuration γi, then privileged
does not hold for any process q ∈ P \ {p} in γi.

2. Liveness: the condition privileged holds infinitely often, regardless of which
process.1 ♦

Educated unique process selection differs from the classical one by selecting processes
only if they are distinguished by some criterion, abstracted by a real number variable.

Definition 5.2 (Educated Unique Process Selection – EUPS ). Let G = (P, E) be a
topology. Let A be an algorithm. Let privileged be a condition on each state of each
process p, and let v ∈ R be a particular variable owned by each process. A specification
EUPS wrt. v, denoting educated unique process selection wrt. v, is said to be
satisfied by an execution Ξ : γ0, γ1, . . . of A over G iff:

1. Unique process selection is satisfied by Ξ.

2. If privileged holds for a process p ∈ P in a configuration γi, then for all q ∈ P,
p.v ≥ q.v holds. ♦

For simplicity, from now on, the expression “wrt. v” is omitted.

5.2.1 Problem Statement

The aim is to design two self-stabilizing algorithms that satisfy the introduced properties,
where the algorithms show more efficiency than the typical token passing or mutex
algorithms in terms of recurrence properties, for specific environments. The two
algorithms are designed for tree topologies using the shared memory model. The
choice of the scheduler is customized based on the algorithm. The problem statement
formalization follows. Note that the efficiency analysis is given in Section 5.7.

Problem 5.1. Devise two self-stabilizing distributed algorithms for tree topologies
using the shared memory model, such that both achieve high recurrent unique process
selection, and the second provides an educated one.

The contribution of this chapter is as follows:

• An algorithm for unique process selection for tree topologies under the synchronous
scheduler is presented. Let T = (P, E) be a tree topology. The convergence time
wrt. UPS is depth(T ). The recurrence of granting a privilege is 1

4·depth(T ) , and
is achieved in 7 · depth(T ) steps. In the average case, the algorithm achieves

1
4·avg_depth(T )) recurrence of granting a privilege, where avg_depth(T )) is the
average depth for any process in P.

• An algorithm for educated unique process selection for tree topologies under the
asynchronous scheduler is presented. The algorithm provides the same worst case
time complexity and recurrence as the previous algorithm, if applied under the
synchronous scheduler.

1In contrast to mutual exclusion, the condition privileged is not required to hold for each process
infinitely often.
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• Next, it is shown how the second algorithm is extended for educated selection
based on a global criterion.

5.2.2 Assumptions

The assumptions in this chapter are as follows:

• A topology is a tree T = (P, E), where P is a set of processes. Each process other
than the root is called a non-root process.

• The communication model used by the topologies is the shared memory model.

• The number of processes n is known by each process.

5.3 PIF: Propagation of Information with Feedback

Propagation of Information with Feedback – shortly PIF – is a sort of wave or echo
distributed algorithm [Cha82, Seg83, KRS84]. In a PIF approach, a process starts a
so-called PIF cycle by sending a message to its neighbors. Each neighbor forwards
the message to the other neighbors, until the message reaches all processes. Next, an
acknowledgement – or a feedback – is sent from each process. Feedbacks sent from all
processes are received by original message sender, which terminates the PIF cycle.
PIF is useful for many tasks in distributed systems, like snapshot maintenance,

infimum or supremum computation, and synchronization. Examples are found in [RH90,
Lyn96, Tel00]. In particular, the nature of communication in PIF makes it more
useful for collecting and aggregating information by one process than token ring
approaches [HMR94] and the approaches presented in Section 4.3; PIF exploits the
topology diameter or depth by sending multiple tokens to collect information. In this
work, PIF is chosen to be applied for designing self-stabilizing algorithms satisfying
educated and unique process selection. The advantage of PIF over other approaches
concerning unique process selection is illustrated in detail in Section 5.7.
The specification of PIF indicates that when a message is sent from an initiating

process, after a finite number of steps, all processes acknowledge the reception of the
message to the initiating process. In the scope of this work, PIF is used as a token-passing
methodology to satisfy educated and unique process selection. It is, however, not
mandatory to satisfy all specifics of PIF. Therefore, the specification of PIF does not
appear in the formal analysis of the algorithms, and is not necessarily fulfilled in all
cases. Instead, the properties educated and unique process selection are analyzed.

5.3.1 Related Work

Early PIF approaches appear in [Cha82, Seg83, KRS84], which present basic designs of
PIF for many environments. Many following examples are given in [RH90, Lyn96, Tel00].
These solutions are not necessarily self-stabilizing with respect to PIF.
Self-stabilization wrt. PIF is tackled in an extensive work by Villain et al.,

e.g. [BDPV99c, BDPV99a, CPVD01, CDPV02, CDPV05, BDPV07, LMV14]. The
work involves optimal solutions wrt. space requirement for trees [BDPV99a, CDPV05,
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BDPV07] and for rooted networks where trees are built dynamically [CPVD01]: the
space requirement is 2 values for each of the root and leaves, and 3 values for inner
processes. The work of Villain also considers many topological aspects: trees with
unknown sense of direction [BDPV99c], unoriented trees [CDPV05, BDPV07],1 arbitrary
rooted networks [CPVD01], and arbitrary non-rooted networks in which process ids are
exploited to form a tree [CDPV02]. A recent work considers PIF using the message
passing model [LMV14]. Concerning the convergence time wrt. PIF, the algorithms
given in [BDPV99d, BDPV99b, CDPV02, CDPV05, CDV06, BDPV07, LMV14] are
snap-stabilizing; i.e. they stabilize to a correct behavior in 0 steps (cf. Chapter 1), where
the correct behavior adheres to PIF.
Kruijer presents a self-stabilizing algorithm for trees in [Kru79]. The algorithm extends

the 4-state-machine algorithm of Dijkstra [Dij74]. The algorithm allows multiple tokens
to be sent from the root through the tree paths, such that there is one token per path.
It is well known that this algorithm can be applied to trees as a PIF algorithm. In this
work, a similar approach to [Kru79] is exploited.

5.3.2 Extending Dijkstra’s 4-State-Machine Algorithm

The basic design concept in this work reflects searching for a process requesting a
privilege, and selecting one, guaranteeing unique process selection. From now on, a
process that is requesting a privilege is called an active process.
The basic scenario for searching for and selecting active processes uniquely is achieved

following a PIF-like approach over trees as follows (cf. Figure 5.1 where p3 is active):

1. The root propagates a token that reaches all processes. The token’s aim is to check
whether there is an active process. The token is called search token.

2. After the token reaches the leaves, a feedback is sent to the root. The feedback
informs the root about active processes. The token is called feedback token.

3. The root selects an active process – if exists – and targets a token to the active
process. The token is called execute token.

4. The selected process executes its action, and sends back a token that notifies the
root about the completion of the execution. The token is called complete token.

To achieve this scenario, the approach used is similar to Kruijer’s [Kru79], which
extends Dijkstra’s 4-state-machine algorithm [Dij74]. This approach is chosen in
particular for the following reasons:

• The 4-state-machine algorithm requires four values for each inner process, and
two for each of the root and leaves, for the following reason: the four values are
required to conveniently reflect the search, feedback, execute, and complete tokens,
respectively,

1Unoriented trees are directed trees, where instead of one edge, a pair of symmetric edges between any
parent and its child may exist.
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Figure 5.1: Desired scenario. The square denotes an active process

• The convergence time complexity to guarantee starting to search for an active
process correctly, is O(depth(T )), which is reasonably good. Note that some
algorithms in the related work are snap-stabilizing wrt. PIF. However, if they
are used to achieve the scenario of this work, they converge in O(depth(T )) steps
to achieve unique process selection.

• In the case of unique process selection, the chosen methodology realizes the
synchronous scheduler to obtain immediate feedbacks, which increases the
recurrence of granting a privilege on average.

Note that the followed approach is similar to the second one in [BDPV07] in the
mechanism of sending waves back and forth between root and leaves. However, it differs
in having four values per process instead of three.
Before illustrating the approach, the 4-state-machine algorithm is explained. This

algorithm is designed to be executed over ring topologies. The algorithm behaves as
follows: there are two special neighboring processes p and q in a ring, and a single
token is sent back and forth between p and q through all the other processes. With this
scenario, each process in the ring receives the token uniquely and infinitely often. More
details about Dijkstra’s algorithm and its complexity are found in [Dij74, Kru79, Dij86].
In this work, the scenario of Dijkstra’s algorithm for ring topologies is exploited in

trees by sending multiple tokens back and forth between the root and the leaves.
The basic extension of Dijkstra’s algorithm to trees is presented in Algorithm 5.4

(recall that Ch(p) denote the set of children of a process p.) Each process has two
boolean variables x, up, and the given guarded commands. It is asserted that always
up = > for the root, and up = ⊥ for each leaf, which implies that the root and each leaf
has only two values.
Algorithm 5.4 works under the asynchronous scheduler, but it does not provide

immediate feedbacks. The tokens propagated by the root always reach the leaves, and
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Algorithm 5.4 Extended 4-state-machine algorithm to trees
// This represents the sub-algorithm for process p

Variables
x ∈ B, up ∈ B

Assertions
root.up = > ∧ ∀ p ∈ Leaves • p.up = ⊥

Guarded Commands (gci : guard −→ action)
For Root
gc1 : ∀ ch ∈ Ch(p) • ch.x = x ∧ ¬ch.up −→ x := ¬x

For Leaves
gc2 : parent(p).x 6= x −→ x := ¬x;

For Inner Processes
gc3 : parent(p).x 6= x −→ x := ¬x; up := >;

gc4 : ¬up ∧ ∀ ch ∈ Ch(p) • ch.x = x ∧ ¬ch.up −→ up := ⊥;

feedback is given from all processes. Synchronicity is exploited for sending immediate
feedbacks in Section 5.4.

Recall that the aim is to have four tokens by the four values. The guards of the
commands of Algorithm 5.4 are represented as tokens in the following:

token1 : parent(p).x 6= x ∧ ¬x
token2 : up ∧ x ∧ ∀ ch ∈ Ch(p) • ch.x = x ∧ ¬ch.up
token3 : parent(p).x 6= x ∧ x
token4 : up ∧ ¬x ∧ ∀ ch ∈ Ch(p) • ch.x = x ∧ ¬ch.up

Following the above commands, token1 and token3 (resp. token2 and token4) are passed
from parents to children (resp. children to parents). Every two tokens passed in the same
direction are distinguished by the value of x. Algorithm 5.4 can be re-constructed using
the above token notation as follows:

For Root
gc1 : token2 ∨ token4 −→ x := ¬x

For Leaves
gc2 : token1 ∨ token3 −→ x := ¬x;

For Inner Processes
gc3 : token1 ∨ token3 −→ x := ¬x; up := >;

gc4 : token2 ∨ token4 −→ up := ⊥;

Following the above notation, it is obvious that the actions for token1 and token3

are the same. This also holds for token2 and token4. In the following algorithms in
Sections 5.4 and 5.5, the tokens 1, 2, 3 and 4 are utilized, to reflect the search, feedback,
execute, and complete tokens, respectively, where processes receiving different tokens
execute different actions to achieve the aim.
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5.4 Exploiting Synchronicity for Immediate Feedback

A self-stabilizing algorithm wrt. unique process selection is introduced in Algorithm 5.5.
The idea behind Algorithm 5.5 is to have an immediate feedback, once an active process is
found, without bothering about forwarding the token to the process’s descendants. This
can be achieved by exploiting the synchronous scheduler. Note that having immediate
feedbacks may violate the specification of PIF, that each process should receive the token
and send a feedback.
Each process owns the following variables:

• The variables up ∈ B and x ∈ B are taken from Algorithm 5.4. Similarly, it is
asserted that always up = > for the root, and up = ⊥ for each leaf.

• A new variable ` ∈ {−1, 0, . . . , n−1} is added. This variable is used to store process
id’s to mark active processes, and paths leading to active processes, in order to
target some tokens. The valuation ` = −1 denotes that ` is not pointing to any
process.

• The flag active is added to denote whether a process is active. The value of active
may change in any step independent of the algorithm; i.e. by an external action.

The function critSection() denotes the particular action – accessing the critical section
– executed when a process is privileged.
The algorithm has tokens 1–4 reflecting the search, feedback, execute, and complete

tokens, respectively. However, token2, which is a feedback token has two sorts: positive
and negative feedbacks. Informally, in the former case, the token informs about an active
process in the subtree rooted by the process that is sending the token, while in the latter,
the token informs that there is no active process in the corresponding subtree.
Note that each of the root, the inner processes, and the leaves have different

sub-algorithms (cf. Algorithm 5.5). The stable behavior of Algorithm 5.5 is an infinite
repetition of two cycles, where in each cycle, the root propagates a token, and receives
at least one.
Informally, in the first cycle the root propagates a search token (token1) searching

for active processes. Once an active process receives the token, it immediately sends
a positive feedback token (token2-a) to the root, and sets ` to the id of itself. When
an ancestor receives a positive feedback token, it sets ` to the id of the process that is
sending the token. If there is no active process in the topology, negative feedback tokens
(token2-b) are sent from the leaves up to the root. In the second cycle, if the root receives
a positive feedback token, then the root points to the child ch who is sending the token
by setting ` to ch.id, and the root sends an execute token (token3). If the feedback is
negative, the root sets ` = −1. In the former case, the execute token is forwarded to an
active process. The followed path is known from the values of `. The active process –
now the selected process – executes critSection(), and then, it sends a complete token
(token4) that is forwarded to the root. The root may execute critSection() after receiving
the complete token.
To explain Algorithm 5.5 in detail, for convenience of presentation, some notation

concerning the states of processes is introduced. Given a process p:
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• The variables p.x, p.up, and p.` are represented together as pupx `. For example, the
notation p>⊥5 denotes that p.x = ⊥, p.up = >, and p.` = 5.

• If only one value is specified, the sign “?” is sometimes written at the position of
the other values. For example, p?

>? or p?
> denote that p.x = > regardless of the

values of up and `.

• To denote that p.` 6= −1, given (for example) that p.x = a and p.up = b, the
notation pba 6–1 is used.

The stable execution of Algorithm 5.5 is an infinite repetition of two cycles, which are
explained below in detail by referring to Algorithm 5.5.

First Cycle
token1 ↓ : the root sends token1 to its children. If a process p receives token1, then there
are two possible reactions:

• If p is active, then p switches into p⊥>p.id, sending to its parent token2-a immediately
(commands gc6, gc14).

• If p is not active, then p switches into p>>-1 to send token1 to its children (gc5) if p
is an inner process, or it switches into p⊥>-1 (gc13) if p is a leaf, since for all leaves,
up = ⊥.

token2-a ↑ : If a process p receives token2-a from a child q, then there exists an active
process in the subtree rooted by p. p switches into p⊥>q.id (gc7) – The process p points
to q. In the next steps, the ancestors of p pass token2-a analogously as p did, where each
parent points to its sending child, until token2-a reaches the root.

token2-b ↑ : If a process p receives token2-b, then there exists no active process in the
subtree rooted by p. p switches into p⊥>-1 (gc8). If there is no active process in the whole
topology, each leaf switches into p⊥>-1 (gc13) after receiving token1, and it follows that
each parent of a leaf receives token2-b from its children and forwards it upwards (gc8)
until it reaches the root.

Second Cycle
token3 ↓ : The root receives token2-a if there is at least one active non-root process in
the tree or token2-b otherwise. The root sends token3 (gc1, gc2), such that if there is an
active process in the tree, the value of root.` is set to the id of the child that is linked
to an active process, whose feedback was received by the root at earliest (gc1). If there
is no active process, then the value of root.` is set to −1 (gc2). If a process p receives
token3, one of three cases may exist:

1. Case (1) represented by gc11, gc16: if parent(p) is not pointing to p; i.e. parent(p).` 6=
p.id, or p is neither pointing to itself nor to one of its children, this implies that there
is no selected process in the subtree rooted by p. The process p, then, switches
into p⊥⊥, where p does not point to any of its children. Note that the children of
p (if they exist) behave the same in the next step. If p is a leaf, then it does not
need to check if it is pointing to itself since it has no children. In this case, no
process in the subtree rooted by p gets a privilege in the current cycle.
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Algorithm 5.5 Unique process selection by exploiting synchronicity for immediate
feedback in PIF
// This represents the sub-algorithm for process p

Variables
x ∈ B
up ∈ B
` ∈ {−1, 0, . . . , n−1}
active ∈ B

Assertions
root.up = > ∧ ∀ q ∈ Leaves • q.up = ⊥

Tokens
token1 : parent(p).x 6= x ∧ ¬x % Search Token
token2-a : up ∧ x ∧ ∃ ch ∈ Ch(p) • ch.x = x ∧ ¬ch.up ∧ ch.` 6= −1 % Positive Feedback Token
token2-b : up ∧ x ∧ ∀ ch ∈ Ch(p) • ch.x = x ∧ ¬ch.up ∧ ch.` = −1 % Negative Feedback Token
token3 : parent(p).x 6= x ∧ x % Execute Token
token4 : up ∧ ¬x ∧ ∀ ch ∈ Ch(p) • ch.x = x ∧ ¬ch.up % Complete Token

Guarded Commands (gci : guard −→ action)
For Root

gc1 : token2-a −→ ` := ch.id; x := ¬x;
gc2 : token2-b −→ ` := −1; x := ¬x;
gc3 : token4 ∧ active −→ critSection()critSection()critSection(); ` := −1; x := ¬x; % Privilege
gc4 : token4 ∧ ¬active −→ ` := −1; x := ¬x;

For Inner Processes
gc5 : token1 ∧ ¬active −→ ` := −1; up := >; x := ¬x;
gc6 : token1 ∧ active −→ ` := id; up := ⊥; x := ¬x;
gc7 : token2-a ∧ parent(p).x = x −→ ` := ch.id; up := ⊥;
gc8 : token2-b ∧ parent(p).x = x −→ up := ⊥;
gc9 : token3 ∧ parent(p).` = id ∧ ` = id −→ critSection()critSection()critSection(); up := ⊥; x := ¬x;% Privilege
gc10 : token3 ∧ parent(p).` = id ∧

∃ ch ∈ Ch(p) • ` = ch.id −→ up := >; x := ¬x;
gc11 : token3 ∧ (parent(p).` 6= id ∨

∀ q ∈ Ch(p) ∪ {p} • ` 6= q.id) −→ ` := −1; up := ⊥; x := ¬x;
gc12 : token4 ∧ parent(p).x = x −→ up := ⊥;

For Leaves
gc13 : token1 ∧ ¬active −→ ` := −1; x := ¬x;
gc14 : token1 ∧ active −→ ` := id; x := ¬x;
gc15 : token3 ∧ parent(p).` = id ∧ ` = id −→ critSection()critSection()critSection(); x := ¬x; % Privilege
gc16 : token3 ∧ (parent(p).` 6= id ∨ ` 6= id) −→ x := ¬x;
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Figure 5.2: Scenario of Algorithm 5.5. A square denotes an active process.

2. Case (2) represented by gc10: if parent(p) points to p and p points to one of its
children q, this implies that the selected process exists in the subtree rooted by q,
but not q. p passes token3, while keeping p.` = q.id. Note that the children of p
other than q behave as in Case 1 in the following steps because p is pointing to q.

3. Case (3) represented by gc9, gc15: if parent(p) points to p and p points to itself,
then p is privileged to execute critSection(). p executes critSection() and switches
into p⊥⊥ sending token4 to its parent. Note that p is the unique privileged process,
because by definition of trees, there exists at most one process that points to itself
and is linked to the root by one path, where each parent points to its child in this
path.

token4 ↑ : Each process that receives token4, forwards it to its ancestors (gc12). The root
finally receives token4 which involves all its children, after the selected process executes
critSection(). If the root is active, it is privileged, it executes critSection(), and it sends
token1 starting a new cycle (gc3). Otherwise, the root simply starts a new cycle (gc4).
Figure 5.2 illustrates an example of the two PIF cycles, where p1 is active.

5.5 Educated Unique Process Selection

This section is structured as follows: Section 5.5.1 presents the algorithm for educated
selection based on local state evaluation. Section 5.5.2 extends the algorithm to achieve
selection based on evaluating global configurations.

5.5.1 Educated Selection Based on Local States

The algorithm for educated unique process selection, based on evaluating local states, is
presented in Algorithm 5.6. The variables owned by each process are as follows:
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• The variables up and x are chosen from Algorithm 5.4, together with the assertion
up = > for the root, and up = ⊥ for each leaf.

• The variable ` is used similar to Algorithm 5.5, however, with a difference that the
value −1 does not appear in the domain of `. Recall that the value −1 is used to
mark that the corresponding process is not pointing to any process. The case is
not needed here, because within a feedback, always one process is selected.

• The local criterion, upon which a process is selected, is abstracted by a variable
m ∈ R. A process is selected only if the value of m of this process is the maximum
among all other processes in the tree. The variable m is assumed to be updated
locally and independent of the algorithm.

Besides the variables, a function choose : 2P −→ {0, . . . , n−1} is defined as follows:
given a set of processes P ′, the function returns the id of a process that has the maximum
value of m among all processes in P ′.
The stable behavior of Algorithm 5.6 is an infinite repetition of two PIF cycles, where

in each cycle, the root propagates a token to all processes, and receives a feedback.
Informally:

• In the first PIF cycle, the root propagates a search token that reaches all processes.
Each process updates the value of m. Next, a feedback token is sent starting from
the leaves and ending at the root. When a process receives a feedback token, it
points to the process with the largest value of m among itself and its children, and
updates the value of its m accordingly.

• The second PIF cycle is similar to the second cycle of Algorithm 5.5, except that
token3 reaches the leaves and token4 is sent back from the leaves.

The two PIF cycles are explained in detail as follows.

First PIF Cycle
token1 ↓ : the root propagates token1. When a process p receives token1, p updates m
to a value that is independent of the algorithm, and p forwards the token to its children
(gc4), until token1 reaches the leaves. Each leaf li updates li.m, and switches into l⊥>i
(gc10) to send token2 to its parent. Now each process in the tree has updated its value
of m.

token2 ↑ : when a process p receives token2, p points to a process q, where q ∈ {p}∪Ch(p)
and q has the maximum value of m among p and its children (gc5). Then, p copies q.m,
and switches the value of p.up (gc5). Note that q might be p itself. With this action,
each process p eventually points to the process with the original maximum value of m
in the maximal subtree rooted by p, after copying the maximum m. Eventually, token2

reaches the root. Next, the root starts the second PIF cycle (gc1), after selecting a
process, similarly, using the variable `.

Second PIF Cycle
token3 ↓ : the root sends token3. If a process p receives token3, one of three possible
cases may exist:
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Algorithm 5.6 Self-stabilizing PIF for educated unique process selection
// This represents the sub-algorithm for process p

Variables: x ∈ B, up ∈ B, ` ∈ {0, . . . , n−1}, m ∈ R

Assertions: root.up = > ∧ ∀ q ∈ Leaves • q.up = ⊥

Tokens
token1 : parent(p).x 6= x ∧ ¬x % Search Token
token2 : up ∧ x ∧ ∀ ch ∈ Ch(p) • ch.x = x ∧ ¬ch.up % Feedback Token
token3 : parent(p).x 6= x ∧ x % Execute Token
token4 : up ∧ ¬x ∧ ∀ ch ∈ Ch(p) • ch.x = x ∧ ¬ch.up % Complete Token

Functions
updatem() := {v | v ∈ R}
choose(P ′ ⊆ P) := {i | pi ∈ P ′ ∧ ∀ q ∈ P ′ • pi.m = max(q.m)}
critSection() : Access Critical Section

Guarded Commands (gci : guard −→ action)
For Root
gc1 : token2 −→ ` := choose({p} ∪ Ch(p)); m := p`.m; x = ¬x;
gc2 : token4 ∧ ` = id −→ critSection()critSection()critSection(); m := updatem(); x = ¬x; % Privilege
gc3 : token4 ∧ ` 6= id −→ m := updatem(); x = ¬x;
For Inner Processes
gc4 : token1 −→ m := updatem(); up := >; x := ¬x;
gc5 : token2 ∧ ¬token3 −→ ` := choose({p} ∪ Ch(p)); m = p`.m; up := ⊥;
gc6 : token3 ∧ parent(p).` = id ∧ ` = id −→ critSection()critSection()critSection(); up := >; x := ¬x; % Privilege
gc7 : token3 ∧ parent(p).` = id ∧ ∃ q ∈ Ch(p) • p.` = q.id −→ up := >; x := ¬x;
gc8 : token3 ∧ (parent(p).` 6= id ∨ ∀ q ∈ Ch(p) • p.` 6= q.id) −→ ` := id; up := >; x := ¬x;
gc9 : token4 ∧ ¬token1 −→ up := ⊥;
For Leaves
gc10 : token1 −→ m := updatem(); ` := id; x := ¬x;
gc11 : token3 ∧ parent(p).` = id −→ critSection()critSection()critSection(); x := ¬x; % Privilege
gc12 : token3 ∧ parent(p).` 6= id −→ x := ¬x;

Algorithm 5.7 Extension of Algorithm 5.6
Additional Variables
snapShot = [k0, . . . , kn−1], where ki ∈ R for 0 ≤ i ≤ n−1

Extended Functions
updatem()([k0, . . . , kn−1]) = {v ∈ R | v is dependent on [k0, . . . , kn−1]}

Extended Guarded Commands (2, 3, 4, 6, 9, 10, 11)
gc2′ : . . . −→ critSection()critSection()critSection(); snapShot .kid = k; m := updatem(snapShot); x = ¬x;
gc3′ : . . . −→ snapShot = p`.snapShot ; m := updatem(snapShot); x := ¬x;
gc4′ : . . . −→ snapShot = parent(p).snapShot ; m := updatem(snapShot); up := >; x := ¬x;
gc6′ : . . . −→ critSection()critSection()critSection(); snapShot .kid := k; up := ⊥; x := ¬x;
gc9′ : . . . −→ snapShot := p`.snapShot ; up := ⊥;
gc10′ : . . . −→ snapShot = parent(p).snapShot ; m := updatem(snapShot); ` := id; x := ¬x;
gc11′ : . . . −→ critSection()critSection()critSection(); snapShot .kid = k; m := updatem(snapShot); x := ¬x;
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• Case (1) represented by gc8, gc12: if parent(p) is not pointing to p, or p is neither
pointing to itself nor to one of its children (if p is not a leaf), then there is no
selected process in the maximal subtree rooted by p. p sets ` to p.id, to prohibit
any child from executing critSection() after forwarding token3. Note that the
children of p (if they exist) behave similarly in the next step. The leaves do not
need to change the value of `, since they have no children.

• Case (2) represented by gc7: if parent(p) points to p and p points to one of its
children q, this implies that the selected process exists in the maximal subtree
rooted by q. p passes token3, while keeping p.` = q.id. Note that the children of p
other than q react as in Case (1).

• Case (3) represented by gc6, gc11: if parent(p) points to p and p points to itself,
then p has a privilege. p executes critSection() and forwards the token. Note that
p has a unique privilege, because by definition of tree, there is at most one process
that points to itself and is linked to the root by one path, where each parent points
to its child.

token4 ↑ : Next, token4 is forwarded to the root (gc9). The root receives token4 which
involves all its children, after any selected non-root process executes critSection(). If
the selected process is the root, then gc2 is enabled, the root executes critSection(), and
propagates token1 to its children starting a new PIF cycle. Otherwise (gc3), the root
simply starts a new PIF cycle.
Figure 5.3 illustrates an example, where each process is labelled by its value of m. p3

has the highest value of m, which equals 20.
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Figure 5.3: Scenario of Algorithm 5.6. p3 has the highest value of m.
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5.5.2 Educated Selection Based on Global Configurations

Algorithm 5.6 is extended to satisfy educated selection based on the topology
configuration; i.e. a process is selected based on a global view to the states of all
processes. For simplicity, only the extension of Algorithm 5.6 is shown. It is presented
in Algorithm 5.7.
In Algorithm 5.6, whenever m is updated by the function updatem(), the function

returns values that are independent of the algorithm, and are based on local criterion
belonging to the owning process. In the extended version, the value of m is updated
according to the global configuration of the topology. This raises the need that each
process needs to know global information.
The global information is abstracted by the vector snapShot , which is owned by each

process, and is defined as follows:

snapShot = [k0, . . . , kn−1],

where ki ∈ R, for 0 ≤ i ≤ n−1, is the relevant evaluation of the local state of pi. Each
process p updates p.m according to the value of p.snapShot . Algorithm 5.6 is extended
by changing the commands gc2-4, gc6, gc9-11 (cf. Algorithm 5.7). With this extension,
the stable behavior of the algorithm is as follows: in the first PIF cycle, when a process
receives token1, it copies the parent’s snapshot, and updates its value of m according to
the snapshot (gc4′ , gc10′). With this action, a copy of the snapshot reaches each process.
Next, the remainder of the first PIF cycle continues normally. In the second PIF cycle,
the root sends token3 that reaches the selected process p. After p runs critSection(),
it modifies the snapshot based on its current value of k (gc6′ , gc11′). Next, the parent
of p copies the new snapshot, and forwards it to the root (gc9′). The root handles the
snapshot similar to the other processes (gc2′ , gc3′).
Note that the above behavior represents a stable behavior; the snapshot sent by the

root matches the values of k of all processes. If the snapshot contains an incorrect value
of some k, the snapshot is called inconsistent. Intuitively, inconsistent snapshots are
required to be corrected. In the following, a correction method for snapshot inconsistency
is sketched.
To correct snapshot inconsistency, the notion of highlighting a snapshot is used. A

snapshot snap of a process p is said to be highlighted iff snap contains at least one null
value of some k; i.e. iff

p.snapShot = [k0, . . . ,null , . . . , kn−1].

Additionally, snap is called empty if it contains only null values; i.e. iff

p.snapShot = [null , . . . ,null ].

The snapshot inconsistency is corrected in the first PIF cycle as follows:

1. When the root propagates token1 while having an inconsistent snapShot , then
there exists a process pj such that pj .k is not equal to snapShot .kj . Eventually, pj
receives token1.
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2. When pj copies its parent’s snapshot, pj checks if there is snapshot inconsistency,
or if parent(p).snapShot is empty. If so, pj sets its snapshot as empty; i.e.

pj .snapShot = [null , . . . ,null ].

3. All processes in the maximal subtree rooted by pj set their snapshots to empty,
analogous to step 2, since token1 reaches every process.

4. Now starting from the leaves, for each process p that receives token2, if p recognizes
a highlighted snapshot in one of its children or itself, then p creates a new snapshot
by merging the snapshots of its children, and adding its value of k. With this action,
the snapshot of p contains correct values of all processes in the maximal subtree
rooted by p, and null values for the processes that are not in the subtree.

5. Once the root receives a feedback token (token2), if the root recognizes snapshot
inconsistency or a highlighted snapshot in one of its children, the root sets its
snapshot empty, merges it with the highlighted snapshots of its children, and then,
the root adds the missing variables from any non-highlighted snapshot. Now the
root has a correct snapshot, that is propagated in the next PIF cycle.

Figure 5.4 illustrates an example. In this example, for simplicity, a correct snapshot
records the id i of each process as a value of ki. In Figure 5.4a, p1 detects an inconsistency
in the snapshot sent by the root. In Figure 5.4b, p1, p2, and p3 set their snapshots to
empty (“_” denotes null .) Next in Figure 5.4c, p1, p2, and p3 add their own values and
merge the values of their children. Finally, in Figure 5.4d, the root creates a correct
snapshot.

p0

p1

p2 p3

p4

p5 p6

p0[0, 1, 2,6, 4, 5, 6]

[0, 1, 2, 3, 4, 5, 6]

(a) Inconsistency detected at p1 (step 1)

p0

p1

p2 p3

p4

p5 p6

p0

p1

p2 p3

p4

p5 p6

[0, 1, 2,6, 4, 5, 6]

[_, . . . ,_]

[_, . . . ,_]

(b) Setting snapshots to null (steps 2, 3)
p0

p1

p2 p3

p4

p5 p6

p1

p2 p3

p4

p5 p6

[0, 1, 2,6, 4, 5, 6]

[_, 1, 2, 3,_,_,_]

[_,_, 2,_, . . . ,_]

(c) Merging snapshots (step 4)

p0

p1

p2 p3

p4

p5 p6

p0

p1

p2 p3

p4

p5 p6

[0, 1, 2,3, 4, 5, 6]

[_, 1, 2, 3,_,_,_]

[_,_, 2,_, . . . ,_]

(d) Root creates a correct snapshot (step 5)

Figure 5.4: Snapshot correction. The symbol “_” denotes null .

5.6 Correctness and Time Complexity

This section presents the correctness and time complexity proofs for Algorithm 5.5 and
Algorithm 5.6. The critical part of the correctness is the issue of granting a privilege,
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which is formalized in Definition 4.5 of Section 4.4 using the condition priv . The
condition priv over a configuration is defined as: there is a process that is privileged. In
this section, concerning Algorithm 5.5, a process is privileged iff one of the commands
gc4, gc9, and gc15 is enabled. Concerning Algorithm 5.6, a process is privileged iff one
of the commands gc2, gc6, and gc11 is enabled.
To show the correctness of Algorithm 5.5 and Algorithm 5.6, the following environment

is set: The corresponding algorithm is executed over a topology T = (P, E) using
the shared memory model. The scheduler is synchronous for Algorithm 5.5, and
asynchronous for Algorithm 5.6, where the asynchronous one is more general. The
time complexity and recurrence are shown for the synchronous scheduler.
The properties to be shown are as follows:

• Both algorithms are self-stabilizing wrt. UPS in depth(T ) steps.

• Let ∆ = 1/(4 · depth(T )). Algorithm 5.5 is self-stabilizing wrt. priv∆ in 7·depth(T )
steps.

• Concerning Algorithm 5.6, in 3 · depth(T ) steps

– educated unique process selection holds.

– within any two subsequent PIF cycles, exactly one process is granted a
privilege.

In the following, some terms are fixed, and some basic lemmata for both algorithms
are presented. First, the notions of top and bottom tokens are defined.

Definition 5.3 (Top, Bottom Token). A process p in a topology is said to have a
top token in a configuration γ iff p 6= root∧ p.x 6= parent(p).x. Process p is said to have
a bottom token in γ iff p has an enabled command and p.x = parent(p).x. ♦

Corollary 5.1. Each process cannot have both, top and bottom tokens in the same
configuration.

Proof. By definition of the commands, a process p has a top token iff parent(p).x 6= p.x,
and p may have a bottom token only if parent(p).x = p.x, which implies that p cannot
have both tokens in the same configuration.

In a legitimate configuration, it is supposed to be that the tokens and the values
of ` should result from the actions of the commands. However, in an illegitimate
configuration, there might be arbitrary tokens and values. The following three lemmata
concern these token issues. The lemmata apply under the asynchronous scheduler, which
implies that they also apply under the synchronous scheduler. The time complexity
measures regard the synchronous scheduler.

Lemma 5.1. Let p1, . . . , ps be a path in the topology. Let b ∈ B, and let γ0 be a
configuration in which pi

?
b holds for 1 ≤ i ≤ s. For each execution γ0, γ1, . . . , each

of p2, . . . , ps has no top token until p1 changes its x value through: a bottom token if
p1 = root, or a top token.
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Proof. A process p may have a top token only, if p.x 6= parent(p).x. In γ0, for 2 ≤ j ≤ n,
pj .x = parent(pj).x = b, and therefore each pj does not have a top token in γ0. pj may
have a top token in any following configuration only if parent(pj) changes the value of
x. Bottom tokens may exist. However, execution steps following bottom tokens do not
change the value of x for all processes except for the root. By tree definition, the root
cannot be any of processes pj . The only process that may change the value of x is p1:
(i) if p1 is the root, then it switches into p1

?
¬b through a bottom token, (ii) otherwise, p1

may switch into p1
?
¬b by only a top token.

Lemma 5.2. Given a path p0, . . . , ps in a topology, and a configuration γ0 in which
p0

?
b for b ∈ B. For each execution γ0, γ1, . . . , there exists finally a configuration γu,

where 0 ≤ u ≤ s− 1 for the synchronous scheduler, such that: if ∀ i ∈ [0, u] • γi |=
p0

?
b, then ∀ j ∈ [0, u] • γu |= pj

?
b; i.e. if p0

?
b holds, then all other processes pj switch into

pj
?
b in at most u steps.

Proof. If for all 0 ≤ j ≤ s, pj?
b holds in γ0, then the claim holds with u = 0. Otherwise,

consider the process pe with the least depth among p1, . . . , ps and in state pe?
¬b. By

Lemma 5.1, pe−1 has no bottom token, and pe has a top token. In the step (γ0, γ1), pe
switches into pe?

b. Now in γ1, pe does not have a top token. Note that x is equal to b
in all the processes p0, . . . , pe. Inductively, the same procedure applies to the processes
pe+1, pe+2, . . . in the next steps, respectively, unless p0 switches its value of x. Since the
number of processes is s, after at most u = s synchronous steps, each process has x = b,
given that p0

?
b holds.

Lemma 5.3. Let d be the depth of a topology, and let γ0 be a configuration in which
root>b for b ∈ B. For each execution γ0, γ1, . . . , there exists finally a configuration γu,
such that γu |= root>¬b, and 1 ≤ u ≤ 2d for the synchronous scheduler.

Proof. By Lemma 5.2, after at most d synchronous steps at a configuration γs, for
each process p, p?

b holds, and in particular, p⊥b for the leaves, if root>b holds in each
γ0, . . . γs. In γs, there is no top token for any process in the tree because x is equal
to b for all processes. Moreover, by Lemma 5.1, steps following bottom tokens do not
enable top tokens unless the root changes its configuration. Let p be a process with the
largest depth such that p>b holds in γs. Since for all leaves up = ⊥, the depth of p is at
most d− 1. In addition, every child ch of p is in a configuration ch⊥b . In the next step,
by definition of the commands – gc1−4, gc7−8, gc12 for Algorithm 5.5 and gc1−3, gc5, gc9

for Algorithm 5.6 – at least one of them is enabled, and each switches p.up into ⊥.
Analogously, in γs+1, each process pr at the same depth of p is in a state pr⊥b . Note that
in γs+1, there are no top or bottom tokens for all processes in any subtree rooted by any
process at depth d− 1. Inductively, the processes in d− 2 and lower depths perform the
same action (if required) in the next steps, respectively. After at most d− 1 steps of
γs, a configuration γu−1 is reached where one of the commands gc1−4 for Algorithm 5.5
and gc1−3 for Algorithm 5.6 is enabled. In (γu−1, γu), the root switches into root>¬b. By
summing up, the overall number of steps u may reach up to: d+ (d− 1) + 1 = 2d.
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5.6.1 Correctness of Algorithm 5.5

This part concerns the correctness of Algorithm 5.5 under the synchronous scheduler.
In the following parts, a legitimate configuration is defined. Next, the convergence wrt.
a legitimate configuration is shown. After that, the closure of legitimate configurations
and recurrence properties are considered. Finally, self-stabilization wrt. unique process
selection is shown.

Legitimate Configuration

This part specifies what a legitimate configuration is. Intuitively, a legitimate
configuration is defined based on the desired behavior, which in turn satisfies the desired
properties, basically unique process selection. Note that the definition and proofs are
built upon rigorous theory, due to the algorithms’ nature of having multiple properties
over configurations and executions.
Roughly, a legitimate configuration should guarantee the following properties –

formalized in Definition 5.7:

1. If a process p sends a search token (p>>), p.` = -1 holds, and if p is a non-root
process, then p is not active.

2. If a process p sends a feedback token (p⊥>):

• either there exists a path leading to an active process, where each process in
this path points to the next one. Such a path is called an active path, denoted
by aPath.

• Or p.` = -1, and there exists no active process in the subtree rooted by p.

3. If the root sends a search token (root>>):

• root.` = -1.

• No process is granted a privilege

4. If the root sends an execute token (root>⊥):

• Either there exists exactly one path, which is called execution path (ePath),
that links the root to an active process, where each parent points to its child
by the variable `, or

• there exists no active process in the tree, and no process other than the root
sends an execute token or is privileged.

Since it is assumed that a process becomes active independent of the algorithm, it is
needed to distinguish between being active while receiving a search token, and switching
to active after receiving a search token. Hence, the term last active is defined.

Definition 5.4. Given an execution γ0, γ1, . . . over a topology, a process p is said to be
last active in a configuration γi, denoted by p.l-activeγi , iff p is active in a configuration
γj where j ≤ i, and γj is the last configuration in which p received token1. ♦
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Definition 5.5. Given a configuration γ, an active path at γ, denoted by aPathγ ,
is a path pr, . . . , ps for r ≤ s such that γ is defined as follows:

∀ r ≤ j ≤ s • pj⊥> ∧ ps.l-active ∧ ps.` = ps.id ∧
∀ r ≤ i < s • pi.` = pi+1.id ∧ ¬pi.l-active ♦

Definition 5.6. Given a configuration γ, an execution path at γ, denoted by
ePathγ , is a path p0, . . . , ps such that p0 = root, and γ is defined as follows: for 0 ≤ i < s:

pi.` = pi+1.id ∧ ps.` = ps.id ∧ ps⊥? ∧ (pi
>
? −→ pi

>
⊥) ∧

(pi+1
>
⊥ −→ pi

>
⊥) ∧ (pi+1

?
⊥ −→ pi

?
⊥) ∧ (pi

⊥
? −→ pi+1

⊥
? ) ∧

(pi
⊥
> −→ ¬pi.l-active) ∧ (ps

⊥
> −→ ps.l-active) ∧

∀ p 6∈ {p0, . . . , ps} • (p>? −→ p>>-1) ∧ (p?
> ∧ parent(p)?

⊥ −→ parent(p).` 6= p.id) ♦

Definition 5.7. A legitimate configuration, abbreviated by legConfig, for
Algorithm 5.5 is a configuration γ of a topology T = (P, E) that satisfies:

1- ∀ p ∈ P • (p>> −→ p>>-1 ∧ (p 6= root −→ ¬p.l-active)) (5.1)

2- ∀ ps ∈ P • ps⊥> −→
∃ r ≥ s • ps, . . . , pr : aPathγ ∨ (5.2)

∀ path : ps, . . . , pz • ∀ e ∈ [s, z] • ¬pe.l-active ∧ pe⊥>-1 (5.3)

3- root>> −→
∀ p ∈ P • p>? −→ p>>-1 ∧ (5.4)

∀ p 6= root • (p?
> ∧ parent(p).` = p.id) −→ parent(p)?

> (5.5)

4- root>⊥ −→
∃ p ∈ P • p.l-active −→ ∃ !ePathγ ∧ 1 (5.6)
¬∃ p ∈ P • p.l-active −→ ∀ p 6= root •

p>? −→ p>>-1 ∧ (5.7)

p?
> ∧ parent(p)?

⊥ −→ parent(p).` 6= p.id (5.8)

The set of legConfigs for Algorithm 5.5 is denoted by Γleg . ♦

Note that legConfig is used without mentioning Algorithm 5.5, as it is clear from the
context.

Convergence wrt. a LegConfig

Theorem 5.1 (Convergence). For each execution γ0, γ1, . . . over a topology of depth
d, there exists finally a legConfig γu ∈ Γleg , such that 0 ≤ u ≤ 3d.

Proof Sketch (the full proof is given in Appendix A.1). Lemma 5.3 states that the
root changes its configuration from root>b into root>¬b in 2d steps. Further analysis shows
that a legConfig is reached after d steps from the last change of the root’s configuration.
This sums up to to d+ 2d = 3d.

1The symbol ∃ ! denotes “there exists exactly one”.
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Note that an execution may require up to 3d steps to reach a legConfig if a leaf
process was initially sending a positive feedback token (token2-a) while not being active,
and while there are other processes that still did not receive the search token.

Closure

To prove the closure of the set of legConfigs, the set is divided into four categories. Next,
it is shown that any execution goes only through the categories, such that there exist
time bounds for which the execution stays in one category. When a process is privileged,
the following step – in which the process executes critSection() – moves between two
particular categories. Using this scheme, the recurrence properties are proven as well.
The legConfigs are categorized into the following four categories – formalized in

Definition A.1:

• Category 1 contains the legConfigs in which the root is in a state root>>.

• Category 2 (resp. Category 3) contains all legConfigs in which the root is in a state
root>⊥ and there exists an active process that still has not executed critSection()
(resp. has executed).

• Category 4 includes all legConfigs in which the root is in a state root>⊥ and there
is no active process.

A system executes through legConfigs wrt. the defined categories as follows – cf.
Figure 5.5:

• Starting from a legConfig in Category 1, any execution eventually reaches a
legConfig in Category 2 if there exists an active non-root process, or in Category 4
if there exists no active non-root process, only through legConfigs from Category 1.
No process executes critSection() while root>> holds.

• Starting from any legConfig in Category 2, any execution reaches a legConfig
in Category 3 through legConfigs in Category 2. The command critSection() is
executed by only one active process.

• From any legConfig in Category 3 (resp. Category 4), any execution reaches a
legConfig in Category 1 through legConfigs in Category 3 (resp. 4), where only the
root may execute critSection().

C1C2

C3

C4
∃ p ∈ P \ {root} • p.l-active ∀ p ∈ P \ {root} • ¬p.l-active

critSection()

Figure 5.5: Categories of legitimate configurations for Algorithm 5.5

Theorem 5.2 (Closure). For each execution γ0, γ1, . . . over a topology, if γ0 ∈ Γleg ,
then for i ≥ 0, γi ∈ Γleg .

Proof. The full proof is found in Appendix A.2.
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Unique Process Selection

This part shows that Algorithm 5.5 guarantees self-stabilization wrt. UPS in depth(T )
steps.

Theorem 5.3. Given a configuration γ0 ∈ Γ of a topology of depth d, for
each execution γ0, γ1, . . . , unique process selection is satisfied in each configuration
γd, γd+1, . . . .

Proof Sketch (the full proof is given in Appendix A.3). The liveness property of
UPS holds following Figure 5.5. If the safety property of UPS is violated in some
configuration, this is due to having at least one execute token, and either one execute
token or the root is privileged. In any case, in depth(T ) steps, there remains at most
one token, which grants a privilege to one process, since execute tokens are initiated by
the root and directed to one process.

Recurrence Properties

The recurrence of priv , achieved by Algorithm 5.5, is ∆ = 1/(4 · depth(T )), and the
convergence time to achieve it (priv∆-convergence time) is 7 · depth(T ) steps.

Theorem 5.4. Let ∆ = 1/(4 ·depth(T )). Algorithm 5.5 guarantees priv∆-convergence
in 7 · depth(T ).

Proof Sketch (the full proof is given in Appendix A.4). Let d be depth(T ).
Algorithm 5.5 is self-stabilizing wrt. a legConfig in 3d steps, and is self-stabilizing wrt.
UPS in d steps. By thorough analysis of the closure property (cf. Figure 5.5), a process
is granted a privilege in at most 4d steps after the algorithm stabilizes to a legConfig.
This sums up to 7d steps.

5.6.2 Correctness of Algorithm 5.6

This part concerns the correctness of Algorithm 5.6. The part is structured similar
to Section 5.6.1: a legitimate configuration for Algorithm 5.6 is defined. Next, the
convergence wrt. legConfig, closure, recurrence properties, and educated unique process
selection are considered.

Legitimate Configuration and its Properties

In Algorithm 5.6, the value returned by updatem() is independent of the algorithm, and
is stored in the variable m. Since m is copied from a process after receiving token2

(gc1, gc5), it is needed to distinguish between the copied value, and the returned one
by updatem(). The notation µi is used to denote the value returned by the last call of
updatemi () by a process pi.

Definition 5.8. Given a process pi, µiµiµi is the value returned by the last call of
updatemi () by pi. ♦

Definition 5.9. A legitimate configuration, abbreviated by legConfig, for
Algorithm 5.6 is a configuration γ of a topology T that satisfies the following:
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1. Let b ∈ B. For each process p:

a) if p>b holds, then for each process p′ in the path that is linked from the root
to p, p′>b holds.

b) if p⊥b holds, then for each process p′′ in the maximal subtree rooted by p, p′′⊥b
holds.

2. For each process pj in state pj>>, mj = µj .

3. For each process pj in state pj⊥>, there exists a process ps in the maximal subtree
(T ′) rooted by pj , such that pj , . . . , ps is a path, and for all j ≤ i < s, pi.` = i+ 1,
ps.` = s, m is equal among all processes in T ′, ms = µs, and µs is the maximum
among all processes in T ′.

4. Let p0 be the root. If p0
>
⊥, then

a) either p0.` = 0, and m0 = µ0 is the maximum among all processes, or

b) there exists a path p0, . . . , ps such that for each process pi, where 0 ≤ i < s,
pi.` = i+ 1, ps.` = s, and ms = µs is the maximum among all processes in T .

for each non-root process pj in T , where pj is not in the path p0, . . . , ps (if exist),
if pj>⊥, then pj .` = j.

5. There is at most one process pj , such that token3∧parent(pj).` = j∧pj .` = j holds
for pj .

The set of legConfigs for Algorithm 5.6 is denoted by Γleg . ♦

Note that in this section, when “legConfig” is mentioned, it is naturally considered
wrt. Algorithm 5.6.

Convergence wrt. a legConfig

The convergence proof holds for the asynchronous scheduler following [Dij74, Dij86,
Kru79]. For the synchronous scheduler, the proof idea and time complexity is the same
as in the case of Algorithm 5.5 (Theorem 5.1). Therefore, only a proof sketch is provided.

Theorem 5.5 (Convergence). For each execution γ0, γ1, . . . over a topology, there
exists finally a legConfig γj ∈ Γleg , such that 0 ≤ j ≤ 3 · depth(T ).

Proof Sketch. Lemma 5.3 states that for each execution, the root changes its state
from root>b into root>¬b in 2 · depth(T ) steps. Further analysis (similar to the proof of
Theorem 5.1) show that a legConfig is reached in depth(T ) steps after the root changes
its state. The sum is equal to depth(T ) + 2 · depth(T ) = 3 · depth(T ).

Note that an execution may require up to 3 · depth(T ) steps to reach a legConfig if a
leaf process was initially having a fake value of m being the maximum among all other
processes, while there are other processes that still did not update their values of m.
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Closure

It is shown that given a topology, each execution with an initial legConfig does not
reach a non-legConfig. Similar to Section 5.6.1, the legConfigs are categorized into four
categories – cf. Figure 5.6:

• Category 1 – C1 – contains all legConfigs in which the root is in a state root>>.

• C2 (resp. C3 ) contains all legConfigs in which the root is in a state root>⊥, and there
exists a selected non-root process that still has not (resp. has already) executed
critSection().

• C4 includes all legConfigs in which the root is the selected process.

C1C2

C3

C4
root.` 6= root.id root.` = root.id

critSection()
critSection()

Figure 5.6: Categories of legitimate configurations for Algorithm 5.6

Theorem 5.6 (Closure). For each execution γ0, γ1, . . . over a topology: if γ0 ∈ Γleg ,
then for i ≥ 0, γi ∈ Γleg .

Proof Sketch (the full proof is given in Appendix A.5). For each configuration γi in
any of the categories C1 ,C2 ,C3 ,C4 , for each execution step (γi, γi+1), γi+1 is also in
one of the categories, following Figure 5.6. The union of the four categories is the set of
all legConfigs. This implies the theorem.

Recurrence Properties

This part considers performance properties of Algorithm 5.6. In this case, the
priv∆-convergence time is not considered for the following reason: In general,
Algorithm 5.6 guarantees that priv holds once every two subsequent PIF cycles.
However, depending on the depth of the selected processes, a process at depth d may
be privileged in configuration γi, and the next selected process at a higher depth, e.g.
d+ r, is privileged in configuration 4 · depth(T ) + r. This indicates that priv∆ may not
necessarily hold. However, it is guaranteed that exactly one process is privileged in each
two subsequent PIF cycles. This is shown in the following theorem.

Theorem 5.7. For each legConfig γ0, where γ0 |= root>>, for each execution γ0, γ1, . . . ,
there exists 0 < i < j ≤ 4 · depth(T ), such that γi |= root>⊥, γj |= root>>, and the action
critSection() is executed by exactly one process within γ0, . . . , γ4·depth(T ).

Proof Sketch (the full proof is given in Appendix A.6). Let d be depth(T ). By
Theorem 5.6, any configuration following γ0 is a legConfig. By Lemma 5.3, the root
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switches into root>⊥ in i ≤ 2d steps. γi is either in C2 or C4 . From γi (cf. Figure 5.6),
the root switches to root>> in r ≤ 2d steps, such that γi+r ∈ C1 . Now, if γi ∈ C2 , then
there exists i < e < r, such that γe ∈ C3 , and exactly one non-root process is privileged
in γe−1. Otherwise, γi ∈ C4 , and the root executes critSection() before reaching γr.
The sum of i and r is less or equal to 4d.

Educated Unique Process Selection

The following lemma, the corollary, and the theorem concern the convergence time wrt.
educated and unique process selection.

Lemma 5.4. Each legConfig satisfies educated unique process selection

Proof Sketch (the full proof is given in Appendix A.7). The properties of a
legConfig satisfy the safety property of EUPS . For each execution starting from
a legConfig (cf. Figure 5.6), each configuration is a legConfig, and the liveness property
of EUPS holds in the execution (Theorem 5.7). EUPS holds in 3 · depth(T ) steps by
Theorem 5.5.

Corollary 5.2. Given a configuration γ0 ∈ Γ of a topology, for each execution
γ0, γ1, . . . , educated unique process selection – EUPS – is satisfied in each configuration
γ3·depth(T ), γ3·depth(T )+1, . . . .

Proof. Follows from Lemma 5.4 and Theorem 5.5.

Theorem 5.8. Given a configuration γ0 ∈ Γ of a topology, for each execution
γ0, γ1, . . . , unique process selection – UPS – is satisfied in each configuration
γdepth(T ), γdepth(T )+1, . . . .

Proof Sketch. Similar to proving Theorem 5.3 for Algorithm 5.5.

5.7 Remarks

This section discusses some performance aspects of Algorithm 5.5 and Algorithm 5.6.
It shows trade-offs between Algorithm 5.5 (resp. Algorithm 5.6) and other typical
algorithms wrt. their desired properties, summarized in Table 5.1 (resp. Table 5.2).
Again, the space complexity represents the size of the local state space for each process.
The typical algorithms considered in this section are of two sorts. First, the token-ring

based algorithms are usually designed for ring topologies. The typical scenario of such
algorithms is to pass a token in a circular manner through a ring. Such algorithms
are applied to trees by circulating a token in a depth-first manner following an Euler
cycle, and creating a virtual ring. Examples of such approaches are found in [Dol00,
PV00, DJPV00, PV07]. In particular, the approach in [PV07] is snap-stabilizing to the
property that when the root sends a token, the token returns to the root after visiting
all processes in a depth-first manner. The approach in [PV07] is also space optimal: it
requires degree(p) values for each process p (degree(p) is the number of children of p.)
The second sort is the unison or phase-clock based algorithms, explained in

Section 4.3.1. Examples of such algorithms are the approaches of [BPV04, BPV08, DG13]
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Algorithm 5.5 Virtual Ring Synchronous Unison
UPS -Convergence Time depth(T ) O(depth(T )) ddiam(G)/2e−1

Recurrence ∆ 1/(4 · depth(T )) 1/(n + |E| − 1) 1/n

priv∆-Convergence Time 7 · depth(T ) O(depth(T )) 2 · diam(G) + n

Space 4(n + 1) 3 n + diam(G)

Table 5.1: Unique process selection of some sorts of algorithms, under the assumption
that there is exactly one active process

Algorithm 5.6 Virtual Ring
UPS -Convergence Time depth(T ) O(depth(T ))

EUPS -Convergence Time 3 · depth(T ) O(depth(T ))

Recurrence ∆ 1/(4 · depth(T )) 1/2(n + |E| − 1)

Space 4n 3n

Table 5.2: Educated unique process selection of some sorts of algorithms

and Algorithms 4.1, 4.2, and 4.3 in Chapter 4. Recall that the condition priv is defined
as follows: priv is satisfied by a configuration of a topology iff there exists one process
that is privileged in the configuration.
Table 5.1 considers the property of unique process selection, under the assumption

that there always exists exactly one active process. It shows the complexity results
that can be achieved for each sort. Concerning the convergence time wrt. UPS , all
algorithms converge in a time that is a factor of the tree depth or the graph diameter.
The synchronous unison can achieve the best convergence time complexity. Concerning
the recurrence that can be achieved, the virtual ring and the synchronous unison have
a recurrence that is a reciprocal of n. However, in Algorithm 5.5, the recurrence is a
reciprocal of the tree depth. Considering the priv∆-convergence time, it is a factor of the
tree depth or the graph diameter for all cases, similar to to the convergence wrt. UPS .
Finally, the space requirement makes a difference among the tree approaches: it is most
efficient in the virtual ring approach. To sum up, Algorithm 5.5 has a clear benefit over
the other algorithms when the number of processes requesting a privilege is low, and
when the tree depth is low compared to the number of processes. This efficiency lies in
the high recurrence of priv , traded with the space requirement.

In Table 5.2, the property educated unique process selection is considered. In the
related work, there exists no virtual ring approach for educated unique process selection.
However, an approach can be designated as follows: a token is circulated through all
processes twice. In the first circulation, the process with the highest value of m is
marked. In the second circulation, a selected process is granted a privilege. For such
an approach, lower bounds on the time, recurrence, and space complexities are given in
Table 5.2. By observing the values of the virtual ring, the complexity gets worse from all
aspects compared to the case of Table 5.1. However, the complexity for Algorithm 5.6
stays almost the same compared to Algorithm 5.5. Note that the priv∆-convergence
time is not considered here, and the reason is given in Section 5.6.2.
The time complexities given in Tables 5.1 and 5.2 are worst case complexities. From
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an average case perspective, Algorithm 5.5 has a significance of having high recurrence
of executing critSection(), due to having an immediate feedbacks after an active process
is found or after an active process executes critSection(). The following is some average
case analysis for Algorithm 5.5.
Let T = (P, E) be a tree with a unique active process p. Let avg_depth(T ) be the

average depth for any process in P. On average, Algorithm 5.5 requires 4 ·avg_depth(T )
steps to complete the two cycles, in which critSection() is executed. If the tree has a
branching factor f , then avg_depth(T ) is given as follows:

avg_depth(T ) =

d∑
i=0

f i · i

n
.

Thus, the average number of steps of the two cycles is

4 ·

d∑
i=0

f i · i

n
.

For, e.g., virtual ring algorithms where a single token is passed in a depth-first manner
creating a virtual ring, the number of steps to traverse a tree T = (P, E) is n + |E| − 1.
Thus, the average number of steps to reach the active process is n+|E|−1

2 .
Figure 5.7 illustrates a comparison between Algorithm 5.5 and the virtual ring

approach, for some trees with branching factors that range between 1–5, where there
is only one active process. It is obvious that for trees with large branching factors and
depth, Algorithm 5.5 is much more efficient than the virtual ring approach.

Figure 5.7: Performance of Algorithm 5.5 vs. the virtual ring approach
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The problem of Time-Division-Multiple-Access (TDMA) slot assignment is considered
in this chapter. In general, this problem concerns assigning nodes (i.e. components)
of a network topology to time slots for the sake of scheduling communication between
the nodes, when the communication medium allows only a limited number of messages
between neighbors at each point in time. The aim in this chapter is to have slot
assignment that is efficient wrt. clock synchronization, and the requirement of extra
time intervals – namely the guard time – to avoid message collision or loss. The
efficiency is optimized when the achieved slot assignment allows the most precise clock
synchronization, such that the length of the required extra intervals is the least among all
possible slot assignments. This entails having the highest recurrence of message delivery.
Some of this chapter’s content has appeared in [1, 2] of the author’s publications.
The problem is concerned for wireless sensor networks that conform to the European

Norm EN 54-25 [DIN05], which consists of the requirement specification of wireless fire
alarm systems. The basic requirement of such a system is that it has to meet real-time
deadlines for performing actions.
The structure of this chapter is as follows. Section 6.1 presents the TDMA slot

assignment problem and its related work. Section 6.2 defines the problem statement
and the contributions. Section 6.3 specifies the system model and some properties.
Next, Section 6.4 presents analysis of the worst and best slot assignments wrt. clock
synchronization. Section 6.5 provides a methodology for guard time optimization.
Section 6.6 discusses recurrence properties and self-stabilization wrt. slot assignment
for the given model. Finally, Section 6.7 presents a case study.

6.1 The TDMA Slot Assignment Problem

TDMA [Rap02] is designated for distributed systems, in which the communication
medium allows only a limited number of messages between nodes. TDMA guarantees
that the nodes share the communication medium without message collision or loss. This
is achieved by scheduling the communication of the nodes over time. A general scheme
of TDMA comprises dividing time into periodic intervals called time frames, where each
frame is divided into time slots. Each slot is assigned to at most one node n among
N ∗n , and each node is allowed to send messages only during its assigned slots. This is,
incidentally, some aspect of the local mutual exclusion problem [HP92]: if a process p
is privileged, then for each q ∈ Np, q is not privileged. TDMA in particular provides
an opportunity for saving energy by setting nodes into sleep – or power saving – mode
during the time slots in which they do not send or listen. TDMA is used in some popular
network communication protocols, such as TTP [KG93] and FlexRay [Par12].
As TDMA is based on time slots, nodes are supposed to be time synchronized.

Otherwise, the system may exhibit two critical behaviors:
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1. Two nearby nodes send messages at the same point in time. This might happen
because each node supposes that the current time point points to the slot assigned
to it for sending. This may cause message collision.

2. A node sends a message to a target node while the latter is in not listening, causing
message loss.

Message collision or message loss may cause serious problems in time-critical systems:
they may block, delay, or negatively alter the system reactivity.
Means to provide the same time to all network nodes depend on the network

architecture. In the ideal case, all nodes share the same clock signal at the hardware
level. Then, there is no need for additional clock synchronization mechanisms. However,
this is not possible for all distributed systems, and even if possible, it might be too
expensive. An alternative case is having one local hardware clock for each node. In
such a case, temperature, voltage change, noise, etc. [PK00] lead to a variation in
the crystal frequencies and thus clock drift may be experienced. For such cases, clock
synchronization mechanisms are required. In case of, e.g., FlexRay [Par12], each node is
equipped with a local clock, but all nodes are connected by a bus and receive a common
synchronization signal at the beginning of each frame. However, in wireless sensor
networks, it is not always the case that nodes have access to a common synchronization
signal. For that, clock synchronization mechanisms – that may involve communication
and timestamp exchange between multiple nodes – are needed.
Unfortunately, synchronization mechanisms cannot guarantee absolute precision for

two reasons:

1. If the gap between two subsequent clock synchronizations of node is large, a clock
may drift critically large in between.

2. A received clock value by some node may not be correct if the value is sent by a
node that does not provide the reference clock.

A bounded clock drift can be tolerated by using the notion of guard time [PS13].
Guard time can be designed as two time intervals that are added to the beginning and
the end of each slot. During the guard time of a slot, the assigned node for sending is
not allowed to send messages, and the assigned node for listening is supposed to listen.
With this setting, a bounded clock drift does not yield message collision or loss.
Guard time is considered as an addition to the slot length, which consequently extends

the frame length. This reduces the performance of the system by two issues:

1. The time required to deliver messages through a path increases due to the increase
of the frame length.

2. By extending the listening duration for each node, energy consumption increases.

From this point, guard time minimization is important. The classical-engineering
approaches to guard time minimization in a system comprise extensive testing,
simulation, and calculations based on experience with the system architecture, its
requirements, and environmental conditions. Such approaches usually result in fair
approximations of the optimal guard time length, and certain safety margins are added
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to compensate for the incompleteness of these approaches. In addition, these approaches
take a long time, require many system tests to be performed, and an effort that may be
necessary for each modification of the system during further development.
The minimum guard time length required by a system over a topology is impacted by

the slot assignment in some systems (cf. Section 6.4). This chapter concerns guard time
minimization for networks conforming to EN 54-25 [DIN05]. Guard time minimization,
in turn, increases the recurrence of sending messages.

6.1.1 Related Work

In literature, the TDMA slot assignment and clock synchronization problems are
considered separately in most cases. This entails that the solutions to these problems
for one system are built on several layers, especially, when it concerns self-stabilization.
An efficient TDMA slot assignment is being evaluated by many criteria: how fast the

assignment is achieved, how fast the achieved message delivery is, how many slots per
frame are occupied, how much the slot length is, and others.
In general, the TDMA slot assignment problem is mapped to the NP-complete

minimum graph coloring problem [Gav72, Kar72, GK93], which investigates what is
the minimum number of colors required to color nodes in a graph, such that no color
is repeating within some distance. In relation to slot assignment, the colors represent
slots, which achieves that: if a node is assigned to a slot, no other node within some
distance may be assigned to the same slot, in order to avoid collision. A challenge to
achieve this is to have a diversity of colors within each distance instead of having one
color repeating, because diversity entails sharing the bandwidth efficiently.
The first TDMA slot assignment in the scope of self-stabilization with its typical

models appears in [KA03a, KA03b]: a system stabilizes when all nodes are assigned
to slots correctly. In [KA03a], the authors present algorithms that work for general
graphs, but are suitable or efficient for two-dimensional grid topologies. The topologies
use a simple message-passing model, with the following assumptions: the clocks are
synchronized, they do not drift, and the time of message delivery between two nodes is
constant. In [KA03b], the authors introduce the write all with collision (WAC) model.
This model suits the communication nature of wireless sensor networks basically in two
aspects:

1. In each step, a process changes its state and the public variables of its neighbors.
This reflects broadcasting a message to the neighbors.

2. If two processes tend to change the state of some mutual neighbor q, then q’s state
remains the same. This models collision or message loss.

The work of [KA03b] shows transformational approaches from this model to the read
and write model and vice versa, preserving self-stabilization.
Next, TDMA slot assignment is considered in [HT04] under the assumption that clocks

are synchronized and the number of neighbors is upper-bounded. The approach tackles
basically scalability issues given node failures and dynamic topology changes. Next,
the work of [AK05] presents a self-stabilizing deterministic TDMA slot assignment.
This approach comprises three levels. First, a self-stabilizing slot assignment for the
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shared memory model is introduced. This algorithm is actually a minimum graph
coloring algorithm. Second, this model is transformed to the WAC model, however,
without preserving self-stabilization. Third, self-stabilization is added. Finally, the work
of [PST14] provides a slot assignment algorithm, given some relaxed assumptions: there
is no collision detection, no prior clock synchronization, and no external time reference,
e.g. global pulse.
In regard to self-stabilization, what matters in this work is to analyze lower and upper

bounds on the recurrence ∆ of sending messages, that can be achieved after any system
stabilizes. The self-stabilizing approaches mentioned above provide many insights and
ideas on how to build a self-stabilizing slot assignment algorithm for this work. The
approaches, however, may not be applied directly, since the model used in this chapter
slightly differs from the prior models: in the new model, collision may happen between
any two nodes in the tree, since structuring a tree may not necessarily depend on the
physical location of nodes. Details are given in Section 6.3.
Clock synchronization for wireless sensor networks is considered intensively in

literature. Clock synchronization methodologies can be categorized into four categories.
The first category comprises leader-based approaches, in which clocks are synchronized
based on a reference node. The Network Time Protocol (NTP) [Mil91] is an example
that is used for networks with hierarchical structure, e.g. trees with a root representing
reference time. In this protocol, messages sent through the hierarchy downwards are
timestamped to propagate the clock value of the root to the nodes. The clocks are
synchronized based on the root clock value. The second category reflects Reference
Broadcast Synchronization (RBS) [EGE02], whose basic version has the following
behavior: when two receivers receive a message, each of them records the time when
it has received the message. Next, the two receivers exchange the recorded values and
compute the offset. RBS is useful in networks where there is no source of correct
time, or no reference node. The third category comprises converge-to-max protocols,
in which timestamps are sent periodically, and a receiver adjusts its clock value by
choosing the maximum one among its clock value and the received values. This protocol
has a similar concept of the unison algorithms given in Chapter 4. An example of a
self-stabilizing version of this protocol is [HZ06], in which clock drift is also considered.
Finally, the pulse-based approaches [MS90, WTP+05] synchronize clocks by sending
pulses that adjust biological oscillators. The network considered in this work has tree
topology, where the communication nature between nodes facilitates using leader-based
synchronization, efficiently, similar to the NTP protocol.
Guard time optimization, or minimization, is found in literature to be based on testing,

simulation, and approximation based on experience. Examples are [OR08, HBTH14].
The results of these approaches are based on fixed systems, architectures, and
assumptions. In contrast, this work provides a novel formal approach to guard time
optimization for the given model.
Related work includes also other aspects of this topic that are not in the scope of this

work. For example, the quality of slot assignment can be defined by the maximum
possible number of assigned slots for each frame, e.g. [CP09]. Other approaches,
as [WT06], focus on minimizing the slot length according to the message size. Concerning
clock synchronization, some protocols – like the ALOHAnet protocols [Abr85] – consider
the behavior of sensors, in sending, receiving messages and timestamps, within the slots.
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6.2 Problem Statement and Assumptions

Recall that the network considered in this work is a wireless sensor network in the sense
of EN 54-25 [DIN05]. Roughly, the network has tree topology, where each vertex –
or node – in the tree is equipped with a hardware clock. The root is called a central
unit providing the reference time, and the other nodes are called sensors. The nodes
communicate with each other via radio signals over a shared frequency channel using
TDMA. Each sensor sends a message to its parent within its slot, and the parent replies
with an acknowledgment within the same slot. The acknowledgment is time-stamped
with the parent’s clock value, for clock synchronization.
Regarding message collision, this model differs from the WAC model: if a node sends

a message, it is guaranteed that all neighbors receive the message, however, all nodes
other than the neighbors may also receive the message (radio signal). In other words,
collision may happen whenever any two nodes send messages simultaneously. This case
is believed to be more realistic and safe than the WAC model, since a tree might be
formed through a general graph without considering the physical location of nodes and
the extra coverage of radio signals.

6.2.1 Problem Statement

The aim of this work is threefold. First, developing a formal model of the mentioned
network and its properties. Second, finding the topological characterizations of the slot
assignments that yield the most precise and the most imprecise clock synchronization,
respectively. This impacts the requirement of the minimum length of safe – i.e.
collision-free – guard time. Third, finding equations for computing the optimal guard
time length for the given model, which facilitates computing the highest recurrence of
sending messages.

Problem 6.1.

1. Provide a formal model for wireless sensor networks in the sense of
EN 54-25 [DIN05].

2. Find the topological characterization of the slot assignments that require the
smallest and the largest safe guard times, respectively, for the model.

3. Derive equations to compute the optimal guard time for each case.

4. Compute the greatest lower bound on the recurrence ∆ of sending messages that
is guaranteed for all slot assignments. Next, compute the least upper bound on
the recurrence ∆ of sending messages, that can be achieved by at least one slot
assignment, under the restrictions of the model.

The contribution of this chapter is as follows:

• A formal model for wireless sensor networks in the sense of EN 54-25 [DIN05] –
under some assumptions given in Section 6.2.2 – is presented.
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• Based on the model and assumptions, the topological characterization of the slot
assignments that require the largest and smallest guard times, respectively, are
given. This specifies which slot assignments has the highest recurrence of sending
messages.

• Equations to compute the optimal guard time for each of the previous cases are
given.

• Tight lower and upper bounds on the recurrence ∆ of sending messages for any
slot assignment are given.

• A case study of a wireless fire alarm system is given. The aim of the case study is
to show how the given model can be easily extended to match real-world situations.

6.2.2 Assumptions

Some restrictions are added to the model to simplify the analysis. However, if some
realistic scenario violating the restrictions exists, then this is either due to a fault, or
can be represented by a simple extension of the model. In the following, the general
restrictions or assumptions on the model are given, together with their justification if it
has not been mentioned before.

1. A topology is a tree T = (V, E), where V is a set of nodes. The root of T is called
central unit and denoted by cu(T ). Each node other than the root is called sensor.
The set of sensors in T is denoted by Sn(T ). Following the general assumption
that n ≥ 2, and depth(T ) ≥ 1, it follows that |Sn(T )| 6= 0 holds.

2. Within each frame, each node is assigned to exactly one slot per frame; i.e. a
bijective assignment. This case seems to be ideal, and may not be easily achieved.
However, the formal approach and results can be extended to cover an arbitrary
number of slots within one frame.

3. The communication between a sensor and its parent is reliable, in a sense that
each sensor is synchronized from its parent within its slot and once per frame.
Situations violating this assumption are considered separately in the case study
(cf. Section 6.7).

4. The assignment is fixed as long as there is no message collision or loss.

5. Initially, all clocks are synchronized, and the system is stable.

Note that regarding the second and third assumptions, if the employed synchronization
mechanism uses the same communication medium that is managed by TDMA, then
message loss or collision during a sensor’s slot may inhibit proper synchronization in
general; this assumption can be represented as requiring a separate reliable channel
for synchronization. However, safe guard times have the property that message loss or
collision is effectively avoided, and, thus, with a safe guard time, the synchronization
mechanism may well use the shared medium managed by TDMA without being affected
by message loss or collision.
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6.3 System Model

This section introduces the system model. The model is based on powerful and rigorous
mathematics with real-time aspects, which provides the possibility to formally analyze
the problem.

6.3.1 Evolutions with Clock Drift

To define clock drift, message collision, and loss, it is sufficient to observe the clock value
of each node in the topology, represented by a positive real number (R+

0 ), and whether
a node is sending a message or listening, represented by two boolean (B) values.

Definition 6.1 (Evolution). An evolution over a topology T = (V, E) is an
interpretation I of the variables clkv : Time (= R+

0 ), sendv : B, and listenv : B for
v ∈ V such that

1. I(clkv)(0) = 0 for each v ∈ V, and

2. I(clkcu(T ))(t) = t for each t ∈ Time.

Evo(T ) is written to denote the set of all evolutions over T . Furthermore, clkIv (t),
sendIv (t), and listenIv (t) are written to denote I(clkv)(t), I(sendv)(t), and I(listenv)(t),
respectively. ♦

With Definition 6.1, the undesired conditions of message collision and loss can be
precisely characterized. Recall that in this model, messages sent between a sensor and
its parent do not collide with each other during the sensor’s slot.

Definition 6.2 (Message Collision/Loss). An evolution I over topology T is said to
have

1. message collision at time t ∈ Time between two different sensors v1, v2 ∈ Sn(T )
iff both send at t, i.e. if

sendIv1
(t) ∧ sendIv2

(t),

2. message loss at time t ∈ Time for sensor v ∈ Sn(T ) iff v is sending at t while its
parent is not listening, i.e. if

sendIv (t) ∧ ¬listenIparent(v)(t).

collIv1,v2
(t) (lossIv (t)) is written iff I has a message collision (loss) at t between sensors

v1, v2 (for sensor v). ♦

The clock speed at a node is, formally, the derivative of an evolution of clock values
with respect to time. The clock drift is the difference between a clock and the reference
clock. and the drift rate is the rate of change of the clock drift.
Note that the evolution of clock values is not restricted by Definition 6.1: clock values

may arbitrarily change, in particular non-continuously. Thus, clock speed and drift rate
are in general only partial functions.
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Definition 6.3 (Clock Drift). Let I be an evolution over a topology T = (V, E).

1. The clock speed of node v ∈ V in I, denoted by θIv , is the first derivative of the
interpretation of clkv with respect to time, i.e.

θIv =
∂

∂ t
clkIv (t).

2. The clock drift of node v ∈ V in I at time t ∈ Time, denoted by %Iv (t) ∈ R, is the
difference between the clock values of v and the central unit at time t in I, i.e.

%Iv (t) = clkIv (t)− clkIcu(T )(t).

3. The drift rate of node v ∈ V in I, denoted by δIv , is the first derivative of the
clock drift of v in I with respect to time, i.e.

δIv =
∂

∂ t
%Iv (t).

The superscript I may be omitted if the interpretation is clear from the context. ♦

6.3.2 Scheduled Communication

The notions of frame and slot employed by TDMA can be simply formalized as a
partitioning of the time domain – cf. Figure 6.1.

Figure 6.1: TDMA frames and slots

Definition 6.4 (Frame, Slot). The TDMA schedule for a topology T with slot
length ω ∈ R+ and number of slots per frame k = |Sn(T )| is a pair (slot, frm) of
functions

frm : Time→ N, and slot : Time→ N

that are point-wise defined as

frm(t) =

⌊
t

k · ω

⌋
+ 1, slot(t) =

(⌊
t

ω

⌋
mod k

)
+ 1.

A time interval [t1, t2) is called the slot (of (slot, frm)) with slot id (i, j) ∈ N×N iff

t2 − t1 = ω ∧ ∀ t ∈ [t1, t2) • slot(t) = i ∧ frm(t) = j. ♦
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Recall that a slot assignment is just a mapping of sensors to slots in a bijective manner.

Definition 6.5 (Scheduled Evolution). Let T be a topology having a TDMA schedule
(slot, frm) with slot length ω and number of slots per frame k = |Sn(T )|. An evolution
I over T is called scheduled wrt. (slot, frm) iff there exists an assignment of sensors to
slots, i.e. a bijection

assign : Sn(T )→ {1, . . . , k}

such that:

1. Each sensor v ∈ Sn(T ) sends messages only during the assigned slot according to
its local clock, i.e.

∀ t ∈ Time • sendIv (t) −→ slot(clkIv (t)) = assign(v).

2. For each sensor v ∈ Sn(T ), its parent is listening in the slot assigned to v according
to the parent’s clock, i.e.

∀ t ∈ Time • slot(clkIparent(v)(t)) = assign(v)

−→ listenIparent(v)(t).

The notation Evo(T , ω, assign) ⊆ Evo(T ) denotes the set of evolutions scheduled by
‘assign’ for slot length ω. ♦

Figure 6.2 illustrates an example, where each frame has |Sn(T )| slots. Each slot is
assigned to one of Sn(T ), and the assignment is the same for all frames. This assignment
is for sending; i.e. node v1 sends a message only within the first slot of each frame.

Figure 6.2: Scheduled evolution for sending (slot assignment)
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6.3.3 Clock Synchronization

Clock synchronization is formalized by the notion of synchronized evolution in
Definition 6.7 below. Two assumptions are taken into consideration. First, each sensor
has exactly one synchronization point per frame. Second, the evolution of clock values
is differentiable except for synchronization points. In order, for example, to model
systems which use multiple synchronization points per slot, one can e.g. designate the
latest synchronization points to be considered. In addition, as clock values evolve from
synchronization points, it is assumed that the right-side derivative exists for all points in
time. Furthermore, note that the notion of synchronized evolution models a wide range
of explicit synchronization messages as well as timestamps.

Definition 6.6 (Synchronization Point). Let I be an evolution over a topology T .
A point in time t ∈ Time is called synchronization point of sensor v ∈ Sn(T ) in I iff
the clock of v has the same value as the clock of its parent, i.e. if clkIv (t) = clkIparent(v)(t).
♦

Definition 6.7 (Synchronized Evolution). Let I be an evolution over a topology T
which is scheduled wrt. (slot, frm). I is called synchronized iff the following conditions
hold:

1. Each sensor has at least one synchronization point in each of its slots, i.e.

∀ v ∈ Sn(T ), j ∈ N0 ∃ t ∈ Time • frm(t) = j

∧ slot(t) = assign(v) ∧ clkIv (t) = clkIparent(v)(t).

2. For each v ∈ V, clkIv is differentiable except for 0 and at most one point in each
slot of v, i.e. if ∂

∂ t clkIv (t) does not exist at t, t′ ∈ Time \ {0} with t 6= t′, then
there are two different slots [t1, t2) and [t′1, t

′
2) assigned to node v such that that

t ∈ [t1, t2) and t′ ∈ [t′1, t
′
2); the right-side derivative of clkIv exists for all t ∈ Time.

♦

In the example of Figure 6.2, the sensor v5 is synchronized once within its assigned
slot in each frame. This is achieved by copying the value of the clock of its parent (v2).
Given an evolution I with this assignment, v5 may be synchronized in t1 and t2, which
implies that: clkIv5

(t1) = clkIv2
(t1) and clkIv5

(t2) = clkIv2
(t2).

The following lemma and the notes concern properties of synchronization points and
evolutions.

Lemma 6.1. Let I be a synchronized evolution over topology T with k slots per frame.
The distance between two synchronization points of a sensor v ∈ Sn(T ) is at most
(k + 1) · ω, i.e.

∀ t ∈ Time ∃ t′ ∈ Time •
0 < t′ − t < (k + 1) · ω ∧ clkv(t

′) = clkparent(v)(t
′).

Proof. Let v ∈ Sn(T ) be a sensor and t ∈ Time. By Definition 6.7, there is a
synchronization point in the next slot of v following t. In the worst case, t is the lower
boundary of a slot of v and a synchronization point, then there is another synchronization
point in the subsequent slot, at the upper boundary the latest. The claimed distance
follows from Definitions 6.4 and 6.5.
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In phases where the evolution of a node’s clock value is differentiable, there is the
following relation between the current clock value, and an earlier clock value (of the
node’s parent) and the drift rate.

Lemma 6.2. Let I be an evolution over a topology T and let clkIv be differentiable on
the interval (t1, t3) ⊂ Time.

1. Then

∀ t2 ∈ [t1, t3) • %Iv (t2) = %Iv (t1) +

∫ t2

t1

δIv (t)dt .

2. If t1 is a synchronization point of v, then

∀ t2 ∈ [t1, t3) • %Iv (t2) = %Iparent(v)(t1) +

∫ t2

t1

δIv (t)dt .

Proof. (1) It holds by Definition 6.3 and fundamental theorem of calculus. (2) It holds
by Definition 6.6, Definition 6.3, and Point (1).

Corollary 6.1. Let I be a synchronized evolution over a topology. It follows that
θIv and δIv are defined on Time except for at most one point in each slot of v.

Proof. By Definition 6.7, clkIv (t) is differentiable.

6.3.4 Upper Bounds on Drift

The local clocks in such a system are typically determined by crystal devices. Usually,
there are bounds on the quality of those devices and they are sensitive to environmental
conditions such as temperature. Manufacturers of those devices often guarantee bounds
on the drift rate for certain environmental conditions. In the following definition, an
upper bound on the drift rate is specified.

Definition 6.8 (Bounded Drift Rate). Let I be a synchronized evolution over
topology T . The value δmaxδmaxδmax ∈ R+

0 is the least upper bound on the magnitude of the drift
rate in I iff δmax is the smallest number such that

∀ v ∈ Sn(T ), t ∈ Time • |δIv (t)| ≤ δmax .

The notation Evosync(T , ω, assign, δmax )Evosync(T , ω, assign, δmax )Evosync(T , ω, assign, δmax ) is used to denote the set of all synchronized
evolutions over T with slot length ω which are scheduled by assign and for which δmax ∈
R+

0 is the least upper bound on the drift rate. ♦

In the following, the effect of the assignment on the maximum clock drift is studied
in particular. The notion of maximum clock drift of an assignment in a given topology
is defined.

Definition 6.9 (Maximum Clock Drift). Let T be a topology. Themaximum clock
drift of node v ∈ Sn(T ) under assignment ‘assign’ is called %max

ω,δmax (assign, v) ∈ R+
0 iff it
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is the least upper bound on the clock drift of v in any synchronized evolution with slot
length ω and least upper bound δmax ∈ R+

0 on the clock drift rates, i.e. if

%max
ω,δmax (assign, v) =

sup{%Iv (t) | I ∈ Evosync(T , ω, assign, δmax ), t ∈ Time},

the maximum clock drift of assignment ‘assign’ in T is

%max
ω,δmax (assign) = sup{%max

ω,δmax (assign, v) | v ∈ Sn(T )}. ♦

6.4 Worst and Best Slot Assignments

This section concerns the worst and best slot assignments in terms of clock
synchronization precision; i.e. in terms of the amount of clock drift that may be
reached by clocks before they are synchronized. The worst assignment implies the
highest possible value of maximum clock drift among all possible assignments. The best
assignment yields the least possible value of maximum clock drift among all possible
assignments.
The worst and best slot assignments are discussed in detail in the following sections.

The worst and best assignments are roughly presented with an example sketched in
Figure 6.3. It presents a topology of 9 sensors and a central unit.

• A slot assignment is a worst assignment iff there exists a path p0 =
cu(T ), . . . , pd−1, pd, such that (1) d is the tree depth, and (2) the sensors of the
path are assigned reverse adjacent slots. An example of a worst assignment is given
in Figure 6.3b.

• A slot assignment is a best assignment iff for each subtree rooted by a sensor at
depth 1: (1) the subtree sensors are assigned adjacent slots. (2) each child is
assigned a slot that is after the slot assigned to its parent. Figure 6.3c illustrates
a best assignment.

To characterize the relevant differences between slot assignments, the notion of forward
distance is introduced. The forward distance from a sensor v1 to a sensor v2 is simply
the number of slots between any slot assigned to v1 and the next slot assigned to v2,
which may lie in the same frame or in the subsequent frame. With this notion, the
forward distances between sensors along a path can be summed up, to compute the time
required to deliver a clock value from the first sensor to the last sensor in the path, given
that each sensor is synchronized within its assigned slot. The maximum sum of forward
distances of sensors along any path in the topology is denoted by Dassign. With Dassign,
the maximum clock drift for any given assignment can be computed, and subsequently
in Section 6.5, an optimal guard time can be computed as well.

Definition 6.10 (Forward Distance). Given an assignment assign of slots to nodes
for a topology T , the forward distance between two sensors v, v′ ∈ Sn(T ) is defined
by the function

fdist : Sn(T )× Sn(T ) −→ N
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(a) Topology

(b) Worst assignment

(c) Best assignment

Figure 6.3: Example of worst and best assignments

which is defined point-wise as follows:

fdistassign(v, v′) ={
assign(v′)− assign(v) if assign(v′) > assign(v)
assign(v′) + |Sn(T )| − assign(v) if assign(v′) ≤ assign(v).

The maximum of the sums of the forward distances between sensors on any path in
T is denoted by Dassign:

Dassign =

max

{
u−1∑
i=1

fdistassign(vi, vi+1)

∣∣∣∣∣ v1, . . . , vu path in T (v1, . . . , vu ∈ Sn(T ))

}
.

♦

The following lemma indicates how the maximum clock drift can be computed in
reference to the maximum of the sums of forward distances.
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Lemma 6.3. Let v ∈ Sn(T ) be a sensor of a topology T of depth d. Given a TDMA
schedule with k slots per frame:

%max
ω,δmax (assign, v) =(

d−1∑
i=1

fdistassign(vi, vi+1) + k + 1

)
· ω · δmax (6.1)

where v0, v1, . . . , vd is the path from the central unit to node v = vd in T .
Proof Sketch (the full proof is given in Appendix B.1). By induction over the depth
of nodes. For the base case and the step, first show “≤” using Lemma 6.2 and then “≥”
by construction.

Corollary 6.2. Let T be a topology with TDMA schedule of k slots per frame, and
let assign be an assignment of slots to nodes for T . It follows that

%max
ω,δmax (assign) = (Dassign + k + 1) · ω · δmax .

Proof. It holds by Lemma 6.3 and Definition 6.10.

Note that in the computation of the maximum clock drift, the number of slots per
frame k is a parameter. In the given model, k is equal to the number of slots, due
to the assumption of bijective assignments. However, Lemma 6.3 holds even for slot
assignments that are not necessarily bijective, but guarantee that there is at least one
assigned slot per frame for each sensor. This can be confirmed by a similar derivation
to Lemma 6.3.

6.4.1 Worst Slot Assignment

The worst assignment reflects the assignment that yields the largest “sum of forward
distances” along any path in the topology, which implies the largest clock drift. The
largest sum of forward distances along a path is obtained as follows: let the number of
slots in a frame be k. The forward distance from a sensor v1 to a sensor v2 can reach
up to k− 1 slots, only if any slot assigned to v2 has a following slot assigned to v1. For
a path v1, . . . , vs with s ∈ N nodes, the largest sum of forward distances along the path
can reach up to (s−1)(k−1) slots, which is maximized by choosing the largest s, namely
the tree depth (cf. Figure 6.3b).

Lemma 6.4. Let assign be an assignment of slots to nodes for topology T of depth d
with k slots per frame.

1. Dassign ≤ (d− 1)(k− 1).

2. Dassign = (d− 1)(k− 1) iff there exists a path

v0, v1, . . . , vd

in T such that v0 = cu(T ), and the sensors on the path are assigned reverse
adjacent slots by assign, i.e.

assign(vi) = (assign(vi+1) + 1) mod k (6.2)

for 1 ≤ i < d (called (6.2)-path for short).

88



6.4 Worst and Best Slot Assignments

Proof Sketch (the full proof is given in Appendix B.2). For topologies of depth 1,
both claims hold trivially, thus, let T be a topology of depth d ≥ 2. Point (1) follows
from the fact that assign has one assigned slot per frame for each sensor, and from
Definition 6.10. For Point (2), show both directions of the bi-implication separately.

6.4.2 Best Slot Assignment

The best assignment yields the least “maximum sum of forward distances” along any path
in the topology, which implies the least value of “maximum clock drift experienced by any
sensor” among all assignments. The maximum sum of forward distances along a path
v1, . . . , vs is minimized when the forward distance between vi and vi+1, for 1 ≤ i < s,
is minimized. The minimum possible forward distance between vi and vi+1 is 1 when
the slot assigned to vi+1 is the next slot adjacent to the slot assigned to vi. However,
this distance cannot be achieved for all paths; if vi has another child v′, and the forward
distance from vi to vi+1 is 1, then the distance from vi to v′ is greater than 1.
To minimize the maximum sum of forward distances along any path in the topology,

the sensors belonging to each subtree have to be assigned adjacent slots, and within the
adjacent slots, each child is assigned a slot that is after the slot assigned to its parent (cf.
Figure 6.3c). Thus, in this case, surprisingly, the least possible maximum sum of forward
distances along any path in the topology depends on the size of the largest subtree, not
on the tree depth as such. In other words, the depth of a topology as such is not the
limiting factor for clock precision.

Lemma 6.5. Let assign be an assignment of slots to nodes for topology T = (V, E)
with k slots per frame and maximal subtree(s) of size s ∈ N.

1. Dassign ≥ s− 1.

2. Dassign = s− 1 iff

a) For each path v0, v1, . . . , vu, where v0 = cu(T ), the forward distance between
v1 and each vi, for 1 < i ≤ u, is at most s− 1, i.e.

∀ 1 < i ≤ u • fdistassign(v1, vi) ≤ (s− 1)

Note that, given that the maximal tree size is s, the slots of any subtree of
size s are adjacent by this condition.

b) Each child is assigned a slot that is after the slot assigned to its parent, i.e.

∀ v, v′, v′′ ∈ Sn(T ) • (v, v′), (v′, v′′) ∈ E
−→ fdistassign(v, v′) < fdistassign(v, v′′)

Proof Sketch (the full proof is given in Appendix B.3). For topologies of depth 1,
the two claims hold trivially. For topologies of depth greater than 1, first, it is shown
that the conditions (2a) and (2b) establish forward distances which imply Dassign = s−1.
Second, it is shown that if any of (2a) and (2b) is violated, then Dassign > s − 1 holds
following Definition 6.10.

89



6 TDMA Slot Assignment

In the example given in Figure 6.3, the worst assignment (Figure 6.3b) adheres to
the conditions of Lemma 6.4, where the forward distance between parent and child is
maximized. The best assignment (Figure 6.3c) adheres to Lemma 6.5, where the forward
distance between parent and child is minimized

6.5 Guard Time Optimization

Guard time comprises two time subintervals at the beginning and the end of each time
slot, respectively, for the sake of tolerating small clock drifts during synchronization: a
sensor obeys a guard time φ ∈ R+

0 if it does not send for a duration of φ at the beginning
and the end of its assigned slot – cf. Figure 6.4. Note that obeying guard time is defined
in terms of the local clock of the sensor: the sensor does not send if its local clock points
to a value within the guard time of the sensor’s slot. Note also that guard time is not
necessarily a requirement in EN 54-25 [DIN05].

Figure 6.4: Guard time

The notion of guard time is formally defined in the following definition.

Definition 6.11 (Guard Time). An evolution I over topology T has guard time
φ ∈ R+

0 iff (1) I is scheduled with a slot length ω ≥ 2φ and (2) sensors do not send for
a duration of φ at the beginning and the end of their slot, i.e.

∀ v ∈ Sn(T ), t ∈ Time • sendIv (t) −→
slot(clkIv (t)− φ) = slot(clkIv (t) + φ) = slot(clkIv (t)).

For each slot [t1, t2) of I with guard time φ, the time intervals [t1, t1 +φ) and [t2−φ, t2)
are called the (left and right) guard intervals of the slot. The time interval [t1 +φ, t2−φ)
is called σ-interval of the slot. ♦

6.5.1 Safe Guard Time

The length of the guard time is a critical issue for avoiding message collision and loss.
The length should satisfy some conditions in order achieve its aim. A guard time, whose
length is sufficient to avoid message collision and loss, is called safe guard time.
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Definition 6.12 (Safe Guard Time). A guard time φ ∈ R+
0 is said to be safe for a

topology T , slot length ω, schedule assign, and least upper bound δmax ∈ R+
0 on the

drift rates iff no synchronized evolution

I ∈ Evosync(T , ω, assign, δmax )

exhibits message collision or message loss. ♦

The following theorem derives, given a guard time φ, sufficient conditions on the guard
time length in relation to clock drift in order to effectively avoid message collision and
loss; i.e. to satisfy that the guard time is safe. The theorem states two facts. First,
message collision does not happen if the absolute value of the clock drift experienced by
any sensor at any time point does not exceed the value of φ. Second, message loss does
not happen if the absolute value of the clock drift experienced by any sensor at any time
point does not exceed the value of φ2 .

Theorem 6.1. Let I be a scheduled evolution over topology T with guard time φ.

1. I does not have any message collision if

∀ v ∈ Sn(T ), t ∈ Time • |%Iv (t)| ≤ φ.

2. I does not have any message loss if

∀ v ∈ Sn(T ), t ∈ Time • |%Iv (t)| ≤ φ

2
.

Proof Sketch (the full proof is given in Appendix B.4).

1. By premise, sensors obey the guard time and, because clock drift is bounded by
the guard time, they send in their slot wrt. the central unit clock. Any message
collision would yield a contradiction to that each sensor is assigned to one slot.

2. By premise, sensors obey the guard time and, because clock drift is bounded by
φ
2 , they send well inside their slots wrt. the central unit clock. Parents listen
throughout the slots of their children. This phase comprises, by the bound on
clock drift, all sending points of the children, so there is no message loss.

Corollary 6.3. A guard time φ ∈ R+
0 is safe for a topology T , slot length ω, schedule

assign, and least upper bound δmax ∈ R+
0 on the drift rates iff

%max
ω,δmax (assign) ≤ φ

2
.

Proof. It follows from Theorem 6.1 and Definition 6.12.

To illustrate Theorem 6.1 and Corollary 6.3, consider the example in Figure 6.5. It
assumes a synchronized system over a tree topology T with four sensors va, vb, vc, vd ∈ V
where vc is parent of va and vd is parent of vb. Slots a and b are assigned to va and
vb, respectively, for sending. Given a guard time φ, different evolutions with different
clock drift values for the given sensors and the possibility of message collision or loss
are shown. Note that by Definition 6.5, parents vc and vd listen during slots a and b,
respectively.
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Figure 6.5: Safe guard time

• In Evolution 1, all clocks run at the same speed, and therefore there is no message
collision or loss.

• In Evolution 2, there is clock drift with an absolute value that is greater than φ.
Message collision between va, vb, and message loss for vb occur.

• In Evolution 3, the absolute values of clock drift do not exceed φ but only φ
2 . There

is no message collision, but there exists message loss for at least vb.

• In Evolution 4, the absolute values of clock drift do not exceed φ
2 , thus neither

message collision nor loss are exhibited.

In general, the absence of collision and loss does not necessarily imply a violation of
these conditions. For example, theoretically, a sensor clock may have a high speed in
the first half of a frame and a low speed in the second half of the frame in a way such
that it has a big maximal clock drift but still is perfectly on time for its next slot.
In the following lemma, sufficient conditions for message collision and loss are observed

for completeness. It states that the bounds given by Theorem 6.1 are optimal, which
means that evolutions with guard time strictly smaller than φ (or φ

2 ) may have message
collision (or loss).
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Lemma 6.6. Let I be a scheduled evolution over topology T with slot length ω.

1. If there are two sensors v1, v2 ∈ Sn(T ) and a point in time t ∈ Time such that

• assign(v2) = assign(v1) + 1,

• t = t2 for a slot [t1, t2) of v1,

• both nodes send continuously during their σ-interval, and

• %Iv1
(t) = φ+ τ and %Iv2

(t) = −φ for 0 < τ < ω,

then there is message collision between v1 and v2 at t.

2. If there is a sensor v ∈ Sn(T ) and a point in time t ∈ Time such that

• t = t2 − φ
2 for a slot [t1, t2) of v,

• v sends continuously during its σ-interval, and

• %Iv (t) = φ
2 + τ and %Iparent(v)(t) = −φ

2 for 0 < τ < ω,

then there is message loss at t.

Proof Sketch (the full proof is given in Appendix B.5). By construction. There
exists an evolution which satisfies the premises and, by sending throughout the σ-interval,
exhibit collision between nodes v1 and v2 and loss of a message from v, respectively.

Note that a safe guard time need not exist for a given topology, slot length, assignment,
and clock drift bound. If local clocks drift with a large amount during a frame, collision
or loss may happen before a re-synchronization of clocks is possible.

6.5.2 Formal Derivation of Optimal Guard Time

The derivation – or computation – of an optimal guard time can be achieved, given
basically a schedule, using the notion of the forward distance. Theorem 6.2 characterizes
the existence and value of an optimal safe guard time basically in terms of Dassign; i.e.
in terms of the maximum sum of forward distances of sensors along any path in the
topology.

Theorem 6.2. Let T be a topology with k sensors and let σ ∈ R+ be the length of
the σ-intervals. There exists an optimal, i.e. smallest, safe guard time for T wrt. the
least upper bound δmax ∈ R+

0 on the clock drift rates iff

δmax <
1

4 · (Dassign + k + 1)
.

The optimal safe guard time for T wrt. δmax is given by

φopt = σ ·
2 · (Dassign + k + 1) · δmax

1− 4 · (Dassign + k + 1) · δmax
.

Proof Sketch (the full proof is given in Appendix B.6). It follows the solutions of
the equation system induced by the following: (1) a sufficient and necessary criterion
for φ ∈ Time being a safe guard time provided by Theorem 6.1 and Lemma 6.6, and (2)
the value of %max

ω,δmax (assign) given by Corollary 6.2.
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By Definition 6.10, the forward distances and, thus, the maximum sum Dassign depend
on the slot assignment. In the following parts, the results indicated by Theorem 6.2 are
translated to each of the worst and best case assignments.

Optimal Guard Time for the Worst Assignment

An optimal guard time for the worst assignment is safe for any other slot assignment,
since Dassign is the maximum for such an assignment. The derivation approach to optimal
guard time for this case follows directly from Lemma 6.3, Lemma 6.4, and Theorem 6.1.

Corollary 6.4. Let T be a topology of depth d with k slots per frame. Let δmax ∈ R+
0

be a least upper bound on the clock drift rates, ω ∈ R+ a slot length, and ‘assign’ an
assignment of nodes to slots.

1. %max
ω,δmax (assign) ≤ (d(k− 1) + 2) · ω · δmax .

2. %max
ω,δmax (assign) = (d(k− 1) + 2) · ω · δmax iff ‘assign’ has a (6.2)-path.

3. Let σ ∈ R+ be the length of the σ-intervals. There exists a safe guard time for T
wrt. δmax iff

δmax <
1

4(d(k− 1) + 2)
.

A safe guard time for T wrt. δmax is given by

φopt = σ · 2(d(k− 1) + 2) · δmax

1− 4(d(k− 1) + 2) · δmax
.

For assignments assign with a (6.2)-path, φopt is the optimal, i.e. smallest safe
guard time.

Proof. Points (1) and (2) follow from Lemma 6.4,

(d− 1)(k− 1) + k + 1 = d(k− 1) + 2, (6.3)

and Lemma 6.3. Point (3) follows from Points (1) and (2), and Lemma 6.4, Equation
(6.3), and Theorem 6.2.

Optimal Guard Time for the Best Assignment

An optimal guard time for the best case assignment is the minimum guard that is safe
for at least one assignment. The derivation of such a guard time follows directly from
Lemma 6.3, Lemma 6.5, and Theorem 6.2.

Corollary 6.5. Let T be a topology of with k slots per frame and maximal subtree(s)
of size s ∈ N. Let δmax ∈ R+

0 be a least upper bound on the clock drift rates, ω ∈ R+ a
slot length, and assign an assignment of nodes to slots.

1. %max
ω,δmax (assign) ≥ (s+ k) · ω · δmax .

2. %max
ω,δmax (assign) = (s+k)·ω ·δmax iff assign satisfies the conditions of Lemma 6.5–2b.
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3. Let σ ∈ R+ be the length of the σ-intervals. There exists a safe guard time for T
wrt. δmax iff

δmax <
1

4(s+ k)
.

The optimal safe guard time for T wrt. δmax is given by

φopt = σ · 2(s+ k) · δmax

1− 4(s+ k) · δmax
.

It is safe for exactly those assignments of nodes to slots which satisfy the conditions
of Lemma 6.5.

Proof. Points (1) and (2) follow from Lemma 6.3, Lemma 6.5, and

(s− 1) + k + 1 = s+ k. (6.4)

Point (3) follows from points (1) and (2), and Lemma 6.5, equation (6.4), and
Theorem 6.2.

Note that for topologies of depth 1, the optimal guard time does not depend on the
assignment, as the following Corollary indicates.

Corollary 6.6. Let T be a topology of depth 1 with k slots per frame. Let δmax ∈ R+
0

be a least upper bound on the clock drift rates, ω ∈ R+ a slot length, and assign an
assignment of nodes to slots.

1. %max
ω,δmax (assign) = (k + 1) · ω · δmax .

2. Let σ ∈ R+ be the length of the σ-intervals. There exists a safe guard time for T
wrt. δmax iff

δmax <
1

4(k + 1)
,

the optimal safe guard time for T wrt. δmax is given by

φopt = σ · 2(k + 1) · δmax

1− 4(k + 1) · δmax
.

Proof. Corollaries 6.4 and 6.5.

6.6 Recurrence Property

The results of Corollaries 6.4 and 6.5 provide as well a method for computing the
achieved recurrence of intervals in which collision- and loss-free messages are allowed
to be sent, namely the σ-intervals. Indeed, the results provide upper and lower bounds
on the recurrence that can be achieved by any self-stabilizing algorithm wrt. scheduled,
synchronized, collision- and loss-free evolutions.
In the system model, the clocks may drift arbitrarily within some bounds. This

fact does not hinder computing optimal guard times for collision- and loss-free
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communication, as shown in the previous sections. However, concerning recurrence
properties, this model may accept unrealistic behaviors, whose concern provides useless
results. For example, the model accepts that a clock is too fast during σ-intervals and
too slow during the guard time. This behavior practically entails low recurrence of
σ-intervals. The other way around induces high recurrence. In practice, clock speed
does not change that quickly.
Therefore, the analysis of recurrence concerns the partitioning of time intervals,

regardless of clock speeds. In other words, the recurrence is analyzed according to
reference time, namely the central unit.
Concerning self-stabilizing algorithms wrt. slot assignment, when collision or loss is

detected, the approaches are usually based on setting nodes into listening mode, until
slot assignment is re-established and clocks are synchronized, regardless of the guard
time length (cf. Section 6.1.1). However, according to the analysis above, guard time is
used to guarantee collision- and loss-free evolutions. Therefore, in the following parts, it
is assumed that any self-stabilizing algorithm wrt. scheduled and synchronized evolutions
applies to any safe guard time.
Recall from Section 3.3 that for real-time systems, the condition concerned with the

recurrence property is defined over time points. Roughly, the condition for this case is
satisfied at some point in time if there is a sensor in the σ-interval of its assigned clock
according to the central unit’s clock. To define this formally, the following notation is
added: given a time point t and a sensor v, the predicate slotvσ(t) holds iff t is in the
σ-interval of a slot assigned to v.

The condition concerned with the recurrence property is denoted by safeSend , and is
defined as follows: for each evolution I and each point in time t:

safeSend(t) −→ ∃ v ∈ V • slotvσ(t).

The recurrence property to be concerned is safeSend∆, where ∆ is determined based
on the slot assignments. The following theorem states a lower bound on ∆, such that
the safeSend∆ holds for any self-stabilizing algorithm wrt. scheduled, synchronized, and
collision- and loss-free evolutions with safe guard time. It is inspired from the fact that
the optimal guard time for the worst case is safe for all assignments.

Theorem 6.3. Given a topology with k slots per frame and depth d, let σ ∈ R+ be
the length of the σ-intervals, and let δmax be a least upper bound on the drift rate. If
δmax < 1

4(d(k−1)+2) , then each self-stabilizing algorithm wrt. scheduled, synchronized, and
collision- and loss-free evolutions with safe guard time is also a self-stabilizing algorithm
wrt. safeSend∆, where

∆ = 1− 4(d(k− 1) + 2) · δmax .

Proof. Let A be an algorithm that is self-stabilizing wrt. scheduled, synchronized,
and collision- and loss-free evolutions given some safe guard time. By Corollary 6.4,
Lemma 6.4, and assumption, each evolution with any assignment is finally collision- and
loss-free if the optimal guard time for worst assignments is used (cf. Figure 6.3b for
illustration about the worst assignment.)
Consider a synchronized and scheduled evolution I that starts at a point in time

t that is the start point of an σ-interval, where any following point is collision- and
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loss-free. By Definition 6.11, for each t′ ≥ t, the recurrence of safeSend in [t, t′] for I –
RecsafeSend (I[t, t′]) – is greater than or equal to σ

σ+2φ . This, by Definition 3.6 (Definition
of con∆ in Section 3.3), implies that safeSend∆ holds if ∆ = σ

σ+2φ . Among all possible
assignments, the minimum value of σ

σ+2φ is achieved when the value of φ is maximized;
i.e. when the optimal guard time for a worst assignment is employed. By substituting
the value of the optimal guard time for the worst assignment (Corollary 6.4) with φ,
safeSend∆ holds if ∆ = 1− 4(d(k− 1) + 2) · δmax holds.

This implies that A is self-stabilizing wrt. safeSend∆ if ∆ = 1−4(d(k−1)+2)·δmax .

The next theorem shows an upper bound on the achieved recurrence by any
self-stabilizing algorithm wrt. scheduled, synchronized, and collision- and loss-free
evolutions with safe guard time, inspired from the case of the best assignments.

Theorem 6.4. Let T be a topology with k slots per frame and maximal subtree of
size s. Let σ ∈ R+ be the length of the σ-intervals, and let δmax be a least upper bound
on the drift rate. For each self-stabilizing algorithm wrt. scheduled, synchronized, and
collision- and loss-free evolutions with safe guard time and wrt. safeSend∆ for some
∆ ∈ [0, 1] ⊂ R+

0 , the following statement holds:

∆ ≤ 1− 4(s+ k) · δmax .

Proof. Let A be an algorithm that is self-stabilizing wrt. scheduled, synchronized, and
collision- and loss-free evolutions with safe guard time and wrt. safeSend∆, for some
∆ ∈ [0, 1] ⊂ R+

0 . This implies that for each evolution I, there exists a time point
t ∈ Time such that for all t′ ≥ t, RecsafeSend (I[t, t′]) ≥ ∆. Assume by contradiction that
∆ > 1− 4(s+ k) · δmax , which then implies that

RecsafeSend (I[t, t′]) > 1− 4(s+ k) · δmax . (6.5)

By Definitions 6.4 and 6.11 (time division and guard time) and the definition of
safeSend , there exists a time point t′′ ≥ t such that

RecsafeSend (I[t, t′′]) =
σ

σ + 2φ
. (6.6)

Thus, since σ is constant, the maximum possible value of RecsafeSend (I[t, t′′]) (with safe
guard time) is given by having the minimum possible value of safe guard time φ. By
Lemma 6.5 and Corollary 6.5, the minimum possible safe guard time φ is given by:

φ = σ · 2(s+ k) · δmax

1− 4(s+ k) · δmax
. (6.7)

By summing up the equation (6.6) and (6.7), it follows that:

RecsafeSend (I[t, t′′]) ≤ 1− 4(s+ k) · δmax ,

which contradicts the equation (6.5).
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6.7 Case Study: A Wireless Fire Alarm System

This section presents a study of the effectiveness of the given formal approach in this
chapter, to optimize guard time analytically, under real-world conditions. A wireless fire
alarm system – which has been developed using a classical-engineering approach – is
considered. It is shown that the computed guard times have significantly shorter lengths
than the one given in the fire alarm system design. It is also shown that by adding
further restrictions, e.g., on the system’s topology and the slot assignment, guard time
can safely be reduced even further, which in turn increases the recurrence of safeSend .

6.7.1 The Wireless Fire Alarm System

The considered system is a Wireless Fire Alarm System – shortly WFAS – in the sense
of EN 54-25 [DIN05]. A WFAS is a wireless sensor network consisting of a central unit
besides nodes including sensors and repeaters. Sensors are supposed to send information
(messages) to the central unit. If the physical distance between a sensor and the central
unit is large, repeaters are used to forward messages to the central unit. Figure 6.6
illustrates an example of a WFAS topology. The nodes communicate with each other

Figure 6.6: Wireless fire alarm system

via radio signals over a shared channel using TDMA. The communication scheme in
this network, together with clock synchronization, is same as in the given model in the
previous sections. Note that in Figure 6.6, the arrows are directed from parents to
children; they do not denote the direction of messages, but the direction of timestamped
acknowledgements. Each node is equipped with a hardware clock. It is assumed here
that each node other than the central unit is assigned exactly one slot per frame.
There are restrictions on the network size: The maximum number of sensors and

repeaters is 126, and the maximum number of repeaters linking a sensor to the central
unit is 5. The slot length is 25 ticks and slots are further divided into sub-intervals. This
is shown in Figure 6.7.
Sensors and repeaters in the WFAS’s are typically battery powered and EN 54-25 in

particular requires a minimum battery lifetime [DIN05]. The overall energy consumption
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Figure 6.7: Time slot of the WFAS

is dominated by energy consumption during both, sending and listening phases.
Therefore, energy efficiency is a prominent issue with EN 54-25 compliant WFAS.
Environmental conditions like temperature and battery voltage lead to a variation in

the crystal frequencies of the clocks, and thus clock drift may be exhibited at sensors
and repeaters. The frequency of the clock modules used in sensor and repeater nodes is
32.768 kHz, the accuracy is 20 ppm1 under the environment conditions specified by the
manufacturer of the clock modules.
WFAS’s are safety-critical and have to satisfy response deadlines. Since message

collision and loss may lead to a communication failure, they have to be avoided. The
clock drift issue is tolerated using the guard time. The purpose of the guard time in
the WFAS is only to avoid collision and loss due to clock drift, but not communication
failures during a slot caused by, e.g., a weak signal. Communication failures of the latter
kind are treated in the WFAS as part of the communication protocol during the slot and
are not considered here.

6.7.2 Modelling the WFAS

The WFAS belongs to the class of systems that can be formalized by the model given in
Section 6.3. The topology is modelled as a tree T = (V, E), where V = {cu(T )}∪̇Sn(T ),
such that cu(T ) (central unit) is the tree root, and Sn(T ) is the set of sensors and
repeaters. Here, there is no distinguishing between sensors and repeaters, since both
may exhibit the same amount of clock drift. Any topology has a maximum depth of 6,
since 5 repeaters at most are allowed to be on one path of the topology. The size of Sn(T )
is up to 126. There is no restriction on any subtree size s, therefore, 1 ≤ s ≤ |Sn(T )|.

In WFAS, the domain of the clock values is N0 because time is discretized into ticks.
However, the clock of a node v in an evolution I at time t is modelled by the given
function clkIn(t) : Time (= R+

0 ), i.e. by real numbers. By using real numbers, one can
compute a precise value of an optimal guard time. If the computed value has fractions,
it can be rounded to the next natural number reflecting guard time length in ticks. Since
the clock accuracy is 20ppm, the maximum drift rate δmax equals 0.00002.
Since sensors and repeaters are assigned slots bijectively, and clocks are synchronized

by the time-stamped acknowledgments with one synchronization point for each node in
each assigned slot, the evolutions of the WFAS are scheduled and synchronized.
Given Figure 6.7, the slot length σ, excluding guard time, equals 21 ticks, and the

guard time in this system is only one interval added to the beginning of a slot, while the
guard time in the formal model differs. This issue is treated in the following section.

1ppm abbreviates ‘parts per million’; 1 ppm = 10−6.
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6.7.3 Guard Time Optimization

In the following parts, the formal approach is applied to derive guard times for several
situations of the WFAS. Following Corollary 6.4, the number of nodes (which is equal
to the number of slots per frame) and the topology depth are directly proportional with
the optimal guard time. Therefore, each considered WFAS has the maximum values of
its sizes as a worst case wrt. the number of slots per frame k and the depth d. The value
of k is 126, and d equals 6.
Note that in the following parts, each situation is treated separately. However, there

may exist cases that combine more than one situation. For example, a requirement
might be to compute optimal guard time treating only message collision and for a best
case assignment. In this case, the methodologies for both situations can be combined.

Safe Guard Time

Let d be the topology depth. By Corollary 6.4, a safe guard time exists iff δmax <
1

4(d(k−1)+2) . Given that δmax = 0.00002, k = 126, and d = 6, then:

0.00002 <
1

4(6 · (126− 1) + 2)
= 0.000332447,

thus, a safe guard time exists. By Corollary 6.4, and given that σ equals 21 ticks, the
optimal guard time wrt. δmax is:

φopt = 21 · 2(6(126− 1) + 2) · 0.00002

1− 4(6(126− 1) + 2) · 0.00002
≈ 0.67 (6.8)

The safe guard time is, then, two intervals added to the beginning and to the end of
a slot, respectively, where each interval is 0.67 ticks. By rounding this length to 1 tick,
the overall length of both intervals is 2 ticks, implying that the guard time employed by
the WFAS (4 ticks, cf. Figure 6.7) is reduced to half of its length.

Guard Time Treating Only Message Collision

The protocol employed by the WFAS does not utilize guard time to treat message loss
caused by clock drift, and these losses are treated by the employed protocol together with
other communication failures caused by, e.g., other users of the frequency band. Yet the
derived guard time in the previous section treats message loss caused by clock drift.
Thus, it is shown how guard time can be extended, optimally, to treat only collision.
By Theorem 6.1, treating message loss requires having smaller bounds on clock drift

than the bounds allowed by message collision, which implies that the required guard
time for treating only message collision is smaller. Given a topology T , by Theorem 6.1,
any evolution I over T does not have any message collision if

∀ v ∈ Sn(T ), t ∈ Time • |%Iv (t)| ≤ φ. (6.9)

By Corollary 6.2, the maximum clock drift for an assignment assign is given by:

%max
ω,δmax (assign) = (Dassign + k + 1) · ω · δmax . (6.10)
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By the equations (6.9) and (6.10):

δmax · (Dassign + k + 1) · (2φ+ σ)· ≤ φ (6.11)
⇐⇒ δmax · (Dassign + k + 1) · σ (6.12)

≤ (1− 2 · δmax · (Dassign + k + 1)) · φ. (6.13)

By distinguishing the two cases: 1−2·(Dassign+k+1)·δmax > 0 and 1−2·(Dassign+k+
1)·δmax ≤ 0, it follows that a safe guard time exists only if 1−2·(Dassign+k+1)·δmax > 0.
The optimal safe guard time is given by:

φopt = σ ·
(Dassign + k + 1) · δmax

1− 2 · (Dassign + k + 1) · δmax
. (6.14)

Equation (6.14) computes an optimal guard time for a given assignment assign. For
the worst case assignment, by Corollary 6.4 and (6.14), an optimal guard time (which is
safe for any assignment) can be computed by the equation:

φopt = σ · (d(k− 1) + 2) · δmax

1− 2(d(k− 1) + 2) · δmax
. (6.15)

For d = 6, k = 126, σ = 21, and δmax = 0.00002, it follows by (6.15) that:

φopt = 21 · (6(126− 1) + 2) · 0.00002

1− 2(6(126− 1) + 2) · 0.00002
≈ 0.33. (6.16)

The computed guard time is, then, two intervals, where each has a length of ≈ 0.33 tick,
which is approximately half of the length of the guard time that is used to treat also
message loss, given the same parameters.
Recall from Section 6.7.1 that in the WFAS, the guard time is added as one interval

to the beginning of each slot, to treat only message collision, while the computed guard
time is two intervals that are added to the beginning and to the end of each slot, where
each interval has a length of 0.33 tick. By Figure 6.5, the computed guard time can be
adapted to the design of the WFAS; i.e. the two intervals are summed up and added
as one interval to the beginning of each slot. The interval length is 0.33 + 0.33 = 0.66
rounded to 1 tick, and added to the beginning of each slot.

Guard Time for Best Assignments

Lemma 6.5 states the restrictions on the best case assignments. If any evolution adheres
to the restrictions initially, or if a self-stabilizing algorithm produces assignments under
the restrictions, then the optimal guard time for best assignments can provide collision-
and loss-free evolutions.
For best assignments, the size of the maximal subtree s is a parameter in the

computation of the guard time. Detailed computations of optimal guard time for
best assignments are shown for two maximal subtree sizes: (1) an assignment where
s = k = 126; i.e. there is only one subtree, and (2) where s = k

6 = 21; i.e. a quite
restrictive condition where there are possibly many subtrees, but the size of the maximal
subtrees is only about a sixth of the components. The values of s are chosen to show how
the optimal guard time can be reduced by restricting the size of the maximal subtree.
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By Corollary 6.5, the guard time for the best case is given by:

φopt = σ · 2(s+ k) · δmax

1− 4(s+ k) · δmax
. (6.17)

Case s = 126: by Corollary 6.5, given a best assignment, there exists a guard time wrt.
δmax iff δmax < 1

4(s+k) . Given that δmax = 0.00002, k = 126, and s = 126, then:

0.00002 <
1

4(126 + 126)
= 0.000992063.

An optimal safe guard time exists wrt. δmax given the best case assignment where s =
126. By the equation (6.17), the optimal safe guard time is:

φopt = 21 · 2(126 + 126) · 0.00002

1− 4(126 + 126) · 0.00002
= 0.216035271. (6.18)

Case s = 21

Similar to the case s = 126, for δmax = 0.00002, k = 126, and s = 21, an optimal guard
time exists iff

0.00002 <
1

4(21 + 126)
= 0.00170068.

An optimal guard time exists wrt. δmax given the best case assignment where s = 21.
By the equation (6.17):

φopt = 21 · 2(21 + 126) · 0.00002

1− 4(21 + 126) · 0.00002
= 0.124949405. (6.19)

By the equations (6.18) and (6.19), it is obvious that the case s = 126 requires (as
expected) a larger optimal guard time than the one in case s = 21.
For a deeper view on the best case assignments, the possibility of having a reasonable

length of optimal guard time, if the clocks’ drift rate is large, is analyzed.

Guard Time Treating Other Sorts of Message Loss

In the former sections, it is assumed that there is no message loss due to radio signal
issues because it is assumed that there is one synchronization point within each slot. In
practice, messages with timestamps can get lost due to e.g. signal weaknesses and delays
in message delivery. In such cases, the computed guard times in the previous sections
are in general not safe. If one time-stamped acknowledgment is lost, then the one in the
next frame may reach its target node too early or late due to continuous clock drift in
the node.
Consider a node v at depth d′ which is not synchronized within its assigned slot.

The clock of the node may continue to drift for one additional frame until the next
synchronization point. This is the same situation as if the node had depth d′ + 1. More
general, if v misses all synchronization points during l adjacent frames, then v may drift
as if v has a depth of d+ l.
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By Corollary 6.4, given a tree of depth d, an arbitrary assignment, and an evolution,
if any node may miss all synchronization points during at most l adjacent frames, then
a safe guard time can be computed as follows:

φopt = σ · 2((d+ l)(k− 1) + 2) · δmax

1− 4((d+ l)(k− 1) + 2) · δmax
. (6.20)

For example, given a topology with d = 6, k = 126, ω = 21, δmax = 0.00002, and
l = 5, then by (6.20):

φopt = 21 · 2((6 + 5)(126− 1) + 2) · 0.00002

1− 4((6 + 5)(126− 1) + 2) · 0.00002
≈ 1.3.

Interestingly, Equation (6.20) provides an option to compute the number of subsequent
message losses that can be tolerated by a given guard time. For example, given a
WFAS with the maximum sizes, and the original guard time employed by the system
is 2φ = 4 ticks (cf. Figure 6.7), i.e. φ = 2, then the number of tolerated subsequent
message losses is computed by the equation (6.20) as:

2 = 21 · 2((6 + l)(126− 1) + 2) · 0.00002

1− 4((6 + l)(126− 1) + 2) · 0.00002

l ≈ 10.

This implies that 9 subsequent message losses can be tolerated by the guard time given
by the system design.

6.7.4 Energy Consumption

This part shows a comparison of systems employing the computed guard times in
Section 6.7.3 wrt. the required time and energy. The time and energy consumption are
investigated per frame, since a frame is a periodic cycle of a static length and schedule.
In the WFAS, the energy consumptions by any node during sleep, sending, and listening
modes are 60µA, 65mA, and 40mA, respectively.
By fundamental theorems of physics, an Ampere equals Coulombs/Second . Since slots

and guard time are expressed as ticks, and given the clock speed as ticks per second,
energy is expressed as Coulombs per Tick (CpT). The clock speed is 32.768kHz. The
energy consumptions by any node during sleep, sending, and listening modes are, then,
2 · 10−9CpT, ≈ 2 · 10−6CpT, and ≈ 1.2 · 10−6CpT, respectively.

The same system parameters as in Section 6.7.3 are used: the number of slots per
frame k is 126, and an σ-interval (slot excluding guard time) is 21 ticks. Given that
σ-intervals have constant length, the variable in the comparison is only the guard time
length. Therefore, it is assumed that the required energy during σ-intervals of all slots
in one frame is e.
Recall that the number of nodes (including central unit) is 127. During the guard

time of each slot, there exist two nodes in listening mode, where the other 125 are in
sleep mode. Recall that the guard time is two intervals, each of length φ. The required
extra energy for guard time during one frame is:

2φ · ((125 · 2 · 10−9) + (2 · 1.2 · 10−6)) = 2.65 · 10−6 · 2φ CpT. (6.21)
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Table 6.1 presents the required time and required energy by all nodes in one frame, while
employing the guard times given in Sections 6.7.1 and 6.7.3.

Guard Frame Energy
Time Length Consumption

2φ (ticks) (ticks) (Coulombs)
Original 4.00 3150.00 10.6000·10−6 + e

Optimal for any assignment 1.34 2814.84 3.5510 ·10−6 + e
Opt. for any assignment, only collision 0.66 2729.16 1.7490 ·10−6 + e
Opt. for best assignments, s = 126 0.44 2701.44 1.1660 ·10−6 + e
Opt. for best assignments, s = 21 0.25 2677.50 0.6625 ·10−6 + e

Table 6.1: Optimal safe guard times – both left and right intervals – and their effect on
time and energy consumption.

6.7.5 Cross-checking Derived Guard Times

As shown in the previous sections, the model can be extended to match various cases and
assumptions. This, however, requires to confirm that the extended model or equation
is correct, especially if the extension involves many parameters. This section provides
a method to cross-check the correctness of the results obtained by the formal approach
using automatic verification tools.
A model of parents and children with listen and send phases is provided. Correctness

checking then amounts to checking whether two children with adjacent slots can ever
assume their send phase at the same time point (collision) and whether there is a point
in time where a child is in the send phase while its parent is not listening (loss).
Note that a faithful model of clock drift involves hybrid aspects because clocks evolve

at different speeds and the clock speed may even change over time. This behavior is
over-approximated using timed automata [AD94], in which clocks evolve at uniform
speeds.

Figure 6.8: Verification of derived guard times
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(a) Child behavior model

(b) Parent behavior model

Figure 6.9: Uppaal models – timed automata

The idea underlying the model is illustrated in Figure 6.8. It shows one slot from t1,1
to t1,4 as seen by the central unit which provides the reference time. If the clock of a
sensor runs in perfect synchronization with the reference time, it should be in its left
guard interval from t1,1 to t1,2 (PreG), in its sending phase from t1,2 to t1,3 (Send), and in
its right guard interval from t1,3 to t1,4 (PostG). If the clock of this sensor’s parent runs
in perfect synchronization with the reference time, then the parent should be listening
from t1,1 to t1,4 (Listen).
If the sensor’s clock drifts with a maximum difference % to the reference time, then it

enters phase PreG at t1,1 − % the earliest and t1,1 + % the latest.
This is indicated by the triangle-like areas in Figure 6.8. The time where the sensor

enters PreG is denoted by t11,1 in Figure 6.8. The same observation holds for leaving
PreG, and for entering and leaving Send and PostG, respectively, and for the parent for
phase Listen.
This behavior with clock drift is modelled by the timed automata templates shown

in Figure 6.9. The initial location of the sensor – cf. Figure 6.9a – models the sensor
being idle during a frame until its slot is reached at time id · ω where id ∈ N0 gives
the number of its slot. This time corresponds to t1,1 above. The slot length ω is called
SlotLength in Figure 6.9. The sensor moves to its PreGuard phase at id ·ω−% (inclusive)
the earliest and at id · ω + % (exclusive) the latest. Here, the clock x of the sensor
automaton provides the reference time. Clock drift is modelled by relaxing the guards
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by % in both directions. Similarly, the sensor moves to its Send phase at id · ω + φ − %
(inclusive) the earliest and at (id + 1) · ω + φ + % (inclusive) the latest where φ and %
are called GT (abbrev. guard time) and clkdrift in the model, respectively. The behavior
of the parent is modelled similarly – cf. Figure 6.9b.
As clocks of timed automata start with value 0, in order to include the behavior of

fast clocks, all times are shifted by adding a constant co to model evolutions where the
sensor enters PreGuard before the beginning of the slot as indicated by the reference time.
The constant co must be bigger or equal to %.

Note that the model in Figure 6.9 does not allow evolutions where triangle-like areas
in Figure 6.8 overlap, i.e. where for example t11,2 < t11,1. This is valid because in the real
system, the three phases are entered one after the other by a sequential implementation.
The model is an over-approximation of the timed evolutions over a topology if a least
upper bound δmax on the magnitude of the drift rates in the evolution is considered.
For example, the model allows arbitrarily short dwelling times for location PreGuard for
certain values of φ and %. This would correspond to a clock running slow until entering
PreGuard and drifting with an arbitrarily large speed in or to leave PreGuard early. Yet
if the over-approximation is safe, it is concluded that the chosen guard time is safe.
By symmetry, it is sufficient to check a model instance consisting of two children and

their parents. It is considered that there is a child/parent pair for slot id = 0 and one for
adjacent slot id = 1 with slot length SlotLength = 50, maximal clock drift clkdrift = 2,
and shifting constant co = 2.
To check that this model instance adheres to the properties implied by Theorem 6.1,

the Uppaal model checker [BDL04] is used, which is the typical model checker for timed
automata. The properties to be checked are as follows:

1. If GT equals clkdrift (here: GT = 2) then no evolution exhibits message collision.
This property is checked by the following query:

A[] !(Child(0).Send && Child(1).Send)

The query requires that for all evolutions, both sensors are not at location Send at
the same time. The query is satisfied.

2. If GT equals 2 · clkdrift (here: GT = 4) then no evolution exhibits message loss.
This property is checked by the following query:

A[](Child(0).Send imply Parent(0).Listen)
&& (Child(1).Send imply Parent(1).Listen)

The query requires that for all evolutions, if a child is in location Send, then its
parent is in location Listen. The query is satisfied.

3. If GT equals 2 · clkdrift, then GT is optimal. This can be checked by extending the
time period in which the transition to location Send can be taken. Technically, ‘<’
is replaced in the invariant of the initial location with ‘≤’. Then the above queries
are checked. The queries are not satisfied in this case, implying that the guard
time 4 is optimal in this example.
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6.8 Remarks

This section highlights some remarks of the presented work in this chapter.
The formalism of the wireless sensor network in the sense of EN-54-25 [DIN05],

including the restrictions, provides the ability to do rigorous and thorough analysis
of properties over networks of such. The main question, that is considered is, how
does the order of TDMA slot assignment impact the clock synchronization precision.
This question is analyzed in the scope of the model, and the main results of the
analysis indicate the worst and best slot assignment orders wrt. the clock synchronization
precision. Some additional mathematical analysis provided an equation system for
optimizing guard time for each slot assignment. Additionally, a case study of a wireless
fire alarm system is considered. For this case, the formal model is easily extended to
match real-world cases. After that, a method for cross checking the correctness of the
approaches – based on automatic verification tools – is provided.
The following two remarks concern the results:

• In regard to the communication scenario between child and parent within one slot,
the assumption in the model is abstract: a synchronization point may be at any
position in the slot. In practice, such a point would exist usually at the end of the
slot, after receiving the acknowledgement. If this could be somehow guaranteed,
guard time could be further optimized.

• The worst assignment, which is shown to be the worst according to the clock
synchronization precision, might still be efficient wrt. the direction of message
delivery. The reason is that in this assignment, the sensors of the longest path are
assigned reverse slots, and therefore, a message can be delivered from the bottom
of the tree up to the central unit within one frame. From this point, if some design
requires that one path is assigned reverse slots, it is already a worst assignment
wrt. clock synchronization precision, and it would be rather good if all other paths
are assigned reverse slots to guarantee fast bottom-up message delivery.

Finally, the next question that may be considered is, whether self-stabilization wrt.
a best assignment for this network is achievable. In general, for such networks, if e.g.
a communication disturbance happens, the sensors can stop sending messages, and go
into a listening mode until they receive some acknowledgement. Naturally, due to the
tree structure, the acknowledgement may start from the central unit and goes down
to the leaves. The next question would be, whether the PIF algorithms designed in
Chapter 5 may provide hints about the design of a self-stabilizing system for this issue.
The communication nature between a process and its neighbors in the PIF algorithms
is similar to the presented model in this chapter.
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Properties

This chapter investigates the possibility of verifying recurrence properties using
automatic verification tools. The basic challenge in this case is that recurrence properties
are defined as ratios of conditions over infinite executions, which hardens automatic
verification. The aim in this chapter is to simplify and enable automatic verification
of recurrence properties by basically overcoming the issue of infinite executions. This
is achieved by exploiting the fact that each configuration in a self-stabilizing system
is considered to be initial, which implies that checking all possible execution prefixes
having some fixed length is sufficient to know whether the system violates the property.
Some of this chapter’s content has appeared in [6] of the author’s publications.
The chapter is structured as follows. Section 7.1 provides an overview of using

automatic verification for verifying self-stabilizing systems. Section 7.2 presents the
problem statement and assumptions. Next, Section 7.3 presents an approach that enables
and simplifies the use of automatic verification tools for verifying recurrence properties.
Section 7.4 explains the usefulness of model checking for this case. Finally, Section 7.5
presents a case study.

7.1 Automatic Verification of Self-Stabilizing Systems

The design and verification of self-stabilizing distributed systems is known to be tough.
There are two major reasons for it. First, each configuration is considered to be an
initial configuration. The problem gets more complicated if the system has an infinite
configuration space. Second, executions can be infinite. This makes it hard to verify e.g.
liveness properties and even convergence.
Model checking [CGP99, BK08] is a useful technique for systems having a finite

configuration space, and classical self-stabilization can be verified by simple model
checking, given enough time and memory. However, for systems having an infinite
configuration space, simple model checking may not succeed, and additionally,
abstraction techniques are needed. In many cases, the initial configurations are classified
into finite classes, and the properties to be checked might require to be reformed to match
the classes. In other cases, other techniques are used, like theorem provers and symbolic
model checkers. If the abstraction is robust enough to restrict the infinite space and
executions, classical self-stabilization can still be checked.
Verifying self-stabilization wrt. recurrence properties – con∆- convergence and warmup

– via model checking is not straightforward. This is due to two facts:

• Recurrence properties are defined over infinite executions. A minimum ratio ∆ of
configurations satisfying con should always exist in each execution prefix, after the
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system stabilizes. A model checker may not be able to detect when to stop checking
this property in an infinite execution. This holds for both con∆-convergence and
con∆-warmup.

• If a con∆-convergence time of c steps is guaranteed by an execution, in contrast to
the classical self-stabilization, the initial configuration of the execution suffix that
satisfies con∆ within the first c + 1 configurations is usually unknown.

The aim of this chapter is to find an abstraction technique that simplifies verifying
recurrence properties by overcoming the issue of infinite executions. The following part
summarizes related work.

7.1.1 Related Work

Using formal and automatic verification tools for verifying self-stabilizing systems is
growing recently. Automatic verification is mostly used to support the design and
evaluation of self-stabilizing systems.
Early work in this scope is given by Theel in [The00a, The00b, The01]. It

aims to automate verification using the concept of Lyapunov Functions [Lya07],
which is intensively used in the area of control theory: Lyapunov functions are a
sort of ranking functions that are applied to continuous and hybrid systems. A
following work [ODT05] provides a convergence verification approach that adopts certain
techniques for verification of particular hybrid systems to verify self-stabilization in
distributed systems. The challenge in these approaches is to find a suitable model
for distributed systems and the verification techniques used for hybrid systems. Other
transformational approaches, e.g. [KT10], adopt the use of ranking functions for systems
running under the central scheduler to the distributed scheduler.
Other work focuses on analyzing performance aspects of self-stabilizing systems.

Examples are [NKM06, DTW06, FBT13]. The work of [NKM06] considers the
occurrence of transient faults during the convergence, and their effect on the convergence
time. The approach of [DTW06] defines and applies fault tolerance measurements, such
as availability, to evaluate self-stabilizing systems, also under the assumption of ongoing
transient faults. In [FBT13], the authors use a metric for measuring the expected mean
value of the system’s convergence time. This value denotes the average case of the
convergence time, and is computed by probabilistic model checking. These approaches
and others are basically aimed to evaluate the performance of self-stabilizing systems
using formal methods and automatic verification, which is found to be useful.
Some recent work considers using automatic verification to support designing

self-stabilizing systems. Examples are [KE14, FB14, KKM15]. In [KE14], the authors
present a formal method for algorithmic design of self-stabilizing systems based on
variable superposition and backtracking search. In [FB14], the authors exploit SMT
solvers [dMB11] for synthesizing self-stabilizing algorithms. In [KKM15], the authors
use distributed local verification and present an algorithmic proof labelling schemes
to support the design of self-stabilizing algorithms. The usefulness of [KKM15] for
optimizing time and space complexity of a self-stabilizing minimum spanning tree (MST)
is shown.
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7.2 Problem Statement and Assumptions

In contrast to related work, this work exploits model checking for proving the absence
of counterexamples wrt. recurrence properties, to conclude that the analyzed system
satisfies the recurrence property.

7.2 Problem Statement and Assumptions

Recall that the basic aim in this chapter is to overcome the challenge of having infinite
executions, while applying automatic verification. The challenge arises from the fact that
the property con∆ is defined over infinite executions, and the recurrence of con may differ
among subexecutions of an execution. If a system does not satisfy con∆-convergence or
con∆-warmup in a given number of steps, then there exists a finite subexecution of an
execution that does not satisfy the property; i.e. a counterexample.

7.2.1 Problem Statement

The issue considered in this work is, whether there exists always a counterexample of
some fixed length for any system that does not satisfy the corresponding property.

Problem 7.1. Given a system Ω that does not satisfy con∆-convergence in c steps (or
con∆-warmup in w steps), identify the minimum length of a counterexample that is an
execution prefix of an execution in Ω.

The contribution of this chapter is as follows:

• It is shown that for each system that does not satisfy con∆-convergence in c steps
(resp. con∆-warmup in w steps), there exists an execution prefix having a length
of c + 1 (resp. in [w + 1, 2w + 1]) configurations that is a counterexample.

• For systems having a finite configuration space (but not necessarily finite
executions), it is shown how model checking is used to verify the properties.

• As a case study, the model checker nuXmv [CCD+14] is applied to analyze the
recurrence of granting a privilege (i.e. the service time) of a mutual exclusion
algorithm, namely Algorithm 4.2 from Chapter 4, executed over many topologies.

7.2.2 Assumptions

For the model checking parts (Section 7.4 and 7.5), for simplicity, it is assumed that the
systems have finite configuration spaces. For systems with infinite configuration spaces,
there are abstraction techniques applied by some model checkers, which are out of the
scope of this work.

7.3 Counterexamples of Fixed Length

This section provides an approach for simplifying the procedure of proving recurrence
properties, by checking the absence of counterexamples of fixed length. The
following definition specifies the meaning of counterexample for con∆-convergence and
con∆-warmup. To distinguish both cases, “counterexample” is written to refer to the
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7 Automatic Verification of Recurrence Properties

convergence property, and “wu-counterexample” is written to refer to the warmup
property.

Definition 7.1 (Counterexample). Let con be a condition, ∆ ∈ [0, 1] ⊂ R, and
c,w ∈ N0.

• A counterexample wrt. (con,∆, c) is a finite execution (prefix) Ξ that does not
satisfy con∆-convergence in c steps.1

• A wu-counterexample wrt. (con,∆,w) is a finite execution (prefix) Ξ that does
not satisfy con∆-warmup in w steps. ♦

The following definition introduces the notion of minimal counterexample, which
denotes a counterexample that has no strict subexecution that is a counterexample.

Definition 7.2 (Minimal Counterexample). Let con be a condition, ∆ ∈ [0, 1] ⊂ R,
and c,w ∈ N0.

• A counterexample Ξ wrt. (con,∆, c) is said to be minimal iff there exists no strict
subexecution Ξ ′ of Ξ such that Ξ ′ is a counterexample.

• A wu-counterexample Ξ wrt. (con,∆,w) is said to be minimal iff there exists no
strict subexecution Ξ ′ of Ξ such that Ξ ′ is a wu-counterexample. ♦

The interesting point that enables finding a counterexample, is that each configuration
in a self-stabilizing system is an initial configuration of some execution, and having
a minimal counterexample Ξ ′ as a subexecution of any execution implies that Ξ ′ is
indeed a separate execution (prefix) in the system. Consequently, systems having a
finite configuration space have a finite number of minimal counterexamples.
In the remainder of this section, it is proven that for each system that does not satisfy

con∆-convergence in c steps (resp. con∆-warmup in w steps), there exists a minimal
counterexample (resp. wu-counterexample) Ξ ′, whose length is c + 1 (resp. in [w +
1, 2w + 1]).
From now on, for any finite execution Ξ, the number of configurations satisfying

a condition con in Ξ is denoted by satcon(Ξ). This, by Definition 3.1 (recurrence
definition), entails that the recurrence of con in Ξ (Reccon(Ξ)) is equal to satcon(Ξ)

length(Ξ) .
The following is a basic lemma, that regards concatenating two subsequent executions,

satisfying particular recurrence properties.

Lemma 7.1. Let Ξ : γi, . . . , γj−1, γj , . . . , γu−1 be a finite execution, such that
Reccon(γi, . . . , γj−1) ≥ ∆, and ∀ j ≤ s ≤ u− 1 • Reccon(γj , . . . , γs) ≥ ∆. The following
statement holds:

∀ j ≤ s ≤ u− 1 • Reccon(γi, . . . , γs) ≥ ∆.

1 “counterexample” is written without “wrt. (con,∆, c)” if it is clear from the context.
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7.3 Counterexamples of Fixed Length

Proof. The cases where length(γi, . . . , γj−1) = 0 or length(γj , . . . , γu−1) = 0
hold trivially. Therefore, it is assumed that length(γi, . . . , γj−1) ≥ 1 and
length(γj , . . . , γu−1) ≥ 1. By the premises, it follows that

Reccon(γi, . . . , γj−1) ≥ ∆ (7.1)

⇐⇒ satcon(γi, . . . , γj−1)

(j − 1)− i+ 1
≥ ∆

⇐⇒ satcon(γi, . . . , γj−1) ≥ ∆(j − i) (7.2)

Analogous to the derivation of Formula (7.2):

∀ j ≤ s ≤ u− 1 • satcon(γj , . . . , γs) ≥ ∆(s− j). (7.3)

By Definition 3.1 and by Formula (7.2) and Formula (7.3), the following derivation
applies:

∀ j ≤ s ≤ u− 1 • Reccon(γi, . . . , γs) =
satcon(γi, . . . , γs)

s− i+ 1

=
satcon(γi, . . . , γj−1) + satcon(γj , . . . , γs)

s− i+ 1

≥ ∆(j − i) + ∆(s− j + 1)

s− i+ 1

≥ ∆.

The following corollary and the lemma show that the length of any minimal
counterexample wrt. (con,∆, c) is c + 1.

Corollary 7.1. For each counterexample Ξ wrt. (con,∆, c), length(Ξ) ≥ c + 1.

Proof. It follows by the definitions 3.3 and 7.1.

Lemma 7.2. For each minimal counterexample Ξ wrt. (con,∆, c): length(Ξ) = c + 1.

Proof. Corollary 7.1 implies that the length of any counterexample is greater or equal
to c + 1. It remains to show that the length of each minimal counterexample is not
greater than c+1. By contradiction: assume that there exists a minimal counterexample
Ξ : γ0, . . . , γu−1 wrt. (con,∆, c), where u = length(Ξ) > c+1. By Definitions 3.3 and 7.1,
it follows that:

∀ i ≤ c • ∃ j ≥ c • Reccon(γi, . . . , γj) < ∆. (7.4)

Since Ξ is minimal, by Definition 7.1, each strict subexecution of Ξ is not a
counterexample. Let Ξ ′ be the strict subexecution γ1, . . . , γu−1 of Ξ. Since length(Ξ) >
c + 1, it follows that length(Ξ ′) ≥ c + 1. By Definition 3.3, this implies that:

∃ i ≤ c + 1 • ∀ j ≥ c + 1 • Reccon(γi, . . . , γj) ≥ ∆. (7.5)

By considering Formula (7.4), the formula holds for any i among {1, . . . , c}. This implies
that Formula (7.5) does not hold for any i among {1, . . . , c}. This implies that i may
only be (c + 1) in Formula (7.5); i.e.:

∀ j ≥ c + 1 • Reccon(γc+1, . . . , γj) ≥ ∆. (7.6)
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By Formula (7.6) and Definition 3.1:

γc+1 |= con (7.7)

By Formula (7.4), it follows that ∃ j ≥ c•Reccon(γc, . . . , γj) < ∆. This, by Formula (7.6),
Formula (7.7), and Lemma 7.1, implies that:

γc 6|= con (7.8)

A case distinction based on the value of c is done:

1. c = 0. By Definition 7.1 and Formula (7.8), γc is a counterexample of length
1 = c + 1. This contradicts the assumption that Ξ, with length(Ξ) > 1, is a
minimal counterexample.

2. c > 0. By assumption, it holds that length(γ0, . . . , γc) ≥ c + 1. By minimality
of Ξ, the strict subexecution γ0, . . . , γc is not a counterexample; i.e. ∃ i ≤ c •
Reccon(γi, . . . , γc) ≥ ∆. However, since γc 6|= con, it follows that i 6= c, which
implies that:

∃ i < c • Reccon(γi, . . . , γc) ≥ ∆. (7.9)

By Lemma 7.1, Formula (7.6), and Formula (7.9):

∃ i < c • ∀ j ≥ c • Reccon(γi, . . . , γj) ≥ ∆. (7.10)

There is a contradiction between Formula (7.4) and Formula (7.10).

Theorem 7.1. If a system Ω does not satisfy con∆-convergence in c steps, then there
exists a minimal counterexample wrt. (con,∆, c) of length c + 1, that is a prefix of an
execution in Ω.

Proof. Since Ω does not satisfy con∆-convergence in c steps, then by Definition 7.1,
there exists a counterexample Ξ wrt. (con,∆, c) in Ω. If Ξ is minimal, then the theorem
holds. Otherwise, by Lemma 7.2, there exists a strict subexecution Ξ ′ of Ξ, such that
length(Ξ ′) = c + 1, and Ξ ′ is a minimal counterexample. By definition of a system, any
subexecution of any execution in Ω is indeed an execution prefix of an execution in Ω.
The theorem holds.

To analyze the con∆-warmup property, a similar approach is followed. Note that the
length of any minimal wu-counterexample lies between w +1 and 2w +1. In this case, to
find a counterexample via model checking, it is sufficient to check all execution prefixes
having any of those lengths.

Theorem 7.2. If a system Ω does not satisfy con∆-warmup time of w steps, then
there exists a minimal wu-counterexample Ξ = γ0, . . . , γu−1 wrt. (con,∆,w) such that
w + 1 ≤ u ≤ 2w + 1, and Ξ is an execution (prefix) in Ω.

Proof. By Definition 7.1, and analogous to Corollary 7.1, it follows that any
wu-counterexample has a length greater or equal to w + 1. Thus, it remains to
show that the length of each minimal wu-counterexample is not greater than 2w + 1.
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By contradiction: Let Ξ = γ0, . . . , γu−1 be a minimal wu-counterexample, such that
length(Ξ) = u > 2w + 1. By Definitions 3.8, 7.1, and by construction, it follows that
Reccon(Ξ) < ∆, or equivalently

satcon(Ξ) < u ·∆. (7.11)

Split Ξ into two parts: Ξ = ξβ where

Ξ = γ0 · · · γw︸ ︷︷ ︸
ξ

γw+1 · · · γ2w · · · γu−1︸ ︷︷ ︸
β

.

Since length(ξ) = w + 1, by minimality of Ξ, it follows that Reccon(ξ) ≥ ∆, or
equivalently:

satcon(ξ) ≥ (w + 1) ·∆. (7.12)

Likewise, since length(β) = u − w − 1 > (2w + 1) − (w + 1) = w, by minimality of the
length of Ξ, it follows that: Reccon(β) ≥ ∆, or equivalently

satcon(β) ≥ (u− w − 1) ·∆. (7.13)

Considering that satcon(ξ) + satcon(β) = satcon(Ξ), by Formula (7.12) and
Formula (7.13), it follows that

satcon(Ξ) ≥ (w + 1) ·∆ + (u− w − 1) ·∆, (7.14)

which gives

satcon(Ξ) ≥ u ·∆. (7.15)

There is a contradiction between Formula (7.11) and Formula (7.15).

A following example is given to show that 2w + 1 is indeed the least upper bound.
The following execution Ξ has length 2w + 1, and is a minimal wu-counterexample wrt.
(con,∆ = 1

2 ,w = 3). Again, γ indicates that γ satisfies con:

Ξ : γ0, γ1, γ2, γ3, γ4, γ5, γ6.

7.4 Model Checking Recurrence Properties

This section demonstrates how model checking can be applied to check whether a
distributed algorithm fulfills the following properties:

(P1) a con∆-convergence time of c steps,

(P2) a con∆-warmup time of w steps.
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Automatic verification using model checking verifies whether some system model
satisfies a property. This amounts to checking whether any reachable configuration
from an initial configuration satisfies a condition defined over the configuration. Recall
from Section 7.2 the assumption that only systems having a finite configuration space
are considered in the following parts.
Since recurrence properties are defined over executions, and model checking verifies

conditions over configurations, the basic idea for applying model checking is to add a
so-called observer process, that runs in parallel to the system, and stores the truth
values of con for all configurations in the execution. Next, the model checker verifies
if the observer’s state satisfies some property, to know whether the recurrence property
holds or not.
The model checker nuXmv [CCD+14] is applied in this work. nuXmv is a

symbolic model checker for finite and infinite configuration space systems. It provides
a flexible input language for modelling distributed algorithms, defined by guarded
commands. It applies several verification techniques like bounded model checking
(BMC), invariant checking based on binary decision diagrams (BDD), k-induction,
interpolation, abstraction refinement, and others. nuXmv handles systems with
infinite configuration space by encoding the model checking problem over an abstract
configuration space into an SMT problem, that is solved by an SMT solver. nuXmv is
an extended version of the model checker NuSMV [CCGR99].

7.4.1 Checking con∆-Convergence Time

To check the property (P1), two supplementary objects are added:

• An observer with c + 1 registers b0, . . . , bc ∈ B.

• A step counter “step,” which is initialized with 0 and ranging from 0 to c + 1.
step is incremented in each step.

The observer stores the first c + 1 configurations of an execution Ξ as follows: in each
i-th step, the observer assigns the register bi−1 the truth value of con in configuration
γi−1. Thus, in the configuration γi+1, the value of bi is assigned correctly and reflects
whether γi |= con is true. Next, the model checker verifies the following formula:

step = c + 1 −→ ∃ i ≤ c • count(bi, . . . , bc) ≥ ∆ · (c− i+ 1),

where count(bi, . . . , bc) denotes the count of bi, . . . , bc. If the model checker finds an
execution leading to a configuration that violates the former formula, then this execution
corresponds to an execution Ξ of the system which is a counterexample. Note that since
the register bi−1 is updated during the i-th step and thus keeps the correct value earliest
in configuration γi, the formula has to be checked one step later than expected, i.e.,
when step = c + 1 and not when step = c.1

1Although it is possible to do check the formula in the configuration where step = c, this would result
in fair readability.
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7.4.2 Checking con∆-WarmUp Time

To check (P2), the observer is not needed, and instead, an additional counter “good”
is added. Both counters step and good are initialized with 0 and range from 0 to
2w + 1. The counter good is incremented only in each step where con holds. This
enables checking if the following formula holds:

w + 1 ≤ step ∧ step ≤ 2w + 1 −→ good ≥ ∆ · step,

similar to the previous case.

7.5 Case Study: A Mutual Exclusion Algorithm

This section presents a case study: a study of applying the verification approach –
presented above – to a mutual exclusion algorithm, namely Algorithm 4.2 of Chapter 4,
which is based on the former work of [BPV08, DG13].
Recall that the specification of mutual exclusion comprises two properties: at most

one process is privileged in each configuration, and each process is privileged infinitely
often. The results of Chapter 4 state that Algorithm 4.2 is self-stabilizing wrt. mutual
exclusion in ddiam(G)/2e−1 steps. This section concerns the recurrence of granting a
privilege for processes beyond mutual exclusion. Recall that this amounts to analyzing
the so-called service time [Joh02, Joh04].
Let the condition priv denote that at least one process is privileged – cf. Chapter 4.

The recurrence properties to be considered are priv∆- convergence and warmup.
The analysis tackles five graph topologies, given in Figure 7.1. The topologies have

different combinations of the values of n (the number of processes) and diam(G) (the
diameter of the topology), since n and diam(G) are the key parameters of the algorithm.
Algorithm 4.2 is executed over these topologies, and the nuXmv model checker is used
to analyze the priv∆- convergence and warmup times for many values of ∆, which cover
small and high recurrences for generality. Recall that Algorithm 4.2 achieves priv∆,
where ∆ = n

n+ddiam(G)/2e−1 , with a priv∆-convergence time complexity of max{(d2.5 ·
diam(G)e − 1), (n + ddiam(G)/2e − 2)}.

The results are given in Table 7.1. Each row presents one test over the following
elements given by the columns: the topology, the value of ∆, the property whether
it is convergence or warmup, the convergence or warmup time, whether the property
holds, and the testing time. The rows are grouped by the topology. The first and most
important result is that the satisfiability of the properties adhere to the results of the
formal proofs given in Chapter 4. Second, the testing time does not differ large when
the value of ∆ differs. It differs when the size n or the diameter diam(G) of the topology
changes: the testing time increases when the size n increases (e.g. the difference between
T3 and T4.) In addition, the testing time increases when the diameter increases (e.g. the
difference between T4 and T5.)
To conclude, the presented approach aims to reduce the problem of verifying recurrence

properties over infinite executions, to finite execution prefixes of a fixed length. It is
shown that this approach makes the use of automatic verification – like model checking
– much more efficient. A usefulness of this approach is shown by the example of the
mutual exclusion algorithm.
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p0 p1

p2 p3

p4 p5

(a) Topology T1
n = 6, diam(G) = 3

p0 p1

p2 p3

p4 p5

(b) Topology T2
n = 6, diam(G) = 4

p0 p1 p2

p3 p4 p5

p6 p7 p8

(c) Topology T3
n = 9, diam(G) = 2

p0 p1 p2

p3 p4 p5

p6

(d) Topology T4
n = 7, diam(G) = 4

p0 p1 p2

p3 p4 p5

p6

(e) Topology T5
n = 7, diam(G) = 2

Figure 7.1: Topologies, over which Algorithm 4.1 is tested
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Topology ∆ Property #Steps Holds Testing Time
T1

6/7 priv∆-convergence c = 7 X 10s
T1

2/11 priv∆-warmup w = 9 X 14s
T1

4/7 priv∆-warmup w = 17 X 15s
T1

5/7 priv∆-warmup w = 37 X 29s
T2

6/7 priv∆-convergence c = 9 X 4s
T2

2/11 priv∆-warmup w = 9 X 6s
T2

4/7 priv∆-warmup w = 24 X 13s
T2

5/7 priv∆-warmup w = 51 X 19s
T3

1/1 priv∆-convergence c = 8 X 86h
T3

2/11 priv∆-warmup w = 9 X 73h
T3

4/7 priv∆-warmup w = 17 X 86h
T3

5/7 priv∆-warmup w = 37 X 88h
T4

7/8 priv∆-convergence c = 8 X 5m51s
T4

7/8 priv∆-convergence c = 9 X 7m15s
T4

2/11 priv∆-warmup w = 8 X 6m10s
T4

2/11 priv∆-warmup w = 9 X 7m55s
T4

4/7 priv∆-warmup w = 23 X 9m42s
T4

4/7 priv∆-warmup w = 24 X 9m27s
T4

5/7 priv∆-warmup w = 43 X 10m35s
T4

5/7 priv∆-warmup w = 44 X 10m44s
T5

1/1 priv∆-convergence c = 3 X 3m03s
T5

1/1 priv∆-convergence c = 4 X 2m42s
T5

1/1 priv∆-convergence c = 5 X 2m42s
T5

1/1 priv∆-convergence c = 6 X 3m10s
T5

2/11 priv∆-warmup w = 2 X 4m26s
T5

2/11 priv∆-warmup w = 3 X 3m24s
T5

4/7 priv∆-warmup w = 7 X 4m05s
T5

4/7 priv∆-warmup w = 8 X 3m29s
T5

5/7 priv∆-warmup w = 11 X 3m31s
T5

5/7 priv∆-warmup w = 12 X 4m

Table 7.1: Model checking recurrence properties for Algorithm 4.2 on a 64-core AMD
Opteron with 2.6GHz, 504GiB of RAM (single-core mode)

119





8 Conclusion

This chapter concludes the thesis. It gives a summary of the presented work and some
future prospects.

8.1 Summary

This work contributes to the area of self-stabilizing systems, by a new generalized
concept of self-stabilization. The generalized concept comprises a new sort of properties,
other than the classical safety properties defined over configurations. In this concept,
the definition of a property is based on a measure that denotes the ratio at which a
condition con is satisfied in a finite execution Ξ, which is signified as the recurrence
of the condition in the execution Reccon(Ξ). The property is denoted by con∆, and is
satisfied by an infinite execution Ξ if each execution prefix of Ξ guarantees a minimum
recurrence ∆ of con. Self-stabilization wrt. con∆ reflects the convergence time required
to achieve an execution suffix that satisfies con∆ (con∆-convergence time). The classical
self-stabilization is reflected in this concept by setting ∆ to 1.0.

This generalized concept is also modelled for real-time systems: a property con∆ is
satisfied in an evolution I over a time interval [t1,∞) iff in each interval [t1, t2], the ratio
of the accumulative time in which con is satisfied is greater than or equals ∆.
In contrast to classical self-stabilization, the condition con might be satisfied by a

configuration during the convergence wrt. con∆, before reaching an execution suffix
guaranteeing con∆. This provides a motivation to consider the satisfaction of con during
the convergence. This issue is addressed by the new notion of con∆-warmup time: the
time required to reach a configuration γi, such that the recurrence of con in γ0, . . . , γj
(i.e. from the beginning) where j ≥ i is greater than or equals ∆.
In this thesis, self-stabilization with recurrence properties is applied to solve problems

in distributed computing. First, self-stabilization wrt. mutual exclusion is considered.
The main issue that is analyzed is the recurrence of granting a privilege to an arbitrary
process, after the corresponding algorithm stabilizes. This reflects analyzing the
service time of the algorithm. The major contribution is a self-stabilizing mutual
exclusion algorithm for general connected graphs under the synchronous scheduler,
whose convergence time wrt. mutual exclusion is optimal (ddiam(G)/2e−1), and achieves
∆ = 1.0 recurrence (optimal) of granting a privilege in at most d2.5·diam(G)−1e steps. In
addition, other algorithms showing the trade-off between convergence time wrt. mutual
exclusion, the achieved recurrence of granting a privilege, and the space requirement are
given.
Second, the problem of educated unique process selection is introduced. This problem

is a generalized version of mutual exclusion, with a special consideration of the fairness
property. Unique process selection holds if two properties are satisfied. The first property
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indicates that at most one process is privileged in each configuration. The second
property indicates that granting a privilege to an arbitrary process happens infinitely
often, however, not necessarily for each process. The motivation of this problem is to
direct the focus to increasing the recurrence of granting a privilege rather than mattering
about fairness. This is useful in environments where processes rarely request a privilege,
and serving them quickly implies satisfying fairness anyway. Educated unique process
selection adds a restriction that if a process is granted a privilege, then this process
is distinguished from all other processes based on some local or global criterion. Two
self-stabilizing algorithms wrt. educated and unique process selection, respectively, are
introduced. The algorithms are based on a Propagation of Information with Feedback
(PIF) scheme for tree topologies.
The third problem is the slot assignment in Time Division Multiple Access (TDMA)

protocols, given a tree topology and limited communication bandwidth. A formal
analysis of the slot assignment order impact on the clock synchronization precision and
the required length of the additional intervals – guard time – is given. The analysis
specifies the slot assignment orders that yield the highest and lowest required guard times
to guarantee message collision- and loss-free communication. This results in specifying
tight lower bounds on the recurrence of sending messages for each slot assignment order.
In addition, this work provides equations to compute safe and optimal guard times for
many cases. A case study of a wireless fire alarm system is provided. The study shows
the usefulness of the given approach to optimize the guard time length, and therefore,
to increase the recurrence of sending messages in a real-world system.
Finally, an automatic verification approach for verifying recurrence properties is

provided. The approach basically tackles the issue of having recurrence properties being
defined over infinite executions, which complicates the verification process. The approach
makes use of having each configuration initial, to reduce the problem to verifying whether
there exists an execution prefix having some fixed length, and violates con∆-convergence
of c steps or con∆-warmup of w steps. For the former case, the length is c + 1, and for
the latter case, the length is in [w + 1, 2w + 1]. This approach is shown to be useful, by
being applied to verify recurrence properties of a mutual exclusion algorithm executed
over some topologies.
The whole contribution of this thesis is sketched in Figure 8.1.

Recurrence in Self-Stabilization

VerificationDesign & Analysis of SS-Algorithms

Mutual
Exclusion

Unique Process
Selection

Fast Educated

TDMA
Slot

Assignment

Figure 8.1: Wrap-up

The following points summarize how this contribution would impact self-stabilization:
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8.2 Future Prospects

• Usually, when self-stabilization is considered for properties defined over executions,
it captures only specific scenarios, because self-stabilization is mostly considered
for properties defined over configurations. The formalism of self-stabilization with
recurrence properties provides some pattern for modelling properties defined over
executions. As shown in the previous chapters, this pattern covers many aspects
describing executions.

• Optimizing the convergence time and the space requirement for self-stabilizing
solutions wrt. mutual exclusion and slot assignment usually neglects the relation
between the convergence time and the achieved performance or quality of service.
For the two problems, the generalized concept has highlighted the convergence
wrt. the desired service time in mutual exclusion, and the desired message delivery
(throughput) with slot assignment. In addition, the unique and educated process
selection highlight the service time issue further, by adding assumptions over the
fairness properties and the environment.

• While automatic verification of properties over distributed algorithms is hard, the
verification approach, presented in Chapter 7, has added another methodology
to simplify automatic verification of some sort of properties in self-stabilizing
distributed algorithms. In addition, the case study in Chapter 7 has shown the
usefulness of the model checker nuXmv to verify this sort of properties in this
environment.

8.2 Future Prospects

Some future prospects are given in this section.
The generalized concept of self-stabilization covers recurrence properties for both

discrete and real-time systems. Recurrence is, roughly, a ratio defined over subsequent
configurations and time intervals, respectively. This ratio is required to hold for any
subexecution or interval, starting from some point. Two limitations with ideas for
improvement are pointed out for the definition of recurrence.

• By definition, in order that the recurrence property con∆ holds in an execution,
the distribution of the configurations that satisfy the condition con over any
prefix has to somehow be uniform, or ∆ should be very small. In other words,
the corresponding condition has to keep repeating without exceeding a latency
margin, in order to preserve ∆ for each prefix. This is, for example, not the case
for Algorithm 5.6. In order to overcome this limitation, the definition can be
generalized further to cover that a condition is required to hold at least once in
segments of executions or evolutions, rather than configurations.

• Recurrence is a ratio at which a condition holds globally. For distributed systems, a
particular condition defined over states may hold for one or more states, providing
better or worse performance. The local mutual exclusion problem is an example
of this aspect, where multiple processes may be granted a privilege under some
restrictions. This cannot be modelled by the given definition. This limitation can
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8 Conclusion

be overcome by introducing a weight reflecting the number of states at which the
condition holds. This weight can be involved in the computation of ∆.

In the presented work, recurrence properties focus on modelling performance aspects
in self-stabilization. Following the same definition, instead of modelling performance
related conditions, one may focus on the consequences of faults during the convergence of
a self-stabilizing system. In particular, the notion of warmup time can be used to analyze
the recurrence of conditions that are followed by non-desired actions during convergence.
For example, the condition may be defined to reflect failing to satisfy mutual exclusion;
i.e. the condition holds if two or more processes are granted a privilege in the same
configuration. This provides more information about the algorithm’s behavior during
convergence, which might help to improve the quality of service.
Regarding the mutual exclusion and educated unique process selection problems (cf.

Chapters 4 and 5), a future perspective can be optimizing the space requirement and
generalizing the scheduler for the given solutions. For example, one may study the
feasibility of designing an asynchronous unison without having particular values for the
reset command, as given in the state-of-the-art [BPV04]. This reduces not only the
space requirement, but also the convergence time wrt. the desired recurrence of granting
a privilege.
Concerning the verification approach given in Chapter 7, systems are assumed to

have a finite configuration space, and model checking is applied directly. For future
work, systems with infinite configuration’s space can be considered. The infinite
configuration space is usually the result of having variables with infinite domains. Such
variables mostly have number values. This raises the question whether bounded model
checking (BMC) [Str00, CBRZ01] together with abstraction techniques are useful to
verify recurrence properties for these systems. BMC is based on checking whether
executions having an upper bound on their lengths satisfy some property, by translating
the executions to formulas that are solved by SAT solvers [DP60, DLL62] and SMT
solvers [dMB11]. From this point, BMC is supposed to be useful for extending this work
to consider systems having an infinite configuration space.
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A Correctness Proofs for Chapter 5

A.1 Proof of Theorem 5.1

Lemma A.1. Given an execution step (γi−1, γi) of a topology of depth d, if γi−1 |= root>⊥
and γi |= root>>, then the configuration γi+depth(T ) is a legConfig.

Proof. By Algorithm 5.5, the root executes either gc3 or gc4 in the step, implying
that in γi, each root’s child ch is in a state ch⊥⊥. In (γi, γi+1), each ch executes one
of gc5, gc6, gc13 or gc14, and each process q in depth 2 is in a state q?

⊥ in configuration
γi+1, following that ch⊥⊥ in γi. By Definition 5.7, in γi+1, the states of processes in the
1-subtree satisfy the conditions of legConfigs, if the fact that up = ⊥ for the leaves is
ignored. Note that the processes at depth 2 do not create bottom tokens to the processes
in depth 1. Inductively, in the next steps, in each configuration γj for i+ 2 ≤ j ≤ i+ d,
the states of processes in the j-subtree satisfy the conditions of legConfig’s, implying
that a legConfig is reached in d steps (in γi+d).

Lemma A.2. Given an execution step (γs−1, γs) of a topology of depth d, if γs−1 |=
root>> and γs |= root>⊥, then the configuration γs+d is a legConfig.

Proof. In any step (γs−1, γs), if γs−1 |= root>> and γi |= root>⊥, then each root’s child ch
is in a state ch?

> in γs, and the root executes gc1 or gc3 in the step. The root can point to
at most one of its children. In the step (γs, γs+1), each root’s child ch switches into ch⊥⊥
except at most one of them (switches into ch>⊥) and only if there is an ePath. Note that
the 1-subtree satisfy legConfig conditions in γs+1, except at most the condition (5.6):
if there is an ePath, it might not end with an active process. The processes at depth
2 do not create bottom tokens to the processes in depth 1. Inductively, in the next
steps, if the root does not change its state, then in each γj for (i + 2) ≤ j ≤ (d − 1),
the states of processes in the j-subtree satisfy legConfig conditions, except at most the
condition (5.6). In γd, the tree satisfies legConfig, including the condition (5.6). If the
root switches into root>> during these steps, by Lemma A.1, the token sent from the root
does not violate reaching a legConfig in d steps.

Proof of Theorem 5.1

Proof. By Lemma 5.3, for each execution, the root changes its state from root>b into
root>¬b in 2d steps. By Lemmata A.1 and A.2, a legConfig is reached in d steps after the
root changes its state. The sum is equal to d+ 2d = 3d.
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A Correctness Proofs for Chapter 5

A.2 Proof of Theorem 5.2

Definition A.1. Given the legConfigs’ space Γleg ⊂ Γ, four subsets of configurations
C1 , C2 , C3 , C4 , where C1 ∪̇ C2 ∪̇ C3 ∪̇ C4 ⊆ Γleg , are defined as follows:

• C1 ::= {γ ∈ Γleg | γ |= root>>}

• C2 ::= {γ ∈ Γleg | γ |= ∃ ePathγ : root, . . . , ps • ps?
>}

• C3 ::= {γ ∈ Γleg | γ |= ∃ ePathγ : root, . . . , ps • ps?
⊥}

• C4 ::= {γ ∈ Γleg | γ |= root>⊥ ∧ @ p ∈ P \ {root} • p.l-active} ♦

Corollary A.1. Γleg = C1 ∪̇ C2 ∪̇ C3 ∪̇ C4

The following lemma concerns the closure of configurations satisfying Properties 1
and 2 in Definition 5.7.

Lemma A.3. Given an execution γ0, γ1, . . . over a topology, if γ0 ∈ Γleg , then for each
configuration γi, where i ≥ 0:

∀ p ∈ P • (p>> −→ p>>-1 ∧ (p 6= root −→ ¬p.l-active)) (A.1)

∀ ps ∈ P • ps⊥> −→
∃ r ≥ s • ps, . . . , pr : aPath∨ (A.2)

∀ path : ps, . . . , pz • ∀ e ∈ [s, z] • ¬pe.l-active ∧ pe⊥>-1 (A.3)

Proof. It is shown that the conditions (A.1)–(A.3), reflecting the conditions (5.1)–(5.3)
in Definition 5.7, hold in each γi by induction. For the base case γ0, the conditions hold
by construction. For the induction step, it is shown that if the conditions hold in a
configuration γj−1, then they hold in γj for j ∈ N0. Regarding the condition (A.1): By
hypothesis, in γj−1, for each process p where p>>, it holds that p.` = −1 ∧ ¬p.l-active.
By Algorithm 5.5, the value of ` changes in γj only if: (i) a process p>⊥ switches into p⊥⊥,
or (ii) a process p?

⊥ switches into p>>-1 or p⊥> 6= 1. In both cases, γj : p>> −→ p>>-1. If a
non-root process p is active, this can be last checked only in Algorithm 5.5, by gc6 and
gc14. In both actions, p switches into p⊥>, but not into p>>. Thus, the condition (A.1)
holds. Regarding the conditions (A.2) and (A.3): By hypothesis, the condition holds in
γi−1. By definition, always root.up = >. Therefore, the condition holds trivially for the
root. For a non-root process p where γj−1 : ¬(p⊥>), p switches into p⊥> in γj iff any of the
following commands is enabled:

• (gc6, gc14) p switches into p⊥>id in γj . Note that γj has an active path with a process
p satisfying the sub-condition (A.2).

• (gc7) p switches into p⊥>ch.id forming an active path p, ch, . . . , ps for ps ∈ P,
satisfying the sub-condition (A.2).

• (gc8) p switches into state p⊥>-1, which satisfies the sub-condition (A.3).

The following lemmata concern execution steps’ properties within the four categories.
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A.2 Proof of Theorem 5.2

Lemma A.4. For each execution prefix γ0, . . . , γs over a topology, if γ0 ∈ C1 and
γi |= root>> for 0 ≤ i ≤ s, then γi ∈ C1 .

Proof. Given that the state root>> holds in γi, the statement γi ∈ C1 holds if the
conditions (5.1)–(5.5) in Definition 5.7 hold. The conditions (5.1)–(5.3) hold in γi by
Lemma A.3. It is shown that the conditions (5.4) and (5.5) hold by induction: the
base case γ0 holds by construction. For the induction step: it is shown that if the
conditions hold in a configuration γj−1, then they hold in γj for j ∈ N0. Regarding
the condition (5.4), a process p switches into p>⊥ only if gc10 is enabled. gc10 cannot be
enabled because the condition (5.5) holds in γj−1 and contradicts the guard of gc10. In
addition, if a process q switches into q>>, then the value of ` is always -1 (gc3−5). This
implies that the condition (5.4) holds in γj . Regarding the condition (5.5): Given that
the conditions (5.4) and (5.5) hold in γj−1 by hypothesis, there is no process q in a state
q?
⊥ and points to one of its children. From this point, if a process p switches into p?

⊥,
it does not point to any of its children. This implies that the condition (5.5) holds in
γj .

Lemma A.5. Given a legConfig γ0 ∈ C1 of a topology T , for each execution γ0, γ1, . . . ,
there exists finally a configuration γs, where s > 0, where: (1) if there exists at least one
last-active non-root process in γs−1, then γs ∈ C2 and s ≤ d, where d is the minimum
depth of a last-active process, and (2) γs ∈ C4 and s ≤ depth(T ) if there is no last-active
non-root process in γs−1, such that ∀ 0 ≤ i ≤ s− 1 • γi ∈ C1 .

Proof. By Lemma A.4, if root>> holds in γi, then γi ∈ C1 . By Lemma 5.3, the root
switches into γs : root>⊥ in at most 2depth(T ) steps, by executing one of the commands
gc1 or gc2: (a) If there is a last-active process in γs−1, then by the condition (5.2)
in Definition 5.7, there exists an aPathγs−1 implying that the root executes gc1, and
γs ∈ C2 . Note that by Lemma 5.2, if there is an aPath having a last-active process with
the minimum depth d, then s = 2d. (b) If there is no active process in γs−1, then the
condition (5.3) in Definition 5.7 holds in γs−1, implying that the root executes gc2, and
γs ∈ C4 .

Lemma A.6. For each execution prefix γ0, . . . , γs over a topology T , if γ0 ∈ C2 ∪ C3
and γi |= root>⊥ for 0 ≤ i ≤ s, then γi ∈ C2 ∪ C3 .

Proof. Given that root>⊥ holds in γi, it follows that γi ∈ C2 ∪ C3 if the
conditions (5.1)–(5.3), and (5.6) in Definition 5.7 hold. The conditions (5.1)–(5.3) hold
in γi by Lemma A.3. The condition (5.6) holds by induction (analogous to proving
Lemmata A.3 and A.4).

Lemma A.7. Given a legConfig γ0 ∈ C2 of a topology T , for each execution γ0, γ1, . . . ,
there exists a configuration γu for u > 0, such that

• γu ∈ C3 and ∀ 0 ≤ i ≤ u− 1 • γi ∈ C2 , and

• for the step (γu−1, γu), there is exactly one process p 6= root such that γu−1 : p⊥>p.id,
γu : p⊥⊥p.id, u = depth(p), and p executes the command critSection() in the step.
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A Correctness Proofs for Chapter 5

Proof. By Lemma A.6, if the state root>⊥ holds in γi, then γi ∈ C2 ∪ C3 . In general,
given a legConfig γ ∈ C2 ∪ C3 and an ePath : p0, . . . , ps: it holds that (ps

⊥
> −→ γ ∈

C2 ) ∧ (ps
⊥
⊥ −→ γ ∈ C3 ). Given that γ0 is in C2 , then for the ePathγ0 : p0, . . . , ps, it

holds that γ0 : ps
⊥
>ps. By Definition 5.6, the ePathγ can be expressed as follows:

p0
>
⊥p1, p1

>
⊥p2, . . . , pk

>
⊥pj+1, pj+1

⊥
>pj+2, . . . , ps

⊥
>ps (A.4)

By Algorithm 5.5 and Lemma 5.2: The processes p0, . . . , pj , pj+2, . . . , ps have no top
tokens. The processes p0, . . . , ps have no bottom tokens. The only process with a token is
pj+1 (gc10), and it is a top token. In γ1, pj+1 switches into pj+1

>
⊥pj+2. Note that γ1 ∈ C2 .

Analogously, pj+2 performs the same action in γ2. Since the number of pj+1, . . . , ps is
up to depth(ps)− 1, then a configuration γu−1 is reached where u ≤ depth(ps) and

p0
>
⊥p1, p1

>
⊥p2, . . . , ps−1

>
⊥ps, ps

⊥
>ps (A.5)

In γu−1, by Algorithm 5.5, the only process with a token is ps (gc9) which is a top
token. In the execution step (γu−1, γu), ps executes critSection() and switches into
ps
>
⊥ps, implying that γu ∈ C3 .

Lemma A.8. Given a legConfig γ0 ∈ C3 of a topology T , and an ePath : p0, . . . , ps,
for each execution γ0, γ1, . . . , there exists a configuration γu for 0 < u ≤ depth(ps), such
that γu ∈ C1 and ∀ 0 ≤ i ≤ u− 1 • γi ∈ C3 .

Proof. By Lemma A.6, if root>⊥ in γi, then γi ∈ C2 ∪ C3 . In configuration γ0 ∈ C3 ,
the ePathγ0 can be expressed as follows:

p0
>
⊥p1, p1

>
⊥p2, . . . , pk

>
⊥pj+1, pj+1

⊥
⊥pj+2, . . . , ps

⊥
⊥ps (A.6)

By Lemma 5.2, the processes p0, . . . , ps have no top tokens, the processes p0, . . . , pj−1,
pj+1, . . . , ps have no bottom tokens, and by Algorithm 5.5, the only process which has a
token is pj (gc12), and it is a bottom token. In the execution step (γ0, γ1), pu switches
into ps⊥⊥pj+1. Analogously, pj−1 performs the same step. Since the number of processes
p1, . . . , pj is up to depth(ps)− 1, then in a configuration γu−1 for 0 ≤ u ≤ depth(ps), the
ePath is expressed as follows:

p0
>
⊥p1, p1

⊥
⊥p2, . . . , pu

⊥
⊥pj+1, pj+1

⊥
⊥pj+2, . . . , ps

⊥
⊥ps (A.7)

Note that in any step following that root>⊥p1, each root child ch other than p1 is in a state
ch⊥⊥. This implies that in γu−1, the root has a bottom token. In the step (γu−1, γu),
the root switches into a configuration γu ∈ C1 where root>>-1 (gc3, gc4), after executing
critSection() if it is active in γu−1 (gc3).

Lemma A.9. For each execution prefix γ0, . . . , γs over a topology T , if γ0 ∈ C4 and
γi : root>⊥ for 0 ≤ i ≤ s, then γi ∈ C4 .

Proof. Given that the state root>> holds in γi, it follows that γi ∈ C4 if the
conditions (5.1)–(5.3), (5.7)–(5.8) in Definition 5.7 hold. The conditions (5.1)–(5.3)
hold in γi by Lemma A.3. The conditions (5.7) and (5.8) hold by induction (analogous
to proving Lemmata A.3 and A.6).
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A.3 Proof of Theorem 5.3

Lemma A.10. Given a legConfig γ0 ∈ C4 of a topology T , for each execution γ0, γ1, . . . ,
there exists a configuration γu for 0 < u ≤ 2, such that γu ∈ C1 and ∀ 0 ≤ i ≤ u−1•γi ∈
C4 .

Proof. By Lemma A.9, if γ0 ∈ C4 and root>⊥ holds in γi, then γi ∈ C4 . If each root’s
child ch is in a state ch⊥⊥, the root switches into root>> in γ1 ∈ C1 . Otherwise, by
Algorithm 5.5-gc11, each root’s child switches into ch⊥⊥-1 in γ1. In γ2, by gc3 or gc4, the
root switch into root>>-1 such that γ2 ∈ C1 .

Proof of Theorem 5.2

Proof. If γ0 ∈ Γleg , then by Corollary A.1, γ0 is in one of the categories C1 , C2 , C3 ,
and C4 :

• If γ0 ∈ C1 , then by Lemmata A.4 and A.5, γ1 is in one of C1 , C2 , and C4 .

• If γ0 ∈ C2 , then by Lemmata A.6 and A.7, γ1 is in one of C2 and C3 .

• If γ0 ∈ C3 , then by Lemmata A.6 and A.8, γ1 is in one of C3 and C1 .

• If γ0 ∈ C4 , then by Lemmata A.9 and A.10, γ1 is in one of C4 and C1 .

This implies the closure of the set of legConfigs.

A.3 Proof of Theorem 5.3

Lemma A.11. Unique process selection is satisfied in each legConfig.

Proof. The commands, whose actions comprise critSection(), are gc3, gc9, and gc15. It
is shown that in a legConfig, if one is enabled, then the others are not.

1. If gc3 is enabled, then each root’s child ch is in a state ch⊥⊥. (a) If there exists an
ePath : p0, . . . , pu, then by Definition 5.6, pj⊥⊥ for 1 ≤ j ≤ u. This implies that
gc9, gc12 are not enabled for pj . For each process q that is not in the ePath, the
following holds:

(q>? −→ q>>-1) ∧ (q?
> ∧ parent(q)?

⊥ −→ parent(q).` 6= q.id) (A.8)

By the condition (A.8), the commands gc9 and gc12 are not enabled. (b) If there
is no ePath, then the condition (A.8) holds, implying that gc9 and gc12 are not
enabled.

2. If any of gc9 and gc12 is enabled for a process ps, then ps
⊥
>ps.id holds, and by

Definition 5.7, there exists an ePath : p0, p1 . . . , ps such that only ps enables gc9

or gc12. By (A.8), the processes that are not in the path do not enable gc9 or
gc12. Regarding the root (= p0), by Definition 5.6, p1 is not in a state p1

⊥
⊥, and

therefore, gc3 is not enabled. Consequently, UPS holds in each legConfig.
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Proof of Theorem 5.3

Proof. By Lemma A.11, UPS holds in each legConfig. By Theorem 5.2, the set of
legConfigs is closed under Algorithm 5.5. A non-root process p runs critSection() only
if parent(p).x 6= p.x (gc9, gc15). The root executes critSection() only if each root’s child
ch is in a state ch⊥⊥. Consider three scenarios: (i) If the root does not change its state
within γ0, . . . , γd, then by Lemma 5.2, all processes at depth b ≤ d will have the same
value of x in a configuration γb, implying that no non-root process in T may execute
critSection() in γd and any following step until the root changes its state into root>⊥
sending token3. (ii) In any execution step (γi−1, γi) if γi−1 |= root>⊥ and γi |= root>>, the
token created by the root does not enable a non-root process to execute critSection().
(iii) In any execution step (γs−1, γs), if γs−1 |= root>> and γi |= root>⊥, then each root’s
child ch is in a state ch?

> in γs. The root points to at most one of its children. In
(γs, γs+1), each ch switches into ch⊥⊥ except at most one of them and only if there is
an ePath. Now the 1-subtree satisfies unique process selection. Inductively, in the next
steps, in each configuration γj for s + 2 ≤ j ≤ d, the j-subtree satisfies unique process
selection.
Scenarios (i-ii) guarantee that no non-root process at depth b ≤ d executes critSection()
after b steps unless the root switches into root>⊥. If the root switches into root>⊥ in γb, by
Scenario (iii), for each configuration γr where b ≤ r ≤ d, the r-subtree satisfies unique
process selection, while the processes whose depth is greater than r require d − r steps
to guarantee no execution of critSection(). This implies that unique process selection is
achieved in γd, γd+1, . . . .

A.4 Proof of Theorem 5.4

Lemma A.12. Let γ0 be a legConfig in which priv holds. For each execution γ0, γ1, . . . ,
there exists i ≤ 4 · depth(T ) such that priv holds in γi.

Proof. Let d be depth(T ). By Theorem 5.2, any configuration in the execution is a
legConfig. Since priv holds in γ0, then there exists a last-active process p that is uniquely
privileged. In the following scenarios, it is shown that a process is granted a privilege in
4d steps.

1. If p is the root, then by Definition A.1, γ0 ∈ C3 ∪ C4 and by Lemmata A.8
and A.10, γ1 ∈ C1 holds. Next,

a) If there is an active non-root process, by Lemmata A.5 and A.7, the process
is granted a privilege in 3d−1 steps – until γ3d.

b) If only the root is active in γ1, by Lemmata A.5 and A.10, the root is granted
a privilege in 2d steps – until γ2d+1.

2. If p is not the root, then by Lemma A.7, γ0 ∈ C2 and γ1 ∈ C3 . Next,

a) If the root is not last-active, then by Lemma A.8, after d steps, it holds
that γd+1 ∈ C1 . Following the argument of scenario (1) − (a), a process is
privileged until γ4d.
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A.5 Proof of Theorem 5.6

b) If the root is last-active, then in d− 1 steps, the root is granted a privilege –
until γd.

Given by assumption that d ≥ 1, by the above four scenarios, a process is granted
a privilege in 4d steps.

Proof of Theorem 5.4

Proof. Let d be depth(T ). By Theorem 5.1, Algorithm 5.5 is self-stabilizing wrt. a
legConfig in 3d steps, and is self-stabilizing wrt. UPS in d steps. By Lemmata A.5, A.7,
A.8, and A.10, a process is granted a privilege in 4d steps after the algorithm stabilizes
wrt. legConfig, i.e. until γ7d. By Lemma A.12. Let γi be a configuration in which priv
holds and 3d ≤ i ≤ 7d. The recurrence of priv in any execution γi, γi+1, . . . is greater or
equal to ∆. This implies that Algorithm 5.5 is self-stabilizing wrt. priv∆ in 7d steps.

A.5 Proof of Theorem 5.6

Definition A.2. Given the legConfigs’ space Γleg ⊂ Γ, four subsets of configurations
C1 , C2 , C3 , and C4 , where C1 ∪̇ C2 ∪̇ C3 ∪̇ C4 ⊆ Γleg , are defined as follows:

• C1 ::= {γ ∈ Γleg | γ |= root>>}

• C2 ::= {γ ∈ Γleg | γ |= root>⊥ and there exists a path root = p0, . . . , ps such that
ps
⊥
>s, and ∀ 0 ≤ i < s • pi.` = i+ 1}

• C3 ::= {γ ∈ Γleg | γ |= root>⊥ and there exists a path root = p0, . . . , ps such that
ps
>
⊥s ∨ ps⊥⊥s, and ∀ 0 ≤ i < s • pi.` = i+ 1}

• C4 ::= {γ ∈ Γleg | γ |= root>⊥ ∧ root.` = root.id} ♦

Lemma A.13. Γleg = C1 ∪̇ C2 ∪̇ C3 ∪̇ C4 .

Proof. In general, in any legConfig, the root can be in state root>> or root>⊥. The former
case is covered by C1 . Next, it is shown that any legConfig γ with root>⊥ is in one of
C2 ,C3 ,C4 . By Definition 5.9, Property 4, if the root points to itself, then γ ∈ C4 .
Otherwise, there exists a path root = p0, . . . , ps such that for all 0 ≤ i < s, pi.` = i+ 1
and ps.` = s. By Definition 5.9, Property 1, ps cannot be in state ps>>. If ps⊥> holds,
then γ ∈ C2 . If ϕs>⊥ or ps⊥⊥ holds, then γ ∈ C3 .

Lemma A.14. Given a legConfig γ0 in C1 , for any step (γ0, γ1), if γ1 |= root>>, then
γ1 ∈ C1 .

Proof. By definition of the commands, when a process changes its state, it changes at
least one of the values of x and up. Note that in Definition 5.9, the pre-conditions of
Properties 1–4 are related to the values of x and up. Therefore, it is basically referred
to the values of x and up to show that γ1 ∈ C1 . By Definition A.2, since γ0 ∈ C1 , then
root>> holds in γ0. In the following, it is shown that each property in Definition 5.9 holds
in γ1.
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Property 1 : Since Property 1 holds in γ0, then there is no process p in state p>⊥ in γ0.
Whenever a process pi switches from pi

⊥
? to pi>? , its is due to token1 (Commands gc4 and

gc10). By Property 1-a,b, if a process has a top token then, pi?⊥ and parent(pi)
?
>, implying

that pi switches the value of x into > in γ1, and Property 1-a holds. Similarly, whenever
a process pj switches from pj

>
? to pj⊥? , then it is due to bottom token, implying that pj

does not change the value of x. This implies that Property 1-b holds in γ1. Property 2 :
When a non-root process p changes its state into p>>, then it is the result of the command
gc4. The command sets m to updatem(), implying that m = µ in γ1. Property 2 holds.
Property 3 : When a non-root process p switches into p⊥>, then it is by either gc5 or
gc10, and both of them result in a state satisfying Property 3. Property 4 holds trivially
by the assumption that root>> in γ1. Property 5 : If a process p receives token3, then
by definition of token3, p?

> and parent(p)?
⊥. Following the argument of the satisfaction

of Property 1, if parent(p)?
⊥ in γ1, then parent(p) can be only in state parent(p)⊥⊥. By

Property 1-b, if parent(p)⊥⊥, then p is in state p⊥⊥, implying that token3 does not hold for
p, which implies Property 5.

Lemma A.15. Given a legConfig γ0 ∈ C1 of a topology, for any step (γ0, γ1), if root>⊥
in γ1, then γ1 ∈ C2 ∪ C4 .

Proof. Let p0 be the root. By definition, p0 is in state p0
>
> in γ0. p0 switches into p0

>
⊥

in γ1 only if the command gc1 is enabled in γ0. Since γ0 ∈ C1 , then by Definition 5.9,
Property 2, m0 is equal to µ0 in γ0. By gc1, if p0 points to itself, then m0 is the maximum
among p0 and its children, implying that Property 4 holds in γ1 and γ1 ∈ C4 . Otherwise,
if p0 points to one of its children ch, then Property 4 also holds. The other properties
of Definition 5.9 are also satisfied in γ1, implying that γ1 ∈ C2 .

Lemma A.16. Given a legConfig γ0 in C2 , for any step (γ0, γ1), if γ1 |= root>⊥, then
γ1 ∈ C2 ∪ C3 .

Proof. The proof is similar to the proof of Lemma A.14. By Definition A.2, since
γ0 ∈ C2 , then root>⊥ holds in γ0. It is shown that each property in Definition 5.9 holds
in γ1.
Property 1 : Since Property 1 holds in γ0, then there exists no process p in state

p>> in γ0. Now whenever a process pi switches from pi
⊥
? to pi>? , its is due to token3

(Commands gc6−8, gc11−12). By Property 1-a,b, if a process has a top token then, pi?>
and parent(pi)

?
⊥, implying that pi switches the value of x into > in γ1, and Property 1-a

holds. Similarly, whenever a process pj switches from pj
>
? to pj⊥? , then it is due to bottom

token, implying that pj does not change the value of x. This implies that Property 1-b
holds in γ1. Property 2 : By Property 1, there is no process p in state p>> in γ0. If a
process p switches into p>> in γ1, then p?

⊥ and parent(p)?
> in γ0, which does not hold

by Property 1. Therefore, there is no process p with a state p>> in γ1. Property 3 : By
definition of Property 1, no process p may switch into p⊥>. Property 4 : By assumption,
the root does not point to itself, since γ0 ∈ C2 . Therefore, by Property 4, in γ0, there
exists a path root = p0, . . . , ps, where for 0 ≤ i < s, pi.` = i+ 1, ps.` = s, and ms = µs
is the maximum among all processes in T . In addition, since γ0 ∈ C2 , then ps⊥>s. By
Property 1, token1 and token2 cannot be enabled in γ0. This implies that either token3

or token4 may be enabled in γ0. If token3 holds for any process in the path, then one of
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gc6, gc7, gc11, gc12 is enabled, and the result of the command does not violate Property 4.
In particular, if gc6 or gc12 is enabled, then it is enabled only for ps by definition, and
the command switches ps from ps

⊥
> into ps>⊥ or ps⊥⊥, implying that γ1 ∈ C3 . For any

process pj that is not in the path, if token3 holds in γ0, then by Property 4, the enabled
commands may be either gc8 or gc12, and their result does not violate Property 4.
Therefore, Property 4 holds in γ1. Property 5 : Following the argument of Property 4,
the condition token3 ∧ parent(ps).` = s ∧ ps.` = s holds only for ps, and either gc6 or
gc11 is enabled. The execution of any of gc6, gc11 does not enable any of them in γ1,
implying that Property 5 holds in γ1.

Lemma A.17. Given a legConfig γ0 ∈ C2 , for each execution γ0, γ1, . . . , there exists a
configuration γe for e > 0, such that

• γe ∈ C3 and ∀ 0 ≤ i ≤ e− 1 • γi ∈ C2 , and
• for the step (γe−1, γe), there is exactly one process p 6= root such that γe−1 : p⊥>p.id,
γe : p>⊥p.id, and p runs the command critSection() in the step.

Proof. By Lemma A.16, since γ0 ∈ C2 , then there exists a path p0, . . . , ps such that:

p0
>
⊥1, p1

>
⊥2, . . . , pj

>
⊥pj+1, pj+1

⊥
>pj+2, . . . , ps

⊥
>ps (A.9)

By Algorithm 5.6 and Lemma 5.2: The processes p0, . . . , pj , pj+2, . . . , ps have no top
tokens. The processes p0, . . . , ps have no bottom tokens. The only process with a token is
pj+1 (gc7), and it is a top token. In γ1, pj+1 switches into pj+1

>
⊥j + 2. Note that γ1 ∈ C2 .

Analogously, pj+2 performs the same action in γ2. Since the number of pj+1, . . . , ps is
finite then a configuration γs−1 is reached where

p0
>
⊥1, p1

>
⊥2, . . . , ps−1

>
⊥s, ps

⊥
>s (A.10)

In γe−1, by Algorithm 5.6, the only process with a token is ps (gc6) which is a top token.
In the execution step (γe−1, γe), ps runs critSection() and switches into ps>⊥s, implying
that γe ∈ C3 by definition of C3 .

Lemma A.18. Given a legConfig γ0 in C3 , for any step (γ0, γ1), if γ1 |= root>⊥, then
γ1 ∈ C3 .

Proof. Follows the proof argument of Lemma A.16.

Lemma A.19. Given a legConfig γ0 ∈ C3 , for any execution step (γ0, γ1), if root>> in
γ1, then γ1 ∈ C1 .

Proof. By definition, the root is in state root>⊥ in γ0. The root switches into root>> in
γ1 only if one of the commands gc2 and gc3 is enabled in γ0. Since γ0 ∈ C3 , then the
root does not point to itself, and gc2 cannot be enabled. Therefore, gc3 is enabled in
γ0, implying that each root’s child ch is in state ch⊥⊥. By Definition 5.9, Property 1,
each non-root process p is in state p⊥⊥. This implies that no process other than the root
has a token in γ0. When the root executes gc3, the root sets m to updatem(), satisfying
Property 2 of Definition 5.9. The other properties are not violated since no process other
than the root has a token. This implies that γ1 is a legConfig, and since root>> in γ1,
then γ1 ∈ C1 .
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Lemma A.20. Given a legConfig γ0 in C4 , for any step (γ0, γ1), if γ1 |= root>⊥, then
γ1 ∈ C4 .

Proof. Follows the proof argument of Lemma A.16.

Lemma A.21. Given a legConfig γ0 ∈ C4 , for any execution step (γ0, γ1), if root>> in
γ1, then γ1 ∈ C1 .

Proof. Same as the proof argument of Lemma A.19, with a difference that the root
executes the command gc2 instead of gc3.

Proof of Theorem 5.6

Proof. By Lemmata A.14–A.21, for each configuration γi in any of the categories
C1 ,C2 ,C3 ,C4 , for each execution step (γi, γi+1), γi+1 is also in one of the categories.
By Lemma A.13, the union of the four categories is the set of all legConfigs. This implies
the theorem.

A.6 Proof of Theorem 5.7

Proof. Let d be depth(T ). By Theorem 5.6, any configuration following γ0 is a
legConfig. By Lemma 5.3, the root switches into root>⊥ in i ≤ 2d steps. γi is either
in C2 or C4 . From γi, by Lemmata A.17, A.19, and A.21, the root switches to root>>
in r ≤ 2d steps, such that γi+r ∈ C1 . If γi ∈ C2 , then there exists i < e < r, such
that γe ∈ C3 , and by Lemma A.17 exactly one non-root process is privileged in γe−1.
Otherwise, γi ∈ C4 holds, and the root executes critSection() before reaching γr, by
Lemma A.21. The sum of i and r is less than or equals 4d.

A.7 Proof of Lemma 5.4

Proof. The liveness property of EUPS holds by Theorem 5.7. It remains to show the
safety property. First, unique process selection – UPS – is concerned. In Algorithm 5.6,
the commands, whose actions include critSection(), are gc2, gc6 and gc11. It is shown
that in a legConfig, if a command is enabled for a process, then none of them is enabled
for any other process:

1. If the command gc2 is enabled, then by definition of gc2, each root’s child ch is in
a state ch⊥⊥. By Definition 5.9, Property 1, each process p, in the maximal subtree
rooted by ch, is in state p⊥⊥. This implies that token3 is not enabled for p, implying
that the commands gc6, gc11 are not enabled for p.

2. If any of gc6 or gc11 is enabled for a process ps, then (a) By Definition 5.9,
Property 5, there is no other process with enabled gc6 or gc11. (b) By Definition 5.9,
Property 1, there exists a root’s child ch that is not in state ch⊥⊥, implying that
gc2 is not enabled.

The argument above shows that UPS holds. By Property 4 of Definition 5.9, it follows
that if a process is privileged in a legConfig γi, then it has the maximum µi among all
processes. This implies that EUPS holds in any legConfig.
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B.1 Proof of Lemma 6.3

Proof. By induction over the depth of nodes. For the base case and the step, it is
shown first “≤” and then “≥” to obtain (6.1).
Base case d = 1: Let v be a node with depth(v) = 1. Let I be a synchronized

evolution over T with slot length ω and least upper bound δmax on the clock drift rates,
and let I be scheduled by assignment assign. Let t2 ∈ Time be a point in time. By
Definition 6.7, there is a point t1 ≤ t2 such that clkIv (·) is differentiable on the interval
(t1, t2). By Lemma 6.2, %Iv (t2) = %Iv (t1) +

∫ t2
t1
δIv (t)dt . Because depth(v) = 1, the parent

of v is the central unit and t1 is a synchronization point, thus by Definitions 6.3 and 6.7,
%Iv (t1) = clkIv (t1)− clkIcu(T )(t1) = 0, and thus

%Iv (t2) =

∫ t2

t1

δIv (t)dt . (B.1)

Because δmax is an upper bound on the clock drift rates in I, it holds that %Iv (t2) ≤
(t2 − t1)δmax , and thus by Lemma 6.1, %Iv (t2) ≤ (k + 1) · ωδmax . Given the set of
synchronized evolutions which are scheduled by assign, have slot length ω, and for which
δmax is the least upper bound on the clock drift rates. Let v be a node where there is
an evolution I and a point in time t with δIv (t) = δmax , and with two synchronization
points t1, t2 ∈ Time such that t2 − t1 = (k + 1) · ω, and such that δIv is differentiable on
(t1, t2). For this evolution, the equation (B.1) applies and yields %Iv (t2) = (t2−t1)δmax =
(k + 1) · ω · δmax , and thus %Iv (t2) ≥ (k + 1) · ωδmax .
Induction step d′ → d′ + 1: Assume that the equation (6.1) holds for all nodes of

depth up to d′. Let v be a node of depth d′ + 1. Let I be a synchronized evolution over
T with slot length ω and least upper bound δmax on the clock drift rates, and let I be
scheduled by assignment assign. Let t2 ∈ Time be a point in time. By Definition 6.7,
there is a synchronization point t1 ≤ t2 such that clkIv (·) is differentiable on the interval
(t1, t2). By Lemma 6.2, %Iv (t2) = %Iparent(v)(t1) +

∫ t2
t1
δIv (t)dt . The parent of v has depth

d′, thus by induction hypothesis,

%Iparent(v)(t1) ≤

(
d′−1∑
i=1

fdistassign(vi, vi+1) + k + 1

)
· ωδmax . (B.2)

Because δmax is an upper bound on the clock drift rates in I,∫ t2

t1

δIv (t)dt ≤ fdist(parent(v), v) · ωδmax , (B.3)
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thus, by the equations (B.2) and (B.3),

%Iv (t2) ≤

(
d′−1∑
i=1

fdistassign(vi, vi+1) + k + 1

)
· ωδmax

+ fdist(parent(v), v) · ωδmax

=

(d′+1)−1∑
i=1

fdistassign(vi, vi+1) + k + 1

 · ωδmax .

(B.4)

Given the set of synchronized evolutions which are scheduled by assign, have slot
length ω, and for which δmax is the least upper bound on the clock drift rates, let v be
a node where there is (by implicit induction hypothesis) an evolution I and a point in
time t with

δIparent(v)(t) =

(
d′−1∑
i=1

fdistassign(vi, vi+1) + k + 1

)
· ωδmax . (B.5)

Because parent(v) has depth d′, and with δIv (t) = δmax , and with two synchronization
points t1, t2 ∈ Time such that t2− t1 = fdist(parent(v), v) ·ω. (also by implicit induction
hypothesis: the node which satisfies the equation (B.5) is synchronized as late as possible,
i.e. at the right end of its slot), for this evolution, the equation (B.1) applies and yields
%Iv (t2) = (t2 − t1)δmax = fdist(parent(v), v) · ω · δmax . Thus

%Iv (t2) ≥

(d′+1)−1∑
i=1

fdistassign(vi, vi+1) + k + 1

 · ω · δmax . (B.6)

B.2 Proof of Lemma 6.4

Proof. For topologies of depth 1, both claims hold trivially. Let T be a topology of
depth d ≥ 2.
Regarding Point (1): Let assign be an assignment. Given that each sensor is assigned

to a slot by assign, it follows by Definition 6.10 that for each two different sensors
v, v′ ∈ Sn(T ):

fdistassign(v, v′) ≤ k− 1, (B.7)

thus for any path v0, . . . , vm in T , where m ≤ depth,

m−1∑
i=1

fdistassign(vi, vi+1) ≤ (d− 1)(k− 1). (B.8)

Regarding Point (2):
“←−”:
Let assign have a (6.2)-path (the path mentioned in the equation (6.2)). The following
diagram illustrates the (6.2)-path for assign:
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. . . vd vd−1 . . . v2 v1 . . .

that is, the children on the path are synchronized immediately before their parent. By
the equation (6.2) and Definition 6.10,

fdistassign(vi, vi+1) = k− 1. (B.9)

Thus
d−1∑
i=1

fdistassign(vi, vi+1) = (d− 1)(k− 1) (B.10)

for the (6.2)-path. Thus, with the equation (B.8),

Dassign = (d− 1)(k− 1). (B.11)

“−→”:
Let assign be an assignment with Dassign = (d − 1)(k − 1). by Definition 6.10 and by
the equation (B.7), there is a path v0, v1, . . . , vd, v0 = cu(T ) where fdistassign(vi, vi+1) =
(k− 1). Thus, by Definition 6.10, there is a (6.2)-path.

B.3 Proof of Lemma 6.5

Proof. For topologies of depth 1, the two claims hold trivially. Let T be a topology
of depth d ≥ 2. First it is shown that if conditions (2a) and (2b) are satisfied, then
Dassign = s − 1. Second, it is shown that if any of (2a) and (2b) is violated, then
Dassign > s− 1.
Let assign be an assignment of slots to nodes such that the conditions (2a) and (2b)

are satisfied. Let v1, . . . , vm with (cu(T ), v1) ∈ E be a path in T . By the condition (2a),
for each 1 < j ≤ m:

fdistassign(v1, vj) ≤ (s− 1). (B.12)

By the condition (2b), for each 1 ≤ i < m− 1:

fdistassign(vi, vi+2) =

fdistassign(vi, vi+1) + fdistassign(vi+1, vi+2). (B.13)

By the equations (B.12) and (B.13):

j−1∑
i=1

fdistassign(vi, vi+1) = fdistassign(v1, vj) ≤ (s− 1). (B.14)

Let vm be a sensor in a maximal subtree of T which is assigned the (modulo k) latest
slot (this sensor must exist by Definition of subtree). Then

fdistassign(v1, vm) = s− 1. (B.15)

Thus, by the equations (B.14) and (B.15),

Dassign = s− 1. (B.16)
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It is shown that, if the conditions (2a) or (2b) are violated, then Dassign > s − 1. (1)
The condition (2a) is violated. Let assign′ be an assignment such that the condition (2a)
is violated. It follows that there exists a path v0, . . . , vm, where v0 = cu(T ) and m ≤ d,
such that fdistassign′(v1, vm) > (s−1). Thus by Definition 6.10, Dassign′ > (s−1). (2) The
condition (2b) is violated. Let assign′′ be an assignment such that the condition (2b) is
violated. It follows that there exist three nodes v, v′, v′′ ∈ V such that (v, v′), (v′, v′′) ∈
E and fdistassign′′(v, v

′) ≥ fdistassign′′(v, v
′′). By Definition 6.5, assign is bijective, and

therefore fdistassign′′(v, v
′) 6= fdistassign′′(v, v

′′) holds. By Definition 6.10 and the order of
v, v′, v′′, it follows that fdistassign′′(v, v

′) + fdistassign′′(v
′, v′′) > k. As v, v′, v′′ lie on a path

in T , Dassign > k > (s− 1).

B.4 Proof of Theorem 6.1

Proof. The case where T has only one sensor is trivial. Thus in the following it is
assumed that T has at least two sensors. Let I be a scheduled evolution over T with
guard time φ. Each of the two points is considered separately.

Point (1): Let v ∈ Sn(T ) be a sensor and let t ∈ Time be a point in time where v sends,
i.e. where sendIv (t) = 1. Because I is scheduled and has guard time φ, there is a slot
[t1, t2) of v and points in time t′1, t′2 ∈ Time such that clkIv (t′1) = t1 +φ, clkIv (t′2) = t2−φ,
and t′1 ≤ t < t′2 because by Definition 6.11, v sends a message only if the clock of v
denotes a point within the σ-interval, i.e., between t1 + φ, t2 − φ. By Definition 6.3, it
follows that clkIv (t′1) = clkIcu(T )(t

′
1) + %Iv (t′1), and thus: t1 + φ = clkIcu(T )(t

′
1) + %Iv (t′1).

Because clkIcu(T )(t
′
1) = t′1 and using the premise, it follows that t1 ≤ t1 +φ−%Iv (t′1) = t′1.

Analogously, t′2 ≤ t2, thus t ∈ [t1, t2), which is the slot assigned to v by assign, and thus

∀ v ∈ V, t ∈ Time • sendIv (t) −→ slot(t) = assign(v). (B.17)

It is shown that I does not have a message collision by contradiction. Assume that
I has a message collision, i.e. there is a point in time t ∈ Time where two different
nodes v1, v2 ∈ V send, i.e. where sendIv1

(t)∧ sendIv2
(t). By the equation (B.17), slot(t) =

assign(v1)∧slot(t) = assign(v2), and thus assign(v1) = assign(v2), which is a contradiction
to the fact that assign has one slot assigned to each sensor per frame.
Point (2): Let v ∈ Sn(T ) be a sensor with parent v′ and let t ∈ Time be a point in

time where v sends, i.e. where sendIv (t) = 1. By applying the same reasoning as in the
proof of point (1) above, it follows that

t ∈
[
t1 + φ

2 , t2 −
φ
2

)
(B.18)

where [t1, t2) is an assigned slot to v. The parent of v is listening throughout the slot of
v. Because I is scheduled, there are points in time t′1, t′2 ∈ Time such that clkIv′(t

′
1) = t1,

clkIv′(t
′
2) = t2, and

∀ t′ ∈ [t′1, t
′
2) • listenIv′(t

′). (B.19)

By Definition 6.3, clkIv′(t
′
1) = clkIcu(T )(t

′
1) + %Iv′(t

′
1) holds, and thus t1 = clkIcu(T )(t

′
1) +

%Iv′(t
′
1) holds. Because clkIcu(T )(t

′
1) = t′1 and using the premise it follows that t′1 = t1 −

%Iv (t′1) ≤ t1 + φ
2 . Analogously it follows that t′2 ≥ t2−

φ
2 . Thus, using the equation (B.19),
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∀ t′ ∈
[
t1 + φ

2 , t2 −
φ
2

)
• listenIv′(t

′) holds. Thus, using the equation (B.18), listenIv′(t)

holds. Thus there is no message loss at t.

B.5 Proof of Lemma 6.6

Proof. Let T = (V, E) be a topology with at least two sensors.
Point (1): Let I be a scheduled evolution I over T with slot length ω. Let 0 < τ < ω,

v1, v2 be two nodes such that assign(v2) = assign(v1) + 1, t ∈ Time such that

t = t2. (B.20)

[t1, t2) is the slot of v1,
%Iv1

(t) = −(φ+ τ) ∧ %Iv2
(t) = φ, (B.21)

and both nodes send continuously during their σ-interval. By Definition 6.3, %Iv1
(t) =

clkIv1
(t) − clkIcu(T )(t). Thus, using the premise (B.21) and (B.20), clkIv1

(t) = %Iv1
(t) +

clkIcu(T )(t) = t2 − (φ + τ), which is in the σ-interval of v2. Similarly, it follows that
clkIv2

(t) = %Iv2
(t) + clkIcu(T )(t) = t2 + φ, which is in the σ-interval of v2. Thus, using

the premise that v1 and v2 send continuously within their σ-interval, it follows that
sendIv1

(t) ∧ sendIv2
(t) holds, i.e. there exists message collision between v1 and v2 at t.

Point (2): Let I be a scheduled evolution over T with slot length ω. Let 0 < τ < ω,
v be a node, t ∈ Time such that

t = t2 −
φ

2
. (B.22)

[t1, t2) is the slot of v,

%Iv (t) = −
(
φ

2
+ τ

)
∧ %Iparent(v)(t) =

φ

2
, (B.23)

and v sends continuously during its σ-interval. By Definition 6.3, %Iv (t) = clkIv (t) −
clkIcu(T )(t). Thus, using the premises (B.22) and (B.23), it follows that clkIv (t) = %Iv (t) +

clkIcu(T )(t) = t2 − φ
2 −

(
φ
2 + τ

)
= t2 − φ − τ , which is in the σ-interval of v. Thus

sendIv (t) = 1. holds. Similarly, it follows that clkIparent(v)(t) = %Iparent(v)(t) + clkIcu(T )(t) =

t2 − φ
2 + φ

2 = t2, which is not in the slot assigned to v, thus listenIparent(v)(t) = 0 holds,
i.e. there exists message loss at t.

B.6 Proof of Theorem 6.2

Proof. Looking for a safe guard time for T wrt. δmax , implies – by Definition 6.12 –
looking for φ ∈ R+

0 such that each synchronized evolution I over T which is scheduled by
an assignment assign and which has maximum drift rate δmax and guard time φ exhibits
neither message collision nor message loss.
Let T be a topology of depth d with k ∈ N sensors, and upper bound δmax ∈ R+

0 on
clock drift rates. Let σ ∈ R+ be the length of the σ-intervals, and assign be an assignment
of slots to nodes. By Corollary 6.2, %max

ω,δmax (assign) ≤ (Dassign + k + 1) ·ω · δmax holds. By
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Corollary 6.3 and Lemma 6.6, a sufficient and necessary criterion for φ ∈ Time being a
safe guard time is that for each evolution I, ∀ v ∈ V, t ∈ Time • |%Iv (t)| ≤ φ

2 holds. By
Definition 6.11, ω = 2φ+ σ, thus φ is safe if (Dassign + k + 1) · (2φ+ σ) · δmax ≤ φ

2 holds.
Simplification (and reordering) yields

δmax · (Dassign + k + 1) · (2φ+ σ)· ≤ φ

2
⇐⇒ 2 · δmax · (Dassign + k + 1) · (2φ+ σ) ≤ φ
⇐⇒ 2 · δmax · (Dassign + k + 1) · 2φ

+ 2 · δmax · (Dassign + k + 1) · σ ≤ φ
⇐⇒ 4φ · δmax · (Dassign + k + 1)

+ 2 · δmax · (Dassign + k + 1) · σ ≤ φ
⇐⇒ 2 · δmax · (Dassign + k + 1) · σ

≤ (1− 4 · δmax · (Dassign + k + 1)) · φ. (B.24)

Distinguish two cases: Case δmax = 0: the equation (B.24) has the unique solution
φ = 0. Case: δmax > 0: there is a solution only if (1 − 4 · δmax · (Dassign + k + 1)) 6= 0
holds, otherwise the intended division is not defined. Distinguish two cases:

• For (1− 4 · δmax · (Dassign + k + 1)) > 0, from the equation (B.24) it follows that

2 · δmax · (Dassign + k + 1) · σ
1− 4 · δmax · (Dassign + k + 1)

≤ φ

by assumption, and by having Dassign > 0, δmax > 0, d > 0, k > 0. The optimal,
smallest choice of φ which satisfies this inequation would be just

σ ·
2 · (Dassign + k + 1) · δmax

1− 4 · (Dassign + k + 1) · δmax
(B.25)

which is in particular greater or equal to 0, thus a proper guard time. The claimed
bound on δmax is obtained from (1− 4 · δmax · (Dassign + k + 1)) > 0.

• For (1− 4 · δmax · (Dassign + k + 1)) < 0, it follows from the equation (B.24)

φ ≤
2 · δmax · (Dassign + k + 1) · σ
1− 4 · δmax · (Dassign + k + 1)

(B.26)

(because both sides are divided by a negative number). It follows that
2 · δmax · (Dassign + k + 1) · σ > 0, because δmax > 0, d > 0, k > 0, σ > 0, and
thus

2 · δmax · (Dassign + k + 1) · σ
1− 4 · δmax · (Dassign + k + 1)

< 0. (B.27)

In this case there is no proper (positive) guard time.
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