
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Wind Power Prediction with Machine
Learning Ensembles

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenschaften

vorgelegt von

Justin Philipp Heinermann, M.Sc.

21. September 2016

Tag der Disputation

05. Dezember 2016

Prüfungskommission

Apl. Prof. Dr.-Ing. habil. Jürgen Sauer (Vorsitzender)

Jun.-Prof. Dr. habil. Oliver Kramer (Erstgutachter)

Prof. Dr. Jörg Lässig (Zweitgutachter)

Dr. Marco Grawunder (Mitglied der wiss. Mitarbeiter)

Zusammenfassung

Eine erfolgreiche und nachhaltige Integration von Windenergieanlagen in das

Stromnetz erfordert präzise und verlässliche Prognosemethoden. Mit einem

steigenden Anteil von Windenergie an den Strommärkten und einer wachsenden

Anzahl installierter Anlagen ist auch ein gesteigertes Interesse an Kurzfrist-

prognosen der erzeugten Leistung festzustellen. Für diese Anwendung bieten

Methoden des maschinellen Lernens die Möglichkeit einer rein datenbasierten,

raumzeitlichen Prognose, die oft bessere Ergebnisse erzielt als die traditionell

verwendeten numerischen Wetterprognosen. Die beiden größten Herausforderun-

gen für den Einsatz maschineller Lernverfahren sind die weitere Steigerung der

Prognosegüte sowie die effiziente Berechnung in einer angemessenen Zeit.

Diese Arbeit stellt ein Vorhersageframework vor, das auf heterogenen En-

semblemodellen basiert. Ein Ensemble kombiniert eine Vielzahl möglichst un-

terschiedlicher Modelle, die mit maschinellen Lernverfahren trainiert werden.

Zunächst werden Ensembles untersucht, die jeweils nur einen Basisalgorithmus

und Samplingtechniken verwenden. Im Gegensatz zum Stand der Technik kann

ein geringerer Vorhersagefehler erzielt werden. Anschließend wird gezeigt, dass

heterogene Ensembles mit mehreren unterschiedlichen Vorhersagealgorithmen

eine verbesserte Prognosegenauigkeit aufweisen. Mit diesem Verfahren kann

außerdem die Trainingszeit stark verkürzt werden. Insbesondere lässt sich durch

die Parameterwahl des Ensemblemodells ein guter Kompromiss zwischen Prog-

nosegüte und benötigter Berechnungszeit erreichen. Für die Optimierung des

Modells kommt in dieser Arbeit eine naturinspirierte Heuristik in Form von evo-

lutionärer Mehrzieloptimierung zum Einsatz, die eine effiziente Parametersuche

gewährleistet.

Abstract

For a sustainable integration of wind power into the electricity grid, precise

and robust predictions are required. With increasing installed capacity and

changing energy markets, there is a growing demand for short-term predictions.

Machine learning methods can be used as a purely data-driven, spatio-temporal

prediction model that yields better results than traditional physical models based

on weather simulations. However, there are two big challenges when applying

machine learning techniques to the domain of wind power predictions. First,

when applying state-of-the-art algorithms to big training data sets, the required

computation times may increase to an unacceptable level. Second, the prediction

performance and reliability have to be improved to cope with the requirements

of the energy markets.

This thesis proposes a robust and practical prediction framework based

on heterogeneous machine learning ensembles. Ensemble models combine the

predictions of numerous and preferably diverse models to reduce the prediction

error. First, homogeneous ensemble regressors that employ a single base algorithm

are analyzed. Further, the construction of heterogeneous ensembles is proposed.

These models employ multiple base algorithms and benefit from a gain of diversity

among the combined predictors. A comprehensive experimental evaluation shows

that the combination of different techniques to an ensemble outperforms state-of-

the-art prediction models while requiring a shorter runtime. Finally, a framework

for model selection based on evolutionary multi-objective optimization is presented.

The method offers an efficient and comfortable balancing of a preferably low

prediction error and a moderate computational cost.

Contents

Part I Introduction 1

1 Introduction and Overview 3

1.1 Motivation . 4

1.2 Contribution of this Thesis . 5

1.3 Structure of this Thesis . 7

Part II Foundations 13

2 Machine Learning 15

2.1 Supervised Learning . 17

2.2 k-Nearest Neighbors . 18

2.3 Decision Trees . 21

2.4 Model Selection and Parameter Tuning 23

2.5 Summary . 26

3 Wind Power Prediction 29

3.1 Use Cases for Wind Power Prediction 29

3.2 State of the Art . 31

3.2.1 Numerical Weather Prediction 31

3.2.2 Statistical Learning . 34

3.3 Spatio-Temporal Regression Model 37

3.4 WindML Framework . 40

3.5 Summary . 43

i

ii CONTENTS

4 Ensembles 45

4.1 Ensemble methodology . 46

4.2 Bagging . 48

4.3 Random Feature Subspaces . 49

4.4 Boosting . 50

4.5 Stacking . 50

4.6 Random Forest Regression . 51

4.7 Summary . 52

Part III Ensembles for Wind Power Prediction 53

5 Support Vector Regression Ensembles 55

5.1 Related Work . 56

5.2 Support Vector Regression . 57

5.3 SVR Ensemble With Weighted Bagging 58

5.3.1 Training the weak predictors 59

5.3.2 Weighted Ensemble Prediction 60

5.4 Runtime . 61

5.5 Experimental Results . 63

5.5.1 Optimization and Weighting of the Weak Predictors . . . 63

5.5.2 Number of Weak Predictors and Samples 63

5.5.3 Comparison to Support Vector Regression 66

5.6 Parallel Implementation . 68

5.7 Conclusions . 69

6 Combination of Speed and Power Time Series 71

6.1 Comparison of Input Patterns . 72

6.1.1 Comparing Speed and Power Features 72

6.1.2 Combining Speed and Power Features 74

6.2 Ensemble Combination . 76

6.2.1 Combination of Predictors Based on Different Time Series 76

CONTENTS iii

6.2.2 Combination of Predictors Based on All Available Features 77

6.3 Conclusions . 79

7 Heterogeneous Ensembles 81

7.1 Algorithmic Framework . 82

7.2 Sampling of Features and Patterns 84

7.3 Choice of the Base Algorithms 85

7.4 Heterogeneous Ensembles . 86

7.4.1 Mixed Ensemble with Coefficient α 87

7.4.2 Ensemble Combining SVR and DT Ensembles 87

7.5 Increasing the Number of Used Features 93

7.6 Power Prediction for Wind Parks 96

7.7 Error of the Ensemble Members 97

7.8 Experiment on AEMO Dataset 98

7.9 Conclusions . 99

8 Evolutionary Multi-Objective Optimization 101

8.1 Evolutionary Computing . 103

8.2 NSGA-II . 105

8.3 Experimental Setup . 106

8.4 SVR Ensembles . 107

8.5 Random Forest . 109

8.6 Heterogeneous Ensembles . 110

8.7 Experiments on DWD Dataset 114

8.8 Conclusion . 115

Part IV Summary 117

9 Summary and Outlook 119

9.1 Contributions of this Thesis . 119

9.2 Conclusion . 123

9.3 Future Work . 124

iv CONTENTS

9.3.1 Handling of Missing Values 124

9.3.2 Interval Prediction . 127

9.3.3 Other Ensemble Techniques and Deep Learning 128

9.3.4 Power Ramp Prediction 130

Part V Appendices 133

A Datasets 135

A.1 NREL . 135

A.2 AEMO . 136

A.3 DWD . 136

B Implementation Details 137

C Publications 139

D Figures and Tables 141

Acronyms 147

References 149

Part I

Introduction

1

Introduction and Overview

For a sustainable integration of wind power into the electricity grid, a precise and

reliable short-term prediction method is required. A purely data-driven approach

based on machine learning and a spatio-temporal model yields a good prediction

accuracy. There are two big challenges for applying the machine learning technique.

First, the prediction error and reliability have to be improved to cope with the

energy markets’ requirements. Second, the required computation times need to

be reduced to an acceptable level.

In this thesis, a robust and practical prediction framework based on machine

learning ensembles is proposed. Homogeneous ensembles employing only one

base algorithm and heterogeneous ensembles employing different algorithms are

investigated. The novel approach can reduce both the prediction error and the

required computation time. For the model selection, a multi-objective evolutionary

optimization approach is used. It offers an efficient and comfortable balancing of

the objectives of prediction performance and computational cost.

This chapter is structured as follows: Section 1.1 gives a motivation for the

research. The proposed solution is briefly introduced in Section 1.2. The chapters

of this thesis are summarized in Section 1.3 to give an overview on the thesis.

The remainder of this work will be written in a scientific style with the use of

“we” rather than “I”.

4 1 Introduction and Overview

1.1 Motivation

In the recent years, a strong increase in wind energy can be observed. For example,

there is an installed wind energy capacity of 142 GW in the European Union

(EU) [106]. 12,800 MW of wind energy capacity was installed in the EU in 2015.

Figure 1.1 shows the volumes of wind energy produced in Germany for 2005-2015.

It can be seen that wind energy production is strongly increasing, which makes the

research topic of good quality predictions relevant. With growing capacity, there

is also a growing demand of reliable and precise forecasts for the energy provided

by the highly volatile wind. The trading of wind energy at the power markets is

only possible with good forecasts. Here, a trend towards shorter forecast horizons

can be noticed. For instance, the lead time has been reduced to 30 minutes on

all intraday markets of the EPEX Spot [27]. Other applications for short-term

power predictions are planning of control energy, ensuring power grid stability,

and charging of storage systems.

2005 2007 2009 2011 2013 2015

40

60

80

27.2
30.7

39.7 40.5 38.6 37.8

48.9 50.7 51.7
57.3

86TWH

Fig. 1.1. Yearly Wind Energy Production in Germany, cf. [6].

Besides the traditional numerical weather predictions (NWPs), machine

learning methods can be used as a purely data-driven, spatio-temporal prediction

model and yield better results for short-term forecast horizons. The general

approach is depicted in Figure 1.2. The model is trained only on historical data

instead of computing physical model simulations. The data are split into training

1.2 Contribution of this Thesis 5

machine learning
algorithm

training dataset
X

test dataset
Xtest

historical
data

prediction model
f(·)

training
error

test
error

model selection and optimization

Fig. 1.2. Training and selection of an appropriate machine learning model.

and test set. Using the training data, a machine learning model is trained. The

model is based on a particular algorithm and chosen parameters. In order to

optimize these choices, different parameters are used and afterwards an expected

test error is computed for model assessment. A more detailed view on the machine

learning method is given in Chapter 2.

We have to deal with two challenges when applying these statistical learning

techniques to the field of wind power prediction: First, the prediction performance

and reliability need to be improved further. Second, in order to achieve the best

prediction accuracy possible with machine learning techniques, the computation

time can grow tremendously. In particular, the training data sets are preferably

as big as possible but slow down the learning process. Training or evaluating a

support vector regression (SVR) model, k-nearest neighbors (k-NN) or artificial

neural networks (ANNs) can easily take hours. Further, finding optimal parameters

for the algorithms can be difficult and expensive. The required computation times

must be reduced for practical application.

1.2 Contribution of this Thesis

In this thesis, we propose a prediction framework based on heterogeneous machine

learning ensembles. The basic idea of ensemble models is to use many diverse

prediction models and combine them to a more powerful prediction. Because the

6 1 Introduction and Overview

Computation Time

P
re
d
ic
ti
on

E
rr
or

A

B
C

Fig. 1.3. Different models offer different prediction errors and computational requirements.

single models show different behavior, the overall prediction performance can

be improved substantially. We first analyze homogeneous ensemble regressors

that make use of a single base algorithm and compare decision trees (DTs) to

k-NN and SVR with different parameter setups. A weighted bagging approach

yields substantially improved prediction results. As next step, we construct

heterogeneous ensembles that make use of multiple base algorithms and benefit

from a gain of diversity among the combined predictors. In a comprehensive

experimental evaluation, we show that the combination of different techniques to

an ensemble outperforms state-of-the-art predictors.

In addition to the improved prediction error, we show that the ensemble

models require a shorter runtime. With the proposed hybrid approach, the user

of the framework is able to balance the computational cost and the prediction

performance, which is desirable. The schema in Figure 1.3 shows the behavior of

different solutions and the basic idea of our proposed model selection approach.

Each point in the plot represents a different solution that can be achieved by

choosing a particular prediction model setting. Especially for ensembles, the

runtime and error depend on various parameters. For instance, an ensemble based

on just a few DTs can be computed faster than an ensemble consisting of a large

number of ANNs. In Figure 1.3, we highlighted three points that visualize the

1.3 Structure of this Thesis 7

quality of possible solutions. While solution A is very fast, it cannot offer a really

good prediction error. In contrast, solution B yields a prediction error that is the

best found among all models in the plot – but takes a large computation time.

Solution C is a solution most machine learning practitioners would prefer both

over A and B because it offers a moderate computation time while yielding a

very low prediction error.

In this work, we show that ensembles in general and heterogeneous ensembles

in particular are well-suited for the task of finding a good model while searching

for a compromise between small computational cost and a low prediction error.

One reason is the use of small random samples of the training data and random

feature subsets of the patterns, which reduces the computation time of the single

models in the ensemble. Computation time and prediction error can be controlled

by the number of models and sample sizes among other parameters. The second

reason is that an increased diversity in the heterogeneous ensemble can be helpful

for the balancing of the two optimization objectives. When using a heterogeneous

choice of base models, the diversity among the predictors leads to a decreased

number of models that are needed for achieving an acceptable prediction error.

For the optimization and selection of the parameter settings, we employ

evolutionary multi-objective optimization algorithms (EMOAs) and show that

these nature-inspired heuristics are well-suited for an efficient and comfortable

model selection. The practitioner obtains a Pareto set of solutions which give the

best trade-off between a good error and a short computation time.

1.3 Structure of this Thesis

In the following, we give an overview on the thesis and a brief summary of each

chapter. Parts of this work are based on results we have published in proceedings

of peer-reviewed conferences and a journal, which are listed for each chapter.

8 1 Introduction and Overview

Part II: Foundations

Chapter 2: Machine Learning

In Chapter 2, we introduce the machine learning methodology. Machine learning

algorithms are statistical methods to gain knowledge from observed data, i.e.,

creating a mathematical model for predictions on new observations. It is nowadays

applied in a wide range of disciplines comprising biology, chemistry, computer

graphics, medicine, automotive applications, security, and many others. Because

the focus of this work is on regression techniques, the chapter introduces and

formalizes the idea of supervised learning. The k-NN and DT algorithms are

introduced as basic methods. A very important aspect of machine learning is the

model selection and parameter tuning, which are described as well.

Chapter 3: Wind Power Prediction

In the recent years, a strong increase in wind energy can be observed and there

are numerous different applications for wind power prediction. We describe the

use cases of wind power prediction and give a classification of different forecast

horizons. Prediction techniques can be divided in two groups, forecasting based

on NWP on the one hand and predictions based on the historical time series

on the other hand. The state of the art methods are described, followed by the

spatio-temporal regression model used in this work.

Chapter 4: Ensembles

A good alternative to the well-known machine learning algorithms is the use of

ensembles, i.e. combining several basic models to an ensemble predictor. The pre-

diction error can be decreased and ensembles can often offer a short computation

time. In contrast to state-of-the-art machine learning algorithms, ensemble meth-

ods require less tuning and expert domain knowledge. This chapter introduces

the relevant ensemble methods.

1.3 Structure of this Thesis 9

Part III: Ensembles for Wind Power Prediction

Chapter 5: Support Vector Regression Ensembles

We propose a novel SVR ensemble method for wind power prediction in order to

improve the forecast quality and spend less computation time. Instead of using

one single support vector regressor, we train a number of weak SVR regressors

with a weighted bagging approach. We investigate different parameter choice

strategies as well as different weighting methods. Compared to state-of-the-art

SVR prediction, our approach yields a better forecast performance in a reasonable

computation time. The application of SVR ensembles for wind power prediction

was published in:

• Justin Heinermann and Oliver Kramer, “Precise Wind Power Prediction

with SVM Ensemble Regression”, In Proceedings of the 24th International

Conference on Artificial Neural Networks (ICANN). Lecture Notes in Com-

puter Science, Springer, 2014.

Chapter 6: Combination of Speed and Power Time Series

In this chapter, we analyze various regressors trained with patterns composed of

different features, i.e., power output measurements, wind speed measurements,

and differences of these. The algorithms we compare are k-NN, SVR, and random

forest (RF) that turned out to be very successful in various applications. Last,

we combine the best combinations of regressors and the different features to

ensembles and show experimentally that these outperform their single predictor

competitors. The main results were published in:

• Justin Heinermann and Oliver Kramer, “Short-Term Wind Power Pre-

diction with Combination of Speed and Power Time Series”, in Proc. KI,

2015

10 1 Introduction and Overview

Chapter 7: Heterogeneous Ensembles

In this chapter, we discuss the practical use of heterogeneous regression ensembles

for the task of wind power forecasting, aiming at optimal regression accuracy as

well as maintaining a reasonable computation time. In the first step we compare

homogeneous ensemble predictors consisting of either DT, k-NN, or SVR as

base algorithms. As diversity among the ensemble members is crucial for the

accuracy of the ensemble, we propose the use of heterogeneous ensemble predictors

consisting of different types of base predictors for wind power prediction. Our

comprehensive experimental results show that a combination of DT and SVR

yields better results than the analyzed homogeneous predictors while offering a

decent runtime behavior. Going further, we show that heterogeneous ensemble

predictors are very well-suited for using large numbers of neighboring turbines

and past measurements and improve the prediction performance. Most parts of

this chapter are based on:

• Justin Heinermann and Oliver Kramer, “On Heterogeneous Machine

Learning Ensembles for Wind Power Prediction”, in Proc. AAAI Workshops,

2015.

• Justin Heinermann and Oliver Kramer, “Machine learning ensembles for

wind power prediction”, in Renewable Energy, Volume 89, April 2016, Elsevier

Chapter 8: Evolutionary Multi-Objective Optimization

The success of machine learning models highly depends on the algorithm choice

and the selection of optimal parameter settings, which are difficult tasks. These

aspects also have a large impact on the runtime behavior. Unfortunately, we have

to deal with an infinite number of possible combinations and choices for model

selection. In Chapter 8, we show that ensemble models for wind power prediction

can be optimized and selected using evolutionary multi-objective optimization

algorithms in order to find a good trade-off between a short runtime and a low

prediction error. The results of this chapter are accepted for publication in:

1.3 Structure of this Thesis 11

• Justin Heinermann, Jörg Lässig, and Oliver Kramer, “Evolutionary Multi-

Objective Ensembles for Wind Power Prediction”, in Proc. ECML Workshop

DARE, 2016. In print.

Part IV: Summary & Outlook

Chapter 9: Summary and Outlook

In this chapter, we draw the conclusions and summarize the different research

aspects and results of the thesis. Further, we present an outlook. Ideas for future

research directions are presented, which are not in the scope of this thesis but

could be reasonable extensions of our work. These comprise the handling of

missing data, the computation of prediction intervals, the implementation of

further ensemble techniques or deep learning, and the prediction of power ramp

events using ensemble predictors.

Part II

Foundations

2

Machine Learning

In this chapter, we briefly introduce the machine learning methodology, which

is an important foundation for our contribution. Machine learning (ML) is a

class of statistical algorithms designed to gain knowledge from observed data, i.e.,

creating a mathematical model for predictions on new observations. The main

goal is an automated, data-driven computation of models without the need of

human decisions. These models are trained with observed facts of the real world

and shall extract an idea of the underlying information from these data as best as

possible. It is nowadays applied in a wide range of disciplines comprising biology,

chemistry, computer graphics, medicine, automotive applications, security, and

many others. A famous example application for machine learning is the automated

recognition of handwritten digits, see Figure 2.1. Scanned grey-scale images of

handwritten digits shall be recognized and a digit 0-9 is assigned. For the training

of the model, a huge historical database of handwritten digits of different persons

is used, whereas the examples to be recognized could be written by a completely

different and before unknown person. Like a human with the ability to read the

characters and numbers written by an unknown person, a main requirement for

machine learning models is the ability of generalization.

For the recent success of machine learning in various applications, it was a

necessity to have enough computational power at hand [2]. Only with the growth

of computer processors’ speed, main memory and storage size, dealing with larger

16 2 Machine Learning

Fig. 2.1. Example for handwritten digits from the MNIST database [71]. The same digit written
by different persons can substantially differ, which makes the classification difficult. A main
requirement for a good classifier is the generalization ability.

datasets became possible. Further, machine learning models are able to handle

problems which humans would not be capable of. A recent trend in computer

science called big data deals with the challenge of tremendously growing quantity

of data [127]. This is also true for the domain of energy and smart grids as the

number of sensors is growing and should be processed automatically [20].

There exist plenty of different machine learning algorithms for different ap-

plications that differ in the generation of a model, accuracy, practical properties

as well as computational cost [11, 39, 79]. We usually divide machine learning

algorithms in three classes: Supervised, unsupervised, and semi-supervised learning.

In the unsupervised setting, the objective is to discover the structure of a given

dataset that consists of patterns without label information. In particular, cluster-

ing algorithms help finding groups of similar patterns. Dimensionality reduction

methods give a mapping to a lower-dimensional space, i.e. patterns with less

features than the given ones, while maintaining the best-possible reconstruction

of the original patterns. Whereas semi-supervised methods are an interesting

extension of supervised methods when only scarce data are available, we focus

on the supervised setting in this work. Here, labels are available and can be used

to compute models for prediction and inference.

This chapter is structured as follows. The idea of supervised learning and a

formalization is given in Section 2.1. The k-nearest neighbors regression, presented

2.1 Supervised Learning 17

SVRtraining data X,y prediction model f(·)

parameters C, k, σ, ε

Fig. 2.2. Example for the supervised machine learning setting. A model f is computed with an
algorithm based on the labeled training dataset and a number of parameter settings. In this
case, an SVR model is trained with parameters penalty C, Kernel k, kernel bandwidth σ, and
loss sensitivity ε.

in Section 2.2 is a good example for a basic machine learning algorithm. Decision

Trees are briefly described in Section 2.3. An important part of machine learning

is the model selection and parameter tuning, which is depicted in Section 2.4.

2.1 Supervised Learning

In this work, we limit ourselves to the task of supervised learning. I.e., labels are

assigned to patterns in the training set and the task is to predict a label for an

unknown test pattern. With discrete labels, the task is called classification. With

continuous values, the task is called regression. For the time series prediction

task in this work, we deal with a regression problem an therefore put emphasis

in this chapter on regression methods.

A pattern xi ∈ Rd is a vector of features xi = (x1, . . . , xd)
T with xi ∈ R. A

machine learning algorithm generates a statistical model based on a training

set X of length N X = [xi]
N
i=1. The columns of that matrix consist of patterns

xi, i.e., X ∈ Rd×N . In the context of supervised learning, each pattern xi is

mapped to a target value yi ∈ R (regression) or respectively a label yi ∈ N
(classification). A model f(·) is trained on a set {(x1, y1), . . . , (xN , yN)} such

that we get a reasonable prediction f(x′) for a new pattern x′ without label. A

common measure for the quality of the prediction model on a dataset is the mean

squared error (MSE):

18 2 Machine Learning

MSE =
1

N

N∑
i=1

(f(xi)− yi)2. (2.1)

The difference between the label yi of a test instance and corresponding prediction

f(x′i) is squared in order to penalize larger differences more than smaller ones.

A recent overview and comparison of different available algorithms is given

by Fernandez-Delgado et al. [28]. They evaluate 179 classifiers from 17 algorithm

families. From the wide range of algorithms, some have its origins in statistics,

some in symbolic artificial intelligence, and some are biologically inspired. It is

often left to the expertise or taste of the practitioner, which algorithm is the

best choice. Further it is highly dependant on the data which algorithm performs

best. The 10 most influential algorithms in data mining1 have been identified

by the IEEE International Conference on Data Mining (ICDM) in December

2006 and comprise C4.5, k-Means, support vector machine (SVM), Apriori, EM,

PageRank, AdaBoost, k-NN, Naive Bayes, and CART [123]. From a machine

learning perspective, neural networks are a famous method as well, especially in

the recent years through the idea of Deep Learning [7].

For this work, we mainly employ SVR, k-NN, and DTs. The k-NN and DT

algorithms are described in this chapter as they help understanding machine learn-

ing methods. The regression variant of SVM is introduced as part of Chapter 5,

dealing with ensembles of support vector regressors for wind power prediction.

For the idea of machine learning ensembles, we refer to Chapter 4.

2.2 k-Nearest Neighbors

The popular k-nearest neighbors (k-NN) algorithm is a relatively simple but

effective method for regression and classification problems, cf. [11, 39, 121]. It

is well-known as one of the basic machine learning techniques and has been

applied in many real-world scenarios like computer vision [98], astronomy [35,44],

computer graphics, biology, physics, and others.

1 Data mining is usually based on machine learning algorithms [121]

2.2 k-Nearest Neighbors 19

(a) Classification with k = 15.

−1 0 1 2 3 4 5 6 7 8
x

−3

−2

−1

0

1

2

3

y

k=1

k=10

data

(b) Regression with k = 1 and k = 10.

Fig. 2.3. Example of classification and regression with k-nearest neighbors.

Nearest Neighbors Model

The k-NN model is based on the search of similar patterns in the training dataset

w.r.t a distance metric. The most common choice is the Euclidean distance, which

is defined as

δ(x,x′) =

√√√√ d∑
i=1

(xi − x′i)2 (2.2)

for two patterns x and x′. When using this metric, it is important to normalize

the values of the features to a value between 0 and 1 – otherwise the features

would have different importances depending on their scales of measurement,

cf. [121]. On the other hand, one could use that behavior and define an adaptive

distance metric, e.g. learning a general Mahalanobis distance, cf. [77,120]. This

research area is called distance metric learning.

When giving a prediction for a test pattern pattern x′, the k nearest neighbors

w.r.t. δ(x,x′) are sought from all patterns of the training set x ∈ X. When dealing

with regression tasks, the prediction model averages the label information of the

k nearest neighbors via

f(x) =
1

k

∑
i∈Nk(x)

yi, (2.3)

20 2 Machine Learning

with the set of indices Nk of the nearest neighbors. For classification tasks, the

predicted label is computed using majority voting. A distance-weighted average

or voting is also possible and can yield good results, cf. [121].

For the success of the k-NN model for classification or regression, the choice

of parameter k is very important. An example is shown in Fig. 2.3 (b). If k is

chosen too small, the regressor is overfitted to the training set but cannot give

good predictions for test patterns. The task of model selection is discussed in

Section 2.4

Efficient Neighbor Search

For the k-NN model, no actual training phase is necessary, i.e. no learning is

performed. The prediction for a pattern x′ is solely based on the lookup in the

training dataset. Therefore, the algorithm is a form of instance-based learning,

cf. Witten [121]. While a näıve, brute-force implementation takes O(|X| · |Xtest|)
time for a training set X and a test set Xtest, there are important improvements

for a more efficient computation available. The creation of powerful spatial data

structures is very common. The most important of them are k-d trees [8, 39] or

cover trees [10]. A standard k-d tree is a balanced binary tree defined as follows:

The root of the tree T corresponds to all points and its two children correspond to

(almost) equal-sized subsets. Splitting the points into such subsets is performed

in a level-wise manner, starting from the root (level i = 0). For each node v at

level i, one resorts to the median in dimension i mod d to partition the points

of v into two subsets. The recursion stops as soon as a node v corresponds to a

singleton or as soon as a user-defined recursion level is reached. Since it takes

linear time to find a median, the construction of such a tree can be performed in

O(n log n) time for n patterns in Rd [8]. These trees offer logarithmic runtime

for small dimensionalities d ≤ 15.

Another acceleration strategy is locality-sensitive hashing [3, 98], which aims

at computing (1 + ε)-approximations (with high probability). The latter type

of schemes mostly addresses learning tasks in high-dimensional feature spaces.

Furthermore, some implementations have been proposed for accelerating nearest

2.3 Decision Trees 21

neighbor queries by using a graphics processing unit (GPU). In most cases, such

approaches aim at providing a decent speed-up for medium-sized datasets, but

fail for large datasets [16, 34]. There exist also very efficient implementations

employing data structures on the GPU but are not always applicable [35,44].

2.3 Decision Trees

Decision Trees are basic machine learning tools for classification and regression.

Besides moderate computational costs, the main advantage of decision trees

is their model interpretability: A decision tree is usually a binary tree, where

each node describes a decision criterion considering one particular feature of

the test pattern. To each leaf node a label is assigned. Therefore, the machine

learning practitioner can easily comprehend the decisions made when traversing

the tree [11,39]. There exist different algorithms for creating decision trees based

on a training dataset. Quinlan developed the famous ID3 [90], C4.5 [91], and

commercial successor C5.02. In this work, we limit ourselves to the classification

and regression trees (CART) algorithm from Breiman [14]. Both CART and

C4.5 are amongst the top 10 algorithms in data mining identified by the IEEE

International Conference on Data Mining (ICDM) in December 2006, cf. Wu et

al. [123]

Decision trees are very simple and their capabilities are limited, but they

are applied in a wide range of disciplines. However, decision trees are very

important for this work and for recent machine learning in general because of

their applications. The C5.0 algorithm makes use of boosting capabilities [30],

whereas the CARTalgorithm found its extension in bagging [12] and the successful

RF [13]. According to state-of-the-art research [28], these methods are amongst

the most accurate and robust models.

2 http://rulequest.com/see5-info.html

http://rulequest.com/see5-info.html

22 2 Machine Learning

X[2] <= 2.45
gini = 0.6667
samples = 150

value = [50, 50, 50]

gini = 0.0
samples = 50

value = [50, 0, 0]

True

X[3] <= 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]

False

X[2] <= 4.95
gini = 0.168
samples = 54

value = [0, 49, 5]

X[2] <= 4.85
gini = 0.0425
samples = 46

value = [0, 1, 45]

X[3] <= 1.65
gini = 0.0408
samples = 48

value = [0, 47, 1]

X[3] <= 1.55
gini = 0.4444
samples = 6

value = [0, 2, 4]

gini = 0.0
samples = 47

value = [0, 47, 0]

gini = 0.0
samples = 1

value = [0, 0, 1]

gini = 0.0
samples = 3

value = [0, 0, 3]

X[0] <= 6.95
gini = 0.4444
samples = 3

value = [0, 2, 1]

gini = 0.0
samples = 2

value = [0, 2, 0]

gini = 0.0
samples = 1

value = [0, 0, 1]

X[1] <= 3.1
gini = 0.4444
samples = 3

value = [0, 1, 2]

gini = 0.0
samples = 43

value = [0, 0, 43]

gini = 0.0
samples = 2

value = [0, 0, 2]

gini = 0.0
samples = 1

value = [0, 1, 0]

Fig. 2.4. Example decision tree for classification on the Iris dataset.

Decision Tree Construction

In the following, we use the notation from Louppe et al. [76]. The main concept

of constructing a decision tree is to hierarchically partition the input space into

reasonable regions. To classify a test pattern x′ the tree is traversed to find the

leaf containing x′. Each tree node t contains a subset of the training dataset with

Nt samples and implements a splitting criterion st = (xi < c) for this subset

along one axis i. An example is visualized in Figure 2.4. E.g., from the root node,

the left child is traversed if x2 < 2.45 for the test pattern x′, otherwise the right

child node is visited. When constructing a tree from training set X, the best split

st for each tree node t, partitioning the samples from t into tL and tR, is found

by maximizing the impurity decrease

∆i(s, t) = i(t)− pLi(tL)− pRi(tR) (2.4)

with pL = NtL/Nt and pR = NtR/Nt. Here, an impurity measure like the Shannon

entropy (ID3, C4.5) or the Gini index (CART) is used to give a measure of the

2.4 Model Selection and Parameter Tuning 23

Training Validation Test

Fig. 2.5. When enough training data are available, the dataset is commonly split into 50%,
25%, 25% sets for training, validation and testing.

information gain. The tree construction is done when each leaf nodes only contains

training samples of the same class [14]. If decision trees become very complex,

they tend to be overfitted to the training dataset, cf. Section 2.4. To avoid this,

the tree built is pruned to a smaller depth in order to yield a better generalization

performance. In the CART algorithm, pruning is carried out based on a cost-

complexity model with cross-validation [123].

2.4 Model Selection and Parameter Tuning

When employing machine learning methods, a very important task is the appro-

priate model evaluation. I.e., one has to choose an algorithm and find the best

possible parameters. To decide which model is the best to use, we need a mea-

surable criterion for the quality of a model. For both algorithms and parameter

settings, the list of possible choices is endless and therefore this task is not easy.

For computing the training error of a regression model f , the MSE of f on

the training dataset is evaluated. While the training error would be a näıve choice

to optimize, it is not a perfect measurement of model quality at all [11,39,50].

E.g., a 1-nearest neighbor model yields a training error of approx. 0 because each

training pattern x has a distance to itself δ(x,x) = 0. However, on unknown

data the model can perform really bad due to overfitting, cf. Figure 2.3 (b).

More important is the generalization performance: “prediction capability on

independent test data.” [39] The objective of model selection is choosing the

model with the lowest test error [50]. For this sake, we need sufficient test data.

24 2 Machine Learning

Validation Set Method

In situations with enough data, the best approach [39] is dividing the training

dataset randomly into three partitions: a training set, a validation set and a

test set, see Figure 2.5. Each possible model is fitted to the training set and the

prediction error for model selection is assessed on the validation set. With the

test set, the generalization error of the chosen model is obtained by evaluating a

prediction on the test set. Witten et al. [121] state that after model evaluation

and testing, it is valid to train the chosen model again and now include also the

validation and test data into the training dataset.

Bias-Variance-Tradeoff

When applying statistical learning methods, two important measures for the

quality of a regression model f are the bias and the variance [11, 39, 58, 121].

These two properties are competitors and the machine learning practitioner has

to find a trade-off between them. The expected test MSE for f over a large

number of training sets for one test pattern x is defined as:

E[y − f(x)]2 = V ar(f(x)) + (Bias(f(x)))2 + V ar(ε) (2.5)

While the term V ar(ε) is irreducible, a machine learning model that has both a

low variance and a low bias is sought [50]. These depend on the complexity of the

model. Consider a training and validation set. The behavior of the training and

test error are visualized in Figure 2.6. A too simple model that cannot adapt well

to the training data is going to have a large error because of bias. With increasing

complexity of the model, the both training and validation error decrease first

because of increasing variance, i.e., the ability of adapting the characteristics of

the training data. The validation error, however only decreases to a certain point:

With a too complex model, one is going to achieve a very good training error but

the validation error may increase, essentially because of adaptation to noise in

the training data. The use of a validation set or other cross-validation methods

helps to find an optimal model while preventing overfitting [50,58].

2.4 Model Selection and Parameter Tuning 25

0 2 4 6 8 10
complexity

0

2

4

6

8

10

12

14

16

18

M
S
E

validation

training

Fig. 2.6. Conceptional diagram of training and validation error depending on model complexity.
At first, the validation error decreases along with the traniing error. Although the training error
is decreasing further, the validation error then increases because of overfitting.

Cross-Validation

In real-world scenarios there is not always much data available and one has to

learn and choose models with only insufficient data at hand. A simple and often

used technique for giving a good estimation of a model’s prediction error is the

cross-validation (CV) method [39, 57, 103]. Figure 2.7 shows an example of a

K-fold cross-validation with K = 5. The available data is randomly split into

K equal-sized partitions D1 . . . DK . There are conducted runs i ∈ {1 . . .K}. In

each run i, Di is used as validation set on which a prediction error MSEi is

computed. The training set comprises all remaining partitions Dj with i 6= j.

The cross-validation error is computed as the average of the prediction errors of

all K runs:

CV error =
1

K

K∑
i=1

MSEi (2.6)

The CV error is then used as an estimation for the expected test MSE.

Leave-one-out cross-validation (LOOCV) is a special case of K-fold CV with

K = N folds [50]. Here, a single pattern is used as validation set in each run.

26 2 Machine Learning

i = 1 D1 D2 D3 D4 D5

i = 2 D1 D2 D3 D4 D5

i = 3 D1 D2 D3 D4 D5

i = 4 D1 D2 D3 D4 D5

i = 5 D1 D2 D3 D4 D5

Fig. 2.7. K-fold cross-validation with K = 5 is a common choice for model selection with
prevention of overfitting.

Therefore, LOOCV is computationally expensive and in practice a K = 5 or

K = 10 is typically chosen.

Model Selection and in particular parameter choice are optimization problems.

A typical approach for finding good parameters is grid search with manual choice

of the ranges for each available parameter. Each combination of parameters is then

evaluated with cross-validation. The grid search is sufficient for many use cases

but can take very long time. More sophisticated methods are available for a faster

search of an optimal model in the search space like random search [9], evolutionary

computation [31], or Bayesian hyperparameter optimization [101]. The ensemble

method, which is introduced in Chapter 4 offers another solution to the problem.

Good generalization ability is given because of the ensemble architecture and

therefore less tuning is required. By combining diverse estimators to an ensemble,

a better behavior w.r.t the bias-variance-tradeoff can be achieved [15,86]

2.5 Summary

In this chapter we introduced the machine learning methodology. Machine learning

provides various algorithms for building successful data-driven models. As exam-

ples, the k-NN and DT are introduced. Besides SVR, they are the foundations of

the developed methods in this thesis. Very important for the success of machine

learning models is parameter tuning and model selection, which are difficult tasks.

We discussed the bias-variance-tradeoff and described the cross-validation (CV)

method as possible solution. Preferably, a model has good generalization abilities

2.5 Summary 27

rather than overfitting to the training data. Objective is to give a good prediction

for unknown data. In this work, we employ machine learning methods for creating

a precise and robust prediction framework. We use machine learning ensembles

for further improvements on accuracy and computation time.

3

Wind Power Prediction

In the recent years, a strong increase in wind energy can be observed. During 2015,

12,800 MW of wind power capacity was installed in the EU. There are now 142

GW of installed capacity, of which 131 GW are onshore and 11 GW offshore [106].

Germany has 45 GW installed capacity, which is the largest share in the EU.

With growing capacities, there is also a growing demand of reliable and precise

forecasts for various purposes. In this chapter, we describe the applications of

wind power prediction and the state of the art methods, followed by introducing

the spatio-temporal regression model used in this work.

3.1 Use Cases for Wind Power Prediction

Various use cases require good predictions for different forecast horizons. From a

current time point t0, the forecast horizon ∆t denotes the time offset, for which

the power or wind speed value shall be predicted in advance.

An important application for predictions is the trading of wind energy at

the electricity markets, which is only possible with good forecasts because the

energy is sold for future points in time. At the electricity markets, there is a

trend towards shorter forecast horizons. For instance, the lead time has been

reduced to 30 minutes on all intraday markets of the European Power Exchange

30 3 Wind Power Prediction

Table 3.1. Definition of different forecast horizons, cf. [29,49,102].

Horizon Time Range Applications

Very short-term Few seconds – 30 minutes Market clearing

Trading

Balancing

Virtual Power Plants

Short-term 30 minutes – 6 hours Load balancing

Intraday trading

Regulation

Medium-term 6 hours – 1 day Day-Ahead trading

Price optimization

Long-term 1 day – 1 week or more Planning of reserve energy

Scheduling of maintenance

(EPEX) Spot1. In the field of energy trading, there is demand for both interday

and intraday forecasts, i.e., forecast horizons from minutes to days.

For grid balancing, precise forecasts are needed, too. The important task

of keeping the voltage and frequency in the grid stable can only be managed

when decisions concerning reserve power and distribution can be made early. The

stakeholders are the grid operators as well as each energy supplier that feeds

current to the grid. For the planning of balancing electricity, good forecasts are

needed as well. In general, the balancing electricity or control energy is used to

settle unexpected events in the grid. In Germany and the European Union, the

control energy to be made available is traded via auction2. A trader therefore

needs to know how much energy he can offer for a certain time point in the near

future.

1 https://www.epexspot.com/en/press-media/press/details/press/EPEX_SPOT_and_ECC_

successfully_reduce_lead_time_on_all_intraday_markets
2 For instance, the german control energy is traded via the online portal http://www.

regelleistung.net.

https://www.epexspot.com/en/press-media/press/details/press/EPEX_SPOT_and_ECC_successfully_reduce_lead_time_on_all_intraday_markets
https://www.epexspot.com/en/press-media/press/details/press/EPEX_SPOT_and_ECC_successfully_reduce_lead_time_on_all_intraday_markets
http://www.regelleistung.net
http://www.regelleistung.net

3.2 State of the Art 31

In the future, the role of storage is going to be very important, too. When

should batteries or other storages be filled and when is the stored energy used?

The task of prediction is furthermore for the application of virtual power plants

that comprise different types of power plants but act as one.

The different forecast horizons are classified in Table 3.1 and example appli-

cations are given. The methods that are currently available for these forecasts

are presented in Section 3.2.

3.2 State of the Art

Prediction techniques can be divided in two groups, forecasting based on numerical

weather prediction (NWP) on the one hand and predictions based on the historical

time series on the other hand [22,29]. In both categories a wide variety of different

techniques and hybrid approaches can be found. A review of methods for wind

power forecasting is given by Foley et al. [29].

A review for forecasting of both wind speed and generated power was written

by Lei et al. [73]. Soman et al. [102] give a comprehensive overview of techniques

with emphasis on the use for different horizons. Wang et al. [49] provide a

classification of various wind power forecasting methods. In the following, we

give a brief introduction into the NWP methods in Section 3.2.1, followed by a

more detailed view on statistical learning techniques in Section 3.2.2.

3.2.1 Numerical Weather Prediction

NWP models are based on physical computations describing the state of the

atmosphere, including values of radiation, turbulence, and pressure. Besides the

laws of physics, typically Navier-Stokes-Equations are employed, which are used

to describe the motion of viscous liquids [29, 67]. Weather prediction can be

addressed with global or regional models of different resolution. For dealing with

larger resolution and better representations of the atmospheric processes, NWP

3 http://www.dwd.de/DE/forschung/wettervorhersage/num_modellierung/01_num_

vorhersagemodelle/numerischevorhersagemodelle_node.html

http://www.dwd.de/DE/forschung/wettervorhersage/num_modellierung/01_num_vorhersagemodelle/numerischevorhersagemodelle_node.html
http://www.dwd.de/DE/forschung/wettervorhersage/num_modellierung/01_num_vorhersagemodelle/numerischevorhersagemodelle_node.html

32 3 Wind Power Prediction

Fig. 3.1. Example for NWP by the German Weather Service.3

models are usually computed using supercomputers at the weather services or in

research institutes. The forecasts are not produced for one particular purpose,

but rather for different use cases in industry and science [29]. The output of the

model is not only wind speed but the state of the atmosphere for a given place

and time, resulting in a coarse grid of forecasts. Based on the grid, with distance

between the grid points of few kilometers, the wind speed at the location of the

target turbine is computed [69]. The speed value is transformed into a power

value by applying the power curve of the turbine, see Figure 3.2.

Although these models are widely applied, there are some drawbacks. The

consumer of the forecasts is dependent on the weather services providing the

forecasts. The time scales that can be used are always fixed and the forecasts are

only available at a certain point of time. Because of the chaotic nature of the

atmosphere, it is a very challenging task to give a good prediction with a physical

model and therefore, for short forecast horizons other approaches like statistical

learning yield superior results. Besides these approaches, computational fluid

dynamics (CFD) gained attention in the recent past. Marti et al. [80] propose

a model feasible for forecast horizons up to four hours. Castellani et al. [18]

5 Found on the manufacturer’s web page: http://www.enercon.de/fileadmin/Redakteur/

Medien-Portal/broschueren/pdf/en/ENERCON_Produkt_en_06_2015.pdf

http://www.enercon.de/fileadmin/Redakteur/Medien-Portal/broschueren/pdf/en/ENERCON_Produkt_en_06_2015.pdf
http://www.enercon.de/fileadmin/Redakteur/Medien-Portal/broschueren/pdf/en/ENERCON_Produkt_en_06_2015.pdf

3.2 State of the Art 33

0 5 10 15 20 25

Wind [m/s]

0

500

1000

1500

2000

2500

P
ow

er
[k
W
]

Fig. 3.2. The power curve of an Enercon E-82 wind turbine5. For each wind speed, the expected
power is given.

investigate the hybridization of computational fluid dynamic (CFD) and artificial

neural networks.

In the field of numerical weather forecasts, it is common to use ensemble

models [84]. On the one hand, forecasts can be improved. On the other hand,

not only a deterministic prediction is desired but rather an prediction interval

with uncertainty information, which is obtained by probabilistic methods. Several

NWP models are initialized with different values and combined to an ensemble

forecast. In the field of NWP models, this approach is especially reasonable

because of the difficulty to obtain the accurate values of the current atmospheric

state. Further, small changes in the initial states yield large deviations in the

forecast outcome. The forecasting using ensembles was one of the most important

novelties of the recent years in the field of NWP. The weather services offer

ensemble forecasts and their use is considered as state of the art [52,107].

The statistical postprocessing of these ensemble forecasts is a major im-

provement. Gneiting et al. [36] found ensembles to reduce the prediction error by

applying the ensemble model output statistics (EMOS) method to diverse weather

forecasts. Similarly, Thorarinsdottir and Gneiting [107] are using a so-called het-

eroscedastic censored regression for maximum wind speed prediction over the

American Pacific Northwest. Mahoney et al. [78] show that the combination

34 3 Wind Power Prediction

of different NWP methods to an ensemble can be very effective. One of the

models used is a 30-member NWP ensemble calibrated with an analog ensemble

Kalman filter and Quantile Regression. Junk et al. [52] present an analysis of

different weighting strategies for an analog ensemble. The uncertainty information

is derived from a deterministic model and the prediction performance is improved

by 20 %.

3.2.2 Statistical Learning

It has been shown that machine learning methods are well-suited to the domain

of wind speed and wind power prediction [1,68,110]. Techniques like k-NN [65,96]

or neural networks [92] have successfully been applied. Especially when spatio-

temporal information is available machine learning models can yield feasible

prediction performance.

In a recent comparison, Treiber et al. [110] show that support vector regression

is superior to numerical weather predictions for shortest-term forecast horizons.

Up to three hours, machine learning techniques are superior to post-processed

meteorological models using forecasts of the German Weather Service (DWD).

For more than six hours, meteorological methods should be preferred. Since short-

term forecasts have important applications and the purely data-driven approach

has many advantages, we aim at improving predictions for the short-term time

scale further. In the future, a hybridization with meteorological methods could

be beneficial for different forecast horizons. In the following sections, applications

of the most important machine learning techniques are introduced.

Support Vector Techniques

The SVM technique is very successful for classification and regression tasks. In

particular, good generalization abilities can be achieved. The method itself is

described in Chapter 5 where it is used as foundation of our proposed method.

For short-term wind power prediction, Kramer and Gieseke [62] successfully

applied the SVR algorithm. Here, a loss function parameter study is conducted

3.2 State of the Art 35

and analyses of the prediction on both grid point and park levels suggest that

SVR is very well-suited when ε-loss6 is employed.

Mohandes et al. [83] employ support vector machines for wind speed predic-

tion, too. The performance of the SVM prediction is compared to the multilayer

perceptron (MLP) neural networks. The SVM model outperforms the MLP in

most cases. However, the experiments are only conducted on mean daily wind

speed data from Madina city, Saudi Arabia and give no insights for short-term

prediction horizons.

Another SVR approach to short-term wind power forecasting is given by

Zhang et al. [126]. They describe a framework based on grid search and a multi

scale SVR. A comparison with an MLP demonstrates that the SVR approach is

“robust, precise, and effective” [126]. Salcedo-Sanz et al. [96] employ SVR for the

reconstruction of wind speed measurements from neighboring turbines. In the

majority of cases, the SVR model works better than an MLP.

Artificial Neural Networks

The use of artificial neural networks in the field of wind power prediction has

been studied, too. An example of wind speed prediction in the mountainous

region of India using an artificial neural network model is given by Ramasamy

et al. [92]. The wide range of applications of artificial neural networks in energy

systems presented by Kalogirou [53] comprise various prediction tasks.

Upadhyay et al. [112] show that wind speed forecasting tasks can be handled

by using back-propagation neural networks. Different variants of backpropa-

gation and in particular Resilient Propagation are compared by Stubbemann

et al. [104]. Their results suggest that the improved variants RPROP+ and

iRPROP+ outperform the classical backpropagation methods.

Other technqiues

Besides the mentioned well-known techniques, there is a wide range of other

methods that have been employed for wind prediction. Probabilistic short-term

6 See Chapter 5.

36 3 Wind Power Prediction

wind power forecasting based on kernel density estimators has been proposed by

Juban et al. [51]. Graff et al. present an approach to wind speed forecasting using

genetic programming. Treiber and Kramer [109] use evolutionary computation

for feature weighting in k-NN regression.

Besides machine learning techniques, autoregressive time series techniques

like autoregressive moving average (ARMA) and autoregressive integrated moving

average (ARIMA) can be used, too [55,99]. Although not directly connected to

wind we consider the approach of Valdes [113] worth mentioning. Valdes shows

that spatio-temporal information can be used well when employing ARIMA

models, e.g. for brain manifolds. A comparison of ARIMA vs. neural networks

for wind speed forecasting is given by Palomares et al. [87]

It has been shown that hybrid approaches perform particularly well for

different forecasting tasks. Wang et al. [118] propose a self-adaptive hybrid

approach for wind speed forecasting. Xiao et al. [124] show that combined

forecasting models for wind energy forecasting outperform the single models

in most cases. Hybridization also works well for machine learning predictions

[19,110,125] and time series methods like ARIMA [75].

Closely related to hybrid models is the promising approach of machine

learning ensembles, which are investigated in this thesis. The application of

machine learning ensembles to the field of wind power prediction has also been

shown to work well: Kusiak, Zhang and Song [68] successfully apply different

methods to short-term wind power prediction, one of which is the bagging trees

algorithm. Fugon et al. [32] compare various algorithms for wind power forecasting

and show that random forests with and without random input selection yield

a prediction performance similar to SVR, but recommend to prefer a linear

model when the computation time grows too large. Another similar application

of ensembles is given by Hassan, Khosravi, and Jaffar [38] for electricity demand

forecasting. Here, neural network ensembles are applied. A key for the success is,

again, the diversity amongst the predictors. For solar power output prediction,

Chakraborty et al. [19] built up an ensemble of a weather forecast-driven Näıve

Bayes Predictor as well as a kNN-based and a Motif-based machine learning

3.3 Spatio-Temporal Regression Model 37

2004-01-01 14:00:00

0
4
8
12
16
20
24
28
32

2004-01-01 15:00:00

0
4
8
12
16
20
24
28
32

2004-01-01 16:00:00

0
4
8
12
16
20
24
28
32

2004-01-01 17:00:00

0
4
8
12
16
20
24
28
32

2004-01-01 18:00:00

0
4
8
12
16
20
24
28
32

2004-01-01 19:00:00

0
4
8
12
16
20
24
28
32

2004-01-01 20:00:00

0
4
8
12
16
20
24
28
32

2004-01-01 21:00:00

0
4
8
12
16
20
24
28
32

2004-01-01 22:00:00

0
4
8
12
16
20
24
28
32

2004-01-01 23:00:00

0
4
8
12
16
20
24
28
32

2004-01-02 00:00:00

0
4
8
12
16
20
24
28
32

2004-01-02 01:00:00

0
4
8
12
16
20
24
28
32

2004-01-02 02:00:00

0
4
8
12
16
20
24
28
32

2004-01-02 03:00:00

0
4
8
12
16
20
24
28
32

2004-01-02 04:00:00

0
4
8
12
16
20
24
28
32

2004-01-02 05:00:00

0
4
8
12
16
20
24
28
32

Fig. 3.3. Wind speed measurements for a wind park near Reno. The color denotes the wind
speed, showing similar behavior for neighboring turbines.

predictor. The results of the three predictors are combined with a Bayesian Model

Averaging. Chakraborty et al. show that the prediction error can be reduced by

inducing ensemble methods to forecasting power output.

3.3 Spatio-Temporal Regression Model

In this work, we investigate the prospects of enhanced machine learning techniques

for wind power prediction. Hence, we treat short-term wind power prediction

as a regression problem. In contrast to numerical weather predictions, machine

learning methods usually only make use of the time series data itself, i.e., power

or speed measurements. A training dataset consists of historical measurements.

When performing a forecast, the objective is to predict the measurement after a

forecast horizon ∆t., e.g., in half an hour. The input patterns consist of µ past

time steps, which is called the feature window throughout this thesis. In this

work, we use a spatio-temporal model based on the one proposed by Kramer et

al. [64], who show the benefit of involving neighboring turbines to the input

38 3 Wind Power Prediction

vector. Figure 3.3 shows the wind speed measurements for a set of turbines near

Reno. It can be seen that nearby turbines show similar speeds at the same time

and it exists some correlation between the time series of them. If one wants

to give a power output prediction for a certain turbine based on its past time

series measurements used as patterns, including the measurements of turbines

in the vicinity of a few kilometers into the patterns greatly helps to reduce the

prediction error.

Algorithm 1 Defining a Wind Park

1: Inputs:
Longitude and latitude of all available N turbines,
Target index j,
Number of neighbor turbines m

2: Returns:
Indices M of the neighbor turbines,
Distances D of each turbine i to the target turbine

3: for i = 1 to N do
4: Di ← haversineDistance(i, j)
5: end for
6: M← nearestNeighbors(D, j, m)

In this work, a wind park is defined by a target turbine in the center and

the m nearest neighboring turbines, as depicted in Algorithm 1. The distance

is computed by the haversine distance using the longitude and latitude of the

turbines.

Using the measurements of the parks turbines, the patterns are constructed

as follows. Let pi(t) be the measurement of a turbine Mi at a time t, and M the

m indices of the m neighboring turbines. Then, for a target turbine with index j

we define a pattern-label-pair (x, y) for a given time t0 as shown in Formula 3.1

3.3 Spatio-Temporal Regression Model 39

5740 5760 5780 5800 5820 5840
Time Steps

−5

0

5

10

15

20

25

30

35

W
in
d
P
ow

er
[M

W
]

Measurement

KNN Prediction

(a)

5740 5760 5780 5800 5820 5840
Time Steps

−5

0

5

10

15

20

25

30

35

W
in
d
P
ow

er
[M

W
]

Measurement

SVR Prediction

(b)

Fig. 3.4. Wind power prediction for a wind park near Casper: (a) k-NN regression, (b) SVR
regression.


p1(t0 − µ) p1(t0 − µ+ 1) . . . p1(t0 − 1) p1(t0)

p2(t0 − µ) p2(t0 − µ+ 1) . . . p2(t0 − 1) p2(t0)

.

pm(t0 − µ) pm(t0 − µ+ 1) . . . pm(t0 − 1) pm(t0)


→ pj(t0 +∆t) (3.1)

For a discussion of performance and efficiency of newly proposed prediction

algorithms, we have to compare our results to the commonly used algorithms.

In the following, we give an example of an application of the spatio-temporal

model. For wind power prediction, k-NN and support vector regression (SVR) are

considered as state of the art-methods. k-NN is a relatively fast method, but the

prediction accuracy is usually outperformed by SVR, as can be seen in Table 3.2.

We use the MSE as measure for the prediction accuracy. For both algorithms, we

performed a 10-fold CV to find optimal parameters k for k-NN, and C,σ for SVR.

Of Course, this process takes a huge amount of time, which makes this type of

parameter search infeasible for practical use. Because the training and test time

is depending on the parameters, after CV evaluation we use the resulting optimal

parameters to train a model on the whole training dataset to measure training

and test time as well as the test MSE. The NREL dataset has been used, see

Appendix A. The data from 01/2004 until 06/2005 is used as training data set

40 3 Wind Power Prediction

and the data from 7/2005 until 12/2006 serves as test data set, for both only

using 1
5 of the data. We are using a feature window µ = 6 (1 hour) and providing

a forecast for a horizon ∆t = 3 (30 minutes).

Table 3.2. MSE achieved by state of the art predictors with feature window µ = 3 (30 minutes)
and forecast horizon ∆t = 3 (30 minutes).

Algorithm k-NN SVR

Turbine ttrain ttest MSE ttrain ttest MSE

Casper 1 97 10.67 704 268 9.88

Las Vegas 1 118 10.46 1450 341 15.69

Hesperia 1 83 7.69 1218 261 7.39

Reno 2 98 14.81 1173 253 13.29

Vantage 2 105 6.86 601 251 6.54

3.4 WindML Framework

During the work on this thesis, the open source framework WindML [63] has

been developed in the Computational Intelligence Group, University of Oldenburg.

It is important for this work because it provides some basic functions required by

the software implementations in this work. The WindML framework is released

under the open source BSD 3-Clause license. The objective of the Python-based

framework is easing the data-driven research in the wind power domain. Many

important steps of the machine learning pipeline are provided.

First, a data server is provided. The loading mechanism automatically down-

loads requested data sets to a local cache, which are then stored in a local cache

in the Numpy [114] binary file format. Data must only be downloaded once and

recurrent loading is sped up. The interface for different data sets allows a generic

integration of different data sources. In the current version 0.5, the NREL and

3.4 WindML Framework 41

Fig. 3.5. Map View in the WindML Web Framework.

AEMO data sets are supported, see Appendix A. The documentation of the

overall framework can be found on the WindML project website7.

For the practical use of the time series data, the framework provides the gen-

eration of the spatio-temporal wind speed and power patterns and corresponding

labels with an object-oriented architecture of wind parks, wind turbines, and the

different measurements. Further, the problem of missing data can be handled

with imputation methods. Besides several supervised and unsupervised machine

learning models, essential helper functions are provided.

Based on a bachelor thesis, we developed a web frontend called WindML

Web. Several practical requirements led to the development of the extensive

experimental platform. For both research and industry applications, the ma-

chine practitioner needs a systematic and comfortable workbench for conducting

experiments like parameter tuning, algorithmic comparisons, or simulations of

operational management. In our case, the available datasets consist of hundreds of

turbines and therefore a clearly arranged user interface is required. An important

7 http://www.windml.org

http://www.windml.org

42 3 Wind Power Prediction

Fig. 3.6. Enqueuing an experiment in WindML Web.

part is a map view that shows all available turbines and allows for interaction

with them. An example of the interactive map based on OpenStreetMap and

the jQuery-Plugin Leaflet can be seen in Figure 3.5. As the machine learning

experiments can easily take hours, it is desirable to run the processes on a server

machine. In our case, the WindML Web application runs on an AMD Opteron

32-core system. One of the most important tools is a queue where the experiments

can be appended – they are run when enough resources are free to use. The

creation of an experiment is shown in Figure 3.6. The web application has a

user management and a number of central processing unit (CPU) cores can be

assigned to each user. Thus, a fair allocation of resources can be ensured.

For the particular use case of wind power prediction, a comparison of the

available prediction techniques for each target turbine can be easily run and all

3.5 Summary 43

results are persisted in a database (DB). Here, the document based database

management system (DBMS) MongoDB is employed to provide for flexible

storage of dynamic types of results. In particular, WindML Web can be easily

extended with plugins and these can have different types of results. Although the

web application is implemented in Java, all plugins are developed in Python and

enhanced by a descriptive XML-File as interface.

3.5 Summary

Wind energy is a growing industrial sector and a clean source of renewable

energies. For different use cases, there is a need for precise predictions at different

forecast horizons. State-of-the-art are NWP and ML models, which are both

active areas of research and subject to further improvements. In this work, our

objective is to improve short-term predictions using ML methods. For this sake,

a spatio-temporal regression model is employed which is based on the WindML

framework.

4

Ensembles

A good alternative to the well-known machine learning algorithms is the use of

ensemble models. By employing a number of diverse predictors and eventually

combining their output values to a prediction, the accuracy of classification

and regression can be improved while often reducing the required computation

time [94]. In contrast to state-of-the-art machine learning algorithms, ensemble

methods require less tuning and expert domain knowledge. Ensemble classifiers

and regressors have been shown to work well in various applications like image

recognition, medicine, network security, and others [86]

An example for ensemble regression applied to wind power prediction can

be seen in Figure 4.1. Eight single regression models are trained using the DT

algorithm. Each model on its own achieves only a poor prediction performance.

Nevertheless, the average of the eight models predicts values very close to the

real measurements. The intuition behind this seems very human: Before making

an important decision, we ask several peers for their opinion.

A famous example for the intuition behind the ensemble paradigm can be

found in the research of Sir Francis Galton, who describes the phenomenon called

vox populi or wisdom of crowds [33]. Galton conducted a statistical experiment

at a livestock fair. The objective for 800 people was to estimate the weight of a

living ox. Most of the participants gave bad estimates, but the average of the

estimates was very close to the real weight of the ox.

46 4 Ensembles

0

5

10

15

20

25

30

100 120 140 160 180 200

P
ow

er
O

u
tp

u
t

t

Ensemble Member Predictions
Power Measurements
Ensemble Prediction

Fig. 4.1. Example for ensemble prediction of a wind power time series. While the eight single
predictors do not provide a feasible prediction, their average gives a very good approximation
to the real measurements.

This chapter is structured as follows. The ensemble methodology is introduced

in 4.1. There are countless variants of different ensemble algorithms. One of the

most important ones is the bagging algorithm, which is described in Section 4.2.

A Section 4.3 describes the Random Subspaces method that helps to increase

the diversity among the ensemble members. The boosting approach is described

in Section 4.4, followed by stacking in Section 4.5 and the RF algorithm in

Section 4.6. A summary is given in Section 4.7.

4.1 Ensemble methodology

As shown in Figure 4.2, an ensemble prediction is given by combining the

predictions of T predictors fi with i ∈ {1 . . . T}. A comprehensive overview and

empirical analysis for ensemble classification is given by Bauer and Kohavi [5].

Another, more up-to-date review paper was written by Rokach [94]. The most

4.1 Ensemble methodology 47

important ensemble techniques are bagging and boosting. bagging, which stands for

bootstrap aggregating, was introduced by Breiman [12] and is a relatively simple

algorithm. The main idea is to build independent predictors using samples of

the training set and average the output of these predictors. In contrast, Boosting

approaches like AdaBoost [30], make use of predictors trained a consecutive

manner with continuous adaptation of the ensemble weights. Rokach [94] classifies

them as dependent models. Hastie [39] states the ensemble learning can be broken

down to two tasks:

1. From the training data, a population of base learners is developed.

2. The base learners are combined to form the composite predictor.

f1(·)

f2(·)

. . .

fT (·)

x′ 1
T Σfi(x

′)

Fig. 4.2. Example of ensemble prediction with averaging of the member’s output.

One key ingredient to successful building of ensembles is the concept of

diversity. All the weak predictors should behave different or better uncorrelated

[15,94]. A survey of diversity creation methods is given by Brown et al. [15]. There

are many ways to generate such diversity, like manipulating the used training

sample, the used features, and the weak predictors’ parameters. Another possibility

is the hybrid use of different learning algorithms, which we call heterogeneous

48 4 Ensembles

ensembles. Oza and Tumer show that ensemble methods show a better behavior

for the tradeoff between bias and variance [86]. Figure 4.3 shows an example

architecture of training an ensemble.

sample 1 sample 2 . . . sample T

training data X

feature subspace 1 feature subspace 2 . . . feature subspace T

algorithm 1 algorithm 2 . . . algorithm T

f1 f2 . . . fT

Fig. 4.3. Training of ensembles with sampling, feature subspaces, and different algorithms.

4.2 Bagging

An important and famous approach is bootstrap aggregating (bagging), which

was introduced by Breiman [12]. The main idea is to build independent predictors

using samples of the training set and average or voting of the outputs of these

predictors. For regression, a prediction is given by

f(x) =
1

T

T∑
i=1

fi(x
′). (4.1)

4.3 Random Feature Subspaces 49

Each model fi is trained on bootstrap sample i. Breiman shows for both classifica-

tion and regression, that bagging ensembles of DTs work much better compared

to single trees. Furthermore, he gives arguments for the question why the bagging

works. Because of the bootstrap method, each predictor has only a unique, limited

point of view of the training data. The bootstrap is a resampling method from

statistics. From one data set, random samples are chosen repeatedly with replace-

ment. The samples give a good representation of the underlying distribution,

although they are only drawn from the same dataset [39].

James et al. [50] give an illustrating example for the improvement of statistical

learning models with the bootstrap. Consider the DT algorithm, and a training set

split into two halves. On the data from each half, a DT model is trained. Because

of the high variance of decision tree models, the two models could behave very

different. In particular, the bootstrapping helps to reduce the models variance

but also achieving a low bias. Bagging is very popular in combination with DTs,

which are then grown deep and not pruned [50].

4.3 Random Feature Subspaces

Another method for providing diversity is the manipulation of the input features.

As pointed out by Ho [46], bagging classifiers can benefit from choosing random

feature subspaces, also called the random subspace method (RSM). Here, each

model in the ensemble only takes a random subset of the available features into

account. One has to decide how many features should be chosen. The choice

can be done with or without replacement. Although replacement is sometimes

considered as useful [24,94], there is no explicit rule when to use it.

Scherbart et al. show that the results of bagging combined with RSM is

comparable to RFs and ANNs [97]. An experimental study on the bias-variance-

decomposition shows that RSM offers a good diversity among the estimators and

good generalization abilities.

50 4 Ensembles

4.4 Boosting

Boosting approaches like AdaBoost [30] also combine T single predictors. The

difference is that the predictors are not trained independently but in an iterative

manner: Every training instance gets a weight assigned that is adapted in every

iteration. In every iteration a new predictor is added to the ensemble and

afterwards the prediction quality of the ensemble is tested on the training set

instances. The wrong classified instances will now get higher weights than the

correct classified ones. Therefore, the classification gets better with more iterations.

In many cases, AdaBoost and other boosting approaches yield better prediction

quality than bagging algorithms. On the other hand, boosting algorithms tend to

overfitting problems [5,94]. Also, AdaBoost is not always better than bagging [24].

For us, a serious drawback is the fact that an adaptive boosting algorithm cannot

train the weak predictors in parallel but step-by-step.

4.5 Stacking

Stacked generalization (Stacking) offers another concept of combining the ensem-

ble member’s outputs [39,86,122]. Instead of only averaging the output values

or weighting them, another model is trained on the set of single predictions, see

Figure 4.4. The top layer model computes the final output with a linear regression

or any machine learning algorithm. It the objective to take also into account the

behavior of the predictors. It is also trained on the training set and the errors

of the single models can be evaluated and then be corrected in order to give a

better prediction. For this work, we decided not to use stacking because it is

more complicated than the other approaches and success is not guaranteed. The

computational cost is also very high because both the ensemble members and the

regression in the final layer have to be optimized. Since the approaches presented

in this thesis work very well, we leave the research on stacking in the field of

wind power prediction to future work, see Chapter 9.

4.6 Random Forest Regression 51

f1(·)

f2(·)

. . .

fT (·)

x′ SVR f(x′)

Fig. 4.4. Example of stacking with an SVR meta-learning model.

4.6 Random Forest Regression

A popular ensemble approach is the RF algorithm [13] that employs a large

number of unpruned decision trees [94]. As with bagging, each decision tree is

built with a subset sample from the training set, but only uses N of the available

features of the patterns. One important factor for the success of ensembles is

the concept of diversity. All the weak predictors should behave different if not

uncorrelated to improve the prediction performance of the ensemble [15,94]. In

the random forest, the single models are decorrelated [50]. For selecting the

splitting plane, only a random subset of m features is considered. Therefore, each

model behaves different.

When using Random Forests, on can compute the importance of a feature xi

for predicting the correct label using the Mean Decrease Gini. For each tree in

the ensemble, a weighted sum of the impurity decreases of all nodes t using xi in

split st is computed. For all NT trees in the ensemble, an average of these sums

is calculated:

Imp(xi) =
1

NT

∑
T

∑
t∈T :v(st)=xi

p(t)∆i(st, t) (4.2)

with node weight p(t) = Nt
N and v(st) the feature used in split t, cf. [13, 76].

52 4 Ensembles

4.7 Summary

When dealing with difficult problems in the field of machine learning, the use

of ensemble models turns out to be an excellent alternative to the well-known

machine learning algorithms. We combine a number of basic models in order

to obtain an improved prediction model. The prediction accuracy for many

applications of classification and regression can by improved. By employing

ensemble models, one can also improve the computation time requirements. It is

very practicable to employ ensemble models, because less tuning is required. In

this thesis, we decided to stick to the independent methods bagging and RSM.

The decision is based in the fact that these models are more straightforward and

are easily parallelized on multicore architectures. In Chapter 5, we investigate a

bagging approach with error-based weighting employing SVR models. Chapter 6

is using RF and SVR models with different types of features. Based on that,

the RF and SVR models are combined to ensembles in various ways. The use

of different inducers is further investigated in Chapter 7 and turns out to yield

excellent predictions. Chapter 8 deals with the balancing of ensemble predictors

with evolutionary computing.

Part III

Ensembles for Wind Power Prediction

5

Support Vector Regression Ensembles

It has been shown that good forecast results can be achieved using SVR [108].

The main problem of the SVR algorithm is the huge computational cost [25,

39]. In particular, when doing parameter studies and evaluating the prediction

performance on large data sets, the optimization process becomes impractically

slow. In order to achieve an acceptable forecast quality, training a SVR with CV

methods can take hours or days. For practical applications, often a suboptimal

prediction error has to be accepted. For both the prediction error and the efficiency,

improvements are desirable.

In this chapter, we propose a novel SVR ensemble method for wind power

predictions in order to further improve the forecast quality and spend less

computation time. Instead of using a single support vector regressor, we train

a number of regressors, hence called weak predictors, which together form an

ensemble. Each of the weak predictors is trained on a small subset of the training

set. The prediction is computed by a weighted average of the regression results

of the weak predictors. An important motivation is the fact that SVR predictors

perform very well in many use cases and in particular wind power prediction.

This leads to the question if SVR are well-suited for ensemble building. In the

field of ensembles, mainly decision trees are employed and the SVR algorithm

has not been investigated extensively.

56 5 Support Vector Regression Ensembles

This chapter is structured as follows. Our ensemble method is described in

Section 5.3. The experimental results, presented in Section 5.5, show that a random

parameter choice and a MSE based weighting renders the best computation time

as well as prediction performance. Compared to state-of-the-art algorithms, our

approach yields a better forecast performance in a reasonable computation time.

Our conclusions and future work can be found in Section 5.7.

5.1 Related Work

Kim et al. [56] build up classifiers using SVM ensembles using both bagging

and boosting. The single SVMs are then aggregated either by using majority

voting, an LSE-based weighting, or combined in a hierarchical manner. Tested

data sets are the IRIS data set, the UCI hand-written digit data set, and a fraud

detection database. The ensemble classifiers clearly outperform the single SVM

predictor. An ensemble constructed with the boosting algorithm performs slightly

better than the one constructed using bagging. According to Kim et al., the most

important thing in SVM ensemble constructing is that the single SVMS become

as different as possible [56].

The latter aspect was also investigated further by Tsang, Kocsor and Kwok

in [111]. They proposed orthogonality constraints for the weak SVM predictors

in order to diversify them. The result is a better classification accuracy as well as

a reduced training time.

Waegeman and Boullart [116] are using weighted support vector machines

for ordinal regression. They show that SVM ensemble classification is well-suited

for the problem of ranking.

A different approach that reminds of ensemble prediction is the Cascade

SVM algorithm of Graf et al. [37]. The training set is split up into n small sets

and the optimal support vectors for each subset are computed. Subsequently, a

multi-stage approach merges and optimizes the n SVMs. The approach can be

parallelized pretty easily. The authors show that the Cascade SVM algorithm is

almost as precise as traditional SVMs while greatly reducing the computation

5.2 Support Vector Regression 57

−1 0 1 2 3 4 5 6 7 8
x

−3

−2

−1

0

1

2

3

y

Linear Kernel data

−1 0 1 2 3 4 5 6 7 8
x

−3

−2

−1

0

1

2

3

y

RBF Kernel data

Fig. 5.1. Support Vector Regression with linear and RBF kernel.

time. In contrast to our approach, their main goal is to train the SVM in a shorter

time wile achieving similar results. Our approach ha the objective of an improved

prediction.

5.2 Support Vector Regression

The SVR algorithm often provides very good prediction results and is regarded

as state-of-the-art regression technique. In general, the support vector machine

(SVM) algorithm maximizes a geometric margin between the instances of the

classes to be separated. Similar to SVM classification, the SVR algorithm aims

at finding a prediction function f̂ : Rd × R → R that computes an accurate

prediction value for an unseen pattern x ∈ Rd.
The SVR algorithm is based on SVMs that were proposed by Cortes and

Vapnik [21] in 1995. For the training of the regressor, we aim at finding weights

w by minimizing the following problem, formulated by Vapnik with an ε-sensitive

loss function:

minimize
1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i) (5.1)

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

58 5 Support Vector Regression Ensembles

In this equation, C > 0 is a constant chosen by the user that is used as a

parameter that penalizes only those errors which are greater than ε. Ideally,

one would like to generate models that represent the training data well and

at the same time are not too complex to avoid overfitting. The parameter C

is called regularization parameter and determines the trade-off between these

two objectives. The so-called slack variables ξ∗i are introduced to cope with

optimization constraints which would be otherwise infeasible [100].

Kernel functions are used to give good results on non-linear separable data.

A kernel function can be seen as a similarity measure between patterns and is

especially useful for non-linear regression tasks. A typical choice is the RBF-kernel,

which is also used in this chapter. It makes use of a radial basis function:

k(x,x′) = exp

(
−||x− x′||2

2σ2

)
(5.2)

An example for a SVR with a linear and a RBF-kernel is shown in Figure 5.1.

While the linear kernel only gives a very rough approximation, the RBF-kernel is

usually a better choice for complex data.

5.3 SVR Ensemble With Weighted Bagging

Our research objective is to answer the question, if SVR ensembles can be used

to improve the prediction accuracy in the field of wind power forecasts. The

second objective is to reduce the required computation times. The basic idea

of the resulting training algorithm is depicted in Algorithm 2. Let P = {pi|i =

1, . . . , T} be the set of predictors and W = {wi ∈ R|i = 1, . . . , T} the set of the

corresponding weights. Each weight belongs to the predictor with the same index.

The final prediction value is the weighted average of the estimators pi ∈ P using

the weights wi ∈W .

f(x) = ΣT
i=1wi · pi(x) (5.3)

As the design goal is to find a balance between a good regression performance

and a feasible computational cost, we decided to implement a relatively simple

5.3 SVR Ensemble With Weighted Bagging 59

bagging approach, which can easily be parallelized. Each iteration of the for-loop

in line 4 is independent from its preceding run, so the loop can be replaced by a map-

Operation and then executed on distributed computing systems or on multicore

processors. For computing the prediction results, a similar parallelization can be

done. In contrast to our bagging approach, iterative algorithms like AdaBoost

are too expensive because of interdependent steps of the training algorithm.

Algorithm 2 Training of the SVR Ensemble Predictor

1: Inputs:
X = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × R (training set),
S (sample size),
T (number of estimators)

2: Returns:
P = {pi|i = 1, . . . , T} (estimators),
W = {wi ∈ R|i = 1, . . . , T} (ensemble weights)

3: Initialize:
wi ← 1, i = 1, . . . , T

4: for i = 1 to T do
5: Xi ← sample(X, S)
6: Xval,i ← X−Xi

7: C, σ = ChooseParameters(SV R,Xi)
8: pi = FitSV R(Xi, C, σ)
9: wi = 1/RegressionPerformance(pi,Xval,i)

10: end for

5.3.1 Training the weak predictors

When training the estimators, one must decide which samples are used for the

design of the training set and which settings are the best for the particular

machine learning algorithm. Like Kim et al. [56], we build training sets Xi of

the estimators by randomly sampling s instances from the global training set

X. Hence, the single sets Xi are non-disjoint and one single training instance

(xi, yi) can occur multiple times or not at all. In future work, one could also test

disjoint sets or even introduce orthogonality constraints like Tsang, Kocsor, and

60 5 Support Vector Regression Ensembles

Kwok [111], but randomly chosen sampling turned out to be a good choice and

yields a reasonable improvement.

An important research aspect is the parameter tuning, which is implemented

in the ChooseParameters method. In our case, we considered the regularization

parameter C and the radial basis function (RBF) kernel bandwidth σ the most

important ones and only varied these two parameters. We tested three different

variants of parameter choices:

Global Optimization Each estimator’s regression performance is given by the

mean square error on the whole Xval,i validation set, which is the global

training data set X without the training data sample Xi. Thus, all estimators

are optimized for the training data set via grid search.

Local Optimization The estimator’s regression performance is optimized by a

grid search using a cross-validation on the belonging training data sample Xi.

Random Choice The parameters are randomly chosen. No optimization will

be performed. An increase in diversity can be expected.

Apparently, both the global and local optimization are inherently expensive,

because of the need to execute the SVR training algorithm multiple times. Also

when using other optimization techniques like evolutionary algorithms, the SVR

training has to be called multiple times, which results in a long computation time.

Thus, one would prefer the random method if the prediction quality is not worse

than the optimized methods. The experiments in the following sections show that

a random choice of parameters can result in a better prediction performance.

5.3.2 Weighted Ensemble Prediction

We tested different methods of combining the estimators to an output are possible.

The näıve choice is a uniform weighting with wi = 1. Further, we tested weighting

the predictors using a prediction error E on a validation data set Xval,i. The

error can be interpreted as importance of each estimator pi in the ensemble:

wi =
1

E(pi,Xval,i)
(5.4)

5.4 Runtime 61

For E we tested the MSE, the square of the MSE, the inverse of the least square

error (LSE), or the biggest square error (BSE).

Besides the SVR and kernel parameters, and the ensemble weights, the two

most important factors of the algorithm’s success are the sample size S and the

number of estimators T . As shown in Section 5.5, both variables should be tuned

in order to achieve the best result.

5.4 Runtime

The SVR algorithm offers a runtime complexity of O(N3) depending mainly on

the number N of training data. While a small dataset can be processed very fast,

with a growing N there is a rapid growth in the computing time needed. The

reason for this lies in the optimization process required for finding the correct

support vectors. In Figure 5.2, we show a visualization of the runtime behavior

of SVR for two wind parks from the NREL dataset, see Appendix A. For the

examples of Reno and Tehachapi and the years 2004-2006, we employed SVR

with C = 1000.0 and σ = 0.001. The algorithm was only trained on a training

subsets of size N = {100, 200, . . . , 10.000} taken from the first one and a half

years. An Intel Core i3 with 1.90GHz was used to execute the training. The

resulting predictors have been tested on the last one and a half years and the

MSE has been computed. For both parks, we visualized in a scatter plot the

behavior of runtime and MSE depending on the training set size N . Further, we

show the runtime behavior depending on N . It can be seen that the runtime

behavior is in the complexity class of O(N3).

It can be seen that it is much cheaper to train a SVR predictors on a small

training data set. Therefore, it is faster to train a large number of SVRs on small

training set than one single SVR predictor on a large training data set. For the

case of splitting of the training data set into partitions of size n < N , the runtime

bound of our approach is given by:

N

n
· n3 = N · n2 < N3 for n < N (5.5)

62 5 Support Vector Regression Ensembles

−50 0 50 100 150 200

Runtime [s]

18

20

22

24

26

28

30

32

34

M
S
E

1000

2000

3000

4000

5000

6000

7000

8000

9000

(a) Runtime and error behavior of SVR for a
Wind Park near Reno with different training set
sizes

0 2000 4000 6000 8000 10000
N

0

50

100

150

200

250

R
u
nt
im

e
[s
]

SVR runtime

O(N 3)

(b) Runtime behavior of SVR and theoretical
complexity for a Wind Park near Reno depend-
ing on training set size.

−20 0 20 40 60 80 100 120 140

Runtime [s]

8

9

10

11

12

13

14

15

16

17

M
S
E

1000

2000

3000

4000

5000

6000

7000

8000

9000

(c) Runtime and error behavior of SVR for a
Wind Park near Tehachapi with different train-
ing set sizes

0 2000 4000 6000 8000 10000
N

0

20

40

60

80

100

120

140

R
u
nt
im

e
[s
]

SVR runtime

O(N 3)

(d) Runtime behavior of SVR and theoretical
complexity for a Wind Park near Tehachapi de-
pending on training set size.

Fig. 5.2. The plots show the runtime behavior of support vector regressors with different
training set sizes. On the left side (a, c), one can see that the MSE decreases rapidly first
with a larger N and therefore larger runtime. After some point, a larger N only decreases the
MSE sligthly. The runtime complexity of the SVR algorithm is in O(N3). The cubic behavior
depending on N is shown in the right plots (b,d).

In our case, we do not necessarily divide the whole training data set in partitions

but rather sample T subsets of the size S. Therefore, our runtime and space

complexity does not longer depend on the original training set size and the

runtime boundary is given by

O(T · S3) = T · O(S3). (5.6)

5.5 Experimental Results 63

5.5 Experimental Results

In our experiments, we analyze the prediction performance of our ensemble

regression approach. First we find the settings that achieve the best prediction

performance and the lowest computation time needed. Given the best results

that can be reached with our approach, we can compare the algorithm to the

commonly used SVR. We used the power output data of five NREL wind parks

that consist of the wind turbine the power output shall be predicted for, and

the turbines in a radius of 3 kilometers. The feature window and horizon are

µ = λ = 3. As training dataset, the whole time series for the year 2004 is used

and the data of the year 2005 serves as test data set. The experiments were run

on an Intel Core i5 (4× 3.10GHz) with 8GiB of RAM.

5.5.1 Optimization and Weighting of the Weak Predictors

In our first experiment, we analyze the use of the different parameter optimization

variants for the estimators. For C, the possible values used are {10e|e ∈ {0, . . . , 4}}
and σ is taken from {1 · 10−e|e ∈ {0, . . . , 4}}. Furthermore, we compare the dif-

ferent weighting methods for each of the three algorithm variants. The results

are presented in Table 5.1. For five wind parks, the MSEis compared for the

three parameter choice methods. For the weights, least or biggest squared error

based weights are not listed because of poor prediction performance. The results

show that a random choice of the estimators parameters is better in the most

cases while providing a much shorter runtime compared to the optimized vari-

ants. This behavior may be surprising at first, but complies with the intuition

behind diversification [111] and random forests [12]. Another consideration is the

possible overfitting when using the optimized variants. Therefore, we are using

the computational cheap random variant with 1
MSE2 weighting in the following.

5.5.2 Number of Weak Predictors and Samples

The expected prediction error depends on the number of estimators. Furthermore,

it is non-deterministic and we have to analyze the properties of our algorithm for

64 5 Support Vector Regression Ensembles

Table 5.1. Comparison of parameter choice methods and ensemble weighting methods (T =
32, S = 1, 000). For the locally optimized, globally optimized, and random chosen parameters, the
mean squared prediction error is evaluated for five turbines. For the weighting of the ensemble
members, 1, 1

MSE
and 1

MSE2 are tested. Furthermore, the runtime for the training process in
seconds is given. The least error reached for each turbine is printed in bold, the least runtime
is printed in italic.

(a) Local: Optimization of each predictor

Value Error Time

Weights 1 M−1 M−2

Cheyenne 7.84 7.84 7.84 175.93s

Lancaster 8.89 8.89 8.89 161.37s

Palm Springs 6.12 6.12 6.11 221.60s

Vantage 5.63 5.63 5.63 151.42s

Yucca Valley 10.29 10.29 10.29 226.89s

(b) Global: Optimization of combined predic-
tor

Value Error Time

Weights 1 M−1 M−2

Cheyenne 7.87 7.87 7.86 607.56s

Lancaster 9.04 9.04 9.03 513.66s

Palm Springs 6.13 6.12 6.12 476.66s

Vantage 5.63 5.67 5.67 525.88s

Yucca Valley 10.44 10.43 10.43 614.51s

(c) Random parameter choice

Value Error Time

Weights 1 M−1 M−2

Cheyenne 12.38 8.14 7.69 45.77s

Lancaster 13.85 9.52 8.81 36.80s

Palm Springs 7.75 6.04 5.96 41.68s

Vantage 8.41 6.19 5.75 37.68s

Yucca Valley 10.59 10.10 10.05 51.07s

5.5 Experimental Results 65

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

100 200 300 400 500 600 700 800 900 1000

M
S
E

sample size S

T=8
T=32
T=64

(a)

8.8

9

9.2

9.4

9.6

9.8

10

10.2

0 20 40 60 80 100

M
S
E

number of predictors k

mean (25 runs)
standard deviation

(b)

Fig. 5.3. (a) Prediction error for a wind park near Palm Springs depending on S, (b) Prediction
error and standard deviation for a wind park near Lancaster depending on T .

varying parameters. Figure 5.3 (a) shows the behavior of our algorithm depending

on the sample size S for a wind park near Palm Springs using T ∈ {8, 32, 64}
estimators: When increasing the number S of samples used for each estimator,

the prediction error decreases. The standard deviation also decreases: E.g., for

the case T = 32, the standard deviation when using predictors with sample size

S = 100 is 0.30, and is reduced to 0.07 when using S = 1, 000. Every prediction

error is given by a mean of 25 repeated measures.

For the other parks, our approach yields the same behavior. Figure 5.3 (b)

shows the dependency of the prediction error on the number T of estimators

used. The measurements were repeated 25 times. The results show that a larger

number T greatly decreases the prediction error and the standard deviation is

reduced, too.

E.g., for T = 5, the standard deviation is 0.58, it decreases to 0.10 for T = 100.

Thus, one can only expect reliable results with a sufficient T and sufficient S.

Figure 5.4 shows another visualization of the experiment. Here, each point

depicts an instance of the ensemble model with S = 2000 samples and a varying

number T of predictors which is denoted by the color. On the x-axis, the training

time (a) or the testing time (b) is shown. The position on the y-axis shows the

test MSE. One can see that a larger T in general leads to a smaller test error.

66 5 Support Vector Regression Ensembles

0 20 40 60 80 100 120 140

Runtime [s]

8.5

9.0

9.5

10.0

10.5

11.0

11.5

M
S
E

10

20

30

40

50

60

70

80

90

100

(a) Training time

0 20 40 60 80 100

Runtime [s]

8.5

9.0

9.5

10.0

10.5

11.0

11.5

M
S
E

10

20

30

40

50

60

70

80

90

100

(b) Test time

Fig. 5.4. The scatter plot shows the behavior of different ensemble predictors for a wind park
near Lancaster. The color denotes the number T of estimators used.

Also, the closeness of points of one color shows that the deviation is smaller and

the ensemble model can be expected to be more reliable.

5.5.3 Comparison to Support Vector Regression

Table 5.2 shows the comparison of our approach to SVR, which is considered to

be the state-of-the-art. As a cross-validation is too expensive, we only searched

for a good parameter guess on 10% of the training data and used the parameters

C = 10, 000 and σ = 1e − 5 in the comparison. Our SVR ensemble approach

is using k = 64 and n = 2, 000. In four of five cases, our proposed prediction

algorithm outperforms the SVR algorithm. A conclusion cannot be given without

considering the runtime needed. The training and testing of our algorithm only

needs a few minutes, giving better results than the SVR algorithm. The state-of-

the-art SVR approach can easily take half an hour or longer for training. We point

out that the runtimes are implementation- and hardware-specific and therefore

the advantage of the ensembles over the SVR can differ on other systems. However,

due to the theoretically runtime behavior and the difficulties of a parallel SVR

implementation, we consider our proposed algorithm to be the better choice in

most situations.

Another experiment shows the behavior of an ensemble using T = 64 es-

timators each using S = 1, 000 samples when different forecast horizons ∆t

5.5 Experimental Results 67

10 20 30 40 50 60 70 80 90 100 110 120

Forecast horizon [min]

0

5

10

15

20

25

30

35

40

M
S
E

Single SVR

SVR Ensemble

(a) Cheyenne

10 20 30 40 50 60 70 80 90 100 110 120

Forecast horizon [min]

0

10

20

30

40

50

60

M
S
E

Single SVR

SVR Ensemble

(b) Lancaster

Fig. 5.5. Comparison of SVR ensembles and SVR for different forecast horizons.

Table 5.2. Comparison between SVR using CV-sought parameters and SVR ensemble regressor
(SVRENS) using S = 2, 000 and T = 64. For every turbine, the best result is printed in bold.

Algorithm SVR SVRENS

Train Test Error Train Test Error

Cheyenne 1671.55 154.94 7.70 303.12 146.07 7.54

Lancaster 2067.55 126.43 9.98 266.35 115.30 8.87

Palm Springs 1907.32 87.56 7.59 252.69 83.88 6.12

Vantage 2194.81 164.78 8.33 224.04 122.77 5.55

Yucca Valley 536.80 115.43 10.40 276.51 121.70 10.20

are targeted. The ensemble is compared to a RBF-SVR with C = 1, 000 and

σ = 0.0001 on two test turbines from the NREL dataset using neighbor turbines

within 3 kilometers, year 2004 for training and 2005 for testing. The feature

window is chosen as µ = ∆t.

The results are shown in Figure 5.5. While for short horizons both ensembles

and SVR perform equally well, the ensembles show a lower MSE for larger

horizons, which suggests an improved robustness of the technique.

68 5 Support Vector Regression Ensembles

5.6 Parallel Implementation

The algorithm we propose in this chapter can be easily parallelized. Our Python

implementation is using the Map & Reduce paradigm [127]. Although most

of our test runs were conducted on single machines with multiple cores, the

implementation could be run on a distributed system with many compute nodes.

We present an example for the reduction of the computation time in Figure 5.6.

0 5 10 15 20 25 30 35
number of cpu cores used

0

100

200

300

400

500

T
ra
in
in
g
ti
m
e
[s
]

(a) Training with random parameter
choice.

0 5 10 15 20 25 30 35
number of cpu cores used

20

40

60

80

100

120

140

160

180

T
es
t
ti
m
e
[s
]

(b) Testing with random parameter choice.

0 5 10 15 20 25 30 35
number of cpu cores used

0

20

40

60

80

100

120

140

160

180

T
ra
in
in
g
ti
m
e
[s
]

(c) Training with fixed parameters.

0 5 10 15 20 25 30 35
number of cpu cores used

20

40

60

80

100

120

140

160

180

T
es
t
ti
m
e
[s
]

(d) Testing with fixed parameters.

Fig. 5.6. Training and test time depending on number of cores.

Here, we use a 16-core AMD Opteron 6272 Processor and use 1 . . . 32 processes

for the map operation. In the ensemble T = 32 estimators are trained. Up to 16

parallel executions, the computation times of the independent estimators decrease.

With more than 16 processes there is no further improvement. The results of the

parallel implementation show that our algorithm can be employed successfully

5.7 Conclusions 69

in applications where a fast training or testing is required and can possibly be

provided through multicore processors.

An implementation on highly parallel graphics processors with their manycore

architectures is not possible in a straight-forward manner because of the design

of the SVR algorithm, different memory access for each estimator and poor

performance. For future work an implementation with beneficial use of graphics

processing units (GPUs) could be possible, since the field on GPU computing for

machine learning is an active area of current research.

5.7 Conclusions

The integration of wind power into the smart grid is only possible with a precise

forecast computed in reasonable time. For an improvement of the prediction

performance and reduction of computational cost, we presented a SVR ensemble

method using bagging and weighted averaging. We showed that we obtain the best

results when using a random parameter choice for the estimators. The number of

estimators and the samples have to be sufficient in order to provide a reliable

forecast accuracy. Compared to state-of-the-art SVR, the prediction error can

be decreased while offering a reasonable runtime. In addition to a theoretically

lower runtime, a highly parallel implementation using multicore processors has

been implemented and shown to perform very efficiently.

6

Combination of Speed and Power Time Series

Different machine learning algorithms can be used for short-term wind power

prediction. The question comes up for the choice of appropriate features for

the wind power prediction problem. Most past work concentrates on univariate

prediction models that map a single time series to target values. Our approach

takes into account the features from neighboring turbines, but was in the past

restricted to the use of power features. If available, it might be beneficial for the

prediction to include the wind speed features as well. Many approaches compute

a forecast of the speed and then transform it to a power value using a power

curve (PC) model, see [102].

In this chapter, we analyze various regressors trained with patterns composed

of different features, i.e., power output measurements, wind speed measurements,

and differences of these. We compare models based on k-NN, SVR, and RF that

turned out to be very successful in various applications, see [28]. Last, we combine

the best combinations of regressors and their features to ensembles and show

experimentally that these outperform their single predictor competitors.

This chapter is structured as follows. The experimental study in Section 6.1

compares the use of the different feature spaces with the different regression

algorithms. The combination of these predictors to an ensemble is analyzed in

Section 6.2. Conclusions are drawn in Section 6.3.

72 6 Combination of Speed and Power Time Series

6.1 Comparison of Input Patterns

6.1.1 Comparing Speed and Power Features

When applying machine learning algorithms to real-world data, the choice of

appropriate features is important for achieving good prediction results. For our

wind prediction task, there are two time series available, i.e., wind speed and

wind power measurements of every turbine. While previous work often took only

into account time series itself for prediction of future values, it could be beneficial

to include all available data. In particular for wind, there is an important relation

between the speed and the power values since the power output is a function of

the actual wind speed.

For both available time series we also consider to preprocess the time series

by including the differences of each measurement to the measurement before,

thus including the slope as a feature. The use of these differences could contain a

recent trend and helpful information to recognize recurring situations appearing.

We expect that different regression algorithms show different behaviors when

running on other feature representations. It may be that one algorithm performs

better on a particular feature set while another yields a lower prediction error for

another feature set.

Our objective is to compare the use of the two available time series and the

preprocessed time series using RF, SVR, and k-NN regression methods. Because

the choice of the right parameters is crucial for a good prediction result and the

prevention of overfitting, we perform a grid search with 5-fold cross-validation

(CV) on the training set with data from 01/2004 to 06/2005 to determine the

optimal parameters for each turbine, the corresponding feature representation and

the algorithm used. The trained predictor is then employed to make a prediction

for a test set with data from 07/2005 to 12/2006. For RF, we vary the number of

estimators chosen from {32, 64, 128, 256}. For the SVR, regularization parameter

λ is chosen from {1, 10, 100, 1000} using an RBF-kernel chosing its bandwidth σ

from {0.0001, 0.001, 0.01, 0.1, 1.0}. For k-NN, k is chosen from {1, 5, 15, 20}.

6.1 Comparison of Input Patterns 73

Table 6.1. Comparison of MSE of RF, SVR, and k-NN using power output (P), speed (S), and
differences (∆) of the particular time series. For each target turbine, the best prediction error is
printed in bold figures. The best prediction per algorithm and turbine is underlined.

(a) CV error

RF SVR k-NN

Turbine P P+∆ S S+∆ P P+∆ S S+∆ P P+∆ S S+∆

Casper 10.54 10.16 11.41 10.69 10.31 10.20 11.17 10.89 11.91 11.78 13.63 13.05

Cheyenne 7.72 7.61 7.62 7.27 7.79 7.75 7.54 7.34 8.48 8.56 8.66 8.33

Hesperia 8.04 7.78 7.68 7.16 8.01 7.99 7.46 7.30 9.30 9.18 9.50 9.13

Lancaster 9.44 8.99 9.30 8.28 8.90 8.85 8.77 8.66 10.45 10.36 11.28 10.79

L.V. 9.92 9.49 10.12 9.36 9.36 9.30 9.96 9.66 11.03 10.79 11.88 11.42

P.S. 6.04 5.95 5.31 4.90 5.85 5.82 5.05 4.97 7.51 7.53 7.67 7.41

Reno 12.37 11.69 11.68 10.67 11.82 11.67 11.67 11.29 15.15 14.98 15.48 14.84

Tehachapi 7.65 7.41 8.35 7.89 7.44 7.35 8.04 7.98 9.02 9.00 9.86 9.49

Vantage 6.06 5.95 5.82 5.42 5.97 5.97 5.59 5.59 6.88 7.02 7.02 6.81

Y.V. 11.34 11.23 10.98 10.64 11.40 11.27 10.93 10.76 12.21 12.24 12.10 11.77

(b) Test error

RF SVR k-NN

Turbine P P+∆ S S+∆ P P+∆ S S+∆ P P+∆ S S+∆

Casper 10.62 10.01 12.25 11.41 10.76 10.43 11.59 11.27 12.24 12.05 14.30 13.74

Cheyenne 7.29 7.21 7.12 6.71 7.17 7.10 6.75 6.70 7.93 7.99 7.87 7.61

Hesperia 7.69 7.50 7.39 6.91 7.62 7.70 7.21 6.95 8.76 8.59 8.92 8.49

Lancaster 8.19 8.05 7.66 7.06 8.01 7.88 7.43 7.23 9.15 9.01 9.34 8.94

L.V. 10.52 9.98 10.23 9.50 10.43 10.32 10.88 10.61 11.85 11.69 12.43 11.92

P.S. 5.84 5.80 5.23 4.78 5.94 5.86 4.95 4.83 7.11 7.06 7.25 7.00

Reno 13.94 13.39 14.04 12.78 13.66 13.39 14.23 13.68 16.65 16.52 17.58 16.88

Tehachapi 7.30 7.07 7.69 7.18 7.23 7.27 8.15 8.04 8.45 8.45 9.75 9.41

Vantage 6.81 6.69 6.51 6.11 6.64 6.60 6.34 6.30 7.83 7.84 8.17 7.92

Y.V. 9.14 9.18 8.72 8.51 9.05 9.00 8.66 8.51 9.73 9.84 9.57 9.29

74 6 Combination of Speed and Power Time Series

The results of the comparison are presented in Table 6.1. For all three

regression algorithms, it is a good choice to include differences of the used

features for most of the turbines. For RF and SVR, using the speed time series for

predicting the power output seems more promising than the power features . For

the k-NN experiments, there is no clear answer, if the power or the speed features

should better be preferred. We can observe that RF regression outperforms

the other two regression algorithms for eight out of ten turbines w.r.t the CV

error. The analysis of test errors shows that the CV-selected type of features,

parameters, and algorithm choices perform similarly well on the test sets, too.

6.1.2 Combining Speed and Power Features

In the following, we combine the features of both time series to one big pattern.

Table 6.2 shows the experimental comparison for these composed features based

on the power and speed (Tables 6.2 a and b) and also including the differences

between the measurements (Tables 6.2 c and d). Because the patterns have

different dimensionalities and different types of features, a parameter search is

necessary for each experiment. Again, grid search with 5-fold CV is performed

to find the best possible settings for each algorithm and target turbine. The

main idea of the comparison is that the algorithms could behave differently when

different features are used.

Tables 6.2 (a,b) show that without employing the feature differences, only

for a few turbines the prediction can be improved for a particular algorithm. The

optimal CV error and test error per turbine cannot be outperformed. However,

when including the power and speed difference features to the pattern, a great

improvement of CV error and test error can be observed for both RF and SVR,

see Tables 6.2 (c,d). In nine out of ten cases, the optimal prediction error from

Table 6.1 is outperformed. Therefore, we strongly recommend to consider the use

of patterns consisting of the power measurements, the speed measurements, and

their differences if available.

6.1 Comparison of Input Patterns 75

Table 6.2. Prediction error for combined patterns using power and speed measurements (a,b)
without and (c,d) with differences included. The prediction errors lower than the ones using the
same regression algorithm on the single time series presented in Table 6.1 are underlined. A
lower error than the turbine optimum from Table 6.1 is printed in italics. The best value per
turbine in each table is printed in bold figures.

(a) CV error

Turbine RF SVR k-NN

Casper 10.08 9.98 11.91

Cheyenne 7.51 7.64 8.42

Hesperia 7.26 7.89 9.35

Lancaster 8.68 8.61 10.61

L.V. 9.57 9.37 11.21

P.S. 5.36 5.41 7.46

Reno 11.08 11.52 15.10

Tehachapi 6.85 7.42 9.00

Vantage 5.80 5.89 6.88

Y.V. 10.93 11.17 12.18

(b) Test error

Turbine RF SVR k-NN

Casper 9.69 10.24 12.23

Cheyenne 7.09 6.99 7.89

Hesperia 7.22 7.38 8.70

Lancaster 7.59 7.52 9.20

L.V. 9.78 10.39 11.94

P.S. 5.25 5.29 7.08

Reno 12.84 13.34 16.55

Tehachapi 6.23 7.31 8.57

Vantage 6.33 6.48 7.92

Y.V. 8.75 8.89 9.60

(c) CV error with ∆

Turbine RF SVR k-NN

Casper 9.28 9.85 11.74

Cheyenne 7.15 7.50 8.41

Hesperia 6.70 7.78 9.12

Lancaster 7.65 8.53 10.51

L.V. 8.79 9.18 10.97

P.S. 4.88 5.38 7.34

Reno 10.14 11.21 14.84

Tehachapi 6.29 7.25 8.91

Vantage 5.47 5.83 6.87

Y.V. 10.55 11.03 12.08

(d) Test error width ∆

Turbine RF SVR k-NN

Casper 9.03 10.04 11.94

Cheyenne 6.66 6.80 7.87

Hesperia 6.59 7.21 8.52

Lancaster 6.87 7.48 8.99

L.V. 9.09 10.14 11.70

P.S. 4.84 5.20 6.88

Reno 11.58 12.80 16.32

Tehachapi 5.78 7.18 8.51

Vantage 5.88 6.36 7.85

Y.V. 8.50 8.78 9.66

76 6 Combination of Speed and Power Time Series

6.2 Ensemble Combination

6.2.1 Combination of Predictors Based on Different Time Series

One of the main reasons for the success of ensemble predictors is the diversity

amongst the combined predictors, i.e., a different behavior or uncorrelated pre-

diction errors. In Section 6.1, we showed that the use of the different available

time series features leads to an improvement of the prediction error. The question

arises if we can further decrease the prediction error by combining regressors

based on the different time series features. First, we combine one predictor based

Table 6.3. Comparison of MSE with combinations of predictors. Each combination consists of
one prediction based on power time series and one prediction based on speed time series – using
RF or SVR. For every park, the best value is printed in bold. Every value that outperforms the
predictors from Table 6.1 for a given park is underlined. Every predictor that outperform the
ones shown in Table 3 is printed in italics.

Turbine RF+RF RF+SVR SVR+RF SVR+SVR

Casper 9.69 9.40 9.67 9.64

Cheyenne 6.71 6.60 6.60 6.60

Hesperia 6.71 6.82 6.77 7.03

Lancaster 7.01 6.94 6.88 7.05

L.V. 9.20 9.59 9.28 9.93

P.S. 4.88 4.86 4.83 4.97

Reno 11.87 12.26 11.80 12.68

Tehachapi 6.36 6.58 6.44 6.87

Vantage 5.99 5.99 5.94 6.13

Y.V. 8.50 8.47 8.36 8.49

on the power time series with one predictors based on the speed time series, each

also using the differences between the particular time steps. The main idea is that

the algorithms behave differently in different feature space and therefore give very

diverse predictions for the same target time step. For both the power and speed

time series patterns, each an RF and an SVR predictor are trained separately. To

6.2 Ensemble Combination 77

give a prediction, one predictor based on the power features and one predictor

based on the speed features is selected and then combined by computing the

mean of the two predictors’ output values. In Table 6.3, we can observe that

a lower prediction error is possible compared to the regressors from Table 6.1,

but in seven out of ten cases, the prediction is worse than the one based on the

combined pattern shown in Tables 6.2 (c) and (d). With a weighted average,

we could decrease the prediction error further, but still yielding no competitive

results to the predictors using the combined patterns.

6.2.2 Combination of Predictors Based on All Available Features

As shown in Section 6.1, both RF and SVR yield very good prediction results

when using combined patterns including power and speed measurements as well

as the computed differences. In this section, we combine the predictors to an

ensemble. We only consider RF and SVR because of their superiority compared to

k-NN. The two prediction values are combined by computing a weighted average

with α ∈ (0, 1):

f(x) = α · fRF (x) + (1− α) · fSV R(x) (6.1)

Figure 6.1 shows the experimental results for four selected turbines. From

the plots, we can observe that the combination of the two predictors helps to

improve the prediction error. While the special case α = 0.5 is a good first guess,

the best value varies from turbine to turbine. Finding a feasible α is a parameter

tuning problem which we address with CV. The question arises, if an α value that

performs best in CV on the training set, can also give a near-optimal solution

for the prediction on the test set. The experimental results shown in Table 6.4

demonstrate the practical relevance of the proposed approach. In the CV, we

optimize the setting for α w.r.t the lowest CV error. When using the optimal α

found in the CV for the test set prediction, we observe a competitive test error.

The achieved error and the found α are very close to the best possible α and test

error for the test set, which can never be known in advance. predictions for eight

78 6 Combination of Speed and Power Time Series

 6.5

 6.6

 6.7

 6.8

 6.9

 7

 7.1

 7.2

 7.3

 7.4

 7.5

 0 0.2 0.4 0.6 0.8 1

M
S
E

α

CV Eror
Test Error

(a) Cheyenne

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 0 0.2 0.4 0.6 0.8 1

M
S
E

α

CV Eror
Test Error

(b) Hesperia

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0 0.2 0.4 0.6 0.8 1

M
S
E

α

CV Eror
Test Error

(c) Lancaster

 4.6

 4.7

 4.8

 4.9

 5

 5.1

 5.2

 5.3

 5.4

 0 0.2 0.4 0.6 0.8 1

M
S
E

α

CV Eror
Test Error

(d) Palm Springs

Fig. 6.1. CV and test error of linear combination of RF and SVR predictions with all available
features for varying coefficient α.

out of ten turbines, compared to the use of single predictors from Section 6.1.

The same behavior can be observed in Figure 6.1, where the plots of CV error

and test error have very similar shapes and optima. Summing up, we strongly

recommend the combination of diverse predictors based on the combined patterns

for wind power prediction.

6.3 Conclusions 79

Table 6.4. CV optimization of coefficient α . The CV error and test error with the found α
are compared to the best possible α on the test set. The CV errors outperforming the single
predictors shown in Table 6.2 (c) and the test errors outperforming the single predictors from
Table 6.2 (d) are printed in italics.

Turbine Best α (CV) CV error Test error Best α (test) Test error

Casper 0.67 9.13 8.91 0.73 8.90

Cheyenne 0.67 7.05 6.52 0.58 6.51

Hesperia 0.85 6.70 6.50 0.84 6.50

Lancaster 0.77 7.56 6.74 0.73 6.73

L.V. 0.62 8.55 9.12 0.84 9.04

P.S. 0.66 4.77 4.62 0.63 4.62

Reno 0.73 9.92 11.35 0.71 11.34

Tehachapi 0.78 6.20 5.84 1.0 5.76

Vantage 0.70 5.40 5.80 0.77 5.80

Y.V. 0.69 10.43 8.34 0.64 8.34

6.3 Conclusions

The integration of wind power generation into the smart grid can only succeed

with precise and reliable forecast methods. With different measurements available,

machine learning algorithms are able to achieve very good predictions for short-

term horizons. In this chapter, we compared the use of wind power and wind

speed time series with RF, SVR, and k-NN regression. While both power and

speed features contain an essential amount of information for the prediction task,

we showed experimentally that both should be combined in order to improve the

prediction error. It can be further increased by including the differences of the

power and speed measurements, which allows important insights into the trend.

Further, we proposed an ensemble method for wind power prediction employing

one RF and one SVR regressor and combined both with a weighted average. A

near-optimal weighting coefficient α can be determined by cross-validation and

beats the single predictors based on the different feature spaces.

7

Heterogeneous Ensembles

There are two big challenges when applying machine learning techniques to the

field of wind power prediction: First, in order to achieve the best prediction

accuracy possible with these algorithms, the computation time grows very large.

For instance, training an SVR can easily take hours – strongly increasing with

the number of considered neighboring turbines and past measurements. Second,

the prediction performance needs to be improved further to cope with the actual

energy markets needs. These two aspects make the choice of machine learning

algorithm and parameters for wind power forecasting difficult.

In this chapter, we discuss the practical use of regression ensembles for the

task of wind power forecasting, aiming at optimal regression accuracy as well

as maintaining a reasonable computation time. In the first step we compare

homogeneous ensemble predictors consisting of either decision trees (DT), k-NN,

or support vector regressors as base algorithms. As diversity among the ensemble

members is crucial for the accuracy of the ensemble, we propose the use of

heterogeneous ensemble predictors consisting of different types of base predictors

for wind power prediction. Our comprehensive experimental results on five test

turbines show that a combination of DT and SVR yields better results than the

analyzed homogeneous predictors while offering a decent runtime behavior. Going

further, we show that heterogeneous ensemble predictors are very well-suited for

82 7 Heterogeneous Ensembles

using large numbers of neighboring turbines and past measurements and improve

the prediction performance.

This chapter is structured as follows: The application of regression ensembles

to the field of wind power prediction and a comprehensive experimental analysis

are presented in Section 7.1, followed by Section 7.4 dealing with heterogeneous

ensemble predictors. The analysis of the question, how to use the largest possible

amount of valuable information from the available data is done in Section 7.5. In

Section 7.6, the heterogeneous ensemble prediction model is applied to the power

output prediction of wind parks. Conclusions are drawn in Section 7.9.

7.1 Algorithmic Framework

Our objective is to find out if heterogeneous machine learning ensembles are a

superior alternative to state-of-the-art machine learning predictors. We decided to

implement a relatively simple bagging approach with weighting, which has some

advantages. While the implementation is straight-forward and offers a moderate

computational cost, we consider the approach sufficient for a proof of concept,

which is also shown in the experimental evaluation. Another good example for

this ensemble algorithm is the famous Random Forest method that yields very

good results, too, and is relatively fast compared to Boosting algorithms. The

latter ones could outperform for some applications, but also tend to overfitting,

and can hardly be parallelized.

Our algorithm is outlined in Algorithm 3. As usual in supervised learning, a

training set X with known labels is given. The most important meta-parameters

of the algorithm are the number T of weak predictors, the number S of samples,

and the types of base algorithms used for each predictor. Both T and S have to

be chosen large enough in order to provide satisfying results. However, the best

choice for T and S depends on the base algorithm used, which also influences the

runtime significantly. The main work of the algorithm takes place in the for-loop

beginning in line 3. Each pass trains one weak predictor pi and its assigned weight

wi. For each weak predictor, a subset of X with size s is sampled and used as

7.1 Algorithmic Framework 83

Algorithm 3 Training of Ensemble Predictor
1: Inputs:

X = {(x1, y1) . . . , (xN , yN)} ⊂ Rd × R
Number of predictors: T

Number of samples: S

Algorithms to use: A = {ai|i ∈ 1 . . . T}
2: Returns:

Predictors: P = {pi|i = 1, . . . , T}
Weights: W = {wi ∈ R|i = 1, . . . , T}

3: for i = 1 to T do

4: Xsample ← sample(X, s)

5: Xval ← X−Xsample

6: pi ← Train model using algorithm ai on Xsample

7: wi ← 1
MSE(pi,Xval)

8: end for

training set Xi for the particular predictor pi. The sampling can be done with or

without replacement, which we will discuss in the experimental part. In order to

calculate weight wi, the remaining training patterns are used as a validation set

Xval. The value wi is then obtained by testing pi on Xval and taking the inverse

of the MSE.

When the training algorithm computed the predictors and weights, for an

unknown instance x′ the predicted label is computed by:

f(x′) =

∑T
i=1wi · pi(x′)∑T

i=1wi
(7.1)

Each predictors output pi(x) is computed and then weighted by wi in the resulting

weighted average. In a realistic scenario, one would perform all calls of pi in

parallel using multi- or manycore processors. Because there are no computational

dependencies between the ensemble members, the problem is embarrassingly

parallel. To give an easy and fair comparison, in our experiments we only employ

only one CPUcore for the runtime measurements. As depicted in Table 7.1, the

runtime for training depends on the base algorithm used, the number of estimators

employed, and the number of samples used. E.g., an ensemble of 32× 500 DT

84 7 Heterogeneous Ensembles

ensemble regressor can be trained in only one second, whereas a 256 × 1, 000

SVR ensemble needs more than ten minutes. Because the different ensemble

predictors yield different prediction accuracies, the computation time should be

considered when choosing a model for practical use. In Section 7.4, we investigate

the problem of giving the best possible prediction in a short computation time.

7.2 Sampling of Features and Patterns

As pointed out by [46], random forests and bagging classifiers in general benefit

from sampling from the feature space. That is, taking only a random subset of

the available features into account. Besides the number of features used, the

choice can be done with ot without replacement. Using replacement is sometimes

considered as useful [24, 94], but there is no explicit rule for every situation.

Therefore, we evaluated the behavior depending on the number of features as well

6.5

7

7.5

8

8.5

9

9.5

10

10.5

0 5 10 15 20 25 30 35

M
S
E

Number of Features Used

dec,true
dec,false
svr,true
svr,false
knn,true
knn,false

(a) T = 32 weak predictors, each using S = 500
training samples

6.5

7

7.5

8

8.5

9

9.5

10

0 5 10 15 20 25 30 35

M
S
E

Number of Features Used

dec,true
dec,false
svr,true
svr,false
knn,true
knn,false

(b) T = 256 weak predictors, each using S =
1, 000 training samples

Fig. 7.1. Impact of random sampling of features with and without replacement on the regression
error of ensemble regressors for a wind park near Vantage. From the 33 features available, only
a random subset was used. The values given in the plots are calculated by the mean of 10 runs.
The two graphs for each regression algorithm used as weak predictor strongly overlap and can
hardly be distinguished.

as the boolean replacement parameter. Because we only want to get the basic

7.3 Choice of the Base Algorithms 85

idea of the behavior, we visualize the results for one wind park in Figure 7.1 for

two setups of sample size and number of predictors. The results are exemplary

for the other tested parks, too. First, we found that increasing the number of

features used resulted in a lower regression error. But one must not forget that a

lower number of features also results in a shorter computation time, so a trade-off

is necessary. Second, we do not find any evidence that sampling with replacement

is superior or inferior to sampling without replacement. Therefore, we employ

sampling without replacement. For the basic comparison of the weak predictors,

all features are used. For the comparison of heterogeneous ensembles, the number

of features sampled will be considered again because of the possible trade-off

between runtime and accuracy.

Concerning the training samples, we found no evidence for the supremacy

of sampling with or without replacement, but due to the recommendations

in literature [12, 94], we decided to employ sampling with replacement in the

following experiments.

For both regression performance and runtime, the sample size is an important

factor as well. Because it cannot be examined separately without looking at the

number of weak predictors, we analyze both aspects together in the following

experiments.

7.3 Choice of the Base Algorithms

Since the number of possible settings is huge, one has to make some assumptions

to limit the number of combinations. The decision tree algorithm is a powerful

yet simple tool for supervised learning problems [39]. While there are different

algorithms for building up decision trees, we limit ourselves to the famous

CARTalgorithm [14]. A famous yet relatively simple approach for classification

and regression is the k-nearest neighbors (k-NN) model, see [121]. For parameter

k, we make a random choice in the interval [1; 25]. The SVR algorithm often

provides very good prediction results and is regarded as state-of-the-art regression

technique. We utilized a RBF kernel and choose C = 10, 000 and σ = 1e − 5

86 7 Heterogeneous Ensembles

for this experiment. In the following sections, cross-validation is utilized for

parameter-tuning.

We experimentally compare different regression algorithms composed to

ensembles: Table 7.1 shows a comparison of decision trees, SVR, and k-NN used

as weak predictors. A general observation is that increasing T and S decreases

the prediction error. With the given T and S, no clear decision between decision

trees and SVR can be made, but we stick to these two basic algorithms in the

further experiments rather than k-NN.

Table 7.1. Comparison (MSE) of ensemble predictors consisting of different base algorithms
used as weak predictor. For every turbine, the best result is printed in bold. Each experiment
has been repeated 10 times.

Base Algorithm DT SVR k-NN

T 32 32 256 256 32 32 256 256 32 32 256 256

S 500 1, 000 500 1, 000 500 1, 000 500 1, 000 500 1, 000 500 1, 000

Casper 11.17 10.93 10.89 10.62 10.99 10.84 10.95 10.87 13.10 12.44 13.02 12.44

Las Vegas 10.84 10.61 10.51 10.27 10.26 10.26 10.27 10.27 12.84 12.36 12.81 12.30

Hesperia 7.98 7.82 7.76 7.59 7.62 7.61 7.60 7.59 9.41 8.96 9.36 8.98

Reno 14.76 14.53 14.47 14.19 14.11 14.10 14.00 13.98 18.92 18.03 19.14 18.14

Vantage 7.31 6.97 7.00 6.83 6.61 6.58 6.57 6.57 8.44 7.93 8.43 8.07

Approx. ttrain (s) 1 2 10 15 60 120 600 1,200 36 60 292 481

7.4 Heterogeneous Ensembles

Of course, when dealing with forecasting tasks, the first goal is to reach the

lowest prediction error possible. While it is possible to decrease the prediction

error by using ensembles, a feasible runtime is equally important for practical

relevance. If it takes hours to train a regressor for one turbine, a model would be

unusable for a large number of turbines requiring a forecast – the time needed for

7.4 Heterogeneous Ensembles 87

parameter-tuning and cross-validation not mentioned. Therefore, our goal is to

reach a good prediction performance as well as a short runtime for both training

and testing. As seen in Table 7.1, there is no clear answer which algorithm should

be preferred. Since it is known that ensemble predictors benefit from diversity

amongst the ensemble members, it a heterogeneous choice of base algorithms

could yield a better regression accuracy as well.

7.4.1 Mixed Ensemble with Coefficient α

First, we analyze heterogeneous ensembles that employ both an amount of SVR

predictors and an amount of decision trees. We define a coefficient α that specifies

the amount of weak predictors trained with the decision tree algorithm. Hence,

1−α is the amount of SVR weak predictors in the ensemble. Figure 7.2 shows the

experimental results for two wind turbines. For both (a) and (b), three ensemble

settings were analyzed showing MSE and training time: S is set to 1, 000 and

T is set to 32, 64, or 128. The higher the number of predictors is, the lower the

prediction error becomes. But also the runtime increases notable. With α = 0,

we observe an ensemble with only SVR predictors, with α = 1, only decision

trees are chosen. The interesting point is that, given a sufficient number T , the

prediction quality gets best with an α in the middle range. This points to an

advantageous behavior of heterogeneous ensembles: With an α in the near of 0.5,

the training and testing time of the ensemble predictor decreases dramatically

compared to α = 0.0. Therefore, the parameter α can be seen as explicit tuning

parameter for the trade-off between prediction performance and computation

time.

7.4.2 Ensemble Combining SVR and DT Ensembles

While the results of the former experiment could be pleasant for the user, we

have to point out that the parameter α was varied for fixed T and S. One has to

consider that different weak predictors show different behavior and could benefit

from different combinations of T and S. I.e., we will see that a large amount of

88 7 Heterogeneous Ensembles

 6.5

 6.6

 6.7

 6.8

 6.9

 7

 7.1

 0 0.2 0.4 0.6 0.8 1

M
S
E

α

32x1000

64x1000

128x1000

 0

 100

 200

 300

 400

 500

 0 0.2 0.4 0.6 0.8 1

T
ra

in
in

g
 T

im
e

α

32x1000

64x1000

128x1000

(a) Mixture α for a wind turbine near Vantage

 10

 10.1

 10.2

 10.3

 10.4

 10.5

 10.6

 0 0.2 0.4 0.6 0.8 1

M
S
E

α

32x1000

64x1000

128x1000

 0

 100

 200

 300

 400

 500

 0 0.2 0.4 0.6 0.8 1

T
ra

in
in

g
 T

im
e

α

32x1000

64x1000

128x1000

(b) Mixture α for a wind turbine near Las Vegas

Fig. 7.2. Mixing of SVR and DT. With a balanced mixture, a better MSE is reached within a
shorter training time.

predictors is a good possibility to ameliorate decision tree ensembles while the

runtime does not suffer as much as in SVR ensembles. Instead of combining some

SVR predictors and some decision trees, one could possibly better combine a huge

number of decision trees and maybe also increase sample number S. In this work,

we propose to use heterogeneous ensembles built upon SVR and decision tree

regressors. We chose the most simple approach by training one SVR ensemble and

one DT ensemble. The predicted value is then obtained by computing the mean

of the two ensembles’ predictions. As shown in the following experiments, the

result is a robust prediction algorithm that offers a reasonable runtime behavior.

The experiments in the following section address the question, if heterogeneous

ensembles offer a better performance than homogeneous ensembles. The second

question is: Can heterogeneous ensembles help to decrease the computation time

needed?

In our experiments, we analyze heterogeneous ensembles built upon SVR

and decision tree regressors. In our experiments, we use the power output data

7.4 Heterogeneous Ensembles 89

 9.6

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 0 500 1000 1500 2000 2500 3000 3500

M
S
E

Training Time

dec
svr

dec+svr

(a) Las Vegas: MSE depending on training time

 9.6

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 0 100 200 300 400 500 600

M
S
E

Test Time

dec
svr

dec+svr

(b) Las Vegas: MSE depending on test time

 6.3

 6.4

 6.5

 6.6

 6.7

 6.8

 6.9

 7

 0 500 1000 1500 2000 2500 3000 3500

M
S
E

Training Time

dec
svr

dec+svr

(c) Vantage: MSE depending on training time

 6.3

 6.4

 6.5

 6.6

 6.7

 6.8

 6.9

 7

 0 100 200 300 400 500 600

M
S
E

Test Time

dec
svr

dec+svr

(d) Vantage: MSE Depending on test time

Fig. 7.3. Behavior of runtime and prediction performance for homogeneous and heterogeneous
ensembles for two wind turbines near Las Vegas and Vantage. The heterogeneous combinations
can outperform the homogeneous ensembles. In particular, the solutions in each bottom left
corner show ensembles with a very short computation time as well as a very low error.

of the five wind parks and include the measurements of 10 neighbored turbines

into the patterns. As training data set, the data from 01/2004 until 06/2005

is used and the data from 7/2005 until 12/2006 serves as test data set. The

experiments were run on an Intel Core i5 at 3.10GHz with 8GB of RAM. The

algorithms were implemented in Python utilizing the kNN, decision tree, and

SVR implementations of Scikit-learn [88].

90 7 Heterogeneous Ensembles

Table 7.2. Behavior of different setups of SVR, DT, and combined ensembles for a wind turbine
near Las Vegas.

(a) SVR ensembles

setup T S ttrain ttest MSE

1 4 500 7.58 7.11 10.78

2 4 1,000 14.69 13.09 10.43

3 4 2,000 29.94 25.46 10.58

4 32 500 59.73 55.91 10.30

5 32 1,000 117.86 105.61 10.26

6 32 2,000 245.85 206.68 10.35

7 64 500 119.40 111.91 10.20

8 64 1,000 236.26 211.83 10.26

9 64 2,000 489.92 410.81 10.26

(b) Decision Tree Ensembles

setup T S ttrain ttest MSE

1 32 2000 4.91 3.65 10.44

2 32 4,000 7.74 3.85 10.27

3 32 40,000 81.96 3.82 10.06

4 256 2,000 42.67 28.86 10.13

5 256 4,000 63.17 29.17 10.05

6 256 40,000 733.15 30.35 9.86

7 1,024 2,000 161.60 113.97 10.15

8 1,024 4,000 258.03 115.55 10.03

9 1,024 40,000 2,859.18 136.71 9.82

(c) Combinations of one DT ensemble and on SVR en-
semble to one heterogeneous ensemble. For every combi-
nation, the MSE is shown. The row denotes which SVR
ensemble is employed, whereas the column shows which
DT ensemble is used.

D1 D2 D3 D4 D5 D6 D7 D8 D9

S1 10.13 10.04 9.87 10.05 9.99 9.82 10.06 9.99 9.81

S2 10.03 9.96 9.75 9.97 9.91 9.70 9.97 9.90 9.69

S3 10.05 9.99 9.81 9.99 9.94 9.77 10.00 9.94 9.76

S4 10.02 9.95 9.76 9.95 9.90 9.72 9.97 9.89 9.71

S5 9.96 9.89 9.72 9.90 9.85 9.67 9.91 9.84 9.66

S6 9.98 9.92 9.75 9.92 9.87 9.70 9.93 9.86 9.70

S7 9.98 9.91 9.72 9.91 9.86 9.68 9.92 9.86 9.67

S8 9.99 9.92 9.74 9.92 9.87 9.69 9.93 9.86 9.68

S9 9.97 9.90 9.73 9.90 9.85 9.68 9.91 9.84 9.67

7.4 Heterogeneous Ensembles 91

One has to consider that different weak predictors show different behavior

and could benefit from different combinations of T and S. I.e., we will see that

a large amount of predictors is a good possibility to ameliorate decision tree

ensembles while the runtime does not suffer as much as in SVR ensembles. Instead

of combining some SVR predictors and some decision trees, one could possibly

better combine a huge number of decision trees and maybe also increase sample

number s.

Therefore, we have to give a fair comparison, which considers both prediction

performance and runtime. First, we analyze the behavior of the homogeneous

ensembles based on SVR or decision trees. We try to find good combinations,

which are computable in a feasible time. The result can be seen in Table 7.2:

Like assumed, one can train more decision trees with a larger sample in the

same time as SVR predictors. The central point of the experiment is the equally-

weighted combination of one SVR ensemble and one DT ensemble at a time to

one heterogeneous ensemble.

The results of these combinations are depicted in Table 7.2(c), which has the

form of a matrix. In every cell of the matrix, the used SVR ensemble is given

by the row and the used decision tree ensemble is given by the column. In the

table, only the MSE is given for clear arrangement. The training and test times

for one predictor is approximately the sum of the respective times of the two

combined ensembles. Besides the very promising results, which outperform the

homogeneous ensembles, we also can see that the combination of two weaker

ensembles takes less time to deliver the same prediction error. We visualize this

behavior for two wind turbines in Figure 7.3.

In Table 7.3, we give a comparison of our heterogeneous ensemble method to

SVR and k-NN which are considered as state-of-the-art regressors. The parameters

k and accordingly C and σ were optimized with a 10-fold cross-validation. The

training times are measured using the optimal parameters, so the huge amount

for parameter tuning is not included. The testing times showed similar behavior.

As comparison, we show two different heterogeneous ensembles. Both consist of

one SVR ensemble with T = 32 an S = 1, 000 and one decision tree ensemble

92 7 Heterogeneous Ensembles

with T = 256 and S = 10, 000. The first one uses all 33 features available,

whereas the second only makes use of 15 randomly chosen features without

replacement. The result of this comparison is that in most cases the ensemble

predictor outperforms classical SVR. Further, the training time is much shorter.

If one must make a trade-off and decrease training or testing time, he might want

to use a feature-reduced variant.

Table 7.3. Comparison of MSE and training time for five wind turbines. Our ensemble using
all features yields the best MSE in four cases, but only takes a small amount of the time taken
by standard SVR. If training time is considered more important than MSE, on can reduce the
number of features used without loosing much of prediction performance.

(a) Test Error (MSE)

Turbine k-NN SVR ENS33 ENS15

Casper 10.67 9.88 10.19 10.40

Hesperia 7.69 7.39 7.25 7.44

Las Vegas 10.46 15.69 9.78 10.11

Reno 14.81 13.29 13.16 13.83

Vantage 6.86 6.54 6.41 6.65

(b) Training Time (s)

Turbine k-NN SVR ENS33 ENS15

Casper 1 704 413 177

Las Vegas 1 1,450 378 165

Hesperia 1 1,218 387 173

Reno 2 1,173 399 173

Vantage 2 601 374 165

(c) Test Time (s)

Turbine k-NN SVR ENS33 ENS15

Casper 97 268 214 114

Las Vegas 118 341 206 108

Hesperia 83 261 227 113

Reno 98 253 205 113

Vantage 105 251 229 108

7.5 Increasing the Number of Used Features 93

1 6 11 16 21 26 31 36 41 46 51 56

m

1

3

6

10

µ

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

(a) CV-optimized Single SVR

1 6 11 16 21 26 31 36 41 46 51 56

m

1

3

6

10

µ

7.2

7.6

8.0

8.4

8.8

9.2

9.6

10.0

(b) CV-Optimized Single k-NN

1 6 11 16 21 26 31 36 41 46 51 56

m

1

3

6

10

µ

7.2
7.6
8.0
8.4
8.8
9.2
9.6
10.0

(c) KNN-ENS 64× 2, 000

1 6 11 16 21 26 31 36 41 46 51 56

m

1

3

6

10

µ

6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
8.25

(d) SVR-ENS 64× 2, 000

1 6 11 16 21 26 31 36 41 46 51 56

m

1

3

6

10

µ

6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2

(e) DEC-ENS 64× 2, 000

1 6 11 16 21 26 31 36 41 46 51 56

m

1

3

6

10

µ

6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8

(f) Heterogeneous Ensemble combining (d) and (e)

Fig. 7.4. Behavior of different regression algorithms for varying number of employed neighbor
turbines m (x-axis) and feature window µ (y-axis) for a turbine near Vantage. The MSE is
visualized by the color: A darker color denotes a lower error while a lighter color appears for
higher prediction errors.

7.5 Increasing the Number of Used Features

Besides the parameter-tuning of the algorithms, it must be evaluated how large

the number m of considered neighbor turbines and number µ of past time steps

should be to get the best prediction error. I.e., one wants to use as much valuable

information from the data as possible. Like shown before, there is valuable

information existent in the neighboring turbines and in the past time steps.

However, with increasing number of features, the data become more and more

challenging for the employed regression algorithms: First, the computational time

94 7 Heterogeneous Ensembles

is often dependent on the dimensionality of the data. Second, the prediction

accuracy can get worse. E.g., when considering k-NN with Euclidean distance

measure, the expressiveness of the distance between two instances is decreased

with a higher dimensionality. The computation time also grows large, and for

dimensionalities d > 15 it is hardly possible to benefit from spatial data structures

like k-D-Trees [8].

6
6.2
6.4
6.6
6.8

7
7.2
7.4
7.6
7.8

8

0 10 20 30 40 50 60

M
S
E

Neighbor Turbines Used

CV-Optimized Single SVR, µ = 10
CV-Optimized Single kNN, µ = 1

DECENS256x4000, µ = 10
SVRENS64x2000, µ = 10

DECENS+SVRENS, µ = 10

Fig. 7.5. Comparison of MSE depending
on number m of used neighbor turbines
for six regression algorithms for a turbine
near Vantage.

4

5

6

7

8

9

10

11

12

10 20 30 40 50 60 70 80 90 100

M
S
E

Neighbor Turbines Used

Training MSE Test MSE

Fig. 7.6. Training and test error for a
wind park near Las Vegas using a heteroge-
neous ensemble using 256 DT with 10, 000
samples and 64 SVR predictors using 1, 000
samples.

For the practical use of our proposed heterogeneous ensemble predictors,

we have to analyze the abilities of the algorithmic framework to make use of as

much information in the data as possible and improve the prediction further with

tuning of the number of considered neighbor turbines and the past measurements

of these and the target turbine.

In a first experiment, we show the behavior of different regression algorithms

when varying the number m of neighbor turbines and the feature window µ.

While for k-NN and SVR regressors are sought by a grid search and a 3-fold

cross validation, for the ensemble predictors we chose a fixed setting. Figure 7.4

shows the MSE depending on m and µ for a turbine near Vantage. For k-NN and

k-NN ensembles, the best prediction error is reached with small m and µ, i.e., a

7.5 Increasing the Number of Used Features 95

small number of features. We assume that k-NN ensembles perhaps could benefit

from random feature subsets in order to deal with higher dimensionalities. The

SVR predictor as well as the ensemble predictors show a different behavior: With

a larger number of neighbor turbines included into the features, the prediction

error gets smaller. But the feature window has to be increased as well to achieve

better results. With a physical understanding of wind and the idea behind our

spatio-temporal model in mind, this team play of both parameters is a reasonable

behavior. Figure 7.5 shows a comparison of the six algorithms with the best

setting for µ for each algorithm.

While these results show that a better prediction is possible with a larger

number of considered features, we address an important issue with the selection

of machine learning models in another experiment: The practitioner needs to

know a priori which parameter values are the best for the prediction. Therefore,

the parameter settings are selected on a validation set or using cross-validation

technique. The question for the given task is: Can the optimal number m of

neighbor turbines be selected while training the model? If this is the case, the

parameter setting yielding the best training error also yields a very good if not the

best prediction error on a test set. Like in Section 7.4, we employ a heterogeneous

ensemble with 256 DT predictors using 10,000 training samples and 64 SVR

predictors using 1,000 training samples with a fixed feature window of µ = 10.

Figure 7.6 shows the MSE depending on the number m ∈ {10, . . . , 100} of

neighboring turbines used for a wind turbine near Las Vegas. It can be seen

that both error measurements show a similar behavior depending on m. In

particular, the setting m = 40 yields the best error for both training and test

error. The optimal found training and test errors found on five turbines are shown

in Table 7.4. For four of the five, the value of m yielding the best training error

corresponds to the same setting for the best test error. For the turbine near

Casper, the best test error is achieved by a smaller number of neighbor turbines,

but when using the best setting chosen by training error, the test error is still very

low with 9.98. Therefore, we suggest including the number of neighbor turbines

into the algorithms’ parameter search.

96 7 Heterogeneous Ensembles

Table 7.4. Best settings for number m of used neighbor turbines selected by best training and
test error.

Turbine m Etrain m Etest

Casper 60 4.93 40 9.74

Hesperia 60 3.81 60 6.91

Las Vegas 40 4.69 40 9.57

Reno 20 6.16 20 13.33

Vantage 50 2.83 50 6.09

7.6 Power Prediction for Wind Parks

The question comes up if the proposed prediction model can give good predictions

for wind parks, too. Treiber, Heinermann, and Kramer [108] investigated the

use of machine learning models for wind park power prediction while employing

different aggregation settings. They found that predicting the overall power

output of a whole wind park often yields a better forecast error than predicting

the outputs of the single turbines and summing them up. In the following, we

compare our heterogeneous ensemble approach to state-of-the-art SVR used for a

prediction for wind parks. Each of the five tested wind parks consists of a center

turbine and 10 neighboring turbines.

Let pi(t) be the measurement of a turbine i at a time t, and 2 ≤ i ≤ (m+ 1)

the indices of the m neighboring turbines. For a center turbine with index 1 we

define a pattern-label-pair (x, y) for a given time t0 as
p1(t0 − µ) . . . p1(t0)

.

p(m+1)(t0 − µ) . . . p(m+1)(t0)

→
m+1∑
i=0

pi(t0 +∆t). (7.2)

Again, the parameters for SVR are sought via three-fold cross-validation.

A RBF-Kernel is employed with bandwidth σ ∈ {1e − 5, 1e − 4, . . . , 1} and

C ∈ {1e; 10; . . . ; 10, 000}. The ensemble regressor is built up from 256 decision

7.7 Error of the Ensemble Members 97

trees using 10, 000 training samples and 64 SVR estimators using 2, 000 training

samples. The patterns are constructed with µ = 6 and ∆t = 3. The results of the

comparison are shown in Table 7.5. One can see that the heterogeneous ensemble

regressor outperforms the optimized SVR model for each of the five parks tested.

The lower test errors suggest that the use of a heterogeneous ensemble model

can be a good choice for the overall power prediction of wind parks.

Table 7.5. Power predictions for the sum of five test wind parks. The test error (MSE) is given.

Center SVR Heterogeneous

Turbine with CV Ensemble

Casper 888.09 870.86

Hesperia 785.09 762.76

Las Vegas 641.10 633.12

Reno 775.97 765.61

Vantage 592.34 588.60

7.7 Error of the Ensemble Members

For two NREL test turbines, we trained again an ensemble consisting of SVR

and DT predictors, using first half of 2004 as training dataset and second half of

2004 as test dataset. For the sake of a clear arrangement, we chose T = 30 with

15 SVRs using 1, 000 samples and 15 DTs using 10, 000 samples. In Figure 7.7,

we show the overall prediction error of the ensemble and the errors of the single

ensemble members. It can be seen that for both SVR and DT, the errors among

the members are different. Each single member gives a different prediction for

one test pattern and therefore the MSE is different. The SVR errors are lower

than the ones of the DTs. The overall error of the ensemble, plotted at the very

left is a very interesting result. Both for Cheyenne and Lancaster, the ensemble

error is lower than each members error.

98 7 Heterogeneous Ensembles

Predictors

8

10

12

14

16

18

20

M
S
E

SVR

DT

Ensemble

(a) Cheyenne

Predictors

8

10

12

14

16

18

20

M
S
E

SVR

DT

Ensemble

(b) Lancaster

Fig. 7.7. Example of the ensemble prediction error and the errors of he single members.

7.8 Experiment on AEMO Dataset

In addition to the preceding experiments, we conducted further experiments on the

Australian AEMO dataset. It offers 5-minute power output data, see Appendix A.

We show that using the heterogeneous ensemble can increase the prediction

performance for this use case as well. In contrast to the NREL experiments, only

the time series of the target turbine itself is used.

In Table 7.6, we give a comparison of predictions for five wind farms in

South Australia. Again, the k-NN and SVR are trained using a 5-fold-CV because

optimal k or C and σ must be used for each new dataset. In contrast, the

ensemble dos not need a cross-validation. The main factor for the prediction

performance is the number of estimators used. Further, for the composition of

the ensemble and parameters of the single estimators, a good parameter choice

can be transferred from the preceding experiments – this is not the case for

7.9 Conclusions 99

SVR and k-NN. The dataset used consists of 105, 120 measurements for each

Table 7.6. Comparison (MSE) of k-NN, SVR, and heterogeneous ensemble on five wind farms
from the AEMO dataset. The best MSE for each turbine is highlighted.

Turbine Capacity k-NN SVR ENS

Capital 140MW 231.18 225.55 225.13

Cullerin 30MW 275.68 269.88 267.87

Gunning 47MW 59.47 58.40 57.99

Wooodlawn 48MW 38.85 37.92 37.88

Canunda 46MW 33.05 32.85 32.45

wind farm in year 2011, of which 1
5 is used. For all five test wind farms, the

heterogeneous ensemble, consisting of 64 SVR and 256 DT regressors with 1, 000

and 10, 000 samples, respectively, outperforms the CV-optimized state-of-the-art

methods. This shows the superiority of the ensemble approach because it yields

a decreased error out-of-the box with only few minutes of training time while the

SVR cross-validation takes between two and five hours for each wind farm on an

Intel Core i3 wth 4 × 3GHz processor.

7.9 Conclusions

Wind power can only be integrated into the power grid with a forecast model that

yields a reliable prediction error and is efficient enough to compute the predictions

in a reasonable time. After analyzing different types of ensemble predictors, we

propose a heterogeneous ensemble approach utilizing both DT and SVR. In

our comprehensive experimental evaluation, we show that our approach yields

better results within a shorter computation time than state-of-the-art machine

learning algorithms. Compared to SVR, our heterogeneous ensemble approach

yields improvements of up to 37%. The runtime can even be decreased: Our

approach decreases the computation time for training by factors from 1.60× to

8.78×. The trade-off between prediction performance and computation time can

100 7 Heterogeneous Ensembles

easily be managed by adapting the parameters like number of predictors, number

of samples, and number of features used. Moreover, the number of neighbor

turbines and past time steps can be increased to decrease the prediction error

further. In the following chapter, we continue the idea of the tradeoff between

accuracy and computation time by employing a multi-objective optimization

technique.

8

Evolutionary Multi-Objective Optimization

In the preceding chapters, we presented a novel machine learning approach to

short-term wind power prediction. The success of machine learning models highly

depends on the algorithm choice and the parameter settings. Further, both

aspects can have a negative impact on training and prediction runtime. Machine

learning ensembles help to decrease the prediction error and possibly to achieve

an acceptable computation time. A problem with the possible prediction models

is the infinite number of possible combinations and choices. In this chapter, we

show that ensemble models for wind power prediction can be balanced using

evolutionary multi-objective optimization algorithms in order to find a good

trade-off between runtime and prediction error.

Evolutionary computing is a class of biologically inspired algorithms for

heuristic optimization. In the space of possible solutions, a randomized search is

conducted with inspiration from evolutionary processes, i.e., selection, mutation,

and recombination [26]. For multi-objective optimization problems (MOPs) with

conflicting objectives, there exist special techniques to evolve a set of solutions

that give the best balance between these objectives. These algorithm class is

called EMOAs, which aim at approximating a Pareto front representing equally

good solutions which we call uncomparable.

Why should one be interested in a Pareto-optimal solution? Consider three

solutions for the prediction task. Solution 1 takes 100 seconds and yields a test

102 8 Evolutionary Multi-Objective Optimization

error of 10.0. Solution 2 takes 1 second and yields a prediction error of 15.0.

Solution 3 takes 200 seconds and yields a prediction error of 15.0 as well. So when

the practitioner needs to decide which of these three solutions to choose, the

choice between 1 and 2 would depend on his requirements. I.e., if the reduction of

the prediction error is more important or the least possible runtime. The solution

3, however, would be the worst choice in each case. So we aim at optimizing

all objectives with the question in mind which solutions offer the best tradeoff

between the objectives. In our case it is thinkable to operate the wind power

prediction for thousands of turbines on a high-performance data mining server

and therefore each saving in computation time means a decreased requirement

for expensive hardware.

Multi-objective optimization of machine learning models is an active research

field. Using an evolutionary algorithm like the non-dominated sorting genetic

algorithm NSGA-II by Deb et al. [23], yields a practical approach for the machine

learning practitioner. The algorithm evolves a set of machine learning models

from which one can choose his favorite model a posteriori. Furthermore, the

approach requires much less evaluations than using a weighted single-objective

approach. The success of EMOA based tuning of machine learning models has been

shown by various researchers. A trade-off between accuracy and regularization of

SVM models using NSGA-II has been presented by Mierswa [82]. Hu et al. [48]

propose an evolutionary method for DT ensembles. In [85] we balanced accuracy

and runtime of classification ensembles on artificial benchmark datasets using

NSGA-II.

In this chapter, we combine the ensemble approach with the EMOA technique

in order to give an optimization method for model selection in the field of wind

power prediction. We show that by using the NSGA-II algorithm the balance

between a low prediction error and a short computation time can be found.

In our experimental analysis, we present three examples of ensemble models

which are optimized with EMOA. First, we construct SVR ensembles [40] using

estimators with different model complexity and therefore different runtimes and

error behavior. Second, we employ the famous Random Forest [13] approach.

8.1 Evolutionary Computing 103

Finally, we construct heterogeneous ensembles [43] comprising a various number

of SVR, Decision Tree and k-NN models.

This chapter is structured as follows. The framework of evolutionary com-

putation is briefly introduced in Section 8.1, followed by the multi-objective

optimization using NSGA-II in Section 8.2. Section 8.3 describes our experi-

mental setup. The optimization of SVR ensembles is presented in Section 8.4.

Section 8.5 comprises the experimental results for random forests and Section 8.6

for heterogeneous ensembles. A summary and conclusions are given in Section 8.8.

8.1 Evolutionary Computing

Evolutionary computing is a paradigm in computer science, which is inspired

by the natural evolution. With evolution as a very powerful principle that can

be found everywhere in nature, we obtain an abundant and efficient framework

for problem solving [26]. There are various different variants of evolutionary

algorithms (EAs). The basic idea is to invoke populations of individuals in

an iterative manner, cf. Eiben and Smith [26]. Each individual consists of a

chromosome which results in a fitness value. The chromosome is a point in

the space of possible solutions and can be seen as genotype of the individual.

In the taxonomy of evolution strategies, it consists of real-valued genes, i.e.,

x = (x1, x2, . . . , xN) ∈ RN [60]. For other algorithms, it can consist of binary

genes. The fitness value is a measure of the quality of an individuals’ performance,

represented by an objective function with the chromosome as input. For a

minimization problem, a fitness value as low as possible shall be achieved. The

EA conducts a competition between the individuals. The basic scheme is visualized

as a flow chart in Figure 8.1. At first, an initial population P is created and

the fitness value for each individual is evaluated by computing the objectives

functions. Then, in each iteration a new population of individuals is evolved.

Here, different mechanisms of evolution can be employed. From a population,

feasible parents are selected for reproduction, based on their fitness values.

104 8 Evolutionary Multi-Objective Optimization

Population P Parents Offspring P ′

Survivor
selection

Initialization

Termination

Parent selection Recombination
Mutation

Termination
condition

Fig. 8.1. Scheme of an evolutionary algorithm [26].

The reproduction step is done by mutation and recombination. For mutation,

the individuals’ genes are modified by random numbers. For example, the Gaussian

mutation operator x′ = x + N (0, σ) is a popular choice. Since the so-called

mutation rate σ is an important parameter for the evolutionary optimization and

has a great influence on the success, the correct choice of σ is part of current

research. It can be set to a fixed value but also vary over time. In particular,

there exist successful approaches of adaptive control of σ [60,93]. However, due

to the scope of this work, we do not go into detail here.

The recombination step is inspired by mating. A recombination operator

uses a number of individuals and combines the single genes of their chromosomes.

The idea is to combine the genetic material of two or more successful individuals

for generating an possibly even more successful offspring. In the selection step,

the offspring population P ′ of size λ is evolved using a selection operator. The

(µ+ λ) selects the best µ as parental population P . The (µ, λ)-selection does not

consider individuals from P itself to be in the offspring generation.

The paradigm of evolutionary computing has been applied successfully to

a wide range of complex real-world applications like signal and image process-

ing, computer vision, pattern recognition, industrial control, telecommunication,

scheduling and timetabling, and aerospace engineering, see Cagnoni et al. [17].

There are also very fruitful applications in machine learning. An example for the

evolutionary wind power prediction is given by Treiber et al. [109]. They conduct

the selection of considered neighbor turbines’ features for a spatio-temporal time

8.2 NSGA-II 105

series prediction and show that both (1+1)-EA and state-of-the-art CMA-ES

yield good results.

8.2 NSGA-II

EAs are a successful method for solving MOPs. In contrast to a single-objective

problem, the quality of a solution is defined by several objectives f1, . . . , fm. It is

common that these objectives are conflictive and therefore a compromise has to

be made. For instance, if one wants to buy a new car, a possible objective is a

low price. However, two other objectives could be that it is very fast or has a

preferably big trunk. These objectives can be very conflictive because usually,

faster cars are more expensive and do not necessarily have a big trunk. An

alternative to a multi-objective formulation of a MOP is the representation using

a single fitness value, which is computed using weights, and use a single-objective

optimizer. However, this method is cumbersome because the user’s preferences

need to be known a priori.

In the field of EMOAs, the concept of dominance is very important. With

two solutions x and x′ given for a minimization problem, x dominates x′, written

as

x ≺ x′ (8.1)

if it is better in all objectives f1, . . . , fm. With conflicting objectives, there usually

exists no solution that dominates all others. A solution is non-dominated if it is

not dominated by any other. This means its quality w.r.t one objective cannot

be increased without decreasing the others. We seek for a set of non-dominated

solutions which is called the Pareto set. The corresponding objective values of

the Pareto set define the Pareto front

PF = {f(x∗) ∈ Rm|@x ∈ RN : x ≺ x∗}. (8.2)

There exist various different algorithms for solving MOPs. One of the most

famous ones is the Non-Dominated Sorting Genetic Algorithm NSGA-II by Deb

106 8 Evolutionary Multi-Objective Optimization

et al. [23], which we use in this work. It is based on non-dominated sorting,

which computes a domination rank for each solution. The NSGA-II employs the

crowding distance metric, which is for one solution computed as the difference of

the single fitness values of the neighbor solutions. A large value means, there are

only few other solutions in the neighborhood of the solution. In the evolutionary

computation, each new population is obtained by using a (µ + λ) survivor

strategy with µ = λ. The parent and offspring populations are merged and the

new Pareto front is evolved based on dominance rank and crowding distance

using a tournament operator [26]. Through elitism and diversity maintenance,

the NSGA-II strategy has been shown to perform very successful.

8.3 Experimental Setup

Objective of this chapter is a proof of concept for the multi-objective optimization

of ensembles for wind power prediction. In the chapters 5, 6, and 7, we presented

different methods that yield an improved prediction error and showed that

different solutions offer different runtime behavior for both training and testing.

In this chapter we start with the optimization of SVR ensembles, followed by

RF and finally heterogeneous ensembles which are especially well-suited for the

presented approach. For all three investigated types of model, we describe a

method of representing a reasonable subset of ensemble models while offering

maximum simplicity. Another result is that this method of parameter tuning can

offer valuable insights in the landscape of possible solutions.

For three test turbines we use the data from the year 2004 of the NREL

dataset. To ensure a reliable experiment, the data is split with the 5-fold cross-

validation method. The optimization process is conducted with the NSGA-II

algorithm using SBX-recombination and polynomial mutation. In each experiment,

we use population size µ = 20. The termination condition is the maximum of 500

problem evaluations, resulting in 25 generations. The objectives are the training

time and the CV error (MSE). The results of the optimization are visualized as

8.4 SVR Ensembles 107

scatter plot with training time on the x-axis, CV error on the y-axis and the

generation number as color.

8.4 SVR Ensembles

Support vector techniques belong to the most successful methods in machine

learning and have been shown to work well for wind power prediction. In Chapter 5,

we have shown the superiority of ensembles using SVR as base predictors over

single SVR models. First, the prediction error can be decreased. Second, the

runtime can be decreased utilizing the runtime behavior of the SVR algorithm

and an divide & conquer approach. The best performing models were created

using a random parameter choice of C and σ for each SVR model. The reason

for this is the diversity amongst the predictors.

−10 0 10 20 30 40 50 60 70
Training Time

0

10

20

30

40

50

60

70

80

90

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(a) Lancaster

−0.5 0.0 0.5 1.0 1.5 2.0
Training Time

8

10

12

14

16

18

20

22

24

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(b) Lancaster (Generation 25)

Fig. 8.2. SVR ensemble solutions evolved by NSGA-II in 25 generations.

In this chapter we give a proof-of-concept that multi-objective optimization

is a feasible approach for the model selection. This allows for balancing the

runtime and the prediction error. We choose a simple approach for constructing

the ensemble, resulting in a chromosome with six genes. The bagging ensemble

consists of T1 +T2 +T3 SVR models with different parameter settings and uniform

weighting, using the following parameter settings:

108 8 Evolutionary Multi-Objective Optimization

– T1 models use samples of size S1 and parameters C = 1.0 and σ = 1.0

– T2 models using samples of size S2 and parameters C = 100.0 and σ = 10−3

– T3 models using samples of size S3 and parameters C = 10, 000.0 and

σ = 10−5

The basic idea is to use models of different complexity, which can be provided by

C and σ choices as well as sample sizes Si. The number of possible parameter

settings for SVR ensembles are countless and therefore we only demonstrate the

feasibility of the approach with this simple subset. Each Ti of the initial population

is initialized with a random number from {1, . . . , 50}, Si from {1, . . . , 2000}.
The results for a Wind Turbine near Lancaster are shown in Figure 8.2. While

Figure 8.2 (a) shows all evaluated solutions, Figure 8.2 (b) shows the evolved

Pareto front of the 25th generation. It can be seen that a lot of different solutions

with different error behavior and runtimes are generated. In each iteration, the

solutions are more and more located in the left bottom corner, moving towards a

desirable solution with a good tradeoff. The solutions of the final generation, seen

in Figure 8.2 (b) show a useful Pareto front for the machine learning practitioner:

Only solutions with feasible objective values are left and each solution shows a

good tradeoff. Now the practitioner can select a solution based on his preferences.

In Table 8.1, some selected solutions are shown. For both training time (t)

and CV error (E), the minimum, median, maximum from the 25th generation are

sought and the belonging solutions depicted. While an optimal training time or

optimal error give only a good result for that very objective, the other objective is

falling behind. The same is true for the minimum an maximum objective valued

solutions from all generations, which are shown in the last four rows: One of

the objectives can score very poor, although the other one is very good. These

results suggest that the multi-objective optimization is a very useful way to evolve

desirable solutions with the best tradeoff.

8.5 Random Forest 109

Table 8.1. Selected SVR ensemble solutions for Lancaster.

Pareto-Set T1 S1 T2 S2 T3 S3 t E

min(t) 0 0 0 191 17 41 0.03 22.06

median(t) 0 0 12 213 18 55 0.14 9.87

max(t) 1 0 18 733 26 444 1.83 9.10

min(E): 0 0 18 789 26 399 1.48 9.03

median(E): 0 0 12 213 18 55 0.14 9.87

max(E): 0 0 0 191 17 41 0.03 22.06

All Solutions T1 S1 T2 S2 T3 S3 t E

min(t): 0 0 0 191 17 41 0.03 22.06

max(t): 44 1967 43 1653 48 1741 65.80 10.35

min(E): 0 0 18 767 29 438 1.80 9.01

max(E): 31 1 0 792 18 368 2.55 84.63

8.5 Random Forest

As shown before, the Random Forest method is quite successful and efficient for

giving a good wind power forecast. Besides the number of estimators used, there

are some DT-specific parameters like the tree depth or the maximum number

of features considered for the random splits. These have impact on both the

prediction accuracy and the computation time needed. In the following experiment,

we present the usefulness of a multi-objective optimization. The results are very

similar to the SVR optimization. We tune the number of estimators which is

initialized with a random number from {1, . . . , 500}, the maximum features used

for the random split (initially from {1 . . . 10}) and the maximum depth of the

trees (initially from {1 . . . 5}). The results for the test wind turbine near Lancaster

are shown in Figure 8.3. By tuning the parameters and in particular adding

more estimators to the ensemble, the prediction performance can be improved.

The solutions taking more time but yielding similar or worse results are rejected

in every iteration of the evolutionary optimization. In Table 8.2 we show some

110 8 Evolutionary Multi-Objective Optimization

−5 0 5 10 15 20 25 30
Training Time

5

10

15

20

25

30

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(a) Lancaster

−5 0 5 10 15 20 25
Training Time

5

10

15

20

25

30

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(b) Lancaster (Generation 25)

Fig. 8.3. RF solutions evolved by NSGA-II in 25 generations.

important solutions from the Pareto set and from all evaluated individuals. It

is possible to select a solution that performs really fast but gives a large error.

In contrast to the min(t) solution, for a relatively good prediction error it is

not necessary to spend the largest training time. The median(t) and median(E)

solutions show that it is sufficient to invest only little more time to achieve a

decent prediction error.

8.6 Heterogeneous Ensembles

As ensembles benefit from the diversity of predictors, we showed that ensembles

employing different prediction algorithms perform well and offer a moderate

requirement for computation time for both training and testing. In the following

experiment, we give an example for the optimization using NSGA-II for hetero-

geneous ensemble predictors for three wind turbines. The number of possible

models is infinite and we choose again a simple subset for proof-of-concept. In

the experiment, the predictors consist of TSV R + TDT + TKNN models and Ti

are tuned with the evolutionary optimization approach along with the belonging

sample sizes SSV R, SDT , SKNN . Each Ti of the initial population is initialized

with a random number from {1, . . . , 100}, Si from {1, . . . , 2000}. The SVR models

8.6 Heterogeneous Ensembles 111

Table 8.2. Selected RF solutions for Lancaster.

Pareto-Set n estimators max features max depth t E

min(t) 10 1 1 0.07 26.31

median(t) 10 4 4 0.39 10.59

max(t) 296 7 4 18.24 10.21

min(E) 296 7 4 18.24 10.21

median(E) 10 4 4 0.40 10.65

max(E) 10 1 1 0.07 26.31

All Solutions n estimators max features max depth t E

min(t) 10 1 1 0.06 27.21

max(t) 415 9 4 33.65 10.24

min(E) 315 7 4 19.86 10.19

max(E) 10 1 1 0.07 27.23

use an RBF-Kernel with σ = 10−4 and C = 1, 000. k-NN uses k = 5 nearest

neighbors. Of course, in future work these parameters can be optimized with the

EMOA as well.

Figure 8.4 shows the results for three test turbines near Palm Springs,

Lancaster, and Las Vegas. For each turbine, all 500 solutions depicted in the left

plot show various different possible solutions. The right plots shows the Pareto

from evolved in the 25th generation. It can be seen that these are the preferred

solutions for the machine learning practitioner from which he now can choose

based on his preferences. For turbine Lancaster, we show the parameters and

objective functions’ values for some important solutions in Table 8.3. It can be

seen that balancing runtime and prediction error can be solved with the EMOA

technique and a heterogeneous composition of the ensemble can be beneficial.

In Figure 8.5, we give a comparison of the evolved SVR ensembles, Random

Forests, and heterogeneous ensembles for the test turbine near Lancaster. Al-

though not a completly fair comparison because of some simplified assumptions,

the results demonstrate that there exist very good solutions for all three algo-

112 8 Evolutionary Multi-Objective Optimization

−10 0 10 20 30 40 50 60 70 80
Training Time

5

6

7

8

9

10

11

12

13

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(a) Palm Springs

−5 0 5 10 15 20 25 30 35
Training Time

6.0

6.5

7.0

7.5

8.0

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(b) Palm Springs (Generation 25)

−20 0 20 40 60 80 100 120 140 160
Training Time

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(c) Lancaster

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Training Time

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(d) Lancaster (Generation 25)

−20 0 20 40 60 80 100
Training Time

8.5

9.0

9.5

10.0

10.5

11.0

11.5

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(e) Las Vegas

−2 0 2 4 6 8 10 12 14 16
Training Time

9.0

9.5

10.0

10.5

11.0

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(f) Las Vegas (Generation 25)

Fig. 8.4. Heterogeneous ensemble solutions evolved by NSGA-II in 25 generations.

8.6 Heterogeneous Ensembles 113

Table 8.3. Selected heterogeneous ensemble solutions for Lancaster.

Pareto-Set TSV R SSV R TDT SDT TKNN SKNN t E

min(t) 3 121 0 223 100 1753 0.79 10.19

median(t) 3 156 3 332 25 1836 1.81 11.95

max(t) 48 124 67 242 108 1728 3.84 9.48

min(E) 55 147 6 224 111 1884 3.79 9.47

median(E) 3 125 0 226 108 80 1.16 10.11

max(E) 2 117 3 224 25 70 0.93 12.01

All Solutions TSV R SSV R TDT SDT TKNN SKNN t E

min(t) 3 117 2 224 25 60 0.67 12.00

max(t) 82 1379 79 1972 20 398 133.55 11.80

min(E) 56 124 116 226 118 1755 3.32 9.44

max(E) 10 1698 22 839 7 1523 19.44 13.13

rithms. The found SVR ensembles yield the best prediction error in the shortest

time. However, the sets of evolved solutions for both RF and SVR ensembles

contain solutions with relatively a poor prediction error. In contrast, the Pareto

front evolved for the heterogeneous ensembles only contains solutions that provide

a good balance between the two objectives.

−20 0 20 40 60 80 100 120 140 160
Training Time

0

10

20

30

40

50

60

70

80

90

M
S
E

Random Forest

SVR Ensemble

Heterogeneous Ensemble

(a) Lancaster

−5 0 5 10 15 20 25
Training Time

5

10

15

20

25

30

M
S
E

Random Forest

SVR Ensemble

Heterogeneous Ensemble

(b) Lancaster (Generation 25)

Fig. 8.5. SVR (blue), RF (red) and heterogeneous ensemble (green) solutions evolved by
NSGA-II in 25 generations.

114 8 Evolutionary Multi-Objective Optimization

8.7 Experiments on DWD Dataset

The DWD dataset consists of wind speed measurements from weather stations in

Germany, see Appendix A. Although only hourly data is available, a prediction

is possible. The data from the whole year 2015 is used, resulting in 8760 measure-

ments. We use feature window of µ = 6h and a forecast horizon ∆t = 3h. With

the same experimental settings and ensemble parameters as in Section 8.6, we

show that the multi-objective optimization yields good results for this use case,

too. Figure 8.6 shows the results two weather stations in Bremen and Gütersloh.

−5 0 5 10 15 20 25
Training Time

1.5

2.0

2.5

3.0

3.5

4.0

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(a) Bremen

−1 0 1 2 3 4 5
Training Time

1.5

2.0

2.5

3.0

3.5

4.0

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(b) Bremen (Generation 25)

−5 0 5 10 15 20 25 30
Training Time

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(c) Gütersloh

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Training Time

1.60

1.65

1.70

1.75

1.80

1.85

M
S
E

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

(d) Gütersloh (Generation 25)

Fig. 8.6. Heterogeneous ensemble solutions evolved by NSGA-II in 25 generations (DWD
dataset)

Although the training times are relatively low for all evolved solutions because

of the relatively small training data set, the results show that a multi-objective

8.8 Conclusion 115

optimization with non dominated sorting genetic algorithm II (NSGA-II) yields

good models and a balanced choice of heterogeneous ensembles is possible.

8.8 Conclusion

In this chapter we have shown the usefulness of an multi-objective optimization

using EA techniques. When dealing with supervised learning, not only the

prediction performance is objective to parameter tuning, but also the reduction

of huge computation times to a feasible level. Here, machine learning ensembles

render the possibility of finding the balance between the two objectives for the

practitioner. Using biologically-inspired heuristic search, exploring the tremendous

search space of possible solutions can be done efficiently. The result is a Pareto-

front of preferable solutions from which the practitioner can select one solution

based on his preferences. With the experiments, we give a proof-of-concept.

However, the possibilities of the evolutionary multi-objective optimization can be

further exploited in future work, considering ensemble weights, neighbor turbine

selection, and the algorithms’ parameter choice as a wider range of objective

variables. This increases the search space but also yields new possibilities for

finding better solutions w.r.t the given objectives. The application of EMOAs to

the field of prediction could also be helpful when aiming at hybrid estimators

employing both data-driven and meteorological models.

Part IV

Summary

9

Summary and Outlook

To achieve the goal of integrating wind power into the power grid, we need a

prediction method that computes precise and reliable forecasts. Another important

requirement for practical use is an efficient computation. In this thesis, we present

a framework for short-term wind power prediction using ensemble models to

meet these requirements. This chapter is structured as follows. In Section 9.1, we

summarize the research contributions. The conclusion is given in Section 9.2. In

Section 9.3, we give an outlook on possible future research.

9.1 Contributions of this Thesis

A good alternative to the well-known machine learning algorithms is the use

of ensembles, i.e. combining several basic models to an ensemble model. The

prediction error can be decreased and ensembles offer a short computation time.

We investigate four different aspects of ensemble prediction for wind power, which

are summarized in the following.

1. SVR Ensembles (Chapter 5)

We propose the use of SVR ensembles for wind power prediction. The main

objective is an improvement of the forecast quality compared to state-of-the-art

machine learning algorithms. The second objective is the reduction of computation

120 9 Summary and Outlook

time, which is important for a practical, scalable application of machine learning

methods in the industry. Instead of using one single support vector regressor, we

train a number of weak SVR regressors with a weighted bagging approach.

We investigate different parameter choice strategies as well as different

weighting methods. A random parameter choice combined with an error-based

weighting of the ensemble members achieves the best results. Further, the runtime

of the random approach without optimization is very short compared to grid

search based parameter optimization.

The runtime of the proposed algorithm mainly depends on the number T of

estimators and the size S of the training sample each estimator is trained on. By

using relatively small sample sizes for the single estimators, the O(N3) runtime

complexity of the SVR algorithm is exploited. Therefore, the proposed algorithm

yields a very efficient computation. The algorithm is embarrassingly parallel and

we derived a multicore implementation in Python that benefits directly from

the number of CPU cores available.

The prediction error of the SVR ensemble depends on T and S. Given large

enough sample size and number of estimators, a very low prediction error can be

achieved. On the other hand, both T and S should be chosen as small as possible

for reduction of the runtime required. The trade-off between the optimization of

prediction error and a short computation time is also continued in the chapters 7

and 8.

Finally, a comparison to SVR is given. Compared to the state-of-the-art,

SVR ensembles perform better on five out of five test turbines. Improvements

of MSE from 1.9% up to 33% are achieved. The training times are reduced to a

value between 10% and 50% of the SVR algorithm. Another experiment suggests

that SVR ensembles are better suited to an increased forecast horizon than SVR.

The experimental results shows hat a precise, robust, and very efficient prediction

can be computed using our proposed approach.

9.1 Contributions of this Thesis 121

2. Combination of Speed and Power Features (Chapter 6)

The use of appropriate input features is very important for the success of machine

learning techniques. We analyze the behavior of various regressors, which are

trained using patterns composed of different available features. For predicting the

power output, we employ as features power output measurements, wind speed

measurements, and computed differences of two successive measurements of each.

On ten test turbines, we compare k-NN, SVR, and RF algorithms that turned out

to be very successful in various applications. Both RFs and SVRs perform very

well using power and speed features. The RF algorithm yields a slightly lower

MSE than SVR. In the experimental results, it can be seen that the computed

differences between two successive time steps help to substantially improve the

prediction.

Next, we analyze the behavior of the three algorithms when all available

features are used as one big pattern. In the most cases, the RF approach performs

best w.r.t. both CV error and test error. For some turbines, the SVR yields better

results. The k-NN algorithm always performs worse.

The further experiments focus on the question if combinations of different

features used and combinations of different regression algorithms can help to

improve the prediction error further. Two different approaches are analyzed. First,

RF and SVR predictors that are based on one type of features are combined: One

regressor is trained on the power time series and one is trained on the speed time

series. While the combination can help to decrease the prediction error for all ten

test turbines, there is no clear answer which combination of the predictors is the

best. The second approach analyzed combines one RF and one SVR predictor

based on all available features with a mixture coefficient α. For eight out of ten

test turbines, this approach achieves the lowest prediction error compared to the

first combination approach. Summing up the results of the chapter 6, we strongly

recommend the use of all available features and also consider different prediction

algorithms as well as combinations of these. The idea of heterogeneous ensembles

is continued in Chapter 7 and Chapter 8.

122 9 Summary and Outlook

3. Heterogeneous Ensembles for Wind Power Prediction (Chapter 7)

Since diversity among the ensemble members is crucial for the accuracy of the

ensemble, we propose the use of heterogeneous ensemble predictors consisting

of different types of base predictors for wind power prediction. We first analyze

ensembles consisting of k-NN, SVR, and DT. While DT and SVR perform well,

the k-NN algorithm seems not very well-suited for the ensemble method.

Going further, we analyze different ensembles employing heterogeneous es-

timators relying on different base algorithms. Our comprehensive experimental

results show that a mixed ensemble consisting of a number of DTs and a number

of SVRs yields better results than the analyzed homogeneous predictors while

offering a very good runtime behavior.

A similar approach with a slightly different point of view is the combination

of two ensemble models. Here, we combine one SVR ensemble with one DT

ensemble. For the two ensemble members, the number T of estimators employed

and the sample size S must be chosen and affects both the prediction error and

the runtime. We show that the space of possible solutions offers a wide range

of possibilities and enables to select a parameter setting that results in a good

balance between the objectives of error optimization and decreasing the runtime.

Compared to state-of-the-art machine learning techniques, our approach

renders better results within a shorter computation time. Our heterogeneous

ensemble approach yields improvements of up to 37% compared to SVR and

speed-ups for training time by factors from 1.60× to 8.78×.

In another experiment, we show that the proposed heterogeneous ensembles

are very well-suited for using large numbers of neighboring turbines and past

measurements and improve the prediction performance. While the majority of

our experimental studies focusses on the prediction for single turbines, we show

that a good prediction for wind parks is possible, too.

The application of heterogeneous ensembles to the field of wind power pre-

diction can help to improve both the prediction accuracy and the computation

time requirements. Therefore, we encourage the machine learning practitioner to

stay open for different algorithms and give combinations of these a try.

9.2 Conclusion 123

4. Evolutionary Multi-Objective Optimization (Chapter 8)

The success of machine learning models highly depends on the choice of algorithm

and the parameter settings, which are difficult tasks. These aspects also influence

the runtime behavior. Since we have to deal with a vast number of possible com-

binations and choices for model selection, we employ a nature-inspired heuristic.

We show that ensemble models for wind power prediction can be optimized and

selected using the EMOA algorithm NSGA-II in order to find the best trade-off

between runtime and prediction error.

In the experimental evaluation, SVR ensembles, RFs, and heterogeneous

ensembles are balanced with the EMOA technique. It can be seen that a Pareto

front is evolved that offers various solutions that render a good compromise

between the two objectives. The practitioner can choose from these solutions

based on his preferences. For instance, a very short runtime can be preferred with

the drawback of a slightly worse prediction error or vice versa. The practitioner

could also select a solution which offers a moderate runtime and a decent prediction

error. These properties are very desirable for the application in different scenarios

and therefore the results are highly relevant. We suggest using a machine learning

ensemble approach combined with multi-objective optimization because both the

solution quality and the optimization efficiency are well-suited for a practical

application.

9.2 Conclusion

The result of this thesis is a powerful and comprehensive framework for precise and

efficient wind power prediction using machine learning ensembles. The research

of the thesis is highly relevant because nowadays good forecasting methods are

required and computation time is a limited resource for practical applications. SVR

ensembles and RF offer a good prediction accuracy for a data-driven prediction of

the power output to expect. The use of appropriate features helps to improve the

prediction. By employing heterogeneous ensemble predictors, both the prediction

accuracy can be improved and the required computation time can be decreased.

124 9 Summary and Outlook

The balancing of the two objectives can be done with evolutionary optimization,

which offers an appealing approach for the multi-objective optimization problem

at hand.

9.3 Future Work

In this chapter, we briefly discuss further aspects that should be considered for

detailed research in future work. We sketch our ideas that are out of scope of

this thesis but require further research.

9.3.1 Handling of Missing Values

Real world data is often incomplete and some values are missing. In the field

of wind power prediction with machine learning, one has to face the problem of

missing values because of dropout, malfunction or corruption of sensors. When

using the spatio-temporal regression model, the missing values would stop the

model from working.

The problem of missing data is usually solved by using imputation methods

[4,89]. The imputation method is looking at the available values and computes

the most likely value for the missing values. For the use during regression time,

the commonly used imputation approach has several drawbacks. If a sophisticated

imputation algorithm is employed, additional computation time is needed. For

both imputation and supervised learning the algorithms and their parameters

have to be chosen well to maximize prediction accuracy.

Saar-Tsechansky and Provost [95] investigate the use of reduced-models

approaches for classification, which process the patterns with missing values

directly without imputation. The focus is on decision tree based algorithms.

One could also provide a more straightforward approach: We assume that the

ensemble members do not tolerate missing values by themselves and want to

show that the ensemble technique can help to increase accuracy when missing

values occur. While imputation methods compute a likely value for the missing

features by using the available features, we propose to use only the available

9.3 Future Work 125

features for the prediction itself while exploiting the ensemble approach for doing

so. We suggest to train ensemble regression models in a way that they are still

working well when data is missing. Objective of the research is to reduce the

prediction error under these adverse conditions as far as possible while providing

a practical implementation. Since ensembles employ models based on different

samples or different feature subsets, the ensemble does not necessarily rely on all

features. Further, an ensemble can use only a subset of the available estimators

for the prediction. The method can easily be extended to special situations in the

spatio-temporal regression of wind power. For example, when a neighbor turbine

drops out or sensors fail, a model without that very turbine can be employed if

available.

One can train a regression ensemble consisting of a large number of arbitrarily

chosen weak predictors, all of which could use different feature subsets. When a

pattern with missing values is used as test pattern, the ensemble models selects

on the fly which estimators to use for that particular pattern of missing features.

Because a priori you cannot know which combinations of missing features appear,

every possible one has to be considered during training. For a dimensionality d and

the number m of missing values, the number of possible combinations is given by∑d
m=1

(
d
m

)
. For instance, for d = 30, there are more than one billion combinations.

Obviously, only a small subset of these can actually be used, considering time

and memory limitations. However, with the following design goals in mind, for

each combination of missing values a prediction can be given: We must be able

to give a prediction result for every combination of missing values. By employing

estimators that use only very few values available, we can ensure that at least one

predictor could handle the data. On the other hand, estimators predictors using

more features should increase the regression for many cases. Usually, ensembles

with the random subspaces method use a large portion of the available features,

determined by a fixed number (e.g. 90%). Instead, one can use a variable number

of used features. A balanced choice with different amounts of features used would

be the best, if a missing feature probability is not known beforehand.

126 9 Summary and Outlook

0.00 0.05 0.10 0.15 0.20

% missing

5

10

15

20

25

30

35

M
S
E

Ensemble Approach Mean Imputation Median Imputation

(a) Tehachapi

0.00 0.05 0.10 0.15 0.20

% missing

10

12

14

16

18

20

22

24

M
S
E

Ensemble Approach Mean Imputation Median Imputation

(b) Cheyenne

Fig. 9.1. Wind Power Prediction with the problem of missing values.

In a preliminary experiment, we show that the algorithm itself seems to

work well. For a wind turbine near Tehachapi from the NREL dataset, we use

N = 1, 000 training and Nt = 1, 000 test patterns with m = 5 neighbor turbines

and µ = ∆t = 6, resulting in d = 36 dimensions. Like most imputation algorithms,

we assume the values are missing at random (MAR) [39,74]. Here, features are

missing randomly and not depending on the actual value of the feature. Very

simple and popular methods for imputation are taking the mean or median of

the missing feature. Both are here used as comparison to the ensemble approach

without imputation. Our approach trains T = 200 estimators. For each feature,

one estimator is trained only using that particular feature. In a worst-case scenario,

it is ensured that at least one or few estimators are available. Further, there are

d estimators fi with i ∈ 1 . . . 36 trained which make use of all d features but

feature i. The remaining T − 2d estimators are trained using random features

subspaces. This selection is a first straightforward attempt and shall be optimized

in the future. The results are shown in Figure 9.1. It can be clearly seen that

the approach outperforms the mean and median imputation methods which are

used most widely. A reasonable prediction can be given even with higher rates of

missing features. In the future, research can go into further detail and compare

the method to more sophisticated algorithms.

9.3 Future Work 127

9.3.2 Interval Prediction

In this thesis we present an ensemble method for wind power prediction that only

gives one single value for a given point in time and a given horizon. For practical

applications, it could be desirable to give a confidence value for the prediction

or a prediction interval. The model computes not only one value but an upper

bound and a lower bound as expected interval in which the real value lies with

a certain probability, For instance, a requirement can be given that the bounds

must be correct with a probability of 95%.

There exist some approaches in literature dealing with quantile regression

using bagging. Heskes [45] presented a bagging approach providing prediction

intervals or confidence intervals for ANN showing very good results even for

small datasets. Lee and Yang [72] investigate equal-weighted and Bayesian Model

Averaging weighted bagging methods for interval prediction on time series. Wager

et al. [117] presented the Jackknife and the Infinitesimal Jackknife methods

for estimating the Confidence Intervals for Random Forests. Meinshausen [81]

proposed the method quantile regression forest (QRF), which considers the

distribution of the results of the single decision trees instead of only their mean.

These can be used for computing accurate prediction intervals. Further, the

algorithm can detect outliers in the data. The approaches introduced in this

thesis can be easily enhanced by one of these approaches.

Because an implementation of Meinshausens QRF idea is relatively straight-

forward, we conducted a preliminary experiment. For two NREL turbines, we

compute an interval prediction using year 2004 for training, 5 neighbor turbines,

and µ = ∆t = 3. The trained Random Forest consisted of 500 estimators, of

which the distribution has been used for estimating the prediction intervals. The

results are shown in Figure 9.2. These show that the computation of prediction

intervals is possible with ensemble methods. Because of the relevance of the

research problem, the application of these techniques and combination with the

findings of this thesis could be a fruitful topic for future work.

128 9 Summary and Outlook

200 250 300

0

10

20

30

40

(a) Tehachapi

1580 1600 1620 1640 1660 1680 1700

0

5

10

15

20

25

30

35

(b) Tehachapi

1200 1220 1240 1260 1280 1300 1320
5

0

5

10

15

20

25

30

(c) Cheyenne

1680 1700 1720 1740 1760 1780 1800 1820

0

10

20

30

(d) Cheyenne

Fig. 9.2. Quantile Regression Forests for wind power prediction yield accurate prediction
intervals with a given percentile, here 90%.

9.3.3 Other Ensemble Techniques and Deep Learning

There are plenty of extensions of machine learning, neural networks, and ensemble

techniques that can further improve the prediction performance. The possibilities

for future work are virtually endless. While we stick to bagging methods, an

obvious thing to do is the investigation of boosting algorithms. Further, employing

other base estimators like ANN or time series methods could yield interesting

research questions.

Another promising ensemble approach is given by Wolpert [122]: Stacked

Generalization (Stacking) is a meta-learning model trained on the output labels of

9.3 Future Work 129

a set of estimators. Instead of computing an average of the outputs, the behavior

of the estimators itself is also considered as helpful information depending on the

situation. Here, we see a similarity to the deep learning paradigm. An interesting

aspect of ensemble prediction for wind power that can be investigated is online

learning. Because in operational service, new measurements are available every

few minutes, the prediction system could be extended to the new data regularly.

In ensemble models, old ensemble members could be deleted or a error-based

weighting could help integrating new models.

Our research on SVR ensembles in Chapter 5 deals with the question how

the ensemble techniques can improve the prediction accuracy of SVR. As second

objective, we deal with the question how to reduce the computation time. A

related approach is the Cascade SVM approach by Graf et al. [37], where an

efficient parallel algorithm for training SVM classifiers is used. Like our SVR

ensembles, the algorithm works in a divide-and-conquer manner by dividing

the training dataset into partitions. For each partition, the support vectors are

computed. In an iterative process, the partitions are merged pair-wise. From the

found support vectors, the support vectors are computed again. This is done

until all partitions are merged. The found support vectors can now be used

for classification. The training process is faster and can be parallelized. Graf et

al. [37] prove theoretically that the support vectors found are the same as with a

standard SVM, however not with the best achievable runtime. As pointed out

by Kramer [61], dimensionality reduction techniques can be integrated to the

cascaded machine learning architecture for classification and regression. A good

accuracy is achieved while the computation times are reduced further. We suggest

that future work considers the similarities between ensembles and Cascade SVMs

and possibly derives hybrid implementations. Looking into the other direction,

one could also take our SVR ensemble approach and look into the support vectors

of the ensemble members.

A recent trend of the last years is the paradigm of deep learning [7]. A long-

held dream of researchers in the domain of neural networks was the training of deep

neural networks (DNNs), which are ANNs with many layers. Until a few years ago,

130 9 Summary and Outlook

it was not possible to train DNNs because not enough processing power and a lack

of the adequate algorithms. When training a deep neural network with standard

backpropagation algorithms, the so-called vanishing gradient problem occurs [47].

While training the DNN, the weights of the neurons in the hidden layers cannot

be updated in a reasonable way because their effect on the cost function gets lost

because of the high number of layers and neurons. New algorithms have been

proposed to overcome these difficulties. For instance, Deep Belief Networks [70]

or Stacked Denoising Auto-Encoders [115], yield very good results. Beyond the

task of supervised learning, deep architectures offer further applications and

increased ability of generalization and therefore bring research closer to a general

puropse artificial intelligence inspired by the brain. They are usually trained

in a hierarchical way and employing layer-wise unsupervised training, yielding

different problem representations on different layers. Crucial for success is the

availability of large training datasets. For future work, it is thinkable to implement

DNNs for wind power prediction. In particular, a GPU based implementation is

desirable.

At this point, we want to point out that we see similarities between the

ensemble way of thinking and deep architectures, which renders possible interest-

ing research aspects to explore further. There exist hybrid algorithms yet. Tang

proposes Deep Learning using linear SVMs [105]. Kontschieder et al. analyze the

similarity between RF and DNNs and present a transformation that converts a

RF estimator into a neural networks which can then be fine-tuned [59]. These

approaches could also yield new findings for machine learning in the field of data

analytics in the energy domain.

9.3.4 Power Ramp Prediction

The prediction of power ramp events is critical for the integration of wind power

into the grid. A ramp event is the sudden change of the produced power in a

short time interval. It is defined by a threshold θ and a forecast horizon ∆t, cf.

Kramer et al. [66]. With a power measurements p(t) for a point in time t, ramp

events can be defined as:

9.3 Future Work 131

Ramp(t) =


Up if p(t+∆t)− p(t) > θ

Down if p(t+∆t)− p(t) < −θ

No else

The problem can be solved with classification algorithms. Kramer et al. [66]

use SVM and different dimensionality reduction techniques and achieve a good

detection rate for the occurring power ramps. Unfortunately, the rate of false

positives is rather high and therefore, improvements of the classification are needed.

The main reason is seen in the imbalanced dataset, i.e., rare occurrence of ramps in

the training data set. Kramer et al. suggest that a classification approach based on

regression techniques could be possible method for improvements. The ensemble

regression techniques proposed in this work can help to yield a better ramp

prediction with regression or be extended for classification. Further, ensembles

can help to increase the accuracy for imbalanced datasets [119]. The method

could also be extended with undersampling or oversampling techniques, e.g. [54],

would integrate straightforwardly into the bagging approach and heterogeneous

ensembles used in this work. Because of the relevance of the topic, further research

based on this thesis dealing with the problem of wind power ramp prediction

seems promising.

Part V

Appendices

A

Datasets

A.1 NREL

In our experiments, we use the NREL Western Wind Resources Dataset available

at http://wind.nrel.gov/. It consists of simulated wind power output for

32, 043 wind turbines in the US, given in 10-minute time resolution for the years

2004 - 2006, which are also included in the WindML framework. For each turbine,

there are 157, 680 wind speed and power output measurements available. Because

the turbines in the datset are relatively dense, the neighbor turbines are used for

implementing the spatio-temporal regression model because of high correlations.

The IDs of the test turbines in the NREL dataset are:

Name ID

Casper 23167

Cheyenne 17423

Hesperia 2028

Lancaster 2473

Las Vegas 6272

Name ID

Palm Springs 1175

Reno 11637

Tehachapi 4155

Vantage 28981

Yucca Valley 1539

http://wind.nrel.gov/

136 A Datasets

A.2 AEMO

Australia’s largest gas and electricity markets and power systems are operated by

the Australian Energy Market Operator (AEMO, http://www.aemo.com.au/).

AEMO has provided a public dataset of 22 wind farms in south-east, offering

5-minute wind power data for the years 2011 and 2012, which are also included

in the WindML framework. Because the turbines are relatively sparse, we only

use the univariate time series for prediction. Some single values are missing and

have been imputed using Last Observation Carried Forward (LOCF).

A.3 DWD

The German Weather Service (DWD) has made available several measurements for

Germany. We use the dataset called “Historische stündliche Stationsmessungen der

Windgeschwindigkeit und Windrichtung”, available at ftp://ftp-cdc.dwd.de/

pub/CDC/observations_germany/climate/hourly/wind/historical/. It pro-

vides hourly measurements of weather stations in Germany. Altough all exper-

iments with the other datasets in this work predict the produced wind power,

using this dataset we only look into the prediction of wind speed. Only the wind

speed measurements of the target turbine itself are used.

http://www.aemo.com.au/
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/wind/historical/
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/wind/historical/

B

Implementation Details

All implementations in this work are using

• Python 2.7 (http://python.org)

• scikit-learn 0.17 (http://scikit-learn.org/)

• numpy 1.10 (http://numpy.org)

Chapter 8 makes use of the evoalgos package providing the NSGA-II implemen-

tation (https://ls11-www.cs.tu-dortmund.de/people/swessing/evoalgos/

doc/).

We want to thank all the contributors of these open source packages for their

passionate work.

http://python.org
http://scikit-learn.org/
http://numpy.org
https://ls11-www.cs.tu-dortmund.de/people/swessing/evoalgos/doc/
https://ls11-www.cs.tu-dortmund.de/people/swessing/evoalgos/doc/

C

Publications

• Justin Heinermann, Jörg Lässig, and Oliver Kramer, “Evolutionary Multi-

Objective Ensembles for Wind Power Prediction”, in Proc. ECML Workshop

DARE, 2016. In print.

• Justin Heinermann, Oliver Kramer, “Machine learning ensembles for wind

power prediction”, in Renewable Energy, Volume 89, April 2016, Elsevier

• Justin Heinermann, Oliver Kramer, “Short-Term Wind Power Prediction

with Combination of Speed and Power Time Series”, in Proc. KI, 2015

• Stefan Oehmcke, Justin Heinermann, and Oliver Kramer, “Analysis of

Diversity Methods for Evolutionary Multi-Objective Ensemble Classifiers”,

in Proc. EvoStar, 2015.

• Justin Heinermann and Oiver Kramer, “On Heterogeneous Machine Learn-

ing Ensembles for Wind Power Prediction”, in Proc. AAAI Workshops, 2015.

• Oliver Kramer, Fabian Gieseke, Justin Heinermann, Jendrik Poloczek,

and Nilse André Treiber, “A Framework for Data Mining in Wind Power

Time Series”, in Proc. ECML Workshop DARE, 2014.

• Justin Heinermann and Oliver Kramer, “Precise Wind Power Prediction

with SVM Ensemble Regression”, In Proceedings of the 24th International

Conference on Artificial Neural Networks (ICANN). Lecture Notes in Com-

puter Science, Springer, 2014.

140 C Publications

• Justin Heinermann, Oliver Kramer, Kai Lars Polsterer, and Fabian

Gieseke, “On GPU-Based Nearest Neighbor Queries for Large-Scale Photo-

metric Catalogs in Astronomy”, in Proc. Advances in Artificial Intelligence

(KI). Lecture Notes in Artificial Intelligence, Springer, 2013.

D

Figures and Tables

List of Figures

1.1 Yearly Wind Energy Production in Germany 4

1.2 Training and selection of an appropriate machine learning model 5

1.3 Different models offer different prediction errors and computational

requirements. 6

2.1 Handwritten digits from the MNIST database 16

2.2 Supvervised machine learning setting. 17

2.3 Example of classification and regression with k-nearest neighbors. 19

2.4 Example decision tree for classification on the Iris dataset. 22

2.5 Training, test, and validation sets. 23

2.6 Training and validation error depending on model complexity. . . 25

2.7 K-fold cross-validation. 26

3.1 Example for NWP by the German Weather Service.1 32

141

142 LIST OF FIGURES

3.2 Power curve of an Enercon E-82. 33

3.3 Wind speed measurements with spatio-temporal correlations. . . 37

3.4 Wind power prediction example. 39

3.5 Map View in the WindML Web Framework. 41

3.6 Enqueuing an experiment in WindML Web. 42

4.1 Example for ensemble prediction of a wind power time series. . . 46

4.2 Example of ensemble prediction with averaging of the member’s

output. 47

4.3 Training of ensembles with sampling, feature subspaces, and dif-

ferent algorithms. 48

4.4 Example of stacking with an SVR meta-learning model. 51

5.1 Support Vector Regression with linear and RBF kernel. 57

5.2 SVR runtime complexity . 62

5.3 Prediction errors depending on S and T 65

5.4 Behavior of different SVR ensemble predictors. 66

5.5 Comparison of SVR ensembles and SVR for different forecast

horizons. 67

5.6 Training and test time depending on number of cores. 68

6.1 CV and test error of linear combination of RF and SVR predictions

with all available features for varying coefficient α. 78

7.1 Impact of random sampling of features. 84

7.2 Mixing of SVR and DT. 88

7.3 Behavior of runtime and prediction performance for homogeneous

and heterogeneous ensembles. 89

7.4 Error behavior for varying number of neighbors turbines and

feature window. 93

7.5 Comparison of MSE depending on number m of used neighbor

turbines for six regression algorithms for a turbine near Vantage. 94

LIST OF FIGURES 143

7.6 Training and test error for a wind park near Las Vegas using a

heterogeneous ensemble using 256 DT with 10, 000 samples and

64 SVR predictors using 1, 000 samples. 94

7.7 Example of the ensemble prediction error and the errors of he

single members. 98

8.1 Scheme of an evolutionary algorithm [26]. 104

8.2 SVR ensemble solutions evolved by NSGA-II in 25 generations. . 107

8.3 RF solutions evolved by NSGA-II in 25 generations. 110

8.4 Heterogeneous ensemble solutions evolved by NSGA-II in 25 gen-

erations. 112

8.5 SVR (blue), RF (red) and heterogeneous ensemble (green) solutions

evolved by NSGA-II in 25 generations. 113

8.6 Heterogeneous ensemble solutions evolved by NSGA-II in 25 gen-

erations (DWD dataset) . 114

9.1 Wind Power Prediction with the problem of missing values. . . . 126

9.2 Quantile Regression Forests for wind power prediction yield accu-

rate prediction intervals with a given percentile, here 90%. 128

144 LIST OF FIGURES

List of Tables

3.1 Definition of different forecast horizons, cf. [29, 49,102]. 30

3.2 MSE achieved by state of the art predictors. 40

5.1 Comparison of parameter choice methods and ensemble weighting

methods . 64

5.2 Comparison between SVR using CV-sought parameters and SVR

ensemble regressor (SVRENS) . 67

6.1 Comparison of RF, SVR, and KNN using different features. . . . 73

6.2 Prediction error for combined patterns using power and speed

measurements. 75

6.3 Comparison of MSE with combinations of predictors. 76

6.4 CV optimization of coefficent α. 79

7.1 Comparison of ensemble predictors consisting of different base

algorithms. 86

7.2 Behavior of different setups of SVR, DT, and combined ensembles

for a wind turbine near Las Vegas. 90

7.3 Comparison of MSE and training time for five turbines. 92

7.4 Best settings for number m of used neighbor turbines selected by

best training and test error. 96

7.5 Power predictions for the sum of five test wind parks. The test

error (MSE) is given. 97

7.6 Comparison (MSE) of k-NN, SVR, and heterogeneous ensemble

on five wind farms from the AEMO dataset. 99

145

146 LIST OF TABLES

8.1 Selected SVR ensemble solutions for Lancaster. 109

8.2 Selected RF solutions for Lancaster. 111

8.3 Selected heterogeneous ensemble solutions for Lancaster. 113

Acronyms

ANN artificial neural network. 5, 6, 49, 127–129

ARIMA autoregressive integrated moving average. 36

ARMA autoregressive moving average. 36

bagging bootstrap aggregating. 48, 49, 52

CART classification and regression trees. 21, 23, 85

CFD computational fluid dynamic. 33

CPU central processing unit. 42, 83

CV cross-validation. 26, 55, 74, 106, 107, 121

DB database. 43

DBMS database management system. 43

DNN deep neural network. 129, 130

DT decision tree. 6, 8, 10, 18, 26, 45, 49, 81, 83, 86, 88, 90, 91, 95, 97, 99, 102,

109, 110, 113, 122, 145

EA evolutionary algorithm. 103, 105, 115

EMOA evolutionary multi-objective optimization algorithm. 7, 101, 102, 105,

111, 115, 123

EPEX European Power Exchange. 29

EU European Union. 4, 29

148 Acronyms

GPU graphics processing unit. 69

k-NN k-nearest neighbors. 5, 6, 8–10, 18–20, 26, 34, 36, 39, 40, 71–75, 77, 79, 81,

85, 86, 91–95, 98, 99, 103, 111, 121, 122

LOOCV Leave-one-out cross-validation. 25, 26

ML machine learning. 15, 43

MNIST Mixed National Institute of Standards and Technology database. 16

MOP multi-objective optimization problem. 101, 105

MSE mean squared error. 17, 23–25, 39, 40, 56, 61–63, 65, 67, 73, 76, 83, 87–95,

97, 99, 106, 120, 142

NSGA-II non dominated sorting genetic algorithm II. 115, 123

NWP numerical weather prediction. 4, 8, 43

QRF quantile regression forest. 127

RF random forest. 9, 21, 46, 49, 51, 52, 71–79, 106, 113, 121, 123, 130, 142

RSM random subspace method. 49, 52

SVM support vector machine. 18, 34, 56, 57

SVR support vector regression. 5, 6, 9, 10, 17, 18, 26, 34–36, 39, 40, 52, 55, 57–63,

66, 67, 69, 71–79, 81, 84–99, 102, 103, 106–111, 113, 119–123, 129, 142, 143,

145

References

1. S. Aggarwal and M. Gupta. Wind power forecasting: A review of statistical models.

International Journal of Energy Science, 3, 2013.

2. E. Alpaydin. Introduction to Machine Learning. Adaptive computation and machine

learning. MIT Press, 2010.

3. A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. Communications of the ACM, 51:117–122, 2008.

4. G. E. Batista and M. C. Monard. A study of k-nearest neighbour as an imputation method.

HIS, 87:251–260, 2002.

5. E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms:

Bagging, boosting, and variants. Machine learning, 36:105–139, 1999.

6. BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. Erneuerbare Energien und

das EEG: Zahlen, Fakten, Grafiken (2016) https: // www. bdew. de/ internet. nsf/ res/

7BD63123F7C9A76BC1257F61005AA45F/ £file/ 160218_ Energie-Info_ Erneuerbare%

20Energien% 20und% 20das% 20EEG_ 2016_ final. pdf . 2016.

7. Y. Bengio. Learning deep architectures for ai. Foundations and trends R© in Machine

Learning, 2:1–127, 2009.

8. J. L. Bentley. Multidimensional Binary Search Trees Used For Associative Searching.

Communications of the ACM, 18:509–517, 1975.

9. J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. The Journal

of Machine Learning Research, 13:281–305, 2012.

10. A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proceedings

of the 23 International Conference on Machine Learning, pages 97–104. ACM, 2006.

11. C. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics.

Springer, 2006.

12. L. Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

13. L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

https://www.bdew.de/internet.nsf/res/7BD63123F7C9A76BC1257F61005AA45F/$file/160218_Energie-Info_Erneuerbare%20Energien%20und%20das%20EEG_2016_final.pdf
https://www.bdew.de/internet.nsf/res/7BD63123F7C9A76BC1257F61005AA45F/$file/160218_Energie-Info_Erneuerbare%20Energien%20und%20das%20EEG_2016_final.pdf
https://www.bdew.de/internet.nsf/res/7BD63123F7C9A76BC1257F61005AA45F/$file/160218_Energie-Info_Erneuerbare%20Energien%20und%20das%20EEG_2016_final.pdf

150 References

14. L. Breiman, J. Friedman, C. Stone, and R. Olshen. Classification and Regression Trees.

The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, 1984.

15. G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: a survey and

categorisation. Information Fusion, 6:5–20, 2005.

16. B. Bustos, O. Deussen, S. Hiller, and D. Keim. A graphics hardware accelerated algorithm

for nearest neighbor search. In Proc. International Conference on Computational Science

(ICCS’06) Part IV, volume 3994 of LNCS, pages 196–199. Springer, 2006.

17. S. Cagnoni, R. Poli, G. D. Smith, D. Corne, M. Oates, E. Hart, P. L. Lanzi, E. J.

Willem, Y. Li, B. Paechter, et al. Real-World Applications of Evolutionary Computing:

EvoWorkshops 2000: EvoIASP, EvoSCONDI, EvoTel, EvoSTIM, EvoRob, and EvoFlight,

Edinburgh, Scotland, UK, April 17, 2000 Proceedings. Springer Science & Business Media,

2000.

18. F. Castellani, M. Burlando, S. Taghizadeh, D. Astolfi, and E. Piccioni. Wind energy

forecast in complex sites with a hybrid neural network and cfd based method. Energy

Procedia, 45:188–197, 2014.

19. P. Chakraborty, M. Marwah, M. F. Arlitt, and N. Ramakrishnan. Fine-Grained Photo-

voltaic Output Prediction Using a Bayesian Ensemble. In AAAI Conference on Artificial

Intelligence, 2012.

20. M. Chen, S. Mao, and Y. Liu. Big data: A survey. Mobile Networks and Applications,

19:171–209, 2014.

21. C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20:273–297, 1995.

22. A. Costa, A. Crespo, J. Navarro, G. Lizcano, H. Madsen, and E. Feitosa. A review on the

young history of the wind power short-term prediction. Renewable and Sustainable Energy

Reviews, 12:1725–1744, 2008.

23. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic

algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6:182–197, 2002.

24. T. Dietterich. Ensemble Methods in Machine Learning, volume 1857 of Lecture Notes in

Computer Science, pages 1–15. Springer Berlin Heidelberg, 2000.

25. H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector regression

machines. Advances in neural information processing systems, 9:155–161, 1997.

26. A. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer, 2015.

27. EPEX Spot. EPEX Spot and ECC successfully reduce lead time on all intraday

markets. https: // www. epexspot. com/ en/ press-media/ press/ details/ press/

EPEX_ SPOT_ and_ ECC_ successfully_ reduce_ lead_ time_ on_ all_ intraday_ markets

https: // windeurope. org/ wp-content/ uploads/ files/ about-wind/ statistics/

EWEA-Annual-Statistics-2015. pdf . 2015.

28. M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds of

classifiers to solve real world classification problems? The Journal of Machine Learning

Research, 15:3133–3181, 2014.

https://www.epexspot.com/en/press-media/press/details/press/EPEX_SPOT_and_ECC_successfully_reduce_lead_time_on_all_intraday_markets
https://www.epexspot.com/en/press-media/press/details/press/EPEX_SPOT_and_ECC_successfully_reduce_lead_time_on_all_intraday_markets
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf

References 151

29. A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh. Current methods and

advances in forecasting of wind power generation. Renewable Energy, 37:1–8, 2012.

30. Y. Freund, R. E. Schapire, et al. Experiments with a new boosting algorithm. In

International Conference on Machine Learning, volume 96, pages 148–156, 1996.

31. F. Friedrichs and C. Igel. Evolutionary tuning of multiple svm parameters. Neurocomputing,

64:107–117, 2005.

32. L. Fugon, J. Juban, G. Kariniotakis, et al. Data mining for wind power forecasting. In

Proceedings European Wind Energy Conference & Exhibition EWEC 2008, 2008.

33. F. Galton. Vox populi (the wisdom of crowds). Nature, 75:450–451, 1907.

34. V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest neighbor search using GPU. In

CVPR Workshop on Computer Vision on GPU, Anchorage, Alaska, USA, June 2008.

35. F. Gieseke, J. Heinermann, C. Oancea, and C. Igel. Buffer kd trees: processing massive

nearest neighbor queries on GPUs. In Proceedings of The 31st International Conference

on Machine Learning, pages 172–180, 2014.

36. T. Gneiting, A. E. Raftery, A. H. Westveld, and T. Goldman. Calibrated Probabilistic

Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation.

Monthly Weather Review, 133:1098–1118, 2005.

37. H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik. Parallel Support Vector

Machines: The Cascade SVM. In NIPS, 2004.

38. S. Hassan, A. Khosravi, and J. Jaafar. Examining performance of aggregation algorithms

for neural network-based electricity demand forecasting. International Journal of Electrical

Power & Energy Systems, 64:1098 – 1105, 2015.

39. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics. Springer,

2009.

40. J. Heinermann and O. Kramer. Precise Wind Power Prediction with SVM Ensemble

Regression. In Artificial Neural Networks and Machine Learning–ICANN 2014, pages

797–804. Springer, 2014.

41. J. Heinermann and O. Kramer. On heterogeneous machine learning ensembles for wind

power prediction. In AAAI Workshops, 2015.

42. J. Heinermann and O. Kramer. Short-term wind power prediction with combination of

speed and power time series. In KI 2015: Advances in Artificial Intelligence, pages 100–110.

Springer, 2015.

43. J. Heinermann and O. Kramer. Machine learning ensembles for wind power prediction.

Renewable Energy, 89:671–679, 2016.

44. J. Heinermann, O. Kramer, K. L. Polsterer, and F. Gieseke. On GPU-based nearest

neighbor queries for large-scale photometric catalogs in astronomy. In KI 2013: Advances

in Artificial Intelligence, pages 86–97. Springer, 2013.

152 References

45. T. Heskes. Practical confidence and prediction intervals. In Proc. of the 1996 Conf.

Advances in Neural Information Processing Systems, volume 9, page 176, 1997.

46. T. K. Ho. The random subspace method for constructing decision forests. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 20:832–844, 1998.

47. S. Hochreiter. The vanishing gradient problem during learning recurrent neural nets and

problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 6:107–116, 1998.

48. Q.-H. Hu, D.-R. Yu, and M.-Y. Wang. Constructing rough decision forests. In Rough Sets,

Fuzzy Sets, Data Mining, and Granular Computing, pages 147–156. Springer, 2005.

49. Q. Huang, J. Z. Kang, X. Wang, P. Guo, and X. Huang. A review of wind power forecasting

models. Energy Procedia, 12:770 – 778, 2011.

50. G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical learning,

volume 112. Springer, 2013.

51. J. Juban, L. Fugon, and G. Kariniotakis. Probabilistic short-term wind power forecasting

based on kernel density estimators. In European Wind Energy Conference and exhibition,

EWEC 2007, pages http–ewec2007proceedings, 2007.

52. C. Junk, L. Delle Monache, S. Alessandrini, G. Cervone, and L. von Bremen. Predictor-

weighting strategies for probabilistic wind power forecasting with an analog ensemble.

Meteorologische Zeitschrift, 24:361–79, 2015.

53. S. Kalogirou. Applications of artificial neural networks in energy systems. Energy Conver-

sion and Management, 40:1073–1087, 1999.

54. P. Kang and S. Cho. EUS SVMs: Ensemble of under-sampled svms for data imbalance

problems. In International Conference on Neural Information Processing, pages 837–846.

Springer, 2006.

55. R. G. Kavasseri and K. Seetharaman. Day-ahead wind speed forecasting using f-arima

models. Renewable Energy, 34:1388–1393, 2009.

56. H.-C. Kim, S. Pang, H.-M. Je, D. Kim, and S. Y. Bang. Constructing support vector

machine ensemble. Pattern Recognition, 36:2757–2767, 2003.

57. R. Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and

model selection. In Ijcai, volume 14, pages 1137–1145, 1995.

58. R. Kohavi, D. H. Wolpert, et al. Bias plus variance decomposition for zero-one loss

functions. In ICML, volume 96, pages 275–83, 1996.

59. P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo. Deep neural decision forests.

In Proceedings of the IEEE International Conference on Computer Vision, pages 1467–1475,

2015.

60. O. Kramer. Self-adaptive heuristics for evolutionary computation, volume 147. Springer,

2008.

61. O. Kramer. Cascade support vector machines with dimensionality reduction. Hindawi

Applied Computational Intelligence and Soft Computing, 2015:216132:1–216132:8, 2015.

References 153

62. O. Kramer and F. Gieseke. Short-Term Wind Energy Forecasting Using Support Vector

Regression. In SOCO, pages 271–280, 2011.

63. O. Kramer, F. Gieseke, J. Heinermann, J. Poloczek, and N. A. Treiber. A framework

for data mining in wind power time series. In Data Analytics for Renewable Energy

Integration - Second ECML PKDD Workshop, DARE 2014, Nancy, France, September 19,

2014, Revised Selected Papers, pages 97–107, 2014.

64. O. Kramer, F. Gieseke, and B. Satzger. Wind energy prediction and monitoring with

neural computation. Neurocomputing, 109:84–93, 2013.

65. O. Kramer, N. A. Treiber, and F. Gieseke. Machine Learning in Wind Energy Information

Systems. In EnviroInfo, pages 16–24, 2013.

66. O. Kramer, N. A. Treiber, and M. Sonnenschein. Wind power ramp event prediction with

support vector machines. In International Conference on Hybrid Artificial Intelligence

Systems, pages 37–48. Springer, 2014.

67. T. Krishnamurti. Numerical weather prediction. Annual review of fluid mechanics, 27:195–

225, 1995.

68. A. Kusiak, H. Zheng, and Z. Song. Short-term prediction of wind farm power: a data

mining approach. Energy Conversion, IEEE Transactions on, 24:125–136, 2009.

69. M. Lange and U. Focken. New developments in wind energy forecasting. In Power and

Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st

Century, 2008 IEEE, pages 1–8. IEEE, 2008.

70. H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for training

deep neural networks. Journal of Machine Learning Research, 10:1–40, 2009.

71. Y. LeCun and C. Cortes. Mnist handwritten digit database. AT&T Labs [Online]. Available:

http: // yann. lecun. com/ exdb/ mnist , 2010.

72. T.-H. Lee and Y. Yang. Bagging binary and quantile predictors for time series. Journal of

econometrics, 135:465–497, 2006.

73. M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, and Z. Yan. A review on the forecasting of

wind speed and generated power. Renewable and Sustainable Energy Reviews, 13:915–920,

2009.

74. R. Little and D. Rubin. Statistical Analysis With Missing Data. Wiley Series in Probability

and Statistics - Applied Probability and Statistics Section Series. Wiley, 1987.

75. H. Liu, H.-q. Tian, and Y.-f. Li. Comparison of two new arima-ann and arima-kalman

hybrid methods for wind speed prediction. Applied Energy, 98:415–424, 2012.

76. G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts. Understanding variable importances

in forests of randomized trees. In Advances in Neural Information Processing Systems,

pages 431–439, 2013.

77. P. C. Mahalanobis. On the generalized distance in statistics. Proceedings of the National

Institute of Sciences (Calcutta), 2:49–55, 1936.

http://yann.lecun.com/exdb/mnist

154 References

78. W. P. Mahoney, K. Parks, G. Wiener, Y. Liu, W. L. Myers, J. Sun, L. Delle Monache,

T. Hopson, D. Johnson, and S. E. Haupt. A wind power forecasting system to optimize

grid integration. IEEE Transactions on Sustainable Energy, 3:670–682, 2012.

79. S. Marsland. Machine learning: an algorithmic perspective. Chapman & Hall/CRC machine

learning & pattern recognition series. CRC Press/Taylor Francis, Boca Raton, Mass. [u.a.],

2009. XVI, 390 S. ; 24 cm : Ill., graph. Darst.

80. I. Mart́ı, M. San Isidro, D. Cabezón, Y. Loureiro, J. Villanueva, E. Cantero, and I. Pérez.

Wind power prediction in complex terrain: from the synoptic scale to the local scale. In

CD-Rom Proceedings of the Conference: The Science of making Torque from Wind, Delft,

The Netherlands, 2004.

81. N. Meinshausen. Quantile regression forests. Journal of Machine Learning Research,

7:983–999, 2006.

82. I. Mierswa. Controlling overfitting with multi-objective support vector machines. In

Genetic and Evolutionary Computation Conference (GECCO), pages 1830–1837, 2007.

83. M. Mohandes, T. Halawani, S. Rehman, and A. A. Hussain. Support vector machines for

wind speed prediction. Renewable Energy, 29:939–947, 2004.

84. F. Molteni, R. Buizza, T. N. Palmer, and T. Petroliagis. The ecmwf ensemble prediction

system: Methodology and validation. Quarterly journal of the royal meteorological society,

122:73–119, 1996.

85. S. Oehmcke, J. Heinermann, and O. Kramer. Analysis of diversity methods for evolutionary

multi-objective ensemble classifiers. In Applications of Evolutionary Computation - 18th

European Conference, EvoApplications 2015, Copenhagen, Denmark, April 8-10, 2015,

Proceedings, pages 567–578, 2015.

86. N. C. Oza and K. Tumer. Classifier ensembles: Select real-world applications. Information

Fusion, 9:4–20, 2008.

87. J. Palomares-Salas, J. De la Rosa, J. Ramiro, J. Melgar, A. Aguera, and A. Moreno. Arima

vs. neural networks for wind speed forecasting. In 2009 IEEE International Conference

on Computational Intelligence for Measurement Systems and Applications, pages 129–133.

IEEE, 2009.

88. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

89. J. Poloczek, N. A. Treiber, and O. Kramer. KNN regression as geo-imputation method

for spatio-temporal wind data. In International Joint Conference SOCO’14-CISIS’14-

ICEUTE’14 - Bilbao, Spain, June 25th-27th, 2014, Proceedings, pages 185–193, 2014.

90. J. R. Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

91. J. R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.

References 155

92. P. Ramasamy, S. Chandel, and A. K. Yadav. Wind speed prediction in the mountainous

region of india using an artificial neural network model. Renewable Energy, 80:338 – 347,

2015.

93. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der

biologishen Evolution. 1973.

94. L. Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33:1–39, 2010.

95. M. Saar-Tsechansky and F. J. Provost. Handling missing values when applying classification

models. Journal of Machine Learning Research, pages 1623–1657, 2007.

96. S. Salcedo-Sanz, J. Rojo-Álvarez, M. Mart́ınez-Ramón, and G. Camps-Valls. Support

vector machines in engineering: an overview. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, 4:234–267, 2014.

97. A. Scherbart and T. W. Nattkemper. The diversity of regression ensembles combining

bagging and random subspace method. In International Conference on Neural Information

Processing, pages 911–918. Springer, 2008.

98. G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-Neighbor Methods in Learning and

Vision: Theory and Practice (Neural Information Processing). MIT Press, 2006.

99. J. Shi, X. Qu, and S. Zeng. Short-term wind power generation forecasting: direct versus

indirect arima-based approaches. International Journal of Green Energy, 8:100–112, 2011.

100. A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and

computing, 14(3):199–222, 2004.

101. J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine

learning algorithms. In Advances in neural information processing systems, pages 2951–2959,

2012.

102. S. S. Soman, H. Zareipour, O. Malik, and P. Mandal. A review of wind power and

wind speed forecasting methods with different time horizons. In North American Power

Symposium (NAPS), 2010, pages 1–8. IEEE, 2010.

103. M. Stone. Cross-validation and multinomial prediction. Biometrika, 61:509–515, 1974.

104. J. Stubbemann, N. A. Treiber, and O. Kramer. Resilient propagation for multivariate

wind power prediction. In ICPRAM 2015 - Proceedings of the International Conference on

Pattern Recognition Applications and Methods, Volume 2, Lisbon, Portugal, 10-12 January,

2015., pages 333–337, 2015.

105. Y. Tang. Deep learning using linear support vector machines. In In ICML. Citeseer, 2013.

106. The European Wind Energy Association. Wind in power – 2015 Euro-

pean statistics. https: // windeurope. org/ wp-content/ uploads/ files/ about-wind/

statistics/ EWEA-Annual-Statistics-2015. pdf . 2016.

107. T. L. Thorarinsdottir and T. Gneiting. Probabilistic forecasts of wind speed: ensemble

model output statistics by using heteroscedastic censored regression. Journal of the Royal

Statistical Society: Series A (Statistics in Society), 173:371–388, 2010.

https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf

156 References

108. N. A. Treiber, J. Heinermann, and O. Kramer. Aggregation of features for wind energy

prediction with support vector regression and nearest neighbors. In European Conference

on Machine Learning, Workshop Data Analytics for Renewable Energy Integration, 2013.

109. N. A. Treiber and O. Kramer. Evolutionary feature weighting for wind power prediction

with nearest neighbor regression. In 2015 IEEE Congress on Evolutionary Computation

(CEC), pages 332–337. IEEE, 2015.

110. N. A. Treiber, S. Späth, J. Heinermann, L. von Bremen, and O. Kramer. Comparison of

numerical models and statistical learning for wind speed prediction. In ESANN, 2015.

111. I. W. Tsang, A. Kocsor, and J. T. Kwok. Diversified SVM Ensembles for Large Data Sets.

In European Conference on Machine Learning, pages 792–800, 2006.

112. K. Upadhyay, A. Choudhary, and M. Tripathi. Short-term wind speed forecasting using

feed-forward back-propagation neural network. International Journal of Engineering,

Science and Technology, 3:107–112, 2011.

113. P. A. Valdes-Sosa. Spatio-temporal autoregressive models defined over brain manifolds.

Neuroinformatics, 2:239–250, 2004.

114. S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: a structure for

efficient numerical computation. Computing in Science & Engineering, 13:22–30, 2011.

115. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising

autoencoders: Learning useful representations in a deep network with a local denoising

criterion. Journal of Machine Learning Research, 11:3371–3408, 2010.

116. W. Waegeman and L. Boullart. An ensemble of Weighted Support Vector Machines for

Ordinal Regression. Transactions on Engineering, Computing and Technology, 12:71–75,

2006.

117. S. Wager, T. Hastie, and B. Efron. Confidence intervals for random forests: the jackknife

and the infinitesimal jackknife. Journal of Machine Learning Research, 15:1625–1651, 2014.

118. J. Wang, J. Hu, K. Ma, and Y. Zhang. A self-adaptive hybrid approach for wind speed

forecasting. Renewable Energy, 78:374–385, 2015.

119. S. Wang and X. Yao. Diversity analysis on imbalanced data sets by using ensemble models.

In Computational Intelligence and Data Mining, 2009. CIDM’09. IEEE Symposium on,

pages 324–331. IEEE, 2009.

120. K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin

nearest neighbor classification. In Advances in neural information processing systems,

pages 1473–1480, 2005.

121. I. Witten, E. Frank, and M. Hall. Data Mining: Practical Machine Learning Tools and

Techniques: Practical Machine Learning Tools and Techniques. The Morgan Kaufmann

Series in Data Management Systems. Elsevier Science, 2011.

122. D. H. Wolpert. Stacked generalization. Neural networks, 5:241–259, 1992.

References 157

123. X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng,

B. Liu, S. Y. Philip, et al. Top 10 algorithms in data mining. Knowledge and information

systems, 14:1–37, 2008.

124. L. Xiao, J. Wang, Y. Dong, and J. Wu. Combined forecasting models for wind energy

forecasting: A case study in china. Renewable and Sustainable Energy Reviews, 44:271–288,

2015.

125. A. Zameer, A. Khan, S. G. Javed, et al. Machine learning based short term wind power

prediction using a hybrid learning model. Computers & Electrical Engineering, 45:122–133,

2015.

126. H. Zhang, L. Chen, Y. Qu, G. Zhao, and Z. Guo. Support vector regression based on

grid-search method for short-term wind power forecasting. Journal of Applied Mathematics,

2014, 2014.

127. P. Zikopoulos and C. Eaton. Understanding Big Data: Analytics for Enterprise Class

Hadoop and Streaming Data. McGraw-Hill Osborne Media, 1st edition, 2011.

Acknowledgements

I would like to thank Jun.-Prof. Dr. habil. Oliver Kramer for the supervision of

my work and the invaluable support. Further, I want to thank the ministry of

science and culture of Lower Saxony for supporting me with a scholarship in the

PhD program System Integration of Renewable Energies.

	Wind power prediction with machine learning ensembles
	Zusammenfassung
	Abstract
	Contents
	Part I Introduction
	Introduction and Overview
	Motivation
	Contribution of this Thesis
	Structure of this Thesis

	Part II Foundations
	Machine Learning
	Supervised Learning
	k-Nearest Neighbors
	Decision Trees
	Model Selection and Parameter Tuning
	Summary

	Wind Power Prediction
	Use Cases for Wind Power Prediction
	State of the Art
	Numerical Weather Prediction
	Statistical Learning

	Spatio-Temporal Regression Model
	WindML Framework
	Summary

	Ensembles
	Ensemble methodology
	Bagging
	Random Feature Subspaces
	Boosting
	Stacking
	Random Forest Regression
	Summary

	Part III Ensembles for Wind Power Prediction
	Support Vector Regression Ensembles
	Related Work
	Support Vector Regression
	SVR Ensemble With Weighted Bagging
	Training the weak predictors
	Weighted Ensemble Prediction

	Runtime
	Experimental Results
	Optimization and Weighting of the Weak Predictors
	Number of Weak Predictors and Samples
	Comparison to Support Vector Regression

	Parallel Implementation
	Conclusions

	Combination of Speed and Power Time Series
	Comparison of Input Patterns
	Comparing Speed and Power Features
	Combining Speed and Power Features

	Ensemble Combination
	Combination of Predictors Based on Different Time Series
	Combination of Predictors Based on All Available Features

	Conclusions

	Heterogeneous Ensembles
	Algorithmic Framework
	Sampling of Features and Patterns
	Choice of the Base Algorithms
	Heterogeneous Ensembles
	Mixed Ensemble with Coefficient
	Ensemble Combining SVR and DT Ensembles

	Increasing the Number of Used Features
	Power Prediction for Wind Parks
	Error of the Ensemble Members
	Experiment on AEMO Dataset
	Conclusions

	Evolutionary Multi-Objective Optimization
	Evolutionary Computing
	NSGA-II
	Experimental Setup
	SVR Ensembles
	Random Forest
	Heterogeneous Ensembles
	Experiments on DWD Dataset
	Conclusion

	Part IV Summary
	Summary and Outlook
	Contributions of this Thesis
	Conclusion
	Future Work
	Handling of Missing Values
	Interval Prediction
	Other Ensemble Techniques and Deep Learning
	Power Ramp Prediction

	Part V Appendices
	Datasets
	NREL
	AEMO
	DWD

	Implementation Details
	Publications
	Figures and Tables
	Acronyms
	References

