
Fakultät II � Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

State-based Timing Analysis for
Distributed Systems

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften der Carl von
Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels eines

Doktors der Ingenieurwissenschaften (Dr. Ing.)

angenommene Dissertation von

Dipl.-Inform. Tayfun Gezgin

geboren am 12.02.1984 in Bremen

Gutachter:
Prof. Dr. Achim Rettberg

Prof. Dr. Bernhard Josko
Prof. Dr. Marco Wehrmeister

Tag der Disputation: 02.10.2017

2

Abstract

Functionalities of systems in safety-critical domains like the automotive are typically dis-
tributed over several computation units. Such systems have to work exactly as speci�ed
as a violation of a requirement could result in critical situations and in loss of human
life. Error corrections after the start of production of a system could also lead to very
high costs. A major aspect of correctness in safety-critical systems is the timeliness of
computations. Systems have to �nish certain critical computations in a timely manner in
order to be safe and reliable. Thus, it is important to have rigorous analysis techniques
such as formal veri�cation. Unfortunately, interdependencies among functions and inter-
ferences on shared resources complicate the veri�cation of such hard real-time properties.
Moreover, changes a�ecting the speci�cation and the implementation of a system might
occur during the design process, which further complicate the veri�cation process, as
already performed analyses have to be repeated.
This thesis addresses these problems. A state-based approach for the analysis of timing

constraints combining analytic and model checking methods is introduced. In analogy
to model checking methods, the full state space for the analysis is taken into account. In
classical scheduling analyses only the critical instance of a system is considered, which
typically leads to highly pessimistic results. This could lead to expensive systems, as more
computation units would be required to satisfy the timing requirements than actually
needed. With the approach presented in this thesis exact response times are computed.
This results in a reduced demand of computation resources, while guaranteeing that all
timing constraints are still ful�lled. In order to alleviate the problem of state space
explosion due to state unfolding performed by the presented approach, the state space
of an architecture is constructed in an iterative manner. Minimization operations are
applied on the interfaces between resources to keep the resulting state spaces as small as
possible. To further boost the scalability, abstraction techniques on interfaces between
dependent resources are worked out. The e�ects of the speci�c abstractions are evaluated
with respect to the advantages for scalability and the adequacy of the results.
On top of this timing analysis an impact analysis approach is introduced in this thesis

to minimize re-veri�cation e�orts of timing properties needed when the considered system
is modi�ed. Adaptations of the architecture of an already existing and analyzed system
could be for instance the addition of new functionalities. Resulting tasks of these new
functions could be allocated to existing resources of the system. As veri�cation tasks
are typically time consuming it is desirable to minimize the e�ort of a re-veri�cation
and to reuse previous results of analyses which have not been a�ected by architectural

3

changes. Two abstraction levels are de�ned which are a�ected through changes, i.e. the
speci�cation level and the implementation level.
On the speci�cation level contracts are applied and a virtual integration checking tech-

nique is introduced. Contracts enable the designer to distinguish between assumed be-
havior, which must be o�ered by the environment of the system, and guaranteed behavior,
for which the system itself is responsible. Certain characteristics of contracts are used in
this thesis to enable a timed automaton-based veri�cation approach. Contracts are spec-
i�ed by using a pattern-based language. An approach is introduced which transforms the
language fragments automatically to timed automata. Besides automatically verifying
the correct compositions and re�nements of parts of a system based on the corresponding
contracts, this technique allows to determine the impact of changes on previous analysis
results on the speci�cation level. If a contract is changed in such a manner that it re�nes
the previous one, only the internals of the corresponding system have to be re-veri�ed.
On the implementation level a re�nement relation between state transition systems of

interfaces of components is de�ned. If a change occurs on a resource the approach is able
to determine whether the interfaces to dependent resources are a�ected. If the interfaces
did change in a �good manner� the veri�cation of dependent resources can be omitted,
thus saving unnecessary veri�cation times.
In a typical system design process, all introduced concepts are exploited in combi-

nation. Therefore, an overall methodology is presented which integrates all introduced
veri�cation techniques. Changing a part of a system encapsulating some functionali-
ties implicates the integration of this part into its context, and the re-veri�cation of its
adapted implementation against the local speci�cation.
Besides dedicated smaller examples and benchmark systems from related papers, the

presented approach is evaluated by the application of an industrial driver assistance
system case study.

4

Zusammenfassung

Funktionalitäten von Systemen in sicherheitskritischen Domänen wie dem Automobilsek-
tor sind üblicherweise über viele Berechnungseinheiten verteilt. Solche Systeme müssen
exakt nach deren Spezi�kation arbeiten, da eine Verletzung einer Systemanforderung
zu einer kritischen Situation führen und Menschenleben gefährden könnte. Auÿerdem
führen Fehlerkorrekturen nach Produktionsstart zu hohen Kosten. Ein wesentlicher As-
pekt von sicherheitskritischen Systemen ist, dass die Berechnungen rechtzeitig erfolgen
müssen. Damit solche Systeme sicher und zuverlässig arbeiten, müssen deren Berech-
nungen rechtzeitig abgeschlossen werden. Deswegen ist es wichtig, dass diese Systeme
durch beispielsweise der Anwendung von formaler Veri�kation gründlich analysiert wer-
den. Allerdings erschweren gegenseitige Abhängigkeiten zwischen Funktionen des Sys-
tems und Interferenzen zwischen verschiedenen Funktionen, die durch den Zugri� auf
gemeinsam genutzten Ressourcen entstehen können, die Analysen harter Realzeiteigen-
schaften. Erschwerend kommt hinzu, dass es während der Systementwicklungsphase zu
Änderungen an der Spezi�kation und der Implementierung des Systems kommen kann.
Bereits durchgeführte Analysen müssen dann wiederholt werden.
Im Rahmen dieser Dissertation werden solche Probleme in der Designphase von Syste-

men adressiert. In dieser Arbeit wird ein zustandsbasiertes Verfahren zum Analysieren
des korrekten Schedulings vorgestellt, das analytische und Model Checking Verfahren
kombiniert. Für die Analyse wird analog zu den Model Checking Verfahren der gesamte
Zustandsraum berechnet. In klassischen Analysen wird ausschlieÿlich die kritische In-
stanz eines Systems betrachtet. Dies führt zu pessimistischen Antwortzeiten, was wieder-
rum zu teureren Systemen führen kann, da mehr Berechnungseinheiten eingeplant werden
müssen, um den zu hoch eingeschätzten zeitlichen Anforderungen gerecht zu werden. Mit
dem in dieser Arbeit vorgestellten Verfahren können solche Kosten eingespart werden,
da exakte Antwortzeiten der Tasks berechnet werden. Model Checking Ansätze haben
typischerweise Probleme mit der Skalierbarkeit. Die Zustandsräume werden bereits für
kleine Systeme sehr groÿ. Um dieses Problem zu verringern, wird der Zustandsraum
der kompletten Architektur in dem hier vorgestellten Ansatz iterativ berechnet. Die
Zustandsräume an den Schnittstellen von abhängigen Ressourcen werden dabei durch
spezielle Methoden minimiert. Um die Skalierbarkeit weiter zu erhöhen, werden für solche
Zustandsräume weitere Abstraktionstechniken vorgestellt. Die E�ekte der einzelnen Ab-
straktionstechniken werden bezüglich der Zustandseinsparung und der Genauigkeit der
erzielten Ergebnisse evaluiert.
Die Timing Analyse wird auÿerdem mit einer Impact Analyse erweitert, mit der

5

Re-Veri�kationen von zeitlichen Eigenschaften verringert werden sollen. Solche Re-
Veri�kationen sind durch Änderungen im System erforderlich, die während der En-
twurfsphase vorgenommen werden. Beispielsweise werden weitere bisher nicht einge-
plante Funktionalitäten hinzugefügt, sodass weitere Tasks auf bereits existierende und
analysierte Ressourcen allokiert werden. Da Veri�kationsaufgaben typischerweise sehr
zeitaufwendig sind, gibt es ein groÿes Potential Entwicklungszeiten durch das Wiederver-
wenden von vorherigen Analyseergebnissen, die durch Änderungen nicht beein�usst wor-
den sind, einzusparen.
Durch Änderungen werden im Wesentlichen die zwei Abstraktionsebenen Spezi�kation

und Implementierung beein�usst. Auf der Spezi�kationsebene wird eine Technik zur
virtuellen Integrationsprüfung auf Basis von Contracts vorgestellt. Contracts ermöglichen
es dem Entwickler, zwischen Verhalten, das durch den Kontext geliefert werden muss,
und dem, das durch das System garantiert werden muss, zu unterscheiden. Einige charak-
teristische Eigenschaften der Contracts werden in dieser Ausarbeitung genutzt, um eine
auf Timed Automaten basierende Veri�kationstechnik zu ermöglichen. Dabei werden
Contracts durch eine Pattern-basierte Sprache erfasst. Die einzelnen Pattern werden
dann durch das Verfahren automatisch zu solchen Automaten transformiert. Zusätzlich
zur Veri�kation der korrekten Kompositions- und Verfeinerungsbeziehungen von Teilen
des Systems ermöglicht diese Technik Auswirkungen von Spezi�kationsänderungen auf
bisherige Analyseergebnisse zu ermitteln.
Auf der Implementierungsebene wird eine Verfeinerungsbeziehung zwischen den Zu-

standsräumen voneinander abhängiger Komponenten vorgestellt. Wenn eine Änderung
an einer Ressource durchgeführt wird, ist der vorgestellte Ansatz in der Lage zu entschei-
den, ob Schnittstellen zu abhängigen Ressourcen betro�en sind und damit diese neu
analysiert werden müssen oder ob unnötige Veri�kationszeit eingespart werden kann.
Alle vorgestellten Konzepte �nden typischerweise im Entwurfsprozess eine kombinierte
Anwendung. Deswegen wird in dieser Dissertation eine Methodik ausgearbeitet, die alle
vorgestellten Veri�kationstechniken integriert. Das Ändern eines Teilsystems führt zu
einer Integrationsprüfung zum Restsystem und der Re-Veri�kation der internen Struk-
tur oder der geänderten Implementierung. Neben dedizierten, kleineren Beispielen und
Benchmark-Systemen aus verwandten Verö�entlichungen wird das hier vorgestellte Ver-
fahren an einer Fallstudie zu einem Fahrerassistenzsystem evaluiert.

Contents

1. Introduction 11

1.1. Motivation . 11
1.2. Objective of this Thesis . 13
1.3. Context of this Thesis . 17
1.4. Outline . 18

2. Foundations 21

2.1. Scheduling of Real-Time Tasks . 23
2.1.1. Tasks and Task Dependency Graphs 24
2.1.2. Event Models . 25

2.2. Timed Languages and Timed Automata 27
2.3. Modeling of System Architectures . 33

2.3.1. Components and Resources . 33
2.3.2. Modeling in MARTE . 36

2.4. Speci�cation of Requirements . 38
2.4.1. Contract-based Design . 39
2.4.2. Requirement Speci�cation Language 44

2.5. Summary . 49

3. State-based Timing Analysis 51

3.1. Motivation . 51
3.2. Related Work . 53

3.2.1. Classical Analytical Approaches . 53
3.2.2. Model Checking Approaches . 56
3.2.3. Combination of Analytical and State-based Approaches 59
3.2.4. Contribution of this Chapter . 60

3.3. General Approach . 60
3.3.1. Iterative Analysis Approach . 61
3.3.2. Symbolic Transition Systems of Resources 63
3.3.3. Simpli�cation of Symbolic Transition Systems 67

3.4. Operations on Symbolic Transition Systems 70
3.4.1. Interface Computation . 70
3.4.2. Composition Function . 75

7

Contents

3.5. Analysis Algorithm . 79
3.5.1. Main Analysis Algorithm . 82
3.5.2. Successor Computation . 83
3.5.3. Completeness and Soundness of Algorithm 91
3.5.4. Termination of Algorithm . 94
3.5.5. Minimization through Untimed Bisimulation, Timed Simulation

Relation . 95
3.6. Abstraction Techniques . 97

3.6.1. Clock Resets and Duration Clocks 98
3.6.2. Clocks of Interface STSs . 99
3.6.3. Abstraction through Simulation Relation 102
3.6.4. E�ects of Over-Approximations for Iterative Analysis Approach . . 105
3.6.5. Testing: Abstraction through Under-Approximation 105
3.6.6. Abstraction for Event Bursts . 107

3.7. Case Study: Driver Assistance System . 109
3.7.1. Overview . 109
3.7.2. Lane-Keeping-Support System . 112
3.7.3. Evaluation Results . 114
3.7.4. Observation on Scalability . 115

3.8. Summary . 115

4. Contract-based Impact Analysis 117

4.1. Motivation . 117
4.2. Related Work . 118

4.2.1. Tool Support for Veri�cation of Contract Speci�cations 118
4.2.2. Impact Analysis . 121
4.2.3. Contribution of this Chapter . 123

4.3. Impact Analysis Methodology . 124
4.4. Impact Analysis on Speci�cation Level . 129

4.4.1. Simplifying the Virtual Integration Condition 130
4.4.2. Timed Automaton-based Analysis Approach 134

4.5. Impact Analysis on Implementation Level 142
4.5.1. Combining State-based Analysis with a Re�nement Checking Tech-

nique . 143
4.5.2. Re�nement through Simulation Relation 145
4.5.3. Combining Impact Analysis with Abstractions 146

4.6. Evaluation and Case Studies . 147
4.6.1. Contract-Level of the Driver Assistance System 147
4.6.2. Impact Analysis on the Driver Assistance System 150
4.6.3. Evaluation of Re�nement on Implementation-Level 151

4.7. Summary . 155

8

Contents

5. Summary and Outlook 157

A. Tool Support 161

B. Handling Architectures including Restricted Loop Structures 165

C. Generated Timed Automata 169

List of Figures 173

List of Tables 177

Index 179

Nomenclature 181

Bibliography 185

9

1. Introduction

Over the last few years, the amount of functionality of systems in the hard real-time and
safety-critical domains such as the avionics or the automotive which is realized by software
heavily increased. The usage of more and more software intensive systems targets the
increase of safety of vehicles and planes, and also targets the quality of traveling comfort
and energy e�ciency. The premise to increase the safety of vehicles is to guarantee
correct system functionality. This is achieved by testing the system intensively or by
performing exhaustive veri�cations.
A major aspect of correctness is the timeliness of computations. Systems have to

�nish certain critical computations in a timely manner in order to be safe and reliable.
This thesis targets the e�cient and systematic veri�cation of such timing properties of
safety-critical systems.

1.1. Motivation

Today up to 90 percent of all innovations, i.e. new and improved functionalities, are
realized by the usage of electronic and software 1. This trend will continue in future, as
X-by-Wire systems and the increased interconnection of vehicles to their environments
leading to cooperating tra�c systems are already becoming commonplace in the market.
An example in the avionics domain for this is the dynamic partitioning of the airspace
with respect to time, which was investigated in the SESAR (Single European Sky ATM
Research) program. The recent partitioning of the airspace is performed in a static
manner, i.e. the trajectories of planes are not changed during landing approaches and
takeo�s. The shift to a dynamic partitioning, which are called 4D-trajectories, involves
an increased software-supported cooperation between the tower and the airplanes.
For safety-critical systems it is crucial that these adhere to their speci�cations as a

violation of a requirement could result in critical situations leading to very high costs
or even threats to human life. The veri�cation of requirements in early design steps is
a critical issue as the later an error is detected in a system the higher are the costs to
perform corrections.
Recently, Nissan for example o�ers a car in the premium segment �tted with a steer-

by-wire system, in which the steering commands are transmitted electrically to a control
unit and then to an actuator which actually performs the steering movement. After the

1http://www.presseportal.de/pm/67565/2723743 [Jan. 18, 2016]

11

http://www.presseportal.de/pm/67565/2723743

1. Introduction

...

...

Abstracted Architec.
for Analysis

t1

tn

E
C
U

C
A
Nt1 tm

Figure 1.1.: General concept of the model-based design approach.

start of production in the year 2014 Nissan had to recall the vehicles due to some delays
in the emergency program. As recalls are quite expensive, it is desirable to perform
analyses at early design steps.
In order to cope with the complexity of adequately developing safety-critical systems,

the model-based design paradigm was introduced and is widely used in development pro-
cesses. Systems can be build up intuitively in a bottom-up or top-down fashion by the
usage of so-called components as illustrated in Figure 1.1. A component is self-contained
and provides a fraction of the functionalities of a system. It has a well de�ned inter-
face and may contain a set of parts or subcomponents. To specify models in a reusable
and interchangeable manner it is desirable to use domain speci�c modeling standards.
Typically, the design of the overall system is performed by the original equipment man-
ufacturer (OEM). In a �rst step the OEM designs the software components in form of
logical architectures. The components and parts of this system are then realized and
implemented by either the OEM itself or by various suppliers. In order to get adequate
realizations from each supplier, the OEM has to specify the extra-functional properties
and interfaces unambiguously. To capture the speci�cation of a component many speci-
�cation formalisms were introduced as for instance the language of Live Sequence Charts
(LSC) [DH01] or the contracts-based speci�cations [Mey92]. Such formal languages o�er
a rigorous semantics enabling automatic veri�cation.
When all suppliers deliver the implementations of the software components (SWCs),

the OEM has to verify whether all SWCs �t together, i.e. he has to perform a consistency
check in a black-box manner, and whether all higher level requirements which range over
several SWCs are realized by the decomposition structure. After the implementation of all
SWCs the logical architecture has to be allocated to a hardware architecture, on which the
functionality shall be executed. The hardware architecture consists of electronic control
units (ECUs) which are interconnected by bus systems. At this design stage technical
details such as resource consumptions and timing latencies have to be veri�ed. To perform
such analyses, typically the architecture is abstracted in an appropriate manner. The
kind of abstractions considered in this thesis is illustrated in the right part of Figure 1.1:
ECUs and bus systems are treated logically equivalent in the sense that both represent

12

1.2. Objective of this Thesis

o1

C
A

N
 B

us

i1

ECU 2
i2

o2

i3

i4

Subsystem 1

ECU 1

ECU 3

Sub-
system 1

 C

Sub-
system 2

...

...

...

...

C 1 C 2
C 11

 System 1

τ21 τ22
ECU 2

τ22

Figure 1.2.: Considered system architectures with assume/guarantee style contracts.

computation units on which a set of tasks are allocated. This is a valid approach, as a
bus also needs some processing time to deliver a message to the correct recipient(s). The
order of executions of the tasks is determined by the corresponding scheduling policy.
Speci�cations made during the development process of a system or a software compo-

nent are typically subject of changes. New requirements from the OEM could be stated
which were forgotten previously, existing requirements may get re�ned or corrected, or
further functionalities have to be included into the system. Such changes on the system
architecture, the parts of the implementations, or the speci�cations typically require that
already performed analyses have to be repeated. As such tasks are time consuming it is
desirable to minimize the e�ort of a re-veri�cation.
This thesis targets the analyses tasks mentioned above. Modeling languages will not be

detailed in this thesis as the scope is not the modeling but the analysis of hard real-time
systems. The contributions of this thesis and the worked out analyses tasks are detailed
in the following section.

1.2. Objective of this Thesis

The objective of this thesis is the analysis and veri�cation of hard real-time systems.
The focus is on the veri�cation of timing requirements in early design steps, which is a
critical issue, as late changes, which have to be performed due to design errors, typically
lead to high costs.
System architectures consisting of sets of processing units (ECU) and bus systems

are considered, on which a set of executable tasks is allocated as illustrated in Figure
1.2. These systems can be a part of a larger context such as Subsystem 1 in the �gure.
Independent tasks are triggered by events of a corresponding event stream (ES). Event
streams are characterized by a period and a jitter. Aperiodic event streams are not con-
sidered in this thesis. Event streams can be characterized by upper and lower occurrence

13

1. Introduction

curves as introduced in the real-time calculus [TCN00]. The timing speci�cations of the
systems are given in terms of assume/guarantee style contracts (abbreviated with C, Ci
in Figure 1.2).
Regarding the semantics of models of the considered timed systems, discrete and con-

tinuous time domains can be applied. The discrete domain is closer to �nal imple-
mentations, while in the dense time semantics technical details like sampling times are
abstracted. This is an advantage in early design steps, as the designer can keep the
focus on the correct functionality and the overall timings. In this thesis the dense time
semantics is considered.
The approach for scheduling analysis worked out in this thesis combines both analytical

methods and model checking methods, where violations of timing constraints are decided
through the concept of the reachability of bad states. The scheduling analysis is based on
a model checking approach covering all reachable states of the system thus determining
exact response times of the allocated tasks and end-to-end latencies of task chains.
More speci�cally, the goal is to determine response times for each task and whether

some timing constraints of tasks (i.e. deadlines) and end-to-end latency constraints are
violated. For this, the entire state space of a given system architecture, which includes all
task interleavings and dependencies, is constructed in an iterative manner. The timing
analysis thereby proceeds as follows: To build the state space of a resource, its input
behavior has to be determined, which de�nes the activation times of all allocated tasks.
State spaces are represented by symbolic transition systems (STS): The states determine
a range of valuations of clock variables. Also, states include the information which task
is currently running, is interrupted, or in the ready queue. A resource can have multiple
sources for its inputs. To determine a single input state space for each resource, all these
inputs have to be combined by an appropriately de�ned composition operation. The
computed state space of a resource is then used as an input for dependent resources, i. e.
for resources on which dependent tasks are allocated. To keep the interface between the
resources as small as possible, parts of the state space that are not relevant for the input
behavior of the dependent resources are abstracted.
Besides the timing analysis, an impact analysis approach is worked out, which is ap-

plied if changes in the already analyzed system architecture appear. Such changes are
not unusual in a typical development process of software intensive systems. Sources of
changes are for example the integration of new features to previously implemented soft-
ware components, the update of implementations, or the change of requirements. In
this thesis an impact analysis approach is introduced to reduce re-veri�cation aspects for
timing properties when such changes occur. The approach is able to handle changes on
both the speci�cation level and the implementation level.
Suppose that the speci�cation of a system component shall be replaced. If the new

contract of the adapted speci�cation re�nes the previous contract, there is only a need
to check the internals of the new component itself: If the considered component is de-
composed in further subcomponents with local contracts, it has to be checked whether

14

1.2. Objective of this Thesis

State-based Timing Analysis

Impact Analysis

Determine Resource Input
Determine Resource State-

Space

Specification Level Implementation Level

Overall Methodology

Overall Control

Composition

Interface
Minimization

State
Abstraction

State-Space
Computation

Deadline
Validations

Select Resource
to be analyzed

Decide
Termination

Contract Level
Refinement Check

Check Virtual
Integration
Condition

State-based
Refinement Check

State-based
Timing Analysis for
specific Resource

Figure 1.3.: Contributions of this thesis.

the new component contract is still ful�lled by the contracts of all subcomponents. For
such scenarios a timed automaton-based virtual integration checking technique is intro-
duced. Otherwise, if the new contract is not a re�nement of the old one, an additional
consistency check with all dependent parts of the system has to be performed, i.e. an
additional virtual integration check has to be performed.
The presented approach on the implementation level is relevant for cases where certain

aspects of the realization of a component are changed such as adding a new task on
an existing resource, the merge of two tasks in a single one, or even the change of
the complete implementation. When such a change occurs, the approach is able to
determine whether the interfaces of dependent resources are a�ected through the concept
of a re�nement analysis: It is checked if the new interface between dependent resources
re�nes the old interface. In such a case a re-veri�cation of dependent resources is omitted.
The complete approach and the contributions are illustrated in Figure 1.3:

• A state-based analysis approach for timing analysis is worked out, which consists of
the computation of the input of resources and the computation of the state spaces
of resources itself. Thereby, a main control mechanism determines the order of the
resources to be analyzed and decides when the termination condition is reached.
To realize the state-based analysis, some operations are de�ned:

15

1. Introduction

� A composition operation is de�ned to determine the input of a resource. Fur-
ther, an interface minimization operation is presented, which abstracts from
speci�c parts of the state space of a resource. The abstraction concerns such
parts, which are not relevant to compute the input behavior of a speci�c de-
pendent resource.

� A set of abstraction techniques are introduced. These techniques are applied
on the interfaces of dependent resources and target the scalability of the ap-
proach. The e�ects of the speci�c abstractions are evaluated with respect to
the advantages for scalability and the adequacy of the results.

� To compute the state space of a resource, an algorithm is worked out, with
which it is possible to determine whether violations of timing constraints in
the system can occur. The correctness of this algorithm is given through the
proof of the soundness and completeness properties.

• An impact analysis approach is worked out, which determines a�ected parts of the
system architecture when a change occurs.

� On speci�cation level a timed automaton-based analysis approach, which is
based on the virtual integration condition of contracts, is worked out. Cer-
tain characteristics of contracts are used in this thesis to enable such a timed
automaton-based veri�cation approach. Contracts are speci�ed by using a
pattern-based language. An approach is presented which transforms the lan-
guage fragments automatically to timed automata.

� On implementation level, an appropriate re�nement relation on the interfaces
of resources is de�ned. It is shown that if a re�nement is given, the satisfaction
of timing properties is preserved.

� The overall impact analysis methodology is worked out, which describes how
the basic techniques are combined.

• The implementations of the introduced approaches are evaluated on dedicated
benchmarks from related papers. Further, a driver assistance system case study is
worked out on which the applicability of the approach is demonstrated.

The contribution to the corresponding research areas is the following:

• State-based timing analysis: In literature, typical approaches are based on holistic
analyses, where the complete state set of the system is constructed in a single step.
The di�erence of this work is to perform the analysis in an iterative fashion: First,
dependencies between components are analyzed. Based on the dependency graph,
the order of the state space construction of the involved resources is performed.
Thus, the state space is constructed iteratively. This is a major advantage for
scalability in contrast to the approaches in literature, as abstractions after each

16

1.3. Context of this Thesis

analysis step are enabled, with which the overall state space can be kept smaller
than in a holistic approach. Note that the goal of this thesis is neither to compare
the introduced approach with state-of-the-art tools or to measure the e�ectivity in
contrast to such tools as the prototype implementation of the concept is not suited
and optimized for such purposes. By improved scalability we refer to the reduced
state spaces with which the analysis concept has to deal in contrast to holistic
approaches.

• Impact analysis: The combination of a scheduling analysis technique together with
an impact analysis approach realizes a powerful veri�cation methodology, with
which implementation aspects (timing) and speci�cation aspects (re�nement, com-
position) are veri�ed using the same formalism. Further, the impact analysis ap-
proach realizes the analysis of a�ected parts of a system when changes occur. This
is an advantage as veri�cation times of systems are typically time consuming.

In the appendixes of this document further helpful details concerning the tool imple-
mentations of the introduced analyses approaches are provided.

1.3. Context of this Thesis

The functional correctness of safety-critical systems heavily depends on the timeliness
of computations, where computations have to be �nished within the de�ned timing con-
straints. This de�nes the context of this thesis: First, to verify timing properties a ver-
i�cation technique is necessary. Second, a methodology which de�nes how to e�ciently
deal with re-veri�cations tasks has to be given.
The approach worked out in this thesis integrates in the classical development process

as follows: During the design of real-time systems timing constraints for safety-critical
functionalities are de�ned. By choosing low-performance computation units for example
in order to save cost, the system could react too slow in certain situations leading to
critical scenarios. Thus, after the design of a system architecture, where executable
tasks are de�ned and allocated to resources, these constraints have to be veri�ed. The
approach introduced in this thesis targets this veri�cation step.
In literature two types of real-time properties are de�ned: Hard real-time deadlines

are considered to be safety properties. Missing such a deadline corresponds in a total
system failure. In contrast to this, soft real-time deadlines are used to for performance
requirements. These need not always to be satis�ed but the response times shall be
minimized to o�er a good service quality. The focus of the thesis is on the hard real-time
properties.
One state-of-the-art approach for such problems is the approach of SymTA/S, which

was realized by Symtavision. The main idea behind SymTA/S is to transform event
streams whenever needed and to exploit classical scheduling algorithms for local analyses.

17

1. Introduction

Event streams describe the activation patterns for tasks by upper and lower occurrence
curves, realizing a compositional analysis method. Unfortunately, this concept delivers
pessimistic results when inter-ECU task dependencies exist, as the analysis abstracts
completely from concrete state-based interdependencies. The main approach of this thesis
picks up on the compositional concept of SymTA/S by realizing an iterative analysis.
An alternative approach is based on model checking, and has been illustrated for

example in [FPY02, DILS09]. Here, all entities like tasks, processors, and schedulers are
modeled in terms of timed automata. The most famous tool used for this approach is
Uppaal. Analogous to [FPY02] the full state space for the timing analysis is considered
in this thesis, where all interleavings and task dependencies are preserved. In contrast to
these works, the approach presented here constructs the state space of the architecture
in an iterative manner. With this iterative approach new minimization operations on
the interfaces of dependent resources are enabled, such that a more scalable analysis
technique is realized.
Technically speaking, the Uppaal DBM library 2 is used as the basis of the approach

presented in this thesis. This library includes a clock zone implementation with all
necessary basic operations such as zone intersection or reset of dedicated clocks. On top
of these basic operations higher level functions to realize the computation of the state
spaces of computation resources in an iterative manner are de�ned and implemented in
this thesis.
Another aspect of this work is the re-veri�cation of parts of the system architecture.

During the design stage of such systems changes such as new or adapted requirements
or new features which have to be o�ered occur. Thus, besides the timing analysis,
veri�cation tasks have also to deal with such changes. With this, there is a need for
a methodology, which de�nes how to e�ciently deal with such re-veri�cations tasks.
Ideally, this methodology is based on the de�ned veri�cation technique and extends it
seamlessly by re-veri�cation abilities.

1.4. Outline

Chapter 2: Foundations In Section 2.1 the basic aspects of the scheduling of real-time
tasks are introduced. An overview of scheduling policies is given. Task characteristics
are de�ned together with activation patterns, which trigger tasks at certain points in
time. In Section 2.2 the formalism of timed automata and the semantics of networks of
timed automata are introduced. Section 2.3 addresses the modeling of real-time systems.
The concept of components and resources are illustrated in a formal way. As designer
of systems do not use these formal constructs to design system architectures, the usage
of a higher level modeling pro�le called Marte is illustrated. Section 2.4 deals with
the speci�cation of requirements in a pattern-based manner and introduces the contract-

2http://people.cs.aau.dk/~adavid/UDBM/

18

http://people.cs.aau.dk/~adavid/UDBM/

1.4. Outline

based design approach. The last section summarizes all concepts introduced in this
chapter.

Chapter 3: State-based Timing Analysis This chapter starts with the review of re-
lated works which address the analysis of hard real-time systems. In Section 3.3 the
idea of the general analysis approach is sketched, and the state space of a resource is
de�ned. A simpli�ed version of the symbolic transition systems (STS) introduced in the
foundations chapter is presented. Operations on the symbolic transition systems needed
to realize the analysis approach are introduced in Section 3.4, which are the abstraction
and composition operations for STSs. Section 3.5 details the computation of the STS of
a resource. In Section 3.6 abstraction techniques are introduced, which lead to more pes-
simistic response times but generally increase the scalability of the approach. In Section
3.7 the analysis technique is applied to a lane-keeping-support system (LKS) case study.
Finally, a summary of this chapter is given.

Chapter 4: Contract-based Impact Analysis First, related works on veri�cation tools
for contract speci�cations, and on approaches reducing the e�ort of performing re-
veri�cations are given. In Section 4.3 the overall methodology of the impact analysis
approach consisting of two basic veri�cation techniques on the speci�cation and the im-
plementation level is presented. Both levels are detailed in the subsequent Sections 4.4
and 4.5. The approach is evaluated in Section 4.6 on a driver assistance system use-
case, which extends the previously introduced LKS. Finally, all results of this chapter
are summarized in Section 4.7.

Chapter 5: Summary and Outlook This chapter summarizes the main results and
contributions of this work, and gives future research directions.

19

2. Foundations

Typical real-time system architectures in the automotive and avionics domains consist of
a set of control units, actuators, and sensors, which are interconnected directly or by bus
systems like sketched in Figure 2.1(a). While in the nineties there were only a handful
of control units used in cars for functions like the anti-blocking system (ABS), in today's
cars the electrical/electronic architectures (E/E architectures in short) consist of up to
70 control units, interconnected by up to ten bus systems taking on tasks like the engine
control or the dynamic stability control preventing to over- and under-steer the car 1.
In general, the overall architecture is separated in a set of networks using di�erent bus

protocols, e.g. CAN (Controller Area Network), LIN (Local Interconnect Network), or
MOST (Media Oriented Systems Transport). This is illustrated in Figure 2.1(b). Pro-
tocols are chosen on certain required properties like the degree of predictable behavior,
cost, or bandwidth. When data shall be exchanged between di�erent networks, on which
incompatible or compatible protocols are implemented, Gateways are used, which syn-
chronize and translate the data adequately. The functionality of a gateway is in general
realized by an already existing control unit on which some further tasks are allocated.
In this work gateways are not considered explicitly. In this thesis only gateways that
connect compatible protocols are considered such that these can be treated in a same
manner as standard communication resources.
For communication resources in safety-critical systems, typically the CAN protocol is

used. The advantage of this protocol is that messages from tasks with a high criticality
may be processed before messages from tasks with less criticality, such that these com-
putations are �nished as early as possible. Besides this, the protocol allows to easily add
further resources and tasks communicating over the corresponding bus without changing
the architecture. For time division protocols this is not the case.
Various modeling formalisms have been worked out to model such systems like for

example SysML (Systems Modeling Language), EAST-ADL (Electronics Architecture
and Software Technology � Architecture Description Language), or Marte (Modeling
and Analysis of Real-Time and Embedded systems). In this work, modeling languages
will neither be discussed in detail nor will be compared. The focus of this work is not
the modeling but the analysis of hard real-time systems. This work is also not restricted
to a speci�c modeling language. To enable the approach for a speci�c language an
appropriate mapping of the contained model elements to the elements considered for the

1http://www.autonews-123.de/

21

http://www.autonews-123.de/

2. Foundations

(a) Structure of overall E/E-Architecture.

ABS

Engine
Ctrl. Unit

Gear
Ctrl. Unit

ESP

CAN

Diagnosis
Interface

Speedometer

Gateway

Distance
Ctrl. Unit

Lane Keeping
Support System

CANCAN

Display
Unit

MOST

Telematics

Amplifier

GPSA/C

Display
Unit

Fan Ctrl. Heater

LIN

(b) Subset of di�erent subsystems interconnected
through various bus systems.

Figure 2.1.: E/E-Architecture of typical medium-sized cars.

analysis must be de�ned. The single restriction here might be that not the complete set
of elements might be supported by the analysis approach.

Regarding the semantics of models of timed systems, discrete and continuous time
domains can be considered. The discrete domain is closer to the �nal implementation of
the system, where problems like the sampling time have to be considered. Anyway, in
early design steps like the modeling phase the designer should not care about sampling
times and the adequate choice of granularity. Thus, the dense time semantics has the
advantage that the designer can focus on the correct functionality and the overall timing,
and abstract from such implementation details. In this thesis the dense time semantics
is considered.

For hard real-time systems it is crucial to specify requirements such as maximum end-
to-end latencies in a formal manner to enable automatic analyses. In literature many
methods and techniques have been worked out for this, as for instance temporal logics
which are based on propositional logics, pattern-based languages, or sequence diagram-
based visual formalisms. On top of these formalisms the contract-based design approach
was introduced allowing to distinguish between assumed context behavior and guaranteed
behavior of the system. Such unambiguous speci�cation formalisms are especially crucial
for larger systems, where several departments of a company and various suppliers on
di�erent design levels work in parallel, and all artifacts have to be integrated in later
design steps. If interfaces are not speci�ed appropriately, such integration approaches
could fail and lead to expensive re-designs.

In this chapter, �rst the main aspects of real-time systems such as scheduling policies,
task characteristics, and activation patterns are introduced, which trigger tasks at certain
points in time. All basic terms used in this thesis will be de�ned and outlined and thus

22

2.1. Scheduling of Real-Time Tasks

Real-Time Scheduling

Hard Deadlines Soft Deadlines

Periodic Aperiodic

Preemptive Non-Preemptive

Static Dynamic

Preemptive Non-Preemptive

Static Dynamic Static Dynamic Static Dynamic

Figure 2.2.: General classes of scheduling algorithms [Mar06].

is a prerequisite to understand the content of this work. In Section 2.2 the formalism
of timed automata is illustrated and the semantics of networks of timed automata is
detailed. This formalism serves as the basis of the analyses approaches introduced in
Chapters 3 and 4. Section 2.3 addresses the modeling of real-time systems. For this,
components and resources are introduced in a formal manner. As designers of systems
do not use these formal constructs to design a system architecture, the modeling pro�le
Marte is presented and the usage in the context of this thesis is illustrated. This
will ease the understanding of the case studies of this work. Section 2.4 deals with the
speci�cation of requirements in a pattern-based manner and introduces the contract-
based design approach. The timing requirements speci�ed in these formalisms serve as
the input for both the timing analysis and the impact analysis approaches. The last
section summarizes all concepts introduced in this chapter.

2.1. Scheduling of Real-Time Tasks

Scheduling is a crucial aspect in real-time systems, as a chosen scheduling algorithm
directly a�ects the response times of the tasks on a computation resource. A scheduling
policy is a strategy which determines the assignment order of tasks to the processor,
such that each task is executed until its completion [But05]. A task is an abstraction
of a (part of a) program that is executed by the resource on which it is allocated, i. e.
it consumes processing time. A resource processes its allocated and activated tasks in a
sequential manner [But05]. A schedule is feasible if all task executions can be completed
before their corresponding deadlines expire. A deadline thereby determines the maximal
allowed time frame from releasing a task to the termination of the task.

23

2. Foundations

In [Mar06] the scheduling algorithms are classi�ed with respect to their characteristics,
which is also illustrated in Figure 2.2: Scheduling for hard deadlines requires that all
task deadlines are ful�lled, as a violation could result in a catastrophic result, while soft
deadlines need not always to be ful�lled but the response times may be minimized. As
the focus of this thesis is the analysis of hard real-time properties occurring in systems
like an engine control system, more details about soft deadlines will not be discuss in
this work.
The scheduling policies distinguish between periodic and aperiodic tasks. Periodic

tasks are activated with a �xed inter-arrival time de�ned by the corresponding period.
The inter-arrival times may jitter with a speci�c amount of time. A sporadic (or ape-
riodic) task is in general a task which may appear at arbitrary points in time. As the
focus here are predictable systems which can be analyzed by the concept of reachability
checks, sporadic tasks are restricted in such a way that a minimum and a maximum
inter-arrival time is always speci�ed. These values bound the number of occurrences of
aperiodic tasks.
A scheduler may be preemptive or non-preemptive. Preemptive schedulers allow that

task executions can be interrupted at any point in time. If a critical task with high priority
arrives while a non-critical task with a lower priority is executing, it can immediately
start to run without delaying in the ready queue. For some scenarios non-preemptive
scheduling policies have to be used, especially in cases in which tasks are considered to
run in an atomic fashion, like tasks on a communication resource.
Another characteristic of a scheduler is whether it is static or dynamic. These terms

are not unambiguous in literature. Here, it is referred to the de�nition of [Mar06]: In
a static schedule the order and timings of tasks is de�ned at design time. For this, the
start times and durations of tasks are encoded in a table. In contrast, dynamic scheduling
determines at run-time, which task should be executed and which has to be enqueued in
the ready list. The focus of this thesis are dynamic scheduling policies. In Figure 2.2 the
class of schedulers which is of interest for this work are marked through boxes colored in
gray.
In the next subsections the characteristics of tasks and their activation patterns is

detailed.

2.1.1. Tasks and Task Dependency Graphs

A task is a tuple τ = (bcet, wcet, d, pr), where bcet, wcet ∈ N≥0 are the best- and worst-
case execution times with respect to the allocated resource with bcet ≤ wcet, d ∈ N≥0

is its relative deadline determining the maximal allowed time frame from release time to
task termination, and pr ∈ N≥0 is the �xed priority of the task. We will refer to the
elements of a tasks by indexing, e.g. bcetτ for task τ . The set of all tasks is called T.

Other properties of a task can be inherited by the above ones: The release time of a
task is the time, at which it becomes active, i.e. available for execution. The response

24

2.1. Scheduling of Real-Time Tasks

n

1
p-j

p+j

p

p

𝜂+ 𝜂-

2j

Δt

(a) Occurrence curves.

wait

c_p <= p

releasing

c_p <= j

init

c_p <= p

c_p >= p
c_p = 0

e!

c_p=0

(b) Event model automaton.

Figure 2.3.: Periodical activation of independent tasks.

time is the minimal and maximal time frame between the task release and its completion.
The lateness is the di�erence between the response time and the corresponding relative
deadline.
Precedence constraints between tasks are modeled by task dependency graphs as de-

�ned in the following.

De�nition 1 (Task Dependency Graph). Let T be a set of (distinct) tasks. A task
dependency graph (TDG) is a directed acyclic graph G = (T, E), where T represent the
vertices of the graph and E ⊆ T × T is the set of edges representing task dependencies.
Further let E∗ be the transitive closure of E. A task t1 is called an immediate predecessor
of t2 if (t1, t2) ∈ E, and a predecessor if (t1, t2) ∈ E∗.

A chain of task dependencies is a path in the corresponding TDG. In literature, such
chains of tasks are also called pipelines [SSL+14]. If for a task τ there exists no task
τ ′ such that (τ ′, τ) ∈ E holds, then τ is called independent . Independent tasks are
triggered via event streams, which is the topic of the next section.

2.1.2. Event Models

Event models are models used to specify the allowed timings of events, which activate
corresponding tasks. An (in�nitely) long sequence of events is called event stream. Thus,
event streams are more speci�c in the sense that event models de�ne a (possibly in�nite)
set of event streams. There are several types of event models, like strictly periodic,
periodic with jitter, or sporadic.
In this work, the periodic with jitter model is of interest, which is characterized by

a period p ∈ N>0 and a jitter j ∈ N≥0. Such streams can be characterized by upper
and lower occurrence functions {η+, η−} : N→ N as introduced in the real-time calculus
[TCN00] and illustrated in Figure 2.3(a). Occurrence functions are piecewise constant

25

2. Foundations

step functions. They have unit-height steps of size one which corresponds to the occur-
rence of one event characterizing the activation of a corresponding task. For any length
of a time interval ∆t ∈ N the upper function η+(∆t) determines the maximum number
of events that can occur within a time frame of such a length, while the lower function
η−(∆t) determines the minimum number of events.
The periodic with jitter event model is speci�ed through the following upper and lower

occurrence functions [RRE03]:

η+(∆t) =

⌈
∆t+ j

p

⌉
, (2.1)

η−(∆t) = max(0,

⌊
∆t− j
p

⌋
). (2.2)

With this model also streams with jitter larger than the period can be captured. If the
jitter is larger than the period, the initial step size of the upper function would be larger
than one, which describes that more than one event is considered to occur simultaneously.
This is a pessimistic approach, as in practical cases there is always a minimal distance
between event arrivals. Jitter typically occur when a task is triggered from another task
with a varying response time. Such a response time is always greater than zero, as a task
will never �nish its execution instantaneously.
Non-simultaneous arrivals of events were the topic of [Ric04]: In their work the authors

introducedminimum inter-arrival times to the periodic model with jitter to support jitter
larger than the period. The model is characterized by the parameters period p, jitter j
and a minimum event distance d. The minimum event distance could be for example the
best-case response time of a task, from which the considered one depends on. The model
is de�ned as follows:

η+(∆t) = min(

⌈
∆t

d

⌉
,

⌈
∆t+ j

p

⌉
). (2.3)

The �rst part of the function captures the burst behavior for small ∆t, the second part
captures the long term behavior of the stream which corresponds to the standard event
model periodic with jitter of Formula 2.1. The lower function is the same as the standard
event model for periodic with jitter of Formula 2.2.
This event model is relevant for event burst scenarios. Consider for example the

scenario of Figure 2.4(a): On Resource 1 two independent tasks τ1, τ2 are allocated, with
periods pτ1 = 50 time units and pτ2 = 5 time units, and execution times bcetτ1 = wcetτ1 =
35 time units and bcetτ2 = wcetτ2 = 2 time units. As the priority of τ1 is higher than the
priority of τ2 a large response jitter from activation of the task until completion is adhered
at the output of the resource. On Resource 2 the task τ3 is allocated which depends on
the output of τ2, where the event model characterized above is used to describe the event
burst activation behavior.

26

2.2. Timed Languages and Timed Automata

(a) Output interface where activation burst occurs.

n

1

d

p

𝜂+ 𝜂-

Δtd

k p-j

(b) Event model for periodic streams with
burst.

Figure 2.4.: Event streams with burst behavior.

In this work, occurrence curves are modeled through timed automata like illustrated
in Figure 2.3(b). According to the occurrence functions, the �rst event can arrive imme-
diately (t = 0) or can wait a full period in state init and jitter in state releasing. This is
achieved through the invariant in state init specifying that the clock of the automaton
c_p may not exceed the period, and the invariant in state releasing stating that c_p
may not exceed the jitter. Note that by switching from state init to releasing the clock
is reset. All successive events may arrive a full period after the last event at the earliest,
delayed by jitter j at the latest, which is achieved through the invariant c_p ≤ p in state
wait and the guard c_p ≥ p on the transition from state wait to releasing. The details
of timed automata are discussed in the next section.

2.2. Timed Languages and Timed Automata

A (formal) language L is in general a set of �nite words over some �nite alphabet Σ and
is thus a subset of Σ∗, which is the set of all �nite words over Σ. For non-terminating
systems like control units or operating systems, in�nite words instead of �nite ones are
used to characterize their behavior. Such languages are called ω−languages. Thus, an
ω−language over Σ is a subset of Σω, the set of all in�nite words over Σ. If an ω−language
is accepted by some Büchi Automata then it is called ω−regular. A Büchi Automaton is
mainly a �nite state machine with an additional acceptance criterion such that in�nite
words can be recognized. In a Büchi Automaton a subset of the states are marked as
accepting. A Büchi Automaton accept words, for which there is an in�nite sequence of
states (also referred to as run) of the automaton, of which some are accepting and are
visited in�nitely often. Regular and ω−regular languages are widely used in information
systems as these are closed under all set-theoretic Boolean operations such as intersection
and complement, and also under several other operations such as concatenation and

27

2. Foundations

Kleene star.
To specify the behavior of timed systems, Büchi Automata were extended by real-

valued variables called clocks in [AD94]. These automata accept timed ω−regular lan-
guages over a given alphabet and an in�nite time sequence.

Timed Languages

Timed words are in�nite sequences of symbols of some �nite alphabet, enriched by a
monotonically increasing in�nite time sequence. The time values determine the occur-
rence times of the corresponding symbols.

De�nition 2 (Timed Word and Language). A timed word (or trace) over a non-empty
�nite alphabet Σ is a pair σ = (ρ, τ) of an in�nite sequence ρ = ρ0, ρ1, · · · of symbols from
Σ, and an in�nite sequence τ = τ0, τ1, · · · of non-negative real values from R+, such that
1. ∀i ∈ N : τi ≤ τi+1, (Monotonicity)
2. ∀t ∈ R+ ∃i ∈ N : τi > t. (Progress)

The set of all timed words over Σ and a time sequence τ is denoted by (Σ, τ)ω.

As we will only use timed words in the following, we will abbreviate the set of all timed
words with Σω. A timed language L over Σ is a set of timed words with L ⊆ Σω. In
many cases it is important to only consider �nite pre�xes of (in�nite) timed words. This
is de�ned in a recursive fashion.

De�nition 3 (Trace Pre�x). Let σ = (ρ0, τ0)(ρ1, τ1) · · · be a timed trace over Σ. The
�nite pre�x of σ of length n+ 1 with n ∈ N>0 is recursively de�ned as follows.

pre(σ, 0) = (ρ0, τ0),
pre(σ, n) = pre(σ, n− 1)(ρn, τn).

Further for i ≥ 0 let σi := (ρi, τi) determine the i
th element of a trace σ.

Timed Automata

In this work, the formalism of timed automata are used for several purposes: First, event
streams de�ning the activation behavior of independent tasks are characterized in terms
of timed automata as described in the previous subsection. Second, the worked out timing
analysis approach which is the topic of Chapter 3 is based on the symbolic representation
of the induced state spaces of timed automata. Third, the virtual integration check
introduced in Chapter 4 will also be based on this formalism.
Timed automata are �nite automata extended by a �nite set of real-valued variables

called clocks. The formalism of timed automata was introduced by Alur and Dill in
[AD94] in order to de�ne a modeling concept for real-time systems. Here, the syntax

28

2.2. Timed Languages and Timed Automata

and semantics of timed automata are de�ned as employed by Uppaal [LPY97]. Uppaal
adapts timed safety automata introduced in [HNSY92]. In such automata, progress is
enforced by means of local invariants instead of an accepting condition. States � also
referred to as locations � may be associated with such invariants, which are timing
constraint de�ning upper bounds on clocks. In the sense of the classical Büchi Automata
[AD94] all runs of a safety automaton are considered to be accepting.
Let C be a set of clocks. A clock constraint is a conjunction of upper and lower bounds

of clock variables and di�erences of clocks. Formally, a clock constraint is de�ned by the
syntax

ϕ ::= c1 ∼ t | c1 − c2 ∼ t | ϕ ∧ ϕ, (2.4)

where c1, c2 ∈ C, t ∈ Q≥0 and ∼∈ {≤, <,=, >,≥}. The set of all clock constraints over
the set of clocks C is denoted by Φ(C).
A valuation of a set of clocks C is a function ν : C → R≥0 assigning each clock in C

a non-negative real number. By ν |= ϕ it is denoted that a clock constraint ϕ evaluates
to true under the clock valuation ν. The notion 0C is used to denote the clock valuation
c = 0 for all c ∈ C. A time shift denotes the passage of time and is abbreviated by the
notion ν+d := ν(c) +d for all c ∈ C. By the notion ν[% 7→ 0] resets for a subset of clocks
% ⊆ C are denoted, where ν[% 7→ 0](c) = 0 if c ∈ %, and ν[% 7→ 0] = ν(c) if c /∈ %.
With these ingredients the formalism of timed automata together with their semantics

is enabled to be de�ned in the following.

De�nition 4 (Timed Automaton). A Timed Automaton (TA) is a tuple A = (L, l0,Σ, C,
R, I) where

• L is a �nite, non-empty set of locations, and l0 ∈ L is the initial location,

• Σ = Σ!∪Σ? is a �nite alphabet of channels partitioned in sending (Σ!) and receiving
(Σ?) events,

• C is a �nite set of clocks,

• R ⊆ L×Σ ∪ {ε} ×Φ(C)× 2C × L is a set of transitions. A tuple r = (l, σ, ϕ, %, l′)
represents a transition from location l ∈ L to location l′ ∈ L annotated with an
action σ ∈ Σ, a constraint ϕ ∈ Φ(C), and a set % ⊆ 2C of clocks which are reset.

• I : L→ Φ(C) is a mapping which assigns an invariant to each location.

The semantics of timed automata is given by timed transition systems.

De�nition 5 (Timed Transition System). Let Ai = (Li, l
0
i ,Σi, Ci, Ri, Ii) with i ∈ {1, ..., n}

be a network of timed automata with pairwise disjoint sets of clocks. The semantics of
such a network is de�ned in terms of a timed transition system T (A1 ‖ ... ‖ An) =
(Conf ,Conf 0, C,Σ,→), where

29

2. Foundations

• Conf = {(l, ν) | l ∈ L1 × ...× Ln ∧ ν |=
∧n
j=1 Ij(lj)} is the set of con�gurations,

and Conf 0 = (l0, 0C) is the initial con�guration, where l0 = (l01, ..., l
0
n) is the initial

location and 0C is the initial clock valuation,

• C = C1 ∪ ... ∪ Cn,

• Σ = Σ1 ∪ ... ∪ Σn,

• →⊆ Conf×(Σ∪R≥0)×Conf is the transition relation. A transition ((l, ν), λ, (l′, ν ′)),
also denoted by (l, ν)

λ−→(l′, ν ′), has one of the following types:

� A �ow transition (l, ν)
t−→(l, ν+t) with t ∈ R≥0 can occur, if ν+t |=

∧n
j=1 Ij(lj).

� A discrete transition (l, ν)
λ−→(l′, ν ′) with l′ = l[l{i,j} → l′{i,j}] can occur, if for

some i, j ∈ {1, ..., n} and λ ∈ Σi ∩ Σj it holds that (li, λ!, ϕi, %i, l
′
i) ∈ Ri,

(lj , λ?, ϕj , %j , l
′
j) ∈ Rj, such that ν |= ϕi ∧ ϕj, ν ′ = ν[%{i,j} 7→ 0] and ν ′ |=∧n

j=1 Ij(l
′
j).

Note that in this de�nition local steps of a single timed automaton, i. e. edges of timed
automata annotated with the ε-action, have been left out. Local transitions are treated
as a special case of a discrete transition where only a single automaton is involved. This
will ease the description of the concepts introduced in this thesis. The distinction of
receiving and sending events is only relevant for timed automata to de�ne participants
of communication. For timed transition systems such a distinction is not necessary. The
function l′ = l[l{i,j} → l′{i,j}] for a location vector l = (l1, ..., li, ..., lj , ..., ln) represents the
location vector l′ = (l1, ..., l

′
i, li+1, ..., l

′
j , ..., ln), i. e. where only the locations of Ai and Aj

are changed. While the set of con�gurations is generally in�nite, Alur and Dill worked out
a �nite representation which is called region graph [AD94]. In [Dil90, LLPY97] a more
e�cient data structure called symbolic transition system (or zone graph) was presented.
This is the topic of the next subsection.

Symbolic Transition Systems

A clock zone represents the maximal set of clock valuations satisfying a corresponding
clock constraint. In other words, a clock zone represents a solution set of a corresponding
clock constraint. Let g ∈ Φ(C) be a clock constraint, the induced set of clock valuations
Dg = {ν | ν |= g} is called a clock zone. The intersection between two zones D1 and D2

is de�ned as follows:
D1 ∩D2 = {ν | ν ∈ D1 ∧ ν ∈ D2}. (2.5)

Let D↑ = {ν + d | ν ∈ D ∧ d ∈ R≥0} be the zone where all clocks in D are advanced
by d. Let further D[% → 0] = {ν[% 7→ 0] | ν ∈ D} be the zone where all clocks in % are
reset to 0.
The �nite representation of a timed transition system is given by a symbolic transition

system de�ned as follows:

30

2.2. Timed Languages and Timed Automata

De�nition 6 (Symbolic Transition System). Let A be a network of timed automata with
pairwise disjoint sets of clocks, such that Ci ∩Cj = ∅ for i 6= j ∈ {1, ..., n}. The symbolic
transition system of A is a tuple STS(A) = (S, S0, C,Σ,→) where

• S = {〈l,Dϕ〉 | l ∈ L1×...×Ln, ϕ ∈ Φ(C)} is the symbolic state set, and S0 = 〈l0, 0C〉
the initial state with l0 = (l01, ..., l

0
n),

• C = C1 ∪ ... ∪ Cn,

• Σ = Σ1 ∪ ...∪Σn ∪ {∆}, where ∆ is a dedicated symbol representing the passage of
time,

• →⊆ S × Σ× S is the symbolic transition relation with

� 〈l,D〉 ∆−→〈l,D↑ ∩DI(l)〉, where I(l) =
∧n
j=1 Ij(lj)

� 〈l,D〉 λ−→〈l′, (D ∩Dϕi ∩Dϕj)[%{i,j} → 0] ∩DI(l′)〉 where l′ = l[l{i,j} → l′{i,j}], if

there are some i, j ∈ {1, ..., n} with λ ∈ Σi∩Σj such that (li, λ!, ϕi, %i, l
′
i) ∈ Ri

and (lj , λ?, ϕj , %j , l
′
j) ∈ Rj.

Note that all states have always a unique time successor, which is de�ned by the
invariants of the locations. In contrast to the unique time successor, a state may have a
set of discrete steps. Instead of using the ∆-symbol, the word timeFlow is used in some
�gures to ease the understanding of the STSs.
In general, the transition relation may lead to in�nite number of zones, if unbounded

clocks are considered, i.e. clocks which have no upper constraints � also called the clock
ceiling � in the states of the corresponding timed automaton. In such cases, the valua-
tion of a clock which has no upper bound constraint in a state may drift away leading
to arbitrarily valuations. Thus, for such cases normalization operations on zones are
necessary, which map zones containing arbitrarily valuations for such clocks to represen-
tatives, which are zones with bounded valuations. These representatives for such clocks
are determined based on the maximal values occurring in the clock constraints of the
automaton. Such normalization operations have been worked out in the work of [BY04].
Nevertheless, for the purposes of this thesis the above de�nition is su�cient as always
ceilings for all clocks are given in the considered models.
Clock zones have to be in a canonical form. A canonical form is given, if no constraint

in the considered zone can be strengthened without reducing the solution set of the
zone [BY04]. The canonical zones are unique, which is a necessary property to be able
to minimize the state representations. If the zones would not be transformed to their
canonical forms, in�nite number of states of the transition systems would be computed
for zones, which represent the same solution set. To compute the canonical form of
zones, in [BY04] a graph-based operation to compute the tightest representations of clock
constraints has been de�ned. Clocks represent the nodes of such a graph. Edges between
two clocks are given, if a di�erence constraint is de�ned between these clocks. The

31

2. Foundations

wait

c_p <= 20

releasing

c_p <= 1

init

c_p <= 20

c_p >= 20
c_p = 0

e!

c_p=0
l

l l

0

1
2

Figure 2.5.: Event stream automaton with a period p = 20 and a jitter j = 1.

0
2

6 8e

0 0
0 0

0 cp

0
cp

0 0
20 0

0 cp

0
cp

0 0
1 0

0 cp

0
cp

0 0
1 0

0 cp

0
cp

l , 0 l , 0

4

0 0
0 0

0 cp

0
cp

l 1,

l2,l 1,

10
l2,

0 0
20 0

0 cp

0
cp

Δ

Δ

Δ
ΔΔ

S0 S1 S2

S3 S4

S5

Figure 2.6.: STS for an event stream automaton with p = 20, j = 1.

corresponding edges are weighted by the constraint values. The tightening of constraints
is then realized by the computation of the shortest path between two nodes. Note that
the complexity of this operation is cubic in the number of clocks of a zone.
The DBM (di�erence bound matrices) representation of zones is used in this thesis.

DBMs are matrices capturing the ranges of all clocks and the di�erences between all
clocks. To access the elements of the matrices, the standard notations for matrices are
used, i.e. Di,j is the element in the ith row and jth column. Each element in a DBM
determines a clock di�erence, i.e. Di,j = n represents the inequation ci − cj ≤ n where
ci, cj ∈ C. The index 0 is always allocated to the reference clock with which it is possible
to determine the pure ranges of all clocks. So, Dj,0 gives the upper bound of clock cj ,
and D0,j the lower bound.
An example for an STS of the timed automaton of Figure 2.5 is illustrated in Figure 2.6.

The outer rectangles annotated with S0, ..., S5 represent the states of the STS consisting
of a location vector which is illustrated on the top of the inner rectangles. The inner
rectangles represent the zones, which are detailed in the rectangles below as DBMs. The
automaton of Figure 2.5 triggers the event e with a period of 20 time units with a jitter
of 1.

32

2.3. Modeling of System Architectures

The STS of Figure 2.6 starts in its initial state SO consisting of the initial location l0

and the zone where the clock cp is set to zero. State S1 represents the time successor,
where the clock can progress up to a value within the interval [0, 20].
The location l1 of the automaton is reached by taking the discrete transition either

from init to releasing or from wait to releasing. In both transitions the clock cp is reset
and thus the value of this clock in state S2 of the STS is cp = 0. Note that location l1
represents the state called releasing of the automaton. Analogously, location l2 represents
the state wait.
Right before entering state S2 from state S1, the clock cp is within the interval [0, 20]

before it is reset. In contrast to this when state S2 is reached from state S5 the clock
has the value [20, 20] before it is reset. Such pre-reset valuations are not explicitly visible
in this STS representation: The original de�nition of the symbolic transition systems as
introduced in De�nition 6 discards the information of reached interval values through the
reset operation. The originally computed clock ranges are lost as a result of the reset.
Such clock ranges will be relevant for the iterative timing analysis introduced in Chapter
3. Because of this, in Chapter 3 a slightly adapted de�nition for STSs is introduced,
which preserves these pre-reset valuations.

2.3. Modeling of System Architectures

In this section the considered system architectures are described and formalized. Sys-
tem architectures consist of a set of components, which have some syntactic interfaces
consisting of input ports and output ports. An interface de�nes the boundary of interac-
tions between the corresponding component and its environment. A component may be
further decomposed into a set of interconnected subcomponents or a behavior model. In
literature, connections between subcomponents and the overall component are called del-
egations[BBB+11]. Resources like electronic control units (ECUs) or bus systems re�ne
this general notion of component by o�ering some properties like a scheduling policy.
Next, the notions of component, interface, and resource are formalized, which are

the basic ingredients to model system architectures. Designer of such architectures will
use some modeling languages which include more domain speci�c elements. In this
thesis, the UML (Uni�ed Modeling Language) pro�le Marte is used to model such
system architectures. A relevant subset of the Marte modeling elements is related to
the introduced formal elements. This is the topic in Subsection 2.3.2.

2.3.1. Components and Resources

A component M is a tuple M = (I, in, out,L), where I is the interface of the component
consisting of a set of input ports in and output-ports out. The language L of a component
is de�ned over its interface. On each port p ∈ I a set of events Σp can be observed.
Without loss of generality, for each port it is assumed that only one type of event does

33

2. Foundations

occur such that the alphabet of a component is directly de�ned through its port set I.
This is no restriction, as a port with multiple events can be modeled also by creating one
separate port for all events. The input and output port sets can also be determined via
two functions de�ned as follows.

De�nition 7 (Directed Interface). An interface I consists of a set of ports. A directed
interface partitions I to input ports and output ports. For this, let {in, out} : I → I be
two disjoint functions, such that in(I) ∩ out(I) = ∅ and I = in(I) ∪ out(I), where in(I)
de�nes the set of input ports and out(I) the set of output ports.

As introduced in Section 2.2 the language L of components are sets of timed words
over its interface I. The set of all possible timed words over an interface I is given by Iω.
When a set of components is considered, projection operations of the corresponding

languages are necessary to correctly de�ne the composition operations of these compo-
nents.

De�nition 8 (Restriction of Words). Let σ = (ρ, τ) be a timed trace over the interface
I and let I ′ ⊆ I. The restriction of σ to I ′, in short σ↓I′ = (ρ, τ)↓I′ , is the trace σ in
which tuples containing events from the set I\I ′ are left out.

The restriction of a timed language is then de�ned in a straightforward manner.

De�nition 9 (Restriction of Languages). Let L be a language over the interface I and
let I ′ ⊆ I. The restriction of L to I ′ is de�ned as follows:

L↓I′ := {σ′ | ∃σ ∈ L. σ↓I′ = σ′}.

De�nition 10 (Extension of Languages). Let L be a language over the interface I ′ and
let I ′ ⊆ I. The extension of L to I is de�ned as follows:

L↑I := {σ | σ ∈ Iω. σ↓I′ ∈ L}.

Note that for each possible time sequence a word is given in Iω. Consider two disjoint
alphabets and a timed language which is de�ned on one of these alphabets. The extension
operation is de�ned in such a way that all possible timed words over the second alphabet
are added to the language. The following lemma formalizes this property.

Lemma 1. Let I1, I2 be two port sets with I1 ∩ I2 = ∅, and L be a non-empty language
over I1. Then (L↑I2)↓I2 = Iω2 , i. e. the set of all words over I2.

The proof of this lemma is straightforward by applying the extension and restriction
operations successively.
A resource inherits the characteristics of a component and adds further properties. A

resource r is modeled by the tuple r = (M, T , Sch,R,A), where M is a component as

34

2.3. Modeling of System Architectures

o31

τ11

τ12 τC1

τC2

ECU 1

CAN Bus
i11

τ21

τ22

ECU 2

τ31

τ32

ECU 3

i12

i21

i22

o32

A: i12 occurs each 100ms

G: Whenever i12 occurs o31 occurs within [60,80]ms

iC1

iC21

G: Whenever iC1 occurs i31 occurs within 10ms

i31

i32

A: i12 occurs each 100ms with jitter 2ms

G: Whenever i12 occurs iC1 occurs within 20ms

G: Whenever i31 occurs o31 occurs within 10ms

Sub-System A

A: i21 occurs each 100ms

G: Whenever i21 occurs o32 occurs within [50,60]ms

CAN Bus

τC3

...

...

...

iC22

...

Sub-System B

A: i31 occurs each 100ms with jitter 50ms

A: iC1 occurs each 100ms with jitter 30ms

C1 C2

C3

C5

C4

Figure 2.7.: System architectures of interest.

de�ned above. A mapping T : T → B determines the set of tasks that is allocated to a
resource. For each resource, a scheduling policy Sch is given such as First Come First
Served (FIFO), Fixed Priority Scheduling (FPS) with and without preemption, or Time
Division Multiple Access (TDMA).
Two additional functions provide dynamic book keeping needed to perform scheduling

analysis. These functions depend on the state of the resource and contain the following
information:

• A ready list R determining tasks that are released but to which no computation
time has been allocated up to now.

• An active task map A : T → [t1, t2] with t1, t2 ∈ N≥0, which determines the
interruption times of tasks. This map is ordered and the �rst element determines
the current running task.

Composing two components results again in a component. This is de�ned in the
following.

De�nition 11 (Composition of Components). Let M1,M2 be two components. Then
the composition of both is again a component M = (I, in, out,L) with I = I1 ∪ I2, out =
out1 ∪ out2, in = I\out, and L = L1

↑I ∩ L
2
↑I .

35

2. Foundations

Marte Foundations

<<profile>>
CoreElements

<<profile>>
NFP

<<profile>>
Time

<<profile>>
GRM

<<profile>>
Alloc

Marte Design Model

<<profile>>
SRM

<<profile>>
HRM

<<profile>>
GCM

<<profile>>
HLAM

<<import>>

Marte Analysis Model

<<import>>

Marte Annexes

Figure 2.8.: Overview of the MARTE pro�le.

A system architecture a = (K,T) (also referred to as system) is de�ned by a set of
composed components K = (I, in, out,L) (which is again a component itself), and a task
set T.
Consider for example the architecture of Figure 2.7, which consists of two components

Sub-System A and Sub-System B. The interface of component Sub-System A consists of
the input ports i11, i12, i21, i22 and the output ports o31, o32. The Sub-System A consists
of three ECUs interconnected by a CAN bus. On each resource, two tasks are allocated
respectively.

2.3.2. Modeling in MARTE

To specify models in a reusable and interchangeable manner it is desirable to use domain
speci�c modeling standards. To annotate the model with relevant resource and tim-
ing properties the OMG Marte (Modeling and Analysis of Real-Time and Embedded
Systems) pro�le [OMG11] is applied.
The general overview of theMarte pro�le is illustrated in Figure 2.8. The Foundations

package contains elements to describe time and the use of concurrent resources. The
Design Model package consists of artifacts describing software and hardware features of
real-time systems, while the Analysis Model package is concerned with annotations to
support analysis of system properties. The Annexes package contains prede�ned model
libraries. In the following, the packages and elements are detailed, which are of interest
for the purposes of this thesis. The interested reader may �nd more detailed information
in the OMG Marte standard [OMG11].
GRM stands for Generic Resource Modeling and o�ers basic concepts to model systems

which execute real-time tasks. The Hardware Resource Modeling (HRM) and Software

36

2.3. Modeling of System Architectures

Resource Modeling (SRM) packages re�ne the GRM package. The HRM package contains
more detailed hardware parameters like cache sizes or frequency information. This level
of granularity is not necessary for the early analysis phases considered in this thesis where
only ECUs and bus systems are considered on a high abstraction level.
From the SRM package the SW_Concurrency sub-package is considered in this thesis.

This sub-package includes concepts with which entities competing for the usage of a
shared resource can be modeled.
In the following, the speci�c language artifacts which are applied are described in

detail.

Resources To model ECUs the element ComputingResource from the GRM package is
used. This entity enables to allocate a scheduler to a computing resource. For buses the
element CommunicationMedia from the same package is used. Note that also elements
from the more speci�c HRM package could be used. For instance, the element HWBus could
be used to model a bus system. Analogously, HWProcessor could be applied to model
an ECU. These artifacts contain detailed hardware information such as bandwidth or
instruction per second value parameters. However, this thesis targets the analysis of
early design stages, where such hardware details are not available. Thus, considering the
more abstract modeling elements mentioned above is su�cient for the purpose of this
thesis.

Scheduler A scheduler is modeled by the concept of Scheduler from the GRM package.
A scheduler has the properties isPreemptable, schedulingPolicy (where a set of prede�ned
policies can be con�gured), and processingUnit with which the corresponding resource
can be allocated.

Tasks A task is modeled by using the following entities:

• ResourceUsage from the GRM package: Here, the relevant properties are the ex-
ecution time, which can be either a single value corresponding to the worst-case
execution time or an interval where the lower bound represents the best-case exe-
cution time. Additionally, the property used resource is relevant for our purposes.
With this, tasks can be allocated to resources.

• SWSchedulableResource from the SW_Concurrency package: The properties is pre-
emptable, resMult, priority elements, and period elements are considered in this
thesis. The property priority elements is used to allocate a priority to the task, is
preemptable states whether the task could be preempted by another task allocated
on the same resource, and period elements is used to encode the event streams
with which independent tasks are triggered. The value given in the property period
elements is interpreted as an event model as introduced in the previous section.

37

2. Foundations

When analyzing the dynamic behavior of the modeled resources, the maximum
number of possible parallel activations of each task is relevant. This information is
entered in the property resMult.

• Dependencies of tasks are speci�ed through the usage of the UML dependency
relations.

End-to-end latency constraints between a set of tasks and timing constraints of single
tasks are speci�ed utilizing the RSL-language, which are detailed in the next section.

2.4. Speci�cation of Requirements

Speci�cations of requirements can be performed in various manner. Early requirements
are typically captured in natural language. Unfortunately, natural language tends to
be ambiguous which could lead to misunderstandings between the OEM, suppliers, or
special departments within a company, and to problems in the integration stage of system
parts. For example, interfaces do not �t together as di�erent value types or ranges
were expected, or an implementation does not deliver the results which were originally
expected.
Thus, a formalization of these early requirements is necessary to omit such problems.

For this, many approaches can be found in literature as for example the Linear Tem-
poral Logic (LTL) [Pnu77], which extends the propositional logic by a set of temporal
modal operators. As these formalisms are quite hard to understand and to use cor-
rectly in context, more intuitive graphical formalisms were de�ned like the Live Sequence
Charts (LSCs) where the interaction between system components can be speci�ed in
an unambiguous way [DH01]. Text-pattern-based formalisms were worked out like the
Requirement Speci�cation Language (RSL) which will be the topic of Subsection 2.4.2.
Besides the formalization of requirements, it is advisable to distinguish between as-

sumed and guaranteed behavior. To require for example that a component port is trig-
gered periodically does not lie in the responsibility of the component itself but in the
responsibility of its context. Such a distinction eases the integration phase of com-
ponents, as an automatic veri�cation of consistency of ports can be performed. For
this purpose the contract-based design paradigm inspired by Bertrand Meyer's program-
ming language Ei�el [Mey92] was worked out. The work of Bertrand Meyer enriched
object oriented programming by using pre- and post-conditions. Later works such as
[BCF+08, BDH+12, BCN+11] generalized the contract theory and made it applicable
for model-based design. In [BCN+11] a meta-theory of contracts is developed and dif-
ferent concrete contract theories are cast into this framework like the one of [BCF+08],
bene�ting from properties that are already established on the level of the meta-theory.
Also in today's programing languages contracts are used. For example a contract def-
inition is included in the Bean Validation speci�cation of the Java Enterprise Edition.

38

2.4. Speci�cation of Requirements

Methods of classes are annotated with constraints over the input parameters and return
values. Also a restricted form of re�nement is applied: Inheriting classes have to re�ne
the annotated contracts of the corresponding root class. For this, the constraints over
the return values of the included methods are allowed to be added and be stricter, while
constraints on the method parameters are only allowed to be de�ned on the root class
level. As detailed later, this is consistent with the general contract re�nement de�nition.
Contracts and all necessary operations on contracts are the topic of the next subsection.

2.4.1. Contract-based Design

The idea of contracts was originally inspired by Bertrand Meyer's programming language
Ei�el and its design by contract paradigm [Mey92]. Requirements of systems are typically
speci�ed as assertions, which are basically properties that may or may not be satis�ed
by some behavior [BCF+08]. Formally speaking, an assertion de�nes a set of traces
over a set of variables (or ports), i. e. an assertion is a (timed) language. Let M be an
implementation of a component, which again de�nes a set of traces, E a corresponding
assertion, and let M and E be de�ned over the same set of ports. Then M satis�es E if
M ⊆ E.
Contracts de�ne properties of component behaviors and their environments, thus are

assertions for component interfaces. Contracts follow the principle of separation of con-
cerns. More speci�cally, contracts are pairs consisting of an assumption (A) and a guar-
antee (G). The assumption speci�es how the context of the component, i. e. the environ-
ment from the point of view of the component, should behave. Only if the assumption
holds, then the component will behave as guaranteed. This kind of speci�cation allows
to replace components by more detailed ones, if they allow a more abstract environment,
without re-validating the whole system. Thus, the system decomposition can be veri�ed
with respect to contracts without the knowledge of the concrete implementation.
Contracts help to explicitly specify assertions about the necessary context of com-

ponents, such that implicitly assumed behavior leading to integration errors between
di�erent development teams can be avoided. Each development team has only to rely
on the speci�cation of components of other teams, i. e. these can be treated in a black-
box manner, as the internal behavior is not of interest. Especially for OEM-supplier
relations this has a great bene�t, as the OEM typically does not know details about
implementations of components from the suppliers.
Moreover, the usage of contracts can help to decrease the complexity of verifying the

implementation against its speci�cation. Such a distinction of assumed and guaranteed
behavior helps to perform more compositional analyses rather than holistic analyses.
Internal implementation details of other components, on which the component under
veri�cation relies to, need not to be considered. For example, consider the system in
Figure 2.9, to which a contract is assigned. The system contract states that the input
port 'a' is triggered each 50ms, and when it is triggered, the system has to respond by

39

2. Foundations

System A

c
a

b

Assumption: a occurs

each 50ms.

Guarantee: Whenever

a occurs, c occurs

during [10ms,14ms].

Subsystem A1 Subsystem A2

Assumption: a occurs

each 50ms.

Guarantee: Whenever

a occurs, b occurs

during [5ms,8ms].

Assumption: b occurs

each 50ms with jitter 8ms.

Guarantee: Whenever b

occurs, c occurs during

[5ms,6ms].

Figure 2.9.: Example for a contract speci�cation.

sending an event on port 'c' within the speci�c time interval between 10 and 14ms. The
system is decomposed into two subsystems each with one contract, and some internal
behavior modeled by, e. g. state machines. Assume that the functionality on subsystem
A2 depends on the output of subsystem A1. Further, assume that the subsystems would
not be annotated with contracts. Thus, to validate the contract of the overall system A,
the composed behavior of both subsystems has to be computed, which generally leads
to large state spaces. Using contracts for A1 and A2, the computation of the composed
behavior of both systems can be omitted and the sub-contracts can be validated locally.

By using contracts a compositional veri�cation technique is enabled. Veri�cations can
be performed locally by explicitly stating the necessary assumptions on the contexts.
Besides the veri�cation of the local subcomponents, by using contracts some further
proof obligations have to be performed:

• Satisfaction: Does the implementation of a component satisfy the contracts of
the corresponding component? The implementation may be some kind of a state
automaton or program code.

• Consistency : Are the interface speci�cations of all components consistent? For
example, is the assumption of the contract of Subsystem A2 of Figure 2.9 consistent
with the guarantee of the contract of Subsystem A1?

• Re�nement : Does the composition of all sub-contracts re�ne the contract of the
overall component? For example, does the composition of the contracts of Subsys-
tem A2 and A1 re�ne the contract of System A?

For this, the notions of contract-re�nement and -composition are needed, which are
the topic of the next paragraphs.

40

2.4. Speci�cation of Requirements

Semantics of Contracts

A contract C is a pair (A,G), where A, G are assertions over an alphabet Σ. Formally,
the semantics of a contract is de�ned as

[[C]] := [[A]]Cmpl ∪ [[G]], (2.6)

where (X)Cmpl de�nes the complement of a set X in some universe U , and [[X]] is de-
�ned as the semantic interpretation of X. In our case, [[X]] is given in terms of sets
of timed words over some alphabet. The alphabet is given through the interface of the
corresponding component.
For the sake of readability, the semantic braces are omitted in the following. These set

theoretic notation can also be formulated as logical Boolean formulas in an equivalent
manner. Concerning the semantics of contracts the logical notation is in the form of
C = ¬A ∨ G. Whenever needed, either the set theoretic or the logical formula notation
is used.
An implementation of a component satis�es its contract, if its behavior is a subset of

the behavior de�ned by the contract.

De�nition 12. Let C = (A,G) be a contract de�ned over a component interface I and
M be an implementation de�ned over the same interface. The implementation satis�es
the contract, in short M |= C, if [[M]] ⊆ [[C]].

The set relation of this de�nition between implementation and contract can also be
re-formulated to M ∩A ⊆ G. Thus, if there is some behavior of the implementation and
allowed or not constrained by the assumption, it should also be part of the guarantee.
If not, the implementation would violate the guaranteed behavior of the corresponding
component.
A contract (A,G) is consistent if it is implementable, i.e. it guarantees some behavior,

in short G 6= ∅. Each contract has a unique maximum implementation in the sense of
language inclusion, which is Mmax := ¬A ∨ G. Every possible implementation which
satis�es its contract is thus a subset of Mmax.

Contract Composition

The composition operation on contracts is a necessary operator for component-based
designs, as a set of components are connected to build up more complex components.
Thereby, connected components interact via their ports.
To correctly create such composition structures, certain composition criteria have to be

ful�lled. These composition criteria concern syntactical aspects such as types of values
on ports which have to match, or the direction of ports, i.e. output ports have to be
connected to input ports, and components must not share output ports. Note that
value types on ports are not of interest in this thesis. More abstract event triggers are

41

2. Foundations

considered, as the focus here are not functional analyses, but the analysis of timing of
event occurrences. Such structural composability aspects are not the focus of this work
and will be not detailed in the following. The focus will be rather on composition criteria
concerning the semantical aspects of components given by their speci�cations. More
details for composition criteria can also be found in [BCN+11].
The structural composition was already been given in De�nition 11. The composition

of the interface speci�cations has to be de�ned in the following, i. e. the composition on
the speci�cation level. In [BCN+11] the criteria for a correct composition were stated. A
contract composition operation must be therefore associative, i. e. for contracts C1, C2, C3

it must hold that (C1 ⊗ C2) ⊗ C3 = C1 ⊗ (C2 ⊗ C3), and commutative, i. e. C1 ⊗ C2 =
C2 ⊗ C1. These criteria have to be ful�lled as composing components in di�erent order
shall lead to the same result.
The de�nition of contract composition of [Hun11] is applied in this thesis.

De�nition 13 (Composition of Contracts). Let Ci = (Ai, Gi) for i = 1, · · · , n be a set
of contracts over the interfaces Ii. The composition C = (A⊗, G⊗) = C1 ⊗ · · · ⊗Cn over
the interface I =

⋃
i Ii is de�ned as follows:

A⊗ =
⋂
iA

i
↑I ∪

⋃
i(A

i ∩ ¬Gi)↑I ,
G⊗ =

⋂
iG

i
↑I .

This de�nition is obtained from the conjunction of the corresponding contracts. This
is shown for two contracts in the following.

C1 ∧ C2 = (¬A1 ∨G1) ∧ (¬A2 ∨G2)
= ¬(A1 ∨A2) ∨ (¬A1 ∧G2) ∨ (¬A2 ∧G1) ∨ (G1 ∧G2)
= (A1 ∨A2) ∧ (A1 ∨ ¬G2) ∧ (A2 ∨ ¬G1)⇒ G1 ∧G2

= (A1 ∧A2) ∨ (A1 ∧ ¬G1) ∨ (A2 ∧ ¬G2)⇒ G1 ∧G2

The above composition de�nition corresponds also to the de�nitions of [BCF+08,
BFM+08, QGP10] but di�ers from the formulas in [BCN+11], since it does not rely
on contract saturation. That is, for a contract C, it is not required that G = ¬A ∪ G
does hold. Contract saturation is detailed in Section 4.4.

Contract Re�nement

An important property of contract-based design is re�nement . The intention of re�ning
a property is that previously speci�ed behavior gets more concrete. As an example, the
order of a set of events on the output of a component is not known in an early stage of a
design, as the scheduler is not de�ned so far. So, all possible orderings are considered. In
a later design step, when a �xed schedule has been de�ned, the output can be re�ned to a
speci�c order of events. Another example is the allocation of a task to a resource. If this
allocation is not determined in an early design phase, a coarse interval for its execution
time has to be assumed to keep the �exibility to allocate this task to di�erent resources.
The time the allocation is determined, this coarse interval is re�ned in the sense that it

42

2.4. Speci�cation of Requirements

gets tighter. The re�ned components have to respect the requirements speci�ed for their
abstract counterparts.
A contract C ′ re�nes another contract C, if the assumption of C ′ is less restrictive

than the one of C, and the overall speci�ed behavior of C ′ is more restrictive than the
behavior permitted by C. In the following, the re�nement relation with respect to sets
of traces is formalized.

De�nition 14 (Re�nement). Let C = (A,G), C ′ = (A′, G′) be contracts over the same
set of ports I. C ′ re�nes C, in short C ′ � C or C ′ ⇒ C as logical formula, if and only if

[[A′]] ⊇ [[A]] and [[C ′]] ⊆ [[C]].

The second condition can be simpli�ed as follows.

Lemma 2. Let C = (A,G), C ′ = (A′, G′) be contracts over the same set of ports I. The
second condition of the re�nement condition of De�nition 14 [[C ′]] ⊆ [[C]] can be simpli�ed
to [[A]] ∩ [[G′]] ⊆ [[G]], if the �rst condition [[A′]] ⊇ [[A]] holds.

Proof. ¬A′ ∨G′ ⇒ ¬A ∨G ⇔ (¬A′ ∨G′) ∧A⇒ G
(A⇒A′)⇒ A ∧G′ ⇒ G

The last step follows, as ¬A′∧A = false, if A⇒ A′. From this de�nition of re�nement
it can be directly followed that if an implementationM satis�es its contract C and C � C ′
then M also satis�es C ′.

Virtual Integration Condition and Check

When components are decomposed to a set of interconnected subcomponents, it has to
be checked whether the contracts of all sub-contracts ��t together�, i.e. are composable
with respect to De�nition 13, and the composition of these sub-contracts re�nes the
contract of the overall component. Both proof obligations are summarized in a single
condition called the virtual integration which was originally introduced in [DHJ+11].

Lemma 3 (Virtual Integration Condition). Let C,C1, ..., Cn with C = (A,G) and Ci =
(Ai, Gi) for i = {1, · · · , n} and n ∈ N>0 be contracts. The contracts C1, ..., Cn can be
virtually integrated in the context of C if the following holds:

i) A ∧ C1 ∧ ... ∧ Cn ⇒ A1 ∧ · · · ∧An,
ii) A ∧G1 ∧ ... ∧Gn ⇒ G.

The �rst condition states that the assumptions of the ith subcomponent must follow
from the contracts of the other subcomponents and the overall assumption. The second
condition states that the contract of the overall component must follow from the sub-
contracts of the composition structure. This condition is derived from the composition
operation and re�nement relation introduced in Subsection 2.4.1. This is proved in the
following.

43

2. Foundations

Proof. Let C = (A,G) be a contract of a component, which is decomposed into a set of
components, to which sub-contracts are allocated. Let C ′ = (A′, G′) be the contract
resulting by the composition of this set of sub-contracts according to De�nition 13.
According to the re�nement relation of De�nition 14 both a) A ⊆ A′, and b) A∧G′ ⊆ G
must hold. The derivation of i) is mainly to substitute A′ =

⋂
iA

i
↑I ∪

⋃
i(A

i ∩ ¬Gi)↑I ,
and reformulate the expression to A∩

⋂
i(¬Ai ∪Gi)↑I ⊆

⋂
iA

i
↑I . The second condition is

derived by substituting G′ accordingly.

Observe that the sub-condition i) includes negations, which complicate the application
of veri�cations. This is especially a problem for speci�cation formalisms which are not
closed under the complementation operation such as timed automata, which shall be
applied in this thesis. In Chapter 4 (or more precisely in Section 4.4), this issue will be
targeted by inspecting some characteristics of contracts.

2.4.2. Requirement Speci�cation Language

To specify the assumption and guarantee part of contracts natural language could be
used, but this has disadvantages: Natural language is ambiguous and inconsistent re-
quirements could be speci�ed. Moreover, an automatic analysis would not be applicable.
If simulations or analyses cannot be performed, failures in the system and inconsisten-
cies of its speci�cation may not be detected until late phases of the development process.
These failures may lead to delays in the development process and high production costs.
Formal languages could solve these problems, but in general are hard to understand and
therefore di�cult to use.
To cope with the unintuitive speci�cation form of formal languages, pattern-based lan-

guages can be used: Here, a set of standard text patterns, which consist of static text
elements with �xed semantic interpretations are speci�ed. With such a kind of speci�ca-
tion an intuitive usage is given while the usage of automated validations and veri�cations
is still possible. In this work, a speci�c pattern-language called Requirement Speci�cation
Language (RSL) [RSRH11, Pro07] is used. The RSL consists of text-pattern for di�erent
aspects of a system design like safety, functionality, or real-time. In particular, the focus
of this thesis is on the real-time pattern speci�ed in this language.
The basic elements occurring in the text patterns are events, sets of events, and time

intervals. Events are signals that occur at a de�ned single point in time and have no
duration, e.g. periodically sent values from sensors or messages sent over a bus system.
All names of events in a set of text-pattern have to be used consistently, i. e. same events
must have the same identi�ers.
A time interval is de�ned through two points in time. These points in time refer to

either timed values or observable events. Using timed values, the end-points of an interval
may be inclusive or exclusive. An inclusive end-point of an interval speci�es that this

44

2.4. Speci�cation of Requirements

point in time belongs to the interval, an exclusive end-point indicates that the point in
time does not belong to the interval.
If events are used instead of timed values, an interval is de�ned through two events

[startEvent, endEvent]. The �rst occurrence of an event startEvent then opens the in-
terval and the corresponding endEvent closes the interval.
In the following, the text-pattern from the RSL are introduced, which capture the

timing behavior that is of interest for this thesis.

R1-Pattern - Periodic Activation

The R1-Pattern pattern describes the periodic occurrence of an event such as the activa-
tion of a task. The occurrence of each event can be delayed by an additional jitter. The
patter is given in the following:

event occurs each period [with jitter jitter].

The semantics of this pattern is derived form the work in [RSRH11]. Let p be the
period, and j the jitter speci�ed in an instance of this pattern.

LR1 = {(ρ, τ) | ∃τ ′, ∀i ∈ N. τ ′0 ∈ [0, p] ∧ (τ ′i ≤ τi ≤ τ ′i + j) ∧ (τ ′i+1 − τ ′i = p)} (2.7)

The additional time sequence τ ′ is needed to �x the periodical grid, without being a�ected
by the jitter. If τ ′ would be left out, one would get some over-approximations for the
timing behavior. Assume the semantics would have been by using the following condition:

∀i ∈ N. τ0 ∈ [0, p+ j] ∧ (τ ′i+1 − τ ′i ∈ [p− j, p+ j]

Assume that p = 30, j = 5. Then the sequence (0, 35, 70, 105, ...) would be allowed,
which contradicts the original semantics, as the jitter is accumulated.
An example for this pattern could be the speci�cation of a diagnosis task, which shall

be executed every 100ms and may jitter 10ms. The pattern would be instantiated as
follows:

diagnosisTaskActivate occurs each 100ms with jitter 10ms.

This pattern is a characterization of the previously discussed periodic with jitter event
model of Figure 2.3. Note also that in [RSRH11] the condition τ ′0 ∈ [0, p] is missing in
the de�nition of the semantics of this pattern. Without this condition the occurrence
of the �rst event larger than the period would be allowed. This would not re�ect the
de�ned behavior of occurrence curves. Because of this, the original condition has been
extended in this thesis as illustrated above.

45

2. Foundations

R2-Pattern - Sporadic Activation

The R2-Pattern is a generalization of the R1-Pattern and de�ned as follows.

event occurs sporadic with minperiod period [and maxperiod

period] [and jitter jitter].

This pattern describes the sporadic occurrence of an event. The minimal distance
of occurrences is de�ned by minperiod, which can be delayed by an additional jitter.
The maxperiod speci�es the maximal distance between two successive occurrences. Note
that if the upper bound of occurrences is not given, the maximum distance between two
successive events could be arbitrary thus leading to an unbounded system. This would
correspond to a liveness property, for which it is well known that these are hard to
analyze. In this work, the usage of this pattern is restricted in such a manner that the
upper bound is always speci�ed.
The semantics of this pattern was introduced in [RSRH11]. Let pmin be the minperiod,

pmax the maxperiod, and j the jitter speci�ed in an instantiation of this pattern.

LR2 = {(ρ, τ) | ∃τ ′, ∀i ∈ N. τ ′0 ∈ [0, p] ∧ (τ ′i ≤ τi ≤ τ ′i + j) ∧ (pmin ≤ τ ′i+1 − τ ′i ≤ pmax)}
(2.8)

As in the case of the R1-pattern, the additional time sequence τ ′ is needed to prevent
over-approximations occurring. Note that also for this case the condition τ ′0 ∈ [0, p] is
missing in the original de�nition of [RSRH11].
An example for this pattern could be the speci�cation of a processing of received data,

which must be performed at most every 50ms and at least every 100ms. The instantiated
pattern would be as follows:

dataReceived occurs sporadic with minperiod 50ms and maxperiod 100ms.

R3-Pattern - Delay between Events

The R3-pattern describes the dependency between the occurrence of two events. It is
de�ned as follows.

Whenever event occurs, event occurs [during interval].

The �rst event of this pattern speci�es a trigger, to which always a response shall
follow. The optional interval of the pattern speci�es that the response event shall occur
in the corresponding time bounds after the trigger event was received. In this work, the
usage of this pattern is restricted in such a fashion that the interval is always given. If
no interval would be speci�ed, a liveness property would be obtained.

46

2.4. Speci�cation of Requirements

The semantics of this pattern over the alphabet Σ = {e1, e2}, where e1 is the triggering
event and e2 the response, is the following.

LR3 = {(ρ, τ) | ∀i ∈ N ∃j > i. (ρi = e1)⇒ (ρj = e2) ∧ (τi + lb) ≤ τj ≤ (τi + ub)} (2.9)

Note that lb, ub ∈ N are the lower and upper bounds of the pattern, where lb ≤ ub. Thus,
the semantics of this pattern allows to receive multiple triggering events before a single
response is sent.
An example for this pattern would be the response time of a task, which shall not

exceed 10ms. The instantiated pattern would be as follows:

whenever taskStart occurs, taskEnd occurs during [0ms, 10ms].

Extensions of R3-Pattern - Delays for Sets of Events

Instead of specifying the distance of single events, also the distance between two event
sets can be speci�ed. The pattern is extended as follows.

Whenever set{eventn, ..., eventm} occurs, set{eventk, ..., events}
occurs [during interval].

The idea is that whenever all events of the �rst set have been received, all events of
the second set shall occur within a speci�c time interval.
To de�ne the semantics, consider the following instantiated pattern:

Whenever set{e1, e2} occurs, set{e3, e4} occurs during [lb,ub].

The language results than in the following.

LR3,set = {(ρ, τ) | ∀i ∈ N ∃j, k, l ∈ N.i < j < k < l ∧ (ρi = en) ∧ (ρj = em) ∧ n 6= m⇒
(ρk = ep) ∧ (ρl = eq) ∧ p 6= q ∧ (τj + lb) ≤ τl ≤ (τj + ub)}

(2.10)

where n,m ∈ {1, 2}, p, q ∈ {3, 4}.
As an example, consider that for a distance control system of a car the two sensor data

speed of rotation and distance to front car have to be received in order to regulate the
speed and some feedback to the driver:

whenever set{rotationSpeed, distanceFrontCar} occurs, set{regulateSpeed,

driverFeedback} occurs during [10ms, 50ms].

47

2. Foundations

Note that using this extended version of the pattern the problem of receiving multiple
events of the same type occurs. For instance, rotationSpeed occurs twice while distance-
FrontCar has not been received so far. There are various techniques in literature to deal
with these problems. The most pragmatic way which is applied in this thesis is to ignore
multiple occurrences. The more complex solution is to deal with a bounded number of
multiple events and to service this maximal number.

The following pattern is de�ned in an analogous manner as the previous one. The
di�erence is that the events shall occur in an ordered way.

Whenever eventn and then ... and then eventm occurs, eventk and then ...
and then events occurs [during interval].

The semantics of this pattern is a consecutive extension of expression in Formula
2.9 by replacing the single event e1 by the conjunctions of the corresponding triggering
events, i.e. by the expression eventn ∧ ...∧ eventm, and analogously e2 by the expression
eventk ∧ ... ∧ events.
Consider again the above example:

whenever rotationSpeed and then distanceFrontCar occurs, regulateSpeed

and then driverFeedback occurs during [10ms, 50ms].

If the event distanceFrontCar would occur before the event rotationSpeed, this sequence
would not trigger the right hand side.

R4 Pattern - Distance between events

The R4-pattern is closely related to the basic R3-pattern and de�ned as follows.

Distance between event1 and event2 within interval .

The only di�erence to the R3-Pattern is that there is no order between both events
occurring in the pattern. Thus, there are no dedicated triggering and response events. If
one of the events occurs, the other has to occur within the de�ned interval.
Let n,m ∈ {1, 2}. The semantics of this pattern over the alphabet Σ = {e1, e2} is the

following.

LR4 = {(ρ, τ) | ∀i ∈ N ∃j > i. (ρi = en)⇒ (ρj = em)∧n 6= m∧ (τi+ lb) ≤ τj ≤ (τi+ub)}
(2.11)

Note that lb, ub ∈ N are the lower and upper bounds of the pattern, where lb ≤ ub. Also
here, the semantics allows to receive multiple triggering events before a single response
is sent. This can handled analogously to the techniques illustrated for the R3-Pattern.
As for R3-Pattern, multiple activations are ignored in this thesis.
As an example, consider the distance of two sensor data:

48

2.5. Summary

Distance between rotationSpeed and distanceFrontCar within [5, 10]ms.

Whenever one of the two events rotationSpeed or distanceFrontCar occurs, the other
event has to occur within the de�ned time interval.

2.5. Summary

In this chapter, all necessary ingredients for a model-based design of real-time systems
have been introduced and the underlying semantics were discussed. The speci�cation
of tasks and the underlying architecture consisting of inter-related components and re-
sources was formalized and the modeling by using Marte was discussed. Requirements
of architectures and their decomposition structures are speci�ed using the pattern-based
language called Requirement Speci�cation Language (RSL). The distinction of assumed
and guaranteed behaviors was discussed by using the notion of contracts. By using con-
tracts proof obligations arise, including the correctness check of decomposition structures,
i. e. the check whether the contract of an overall component follows from the contracts
of its parts, and whether all contracts ��t together�. Further, the satisfaction of the
implementation of a component or resource has to be checked, i. e. it has to be veri�ed
whether the implementation in terms of some automata structure or program code ful�lls
the corresponding contracts.

49

3. State-based Timing Analysis

3.1. Motivation

The choice of the scheduling policy of a shared resource has a direct in�uence on the
timings of the allocated tasks and thus on the performance of architectures in terms
of response times and end-to-end latencies. To guarantee that all timing constraints
are ful�lled, analyses have to be performed, especially when hard real-time systems are
considered, where violations of deadlines could lead to very high costs or even threats to
human life.
Analytical analysis approaches consider the worst-case scenario of a resource which is

also called the critical instance. This scenario is given, when all tasks allocated to the
corresponding resource are activated simultaneously. For the analysis of local resources
this results in adequate response times. Unfortunately, these approaches tend to result
in pessimistic response times when distributed systems are considered.
Consider the system in the left part of Figure 3.1 consisting of two resources R1 and

R2 on which two tasks are allocated respectively. The terminations of τ1 and τ2 do
trigger τ3 and τ4 respectively. To activate τ3 and τ4 (nearly) in parallel, a task on R1
has to be interrupted right before its termination. If R1 is assumed to be a bus system,
this scenario would not occur in real, as interrupts cannot occur on a bus system. Still
assuming the worst-case activation scenario of the tasks allocated to R2 by the tasks on
the bus R1 results in pessimistic response times. Note that in real life of course tasks
cannot be allocated to bus systems. In this work, tasks are considered on bus systems to
model the timing behavior in an abstract manner and handle such resources analogously
to ECUs.

τ1
τ2

τ3
τ4

R1 R2 τ1
τ2

t
τ1
τ2 t

=>

=>T
im
in
gs
on
R
1

τ3
τ4 t
τ3
τ4 t

T
im
in
gs
on
R
2...

...

...

...

Figure 3.1.: Scenarios of possible timings (right) of the distributed system (left).

51

3. State-based Timing Analysis

Figure 3.2.: Overview of contributions of thesis.

Consider also that it is not su�cient to restrict the analysis to only the critical in-
stances of the resources on which independent tasks are allocated, and to use these
results to compute the state spaces of all dependent resources. This approach results in
too optimistic response times. For this, assume that resource R1 is an electronic control
unit (ECU), and task τ1 has a higher priority than τ2, and task τ4 a higher priority
than τ3. Two timing scenarios for this system are illustrated in Figure 3.1: In the upper
part the worst-case timing scenario of tasks on resource R1 is illustrated. In the lower
part a second scenario is illustrated, where τ2 is interrupted right before its termination.
The resulting timings on resource R2 are illustrated in the most right part of the �gure.
Interestingly, the worst-case response time of task τ3 is obtained by the second scenario,
and not by the one where the critical instance of resource R1 is considered.

Thus, the timing behaviors of such distributed systems are state-dependent. To obtain
adequate results on the timings of tasks an analysis approach should take the state-
dependent behavior into account.

The scope of this chapter is the veri�cation of timing constraints and end-to-end latency
constraints for distributed hard real-time systems consisting of a set of resources such as
ECUs and bus systems. For this, a state-based approach is introduced which considers
all possible task activation and interrupt scenarios of an architecture. Thus, in analogy
to model checking methods, the full state space for the analysis approach is considered.
A well-known problem with such approaches is the one of the state space explosion.

52

3.2. Related Work

To handle this problem the state space of an architecture is constructed in an iterative
manner. On the interfaces of dependent resources minimization and abstraction methods
are applied to keep the resulting state spaces as small as possible. The worked out
approach was presented the �rst time in [GHRS12], and was later re�ned and extended
in subsequent publications [GSHR13a, GSHR13b].
Referring to the overall content of this thesis, which is illustrated in Figure 3.2, this

chapter deals with the state-based timing analysis part illustrated in the upper part of
the �gure. This analysis approach will serve as the foundation of the impact analysis
approach introduced in Chapter 4 as illustrated in the lower part of Figure 3.2, i.e. the
impact analysis will use the state-based timing analysis whenever necessary.
This chapter is organized as follows. First, relevant related works are detailed which

address the analysis of hard real-time systems. In Section 3.3 the general analysis ap-
proach worked out in this thesis is sketched. The state space of a resource is concretized
and a simpli�ed version of the symbolic transition systems is introduced. To realize an
iterative analysis, in Section 3.4 the abstraction and composition operations for STSs
are presented. Section 3.5 details the computation of a resource STS. In Section 3.6
further abstraction techniques leading to more pessimistic response times while boosting
the scalability of the approach are introduced. In Section 3.7 the analysis approach is
applied to a driver assistance system case study. Finally, a summary of this chapter is
given.

3.2. Related Work

There are two relevant research topics for this thesis, i.e. the analytical and the model
checking-based analysis approaches for timing properties. First, the analytical � which
are also referred to as classical � approaches are detailed. Then, the model checking
approaches are considered. The last category of related works which is considered here
is a combination of both the classical and model checking approaches.

3.2.1. Classical Analytical Approaches

In general, analytical methods are stateless methods, which solve closed form expressions.
Thus, such analyses are fast and scale good with the size of the system. Unfortunately, for
distributed systems with task dependencies these approaches tend to result in pessimistic
response times as illustrated in the introduction of this chapter. These approaches are
also not good in analyzing other relevant system properties like event ordering or safety
properties, as for this a representation of the concrete system state is necessary.
There are many works addressing the classical scheduling analyses which makes it im-

possible to give a complete list of all works. The focus here is on the most relevant works
for the Fixed Priority Scheduling (FPS) approach, which is in the scope of this thesis.
The most common holistic and compositional approaches in literature are presented here.

53

3. State-based Timing Analysis

A good reference book which gives an overview of all relevant scheduling policies with
their characteristics and utilization bounds is given in [But05]. In this book, the au-
thor introduces the fundamental concepts of hard real-time systems. He presents various
algorithms for the scheduling of aperiodic and periodic tasks. Besides this, algorithms
for �xed- and dynamic-priority servers are presented. Servers are relevant when peri-
odic and aperiodic tasks are considered together within a system. For all approaches a
schedulability analysis and an analysis of the complexity and performance is performed.
The Rate-Monotonic Scheduling (RMS) approach was introduced by Liu and Layland

in [LL73]. It is an optimal approach for independent periodic tasks with statically as-
signed priorities and deadlines. The values of the deadlines are equal to the end times
of the corresponding periods. The priorities are assigned according to the periods of the
tasks. The more general term of this approach is called Fixed Priority Scheduling, where
priorities can be assigned arbitrarily.

Analyses of Single Resources

Let us �rst focus on techniques for the analysis of single resources, as these are the basis
for most of the other approaches. In this thesis, the way to compute response times and
interference time intervals are basically performed as introduced in these works.
In [LL73] the authors proposed a schedulability check for RMS which is based on the

utilization of a (single) processor. The general result is that for processors with a large
task set the utilization factor has to be lower than 70 percent to guarantee schedulability.
Joseph and Pandya worked out in [JP86] an approach for a response time calculus for

RMS. For their computation they consider the critical instances for all tasks, i. e. the
worst-case scenario with the largest interference time caused by higher priority tasks.
Such a situation is given, when all tasks are activated simultaneously. It was shown that
when a task ful�lls its deadline at its critical instant, it also will ful�ll its deadline in all
other situations. In general, the response time of a task τi is computed by taking the
sum of the worst-case execution time of the task wcetτi and the interference I(τi) caused
by all higher priority tasks.

rτi = wcetτi + I(τi). (3.1)

In [JP86] the interference interval is computed as follows:

I(τi) =
∑

τj∈hp(τi)

(wcetτj

⌈
rτi
pτj

⌉
), (3.2)

where hp(τi) is the set of all tasks allocated to the same resource which have a higher
priority than τi.
The approach was extended by [ABR+86] with timing jitter. As stated in Section 2.1

a jitter speci�es that task releases are allowed to deviate with a certain value from their

54

3.2. Related Work

period. By considering a jitter, the interference of a task increases as events may arrive
earlier:

I(τi) =
∑

τj∈hp(τi)

(wcetτj

⌈
rτi + jτi
pτj

⌉
). (3.3)

Thus, a jitter leads to larger response times due to the larger number of possible pre-
emptions.

Holistic Analyses

When dealing with distributed systems and considering task dependencies, where the
termination of a task activates another task, a jitter in the activation of dependent tasks
has to be considered. These jitter monotonically increase along the task chains and can
even exceed the original period. In literature this is called jitter propagation, meaning
that the jitter resulting from varying response times is propagated to all dependent tasks
and has to be considered in their activations as well.
To deal with activation behaviors of dependent tasks, Tindell introduced in [Tin94]

timing o�sets. These o�sets describe the delays resulting from the execution times of the
triggering tasks of the considered dependent task. The holistic scheduling analysis was
then topic of the work of [TC94] : Fixed-point response time equations extended with
o�sets were speci�ed for all tasks of a considered distributed system capturing all task
dependencies of the architecture.
Palencia et al. also worked on the holistic schedulability analysis in [PGH97] and

extended their works in [PH98] to deal with dynamic o�sets. Dynamic o�sets characterize
the possible variations of the response times of the triggering tasks.

Compositional Analyses

Compositional analyses were worked out by many authors to enable more powerful ap-
proaches than the holistic ones. This thesis does not directly apply the results of the
following works but is inspired by these approaches in such a way, that the worked out
approach performs the overall analysis in an iterative manner.
The Real-Time Calculus (RTC) was worked out by Thiele at al. in [TCN00]. The

authors de�ned continuous request and delivery curves � also called arrival and service
curves � which are mathematical descriptions for the amount of computation requested
and delivered by a resource up to a speci�c time. This algebra enables to determine
relations between processor demands and deliveries in terms of input and output curves.
Using an upper and a lower arrival curve, event models can be speci�ed. These curves
determine the minimum and maximum number of events within a time interval. Anal-
ogously, upper and lower service functions determine the bounds on available resource
capacity, which may also be de�ned as number of events. A processing resource thus can

55

3. State-based Timing Analysis

have a set of input arrival curves and a service curve. The resource itself is character-
ized also by a set of functions relating its input curves to output curves, which are the
remaining service and a set of arrival curves for dependent resources. The Modular Per-
formance Analysis (MPA) framework is based on this real-time calculus[CKT03], where
the RTC was applied to analyze the performance of a distributed architecture consisting
of computation and communication resources for hierarchical scheduling.
The compositional scheduling analysis realized by Symtavision is called SymTA/S

(Symbolic Timing Analysis for System). Its concept was worked by Kai Richter [Ric04]
and was improved and extended in several works, e.g. [RE10]. This work is based on
[RE02] where the authors de�ned interface transformations between heterogeneous event
models. More precisely, they de�ne transformations between the event models periodic,
sporadic, periodic with jitter, periodic with burst, and state whether the transformations
are approximative or preserve the accuracy. The main idea behind SymTA/S is to trans-
form event models of a speci�c type to models of another type whenever needed, i.e.
whenever di�erent models are considered between dependent resources. With this, the
classical scheduling algorithms for the local analysis of resources can be directly reused,
as the inputs of the resources are described as standard event models. This implemented
concept is very fast and is able to handle large systems. The extension in [RE10] ex-
ploits the non-preemptive characteristic of bus systems, i. e. the tasks of a bus system
can never complete their computations (nearly) simultaneously. With this, the classical
critical instance cannot occur for dependent resources.
CARTS (Compositional Analysis of Real-Time Systems) is another tool for the com-

positional real-time scheduling analysis [PLE+11]. The approach is able to handle hi-
erarchically scheduled systems, for which it generates resource interfaces enabling the
compositional analysis of timing properties. Schedulability is checked for tasks whose re-
source usage is bounded by periodic resource models developed by Lee et al. [PLE+11].
Composition is done on the resource model level resulting again in periodic resource
models by using abstractions.

3.2.2. Model Checking Approaches

Next, model checking approaches are illustrated. The approach of this thesis is based on
the formalism of timed automata, thus relies on the model checking approach.
To realize a state-based scheduling analysis with preemption the �rst works in this

area considered the formalism of stopwatch automata. A stopwatch is a real-valued
variable. The derivate can be set to zero, which corresponds to stopping the evolution
of the variable, such that the tracing of the exact allocated execution times of tasks is
possible. Such an approach has been worked out in [AM02] for preemptive jop-shop
scheduling. Unfortunately, for this class of automata the reachability problem is known
to be undecidable in general [CL00]. Because of this, we chose the formalism of timed
automata for our approach.

56

3.2. Related Work

State-based analysis with Uppaal has for example been performed in [DILS09] for pre-
emptive and non-preemptive scheduling policies. All entities like tasks, processors, and
schedulers are modeled in terms of timed automata and are combined to an automaton
network. If preemption is considered, stopwatches [CL00] are used to change the rate of
the corresponding clocks to zero. For this, automaton templates are given, which need to
be instantiated in the corresponding context. Tasks enter an error state, whenever their
computation times exceed their deadline. The schedulability is then checked with respect
to reachability of the error states. As mentioned above, problems in the veri�cation of
systems including preemptive scheduling policies can arise (decidability of reachability).
In [NWY99] the authors prove that the checking of schedulability for extended timed

automata considering a non-preemptive scheduling policy is decidable. This thesis does
directly rely on the results of this work and the work of [FPY02]. Thus these works have
to be detailed in the following.
The extended class of automata of [NWY99] is later referred to as task automata

[FKPY07]. The extended automaton class consists of a regular timed automaton, a
mapping of actions to tasks, and a scheduling queue. The guard on a transition speci�es
all possible arrival times of the task which is triggered by the action of the transition. In
later works of the authors [FPY02, FKPY07] locations instead of actions are mapped to
a set of tasks, such that a set of tasks can be activated in parallel. When a transition
is �red, a task is instantiated, added to the queue and the running task is determined
with respect to the considered scheduling policy. The queue further determines the re-
maining computation time and the relative deadline, which is realized by clock variables.
When a task gets running, its remaining computation time clock is reset. Whenever a
delay transition is taken, the remaining computation time of the running task and the
deadlines of all other tasks are decreased correspondingly. To prove the decidability, task
automata are mapped to an ordinary timed automaton network. The schedulability is
determined through reachability of bad states. In [FPY02] the authors extend this work
in order to deal with preemptive scheduling policies. For this, the authors adapt their
task automaton formalism such that clocks may be subtracted by a natural number.
Such automata are in general undecidable as shown in [BDFP00]. Based on the work of
McMains and Variya [MV94] who characterized a decidable sub-class of such automata,
referred to as suspension automata, the authors of [FPY02] prove that reachability is pre-
served, if for all clocks there is a maximal value called the ceiling, such that subtractions
are performed in bounded zones (each clock is subtracted by a value of the ceiling at a
max). The schedulability problem is then again encoded as a reachability problem.
The main contribution of the authors of [FPY02] is the proof that the problem of check-

ing schedulability for preemptive scheduling for extended timed automata is decidable.
In analogous to their previous work, the states of such an extended automaton consist of
a discrete location, a clock valuation, and a task queue. The locations are annotated by
tasks. The general semantics of their extended automata is the same as the semantics
of timed automata: Whenever the automaton takes a discrete transition to a location,

57

3. State-based Timing Analysis

an instance of each task with which the location is annotated, is created and added to
the task queue. The task queue is a sorted list consisting of instances of tasks together
with their remaining computation times and deadlines, which are real valued variables.
Delay transitions correspond to either resource idle times when no task is active, or the
execution of running tasks. If the automaton takes a delay transition, the remaining
computation time of the running task and all deadlines of the other tasks are decreased
by the corresponding delay value. The schedulability is encoded as the reachability of
bad states: If there exists a state containing a task which violates its deadline but which
still has a remaining computation time, the bad state is entered. Results of this work
were also implemented in the Times tool [AFM+04]. It is based on the Uppaal DBM
library, which was extended with subtraction operations on DBMs. In contrast to our
approach, the Times tool performs analysis tasks in a holistic manner.
In [KY04, FKPY07] the authors extend their work of [FPY02] and determined the

decidability and undecidability class of task automata. Their main result is that when
interval computation times of tasks (which is the distinction between best- and worst-case
execution times), �nishing times of tasks release new task instances, data dependencies,
and preemption is considered, the problem for this class of automata is undecidable.
Fortunately, the above mentioned subtraction operation is not needed to deal with

preemptive scheduling policies, as it was also demonstrated in [HV06]. The authors of
this work use the original timed automaton formalism to model this problem and verify
timing properties by using Uppaal. As a front-end they use sequence diagrams, from
which timed automata are derived. The approach is applied on an in-car radio navigation
system case study, where end-to-end latency deadlines to change the volume of the radio
and the reception of tra�c message channel (TMC) signals from a radio station are
speci�ed. In [PWT+07] these automaton models were reused to apply the approach on
a set of benchmark systems and to compare the analysis results to other techniques such
as MPA or SymTA/S. Unfortunately, the work of [HV06] illustrates only an instantiation
of timed automata for a couple of example architectures to perform the analysis. It does
not illustrate a general concept to automatically build the automaton network of a given
system architecture and perform the analysis.
The work presented in [BH09] deals with an extension of timed automata. The pre-

sented model is called Interrupt Timed Automata (ITA) as they de�ne interrupt levels as
a control structure. On each level exactly one clock is active, where clocks from higher
level suspend clocks on all lower levels. Guards on transitions are linear expressions
over clocks from the current level and all levels below. Updates are linear expressions
only over clocks at levels below. This restricted model of stopwatch-automata has the
characteristic that the reachability problem remains decidable. The model is not more
expressive than the approaches illustrated above. In contrast to this work, the approach
works in a holistic manner. Also, the introduced formalism seems not to be as intuitive
as the formalism of timed automata.
In [MC09] a compositional, timed automaton-based analysis technique for preemptive,

58

3.2. Related Work

hierarchical scheduling strategies was presented. A major di�erence to this thesis is
that they adopt a discrete time formalism instead of dense time in order to deal with
preemption.
The work of [CGR12] is not directly related to this thesis, but is interesting to look

at. In this work, timed parameterized networks are introduced as an extension of timed
automata. Instead of checking reachability properties for a �xed number, a number n of
processes are considered for an increasing n. For this, a fully parametric reachability check
is worked out. This is realized by transforming the timed automaton network into an
input model of SMT (Satis�ability Modulo Theories) solver which is able to handle such
parametric systems. The main focus of their work is not the one of this thesis, as they
consider parameterized networks and do not apply the concept to the timing properties
of resources. Anyway, the work of [CGR12] could be used for future extensions, to extend
the approach illustrated in this thesis.

3.2.3. Combination of Analytical and State-based Approaches

Our approach shall combine analytical and state-based approaches by the usage of ab-
straction techniques on the interfaces of the resources of a given system. For such a
combined approach there are several works in literature as introduced in the following.
The authors of [DMS09] consider task network models and map those to timed au-

tomata networks, while proving that the mapping preserves the original semantics. The
�rst step is to compute the response times of the tasks in an analytical manner. With the
obtained response times, the automaton network is constructed. The obtained network
is checked against requirements formalized as Live Sequence Charts [DH01], which are
also translated to timed automata and composed to the system network. The properties
are veri�ed using Uppaal. In contrast to this thesis, they focus on the transformation
of task networks to the formalism of timed automata. The analysis is then performed in
a holistic manner.
A combination of timed automata and the RTC is also applied by the authors of

[KMY07] and implemented as a tool called CATS. The architecture is modeled as in
RTC extended by timed automata: The service curves are used to model resources, and
arrival curves and timed automata are used to model task arrival pattern. The focus
here is on the interfaces of dependent systems. In contrast to our work state-dependent
behavior is not preserved on the interfaces.
In [PTCT07] the authors propose a methodology to combine Event Count Automata

(ECA) with the Real-Time Calculus (RTC). An ECA is a discrete automaton extended
by integer valued count variables, which determine the number of received events over
time intervals. A state speci�es the minimum and maximum number of events which may
arrive in every time step when the system is in the corresponding state. The proposed
methodology allows to switch between these di�erent modeling formalisms, i. e. processing
elements which are state-dependent can be modeled as ECAs, and those which need only

59

3. State-based Timing Analysis

information about the input event streams by RTC functions. To connect resources
modeled by di�erent formalisms, transformations between these have been worked out.
Arrival curves can be translated to ECAs, and ECAs are able to be translated back
whenever needed. As our approach, this work realizes a non-holistic approach. In contrast
to our work they focus on the translation of the formalisms for dependent components.
With this, state-dependent behavior can only be handled locally for a resource or a
small part of the overall architecture. This is because when performing the translation
by counting events, the state-dependent behavior is lost for dependent resources. The
approach in this thesis tries to preserve the state-dependent behavior for all dependent
resources.
In [LPT09] the authors combine the RTC approach with the formalism of timed au-

tomata. Thus, in contrast to [PTCT07] the continuous time model is considered. For
this, they describe the transformation from event models speci�ed as arrival curves to
a network of timed automata, and back. The di�culty in doing so is that the arrival
curves are de�ned in the time interval domain while timed automata are de�ned in the
time domain. With this technique, individual resources may be modeled in an abstract
stateless manner by the usage of RTC, or considering state-dependent behavior using
timed automata. The distinction of their work to this thesis is the same as illustrated
for the work of [PTCT07].

3.2.4. Contribution of this Chapter

What is missing in literature is an appropriate combination of model checking approaches
to analyze timing properties in a more compositional manner, without resulting in too
pessimistic results. The timing analysis approach of this chapter introduces a new ap-
proach, which is interface driven: The state spaces of resources are computed successively.
Abstraction techniques on the interfaces of dependent resources are then worked out to
reduce the input behavior. With this reduced state space enough behavior shall be kept
such that on the one hand the timings of the tasks on dependent resources are not too
pessimistic, and on the other hand the overall veri�cation time is reduced. The applica-
tion of di�erent abstraction techniques on the interfaces of dependent resources has not
been worked out in literature so far.

3.3. General Approach

The timing analysis approach worked out in this thesis is based on model checking, where
the state spaces of the resources are computed, which encapsulate the relevant timing
information for tasks and end-to-end latencies. In contrast to standard model checking,
this approach works in an iterative fashion. The interfaces between resources are kept as
minimal as possible to boost the scalability of the approach, while the accuracy of the
response times is not a�ected by approximations. In other words, whenever interfaces

60

3.3. General Approach

between dependent resources are minimized, the end-to-end timing latencies and response
times remain exact with respect to the considered system model.
The approach distinguishes parts of the system containing cycles and parts which are

cycle-free. The focus for the iterative analysis technique is on cycle-free system parts.
In general, cycles in systems lead to mutual dependencies, such that the state spaces
cannot be separated and computed in isolation. The solution of our approach to handle
parts of the architecture containing such mutual dependencies is to perform the analysis
in a classical holistic fashion. Regarding the holistic part, our analysis will not yield
any improvements with respect to the state-of-the-art tools. A certain restricted class
of feedback loops can be handled also in an iterative fashion, but in general such parts
have to be analyzed holistically. Such a restricted class is discussed in the Appendix B.
In this section, �rst the general concept of the scheduling analysis technique worked

out in this thesis is illustrated. In-depth details such as state space characteristics and
usage of the elements such as clock variables is detailed thereafter. These details are
necessary to understand the subsequent sections.

3.3.1. Iterative Analysis Approach

The timing analysis approach proceeds as follows: In order to build the state space of
a resource, its input behavior has to be determined. The input behavior de�nes the
activation times of all tasks which are allocated to the resource. All state spaces here are
mainly represented by symbolic transition systems (STSs). States of the STSs determine
ranges of valuations of clock variables and their di�erences. The states further contain
information about released tasks, i.e. whether a task is currently running, is interrupted,
or is in the ready queue. The representation of the state space is detailed in the next
subsection.
A resource may have multiple sources for its inputs: Independent tasks are triggered

by event streams, while dependent tasks are triggered when the tasks on which they
depend terminate. Thus, the activation behaviors for all tasks on a resource are given
by a set of STSs. In order to determine a single input state space for each resource, the
product of the corresponding input STSs has to be computed.
To built the state space of a resource, all of its input behaviors have to be available.

For resources, on which only independent tasks are allocated, the input is directly given:
For every event stream the STS is directly derived as illustrated in Figure 2.6, and the
product of all STSs is computed. For instance, this is the case for resource R1 of the
system illustrated in Figure 3.3. In contrast to this, to compute the state space of a
dependent resource such as R2 in Figure 3.3, �rst the state spaces of all resources on
which R2 depends have to be available. Note that for parts of the considered system
consisting of resources with cyclic dependencies a problem arises here: The input of a
resource R cannot be determined separately from the behavior of resources from which
it depends on, if these resources also depend on R. Thus, such parts of the considered

61

3. State-based Timing Analysis

τ1

τ2

R1

i1

i2

τ3

τ4

R2

i3

o1

o2

τ5

τ6

R3

τ7

τ8

R4

S1

Figure 3.3.: System architecture containing four resources and dependencies.

system architecture have to be treated holistically: Instead of determining the input of a
single resource, the input of this whole system part containing such mutual dependencies
has to be computed, and based on this input the analysis is performed holistically. As
an example consider the part S1 of the system illustrated in Figure 3.3: As there is a
mutual dependency between the resources R3 and R4, the part S1 has to be analyzed
in a holistic manner.

When the input of a resource is determined, the next step is to build the state space of
the resource itself. For this, the input state space, the behavior of the scheduling policy,
and the execution times and priorities of the allocated tasks are taken into account. The
computed state space of a resource is then used to determine the response times of the
allocated tasks. Further, the resource STS serves as an input for dependent resources,
i. e. for resources on which dependent tasks are allocated. In order to keep the interfaces
between the resources as small as possible, parts of the state spaces that are not relevant
for the input behavior of the dependent resources are abstracted.

Thus, two operations on STSs are needed for such an iterative approach, (i) the product
computation of a set of STSs, and (ii) the abstraction of parts of the state spaces, such
that only the relevant information with respect to dependent resources are kept.

Consider the example in Figure 3.3, which consists of four resources where on each
resource two tasks are allocated respectively. The task τ3 on resource R2 depends on
task τ2 on resource R1. Tasks τ1, τ2, and τ4 are activated by event streams, thus the
inputs of resource R1 are directly given and its state space can be computed. Next, the
input of resource R2 has to be determined, which depends on both the state space of R1
and the event stream activating τ4. As the detailed timing information of the task τ1 is
not relevant for R2, the output of the STS of R1 is reduced by abstracting from states

62

3.3. General Approach

encapsulating information about this task. After this minimization, both STSs can be
combined by computing the product. After the computation of the state space of R2 the
holistic analysis for S1 can be started.

The needed operations on STSs and the analysis algorithm are detailed in Section 3.5.

3.3.2. Symbolic Transition Systems of Resources

To encode the problem of a state-based timing analysis, we will use resource STSs which
are a concretization of the general symbolic transition systems of De�nition 6 by de�ning
special variables for the discrete location vector and speci�c clocks to capture the timing
behavior of tasks. In general, we need three types of clock variables to decide i) when a
task is activated (or instantiated), ii) when a task �nishes its computation, and iii) the
response time of an instantiated task. Further, as the computation times of instantiated
tasks have to be measured, the states are equipped by some task queues as already
mentioned in Section 2.3.

These concretizations will be detailed in the following. Note that the semantics of the
general STS is not a�ected by the following specializations.

Discrete Location Vector

Independent tasks are triggered by event streams. For this, the timed automaton-based
representation of Figure 2.3 is considered here. Observing this automaton reveals an ini-
tial non-determinism inherent to event streams. In order to capture this non-determinism
of independent tasks the discrete part of the state space of each resource has to be rep-
resented by 2n locations for n independent tasks. If further jitter behavior is considered,
the number of locations grows to 3n instead, as a further location is needed for each
task as illustrated in the automaton of Figure 2.3. The set of locations is indicated by
L = L1 × · · · × Ln, where Li = {l0i , li,1, li,2} is the location encoding the state of a task
τi over the index set I = {1, ..., n}. The initial location where no task has been released
so far is indicated by l0 = (l01, · · · , l0n) ∈ L.
Note that this location vector can also easily be extended to handle more complex

task behaviors such as the formalism of function networks [BMS09]. These function
networks have state-dependent execution times, such that a more precise modeling of
real-time systems can be realized. However, in this work we focus on the location vector
introduced above and restrict to the basic task de�nition.

Besides the set of locations, the state set of a system is de�ned over clock valuations
over a set of clocks C that capture the timing behaviors of the allocated tasks. This is
detailed in the following paragraph.

63

3. State-based Timing Analysis

τ1

τ2

ECU 1

i1

i2

τ3

τ4

ECU 2

i3

o1

o2

o3

Figure 3.4.: Example architecture with periods pτ1 = 60, pτ2 = 5, pτ4 = 60, and compu-
tation times cτ1 = 35, cτ2 = 2, cτ3 = 4, cτ4 = 12, and priorities prτ1 > prτ2 ,
prτ4 > prτ3 .

Periodic Activation Clock

The �rst type of clock is necessary for each independent task τ. It traces the periodical
activation times of such a task. These clocks are referred to as periodic activation clocks
cp(τ) for a task τ .
For dependent tasks period activation clocks are not necessary. The activation of

such tasks are implicitly given by the termination of the tasks from which they de-
pend on. Consider the example of Figure 3.4: For this architecture, the periodic clocks
cp(τ1), cp(τ2), cp(τ4), and computation time clocks cc(τ2), cc(τ3) are needed. The task τ3

is implicitly activated whenever an instance of task τ2 terminates.

Computation Time Clock

In scenarios, where a task may be activated before its previous instance has �nished its
computation, a further clock is needed which measures the time frame from releasing
a task up to the �nish of its computation. Such a scenario will be called overlapping
activation in the following. In these scenarios multiple task instances ti of a task τ may
be active at the same point of time. This kind of clock is called computation time clock
cc(τ) in the following and is necessary to be able to determine when a task instance
�nishes its computation.
When overlapping activations of a task do not occur in the system, a single clock

for such a task is su�cient to determine both its periodic activation and the �nish of
computation of the corresponding instances. For this, consider the scenarios of Figure
3.5: Whenever an instance of a task is activated after its clock cp reaches the value
of the task period, i.e. cp == P holds, the clock cp is reset (indicated by the curved
brackets), such that the next activation occurs exactly after the speci�ed period value
P. After a task has been released, it runs until it �nished its computation. It �nishes
its computation, when enough resource time has been allocated to the task, which is

64

3.3. General Approach

τa
 t [P == cp]

cp∊[bcet, wcet]+i

...

τb
t

...

cc∊[bcet, wcet]+i

[P == cp]

{cp} {cp} {cp}

{cp} {cp} [P == cp]

Figure 3.5.: Scenarios with a non-overlapping activation of task τa (left) and an overlap-
ping activation of τb (right).

determined by the sum of its execution time [bcet, wcet] and a delay interval i caused by
interrupts form higher priority tasks. When there is no overlapping activation like in the
left scenario of Figure 3.5, the period clock can be used to measure this time frame, as
the clock is never reset before an instance terminates. It is assumed that the information
about the existence and number of maximal possible overlapping activations is given a
priori and not determined by the analysis approach automatically.
If multiple instances can be released as illustrated in the right scenario of Figure 3.5,

this situation changes: The clock cp cannot be used to determine the above mentioned
�nishing time, as cp is reset each time an instance is released. Thus, a further clock cc is
needed to trace the computation time of an active instance.

Response Time Clock

Computation time clocks are needed to determine, whether a task instance may �nish its
computation. If the exact response times of each task instance are of interest, we need
a further type of clock, which is referred to as response time clocks. Computation time
clocks are not able to measure the exact response times, as there are scenarios, where
these have to be reset while a task instance is activated and in the ready task set.
Multiple response time clocks are needed, one for each task instance ti, as the approach

relies on using simple clocks to realize the timing analysis with preemption. The reason
for this is that neither the derivative of a clock can be changed (e.g. to stop a clock from
progressing), nor subtraction operations can be performed as e.g. done in the work of
Kr£ál and Yi [KY04].
As one separate clock per task instance has to be used, the maximal number of possible

parallel activations of one task needs to be known This maximal number is called task
instance bound and can always be derived a priori: Considering �xed priority scheduling
policies, for an independent task the number is bounded by the maximum interrupt time
from all higher priority tasks, and the period value of the task. For instance, consider
the task τ2 in Figure 3.4. The bound results in the following value: n = d cτ1pτ2

e + 1 = 8.

Thus, within a computation time of 35 time units of an instance of τ1, at most eight
instances of τ2 may be activated (each 5 time units).

65

3. State-based Timing Analysis

hp

lp
t{cp, cr} {cc}

cc 2 [bcet, wcet][P == cp]

{cp, cr,
 cc }
[P == cp]

ihp

cc 2 [bcet, wcet] + ihp

Figure 3.6.: Two tasks hp, lp and the interrupt scenarios.

For dependent tasks this computation is a bit more complex and is based on �xed-point
computations. Consider the task τ3 in the system of Figure 3.4: First, the maximum
number of possible terminations of τ2 caused by a burst have to be determined, which is
basically a �xed-point computation. During the computation time of an instance of τ1,
in the worst-case eight instances of τ2 may be released. Thus, after the termination of τ1,
eight successive terminations of τ2 occur within 16 time units in such a case. Within this
time frame, further three instances of τ2 are released, as the period of τ2 is 5 time units.
By the time these three instances terminate, one further activation of τ2 can occur. Thus,
within a time frame of 24 time units 12 terminations of τ2 can occur. This number could
already be used as a bound for τ3. This bound can be further re�ned as during the time
frame of 24 time units instances of τ3 may terminate. Within this time frame, also the
worst-case interruption times of all higher priority tasks have to be taken into account.
In this case the execution time of τ4 has to be considered which is 12 time units. This
value has to be subtracted from the above value, i.e. 24 − 12 − 2 = 10. Thus, in the
worst-case from 24 time units only 10 time units are available for instances of τ3.Within
this time frame two instances of τ3 can be terminated. Thus, the bound can be decreased
to a value of 10. Let in the following inst : T→ N be the function which determines for
each task its maximal number of possible activations.
To measure the time for end-to-end latencies between task chains τ1, · · · , τn also mul-

tiple response time clocks cr(τ1, τn) are needed for the same reason as for the multiple
response time clocks of task instances. For such a chain, the number of end-to-end latency
clocks is bound to max(inst(τ1), · · · , inst(τn)).

Putting it togeter

The application of the introduced clocks is illustrated in Figure 3.6, where two tasks
hp (high priority) and lp (low priority) are allocated to a single resource with a �xed
priority scheduling policy. All clocks in the �gure refer to the task lp. The clocks in curved
brackets indicate a reset, square brackets indicate clock constraints. The parameter P is
the period of lp.

66

3.3. General Approach

First, consider the left scenario: The task lp is released while an hp−task instance is
already running, and its period clock and response time clocks are reset. The time hp
�nishes its computation, the computation clock cc of lp is reset to be able to determine
the �nishing time. That is, the task lp terminates, when this clock is within the best-
and worst-case computation time. Note that at this point, the response time of the task
is contained in the clock cr.
In the second scenario illustrated in the right part of the �gure, the running instance

of lp is interrupted by an instance of hp. The termination of lp is then reached, when its
clock cc is in the range of the interval resulting from the sum of the best- and worst-case
computation time of lp and the interrupt interval ihp.

Task Lists

To manage the activation of tasks and resource allocations to task instances appropriately,
all states of resource STSs are enriched by an active task map and a ready task list.
As : T → I is the active task map of state s of a resource STS under analysis,

indicating the interruption times I = [a, b] with a, b ∈ N of all instantiated active tasks
T. The �rst element determines the currently running task. This map may be empty for
some states as for example for the initial state.
The ready task list Rs = (ta, tb, ..., tn) of state s of a resource STS contains all tasks

ready to run, but to which no computation time has been allocated so far. This list
preserves the order of task instantiation, i.e. if task ti was instantiated before tj of the
same type, ti will be handled before tj . In other words a newly released task is added
into the ready task list and gets not running until the previously instantiated tasks of
the same type have �nished their computations. Note that if an unbounded system is
considered this list is not �nite.
For each task type it holds that at most a single task instance of this type is included

in the active task map. All other ready to run instances of this type are inserted in the
ready list.

3.3.3. Simpli�cation of Symbolic Transition Systems

To have a more compact representation of the symbolic transition systems where time
successors and discrete successors are combined, the de�nition of the transition relation
of the STSs is slightly modi�ed in the following (rf. to De�nition 6). This will also solve
the problem of preserving the lower clock bounds when a discrete transitions is taken, as
it was discussed in Section 2.2.
First, recall the original transition relation de�nition:

• 〈l,D〉 ∆−→〈l,D↑ ∩DI(l)〉, where I(l) =
∧n
j=1 Ij(lj)

67

3. State-based Timing Analysis

S1

clk<=4

S0

clk<=5

clk>=2

(a) Example automaton where invariant of a
clock gets stricter.

S2

clk<=100

S1

clk<=50

S0

clk<=50

clk>=100
a!

clk:=0
mode_switch?

clk:=0

mode_switch?
clk:= 0

a!
clk:=0

clk >=50
a!

clk := 0

(b) Modes de�ning di�erent periodicities.

Figure 3.7.: Example for invariants in automata.

• 〈l,D〉 λ−→〈l′, (D ∩Dϕi ∩Dϕj)[%{i,j} → 0]∩DI(l′)〉 where l′ = l[l{i,j} → l′{i,j}], if there
are some i, j ∈ {1, ..., n} with λ ∈ Σi ∩ Σj such that (li, λ!, ϕi, %i, l

′
i) ∈ Ri and

(lj , λ?, ϕj , %j , l
′
j) ∈ Rj .

In the second part of the relation, the intersection between the current zone D and the
zones Dϕi , Dϕj which is induced by the guards of the �ring transitions ϕi, ϕj is taken.
After resetting the clocks de�ned by the corresponding transition, the intersection with
the reached zone and the zone DI(l′) induced by the invariant of the reached location
is taken. The last step, i.e. the intersection with the invariant of the reached location,
is only relevant for clocks which are not reset. Further, invariants only a�ect the upper
bounds of the corresponding clocks. Thus, this intersection is only relevant for locations,
where the upper bound of a clock which is not reset gets stricter.
For this, consider the example of Figure 3.7(a): The invariant constraining the valua-

tion of clock clk in state S1 is stricter than the one in state S0, which a�ects the reached
zone. Note that such automata are not deadlock free: If the control �ow remains in state
S0 within the time interval of (4, 5] the automaton is not able to switch to location S1.

In this thesis, timed automata are restricted in such a manner that the last step is
not necessary, i.e. the intersection with the invariants of the reached location. This
operation can be omitted, if the upper bounds of all clocks never get tighter in any
reached target location without being previously reset. This is a valid restriction for the
systems which are considered in this thesis: For this, consider the types of clocks used
for the analysis approach mentioned above: The bounds of the computation time clocks
of instantiated tasks are either �xed values or are increased by the interruption time,
thus are monotonically increasing, but do not get stricter. The period clock cp will never
change within a period cycle, thus will also not get stricter. If mode-dependent periods
and execution times are considered as in function networks, the corresponding clocks are

68

3.3. General Approach

0
2

6 8e

0 0
0 0

0 cp

0
cp

0 0
20 0

0 cp

0
cp

0 0
1 0

0 cp

0
cp

0 0
1 0

0 cp

0
cp

l , 0 l , 0

4

0 0
0 0

0 cp

0
cp

l 1,

l2,l 1,

10
l2,

0 0
20 0

0 cp

0
cp

Δ

Δ

Δ
ΔΔ

S0 S1 S2

S3 S4

S5

Figure 3.8.: Original STS for an event stream automaton with p = 20, j = 1.

0
2 4 6e

0 0
0 0

0 cp

0
cp

0 0
20 0

0 cp

0
cp

0 0
1 0

0 cp

0
cp

0 20
20 0

0 cp

0
cp

l 0 l 1 l2 l 1
Δ

Δ
e

Figure 3.9.: Simpli�ed STS for an event stream automaton with p = 20, j = 1.

previously reset to adequately capture the timing properties. For instance, consider the
transition from S2 to S1 in the automaton of Figure 3.7(b): The period is switched from
100 time units to 50 time units (modeled by de�ning the invariants accordingly). Before
the state is entered, the clock determining the periodical activation is reset.
With this restriction the last intersection can be skipped and both transition steps can

be combined to a single one as follows:

〈l,D〉 λ−→〈l′, (D[%{i,j} → 0])↑ ∩DI(l) ∩Dϕi ∩Dϕj 〉, (3.4)

where I(l) =
∧n
j=1 Ij(lj) and l

′ = l[l{i,j} → l′{i,j}], if there are some i, j ∈ {1, ..., n} with
λ ∈ Σi ∩ Σj such that (li, λ!, ϕi, %i, l

′
i) ∈ Ri and (lj , λ?, ϕj , %j , l

′
j) ∈ Rj .

Recall the original STS of Figure 3.8. With the new transition relation, the resulting
STS is illustrated in Figure 3.9.
Observe that in contrast to the original STS in Figure 3.8 this simpli�ed STS is more

compact. Further, the lower bounds of the reached locations are preserved, e.g. in state
〈l1, D6〉 it is known that the value of cp is exactly 20 time units. This information is
crucial for the operations on STSs to realize an iterative analysis as detailed in the next
section.

69

3. State-based Timing Analysis

3.4. Operations on Symbolic Transition Systems

As discussed in the previous section, to realize an iterative analysis approach two basic
functions on the symbolic transition systems are needed, i.e. the product computation of
a set of STSs to determine the input behavior of a resource, and the interface computation
in terms of abstraction functions on the STS such that only the relevant information with
respect to dependent resources are kept. The abstraction in this section is de�ned in such
a manner that the activation behavior which is described by the original interface STS
remains exact. Thus, the abstraction here is used as a minimization of the state spaces.
Later in Section 3.6 further abstraction functions are de�ned in such a way that after
their applications over-approximated STSs with respect to the timing behaviors of the
considered tasks are achieved, while resulting in smaller state spaces.

3.4.1. Interface Computation

The iterative analysis approach shall keep the interfaces between dependent resources
as small as possible, while preserving the accuracy of the computed response times and
end-to-end latencies. To minimize the state space abstractions on the state set of STSs
are necessary. In general, an abstraction function de�ned over a state set S is a surjective
function α : S → S′, where S′ ⊆ S. Abstraction functions should also be de�ned in such
a way that these are total :

∀s ∈ S,∃s′ ∈ S′ : α(s) = s′. (3.5)

The state set of our approach consists of zones and discrete location vectors, thus
speci�c abstractions on both parts of the state space are presented. The combination of
both abstractions and the application to interface STSs is addressed thereafter.

Abstraction on Locations

As illustrated previously, the state space of a resource consists of a set of discrete locations
L = L1 × · · · × Ln over an index set I = {1, · · · , n} for each resource on which n
independent tasks are allocated. For a location l = (l1, · · · , ln) ∈ L let l|i with i ∈
{1, · · · , n} be the ith element of the tuple, i.e. li ∈ Li.
For I ′ ⊆ I let αI′ : L→ L′ be the surjective function mapping the set of locations L

over I to the set of locations L′ over index set I ′, where locations within the tuples with
indexes not in I ′ are left out. Let l ∈ L, then αI′(l) = (l′i1 , · · · , l

′
ik

) for i1 < · · · < ik ∈ I ′
and I ′\{i1, ..., ik} = ∅, such that l′z = l|z for all z ∈ I ′.
For instance, consider the index set I = {1, ..., n} and I ′ = I \ {i}. By the application

of this the following is obtained: αI′(l1, ..., li, ..., ln) = (l1, ..., li−1, li+1, ..., ln).

As αI′ is surjective the inverse function α−1
I′ maps a location l over I ′ to a set of

locations L over I with I ′ ⊆ I :

70

3.4. Operations on Symbolic Transition Systems

α−1
I′ (l′) := {l ∈ L | αI′(l) = l′}. (3.6)

That is α−1
I′ extends the locations induced by I ′ to locations containing elements of I,

e.g. for I = I ′ ∪ {n+ 1} we get α−1
I′ (l1, ..., ln) = {(l1, ..., ln, ln+1)| ln+1 ∈ Ln+1}.

As an abbreviation tasks instead of explicit indexes are used in the following, e.g.
α{τi,τj} := α{i,j} or lτi = li.

Abstraction on Zones

The abstraction on clock zones is basically a projection operation over the contained
propositions. Let C ′ ⊆ C be two clock sets. For a clock constraint g ∈ Φ(C) let g|C′
be the constraint, where all propositions containing clocks of the set C\C ′ are removed.
For the induced zone D = {ν | ν |= g} of a constraint g ∈ Φ(C) the zone projection
operation is de�ned accordingly:

D|C′ = {ν | ν |= g|C′}. (3.7)

Analogously, for a constraint g ∈ Φ(C ′) let g|−1
C

be the constraint extended with

propositions containing clocks in C\C ′. Let D|−1
C

= {ν | ν |= g|−1
C
} be the corresponding

induced zone. The new constraints are of the form 0 ≤ c ≤ ∞ for all c ∈ C\C ′. Thus,
the extension operation is de�ned in such a way that it does not a�ect the original zone.
Let g ∈ Φ(C ′) be a clock constraint and D its induced zone. If the zone D is extended

to C and restricted thereafter again to the original clock set, the original zone is not
a�ected:

D = (D|−1
C

)|C′ . (3.8)

For instance, consider the sets C = {c1, c2}, C ′ = {c2} and the constraint g = c1−c2 ≤
3∧c1 ≤ 5∧c2 ≤ 1. Then g|C′ = c2 ≤ 1. Further, we have (g|C′)|−1

C
= c2 ≤ 1∧0 ≤ c1 ≤ ∞.

Computing the Interface Between Dependent Resources

With the aid of the abstraction functions introduced on clock zones and sets of locations,
the abstraction function which minimizes the interface between dependent resources is
enabled to be de�ned. Note that for the sake of readability only dependencies between
two resources will be detailed here. This is no restriction to the general case, as all
de�nitions can be extended in a straightforward manner.
First, the following functions need to be de�ned in order to be able to reference to all

relevant parts of a state space. For a dependent task, the function pre(τ) determines
the set of tasks, from which it directly depends. Let G = (T, E) be a task dependency

71

3. State-based Timing Analysis

τA1

τAi

τB1

τB2

ECU A

ECU B

...

τAj

...

τAn

...

...

...

...

...

...

...

...

τ01

τ02

τAi

τB1

...

Figure 3.10.: Left: task dependencies of task τB1; Right: computation of interface be-
tween ECU A and ECU B.

graph according to De�nition 1. The set of immediate predecessors of a task τ ∈ T is
determined by the following function:

pre :

{
T → 2T

τ 7→ {τ ′ | (τ ′, τ) ∈ E}
(3.9)

Note that if a task τ has no predecessors in the task dependency graph, the function
pre will return the empty set.
To determine for all (dependent) tasks τ ∈ T the set of independent tasks, which

directly or indirectly lead to a trigger of τ , the following function is de�ned:

init :


T → 2T

τ 7→

{
{τ}, if pre(τ) = ∅,⋃
τ ′∈pre(τ) init(τ

′), else.

(3.10)

As an example, consider the task dependency graph in the left part of Figure 3.10,
where init(τ01) = {τ01}, and init(τB1) = {τ01}.
Further, the following functions are needed.

• hpT : τ 7→ T′ with T′ ⊂ T determines for a task τ ∈ T the set of tasks with a
higher priority,

• lp : T′ 7→ τ with T′ ⊆ T determines the task τ with the lowest priority within the
set T′. For the set of tasks of a resource, this element is always unique.

72

3.4. Operations on Symbolic Transition Systems

The index of hp is omitted whenever it is obvious from the context.
Next, the relevant subset of clocks C ′ ⊆ CA of an interface STS between a resource A

and a resource B is determined. Assume that on resource B tasks are allocated which
depend on tasks allocated on A. For this, let F = TA ∩ pre(TB) be the set of tasks
on a resource A which trigger some tasks on a dependent resource B. In the example of
Figure 3.10 this results in F = {τAi, τAj}. The subset of relevant clocks is chosen in such
a manner that the computation time clocks cc(τ) of tasks in the set τ ∈ F are preserved.
These clocks determine the activation times of the dependent tasks relatively to their
starting times. Thus, also the information has to be preserved, when these tasks were
initially activated. This information is encapsulated in the period clocks of the tasks
triggered by event streams, i.e. cp(init(τ)) for all τ ∈ F . In this set, clocks of tasks
which are allocated on other resources than A, B of the system architecture may be
included.
Unfortunately, also the set of period clocks of all higher priority tasks needs to be

preserved. This topic is discussed in detail in Subsection 3.6.2.
To sum up, the following set of clocks C ′ has to be preserved:

∀τ ∈ hp(lp(F)). ∃cp(init(τ)) ∈ C ′ ∧ ∀τ ∈ F. ∃cc(τ) ∈ C ′. (3.11)

Consider the example in the right part of Figure 3.10 and assume that the task priorities
correspond to the ordering in the �gure. Then we get

C ′ = {cp(τA1), · · · , cp(τAj), cc(τAi), cc(τAj))}.

With this set, the abstraction function is de�ned that computes the output STS of
resource A with the state set SA for a resource B on which dependent tasks are allocated:

αF :

{
SA → S′

〈l,D〉 7→ 〈αF (l), D|C′〉.
(3.12)

Note that this de�nition works �ne if the index set for the tasks is globally de�ned
for the complete system architecture. If local indexes are de�ned (for each resource) a
reordering and relation function of the indexes would be necessary. Here, we will not
detail this discussion and assume that indexes are de�ned globally.
The inverse function for a state is de�ned as follows.

α−1
F : 〈l,D〉 7→ {〈l′, D|−1

C
〉| l′ ∈ α−1

F (l)}. (3.13)

This abstraction function induces the following interface STS:

De�nition 15. Let STSA = (S, S0, C,Σ,→) be the STS of a resource A. The interface
between two resources A,B where F = TA ∩ pre(TB) and F 6= ∅ holds, is the STS
STS′A = (S′, S0

αF
, CF ,ΣF ,→αF) over task set F with

73

3. State-based Timing Analysis

• S′ = αF (S) the induced set of abstract states,

• S0
αF

= αF (S0) the initial abstract state,

• CF ⊆ C the clock set as de�ned in Formula 3.11,

• ΣF ⊆ Σ the alphabet depending on the task subset F,

• →αF⊆ S′ × ΣF × S′ the abstract transition relation, where a
x−→αF b i� there exists

a s1 ∈ α−1
F (a) and s2 ∈ α−1

F (b) such that s1
y−→s2, where x = y = λ if λ ∈ ΣF , else

x = ∆.

Each symbol in Σ represents the start or termination of a speci�c task. In the set ΣF

only those elements of Σ are preserved which represent tasks included in the set F.
The transition relation of a resource STS R = (S, S0, C,Σ,→) is always left-total, that

is for every state s ∈ S there exists a successor t ∈ S such that s
λ−→t for some λ ∈ Σ. Thus

all words of a resource STS are in�nite and there is no deadlock state. The abstraction
function preserves this property.

Lemma 4 (Deadlock Free). Let STS = (S, S0, C,Σ,→) be an STS with a left-total
transition relation. Then it holds that the transition relation of its abstraction STS′A =
(S′, S0

αF
, CF ,ΣF ,→αF) according to De�nition 15 is also left-total.

Proof. Let R = (S, S0, C,Σ,→) be an STS with a left-total transition relation and R′ =
(S′, S0

α, CF ,ΣF ,→α) be the abstracted STS with task set F according to De�nition 15.
For s′ ∈ S′ there exists a s ∈ S such that αF (s) = s′ (Formula 3.12). As the transition
relation of R is total, there is a t ∈ S such that s

λ−→t for some λ ∈ Σ. As αF is surjective,
there is a t′ ∈ S′ with α(t) = t′. According to the transition relation of De�nition 15 it
holds that s′

x−→αt
′ with x ∈ ΣF .

Thus the abstract transition relation is de�ned in such a way that if there exists a
state in the original STS, which has an outgoing transition to another state, there also
exists a transition between the abstract representations of both states. With this the
abstraction yields an over-approximation of the original STS, while preserving the exact
timings for the dependent tasks.

Lemma 5 (Over-Approximation). Let STSA = (S, S0, C,Σ,→) be an STS with a left-
total transition relation. Then it holds that the transition relation of its abstraction
STS′A = (S′, S0

αF
, CF ,ΣF ,→αF) according to De�nition 15 is an over-approximation of

STSA.

To proof that the abstraction leads to an over-approximation, �rst a simulation relation
between STSs has to be de�ned to be able to determine when an STS has more behavior
than another STS.

74

3.4. Operations on Symbolic Transition Systems

De�nition 16 (Simulation relation). Given two symbolic transition systems STS1 =
(S1, S

0
1 , C1,Σ1,→1) and STS2 = (S2, S

0
2 , C2,Σ2,→2) with C1 ⊆ C2 and Σ1 ⊆ Σ2. A

relation sim ⊆ S2 × S1 is a simulation relation between STS1 and STS2, if for all
(〈l2, D2〉, 〈l1, D1〉) ∈ sim the following holds:

1. D1 = D2|C1
.

2. For all t ∈ S2 with 〈l2, D2〉
λ−→2 t there exists a s ∈ S1 such that 〈l1, D1〉

λ′−→1s and
(t, s) ∈ sim, and λ = λ′ if λ ∈ Σ1, else λ

′ = ∆.

Two symbolic transition systems STS1 and STS2 are simulation equivalent, in short
STS2 � STS1, if there exists a simulation relation sim ⊆ S2 × S1 such that (〈l02, 0C2〉,
〈l01, 0C1〉) ∈ sim.

It is said that the concrete STS is simulated by the abstract STS. The proof of the
over-approximation property is closely related to the proof of the left-total property:

Proof. (Lemma 5) Let R = (S, S0, C,Σ,→) be an STS with a total transition relation
and R′ = (S′, S0

α, CF ,ΣF ,→α) be the abstracted STS with task set F according to
De�nition 15. The simulation relation of the states is given by sim = {(s, s′) |s ∈ S, s′ ∈
S′, α(s) = s′}. Consider an element (s, s′) ∈ sim, for which holds that α(s) = s′. As R
is total, there is a transition s

λ−→t. Then, two properties hold:

• The abstraction function is surjective, such that there is a t′ ∈ S′ with α(t) = t′.

• According to the transition relation of De�nition 15 it holds that s′
λ′−→αt

′ with
λ = λ′ if λ ∈ ΣF , else λ′ = ∆.

With this we can conclude that (t, t′) ∈ sim. Note that this also holds for the initial
states of both STSs.

3.4.2. Composition Function

Let Ai = (Si, S
0
i , Ci,Σi,→i) for i = {1, ..., n} with n > 1 be a set of STSs over pairwise

disjoint clock sets Ci. In the following, the product construction A = A1 × ... × An is
de�ned, which is itself an STS over the clock set C = C1∪ ...∪Cn. For each created state
of the product STS it is stored from which input states, i.e. states of the input STSs
A1, ..., An, it resulted. To this end for each Ai the function ξi is introduced that maps
each product STS state to a state of Ai.
The initial state of the product is given by

〈l0, 0C〉 := 〈(l01, ..., l0n), 0C1 ∪ ... ∪ 0Cn〉, (3.14)

where 〈l0i , 0Ci〉 is the initial state of Ai. Note that ξi(〈l0, 0C〉) = 〈l0i , 0Ci〉 for i ∈ {1, ..., n}.

75

3. State-based Timing Analysis

According to De�nition 6 the time successor 〈l,D′〉 of state 〈l,D〉 is then determined
by

〈l,D′〉 := 〈l,D↑ ∩D′
1|−1
C
∩ ... ∩D′

n|−1
C
〉 (3.15)

where ξi(〈l,D′〉) = 〈li, D′i〉 for i ∈ {1, ..., n} are the time successors of the input states
〈li, Di〉. Note that the zones from all STSs are extended to the global clock set C. Note
also that always there is a unique time successor because all input states have a unique
time successor as illustrated in Section 2.2.
Starting from the computed time successor to compute all possible discrete steps in the

product transition system, each outgoing transition (with respect to the current location
of the corresponding STS) from each STS is tried to be �red. In fact, this is also done
in De�nition 6: Whenever the guards of a transition are ful�lled, a discrete transition is
enabled and can be �red. This is the case, when the intersection of the zone induced by
the guard and the current zone is not empty. The maximal number of discrete successor
transitions of a product automaton state is then the sum of the number of discrete
successor transitions of each corresponding input state. The discrete successors of a
state 〈l,D〉 of the product STS are given by the following set. The following de�nition is
given for the composition of two components to keep the following discussions and proofs
readable. Note that this is no restriction to the general case as it can be easily extended
to n−components by adapting the constraint in the set de�nition.

dSucc(〈l,D〉) := { 〈l[l{i,j} → l′{i,j}], D
′〉

| ∃i, j ∈ {1, ..., n}, i 6= j.〈l{i,j}, D{i,j}〉
λ−→〈l′{i,j}, D

′
{i,j}〉

∧ λ ∈ Σi ∩ Σj ∧ D′ 6= ∅}
(3.16)

where D′ = (D∩ρ−1(D′i∩D′j)|−1
C

)[ρ(D′{i,j})→ 0]∩D′
i|−1
C

∩D′
j|−1
C

, and 〈li, Di〉 = ξi(〈l,D〉)
and 〈lj , Dj〉 = ξj(〈l,D〉) for all i, j ∈ {1, ..., n}. The discrete step is possible, if the
resulting zone is not empty. The function ρ(D{i,...,k}) represents the set of clocks that
are reset in the corresponding zones Di, ..., Dk, and ρ−1(D{i,...,k}) represents the symbolic
states before the reset operation of the corresponding transitions have been performed.
Note that the set of clocks to be reset are originally de�ned on the input transitions, but
this set can also be derived on the target zones.
To proof the correctness of the product construction, the notion of equivalence has �rst

to be de�ned. The equivalence of several STSs is determined through the bisimulation
relation de�ned as follows.

De�nition 17 (Bisimulation relation). Given two symbolic transition systems STS1 =
(S1, S

0
1 , C,Σ,→1) and STS2 = (S2, S

0
2 , C,Σ,→2) over the same clock set C and alphabet

Σ. A relation r ⊆ S1 × S2 is a bisimulation relation between STS1 and STS2, if for all
(〈l1, D1〉, 〈l2, D2〉) ∈ r the following holds:

1. D1 = D2.

76

3.4. Operations on Symbolic Transition Systems

2. For all s ∈ S1 with 〈l1, D1〉
λ−→1s there exists a t ∈ S2 such that 〈l2, D2〉

λ−→2t and
(s, t) ∈ r.

3. For all t ∈ S2 with 〈l2, D2〉
λ−→2t there exists a s ∈ S1 such that 〈l1, D1〉

λ−→1s and
(s, t) ∈ r.

Two symbolic transition systems STS1 and STS2 are bisimulation equivalent, in short
STS1 ≈ STS2, if there exists a bisimulation relation r ⊆ S1 × S2 such that
(〈l01, 0C〉, 〈l02, 0C〉) ∈ r.

The bisimulation relation de�nes an equivalence relation between symbolic transition
systems. Thus, if two STSs are in a bisimulation relation, they satisfy the same proper-
ties. The focus of this thesis are properties concerning upper bounds of clocks like task
deadlines and end-to-end latency constraints.

Lemma 6 (Satisfaction of Properties). A transition system STS over a clock set C
ful�lls a deadline formula ϕ ∈ Φ(C), in short STS |= ϕ, i� for all reachable states 〈l,D〉
of STS it holds that D ⊆ Dϕ.

The proof of this lemma is trivial: If no clock valuation exceeds the allowed bounds
de�ned by the condition, the condition is ful�lled. The bisimulation relation preserves
these properties.

Theorem 1. Let STS1 ≈ STS2 be two bisimulation equivalent transition systems and
let ϕ ∈ Φ(C). It holds that STS1 |= ϕ i� STS2 |= ϕ.

Proof. (⇒) Only one direction of the theorem is shown, as the other direction is per-
formed in an analogous way. Let STS1 ≈ STS2 and a formula ϕ ∈ Φ(C) be given. Let
(s0, ..., sn) be a path of STS1 with s0 = 〈l01, 0C〉, si

λi−→1si+1 for all i ∈ {0, ..., n− 1}, and
sn = 〈l1,n, D1,n〉 where D1,n * Dϕ. Then according to De�nition 17 (Items 2. and 3.)
there is a path (t0, ..., tn) in STS2 with t0 = 〈l02, 0C〉 and ti

λi−→2ti+1 for all i ∈ {0, ..., n−1},
where (si, ti) ∈ r for all i ∈ {0, ..., n} and tn = 〈l2,n, D2,n〉. As (sn, tn) ∈ r it holds that
D2,n * Dϕ (Item 3. of De�nition 17).

Theorem 2. Let A1, ..., An be a set of timed automata. Let further A = STS(A1 ×
... × An) be a symbolic transition system from De�nition 6 and B = STS(A1) × ... ×
STS(An) be the symbolic transition system as de�ned in this section. Then there exists
a bisimulation relation such that A ≈ B.

Proof. Let A = (S, S0, C,Σ,→A) be an STS build in terms of the parallel composition
De�nition 6 of n timed automata and let B = (X,X0, C,Σ,→B) an STS build with
respect to the product construction de�ned above. The bisimulation relation between A
and B is inductively de�ned as follows:

• (S0, X0) ∈ r with DS0 = DX0 (base case),

77

3. State-based Timing Analysis

• If (s, x) ∈ r with s ∈ S, x ∈ X and s = 〈lA, DA〉, x = 〈lB, DB〉 then DA = DB

(induction hypothesis). Two cases for the transition relation can occur:

� s has a time successor de�ned as s′ = 〈lA, D↑A ∩D′〉 with D′ = DI(l1)∧...∧I(ln),
i� (according to the product de�nition) x has a time successor de�ned as
x′ = 〈lB, D′′〉 with D′′ = D↑B ∩D′1|−1

C

∩ ... ∩D′
1|−1
C

. With D′j = D↑j ∩DI(lj) for

j ∈ {1, ..., n} we directly get D′ = D′′ and set (s′, x′) ∈ r (inductive step).

� For the discrete successors both directions need to be treated explicitly

1. s has a discrete successor de�ned as s′ = 〈l′A, D′A〉 with D′A = (DA ∩
Dϕj)[ρj → 0]∩DI(l′A) and l

′
A = lA[lj → l′j], i� for a j ∈ {1, ..., n} the timed

automaton Aj has a transition (lj , λj , ϕj , ρj , l
′
j) ∈ Rj . Then, the STS of Aj

has a discrete successor 〈lj , Dj〉
λj−→〈l′j , D′j〉 withD′j = (Dj∩Dϕj)[ρj → 0]∩

DI(l′j)
. Per de�nition it holds DA|Cj = Dj .With the product de�nition on

STSs, the state x has also a discrete successor 〈lB[lj → l′j], D
′
B〉 withD′B =

(DB ∩ ρ−1(D′j)|−1
C

)[ρ(D′j) → 0] ∩D′
j|−1
C

. With DA = DB and ρ−1(D′j) =

Dj ∩Dϕj we get D
′
A = D′B.

2. x has a discrete successor de�ned as 〈lB[lj → l′j], D
′
B〉 with

D′B = (DB ∩ ρ−1(D′j)|−1
C

)[ρ(D′j) → 0] ∩ D′
j|−1
C

i� there is an STS(Aj)

with j ∈ {1, ..., n}, which has a discrete successor 〈lj , Dj〉
λ−→〈l′j , D′j〉 with

D′j = (Dj ∩Dϕj)[ρj → 0]∩DI(l′j)
. Per de�nition it holds that DB|Cj = Dj

and ρ−1(D′j) = Dj ∩Dϕj . Then, the corresponding timed automaton Aj
has a transition (lj , λj , ϕj , ρj , l

′
j) ∈ Rj . If Aj has such a discrete transition,

then s has a discrete successor de�ned as s′ = 〈l′A, D′A〉 with D′A = (DA∩
Dϕj)[ρj → 0] ∩ DI(l′A) and l′A = lA[lj → l′j]. As DA = DB holds per
assumption, we directly get D′A = D′B.

� When both 1. and 2. do hold, we set (s′, x′) ∈ r (inductive step).

The function ρ−1(D) represents the symbolic state before the reset operation of the
corresponding transition has been performed. Thus, in order to apply the product con-
struction there is a need to store both the pre-reset state and the post-reset state of
discrete successors. By using the simpli�ed transition relation of Equation 3.4 this prob-
lem is avoided, as always the pre-reset state is stored and the post-reset state is computed
when the successor is computed.

78

3.5. Analysis Algorithm

3.5. Analysis Algorithm

The operators introduced in the previous section enable the computation of interfaces
between resources by applying abstraction and composing multiple STSs, if the inputs of
the corresponding tasks are originated from di�erent sources. After the computation of
the input behavior of a resource, the computation of the resource STS is enabled. As a
result, the resource STS contains the response times of the allocated tasks and end-to-end
latencies, which are of interest, i.e. for which constraints are de�ned. The computation
of such a resource STS is the topic of this section.

Note that end-to-end latency constraints are speci�ed by two tasks here. The instan-
tiation of the �rst task of a latency constraint, which is referred to as the triggering task,
determines the point in time from which the constraint is assumed to be active, i.e. from
where the time is started to be measured. The second task of a latency constraint is
called the tail task . The termination of the tail task determines the point in time, up to
which the latency shall be measured.

Before illustrating the resource computation concept, some important properties of
STSs and their states have to be explained. First, analogous to the computation of the
product, to be able to determine for each of the resource states from which state of the
input transition system � in short �input state� � it resulted, the function ξ is introduced,
which maps each resource STS state to an input STS state.

To manage the activation of tasks and resource allocations to task instances appropri-
ately, all states of resource STSs are enriched by maps, lists, and queues. This is detailed
in the next paragraphs. The symbol τ is used for task types, and t for task instances.
The type of a task instance t is simply determined by τ(t).

Multiple Task Dependencies In this work it is assumed that independent tasks are
triggered from single event streams. In contrast to this, dependent tasks may depend
on a set of other tasks, i.e. the termination of tasks in this set activates the consi-
dered dependent task. Two activation types have to be considered, i.e. synchronous
and asynchronous activations. Asynchronous activation means that whenever the consi-
dered task receives a trigger from one of the other tasks it depends on, it is activated.
Synchronous means that from all tasks, from which the considered task depends on, at
least a trigger has to be received to be released.

In Figure 3.11 the di�erence between both activation types is illustrated for a task
τ3 which depends two tasks τ1 and τ2: In the left part of the �gure the synchronous
activation is illustrated. Task τ3 is activated, if it receives at least one trigger from both
predecessors. Note that a trigger is received if a predecessor terminates. In the right part
the asynchronous activation is illustrated. Task τ3 gets activated, if it receives a trigger
from either τ1 or τ2.

79

3. State-based Timing Analysis

τ1

τ2
τ3

v

τ3

τ1
τ2

τ1

τ2
τ3v

τ3

τ1
τ2

...

Figure 3.11.: Left: TDG with synchronous activation with resulting activation behav-
ior; Right: TDG with asynchronous activation with resulting activation
behavior.

The following discrete function will determine the activation type of a task.

act : T→ {sync, async} (3.17)

For independent tasks τ we de�ne act(τ) := async.
For tasks with synchronous activations all states s of a resource have a corresponding

map Ms,sync. In such a map all occurred triggers which are relevant for corresponding
dependent tasks are added, i.e. Ms,sync : T → T × ... × T for all τ ∈ T ⊆ T with
act(τ) = sync. If at least a trigger event from each task type on which the corresponding
tasks depend on is received, an instance of the corresponding task is activated. By
activating such a task, the map is updated appropriately, i.e. an entry from each task,
on which the dependent one expects a trigger, is removed from the map. As an example
consider that a task τn synchronously depends on two tasks τ1, τ2. In state sm three
trigger of τ1 occurred (by terminations of corresponding instances), but no trigger of
τ2 occurred so far. Thus, we have Msm,sync(τn) = (τ1, τ1, τ1). By entering state sm+1

an instance of τ2 terminates, and thus generates a trigger for τn. An instance of τn is
generated and the map is updated toMsm+1,sync(τn) = (τ1, τ1).
For asynchronous activation patterns dependent tasks are triggered by the termination

of each task they depend on. Thus, in contrast to the synchronous case, for asynchronous
activations a map is not needed. Nevertheless, there is a need to be able to determine the
task type from which a dependent instance was activated in order to correctly compute
end-to-end timing latencies. As an example consider again the task τn which depends
on τ1 and τ2. An end-to-end latency is de�ned between the start of τ1 and the end of
τn. To be able to determine from which task type an instance was activated in a state s,
the functionMs,async : T̄ → 2T is de�ned, where t ∈ T̄ ⊆ T with act(t) = async. Note
that the set T̄ is a set of task instances. The function is de�ned recursively: If a task tn
triggers tn+1 thenMs,async(tn+1) :=Ms,async(tn) ∪ {τ(tn)}.
Consider again the example above: If Msm,async(tn) = {t2} and tn triggers tn+1 by

entering state sm+1 thenMsm+1,async(tn+1) = {t2, tn}. If there is an end-to-end latency
constraint between t1 and tn+1, it is possible to determine that the instance tn+1 was not
started by an instance of t1.

80

3.5. Analysis Algorithm

Note that for the descriptions of the analysis algorithms the dot-notation for both
functions s.Masync :=Ms,async and s.Msync :=Ms,sync is used.

Controlling Boundedness If the attributes of a task are chosen inappropriately by the
system designer, new instances of tasks may be released permanently before previously
activated instances �nish their computations. The simplest example for this occurs when
the period is smaller than the execution time of the task. With such a system con�gu-
ration the timing analysis approach of this thesis would not terminate and not deliver
the requested response times. Thus, there is a need of a mechanism to determine such
con�gurations. As detailed in Subsection 3.3.2 the maximal number of possible paral-
lel activations of all tasks needs to be known a priori. These numbers are relevant to
determine the needed number of response time clocks cr, as one per instance is necessary.
The allocation of indexes to task instances is realized by a ring-bu�er. Whenever a new

instance of a corresponding task shall be released, an index is requested before. Thus, if
no free index is available, the approach is able to determine that the system is unbounded
under the assumption that the bound is computed according to Subsection 3.3.2.
For tasks, for which the response time is not relevant, the response time clocks are

omitted to keep the state space as small as possible. Note that the engineer speci�es
which response times are of interest and which are not. To be able to determine the
boundedness for instances of such tasks, each state s counts the number of active instances
in a corresponding function, i.e. Bs : T→ N. If the number exceeds the speci�ed bound,
the violation of the boundedness can be determined.

Relating Matrix Indexes As mentioned before, the valuations of all clocks are repre-
sented by matrices. Each clock is referenced by a corresponding index. Clocks may be
shared between a set of STSs. For example, consider a resource STS: The valuations of
some of its clocks are directly determined by the clock valuations of the input states,
as for example the clocks with which the periodic activation of independent tasks is de-
termined. As an iterative analysis approach is applied, the indexes of shared clocks in
the matrices of di�erent STSs may change. Thus, there is a need to relate the indexes
of shared clocks of di�erent STSs. Let C be the set of all clocks of the considered sys-
tem architecture. It is assumed that C is totally ordered, i.e. the set is antisymmetric,
transitive, and total. Let D be the set of all zones over all subsets of C . The clocks
in the matrix representation of a zone D ∈ D may be arbitrarily ordered. To obtain
a matrix which adheres to the order relation of C , the function ζ : D → D is de�ned
reordering a zone D according to the total order relation. To simplify the readability,
further D̃ := ζ(D) is de�ned as the short notation.
An example is given in Figure 3.12 for a resource on which two independent tasks are

allocated. The matrices of the input STS of the resource consist of the period clocks of
the tasks, as illustrated in the left-most matrix in the �gure. The period clock of τ1 has

81

3. State-based Timing Analysis

 0 cp(τ1) cp(τ1)

0
cp(τ1)
cp(τ2)

 0 cp(τ1) cp(τ1) ...

0
cp(τ1)
cp(τ2)
cc(τ1)

ζ

extension

 0 cp(τ1) ...

0
cp(τ1)
cc(τ1)
cp(τ2)

Figure 3.12.: Example for relating indexes of clocks of di�erent matrices.

the index 1, the period clock of τ2 has the index 2. When considering resources, further
clocks as described in previous sections are available. Thus, the matrix is extended by
such clocks as illustrated in the center of the Figure 3.12. In the right-most �gure the
reordering is illustrated.
Note that the usage of this function is restricted to matrices containing the same

clocks, which is �ne for our purposes. A matrix will be adapted to the clock set of
another matrix by the application of the zone projection operations of Subsection 3.4.1,
before both matrices are set into relation.

Next, the algorithm which computes the STS of a resource and all necessary operations
such as the computation of successors of a resource state is presented.

3.5.1. Main Analysis Algorithm

The general idea to compute the STS of a resource is to extend its input STS by the
behaviors of the tasks which are allocated on this resource, and the considered scheduling
policy.
In Listing 3.1 the main algorithm for the computation of the STS of a resource r =

(M, T , Sch,R,A) for a given input STS STSin is illustrated. The algorithm starts by
creating the initial symbolic state s0 = 〈l0, C0〉 of the resource STS. This state is added
to a queue Ψ, which determines the states, for which successors have to be computed.
Thus, the algorithm works in a breadth-�rst manner, where �rst all successors of a state
are computed before the next state is considered. Whenever the successors of a state are
computed, this state is removed from the queue. The exit condition of the algorithm is
reached, when no states are left in the queue Ψ.

Listing 3.1: Main code computeResourceSTS(STSin = (Sin, S
0
in, Cin,Σin,→in)).

1 queue Ψ := {〈l0, 0C〉}

82

3.5. Analysis Algorithm

2 ξ := { (〈l0, 0C〉, S0
in) }

3 while (Ψ . s i z e > 0)
4 〈l,D〉 := Ψ . dequeue () , 〈lin, Din〉 := ξ(〈l,D〉)
5 f o ra l l (edgein := 〈lin, Din〉

λ−→ins with s ∈ Sin)
6 set Ψ′ := computeSuccessor (〈l,D〉, edgein, ξ)
7 f o ra l l (s ∈ Ψ′) Ψ.enqueue(s)
8 i f (checkTimings (Ψ′) f a i l s) exit

9 i f (ex istsDependentResource ()) mergeBisimStates ()

In Line 2 the initial state S0
in of the input transition system is set as the corresponding

input state of 〈l0, 0C〉.
The possible successors of a state 〈l,D〉 are mainly determined by the successors of

the corresponding state of the input STS. This input state is determined by the map
ξ in Line 4. The set of outgoing transitions of the determined input state de�nes time
successors and the set of tasks, which can be released.
Each state which is generated is added to the queue Ψ. For all newly generated states

Ψ′ it is determined whether a timing constraint dt ∈ N≥0 of a task t is violated as follows.

∀〈l,D〉 ∈ Ψ′, t ∈ A〈l,D〉 ∪R〈l,D〉 : Dr(t),0 ≤ dt. (3.18)

An analogous check is performed for end-to-end latency constraints, i.e. all clocks mea-
suring end-to-end latencies are checked against the corresponding constraint values. If
Equation 3.18 or any end-to-end latency constraint is violated, or no state is left in Ψ,
the algorithm terminates. Note that for the sake of readability, tasks are used as indexes
of matrices: For a task τ the notation Dp(τ) is used to refer to cp(τ), i.e. to the clock
tracing the periodical activation the task. With Dp(τ),0, D0,p(τ) it is referred to its upper
and lower bound respectively. Analogously, Dc(τ) refers to the computation time clock
of τ. For a task instance t with Dr(t) it is referred to cr(t), i.e. the clock measuring the
accumulated response time.
After the computation of the resource STS, the state space is minimized by the ap-

plication of an extended version of the bisimulation relation of De�nition 17 in Line 9.
The minimization is only performed if there are resources which depend on the output
behavior of the current resource to omit unnecessary computations. The relation used for
minimization is detailed in Subsection 3.5.5. Note that this step can only be performed
after the computation of the complete STS, as all outgoing transitions of all states have
to be known in order to determine the equivalence of two states.
Next, the successor computation function is introduced.

3.5.2. Successor Computation

Observing the STS transition relation of De�nition 6 reveals that the successor com-
putation consists of two steps, i.e. the computation of the reachable time successor

83

3. State-based Timing Analysis

determined by the invariants of the discrete locations, and the discrete step where tasks
are triggered. The computation of the reachable time successor a�ects the upper bounds
of a zone, while the discrete step a�ects the lower bounds.
When considering resources, two sources of timing invariants are given: The �rst type

of invariants stems from the periodical activations of tasks. Whenever the period clock
of a task reaches its period value, an instance of the task has to be released. The second
type of invariant stems from the accumulated response time of the running task. The
time a running task instance is able to �nish its computation as enough computation
time has been allocated to it, this task shall not continue its computation in a successor
state but shall terminate.
In the following, the algorithms computing the time successor and computing the

e�ect of taking a discrete step are illustrated. Note that for an interval i the functions
i.lb(), i.ub() are used to access the lower and upper bound of i.

Time Successor

The computation of a time successor of a resource state s := 〈l,D〉 is illustrated in Listing
3.2. According to De�nition 6 to compute the time successor �rst the upper time bounds
of the current zone are removed in Line 1 by computing D↑. As the simpli�ed version of
STSs is applied, before the upper bounds are removed, clocks according to Formula 3.4
are reset. This is realized by equipping each state s by a set %̌, where all clocks to be
reset are added. These clocks are added the time, when s is computed as a successor as
detailed later in the takeDiscreteStep method. The set %̌ is accessed by the dot notation
(s.%̌).
In Line 2 the resulting zone of this operation is intersected by invariants de�ned by

the input state. The zone Din denotes the zone of the successor state of ξ(〈l,D〉), and
C,Cin denote the set of clocks of the resource STS and the input STS respectively. The
upper bound timing constraints of the input STS are needed in order to prevent missing
any task activations, as the input de�nes the release times of all allocated tasks, or tasks,
from which dependencies exist. For the set of all clocks which are de�ned in both the
input STS and the resource STS the upper bounds are set to the ones de�ned in the
input state. If a clock c has the value zero and is reset on the input edge, then this reset
is also performed for the resource successor.

Listing 3.2: Listing for method D′ := invIntersection(s := 〈l,D〉, Din).

1 D′ := (D[s.%̌→ 0])↑

2 f o ra l l (c ∈ Cin ∩ C) D̃′c,0 := D̃in
c,0

3 i f (As.size > 0)
4 task t := As . f i r s t
5 D′c(t),0 := wcetτ(t) +As(t).ub()
6 D′[%unused → 0]

84

3.5. Analysis Algorithm

If there is a running task instance t in the current resource state s, a further invariant
is given for the successor to prevent missing the �nish of computation of t. Thus, in
Line 3 it is checked whether there is a running task by determining the size of the active
task map As. As the map is sorted, the �rst entry determines the running task instance
t. The worst-case response time is determined in Line 5 by computing the sum of the
worst-case execution time of the corresponding task type and the interrupt time, which
is determined by the corresponding entry in the active task map, i.e. As(t). The result
serves as an upper bound constraint for the computation time clock of t.
In Line 6 all clocks are reset, which are currently not in use, e.g. clocks measuring the

allocated computation times of inactive tasks.

Discrete Step

In Listing 3.3 the procedure of the discrete step is illustrated. In contrast to the invariant
intersection method where time passes up to the allowed time bounds, the discrete step
de�nes the occurrence of some events in the alphabet of the considered resource, or
more speci�c the release or the termination of task instances. As it was detailed earlier,
some tasks may be included in the alphabet of a resource, but are not allocated to this
resource. This is for example the case to appropriately handle task dependencies and
avoid approximations by abstracting the clocks of these tasks. Thus, it is necessary to
distinguish whether such tasks are allocated to the considered resource or not in order
to adequately handle the resource task lists. For this, the already introduced function
T : T→ B is used. Note that if the input edge de�nes a time successor the default event
will be given, i.e. τ = ∆. For this, we set T (∆) := false.

Listing 3.3: Method 〈l′, D′〉 := takeDiscreteStep(〈l,D〉, 〈l′in, D′in〉,
taskType τ, task t, bool isTerm).

1 i f (T (τ) ∧ isTerm)
2 f o ra l l (task t′ ∈ A〈l,D〉 with τ(t′) 6= τ)
3 A〈l′,D′〉(t′) := A〈l,D〉(t′) + [bcetτ , wcetτ]

4 D′0,c(t) := bcetτ +A〈l,D〉(t).lb()
5 Sch(A〈l′,D′〉 := A〈l,D〉\{t}, R〈l′,D′〉)
6 i f (not t imingRelevant (τ)) B〈l′,D′〉(τ) . decrement

7 〈l′, D′〉. f reeE2EIndexes (τ)
8 else

9 D′ := D̃ ∩ ζ((D′in)|−1
C
)

10 i f (τ 6= ∆ ∧ T (τ)) l′τ := (l′in)τ
11 i f (τ 6= ∆) instantiateNewTasks (τ, t, 〈l′, D′〉, 〈l′in, D′in〉, isTerm)
12 setClocksToBeReset (〈l′, D′〉.%̌)

85

3. State-based Timing Analysis

If the statement in Line 1 evaluates to true, i.e. the task t is allocated to the resource
and shall terminate its execution in the successor state, the following is performed: First,
the execution time of t is accumulated to all interrupted tasks by incrementing their in-
terrupt times in the active task map A〈l,D〉 (Line 2 − 3). This is analogous to classical
scheduling analysis methods, where response times are computed by a �xed point equa-
tion propagating the interruptions of a task. Note that the interrupt times of only those
tasks are incremented, which have been fully interrupted by t. All tasks, which were in-
stantiated after the start of t are kept in the ready task list R〈l,D〉. For instance, consider
the following scenario in the system of Figure 3.4: Let t13 be the running task instance in a
state si, which gets interrupted in the successor state si+1 by a new instance t4. Then, by
entering the next successor si+2 a further task instance t23 gets instantiated. The active
task map Asi+2 thus includes both tasks A = {t4 7→ [0, 0], t13 7→ [0, 0]}, while the ready
task list has a single entry, i.e. Rss+2 = {t23}. In state si+3 task t4 terminates and the
resulting interrupt time for task t13 is put in the active task map: Asi+3 = {t13 7→ [12, 12]}.
As t shall �nish its computation, the zone of the successor gets the new constraint

c(t) ≥ bcetτ + A〈l,D〉(t).lb() on Line 4, which corresponds to the minimal amount of
computation time needed to terminate the task. This minimal time is the sum of the
best-case execution time and the minimal interrupt times in the current state. Note that
here only the lower bounds of the clocks have to be handled, as the upper bounds are
already handled by the invariant intersection operation.
In Line 5 the task t is removed from the active task map, and the next running task

is determined by the usage of the scheduling policy. When performing A〈l,D〉\{t} also
the index of the task is released, if a response time clock was used for t. If not, the
corresponding variable value in Line 6 is decremented. In Line 7 the indexes for the end-
to-end latency clocks are handled, i.e., if t is the tail task of the latency constraint (the
end point where the end-to-end latency is measured) the corresponding index is freed.
If the statement in Line 1 evaluates to false, the successor of the corresponding input

state de�nes either a start of a task or the termination of a task not allocated to the
current resource. If the task on the current edge of the input STS is not relevant for the
resource, also input edges with the ∆-event are needed to be handled by the algorithm.
This event occurs, when previous abstractions of the input STS were performed. Such
edges do not instantiate tasks but de�ne timing constraints on the successors of the
current state. In all cases, the input successor de�nes constraints for clocks Cin ∩ C
which have also to be taken into account for the resource successor, as it is performed
in Line 9 by taking the intersection of D and D′in. If further the input de�nes the start
of a task allocated to the resource, the position of the corresponding location vector is
switched in Line 10.
By starting or terminating tasks, these have also to be instantiated and the resource

task lists have to be managed. This is realized by the method instantiateNewTasks, which
is illustrated in the next paragraph.
In Line 12 all clocks which need to be reset in the successor state 〈l′, D′〉 are collected

86

3.5. Analysis Algorithm

by adding the corresponding clocks to a set. As stated before, each state s is equipped
by a set %̌ to which the following clocks are added in Line 12 :

• cp(τ), if an independent task of type τ is instantiated,

• cr(t), if a task t is instantiated and its timing is relevant, or t is terminating,

• cc(τ) if a task t of type τ

� is instantiated,

� terminates,

� or was in the ready list R and gets running in the successor state.

Further, if a task is instantiated, on which occurrence an end-to-end latency constraint
starts, and the corresponding tail task is allocated on the resource, the corresponding
clock measuring the latency is added to the set 〈l′, D′〉.%̌. Also, when such a tail task
allocated on the resource �nishes its computation, the corresponding clock is added to
this set.
Please also refer to Subsection 3.3.2 where this topic of clock resets is detailed and

exempli�ed through a set of scenarios.

Instantiate Tasks

Tasks can either be instantiated by the triggering of an event stream, or the termination
of a task they depend on. In the Lines 1−2 of Listing 3.4 this case distinction is performed
and the set of tasks S which shall be instantiated is determined. If the task τin is not a
terminating one, then only τin is added to S. In the other case, if the considered task is
a terminating one, the set of triggered tasks is determined in Line 2.

Listing 3.4: Listing instantiateNewTasks(taskType τin, task tin,
state s′, state s′in, bool isTerm) .

1 i f (¬isTerm) S := {τin}
2 else S := τin. t r i gge r edTasks
3 f o ra l l (taskType τ ∈ S)
4 i f (T (τ))
5 i f (act (τ) = sync)
6 s′.Msync(τ).push(τin)
7 i sAc t i v e := checkAct ivat ion (s′.Msync, τ)
8 else

9 i sAc t i v e := true
10 i f (i sAc t i v e)
11 s′.requestE2EClock (τ)

87

3. State-based Timing Analysis

12 i f (t imingRelevant (τ)) s′.getFreeIndex (τ)
13 else Bs′(τ) . increment

14 Sch(As′ , Rs′ . add (t := c r e a t e In s t an c e (τ)))
15 i f (τin 6= τ ∧ act (τ) = async) Masync(t) := {τin} ∪Masync(tin)
16 else i f (τ ∈ Rs′in ∪ As′in) s′.requestE2EClock (τ)

All triggered tasks are then iterated: In Line 4 it is checked if the considered triggered
task is allocated on the resource. If the triggered task τ depends on other tasks and
has a synchronous activation condition, it is checked whether the triggered task can be
activated (Line 5). In Line 6 the trigger τin is added to the setMsync(τ) of the successor
state s′. Then, it is checked whether in this set there is already an entry of all tasks,
from which τ depends on by using the method checkActivation. This method is not
further described as it involves only technical issues. If the method returns true, τ is
considered to be activated. In case of an independent task or a task with an asynchronous
activation condition such a check has not to be performed. The task is considered to be
active directly (Line 9).

If it is determined that the task is ready to be activated (Line 10), it is checked
whether an end-to-end latency clock index is needed in Line 11 by calling the method
requestE2EClock. This method returns an index, if i. there is an end-to-end latency
constraint starting from the triggered task τ, and ii. if the tail task is allocated on the
current resource. The corresponding clock with the returned index is used to trace the
end-to-end latency starting in the successor state s′.

If the response time of τ is relevant a clock index is requested in Line 12 which traces
the response time of the instantiated task starting in the successor state. If not, the
corresponding value in the map Bs′ of the successor state is incremented. In Line 14 a
new instance of τ is created and added to the ready task list Rs′ . The scheduling policy
is then applied to determine the next running task. Note that if a task instance t is
moved from the ready map to the active map, i.e. a previously released task which did
not get computation time so far, its computation time clock cc(t) is added to the reset
set %̌ of the successor in method takeDiscreteStep as illustrated before.

If τ is not independent and activated by an event stream as indicated in Line 15
by the condition τin 6= τ , and the activation condition of τ is asynchronous, then the
functionMasync(t) is extended by the triggering task τin and all tasks, which activated
the triggering task instance tin. As already stated this is needed to correctly evaluate
end-to-end latencies.

If the triggered task τ is not allocated on the resource, it is determined whether the
trigger leads to a task instance activation in the target input state s′in in Line 16. If an
instance is activated in s′in, it is checked whether an end-to-end latency clock is needed
analogously to the case in Line 11, and if so, an index is requested.

88

3.5. Analysis Algorithm

Successor Computation

The previously introduced methods to compute the time successor and the discrete step
are called from the surrounding method computeSuccessor illustrated in Listing 3.5,
which computes a successor of a resource state s = 〈l,D〉 with respect to its corresponding
input state sin and an outgoing edge of sin.

Listing 3.5: Method Ψ := computeSuccessor(s := 〈l,D〉, sin
λ−→in〈l′in, D′in〉, ξ).

1 D′ := invIntersection (〈l,D〉, D′in)
2 i f (As . s i z e = 0 ∧ D̃′ ∩ ζ((D′in)|−1

C
) 6= ∅)

3 bool isTerm := Asin .first.isTerm(〈l′in, D′in〉)
4 s2 := takeDiscreteStep (〈l,D′〉, 〈l′in, D′in〉 , λ , Asin .first , isTerm)
5 s.addSuccessor (λ, s2, ξ)
6 else i f (As . s i z e > 0)
7 task t := As.first
8 [bcrtt, wcrtt] := [bcetτ(t), wcetτ(t)] +As(t)
9 handlePossibleCases ([bcrtt, wcrtt] , λ , 〈l,D′〉 , 〈l′in, D′in〉)

First, the reachable time successor is determined for state s with respect to the consid-
ered successor of the corresponding input state sin by calling invIntersection of Listing
3.2. This operation leads to the zone D′.
In Line 2 it is determined whether there exists a running task in the current state s

by checking the size of the active task map, and whether the discrete step de�ned in the
input successor leads to a valid zone by taking the intersection of D′ and D′in. If this
intersection leads to an empty set, there exists no clock valuation which can ful�ll all
clock constraints de�ned in this resulting zone.
Thus, if the input successor cannot be �red and � taking the else-part of Line 6 into

account � there is no running task, this input edge is skipped and the next input edge
is considered in Listing 3.1. Otherwise, if the condition in Line 2 evaluates to true, the
successor resource state s2 is built by calling the method takeDiscreteStep of Listing 3.3.
Note that in Line 2 actually the projection operation D′in|C′ with C

′ = Cin ∩ C has to
be performed in general, but as the input is abstracted in such a manner that it only
preserves all relevant clocks, this operation can be omitted here.
In Line 3 the running task instance in the input state is determined by looking up the

�rst entry of the active task map. Then it is checked whether this task is terminating
in the target state, or de�nes a task start on the input edge. To determine whether the
event t on an input edge de�nes the termination of a task instance or the triggering of an
independent task the method t.isTerm(s) is called, which returns true if t terminates in
the (target) state s, and false if the edge de�nes a task instantiation of an independent
task. Note thatAsin .firstmay be NULL in the case that there is no running task instance
in the input state. This is the case if the input de�nes an event stream behavior. The
variable is set to false in this case.

89

3. State-based Timing Analysis

If the computed successor does not exist yet, it is added to the graph by building
an edge from the current state to the computed successor, and ξ(〈l′, D′〉) = 〈l′i, D′i〉 is
set. Further, the created successor is added to the state set Ψ′ (not shown in the code),
indicating that the successors of this state have to be computed.
If the condition in Line 2 evaluates to false, but there is a running task (Line 6) in the

current resource state, it has to be determined whether this task can terminate before
the discrete step from the input graph is taken. For this, �rst the response time in
Line 8 is computed by taking the sum of its execution time and its interrupt time. The
handlePossibleCases method then determines the possible successors.

Handle Possible Cases

The termination of a running task is determined in the code fragment of Listing 3.5 by
calling the handlePossibleCases method, which operates as follows:

1. If the running task t of type τ cannot terminate, i.e. D′c(τ),0 < bcrtτ , the intersection
between the zone of the state s := 〈l,D′〉 and the zone of the input state 〈l′in, D′in〉
is computed, and a new task instance is released, if the input edge de�nes a task
start. For this, s2 := takeDiscreteStep(〈l,D′〉, 〈l′in, D′in〉, λ,Asin .first, isTerm) is
called, where isTerm := Asin .first.isTerm(〈l′in, D′in〉). Two cases can occur here:

a) If this intersection is equal to the empty set, then the discrete step cannot be
taken. The intersection would result in an invalid zone, where there exists no
clock valuations which ful�ll all clock constraints.

Thus, the considered input edge cannot be �red in the current resource state
and is skipped. This means that the running task has �rst to �nish its com-
putation before the input edge can be taken. The program �ow is returned to
the main algorithm then, where the next input edge is considered.

b) Otherwise, if the intersection is not empty, a new instance is released if the in-
put edge de�nes a task start in the current resource, i.e. if λ 6= ∆ and λ triggers
an independent task allocated to the resource, or the input edge de�nes a ter-
minating task triggering another task allocated to the resource. To release new
tasks, the method instantiateNewTasks(λ,Asin .first, 〈l,D′〉, s′in, isTerm) is
called. At least the new edge is added by calling s.addSuccessor(λ, s2, ξ),
where ξ is extended by ξ ∪ {(s2, 〈l′in, D′in〉)}.

2. If a running task instance t has to terminate as D0,c(t) = wcrtt holds, then
s2 :=takeDiscreteStep(〈l,D′〉,−, τ(t), t, true) is called. Note that the target in-
put state is not relevant in this case, as the input successor will de�ne the potential
successors of s2. Again, the new edge is added by calling s.addSuccessor(τ(t), s2,
ξ), where ξ is extended by ξ ∪ {(s2, sin)}. At least, the recursion computeSucces-

90

3.5. Analysis Algorithm

sor(s2, sin
λ−→in〈l′in, D′in〉, ξ) is performed. Thus, the successor of the input is tried

to be �red at the computed successor s2.

If D′c(τ),0 ≥ bcrtτ ∧D′0,c(τ) ≤ wcrtτ holds then both orderings are possible, i.e. the task
instance may terminate before the input is �red, or vice versa �rst the input is considered
and the task instance terminates in the next successor. To realize this, both 1. and 2.
are executed in this order.

3.5.3. Completeness and Soundness of Algorithm

In this section it is shown that the scheduling analysis algorithm introduced in the pre-
vious subsections is correct with respect to determined timing violations. Correctness
refers to the general terms of algorithmic correctness, i.e. that the algorithm is sound
and complete.

Theorem 3. The timing analysis algorithm is sound and complete. If a timing violation
is determined, it is a valid one (soundness), and if there exists a timing violation, the
algorithm will �nd a path to a state where timing requirements are violated (completeness).

The input of a resource on which only independent tasks are allocated is correct by the
Theorem 2. The activations of these are represented by timed automata, which result in
non-complex STSs as illustrated in Figure 3.9. As the single STSs are trivially correct,
only the product of these has to be computed. So, the more general case where resources
contain dependent tasks is considered in the following proof.

Proof. (Soundness) Assume that the algorithm terminates and returns a wrong answer,
i.e. it determines that a task t violates its timing constraint d, but in real it does not.
Thus, the algorithm has found a trace pre�x σ = σ1, ..., σn (n > 1) with a corresponding
state sequence s = s0, ..., sn leading to a state sn = 〈l,D〉, where it holds thatDr(t),0 > dt,
(compare Equation 3.18).
Assume that t is a task getting instantiated in state si, i ∈ [1, ..., n− 2]. The theorem

is proofed by performing the following case distinction on the status of the instantiated
task.
Case 1 : Consider �rst the case that task t does not get interrupted by any task after

instantiation in state si. When the task is instantiated, both clocks cc(t), cr(t) are reset,
and not reset in the successors up to state sn. As all clocks progress with the same rate,
both clocks have always the same valuation in all successor states of si.When computing
the zones of all states si, ..., sn, always the intersection with the upper bound constraint
wcetr(t) +Asj .ub where i ≤ j ≤ n is performed in method invIntersection (Line 5). As t
is never interrupted, Asj .ub equals always to zero. Thus, if Dr(t),0 > dt holds in state sn
it must also hold that wcetr(t) > dt, thus the counter example is valid.
Case 2 : Assume again that the task t gets the status of running after instantiation.

As in the �rst case both clocks cc(t), cr(t) are reset, and not reset in the successors up to

91

3. State-based Timing Analysis

state sn. Further, assume that in the following transitions a set of higher priority tasks
hp(t)1, ..., hp(t)m with m ≥ 1 are instantiated, thus interrupting the execution of t. Let
the priorities of the hp−tasks be determined by their index. Let sj with j > i be the
�rst successor where t is interrupted by hp(t)m.
Assume that there is a sequence of hp-task activations with increasing priority, i.e.

si
hp(t)m−−−−→si+1

hp(t)m−1−−−−−−→ . . .
hp(t)1−−−−→si+m, in such a way that no task terminates before the

next one is activated. This is the case if the activation time is less than the bcet of
the current running task. Thus, when computing the successor of state sk with k ∈
[i + 1, ..., i + m − 1] �rst the reachable time successor in invIntersection is determined.
Then in method handlePossibleCases it must hold that cc(hp(t)j) < bcrtτ(hp(t)j) for
1 ≤ j ≤ m to create the above state sequence. Note that bcrt corresponds to the
bcet here, as the hp-tasks were not preempted before the next higher priority task is
instantiated. From state si+1 up to state si+m at most ts = Σm

j=1 bcetτ(hp(t)j) − ε, ε→ 0
time units pass.
Case 2a: As each clock is incremented with the same rate, cr(t) is also incremented

with exactly this amount of time (ts). Thus, if the timing constraint violation occurs in
state si+m, it must be correct.
Case 2b: Assume the timing constraint violation does not occur after the activation

of hp(t)1. Then, each time an hp-task hp(t)j terminates in state s, in Line 3 of method
takeDiscreteStep the interrupt time of each interrupted task in the As is incremented by
the execution time of the terminating task hp(t)j . Thus, when all hp-tasks terminate,
and the timing constraint of t is not violated so far, t gets running again in the reached
state sx with i+m < x < n. When the successor of sx is computed the upper bound of
the computation time clock of t is determined in invIntersection (Line 5) by the sum of
the wcet of the task and the upper bound of the accumulated response times determined
in Asx . If the upper bound clock valuation violates the timing constraint, it is a valid
violation as all interrupts were accumulated appropriately.
Case 3 : Assume there are already higher priority tasks hp(t)1, ..., hp(t)m in the active

task map Asi when t is instantiated. Further, assume that the running task has already
run [lb1, ub1] time units. First, the task t is added to the ready list Rsi+1 . Both clocks
cc(t), cr(t) are reset, but in contrast to the previous cases only cr(t) is not reset in the
successors up to state sn. The computation time clock cc(t) is reset up to the state,
where t gets the status running. Thus, whenever a successor is computed, (among other
clocks) the clock cr(t) keeps progressing and tracing the time since t was instantiated.
As already illustrated above, this progress takes place in the invIntersection method at
Line 2 and 5, and in method takeDiscreteStep in Line 4 if an hp-task is terminating,
or in Line 9 if a time successor is taken or a new task is released. The time, t gets
running, it is determined by the clock cc(t) whether its computation can be �nished
or not. The clock cr(t) traces the time since task instantiation, i.e. has progressed as
follows: cr(t) := Σm

j=2([bcetτ(hp(t)j), wcetτ(hp(t)j)]) +[bcetτ(hp(t)1), wcetτ(hp(t)1)]−[lb1, ub1].
Thus, again if the timing constraint is violated, this violation is valid.

92

3.5. Analysis Algorithm

Proof. (Completeness) Assume that there exists a state of the system under analysis, for
which the timing requirements of a task t is violated, but not found by the algorithm.
Let ϕ0, · · ·ϕn be a task activation sequence leading to a schedule where an activated
task instance t misses its timing constraint. It has to be shown that no matter what
this activation sequence concretely looks like, the algorithm detects a timing constraint
violation caused by such a trace.
A similar case distinction as above is performed.
Case 1 : Assume that t is activated, set to running and not interrupted in the subse-

quent schedule. In such a case a timing constraint violation can only occur if wcetτ(t) >
dt. As long as t does not �nish its computation it must hold that cc(t) < wcetτ(t)

as constrained in the handlePossibleCases method. By determining the reached time
successor for each state where t is running, the constraint cc(t) ≤ wcrtτ(t) is added in
Line 5 of method invIntersection. As t is never interrupted in this case, it holds that
wcrtτ(t) = wcetτ(t). Thus, wcet of t is never exceeded but is reached when t �nishes its
computation. Therefore, if wcetτ(t) > dt holds, it will be �nally determined by the main
algorithm.
Case 2 : The second cause of a timing constraint may be that t is interrupted before it

terminates. Let t get the status running after its instantiation. The time t is instantiated,
its clocks cr(t) and cc(t) are reset and not reset again until t �nishes its computation.
An input of a higher priority task may interrupt t in a successor state, if t has not
�nished its computation up to this point, i.e. if cc(t) < wcetτ(t) holds (cf. method
handlePossibleCases). Both clocks of the task cr(t) and cc(t) continue to progress, even
if t is interrupted. Whenever a higher priority task terminates in a state sx, its interrupt
time for t is traced in the active task map Asx . With this, the clock cc(t) has to progress
to the value of the sum of its worst-case execution time and the sum of the interrupt
times to be able to �nish its computations (cf. handlePossibleCases method). As the
clock cr(t) progresses equally with cc(t), timing constraint violations caused by interrupts
will be determined by the algorithm in the main method.
Case 3 : The third case of a timing constraint violation of a task may occur when the

task t is inserted to the ready list. The only major di�erence to the second case is that
the clock cc(t) is reset when the task gets running, while cr(t) starts to progress the time
as soon as the task is instantiated. Thus, the task t �nishes its computation, whenever
the valuation for cc(t) is within the interval [bcet, wcet] (if it is not interrupted after it
gets the status running). As cr(t) traces the time from instantiation of t, all interrupt
times are included in the valuation of this clock. Similar to the proof of the soundness,
cr(t) valuates to the following: cr(t) := Σm

j=1([bcetτ(hp(t)j), wcetτ(hp(t)j)]) − [lb1, ub1],
where hp(t)2, ..., hp(t)m do fully interrupt t, and t is instantiated during the execution of
hp(t)1. Again, possible timing constraint violations are detected by the main algorithm.

93

3. State-based Timing Analysis

3.5.4. Termination of Algorithm

Next, it is shown that if the algorithm computing a resource STS always terminates if it
is called for �nite input STSs. For this, it is shown that only a �nite number of states
are generated, and that the recursion handlePossibleCases is called �nitely.

Proof. The recursion is entered, when a task t0 �nishes its computation. Hereby, a
transition s

end(t0)−−−−→ s′ is created. If As′ .size = 0, the if part of Listing 3.5 is entered, the
successor according to the input state is computed, and the algorithm terminates after
instantiating such tasks, which are triggered and for which the activation condition is
met according to the algorithm in Listing 3.4.
Else, there exists at least one task t ∈ As′ , which could also terminate its computation

and trigger another task allocated to the resource. If the execution time of a task would
be equal to zero, the algorithm would in�nitely continue to terminate and start new
task instances through the de�ned recursion. Thus, it has to be shown that time always
increases when terminating tasks, as �nally the discrete step de�ned by the edge of the
input state has to be taken before the running task can terminate. This is directly given
under the assumption that the execution times of tasks are always greater than zero.
The response times of preempted tasks are always increased when the running task t0
terminates: ∀t ∈ As, τ(t) 6= τ(t0) : As′(t) = As(t) + [bcetτ(t0), wcetτ(t0)] (see Line 3 in
Listing 3.3). When such a preempted task gets active in the next recursion steps, this
increased response time is used to compute the next discrete successor. With this the
proof can be concluded: ∀t ∈ As ∩ As′ , τ(t) 6= τ(t0) : As(t) < As′(t).

Next, it is proofed that the algorithm computes only a �nite set of symbolic states, i.e.
always terminates.

Proof. As there are only a �nite set of discrete locations, the single possible source of
in�niteness are the clock valuations. An in�nite symbolic state set would be given, if
clocks without a ceiling would be considered. Thus, we have to show that all clocks
are bounded. When computing the time successor, always the invariant intersection
function is called: Under the assumption that all clocks of the input STS have a ceiling,
it holds that there is always a ceiling for all clocks tracing the periodical activation, i.e.
cp(τ) ≤ pτ . Also the clock cc(t) for the running task instance t is constrained in Line 5
of Listing 3.2 by the sum of the worst-case computation time and the upper bound of
the corresponding interrupt time. For all other tasks t in the active task map and the
ready list the corresponding clocks cc(t) are not constrained. Nevertheless, whenever the
algorithm of Listing 3.5 is �nished, the corresponding response time clocks are checked
against the deadlines, i.e. whether cr(t) ≤ dt, thus are also always bounded. If for a
task t there is no response time clock, there is an instance counter variable B(t). If this
counter exceeds the speci�ed value, an instantiated task will not be able to �nish its

94

3.5. Analysis Algorithm

computation in the allowed time frame. Note that this holds under the assumption, that
the value for B(t) is chosen appropriately and not too restrictive.

3.5.5. Minimization through Untimed Bisimulation, Timed Simulation
Relation

To minimize computed STSs a new relation is introduced in this subsection, which is a
combination of a bisimulation and a simulation relation. With this relation the number
of states of a computed resource STS can be reduced without loosing any accuracy with
respect to the timing behaviors of the tasks.
The idea is to merge paths which have on the one hand equivalent discrete behaviors,

i.e. paths on which the same sequences of events are produced. In the context of schedul-
ing this corresponds to merging of paths which have the same ordering of task activations
and terminations. On the other hand paths which shall be merged must have a related
timing behavior: If all clock zones of a path p1 are a subset or equal to the clock zones
of a path p2, and p2 has an equivalent discrete behavior as p1, then p1 is obsolete. All
possible timing behaviors of p1 are already covered by p2. Thus, the behavior represented
by path p1 is a subset of the one of p2. Note that this relation is de�ned in such a man-
ner that paths with equivalent timings are also merged. This relation is called untimed
bisimulation, timed simulation (UBTS) and is de�ned as follows.

De�nition 18 (UBTS relation). Let two symbolic transition systems STS1 = (S1, S
0
1 ,

C,Σ,→1) and STS2 = (S2, S
0
2 , C,Σ,→2) over the same clock set C and alphabet Σ be

given. A relation rubts ⊆ S1 × S2 is an untimed bisimulation, timed simulation relation
between STS1 and STS2, if for all (〈l2, D2〉, 〈l1, D1〉) ∈ rubts the following holds:

1. D2 ⊆ D1.

2. 〈l1, D1〉 is visited in�nitely if and only if 〈l2, D2〉 is visited in�nitely.

3. For all s ∈ S1 with 〈l1, D1〉
λ−→1s there exists a t ∈ S2 such that 〈l2, D2〉

λ−→2t and
(s, t) ∈ rubts.

4. For all t ∈ S2 with 〈l2, D2〉
λ−→2t there exists a s ∈ S1 such that 〈l1, D1〉

λ−→1s and
(s, t) ∈ rubts.

For (s2, s1) ∈ rubts we also write s2 2 s1.

Let rubts ⊆ S × S be an untimed bisimulation, timed simulation relation between the
state set of a single transition system STS. This relation is a preorder (re�exive and
transitive), i.e. if (s1, s2), (s2, s3) ∈ rubts then (s1, s3) ∈ rubts, but not symmetric because
of the �rst condition of De�nition 18. When successive states are in such a relation (i.e.
di�erent paths of an STS) these can be merged. The reduced STS satis�es the same
timing constraints as the original one. Unnecessary computations of redundant states

95

3. State-based Timing Analysis

e.g. when computing the state spaces of dependent resources can be omitted. This
reduces the overall analysis time. To prove this, we need �rst to de�ne the term maximal
element as follows.

De�nition 19 (Maximal Element). Let rubts ⊆ S×S be an untimed bisimulation, timed
simulation relation between the state set of a transition system STS = (S, S0, C,Σ,→).
An element s ∈ S is called maximal, if there is no s′ ∈ S with s′ 6= s such that s 2 s′.

The relation may further induce equivalence classes of states de�ned as follows.

De�nition 20 (Equivalence Class). Let rubts ⊆ S×S be an untimed bisimulation, timed
simulation relation between the state set of a transition system STS = (S, S0, C,Σ,→).
Two states s, s′ ∈ S with s 6= s′ are equivalent, if s 2 s′ and s′ 2 s. The set of
all equivalence classes induced by rubts is denoted by χubts. A representative of a class
c ∈ χubts is given by [c].

Lemma 7. Let S be the state set of an STS = (S, S0, C,Σ,→), rubts ⊆ S × S be an
untimed bisimulation, timed simulation relation, and ϕ a timing constraint. If s ∈ S is
maximal with respect to rubts, and s |= ϕ, then for all s′ ∈ S with s′ 2 s it holds s′ |= ϕ.

Lemma 8. Let S be the state set of an STS = (S, S0, C,Σ,→), rubts ⊆ S × S be
an untimed bisimulation, timed simulation relation, and ϕ a timing constraint. For all
c ∈ χubts it holds that if [c] |= ϕ then for all s ∈ c it holds that s |= ϕ.

Both lemmas do hold, as the relation is transitive. With both lemmas it is allowed to
correctly reduce the state space of the original STS, where only the maximal states and
the representatives of every equivalence class are left. The complexity of determining the
simulation equivalent states is n(n − 1), where n is the number of states, as each state
has to be compared with all other states to determine the related states.
Note that this minimization does not necessarily lead to smaller state spaces of depen-

dent resources, as no information is abstracted. Nevertheless, the computation time of
the STSs of dependent resources is reduced, as less input states have to be considered,
for which resource states have to be computed. Thus, with this technique the multiple
computations of the same resource states can be omitted.
The e�ect of this minimization technique is illustrated by applying it to the architecture

which is illustrated in Figure 3.4. The minimization is applied to the input STS of
ECU2. Multiple scenarios are considered by varying the period pτ4 of task τ4. The result
is illustrated in the left part of Figure 3.13. For instance, in the scenario where the
period of τ4 is 85 time units, the size is reduced from 10982 to 5991 states, which is a
signi�cant saving. The resulting overall computation times for each scenario is illustrated
in the right part of the �gure. The overall analysis time is positively a�ected, as less
input states have to be considered for the dependent resource: While approximately 41
seconds were needed in the original case to analyze the architecture with pτ4 = 85, this
time could be decreased to approximately 34 seconds.

96

3.6. Abstraction Techniques

60 70 80 90 100 110

0.2

0.4

0.6

0.8

1

1.2

·104

Period of τ4

N
u
m
be
r
of

st
a
te
s

(a) Input state space size ECU 2.

60 70 80 90 100 110

10

20

30

40

50

Period of τ4

E
x
ec
.
ti
m
es

(b) Overall computation times.

Figure 3.13.: Left: Resulting state spaces of architecture in Figure 3.4; Right: Over-
all computation times � Blue curves: Without UBTS minimization; Red
curves: With UBTS minimization.

Over-approximation ∀-properties M ′ |= ϕ ⇒ M |= ϕ
M 4M ′ ∃-properties M ′ 6|= ϕ ⇒ M 6|= ϕ

Under-approximation ∃-properties M ′ |= ϕ ⇒ M |= ϕ
M ′ 4M ∀-properties M ′ 6|= ϕ ⇒ M 6|= ϕ

Table 3.1.: Preservation of universal and existential properties considering
approximations.

These computation times have been determined by executing the scenario at least �ve
times and taking the average computation time. All tests were performed on the same
machine (standard laptop with 2GHz and 6GB main memory).

3.6. Abstraction Techniques

In the context of scheduling analysis speci�c abstraction functions are de�ned in the
following. There are two approaches for abstractions in model checking, i.e. over- and
under-approximations. Basically, for over-approximation extra behavior is added which
is not part of the original model. In contrast to this, for under-approximations actual
behavior is removed to focus on a part of the overall behavior. Both approaches target
to reduce the size of a given state space while preserving di�erent properties.
In Table 3.1 the preservation relation when using over- and under-approximations is

illustrated. Thereby, it is distinguished between universal and existential properties.
Universal properties are such properties which shall hold for every reachable system

97

3. State-based Timing Analysis

state, whereas to ful�ll an existential property it is su�cient to �nd a reachable system
state, where this property holds. Over-approximations preserve universal properties, as
the original behavior is at least contained in the over-approximation. Thus, if the over-
approximated model ful�lls such a property, one can conclude that the original model
also ful�lls this property. This is not true for existential properties, as the abstract
state ful�lling such a property must not be part of the original model. Analogously,
under-approximations preserve existential properties, but not universal ones.
In our case, task constraints and end-to-end latency constraints correspond to uni-

versal properties. Thus, an abstraction technique which leads to an over-approximated
behavior has to be de�ned. In contrast to the previous minimization techniques, such an
abstraction may of course also lead to spurious counter-examples, which do not occur in
the real model. Nevertheless, the scalability could be improved by such techniques.
Next, the e�ects of clock resets are analyzed. Based on the results of the Subsection

3.6.1 the e�ects of abstracting speci�c clocks of resource STSs are determined and an
abstraction function yielding over-approximated STSs is derived. In Subsection 3.6.3 the
timed simulation relation between the states of STSs is de�ned. On the basis of this
relation an abstraction function which also results in over-approximated STSs is worked
out. In 3.6.5 it is discussed how under-approximated STSs can help for our analysis task
approach. The last Subsection 3.6.6 will introduce an approximation for scenarios, where
event bursts may occur.

3.6.1. Clock Resets and Duration Clocks

In this section the e�ect of clock resets is analyzed. Clock resets lead to points of discon-
tinuities in the evolution of the clock valuations. Assume the following sequence of clock
valuations for a clock c is given: (c = 0), (c ∈ [2, 3]), (c ∈ [4, 4]). When an intermediate
clock reset is added resulting in the sequence (c = 0), (c ∈ [2, 3]), (c := 0), (c ∈ [1, 2])
the following problem arises: We do not know how to combine the intervals [2, 3] and
[1, 2] correctly to obtain the original behavior. As there are no further constraints we
can combine these arbitrarily, e. g. we are able to generate the concrete time sequence
(c = 0), (c = 2), (c := 0), (c = 1) which was not possible in the original symbolic sequence.
Thus, by adding clock resets over-approximated behavior will be obtained.
This observation is helpful to see that two clocks cannot be replaced by a single one

without loosing accuracy. The following trace set characterizes the behavior of a task τ
with an execution time in the range of [5, 10] time units, triggered by an event stream
with a period of 20 time units. Note that the symbol τ signalizes the start of the task
and τ the end of computation of the task.

(τ, {cp ∈ [0, 20], cc = 0}), (τ , {cp ∈ [5, 10], cc ∈ [5, 10]}), [(τ, {cp ∈ [20, 20], cc = 0}),
(τ , {cp ∈ [5, 10], cc ∈ [5, 10]})]ω.

98

3.6. Abstraction Techniques

Intuitively, for tasks which depend on τ do only need the timing information about
the termination times τ rather than the start times of the task. Thus, one could try to
determine the termination times by adding a duration clock cd, which traces the time
from the triggering of τ up to the end of its computation. Every time τ terminates, this
clock is then reset. Thus, the following extended trace set would be obtained:

(τ, {cp ∈ [0, 20], cc = 0, cd = [0, 20]}), (τ , {cp ∈ [5, 10], cc ∈ [5, 10], cd = [5, 30]}),
[(τ, {cp ∈ [20, 20], cc = 0, cd = [10, 15]}), (τ , {cp ∈ [5, 10], cc ∈ [5, 10], cd = [15, 25]})]ω.

To get rid of unnecessary information such as the starting time of τ and thus to save
some states, the next step is to abstract from the clocks cp and cc such that we get the
following abstracted trace set:

(τ , {cd = [5, 30]}), [(δ, {cd = [10, 15]}), (τ , {cd = [15, 25]})]ω.

Analogously to the case of inserting resets, we do not know how to �combine� the
concrete clock valuations of this abstract trace. Besides the original concrete traces, we
get further concrete traces like for example σ = (τ , 5), (τ , 15), (τ , 15)... This trace does
not occur in the original case. The major problem of this approach is that the original
activation period decreases, in the example from 20 to 15 time units, which means that
the activation load gets much larger than in the original case. Thus, this abstraction
leads to too coarse models for our analysis approach and will not �nd further application
in the following.

3.6.2. Clocks of Interface STSs

In Subsection 3.4.1 a set of clocks was derived which have to be preserved for the com-
putation of interfaces between dependent resources. Here, the e�ects which occur when
such clocks are abstracted will be illustrated.
To illustrate the e�ect when period clocks of higher priority tasks are abstracted in the

context of the interface computation, consider again the architecture of Figure 3.4 with
adapted task properties as follows: pτ1 = 20, pτ2 = 10, pτ4 = 20, cτ1 = 11, cτ2 = 1, and
pτ4 = 15.
Assume the state space of ECU1 has already been computed and as a next step the

interface to resource ECU2 has to be determined.
A �nite sequence of states of the resource STS of ECU1 is illustrated in the top part

of Figure 3.14. In the �gure the focus is only on the clock zones without considering
the discrete locations, which are not relevant for this scenario. The �rst row and column
of the matrices represent the reference clock, the second the period clock cp(τ1) of τ1,
and the third the period clock cp(τ2) of τ2. Note that all other clocks are left out for the
purpose of readability. The clocks within the curved brackets below the matrices indicate
the reset of these clocks after reaching the corresponding state.

99

3. State-based Timing Analysis

 D2

{cp(τ1)}
 0 -20 -10
 20 0 10
 10 -10 0

 0 0
 10 0

 α(D2)

Δ 0 -2
 10 0

...

 0 0 0
 10 0 0
 10 0 0

st
ar
t(

τ 1
)0C

 0 0 0
 10 0 0
 10 10 0

 D1

st
ar
t(

τ 2
)

en
d
(τ 1
)

 D3

 0 -11 -1
 11 0 10
 10 -1 0

{cp(τ2)}

en
d
(τ 2
)

 D4

 0 -12 -2
 12 0 10
 10 -2 0 D6

 0 -12 -10
 20 0 10
 10 -2 0

 D5

{cp(τ2)}

{cp(τ1)}

st
ar
t(

τ 1
)

st
ar
t(

τ 2
)

...

0C

st
ar
t(

τ 2
)

{cp(τ2)}

 0 -1
 10 0

 α(D3)

en
d
(τ 2
)

 α(D4)

st
ar
t(

τ 2
)

 0 0 -10
 0 0 -10
 10 10 0

 D7

st
ar
t(

τ 2
) 0 -10

 10 0

 α(D57)

...

{cp(τ2)}

{cp(τ2)}

st
ar
t(

τ 2
)

...

...

Figure 3.14.: Example trace - Top: an output path of a resource; Bottom: computed
interface.

The �nite sequence illustrated in the top part of Figure 3.14 starts by triggering an
event start(τ1) which starts an instance of τ1 within the time interval of [0, 10]. Note
that in this scenario τ1 cannot start after the time value of 10 although its period is 20.
This is because of the ordering of the events in this scenario: If an instance of τ1 starts
before an instance of τ2, this must happen before the clocks reach the period value of τ2,
which is 10 in this example. Note also that of course there is a path in which τ2 can also
arrive before τ1, but this is not illustrated in the �gure. In such a case τ1 could arrive in
a time interval of [0, 20].

After the start of τ1 in state D1 an instance of τ2 is started also within the time interval
of [0, 10] in state D2. In D2 the relation between both clocks is determined in the zone
by the constraints cp(τ2) − cp(τ1) ≤ 10 and cp(τ1) − cp(τ2) ≤ 0, which means that the
distance of the second event to the �rst one amounts to [0, 10]. Thus, the distance of
both events may be 10 time units at a max, or may occur simultaneously.

In state D3 task τ1 ends its computation after enough resource time has been allocated
to it, i.e. 11 time units after it started. This duration corresponds to the tasks execution
time as it was not interrupted by any other task. Reaching the state D4 by ending the
computation of τ2 one can see that this happens between 2 and 10 time units after the
instance started its computation. The DBM of the state D4 gives the relation between
both clocks which is cp(τ1) ≥ cp(τ2) + 2 ∧ cp(τ1) ≤ cp(τ2) + 10, i. e. the value of cp(τ1) is
at least 2 time units larger (�rst part of the condition) and up to 10 time units larger
than the value of cp(τ2) (second part of the condition).

Let us assume that in state D1 task τ1 arrives at t = 0. In the upper left part of
Figure 3.15 the scheduling for the situation up to the point, where state D4 is reached,

100

3.6. Abstraction Techniques

τ2
τ1

11 10 12 30 20 t 32

τ2
τ1

11 2 12 t

[]

 10

τ2
11 2 12 22 t 23 24

Figure 3.15.: Event sequence.

is illustrated. If τ1 starts by entering the successor D6, the relation between both clocks
is re�ned to cp(τ2) = cp(τ1)− 10, i. e. the value of cp(τ2) is exactly 10 time units smaller
than cp(τ1). With this, the valuation of the clock cp(τ2) in state D4 must have been
exactly 2 time units to reach state D6. This situation is illustrated in the upper right
part of Figure 3.15.

If the period clock of task τ1 is abstracted as the speci�c timing behavior of this
task is not relevant for the dependent resource ECU2, some over-approximations would
be obtained, which is illustrated in the following. In the lower part of Figure 3.14 the
abstraction of the trace, which is illustrated in the upper part of the �gure, is depicted.
In the DBMs only the reference clock and cp(τ2) are left. The problem of this sequence
is that there is no relation kept between the intervals of states D3 and D4 and can be
combined arbitrarily. An example of a combination is illustrated in the lower part of
Figure 3.15 which would not occur in real: After the start of τ2 at time 2 it �nishes its
computation at time 12, at which time an instance of a new instance is also activated.
The next activation occurs at time 22. The instances end at times 23 and 24. What
happens here is that both traces of Figure 3.14 are put together and mixed, such that
besides the traces which occur in real further traces are produced. This results in an
over-approximated behavior. This extra behavior leads to activations of dependent tasks
which occur in too dense time points, and thus increase the load of the successive resource.
An increase of the load of course means that the end-to-end latencies increase such that
more pessimistic results are obtained.

If the successive dependent resource has enough spare time, such an increasing of
response times must not occur. For this, consider Figure 3.16, in which the abstracted
trace of Figure 3.15 is extended by the behavior of the tasks on the dependent resource
ECU2. Assume that τ4 has an execution time of 15 time units, and τ3 an execution time
of 2 time units. In the worst-case, τ4 decides to start its computation when τ2 terminates

101

3. State-based Timing Analysis

τ2

12 22 t 23 24

τ3
...

...

...

 27 32

...

 29 31

...

τ4
Figure 3.16.: E�ect of abstraction.

and thus triggers an instance of task τ3, such that τ3 cannot start its computation.
Considering the timing behavior of τ2, further instances of τ3 are triggered at times 23
and 24. Note that in the not-abstracted case these activations would appear later, i.e.
at times 32 and 33. When τ4 �nishes its computation at time 27, 5 time units are left
to complete three instances of τ3, before an instance of τ4 is instantiated again. Two
instances can be completed, but the third is interrupted by an activation of τ4. If the
execution time of τ4 would have been 14, the third instance of τ3 could have been �nished
with a response time, which is within the real best- and worst-case response times.
The e�ect of the clock abstraction is illustrated by applying it to the architecture which

is illustrated in Figure 3.4. In this example, the clocks of the task τ1 are abstracted for the
input STS of ECU2. As before, multiple scenarios are considered by varying the period
pτ4 of task τ4. The result is illustrated in Figure 3.17. In the left part the resulting input
state space size of ECU2 is illustrated. Although no signi�cant reduction of the state
space is obtained here, the resulting resource state sizes of ECU2 are much smaller. This
is illustrated in the right part of the �gure. For the scenario where the period of τ4 is 85
time units the size of the state space is reduced from 71246 states to 12281 states, and
from 38246 states to 10172 states.

3.6.3. Abstraction through Simulation Relation

Simulation relations have been widely used in literature to provide approximations to
language inclusion in polynomial time. Here, an appropriate simulation relation on STSs
is de�ned to derive over-approximated STSs. For the de�nition of a timed simulation
relation �rst the re�nement of zones has to be de�ned.

De�nition 21 (Zone Re�nement). Let D,D′ be clock zones over a clock set C. D′

re�nes D, if for every ν ∈ D′ it holds that ν ∈ D. This corresponds to the classical set
inclusion, i.e. D′ ⊆ D.

Note that a zone D over a clock set C satis�es a clock constraint g, i� D ⊆ Dg. The
re�nement operation therefore preserves the satisfaction of clock constraints.

102

3.6. Abstraction Techniques

60 70 80 90 100 110

2,000

4,000

6,000

Period of τ4

N
u
m
be
r
of

st
a
te
s

(a) Input state space size.

60 70 80 90 100 110
0

2

4

6

8

·104

Period of τ4

N
u
m
be
r
of

st
a
te
s

(b) State space size of ECU 2.

Figure 3.17.: Resulting state spaces of architecture in Figure 3.4 � Blue curves (marked
with dots): Number of states with abstraction of hp clocks; Red curves
(marked with x): Without abstraction.

De�nition 22 (Timed Simulation Relation). The timed simulation relation rts ⊆ S2 ×
S1 is de�ned between two symbolic transition systems STS1 = (S1, S

0
1 , C,Σ,→1) and

STS2 = (S2, S
0
2 , C,Σ,→2) over the same clock set C and alphabet Σ. For all (〈l2, D2〉,

〈l1, D1〉) ∈ rts the following holds:

1. D2 ⊆ D1,

2. 〈l1, D1〉 is visited in�nitely if and only if 〈l2, D2〉 is visited in�nitely,

3. For all t ∈ S2 with 〈l2, D2〉
λ−→2 t there exists a s ∈ S1 such that 〈l1, D1〉

λ′−→1s and
(t, s) ∈ rts, and λ = λ′.

For (s2, s1) ∈ rts we also write s2 4 s1.

The proof that this abstraction leads to an over-approximated STS is according to the
simulation relation of De�nition 16.
Analogous to the untimed bisimulation, timed simulation relation of Subsection 3.5.5

the timed simulation relation de�nes a preorder. Let rts ⊆ S × S be a timed simulation
relation between the state space of a single transition system STS. If (s1, s2), (s2, s3) ∈ rts
then (s1, s3) ∈ rts.
The maximal elements of this relation are de�ned analogously:

De�nition 23 (Maximal Element). Let rts ⊆ S × S be a timed simulation relation
between the state spaces of a single transition system STS. An element s ∈ S is called
maximal, if there is no s′ ∈ S with s′ 6= s such that s 4 s′.

103

3. State-based Timing Analysis

0

5

117...
 0 -20 -20
 20 0 0
 20 0 0

 0 cp(τ4) cp(τ2)

0

cp(τ4)

cp(τ2)

8

26

35 23

278

...

...

...

...

...

...

97

...

Δ

...
 0 -1 -1
 20 0 19
 20 0 0

 0 cp(τ4) cp(τ2)

0

cp(τ4)

cp(τ2)

Δ

τ2

end τ2

Δ

τ4

end τ4

τ4

τ2

τ2

τ4

τ2

τ4
τ4

Figure 3.18.: Two paths of an input STS of a resource, where 97 4 278; Blue box (on
top right): State of resource STS created if input states 97 and 278 were
merged.

Lemma 9. Let S be the states of an STS and ϕ a timing constraint. If s ∈ S is maximal
and s |= ϕ, then for all s′ ∈ S with s′ 4 s it holds s′ |= ϕ.

The lemma holds, as the relation is transitive. The resulting abstraction is thus an
over-approximation of the original STS.
In Figure 3.18 the application of this abstraction is illustrated for an input STS of a

resource. The states 97 and 278 are determined to be in a simulation relation: The range
of cp(τ4) in state 278 is [1, 20], whereas in state 97 it has the exact value of 20. Thus,
the abstraction reduces the state space by deleting state 97 and all its successors, and
by changing the edge 26

τ4−→97 to 26
τ4−→278.

Besides the original trace (τ4, t1)(∆, t2)(τ4, t3)... with t3 ∈ [20, 20] we get further traces
as the range of time frame t3 increases to [1, 20] in state 278. Thus, the second instance
of τ4 may arrive at times [1, 20) which were not possible in the original trace, increasing
the load of the resource. This is indicated in the �gure by the resource state 23, where
the output transition activating an instance of τ4 is possible while an instance of τ4 is
already active.
The complexity of determining the simulation equivalent states is n(n − 1), where n

is the number of states. Each state has to be compared with all other states. Some
comparisons are performed twice: For all pairs of states s1, s2, we check both s1 4 s2

104

3.6. Abstraction Techniques

and s2 4 s1. For many cases, the complexity is reduced to n(n − 1)/2 in the best-case.
For this, the already analyzed pairs are added to a hash table. Corresponding state pairs
are added to this table, if the check was already successful for the �rst comparison, or
if the zones are completely disjoint or not in a subset relation, such that comparing the
other direction would not make any sense.

3.6.4. E�ects of Over-Approximations for Iterative Analysis Approach

So far, techniques to generate over-approximations of the original state spaces were pre-
sented. Generally, over-approximations are an e�ective approach to minimize a given
state space, such that the complexity to traverse through this state space and perform
some analysis to evaluate given properties � i.e. timing deadlines in our case � on the
reached states is minimized. Thereby, the over-approximation is necessary to give safe
results.
The abstraction techniques illustrated in the previous subsections were implemented

and applied to our iterative analysis approach: For each computed interface STS an
over-approximation is computed, which then is used as an input for dependent resources.
Interestingly, this approach leads to larger state spaces for dependent resources. The
reason for this is that when performing over-approximations, more behavior is allowed
to occur which also increases the load of the resources as illustrated before. As more
behavior is allowed in the input STS, more activation situations have to be handled
within the dependent resource state spaces, leading to increased state spaces and also
longer analyses times.
The e�ect of the timed simulation relation abstraction is illustrated by applying it

to the architecture which is illustrated in Figure 3.4. In speci�c, the timed simulation
relation is applied to the input state space of ECU2. The result is illustrated in Figure
3.19. Although the input state spaces for every scenario are reduced as illustrated in the
left part of the �gure, the resulting numbers of the states of the resource STSs are always
above the ones without applying the abstraction on the input STSs. For instance, in the
scenario where the period of τ4 is 85 time units, the state space increases from 71246
states to 93869 states.
To result in smaller state spaces for dependent resources, under-approximation tech-

niques would be more suitable. Unfortunately, such techniques lead to too optimistic
and unsafe veri�cation results. In the next subsection, the bene�ts of such approaches
in our context is discussed.

3.6.5. Testing: Abstraction through Under-Approximation

Using the concept of depth-�rst search through the state space of a resource a path which
produces a schedule with events at �xed time intervals which repeat in�nitively often in
the same order can be determined. By reducing the state space of the resource to only

105

3. State-based Timing Analysis

60 70 80 90 100 110

2,000

4,000

6,000

Period of τ4

N
u
m
be
r
of

st
a
te
s

(a) Input state space size of ECU 2.

60 70 80 90 100 110

0.2

0.4

0.6

0.8

1

·105

Period of τ4

N
u
m
be
r
of

st
a
te
s

(b) State space size of ECU 2.

Figure 3.19.: Resulting state spaces of architecture in Figure 3.4 � Blue curves (marked
with dots): Number of states with timed simulation relation abstraction;
Red curves (marked with x): Without abstraction.

this single state sequence, an under-approximation of the original state space is obtained.
This single state sequence is then used to compute the state space of dependent resources.
There are various alternatives to select an appropriate path. The easiest and fastest

approach is to select an arbitrary trace. A more appropriate solutions might be to select
the path which results in the most dense activations with respect to a dependent task on
the target resource. In such a trace the load of the dependent resource is higher, which
could cause larger response times. Another intuitive solution is to select the path, where
the activation times of all tasks on the dependent resource are as close as possible. This
solution is related to the critical instance in classical schedulability analysis, where it is
assumed that the activations of all tasks might occur simultaneously. But this solution
must not necessarily result in the worst-case latency times, as a path could be selected,
where some tasks terminate within their best-case execution- or response times.
The advantage of the under-approximation approach is that one can get results really

fast. Unfortunately, this concept is closely related to testing and thus a path could be
chosen which does not include a timing constraint violation, although there might exist
paths which do violate some constraints. This fact holds independently from the selection
approach of a path mentioned above.
To solve this problem, this approach can be extended in such a manner that all paths

of a resource are tried iteratively instead of only a single path. That is, if the �rst path
does not �nd any timing constraint violations, the second path is chosen, and so on. If
all paths are chosen at the end, all possible behaviors are covered and the answer of the
veri�cation is sound in the sense that the system does not violate its timing constraints.

106

3.6. Abstraction Techniques

Of course, for systems which do not violate their timing constraints this approach does
not yield faster analysis results as all possible behaviors are considered iteratively. But for
systems violating timing constraints this approach can help in �nding counter examples
in a much faster way.
Considering the implementation of the approach, the selection of an arbitrary path is

realized and applied in the case study of Subsection 3.7.2.

3.6.6. Abstraction for Event Bursts

A new abstraction technique is introduced, which enables the minimization of the output
STS of a resource when event bursts occur. Consider the architecture in Figure 3.4
where two tasks τ1, τ2 are allocated on an ECU1. Task τ1 has higher priority, and has
a computation time of 35 time units. The period of τ2 is pτ2 = 5 time units. When τ1

starts its computation, it is possible that eight instances of τ2 can be activated before
the active instance of τ1 �nishes its computation. This scenario is illustrated in the left
part of Figure 3.20. In this state sequence, an instance of τ1 gets instantiated in the �rst
state Di, such that the corresponding computation time clock cc of this running instance
evolves over the sequence. The �rst instance of τ2 is activated in the same time instance
as τ1 in state Di+1. All other instances of τ2 are activated according to the period of the
task, i.e. after each 5 time units. Whenever an instance of τ2 is activated, its period
clock has to be reset, which is indicated through the clocks in the curly brackets on the
left hand of the corresponding states. At the end of the sequence, the instance of τ1

terminates as its clock reaches the needed computation time.
Considering resources on which tasks are allocated that depend on τ2 nothing relevant

happens in this state sequence, as dependent resources do only need the termination
times of the instances of τ2. The only relevant information of this sequence is the number
of instances of τ2 which occur until the active instance of τ1 �nishes its computation.
Unfortunately, this state sequence cannot simply be merged to a single state: If done
so, the successor of state Di, where cc(τ1) = 0 ∧ cp(τ2) = 0 holds, would be the state
Di+8, where cc(τ1) = 35 ∧ cp(τ2) = 5 holds. In the semantics of timed automata this is
a problem as all clocks have to be progress in the same rate. Thus, such a merging of
states would produce a point of discontinuity.
The reason for this point of discontinuity is that the period clock cp(τ2) is always reset

on every occurrence of τ2. As this clock is kept for the output interface, these states
are not merged. To get rid of such state sequences, a new clock is introduced for all
tasks where such event bursts can occur. These clocks are called abstract period clock
and denoted as cap. These clocks do not a�ect the state space, but trace of the time that
passes from the �rst activation of a burst. The idea of this clock is illustrated in the
center of Figure 3.20. When the �rst instance of task τ2 of the example gets activated in
state Di+1, the clock cap(τ2) is reset. Then, instead of resetting it on every occurrence
of a further activation, the clock is let progressed until an instance of τ2 gets the status

107

3. State-based Timing Analysis

cc(τ1) = 0
cp(τ2) = 0

τ1

...

...

end(τ1)
...

8x τ2

...

...

...

...

...

ex
te
ns
io
n

ab
st
ra
ct
io
n

τ2

τ2

τ2

{cp(τ2)}

{cp(τ2)}

τ1

τ1

end(τ1)

end(τ1)

τ2

τ2

τ2

τ2

{cp(τ2)}

τ2 τ2

cc(τ1) = 0
cp(τ2) = 0

cc(τ1) = 5
cp(τ2) = 5

cc(τ1) = 35
cp(τ2) = 5

cc(τ1) = 0
cap(τ2) = 0

cc(τ1) = 0
cap(τ2) = 0

cc(τ1) = 35
cap(τ2) = 35

cc(τ1) = 0
cp(τ2) = 0
cap(τ2) = 0

cc(τ1) = 0
cp(τ2) = 0
cap(τ2) = 0

cc(τ1) = 5
cp(τ2) = 5
cap(τ2) = 5

cc(τ1) = 35
cp(τ2) = 5
cap(τ2) = 35

{cp(τ2),
cap(τ2)}

{cp(τ2)}

{cp(τ2)}

Di+1

Di

Di+2

Di+8

Di

Di
Di+1

Di+1
Di+2

Di+8

Di+8

Figure 3.20.: Merging states by the application of the abstract period clock.

running, which is the successor of state Di+8 in the example.
When computing the output of the resource, the period clock of each task is abstracted,

which has been extended by an abstract period clock. Hence, paths with activation bursts
do collapse in a single state, as it is illustrated in the right part of Figure 3.20. As there
is no reset of a relevant clock in the output, and all clocks progress with the same rate, all
intermediate states can be merged. Thus, no point of discontinuity is produced by this
approach. The exact number of the instances of τ2 are preserved, as these are contained
in the ready task list of the last state of this sequence.
Let Tr be the task set of a resource r. The clock set C of a resource is extended with

a set of abstracted period clocks (in short cap), such that the following holds:

∀τ ∈ Tr, hp(τ) 6= ∅ ∧ instances(τ) > 1, ∃cap(τ) : cap(τ) ∈ C (3.19)

Note that T is the task set allocated to the considered resource.
This abstraction is restricted to such cases, where only local timing constraints of

task are speci�ed. If end-to-end latency constraints are speci�ed, we need to keep the
information of the activation of each instance. Thus, for dependent resources the states
as described above cannot be merged, as the exact activation behavior would not be
available then.

108

3.7. Case Study: Driver Assistance System

60 70 80 90 100 110

0

0.2

0.4

0.6

0.8

1

·105

Period of τ4

N
u
m
be
r
of

st
a
te
s

(a) Input state space size ECU 2.

60 70 80 90 100 110

0

1

2

3

4

5

·105

Period of τ4

N
u
m
be
r
of

st
a
te
s

(b) State space size of ECU 2.

Figure 3.21.: Resulting state spaces of architecture in Figure 3.4 � Blue curves (marked
with dots): Number of states without abstraction; Red curves (marked with
x): Number of states with burst abstraction.

The e�ect of the burst abstraction is illustrated by applying it to the architecture
illustrated in Figure 3.4. The result is illustrated in Figure 3.21. The signi�cant reduction
of the number of states is obtained for both the input of the resource ECU2 and the
resource state space itself. For instance, in the scenario where the period of τ4 is 85 time
units, the input state space is reduced from 95698 states to 5991 states, and the resource
state space from 459210 states to 71246 states.

3.7. Case Study: Driver Assistance System

3.7.1. Overview

The introduced concepts are evaluated on an industrial case study of a lane-keeping-
support system (LKS) in the following. This case study was originally introduced in
[WTH+14]. The LKS is a part of a driver assistance system which is also detailed here.
A previous version of the presented evaluation was already published in [GWB15].
The functional structure of the driver assistance system (DAS) mainly consists of

an extended lane-keeping-support (LKS) system described accompanied by an adaptive
cruise control system. The LKS is a driver assistant system that helps the driver to keep
his car on the lane during a trip. A scenario in which the LKS is of particular importance
is a tired or distracted driver loosening the grip of the steering wheel which leads to the
car bearing away from the current lane. As a car unintentionally leaving its lane may
lead to a hazardous situation, the LKS aims to prevent this from happening. So in order

109

3. State-based Timing Analysis

to keep the car on the lane the system evaluates whether the driver leaves the current
lane unintentionally by using cameras recognizing road markings, and monitoring driver
actions. The LKS system decides to intervene by steering the car back to the lane if
necessary via a correction of the steering angle or via a short braking intervention on
either side of the car. These two intervention options do not mutually exclude each other,
they are more like variants depending on the actual variant con�guration of the car that
the LKS is integrated in.

Video Sensing Line Detection

Human Activity
 Detector

Line-to-Lane
 Fusion

 Situation
Evaluation

Speed and Distance
 Sensing Unit

 Adaptive
Cruise Control

Vehicle Dynamic
 Management

Trajectory
 Planing

Yaw Rate
 Sensing

Lane Keeping

Adaptive Cruise Control

 Dynamic
Vehicle Mgm.

Figure 3.22.: Functional structure of the driver assistance system.

The overall functional structure of the DAS is illustrated in Figure 3.22 and its corre-
sponding component structure in Figure 3.23. It consists of three major blocks, i.e. the
lane keeping, the adaptive cruise control, and the dynamic vehicle management function-
ality.
The functional chain for the lane keeping starts at the video sensing unit (fvsu), which

receives an uncompressed two mega-pixel video stream from a camera with a period of
80ms and pre-processes this data. This data is then passed to the line detection unit
(fldu). The line detection unit uses the video stream to extract line information which
may indicate lanes of a street. From there, rather small data amounts are passed down
the functional chain. The line-to-lane-fusion function (fl2l) then extracts the line data
from the line detection unit and extracts information about the own and the neighboring
lanes relevant for the car. The situation evaluation (fseu) assesses the current situation
based on the passed lane data, the current steering angle together with other relevant
human machine interface data received from the human activity detector function (fhad),
and outputs the (un)intended trajectory as indicated by the sensor data to the vehicle
dynamic management function. Additionally, the situation evaluation forwards data
about whether the trajectory is intended or unintended based on certain thresholds in
the sensor data analysis.
An adaptive cruise control (ACC) consists of two major functions, i.e. the speed

and distance sensing unit receiving data from speed and radar sensors, and an adaptive
cruise control functionality which keeps the currently set speed, which is determined by

110

3.7. Case Study: Driver Assistance System

the driver. The ACC slows the vehicle down in case it is gaining on another vehicle ahead
and has thereby to ensure a �xed minimum distance to the vehicle ahead. The vehicle
dynamic management receives the desired and actual speed from the ACC.
The trajectory planning function is the controlling part that compares the trajectory

from the situation evaluation with the current trajectory of the car, which is analyzed
by using a yaw-rate sensor. Based on the o�set between these two trajectories and the
information about the intention of the driver it decides when and how to intervene. After
the trajectory planning the corresponding braking and steering actuators are triggered.

«Component»
DAS-System

 : LaneKeepingSystem

 trajectoryData

 camData_in

 sensorHMI : VehicleDynamicManagement

 trajectoryData

 yawRateIn
 steer_ctrl_out

 speed_ctrl
 speed_ctrl_out

 : AdaptiveCruiseControl

 speed_in

 distance

 speed_ctrl

 camData_in

 sensorHMI

 yawRateIn

 speed_in

 distance

 steer_ctrl_out

 speed_ctrl_out

triggerLine
Detect

triggerLineDetect

Figure 3.23.: High level component structure of the overall driver assistance system.

The driver assistance system is decomposed according to the three functional clusters,
i.e. into the three subsystems lane keeping system (LKS), adaptive cruise control (ACC)
and vehicle dynamic management system (VDS). The LKS has two input ports, namely
camera data camData_in which is necessary to determine the lane markings, and sen-
sorHMI which is the human interface data including the current steering wheel angle.
This angle is indicated by the position of the steering wheel and determines the position
of the car with respect to the lane and the angles of the wheels itself. From this input
it computes an angle for the wheels which shall be set and outputs this on the port
trajectoryData.
The ACC uses its inputs speed_in and distance � indicating the current speed of the car

and the speed which is should be maintained, and the distance to a front car respectively
� to compute the new speed of the car. The result of the computation is delivered at the
output port called speed_ctrl.
The VDS combines and adjusts the control values of the ACC and the LKS and sets

the corresponding actuator values steer_ctr_out and speed_ctrl_out.
In the following, the LKS is detailed and the analysis approach is evaluated on this

subsystem.

111

3. State-based Timing Analysis

3.7.2. Lane-Keeping-Support System

The decomposition of the lane keeping system is illustrated in Figure 3.24. It consists
of two computing resources LaneDetection and SituationEvaluation interconnected by a
communication resource CANBUS. To all resources a scheduler is allocated. For all re-
sources, the �xed-priority policy is considered (preemptive for the computation resources
and non-preemptive for the communication resource).

«Component»
LKS-HW

internal structure

«Component»
«ComputingResource»

LaneDetection
internal structure

 camData_in
 laneInfo

«Component»
«Communication...

CANBUS
internal structure

 laneInfo

 sensorHMI

 laneInfoMsg

 sensorHMIMsg

«Component»
«ComputingResource»

SituationEvaluation
internal structure

 trajectoryData

 laneInfoMsg

 sensorHMIMsg

«Scheduler»
ScheduleLane
internal structure

«Scheduler»
ScheduleBUS
internal structure

«Scheduler»
ScheduleSit

internal structure

 camData_in

 sensorHMI

 trajectoryData

«Allocate»

«Allocate»

«Allocate»

triggerLine
Detect

triggerLineDetect

Figure 3.24.: Decomposition of the lane keeping assistance system.

The functional view of the Marte model of the LKS containing the allocated tasks of
the LKS is illustrated in Figure 3.25. As the resource names suggest, the VideoSensing,
LineDetection, and LineToLaneFusion tasks are allocated to the LaneDetection resource,
the two communication tasks ComTask1 and ComTask2 to the CANBUS, and the Hu-
manActivityDetector and the SituationEvaluation to the SituationEvaluation resource.
In addition to the functional speci�cation of Figure 3.22 some further technical details

are added: The communication between the LineDetection function and the LineToLane-
Fusion function is realized through a shared bu�er, as the activation periods are di�erent.
The LineDetection writes its processed data into this shared memory, from which the
LineToLaneFusion reads the latest data to perform its computation.
The data of the LineToLaneFusion is wrapped into message and send via the bus

to the SituationEvaluation. As described above, the SituationEvaluation function gets
triggering data from the functions HumanActivityDetector and indirectly the LineToLane
Fusion via ComTask1. This activation is considered to be synchronous, as the situation
evaluation needs both information to work appropriately.
The task HumanActivityDetector gets its needed sensory input via the bus system.

Note that the sensors are not modeled explicitly, as these are not relevant for our analysis

112

3.7. Case Study: Driver Assistance System

function name vs ld l2l m1 m2 had seu

period 80 - 20 - 20 - -

exec.time 3 30 2 2 2 5 5

priority 0 1 2 0 1 0 1

Table 3.2.: Scheduling-relevant information for tasks and messages in milliseconds.

task. It is assumed that the time to fetch the relevant data of tasks which need sensory
input (here VideoSensing and ComTask2) are included in their computation times.

All scheduling-relevant information for the tasks and messages are displayed in Ta-
ble 3.2. In the table the task names are abbreviated as follows: VideoSensing (vs),
LineDetection (ld), LineToLaneFusion (l2l), ComTask1 (m1), ComTask2 (m2), Human-
ActivityDetector (had), SituationEvaluation (seu).

LKS-SW
internal structure

«ResourceUsage, SwSchedulableRes...
LineToLaneFusion
internal structure

 laneData

«ResourceUsage, SwSched...
ComTask1

internal structure

 Port2 Port1

«ResourceUsage, SwSchedulable...
HumanActivityDetector

internal structure

 hActOut

«ResourceUsage, SwSchedulableRes...
LineDetection

internal structure

 videoDataIn

 lineOut

«ResourceUsage, SwSche...
ComTask2

internal structure

«ResourceUsage, SwSchedulableRe...
SituationEvaluation

internal structure
 ctrlIn

«StorageResource»
Buffer

 Port1

 Port2

«ResourceUsage, SwSchedulableRes...
VideoSensing

internal structure

 videoDataOut

trajectoryData

flow

flow

flow

flow

flow

flowflow

camData_in

sensorHMI
sensorHMIMsg

sensorHMIMsg

triggerLineDetect

Figure 3.25.: Functional view of the lane keeping assistance system.

We are interested in the response times of the tasks LineToLaneFusion and Situa-
tionEvaluation, and the latency between these tasks. Further, the following latency
constraint shall be evaluated.

whenever triggerLineDetect occurs, trajectoryData occurs during [0ms,
50ms].

The event triggerLineDetect triggers the task LineToLaneFusion (l2l) according to its
period illustrated in Table 3.2, i.e. the event is �red every 20 time unit. The event
trajectoryData is generated, whenever task SituationEvaluation (seu) terminates.

113

3. State-based Timing Analysis

Timing of task/latency (a) plain (b) hp-clocks (c) burst (d) testing

LineToLaneFusion [2, 35] [2, 35] [2, 35] [2, 35]

SituationEvaluation [5, 13] [5, 13] [5, 13] [5, 5]

LineToLaneFusion → SituationEvaluation [9, 47] [8, 47] - [16, 25]

Number of states CANBUS → SituationEvaluation 6.588 3.471 823 6.588
Number of states SituationEvaluation 73.568 52.328 4.317 68

Table 3.3.: Timing Analysis results in milliseconds for (a) analysis without abstraction,
(b) using abstraction of period clocks, (c) using burst abstraction, and (d)
applying testing.

3.7.3. Evaluation Results

The analysis results are listed in Table 3.3. The �st column (a) contains the exact
timings for the tasks LineToLaneFusion and SituationEvaluation and the end-to-end
response time between both tasks. For this, the implementation of our iterative analysis
approach without the application of any abstraction was applied. This analysis was the
slowest in contrast to the ones where abstractions were applied. This corresponds to the
number of states which were computed and also listed in the lower part table: The size of
the state space of the interface STS between CANBUS and SituationEvaluation consists
of 6.588 states, while the resulting state space of resource SituationEvaluation consists
of 73.568 states.
The second column (b) gives the timing results by applying the period clock abstrac-

tion technique introduced in Subsection 3.6.2. In particular, the period clock of task
VideoSensing was abstracted. The e�ect is that the best-case response time of the end-
to-end latency is lower than the original one, thus resulting in larger timing interval.
In contrast to this, the state spaces of both the interface STS and the STS of resource
SituationEvaluation get much smaller, resulting in a faster analysis.
The third column (c) lists the timings when the burst abstraction of Subsection 3.6.6

is applied: This approach results in the exact response times for both tasks, but � as it
was described previously � end-to-end response times cannot be determined when this
abstraction is used. As an end-to-end clock is not used to determine this latency, the
state spaces get much smaller.
Finally, the testing approach sketched in Subsection 3.6.5 is applied. In particular, the

algorithm selects just a single trace from the interface STS between CANBUS and Situa-
tionEvaluation. This trace is used as the single input of the resource SituationEvaluation.
As illustrated in the table, this results in 68 states for the resource STS. The resulting
timings are illustrated in the last column (d). Here, we can see that the input results in a
path of the resource STS, where the response time of task SituationEvaluation is exactly
5ms. The interesting part here is the end-to-end latency of [16, 25]ms. This is exactly
what we expected, i.e. neither the best-case nor the worst-case timings were found. The
determined execution time frame gives no guarantee that the timing constraint always

114

3.8. Summary

holds but represents possible behavior. This result can only give a hint to what laten-
cies can be expected. Still, it is a usable approach if e.g. the original analysis does not
terminate because of a too large state space. The testing approach then can be used to
iteratively validate such an end-to-end latency.

3.7.4. Observation on Scalability

When performing the veri�cations on the introduced case study by using our prototype
implementation, we determined some characteristics which in�uence the run times of the
veri�cation.
First, the scalability of the approach heavily depends on the applied abstractions. If

a detailed veri�cation is performed where no abstractions are applied, the veri�cation is
able to handle only small systems like the holistic model-checking approaches in the liter-
ature. Second, major aspects of the systems under analysis which negatively in�uenced
the scalability of the approach were the following:

• Increasing number of independent tasks: The more independent tasks were de-
�ned, the larger the state spaces got. The reason for this e�ect is the initial non-
determinism of the initial triggering of tasks, which is de�ned by a time interval.
With this, the product construction leads to large state spaces, as all possible acti-
vation scenarios are constructed. When the initial non-determinism is deactivated,
the resulting state spaces were much smaller. As an example, for two tasks only
two possible activation scenarios could occur after deactivation.

• The di�erence between the characteristics of tasks: If the periods and the execution
times of two (or more) tasks are similar, the resulting state spaces are much smaller
than in scenarios, where these characteristics are diverging. The reason for this is
that in more heterogeneous scenarios more states are necessary to keep track of the
individual states of the tasks.

• The length of task chains: As more clocks are involved in such scenarios, which
leads to an increasing state space.

The challenge here is to �nd the appropriate abstraction level for the veri�cation task,
such that on the one hand the result is usable (i.e. not too pessimistic) and on the other
hand delivers results in an acceptable amount of time.

3.8. Summary

In this chapter our state-based scheduling analysis technique for distributed real-time
systems was presented. The state space of the entire system architecture is de�ned by
symbolic transitions systems (STS) and is constructed in an iterative manner. For this,

115

3. State-based Timing Analysis

two main operations on STSs were introduced, namely the product construction and the
abstraction of clocks and locations of an STS of interface STSs. It was shown that the
product construction preserves timing properties and thus can be adequately used to
successively build the sate space of the whole system architecture. Based on an input
STS of a resource describing the activation times of the allocated tasks, an algorithm
which builds the STS of this resource was described. Based on the state space of a
resource, response times are determined. This iterative analysis enables checking end-to-
end constraints in a more e�cient manner than a holistic analysis as only the relevant
parts of the state space are kept, while preserving all interleavings and task dependencies.
Note that by enabling analysis in a more e�cient manner we refer to the reduced state
spaces with which the analysis concept has to deal in contrast to holistic approaches.
We did not compare the introduced approach with state-of-the-art tools as the prototype
implementation of the concept is not suited and optimized for such purposes.
Thereafter, abstraction techniques in the context of the presented iterative analy-

sis were introduced. First, the e�ect of replacing two clocks by a single one was dis-
cussed. The abstraction of clocks of interface STS was illustrated and the resulting
over-approximated STS was explained. The timed simulation relation was then intro-
duced to apply an approximation technique, which tends to yield smaller state spaces
for holistic analysis approaches or local state spaces, but a�ects in larger state spaces
for dependent resources especially for iterative analysis approaches such as ours. As a
last technique the abstraction for burst-scenarios was introduced. For all abstraction
techniques appropriate examples were studied and their e�ects have been demonstrated.
Last, the applicability of the approach on a driver assistance system case study was

demonstrated. For this, the lane-keeping-support subsystem part was detailed. In par-
ticular, the hardware and task architecture in terms of a Marte model was introduced,
and the timing analysis was performed on this model. We compared the response times
and state spaces of our basic approach and the results of the applications of the abstrac-
tion techniques. The positive e�ects on the sizes of the number of states could been
demonstrated, which boosts the scalability of state-based analysis approaches.

116

4. Contract-based Impact Analysis

4.1. Motivation

The design of a system typically consists of several speci�cation, implementation, and
analysis steps. Within these steps the speci�cation, the architectural realization, and
implementations are created to ful�ll and realize the corresponding requirements. Dur-
ing the development process of such a system, business needs could change, or initially
assumed aspects or goals could get re�ned, a�ecting the requirements of the system un-
der design. Thus, the derived speci�cation and the designed architecture typically are
subject of changes. To give only some examples: Adaptations of the architecture of an
already existing and analyzed system could be the removal of some resources due to cost
savings, such that the tasks on this resource have to be re-allocated to the remaining re-
sources. Another source of changes are incremental development cycles, where a previous
version of a system is reused to include new features. Also technical issues could cause
changes: If during the integration phase errors occur as interfaces do not �t together,
the speci�cations of individual components must be modi�ed, which also could a�ect the
corresponding implementations.
As stated before, there are several proof obligations in safety-critical systems to assure

the correct service and to prevent failures which could lead to critical situations. When
changes occur, all veri�cation steps must be repeated to guarantee that the changes do not
violate any requirement. The impact analysis introduced in this chapter targets such re-
veri�cations by determining the a�ected parts of the system by a change, thus preventing
to perform all veri�cation steps from scratch. With this technique it is possible to keep re-
veri�cations local in certain cases. Suppose that the speci�cation of a system component
shall be replaced. If the newly adapted speci�cation re�nes the previous speci�cation,
only the internals of the new component itself have to be re-veri�ed without the need of
a repetition of a complete integration check of this component with its context.
Refer again to the overall content of this thesis illustrated in Figure 4.1: The con-

tent of this chapter introduces the impact analysis methodology together with its basic
techniques. If some parts of the architecture need to be re-veri�ed on implementation
level, the impact analysis will use the state-based timing analysis approach introduced
in Chapter 3.
This chapter is organized as follows. At �rst, related works on veri�cation tools for con-

tract speci�cations and on approaches reducing the e�ort of performing re-veri�cations
are presented. In Section 4.3 the overall concept of the impact analysis approach is intro-

117

4. Contract-based Impact Analysis

Figure 4.1.: Overview of contributions of thesis.

duced. It integrates two veri�cation techniques, one on the speci�cation and the other on
the implementation level of a system design. The techniques on both level are detailed
in the subsequent Sections 4.4 and 4.5. The introduced approach is evaluated in Section
4.6. Finally, all results of this chapter are concluded in Section 4.7.

4.2. Related Work

The theoretical foundations and practical applications of the contract-based speci�cation
method were elaborated in [BCF+08, DHJ+11] as introduced in Chapter 2. Here, two
aspects of related works are detailed. The �rst aspect deals with tool support for the
automatic veri�cation of contract speci�cations. The second aspect is the reduction of
re-veri�cations when changes of the system under design occur.

4.2.1. Tool Support for Veri�cation of Contract Speci�cations

Ocra (Othello Contract Re�nement Analysis) is a tool to check contract re�nement and
consistency [CDT13]. The applied architectures are closely related to the architectures
considered in this thesis: Components are decomposed to a set of interconnected subcom-
ponents, and each component is annotated with corresponding contract speci�cations.
Contracts are speci�ed by the use of a temporal logic called Othello (Object Temporal
Hybrid expressions Linear-time temporal Logic) [CRST13], which is a human readable

118

4.2. Related Work

language. The semantics of this language is given in terms of an extended version of
linear time temporal logic (LTL) called HRELTL (Hybrid Linear Temporal Logic with
Regular Expressions). In contrast to this thesis, they use an SMT solver to check such re-
lations. The backend engine of Ocra is NuSMV3 which itself is based on the SAT solver
MathSAT. MathSAT only considers quanti�er free formulas, while NuSMV3 extends this
to the logic of LTL. The tool is also able to verify implementations against contracts.
In contrast to this thesis the approach is restricted to discrete-time LTL contracts and
�nite state machines. The main result of the authors concerning the applicability of their
approach is that their tool scales well with the number of decomposition structures. The
reason for this lies in the nature of contracts, as the veri�cation steps are performed
locally within structures.
The focus of the authors of [BMSH10] are modal input/output automata (MIO). With

this model, two types of behaviors can be described, i.e. allowed and required behaviors,
modeled as may and must transitions respectively. Further, as in timed automata, input,
output, and internal actions are distinguished. In their work, modalities are applied to
re�nement and compatibility, as detailed in the following.
A MIO A1 strongly modally re�nes another MIO A2 which is de�ned over the same

signature, if there is a strong modal re�nement relation between A1 and A2, where A1

can simulate all must transitions of A2 immediately, and whenever A1 can perform a
may transition, A2 can simulate this with a corresponding may transition. Strong modal
compatibility between two MIOs A1, A2 requires that if A1 can send an output action �
either by a may or a must transition � which is in the input alphabet of A2, then A2

must immediately be able to receive the message and is not allowed e.g. to take internal
transitions before.
Weak modal re�nement does allow internal actions before must transitions are �red,

i.e. if the more abstract MIO is able to �re a must transition with an output action, the
re�ning MIO is allowed to �re a �nite set of internal must transitions, but has �nally to
simulate the must transition of the abstract MIO. With this notion of re�nement, more
�exibility is allowed by e.g. the modeling of internal computations during the re�nement
process. The weak modal compatibility is de�ned accordingly, i.e. where internal must-
transitions are allowed before the synchronization has to be performed. The weak modal
compatibility allows a more loosely coupling of interfaces.
This approach has also been implemented in the MIO Workbench [BML11], which

is an Eclipse-based editor for modal I/O automata equipped with a veri�cation back-
end. The veri�cation back-end is able to check strong and weak modal compatibility
and re�nement. This work is related to this thesis, as it also deals with automata-based
veri�cation of properties like composition and re�nement. In contrast to this thesis, the
authors considered only untimed systems and did not consider contracts explicitly.
In [AdADS+06] a tool called Ticc (Tool for Interface Compatibility and Composition)

was introduced. It checks the compatibility of component interfaces, where untimed
transition systems with input and output actions and discrete variables encoding the

119

4. Contract-based Impact Analysis

states are considered. Components are modeled based on game theory, where components
are represented by automata with input and/or output actions on transitions. The
semantics of such automata is given by the well-known two-player games, where the input
player represents the environment, and the output player represents the component itself.
The authors later extended this work in [DLL+10b] for dense time systems by intro-

ducing the timed input/output automata (TIOA), which are based on a timed version of
the game semantics, and provided also a tool called ECDAR (Environment for Compo-
sitional Design and Analysis of Real-Time Systems) [DLL+10a]. In contrast to standard
timed automata, the transitions are di�erentiated between input and output transitions.
Edges controlled by the environment are annotated by receiving events, while edges con-
trolled by the automaton itself are annotated by sending events.
The designer can create automata for both the implementation and speci�cation of a

system. After the creation, re�nement and consistency checks between all automata can
be performed through the integrated game engine, which is based on Uppaal-Tiga. For
this, appropriate queries are de�ned to enable the veri�cation engine. The consistency
check veri�es whether there exists an implementation which ful�lls its corresponding
speci�cation. Thus, a strategy for the output player is searched, which prevents the
speci�cation to reach a bad state. An example to verify the re�nement: Let the imple-
mentations in terms of TIOA N1, ..., N3, and an overall system speci�cation automaton
S be given. To check the re�nement, the query re�nement : (N1 || N2 || N3) ≤ S is
created. In the sense of compositional design, all implementations could also get sub-
speci�cations, which are again TIOA. Then, the re�nement for each implementation
against its speci�cation would be checked, and at least the correct composition of all
sub-speci�cations with the overall speci�cation would be veri�ed. The approach is a bit
unintuitive, as both the speci�cation and implementation have to be created in terms of
TIOA. Further, the authors did not detail the scalability of their approach. They only
give a hint that the scalability gets better, if sub-speci�cations are created, instead of
performing a holistic analysis against the overall speci�cation [DLL+10a].
In [CGP03] the authors state that the de�nition of appropriate assumptions for compo-

nent contracts is a complex task, and thus they claim that this task has to be automated.
For this, they present an algorithm called L∗ which iteratively learns assumptions of com-
ponents and their behavior. This learning is based on re�nement. They consider �nite
discrete traces produced by labeled state transition systems. The paper is restricted to
cases where the system is composed of two componentsM1,M2. The goal is to decompose
the system property C = (true,G) to sub-contracts C1 = (true,A) and C2 = (A,G),
i.e. to �nd an appropriate assumption A which is guaranteed from component M1 (and
thus contract C1). The algorithm iteratively computes an intermediate assumption Ai
consisting of a set of �nite words. This Ai is then used as the context for M2, and it
is checked whether M2 is able to ful�ll the property G. If not, the assumption is too
weak such that further behavior has to be removed. To do so, the counter-example trace
returned from the used model checker is applied. If otherwise the found assumption Aj

120

4.2. Related Work

is strong enough for M2 to guarantee G, is checked in a second step whether Aj is not
too strong for the behavior of the predecessor component M1. As in the �rst step, if Aj
is too strong, then Aj needs to be weaken by adding further behavior via the usage of
the returned counterexample. In the other case, it holds that the property G holds for
M1||M2. The authors extend the learning algorithm (among other things) to a chain of
components in [PGB+08]. The basic techniques to check re�nements of contracts are
also applied in this thesis. In contrast to this thesis, the authors focus on the automatic
derivation of appropriate component assumptions, while in this work the focus is on the
application of the virtual integration of components into their context.

4.2.2. Impact Analysis

In the work of [KHM+96] the system behavior is given as a set of functions, which may
depend on each other. The work is based on regression testing, where a set of tests are
de�ned for each function. If a test fails, the error is corrected and all tests are re-run. Also
previously successfully tested functions are re-tested to ensure, whether the changes did
not a�ect these functions. The authors applied this idea to formal veri�cation and called
the approach regression veri�cation. The �rst part of the work is to apply an algorithm
called localization reduction which abstracts a model P relative to a given property ϕ.
That is, the algorithm determines the part of P which is relevant for the corresponding
property ϕ, and from this it builds a reduced model P ′, which is smaller than P and
thus computationally simpler. The basic idea of this reduction is the application of
the language inclusion of automata theory, where an automaton P ′ is a reduction of
P , if L(P) ⊆ L(P ′). Further, P ′ is obtained from ϕ and P, such that it is correct by
construction, i.e. L(P ′) ⊆ ϕ holds. The second part targets the problem of storing the
models: The reduced models are saved by the use of hash functions. With these functions
only the hash value of the reduced models are stored. If changes occur, the corresponding
(new and old) hash values are compared to determine whether the veri�cation result is
a�ected.
The result of their work is that the computations of reduced models together with the

computations and the checks of the hash values is less complex than the original checks
determining whether a system satis�es a given property. Moreover, the storage of models
is omitted, as only the corresponding hash values are stored. The approach has been
implemented in a veri�cation engine called COSPAN. The idea of the work of [KHM+96]
is closely related to this thesis. The authors do only check a part of a given model. In
contrast to this thesis, this is realized by building a new abstract model which is su�cient
to re-check a given property. Our approach does not need to calculate an abstract model
as it is able to determine indirectly a�ected parts of the given architecture, which then are
re-checked. Further, the authors realize a holistic analysis, whereas the impact analysis
on the speci�cation level of this thesis operates in a compositional manner.
The approach of [BLN+13] targets the CEGAR-based (Counterexample-Guided Ab-

121

4. Contract-based Impact Analysis

straction Re�nement) veri�cation approaches: In the basic CEGAR approach �rst an
appropriate abstraction is searched, which is detailed enough to not cause a spurious
counterexample � i.e. a trace produced by the abstract model which violates the prop-
erty but is not in the trace set of the original model � and coarse enough such that
the veri�cation of the abstraction is simpler than the original model. This level of ab-
straction is called precision information. The CEGAR approach starts from a coarse
grained model (e.g. where all information is abstracted) and re�nes the model until the
property is veri�ed and no spurious counterexample could be found. Within this re�ne-
ment process constraints to the abstract state space are derived, which prevent that the
spurious counterexamples can be produced. When changes in the program occur, the
whole process has to be repeated. The authors target this problem by storing the pre-
cision results from CEGAR and make these available, if a repetition of the veri�cation
has to be performed. With the loaded precision information the initial abstract model
is generated. This approach helps to signi�cantly reduce the number of re�nement steps
of CEGAR, which is a costly operation according to the authors. The authors extended
an existing veri�cation framework to realize their approaches and used a Linux device
driver to evaluate their approach. The general idea is related to our approach: Already
computed results are stored and loaded whenever re-checks are necessary. In contrast
to our approach, the focus of [BLN+13] is on the minimization of applying re�nement
steps to determine an adequate level of abstraction after changes are applied. Thus, the
approach targets the re-computation of the abstract model and then to perform a holistic
analysis on the basis of this model.
The work of Beyer and Wendler [BW13] deals with di�erent strategies to reuse veri�-

cation results, which are the conditional model checking, the veri�cation witnesses, and
the precision reuse already illustrated above. The conditional model checking approach
targets to use partial veri�cation results of previous veri�cation runs, in cases where the
veri�cation tool could not fully complete the veri�cation because of e.g. memory exhaus-
tion. The original approach was introduced in [BHKW12]. The idea of this technique is
to perform the veri�cation iteratively. For this, it is speci�ed which parts of the system
should be analyzed. This is realized by constraining the input of the veri�cation tool.
The veri�cation tool analogously delivers a condition which describes the part of the sys-
tem, which has been analyzed. This output condition then serves as an input condition
for the next veri�cation run, which omits to re-verify the already analyzed part. Using
this approach di�erent veri�cation engines could be combined by calling them sequen-
tially or combining them by partitioning. In the former case the output condition of the
�rst engine servers as an input condition of the second engine. In the latter case, the
state space is partitioned and each veri�cation engine is started with its input condition
represented by the corresponding partition. This approach is closely related to our tim-
ing analysis approach of Chapter 3, where we iterate through the resources of a given
architecture and use the veri�cation results of a resource as an input for the veri�cation of
a dependent resource. In the context of the impact analysis methodology we will extend

122

4.2. Related Work

this approach in this chapter to re-use already analyzed resources by storing and loading
the state spaces. In contrast to [BW13] we focus on timing properties, whereas the work
of [BW13] targets the veri�cation of functional properties.
The veri�cation witnesses of [BW13] targets the re-veri�cation of witnesses, which

could be positive or negative. In the paper the re-veri�cation is performed by using a
counterexample returned from the veri�cation program, thus checking if it is still valid
in the changed program. For this, the generated counterexample has to be machine-
readable. The result of the authors is that the reuse of veri�cation results can save
time and memory needed by the used model checker. They claim that a standardized
format to represent the veri�cation results is needed in order to combine veri�cation tools
e�ectively. Storing witnesses is not in focus of our work, but is an interesting approach
to extend our impact analysis methodology: If a given system violates a property, a trace
leading to a bad state is stored. After changes are applied to the system, the validity of
the stored trace could be checked before the actual veri�cation is triggered. If the system
does still exhibit this trace, the veri�cation could be saved, as the system still does not
satisfy the property.
The authors of [OGR14] have investigated the bene�ts and limitations of a localized

change management process. Similar to this thesis, contracts are used to identify design
elements, which are a�ected by a change. The authors focus on the change management
process, where a set of standard tools like Doors are integrated. Changes on the model
entities within these tools are witnessed by their prototype implementation, which then
triggers the needed V&V activities. In contrast to our work, they focus on the change
management process and on functional safety properties, while the focus of this work
is on the analysis. The approach of [OGR14] could be seen a preceding process which
triggers our approach and delivers a list of changed artifacts of the underlying system
architecture.
In the previous subsection the contract veri�cation tool Ocra was mentioned. This

tool is also a related work for the impact analysis part, as a feature of Ocra is the
reuse of components and their implementations by a library functionality [CDT13]. If an
implementation is reused from the library, model checking against its context contract
can be omitted by checking whether the contracts, which the implementation ful�lls,
re�ne the contract of the new context. This is closely related to our impact analysis
approach: If the contract of the implementation changes, either a re-veri�cation of the
component itself is necessary, or it is su�cient to do the re�nement check between the old
and the new contract. In contrast to our work, the approach is restricted to discrete-time
LTL contracts.

4.2.3. Contribution of this Chapter

As discussed in the last sections, automatic re-veri�cation has been the target of a couple
of works in the literature. What is missing is an integrated overall impact analysis

123

4. Contract-based Impact Analysis

o31

τ11

τ12 τC1

τC2

ECU 1

CAN Bus
i11

τ21

τ22

ECU 2

τ31

τ32

ECU 3

i12

i21

i22

o32

A: i12 occurs each 100ms

G: Whenever i12 occurs o31 occurs within [60,80]ms

iC1

iC21

G: Whenever iC1 occurs i31 occurs within 10ms

i31

i32

A: i12 occurs each 100ms with jitter 2ms

G: Whenever i12 occurs iC1 occurs within 20ms

G: Whenever i31 occurs o31 occurs within 10ms

Sub-System A

A: i21 occurs each 100ms

G: Whenever i21 occurs o32 occurs within [50,60]ms

CAN Bus

τC3

...

...

...

iC22

...

Sub-System B

A: i31 occurs each 100ms with jitter 50ms

A: iC1 occurs each 100ms with jitter 30ms

C1 C2

C3

C5

C4

Figure 4.2.: System architectures of interest.

methodology for dense time systems and the application of the contract theory. This
methodology shall be intuitive to use for system designer without the need to learn new
formalisms or in-depth details in veri�cation techniques.
Our approach applies the contract theory and standard component-based design tech-

niques such that a system can be captured in an intuitive manner. By using contracts
our impact analysis is able to operate in a compositional manner, as parts of the system
annotated by context assumptions and guarantees to its context can be treated com-
pletely in isolation. Our approach does not need to calculate an abstract model to verify
timing properties. It is able to determine indirectly a�ected parts of the given architec-
ture, which then are re-checked. Further, the timing analysis approach of Chapter 3 is
integrated in the impact analysis methodology, such that besides speci�cation aspects
also implementation aspects can be veri�ed by using the same formalism.

4.3. Impact Analysis Methodology

Every time a change in the design of a system occurs or requirements are changed during
the development process of a system, a re-veri�cation of its properties has to be performed
to ensure correct functionality. To minimize the e�ort of re-veri�cations, it is desirable to
reuse previous analysis results, which still do hold after performing changes to the design.
For this, parts of the overall design have to be determined, which were not a�ected by
the changes. This section targets the minimization of such re-veri�cations. Thereby,
the focus is on timing properties. For this, the state-based timing analysis technique
introduced in Chapter 3 is extended by an impact analysis approach. Two abstraction

124

4.3. Impact Analysis Methodology

levels are de�ned, which could be a�ected by changes, which are the speci�cation level
on the one hand, and the implementation level on the other hand.
On the speci�cation level a virtual integration checking technique is introduced through

the concept of reachability analysis of timed automata. Suppose that the speci�cation of
a system component in terms of assume/guarantee style contracts shall be replaced. If
the new contract of the adapted speci�cation re�nes the previous contract, the internals
of the new component itself need to be checked. Thus, the e�ects of such changes are
kept local, and only a part of the overall architecture has to be re-veri�ed. Of course, if
the contract of a component is completely replaced, it has also be checked whether the
new speci�cation is consistent with its context.
If resources are not annotated by contracts, on the implementation level state transi-

tion systems describe the behavioral interfaces between dependent resources. For such
cases, an appropriate re�nement relation between these state transition systems on the
interfaces of resources is de�ned. With this notion of re�nement, re-veri�cations of parts
of the system on implementation level can be avoided.
Both complete speci�cations, which fully describe the interfaces between all compo-

nents, and incomplete speci�cations, where the interface descriptions of only a subset of
components is given, are considered in this thesis. In a design process incomplete speci�-
cations are quite typical as some properties of parts of a system may be obtained in later
design steps. A complete interface speci�cation is given for e.g. the task chain τ12, τC1, τ31

in the architecture of Figure 4.2: The assumptions of the contracts of ECU1, CAN Bus,
and ECU3 describe the activation behaviors of the corresponding tasks τ12, τC1, and τ31.
That is, the local contracts C3, C4 and C5 can be veri�ed locally without considering
any behavior of the systems from their contexts. If the system speci�cation is complete
the virtual integration checking technique allows us to determine the impact of changes
which may occur during the development process of a system without the consideration
of any implementation detail.
For incomplete speci�cations a re�nement check of the behavioral interfaces of the

resources, which are determined by the iterative timing analysis technique illustrated in
Chapter 3, is performed. An example of an incomplete speci�cation is the task chain
τ21, τC2, τ32 in the same architecture of Figure 4.2. For this task chain only an end-
to-end latency constraint is speci�ed. To analyze the end-to-end latency constraint for
such cases, the state-based analysis approach of Chapter 3 is applied. If changes in the
architectures occur, the approach is able to handle these appropriately. For this, during
the iterative analysis the veri�cation results are stored and can be reused in later design
steps.
Generally, in a design process both approaches are exploited in combination: When a

component is replaced, the new component has to be integrated in the existing context,
i.e. the impact on the speci�cation level has to be determined. In a second step, the
impact on the implementation level as described above has to be checked and the neces-
sary re-veri�cations have to be performed. By applying the introduced impact analysis

125

4. Contract-based Impact Analysis

approach such re-veri�cation steps can be reduced on both the speci�cation level and on
the implementation level.

Figure 4.3.: Impact analysis methodology - Left: General control �ow; Right: Integration
of veri�cation techniques.

The general control �ow of the impact analysis methodology is illustrated in the left
part of Figure 4.3. As the input a (possibly empty) list of all changed components of the
system under design is passed to the process. This list contains all components, which
were either structurally changed or their contracts were changed. The list is empty, if
the system is analyzed the �rst time.
First, the components in the list L are put into an order by a procedure called Sort.

The algorithm puts the components �rst in a top-down order, i.e. components on a higher
abstraction level are treated �rst. Note that a component consists of either resources or
is composed of subcomponents. These subcomponents are again composed of a set of
components or resources. It is assumed that a component does not consists of a mixture
of resources and composed subcomponents. On the resource level, the order to handle
the resources is determined by the task dependencies. For instance, resource Ri contains
the task ti and is a�ected by a change. The resource Rj contains the task tj which
(directly or indirectly) depends on ti. Then, �rst Ri has to be handled before Rj . Note
that for parts of the considered system consisting of resources with cyclic dependencies
no order can be derived. As stated in Chapter 3 these parts have to be treated in a

126

4.3. Impact Analysis Methodology

holistic manner.
For the contract level, an order is not relevant, as the explicitly speci�ed assumptions

allow us to perform veri�cations locally.
The logic called Impact Analysis then has the general control over the applied tech-

niques illustrated in the right part of Figure 4.3, which are on the speci�cation level the
virtual integration check (VIC) consisting of the re�nement and the composition check,
and on the implementation level the iterative timing analysis and the re�nement check
on computed state spaces. The control �ow of this procedure is detailed in Figure 4.4.

Figure 4.4.: Impact Analysis procedure for a component N .

Let N be the �rst selected component by the Impact Analysis algorithm. If the speci-
�cation of N is changed, the left branch is taken, else the right one. It is assumed that if

127

4. Contract-based Impact Analysis

the speci�cation is not changed, the component N is either a resource or a composition of
resources. In such a case the changes on N concern the implementation aspects, and the
procedure Perform Impact Analysis on Implementation Level is called, which consists of
the timing analysis and the re�nement check on state transition systems as described
above. Within this procedure, the timing analysis is performed for the directly a�ected
components. Thereafter, it is checked whether the new computed state spaces of the
a�ected resources re�ne the previous state spaces (computed before the corresponding
change occurred). If the new state spaces do re�ne the previous ones, then the depen-
dent resources do not need to be veri�ed. The techniques on this level are detailed and
addressed in Section 4.5.

If a change concerns the speci�cation then the left branch is taken, where it is �rst
checked, whether the new contract of N re�nes its old contract. If the re�nement holds
(and thus the guard Is re�nement in the �gure evaluates to true), the context of N is
not a�ected, and only the internals of this component have to be veri�ed. If thereby the
decomposition structure of N is completely speci�ed by contracts, the virtual integration
check of N and its decomposition structure has to be veri�ed. That is, it is checked,
whether the contracts of the decomposition structure do �t to the new overall contract
of N. Otherwise, if the decomposition structure has not a complete speci�cation, the
impact analysis on the implementation level is triggered, which was already described
above. Note that if the decomposition structure is not complete, it is assumed that this
structure corresponds to a set of resources. This is no restriction to the general case, but
facilitates the description of the approach. Note that if only the guaranteed end-to-end
latency of N is changed, only a look-up in the state spaces of the last resources has to
be performed to verify whether the new latency guarantees are still ful�lled. Otherwise,
if the assumptions like task activation times are changed, the timing analysis has to be
repeated for a�ected resources.

Otherwise, if the change of N is not a re�nement, the composition to its dependent
resources could be a�ected such that the virtual condition check has to be performed for
its context, which is obtained by the method context(N) in the �gure. Note that if for
the component no context is de�ned, the method context(N) returns nil and the VIC is
skipped. If this check does not fail, further the internals of the component need to be
checked as already described.

For the overall component of N (obtained by the method N ′ :=context(N)) the VIC
has only to be performed once. If there are several subcomponents of N ′ with changed
contracts in a non-re�nement manner, the logic would call the same VIC several times,
which is not necessary. To prevent this repetition of the VIC, a �ag is set for a component
N ′, when the VIC for N ′ is called the �rst time.

The applied analysis techniques of this branch are detailed in the next section.

128

4.4. Impact Analysis on Speci�cation Level

As illustrated in the left part of Figure 4.3 the Impact Analysis procedure operates
until all components in the change list are handled.
Note that if an analysis like the VIC determines that a property is not ful�lled, the

process terminates in a fail state, which indicates that the process is terminated (with an
appropriate error message). In this case, the changes violate some integration aspects or
the implementation is not able to ful�ll the new guarantees under the new assumptions.
In the next sections, all referred techniques will be illustrated. Note that the introduced

impact analysis approach was previously worked out and published in [GHSR14].

4.4. Impact Analysis on Speci�cation Level

As previously stated, the speci�cation of a system is subject to change. At early stages of
the design process details are not known such as the complete scope of the functionality or
architectural decisions which may a�ect certain performance aspects. Some requirements
may arise during the development process which were not considered at �rst. During the
design process such details get more and more concrete, which typically lead to changes
and re�nements of existing requirements.
In this thesis requirements are speci�ed by the usage of assume/guarantee style con-

tracts. If the contract of a component N is changed and the new contract re�nes the
previous one, only the internals of N need to be re-veri�ed as its context is only a�ected
in a positive manner, which means that all properties still do hold. If N is decomposed
in subcomponents with local contracts, it has to be checked whether the new component
contract is still ful�lled by the composition of the contracts of all subcomponents. As an
example, consider the following contract (AK , GK) of a component K:

(AK) sensorin occurs each 10ms

(GK) Whenever sensorin occurs, actuatorout occurs during [0, 50]ms

Suppose the guarantee is changed as follows:
(G′K) Whenever sensorin occurs, actuatorout occurs during [0, 30]ms

The component K with its new contract (AK , G
′
K) will deliver its output signal to its

dependent components not later than 30ms anymore after activation. As the dependent
resources are already able to handle the time interval [0, 50], they are also able to handle
the new interval. Thus, there is no need to analyze this property. On the other hand,
the internal implementation of K has now to realize this stricter timing latency. It has
to be checked, whether there exist scenarios, in which the timing latency of 30ms cannot
be met.
Otherwise, if the new contract is not a re�nement of the old one, an additional consis-

tency check with all dependent parts of the system has to be performed. Thus, it has to
be re-veri�ed whether the component can be virtually integrated to its intended context.

129

4. Contract-based Impact Analysis

Such a virtual integration check operates on the speci�cation level of a system without
the need to consider all implementation details at once.
In the case where a part of the system is changed, and the system is fully speci�ed,

the introduced approach is able to keep the e�ects of changes local such that only a part
of the whole architecture has to be re-veri�ed.
For such scenarios a timed automaton-based approach is introduced in this section,

with which it is possible to automatically validate virtual integration aspects. This inte-
gration encapsulates the correct composition of components with respect to their contract
speci�cations, and the correct re�nement of a higher level contract. The corresponding
condition for this was introduced in Subsection 2.4.1. Next, relevant properties of con-
tracts will be inspected, which are directedness and saturation. From these properties the
simpli�cation of the original virtual integration condition will be derived, which enables
the usage of timed automata to realize an appropriate veri�cation approach.

4.4.1. Simplifying the Virtual Integration Condition

In Subsection 2.4.1 the virtual integration condition was introduced. This condition sum-
marizes the composition and re�nement checks of components, which have to be applied
when components are decomposed to a set of interconnected subcomponents to guarantee
correct interaction and the consistency of the system speci�cation. Unfortunately, this
condition includes negations. As a timed automaton approach shall be applied in this the-
sis to verify this condition, and timed automata are not closed under complementation,
this section deals with the simpli�cation of this property by using some characteristics
of contracts.

Saturated Contracts

In De�nition 12 it was already stated that the implementationM of a component satis�es
a contract C = (A,G) of that component, if [[M]] ⊆ [[¬A]]∪ [[G]]. From this, the maximal
possible allowed behavior of a component can be directly derived, which corresponds to
the following:

[[Mmax]] = [[¬A]] ∪ [[G]]. (4.1)

This was the topic of [BCN+11] where the term saturated was de�ned for contracts.

De�nition 24 (Saturated Contracts). Let C = (A,G) be a contract, where A, G are
assertions over the interface I with I(A) ⊆ I(G). C is saturated, if [[G]] ⊇ [[¬A]].

Note that for an assertion E the function I(E) determines the set of ports, over which
it is de�ned. A contract is saturated, if the behavior which is not captured by the
environment assumption is included in the guarantee of the component. In [BCF+08]
this property is called canonical , as the maximal allowed behaviorMmax is unique. Each

130

4.4. Impact Analysis on Speci�cation Level

contract can be transformed to a saturated one (canonical form) by adding all traces of
[[¬A]] to the guarantee.
For instance, consider a component with an input port in and an output port out.

Let the component compute the square root of the values received on the input port,
i.e. out =

√
in. The component is further annotated by a contract, where its assumption

states that the values on the input port shall be greater than or equal to zero. The
contract is saturated, if (besides the allowed input values) the guarantee de�nes also a
(default) behavior for negative input values, e.g. out = NaN if in < 0.
This property of contracts simpli�es the virtual integration condition. If all sub-

contracts Ci of a composite are saturated, the �rst condition of the virtual integration
condition (cf. Lemma 3) simpli�es to

A ∧G1 ∧ · · · ∧Gn ⇒ A1 · · ·An.

This is exactly what we want to achieve, i.e. to get rid of the negation part of this
constraint. Unfortunately, if the sub-contracts are not in saturated form, we have �rst to
transform the guarantees, i.e. we have to extend the guarantee parts with the negated
form of the corresponding assumptions. E�ectively, we did not achieve anything, as the
negation part has still to be taken into account when performing veri�cations. We only
shifted the terms including negations into the guarantee part.

Receptiveness and Directed Contracts

Contracts are typically a black-box speci�cation formalism and restrict the observable
behavior of components. Speci�cations restrict the port valuations of components with-
out distinguishing between input and output ports of the corresponding component.
Thereby, input ports should be controlled by the environment while the valuations of the
output ports should depend on the behavior of the component itself. During the design
stage problems could arise if this distinction is not performed in a consistent fashion,
such that a guarantee is speci�ed, which restricts possible behavior of the input ports,
or analogously the assumptions restrict the components output ports. Such contracts
de�ne faulty speci�cations, as the component is not responsible for the input behavior,
and the environment is not responsible for the component behavior.
As an example let requestData be an output port and dataIn be an input port of

a component. Consider the following two assumptions captured by an R3 pattern (cf.
Subsection 2.4.2):

• A1 : Whenever requestData occurs, dataIn occurs during [5,10]

• A2 : Whenever dataIn occurs, requestData occurs during [5,10]

A1 is receptive on the output port requestData as it allows occurrences of events on that
port on arbitrary points in time. In contrast to this, A2 is not receptive as it would make
restrictions to the component behavior.

131

4. Contract-based Impact Analysis

To distinguish the responsibilities of the assumptions and guarantees, in [BCF+08,
BBB+11] the de�nition of receptiveness was introduced, which is illustrated in the fol-
lowing.

De�nition 25 (Receptiveness). Let I be a directed interface, Φ ⊆ L(I) = (Iω × T) a
set of traces over I, and I ′ ⊆ I. Φ is called receptive on I ′, if it is non-empty and for all
traces σ ∈ Φ and for all n ∈ N the following holds:

∀ρ ∈ L(I). pre(ρ, n) = pre(σ, n) ⇒ ∃σ′ ∈ Φ. pre(σ′, n) = pre(ρ, n) ∧ σ′↓I′ = ρ↓I′ .

This condition states that if an arbitrary trace ρ in the (complete) trace set L(I) is
considered, any trace σ in Φ with an identical pre�x can be arbitrarily extended with
respect to the ports of I ′. Thus, the trace set states no restrictions to the ports of I ′.
In the following, an example for a non-receptive contract will be given to ease the

understanding of this property. Consider a component with two input ports i1, i2 and an
output port o. The guarantee of the component restricts input ports in such a way that
always i1 should occur before an occurrence of i2. Let σ ∈ L(G) with pre(σ, 1) = o and
let σ′ ∈ L(I) with pre(σ′, 2) = o · i2. There exists a pre�x (n = 1) such that the left part
of the implication of De�nition 25 is true, but the right can never be true as there is no
trace in L(G) which can be extended in a way like σ′.
By applying the receptiveness property to the assumption and guarantee parts of

contracts, one can adequately distinguish the responsibilities of the input and output
behaviors of a component. Such contracts are called directed .

De�nition 26 (Directed Contract). A contract C = (A,G) over an interface I is di-
rected, if A is receptive on out(I) and G is receptive on in(I).

Note that in the following the notions in(I) and out(I) will be abbreviated to in and
out respectively, if the port set I is clear from the context.
For directed contracts the following corollary is derived:

Corollary 1. Let C = (A,G) be a directed contract over an interface I = in ∪ out. If
in ⊆ I(A) then L(in) = [[A↓in]] ∪ [[¬A↓in]] (and analogously for the guarantee part).

If an assumption restricts all input ports of a corresponding component, all possible
words over the input ports is obtained by taking the union of the set of traces described
by the assumption and its negation.
For a directed contract C it holds that the guarantee does not restrict the language

given by the assumption, and vice versa the assumption does not restrict the set of words
de�ned by the guarantee. Thus, the following properties are obtained:

A↓in ∩G↓in = A↓in and A↓out ∩G↓out = G↓out . (4.2)

132

4.4. Impact Analysis on Speci�cation Level

To simplify the virtual integration condition, assume that only such architectures are
considered, where the guarantees are pairwise receptive on each other, i.e. no guarantee
restricts the language of the other guarantees.
Further, the following corollary is needed.

Corollary 2. Let A,B be assertions over the interfaces ΣA,ΣB respectively. Then like
in propositional logic the following holds regardless of the cut set between ΣA and ΣB :

A↑ΣB ∪ (A↑ΣB ∩B↑ΣA)⇔ A↑ΣB .

Proof. The trivial case for this is given, when both interfaces are equal, i.e. ΣA = ΣB.
Let X = ΣB\ΣA and Y = ΣA\ΣB non-empty port-sets. Then according to Lemma
1 (A↑X)↓X ⊇ B↓X holds. Analogously, we get (B↑Y)↓Y ⊇ A↓Y , but (B↑Y)↓Y ∩ A↓Y =
A↓Y .

With these ingredients, the following theorem is derived.

Theorem 4. Let C = (A,G) be a directed contract over an interface I, and Ci = (Ai, Gi)
with i ∈ {1, ..., n} a set of directed sub-contracts over the interfaces Ii with pairwise
receptive guarantees. Then the �rst condition of the VIC of Lemma 3 can be simpli�ed
as follows.

A ∧G1 ∧ ... ∧Gn ⇒ A1 ∧ · · · ∧An.

The proof is performed for n = 2 which is no restriction to the general case but is
easier to handle.

Proof. Let C = (A,G) be a directed contract over I, C1 = (A1, G1), C2 = (A2, G2)
directed sub-contracts with pairwise receptive guarantees over I1 and I2 respectively.
According to Lemma 3 the following proof obligation is obtained:

(A ∧ ¬A1 ∧ ¬A2) ∨ (A ∧ ¬A1 ∧G2) ∨ (A ∧ ¬A2 ∧G1) ∨ (A ∧G1 ∧G2)⇒ A1 ∧A2.

In order to reduce the left part to only the expression (A ∧ G1 ∧ G2), it has to be
shown that all the other sub-expressions are subsets of this expression. Let Iasmp =
I(A) ∪ I(A1) ∪ I(A2), Igrnt = I(G1) ∪ I(G2), and Icmpl = Iasmp ∪ Igrnt.
Let us �rst focus on the �rst sub-expression (A∧¬A1∧¬A2). The subset relation does

only hold for the interface Iasmp, and not for Icmpl, i.e. (A↑Iasmp ∩¬A1↑Iasmp¬A2↑Iasmp) ⊆
A↑Iasmp ∩G1↑Iasmp ∩G2↑Iasmp : Because of the receptivity property it holds that A↑Iasmp =
A↑Iasmp∩G1↑Iasmp∩G2↑Iasmp . According Corollary 2 it also holds that A↑Iasmp ⊇ A↑Iasmp∩
¬A1↑Iasmp ∩¬A2↑Iasmp . From this, it can be followed that the above expression does hold
for Iasmp. To conclude the proof for this expression, we have further to inspect the words
on Igrnt: As A is receptive on Igrnt it holds that A↑Igrnt = L(Igrnt). But this also holds for
the RHS of the veri�cation condition, i.e. A1↑Igrnt = A2↑Igrnt = L(Igrnt). Because of this,
it is valid to simplify the veri�cation condition by leaving out the term A ∧ ¬A1 ∧ ¬A2.

133

4. Contract-based Impact Analysis

Secondly, consider (A∧¬Ai∧Gj) for i, j ∈ {1, 2}, i 6= j. As the guarantees are pairwise
disjoint, and ¬Ai ∧ Gj ⊆ Gj holds, we can directly derive that (A ∧ ¬Ai ∧ Gj) ⊆
(A ∧G1 ∧G2) holds. This concludes the proof.

Next, the relation between directed and saturated contracts are inspected.

Relation between Saturated and Directed Contracts

Originally, the goal was to show that directed contracts are also saturated, which would
have allowed to apply all formulas that are valid for saturated contracts also for directed
contracts without any further architectural assumptions mentioned in the previous sec-
tion. Unfortunately, it turned out that none of the properties implies the other.
For this, let us consider a directed contract C = (A,G) over the interface I. If C is

also saturated, its guarantee would include the negated assumption, i.e. G = ¬A↑out(I) ∪
G′↑in(I)

, where G′ is the part of the guarantee without the assumption part. Indeed,
the part A↑out(I) does not restrict the output ports, but possibly could add non-allowed
behavior � with respect to the guarantee � to these ports. Note that this non-allowed
behavior is consistent with the semantics of the contracts, as (false ⇒ false) is true.
To illustrate the above reasoning, counter examples for both implications are given.

Note that the following assertions are speci�ed by LTL expressions. Let I = {i, o} be an
interface, where i is an input port, and o is an output port.
Consider the assumption A : �(o = 2) and the guarantee G : �(o = 2 ⇒ i = 0).

Clearly, since ¬A ⊆ G holds, the contract is saturated. However, it is easy to see that
neither A is receptive on the output port, nor G is receptive on the input port.
For the second implication, consider the assumption A : �(i = 0) and the guarantee

G : �(o = 2). A is receptive on the output port and G is receptive on the input port.
Consider a trace satisfying the condition i = 1 ∧ o = 3. The trace is contained in the
language ¬A but not in G. Thus, the contract is not saturated.

4.4.2. Timed Automaton-based Analysis Approach

In this section a technique to check the re�nement and virtual integration condition of
contracts as introduced in Subsection 2.4.1 is presented. For this, all contracts of the
corresponding system under analysis are translated to Uppaal timed automata [LPY97],
and a reachability check of states violating any properties [ABL98] is performed. This
technique is inspired by so called observer-based analyses in literature: Properties are
expressed by employing the same formalism as the system. The system is then extended
by the resulting component. This new component is also called observer or monitor in
literature. Such a component passively observes the relevant behavior of the system and
detects faulty behavior with respect to the speci�ed property.

134

4.4. Impact Analysis on Speci�cation Level

The introduced checking technique was initially introduced in [GWG11] and [GWO14].
For the analysis approach, it is assumed that the speci�cation of a system or a component
consists of either a single contract or a set of directed contracts.

From Contracts to Timed Automata Networks

To validate the condition of Theorem 4 trigger and observer automata are derived from
the corresponding parts of the contracts of the overall component and all of its subcom-
ponents. For all parts of the contracts appearing in the left part of the implication of
the formula of Theorem 4 trigger automata are derived, which produce the behavior as
speci�ed in their assertions. All assertions of the right part of the formula serve as passive
observer automata, which react to the trigger automata.
Let C = (A,G) be a contract of an overall component and let Ci = (Ai, Gi) for

i ∈ {1, ..., n} with n ∈ N>0 be a set of contracts of the subcomponents. C will be
referred to as global contract, and the Ci to as local contracts in the following. To
check the condition of Theorem 4, a timed automaton OAi is derived out of each local
assumption Ai for i ∈ {1, ..., n} serving as passive observer. Further, a timed automaton
OG is derived out of the global guarantee G. The transitions of each OAi for i ∈ {1, ..., n}
and OG are annotated with receiving events and clock constraints in such a way that the
observers accept the set of timed traces which are element of [[Ai]] and [[G]]. For all traces
which are not element of [[Ai]] (or [[G]]) the corresponding observer enters a bad state.
Further, an automaton TA for the global assumption A and an automaton Ti with

i ∈ {1, ..., n} for each local guarantee is derived. These automata serve as trigger for the
observer automata. The transitions of TA are annotated with sending events and timing
constraints, such that TA produces all traces that are element of [[A]]. The automata for
the local guarantees consist of both receiving and sending events (see next section for
details and examples) and are called transceiver automata in the following.
From all automata the automaton network

S = TA ‖ T1 ‖ . . . ‖ Tn ‖ OA1 ‖ . . . ‖ OAn ‖ OG

is built.
If one of the trigger automata produces a sequence which is not an element of [[A1 ∧

...∧An]] � and therefore the subset inclusion property of the local assumptions is violated
� or not an element of [[G]] � where the subset property of the global guarantee is violated
� a corresponding observer will enter a bad state. Then, S has to be checked against the
following Uppaal query, which is a timed computation tree logic (TCTL) formula:

R1 = A�(¬ OA1 .bad ∧ ... ∧ ¬OAn .bad ∧ ¬OG.bad) (4.3)

This formula states that a bad state of any of the observer is never reached.

135

4. Contract-based Impact Analysis

To save some states the bad states and all the transitions to the bad states of the
observer automata can also be omitted. Then, instead of checking the reachability of a
bad state, it is checked whether the automaton network S is deadlock free:

R2 = A�(¬ deadlock). (4.4)

Further, it has to be veri�ed, whether the transceiver automata are ever triggered, i.e.
�nally leave their initial states. So, if T is a transceiver automaton and s0 is its initial
state, the following property is checked:

R2 = A♦(¬ T.s0). (4.5)

This property states that the automaton T has �nally reach some states, which are
di�erent from its initial state.
If the automaton network satis�es Formula 4.3, i. e. when S |= R, it has been shown

that the system architecture annotated with the local contracts can be virtually inte-
grated in the context of the system with the global contract. In other words, the set of
local contracts re�nes the global contract.

From RSL to Timed Automata

To enable an automatic virtual integration check for contracts, where the assumptions
and guarantees are speci�ed by the usage of RSL patterns as introduced in Subsec-
tion 2.4.2, these pattern have to be transformed to a formal model. In this work, these
patterns are transformed to timed automata. The resulting automaton network is then
checked against the properties speci�ed in the previous subsection.
The R1 -pattern specifying the periodic occurrence (with some jitter) of an event is

typically used as a trigger to the rest of the system. For example, event streams de�ning
the activation of independent tasks can be speci�ed with the aid of this pattern.
Considering a jitter less than or equal to the period timed automata are derived which

are illustrated in Figure 4.5: The left automaton speci�es the trigger, the center the
observer, and the right the observer automaton pattern containing an explicit bad state.
According to standard event streams as introduced in the real-time calculus [TCN00] the
initial event is �red within the interval [0, period], and each successive event is �red every
period time unit.
Note that there is an event called on which is �red from the trigger automaton and

consumed by the observer. This event is necessary to synchronize both automata such
that the duration in states with respect to the period and the jitter can be distinguished.
By �ring the event on the trigger indicates that it is ready to generate the �rst event
of the represented event stream (after possibly a delay of jitter time units). If these
automata would be left asynchronous, the observer would not know when the trigger
switches to the state releasing. After the trigger has switched to its releasing state, it

136

4.4. Impact Analysis on Speci�cation Level

wait
clk <= p

releasing

clk <= j

S0

clk <= p

clk >= p

clk := 0 e!

on!

clk := 0

wait
clk <= p

releasing

S0

clk >= p

clk := 0
clk <= j
e?

clk <= p

on?

clk := 0

bad

wait
clk <= p

releasing

S0

clk < p
e?
clk := 0

clk > p
clk := 0

clk > p
on?
clk := 0

clk > j
e?
clk := 0

clk > j
clk := 0clk >= p

clk := 0
clk <= j
e?

clk <= p

on?
clk := 0

Figure 4.5.: Automata for R1 -pattern � Left: Trigger automaton; Center: Observer au-
tomaton; Right: Observer with explicit bad state.

can immediately take the transition to its state wait �ring an event e. As the observer is
still in its initial state, it misses this event. This would even lead to a deadlock, as there
does not exist any automata which are able to consume the event e.
In contrast to the trigger automaton, the initial state of the observer has no invariant.

An invariant enforces the corresponding automaton to leave its state after the de�ned
upper bound of time. As an observer is a passive entity, which shall only react on behavior
generated by trigger automata, this should not happen. If the initial state of the observer
would have an invariant with an upper bound less than the period, the observer could
force the trigger to take the transition to the state releasing. An exception of the usage
of invariants for observer is given, if the automaton does neither produce nor consume
an event on an outgoing transition of a state and shall leave this state in a speci�c point
of time. This is the case for state wait.
The right automaton of Figure 4.5 is the extended version of the already explained

observer automaton with respect to a bad state. The bad state is entered, whenever the
trigger does either �re the event e too late with respect to the period (state S0) or the
jitter (state releasing), does not �re the event at all, or does �re the event too early with
respect to the period (state wait). In those faulty cases, the observer automaton in the
center of Figure 4.5 would produce a deadlock as it de�nes no behavior for such cases.
The edges to the bad state occur twice, i. e. with and without the annotation of the

corresponding event. This is because the automaton shall be prevented from getting
stuck. For instance if an event is received by the time the jitter exceeds its allowed value
and the automaton has not switched to the bad state yet, the edge annotated with the
corresponding event to the bad state is �red. From the state wait the automaton can
switch to the bad state, if the event arrives too early, and from the state releasing the

137

4. Contract-based Impact Analysis

wait
clk <= pMax

releasing

clk <= j

S0

clk <= pMax

clk >= pMin

on!

clk := 0 e!

on!

clk := 0

wait
clk <= pMax

releasing

S0

clk >= pMin

on?

clk := 0
clk <= j
e?

clk <= pMax

on?

clk := 0

bad

wait

clk <= pMax

releasing

S0

clk > pMax
clk := 0

clk > pMax

on?

clk := 0

clk > pMax
clk := 0

clk > pMax
on?
clk := 0

clk > j
e?
clk := 0

clk > j
clk := 0clk >= pMin

on?

clk := 0
clk <= j
e?

clk <= pMax

on?
clk := 0

Figure 4.6.: Automata for R2 -pattern � Left: Trigger automaton; Center: Observer au-
tomaton; Right: Observer with explicit bad state.

bad state is reached, when the jitter exceeds its allowed value.

Lemma 10. The illustrated observer (trigger) automaton accepts (generates) exactly the
traces speci�ed by the semantics of the R1-pattern in Subsection 2.4.2.

To proof this, an analysis of the observer is performed in the following.

Proof. The �rst state has to be left within [0, p] time units. Otherwise the outgoing
edge from state S0 to releasing cannot be �red as the clock is not reset in state S0.
Thus, if the synchronization event on (and with this the event e) is received too late,
the automaton does not accept the trace and deadlocks. In state releasing the input
event e must then be received within [0, j] time units. Thus, the �rst event may occur
within the interval [0, p+ j] by switching to the state wait. The transition to releasing is
�red whenever the clock reaches the period value. In the state releasing the next event
has to occur within the time interval [0, j] after entering this state. Thus, this results in
event distances within the interval [p− j, p+ j]. This exactly corresponds to the de�ned
semantics of the pattern.

The proof of the automata of all other pattern introduced in the following is performed
in a straightforward manner, and thus left out in the following.
The trigger automaton for the sporadic R2 -pattern is illustrated in the left part of

Figure 4.6 and is build similar to the automaton of the R1 -pattern. It is assumed that
the jitter is always less than or equal to the minPeriod value. The �rst event is �red
within the interval [0,maxPeriod]. Note that in the �gure pMin refers to minPeriod
and pMax refers to maxPeriod. In contrast to the automaton of the R1 -pattern each
successive event is �red within the time interval [minPeriod,maxPeriod], and possibly
delayed by some jitter. The maxPeriod parameter has always to be de�ned in order to

138

4.4. Impact Analysis on Speci�cation Level

S1

clk <= ub

S0

e1?

lb <= clk &&
clk <= ub

e2!

clk := 0

e1?

clk := 0

S1

S0 e2?

e1?

lb <= clk &&
clk <= ub

e2?
clk := 0

e1?

clk := 0
bad

S1

S0

clk > ub
clk := 0

clk < lb

e2?

clk := 0

e2?

e1?

lb <= clk &&
clk <= ub

e2?
clk := 0

e1?

clk := 0

Figure 4.7.: Automata for R3 -pattern � Left: Transceiver automaton; Center: Observer
automaton; Right: Observer with explicit bad state.

have a �nite state space. If not, some liveness properties would be speci�ed requiring
that �nally an event should be �red. This would require that an event could be sent at
arbitrary time in the future. Thus, a veri�cation must wait in�nitely long to evaluate such
a property. In the sense of timed automata this would mean that the trigger automaton
of Figure 4.6 could remain in state S0 and wait forever as S0 has no invariant which could
enforce the automaton to �nally leave the state. Thus, one would obtain an unbounded
automaton model. To bound this time frame, the maxPeriod parameter has always to
be de�ned, which translates to invariants in the states S0 and wait.

The R3 -pattern is used to specify a latency caused by, e.g., computations of some
components, or when an inputs is needed from the environment, combined with a timeout.
The �rst part of the R3 -pattern (whenever X happens) de�nes a triggering part. When
the event speci�ed in this part of the pattern is received e.g. from the environment or an
other contract, the component is responsible to ful�ll the second part of the pattern, i.e.
to send the response within the speci�ed timing bounds. Thus, in contrast to a purely
trigger automaton the R3 -pattern is translated to a transceiver automaton, which is
illustrated in the left part of Figure 4.7: Whenever an event from the environment with
respect to the assertion is received, the automaton sends an output event after the delay
interval [lb, ub] where lb, ub ∈ N. For this, the initial state consists of an output transition
annotated by the receiving event e1. On this edge the clock is reset to appropriately
determine the passage of time until the response e2 is sent.

In this thesis, only an iterative activation of all automata are considered, i. e. simulta-
neous activations are not considered. Each further activation is ignored. This is realized
by equipping state S1 with a self loop which is annotated by a corresponding receiv-
ing event. To deal with multiple activations, explicit indexes must be allocated to the
observable events. Also, the number of maximal simultaneous activations needs to be

139

4. Contract-based Impact Analysis

S3

S1

S2

S0

e12?

e11?

e12?

clk <= ub

e21!

e12?
clk := 0

e11?

lb <= clk &&
clk <= ub
e22!
clk := 0

e11?

clk := 0
S5S1 S4S2

S3

S0

e12?

e11?

lb <= clk &&
clk <= ub
e21!
clk := 0

clk <= ub
e22!

e11?

e12? e12?e11?

e11?

clk := 0

e12?

e12?

clk <= ub
e21!

e12?
clk := 0

e11?

lb <= clk &&
clk <= ub
e22!
clk := 0

e11?

Figure 4.8.: Transceiver automata for R3 -pattern with sets of events� Left: Sorted set of
events (�and then�); Right: Unsorted set of events.

known a priori, such that a corresponding number of automata can be instantiated. This
problem is similar to the one of the activation bounds of tasks of the iterative timing
analysis addressed in Subsection 3.3.2.
The corresponding observer automaton for the R3 -pattern is depicted in the center

and the right part of Figure 4.7: Whenever an event is received from the environment,
the automaton checks whether an event e2 is sent as a response. If such an event is sent
too early or too late, the automaton in the right part of the Figure 4.7 switches to its
bad state, and the one in the center causes a deadlock. The transition S1 →clk<lb bad
in the automaton in the right part of the �gure is skipped, if the lower bound is set to
zero (lb = 0), as the constraint clk < 0 is never true for a clock. Thus, such a transition
is not necessary and can be left out.
The extension of this pattern to multiple events is illustrated in Figure 4.8. Note that

only the transceiver automata without an explicit bad state are illustrated. The observer
automata and the automata with bad states are constructed analogously. The approach
is illustrated for two events respectively. The approach extends in a straightforward
manner, if more events are considered. The automata structures get the more unreadable
the more events are considered, as demonstrated later.
In the left part of the �gure the ordered event set is considered by instantiating the

following pattern type:

Whenever e11 and then e12 occurs, e21 and then e22 occurs during [lb, ub].

140

4.4. Impact Analysis on Speci�cation Level

b?

a?c?

c?

a?

b?

c?

a?

b?

c?

b?

a?

Figure 4.9.: Concept of structure for unsorted set of events within an R3 -pattern.

S1S2 S0

e2?

clk := 0

e2?
e1?

lb <= clk &&
clk <= ub

e2?

clk := 0

lb <= clk &&
clk <= ub

e1?

clk := 0

e1?

clk := 0

Figure 4.10.: Observer automaton for R4 -pattern.

In contrast to the automaton of Figure 4.7 intermediate states are introduced. When-
ever an event of the left part of the expression is received (here e11 and e12) the clock is
reset on the corresponding outgoing states. The time the last event of the right part of the
expression shall be received, the outgoing transition is annotated by the corresponding
time interval. All states are equipped by self loops to ignore multiple activations.
In the right part of the Figure 4.8 the resulting transceiver for the pattern with un-

sorted events is considered. In contrast to the other automaton, the outgoing edges are
reproduced in such a manner that all event orderings are considered. The size of the
structure gets unreadable for more events. In Figure 4.9 the plain structure for three
events of only one part of the pattern (e.g. Whenever set {a, b, c} occurs,...) is
illustrated. The size of such a part is determined by 2n where n is the number of tasks.
The usage of the R4 -pattern is restricted in such a manner that the pattern only

contains either input or output ports, but not both. Without this restriction, the re-
ceptiveness property of De�nition 25 would be violated. For instance, consider that the

141

4. Contract-based Impact Analysis

σ? σ1! σ2! ...
σn-1!

σn!
clk< 0

clk:=0
clk< 0 clk< 0

Figure 4.11.: Glue automaton reproducing an event σ for multiple observer automata.

distance between events on an input and an output port is speci�ed within the guarantee
part of a contract. If an event on the output port occurs before an event in the input
port, the guarantee would restrict the timing of this input. When specifying some delay
between input and output ports, one has to use the R3 -pattern instead.
Because of this restriction, there is only the need of an observer automaton for the R4 -

pattern, which is illustrated in Figure 4.10. The automaton consists of two symmetric
parts, which are closely related to the automaton of the R3 -pattern. The parts re�ect
the corresponding event ordering. If the event e2 is received before the event e1, the
transition from S0 to S1 is �red, and the rest operates analogous to the automaton
obtained from the R3 -pattern. The transition from S0 to S2 re�ects the other case,
when e1 is received before e2.
Events which are received by a set of automata instead of only a single one need to

be duplicated. This is actually realized by some glue logic consisting of small automata
that multiply events. Let σ be an event which is received by a set of automata A1, ..., An.
First, such an event is duplicated n-times and each copy is renamed appropriately. Here
the index of the receiving automaton is added as a post�x to the original event name, i.e.
σ1, ..., σn. Then, the transitions of the automata are adapted accordingly, i.e. the event σ
on the transitions on automaton Ai is replaced by event σi. Then, a further automaton,
called glue logic is added to the automaton network, which receives the original σ event
from the triggering automaton, and triggers the duplicated events successively as illus-
trated in Figure 4.11. The automaton has a clock variable clk which is reset whenever
the initial state is left. Except of the initial state all states of the glue automaton are
annotated with the invariant clk ≤ 0, which means that no passage of time is allowed in
such a state and thus has to be left immediately. With this, all automata receive a copy
of event σ in the same time instance. Note that such a glue automaton is created for
each event which needs to be duplicated. As no time passes in the intermediate states,
the original semantics of the automaton network is not changed.

4.5. Impact Analysis on Implementation Level

During the design process changes a�ecting the architecture of a system occur, such
as adding a new task on an existing resource, the merge of two tasks in a single one,

142

4.5. Impact Analysis on Implementation Level

or the change of the implementation of some components. If such changes occur, al-
ready performed analyses have to be repeated, increasing the time needed to verify the
functionality and properties of the design, and thus increasing the time to market.
It is required to perform an impact analysis, when changing or maintaining software.

With such a technique the designer is able to determine the additional amount of work
required to implement a change, i.e. to adapt the context of the changed part of the
system. Moreover, an impact analysis helps to identify veri�cations and test cases which
should be re-executed to ensure that the change was implemented correctly [Leh11].
The timing analysis approach introduced in Chapter 3 works in an iterative manner

rather than a holistic. Thus, this analysis approach enables to automatically determine
whether interfaces of resources are a�ected through changes. If an output interface STS
is recomputed as changes occurred on the corresponding resource, the check introduced
in the following subsection is able to determine whether it re�nes the �old� interface
computed in a previous veri�cation step. In such a case a re-veri�cation of resources
depending on this interface STS can be omitted.
In the next subsection, the logical �ow of the impact analysis approach on the imple-

mentation level is introduced. It is demonstrated in which cases a complete re-veri�cation
of a component is necessary, a re�nement check is performed, and when some of the ver-
i�cation steps can be omitted. Thereafter, the advantages of the presented approach are
discussed when further abstraction techniques are applied on the interfaces of resources.

4.5.1. Combining State-based Analysis with a Re�nement Checking
Technique

The concept of the impact analysis on the implementation level of a system design is
illustrated in Figure 4.12 in terms of a UML activity diagram. The activity diagram
details and extends the more abstract �ow which was introduced in the right branch of
Figure 4.4 where the overall impact analysis methodology was illustrated. The approach
detailed here was originally published in [GKR15].
Each resource has a status �ag for its resource state space called outputIsConsistent,

which is initially set to false. Whenever non-re�nement changes of the state space of
a resource R occur, this �ag is set to false. Otherwise, if changes occur leading to a
re�ned state space, the �ag is set to true. The intention of this �ag is to inform resources
which depend on R that the corresponding interface STS to R did change in a re�ned or
non-re�ned manner. With this information the approach is able to determine whether
the state spaces of these dependent resources have to be recomputed or can be skipped.
Thus, the approach illustrated in Figure 4.12 starts by checking this property, i.e.

whether some inputs of the currently considered resource have changed by calling the
method checkInputStatus. This method evaluates the input �ags outputIsConsistent of
all resources on which the current resource depends on as mentioned above. Note that
for resources on which only independent tasks are allocated, this check is skipped and

143

4. Contract-based Impact Analysis

checkInputStatus

checkAvailability

checkStructure

getStoredSTScomputeInputSTS

computeResource

getStoredSTS

checkRefinement

outputIsConsistentoutputIsConsistent

storeSTS

true

computeInputSTS

[[changeOccurred]

computeResource

[existing STS found]

[structural changes
occurred]

true

false true

STS

= false =true

STS

false

false true

false

[refinement]

Figure 4.12.: Methodology of the Impact Analysis (timing analysis combined with re�ne-
ment check).

the right branch is taken. Changes of properties of independent tasks are determined by
the method checkStructure detailed later. Considering resources with dependent tasks,
if changes occurred, changeOccurred evaluates to true. In this case, the computation
of the input STS (computeInputSTS) followed by the computation of the resource state
space itself (computeResourceSTS) is performed as usual. As the resource STS is newly
computed, the �ag outputIsConsistent is set to false to signalize dependent resources
that this interface has been changed. Last, the resource STS is stored appropriately.

144

4.5. Impact Analysis on Implementation Level

Otherwise, if the output STSs of all resources, from which the current resource depends
on, did not change, checkOccurred evaluates to false. In this case it is checked whether
a computed STS of this resource already exists from previous veri�cation steps, in which
the resource STS was saved (checkAvailability). If not, the left branch is taken and the
STSs have to be computed as described above. If there exists an already computed STS,
it is checked whether structural changes have occurred (checkStructure), i.e. changes con-
cerning the scheduling policy of the resource, the number and type of the allocated tasks,
and their properties which are priorities, execution times, and the activation behaviors
of independent tasks determined by their period and jitter values. If these properties
did not change, the resource STS will also be not a�ected. Thus, the existing STS is
restored by loading it from the �le system (getStoredSTS). The timing constraints are
checked and the �ag outputIsConsistent is set to true which indicates that nothing did
change on the output interface.
Otherwise, if some changes on the structure of the resource occurred, checkStructure

will return false. In this case, the input and the resource STSs of the current resource have
to be recomputed. Then, the previously computed resource STS has to be loaded, and a
re�nement check between both resource STSs has to be performed (checkRe�nement). If
the re�nement check evaluates to true, outputIsConsistent is also set to true indicating
that the resource STS changed in such a manner that all relevant properties are still
preserved. Otherwise, the �ag is set to false. Note that before the recomputation of
the resource STS is performed, the input STS of the resource has also to be recomputed
because if properties of independent tasks changed, the input STS would also be a�ected.
To store and load computed state spaces, the corresponding resources must be refer-

enceable. This is realized by allocating unique identi�ers to both the architecture and the
corresponding resources. The tool then manages a �le directory: For each architecture a
subdirectory is created, containing subfolders for each resource, in which the computed
state spaces and structural aspects are stored. Details for this technique can be found in
Appendix A.
After the impact analysis of a resource N has been performed, all dependent resources

are triggered to be also veri�ed, if N has set its outputIsConsistent �ag to false. If not,
the next resource which has been changed is considered.

4.5.2. Re�nement through Simulation Relation

In this section, a re�nement relation between state transition systems will be de�ned.
This re�nement basically is based on the timed simulation relation between the states
of the corresponding STSs of De�nition 22. It will be used to determine, whether some
recomputations have to be performed or not. If the input transition system STSin,R of
a resource R is changed in such a manner that the new input transition system STS′in,R
re�nes the original one, than a recomputation of the STS of R (and all of its successors)
can be omitted.

145

4. Contract-based Impact Analysis

A simulation relation is a rather general concept and not that restrictive like a bisimu-
lation relation. Because of this, more STSs can be found which are in simulation relation
than in bisimulation relation. With this, the potential to omit re-veri�cations is much
higher. Of course, a simulation relation does not preserve all characteristics of the original
STS, but for our analysis the relevant properties are preserved as shown in the following.

De�nition 27 (STS Re�nement). Given two symbolic transition systems STS1 = (S1,
S0

1 , C,Σ,→1) and STS2 = (S2, S
0
2 , C,Σ,→2) over the same clock set C and alphabet Σ.

STS1 re�nes STS2, if it simulates it, in short STS1 - STS2. STS1 simulates STS2, if
a simulation relation r ⊆ S1×S2 according to De�nition 22 exists such that (S0

1 , S
0
2) ∈ r.

For the timing analysis, we are interested in properties concerning upper bounds of
clocks. A transition system STS over a clock set C satis�es a timing constraint ϕ ∈ Φ(C),
in short STS |= ϕ, if and only if for all reachable states 〈l,D〉 of STS it holds that
D ⊆ Dϕ. The simulation relation preserves these properties:

Theorem 5. Let ϕ ∈ Φ(C) be a clock constraint, and STS1, STS2 be transition systems
with STS2 - STS1. It holds that if STS1 |= ϕ then STS2 |= ϕ.

The proof of this theorem is given through the transitivity of the subset relation of
zones: when for all 〈l1, D1〉 ∈ S1 D1 ⊆ Dϕ holds, and for all 〈l2, D2〉 ∈ S2 a 〈l1, D1〉 ∈ S1

exists such that (〈l2, D2〉, 〈l1, D1〉) ∈ r, then also D2 ⊆ Dϕ holds.

4.5.3. Combining Impact Analysis with Abstractions

Generally an impact analysis is useful in combination with analysis techniques that in-
volve abstractions. This is also a typical scenario for analytic techniques such as in
[RRE03]. These techniques are based on the assumption that every interface behavior
can be characterized by event streams. To obtain event streams for the outputs of a
resource, the actual task behavior is generally over-approximated.
Hence, changes on the behavior of a particular resource might indeed have an impact

on the already computed exact state space representing its output behavior, but might
not have an impact on the over-approximated output behavior of the resource. This
can be exploited by our impact analysis. This is because over-approximated behaviors
accept more traces than the original behavior. Let MR correspond to the original exact
output behavior of a resource R, and letM ′R := α(MR) be an over-approximated behavior
resulted by applying an abstraction function α onMR, such thatMR -M ′R holds. If now
some changes on R are preformed, it is more likely that the newly recomputed behavior
M ′′R of the resource re�nes the abstract behavior M ′R than the more restrictive original
behavior MR. Thus, if M ′′R does not re�ne MR, but M ′′R -M

′
R does holds, computations

of dependent resources can again be omitted. Considering more abstract behaviors on
interfaces can thus boost the minimization of re-veri�cation needs.

146

4.6. Evaluation and Case Studies

A1 (A11) triggerLineDetect occurs each 20ms
(A12) sensorHMI occurs each 20ms

G1 Whenever set{triggerLineDetect, sensorHMI} occurs,

steer_ctrl_out occurs during [0, 100]ms

Table 4.1.: Contract C1 = (A1, G1) of the driver assistance system.

A2 (A21) speed_in occurs each 20ms
(A22) distance occurs each 20ms

G2 Whenever set{speed_in, distance} occurs,

speed_ctrl_out occurs during [0, 100]ms

Table 4.2.: Contract C2 = (A2, G2) of the driver assistance system.

Nevertheless, the degree of abstraction is also crucial for dependent resources such
that suitable veri�cation results can be obtained. Event streams are considered as the
maximal abstraction of the timing behavior of a task, as these only contain information
about best- and worst-case response-times without any information in which cases the
corresponding response times occurs. For instance, a task could have a large response
time when it is interrupted by a high priority task which is allocated on the same resource,
and a small response time when no interrupts occur. This abstraction is ideal for impact
analysis approaches, but it leads to very pessimistic timing results as also illustrated in
previous sections.
An abstraction indeed might a�ect the schedulability of a depending resource and hence

may cause false negative results. On the other hand, suitable abstraction techniques may
pave the way to omit re-veri�cations.
In Subsection 4.6.3 the impact analysis approach will be adapted in such a case that it

is combined with an abstraction technique in order to demonstrate the potential of this
approach.

4.6. Evaluation and Case Studies

4.6.1. Contract-Level of the Driver Assistance System

The impact analysis approach is evaluated by applying it to the driver assistance system
(DAS), which consists of the lane-keeping-support (LKS) system already introduced in
Section 3.7 accompanied by an adaptive cruise control system.
Two contracts C1 = (A11∧A12, G1) and C2 = (A21∧A22, G2) are annotated to the over-

all driver assistance system, to which its implementation has to adhere. Both contracts

147

4. Contract-based Impact Analysis

AACC speed_in occurs each 20ms with jitter 2ms

GACC Whenever set{speed_in, distance} occurs,

speed_ctrl occurs during [0, 50]ms

Table 4.3.: Contract CACC = (AACC , GACC) of the adaptive cruise control subsystem.

are de�ned in the Tables 4.1 and 4.2 respectively. The assumptions of both contacts
specify the trigger times for the input events triggerLineDetect, sensorHMI, speed_in
and distance, which are 20ms for all events. For this, the R1−Pattern is used.
The guarantee parts of both contracts specify end-to-end latency constraints by the

usage of the R3−Pattern:

• The guarantee part of the C1 contract speci�es that whenever both trigger events
triggerLineDetect and sensorHMI occur (in an arbitrary order), the steer control
signal steer_ctrl_out determining the angle of the front wheels of the car has to
be computed within the time interval of [0, 100]ms. Both input signals are needed
to compute an appropriate angle.

• The guarantee part of the C2 contract speci�es that whenever both sensor in-
puts speed_in and distance occur, the control signal speed_ctrl_out which is
responsible for the speed of the car has to be computed within the time interval of
[0, 100]ms and the corresponding value has to be available at the output port of
the component.

Next, the contracts of the subsystems ACC, LKS, and VDS will be detailed.
In Table 4.3 the contract for the adaptive cruise control subsystem is illustrated. The

assumption AACC speci�es the occurrence of the trigger event speed_in. It relaxes the
assumption A21 of system contract C2 by adding an occurrence jitter of 2ms. The
assumption of the occurrence of the distance event is the same as speci�ed by the as-
sumption A22, and thus not repeated in Table 4.3.
The guarantee GACC speci�es an end-to-end latency constraint between the input

triggers of speed_in and distance, and the computed set point of the speed of the car at
the output port speed_ctrl. Whenever both trigger occur, the output shall be available
within the time interval of [0, 50]ms.

The guarantee part of the contract of the lane-keeping-support system (LKS) is illus-
trated in Table 4.4. The assumptions concerning the occurrence of the events sensorHMI
and triggerLineDetect of the contract annotated to the LKS subsystem are the same as
speci�ed by the assumptions A11 and A12. The guarantee part speci�es that whenever
the trigger triggerLineDetect occurs, the output trajectoryData has to be delivered by
the implementation of the LKS within the time interval of [0, 50]ms.

148

4.6. Evaluation and Case Studies

ALKS (ALKS,1) triggerLineDetect occurs each 20ms
(ALKS,2) sensorHMI occurs each 20ms

GLKS Whenever triggerLineDetect occurs,
trajectoryData occurs during [0, 50]ms

Table 4.4.: Contract CLKS of the lane-keeping-support subsystem.

AV DM (AV DM,1) yawRateIn occurs each 20ms
(AV DM,2) Distance between set{trajectoryData, speed_ctrl,

yawRateIn} within [0, 70]ms

GV DM Whenever set{trajectoryData, speed_ctrl, yawRateIn} occurs,

set{steer_ctrl_out, speed_ctrl_out} occurs during [0, 20]ms

Table 4.5.: Contract CV DM = (AV DM,1 ∧ AV DM,2, GV DM) of the vehicle dynamic man-
agement system.

The contract of the vehicle dynamic management system (VDS) is illustrated in Table
4.5. The assumption consists of two parts: AV DM,1 speci�es the triggering condition
of the input event yawRateIn by the usage of the R1−Pattern, which is 20ms. The
second part AV DM,2 speci�es the allowed timing distance of all input events speed_ctrl,
trajectoryData, and yawRateIn by the usage of the R4−Pattern. It speci�es that the
timing distance of all events is 70ms at most, i.e. whenever one of the input events is
received, the other input events have to be received within the interval of [0, 70]ms.
The guarantee of CV DM speci�es the computation latency of the VDS: Whenever all

input trigger speed_ctrl, trajectoryData, and yawRateIn occur, the control values on
the output ports steer_ctrl_out and speed_ctrl_out have to be computed within the
time interval of [0, 20]ms.
For all these contracts the corresponding timed automata were generated by the im-

plementation of our concept. In Appendix C a subset of the generated automata are
illustrated. For the generated automaton network the reachability of a deadlock was
checked by the usage of the Uppaal model checker. First the local assumptions are
veri�ed. In a second step the global guarantees are veri�ed. This is a valid split, as the
virtual integration condition also
According to the simpli�ed virtual integration condition, to check whether the local

assumptions AACC and AV DM,2 do hold, the following expression needs to be evaluated:

A11 ∧A12 ∧A21 ∧A22 ∧AV DM,1 ∧GACC ∧GLKS ⇒ AACC ∧AV DM,2 (4.6)

Note that the assumption specifying the trigger of the yaw rate of assumption AV DM,1

is left out in the right part of this implication expression. This is because the overall

149

4. Contract-based Impact Analysis

A′LKS (A′LKS,1) sensorHMI occurs each 20ms with jitter 2ms

(ALKS,2) triggerLineDetect occurs each 20ms

G′LKS Whenever triggerLineDetect occurs,
trajectoryData occurs during [0, 48]ms

Table 4.6.: Adapted contract CLKS of the lane-keeping-support system.

system has the identical assumption to its corresponding input port yawRateIn. Thus,
to keep the description short, the AV DM,1 is considered as being the overall system
assumption on the yaw rate and added to the left part of this implication relation.
The corresponding automata of the expressions A11, A12 A21, A22 and AV DM,1 serve

as triggering automata as described in the previous section, while the automata of GACC
and GLKS serve as both observer and trigger. The automata of AACC and AV DM,2 are
pure observer automata. The veri�cation engine for this sub-property took approximately
an hour, while exploring 1.206.322 states, with the result that the property holds, i.e. no
deadlock occurs and thus both local assumptions do hold.
After the veri�cation of the local assumptions, the end-to-end latency constraints

speci�ed in the guarantees G1 and G2 were analyzed successively by the following sub-
expressions:

A11 ∧A12 ∧A21 ∧A22 ∧AV DM,1 ∧GACC ∧GLKS ∧GV DM ⇒ Gi, i ∈ {1, 2} (4.7)

The veri�cation of the guarantees took more than one day, while the engine explored
15.312.033 states respectively. This is because the state space of the automaton GV DM
which produces events for the guarantee observer is really large. The veri�cation results
that both properties do hold.

4.6.2. Impact Analysis on the Driver Assistance System

To apply the impact analysis approach, two change scenarios have been worked out. First,
the assumption of the triggering condition for the input sensorHMI of the contract of
the LKS is changed by adding a timing jitter as speci�ed in Table 4.6. In a second
step, the guarantee is restricted such that the computed result needs to be available
at the output port within the time interval of [0, 48]ms. These changes are performed
successively, i.e. �rst the change of the assumption is applied and the re-veri�cations are
performed, and then in a second step the guarantee is changed and again the veri�cation
steps are called.
For both change scenarios, on speci�cation level the approach checks whether the

new contract re�nes the old contract. Thus, the impact approach �rst veri�es that
ALKS ⇒ A′LKS holds. In a second step, the expression ALKS ∧ G′LKS ⇒ GLKS is

150

4.6. Evaluation and Case Studies

evaluated. The veri�cation of both properties took only a couple of seconds. For the
�rst property 26 states were explored. To verify the second property 24 states were
explored. As on the speci�cation level the new contract re�nes the old one, there is
no need to repeat the full veri�cation of the virtual integration condition. This saves
much veri�cation time like demonstrated in the results above. However, the veri�cation
on implementation level has to be repeated in both cases, which is illustrated in the
following.
First, consider the change of the assumption: The veri�cation starts by the computa-

tion of the resource STS for the LaneDetection. The checkStructure step determines that
the structural aspects of this resource did not change such that the recomputation of this
resource STS is omitted. The original state space is reconstructed by the getStoredSTS
step. In the next step, the CANBUS is considered. The input status of the input STS
of resource LaneDetection is evaluated to true and thus it is correctly determined that
the interface from LaneDetection to CANBUS has indeed not changed. But the next
step (checkStructure) determines that the trigger condition of the input sensorHMI has
been changed, which leads to a re-veri�cation of the input of the resource CANBUS.
Thereafter, the resource STS itself is recomputed. After this step, the re�nement check
between both STSs is performed which determines that the interface to the resource
SituationEvaluation is a�ected in a non-re�ned manner. As a result, also the STS of
SituationEvaluation is recomputed.
By changing the guarantee the approach does not recompute any STS, as the check-

Structure step determines that no changes were performed on the resources LaneDetect
CANBUS and thus, the input of resource SituationEvaluation is determined to be not
a�ected. The STS of the resource SituationEvaluation is loaded and the new guarantee
is checked by iterating through the state space. Note that to compute this state space
14sec. were originally needed, while the time needed to load the STS took less than one
second. This approach can be further optimized by also storing all computed response
times of all resources. Then the loading process and the iteration through the STS could
also be omitted.
In the following, the saved amount of re-veri�cation times on the implementation level

will be further analyzed by the usage of more dedicated examples.

4.6.3. Evaluation of Re�nement on Implementation-Level

In this subsection, the methodology is evaluated by the usage of the three test systems
illustrated in Figure 4.13. Tasks with no input edge are considered as to be independent,
i.e. triggered by event streams. The scheduling policies of each ECU is �xed priority
with interruption, and the policy of the CAN bus is also �xed priority but (of course)
without interruption. The parameters of the tasks are detailed in the table of Figure
4.14, where p is the period of a task, exec. is the execution time which may be a single
value or an interval, if bcet 6= wcet, and pr is the priority of a task.

151

4. Contract-based Impact Analysis

t1
t2

ECU1

t3
t4

CAN

t5
t6

ECU2

System2

t1
t2

ECU1

t3
t4
t9

CAN

t5
t6

ECU3

System3

t7
t8

ECU2

...

...

t1
t2

ECU1

t3
t4

ECU2

System1

...

Figure 4.13.: Test systems.

Figure 4.14.: Task parameters.

In the scope of the evaluation the execution times needed for an analysis of each
resource are compared against the sum of the execution times needed to store and load a
corresponding state space and check the re�nement of the state spaces of the resources.
The idea is to demonstrate that the analyses times of resources are in general much
larger than the execution times needed to store and to load the state spaces, and to
check whether the loaded state spaces are a re�nement of newly computed ones in cases
where changes occurred.
Note that all execution times were measured on the same machine to preserve compa-

rability. Each check has been performed �ve times. The execution times illustrated here
are obtained by computing the average times of all measurements.
The measured execution times are illustrated in the table of Figure 4.15. As an exam-

ple: To built the state space and analyze the timings of ECU2 of System2 the iterative
timing analysis implementation needed 6, 75 seconds. In contrast to this, the re�nement
check of the existing state space and the newly computed one of ECU2 took only 0, 015
seconds. The cell Sum is the sum of the cells Re�nement, Load and Store and is used
to compare the execution times needed to perform these three steps against the plain

152

4.6. Evaluation and Case Studies

Figure 4.15.: Measured average computation times.

veri�cation time.
In Figure 4.16 the relations between the analysis times for three examples are visu-

alized. The result of the evaluation is that the larger the state space of a resource is
and therefore needed time for veri�cation of that resource, the larger the di�erence will
be between the veri�cation time and the computation times needed to load, save, and
check the re�nement of the old and new state spaces. Thus, for larger systems our re-
�nement methodology is a real gain for our analysis approach. Note that of course, if
the re�nement check fails, i.e. the new state space of a resource is not a re�nement, just
performing the plain veri�cation without the re�nement check would have run faster.
But fortunately, the computation times needed to perform the re�nement check are not
that large. Actually, the complexity of the re�nement check is polynomial, i.e. n(n− 1)
where n is the number of states: All states have to be compared with each other, while
comparing a state with itself can be skipped.

Evaluation of Re�nement on Implementation-Level combined with Abstraction

In this subsection we will demonstrate the potential of our impact analysis concept on
the implementation level by combining it with an abstraction technique. Note that this
part is not a fully worked out and implemented concept, as it shall only demonstrate the
potential of the approach and motivate for further research in this area.

153

4. Contract-based Impact Analysis

Figure 4.16.: Visualization of some computation times from Table 4.15: a) ECU1 in
System1 (left), b) ECU2 on System2 (center), and c) ECU3 on System3.

τ1

τ2

τ4

τ5

R1 R2

τ6

τ3

...

...

...

... Subsystem

...

...

STSin,R1

STSin,R2

STSout,R1

STSin,sub

10 12 14 16 18

0

200

400

600

800

1,000

Worst case execution times of τ1 and τ4

V
er
i�
ca
ti
on

ti
m
e
in
se
c.

Figure 4.17.: Left: Adapted architecture; Right: Comparison of a re-computation of the
STS of R2 (blue curve, marked with dots) and a re�nement check on the
output of R1 (red curve, marked with x).

Consider the architecture in Figure 4.17 consists of two resources R1 and R2, and
an unspeci�ed subsystem. Initially, three tasks are allocated on resource R1, namely
τ1, τ2, τ3, whereas on R2 the two tasks τ4 and τ5 are allocated. Task τ4 depends on the
output of τ1, and τ5 depends on τ2.

The task τ6, which is depicted in dashed lines, is added in a later design step. This
task has a low priority and does not a�ect the input behavior of R2.

After adding τ6 to R1 the original concept would proceed as follows: After the computa-
tion of the input of R1 the state space of R1 (in the following referred to as STSR1) would
be re-computed. Then, the re�nement relation between the newly computed STSR1 and
the previous one would be performed. This checkRefinement method would return false
by setting the outputConsistent �ag appropriately indicating all dependent resources that
its input and therefore its state space have to be re-computed.

154

4.7. Summary

As the priority of the added task is lower than τ1 and τ2 both tasks are not a�ected
by the change and thus, the input behavior of R2 actually does not change. We now
slightly adapt the introduced concept of the impact analysis on the implementation level
(cf. Figure 4.12) as follows: The re�nement check is not performed on the state space of
R1 but on the input state space of R2. As detailed in Chapter 3 this input state space is
obtained by abstracting STSR1 from tasks which are not relevant for R2. The re�nement
check on this newly computed input state space and the previous one (which has of course
to be stored instead of R1 itself) would return true, thus preventing the state space of
R2 from a re-computation.
To demonstrate the savings of the veri�cation times, consider the following speci�cation

of the scenario in the left part of Figure 4.17 as follows:

• pτ1 = pτ3 = 30, pτ2 = 10.

• bcetτ1 = bcetτ4 = 10, wcetτ1 = wcetτ4 ∈ {10, ..., 18}, cτ2 = cτ5 = 2, cτ3 = cτ6 = 1.

• prτ1 > prτ2 > prτ6 > prτ3 , prτ3 > prτ4 .

We compare the time needed to re-compute the state space of resource R2 when τ6 is
added to R1 with the time needed to check the re�nement relation of the input of resource
R2 after the change occurs. In our scenario, we incrementally increase the worst case
computation time of both τ1 and τ4 simultaneously. A larger wcet will increase the state
spaces of the resources, thus leading to larger computation times.
In the right part of Figure 4.17 the computation times for both the re-veri�cation of

resource R2 (blue curve with the dot-marks) and the check of the re�nement relation
(red cure with the x-marks) are illustrated.
As a result we observe that, besides the shorter computation times of the re�nement

relation, the re�nement relation check scales much better for larger state spaces. By com-
bining the re�nement check with an abstraction technique (in this case the minimization
operation on the interfaces of resources) further analysis time can be saved.

4.7. Summary

In this chapter the extension of the state-based timing analysis approach by an impact
analysis approach was illustrated. The impact analysis operates on two di�erent levels
of a system design, i.e. on the speci�cation level and on the implementation level. On
speci�cation level a new virtual integration checking technique through the concept of
reachability analysis of timed automata was introduced. If our system speci�cation
is complete this technique allows us to determine the impact of changes which may
occur during the development process of a system without the consideration of any
implementation detail. To enable this technique, the original virtual integration condition
was adapted by considering a certain class of contracts which are called directed.

155

4. Contract-based Impact Analysis

The impact analysis approach is also de�ned on the implementation level, which is
used when incomplete speci�cations are considered, or when the implementation of a
component changes. To this end, an appropriate re�nement relation between state tran-
sition systems has been de�ned. With this notion of re�nement, it is able to avoid time
consuming re-veri�cations of parts of the system on implementation level. The imple-
mentation of the impact analysis approach was illustrated. The approach was evaluated
by measuring the computation times needed to perform the full veri�cation, the storage
and load of state spaces, and the computation of the re�nement check. A comparison of
these execution times was performed. The result is that the larger a system is and the
less number of components are a�ected in a non-re�nement manner, the more execution
times can be saved needed to perform re-veri�cations.
These two concepts � i.e. the impact analysis on speci�cation and implementation

level � are typically exploited in combination. Changing a component implicates the
integration of this component into its context, and the veri�cation of its implementation
to the new components local speci�cation. The methodology combining all techniques
into one single impact analysis approach was also illustrated in this chapter.

156

5. Summary and Outlook

In the �rst chapter the addressed problems in this thesis in the context of hard real-time,
safety-critical systems were illustrated.

In Chapter 2 the necessary fundamentals of model-based design of real-time systems
and the underlying execution semantics were introduced. The functionality of such sys-
tems is given by tasks which are characterized by best- and worst-case execution times. A
scheduler determines the order of task executions, which are activated periodically. Re-
quirements of the underlying system architecture are speci�ed by the usage of contracts
with which assumed and guaranteed behavior of a component can be distinguished. The
parts of the contracts are speci�ed by using the pattern-based Requirement Speci�cation
Language. The real-time pattern of this language were described and the formal seman-
tics were given. Proof obligations of correctness checks of decomposition structures were
illustrated, which include the composition and re�nement check on the level of contracts.

In Chapter 3 a new approach to analyze timing constraints of systems consisting of sev-
eral computation units and bus systems was introduced. Analogously to model checking,
the approach determines the reachability of states of resources, where timing constraints
of tasks or end-to-end latency constraints are violated. In contrast to such related works,
the presented approach works in an iterative fashion, which enables minimization and ab-
straction operations on the interfaces of dependent resources. The approach is based on
the Uppaal DBM library. This library implements the �nite clock zone representations
of valuations of real-valued variables. Using such variables, computation times of tasks
are measured. On top of the basic operations of the DBM library, in Section 3.4 higher
level functions were de�ned and implemented. In detail, in Subsection 3.4.1 abstrac-
tion operations on zones and locations were de�ned to determine the minimal interface
between two dependent resources. It was shown that the obtained abstracted interface
STS is an over-approximation of the original STS and preserves deadlock-freeness. In
Subsection 3.4.2 the composition of a set of STSs was presented. It was shown in The-
orem 2 that the STS which is obtained by this composition operation has an equivalent
behavior to the one which is obtained by �rst composing a set of timed automata and
then building the resulting STS. The main algorithm building iteratively the state space
for a given architecture using these operations was presented in Section 3.5.
Further, abstraction techniques were introduced which allow to abstract speci�c parts

of the computed state spaces of computation resources. In detail, in Subsection 3.5.5 the
untimed bisimulation, timed simulation relation was introduced, where paths are merged

157

5. Summary and Outlook

which have on the one hand equivalent discrete behaviors and on the other hand have
a related timing behavior in terms of subset relations of clock zones. The application of
this technique did not result in much smaller state spaces of dependent resources, but did
positively a�ect the overall analysis times (cf. Figure 3.13). An abstraction technique
using a new timed simulation relation was introduced in Subsection 3.6.3 leading to over-
approximated STSs. The e�ects of such over-approximations on the iterative analysis
approach were analyzed in Subsection 3.6.4 revealing an interesting e�ect: Although the
state spaces of the interfaces could be reduced for the applied test cases, the resulting
numbers of states of dependent resources were always above the numbers of states where
the abstractions on the input STSs were not applied. In Subsection 3.6.6 an abstraction
technique for interfaces where event bursts occur was presented, leading to signi�cant
state space reductions. The usage of this abstraction thereby is restricted to scenarios,
where end-to-end latencies are not of interest.

The applicability of the state-based approach was studied on a driver assistance system
case study in Section 3.7, which was modeled by the usage of the modeling framework
Marte. The focus on the timing analysis was on the detailed subsystem which is re-
sponsible for an automatic lane-keeping of a vehicle. Response times and state spaces of
the basic approach and the results of the applications of the abstraction techniques were
compared and analyzed. The positive e�ects on the sizes of the number of states could
been demonstrated.

In Chapter 4 the extension of the state-based timing analysis by an impact analysis
was illustrated. The overall methodology was illustrated in Section 4.3. The impact
analysis operates on two di�erent levels of a system design, i.e. on the speci�cation
level and on the implementation level. On speci�cation level a new virtual integration
checking technique through the concept of reachability analysis of timed automata was
introduced in Subsection 4.4.2 deriving timed automaton networks from sets of contracts
which are speci�ed using the Requirement Speci�cation Language (RSL). To enable such a
timed automaton approach, Theorem 4 was derived. This theorem uses the directedness
and receptiveness properties of contracts, resulting in a simpli�ed virtual integration
condition, where expressions with negations do not occur.

On the implementation level an appropriate re�nement relation between state transi-
tion systems was de�ned in Subsection 4.5.2. With this notion of re�nement, it is able
to avoid time consuming re-veri�cations of parts of the system on implementation level.
The implementation of the impact analysis approach was illustrated. The approach was
evaluated by measuring the computation times needed to perform the full satisfaction
veri�cation on the one hand, and the sum of the storage and load of state spaces and the
computation of the re�nement check on the other hand. A comparison of these execution
times was performed, with the result that for larger systems the re�nement methodology
can help to save much analysis times and thus to help to decrease the time to market of
a system.

158

There are many research areas for future works. This work assumes a dense time
semantics of the timing behavior of tasks. The iterative analysis approach can be com-
bined by considering also the discrete semantics. Parts of an architecture, which have
been modeled in more detail and are closer to the �nal implementation then the rest of
the architecture may be analyzed by the usage of a discrete time back-end, while the rest
is analyzed by considering the dense time back-end.
Future work in this area could also investigate new abstraction techniques which could

further boost the scalability of the approach. The explicit computation of the state
spaces of resources in an iterative manner enables the analysis of dedicated abstraction
operations, e.g. by merging successive states or leaving out some traces. An interesting
direction is to �nd those paths of the state spaces of resources, which yield end-to-end
worst-case behaviors. Analogously to classical schedulability analyses where the critical
instance leads to worst-case timing behavior, such instance could be determined for
distributed systems.
Considering the impact analysis approach, so far only the iterative activation of timed

automata was considered, i. e. simultaneous activations are not considered and ignored.
To deal with multiple simultaneous activations, explicit indexes must be allocated to
observable events as illustrated in this work.
In this thesis, pattern considering the real-time behavior were considered. Thus, the

approach could be extended by considering further aspects of systems like functional and
safety properties speci�ed by text pattern. This would realize a powerful multi-aspect
analysis approach.
On the implementation level, alternative re�nement relation de�nitions could be in-

vestigated with which a greater set of re�ning STSs could be determined. Also, the
e�ects of �rst abstracting a resource STS before performing a re�nement check - such
it was illustrated in Subsection 4.6.3 - could be analyzed, especially for new abstraction
techniques worked out in future researches.

159

A. Tool Support

The implementation of our methodology consists of three tools: the model converter, the
state-based analysis tool, and the contract veri�cation tool.

Figure A.1.: Modeling in Marte and enabling the connection to the analysis approach.

Our approach is illustrated in Figure A.1. To create Marte models the tool Papyrus
was used, which is provided as an Eclipse plugin. After the speci�cation of a system
model, the relevant model information has to be extracted and transformed to the in-
put format of our analysis veri�cation back-end realtimeAnalyzer. For this, the Eclipse
Modeling Framework (EMF) is used. With EMF, we are able to access all model data
through Java classes, and generate the necessary data structure for the veri�cation back-
end. Thereby, the process is straightforward: We access the model elements in a breadth
�rst search manner and generate the realtimeAnalyzer model successively. We will not
go into further detail here, as the implementation involves only technical issues. For
detailed information to the EMF please refer to [SBPM09]. Support for the transforma-
tion of relevant Papyrus model information to the input format of realtimeAnalyzer was
implemented in the bachelor's thesis of [Fif14].
The state-based timing analysis tool realtimeAnalyzer is implemented in C++ and is

available for Linux operating systems. The Uppaal DBM library 1 is used as the basis

1http://people.cs.aau.dk/ adavid/UDBM/

161

A. Tool Support

of our approach, i.e. we make use of the clock zone implementation with all necessary
basic operations such as zone intersection or reset of dedicated clocks.
To ensure the quality of the analysis results, all over the implementation code asser-

tions were included to check basic constraints and to prevent the tool of a faulty usage.
Whenever an assertion is violated, the program will automatically terminate with an ap-
propriate error message. To parse the input �les, an implementation based on the Spirit
parser library 2 was generated. Thereby, Spirit is part of the Boost-C++ libraries, thus
is needed to compile realtimeAnalyzer.

Figure A.2.: Parameters of the realtimeAnalyzer tool.

There is a set of parameters (cf. Figure A.2) with which the tool can be called. The
most implemented options are the following:

• -b, �burst : If this parameter is set, the burst abstraction introduced in Subsection

2http://boost-spirit.com/home/

162

http://boost-spirit.com/home/

3.6.6 will be applied. If end-to-end latency constraints are de�ned in the system
which shall be analyzed, the program will give an error message that the abstraction
is not applicable for this system.

• -c, �criterion: The user is able to determine the type of counter-example which is
generated by the tool. The user can select between the shortest counter-example,
a counter-example with maximum lateness, a counter-example with minimum late-
ness, and an arbitrary counter-example. Note that the arbitrary counter-example
is set as default. Note that this feature has been implemented in the context of the
bachelor's thesis of [Koo14].

• -e: If some deadlines are violated, no counter-examples are generated if this option
is set. The tool will work a bit faster in case of a deadline violation, as no output
has to be generated.

• -h, �hp: Abstract all information about tasks with higher priorities than relevant
for dependent resources. This technique was illustrated in Subsection 3.6.2.

• -i : With this parameter an abstraction on the initial non-determinism of the task
with the highest priority is performed, i.e. it is assumed that the highest priority
task is activated at time point null. This option is related to testing techniques.

• -m: In Subsection 3.5.1 it was stated that the bisimulation minimization of Sub-
section 3.3.3 is only applied for resource STSs, which have dependent resources.
By setting this parameter, the minimization is also performed for resource STSs
which from which no resource depends on.

• -p, �printsts: The computed state spaces of all systems will be printed into separate
�les.

• -u, �ubts: Deactivate the untimed bisimulation, timed simulation minimization
presented in Subsection 3.3.3.

• -v, �verbose: Some debug information is printed to the console. This option could
be helpful if new features are implemented and debugging must be performed.

When the tool is called with a model, a set of �les are generated:

• counterExample.txt : If some deadlines are not met, realtimeAnalyzer will generate
a counter example trace into this �le leading to failure state according to the de�ned
criterion.

• responseTimes.txt : All computed end-to-end latency times and local response times
will be printed to this �le.

163

A. Tool Support

• <name>STS<number>.txt : The computed state space of a resource with the name
<name> will be printed into such a �le, if the option -p is set.

Figure A.3.: Generated �le structure of a system architecture.

In Figure A.3 the �le structure generated by the algorithm after an analysis has been
performed is illustrated. This �le structure resulted by the application of the lane-
keeping-support system (LKS) which was introduced in Section 3.7. For all resources
two kinds of �les are generated, i.e. an .ecu and an .sts �le. The former contains the
structural information about the resource, i.e. the allocated tasks, the task parameters,
and the scheduling policy. The latter contains the computed STS of the corresponding
resource.
The tool checking the virtual integration condition is implemented as an Eclipse plugin.

Contracts from the model are extracted and translated to timed automata. Besides all
automata, event reproduction via glue automata as mentioned in this thesis are generated
automatically. Also the necessary queries are generated. Thereafter, the veri�cation
back-end of Uppaal is called automatically. At last, the veri�cation result is shown in
the console.

164

B. Handling Architectures including

Restricted Loop Structures

So far, systems with no feedback loops were considered. If loops are contained a holistic
analysis has to be performed in general as the state spaces of the dependent resources
cannot be separated. For a restricted class of feedback-loops the iterative analysis ap-
proach can still be applied. For this, assume the following scenario: Let a resource with
i = n+m tasks be given. The n-highest priority tasks of a resource are either indepen-
dent or depend on a set of task, where no feedback-loop is included (simple dependency
chains). The m-lower priority tasks depend on tasks, which are triggered by the some of
the n-higher priority tasks, thus leading to a feedback-loop. For loop structures of this
type the following is performed: First, the partial state space of the resource consisting
of the behavior of the n-highest priority tasks is computed. This is possible and leads to
correct timings for these tasks, as none of the m-lower priority tasks can lead to inter-
ferences (cannot interrupt the other tasks). The rest of the state space of the resource is
computed, whenever the input behavior of them-lower priority tasks has been computed.
What was so far not shown is the general procedure of the realtimeAnalyzer tool.

This is illustrated in Figure B.1. As an input the parser delivers a set of resources with
allocated tasks, for which the corresponding STSs have to be computed. This set is
stored in a queue q. The algorithm terminates, if q is empty and thus all STSs have been
computed, or a deadline is violated.
In constraint c2 it is determined whether the input behaviors of all allocated tasks

of the currently considered resource have already been determined. If so, the input is
computed by the application of the composition and interface computation operations
described in Subsection 3.4. The resource STS is then computed and the next resource is
considered. For now, let us skip the constraint c5 and assume that it evaluates to false.
If the constraint c2 evaluates to false, it is checked in constraint c3 whether a partial

computation can be performed, i.e. the method determines the set of tasks which do not
depend on other tasks or are interrupted by such tasks as described above. With this,
the above described restricted feedback-loops can be handled. If a partial computation
is possible, the �ag partial is set to true and the partial state space is computed. The
constraint c5 evaluates to true for this case and thus the resource is put again back to
the queue. The rest of the state space of this resource is then computed later, when the
missing input behaviors have been determined. Thereby, the resource is also included
into the set p which is detailed later.

165

B. Handling Architectures including Restricted Loop Structures

Figure B.1.: General procedure of the timing analysis approach.

166

If no partial computation can be performed (c3 evaluates to false), it is checked whether
this resource has already been considered before (constraint c4). For this, the state set
p is used. This set is empty at the beginning and is �lled with resources for which a
partial state space cannot be computed. Thus, if a resource is considered the �rst time,
c4 evaluates to false and the resource is put back to the working queue q and included
into p to annotate it as "`already considered"'. If a resource is contained in p and the
constraint c4 therefore evaluates to true, the STS of the corresponding resource is tried
to be computed the second time, which is still not possible as the input behaviors are
incomplete. For these cases the algorithm infers that there might be more complex loop
structures included in the architecture. Thus, such a resource is added in a second queue
q2. All states which are added in this queue are handled, when the iterative analysis
�nishes. Thus, the resources in q2 are then handled in a holistic manner.

167

C. Generated Timed Automata

In Subsection 4.6.1 the evaluation of the impact analysis approach on the speci�cation
level was performed by the application of a driver assistance system. Here, a subset of the
generated timed automata for the text-pattern occurring in the assume/guarantee parts
of the contracts are illustrated. All generated automata which are structurally equal
to those illustrated here are not shown. The details about the construction and the
functionality of the automata are not described here. For this, please refer to Subsection
4.4

wait
clk <= p

releasing

clk <= j

S0

clk <= p

clk >= p

clk := 0 speed_in!

onSpe!

clk := 0

wait
clk <= p

releasing

S0

clk >= p

clk := 0
clk <= j
speed_in_1?

clk <= p

onSpe?

clk := 0

Figure C.1.: Left: Generated trigger automaton for overall system assumption A21;
Right: Observer automaton of assumption AACC .

In the left part of Figure C.1 the trigger automaton which results from the assumption
A21 of the overall driver assistance system is illustrated. The generated event speed_in
is observed by the automaton in the right part of the �gure, which results from the
assumption part of the ACC system. This automaton receives the event speed_in_1 as
the original event speed_in is replicated by a glue automaton.
A further automaton, which observes the event speed_in is the guarantee automaton

in the left part of Figure C.2. This automaton is obtained from the guarantee G2 of the

169

C. Generated Timed Automata

S1
S2

S3

clk <= ub

S0

distance_2?
speed_in_3?

distance_2?

distance_2?
clk:=0

speed_in_3?
clk:=0

speed_in_3?
clk:=0

speed_in_3?

lb <= clk &&
clk <= ub

speed_ctrl_out?

clk := 0

distance_2?
clk := 0

S1

S2

S3

clk <= ub

S0

distance_1?
speed_in_2?

distance_1?

distance_1?
clk:=0

speed_in_2?
clk:=0

speed_in_2?
clk:=0

speed_in_2?

lb <= clk &&
clk <= ub

speed_ctrl!

clk := 0

distance_1?
clk := 0

Figure C.2.: Left: Generated observer automaton for overall system guarantee
G2; Right: Generated transceiver automaton of guarantee GACC .

overall system. It further receives the input event distance, for which there is a similar
trigger automaton as the one for the event speed_in, but which is not illustrated here.
The automaton checks the end-to-end timing latency constraint from receiving both
events speed_in and distance up to the point in time where the event speed_ctrl_out is
received.
In the right part of Figure C.2 the transceiver automaton for the guarantee GACC of

the ACC system is illustrated. It is triggered by the reception of both events speed_in
and distance and generated the output event speed_ctrl after the speci�ed interval.
The observer automaton of the assumption AV DS of the VDS system is illustrated in

Figure C.3. Besides the event speed_ctrl this event receives the events trajectoryData
yawRate and checks whether the time distance all events are received are within the
speci�ed timing bounds. Thereby, the automaton allows that the events may be received
in any order.
The transceiver automaton of Figure C.4 illustrates the guarantee GV DS of the VDS

system. The events speed_ctrl, trajectoryData, and yawRate may be received in any or-
der. The time all three events are received, the automaton sends both events steer_ctrl_out
and speed_ctrl_out within the speci�ed timing bounds. The latter event is received by
the observer automaton of the overall system guarantee G2 which then checks, whether
the end-to-end latency is violated or the event is received within the allowed bounds.

170

yawRateIn_1?
speed_ctrl_1?

trajectoryData_1?
yawRateIn_1?

trajectoryData_1?

speed_ctrl_1?

yawRateIn_1?

speed_ctrl_1?

trajectoryData_1?

lb <= clk &&
clk <= ub

speed_ctrl_1?

clk:=0

lb <= clk &&
clk <= ub

trajectoryData_1?
clk:=0

lb <= clk &&
clk <= ub

yawRateIn_1?

clk:=0

trajectoryData_1?

yawRateIn_1?

yawRateIn_1?
clk:=0

trajectoryData_1?
clk:=0

speed_ctrl_1?
speed_ctrl_1? yawRateIn_1?

trajectoryData_1?

speed_ctrl_1?
clk:=0

Figure C.3.: Observer automaton of assumption AV DS .

clk<=ub
clk<=ub

clk<=ub

trajectoryData_2?
trajectoryData_2?

trajectoryData_2?

speed_ctrl_2?

yawRateIn_2?

speed_ctrl_2?

yawRateIn_2?

yawRateIn_2?
speed_ctrl_2?

clk>=lb

steer_ctrl_out!

clk:=0clk>=lb
speed_ctrl_out!

clk:=0

clk>=lb
speed_ctrl_out!

clk >= lb
steer_ctrl_out!

yawRateIn_2?
speed_ctrl_2?

trajectoryData_2?
yawRateIn_2?

trajectoryData_2?

speed_ctrl_2?

yawRateIn_2?
speed_ctrl_2?trajectoryData_2?

speed_ctrl_2?

clk:=0

trajectoryData_2?
clk:=0

yawRateIn_2?
clk:=0

trajectoryData_2?
clk:=0

yawRateIn_2?
clk:=0

yawRateIn_2?
clk:=0

trajectoryData_2?
clk:=0

speed_ctrl_2?
clk:=0

speed_ctrl_2?
clk:=0

yawRateIn_2?
clk:=0

trajectoryData_2?
clk:=0

speed_ctrl_2?
clk:=0

Figure C.4.: Transceiver automaton of guarantee GV DS .

171

List of Figures

1.1. General concept of the model-based design approach. 12
1.2. Considered system architectures with assume/guarantee style contracts. . 13
1.3. Contributions of this thesis. 15

2.1. E/E-Architecture of typical medium-sized cars. 22
2.2. General classes of scheduling algorithms [Mar06]. 23
2.3. Periodical activation of independent tasks. 25
2.4. Event streams with burst behavior. 27
2.5. Event stream automaton with a period p = 20 and a jitter j = 1. 32
2.6. STS for an event stream automaton with p = 20, j = 1. 32
2.7. System architectures of interest. 35
2.8. Overview of the MARTE pro�le. 36
2.9. Example for a contract speci�cation. 40

3.1. Scenarios of possible timings (right) of the distributed system (left). . . . 51
3.2. Overview of contributions of thesis. 52
3.3. System architecture containing four resources and dependencies. 62
3.4. Example architecture with periods pτ1 = 60, pτ2 = 5, pτ4 = 60, and

computation times cτ1 = 35, cτ2 = 2, cτ3 = 4, cτ4 = 12, and priorities
prτ1 > prτ2 , prτ4 > prτ3 . 64

3.5. Scenarios with a non-overlapping activation of task τa (left) and an over-
lapping activation of τb (right). 65

3.6. Two tasks hp, lp and the interrupt scenarios. 66
3.7. Example for invariants in automata. 68
3.8. Original STS for an event stream automaton with p = 20, j = 1. 69
3.9. Simpli�ed STS for an event stream automaton with p = 20, j = 1. 69
3.10. Left: task dependencies of task τB1; Right: computation of interface be-

tween ECU A and ECU B. 72
3.11. Left: TDG with synchronous activation with resulting activation behav-

ior; Right: TDG with asynchronous activation with resulting activation
behavior. 80

3.12. Example for relating indexes of clocks of di�erent matrices. 82

173

List of Figures

3.13. Left: Resulting state spaces of architecture in Figure 3.4; Right: Over-
all computation times � Blue curves: Without UBTS minimization; Red
curves: With UBTS minimization. 97

3.14. Example trace - Top: an output path of a resource; Bottom: computed
interface. 100

3.15. Event sequence. 101
3.16. E�ect of abstraction. 102
3.17. Resulting state spaces of architecture in Figure 3.4 � Blue curves (marked

with dots): Number of states with abstraction of hp clocks; Red curves
(marked with x): Without abstraction. 103

3.18. Two paths of an input STS of a resource, where 97 4 278; Blue box (on
top right): State of resource STS created if input states 97 and 278 were
merged. 104

3.19. Resulting state spaces of architecture in Figure 3.4 � Blue curves (marked
with dots): Number of states with timed simulation relation abstraction;
Red curves (marked with x): Without abstraction. 106

3.20. Merging states by the application of the abstract period clock. 108
3.21. Resulting state spaces of architecture in Figure 3.4 � Blue curves (marked

with dots): Number of states without abstraction; Red curves (marked
with x): Number of states with burst abstraction. 109

3.22. Functional structure of the driver assistance system. 110
3.23. High level component structure of the overall driver assistance system. . . 111
3.24. Decomposition of the lane keeping assistance system. 112
3.25. Functional view of the lane keeping assistance system. 113

4.1. Overview of contributions of thesis. 118
4.2. System architectures of interest. 124
4.3. Impact analysis methodology - Left: General control �ow; Right: Integra-

tion of veri�cation techniques. 126
4.4. Impact Analysis procedure for a component N 127
4.5. Automata for R1 -pattern � Left: Trigger automaton; Center: Observer

automaton; Right: Observer with explicit bad state. 137
4.6. Automata for R2 -pattern � Left: Trigger automaton; Center: Observer

automaton; Right: Observer with explicit bad state. 138
4.7. Automata for R3 -pattern � Left: Transceiver automaton; Center: Ob-

server automaton; Right: Observer with explicit bad state. 139
4.8. Transceiver automata for R3 -pattern with sets of events� Left: Sorted set

of events (�and then�); Right: Unsorted set of events. 140
4.9. Concept of structure for unsorted set of events within an R3 -pattern. . . . 141
4.10. Observer automaton for R4 -pattern. 141
4.11. Glue automaton reproducing an event σ for multiple observer automata. . 142

174

List of Figures

4.12. Methodology of the Impact Analysis (timing analysis combined with re-
�nement check). 144

4.13. Test systems. 152
4.14. Task parameters. 152
4.15. Measured average computation times. 153
4.16. Visualization of some computation times from Table 4.15: a) ECU1 in

System1 (left), b) ECU2 on System2 (center), and c) ECU3 on System3.154
4.17. Left: Adapted architecture; Right: Comparison of a re-computation of the

STS of R2 (blue curve, marked with dots) and a re�nement check on the
output of R1 (red curve, marked with x). 154

A.1. Modeling in Marte and enabling the connection to the analysis approach. 161
A.2. Parameters of the realtimeAnalyzer tool. 162
A.3. Generated �le structure of a system architecture. 164

B.1. General procedure of the timing analysis approach. 166

C.1. Left: Generated trigger automaton for overall system assumption A21;
Right: Observer automaton of assumption AACC 169

C.2. Left: Generated observer automaton for overall system guaranteeG2; Right:
Generated transceiver automaton of guarantee GACC 170

C.3. Observer automaton of assumption AV DS 171
C.4. Transceiver automaton of guarantee GV DS 171

175

List of Tables

3.1. Preservation of universal and existential properties considering approxi-
mations. 97

3.2. Scheduling-relevant information for tasks and messages in milliseconds. . . 113
3.3. Timing Analysis results in milliseconds for (a) analysis without abstrac-

tion, (b) using abstraction of period clocks, (c) using burst abstraction,
and (d) applying testing. 114

4.1. Contract C1 = (A1, G1) of the driver assistance system. 147
4.2. Contract C2 = (A2, G2) of the driver assistance system. 147
4.3. Contract CACC = (AACC , GACC) of the adaptive cruise control subsystem. 148
4.4. Contract CLKS of the lane-keeping-support subsystem. 149
4.5. Contract CV DM = (AV DM,1 ∧ AV DM,2, GV DM) of the vehicle dynamic

management system. 149
4.6. Adapted contract CLKS of the lane-keeping-support system. 150

177

Index

ω−Language, 27

Abstract Period Clock, 107
Active Task Map, 35, 67
Assertion, 39
Asynchronous Activation, 79

Büchi Automaton, 27, 29
Bisimulation Relation, 76
Bus, 37

CAN, 21
LIN, 21
MOST, 21

Clock Constraint, 29
Extension, 71
Projection, 71

Clock Valuation, 29
Clock Zone, 30

Boundedness, 31
Canonical Form, 31
Extension, 71
Normalization, 31
Projection, 71
Zone Re�nement, 102

Complete Speci�cation, 125
Completeness, 91
Component, 33
Computation Time Clock, 64
Contract, 39, 41

Assumption, 39
Canonical, 130
Composition, 41

Conjunction, 42
Consistency, 40
Directedness, 132
Guarantee, 39
Maximum Implementation, 41
Receptivity, 132
Re�nement, 42
Satisfaction, 40, 41
Saturation, 130
Virtual Integration Condition, 43

Correctness, 91
Critical Instance, 54

Deadline, 23, 24
Hard Deadline, 24
Soft Deadline, 24

Deadlock Free, 74, 136
Delegation, 33
Di�erence Bound Matrix, 32
Duration Clock, 99

Event Model, 25
Event Stream, 25
Jitter, 25
Occurrence Function, 25
Period, 25

Existential Property, 97

Fixed Priority Scheduling, 54

Incomplete Speci�cation, 125
Interface, 33

Directed Interface, 34

179

Index

Port, 33
Invariant, 29

Language, 27
Liveness Property, 46
Location Vector, 63

Observer Automaton, 134, 135

Periodic Activation Clock, 64

Ready Task List, 35, 67
Reference Clock, 32
Re�nement, 40
Requirement, 38
Resource, 33, 34, 37

Bus System, 33
Electronic Control Unit, 33

Response Time Clock, 65

Satisfaction, 77
Scheduling, 23

Dynamic, 24
Feasibility, 23
FIFO, 35
FPS, 35
Preemption, 24
RMS, 54
Scheduler, 37
Scheduling Policy, 23
Static, 24
TDMA, 35

Simulation Relation, 74
Soundness, 91
Synchronous Activation, 79
System Architecture, 36

Task, 23, 37
Best-Case Execution Time, 24
Deadline, 23, 24
Hard Deadline, 24
Immediate Predecessor, 25

Independent Task, 25
Instance, 79
Instance Bound, 65, 81
Overlapping Activation, 64
Predecessor, 25
Priority, 24
Release Time, 24
Response Time, 25
Soft Deadline, 24
Tail Task, 79
Task Dependency Graph, 25
Worst-Case Execution Time, 24

TCTL, 135
Timed Automaton, 28

Resource STS, 63
Symbolic Transition System, 30
Timed Transition System, 29

Timed Language, 28
Extension, 34
Restriction, 34

Timed Safety Automaton, 29
Timed Simulation Relation, 103
Timed Word, 28

Pre�x, 28
Restriction, 34
Trace, 28

Transceiver Automaton, 135
Trigger Automaton, 135

UBTS Relation, 95
Universal Property, 97

180

181

Index

Nomenclature

α : S → S′ An abstraction function computing an abstracted state
s′ ∈ S′ from a concrete state s ∈ S

As The active task map of a state s
act : T→ {sync, async} The function determining the activation type of a task

which may be synchronous or asynchronous
Bs : T→ N The Function determining active task instances of a speci�c

type in a state s
bcet Shortage for best-case execution time of a task
C The set of all clocks
C = (A,G) A contract C consisting on an assumption A and a

guarantee G
cc(τ) The computation time clock of a task type τ
cr(τ) The clock tracing the periodical activation of a task type τ
cr(t) The response time clock of a task instance t
cτ The execution time of a task type τ (used when bcet = wcet)
D ∈ D A clock zone in the set of all zones over a clock set C
D|C , D|−1

C
The projection and extension operations for a clock zone D

wrt. clock variables in C
Σ An alphabet consisting of a set of symbols
Σω The set of all (timed) words over alphabet Σ
ECU Abbreviation for Electronic Computation Unit
η+, η− Upper and lower occurrence functions characterizing event

streams
I = in ∪ out The interface of a component consisting of input and

output ports
init : T→ 2T The recursive function determining the set of independent

tasks triggering a given task
inst : T → N The function determining maximal number of activations of

a task
hp Shortage for higher priority (task)
L Language over some �nite alphabet Σ
L↓Σ ,L↑Σ The restriction and extension operations for a timed

language L wrt. symbols in Σ
L A set of discrete locations
lp Shortage for lower priority (task)
Ms,async The activation function of a state for tasks with asyn-

chronous activation
Ms,sync The trigger map of a state for tasks with synchronous acti-

vation

182

Index

max(i, · · · , j) The function determining maximum value of a given set of
numbers

N,N>0 Set of the natural numbers with and without value 0
ϕ A clock constraint
Φ(C) The set of all clock constraints over clock set C
prτ The priority of a task type τ
pre : T→ 2T The function determining set of immediate predecessors of

a task
ρ An in�nite sequence of symbols, or untimed word over some

alphabet Σ
Q≥0,Q>0 Set of non-negative rational numbers with and without

value 0
r,≈ Bisimulation relation
R≥0,R>0 Set of non-negative real numbers with and without value 0
rts,4 Timed simulation relation
rubts,2 Untimed bisimulation, timed simulation relation
Rs The ready task list of a state s
STS Shortage for Symbolic Transition System
τ ∈ T A task type in a set of task types
σ A timed trace or word
τ An in�nite sequence of time values in R+

Sch Abbreviation for scheduling policy
ν The clock valuation function
wcet Shortage for worst-case execution time of a task
ξ A map which determines the relation between states of two or

more STSs
χr The set of equivalence classes induced by relation r
ζ The function to reorder zones

183

Bibliography

[ABL98] Luca Aceto, Augusto Burgueño, and Kim Larsen. Model checking via
reachability testing for timed automata. In Bernhard Ste�en, editor, Tools
and Algorithms for the Construction and Analysis of Systems, volume 1384
of Lecture Notes in Computer Science (LNCS), pages 263�280. Springer
Berlin / Heidelberg, 1998. 10.1007/BFb0054177.

[ABR+86] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings.
Applying new scheduling theory to static priority preemptive scheduling.
The Computer Journal, 29 (5):390 � 395, 01/1986.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183�235, April 1994.

[AdADS+06] B.Thomas Adler, Luca de Alfaro, LeandroDias Da Silva, Marco Faella, Axel
Legay, Vishwanath Raman, and Pritam Roy. Ticc: A tool for interface com-
patibility and composition. In Thomas Ball and RobertB. Jones, editors,
Computer Aided Veri�cation, volume 4144 of Lecture Notes in Computer
Science, pages 59�62. Springer Berlin Heidelberg, 2006.

[AFM+04] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. Times: A tool for schedulability analysis and code generation of
real-time systems. In Kim G. Larsen and Peter Niebert, editors, Formal
Modeling and Analysis of Timed Systems, volume 2791 of Lecture Notes in
Computer Science, pages 60�72. Springer Berlin Heidelberg, 2004.

[AM02] Yasmina Abdeddaim and Oded Maler. Preemptive job-shop scheduling
using stopwatch automata. In in TACAS '02: Proceedings of the 8th In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 113�126. Springer, 2002.

[BBB+11] A. Baumgart, E. Böde, M. Büker, W. Damm, G. Ehmen, T. Gezgin,
S. Henkler, H. Hungar, B. Josko, M. Oertel, T. Peikenkamp, P. Reinke-
meier, I. Stierand, and R. Weber. Aritechture modeling. Technical report,
OFFIS, November 2011.

185

Bibliography

[BCF+08] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca,
Roberto Passerone, and Christos Sofronis. Multiple viewpoint contract-
based speci�cation and design. In Frank S. de Boer, Marcello M. Bon-
sangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal Meth-
ods for Components and Objects, volume 5382 of Lecture Notes in Computer
Science, pages 200�225. Springer Berlin Heidelberg, 2008.

[BCN+11] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and
K. Larsen. Contracts for systems design. Inria Research Report No.8147,
March 2011.

[BDFP00] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit.
Are timed automata updatable? In E. Allen Emerson and Aravinda P.
Sistla, editors, Computer Aided Veri�cation, volume 1855 of Lecture Notes
in Computer Science, pages 464�479. Springer Berlin Heidelberg, 2000.

[BDH+12] Sebastian Bauer, Alexandre David, Rolf Hennicker, Kim Guld-
strand Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Mov-
ing from speci�cations to contracts in component-based design. In Juan
de Lara and Andrea Zisman, editors, Fundamental Approaches to Software
Engineering, volume 7212 of Lecture Notes in Computer Science, pages
43�58. Springer Berlin Heidelberg, 2012.

[BFM+08] Luca Benvenuti, Alberto Ferrari, Leonardo Mangeruca, Emanuele Mazzi,
Roberto Passerone, and Christos Sofronis. A contract-based formalism for
the speci�cation of heterogeneous systems (invited). In FDL, pages 142�
147, 2008.

[BH09] Beatrice Bérard and Serge Haddad. Interrupt Timed Automata. In Luca
de Alfaro, editor, Foundations of Software Science and Computational
Structures, volume 5504 of Lecture Notes in Computer Science, pages 197�
211. Springer Berlin / Heidelberg, 2009.

[BHKW12] Dirk Beyer, Thomas A. Henzinger, M. Erkan Keremoglu, and Philipp
Wendler. Conditional model checking: A technique to pass information
between veri�ers. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE '12, pages
57:1�57:11, New York, NY, USA, 2012. ACM.

[BLN+13] Dirk Beyer, Stefan Löwe, Evgeny Novikov, Andreas Stahlbauer, and
Philipp Wendler. Precision reuse for e�cient regression veri�cation. In
Proceedings of the 9th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2013, pages 389�399, New York, NY, USA, 2013. ACM.

186

Bibliography

[BML11] SebastianS. Bauer, Philip Mayer, and Axel Legay. Mio workbench: A tool
for compositional design with modal input/output interfaces. In Tev�k
Bultan and Pao-Ann Hsiung, editors, Automated Technology for Veri�-
cation and Analysis, volume 6996 of Lecture Notes in Computer Science,
pages 418�421. Springer Berlin Heidelberg, 2011.

[BMS09] Matthias Büker, Alexander Metzner, and Ingo Stierand. Testing real-time
task networks with functional extensions using model-checking. In Proceed-
ings of the 14th IEEE international conference on Emerging technologies &
factory automation, ETFA'09, pages 564�573, Piscataway, NJ, USA, 2009.
IEEE Press.

[BMSH10] Sebastian Bauer, Philip Mayer, Andreas Schroeder, and Rolf Hennicker.
On weak modal compatibility, re�nement, and the mio workbench. In
Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 6015 of Lecture Notes
in Computer Science, pages 175�189. Springer Berlin Heidelberg, 2010.

[But05] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer Verlag, University of
Pavia, Italy, 2005.

[BW13] Dirk Beyer and Philipp Wendler. Reuse of veri�cation results: Consitional
model checking, precision reuse, and veri�cation witnesses. In Ezio Bartocci
and C.R. Ramakrishnan, editors, Model Checking Software, volume 7976 of
Lecture Notes in Computer Science, pages 1�17. Springer Berlin Heidelberg,
2013.

[BY04] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and
tools. In W. Reisig and G. Rozenberg, editors, Lecture Notes on Concur-
rency and Petri Nets, LNCS vol. 3098. Springer�Verlag, 2004.

[CDT13] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. Ocra: A
tool for checking the re�nement of temporal contracts. In Proceedings
of the 28th International Conference on Automation Software Engineering
(ASE), pages 702�705. IEEE computer society, 2013.

[CGP03] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. P s reanu.
Learning assumptions for compositional veri�cation. In Proceedings of the
9th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS'03, pages 331�346, Berlin, Heidelberg,
2003. Springer-Verlag.

187

Bibliography

[CGR12] Alessandro Carioni, Silvio Ghilardi, and Silvio Ranise. MCMT in the land
of parametrized timed automata. In Markus Aderhold, Serge Autexier, and
Heiko Mantel, editors, Proceedings of the 6th International Veri�catrion
Workshop (VERIFY), volume 3 of EPiC Series, pages 47�64, 2012.

[CKT03] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for analysing
system properties in platform-based embedded system designs. In Pro-
ceedings of 6th Design, Automation and Test in Europe (DATE), pages
190�195. IEEE, 2003.

[CL00] F. Cassez and K. Larsen. The impressive power of stopwatches. In Proceed-
ings of the 11th International Conference on Concurrency Theory (CON-
CUR), Lecture Notes in Computer Science, pages 138�152. Springer, 2000.

[CRST13] Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano Tonetta. Val-
idation of requirements for hybrid systems: A formal approach. ACM
Trans. Softw. Eng. Methodol., 21(4):22:1�22:34, February 2013.

[DH01] Werner Damm and David Harel. LSCs: Breathing life into Message Se-
quence Charts. Formal Methods in System Design, 19(1):45�80, July 2001.

[DHJ+11] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using
contract-based component speci�cations for virtual integration testing and
architecture design. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2011, pages 1�6, March 2011.

[Dil90] David Dill. Timing assumptions and veri�cation of �nite-state concurrent
systems. In Joseph Sifakis, editor, Automatic Veri�cation Methods for
Finite State Systems, volume 407 of Lecture Notes in Computer Science,
pages 197�212. Springer Berlin Heidelberg, 1990.

[DILS09] A. David, J. Illum, K.G. Larsen, and A. Skou. Model-based framework for
schedulability analysis using uppaal 4.1. In G. Nicolescu and P.J. Moster-
man, editors, Model-Based Design for Embedded Systems, 2009.

[DLL+10a] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. ECDAR:
an environment for compositional design and analysis of real time systems.
In Automated Technology for Veri�cation and Analysis - 8th International
Symposium, ATVA 2010, Singapore, September 21-24, 2010. Proceedings,
pages 365�370, 2010.

[DLL+10b] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed
I/O automata: a complete speci�cation theory for real-time systems. In
Proceedings of the 13th ACM International Conference on Hybrid Systems:
Computation and Control (HSCC), pages 91�100, 2010.

188

Bibliography

[DMS09] H. Dierks, A. Metzner, and I. Stierand. E�cient model-checking for real-
time task networks. In Proceedings of the 6th International Conference on
Embedded Software and Systems. IEEE Computer Society, May 2009.

[Fif14] Conrad Fifelsky. Spezi�kation und transformation eines echtzeit-systems
von marte zu rtana. Bachelor's thesis (Studienarbeit), University of Old-
enburg, 2014.

[FKPY07] Elena Fersman, Pavel Kr£ál, Paul Pettersson, and Wang Yi. Task au-
tomata: Schedulability, decidability and undecidability. International
Journal of Information and Computation, 205(8):1149�1172, August 2007.

[FPY02] E. Fersman, P. Pettersson, and W. Yi. Timed automata with asynchronous
processes: schedulability and decidability. In Proceedings of TACAS.
Springer, 2002.

[GHRS12] T. Gezgin, S. Henkler, A. Rettberg, and I. Stierand. Abstraction techniques
for compositional state-based scheduling analysis. In Brazilian Sympo-
sium on Computing System Engineering, Workshop of Embedded Systems,
SBESC, Natal, Brazil, 2012.

[GHSR14] T. Gezgin, S. Henkler, I. Stierand, and A. Rettberg. Impact analysis for
timing requirements on real-time systems. In Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2014 IEEE 20th Interna-
tional Conference on, pages 1�10, Aug 2014.

[GKR15] T. Gezgin, B. Koopmann, and A. Rettberg. Combining an iterative state-
based timing analysis with a re�nement checking technique. In Proceedings
of the 5th IFIP International Embedded Systems Symposium (IESS 2015),
November 2015.

[GSHR13a] Tayfun Gezgin, Ingo Stierand, Stefan Henkler, and Achim Rettberg.
Contract-based compositional scheduling analysis for evolving systems. In
Proceedings of the 4th IFIP International Embedded Systems Symposium,
IESS, Paderborn, Germany, june 2013.

[GSHR13b] Tayfun Gezgin, Ingo Stierand, Stefan Henkler, and Achim Rettberg. State�
based scheduling analysis for distributed real�time systems. Journal on
Design Automation for Embedded Systems, pages 1�18, July 2013.

[GWB15] Tayfun Gezgin, Raphael Weber, and Matthias Bueker. State-based real-
time analysis for function networks and marte. In Inproceedings of the
18th IEEE International Symposium on Real-Time Distributed Computing
(ISORC), pages 158�165, April 2015.

189

Bibliography

[GWG11] Tayfun Gezgin, Raphael Weber, and Maurice Girod. A re�nement checking
technique for contract�based architecture designs. In Fourth International
Workshop on Model Based Architecting and Construction of Embedded Sys-
tems (ACES-MB), October 2011.

[GWO14] Tayfun Gezgin, Raphael Weber, and Markus Oertel. Multi-aspect virtual
integration approach for real-time and safety properties. In International
Workshop on Design and Implementation of Formal Tools and Systems,
October 2014.

[HNSY92] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model check-
ing for real-time systems. In Proceedings of the Seventh Annual Symposium
on Logic in Computer Science (LICS), pages 394�406. IEEE Computer So-
ciety, 1992.

[Hun11] Hardi Hungar. Components and contracts: A semantical foundation for
compositional re�nement. Technical report, OFFIS, 2011.

[HV06] M. Hendriks and M. Verhoef. Timed automata based analysis of embedded
system architectures. In Workshop on Parallel and Distributed Processing
Symposium, April 2006.

[JP86] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 29(5):390�395, 1986.

[KHM+96] R.P. Kurshan, R. H. Hardin, K. L. McMillan, J. A. Reeds, and N. J. A.
Sloane. E�cient regression veri�cation. In IEE Proc. WODES'96, pages
147�150, January 1996.

[KMY07] P. Kr£ál, L. Mokrushin, and W. Yi. A tool for compositional analysis of
timed systems by abstraction. In E.B. Johnsen, O. Owe, and G. Schneider,
editors, Nordic Workshop on Programming Theory, 2007.

[Koo14] Bjoern Koopmann. Generierung von gegenbeispielen für eine zustands-
basierte scheduling-analyse. Bachelor's thesis (Studienarbeit), University
of Oldenburg, 2014.

[KY04] Pavel Kr£ál and Wang Yi. Decidable and undecidable problems in schedu-
lability analysis using timed automata. In Kurt Jensen and Andreas Podel-
ski, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 2988 of Lecture Notes in Computer Science, pages 236�250.
Springer Berlin Heidelberg, 2004.

[Leh11] Ste�en Lehnert. A review of software change impact analysis. Ilmenau
University of Technology, Tech. Rep, 2011.

190

Bibliography

[LL73] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the Association for Computing
Machinery, 20(1):46�61, 1973.

[LLPY97] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. E�cient veri�cation
of real-time systems: Compact data structure and state-space reduction.
In Proceedings of the 18th IEEE Real-Time Systems Symposium, RTSS '97,
pages 14�, Washington, DC, USA, 1997. IEEE Computer Society.

[LPT09] Kai Lampka, Simon Perathoner, and Lothar Thiele. Analytic real-time
analysis and timed automata: a hybrid method for analyzing embedded
real-time systems. In Proceedings of the seventh ACM international con-
ference on Embedded software, EMSOFT, pages 107�116, New York, NY,
USA, 2009. ACM.

[LPY97] K G Larsen, P Pettersson, and W Yi. Uppaal in a nutshell. Int.Journal
on Software Tools for Technology Transfer, 1(1-2):134�152, 1997.

[Mar06] Peter Marwedel. Embedded System Design. Springer Verlag, University of
Dortmund, Germany, 2006.

[MC09] Georgiana Macariu and Vladimir Cretu. Model-based analysis of contract-
based real-time scheduling. In Proceedings of the seventh IFIP International
Workshop on Software Technologies for Future Embedded and Ubiquitous
Systems (SEUS), pages 227�239, 2009.

[Mey92] Bertrand Meyer. Applying "Design by Contract". Journal on Computer,
25(10):40�51, October 1992.

[MV94] Jennifer McManis and Pravin Varaiya. Suspension automata: A decidable
class of hybrid automata. In Proceedings of the 6th International Confer-
ence on Computer Aided Veri�cation, CAV, pages 105�117, London, UK,
1994. Springer-Verlag.

[NWY99] C. Norström, A. Wall, and Wang Yi. Timed automata as task models for
event-driven systems. In Proceedings of the sixth International Workshop
on Real-Time Computing Systems and Applications (RTCSA), pages 182�
189. IEEE Computer Society, December 1999.

[OGR14] M. Oertel, S. Gerwinn, and A. Rettberg. Simulative evaluation of contract-
based change management. In Proceedings of the International Conference
on Industrial Informatics (INDIN), 2014.

[OMG11] Object Management Group. UML Pro�le For MARTE: Modeling And
Analysis Of Real-time Embedded Systems, June 2011.

191

Bibliography

[PGB+08] CorinaS. P s reanu, Dimitra Giannakopoulou, MihaelaGheorghiu Bobaru,
JamiesonM. Cobleigh, and Howard Barringer. Learning to divide and con-
quer: applying the l* algorithm to automate assume-guarantee reasoning.
Formal Methods in System Design, 32(3):175�205, 2008.

[PGH97] J.C. Palencia, J.J. Gutierrez, and M.G. Harbour. On the schedulability
analysis for distributed hard real-time systems. In Proceedings of the ninth
Euromicro Workshop on Real-Time Systems, pages 136 �143, June 1997.

[PH98] J.C. Palencia and M.G. Harbour. Schedulability analysis for tasks with
static and dynamic o�sets. In Proceedings of the 19th IEEE Real-Time
Systems Symposium (RTSS), pages 26�37. IEEE Computer Society, De-
cember 1998.

[PLE+11] Linh T. X. Phan, Jaewoo Lee, Arvind Easwaran, Vinay Ramaswamy, San-
jian Chen, Insup Lee, and Oleg Sokolsky. Carts: A tool for compositional
analysis of real-time systems. SIGBED Rev., 8(1):62�63, March 2011.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th an-
nual symposium on Foundations of Computer Science, pages 46�57. IEEE
Computer Society, 1977.

[Pro07] Project SPEEDS: WP.2.1 Partners. SPEEDS Meta-model Behavioural
Semantics � Complement do D.2.1.c. Technical report, The SPEEDS
consortium, 2007.

[PTCT07] Linh T.X. Phan, Lothar Thiele, Samarjit Chakraborty, and P.S. Thiagara-
jan. Composing functional and state-based performance models for analyz-
ing heterogeneous real-time systems. In Proceedings of the 28th Real-Time
Systems Symposium, RTSS, pages 343 � 352. IEEE, December 2007.

[PWT+07] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker, R. He-
nia, R. Racu, R. Ernst, and M. Harbour. In�uence of di�erent system
abstractions on the performance analysis of distributed real-time systems.
In Proceedings of the 7th ACM & IEEE int. conference on Embedded soft-
ware, EMSOFT, pages 193�202, 2007.

[QGP10] S. Quinton, S. Graf, and R. Passerone. Contract-based reasoning for com-
ponent systems with complex interactions. Technical Report TR-2010-12,
Verimag Research Report, 2010.

[RE02] K. Richter and R. Ernst. Event model interfaces for heterogeneous sys-
tem analysis. In Design, Automation and Test in Europe Conference and
Exhibition, 2002. Proceedings, pages 506�513, 2002.

192

Bibliography

[RE10] J. Rox and R. Ernst. Exploiting inter-event stream correlations between
output event streams of non-preemptively scheduled tasks. In Proceed-
ings of the Conference on Design, Automation and Test in Europe, DATE,
Leuven, Belgium, 2010.

[Ric04] Kai Richter. Compositional Scheduling Analysis Using Standard Event
Models. PhD thesis, Technical University of Braunschweig, Braunschweig,
Germany, 2004.

[RRE03] K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration for
heterogeneous multiprocessor SoC. In Procedings of the 24th Real-Time
Systems Symposium (RTSS), pages 236�245. IEEE Computer Society, De-
cember 2003.

[RSRH11] Philipp Reinkemeier, Ingo Stierand, Philip Rehkop, and Stefan Henkler.
A pattern-based requirement speci�cation language: Mapping automotive
speci�c timing requirements. In Software Engineering 2011 - Workshop-
band, LNI. GI, 2011.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. Addison-Wesley, 2nd edition, 2009.

[SSL+14] Youcheng Sun, Romain Soulat, Giuseppe Lipari, Étienne André, and Lau-
rent Fribourg. Parametric schedulability analysis of �xed priority real-time
distributed systems. In Cyrille Artho and Peter Csaba Ölveczky, editors,
Formal Techniques for Safety-Critical Systems, volume 419 of Communi-
cations in Computer and Information Science, pages 212�228. Springer
International Publishing, 2014.

[TC94] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems. Journal of Microprocessing and Microprogramming,
40:117�134, April 1994.

[TCN00] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for schedul-
ing hard real-time systems. In Proceedings of the International Symposium
on Circuits and Systems (ISCAS), volume 4, pages 101�104. IEEE Com-
puter Society, May 2000.

[Tin94] Ken Tindell. Adding Time-O�sets to Schedulability Analysis. Technical
report, University of York, Department of Computer Science, England,
1994.

[WTH+14] Raphael Weber, Eike Thaden, Stefan Henkler, Jens Hö�inger, and Ste�en
Prochnow. Design space exploration for an industrial lane-keeping-support
case study. In Proceedings of DATE Conf. University Booth, 2014.

193

	Title: State-based Timing Analysis for Distributed Systems
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Motivation
	Objective of this Thesis
	Context of this Thesis
	Outline

	Foundations
	Scheduling of Real-Time Tasks
	Tasks and Task Dependency Graphs
	Event Models

	Timed Languages and Timed Automata
	Modeling of System Architectures
	Components and Resources
	Modeling in MARTE

	Specification of Requirements
	Contract-based Design
	Requirement Specification Language

	Summary

	State-based Timing Analysis
	Motivation
	Related Work
	Classical Analytical Approaches
	Model Checking Approaches
	Combination of Analytical and State-based Approaches
	Contribution of this Chapter

	General Approach
	Iterative Analysis Approach
	Symbolic Transition Systems of Resources
	Simplification of Symbolic Transition Systems

	Operations on Symbolic Transition Systems
	Interface Computation
	Composition Function

	Analysis Algorithm
	Main Analysis Algorithm
	Successor Computation
	Completeness and Soundness of Algorithm
	Termination of Algorithm
	Minimization through Untimed Bisimulation, Timed Simulation Relation

	Abstraction Techniques
	Clock Resets and Duration Clocks
	Clocks of Interface STSs
	Abstraction through Simulation Relation
	Effects of Over-Approximations for Iterative Analysis Approach
	Testing: Abstraction through Under-Approximation
	Abstraction for Event Bursts

	Case Study: Driver Assistance System
	Overview
	Lane-Keeping-Support System
	Evaluation Results
	Observation on Scalability

	Summary

	Contract-based Impact Analysis
	Motivation
	Related Work
	Tool Support for Verification of Contract Specifications
	Impact Analysis
	Contribution of this Chapter

	Impact Analysis Methodology
	Impact Analysis on Specification Level
	Simplifying the Virtual Integration Condition
	Timed Automaton-based Analysis Approach

	Impact Analysis on Implementation Level
	Combining State-based Analysis with a Refinement Checking Technique
	Refinement through Simulation Relation
	Combining Impact Analysis with Abstractions

	Evaluation and Case Studies
	Contract-Level of the Driver Assistance System
	Impact Analysis on the Driver Assistance System
	Evaluation of Refinement on Implementation-Level

	Summary

	Summary and Outlook
	Tool Support
	Handling Architectures including Restricted Loop Structures
	Generated Timed Automata
	List of Figures
	List of Tables
	Index
	Nomenclature
	Bibliography

