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Zusammenfassung

Im Zuge der Energiewende und dem damit verbundenen Wandel des Energiemark-
tes werden große zentrale Kraftwerke mehr und mehr durch viele kleine dezentrale
Energieanlagen ersetzt. In diesem Rahmen spielen Virtuelle Kraftwerke (VK) eine
entscheidende Rolle. VK bündeln die Kapazitäten der kleinen dezentralen Anlagen,
sodass die VK wie herkömmliche Kraftwerke am Markt agieren können. Die Planung
des VK Betriebs basiert auf den Flexibilitiäten der steuerbaren VK Teilnehmer, wie bei-
spielsweise Blockheizkraftwerke, Wärmepumpen oder Batterien. Je nach Aufgaben
des VK und der Art der VK Teilnehmer, müssen bei der VK Planung unterschiedliche
einzelne Anlagen und Verbünde von Anlagen berücksichtigt werden. Mathematisch
gesehen ist die VK Planung ein beschränktes Optimierungsproblem. VK Einsatz-
planungsalgorithmen nutzen die Flexibilitäten steuerbarer Teilnehmer. Zur Nutzung
dieser Flexibilitäten werden Flexibilitätsbeschreibungen verwendet. Verwandte Flexi-
bilitätsbeschreibungen sind jedoch nur für einige Arten von VK Teilnehmern geeignet.
Deshalb wird eine neue Flexibilitätsbeschreibung benötigt, die für unterschiedliche
Arten einzelner Anlagen und Verbünde von Anlagen geeignet ist.

Das Ziel dieser Arbeit ist die Entwicklung einer abstrakten, einheitlichen und ge-
nauen Flexibilitätsbeschreibung für die VK Planung. Aus diesem Grund habe ich
das Kaskaden-Klassifikations-Modell als Flexibilitätsbeschreibung entwickelt. Die-
ses Kaskaden-Klassifikations-Modell ist ein anpassbarer Klassifikator und eine ab-
strakte Flexibilitätsbeschreibung, die alle alternativ realisierbaren Anlagenfahrpläne
beschreibt. Anschließend wird das Kaskaden-Klassifikations-Modell experimentell
evaluiert und die Erfüllung der Flexibilitätsbeschreibungs Anforderungen analysiert.
Abschließend wird die Anwendbarkeit des Kaskaden-Klassifikations-Modells in der
VK Planung evaluiert.





Abstract

In the ongoing paradigm shift of the energy market from big power plants to more
and more small and decentralized power plants, virtual power plants (VPPs) play an
important role. VPPs bundle the capacities of the small and decentralized resources
(DER), so that VPPs can participate in the energy market like conventional power
plants. Planing of VPP operation, that is also called scheduling, relies on the flexibil-
ities of controllable DER in the VPP, e.g., combined heat and power plants (CHPs),
heat pumps and batteries. As far as VPPs perform different tasks in the energy sys-
tem and consist of different participants, VPP scheduling can either mean planing
the operation of single energy units or planing the operation of coalitions of energy
units as a unit. Mathematically VPP scheduling tasks are constrained optimization
problems. VPP scheduling algorithm use the flexibilities of the controllable VPP par-
ticipants. Respective related flexibility description approaches are only successful
for some VPP participants. Thus a new flexibility description for all controllable VPP
participants including different kinds of single energy units and also coalitions of
energy units is required.

The aim of this thesis is the development of an abstract, consistent and precise
flexibility description for VPP scheduling. Therefore I have developed the cascade
classification model. The cascade classification model is an adaptable classifier and
an abstract description of flexibilities in terms of alternatively realizable operation
schedules. After that the cascade classification model is evaluated experimentally
and the fulfillment of the flexibility description requirements is analyzed. Finally the
applicability of the cascade classification model as a flexibility description in VPP
scheduling tasks is analyzed.
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1 I N T R O D U C T I O N

In the ongoing paradigm shift of the energy market traditional big power plants are
more and more replaced by smaller and decentralized power plants. A successful
market integration of small and decentralized power plants including renewable en-
ergies is still a current research issue. This PhD thesis was drawn up in the context of
the graduated program Systemintegration Erneuerbarer Energien (SEE) 1 in the field
of operational management. In operational management virtual power plants (VPPs)
play an important role and therefore VPP operation has been considered in several
projects, amongst others SmartNord, see Sonnenschein and Hofmann 2015. The re-
search question of this thesis results from SmartNord. In SmartNord the operation of
VPPs was studied. While planing of VPPs with single energy units as members suc-
ceeded, planing of VPPs with energy unit coalitions as members remains an unsolved
problem. The aim of this thesis is to solve this problem.

In this introductory chapter the problem of VPP planing with coalitions as VPP
members is presented in the context of VPP operation in more detail. First of all
the application context is presented. Therefore VPPs, their application and their
operation, especially scheduling are introduced in general in Sect. 1.1. Since VPP
scheduling relies on flexibilities, flexibilities are presented in Sect. 1.2. After that VPP
scheduling is presented in detail in Sect. 1.3. The term VPP scheduling means on
the one hand scheduling of single energy units and on the other hand scheduling of
coalitions of energy units. With regard to these two meanings of VPP scheduling two
currently much discussed VPP scheduling approaches are presented and discussed
in Sect. 1.4.1. Based on these results a research need is identified and the research
question is formulated in Sect. 1.5. Finally an overview of the complete thesis is
given in Sect. 1.5.1.

1http://www.uni-oldenburg.de/en/see/,last accessed on 24.02.2017

http://www.uni-oldenburg.de/en/see/


2 introduction

1.1 VPP

The idea of VPPs is to bundle decentralized capacities of small energy units. These
bundled capacities are comparable to traditional power plants in terms of the amount
of power production and controllability, see Bitsch et al. 2002. VPPs attract interest
either from a technical and a commercial point of view and this can be retrieved in
VPP definitions. Often employed VPP definitions are the one from the FENIX project,
see Schmid 2009 by Pudjianto et al. 2007,

A Virtual Power Plant is a flexible representation of a portfolio of DER
(distributed energy resources). A VPP not only aggregates the capacity
of many diverse DER, it also creates a single operating profile from a
composite of the parameters characterizing each DER and incorporates
spatial (i.e. network) constraints into its description of the capabilities
of the portfolio.

and another definition given by Asmus 2010,

VPPs rely upon software systems to remotely and automatically dispatch
and optimize generation or demandside or storage resources in a single,
secure Web-connected system.

Further definitions can be found in Braun and Strauss 2008; Saboori et al. 2011 and
general overviews on VPP are e.g. Pudjianto et al. 2007; Asmus 2010; Nikonowicz
and Milewski 2012; Plancke et al. 2015. Recently an enhanced VPP definition was
proposed in Plancke et al. 2015, based on the above presented definitions. The
definition takes different aspects of the integration of DER into the power system
into consideration.

A portfolio of DERs, which are connected by a control system based on
information and communication technology (ICT). The VPP acts as a
single visible entity in the power system, is always grid-tied and can be
either static or dynamic.

This definition points out three essential and characteristic components of a VPP, its
participants, the control system and its role in the energy system.



1.1 vpp 3

• The first component addresses the participants of a VPP. Each VPP consists
of a portfolio of decentralized energy resources (DER) that are operated as a
unified and flexible resource on the energy market. DER comprise distributed
generation e.g., photovoltaic (PV) modules, combined heat and power plants
(CHPs) and wind turbines, controllable consumers e.g., heat pumps (HPs) and
cold stores and prosumers e.g., batteries or electric vehicles. Based on the type
of DER, in the portfolio, VPPS are called supply-side VPPS (only generation),
demand-response VPPs (flexible loads and storage units) and mixed asset type
VPPs (all types). Furthermore VPPs can be static or dynamic coalitions. While
common static coalitions are used for different tasks, dynamic coalitions are
formed task based, e.g., product based, see Nieße, Lehnhoff, et al. 2012; Beer
2013. VPP based on dynamic coalitions are called dynamic VPPs (DVPPs).

• The second component concerns the VPP control system. VPPs are coalitions
in terms of information and communication technologies (ICT), see moreover
e.g., Tröschel 2010; Asmus 2010. VPP control systems can be classified accord-
ing to the communication within the VPP or the organization of the control
structure or both of these two aspects. Such a VPP control system classification
based on the communication structure distinguishes between three classes of
different organizational structures, see Nikonowicz and Milewski 2012. The
three classes are centralized-, distributed- and fully distributed control struc-
tures. Other classification schemes focusing on both control system aspects
(communication and organization), distinguish between more classes, see e.g.,
Hinrichs 2014, 27 et seqq. or Nieße 2015, 47 et seqq. In Hinrichs 2014 the con-
trol system classes: central, decentralized, hierarchical, distributed and fully
distributed are distinguished. While VPPs with a central control system are
operated by one unit with global knowledge, VPPs with a fully distributed con-
trol system coordinate themselves without a central unit via communication
among the VPP participants. All other control systems are hybrid forms of these
two control systems types.

• The third component refers to the roles of VPPs in the energy system. VPP
services rely on the VPP inherent flexibility and comprise grid services, energy
services and further services. VPPs providing grid services are called technical
VPPs (TVPPs). Grid services comprise ancillary services, see Blank 2015, that
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help to "... maintain the integrity and stability of the transmission system as well
as power quality...", Electricity Industry EURELECTRIC 2014. VPPs providing
energy services are called commercial VPPs (CVPPs). CVPPS can participate,
depending on their size and the VPP portfolio composition, in portfolio man-
agement, wholesale market trading and contract optimization tasks. Portfolio
management refers to the ability of a VPP to balance either its own portfolio
of DER and VPPs can also be part of larger portfolios and balance theses larger
portfolios with their flexibility. Wholesale market trading takes place at the
forward market months or even years in advance, at the day-ahead market one
day before product delivery and at the intra-day market hours before delivery.
Another CVPP operation form is the contract optimization, where VPP opera-
tion is optimized according to a contract between the VPP operator and the
electricity supplier. Beside these grid services and energy services, future VPPs
are supposed to provide services at the capacity and the flexibility market, see
also Kouzelis 2015.

In this thesis CVPPs are considered in the context of wholesale market trading and
portfolio management, but flexibility market applications are also possible. Even
though VPPs depend on the grid, grid information is usually not available in market-
based applications. Therefore grid restrictions are not considered in this thesis.

To accomplish the different roles in the energy system, VPPs have to be operated
according to their role and their control system. In the following only the role of
VPP scheduling is considered. VPP scheduling, consists of planing and controlling
the VPP task. For commercial VPPs (CVPPS), considered in this thesis scheduling
has two meanings. Scheduling can either mean planing single energy units of a VPP
or planning a whole VPP as a unit for subordinate tasks.

Scheduling of single energy units according to a global scheduling objective is
applied in wholesale market applications like e.g., the day-ahead market or
the intra-day market at the energy spot market EPEX SPOT, see e.g., Hinrichs
2014, p 186.
This kind of scheduling is related to planing of energy products.

Scheduling of coalitions of energy units, respectively scheduling of whole VPPs
as a unit is used to react to deviations from the initially chosen schedules, e.g.,
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caused by an energy unit failure. The consideration of energy unit coalitions,
also called ’Holone’, see Tröschel 2010 or ’AVPPs’, see Anders, Siefert, et al.
2010 reduces the effort of correcting the initially chosen schedules.

All VPP scheduling tasks mainly rely on the VPP’s inherent flexibility. The terms
flexibility and scheduling are presented in detail in the following subsections Sect. 1.2
and Sect. 1.3.

1.2 Flexibility

The term flexibility is ubiquitous and often not clearly defined, see Golden and Powell
2000. Flexibility is defined generally as

The quality of bending easily without braking.

The ability to be easily modified.

Willingness to change or compromise.

in the oxford dictionaries, Press 2016. Flexibility in organizational terms is defined
as the ’the capacity to adapt across four ’dimensions’, see Golden and Powell 2000.
Flexibility can be achieved in temporal-, range-, intention- and focus dimension. This
means flexibility can be measured in terms of the response time to an event, the
degree of adaptability to events, the degree to which an offensive or defensive stance
is taken towards flexibility and the possibility of flexibility attainment in the process.

In the energy system context flexibility has been defined from the modeling per-
spective as a unique, innate, state- and time dependent quality, see Petersen et al.
2013. This definition can be abbreviated as ’the ability to deviate from the plan’.
Flexibility definitions are related to their application context as for instance elec-
tricity system flexibility is closely related to grid frequency, voltage control, delivery
uncertainty, -variability and power ramping rates, see Lund et al. 2015.

Since flexibility is an essential component in the energy grid, several flexibility
definitions, descriptions and measures have been proposed amongst other in the
following research projects.
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TotalFlex The project TotalFlex, see Skou 2015 dealt with the establishment of a flex-
ible electricity grid. The concrete aim was the development of a cost-efficient
market-based system that utilizes all available flexibility and considers grid
constraints. Flexibility is characterized in terms of time and/or energy amount
and flexibility is described as flexibility objects, see Valsomatzis et al. 2015. In en-
ergy market considerations flexibility is treated with respect to five properties
that add or subtract value from the commodity flexibility, see Kouzelis 2015.
The first property ’energy scaling’ describes the ability to increase or decrease
energy consumption within given limits. The second property ’energy shifting’
quantifies operation time shifting of flexible devices. The geographical location
of generation and consumption is the third property. The fourth and the fifth
property are time of demand/supply activation and uncertainty resulting from
demand and renewable generation.

Flexines The project Flexines, see Gemert 2012 aimed at the development of a set of
electronic instruments to operate household devices with an intelligent energy
management system. Flexibility is considered in terms of household devices.
Flexibility of one household device is defined in Roossien 2012; MacDougall
et al. 2013.

A device has flexibility if it is capable of shifting its production or
consumption of energy in time within the boundaries of end-user com-
fort requirements and without changing its total energy production or
consumption.

Flexibility of the single household devices is divided into five types based
on their amount of energy and their capacity. Corresponding mathematical
flexibility measures describe the amount of power that can be ramped up or
down, see Roossien 2012.

Single household devices employ to small capacities and energy demands com-
pared to the requirements of the electricity grid. Therefore coordinated clusters
of household devices, like VPPs aggregate the flexibilities of the household de-
vices, see Roossien 2012; MacDougall et al. 2013; Lünsdorf 2012.

Flexibility of a coordinated cluster of devices or (virtual) power plant
is a statistical interpretation of the shiftability of the devices. It is
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measured as the amount of power increase or decrease, with respect
to its current power consumption or production, that can be sustained
for a given period of time.

The aggregated flexibility is characterized by its aggregated shiftability, the
overall available power to ramp up or down. Flexibility of coordinated clusters
is merely measured as the sum of the flexibilities of all aggregated devices, see
Roossien 2012. The flexibility of each single device in the cluster is assumed
to be independent of the flexibility of all other devices.

SmartNord The SmartNord project, see Sonnenschein and Hofmann 2015 focused
on the provision of decentralized active power, operating reserve and reactive
power in smart grids, including the design of new information and commu-
nication technology (ICT) structures. Flexibility is defined according to VPP
operation. The flexibility of an energy unit is the quantity of alternative opera-
tion schedules that can be realized within a given time interval, see Bremer 2015.
The flexibility of an energy unit is described mathematically as a black box that
models all alternatively realizable operation schedules.

Beside the flexibility approaches in these projects a taxonomy for modeling flexi-
bility of consumer VPPs was proposed in Petersen et al. 2013. Flexibility of a system
is defined as a unique, innate, state- and time dependent quality. The flexibility tax-
onomy is based on power system characterizing constraints, the power capacity, the
energy capacity, the energy level at a specific deadline and the minimum runtime.
The resulting flexibility taxonomy consists of three class with increasing flexibility.

The above presented flexibility definitions, descriptions and measures are more
or less related to VPPs. VPP operation has been considered in more detail in Flexines
and SmartNord. While in the Flexines project VPPs of household devices have been
considered to match supply and demand, in SmartNord VPP formation, planing and
controlling operations have been considered.

Based on the flexibility definitions and descriptions from Flexines and SmartNord
I have developed flexibility definitions for single VPP participants and coalitions of
energy units or even whole VPPs. The flexibility definitions rely on the definition of
an energy unit.
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Definition 1.2.1 (Energy unit)
The term energy unit is used in this thesis for single units of distributed energy
resources (DER). Energy units can produce power, consume power or store power
and evolve it.

Definition 1.2.2 (Coalition of energy unit)
A coalition consists of arbitrary numbers of energy units of arbitrary types.

Definition 1.2.3 (Flexibility of a single energy unit)
The flexibility of a single energy unit (DER) is the possibility to influence its
operation mode by shifting its production or consumption under given constraints.

This flexibility is described as a set of all alternatively realizable operation
schedules (power production- or consumption time series, see Def. 1.3.2) of the
considered energy unit.

Definition 1.2.4 (Aggregated Flexibility of a coalition of energy units or even
a whole VPP)
The aggregated flexibility of a coalition of energy units, e.g., in a VPP is an aggre-
gation of the flexibilities of all energy units in that coalition.

This aggregated flexibility is described as a set of all alternatively realizable
global operation schedules (global power production- or consumption time series
of a coalition of energy units, see Def. 1.3.3). The flexibilities of the devices in
the coalition can be independent or dependent.

If the flexibilities of all energy units are independent, the aggregated flexibility
is the set of all possible combinations of the realizable operation schedules of
all energy units. But if the flexibilities of the single energy units depend on each
other, only a part of these possible combinations of realizable operation schedules
of all energy units belong to the set of aggregated flexibility.

The flexibility of single energy units results from the possibility of operation
mode modifications. Controllable energy units like combined heat and power plants
(CHPs), heat pumps (HPs) or batteries usually employ flexibility, while non con-
trollable energy units like photovoltaic modules or most wind turbines employ no
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flexibility. The flexibilities in CHPs are due to thermal buffers which decouple the
combined production of thermal and electrical energy from the thermal demand of
a building. Heat pumps also gain flexibility from thermal buffers that decouple the
thermal demand from the power consumption needed for the heat pump operation.
Batteries offer flexibility to energy consumers and producers in a similar way as
thermal buffers.

The flexibility, respectively the possibility to modify the operation mode of con-
trollable energy units is limited by several restrictions, also called constraints. These
constraints are mainly technical constraints, like ramping rates, switching frequen-
cies or limitations of the thermal buffer. Furthermore economical constraints, like
the fuel consumption of an energy unit or operator defined constraints might be
relevant. These different constraints might have different priorities. A more detailed
consideration of constraints can be found in the scheduling section, see Sect. 1.3.1.

The resulting flexibility of an energy unit or a coalition of energy units strongly de-
pends on the type of energy units and the constraints resulting from the application
context. Since flexibility plays a fundamental role in scheduling processes, descrip-
tions of flexibilities are considered in the scheduling section for different scheduling
algorithms, see Sect. 1.3.

1.3 Scheduling

Scheduling is defined generaly in Pinedo 2012[p. 1] as

. . . a decision-making process that is used on a regular basis in many
manufacturing and services industries. It deals with the allocation of
resources to tasks over given time periods and its goal is to optimize one
or more objectives.

This scheduling definition can be transfered to VPP scheduling by adapting the
two main characteristics the allocation of resources to tasks in combination with
an optimization of objectives. These two characteristics can be considered on two
different levels, a general level of several tasks (energy products) and a more detailed
level of a single task (energy product). On the level of all tasks, the given energy units
are allocated to energy products. This allocation is done with portfolio optimization.
Portfolio optimization is a mathematical optimization, mainly applied for investment
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decisions, see e.g., Markowitz 1952; Detemple 2014, but also applied to energy
products, see e.g., M. Liu and F. F. Wu 2007; Nieße, Beer, et al. 2014.

In this thesis only the level of single tasks is considered. At this level the two
characteristics can be again related to VPP scheduling actions.

• Allocation of resources to tasks over given time periods corresponds to an
assignment of operation schedules to the energy units in a VPP for a given
temporal horizon with a given temporal resolution.

• In terms of VPP scheduling, the scheduling goal optimization of one or more
objectives means an optimization according to the compliance of an energy
product. Compliance of energy unit constraints and further objectives might
be e.g., minimization of operation costs or profit maximization. Further details
concerning the optimization are given in Sect. 1.3.1.

In this thesis VPP scheduling is defined as follows.

Definition 1.3.1 (VPP Scheduling)
VPP scheduling consists in the assignment of feasible operation schedules S to
all energy units and feasible global operation schedules Sg to all coalitions, par-
ticipating in the considered VPP. The assignment of schedules is restricted by
the fulfillment of a given energy product and possible further goals. This assign-
ment of operation schedules to energy units or coalitions of energy units is called
scheduling task.

Operation schedules of single energy units and global operation schedules of coali-
tions of energy units are defined according to Hinrichs 2014, p 42, Nieße 2015, p
72 and Bremer and Sonnenschein 2012.

Definition 1.3.2 ((Operation) schedule of a single energy unit)
An operation schedule S is a power production or consumption time series of a
single energy unit for a defined temporal horizon with an equal temporal resolu-
tion.
Operation schedules can be either realizable (feasible) or not realizable (infeasible).

A feasible operation schedule is one power production or -consumption time se-
ries, that corresponds to a realizable operation mode of the considered energy unit.
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Respectively infeasible operation schedules represent time series of not realizable
operation modes. If the energy unit employs flexibility there are several feasible op-
eration schedules. But non controllable energy units without flexibility employ only
one feasible operation schedule, that corresponds to the only realizable operation
mode of that energy unit, see Sect. 1.2.

Definition 1.3.3 (Global (operation) schedule of a coalition of energy units)
A global operation schedule Sg of a coalition of energy units, e.g., a VPP consists
of aggregated operation schedules of all energy units participating in the coalition.
Global operation schedules can be feasible or infeasible depending on the feasibil-
ity of the underlying operation schedules and dependencies between the energy
units in the coalition. If all units in the coalition are operated independently from
each other, except from the weather conditions, a global operation schedule is
feasible if all underlying aggregated operation schedules were feasible.

In literature mainly two different kinds of scheduling are distinguished according
to the point in time of the scheduling action, predictive scheduling and reactive
scheduling.

• Predictive scheduling is used to plan future tasks, see Hinrichs 2014; Bremer
2015 and consists in the generation of optimal initial operation schedules for
the energy units in a VPP, see Tröschel and Appelrath 2009.

• Reactive scheduling takes place during the execution of a plan, see e.g.,Tröschel
2010; Steghöfer et al. 2013; Nieße 2015. Reactive scheduling is used to cor-
rect deviations from the initial planning due to e.g., prediction uncertainties
or energy unit failures. Reactive scheduling can be specified in greater detail
according to the way and the time to react to an event, see Priore et al. 2014.
According to the way of reaction, schedules can be either repaired or a complete
rescheduling can be done. The time to react in rescheduling can be periodic,
event-driven or a hybrid form. A special form of reactive scheduling, named
continuous scheduling is applied in dynamic VPPs (DVPPs), see Nieße 2015, p.
9. Continuous scheduling aims at a continuous adaptation of the energy unit
operation modes to changing conditions, especially to a divergent energy unit
behavior.
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1.3.1 Optimization in Scheduling Tasks

After the general introduction of VPP scheduling, the underlying optimization prob-
lem is considered in more detail in this subsection. An optimization task consists
in the optimization of an objective function φ, see e.g., Gritzmann 2013; Kramer
2014. Optimization tasks are formulated as minimization or maximization tasks. All
possible solutions x form a feasible region (search space) F . A solution x ∈ F is the
optimum x∗ if φ(x∗)≤ φ(x) for minimization problems or φ(x∗)≥ φ(x) for maxi-
mization problems. In evolutionary optimization tasks the optimization problem is
evaluated with a fitness function f (x) instead of an objective functions φ(x).

VPP scheduling optimization tasks show some variations from a general opti-
mization task. In VPP scheduling tasks operation schedules (parameters) of several
energy units are optimized. Furthermore there can be several optimization objec-
tives. Usually F is restricted by some constraints to a constraint search space. These
constraints turn the optimization problem into a constrained optimization problem.
The treatment of constraint optimization problems is considered below.

Constraint Problem

Optimization problems with constraints form two classes, see Rossi et al. 2006 and
Bremer 2015, p 43, constraint satisfaction problems (CSP) and constraint optimiza-
tion problems (COP). Constraint satisfaction problems aim at finding at least one
solution that satisfies all constraints, while constraint optimization problems aim at
finding the optimal solution of all valid solutions. Therefore a COP is a CSP with
an additional fitness function. Constraint optimization problems that contain only
constraints with local effects are called distributed COP (DCOP). Distributed con-
straint optimization problems (DCOPs) are solved according to one or more global
objectives with regard to the constraints, see Chapman et al. 2011.

VPP scheduling is a COP, because the best solution is searched among the possible
solutions. VPP scheduling tasks are constrained e.g., by the feasibility of operation
schedules, as well as operation mode preferences of individual energy units. Further-
more COPs can be characterized by the number of variables affected by a constraint
as the ’arity’ of a constraint, see Rossi et al. 2006, p 14. According to the arity, VPP
scheduling constraints can be divided into the two groups, low-arity constraints and
high-arity constraint, see Hinrichs 2014, p 27. Low-arity constraints are all constraints
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that affect only a few energy units, e.g., up to three units in Hinrichs 2014, p 27,
while high-arity (global) constraints affect more energy units e.g., power grid restric-
tions. Since power grid restrictions are not considered in this thesis only low-arity
constraints have to be handled.

Beside the distinction of the arity, constraints can be classified into hard and soft
constraints, see Tröschel and Appelrath 2009; Bremer et al. 2010. Hard constraints
influence the validity of a solution and have to be obeyed at any time. Hard con-
straints are usually technical constraints. Soft constraints describe properties that
should be reached and therefore do not influence the validity of a solution. Soft con-
straints are additional optimization objectives, like e.g., user preferences or carbon
dioxide emissions.

All constraints restrict the space of valid solutions. Most of the times constraints
do not simplify the space of valid solutions, but in contrary they aggravate the opti-
mization with an inconvenient geometry of the search space, see e.g. Bremer 2015,
p 40. In literature different constraint-handling methods have been proposed for
constraint optimization problems (COPs).

Constraint-handling

Constraint-handling depends on the arity of the constraints, see e.g., Hinrichs, Bre-
mer, and Sonnenschein 2013. In general constraints can be treated either during
the optimization (implicit treatment) or separate from the optimization (explicit
treatment). Furthermore a mixture of implicit and explicit constraint-handling is
possible. A classification of constraint handling methods for COPs was proposed in
Kramer 2010 in the context of evolutionary algorithm. Constraint handling methods
are categorized into the following five classes.

• Penalty functions treat the constraints separately from the optimization. They
decrease the fitness of invalid solutions according to the deviation from valid
ones.

• Repair algorithms replace or repair invalid solutions during the evaluation
of new solutions.

• Decoder functions build up a relationship between the constrained solution
space and an artificial and easier to handle solution space.
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• Feasibility preserving representations and operators turn all solutions into
feasible ones.

• Multiobjective optimization techniques are based on constraint separation.
The separated constraints are treated as further optimization objectives.

The choice of appropriate constraint handling methods depends on the optimiza-
tion problem and the given constraints. Beside the arity of constraints, convenient
constraint-handling techniques for VPP scheduling depend on the control structure
of the VPP. In the following subsection, Sect. 1.4 different optimization approaches
with different constraint-handling methods for VPP scheduling are presented.

1.4 Constraint Optimization Approaches for VPP
Scheduling

In this section different VPP scheduling approaches are presented and compared
with regard to search space modeling and constraint-handling. The simplest solu-
tion for VPP scheduling would be a transfer of unit commitment approaches from
conventional power plant scheduling.

Unit commitment is a constraint optimization problem, that assigns operation
schedules to the power plants. The optimization task is solved at an hourly
basis, amongst others with the objectives to meet the load requirement and
to maximize the profit, see e.g., Saravanan et al. 2013. Unit commitment ap-
proaches reach from simple conventional techniques like listing approaches or
dynamic programming to advanced non conventional techniques like heuris-
tics. Furthermore hybrid techniques of both approach types can be found.

But unit commitment shows a great problem concerning scalability, see Saravanan
et al. 2013. Increasing numbers of energy units and the evaluation of infeasible
solutions can be very time consuming. Beside the scalability problem which ham-
pers a transfer of unit commitment approaches to VPP scheduling, there are some
differences between the scheduling tasks of unit commitment and VPPs. The main
difference consist in the kind of considered energy units (large power plants vs.
DER), the planing horizon (hourly based vs. quarter-hourly based) and the control
structure of the coalition of energy units (central vs. different control schemes).
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Beside conventional unit commitment approaches, there are VPP scheduling ap-
proaches in literature. These approaches solve VPP scheduling tasks (constraint
optimization problems) with different methods corresponding to the VPP control
structure. Here only the two contrary control schemes: central control and fully dis-
tributed control are distinguished, see also Sect. 1.1. All remaining control schemes
are summed up as intermediate control schemes.

• Central control schemes are often applied, because they are relatively simple
and find the best solution. But due to their worse scalability they exhibit a high
computational complexity for VPP applications with numerous DER. More or
less central approaches are COBB, see Peña Landaburu 2006, Stigspace, see Li
et al. 2008; Li et al. 2010 and further approaches can be found e.g., in Steck
2013.

Intermediate control schemes and fully distributed control systems overcome the
drawback of scalability, see Hinrichs 2014, 5 et seq. and Faltings and Yokoo 2005.
While central approaches fit the central control structures of previous commercial
power plant management, distributed approaches fit the dynamical structures of
numerous independent and distributed energy units, see Hinrichs 2014, 3 et seq.

• Intermediate control schemes can employ e.g.,a hierarchical structure with
a central organization on different hierarchical levels. Example algorithms are
autonomous VPP (AVPP) scheduling, see Anders, Siefert, et al. 2010, EPOS,
see Pournaras 2013 or the approach presented in Tröschel 2010.

Central control systems and intermediate ones with their central elements suffer from
data protection. Furthermore information transfer within a VPP is a problematic
issue. DER owners do not always want to share information about their device and
for some DER there might not be enough information available at all. In central
control systems DER information has to be transfered to a central scheduling unit
and in intermediate control systems to a pool coordinator or intermediary agents,
see Hinrichs 2014, p 3 and Faltings and Yokoo 2005.

• Fully distributed control systems, where distributed units communicate with-
out a central unit, are the only control schemes, where operation schedules
are the only information DER have to share. In VPPs with fully distributed
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control systems each DER acts as an independent and intelligent agent in the
VPP scheduling processes, e.g., in COHDA, Hinrichs, Lehnhoff, et al. 2014 or
DynaSCOPE, Nieße 2015.

Fully distributed control systems are commonly implemented with heuristics. Beside
the two advantages of full distributed control systems, a good scalability and data
protection, the applied heuristics employ one disadvantage concerning the solution
quality. Fully distributed control systems do not always find the best solution, due
to incomplete information, see Gatterbauer 2010. But altogether fully distributed
approaches were identified as the most promising approaches for VPP scheduling,
see F. F. Wu et al. 2005; Ilić 2007; McArthur et al. 2007, Hinrichs 2014, 3 seqq. and
Bremer 2015, p. 30.

Fully distributed systems are often realized with multi agent systems (MAS). In
multi agent systems, an agent is allocated to each decentralized stakeholder. In the
case of VPP scheduling the stakeholders are the energy units or energy unit coalitions.
In the following subsection two such VPP scheduling algorithms are presented.

1.4.1 VPP Scheduling Approaches

In literature there are currently two much discussed VPP scheduling approaches
with a more or less fully distributed control structure. One approach called COHDA
(Combinatorial Optimization Heuristic for Distributed Agents) that works with a
fully distributed control system. The other approach called AVPP (autonomous VPP)
scheduling utilizes hierarchical (intermediate) control structures. Even though fully
distributed control structures were identified as more promising than intermediate
control structures, the AVPP scheduling approach has some advantages properties.

COHDA (Combinatorial Optimization Heuristic for Distributed Agents) is a dis-
tributed heuristic for DCOPs that operates in a distributed and asynchronous
way, see Hinrichs, Sonnenschein, et al. 2013; Hinrichs, Lehnhoff, et al. 2014.
COHDA was developed for predictive VPP scheduling tasks in the context of
wholesale market trading at the day-ahead market. Therefore each software
agent represents an energy unit of the participants of the considered VPP. Each
agent employs a search space containing all realizable solutions (feasible oper-
ation schedules) that the unit can contribute to the solution of the optimization
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problem. Due to the main scheduling objective to plan a certain energy prod-
uct, it is not possible to choose an optimal operation schedule for one energy
unit from its search space without considering the operation schedule choice
of all other energy units, see Hinrichs 2014, p 25.

Beside the presented application context COHDA has been adapted and ex-
tended to applications in continuous/ adaptive scheduling tasks in Nieße
2015 to DynaSCOPE (Dynamic Scheduling Constraint Optimization for En-
ergy Units).

AVPP Scheduling is related to resource allocation as a hierarchical optimization
problem. AVPPs (autonomous VPPs) are VPPs with a hierarchical control sys-
tem. AVPP scheduling was proposed in Anders, Siefert, et al. 2010; Steghöfer
et al. 2013 for reactive VPP scheduling to meet a predicted demand. The ap-
proach is a system of systems approach, where each of these systems is called
AVPP. AVPPs on the lowest hierarchical level coordinate some energy units,
while AVPPs on higher levels coordinate AVPPs on subordinate levels. The divi-
sion into AVPPs represents the power grid structure. Each AVPP optimizes the
supply-demand-matching either according to a regio-central control strategy,
see Schiendorfer, Steghöfer, et al. 2014; Schiendorfer, Anders, et al. 2015 or
an auction-based decentralized control strategy, see Anders, Schiendorfer, et al.
2015. Both control strategies employ search space encodings for all agents on
the different levels, representing an energy unit, a collective of energy units
or a collective of collectives.

The optimization task in both VPP scheduling approaches are restricted by con-
straints. The constraints can be either integrated into the search spaces (separate
treatment) or they can be treated directly. In COHDA the constraints are integrated
into the search spaces, while in AVPP scheduling some constraints are integrated
into the search spaces and others are handled directly. The search spaces in both
approaches represent all realizable operation modes in terms of feasible operation
schedules. This means the flexibility of the respective energy units and coalitions
of energy units is encoded in the search spaces, see Sect. 1.2. Therefore the search
spaces can be also called flexibility descriptions. Search space modeling of both ap-
proaches is presented in more detail in the following. Afterwards both approaches
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are compared with regard to their applicability.

1.4.2 Search Space Modeling in COHDA

The search space of each agent in COHDA is bounded by intra energy unit constraints.
These constraints are used to restrict the search spaces of all energy units to feasible
solutions with the help of separate constraint handling.

Two different search space realizations were proposed in Hinrichs 2014, 117 seqq.

• One possibility is a list of alternatively feasible operation schedules that were
sampled from a functional description of the energy unit.

• The other possibility are machine learning surrogate models in combination
with a decoder approach.

The list representation is suitable for very small sets of alternatively feasible operation
schedules. The higher the number of schedules in the list the better are the optimiza-
tion results. But larger sets of operation schedules strongly increase the required
amount of memory capacity and also the computational complexity, see Hinrichs,
Bremer, and Sonnenschein 2013. It would be also possible to use functional descrip-
tions as search space descriptions, because all feasible operation schedules could be
sampled from that functional description. But functional descriptions are not always
easy to derive. Due to dispensable information, functional descriptions can slow
down the optimization. Additionally lists and sampling from a functional description
hamper a target-directed search. Surrogate models with decoder approaches over-
come these difficulties, see Nieße 2015, 104 seq. They are simple description of the
set of all alternatively feasible operation schedules. In Bremer et al. 2011 a constraint
handling method for encoding of distributed search spaces for virtual power plants
was proposed and integrated into COHDA in, Hinrichs, Bremer, and Sonnenschein
2013.

Search Space Encoding

The proposed encoding of distributed search spaces for single energy units in Bremer
et al. 2011 is a decoder approach consisting of the two steps: finding an uncon-
strained search space representation and sampling from the search space.
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Search space representation An unconstrained search space representation is
built with a machine learning classifier. Support Vector Machines (SVMs) were
identified as promising models, because they describe the set of all alternatively
feasible operation schedules in an abstract way and can determine the feasi-
bility of new operation schedules, see Bremer 2015, p. 72. Since the set of all
alternatively feasible operation schedules relies on the energy units flexibility,
the description is also called flexibility description. This flexibility description
is built from given feasible operation schedules. As far as usually only feasible
operation schedules are available for building the classifier a classifier from one
class classification, Support Vector Data Description (SVDD) is applied, Bremer
2015, p. 60. The SVDD classifier is build from a training set consisting of some
alternatively feasible operation schedules in combination with a (Gaussian)
kernel transformation. This kernel transformation performs a mapping of the
training data to high dimensional space, where the training examples form
a minimal hypersphere. The most relevant training examples lie on the sur-
face of the hypersphere and they are called support vectors. Based on those
support vectors a hypersphere center a and a hypersphere radius RS can be de-
termined. The gained abstract description of the search space (F = f (RS , a))
allows an easy decision concerning the feasibility of new operation schedules.

Search space sampling The second step of search space encoding consists in sam-
pling feasible operation schedules from the search space description as possible
solutions for the optimization task. For convenience the description and all
operations schedules are scaled according to maximal power production/ con-
sumption to values between 0 and 1. This scaling effects that all feasible and
infeasible operation schedules form a hypercube. As far as sampling from the
SVDD description is not possible, a mapping is needed, that maps each given
operation schedule into the region of feasible ones. Instead of a direct mapping
in d-dimensional feature space Rd , a mapping has to be done in three steps
by a mapping through the `-dimensional kernel spaceH (`), see Fig. 5.1.

1. At first an arbitrary point x from the unconstrained hypercube is chosen
and mapped onto Ψ̂x in an `-dimensional manifold in kernel spaceH (`).
This ` dimensional manifold is spanned by the ` support vectors.
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Figure 1.1: Decoder mapping. The figure is an adaptation of the decoder mapping
figure in Bremer 2015, p 119. The point x is pulled into the feasible region of the
feature space Rd to the point x∗ via a mapping through the kernel space H (`).
Rmax indicates the maximal distance of an infeasible point to the hypersphere
center a and RS indicates the maximal distance of a feasible point to a.

2. Secondly the mapped point Ψ̂x in kernel space H (`) is drawn to the
hypersphere to Ψ̃x in order to pull it into the image of the feasible region.

3. Thirdly an appropriate pre-image x∗ of the manifolds is searched. Since
it is hardly possible to find the exact pre-image a pre-image is searched,
that lies closest to the given image by using an iterative procedure after
Mika et al. 1999.

This flexibility description encodes the search space of a single energy unit for a
given initial state.

1.4.3 Search Space Modeling in AVPP Scheduling

The search spaces in AVPP planning are encoded with control models. Control models
of single energy units are called individual agent models and control models of
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a collective of energy units or a collective of collectives are called abstract agent
models. All these control models are descriptions of all feasible contributions for
each time step (supply trajectories), see Schiendorfer, Anders, et al. 2015. Depending
on the underlying energy unit(s), the feasible contribution ranges do not imply all
constraints and the remaining constraints have to be treated during optimization.

Search Space Encoding

These control models are piecewise linear functions and they are mainly formulated
as supply automata. Supply automata of single energy units and coalitions of energy
units are derived in different ways.

Control Models of Single Energy Units Control models of single energy units,
also called individual agent models are mainly formulated as supply automata. Con-
trol models of single energy units can be derived from energy unit models or from
observed supply trajectories.

Individual agent models from energy unit models are derived from given con-
straints, such as minimal up/ down times, ramp up/ down rates or cold/ warm
start-up times, see Schiendorfer, Anders, et al. 2015.

Individual agent models from observed supply trajectories are derived when
energy unit models do not exist or when they are not available due to privacy
concerns, see Anders, Schiendorfer, et al. 2015. Control models are derived
with the help of a classifier, that describes the set of observed supply trajectories,
see Anders, Schiendorfer, et al. 2015. A support vector data description (SVDD)
classifier is trained on the observed feasible schedules. The classification accu-
racy is increased by feeding some infeasible schedules into the training set and
into cross-validation. Then the feasibility of a grid of test points spanning the
observed range of contributions is determined. To achieve the control model
formulation of feasible contribution intervals for each time step, the positively
classified test points are projected on each axis (corresponding to one time
step) and all (one or more) feasible contribution ranges are identified for each
time step.
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Control Models of Coalitions of Energy Units Control models of coalitions of
underlying energy units or coalitions are called abstract agent models and they are
formulated as supply automata. The abstract control models represent the joint be-
havior of all underlying energy units or coalitions, see Schiendorfer, Anders, et al.
2015. Supply automata are derived in two steps, synthesis and abstraction. Synthesis
defines necessary interfaces to convert a set of heterogeneous control models along
with the objective to obtain an optimization problem, see Schiendorfer, Steghofer,
et al. 2014. Abstraction based on supply automata aims at reducing the complex-
ity of high level optimization processes, see Schiendorfer, Steghöfer, et al. 2014;
Schiendorfer, Anders, et al. 2015.

Synthesis Synthesis is the process of converting a set of control models into one
optimization problem. This procedure consists in a combination of models
provided on lower levels and an augmentation with organization specific con-
straints, see Schiendorfer, Steghöfer, et al. 2014; Schiendorfer, Steghofer, et al.
2014.

Abstraction Abstraction reduces complexity and means abstracting the informa-
tion contained in the models of one region to form a new model of the consid-
ered hierarchy level. The reduction comes at the cost of errors due to impre-
cision. Abstraction is based on the constraint models of the underlying units
and is divided into general abstraction, temporal abstraction and sampling ab-
straction, see Schiendorfer, Steghöfer, et al. 2014; Schiendorfer, Anders, et al.
2015. These three steps start with the combination of the subordinate models
to a general model that is fine tuned by adding operation specific constraints
in the following steps.

general abstraction During general abstraction the generally feasible con-
tribution ranges of the collective are determined. This leads to a sorted
list of intervals corresponding to joint modes of the underlying suppliers,
that are merged.

temporal abstraction In the next step, temporal abstraction, the generally
feasible contribution range is restricted by the current state and con-
straints resulting from the possible behavior of the underlying energy
units. Even though temporal abstraction excludes ranges after t time
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steps, it does not offer any boundaries between two consecutive time
steps and therefore the third abstraction step, sampling abstraction is
applied.

sampling abstraction In the sampling abstraction step the constraints given
by the composition of agent models and the constraints given by the input
values are handled. Sampling probes a collective’s functional relationship.
Sampling points are selected equidistantly across the full range of power
production. To achieve more informative points a systematical selection
is proposed using importance sampling from active learning, see Schien-
dorfer et al. 2015b; Schiendorfer et al. 2015a.

Control models can be partly re-used for further applications, because global ab-
straction does not consider initial states and therefore only temporal abstraction and
sampling abstraction have to be adapted.

1.4.4 Search Space Encoding Comparison

The different search space modeling approaches, employed in COHDA and AVPP
scheduling, describe the flexibilities of all VPP participants differently. In this subsec-
tion both search space approaches, respectively flexibility descriptions, are compared
with regard to applicability. Therefore the scheduling approaches and some search
space modeling properties of both approaches are briefly presented in Table 1.1.
Both
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flexibility description control model
(COHDA) (AVPP)

search space modeling

scheduling predictive reactive
no. of energy units one one or more
search space description set of feasible schedules ranges of feasible contribu-

tions
constraint handling SVDD + decoder control models and ab-

straction
search space model SVDD supply automata
model is build from feasible schedules given constraints or

supply trajektories or
supply automata

search space sampling decoder approach sampling from a list of fea-
sible contribution ranges

search space properties

time modeling time discrete time discrete
no. of time steps 96 (default) 48 (default)
max. no. of time steps up to ca. 100 50 per control model

concatenation of control
models

temporal resolution 15 min (default) 15 min (default)
tested mainly with µCHPs, cooling devices hydro-, biofuel-, gas- and

conventional power plants

Table 1.1: Comparison of the two search space modeling approaches, the flexibility
description from COHDA and the control models form AVPP scheduling.
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search space models are compared. Applicability is considered with regard to scalabil-
ity, reusability, data protection and performance issues. This comparison is concluded
by a discussion of the findings in the context of the two meanings of the term VPP
scheduling, scheduling of single energy units and scheduling of coalitions.

Scalability The applicability of the search space models depends on temporal scala-
bility and scalability concerning the kind and the number of considered energy
units.

temporal scalability As indicated in Tab. 1.1 both search space models can
be applied with different temporal horizons and temporal resolutions
within reasonable ranges. But the temporal horizon and the temporal
resolution are limited by a maximal number of time steps. The flexibil-
ity description used in COHDA suffers from the dimensionality of the
operation schedules, see Bremer and Sonnenschein 2013b; Bremer and
Sonnenschein 2013c. On the one hand the curse of dimensionality means
increasing numbers of time steps that require a drastic increase of train-
ing examples for the SVDD to prevent precision losses. Precision losses
in the SVDD model are transfered to the decoder model, see Bremer and
Sonnenschein 2013b; Bremer and Sonnenschein 2013c. On the other
hand the decoder has problems to distinguish between high-dimensional
feasible and infeasible operation schedules. This is due to decreasing
distances between schedules for increasing numbers of time steps. This
phenomenon is described in Köppen 2000; Evangelista et al. 2006, as
increasing dimensionality leads to pairwise the same distance of two ar-
bitrary points.
Recently a partitioning of search spaces was proposed in Hinrichs, Bre-
mer, Martens, et al. 2016 to reduce the computational complexity of the
SVDD and the decoder approach and to avoid the drawbacks of the curse
of dimensionality. This search space partitioning could improve the so-
lution quality in scheduling tasks even though some sub search space
parts are missed. The application of search space partitioning turns the
optimization problem into a sequential optimization problem.
Control models in AVPP scheduling are also bounded by a maximal num-
ber of time steps. But this limitation is overcome by a periodically creation
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of new control models every 48 time steps. Since the initial state for each
control model is needed, 96 new time steps have to be simulated be-
fore the creation of a new control model, see Anders, Schiendorfer, et al.
2015. Independently from temporal restrictions, arbitrarily long temporal
scheduling horizons are not reasonable due to prediction inaccuracies.

energy unit scalability Energy unit scalability considers the kind of energy
units and the number of energy units represented in one search space.
While the flexibility description was designed for different kinds of con-
trollable DER and has been mainly tested with µCHPs and cooling de-
vices, the control model was designed for producers and consumers and
is mainly tested with hydro-, biofuel- and gas power plants. As far as
the control models are built on the assumption that power output only
depends on the previous time step, see Anders, Schiendorfer, et al. 2015,
energy units with further dependencies cannot be applied without adap-
tations, like e.g., CHPs and heat pumps that depend on the thermal buffer
temperature and a thermal demand profile, or cooling devices that de-
pend on more than one previous time step.
The number of energy units that can be represented in one search space
is limited to one in the flexibility description. Search space modeling of a
collective of units constitutes two problems, see Bremer 2015. First of all
the number of feasible global operation schedules grows exponentially
with the number of energy units in the collective. Therefore the number
of required training examples for the SVDD black box model is expected
to increase with increasing numbers of considered energy units. The sec-
ond problem consists more or less in the generation of global operation
schedules that represent the whole feasible class. Usually the generation
of feasible global operation schedules leads to many schedules near the
center of the feasible class and hardly any examples at the margins of the
feasible class. Beside the inhomogeneous distribution also the represen-
tativity of the feasible class is problematic.
Thus SVDD black box models learn only the region with the high sched-
ule density.
In contrast to flexibility models, control models can represent the search
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space of one or more energy units. Control models of coalitions of energy
units lose precision during the aggregation of the subordinate models and
their abstraction, see Schiendorfer, Steghöfer, et al. 2014; Schiendorfer,
Anders, et al. 2015.

Concerning scheduling of single energy units, the flexibility description applied
in COHDA is applicable to different kinds of energy units with a more or less
limited scheduling horizon. Search space partitioning allows longer scheduling
horizons. Control models in AVPP scheduling have no temporal limits, but the
kind of applicable energy units is restricted by the assumption that energy
production at the next time step ( t + 1) only depends on the previous time
step ( t). Control models of coalitions of energy units are aggregations of all
control models of the coalition members and therefore all control models of
the coalition members need to be known.

Reusability Reusability of search space models is only possible for control models,
because general and scenario specific constraints are integrated after another.
But the stepwise constraint integration requires specific energy unit informa-
tion, like e.g., on and off settings, minimal and maximal supply, ramping rates
and start-up times. Flexibility descriptions cannot be reused, because they de-
pend on the initial state of the energy unit. But the parametrization of the
SVDD is expected to be similar for different initial states of one energy unit.

Data Protection Data protection and privacy issues depend on the search space
encoding.

The flexibility description achieved a high degree of privacy protection, because
the flexibility description is built from operation schedules and yields only an
abstract description of the set of all feasible operation schedules. Opposed
to the flexibility description, control models protect privacy less. Especially
control models on higher levels need beside the subordinate control models
also information about feasible operation modes.

Performance Search space model performance relies on precision and time com-
plexity. As mentioned for the scalability item before, precision decreases with
increasing numbers of considered time steps. Long scheduling horizons are
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less reasonable anyway, because they depend on inaccurate predictions of gen-
eration and loads. Furthermore control models of coalitions of energy units
lose precision compared to single energy unit control models, due to impreci-
sions during aggregation and abstraction.
Time complexity of search space model computation is less important. Search
space models have to be computed once before the optimization of the schedul-
ing task.

Summing up the pros and cons of both search space modeling approaches with
regard to the two meanings of the term scheduling, non of the two approaches is
applicable without strong limitations. Both search space models describe the flexi-
bilities of the VPP participants. The search space model applied in COHDA (named
flexibility descriptions) is only successfully applicable to single energy units. The
search space modeling from AVPP scheduling (named control models) are also ap-
plicable to scheduling of coalitions of energy units, but they are not applicable to all
kinds of controllable DER. Furthermore research need is claimed for more realistic
and complex control models in Anders, Schiendorfer, et al. 2015.

Altogether none of the search space model approaches is applicable to VPP schedul-
ing with its two meanings for arbitrary kinds of DER. It seems easier to extend the
search space model of COHDA, especially because of the advantages: applicability
to different kinds of DER and data protection.

1.5 Objective

The comparison of existing search space descriptions revealed a need for further
research. None of the existing search space descriptions is applicable to different
kinds of controllable energy units in form of single energy units and coalitions of
energy units. Beside these two requirements search space descriptions should be
applicable to VPP scheduling with a fully distributed control structure which has
been identified as a promising control structure e.g., in F. F. Wu et al. 2005. The
advantages of fully distributed control structures, a good scalability and data protec-
tion can be utilized best with a separate constraint handling as applied in COHDA,
see Hinrichs 2014, 117 sepp. Separate constraint handling does not require detailed
energy unit information which is not always available. Search space models like
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the flexibility description used in COHDA only rely on feasible operations schedules.
Furthermore search space descriptions should precisely represent feasible possible
solutions for all applications. The properties reusability and time complexity are less
important, because search space descriptions always have to be computed before the
optimization in scheduling tasks. Overall a search space model should be abstract,
consistent and precise.

Abstract A search space description should be an abstract description representing
the flexibility. Therefore such a search space description is called flexibility
description like the search space modeling approach used in COHDA. A flex-
ibility description should be less complicated than simulation models of the
respective energy unit information and should hide energy unit information.
Preferably a flexibility description is a description of the set of all alternatively
realizable operation schedules that is derived from given schedules.

Consistent A flexibility description should be consistent for various applications.
For one thing the flexibility description should be applicable to different kinds
of controllable energy units. For another thing the flexibility description should
be applicable to single energy units and coalitions of energy units. Furthermore
the scheduling horizon and the temporal resolution should be adaptable.

Precise The flexibility description should be a precise description of the quantity
of all alternatively realizable operation schedules. Furthermore the flexibility
description should only contain feasible operation schedules or at least as few
inaccuracies as possible, to allow good optimization results for the scheduling
tasks.

These requirements lead to the aim of my PhD project.

The aim of my PhD project is the development of an abstract, consistent and
precise flexibility description for the application as a search space model in
VPP scheduling in terms of scheduling the single energy units in a VPP and in
terms of scheduling coalitions of energy units as units.

Even though I develop a flexibility description in the context of VPP scheduling,
its application should not be restricted to this context.
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1.5.1 Structure of this Thesis

This thesis is structured as follows. In the following chapter, Chapt. 2 the objective
is transfered into a methodological task. Therefore different methods are presented
and compared concerning their applicability as flexibility description. Furthermore
evaluation methods for the flexibility model to be developed are presented. Then
the development of the flexibility description and the resulting flexibility description
are presented in Chapt. 3. In Chapt. 4 the flexibility description is evaluated concern-
ing precision, parameter sensitivity and temporal complexity. In the next chapter,
Chapt. 5, the applicability of the developed flexibility description is discussed in
the context of VPP scheduling. Finally a summary of this thesis, a conclusion and a
perspective are given in Chapt. 6.



2 M E T H O D S

As identified in the previous chapter in Sect. 1.5, the flexibility description should
be an abstract consistent and precise description of the set of all alternatively real-
izable operation schedules. Machine learning models in combination with decoder
functions are suitable as flexibility descriptions due to different reasons, see e.g., Al-
paydin 2010, 1 seqq. Machine learning models extract information from given data
sets. Furthermore machine learning models aim to be general and precise. Therefore
they are applicable to various different tasks. An overview of machine learning mod-
els can be found e.g., in Bishop 2006; Hastie et al. 2009; Alpaydin 2010; Kuncheva
2014. Especially methods from classification and clustering aim at describing classes
and separating them from the remaining examples. Classification methods are su-
pervised methods that yield more precise results on labeled data, than unsupervised
clustering methods. Operation schedules used for flexibility descriptions are labeled
according to their feasibility. Therefore classification methods are more appropriate.

This chapter consists of a brief classification method overview in Sect. 2.1, the iden-
tification of appropriate classifiers for a flexibility description in Sect. 2.2, Sect. 2.3
and the presentation of the applied classifiers in this thesis in Sect. 2.4 and classifier
performance evaluation methods in Sect. 2.5.

2.1 Classification

Classification in general means grouping similar objects into classes according to
properties that all objects share in a class, see Sammut and Webb 2010. Classification
in terms of machine learning is the assignment of a class label to an object based on
a set of example objects, see e.g., C. C. Aggarwal 2014, p. 2, Kuncheva 2014, p. 9ff
and D. M. J. Tax 2001, p. 2ff. An object is described by a vector x i , consisting of a set
of d measurements of different object properties. This vector is called feature vector
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and represents one point in feature space. The object x i ∈ Rd can be represented
as feature vector (x i,1, . . . , x i,d) with x i, j ∈ R. Each object x i belongs to a class
ω ∈ Ω = {ω1, . . . ,ωk}. The class affiliation of x i is indicated by a label yi. Usually
classification tasks consist of two classes with k = 2, Ω = {ω1,ω2} and the class
labels are indicated as yi ∈ {−1,+1}.

Classifiers are learned from a so called training set X t rain consisting of N objects
and the corresponding labels. A classifier is a function f (x), that predicts the class
label y of a new object x as y = f (x) with f : Rd → Ω.

Classification is a broad field and emerged in different communities. Classification
can be divided into three broad categories, according to C. C. Aggarwal 2014. These
three categories are technique-centered methods, data-type centered methods and
variations on classification analysis.

• The first category focuses on the algorithms and covers most popular clas-
sification methods ranging from probabilistic methods over decision trees,
rule-based methods, instance based methods to support vector machines and
neural networks.

• The second category focuses on different data types, because different data
types require different classification methods and a special data treatment.
The most frequently considered data types are data streams, big data, texts,
multimedia data, time series, sequence data, data from networks and uncertain
data. Beside the data type examples in C. C. Aggarwal 2014, further well known
data types are micro-arrays, handwriting data sets and document data sets.

• The third category covers classification algorithm adaptations, that were
proposed for variations in the data sets. This category covers variations of
the standard classification problem and enhancements of classification with
the use of additional data. Variations of the standard classification problems
are e.g., rare class learning, distance function learning and ensemble learning.
Furthermore there are enhanced classification methods with additional data,
semi.-supervised learning, transfer learning, classification methods incorporat-
ing human feedback, active learning and visual learning.

Beside the presented classification categories by C. C. Aggarwal 2014 further
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categorizations, e.g., based on the classification algorithms properties can be found
in literature.

2.2 Classifier Choice

The identification of an appropriate classifier for a given task can be a challenging
task due to the high number of existing classifiers. Based on the classification task
and the given data set an appropriate classifier has to be identified. A scheme for
choosing data mining algorithm, including classification algorithms was proposed
in Gibert and Codina 2010. This scheme suggests to consider on the one hand "the
main goal of the problem to be solved" and on the other hand "the structure of the
available data".

Main goal of the problem to be solved The main goal is the identification of a
classifier, that describes the set of all feasible operation schedules. This classi-
fier, serving as flexibility description should be an abstract description of the
set of all alternatively feasible operation schedules. Classifiers yield abstract de-
scriptions, because they define a class e.g., by their boundaries, reconstruction
properties or density properties, see D. M. J. Tax 2001, chap. 3. Furthermore
the classifier should be precise and consistent. This means the learned decision
boundary should resemble the true class boundary for different applications
with different data properties and structures.

Beside the requirements resulting from the main goal, see Sect. 1.5, the classifi-
cation task itself has some characteristic properties, that are also important for
the classifier choice. These additional classification task properties resulting
from the VPP scheduling application are summarized in Tab. 2.1.

Structure of the available data The data structure of operation schedules is an-
alyzed with regard to the data type and the data set properties identified in
pre-studies exemplarily for CHP and heat pump operation schedules of single
units and coalitions of energy units. Operation schedules in VPP scheduling
tasks belong to the data type: time series. Data set properties commonly con-
sidered in classification tasks, see e.g. Weiss 2004; Sudjianto et al. 2010; Lusa
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property value

number of classes 2 (feasible, infeasible)
balance of classes (severely) imbalanced (small feasible class)
dimensionality high-dimensional (e.g., 24 h, 15 min resolution)
feature values numeric values (mainly scaled to [0,1])
separability of classes clearly separable (no class overlap)
fragmentation (feasible class) possible (one or more concepts)

Table 2.1: Classification task properties.

property value

number of classes 1 or 2 (only feasible class or both)
data source simulation models
number of examples arbitrary numbers of examples can be sampled
distribution of examples from homogeneous and representative to

inhomogeneous and less representative
correct labels yes
missing labels no
balance of data set classes are balanced
noisy examples no
missing values no
concept drift no

Table 2.2: Data set properties.

and Blagus 2012; C. C. Aggarwal 2014; Bak 2015; Stefanowski 2016 and their
characteristics in operation schedule data sets are listed in Tab. 2.2. Data set
properties can deviate from the classification task properties in Tab. 2.1, like
e.g., the number of classes. The classification task is based on two classes, but
the data sets may contain only examples of one class.
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2.3 Classification Categories Related to the
Identified Classification Task and Data
Properties

The analysis of common classification task properties and common data properties
revealed characteristics that are representative of different classification categories.
The main classification task characteristics are the data type time series, (severe)
imbalanced classes and high dimensional data. Each of these properties fits into
one or more of the following classification category: time series classification, high-
dimensional learning, imbalanced learning, high-dimensional and imbalanced learn-
ing and one-class classification. But there is no category including all these properties.
The categories called ". . . -learning" comprise beside classification methods also other
methods like clustering and regressing. But I focus only on classification methods. In
the following related classification categories are presented with respect to suitable
classification methods for flexibility descriptions.

2.3.1 Time Series Classification

Time series are sets of of m real-valued numbers, Sammut and Webb 2010; Kotsakos
and Gunopulos 2014. A time series is represented as a sequence T = (t1, t2, . . . , tm).
Time series classification differs a little from common classification mainly due to
two properties.

• The first difference consists in the dimensionality, Sammut and Webb 2010.
Time series data sets often employ hundreds or thousands of time steps, while
classification algorithms for common tasks assume lower numbers of features.

• The second difference consists in the data structure, see Sammut and Webb
2010; Bagnall, L. M. Davis, et al. 2012 and J. A. Lines and Bagnall 2015, p. 7ff.
For one thing ordering of the features (time steps) is important. For another
thing data points within one time series can be highly correlated.

According to B. Fulcher and N. Jones 2014 time series classification tasks belong
to the two categories: instance-based classification and feature-based classification.
Instance-based classification comprises approaches, where new and short time series
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are classified by matching them to similar labeled time series. Feature-based classifi-
cation is based on transformations of the time series representations and is usually
applied to longer time series. The time series are represented by a set of derived
properties or features.

Time Series Classification Approaches

Classification tasks from both categories have to be treated differently. Instance-based
classification tasks (short time series) are similar to common classification and can
be treated with common classification algorithms. Feature-based classification tasks
(long time series) require data preprocessing. Often applied preprocessing meth-
ods are dimensionality reduction, see e.g., Al-Naymat and Taheri 2008; Krawczak
and Szkatuła 2014, feature selection and instance selection, see e.g., Tsimpiris and
Kugiumtzis 2012; Tomašev, Buza, et al. 2015, indexing, see e.g., Xiong and Funk
2008; Camerra et al. 2010; Fu 2011 and segmentation, see e.g., Fu 2011; Keogh et al.
2004, Spiegel 2015, 20 seq. Furthermore transformations into a different representa-
tion, Fu 2011; Kotsakos and Gunopulos 2014 are used in combination with different
preprocessing methods, see Ding et al. 2008; Hills et al. 2014. Beside preprocessing
methods, time series classification algorithms are often applied with special metrics,
see e.g., Giusti and G. E. A. P. A. Batista 2013; Serrà and Arcos 2014; Spiegel 2015;
J. A. Lines and Bagnall 2015. In experiments k nearest neighbors (knn) with dynamic
time warping turned out to be the best time series classification approach for smaller
data sets, see Ding et al. 2008. Recently superior time series classification algorithms
have been proposed: transformation based ensembles, Bagnall, L. M. Davis, et al. 2012
and collective of transformation-based ensembles, seen Bagnall, J. Lines, et al. 2015.

Applicability to Flexibility Descriptions

Time series classification algorithms have to be treated with care for flexibility de-
scriptions. Common time series classification algorithms rely on similarities, like
frequencies, shifts, etc. within the time series, like e.g., the k nearest neighbor clas-
sifier used in the transformation based ensembles time series classification model,
see Bagnall, L. M. Davis, et al. 2012. But feasibility of operation schedules relies on
the power production or consumption value at each time step. A feasible operation
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schedule gets infeasible, if only the power production/ consumption value of a sin-
gle time step is changed to a not realizable value. Therefore common classification
algorithms used for instance-based classification are more appropriate for operation
schedule classification, even though operation schedules often employ 96 time steps
(24 h, 15 min).

From the field of feature-based classification only one type of preprocessing is
applicable, namely time series segmentation. All other methods can not be applied,
because the feasibility of a new operation schedule depends on the power production
or consumption at each time step. Time series segmentation is also called time series
splitting, splits time series into segments according to time series inherent logical
units, e.g. patterns, Molina et al. 2009; B. D. Fulcher et al. 2013; B. Fulcher and
N. Jones 2014; Gensler and Sick 2014.

An similar version of time series splitting can be also found for common classifica-
tion tasks in the context of random forests, called feature bagging. Feature bagging
is a procedure, where the features are divided into a specific number of subsets of
possibly overlapping features (feature bags), see e.g., Breiman 2001; Sutton et al.
2005. These feature bags are learned with separate models and their predictions are
combined to final results.

2.3.2 High-dimensional Learning

Classification tasks with many features are a problem in general due to the curse of
dimensionality, see e.g., Sammut and Webb 2010; Bak 2015. The curse of dimension-
ality is related to the exponential increase in volume due to additional dimensions in
Euclidean space, Bellman and Bellman 1961. This volume increase implies, that the
number of required samples for classification tasks increases exponentially with the
number of dimensions (features). The influence of high-dimensionality one classifier
performance depends on additional factors. In Lin and Chen 2013 five major factors
were identified that often influence classification performance of high dimensional
data. Three factors concern data properties: imbalance ratio, minority and majority
class distribution and sample size and two factors concern the algorithms: feature
selection and the strategy for imbalance correction.
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High-dimensional Classification Approaches

In literature, various solutions have been proposed for high-dimensional classification
tasks. High-dimensional data sets are usually treated with preprocessing algorithms
and or special classification algorithms. Such preprocessing methods are dimension-
ality reduction, Engel et al. 2012; Wang et al. 2015, feature selection, Saeys et al.
2007; Chandrashekar and Sahin 2014; Yin and Gai 2015 and data sampling meth-
ods, see e.g., Yin and Gai 2015. Special classification algorithms are e.g., ensemble
approaches, see Piao et al. 2014; Krawczyk 2016, multi-task learning approaches,
see Seo and Oh 2013; X. He et al. 2014; Piao et al. 2014 or hierarchical classification
approaches, see Naeini et al. 2014; Valentini 2014.

Applicability to Flexibility Descriptions

Common feature selection and dimensionality reduction work well for common clas-
sification tasks, but they are not appropriate for time series classification tasks. As the
ordering of all time steps is important and features (time steps) cannot be redundant
or meaningless, see Bagnall, L. M. Davis, et al. 2012. Dimensionality reduction with
linear Principle Component Analysis (PCA) and PCA with a Gaussian kernel revealed
exemplarily for µCHP power output time series that most of the components con-
tribute to the explicable variance, see Fig. 2.1. The explicable variance ratio indicates
the percentage of variance, that is explained by a selected component.

From the field of special classification algorithms, multi-task learning approaches
are promising for operation schedule classification, because they simplify classifica-
tion tasks without a loss of information. The main idea of multi-task learning is to
split the classification task in such a way, that each concept or parts of a concept
are learned separately, see Fig. 2.2 and see e.g., Seo and Oh 2013. Beside multi-task
learning approaches, ensemble approaches seem also promising for operation sched-
ule classification. The advantage of ensembles approaches consists in a high overall
classification precision, due to a combination of a set of diverse classifiers, e.g., see
Sammut and Webb 2010.



2.3 classification categories 39

0 20 40 60 80 100
components

0.0

0.2

0.4

0.6

0.8

1.0
ex

pl
ic

ab
le

pa
rt

of
va

r

(a) linear PCA

0 20 40 60 80 100
components

0.0

0.2

0.4

0.6

0.8

1.0

ex
pl

ic
ab

le
pa

rt
of

va
r

(b) PCA with gaussian kernel

Figure 2.1: Cumulative sum of the explicable variance ratio of 10,000 CHP opera-
tion schedules (black line) and 100% of the explicable variance is indicated by a
red dotted line.

2.3.3 Imbalanced Learning

Imbalance refers to unequal distributions that often cause classification errors on
the minority class. Generally the term imbalance is used for data sets employing
different numbers of examples for different classes. But imbalance holds more facets,
see Weiss 2004; Kotsiantis et al. 2006; H. He and E. Garcia 2009; H. He 2013; Weiss
2013. According to H. He and E. Garcia 2009 two main categories of imbalance can
be distinguished: between-class imbalance and within-class imbalance. These two
categories employ several subcategories.

Between-class Imbalance This category subsumes data sets with imbalanced
classes independent from the origin and the cause the of the imbalance. Im-
balance originates either from the problem or the sampling.

Intrinsic Imbalance Imbalance, directly resulting from the nature of the
problem is called intrinsic imbalance.

Extrinsic Imbalance Extrinsic imbalance results from sampling, e.g., if sam-
ple recording of balanced classes misses numerous samples of one class.

Further subcategories can be distinguished according to the causes of imbal-
ance.

Relative Imbalance Relative imbalance refers to the sample ratio between
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(a) µCHP concepts (b) Hypersphere concepts

Figure 2.2: 2-dimensional figures of data sets, where the feasible class consists of
several concepts. Different concepts are indicated with different colors.

the classes. The number of examples of the minority class is only small in
comparison to the number of examples of the majority class. This means
doubling the number of examples doubles the number of examples in
both classes.

Imbalance due to Rare Cases In the case of imbalance due to rare cases,
the minority class examples are very limited, e.g., the target concept is
rare. This means a lack of representative data of the minority class and
can lead to an underrepresentation. This imbalance form can be even
worse in combination with within-class imbalance.

Within-class Imbalance Within-class imbalance is present, when a class employs
one or more subconcepts with a limited number of samples. This form of
imbalance is related to small disjuncts that are easily misclassified, especially
in the presence of noise.

Most of the presented subcategories of imbalance are shown in Fig. 2.3. Imbalanced
learning is related to rare class learning (rare classes, rare cases and absolute or
relative rarity), see e.g., Weiss 2004; C. C. . Aggarwal 2014. The choice of appropriate
imbalance treatment methods either depends on the kind of imbalance and also on
the degree of imbalance. High degrees of imbalance, also called severe or extreme
imbalance are even worse than a weak imbalance, see e.g., Attenberg and Ertekin
2013. A possible effect of the degree of imbalance is described in the following
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example 2.3.1.

minority class
majority class

(a) imbalance

main concept (minority cl.)

subconcept (minority cl.)
majority class

(b) complex imbalance

Figure 2.3: The figures show different categories of imbalance: (a) a data set with
between-class imbalance, (b) a more complex data set with within-class imbalance,
between-class imbalance, multiple concepts.

Example 2.3.1
A data set resulting from a problem with (a severe) intrinsic imbalance can contain
equal numbers of examples of the minority and the majority class. In this case the
data set is balanced but the classes are not equally represented in the data set and lead
to worse classification results of the minority class examples. Energy unit operation
schedules pose such problems.The class of feasible operation schedules is much
smaller than the class of infeasible ones. For example the volume of the class of
feasible operation schedules of a µCHP is smaller than 1% of the volume of the
infeasible class, see Bremer et al. 2010.

Imbalance is not the only factor that hinders learning classifiers. Imbalance in com-
bination with data complexity amplifies classifier performance deterioration, see
Stefanowski 2016. Data set complexity refers mainly to rare subconcepts of the mi-
nority class (small disjuncts), overlapping classes, presence of outliers, rare instances
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or noise, see Sudjianto et al. 2010; Stefanowski 2016. Additionally the interaction
of class imbalance with small disjuncts, rare cases, data duplication and overlapping
classes was investigated in, Kotsiantis et al. 2006 and in López et al. 2013.

Imbalanced Classification Approaches

Imbalanced classification approaches comprise data-based approaches, algorithm-
based approaches and special assessment metrics, see Kotsiantis et al. 2006; Weiss
2013; Menardi and Torelli 2014; Stefanowski 2016.

Data-based approaches are mainly sampling techniques e.g., undersampling, over-
sampling, hybrid techniques and feature selection and instance selection approaches,
see e.g., Van Hulse et al. 2007; Guo et al. 2008; H. He and E. Garcia 2009; Hoens
and Chawla 2013; Yin and Gai 2015. Sampling of severely imbalanced data sets was
considered in Klement et al. 2011.

In literature many imbalanced classification algorithms have been proposed, see
e.g., Van Hulse et al. 2007; H. He and E. Garcia 2009; Hoens and Chawla 2013;
Yin and Gai 2015 and comparative experimental studies can be found e.g., in Van
Hulse et al. 2007; G. Batista et al. 2012; S. Zhang et al. 2015. The most common
algorithm-based approaches are one-class learning, see e.g., Mazhelis 2006; Zhuang
and Dai 2006; H. He and E. Garcia 2009; Khan and Madden 2014 and see Sect. 2.3.5,
ensemble-learning, see e.g., X.-Y. Liu and Zhou 2013, multi-task learning, see e.g.,
Yang et al. 2010; X. He et al. 2014, cost-sensitive learning and skew-insensitive
learning, see e.g., Hoens and Chawla 2013 and active learning, see e.g., Attenberg
and Ertekin 2013.

The evaluation of imbalanced classification requires special evaluation metrics,
because common binary metrics do not considered the imbalance that distorts the
meaning of precision for the minority and the majority class. Such evaluation metrics
are e.g. sensitivity, specificity or the F-measure. An overview of different evaluation
metrics for imbalanced learning can found e.g., in H. He and E. Garcia 2009; Sun
et al. 2009; Hoens and Chawla 2013; Japkowicz 2013.

Regardless of the various different imbalance treatment methods on the data
level, on the algorithm level and the assessment metrics, López et al. 2013; Ste-
fanowski 2016 concluded in their studies on imbalance that data complexity might
have a stronger influence than imbalance. They suggest a consideration of imbalance
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treatment in the context of further data properties and to use these data intrinsic
properties.

Applicability to Flexibility Descriptions

For flexibility descriptions, data preprocessing methods are not appropriate, because
of the severe imbalance between the feasible and the infeasible classes. So imbalance
has to be treated with appropriate algorithms and assessment metrics. Since further
data properties should be taken into account, possible algorithms can be restricted
to a small selection. Due to the severe imbalance between the classes one-class
classifiers are an appropriate choice, see H. He and E. Garcia 2009; Raskutti and
Kowalczyk 2004 and ensemble methods, see Lin and Chen 2013. These methods
can be used for flexibility descriptions in combination with respective assessment
metrics.

2.3.4 High-dimensional and Imbalanced Learning

The combination of high-dimensionality and imbalance appears rather often in real
world data sets, e.g., biomedical data sets. Both data properties hinder classification
performance and a combination of both properties poses additional challenges, see
Lusa and Blagus 2012; Bak 2015.

High-dimensional and Imbalanced Classification Approaches

High-dimensional and imbalanced classification tasks are treated with methods from
both fields. The performance of different methods has been evaluated in different ex-
perimental studies, e.g., Blagus and Lusa 2010; Lusa and Blagus 2012; Lin and Chen
2013; Yin and Gai 2015; Bak 2015; Bak and Jensen 2016. Often feature selection and
dimensionality reduction methods are applied, see e.g., Blagus and Lusa 2010; Yang
et al. 2010; Shanab et al. 2011; Lusa and Blagus 2012; Lin and Chen 2013; López
et al. 2013; Maldonado et al. 2014; Bak and Jensen 2016. Furthermore the papers,
cited in this subsection, focus on various facets of imbalance in combination with
high dimensionality, point out the strengths and weaknesses of different methods
and discuss the effect of data intrinsic characteristics. Overall they all recommend a
careful consideration of the classification task to choose an appropriate classifier.
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Applicability to Flexibility Descriptions

Appropriate methods for flexibility descriptions are the ones already identified for
high-dimensional classification in Sect. 2.3.2 and imbalanced classification, see Sect. 2.3.3.
Methods from one-class learning, ensemble-learning and multi-task learning are
promising.

2.3.5 One-class Learning

One-class classification (OCC) is also known as novelty detection, outlier detection,
and concept learning, resulting from the different application fields. One-class clas-
sification aims at learning classifiers, when only examples of one class are available
and the other class is sparsely sampled or no examples are available, see D. M. J. Tax
2001, 13 seqq. Bellinger et al. 2012; Khan and Madden 2014. The well sampled
class is usually called target class and the other class is called outlier class. The main
challenge in one-class classification is the trade of between missing target examples
and classifying outlier examples as target examples, Bartkowiak 2010. According to
an OCC taxonomy by Khan and Madden 2014 OCC problems are divided into the
following three groups.

Availability of training data: One-class classifiers can be either build only from
positive examples or from positive examples in combination with some nega-
tive examples or unlabeled data.

Methodology used: OCC algorithms are organized into SVM and non SVM algo-
rithms. SVM-based algorithms form a group, due to their frequent application
in different application fields, their advancements and their significance.

Application domain Application domains are divided into text/ document classi-
fication and other fields.

One-class Classification Approaches

OCC methods according to the availability of training data are often SVM-based.
These and further approaches can be found e.g., in Khan and Madden 2014.
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The second group of the taxonomy consists of the different methods used for
one-class classification. OCC methods consist of boundary methods, density meth-
ods and reconstruction methods, see D. M. J. Tax 2001, 17 seq., 57 seqq. Density
methods are build from density estimates of the target class, e.g., in Parzen density
estimators and Gaussian models. Boundary methods aim at defining a boundary
around the target class, like e.g., SVM-based methods and some knn-based meth-
ods. Reconstruction methods rely on prior knowledge and aim at a minimization of
the reconstruction error of new examples. Such methods are e.g., some knn-based
methods. Furthermore several hybrid classifiers have been proposed, like multi-task
learning, ensemble methods or active learning, Yang et al. 2010; Krawczyk 2016;
Barnabé-Lortie et al. 2015.

The third group of algorithms focuses on OCC with domain specific properties.
For the application field time series classification e.g., SVM-based approaches or
ensemble approaches have been proposed in Ding et al. 2008; Sachs et al. 2009;
Bagnall, L. M. Davis, et al. 2012; Bagnall, J. Lines, et al. 2015.

Applicability to Flexibility Descriptions

Flexibility description classifiers are built from only feasible examples or feasible
and some additional infeasible examples. The data sets are labeled correctly in both
cases.

From the methodological point of view, boundary methods are promising as flexi-
bility descriptions, because the learned decision boundary is a simple description of
the set of the feasible operation schedules. The other methods do not yield a readily
usable description. They define the class boundary in terms of target densities or
reconstruction errors. From the field of boundary methods SVM-based methods are
an obvious choice, because they are promising methods due to their significance and
broad application field, see Khan and Madden 2014.

From the application domain, SVM-based methods and ensemble methods are
promising

2.3.6 Result of the Literature Review

In literature there is no classifier available, that fits all identified classification task,
see Tab. 2.1 and data properties, see Tab. 2.2. Most papers focus only on one or some-
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times on two of these properties at the same time. Overall one-class classification,
especially boundary methods, multi-task learning and ensemble methods fit most
identified properties. From the OCC methods SVM-based methods seem to be the
most promising methods. But an SVDD approach has been applied in the flexibility
description proposed in Bremer et al. 2010. This SVDD approach faces problems,
describing sets of global operation schedules, see Sect. 1.4.4. Thus methods with
more generalizability are required, probably from the field of ensemble learning.
Ensemble methods promise generalizability and a good classification precision, see
Rokach 2010; Bagnall, L. M. Davis, et al. 2012; Elish et al. 2013; Whalen and Pandey
2013; Jurek et al. 2014; Bagnall, J. Lines, et al. 2015.

But combinations of different data set properties with different classification task
properties can amplify classification deterioration resulting from single properties,
see Kotsiantis et al. 2006; López et al. 2013; Stefanowski 2016. Therefore López
et al. 2013 and Stefanowski 2016 suggest to take all properties into consideration for
the method choice. Additionally López et al. 2013 suggest to search for properties
which can be exploited for a classification task simplification. Therefore a further
classification task and data set analysis has to be done with regard to additional
characteristic properties that can be exploited.

2.4 Classifiers Applied in this Thesis

In this thesis different classifiers are applied. These classifiers are briefly introduced
in the following. They are one-class classifiers and binary classifiers. The respective
one-class classifiers are a one-class-SVM (OCSVM), a mixture of Gaussian models
(MOG) and a nearest neighbor method called kmeans.

OCSVM and SVDD The one-class SVM, introduced by Schölkopf et al. 2001 is a
boundary method. A hyperplane is computed that separates the interesting
class from the origin with a maximum margin. If a linear separation does not
yield a a good description of the interesting class, kernel functions can be ap-
plied. Kernel functions are used to transform the data set to a new data space,
where the data is linearly separable.
The most common OCSVM parameters are the margin parameter ν and the
kernel parameter γ. The margin parameter ν is an upper bound on the fraction
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of training errors and a lower bound on the fraction of support vectors. The
kernel parameter γ adjusts the kernel bandwidth.
Under certain conditions a similar classifier, the Support Vector Data Descrip-
tion (SVDD) yields the same results as an OCSVM. A SVDD yields the closest
boundary around the interesting class. The description is achieved by describ-
ing the interesting class as a hypersphere in high-dimensional space and mini-
mizing the radius of that hypersphere. The SVDD employs similar parameters
as an OCSVM. The parameter C is comparable to the parameterν of an OCSVM
and γ controls again the kernel bandwidth. SVDD and OCSVM classifiers yield
the same results when the data set is processed to unit norm, see the proof in
D. M. J. Tax 2001. A comparison of both classifiers can be found in Zhuang and
Dai 2006. Since OCSVM and SVDD can yield similar results, mainly OCSVMs
are used in this thesis even for comparison to the flexibility description from
Bremer et al. 2010 and Bremer 2015

MOG The mixture of Gaussian models is a density based method, proposed by Duda
and Hart 1973. The interesting class is modeled with a mixture of k Gaussian
models. Gaussian models describe data as a Gaussian distribution.
The main parameters to optimize in MOG modes are the error ε on the inter-
esting class and the number of models k used to describe the interesting class.
In general MOG models are suitable for less-dimensional spaces.

kmeans Kmeans is a density based method from Bishop 1995, that describes the
interesting class with k clusters. These k clusters are placed in such a way that
the average distance to a cluster center is minimized. The number of clusters k
can be optimized as well as the error ε on the interesting class. New examples
are characterized by their distance to the nearest cluster center. This method
is more suitable for less dimensional space.

The employed binary classifiers are a common support vector machine (SVM) and
a k-nearest neighbor classifier (knn).

SVM The common support vector machine is a boundary method introduced in
Boser et al. 1992; Vapnik 1995. SVMs calculate a linear separation of both
classes in high-dimensional space. If both classes are not linearly separable,
kernel mappings can be applied to achieve linear separability. To optimize SVM



48 methods

results, the penalty parameter C of the error term and the kernel coefficient γ
are usually optimized.

knn The k-nearest neighbors classifier is an instance based method introduced in
Duda and Hart 1973. The class affiliation of new examples is computed from
a majority vote of the k nearest neighbors of each example. Therefore the
parameter k has to be optimized.
Many nearest neighbor methods like knn show problems with high-dimensional
data sets due to computational complexity and a phenomenon called hubness,
see Tomašev and Mladenić 2013. Hubness means training examples are not ho-
mogeneously distributed in space and form hubs. New examples in the vicinity
of a hub are often assigned to the same class as the examples in the hub belong
to. Therefore knn should be used in less-dimensional space or hub-insensitive
variants can be applied in higher dimensions.

2.5 Classifier Performance Evaluation

The flexibility description classifier to be developed should be evaluated according
to classifier performance and the applicability in VPP scheduling. The evaluation is
divided into three parts: precision analysis, parameter sensitivity analysis and an anal-
ysis of the temporal complexity. Corresponding evaluation methods are presented
in the following subsections for precision in Sect. 2.5.1, for parameter sensitivity in
Sect. 2.5.2 and for temporal complexity in Sect. 2.5.3.

2.5.1 Precision

The precision of a classifier is usually assessed with the help of a test data set. The
labels of the test set are known and they are compared to the predictions of the
classifier on the test set. The true and the predicted labels are set into relation in a
confusion matrix, e.g., in H. He and E. Garcia 2009; Lin and Chen 2013, see Fig. 2.4.
The number of correctly predicted positive test examples is indicated as true positives
tp and the number of correctly predicted negative test examples is indicated as true
negatives tn. The numbers of incorrectly predicted test examples are indicated as
false positives fp and false negatives fn.
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Figure 2.4: Confusion matrix.

Classifier precision can be quantified with different assessment metrics based on
the entries of the confusion matrix (CM). Since nearly all terms describing the quality
of classifiers like precision or accuracy are also names of assessment metrics, I would
like to prevent misconception. I use the term precision in a general sense in the
whole thesis and do not use the assessment metric precision, see e.g., H. He and E.
Garcia 2009.

The most frequently applied metric is accuracy:

accuracy =
tp+ tn

tp+ fp+ fn+ tn.
(2.1)

Beside accuracy several other assessment metrics have been proposed to evaluate
common binary classifiers, imbalanced classifiers, one-class classifiers, etc., see e.g.,
D. M. J. Tax 2001; H. He and E. Garcia 2009; Sun et al. 2009; Hoens and Chawla
2013; Lin and Chen 2013; Japkowicz 2013.

Since operation schedule classification employs severely imbalanced classes, I
prefer a separate classifier evaluation on the feasible and the infeasible class. A
separate evaluate allows an interpretation of each class and the minority class is not
biased by the majority class, see e.g., H. He and E. Garcia 2009; Japkowicz 2013.
Therefore flexibility description classifiers will be evaluated according to the true
positive rate (TP) also called sensitivity is given by

TP=
tp

tp+ fn.
(2.2)
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and the true negative rate (TN) also called specificity is given by

TN =
tn

fp+ tn.
(2.3)

Most assessment metrics including the presented metrics do not take data quality
into consideration, even though classification performance highly depends on the
quality of the underlying distribution of the available examples of each class, Lin and
Chen 2013. To take data quality into account, the distribution of training-, validation-
and test data will be considered in the evaluation chapter.

Increasing Precision

Since the flexibility model should achieve a high precision for various applications
and classification performance highly depends on the underlying data distribution,
see Lin and Chen 2013, the flexibility model needs to adapt to different applications.
Therefore I consider components that influence classification precision. Classification
is mainly influenced by two components the given data set and the applied classifier
with its parametrization. To achieve higher classification precision either the data
set can be improved or the classifier or both, see e.g., Kotsiantis et al. 2006.

Improvement on the data level Precision improvement on the data level can be
achieved with the following three possibilities:

• Usually an increase of training examples leads to an increased classifi-
cation performance. But training examples can be limited and an increase
of the number of training examples increases the computation time.

• Data preprocessing methods can be divided into two groups. The first
group of data preprocessing methods consists of sampling methods for
choosing training data, see e.g., H. Liu et al. 2001; Jankowski and Gro-
chowski 2004; S. Garcia et al. 2012; Tsai et al. 2013; Blachnik 2014;
Tomašev, Buza, et al. 2015 and the second group consists of an intro-
duction of examples of the badly represented or hard to sample class,
see e.g., D. M. J. Tax and Duin 2002; Bánhalmi et al. 2007. Additionally,
infeasible examples can further improve the classification performance
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by increasing the selectivity of the decision boundaries, Zhuang and Dai
2006.

• Data transformations originate from time series classification. Discrim-
inatory features are not equally represented in different domains, e.g.,
time domain or the change domain, Bagnall, L. M. Davis, et al. 2012 and
therefore classification in time domain does not necessarily yield the best
results.

Improvement on the algorithm level Precision improvement on the algorithmic
level depends on two factors:

• The classifier choice should incorporate the properties of the given data
set. Further more a precision improvement can be achieved by using en-
semble classifiers and multi-classifier systems instead of single classifiers
at the cost of increasing computation costs, see e.g., Rokach 2010; Jurek
et al. 2014; X.-Y. Liu and Zhou 2013; Ranawana and Palade 2006.

• A good classifier can perform badly without parameter optimization.
Common techniques for parameter optimization are grid search, random
search, e.g., Zhuang and Dai 2006; Bergstra and Bengio 2012 and evolu-
tionary algorithm, e.g., Kramer 2014.

2.5.2 Parameter Sensitivity

Sensitivity analysis (SA), also known as elastic theory, response surface methodology
or design of experiment, examines the response of model output parameters to input
parameter variations, see e.g., Nguyen and Reiter 2015. Model outputs are sensitive
to input parameters in the two following distinct ways, according to Hamby 1994.

• Sensitive input parameters are associated with a variability or uncertainty. The
variability or uncertainty are propagated through the model and contribute to
a great degree to the overall output variability.

• Significant changes in the model output can also result from small input param-
eter changes, if the model results are highly correlated with input parameters.
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The goal of SA is a ranking of the input parameters in a "sensitivity ranking" according
to their amount of influence on the model output. The amount of influence can be
quantified with the help of sensitivity indices, Hamby 1994.

In literature numerous sensitivity analysis methods have been proposed and they
are categorized according to different criteria. Such categorized focus e.g., on the
methods, their purpose and sensitivity indices. In Frey et al. 2003 a categorization of
SA methods is proposed with respect to the nature of the model to be examined. The
categories are mathematical methods, statistical methods and graphical methods.
Mathematical methods are used for deterministic and probabilistic models. Statistical
methods are useful for probabilistic models and graphical methods are used for all
kinds of models.

In Hamby 1994 three groups of different SA methods are distinguished. The first
group comprises methods that ’operate on one variable at a time’, the second group
comprises methods that ’rely on the generation of an input matrix and an associated
output vector’. The third group contains those methods that ’require a partitioning
of an input vector based on the resulting output vector’. A categorization with some
similarities was proposed by Heiselberg et al. 2009: local methods, global methods
and screening methods. In local SA methods one parameter is varied, while all other
parameters are held constant. Theses methods investigate the relative importance
of different input parameters. Global SA methods analyze the influence of an input
parameter, while varying all other parameters as well. Screening methods are used for
SA analysis of high-dimensional and computational expensive models with various
input parameters. Screening methods evaluate the sensitivity of input parameters in
turn.

Since the flexibility description should be realized with a classification model,
SA has to be conducted on a mathematical or statistical model. SA methods for
mathematical and statistical models can be found e.g., in Hamby 1994; Frey et al.
2003; J. Wu et al. 2013; Kleijnen 2015; Borgonovo and Plischke 2016. Furthermore
classification models are black-box models, which only represent the input output
behavior and no functional relationships. Therefore also SA methods for black box
models are of interest. In Cortez and M. Embrechts 2011; Cortez and M. J. Embrechts
2013 SA methods have been applied to data mining black-box models such as neural
networks or SVMs or random forests. The SA results were used to increase model
interpretability either by rule extraction or by visualization techniques.
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In general a sensitivity analysis is conducted according to the following six steps,
see Heiselberg et al. 2009. The execution scheme is independent from the applied
SA method.

1. Formulation of a question to be answered and definition of output variable(s)
to be analyzed.

2. Determination of input parameters, that should be included in the SA, e.g.,
with an initial screening analysis.

3. Determination of input parameter ranges and appropriate sampling methods
according to the chosen SA method, e.g., equidistant or random sampling.

4. Creation of an input vector or matrix by sampling the input parameters.

5. Model output computation for the input vector or matrix from step 4.

6. Assessment of the influence of the input parameters on the model output e.g.,
with statistical tests or sensitivity indices. This step results in sensitivity ranking
of the analyzed input parameters according to their influence on the model
output.

The sensitivity analysis of the classifier to be developed can be done with respect
to these six steps. The conduct of the SA will be done as roughly described below.

1. Which effect do the model parameters have on the classification precision or
more precisely the true positive rate (TP) and the true negative rate (TN)?

2. Different classifier parameters are of interest.

3. Input parameter ranges and the respective resolution have be determined
depending on the parameters.

4. Input vectors or matrices contain the values identifies in 3).

5. Computation of the classifier precision for the input vector or matrix from step
4.

6. This step is changed to an interpretation of the resulting precision. Based on
the results model fitting advices are derived.
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2.5.3 Temporal Complexity

Temporal complexity describes the asymptotic behavior of an algorithm, when the
size of the input (N ) goes to infinity, see e.g., Aho et al. 1983; Ottmann and Wide-
mayer 2012; Knuth 1976. The runtime of an algorithm is indicated in terms of the
number of elementary operation, e.g., functional calls, performed by the algorithm.
Since the time of performance may vary for different inputs of the same size, tempo-
ral complexity is usually estimated for the worst case and the best case. If a functional
description of the algorithm can be derived, the temporal complexity can be proved
analytically. Otherwise the temporal complexity has to be estimate empirically based
on simulation experiments for inputs of increasing size (N ).

For the analytic complexity estimation a functional relation of the complexity is
derived as a function of the problem size (N). From this functional relation asymp-
totic bounds can be derived. The asymptotic upper bound is indicated as O (N) and
the asymptotic lower bound as Ω(N).

An empirical estimation of the temporal complexity is derived from experiments
of increasing problem size (N). Since the temporal complexity is estimated as an
asymptotic behavior, a consideration of large problems is necessary.



3 C L A S S I F I E R D E V E L O P M E N T F O R
F L E X I B I L I T Y D E S C R I P T I O N S

In the previous chapter, Chapt. 2 machine learning classifiers were identified as
appropriate flexibility descriptions. The classification tasks of operation schedule
classification are related to mainly three classification categories: time series classifi-
cation, high-dimensional learning and imbalanced learning. There is no classifier in
literature available that fits all these three properties. Additionally López et al. 2013
and Stefanowski 2016 suggest to consider the different classification task properties
and data properties and to exploit these properties for classification task simplifica-
tion. Based on these suggestions, this chapter starts with a further data property and
classification task property analysis. Then appropriate characteristics are identified
in Sect. 3.1 and used to develop a classification model. After that the classification
model is presented stepwise in Sect. 3.2 - Sect. 3.5 and summarized with a process
model in Sect. 3.6.

The classification model idea and the classification model were published in Neuge-
bauer et al. 2015; Neugebauer et al. 2016; Neugebauer, Bremer, et al. 2016.

3.1 Problem Formulation and Classification
Model Development

A further analysis of the classification task properties and data set properties was con-
ducted with regard to time series properties. Operation schedules can theoretically
employ values between 0% and 100% of the maximal power output or consumption
for each time step. This means both classes (feasible and infeasible) fill together a
hypervolume, in this case a hypercube. Most of the times the small feasible class is
surrounded by the infeasible class.
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Since time series classification tasks often show a high correlation between neigh-
boring time steps, Sammut and Webb 2010; Bagnall, L. M. Davis, et al. 2012, the
correlation behavior of operation schedules was analyzed with regard to autocorre-
lation and partial autocorrelation.

Autocorrelation The autocorrelation describes the linear dependence between two
points in time of a time series. For time series with an underlying stationary
process the autocorrelation between two arbitrary points depends only on the
lag τ between those points. Weak stationarity is sufficient and can be detected
as a constant expectation value and a constant autocovariance, because the
process is time independent, see Hamilton 1994, p. 45. The autocorrelation
ρ̂, see Hamilton 1994, p. 110, of an observed time series x with T time steps
and the expectation value x̄ = 1

T

∑T
t=1 x t is estimated for the lag τ as

ρ̂τ =

∑T
t=τ+1(x t − x̄)(x t−τ − x̄)

∑T
t=1(x t − x̄)2

. (3.1)

Partial autocorrelation The partial autocorrelation of two points x t and x t−τ is
the autocorrelation ρτ after removing the linear dependencies on x1, x2, . . . ,
x t−τ+1. Since the computation of the partial autocorrelation is elaborate, no
formula is presented, but a detailed description can be found e.g., in Hamilton
1994, p. 111.

The analysis of different energy unit operation schedules of single µCHPs, heat
pumps and coalitions of these energy units yielded a weak stationarity which allows
the application of the autocorrelation function (acf) and the partial autocorrelation
function (pacf) to these operation schedules. The correlation analysis revealed a
high correlation between neighboring time steps or time steps with a short distance.
Furthermore the correlation strongly decreases for time steps with larger distances,
see Fig. 3.1 From these findings two classification task simplifications are derived.

1st Simplification Most information concerning the feasibility of a time step is
encoded in its neighboring time steps. When most feasibility information is
encoded in neighboring time steps, the high dimensional data set could be split
into several low-dimensional data subsets of neighboring time steps without a
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(a) CHP schedules (b) auto-correlation (c) partial auto-correlation

Figure 3.1: µCHP power production time series: (a) plot of 50 normalized operation
schedules for 24h with 15 min resolution (d = 96 steps), (b) auto-correlation
plotted for 500 schedules, (c) partial auto-correlation plotted for 500 schedules.

great information loss. Splitting the high-dimensional classification task into
several low-dimensional ones simplifies the original classification task. The
new low-dimensional classification tasks are now only time series classification
tasks with imbalanced classes. In literature there are several classifiers for
imbalanced time series classification tasks, see e.g., Liang and C. Zhang 2012;
Bagnall, L. M. Davis, et al. 2012; B. Fulcher and N. Jones 2014; J. A. Lines
and Bagnall 2015; Bagnall, J. Lines, et al. 2015. The most promising classifiers
for the low-dimensional classification tasks are one-class classifiers, because
infeasible training examples are not always available.

2nd Simplification Low-dimensional data subsets with overlapping features (time
steps) show a similar data structure, see Fig. 3.2. This observation can be used
for additional classification task simplifications. The low-dimensional classifi-
cation tasks can be solved with similar classifiers with similar parametrizations.

All classification task properties identified in the previous chapter, see Tab. 2.1 and
this subsection are summed up in Tab. 3.1. The identified classification task proper-
ties describe the time series classification task of operation schedules in VPP schedul-
ing. The classification model to be developed refers to classification tasks with these
properties. Very important classification task properties are high-dimensionality,
(severe) imbalance and the possibility to split the classification task without a great
information loss. Additionally the classification task has to be binary, classes have to
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(a) 1st, 2nd time step (b) 2nd, 3rd time step (c) 95th, 96th time step

Figure 3.2: 2-dimensional plots of the 1st and the 2nd (a), the 2nd and the 3rd (b)
and the two last time steps (c) of µCHP power production time series.

be clearly separable and the small interesting class should preferably consist of only
one easily learnable concept. Furthermore operation schedules are assumed to be
correctly. All prediction inaccuracies in the operation schedules e.g., concerning the
weather forecast or the thermal demand of a household are ignored in the following.

3.2 Basic Cascade Classification Model

The basic cascade classification model is based on the two classification task sim-
plifications possibilities, identified in Sect. 3.1. The cascade classification model,
see Neugebauer et al. 2015 is a step wise classifier, that splits high-dimensional clas-
sification tasks into a cascade of low-dimensional classifiers. These low-dimensional
classifiers are each based on two neighboring time steps (features) with a feature
overlap between neighboring classifiers. The cascade approach works as follows. Let
(x1, y1), (x2, y2), . . . , (xN , yN ) be a training set of N time series xi = (x1

i , x2
i , . . . , xd

i )
T ∈

Rd of d time steps and their class labels yi ∈ {+1,−1}. For each 2-dimensional train-
ing set

((x j
1, x j+1

1 ), y1), . . . , ((x j
N , x j+1

N ), yN ) (3.2)

with j ∈ {1, . . . , d − 1}, a classifier is trained with a feature overlap between the
classifiers. All d−1 classification tasks can be solved with arbitrary baseline classifiers.
As far as single classifiers employ similarly structured data spaces, the same baseline
classifiers can be employed for all d−1 low-dimensional classification tasks and less
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property value

number of classes 2 (feasible, infeasible)
balance of classes (severely) imbalanced (small feasible class)
dimensionality high-dimensional (e.g., 24h, 15 min resolution)
feature values numeric values (mainly scaled to [0, 1])
separability of classes clearly separable (no class overlap)
fragmentation (feasible class) one or more concepts
correlation (feasible class) high for neighboring time steps (steep decrease)
data structure (feasible class) similar in low-dimensional subsets

(shape, number of concepts)
class structure feasible class is most commonly surrounded

by the infeasible class

Table 3.1: Complete classification task property table based on Tab. 2.1 and addi-
tional properties presented in Sect. 3.1.

effort is needed for parameter tuning. In most cases only feasible low-dimensional
examples are available and therefore one-class baseline classifiers are suitable. The
predictions f1, . . . , fd−1 of all d − 1 classifiers are aggregated to a final result

F(t) =

�

+1 if fi 6= −1 ∀i = 1, . . . , d − 1
−1 else

(3.3)

for a new time series t. A new time series t belongs to the small class, only if all
classifiers in the cascade predict the small class for each time step. In energy time
series tasks, the small class is the class of feasible time series.

3.3 Adaptation of the Basic Cascade Classifier to
Given Classification Tasks

The cascade classification model can be easily modified. Since the cascade classifi-
cation model was developed for a category of classification tasks, see Tab. 3.1 and
should yield precise results, the cascade classification model needs to be adapted
to new classification tasks. The main variations among classification tasks occur in
the correlation behavior of the feasible class, the data structure of the feasible class
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(number and shape of concepts) and the availability of feasible and possibly also
infeasible training examples. Classification task adaptations comprise adaptations of
the dimensionality of the low-dimensional data subsets, a baseline classifier choice
and an adaptation of the aggregation of intermediate classification results to an
overall result. These adaptations were published in Neugebauer et al. 2015 and they
are presented in the following subsections, see Sect. 3.3.1 - Sect. 3.3.3.

3.3.1 Classification Task Splitting (Projection): 2d -> pd

Depending on the geometry of the small class and the length of the highest corre-
lation between time steps it is not always advantages to divide the data set into
2-dimensional subsets. Even though time series of the small and interesting class
employ a high correlation between neighboring time steps, the highest correlation is
not necessarily between two direct neighboring time steps i and i + 1. Furthermore
the correlation decrease with increasing distance between time steps can be fast
within one time step or slower.

An adaptation to the correlation behavior decreases the information loss due to
classification task splitting and increases the classification precision at the same time.
Therefore high dimensional data sets can be split into p-dimensional data subsets
with p < d. Classification tasks are split into low-dimensional ones with regard to
the correlation length τ of the highest correlation and with regard to the correlation
decrease. In comparison to the 2-dimensional-cascade, now d − (p − 1) classifiers
f1, . . . , fd−(p−1), are trained and their predictions are again aggregated to a final
result F(·). Each classifier f j is trained with the pattern-label pairs,

((x j
1, . . . , x j+p−1

1 ), y1), . . . , ((x j
N , . . . , x j+p−1

N ), yN ), j = 1, . . . , d − 1. (3.4)

Depending on the classification task two neighboring low-dimensional data sets can
overlap within a number of features between 1 and p− 1. The greater the overlap,
the more low-dimensional subsets are generated and the higher the computational
effort. But greater overlaps include more information on the dependencies between
different time steps and therefore they lead to more precise results.

Further suggestions for the adaptation of p are given in the evaluation chapter in
Sect. 4.2.3.
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3.3.2 Baseline Classifier Choice

Baseline classifiers are chosen according to the available training data and the data
structure (number and shape of concepts) of the low-dimensional feasible class.
Generally only the small and interesting class can be projected to low-dimensional
space. In the case of operation schedules the feasible class is the small and interesting
one. Infeasible schedules are infeasible, when at least on time step in the time series
employs an infeasible value. Therefore low-dimensional infeasible examples could
be found in the region of infeasible examples and also in the region of feasible
examples. If no low-dimensional infeasible examples are available, classifiers have
to be trained only on the feasible examples with one-class classifiers. If there were
low-dimensional infeasible examples available, common binary classifiers could be
applied, because pre-studies reveled a less severe imbalance of the low-dimensional
classification tasks than in the high-dimensional classification tasks.

Beside the availability of training data, the data structure is important for the
classifier choice. Preferably the feasible class employs only one concept and the
chosen baseline classifier should be able to describe the feasible concept as good as
possible. In the case of operation schedule classification, the feasible schedules can
employ several concepts, resulting from the operation constraints of the energy units,
e.g., CHPs, see Fig. 3.3. CHP operation schedules can consist of power production
values > 0 and values = 0, where the energy unit is switched off.

(a) 1st, 2nd time step (b) 95th, 96th time step

Figure 3.3: 2-dimensional plots of µCHP power production time series, exhibiting
a concept in the middle and concepts on the axes.

If the feasible class employs more than one concepts, precision of the baseline
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classifier can be improved by learning each concept separately. This division of the
low-dimensional classification tasks according to the concepts is called multi-task
learning. In multi-task learning an appropriate baseline classifier is chosen for each
concept. The application of multi-task learning in the cascade classification model
is introduced in the following subsection.

Further suggestions for the baseline classifier choice with and without multi-task
learning can be found in the evaluation chapter in Sect. 4.2.2.

Multi-Task Learning

Multi-task learning means learning each concept separately and merging the classi-
fication results to an overall result. Training one classifier for each concept leads to
a higher classification precision than a single classifier, see Fig. 4.2. To achieve good
classification results, each concept should present a typical cascade classification
model task, see Tab. 3.1 Different multi-task learning methods have been proposed

(a) class with four concepts
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(c) OCSVM with multi-task
learning decision boundary

Figure 3.4: Binary classification example where one class consists of four separate
concepts. a) All clusters are colored differently. b) Decision boundary learned
with a OCSVM. c) Decision boundaries learned with separate OCSVMs for each
concept.

e.g., for one-class learning, see Yang et al. 2010, high-dimensional data, see Seo and
Oh 2013; X. He et al. 2014; Piao et al. 2014 or to time series classification, see Al-
Hmouz et al. 2015. For the cascade classification model mainly multi-task learning
for one-class is of interest.
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Depending on the the separability of the concepts multi-task learning can be
integrated into the cascade classification model in two ways.

• First case: The concepts are better separable in low-dimensional space. In this
case the data set is split into p-dimensional data subsets as before. These p-
dimensional data subsets are split based on knowledge about the concepts
or based on a clustering analysis. In contrast to the basic cascade approach
see Sect. 3.2 where one classifier is trained per cascade step, now one classi-
fier is trained for each concept per cascade step. The results of the different
classifiers on the test set are combined as before.

• Second case: The concepts are better separable in high-dimensional space.
The high-dimensional data set is split into subsets according to the high-
dimensional concepts. Each concept is learned with one cascade classifier like
individual data sets. The classification results for all concept are aggregated
by an aggregation of the confusion matrices of the classifiers of all concepts.

The multi-task approach is not easily applicable to classification tasks with over-
lapping and inhomogeneously sampled concepts. In such cases a clustering analysis,
see e.g., Sim et al. 2013; Kang and Kim 2013; Bouveyron and Brunet-Saumard 2014
could be more helpful in describing all concepts separately.

3.3.3 Result Aggregation

The aggregation of intermediate classification results on the low-dimensional data
subsets need to be aggregated to overall results. The employed aggregation scheme,
see (3.3) can be adapted to given classification tasks, e.g., a majority vote might be
useful in certain applications.

3.4 Data Preprocessing

Beside algorithm adaptations also data improvements lead to an increased classi-
fication precision, see e.g., Kotsiantis et al. 2006. Classification precision depends
strongly on the distribution of the underlying data set, see Lin and Chen 2013. There-
fore, an improvement of the data distribution could improve classification precision.
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Time series classification tasks with a cascade classifier have mainly two reasons for
unfavorable data distributions. Beside the original often not homogeneous distribu-
tion of the time series examples in feature space, the projection of feasible time series
leads to an inhomogeneous distribution in low-dimensional space. A selection of
more homogeneously distributed feasible examples (instances) would lead to an im-
provement in classification precision for a constant number of training examples or
decrease the number of training examples, that are necessary to achieve a certain clas-
sification precision. Depending on the data distribution and the application several
instance selection (also called record reduction / numerosity reduction / prototype
selection) approaches have been proposed in literature. Beside data compression
and classification precision improvement, instance selection also works as noise filter
and prototype selector, Blachnik 2014; Tsai et al. 2013; Wilson and Martinez 2000.
In the last years, several instance selection approaches have been proposed and an
overview can be found e.g., in S. Garcia et al. 2012; Jankowski and Grochowski
2004; H. Liu et al. 2001. Based on these algorithms advanced instance selection
algorithms e.g based on ensembles, Blachnik 2014, genetic algorithms, Tsai et al.
2013 or instance selection for time series classification with hubs, Tomašev, Buza,
et al. 2015 were developed. But all these instance selection approaches have more or
less high computational complexity, because they are developed for d-dimensional
data sets, while the cascade classifier has several similar structured data subsets in
low-dimensional space. Therefore, we propose a simple and fast instance selection
method for low-dimensional space.

Additionally, infeasible examples can further improve the classification precision
by increasing the selectivity of the decision boundaries, Zhuang and Dai 2006. If
there are enough infeasible examples, binary classification can be applied and yield
better results than one-class classification, see Bellinger et al. 2012. But even if
there are infeasible examples available in high-dimensional space, they can not
be used for training of the low-dimensional classifiers. Energy time series e.g., are
only feasible, if all time steps are feasible. Due to this property infeasible power
production time series projected to low-dimensional space can be located in the
region of feasible ones. But generation of artificial infeasible examples can solve the
problem of missing infeasible examples. Some algorithms have been proposed for
sampling of infeasible examples. One such algorithm generates counter examples
around the feasible class based on points near the class boundary, see Bánhalmi et al.
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2007. Another algorithm presented in D. M. J. Tax and Duin 2002 can sample outliers
from a hyperbox or a hypersphere, that cover the target object (feasible class). The
artificial infeasible examples of these algorithms comprise either high computational
complexity or contain some feasible examples. But the cascade classifier requires
a fast and simple sampling approach for all low-dimensional data subsets, where
the generated infeasible examples are located in the region of the infeasible class.
Thus we propose an artificial outlier generation method for the data subsets of the
cascade classifier.

The two data preprocessing algorithms for instance selection and outlier genera-
tion were proposed in Neugebauer et al. 2016 and further specified in Neugebauer
Both algorithms are based on distances between nearest neighbors. They operate
on the low dimensional training subsets, that fulfill the cascade model requirements.
Both classes are clearly separable. The low-dimensional subsets incorporate similar
structures in feature space and employ values in the same ranges for all time steps
(features). For convenience all features are scaled, preferably to values between 0
and 1. Scaling of the features allows the use of the same parametrization for the
data preprocessing methods for all low-dimensional subsets of the cascade classifier.

3.4.1 Selection of Feasible Examples

Selection of feasible examples is an instance selection method for the low-dimensional
feasible training subsets of the cascade classifier. The goal is to achieve more represen-
tative training examples by homogenizing the point density of the training subsets,
see Fig. 3.5. The example figures for selection of feasible examples show an increase
in the point density in the upper right corner and a decrease in the point density in
the lower left corner, see Fig. 3.5(b) in comparison to the original distribution shown
in Fig. 3.5(a). Homogenization is achieved by selecting feasible examples for the
training subsets based on the distance to the nearest feasible neighbors. Therefore
a large set of feasible examples is needed, from which representative examples can
be chosen. We assume that the inhomogeneous distribution of the training exam-
ples and their rarity in some regions is due to relative rarity. Relative rarity means
examples are observed (sampled) less frequently than others, see e.g., H. He and E.
Garcia 2009. But the rare examples constitute a certain percentage of a data set and
an increase of the number of examples in the data set increases the absolute number
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(a) Initial distribution
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(b) Resampled features

Figure 3.5: 1000 examples of the 95th and 96th dimension of the feasible class of
the µCHP data set: a)initial distribution, b) resampled distribution

of rare examples. If the rarity would be an absolute rarity, the absolute number of
rare examples could not be increased with an increase of examples in the data set,
see e.g., H. He and E. Garcia 2009. For this reason selection of feasible examples can
only increase homogeneity of training examples, if rarity is relative. Based on the
data properties resulting from the cascade classifier and the above described require-
ments, selection of sn feasible examples works as follows for each low-dimensional
training subset, see Algorithm 1.

Algorithm 1 Selection of feasible examples
Require: 2-dimensional data set X with n feasible examples

1: choose t start examples S from X
2: repeat
3: choose t new examples E from X
4: calculate euclidean distance δ of the examples in E to their nearest neighbors

in S
5: if δ ≥ ε then
6: append respective examples to S
7: end if
8: until all n examples are processed
9: shuffle S

The distribution of the feasible examples can differ a little in homogeneity and
shape among the 2-dimensional data subset despite previous scaling. Therefore the
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parameters of the procedure have to be adapted carefully, especially the minimum
distance ε of new examples (E) to the nearest selected neighbors (S). Preferably, ε
is selected in such a way, that the selection of feasible examples yields round about
the number of examples required for training and validation. Such ε values yielded
in pre-tests good classification results, because the resampled data sets maintain
the integrity of the original data subsets best for the desired number of training
and validation examples. Further parametrization suggestions can be found in the
evaluation chapter in Sect. 4.3.2.

3.4.2 Generation of Artificial Infeasible Examples

Sampling of infeasible examples near the class boundary is an outlier generation
algorithm for low-dimensional space. The aim of this algorithm is the generation
of low-dimensional infeasible examples near the true class boundary as additional
training and or validation examples, see Fig. 3.6. Low-dimensional infeasible ex-
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(a) Fig. 3.5(b) with artificial
infeasibles
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(b) detail view of (a)

Figure 3.6: 1000 examples of the 95th and 96th dimension of the feasible class of
the µCHP data set and 1000 artificial infeasible examples: a) resampled distribu-
tion surrounded by artificial infeasible examples (dark blue points), b) detail view
of a.

amples are generated at a certain distance to their nearest feasible neighbor. Due
to this distance dependence to the feasible class, examples of the feasible class are
required. These examples have to represent the feasible class as good as possible and
furthermore they have to be distributed more or less homogeneously. Sampling of
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infeasible examples strongly relies on the cascade classification model requirement
of clearly separable classes. Additionally the class boundaries should be clear lines
in low-dimensional space. With consideration of these requirements, generation of
artificial infeasible examples near the class boundaries can be applied as a second
data preprocessing method after selection of feasible examples. The algorithm works
as described in Algorithm 2 for all low-dimensional training subsets of the cascade
classifier. The low-dimensional feasible examples X are perturbed with Gaussian

Algorithm 2 Sampling of infeasible examples
Require: 2-dimensional data set X with n feasible examples, where the distance

between infeasibles and their feasible nearest neighbors δb� εb in about 95%
of all cases

1: Y= X+N (µ,σ) ·α
2: calculate euclidean distance δb of all examples in Y to their nearest feasible

neighbors in X
3: if δb ≥ εb then
4: append example to (Γ )
5: end if
6: repeat
7: Y= Γ +N (µ,σ) ·α
8: calculate euclidean distance δb of all examples in Y to their nearest neighbors

in X
9: if δb ≥ εb then

10: append example to Γ
11: end if
12: until number of examples in Γ is sufficient
13: shuffle Γ

noise N (µ,σ) ·α and yield a new data set Y . Then the distance between the exam-
ples in Y and their nearest feasible neighbors in X is computed. A value in Y belongs
to the set of artificial infeasible examples Γ if the distance to the nearest feasible
neighbor δb is larger than or equals a certain value εb. To receive enough infeasible
examples around the feasible class, the above described procedure is repeated with
a perturbation of all examples in Γ instead of the examples in X until the set Γ con-
tains a sufficient number of examples. The algorithm employs the parameter for the
minimal distance between infeasible examples and their nearest feasible neighbors
εb and the Gaussian distribution N (µ,σ) ·α. The parameters depend on the distri-



3.5 generalized cascade classification model 69

bution of feasible examples, mainly the distance between feasible nearest neighbors
ε. Therefore εb has to be chosen carefully in such a way, that εb � ε form the in-
stance selection algorithm. The εb value should be at least so high, that at least 95%
off all generated artificial infeasible examples lie outside the region of the feasible
class. As far as the true class boundary is not known, the percentage of real feasible
examples among the artificial infeasible ones has to be approximated. If the distance
δb between generated infeasible examples and their nearest feasible neighbors is
δb � εb for at least 95% of all generated infeasible examples, then most of the
generated infeasible examples are actually infeasible ones. The approximation relies
on the requirement, that the examples of the feasible class are representatively and
homogeneously distributed. But data sets usually employ less representative and less
homogeneous data distributions. In such cases a more convenient data distribution
can be achieved with the proposed algorithm for selection of feasible examples, see
Algorithm 1.

The closer the infeasible examples are located to the class boundary, the greater is
the improvement of classification specificity. But the closer the infeasible examples
are located to the class boundary, the higher is the probability, that these artificial
infeasible examples could be located in the region of the feasible class. False artificial
infeasible examples can hamper classification improvement. Therefore a careful
parametrization of the algorithm is necessary. All in all the minimum distance εb

between infeasible examples and their nearest feasible neighbors should be as small
as possible and as large as necessary. For further parametrization suggestions see
the evaluation chapter, Sect. 4.3.2.

Noise for the generation of potentially infeasible examples should scatter in all
directions without a drift. Therefore the Gaussian distribution is chosen with a mean
value of µ = 0. The larger εb the larger may be the standard deviation σ. A good
initial choice is σ = 0.01. The range in which perturbed values can be found can be
stretched with the factor α. The default value is α= 1.

3.5 Generalized Cascade Classification Model

The presented adaptations for the basic cascade classification model in Sect. 3.3 and
data preprocessing, in Sect. 3.4 enable high classification precision, but they have
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problems in handling inconvenient data structures, like e.g., see Fig. 3.7 or Fig. 3.8.
The basic cascade classifier requires classification tasks with two clearly separable

(a) 1st, 2nd dimension (b) 95th, 96th dimension

Figure 3.7: 2-dimensional plots of the unfavorable data structure of feasible global
operation schedules of 5 µCHPs.

(a) 1st, 2nd dimension (b) heat pump

Figure 3.8: 2-dimensional plots of the unfavorable data structure of feasible heat
pump operation schedules.

classes, where the small and interesting class consists preferably of only one con-
cept and has clear boundaries. Furthermore the small interesting class should be
surrounded by the other class. These requirements enable precise decision bound-
aries on the low-dimensional subsets of the baseline classifiers. Violations of these
requirements lead to imprecise decision boundaries. Classification errors on the
low-dimensional data sets accumulate in the overall classification result.

High-dimensional classification tasks with imbalanced classes, which do not fulfill
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these requirements are e.g., global operation schedules of coalitions of µCHPs or heat
pump operation schedules. Global operation schedules of a coalition consisting of
µCHPs, see Fig. 3.7 employ different data structures in the low-dimensional subsets.
The data subsets consists of different numbers of concepts with different shapes. A
further example of inconvenient data structures are heat pump operation schedules,
see Fig. 3.8. In low-dimensional heat pump data subsets, the small and interesting
class surrounds the large infeasible class. Furthermore the feasible class employs
several very small concepts.

A generalization of the basic cascade model can overcome the problems resulting
from inconvenient data structures. Generalization can be achieved by ensemble ap-
proaches. Ensemble approaches promise a higher classification precision than single
classifiers. The advantage of ensembles over single classifiers is due to the averaging
of better and worse classifiers in the ensemble. Among the various ensemble clas-
sifiers presented in literature see e.g., Rokach 2010; Elish et al. 2013; Whalen and
Pandey 2013; Jurek et al. 2014, there is one for common time series classification
tasks, called transformation based ensembles, see Bagnall, L. M. Davis, et al. 2012. The
ensembles are built on feature transformations of the original time series, because
discriminatory features are more or less distinct in different time series representa-
tions. The transformation based ensembles classifier has been extended to a collective
of transformation based ensembles (COTE) in Bagnall, J. Lines, et al. 2015, where
a collective of classifiers is built on each transformation in the ensemble. Bagnall
et al. showed in Bagnall, J. Lines, et al. 2015 that COTE outperformed most of the
common classifiers on different time series classification tasks.

Transformation based ensembles and COTE work both with common binary classi-
fiers, while the cascade classification model deals with high-dimensional time series
classification tasks with severely imbalanced classes. The latter require special clas-
sifiers, because common binary classifiers cannot handle these data properties.

With respect to the transformation based ensembles classifier, both the introduc-
tion of ensembles and the transformation of the time series are promising ideas to
generalize the cascade classification model. Ensembles promise higher classification
accuracy, while time series transformations can lead to time series representations
with data structures that can be classified more easily. The transformation based
ensembles classifier is introduced in the following subsection, Sect. 3.5.1. A Gener-
alization of the cascade classifier is a chived by building the transformation based
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ensembles classifier around the basic cascade classification model in Sect. 3.5.2.

3.5.1 Transformation-Based Ensembles

The transformation based ensembles classifier was developed to improve time series
classification precision on various time series classification tasks compared to the
precision of a single classifier, see Bagnall, L. M. Davis, et al. 2012. The approach
achieves heterogeneity among the ensemble members by applying time series trans-
formations. As far as discriminatory features are more or less distinct in different
time series representations, classification in the time domain does not necessarily
yield good results. Similarity among time series can be observed in time, in shape
and in change domain, see Bagnall, L. M. Davis, et al. 2012. Therefore the training
set time series (X) from the temporal representation (X= bX1), are transformed with
a Fourier transformation (fft(X) = bX2), that represents the spectral domain. Addi-
tionally they are transformed with the autocorrelation function (acf(X) = bX3), that
represents similarity in change and a further transformation, principle component
analysis (PCA) that yields the principle components of the time series (PCA(X) = bX4).
A separate classifier is built on each data set (bXk, k ∈ {1, . . . , 4}). In Bagnall, L. M.
Davis, et al. 2012, binary nearest neighbor (NN) classifiers (1-NN with euclidean
distance and 1-NN with dynamic time warping (DTW)) are applied to all data sets bXk

due to their good performance in time series classification tasks. New test instances
are classified by all ensemble members and their predictions are combined with a
weighting scheme, equal weighting or weighting based on cross-validation accuracy.

Transformation based ensembles have been extended to a collective of transformation-
based ensembles (COTE) in Bagnall, J. Lines, et al. 2015. In contrast to the transfor-
mation based ensembles model, COTE employs several different classifiers on each
transformed data set bXk instead of a single classifier. COTE enables different aggrega-
tion and weighting possibilities for the predictions of new instances and achieved a
greater classification accuracy than common classifiers and the transformation based
ensemble classifier on many different time series data sets, see Bagnall, J. Lines, et al.
2015.

As a first step only transformation based ensembles and not COTE is considered to
generalize the cascade classification model.
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3.5.2 Generalized Cascade Classification Model

The nearest neighbor classifier in the transformation based ensembles approach is
replaced with the cascade classification model because nearest neighbor classifiers
suffer from hubness. Hubness makes distinction between relevant and irrelevant
points difficult, see Tomašev and Mladenić 2013; Tomašev, Buza, et al. 2015 and is
even severe for imbalanced classes, see Radovanović et al. 2010. Beside the classifier
exchange some further adjustments have to be conducted.

First of all s appropriate time series transformations have to be chosen, that rep-
resent preferably each of the three domains, time, shape and change. The cascade
classifier requires such transformations, where the small interesting class in the low-
dimensional training data subsets forms one cluster, that is well separable from the
other class and can be learned easily by a baseline classifier.

Assuming there are s transformations, that fulfill the requirements and comprise
at least one transformation from time (bX1), shape (bX2) and change domain (bX3),
the training set (X) and the validation data set are transformed into the s representa-
tions. In the following one transformation is utilized from the three domains, s = 3.
After that a cascade classifier is built from each transformed data set bXk, k ∈ {1, 2, 3}
and the respective validation set. These classifiers yield predictions for new time
series, transformed into the s different representations. The predictions of the low
dimensional classifiers of the s cascade models allow different aggregations to over-
all classification results. Two different aggregation schemes can be applied. The first
aggregation scheme deals with the results of each cascade classifier, while the sec-
ond aggregation scheme deals with the intermediate results of the low-dimensional
classifiers of the cascade classifiers. The first aggregation scheme aggregates the
predictions of each cascade classifier bFk for a new time series t with weightings wk

to an overall result G(t) = g(bFk, wk), see Fig. 3.9(a).

The second aggregation scheme operates on the predictions bfk, j with j ∈ {1, . . . , d−
1} for each 2-dimensional classifier of each of the cascade classifiers, see Fig. 3.9(b).
All s predictions bfk, j with k ∈ 1,2, . . . , s are aggregated to a new prediction bf j(t) =
h(bfk, j , wk, j) with the weights wk, j . This aggregation yields a prediction for each low-
dimensional segment of the new time series t. These intermediate results are similar
to the result of one ordinary cascade classifier and they are aggregated to an overall
resultH(t) like the intermediate predictions of the ordinary basic classifier, see (3.3).
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Both aggregation schemes can employ different weightings, like e.g., equal weight-
ing or validation performance based weighting. Equal weighting means, depending
on the aggregation scheme the predictions of either the cascade classifiers or the
small classifiers get the same weight w= 1/s. Validation performance based weight-
ing is based on the validation performance α of each cascade classifier ck (weight
wk), (3.5) for aggregation Scheme 1

wk =
α(ck)

s
∑

k=1
(α(ck))

(3.5)

or each of the small classifiers ck, j (weight wk, j ), (3.6) for aggregation Scheme 2.

wk, j =
α(ck, j)

s
∑

k=1
(α(ck, j))

(3.6)
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Figure 3.9: Aggregation schemes for the generalized cascade classification model
presented for one test schedule t with d time steps and d − 1 low-dimensional
classifiers and their predictions bfk, j, j ∈ 1, . . . , d − 1. The ensemble consists of s
cascade classifiers.
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3.6 Summary

Since the cascade classification model was developed for a category of classification
tasks, see Tab. 3.1 and should yield precise results for different classification tasks,
the model needs to be adaptable.

The cascade classification model was proposed in a basic version in Sect. 3.2.
Adaptations to given data sets and the inherent data structure of the feasible class
were presented in Sect. 3.3 and Sect. 3.4. Furthermore a generalized ensemble
version of the cascade classification model was proposed that can handle complex
data structures.

In Fig. 3.10 a process model for the application of the cascade classification model
is shown and suggests when to apply which adaptation. Cascade classification model
parameters are listed in Tab. 3.2. Further application and parametrization sugges-
tions can be found in the evaluation chapter, see Chapt. 4.

parameter parameter range

Model Fitting

dimensionality 2≤ p < d see Sect. 4.2.3
baseline classifier OCSVM, knn, etc. see Sect. 4.2.2
baseline classifier 2≤ p < d see Sect. 4.3.1
parametrization

Data Preprocessing

minimal distance between εb > 0 see Sect. 4.3.2
feasibles
minimal distance between εb > ε see Sect. 4.3.2
feasibles and infeasibles
gaussian distribution N (µ,σ) ·α (µ= 0, σ > 0,

α > 0)

Table 3.2: Cascade classification model parameters.
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Figure 3.10: Process model: application and adaptation of the cascade classification
model.





4 E VA LU AT I O N O F T H E C A S C A D E
C L A S S I F I C AT I O N M O D E L

The developed cascade classification model is an adaptable classifier, that can be
used as a search space description in the optimization in VPP scheduling. The search
space description is here also called flexibility description. Since this flexibility de-
scription should be abstract, consistent and precise, the cascade classification model
is evaluated according to the classifier performance on energy time series of energy
units and artificial data sets. The classifier performance is considered with respect
to precision, parameter sensitivity and temporal complexity. Then model fitting and
parametrization suggestions are derived from the evaluation results. Furthermore
the cascade classification model is compared to a SVDD used in the flexibility descrip-
tion in Bremer 2015 and a common one-class SVM (OCSVM) which is comparable
to the SVDD.

Some of the evaluation results are published in Neugebauer et al. 2015; Neuge-
bauer et al. 2016; Neugebauer, Bremer, et al. 2016; Neugebauer et al. 2017. This
chapter consists of a description of the basics of the evaluation experiments in
Sect. 4.1, the evaluation of the classifier precision in Sect. 4.2, the parameter sensi-
tivity in Sect. 4.3, the temporal complexity evaluation in Sect. 4.4 and a summary
of the evaluation results in Sect. 4.5.

4.1 Basics of the Evaluation Experiments

The influence of model adaptations and model parameters on the model behavior
strongly depend on the given classification task properties and the data set proper-
ties. Therefore different evaluation scenarios are built from energy time series- and
artificial data sets with different data structures and different data set complexity.
The data sets are introduced in Sect. 4.1.1 and the evaluation scenarios in Sect. 4.1.2.
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The experimental setup of the evaluation experiments is presented in Sect. 4.1.3,
the employed baseline classifiers and their default parametrization in Sect. 4.1.4,
experimental evaluation in Sect. 4.1.5 and implementation details and pseudocode
in Sect. 4.1.6.

4.1.1 Data

Data sets for the evaluation experiments are energy data sets from the application
domain and artificial data sets with special properties to test the cascade classification
model behavior. In the following the different data set are briefly introduced with
regard to data set generation and their properties.

The energy data sets comprise operation schedules of single energy units (µCHP,
heat pump) and global operation schedules of coalitions of energy units (homogeneous
µCHP coalitions, mixed coalitions).

The artificial data sets comprise a Hypersphere and a Hyperbanana data set. The
Hypersphere data set is used due to its correlation behavior that is different from
the energy time series correlation behavior. The Hyperbanana data set is assumed to
yield representative results, because banana shaped classes are difficult to learn. For
this reason data sets with banana shaped classes are often used to test new classifiers.
Furthermore the Hyperbanana data set is used in this thesis to test the selectivity
of the cascade model, because infeasible examples are available for different dis-
tances to the class boundary. Altogether two Hyperbanana data sets are used, which
are based on the same classes, but with different distributions of the feasible and
infeasible examples.

All data sets, energy data sets and artificial data sets are simulated with models
and they are no real measurements. Simulated data sets are advantages for the clas-
sifier evaluation, because arbitrary numbers of examples can be generated and data
set properties like the ratio of generated feasible and infeasible examples can be in-
fluenced. Furthermore the distribution of the generated examples can be influenced
by the choice of a sampling procedure. The most important sampling requirement is
to generate feasible, respectively infeasible examples that represent the volume of
the whole class. Additionally it would be advantages to have representative samples
that are more or less homogeneously distributed in the volume of the respective
class. To achieve these sample requirements different sampling, respectively data set
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Property Characteristic

classification task properties:
greatest correlation length 2
correlation decrease rapid decrease (within one time step)
balance of classes feasible� infeasible

data structure:
number of feasible concepts 2 (middle- + edge concept)
shape of concepts smooth boundaries, different shapes

data properties:
feasible examples 1, 100,000
infeasible examples 1, 100,000
distribution:
feasibles representative, not homogeneous
infeasibles representative, homogeneous (hardly any

examples near the class boundary, due to
the severely imbalanced classes)

Table 4.1: Overview of the µCHP classification task and data set properties

generation techniques are used to generate the different data sets.

The energy time series data sets are generated from energy unit simulation models
of single energy units. Feasible global operation schedules are derived from single
feasible operation schedules of all coalition members. Infeasible global operation
schedules have to be estimated with a heuristic. Artificial data sets are sampled
from functional descriptions. In contrast to the energy unit simulation models, the
functional descriptions allow a specific generation of infeasible examples near the
class boundary. These infeasible examples help to test the classifier selectivity.

In the following, all data sets and their modifications used for the evaluation sce-
narios are briefly introduced. The data sets of single energy units are presented in
Tab. 4.1 and Tab. 4.2. Since energy unit coalition data sets of homogeneous µCHPs
and mixed coalitions of µCHPs and heat pumps employ similar properties indepen-
dent of the number of coalition members, only homogeneous µCHP coalitions will
be considered and their properties are presented in Tab. 4.3. After that the artificial
data sets are presented in Tab. 4.4 and Tab. 4.5.
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Property Characteristic

classification task properties:
greatest correlation length 2 (3 also high)
correlation decrease fast decrease (within two time steps)
balance of classes feasible� infeasible

data structure:
number of feasible concepts 1 (surrounds the infeasible class)
shape of concepts non smooth boundaries, not easy to learn

data properties:
feasible examples 1,000, 000
infeasible examples 1,000, 000
distribution:
feasibles not representative, not homogeneous

(due to the simulation model sampling procedure)
infeasibles representative, homogeneous

Table 4.2: Overview of the Heatpump classification task and data set properties

Property Characteristic

classification task properties:
greatest correlation length 2
correlation decrease rapid decrease (within one time step)
balance of classes feasible� infeasible

data structure:
number of feasible concepts several ones
shape of concepts no smooth boundaries, different shapes

data properties:
feasible examples 30,000
infeasible examples 30,000
distribution:
feasibles representative, more or less homogeneous
infeasibles representative, homogeneous (imbalanced classes:

hardly any examples near the class boundaries)

Table 4.3: Overview of the µCHP coalition classification tasks and data set properties.
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Property Characteristic

classification task properties
greatest correlation length low correlation between all dimensions
correlation decrease no decrease
balance of classes feasible� infeasible

data structure
number of feasible concepts 4 (4 hypersphere-shaped concepts)
shape of concepts smooth boundaries, easy to learn

data properties
feasible examples 1,000, 000
infeasible examples 1,000, 000
distribution:
feasibles representative, homogeneous
infeasibles representative, homogeneous (for the

region near the class boundaries)

Table 4.4: Overview of the Hypersphere classification task and data set properties

All these data sets are introduced with regard to some classification task proper-
ties, the data structure and properties resulting from the data set generation. For
the evaluation of the classification experiments and to judge the classifier selectivity
the distribution of feasible and infeasible examples is very important. The examples
can represent the whole volume of the respective class (representative distribution)
or not. Furthermore these examples can be distributed homogeneously or inhomo-
geneously in the sampled region of the respective class. Since the infeasible classes
are much larger than the feasible ones, most infeasible examples are located far way
from the class boundary.

More detailed descriptions off all data sets (data set properties and sample gen-
eration) can be found in the appendices, Sect. A for single energy units, Sect. B for
artificial data sets and Sect. C for global operation schedules of coalitions of energy
units.
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Property Characteristic

classification task properties
greatest correlation length 2
correlation decrease fast decrease (within one time steps)
balance of classes feasible� infeasible

data structure
number of feasible concepts 1
shape of concepts smooth boundaries, difficult to learn

data properties
feasible examples 1, 000,000
infeasible examples 1, 000,000 (for each contour region)
distribution:
feasibles (HB1) less representative, not homogeneous
feasibles (HB2) representative, not homogeneous
infeasibles representative, homogeneous (in the

corresponding contour region)

Table 4.5: Overview of the Hyperbanana classification task and data set properties.
The only difference between the two data sets HB1 and HB2 consists in the distri-
bution of the feasible examples.
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4.1.2 Evaluation Scenarios

The evaluation scenario categories are designed according to classification task and
data set properties, that are important for the cascade classification model and its
adaptations. The main property is the data structure of the feasible class which
is characterized by the number of concepts and the shape of theses concepts. The
scenarios A and B employ different numbers of concepts with shapes, that are easy
to learn. The scenarios C employ arbitrary number of concepts with hard to learn
shapes.

Scenarios in the class A, see Tab. 4.6 employ one feasible concept with a more
or less easy to learn shape. Such data sets are modifications of the µCHP and the
Hypersphere data set and the unmodified Hyperbanana data set. Even though the
Hyperbanana data sets are a bit difficult to learn, they belong to the scenarios A due
to only one feasible concept and the clearly separable classes.

Scenarios A Data set

A-CHP µCHP (middle concept is feasible, edge concept and infeasible class
are infeasible)

A-HS Hypersphere (middle concept is feasible and remaining concepts
and infeasible class are infeasible)

A-HB1 Hyperbanana set 1 (unmodified)
A-HB2 Hyperbanana set 2 (unmodified)

Table 4.6: Overview of the evaluation scenarios A with one feasible concept and a
more or less easy to learn shape.

Scenarios in the class B, see Tab. 4.6 employ several feasible concept with an
easy to learn shape. Such data sets are the µCHP and the Hypersphere without any
modifications.

Scenarios in the class C, see Tab. 4.8 employ an arbitrary number of feasible
concept with a hard to learn shape. Such data sets are the heat pump data set and
data sets of coalitions of homogeneous energy units e.g., µCHPs and coalitions of
mixed energy units e.g., µCHPs and heat pumps.
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Scenarios B Data set

B-CHP µCHP (unmodified)
B-HS Hypersphere (unmodified)

Table 4.7: Overview of the evaluation scenarios B with several feasible concept with
more or less easy to learn shapes.

Scenarios C Data set

C-HP Heat pump (unmodified)
C-CHP homogeneous coalition of µCHPs (unmodified global operation

schedules)
C-CHP-HP mixed coalition of µCHPs and heat pumps (unmodified global

operation schedules)

Table 4.8: Overview of the evaluation scenarios C with arbitrary numbers of feasible
concept and a hard to learn shape.

4.1.3 Experimental setup

The evaluation experiments are all setup in a similar way. If nothing else is indicated
the high-dimensional data sets (dim = 96) are split into low-dimensional subsets
with (p = 2).

Basic experimental setup

The basic setup for the basic cascade classification model is as follows:

1. Preparation

a) training set of N feasible examples

b) validation set of N feasible examples

c) test set of 10000 feasible and 10000 infeasible examples

2. Learning

a) parametrization of the low-dimensional classifiers with gridsearch and
the validation set according to the validation results (TP values)
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b) storing the best classifier parameters or the best classifiers

3. Prediction

a) prediction of all low-dimensional subsets of the test data set (intermediate
results)

b) aggregation of the intermediate results to an overall result

Experimental setup with data preprocessing

If data preprocessing is applied the basic setup changes a little. Some steps have to be
done before the "Preparation" and the "Learning" phase changes. Since data prepro-
cessing can consist of the selection of feasible examples (case 1) or also generation
of artificial infeasible examples (case 2).

Case 1 Only selection of feasible examples is applied to the feasible raw data before
the preparation steps.

Case 2 Selection of feasible examples and generation of artificial infeasible exam-
ples is applied to the feasible raw data.

1 a) training set of N feasible examples (and N infeasible ones for binary
baseline classifiers)

1 b) validation set of N feasible examples and N infeasible ones

2 a) parameter optimization according to the validation accuracy

Experimental setup for the generalized model

The application of the generalized cascade classification model requires some changes
of the basic setup. The raw data has to be transformed before the "Preparation" phase
and the aggregation in the "Prediction" phase has to be adopted.

Appropriate transformations have to be chosen in pre-tests according to the effect
on the data structure. Most of the transformations can be directly applied to the com-
plete raw data set. But transformations like the principle component analysis that
rely on the whole data set and not on single time series have to be computed at first
on the feasible raw data for the training and validation set. Then the transformation



88 evaluation of the cascade classification model

with the fitted coefficients can be applied to the test data set. If low-dimensional infea-
sible training and or validation data sets are available they can be also transformed
afterwards.

Now data preprocessing could be applied as usual. The next changes occur in
the "Prediction" phase, where changes are required after the computation of the
intermediate aggregation results for all ensemble classifiers.

3 b) aggregation of the intermediate ensemble results according to the aggregation
schemes, see Fig. 3.9)

4.1.4 Baseline Classifiers and their Default Parametrization

The experiments are conducted with different one-class and binary classifiers. The ap-
plied one-class classifiers are a classic One-Class Support Vector Machine (OCSVM),
a k nearest neighbor classifier, called kmeans and a mixture of Gaussian models
(MOG). The applied binary classifiers are a binary Support Vector Machine (SVM)
and a common k nearest neighbor classifier (knn). For more details about the ap-
plied classifiers, see Sect. 2.4. For the different baseline classifiers and the different
data sets some parameter combinations, respectively parameter ranges are used, see
Tab. 4.9. These parameters result from pre-tests and parameter ranges are mainly
not sampled homogeneously. But they are sampled with higher densities near the
expected best parameter value.

4.1.5 Experimental Evaluation

The different classification experiments are mainly evaluated according to the clas-
sifier precision. The overall precision is considered as well as the precision of the
single classifiers of the cascade. Precision of the low-dimensional subsets is assessed
in terms of a visualization of the decision boundaries. The precision of the complete
classifier cascade for the high-dimensional data set is assessed as true positive rates
(TP) and true negative rates (TN). TP and TN values are computed from the confu-
sion matrix of the test set predictions and the true labels of the test examples, see
Sect. 2.5.1.
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Name Parameter values and ranges

OCSVM-param-1 kernel=rbf, ν ∈ {0.0001, 0.001,0.0025, 0.005,0.0075, 0.01,
0.025,0.05, 0.075,0.1, 0.2}, γ ∈ {0.1,1, 10,50, 100,150, 200}

OCSVM-param-2 kernel=rbf, ν ∈ {0.0001, 0.0005,0.001, 0.002, . . . , 0.009, 0.01},
γ ∈ {50, 60, . . . , 200}

OCSVM-param-3 kernel=rbf, ν ∈ {0.0001, 0.001,0.0025, 0.005,0.0075, 0.01,
0.025,0.05, 0.075,0.1, 0.2}, γ ∈ {5,10, 20,30, 40,50}

OCSVM-param-4 kernel=rbf, ν ∈ {0.0001, 0.0005,0.001, 0.0025,0.005, 0.0075,
0.01,0.025, 0.05}, γ ∈ {90,100, . . . , 250}

OCSVM-param-5 kernel=rbf, ν ∈ {0.0001, 0.0005,0.001, 0.002,0.003, 0.004,
0.005,0.006, 0.007,0.008, 0.009,0.01},
γ ∈ {0.1, 1,10,50, 100,150, 200}

OCSVM-param-6 kernel=rbf, ν ∈ {0.0001, 0.001,0.0025, 0.005,0.0075, 0.01,
0.025,0.05, 0.075,0.1, 0.2}, γ ∈ {1,5, 10,20, 30,40, 50}

OCSVM-param-7 kernel=rbf, ν ∈ {0.0001, 0.001,0.0025, 0.005,0.0075, 0.01,
0.025,0.05, 0.075,0.1, 0.2}, γ ∈ {2,5, 10,20, 30,40, 50}

OCSVM-param-8 kernel=rbf, ν ∈ {0.0001, 0.001,0.0025, 0.005,0.0075, 0.01,
0.025,0.05, 0.075,0.1, 0.2}, γ ∈ {10,50, 100,150, 200}

kmeans-param-1 k ∈ {1,2, . . . , 20}, εt ∈ {0.01,0.05, 0.1,0.15}
MOG-param-1 kt ∈ {5, 6, . . . , 15}, ε ∈ {0.01, 0.05,0.1, 0.15,0.2}

SVM-param-1 kernel=rbf, C ∈ {1,10, 50,100, 500,1000, 2000},
γ ∈ {1, 5,10,15, 20}

SVM-param-2 kernel=rbf, C ∈ {1,10, 50,100, 500,1000, 2000},
γ ∈ {1, 10,20,30, 40,50, 60,70, 80}

knn-param-1 k ∈ {1,2, . . . , 26}

Table 4.9: Parametrization of the different (baseline) classifiers for the evaluation
experiments.
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4.1.6 Implementation

I have implemented the cascade classification model with simple for loops calling
the baseline classifier for all low-dimensional data subsets. The implementation is
based on python 2.7 in combination with numpy 1.8.2, T. E. Oliphant 2006, scipy
0.13.3, E. Jones et al. 2001, matplotlib 1.3.1, Hunter 2007, sklearn 0.14.1, Pedregosa
et al. 2011 and matlab R2014.b with pymatlab 0.2.3, a python interface to matlab,
PRTools 5.0, D. Tax 2013b and Dd_tools 2.0.0, D. Tax 2013a.

All classifiers, used in this thesis, see Sect. 2.4 are taken from different packages.
The OCSVM, the SVM and the knn classifier are taken from sklearn 0.14.1, Pedregosa
et al. 2011. The MOG and the kmeans classifier are implemented in Dd_tools 2.0.0,
D. Tax 2013a. For comparison also the SVDD classifier applied in Bremer 2015 is
applied. Here the respective python implementation of that SVDD is used from the
Bachelor thesis of Graaff 2015, that is based on tilitools, see Görnitz 2015.

Below, pseudocode of the basic cascade classification model is presented.

Pseudocode of the Basic Cascade Classification Model

Pseudocode of the basic cascade classification model with an OCSVM baseline clas-
sifier.

\\ parameters
dim = ... \\ dimensionality of the data set (default 96)
p = ... \\ dimensionality of data subsets (default 2)
N = ... \\ number of feasible training and validation examples
n_test = ... \\ number of test examples from each class
\\ OCSVM parameters
nu_values = [...]
gamma_values = [...]

\\ feasible training and validation data [n examples, dim features]
data_f = load(feasible_examples)

\\ test data [2 * n_test, dim features]
test_f = load(feasible_test_examples)
test_inf = load(infeasible_test_examples)
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Test = [test_f[:n_test, :], test_inf[:n_test, :]]
\\ labels: 1:feasible, -1:infeasible
y_test = ones(2*n_test,1)
y_test[n_test:] = -1

result = zeros(2*n_test, dim-(p-1)) \\ intermediate results

for k in (1, 2,..., dim -(p-1):
\\ training- and validation data
X_train = data_f[:N, (k: k+(p-1))]
X_val = data_f[N: 2N, (k: k+(p-1))]
y_val = ones(N, 1) \\ labels

tp = 0 \\ initial value of validation TP

\\ parametrization of the baseline classifier with gridsearch
for i in nu_values:

for j in gamma_values:
clf = OCSVM(kernel=rbf, nu=i, gamma=j)
clf.train(X_train) \\ training
pred = clf.predict(X_val) \\ predict validation set

\\ prediction evaluation and storing best parameters
CM = confusion_matrix(pred, y_val)
tp_new = CM[0,0] / (CM[0, 0] + CM[1, 0])
if tp_new > tp:

tp = tp_new
nu_best = i
gamma_best = j

\\ prediction of test data
clf = OCSVM(kernel=rbf, nu=nu_best, gamma=gamma_best)
clf.train(X_train)
result[:, k] = clf.predict(Test[:, (k: k+(p-1))])

\\ aggregation of intermediate results
\\ smallest predicted label of each test example
pred_test = min(result, axis=1) \\ axis 1 = dim-(p-1) features
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4.2 Precision and Model Fitting

After the introduction of the basics of the classifier evaluation the first evaluation part
focuses on classification precision. First off all the precision of the basic cascade clas-
sification model is evaluated in terms of input data dimensionality in Sect. 4.2.1, the
baseline classifier choice in Sect. 4.2.2 and the dimensionality of the low-dimensional
classifiers in Sect. 4.2.3. Then the impact of data preprocessing on the classification
precision is evaluated in Sect. 4.2.4. After that the impact of the generalized cascade
classification model is evaluated in terms of ensemble preparation in Sect. 4.2.5 and
the aggregation of the intermediate results of all ensemble members to an overall
result in Sect. 4.2.6.

These studies of classification model details are followed by a classifier selectivity
study in Sect. 4.2.7 and a comparative study of the different cascade classification
model versions and adaptations in Sect. 4.2.8. This study also includes a comparison
to a commonly applied classifiers, a classic OCSVM and a SVDD classifier.

In all precision evaluation and comparison experiments, precision is measured in
terms of true positive rates (TP) and true negative rates (TN) and in some cases also
the learned decision boundaries are considered.

All results are summarized in Sect. 4.2.9. Finally model fitting suggestions are
derived from the evaluation results, taking into consideration classification task and
data set properties.

4.2.1 Scalability of the basic cascade classification model

Scalability is considered in terms of the the number of training examples and the
dimensionality of the data set. The analysis is conducted on a µCHP data set like A-
CHP but with 384 time steps instead of 96. The classification experiments are done on
subsets of the data set with the dimensionality dim ∈ {48, 96, 144, . . . , 384}. These
experiments are done with the default setup, with N = {1000,2000, . . . , 10000}
training examples and the baseline classifier OCSVM-param-2.

The resulting TP and TN values depend on the number of training examples N
and the dimensionality of the data set dim, see Fig. 4.1. Since the TN values are
always equal to 1, they are not plotted.

As expectable, the TP values increase with increasing numbers of training examples
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Figure 4.1: TP values for classification tasks of increasing dimensionality and in-
creasing numbers of training examples (N ). The classification was done with the
basic cascade model and p = 2.

N and decrease with increasing dimensionality of the data set. In the experiments
still more than 75% of the 384 dimensional examples were predicted correctly for
high values of N , here N ≥ 8000. In the application domain 384 dimensions, respec-
tively 384 time steps usually correspond to a temporal horizon of three days with
15 min resolution. Scheduling of longer temporal horizons is not advisable due to
great uncertainties resulting from uncertainties in the predicted training operation
schedules, e.g., weather forecast, head demand prediction, etc..

4.2.2 Baseline Classifier Choice

After these scalability considerations now the effect of the different model adapta-
tions is analyzed starting with the baseline classifier choice.

The cascade classification model allows the choice of baseline classifiers according
to the structure of the low-dimensional data subsets. If the feasible class consists of
only one concept, one baseline classifier is needed. Many classifiers lose precision, if
the feasible class consists of more than one concept. This problem could be overcome
with multi-task learning. Multi-task learning means learning each concept separately
and merging the classification results to an overall result, see Fig. 4.2.

In this subsection the classification precision of different baseline classifiers is
studied on data sets with a more or less simple data structure. More precisely a first
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(c) OCSVM with multi-task
learning decision boundary

Figure 4.2: Binary Hypersphere classification example where the feasible class con-
sists of four separable concepts (clusters). (a) All concepts are colored differently.
(b) Decision boundary learned with an OCSVM. (c) Decision boundaries learned
with separate OCSVMs for each concept.

study with different baseline classifiers is done with data sets, where the feasible
class employs only one concept with a simple shape (A-CHP, A-HS). After that the
effect of baseline classifiers and multi-task learning is studied in a second study with
data sets with several feasible concepts and easy to learn shapes (B-CHP, B-HS).

Baseline Classifier Choice when the Feasible Class Employs One Concept

In this first study the impact of the baseline classifier choice on the classification
precision is studied for a feasible class with one concept. The default experimental
setup is used in combination with different one-class baseline classifiers (OCSVM,
kmeans, MOG). The training set size for the reduced µCHP data sets (A-CHP) is
N = {1000,2000, . . . , 15,000} and for the reduced Hypersphere data sets (A-HS)
N = {1000,2000, . . . , 10,000}. The experiments are conducted with the default
setup and the same parametrization for both data sets: OCSVM-param-1, kmeans-
param-1 and MOG-param-1.

The resulting decision boundaries of the data set A-CHP are shown in Figure 4.3
for the first and the last subset of the cascade. Especially for the 2-dimensional
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Figure 4.3: Decision boundaries on A-CHP, OCSVM (solid blue), kmeans (solid olive)
and MOG (dashed red). Gray scattered points indicate 500 of N = 5000 training
examples
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Figure 4.4: TP and TN values on A-CHP. The lines indicate cascade classification
with OCSVM (solid blue), kmeans (solid olive), MOG (dashed red) and classic
OCSVM (dashed dotted black). All TN values have a value of 1.
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CHP data set the 2-dimensional OCSVM classifiers learn larger regions of feasible
schedules than the MOG and the kmeans classifiers. As a result the OCSVM cascade
predicts more feasible test schedules as feasible than the MOG and the kmeans
classifier, see Fig. 4.4(a). The OCSVM baseline classifier achieves the highest TP
values of all cascade model baseline classifiers. Therefore the OCSVM will be used
in the following as baseline classifier for this data set. But a classic OCSVM achieves
even higher TP values than the cascade classification model.

Furthermore all baseline classifiers and the classic OCSVM lead to TN values of 1,
see Fig. 4.4(b). But these high TN values for the µCHP data set do not necessarily
mean, that new infeasible test time series examples are classified correctly. The ap-
plied infeasible test examples are taken from the whole volume of the large infeasible
class and therefore most of the examples are not located near the class boundary.

Next the results of the reduced Hypersphere data set are shown in Fig. 4.5 as
decisison boundaries of the low-dimensional subsets and as TP and TN values in
Fig. 4.6. The decision boundaries of the different baseline classifiers differ less than

(a) 2dim-boundaries on dim.
1/2

(b) 2dim-boundaries on dim.
95/96

Figure 4.5: Decision boundaries on A-HS, OCSVM (solid blue), kmeans (solid olive)
and MOG (dashed red). Gray scattered points indicate 500 of N = 5000 training
examples

the decision boundaries on the A-CHP data set in Fig. 4.3, but the achieved TP
values are similar. But the TN values differ for the Hypersphere data set, where the
infeasible test examples are located near the class boundary, the OCSVM cascade has
the lowest TN values and the classic OCSVM the highest, see Fig. 4.6(b). Increasing
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values of N lead to increasing TP values and decreasing TN values for the cascade
approach, see Fig. 4.6. The more feasible examples the classifier predicts as feasible,
the wider is the learned class boundary and the more infeasible examples near the
class boundary lie inside the learned region of the feasible class. All in all no baseline
classifier yields promising results on this A-HS data set. The classic OCSVM achieves
definitely the best results.
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Figure 4.6: TP and TN values on A-HS. The lines indicate cascade classification with
OCSVM (solid blue), kmeans (solid olive), MOG (dashed red) and classic OCSVM
(dashed dotted black).

On both considered data sets (A-CHP, A-HS) the classic OCSVM achieves higher
TP values and on the Hypersphere data set even higher TN values than the cascade
approach. For these two reduced data sets with a simple data structure and only one
feasible concept the cascade approach cannot keep up with the classic OCSVM.

This first baseline classifier choice study where the feasible class employs only
one concept with an easy to learn shape is followed by the second study where the
feasible class employs several concepts with easy to learn shapes.

Baseline Classifier Choice when the Feasible Class Employs Several Concepts

In this second study the impact of the baseline classifier choice for data sets with
different feasible concepts is studied with a similar experimental setup and the same
parametrization as the baseline classifier choice for data sets with one concept in the
previous subsection. The big difference between these two studies is the application
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of multi-task learning in this second study. The training set size for the µCHP data
sets (B-CHP) is N = {1000,2000, . . . , 15,000} and for the Hypersphere data sets
(B-HS) is N = {1000, 2000, . . . , 10, 000}. Additionally the list of baseline classifiers
from the first study is extended for this second study by a min-max classifier.

This min-max classifier is designed for the 2-dimensional CHP edges concepts of
B-CHP with x = 0 and or y = 0. The classifier learns whether there is a feasible
example at (0, 0) and it learns the minimum > 0 and the maximum for the x and the
y axis, see Fig. 4.7. New examples are classified as feasible, when they are located on
the x or y axis between the minimum and the maximum or when they are located
at (0,0) and this was a feasible training example. (Due to some CHP hard constrains
concerning the CHP operation mode, there can be no feasible examples between 0
and min> 0, see Bremer et al. 2010.)
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Figure 4.7: Min-max classifier for the µCHP data set. Red crosses mark the minimum
(> 0) and maximum for both axes as well as the origin (0, 0), which can be feasible.
The blue points indicate training examples

Depending on the correlation behavior and the structure of the data set as well
as the separability of the feasible concepts there are two ways to combine the basic
cascade classification model with multi-task learning. The feasible concepts may
either be better separable in low-dimensional space or in high-dimensional space.

• First case: The concepts are better separable in low-dimensional space. In
this case the data set is split into p-dimensional data subsets (default p=2)
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with overlapping features as for the cascade classification model. These p-
dimensional data subsets are split according to the concepts based on knowl-
edge about the concepts or based on clustering. In contrast to the basic cascade
approach where one classifier is trained per cascade step, now one classifier
is trained for each concept per cascade step. The intermediate results of the
different classifiers of the cascade on the test set are combined as usual.

• Second case: The concepts are better separable in high-dimensional space.
The high-dimensional data set is split into subsets according to the high-
dimensional concepts. Each concept is learned with a cascade approach. The
data sets of the concepts are treated as if they were different classification
tasks. The cascade models yield results for each concept. To receive an overall
result, the confusion matrices of all concepts are calculated and aggregated.

While the middle µCHP concept of the reduced data set A-CHP is separated in high-
dimensional space from the edge concept, both concepts of B-CHP are separated in
low-dimensional space in this subsection for multi-task learning. The separation in
low-dimensional space leads to a slightly different middle concept than in A-CHP.
Here the middle concept comprises more examples than in A-CHP.

The four feasible Hypersphere concepts are always separated in high-dimensional
space for A-HS as well as for multi-task learning in this subsection.

After the description of the experimental setup the results are presented for the
two data sets one after another. First of all the results of the B-CHP data set are
presented in Fig. 4.8 as decision boundaries and in Fig. 4.9 as TP and TN values.
The OCSVM without multi-task learning and the OCSVM with multi-task learning
(OCSVM + min-max) achieve similar decision boundaries for the concept in the
middle (black line is hidden by the solid blue line). But the decision boundaries of
the edge concepts are different (black line and blue crosses).
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Figure 4.8: Decision boundaries on B-CHP, concept in the middle with OCSVM (solid
blue), kmeans (solid olive) and with MOG (dashed red), crosses mark min-max
boundaries and OCSVM without multi-task learning (dashed dotted black). The
gray and cyan points indicated 500 of N = 5000 training examples.
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(a) TP values of CHP data with multi-task
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Figure 4.9: TP and TN values of B-CHP with classic OCSVM (dashed dotted black)
and cascade approach: OCSVM +min-max (solid blue), kmeans +min-max (solid
olive), MOG + min-max (dashed red) and a single OCSVM (dotted green).
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(a) 2dim-boundaries on dim.
1/2

(b) 2dim-boundaries on dim.
95/96, concepts overlap in this
projection

Figure 4.10: Decision boundaries on B-HS, with multi-task learning OCSVM (solid
blue), kmeans (solid olive), MOG (dashed red) and OCSVM without multi-task
l. (dashed and dotted black). The gray points indicate 500 of N = 5000 training
examples.

For higher numbers of training examples N , the TP values of the OCSVM cascade
with multi-task learning approaches the TP values of the classic OCSVM and the TP
values of the OCSVM cascade without multi-task learning. The TN values of the CHP
classification is near 1 for all classifiers, except from the classic OCSVM where the
TN values decrease for increasing values of N , see Fig. 4.9(b). The classic OCSVM
achieves the highest TP values because the classifier overestimates the feasible re-
gions at the cost of misclassified infeasible examples. The fact, that the infeasible test
examples are not located near the class boundary shows, the classic OCSVM over-
estimates the feasible class to a great degree. Therefore the cascade classification
model with an OCSVM and a min max baseline classifier is more suitable for B-CHP
than a classic OCSVM.

Next the classification results of the complete Hypersphere data set (B-HS) are
presented in Fig. 4.10 as decision boundaries and in Fig. 4.11 as TP and TN values.
But a classic OCSVM and the classic OCSVM with multi-task learning achieve the
highest TP values, see Fig. 4.11(a). But due to the overestimation of the feasible
class by the classic OCSVM, see Fig. 4.10 most of the infeasible training examples are
misclassified. This leads to low TN values for the classic OCSVM, see Fig. 4.11(b).
The classic OCSVM with multi-task learning achieves higher TN values. The cascade
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(a) TP values of Hypersphere data with
multi-task learning
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Figure 4.11: TP and TN values of B-HS with classic OCSVM without multi-task learn-
ing (dashed dotted black), with (dashed cyan) and cascade approach with multi-
task learning: OCSVM (solid blue), kmeans (solid olive) and MOG (dashed red).

approach with OCSVM, MOG and kmeans classifiers achieve a bit higher TN values
than the classic OCSVM without multi-task learning at the cost of lower TP values.
The cascade classifiers show increasing TP values for increasing values of N . For high
values of N the TP values approach values near to 1, except for the MOG and the
kmeans classifier, which are therefore not of interest. The TN values of all classifiers
decrease with increasing values of N . Since the infeasible examples are located near
the class boundaries, the overestimation of the feasible class should not be very
large. Altogether the cascade classification model reveals less precise results than
the classic OCSVM with multi-task learning.

All in all multi-task learning improved the decision boundaries on both data sets.
On the B-CHP data set the cascade classification model with multi-task learning
yielded the highest precision. But on the B-HS data set a classic OCSVM with multi-
task learning yielded a higher precision than the cascade classification model with
multi-task learning. Beside the application of multi-task learning the choice of the
baseline classifiers can greatly influence the classification precision.

4.2.3 Dimensionality of the Low-Dimensional Data Subsets

Beside the baseline classifier choice also the dimensionality of the low-dimensional
subsets can be adapted. The optimal dimensionality of the data subsets (p) can be
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adopted according to the correlation behavior of the data set. The optimal dimension-
ality of the low-dimensional subsets mainly depends on the correlation length (τ) of
the highest correlation between features (time steps) and the correlation decrease
for features with increasing distance. Furthermore the data shape of the feasible
class in the low-dimensional data subsets can differ with the dimensionality. For
example the number of feasible concepts in the data subsets differs in the µCHP data
set B-CHP with the dimensionality (p) of the subsets. For increasing dimensionality
of the subsets, the number of feasible concepts increases, see Fig. 4.12.

(a) feasible concepts in 2d (b) feasible concepts in 3d

Figure 4.12: Feasible concepts of the µCHP data set (B-CHP) in different low-
dimensional data subsets.

The correlation behavior is assessed with the autocorrelation function (acf) and
the partial autocorrelation function (pacf), see Sect. 3.1. Since acf and pacf refer to
single time series, an overall correlation behavior of the whole data sets has to be
derived. Therefore acf and pacf have to be computed for all time series of the feasible
class. Then the mean and the standard deviation can be computed as a measure of the
overall correlation behavior. Based on the mean correlation behavior the correlation
length (τ) of the highest correlation can be identified. Additionally the correlation
decrease for increasing distances between the time steps can be judged. In case of
a slow correlation decrease it is advantages to chose p larger than the correlation
length of the highest correlation. In this case larger p values minimize an information
loss for the classification. The correlation behavior of the µCHP data set (B-CHP)
is exemplarily shown in Fig. 4.13 for single feasible time series and in Fig. 4.14 as
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mean values, the standard deviation and minimum and maximum values of several
feasible time series.

(a) acf (b) pacf

Figure 4.13: Correlation behavior of the feasible class of B-CHP plotted for 500 time
series.

The cascade classification model is designed for time series with a high correlation
between nearby time steps and a rapid correlation decrease for time steps with longer
distances (τ). If the correlation behavior differs from this behavior splitting of high-
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Figure 4.14: Overall correlation behavior of the feasible class of B-CHP plotted as
mean and standard deviation of acf (a) and pacf (b) of 100,000 time series.
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dimensional data sets into low-dimensional subsets can decrease the classification
precision due to an information loss. Such an information loss is here also called
projection error. An example of a data set with a different correlation behavior is
the Hypersphere data set. The mean correlation is about 0 for all values of τ, see
Fig. 4.15.
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Figure 4.15: Overall correlation behavior of the feasible class of A-HS plotted as
mean and standard deviation of acf (a) and pacf (b) of 100,000 feasible time
series.

The projection error is exemplarily visualized in Fig. 4.16 for a 3-dimensional
sphere. The classification of the sphere with the help of 2-dimensional data subsets
results in an overestimation of the 3-dimensional sphere, see Fig. 4.16(c).

In the following the effect of the dimensionality p on the classifier precision is
studied experimentally on the reduced µCHP data set (A-CHP) and the complete
Hypersphere data set (B-HS). Further more the resulting precision is compared to
the precision of a classic OCSVM. The experiments on A-CHP are done with the
default setup and the experiments on B-HS are done with the default setup for the
basic cascade classification model but with multi-task learning. Furthermore the
experiments are done with the baseline classifier OCSVM-param-1 on both data sets
and a classic OCSVM with the same parametrization. Increasing values of p are
chosen for A-CHP as p ∈ {2,10,20, 30} and for B-HS as p ∈ {2,20,40,60,80}. The
training set size (N ) is chosen as N = {1000,2000, . . . , 15000} for the A-CHP data
set and as N = {1000,2000, . . . , 10000} for B-HS.
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(a) 2dim-projections of 3dim-
sphere

(b) intersection of 2 cylinders
represents cascade classifica-
tion

(c) original sphere in in-
tersection space of (b)

Figure 4.16: Geometric example of a 2-dimensional-cascade classification of a 3d
sphere. This example shows a systematic classification (projection) error. The
figures are plotted with POV-Ray, see Buck and Collins 2004.

First the classification results of the A-CHP data set are presented. The classification
of the CHP middle concept shows increasing TP values for increasing values of p,
see Fig. 4.17 and TN values of about 1 for all considered classifiers. The classic
OCSVM with p = 96 achieves the highest TP values on A-CHP. Since TN is equal to
1 in all experiments, the classic OCSVM yields more precise results on A-CHP than
the cascade classification model.
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(a) TP values of CHP classification, varying p
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Figure 4.17: TP and TN values of the 96-dimensional reduced CHP data set. Results
are indicated for OCSVM with p-dimensional cascades, resp. classic OCSVM.
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(a) TP values of Hypersphere classification
with multi-task learning and varying values
of p
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Figure 4.18: TP and TN values of the 96-dimensional Hypersphere data set. Results
are indicated for OCSVM with p-dimensional cascades, resp. classic OCSVM. Leg-
end of (a) is also valid for (b)

Next the results on B-HS are presented. On the Hypersphere data set, the TP values
increase with increasing values of N and more or less with p, see Fig. 4.18. The
higher the value of p, the slower converge the TP values. This leads to intersections
of the TP value lines. The classic OCSVM without multi-task learning achieves the
highest TP values and at the same time the lowest TN values. Increasing values of
N lead to decreasing TN values for all values of p. Furthermore increasing values
of p lead to increasing TN values. Also multi-task learning with a classic OCSVM
(p = 96) achieves relatively high TN values compared to the other results, while
a classic OCSVM without multi-task learning achieves the lowest TN values. This
means a classic OCSVM achieves the worst precision on B-HS and a classic OCSVM
with multi-task learning achieves the best precision. Thus the cascade classification
model results (with multi-task learning) lie in between the results of a classic OCSVM
with and without multi-task learning.

In summary increasing values of p showed a precision increase in all experiments.
This means higher values of p than the p values resulting from the correlation con-
siderations increase the classification performance. This observation was expectable,
because projection errors decrease with increasing values of p. Additionally p values
resulting from the correlation analysis are the smallest values of p which are expected
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to yield good classification results. Therefore p underlies a kind of trade-off between
projection errors and errors resulting from the classification of high-dimensional
data sets (curse of dimensionality). Unfortunately the experiments were done on
data set where the feasible class employs one or more feasible concepts with an
easy to learn shape and on such data sets a classic OCSVM performs better than
the cascade classification model, see e.g., Sect. 4.2.2 or Sect. 4.2.8. Therefore the
trade-off is not as good visible as it would be the case for data sets with a more
complex data structure.

4.2.4 Data Distribution Improvement due to Data Preprocessing

Beside the adaptation of the baseline classifiers and the dimensionality of the low-
dimensional subsets also the data sets can be improved to achieve the best classi-
fication results. There are mainly two possibilities to improve the training and the
validation data sets. The first possibility is instance selection that means choosing
representative examples from a given data set. The second data distribution im-
provement possibility consist in the generation of artificial infeasible outliers which
supplement the feasible training examples. Furthermore artificial infeasible exam-
ples allow the application of binary baseline classifiers instead of one-class baseline
classifiers. Two respective data preprocessing examples for the cascade classification
model were presented in Sect. 3.4.

In this subsection the precision improvement due to data preprocessing is studied
for the scenarios A-CHP and A-HB1. Both data sets employ a different distribution
of the feasible class. The feasible class of the µCHP data set is more representative
and the examples are distributed a bit more homogeneous than the examples of the
more complex Hyperbanana data set. Altogether three classification experiments are
conducted on both data sets. The first experiment is done without preprocessing (no
prepro.), the second with selected feasible examples (fs) and the third with selected
feasibles and artificial infeasible examples (fs + infs). For all experiments a one-class
baseline classifier (OCSVM) is used. The third experiment is also done with binary
baseline classifiers (SVM, knn).

In the following theses experimental studies are presented. After that an other
study shows limitations of the application of data preprocessing methods.

First of all the three experimental studies, showing the functionality of data pre-
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processing are presented. All these experiments are conducted with the default ex-
perimental setup for training sets of N = {1000,2000, . . . , 10,000} examples. The
data preprocessing parameters were adapted in pre-tests. The pre-tests were con-
ducted with different minimal distances ε and εb and evaluated according to the
number of resulting feasible examples sn and their distribution in the 2-dimensional
data subset. For the µCHP data set instance selection is parametrized as follows, the
minimal distance between feasible examples is set to ε= 0.001 and the number of
new examples used for each iteration t is set to t = 1000. Generation of artificial
infeasible examples is parameterized with n = 15000 initially feasible examples
disturbance =N (0, 0.01) ·α with α= 1 and a minimal distance between infeasible
examples and their nearest feasible neighbors εb = 0.025. For the Hyperbanana data
set the instance selection parameters are set to ε = 0.002, t = 1000 and parame-
ters for generating artificial infeasible examples are set to n = 20000, disturbance
=N (0,0.02) ·α with α= 1 and εb = 0.025.

Classification of the differently preprocessed data sets is done with one-class and
binary classifiers. On the A-CHP data set OCSVM-param-2, SVM-param-1 and knn-
param-1 are applied. For the Hyperbanana data set (A-HB1) OCSVM-param-5, SVM-
param-2 and knn-param-1 are applied.

Below the experimental results are presented for the three studies for the two data
sets. In the classification experiments the proposed data preprocessing methods, se-
lection of feasible examples and generation of artificial infeasible examples show an
increase in classification precision of the cascade classifier. On both data sets A-CHP
and A-HB1 data preprocessing leads to more precise decision boundaries than with-
out data preprocessing, see Fig. 4.19(a) for the CHP results and Fig. 4.20 for the
Hyperbanana results. This can be also seen in the TP and TN values of the classifica-
tion results, see Fig. 4.19(b) for the CHP results and Fig. 4.21 for the Hyperbanana
results.

For the µCHP data set, all three preprocessing experiments lead to TN values of 1,
therefore only the TP values are plotted in Fig. 4.19(b). The first experiment with-
out data preprocessing (no prepro.) yields the lowest TP values of all experiments
for all numbers of training values N and the second experiment with selection of
feasible examples (fs) leads already to higher TP values. The third experiment with
selection of feasible examples and artificial infeasible examples (fs + infs) leads to
different results with the OCSVM baseline classifier and the binary SVM and kNN
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Figure 4.19: Decision boundaries (a) and TP values (b) on A-CHP. The legend in (b)
is also valid for (a). The gray points in (a) indicate 500 selected feasible examples
and the blue points 500 artificial infeasible examples.

baseline classifiers. While the OCSVM(fs + infs) achieves slightly lower TP values
than OCSVM(fs) in the second experiment, the binary baseline classifiers SVM(fs +
infs) and kNN(fs + infs) achieve TP values near 1 even for small numbers of train-
ing examples N . This means preprocessing does not only improve the classification
precision on the A-CHP data set, but also allows the application of binary baseline
classifier. These binary baseline classifiers yield a higher precision than the one class
classifier.

Next the results of the Hyperbanana data set with a more complex data structure
are presented. Data preprocessing influences the decision boundaries, see Fig. 4.20
and the TP values, see Fig. 4.21(a) and the TN values, see Fig. 4.21(b) of the classi-
fication results. In the first experiment (no prepro.) and second experiment (fs) the
classification achieves relatively high TP values and at the same time the lowest TN
values of all experiments due to an overestimation of the feasible class, see Fig. 4.20.
This time all TN values are relatively low because the infeasible test examples are all
located close to the class boundaries. The third experiment (fs + infs) revealed an
opposed behavior of the OCSVM baseline classifiers. The OCSVM(fs + infs) achieves
lower TP values than the OCSVM in the previous experiments but also the highest TN
values of all experiments. SVM and kNN baseline classifiers with (fs + infs) achieve
the highest TP values of all experiments and at the same time lower TN values than
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(a) 2d-boundaries on dim. 1/2 (b) 2d-boundaries on dim.
95/96

Figure 4.20: Decision boundaries on the Hyperbanana data set trained with N =
1000 feasible (+ 1000 infeasible) training examples, no prepro. (dashed black),
fs (dashed green), OCSVM(fs + infs) (red), kNN(fs + infs) (olive) and SVM(fs
+ infs) (yellow). The gray points indicate 500 of the selected feasible training
examples and the blue points 500 of the artificial infeasible examples.

the OCSVM(fs + infs). This means data preprocessing increases the classification
precision. This time the one class baseline classifier yields more precise results than
the binary baseline classifiers.

In summary, data preprocessing increases the classification precision of the cas-
cade classifier on both data sets. While selection of feasible examples increases the
classification precision, artificial infeasible examples can lead to an even greater
increase depending on the data set and the baseline classifier choice. Furthermore
artificial outliers allow the application of binary classifiers and they can increase
the classification precision once more compared to the one-class baseline classifiers.
On the more complex Hyperbanana data set with infeasible test examples near the
class boundaries, the impact of data preprocessing is visible in the TP and the TN
values. Even though data preprocessing greatly improves the classification precision
in these experiments, this is not always the case, especially not for data sets with
a very inhomogeneous distribution of the feasible class. If selected nearest feasible
neighbors have a large distance between each other, especially at the concept edges,
generation of artificial infeasible examples does not increase classifier precision and
introduces errors.
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Figure 4.21: TP and TN values on the Hyperbanana data set for different prepro-
cessing steps and different baseline classifiers. The legend in (a) is also valid for
(b). The green line of OCSVM(fs) in (a) is covered by the olive and the yellow
line.

Limitations of the application of data preprocessing is presented in the following
at an example. Erroneous artificial infeasible examples occur in the µCHP middle
concept, when both concepts are separated in low-dimensional space, see Fig. 4.22.
This data set is different from A-CHP where both concepts are separated in high-
dimensional space. Especially in Fig. 4.22(b) and Fig. 4.22(b) artificial infeasible
examples are generated in the region of the feasible class. Next the classification
experiment and the respective results are presented for this data set. The B-CHP
data set is classified as in Sect. 4.2.2 with multi-task learning (OCSVM-param-1 +
min-max classifier) and additional the middle concept is preprocessed with ε =
0.001, εb = 0.007 and t = 100. The resulting classification precision is shown
in Fig. 4.23 as mean TP values of 10 experimental runs. Even a few problematic
subsets with wrong artificial infeasible examples, like in this example result in a worse
classification precision with artificial infeasible examples than without them, see
Fig. 4.23. The mean TP values of the experiment without preprocessing (no prepro)
and the experiment with selection of feasible examples (fs) are pretty similar. The
classification precision with selection of feasible examples is probably not higher than
without preprocessing, because selection of feasible examples cannot homogenize
the feasible examples much. Therefore the selected feasible examples are still
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Figure 4.22: If the two µCHP concepts are separated in 2-dimensional space, the
feasible examples of some middle concept subsets are distributed very inhomoge-
neously. Data preprocessing with ε= 0.002, εb = 0.007, t = 100 yields the light
blue feasible examples and the dark blue points are artificial infeasible examples.
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Figure 4.23: TP values on B-CHP for different kinds of data preprocessing. Mean
values are indicated with solid lines and standard deviation with dashed lines.
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inhomogeneously distributed, see Fig. 4.22. Furthermore there might be only a very
small range of optimal ε values and a stronger fine tuning of ε could probably increase
the classification precision a little. Parameter sensitivity of the data preprocessing
parameters is studied Sect. 4.3.2.

All in all data preprocessing can increase classifier precision after a careful parametriza-
tion. For a detailed study and more parameter fitting advice see, Sect. 4.3.2. Selec-
tion of feasible examples can be always applied and generation of artificial infeasible
examples can be helpful, if the distribution of feasible examples is not very inhomo-
geneous. Furthermore artificial infeasible examples allow the application of binary
baseline classifiers and they might yield a higher precision than one class baseline
classifiers.

4.2.5 Ensemble Preparation: Transformations and Data Preprocessing

Beside adaptations of the basic cascade classification model and data preprocessing,
a generalized version of the casade classification model can improve the classifica-
tion precision. The generalized cascade classification model, based on ensembles
was particularly developed for complex classification tasks, where the feasible class
employs a complex data structure. Such data sets are e.g., global operation schedules
of energy unit coalitions, see Fig. 4.24 or heat pump operation schedules.

(a) step 1 and 2 (b) step 95 and 96

Figure 4.24: The first and the last two time steps of 96-dimensional time series are
plotted against each other for a coalition of 5 µCHPs. Each subfigure is plotted
with 30,000 time series segments.
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Data transformations can simplify the classification task and lead to a less complex
data structure. Transformation results of global operation schedules of the µCHP
coalition in Fig. 4.24 are shown in Fig. 4.25.

(a) pca(X) (b) fft(X) (c) acf(X)

Figure 4.25: Transformed feasible operation schedules of a coalition of 5 µCHPs.
The figures show 30,000 operation schedule segments of the 95th and the 96th
time step.

Appropriate data transformations, which simplify the classification task have to be
identified in pre-tests. The transformations are preferably chosen from the three do-
mains: temporal domain, spectral domain and change domain, see Sect. 3.5.2. These
domains can be arbitrarily modified or extended e.g., by principle components. After
the selection of appropriate transformations, also data preprocessing could be ap-
plied to improve the classification precision. If the feasible global operation schedules
are distributed more inhomogeneously like in the data sets of energy unit coalitions
(C-CHP), selection of feasible examples cannot homogenize the distribution of the
feasible examples much.

In the following the effect of data transformations and data preprocessing on the
classification precision is studies for the members of the generalized cascade classifi-
cation model one after another. The low-dimensional data subsets of the transformed
feasible operation schedules often differ a little in shape and some still employ not
so easily learnable data structures. Therefore the classification results of each trans-
formed data set are expected to yield not very high TP values and in some cases
also not very high TN values. But ensembles of these classifiers can overcome the
weaknesses of the single classifiers. In this subsection not the ensemble results, but
the classification results of the ensemble members are of interest. The effect of data
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transformations and data preprocessing (selection of feasible examples) is shown
exemplarily for the heat pump data set (C-HP) and a coalition of 5 µCHPs (C-CHP).
First of all the experiments with the heat pump data set are conducted. Therefore the
data set is transformed with fft(X), acf(X) and pca(X) and divided into 2-dimensional
and 3-dimensional subset. Then selection of feasible examples, parametrized with
ε = 0.0015 and t = 100, is applied to the 2-dimensional data subsets transformed
with fft(X) and pca(X). The acf transformed data set is not processed with selection
of feasible examples, because the data set employs such an inconvenient data dis-
tribution, where selection of feasible examples can hardly smooth the distribution.
Basic cascade classifiers with OCSVM baseline classifiers (OCSVM-param-1) are built
on all data sets (p=2 with (+fs) and without selection of feasibles), (p=3 without
selection of feasibles).

After that the experiments on the µCHP coalition are conducted. The data sets
are transformed with fft(X), acf(X) and pca(X). Then the transformed data sets are
split into 2-dimensional subsets. The cascade classification model is applied with
the default setup for the generalized model with OCSVM-param-1 for all transforma-
tions. For comparison the untransformed data set is classified with a basic cascade
classification model with OCSVM-param-6.

The classification results of the different transformations of the heat pump data set
(C-HP) are shown in Fig. 4.26(a) in form of TP values with and without selection
of feasible examples for p = 2. In Fig. 4.26(b) the TP values are shown for low-
dimensional data subsets of p = 3. The TN values are always equal to 1. The TP values
of the acf and pca transformation are relatively high for p=2 and p=3 compared
to the TP values of the fft transformation. One reason for low TP values on the
fft transformations is the neglect of the imaginary part. But selection of feasible
examples strongly increases the TP values of the fft transformation.

The precision gain due to appropriate data set transformations becomes even more
obvious in the experiments with the µCHP coalition data set in Fig. 4.27. While all
classifiers achieve TN values equal to 1, they strongly differ in the TP values. The
cascade classification model achieves much higher TP values on all transformed data
sets than one the untransformed one.

All in all the intermediate classification results on the heat pump and the µCHP
coalition data set showed, that a careful preparation including the choice of
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Figure 4.26: TP values for different transformations of the heat pump data set (C-
HP) where the low-dimensional data sets consist of either p=2 (a) or p=3 time
steps (b). In (a) +fs indicates the application of selection of feasible examples.

(a) TP values (b) TN values

Figure 4.27: TP and TN values for different transformations of aµCHP coalition with
5 members (C-CHP). Additionally the TP and TN values for the untransformed
data set are indicated as 2d.
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transformations and possibly also selection of feasible examples increase the preci-
sion of the classifiers in the ensemble. A basic cascade classification model achieves
a much lower classification precision on the untransformed data set than with ap-
propriate transformations.

Since the transformed data sets lead to a relatively high precision, ensembles of
these classifiers are expected to yield an even higher precision. The aggregation
of these intermediate results to overall ensemble results is presented in the next
subsection.

4.2.6 Ensemble Precision

In this subsection the classifier precision of the generalized cascade classification
model is analyzed. Therefore the impact of different combinations of the aggrega-
tion schemes and weighting schemes is compared on the overall ensemble results.
The experiments are done on the same data sets as the ensemble preparation ex-
periments in the previous section, see Sect. 4.2.5, the heat pump data set (C-HP)
and global operation schedules of homogeneous µCHP coalitions (C-CHP), this time
consisting of different numbers of energy units. These data sets employ small differ-
ences in the data set complexity and slightly different distributions of the feasible
examples. Finally the effect of the data set complexity on the classification precision
is considered.

All experiments are set up as in the previous section, see Sect. 4.2.5. But this
time without data preprocessing. Furthermore all µCHP coalitions are parametrized
as the coalition in Sect. 4.2.5. The classification results of all ensemble members
are aggregated to overall results with different combinations of the two aggrega-
tion schemes S1 and S2 and the weighting schemes equal weighting and validation
precision based weighting, see Sect. 3.5.2.

First the aggregated results are presented for the heat pump data set in Fig. 4.28.
While the two aggregation schemes S1 and S2 lead to different TP and TN values, the
choice of the weighting scheme shows hardly any effect on the overall classification
precision. Scheme S1 achieves always TN values equal to 1 and a bit lower TP values
than aggregation scheme S2. But S2 leads to lower TN values than S1. The TP and
TN values in Fig. 4.28 form two groups according to the applied aggregation schemes.
Furthermore the dimensionality of the low dimensional classifiers, here p = 2 and
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(a) TP (b) TN

Figure 4.28: TP and TN values of the heat pump ensemble classifiers with p=2 and
p=3, without data preprocessing and increasing numbers of training examples N .
The two aggregation schemes are indicated as S1 and S2 and the different weight-
ing schemes equal weighting as m and validation performance based weighting
as v. The legend in (a) is also valid for (b). All hidden lines in (b) are equal to 1.

p = 3, shows no effect on the classification precision.

After the experiments with the heat pump data sets, the experiments on the µCHP
coalition data sets are conducted. The resulting TP and TN values are shown in
Fig. 4.29 for the different aggregation and weighting scheme combinations. The
C-CHP data sets show similar results as the heat pump data set (C-HP), concerning
the aggregation of the intermediate classification results of all ensemble members.
The choice of the aggregation scheme influences the TP and TN values, while the
choice of the weighting scheme shows hardly any effect.

Even though an increasing number of energy units in the coalitions slightly in-
crease the data set complexity, there is no effect visible in the classification results.
Thus small changes in the data set complexity have no effect on the classification
precision.

Similar experiments on µCHP coalitions were presented in Neugebauer, Bremer,
et al. 2016. But these experiments were done with less representative examples
of the feasible class, where most examples are distributed around the expectation
value. These data sets all employ a similar data structure and also a similar data
set complexity, see also Sect. C.1. Therefore these experiments are not presented in
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(a) TP (S1) (b) TN (S1)

(c) TP (S2) (d) TN (S2)

Figure 4.29: TP and TN values of coalitions with different numbers of µCHPs. The
intermediate results are aggregated according to aggregation scheme S1 in (a)
and (b) and according to S2 in (c) and (d). The legend in (a) is also valid for (b)
and the legend in (c) is also valid for (d).

more detail here.

Overall the results on the heat pump data set and the µCHP coalition data sets
show similar results. While the data set complexity and the choice of the weighting
scheme showed hardly any effect on the ensemble precision, the choice of the weight-
ing scheme exerts a great influence on the ensemble precision. Both aggregation
schemes yield similar or higher TP values than the single ensemble members and a
basic cascade classification model without data set transformations, see Sect. 4.2.5.
Aggregation scheme S1 results in TN values equal to one, like all single ensemble
members. But aggregation scheme S2 leads to lower TN values. Since most of the
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infeasible test examples of both data sets are not located close to the class bound-
ary, the TN values indicate classification mistakes. Therefore aggregation scheme S1
yields more precise results than the aggregation scheme S2.

Aggregation scheme 1 combines the results of all ensemble members for complete
global operation schedules and conserves the temporal ordering of the time steps.
But aggregation scheme 2 combines the intermediate predictions of the ensemble
members. These intermediate predictions do not correspond to time steps, but to
special frequencies, the correlation of time steps with a certain distance and so on.
Since S2 aggregates the intermediate prediction results from different domains (e.g.,
temporal, spectral and change), S2 is not suitable for all data sets.

The results from the previous subsection Sect. 4.2.5 and this subsection showed,
well prepared ensembles increase the classification precision. A more detailed com-
parison of the different cascade classification model version is presented in Sect. 4.2.8.
But before the classifier comparison the selectivity of the cascade classification model
is studied in the next section, see Sect. 4.2.7.

4.2.7 Classifier Selectivity

After the evaluation of the basic and the generalized cascade classifier version, the
selectivity of both model version is studied with complex data sets. The classifier
selectivity is measured in terms of correctly predicted infeasible test examples close
to the class boundary. Since the energy data sets all employ infeasible examples,
that are not located close to the class boundary, special infeasible test examples are
employed. Furthermore an artificial data set is used.

The classifier selectivity experiments are conducted with the data set of a coalition
of 5 identical µCHPs (C-CHP) and an artificial Hyperbanana data set (A-HB2). Since
all infeasible default test examples of energy units are classified correctly and they
are not located close to the class boundary, another set of infeasible test examples is
applied, where the examples are located closer to the class boundary, see Sect. C.2.1.
The Hyperbanana data set A-HB2 is expected to yield more representative classifier
selectivity results than the µCHP coalition, because the infeasible test examples repre-
sent different "rings" around the feasible Hyperbanana class with different distances
to the class boundary.

All experiments are conducted with the default set-up. Furthermore the cascade
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classifiers are adapted to the given classification tasks according to the observations
in the previous experiments. The experiments with the C-CHP data set are done
with the generalized cascade classification model and the same parametrization as
in the experiment in Sect. 4.2.5, but the infeasible test examples are exchanged.
This time the infeasible test data set consists of two data sets. Set 1 employs more
similarities with feasible examples than set 2, see Sect. C.2.1. The A-HB2 data set is
classified with the basic cascade classification model with knn-param-1. Furthermore
the Hyperbanana data set is prepared with selection of feasible examples (ε= 0.005,
t = 1000) and generation of artificial infeasible examples (εb = 0.05).

The resulting TP and TN values of all ensemble members for the µCHP coalition
are shown in Fig. 4.30. Since only the infeasible test examples are different, the TP
values in Fig. 4.30(a) are identical to the TP values in Fig. 4.27(a). As expectable

(a) TP (b) TN

Figure 4.30: TP and TN values for a coalition of 5 µCHPs with infeasible test exam-
ples near the class boundary. The experiment are identical to the experiments for
Fig. 4.27, except from the employed infeasible test examples.

the TN values of the infeasible examples with more similarity to the feasible test
examples, see Fig. 4.30(b), are a bit worse than the TN values of infeasible examples
further away from the class boundaries, see Fig. 4.27(b). This trend is also visible
between the two infeasible test sets. Set 1 which employs more similarities with
the feasible class achieves a bit worse TN values than set 2. The biggest TN loss
compared to Fig. 4.27(b) can be observed for the infeasible examples transformed
with acf. This TN loss is due to the great similarity in the correlation behavior of
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feasible and infeasible test examples.

Next the experiments with the Hyperbanana data set are conducted, where the
infeasible test examples are distributed in "rings" around the feasible class. The
resulting TP and TN values are shown in Fig. 4.31. While the classifier predicts all

(a) TP (b) TN

Figure 4.31: TP and TN values for the Hyperbanana data set A-HB2, where the
infeasible test examples are distributed in "rings" around the feasible class.

feasible test examples correctly, the prediction correctness of infeasible test examples
increases with an increasing distance to the class boundary. At least more than 50%
of the infeasible examples close to the class boundary (ring 1) are predicted correctly.
Ring 3 already achieves more then 90% correctly predicted examples.

Overall the selectivity experiments showed a strongly increasing precision, here
increasing TN values for infeasible test examples with an increasing distance to
the class boundary. Common infeasible test examples from the energy data sets
employ infeasible test examples which are not located close to the class boundary.
These infeasible test examples were all predicted correctly in most experiments in
this chapter. These observations confirm a more or less slight overestimation of the
feasible class, depending on the classification task, as shown in Sect. 4.2.3 e.g., with
the example in Fig. 4.16.

4.2.8 Comparative Experimental Study

After the evaluation of the classification precision of the basic and the generalized
cascade classification model version and the respective model adaptations one after
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classifier parameters ensemble combinations

basic cascade cl. OCSVM-param-6
generalized cascade cl. acf: OCSVM-param-1 all combinations of

fft: OCSVM-param-1 weighting and
pca: OCSVM-param-1 aggregation schemes

classic OCSVM OCSVM-param-7
SVDD C = 1.0, γ= 1.0

Table 4.10: Classifier parameters for the comparative experimental study on the
complete µCHP data set.

another as well as the classifier selectivity, now the different cascade classification
model versions are compared against each other. This comparative study is extended
by a comparison to common one-class classifiers, a classic OCSVM and a comparable
classifier, a SVDD.

A comparison of the basic cascade classification model and a classic OCSVM was
already conducted in the baseline classifier choice section, see Sect. 4.2.2. The classic
OCSVM achieves a higher precision than the basic cascade classification model, when
the feasible class employs a simple data structure. But if the feasible class employs a
complex structure, the cascade classification model yields a higher precision than the
classic OCSVM. Therefore the classifier comparison experiments in this subsection
are conducted on data sets with a more complex structure of the feasible class. The
comparison experiments are conducted on two data sets of different complexity
and with different distributions of infeasible test examples. These data sets are the
complete data set of a single µCHP (B-CHP) and data sets of homogeneous coalitions
of identical µCHPs (C-CHP).

All these comparison experiments are conducted with the default classifier set-up.
The classification parameters are chosen in pre-test in such a way, that the highest TP
values are achieved in combination with TN values always equal to 1. The resulting
parameter values and ranges for the experiments on the B-CHP data set are indicated
in Tab. 4.10. The experiments on the C-CHP data sets are parametrized in the same
way as in the experiment in Sect. 4.2.5, but this time the intermediate results of
the generalized classifier are aggregated. The classic OCSVM is parametrized with
OCSVM-param-6, the basic cascade classifier without transformations (2d) is also
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parametrized with OCSVM-param-6 and the SVDD classifier with C = 1.0 and γ =
1.4.

At first the experiments on the B-CHP data set with two feasible concepts are
conducted. As expectable, the generalized cascade classification model yields the
highest TP values and TN values equals 1, see Fig. 4.32. As already mentioned in the

(a) TP (b) TN

Figure 4.32: TP and TN values on the complete µCHP data set (B-CHP) for different
classifiers. The basic cascade classification model is indicated as 2d and the classic
OCSVM as 96d. The legend in (a) is also valid for (b).

ensemble precision subsection, Sect. 4.2.6, the weighting schemes have hardly any
influence on the classification precision, while the aggregation scheme S1 achieves
better results than the aggregation scheme S2. The common one-class classifiers, the
classic OCSVM (96d) and the SVDD achieve the lowest TP values of all classifiers.
The classic OCSVM and the SVDD yield similar results and under certain conditions
both classifiers can yield the same results, see Sect. 2.4 and D. M. J. Tax 2001. The
basic cascade classification model (2d) yields TP values in between the best and the
worst classifiers.

Next the experiments with the µCHP coalition data sets (C-CHP) are presented,
where the feasible class employs a more complex structure than in the B-CHP data
set. This time all classifiers yield TN values of 1, because the generalized cascade clas-
sification model is only applied with the aggregation scheme S1. The generalized
cascade classification model is again more precise than the basic cascade classifi-
cation model again, see Fig. 4.33. But here the basic cascade classification model
achieves similar TP values as the common one-class classifiers, the classic OCSVM
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(a) TP S1 (b) TN S1

(c) TP further classifiers (d) TN further classifiers

Figure 4.33: TP and values achieved on the µCHP coalitions (C-CHP) for different
classifiers. In (a) and (b) the ensemble results are shown for aggregation scheme
S1. In (c) and (d) the classification results of a classic OCSV (96d), a SVDD and a
basic cascade classifier without transformations are shown. The experiments with
the basic cascade classification model (2d) and the classic OCSVM for a coalition
of 50 µCHPs (96d) yield nearly the same TP values. All TN values in (b) and (d)
are equal to 1. The legend in (a) is also valid for (b) and the legend in (d) is also
valid for (c). The figures (a) and (b) are identical to (a) and (b) in Fig. 4.29.
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and the SVDD. Both common classifiers are expected to yield even more similar TP
values, if the classification parameters would have been more fine tuned.

All in all the classifier comparison yielded similar results on both data sets. The
generalized cascade classification model achieved the highest precision. On the less
complex data set B-CHP the basic cascade classification model outperformed the
common one-class classifiers. But on the more complex data sets C-CHP the basic
cascade classification model and the common one-class classifiers achieved a similar
precision.

The classifier comparison on complex data sets revealed the highest precision for
the generalized cascade classification model. A basic cascade classification model
achieves a similar or even a higher precision than common one-class classifiers
(classic OCSVM and SVDD). Overall the cascade classification model with a careful
adaptation is more precise for complex data sets than common one-class classifiers.



128 evaluation of the cascade classification model

4.2.9 Summary

The precision evaluation section focused on the effect of the different cascade clas-
sification model adaptations and a comparison of the cascade classification model
against common one-class classifiers. The evaluation results are summarized below
one after another.

Effects of the Different Model Adaptations

The main effects of the different model adaptations on the classifier precision are
presented below.

• Scalability: The classification precision of the cascade classification model
increases with increasing numbers of training examples. Large numbers of
training examples make a high classification precision even possible for data
sets with increasing dimensionality. (Data sets with up to 384 dimensions were
tested.)

• Baseline classifier choice: Baseline classifiers can be adapted to the given
data set. An OCSVM is often a good choice as a one-class baseline classifier.

• Dimensionality of the subsets: The dimensionality of the low-dimensional
subsets is adapted according to the correlation behavior of the feasible class.
But the data structure and a potential information loss due to the splitting
of the data set need to be considered. If the feasible class does not show the
expected correlation behavior (a high correlation between near by time steps
and a low correlation for time steps with longer distances), the classification
precision can be bad.

• Preprocessing: The better the distribution of the training examples, the higher
classification precision values can be expected. Inconvenient data distributions
(less representative and inhomogeneous) can be improved with the presented
data preprocessing algorithms: selection of feasible examples and generation
of artificial infeasible examples. Both algorithms require a careful parametriza-
tion.
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• Ensembles: The ensembles precision of the generalized cascade classification
model relies on the ensemble preparation and the aggregation of all ensemble
members. The preparation of the ensemble members consists in an appropriate
choice of transformations, which can simplify a complex data structure of the
feasible class and lead to a high classification precision. The overall precision
of all well prepared ensemble members depends mainly on the choice of an
aggregation scheme. Weighting schemes and the data set complexity showed
hardly any effect on the overall precision.

• Selectivity:The basic cascade classification model and also the ensemble mem-
bers of the generalized cascade classifier do not predict all infeasible test ex-
amples near the class boundary correctly. But with an increasing distance to
the class boundary, the prediction precision increases strongly. Nearly all infea-
sible test examples, that are not located close the class boundary, are predicted
correctly. These results indicate a slight overestimation of the feasible class of
the cascade classification model.

Classifier Comparison

The precision comparison of the basic and the generalized cascade classifier to com-
mon one-class classifiers revealed a dependence on the classification task and the
data set complexity. On classification tasks with a simple data structure, a common
OCSVM and a SVDD perform much better than the basic cascade classification model.
But on more complex data sets the basic cascade classification model achieves the
same or a higher precision than two one-class classifiers. On complex data sets, the
generalized cascade classification model is even more precise than the basic cascade
classification model.

Conclusion of the Precision Evaluation

All in all the precision evaluation yielded a high classification precision for the cas-
cade classification model on most classification tasks. But if the requirements for
the application of the cascade classification model, see Tab. 3.1 are not fulfilled,
the resulting classification precision might be bad. But if all requirements are met
the following trend can be observed. The better the cascade classification model is
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adapted to a given classification task and the respective data set, the more precise
results can be achieved.

Furthermore the data set complexity has a great impact on the achievable classi-
fication precision. While common one-class classifiers (classic OCSVM and SVDD)
achieve a higher precision on data sets with a simple data structure, the cascade
classification model is superior on data sets with a complex data structure.
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4.3 Parameter Sensitivity and Model
Parametrization

The analysis of the effect of model adaptations on the classification precision re-
vealed different dependences. In this section some of these dependences are an-
alyzed quantitatively. Overall baseline classifier improvements as well as data set
improvements can strongly increase the classification precision. During the qualita-
tive analysis of the cascade classification model adaptations, especially the baseline
classifier parametrization and the parametrization of the data preprocessing algo-
rithms turned out to be sensitive to the parametrization. In this section the parameter
sensitivity of the baseline classifier parametrization is studied in Sect. 4.3.1 and the
data preprocessing parametrization in Sect. 4.3.2.

The Sensitivity analysis (SA) is done according to the six steps, introduced in
Sect. 2.5.2. Therefore the influence of the interesting parameters is considered in
sensible parameter ranges. These parameter ranges are sampled equidistantly or
only some very interesting values are chosen. Then the classification precision is
computed in terms of decision boundaries or TP and TN values. Finally the resulting
precision is evaluated graphically and parameter fitting suggestions are derived.

4.3.1 Baseline Classifier Parametrization

Already the baseline classifier choice can have a great influence on the classifier
precision as shown in Sect. 4.2.2. But the baseline classifier parametrization is also
very important. In general parametrization advice for potential baseline classifiers
can be found in literature or machine leaning package manuals. In this section
not only the effect of the parametrization on a single low-dimensional classifier,
but also the effect on the parametrization of a cascade of low-dimensional baseline
classifiers as in the basic cascade classification model is of interest. This study is done
exemplarily for an OCSVM baseline classifier, because an OCSVM yielded the highest
precision in most of the baseline classifier comparison experiments in Sect. 4.2.2.

Commonly optimized parameters of an OCSVM include a kernel choice and the
optimization of the kernel parameter γ and the margin parameter ν. The most com-
mon kernels are linear-, polynomial- and radial basis function kernels (rbf). The
OCSVM parameters are restricted to γ > 0 and ν ∈ (0, 1].



132 evaluation of the cascade classification model

Since small improvements of the low-dimensional classifiers of the cascade, like
e.g., the baseline classifier choice lead to an improvement of the overall classification
precision, baseline classifier parametrization is expected to have a great influence
on the cascade classification model precision. The experiments are conducted with
the default setup for the basic cascade classification model on the reduced µCHP
data set (A-CHP) with N = {1000,2000, . . . , 15000} training examples.

In a first experiment the three kernels are optimally parametrized with grid search
and the resulting low-dimensional classification boundaries are compared. In a sec-
ond experiment the resulting classification boundaries and the overall classification
precision of a rbf kernel are compared for an optimized parametrization, a default
parameterization and also a partly optimized parameterization.

Kernel Choice

The first experiments with different OCSVM kernels result in different decision bound-
aries on the low-dimensional subsets. In Fig. 4.34 the decision boundaries of the first
and the last subset of the cascade are shown exemplarily. While the decision bound-
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Figure 4.34: Decision boundaries for different OCSVM kernels on A-CHP for the
first subset of the cascade (a) and the last subset (b). The decision boundaries are
indicated with different colors: linear (yellow), rbf (red) and polynomial (olive).
The olive line is hidden by the red line.

aries learned with the polynomial kernel and the rbf kernel surround the feasible
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examples closely, the decision boundary learned with a linear kernel overestimates
the feasible class strongly. Since the polynomial and the rbf kernel lead to similar
results and the rbf kernel employs less parameters, the rbf kernel is used in the
following experiments.

Parametrization of One Low-Dimensional Baseline Classifier

For the rbf kernel the parameters ν and γ have to be optimized. The parameter
ν is an upper bound on the fraction of training errors and a lower bound of the
fraction of support vectors. The parameter γ is a kernel coefficient. The effect of
both parameters on the 2-dimensional decision boundaries of the cascade classifier
subsets is estimated experimentally and the results are shown in Fig. 4.35. In the
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Figure 4.35: 1st and 2nd time step of the reduced µCHP data set learned with the
rbf kernel and different ν and γ values. The experiments were done with N = 1000
training examples.

presented example the default parametrization of the machine learning package
leads to the worst decision boundaries and an optimization of both parameters
yields the best ones.

Parametrization of all Low-Dimensional Baseline Classifiers of the Basic
Cascade Classification Model

Next the effect of the baseline classifier parametrization for the low-dimensional
subsets on the TP and TN values of the whole cascade is analyzed. The classifi-
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cation is done with three different parametrization sets: default parametrization
(default) (ν= 0.5, γ= 1/n f eatures = 1/2= 0.5), optimization of all small classifiers
(optimized) (OCSVM-param-1) and partial optimization of the parameters (opt12)
with (νoptimal = 0.002, γoptimal = 70)). This partial optimization means the opti-
mized parameters of the classifier of the first subset are applied to all classifiers of
the cascade. Since all low-dimensional subsets employ a similar data structure they
might be learnable with the same parametrization.

All parametrization sets lead to TN values of 1 and differ in the TP values, see
Fig. 4.36. The default parametrization leads to the worst TP values of about 0. The
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Figure 4.36: TP and TN values of the basic cascade classification model on A-CHP
with different parametrizations of an OCSVM baseline classifier and increasing
values of N .

application of the optimized parameters of the first classifier of the cascade (opt12)
for all classifiers leads to relatively high TP values, but a parameter optimization for
each low-dimensional classifier leads to the highest TP values.

The experimental results show, a careful parametrization of all low-dimensional
classifiers (baseline classifiers) can strongly increase the cascade classification model
precision in comparison to the default parameterization of the machine learning
package. As already shown in Sect. 4.2.9 small improvements of the low-dimensional
classifiers improve the overall classification precision.
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4.3.2 Data Preprocessing Parametrization

Beside classifier improvement also data improvements increase the classification pre-
cision. The qualitative effect of the data preprocessing methods, selection of feasible
examples and generation of artificial infeasible examples has already been studied
in Sect. 4.2.4. Depending on the data set and the parameter tuning both preprocess-
ing methods can greatly improve the precision of the cascade classification model.
Since the parametrization of the two preprocessing methods employs parameter
dependencies and requires a careful tuning, the parametrization is now analyzed
quantitatively. This analysis is conducted exemplarily on the reduced µCHP data set
(A-CHP) with low-dimensional subsets of p=2. First off all the parametrization of
the selection of feasible examples is studied. Then the parametrization of the gener-
ation of artificial infeasible examples is analyzed. After that different combinations
of the dependent parameters of both methods are studied experimentally to derive
parameter fitting suggestions.

Parametrization of Selection of Feasible Examples

The parametrization of selection of feasible examples depends on the given data set
and the expected properties for the selected feasible examples. The given A-CHP
data set with low-dimensional subsets of p=2 employ power production values of
[0,1] for each time step. The feasible examples are more or less inhomogeneously
distributed in each low-dimensional data subset.

Since the number of selected feasible examples varies among the low-dimensional
subsets and baseline classifiers require a certain number of training examples, the
application context of the preprocessed data set is relevant. Here the selected feasi-
ble examples should be applied in a basic cascade classification model with a knn
baseline classifier. The qualitative study in Sect. 4.2.4 yielded good classification
results for N ≥ 250 training examples. This limits the number of selected feasible
examples sn, which depends on the minimal distance ε between selected feasible
examples. Therefore the smallest number sn of all low-dimensional data subsets,
resulting from the same ε value, is used for all low-dimensional data subsets. The
resulting sn values for the A-CHP data set are shown in Fig. 4.37 for increasing values
of ε and t = 100. Overall the adapted number of selected examples sn decreases
for increasing values of ε with a power function: sn= 0.0325ε−1.7610, see Fig. 4.37.
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Figure 4.37: Functional relation between the minimal distance between nearest
feasible neighbors ε and the number of selected examples sn of the subset with
the fewest selected examples. The selected feasible examples have to be divided
into training and validation sets or can be used only as training data when the
validation examples are taken from the remaining feasible examples, that were
not selected.

With respect to the minimal number of feasible training examples N = 250 and the
constant parametrization of t = 100, the number of feasible training examples is
chosen as N = {100, . . . , 10000} examples for the experimental study. Since train-
ing and validation examples should be taken from the selected feasible examples
sn= N ·2. These numbers of feasible training examples and the respective sn values
correspond to ε ∈ {0.001, 0.0015,0.002, . . . , 0.0055}.

Parametrization of Generation of Artificial Infeasible Examples

Based on the sets of sn selected feasible examples S for each low-dimensional data
subset, artificial infeasible examples can be generated. Generation of artificial infeasi-
ble examples is parametrized as follows. Noise is taken from the normal distribution
N (µ,σ) ·α with µ= 0, σ = 0.01 and α= 1. The minimal distance between feasible
and artificial infeasible examples εb is increased for all data sets generated with
the different ε values. The value for εb is chosen from {0.001, 0.002, . . . , 0.05} with
εb ≥ ε. Depending on εb the number of algorithm iterations is adapted until at least
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the same number of artificial infeasible examples are generated as the respective
number of selected feasible examples sn.

Study of the Effect of Different Preprocessing Parameter Combinations

The parameter sensitivity study of classification experiments is done on the differently
preprocessed data sets. The classification is done with the binary baseline classifier
knn as in Sect. 4.2.4. The training and validation sets consist of N = sn/2 feasible
and N artificial infeasible examples. Furthermore the experiments are conducted
according to the basic cascade classification model setup with data preprocessing.
Then the cascade classifier precision is evaluated graphically on the achieved TP and
TN values according to the underlying data preprocessing distance parameter value
combinations.

The cascade classifier precision yielded different TP values for the differently pre-
processed data sets shown in Fig. 4.38(a) and always TN values equal to 1. The high
TN values are due to the location of the infeasible high-dimensional test examples
not close to the class boundary, see Sect. 4.1.1. Based on the TP values different
regions of classification precision can be identified and separated by the restrictions
resulting from the distance parameters, see Fig. 4.38(b). These regions of different
distance parameter combinations are bounded in the ε range and the εb range. The
ε range is bounded by the number of selected feasible examples. After excluding
insensible ε values (ε < 0.001 and ε > 0.0055), the εb values can be divided into
three groups, too small εb values, optimal εb values and too large εb values. For
each of these groups the distribution of the preprocessed data sets and the learned
decision boundaries are shown exemplarily in Fig. 4.39.

εb too small The region of too small εb values is bounded by εb = ε at the lower
bound and the TP= 0.99 contour at the upper bound. The TP contour can
be approximated for this data set with a linear function via linear regression:
εb = 3.7251ε−0.0005. In the region of too small εb values a smaller or larger
percentage of the artificial infeasible examples is generated in the region of
the feasible class. This can be seen in Fig. 4.39(a) showing some artificial
infeasible examples (blue points) between the gray points in the region of
feasibles. This mixture of feasible and artificial infeasible examples leads to



138 evaluation of the cascade classification model

0.001 0.002 0.003 0.004 0.005
ε

0.01

0.02

0.03

0.04

0.05

ε b

0.0

0.2

0.4

0.6

0.8

1.0

T
P

(a) TP for different parameter combina-
tions of ε and εb

0.001 0.002 0.003 0.004 0.005
ε

0.00

0.01

0.02

0.03

0.04

0.05

ε b

εb too small

εb too large

(εb optimal)

ε = εb

TP contour

(b) regions of different parameter combina-
tions with different effects

Figure 4.38: TP values for the different data preprocessing parameter combinations
(ε,εb) are indicated in (a). The two vertical dashed black lines mark the range
of reasonable ε values and the solid black line at the bottom indicates the lowest
bound for εb: ε = εb. The black line above is the contour with TP= 0.99. The
same boundary lines are shown in (b). Furthermore the resulting regions are
indicated. The three points in both figures mark the parameter combinations used
for Fig. 4.39.

non smooth class boundaries, an underestimation of the feasible class and
relatively low TP values.

εb optimal The region of optimal εb values is only described by the TP= 0.99
contour for the A-CHP data set, because TN is equal to 1 for all parameter
value combinations. If there would be infeasible test examples near the true
class boundary, the TN values should decrease for increasing εb values. From
these decreasing TN values a respective TN contour could be derived. This
TN contour could be used in combination with the TP contour to determine
the optimal value region. The corresponding artificial infeasible examples are
distributed around the feasible ones with a small gap in between the classes
and hardly any overlap, see Fig. 4.39(b). Due to the gap feasible and infeasible
examples are clearly separable and TP and TN values are high in this region.

εb too large The region of too large εb values has a lower bound resulting from
the TP contour for the µCHP data set. But the lower bound could be also
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Figure 4.39: Decision boundaries learned for the first and second dimension on
A-CHP for εb values from the different regions and a fixed value of ε = 0.002.
These parameter value combinations are marked in Fig. 4.38.

determined by a TN contour, if there would be infeasible test examples near
the true class boundary. If the εb value is too large, feasible and infeasible
examples are clearly separable and there is a large gap between the examples
of both classes, see Fig. 4.39(c). The learned decision boundary is located in the
middle of this gap. The larger the gap, the further away is the decision boundary
from the feasible examples and the true class boundary. This phenomenon is
an overestimation of the feasible class. For this reason infeasible test examples
near the true class boundary would be classified as feasible.

The sensitivity analysis showed the dependence of the two data preprocessing dis-
tance parameters. Based on the minimal distance between selected feasible examples
ε a region of optimal minimal distance values between feasible and infeasible exam-
ples εb can be identified. Deviations from the optimal parameter value combinations
lead either to an over- or underestimation of the feasible class with decreasing TN
values, respectively TP values.

4.3.3 Summary

The overall precision of the cascade classification model relies on the precision of the
low-dimensional classifiers. The precision of these low-dimensional classifiers can be
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tuned based on a classifier optimization and based on data set improvements. In this
section the sensitivity of two such classification improvement methods with sensitive
parameters was studied. At first the parametrization of the low-dimensional baseline
classifiers was studied. After that the sensitivity of data preprocessing parameters
was studied.

• Baseline classifier parametrization: Even a partly optimization of the base-
line classifier parameters can lead to a great precision improvement compared
to the default classifier parametrization of the machine learning package.
The highest classification precision is achieved if the parameters of all low-
dimensional baseline classifiers are optimized.

• Data preprocessing parametrization: The first data preprocessing method,
selection of feasible examples can be always applied to improve, respectively
homogenize the distribution of training examples. To allow a high classification
precision, the distance parameter ε has to be chosen in pre-test. The second
data preprocessing method, generation of artificial infeasible low-dimensional
examples can be only applied, if both classes are clearly separable and the
distribution of the previously selected feasible examples is relatively homo-
geneous. Artificial infeasible examples lead only to a precision improvement,
when they are generated in the infeasible region near the true class boundary.
Since εb depends on ε, for each ε value a region of too small-, too large- and
optimal εb values can be determined. The highest classification precision can
be achieved with optimal combinations of ε and εb, while too small and too
large values of εb lead to an underestimation, respectively overestimation of
the feasible class.

All in all the parametrization of the baseline classifiers and the data preprocessing
procedures have a great impact on the classification precision. To achieve the best
classification precision it is advisable to start the parametrization with pre-test.
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4.4 Runtime Complexity

Beside the classification precision and parameter sensitivity also the runtime plays a
major role for the applicability of a classifier. In the case of the cascade classification
model, the runtime complexity depends on the adaptations of the model. Since all
model adaptations modify and extend the basic cascade classifier, only the runtime
of the basic cascade classifier is estimated. But still the basic model employs one
variable term, namely the baseline classifier. Therefore the runtime complexity is
estimated for arbitrary baseline classifiers and additionally for an OCSVM baseline
classifier. First of all an analytic runtime estimation is done in Sect. 4.4.1 followed
by an experimental estimation in Sect. 4.4.2. Then the resulting runtime estimation
is analyzed with respect to time consuming parts in Sect. 4.4.3. Finally suggestions
are derived to make the basic cascade classification model more efficient, also with
respect to model adaptations.

4.4.1 Runtime Complexity of the Basic Cascade Classification Model

The analytic runtime estimation of the basic cascade classification model with arbi-
trary baseline classifiers is conducted in terms of an upper bound, see Sect. 2.5.3,
Knuth 1976; Ottmann and Widemayer 2012. First of all a functional relation of the
complexity of the basic cascade classifier has to be identified. Then an asymptotic
upper bound of the runtime complexity is derived for arbitrary baseline classifiers.
Finally the runtime complexity with an OCSVM baseline classifier is estimated.

Functional Relation: The functional relation of the basic cascade classification
model is derived with the help of the pseudocode of the basic cascade classification
model, see Sect. 4.1.6. The functional relation g(nt rain, nval , ntest , p, dim) is given
by

� dim−(p−1)
∑

k=1

�

t i ter
∑

l=1

z(nt rain, nval , p)
�

+ z(nt rain, ntest , p)
�

+min(ntest , dim, p) (4.1)

⇔
�

dim− (p− 1)
�

(t i ter + 1)z(nt rain, nval , ntest , p)
︸ ︷︷ ︸

g1

+min(ntest , dim, p)
︸ ︷︷ ︸

g2

. (4.2)
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The functional relation contains two summands. The first summand (g1) describes
training validation and testing of the baseline classifier z. The second summand (g2)
describes the aggregation of the intermediate classification results to an overall
result.

g1: outer loop The outer loop iterates over all low-dimensional data subsets.

inner loop The inner loop iterates over all gridsearch parameter combina-
tions ( t i ter ).

baseline classifier A call of z(nt rain, nval , ntest , p) consists in building a clas-
sifier and predicting a validation or a test subset.

g2: minimization The minimization of predicted class labels is an aggregation of
the intermediate classification results to an overall result. The feasible
class has the label 1 and the infeasible class the label −1.
This aggregation is based on the python implementation for minimization
of lists:

// minimum of list A
min = 1
for j in (2,..., length(A)):

if A[j] < A[min]:
min =j

minimum = A[min],

see 1. This minimization is done for each test example, thus ntest times.
Furthermore the minimization complexity depends on the length of the
list. Here each list has a length of dim− (p− 1).

Based on the functional description g the runtime complexity is commonly estimated
in terms of the number of samples nsamples and the number of features n f eatures. Here
both parameters are represented by several parameters. The number of samples is
represented as the number of training examples nt rain, the number of validation
examples nval and the number of testing examples ntest . For convenience all sample
size variables are set to an equal value nt rain = nval = ntest = N . From now on the
number of samples is N .

1https://hg.python.org/cpython/file/2.7/Python/bltinmodule.c, last time visited 24.02.2017

https://hg.python.org/cpython/file/2.7/Python/bltinmodule.c
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Just like the number of samples, the number of features is also represented by
several parameters, the dimensionality of the data set dim and the dimensionality
of the low-dimensional subsets p. In the following the dependence on features is
considered in terms of p. But since p and dim depend on each other with dim−1≥
p ≥ 2, dim needs to be considered implicitly.

Based on these assumptions and simplifications g is now

g(N , p, dim) =
�

dim− (p− 1)
�

(t i ter + 1)z(N , p)
︸ ︷︷ ︸

g1

+N ·min(dim− (p− 1))
︸ ︷︷ ︸

g2

. (4.3)

In the next subsections the dependence of the two summands g1 and g2 on N and
p is analyzed separately, before the overall complexity is considered.

Runtime complexity of the first summand g1

The summand g1 depends on the one hand on p and on the other hand the baseline
classifier z, that employs a dependence on p and N . Since this runtime estimation
should be valid for arbitrary baseline classifiers, the baseline classifier dependencies
are considered as O (z).

upper bound:
Assertion: g1(p) ∈ O (p · z(N , p))
Proof:⇔∃c1, c2 > 0 ∀p ∈ N : g1 ≤ c1 · O (p · z(N , p)) + c2

g1(p, z(N , p)) =
�

dim− (p− 1)
�

(t i ter + 1)z(N , p)≤ c1 · O (p · z(N , p)) + c2 (4.4)

g1(p, z(N , p)) = dim(t i ter + 1)z(N , p)− (p− 1)(t i ter + 1)z(N , p) (4.5)

≤ 2 · dim(t i ter + 1)z(N , p)− p(t i ter + 1)z(N , p) (4.6)

The assertion is proved with c1 = t i ter +1 and c2 = 2 ·dim(t i ter +1)z(N , p), because
dim≤ p+ 1 and t i ter ≥ 0 ( t i ter = 0: without gridsearch).

In the limiting cases p = 2 and p = dim− 1 the dependence on p outside from
z(N , p) starts to vanish.
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Runtime complexity of the second summand g2

The minimization of lists in python has a runtime complexity of O (n f eatures)2. Here
n f eatures, the length of a list correspond to dim− (p− 1). Sine this minimization is
done N times for all test examples, O (N , p). In the limiting case p = dim− 1 the
dependence on p starts to vanishes.

Overall Complexity for arbitrary and OCSVM baseline classifiers

Summing up the upper bounds of the complexity estimation and neglecting the
limiting cases, the basic cascade classification model employs a complexity of

O (p · z(N , p)) +O (N , p) (4.7)

for arbitrary baseline classifiers. Due to the dependence of the baseline classifiers on
N and p, the complexity of the first summand g1 is higher than the complexity of
the second summand g2. Therefore the overall complexity depends only on the first
summand g1 and can be written as

O (p · z(N , p)). (4.8)

An OCSVM baseline classifier with the scikitlearn implementation employs e.g.
a runtime complexity of O (n f eatures · n2

samples) to O (n f eatures · n3
samples)

3. Since this
runtime complexity estimations are valid for different SVM implementations, the
actual runtime complexity depends on the applied SVM algorithm and the data set.
Accordingly the basic cascade classification model with such an OCSVM baseline
classifier would lead to a runtime complexity of

O (p2 · N2) to O (p2 · N3). (4.9)

In the case of an OCSVM baseline classifier the number of samples N and the di-
mensionality of the low-dimensional subsets p seem to increase the runtime. But
since p and dim depend on each other, increasing values of p do not necessarily
mean an increasing runtime, see g1 in (4.3). The baseline classifier, z(N , p), here

2https://wiki.python.org/moin/TimeComplexity, last time visited 24.02.2017
3http://scikit-learn.org/stable/modules/svm.html#complexity, last time visited 24.02.2017

https://wiki.python.org/moin/TimeComplexity
http://scikit-learn.org/stable/modules/svm.html#complexity
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the OCSVM depends linearly on p. Therefore z can be written as a · p with a ∈ R.
Now g1 describes a parabola which is opened to the bottom,

f (p) = (dim− (p− 1))(t i ter + 1)ap. (4.10)

The worst runtime occurs at the vertex of the parabola. The vertex can be read from
the parabola equation after a quadratical extension and some further mathematical
transformations,

f (p) = (t i ter + 1)a(−p+
dim+ 1

2
)2 − (t i ter + 1)a

(dim+ 1)2

4
. (4.11)

The vertex is located on the x-axis at dim+1
2 . This means p values about dim/2

employ the longest runtime.

These analytical runtime complexity estimations for the basic cascade classification
model with an OCSVM baseline classifier are studied experimentally in the next
subsection.

4.4.2 Runtime Experiments

After the analytical runtime complexity estimation, the findings are compared to
experimental runtime measurements. Therefore runtime experiments are conducted
with respect to N and p separately. All experiments are done on the data set A-CHP
with OCSVM-param-2. The experiments for increasing values of N are conducted
with N = {1000, 2000, . . . , 10, 000, 20, 000, . . . , 50, 000} and p = 2 in 5 experimental
runs for each value of N . The experiments for increasing values of p are conducted
with N = 2000 and p ∈ {2, 5, 10, 15, . . . , 95} in 50 experimental runs for each value
of p.

The runtime is measured each time on one CPU core with 2.26GHz for each classi-
fier of the cascade (

�

∑t i ter
l=1 z

�

+z) including training and validation during gridsearch
or training and testing during the prediction stage. The resulting measurements are
evaluated as mean runtime values per low-dimensional classifier of the cascade and
as the runtime of the complete cascade including the aggregation of the intermediate
results g2. These results are presented at first for increasing values of N and then
for increasing values of p.
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Runtime Dependence on N

The experiments with increasing numbers of training examples N are evaluated
according to the mean runtime of each classifier of the cascade and according to
the overall runtime. The mean runtime per classifier of the cascade is shown in
Fig. 4.40(a) for increasing values of N . Since the OCSVM employs a complexity
between quadratic and cubic, respective regressions are conducted on the mean run-
time values per classifier of the cascade. The quadratic regression fits the measure-
ments better than the cubic regression, see Fig. 4.40(b). Thus the runtime depends
quadratically on N .

The overall runtime for one basic cascade classifier is about the mean runtime per
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Figure 4.40: Measured runtime for each classifier of the cascade tb for increasing
numbers of training examples N : mean, standard deviation and minimum and
maximum values (a) mean (observations), quadratic regression and cubic regres-
sion (b).

classifier in the cascade times the number of classifiers per cascade (dim− (p− 1))
plus the runtime of the aggregation of the intermediate results. The resulting overall
runtime is shown in Fig. 4.41. The overall runtime shows a quadratic dependence
of the runtime on N as the mean runtime per classifier of the cascade.

All in all the runtime experiments show a quadratic dependence on N and confirm
the analytic results.
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Figure 4.41: Measured mean runtime of all classifiers in the cascade t total for in-
creasing numbers of training examples N . In this figure the lines of the standard
deviation cover the line of the mean values.

Runtime Dependence on p

The runtime also depends on the number of features, here indicated in terms of
p. The scikitlearn OCSVM classifier employs a linear dependence on the number
of features and therefore the dependence of the cascade classification model with
OCSVM baseline classifiers is quadratic.

The mean measured runtime per low-dimensional classifier of the cascade shows
a linear runtime complexity for the OCSVM baseline classifier with increasing values
of p, see Fig. 4.42.
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Figure 4.42: Mean runtime tb of the runtime experiment per baseline classifier for
increasing values of p. The duration tb is a mean value of 50 experimental runs.
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Since the basic cascade classification model consists of dim− (p − 1) classifiers,
the mean runtime per cascade has to be multiplied with dim− (p − 1) to achieve
the overall runtime. The resulting overall runtime depends quadratically on p, see
Fig. 4.43. This means, the cascade classifier with very low- or high-dimensional
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Figure 4.43: Total runtime of one cascade classifier t total depending on the number
of features p and the runtime of a classic OCSVM (black dot). The duration t total
is indicated as: mean, standard deviation and minimum and maximum values (a),
mean value and quadratic regression (b).

subsets, compared to dim, employs the shortest runtime and subsets with p about
dim/2 employ the longest overall runtime. Furthermore the resulting runtime for
small and high values of p compared to dim is only slightly higher than the runtime
of a classic OCSVM. All in all the experimental results approve the analytical results.

4.4.3 Summary and Runtime Improvement Suggestions

The analytical runtime complexity estimation as well as the experimental runtime
measurements were only done for the basic cascade classification model, because
all model adaptations modify or extend the basic model. In this section the runtime
complexity results are summed up. After that runtime improvement suggestions are
given especially with regard to the complete cascade classification model.

The theoretical runtime complexity estimation and the experimental measure-
ments for increasing values of N and p are summed up below.

• Theoretical runtime complexity: For arbitrary baseline classifier z(N , p), the
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runtime complexity of the basic cascade classification model is O (p · z(N , p)).
The application of the scikitlearn OCSVM as baseline classifier results in a
quadratic to cubic dependence on N and a quadratic dependence on p.

• Experimental runtime complexity: The runtime experiments with an OCSVM
baseline classifier approve the analytic results. Increasing values of N yielded
relatively high runtime lengths per classifier of the cascade, e.g., about 30 sec-
onds for N = 10000 and p = 2. But low or high p values compared to dim
lead to only a slightly higher overall runtime of the complete basic cascade
classification model than a classic OCSVM. All remaining p values lead to a
longer runtime with a maximum runtime for p about dim/2.

In summary, a high classification precision, that depends mainly on the number
of training examples and the parametrization of the baseline classifiers can lead to a
long runtime. Therefore parallel computing of the classifiers of a cascade is advisable.
Especially for the generalized cascade classification model, where a cascade classifier
is built on each transformed data set, an efficient computation is needed. Beside a
parallel computation further runtime could be saved during parameter optimization
of the low-dimensional classifiers. For one thing the parameter combinations that
are tested with gridsearch can be limited in pre-test. For another thing gridsearch
could be replaced by a more efficient parameter optimization procedure, which might
be e.g., an evolutionary algorithm, see Kramer 2014. Finally the benefit of a high
classification precision and the respective computational costs have to be judged for
each new classification task.
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4.5 Discussion of the Evaluation Results

The applicability of the cascade classification model to different classification tasks
was evaluated according to the classification performance. This classification per-
formance was assessed in terms of precision in Sect. 4.2, parameter sensitivity in
Sect. 4.3 and runtime complexity in Sect. 4.4. Altogether the classification precision
depends on one hand on the given classification task and the data set properties.
On the other hand the precision depends on the respective adaptation of the cas-
cade classification model. The better the model adaptations, the higher classification
model precisions can be achieved.

The cascade classification model achieves a higher precision than common one-
class classifiers like a classic OCSVM or a SVDD, if the classification task is complex.
Only if the classification task is simple, the common one-class classifiers achieve
a higher precision. Even though the cascade classification model achieves a high
classification precision, the classifier selectivity experiments indicate a slight overes-
timation of the feasible class.

Most cascade classification model adaptations mainly require pre-tests and knowl-
edge about the classification task and the data set. Some model adaptations have to
be applied carefully due to sensitive parameters, like the baseline classifier parametriza-
tion or the data preprocessing parametrization. Furthermore some model adapta-
tions lead to a long runtime, while the basic cascade classification model can employ
only slightly more runtime than a classic OCSVM. Nevertheless the different model
adaptations are necessary to allow a high classification precision for the whole class
of challenging classification tasks, where the cascade classification model was devel-
oped for, see Tab. 3.1.

In summary the cascade classification model performed well on all classification
tasks related to Tab. 3.1. The more complex the classification task, the better is the
resulting precision compared to a classic OCSVM or a SVDD. Classification tasks
with different properties than indicated in Tab. 3.1 may result in a low classification
precision. After the evaluation of the cascade classification model as a classifier its
applicability in VPP scheduling tasks is analyzed in Chapt. 5.



5 A P P L I C AT I O N O F T H E C A S C A D E
C L A S S I F I C AT I O N M O D E L A S
F L E X I B I L I T Y D E S C R I P T I O N I N V P P
S C H E D U L I N G TA S K S

After the evaluation of the developed cascade classification model in terms of classifi-
cation properties, now the application of this flexibility description in VPP scheduling
tasks is considered. VPP scheduling refers to planing the operation of all VPP par-
ticipants, which can be single energy units or coalitions of energy units, see e.g.,
Sect. 1.5. From a mathematical perspective, VPP scheduling is a constraint optimiza-
tion problem (COP). Promising scheduling algorithms treat the COP as a distributed
COP (DCOP), see Sect. 1.4. In this context machine learning surrogate models are
promising constraint handling techniques, see Sect. 1.3.1. This constraint handling
technique consists of machine learning surrogate models, describing the flexibilities
and a respective decoder function. The machine learning surrogate models can be
e.g., cascade classification models, that describe the flexibilities of all VPP partici-
pants. The flexibility of the VPP participants can be accessed via decoder functions.
These decoder functions sample feasible operation schedules from the respective
flexibility descriptions as possible solutions for the VPP optimization problem. A de-
coder can be operated according to two strategies. The first strategy consists in the
generation of feasible operation schedules, that represent the whole feasible class.
The second strategy consists in the search of the nearest feasible operation schedule
to a given infeasible one. In this thesis the focus lies on the first strategy.

The application of the cascade classification model for constraint handling in VPP
scheduling provides a machine learning surrogate model, but a decoder function is
missing. Related work could possibly yield an appropriate decoder function. Such
a related constraint handling approach is a decoder based on a SVDD classifier, see
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Bremer 2015. But since the respective decoder function is based on high-dimensional
support vectors, see Sect. 1.4.2, this decoder approach cannot be applied to the cas-
cade of low-dimensional and dependent classifiers of the cascade classification model.
Therefore a new decoder approach is required for the cascade classification model.
This new decoder approach needs to handle several low-dimensional and dependent
classifiers. Furthermore the adaptability of the cascade classification model leads
to different flexibility descriptions. On the one hand the baseline classifier choice
influences the description of the low-dimensional subsets (support vectors, density
descriptions, etc.). On the other hand the application of the generalized cascade clas-
sification model multiplies the number of low-dimensional and dependent classifiers,
compared to the basic cascade classifier.

Below two ideas are presented to realize an adaptable decoder approach.

• low-dimensional and dependent classifiers: This problem can be solved
with a step-wise decoder approach. For each time step a feasible contribution
range could be derived in a similar way as proposed in AVPP search space
modeling, see Sect. 1.4.3. But the feasible contribution ranges depend on
each other. This could be realized with a successive determination of feasible
contribution ranges based on the value, chosen from the previous contribution
range.

• adaptability: This problem resulting from the adaptability of the cascade clas-
sification model could be solved with an adaptable decoder approach. Differ-
ences in the flexibility descriptions, due to different baseline classifiers do not
yield any problems for the determination of feasible ranges. But the applica-
tion of the basic cascade classifier or the generalized cascade classifier require
an adaptable decoder approach. A basic decoder approach according to the
basic cascade classification model, see Sect. 3.2 could work according to the
idea presented above for low-dimensional and dependent classifiers. For the
generalized cascade classification model, see Sect. 3.5 a generalized decoder
version needs to be developed. Since each cascade classifier of the ensemble is
not very precise and only the ensemble off all cascades achieves a high classifi-
cation precision, all cascades need to be considered in the generalized decoder
version. This could be achieved by building a basic cascade decoder approach
for one cascade classifier of the ensemble. After that the feasibility of the new
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generated time series needs to be predicted with the other cascade classifiers
of the ensemble.

Based on the presented solution ideas for an adaptable decoder approach for the
cascade classification model, a first attempt for a basic decoder approach is devel-
oped and presented. This attempt for a decoder approach is introduced in Sect. 5.1,
including the algorithm and an experimental study. Afterwards the applicability of
the developed decoder approach is discussed in the context of VPP scheduling, in
Sect. 5.2.

5.1 Decoder Approach

In this section a first attempt for a basic decoder approach is presented in Sect. 5.1.1
followed by an experimental study and a valuation of that attempt in Sect. 5.1.2.

5.1.1 Algorithm for a Basic Decoder Approach

In a first attempt a basic version of the decoder approach was developed according
to the basic cascade classification model, see Sect. 3.2. Beside the applicability of
the basic cascade classification model, the feasible class of the considered task may
only employ low-dimensional data subsets, which are compact sets. Otherwise a
determination of feasible contribution ranges for each time step is difficult. This
attempt for a basic decoder approach works for arbitrary baseline classifiers and an
arbitrary dimensionality of the low-dimensional data subsets p. Below the decoder
approach is presented in Algorithm 3 for p = 2. If p > 2, the first time steps of a new
time series have to be determined differently. The respective algorithm modification
is presented later.

The basic decoder approach works as follows for the determination of one new
feasible operation schedule, arbitrary baseline classifiers and p = 2, see Fig. 5.1. The
low-dimensional classifiers ci (baseline classifiers) of the cascade C of a basic cascade
classification model are built on a data set, scaled to values in [0,1]. This scaling
simplifies the determination of feasible ranges. Sampling of a new feasible example
xnew starts with sampling of the first time step. Therefore a grid g is generated,
that covers the area of possible feasible values in the interval [0,1] for the first
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Algorithm 3 Decoder approach for the basic cascade classification model
Require: basic cascade classification model C of low-dimensional classifiers ci

with i ∈ {1,2, . . . , dim− 1} and p = 2,
a baseline classifier implementation with a prediction method

Determination of the first value x1 of xnew
1: g = meshgrid(v, v), with v = {0, 0+δ, . . . , 1−δ, 1} (grid generation)
2: reshape g to (no. of examples×p)
3: pred1 = c1.predic t(g)
4: determine feasible range r1 for the 1st time step from pred1
5: chose x1 from r1

Determination of x i+1 for i ∈ {2, 3, . . . , dim− 1}
6: for i = 1 to (dim− 1) do
7: vi+1 = [x i , v]
8: predi = ci .predic t(vi+1)
9: determine feasible range ri+1 for the time step i + 1 from predi

10: chose x i+1 from ri+1
11: end for
12: xnew = [x1, x2, . . . , xdim−1]

and the second dimension (time step) with a resolution δ. Then the feasibility of
this grid is predicted with the first classifier of the cascade c1. Based on the resulting
predictions pred1 a range r1 of all feasible values for the first time step is determined,
see Fig. 5.1(a). Now an arbitrary feasible value x1 can be chosen from r1.

Depending on x1 a value for the next time step is determined and so on. More
general the determination of time step x i+1 depends on the value of time step x i.
The only difference of the determination of x i+1 to the determination of x1 consists
in the generation of a grid. This time the grid vi+1 is composed of the value from
the previous time step x i and a discretization of possible feasible values for the next
time step ν. Then the feasibility of vi+1 is predicted, the range of feasible values ri+1

is determined and the next value x i+1 is chosen, see Fig. 5.1(b). This procedure is
repeated until the new feasible operation schedule xnew is completed. To achieve a
set of new feasible operation schedules Xnew, the decoder approach has to be applied
several times.

In the following implementation hints and algorithm modifications concerning
the choice of the dimensionality p and the sampling strategy for x1 and x i+1 are
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(a) determination of x1 (b) determination of x2

Figure 5.1: Step-wise determination of a new feasible example with the basic de-
coder approach at the example of the A-CHP data set: (a) determination of x1 and
(b) determination of x2. The blue region indicates the grid points of g (δ = 0.01),
which were predicted as feasible by the first classifier c1 of the cascade C .

presented.

Implementation Hints In some cases the approximation of the feasible range
x i+1 can cause problems. Especially if the previous value x i was chosen directly
at the boundary of the previous range ri. Then the following range ri+1 might be
empty and no feasible value is available for x i+1. This problem results from the
approximation of the feasible range with a grid and small inaccuracies in the low-
dimensional classifiers. To prevent this problem, it is advisable to chose x i+1 with at
least a small distance to the interval boundaries of ri+1.

If the problem still occurs, the easiest solution is to chose a new value for x i . An-
other option is to discard all determined values of xnew and to start the determination
of xnew again.

Decoder Modifications (p) Even though the basic decoder approach was intro-
duced only for low-dimensional classifiers of dimensionality p = 2, it is also appli-
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cable for other dimensionality values p. But p values are only valid for the basic
decoder approach, if all p-dimensional feasible data subsets are compact sets.

The choice of the dimensionality p is important for the determination of the first
p−1 time steps. The presented grid approach for the determination of the first p−1
time steps cannot be applied if p > 2, due to the curse of dimensionality. To overcome
this problem the first p time steps can be determined alternatively with the related
decoder approach by Bremer 2015, see Sect. 1.4.2. Therefore a p-dimensional SVDD
classifier is built on the first p time steps. After that the respective decoder approach
is applied for the determination of the first p values of xnew. Then the basic decoder
approach can be applied to determine the value for time step xp+1 and so on.

Beside the adaptation of p also the sampling strategy for the choice of new values
x i+1 from ri+1 can be modified.

Decoder Modifications (sampling strategy for x i+1) Even though the pro-
posed decoder approach aims at the generation of representative samples of the
whole feasible class, it is also possible to find the nearest feasible operation schedule
for a given infeasible one. Therefore the choice of the value x i+1 from the feasible
range ri+1 has to be adapted. Instead of a random value, now the closest feasible
value to the corresponding infeasible value of the current time step is chosen.

5.1.2 Experimental Study with the new Decoder Approach

In this subsection the first attempt for a basic decoder approach for the cascade
classification model is evaluated experimentally on the µCHP data set with a simple
feasible class (A-CHP). Therefore the basic decoder approach is applied to low-
dimensional data subsets with p = 2 and p = 20. The dimensionality p = 2 is a
default value and p = 20 is chosen, because the autocorrelation of the feasible class
is about zero for larger distances between the time steps.

The experiments are set up with the default cascade classifier setup and N =
1000 feasible training examples. The experiments with p = 2 are parametrized with
OCSVM-param-4 and the experiments with p = 20 with OCSVM-param-8. Then the
basic decoder approach is applied according to Algorithm 3 with a grid resolution of
δ = 0.01 to generate 1000 new time series. For p = 2 no adaptations are required
and for p = 20 the first 20 time steps are determined with the python implementation,
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see Graaff 2015, of the decoder approach of Bremer 2015. The SVDD classifier is
parametrized with C = 1.0 and γ= 1.0 and the respective decoder is applied with
the default parametrization. This decoder approach approximates given operation
schedules. Therefore the decoder experiments are initialized with 1000 different
feasible operation schedules.

After the generation of new decoder examples their quality needs to be estimated.
The simples possibility is to test the feasibility with the µCHP simulation model.
But since all new decoder examples are infeasible according to the strict simulation
model rules, an estimation of the errors could help to estimate the data quality. Such
errors and their detection are application specific. According to the µCHP simulation
model parametrization, there are amongst others three properties, that characterize
the feasibility of operation schedules. First off all feasible operation schedules employ
only a change of the power production of 3% of the maximal power production from
one to the next time step. Secondly the minimal power production is limited by a
threshold of about 27% of the maximal power production. The third characteristic
property is the thermal buffer temperature, corresponding to the power production
time series. The simulation model allows the computation of the corresponding
thermal buffer temperature for a given power production time series. The thermal
buffer may only employ temperature values between 65◦C and 75◦C.

These three properties are shown in the figures in Tab. 5.1 for the training set
and the new decoder examples with p = 2 and p = 20. The training examples are
feasible time series and show the expected properties of feasibility.

The new decoder examples of both p values deviate more or less from feasible
operation schedules in the three considered properties. While p = 2 does not lead to
any violations of the minimal power production threshold of 27%, see Tab. 5.1(b),
p = 20 leads to violations, see Tab. 5.1(c). Concerning the other properties, power
production changes between neighboring time steps and the thermal buffer tem-
perature, the new decoder examples violate one of these properties strongly and
the other property less strongly. Additionally the decoder examples generated with
p = 20 show different properties for the first 20 time steps, than for the other time
steps, see Tab. 5.1(c, f, i). This difference is due to the application of a different
decoder approach for the first 20 time steps. Since only the proposed basic decoder
approach for the cascade classification model should be evaluated, the first 20 time
steps are ignored.
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feasible training examples decoder examples (p = 2) decoder examples (p = 20)

time series representation

(a) (b) (c)

power production changes between two time steps

(d) (e) (f)

corresponding thermal buffer temperature

(g) (h) (i)

Table 5.1: Properties of new decoder examples in comparison to the training ex-
amples. The different properties show different errors in the decoder examples.
Additionally the black dashed lines indicate thresholds and feasible ranges.
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All together the new decoder examples generated with p = 2 and p = 20 differ far
too much from feasible operation schedules. These deviations are much bigger than
small inaccuracies, compared to the feasible training data set without any deviations,
see Tab. 5.1(a, d, g). For a better understanding of the errors in the decoder samples
an error analysis is conducted in the following subsection.

Analysis of the Experimental Results

All in all the experiments with the attempt for a basic decoder approach for both
p values yield new operation schedules with more or less big errors with regard to
the three considered properties. To identify the source of these errors potential error
sources in the basic cascade classification model and in the basic decoder approach
have to be considered. Beside these error sources also the error propagation from
the classification model to the decoder is important. Both parts, the basic cascade
classification model and the basic decoder approach are analyzed one after another.

Classification Errors The basic cascade classification model has mainly two er-
ror sources. First of all the model requirements, see Tab. 3.1 have to be fulfilled
and secondly a good classification precision relies on a good model adaptation and
parametrization.

• Model Requirements: If not all model requirements and assumptions are ful-
filled, they can lead to a decreased classification precision, because the cascade
classification model was developed for classification tasks with special prop-
erties. The main requirements are a high-dimensional classification task with
severely imbalanced classes. Furthermore the feasible examples should employ
a high correlation between neighboring time steps and the correlation should
decrease strongly for longer distances between the time steps. This correlation
requirement implies an appropriate choice of p for the dimensionality of the
low-dimensional data subsets. Small values of p carry a risk to neglect impor-
tant information and large values of p carry the risk to be affected by the curse
of dimensionality.

• Model Adaptations and Parametrization: The better the basic cascade classi-
fication model is adapted to a given classification task and the respective data
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set, the higher is the achievable classification precision. But some pre-tests
have shown, that an underestimation of the feasible class causes less errors in
new decoder time series, than a parametrization according to the most precise
classification results. This phenomenon is due to slight overestimations of the
feasible class, see e.g., Sect. 4.2.7.

Beside these error sources also the amount and the quality of the available data in-
fluence the precision. Furthermore the length of the considered operation schedules
is important, because the classification precision generally decreases with increasing
operation schedule length.

Since the attempt for a basic decoder is based on the basic cascade classification
model the errors from the classification model will propagate.

Decoder Errors The decoder model has mainly two error sources, the model re-
quirements have to be fulfilled and the propagation of errors resulting from the
classification model.

• Model Requirements: The applicability of the decoder approach relies on the
applicability of the basic cascade classification model, respectively the cascade
classification model requirements. Furthermore all low-dimensional feasible
data subsets have to be compact sets, to allow the determination of feasible
contribution ranges for all time steps.

• Error Propagation: If the basic cascade classification model employs inaccu-
racies, they influence the range of new possible values for each time step in the
decoder model. Furthermore it can be expected that errors in a new decoder
time series propagate towards the last time steps of the time series, which is
e.g., visible in the thermal buffer temperature. In figure (h) and figure (i) in
Tab. 5.1 the deviation from the feasible temperature range increases with the
index of the considered time step.

Beside the error sources in the attempt for a basic decoder, also the feasibility esti-
mation of the decoder samples can lead to errors, if the considered data properties
are e.g., not representative or incomplete as feasibility measures.
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Discussion of Classification and Decoder Errors The basic cascade classifica-
tion model employs error sources as well as the attempt for a basic decoder approach
and the errors can propagate. For a more precise estimation of the error sources and
the error propagation a small classification test is conducted. For this purpose basic
cascade classifiers are set up as in the experimental study in Sect. 5.1.2 but with dif-
ferent values of p. These classifiers predict the infeasible test set of A-CHP correctly.
After that the feasibility of the decoder samples with p=2 and p=20 is predicted.
Depending on the choice of p a more or less large percentage of the decoder samples
is predicted as feasible. If p is equal to the p value of the decoder samples, of course
all decoder samples are predicted as feasible. Nevertheless all decoder samples are
infeasible, but they employ some similarities with feasible operation schedules. Since
the infeasible test set from A-CHP is always predicted correctly and the test examples
are not located close to the class boundary, the decoder samples have to be located
close to the class boundary.

This observation corresponds to the findings in the selectivity study in Sect. 4.2.7,
where a slight overestimation of the feasible class was detected. This means the
basic decoder attempt requires a basic cascade classification model with a higher
selectivity and correspondingly a lower overestimation of the feasible class.

So far only the basic cascade classification model was considered for a decoder
approach. But there is also a generalized version of the cascade classification model,
which is in general more precise than the basic version. According to the generaliza-
tion of the basic cascade classification model, see Sect. 3.5, a generalized decoder
approach is required. But since the first attempt for a basic decoder approach em-
ploys already too many inaccuracies, it could be helpful to solved them, before a
generalized decoder approach is developed. Furthermore the basic decoder attempt
does not offer a simple possibility to integrate an ensemble of cascade classifiers,
based on different time series transformations. Due to the different requirements for
a basic and a generalized decoder approach resulting from the basic and the gener-
alized cascade classifier (time series transformations and the number of dependent
classifiers), a generalized decoder approach could probably be more precise than a
basic version. Then a basic and a generalized decoder approach could be developed
separately. Finally the development of a generalized decoder approach remains open
for further research as well as the development of a precise basic decoder approach.
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5.2 Remarks on the Application of the Developed
Flexibility Description in VPP Scheduling
Tasks

The developed cascade classification model yields flexibility descriptions of single
energy units and also coalitions of energy units. But the flexibilities in that descrip-
tions are only accessible for VPP scheduling algorithms via a decoder function. This
decoder function generates feasible operation schedules from the flexibility descrip-
tion. Since no respective decoder is available in literature for an adaptable classifier,
a respective decoder had to be developed. Therefore a first attempt to a basic de-
coder approach was proposed according to the basic cascade classification model.
This decoder function samples time series from the flexibility description as possible
solutions to the optimization problem of the scheduling task.

An experimental study with the basic decoder approach yielded not a single fea-
sible new operation schedule sample from the flexibility description. For a further
estimation of the feasibility of new decoder samples their deviations from feasible
operation schedules were considered. The resulting deviations are more or less big.
Even a careful parametrization of the underlying cascade classifier and the decoder
do not strongly decrease the errors in the decoder samples. Therefore an error anal-
ysis was conducted. The cascade classifier and the basic decoder approach employ
error sources and the errors can propagate. A main error source is the selectivity of
the basic cascade classification model, which is not sufficiently high. This becomes
obvious in classification tests, because infeasible test examples near the class bound-
ary are only partly predicted correctly. These results indicate an overestimation of
the feasible class, see also Sect. 4.2.7. This overestimation of the feasible class results
from splitting the high-dimensional classification task into several low-dimensional
ones. Even though this classification task splitting can introduce errors in terms of
an information loss, this splitting alleviates the effect of the curse of dimensionality.
Altogether there is a trade off between an information loss and the effect of the curse
of dimensionality.

Due to these problems with the basic decoder approach and problems to integrate
an ensemble of cascade classifiers into the basic decoder attempt no generalized
decoder version is developed according to the generalized cascade classification
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model.
All in all the proposed attempt for a basic decoder approach is not precise enough,

because new decoder examples employ too big errors for the application in VPP
scheduling tasks. Therefore a new decoder approach is required. Even though the
cascade classification model performed well in the classification experiments, see
e.g., Sect. 4.2.8, probably the cascade classification model needs to be adapted to
a decoder. Furthermore a basic and a generalized decoder might require different
cascade classification model adaptations, like e.g., the transformations in the gener-
alized cascade classifier. Finally the application of the cascade classification model
as flexibility description in VPP scheduling algorithms relies on a precise decoder to
solve VPP scheduling tasks.





6 F I N A L R E V I E W

VPP scheduling relies on the flexibilities of the VPP participants. Therefore VPP
scheduling algorithms require flexibility descriptions. Since there are no flexibility
descriptions available, that are applicable to different kinds of single energy units
and also coalitions of energy units a new flexibility description is required. This
flexibility description should be abstract, consistent and precise according to the aim
of this thesis, see Sect. 1.5.

This thesis consists in the development and the evaluation of such a flexibility
description. In this chapter this thesis is completed with a final summary and a
conclusion in Sect. 6.1 and a perspective in Sect. 6.2.

6.1 Summary and Conclusion

Since the flexibility description should be abstract, consistent and precise for the
application in VPP scheduling tasks, machine learning surrogate models are appro-
priate descriptions of the quantity of all alternatively realizable operation schedules.
Appropriate machine learning models depend on the given task and the given data
set. The quantities of all alternatively feasible operation schedules of different kinds
of single energy units and coalitions of energy units form a class of high-dimensional
time series classification tasks with severely imbalanced classes. Beside these classi-
fication task properties, also data set properties play an important role in the choice
of an appropriate classifier. Operation schedule data sets always contain feasible
operation schedules and infeasible ones are not always available. Additionally the
representativity and the distribution of the operation schedule examples of both
classes can differ. Beside these observed data set properties, it is assumed that the
data sets employ complete and correct labels and no noisy examples.

In literature there are only classifiers that fit to some of the identified classification
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task and data set properties, but no classifier is available that fits to all properties.
Therefore a further analysis was conducted to identify properties which can be ex-
ploited to simplify the class of classification tasks. Two such properties could be
identified. For one thing feasible operation schedules employ a special correlation
behavior. Neighboring time steps employ a high correlation and the correlation de-
creases with increasing distance between two time steps. Since most information is
encoded in neighboring time steps, the high-dimensional classification task can be
split into several low-dimensional ones without a great information loss. The result-
ing new classification tasks are only low-dimensional time series classification tasks
with more or less severely imbalanced classes. Especially one-class classifiers can
solve these new classification tasks. For another thing the low-dimensional classifica-
tion tasks employ a similar structure. This similarity saves classification adaptation
effort, because all low-dimensional classification tasks can be solved with similar
classifiers.

Based on these two classification task simplification properties a classifier, called
cascade classification model, was developed. This classifier consists of a cascade of
overlapping feature classifiers. The cascade classification model is adaptable to dif-
ferent classification tasks and data sets, due to a basic and a generalized version with
several model adaptation possibilities and respective data preprocessing methods.

After the classifier development, the cascade classification model was evaluated
at first as a classifier. Then the applicability as flexibility description in VPP schedul-
ing tasks was analyzed. The respective results are summarized in Sect. 6.1.1 and
Sect. 6.1.2.

6.1.1 Evaluation Results of the Cascade Classification Model

The cascade classification model was evaluated in terms of precision, parameter sen-
sitivity and temporal complexity. Overall the cascade classification model performed
well in different classification tasks, that fulfill the model requirements, see Tab. 3.1.
The better the cascade classification model is adapted to a given classification task
and the respective data set, the higher is the achievable precision. Furthermore the
cascade classification model achieves a higher precision than common one-class
classifiers, like a classic OCSVM and a SVDD classifier, if the classification task is
more complex. Only classification tasks with a simple data structure lead to a higher
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precision of common one-class classifiers than the cascade classification model. De-
spite a high classification precision of the cascade classification model, the classifier
selectivity indicates a slight overestimation of the feasible class. This means most
classification errors occur close to the class boundary. Infeasible operation sched-
ules that are located close to the class boundary employ only small deviations from
feasible operation schedules. In VPP scheduling tasks large deviations from feasible
operation schedules are worse than smaller deviations. But finally the consequences
of misclassification have to be judged for each application individually.

The costs for the high classification precision are more or less sensitive model
adaptations and data preprocessing methods, that require pre-tests. Already the ba-
sic cascade classification model requires a higher computation time than a classic
OCSVM. The generalized cascade classification model requires even a multiple of
the computation time of a basic cascade classifier, because the ensembles consists of
several cascade classification models.

With regard to the aim of this thesis the classifier evaluation showed the achieve-
ment of the required characteristics of a flexibility description: abstract, consistent
and precise.

abstract The cascade classification model yields an abstract description of the quan-
tity of all alternatively realizable operation schedules. The cascade of depen-
dent and low-dimensional classifiers describe overlapping operation schedule
segments e.g., in terms of support vectors or density descriptions, depending
on the baseline classifier.

consistent The cascade classification model yields a consistent flexibility descrip-
tion, because it describes the flexibilities of different kinds of single energy
units as well as the flexibilities of coalitions of energy units. Additionally the
scheduling horizon and the temporal resolution of the classification model are
adaptable.

precise The cascade classification model achieved a high precision in the different
experiments with data sets of single energy units, coalitions of energy units and
also artificial classification tasks. The better the cascade classification model
is adapted to a given classification task, the higher is the achievable precision.
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Especially on complex classification tasks, the cascade classification model
performs better than common one-class classifiers, like a classic OCSVM or
a SVDD. Despite precise operation schedule classification results for single
energy units and coalitions of energy units, the cascade classification model
leads to a slight overestimation of the feasible class.

6.1.2 Applicability Results of the Developed Flexibility Description in VPP
Scheduling Tasks

As the cascade classification model evaluation showed, the resulting flexibility de-
scriptions fulfill all requirements for an application in VPP scheduling tasks. But
the application of the flexibility description in VPP scheduling algorithms requires
a decoder function to access the flexibility from the flexibility descriptions. Such
decoder functions sample operation schedules from the flexibility descriptions as
possible solutions to the optimization problem in scheduling tasks. Since no adapt-
able decoder approach could be found in literature, a first attempt for a respective
decoder approach was developed for the cascade classification model. This decoder
approach computes feasible ranges for each time step, based on the previous time
steps. An experimental analysis with that basic decoder approach yielded for a sin-
gle µCHP only infeasible decoder samples. The decoder samples employ too big
errors, because the selectivity of the (basic) cascade classification model is not high
enough, due to a slight overestimation of the feasible class. Even though the (basic)
cascade classification model performs well in the classification experiments, see e.g.,
Sect. 4.2.8, the overestimation of the feasible class is a problem for the proposed
basic decoder approach. Additionally the errors from the basic cascade classification
model propagate in the decoder attempt. So far only a basic decoder approach was
considered for the basic cascade classification model. But the generalized cascade
classification model is generally more precise than the basic version. Nevertheless
the problems of a basic decoder approach are also relevant for a generalized decoder.
Furthermore the integration of an ensemble of cascade classification models based
on time series transformations is problematic for a generalized decoder approach.

All in all the application of the cascade classification model as flexibility descrip-
tion in VPP scheduling tasks requires a new decoder approach and possibly also an
adaptation of the cascade classification model.
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6.1.3 Conclusion

Overall the proposed cascade classification model is an abstract, consistent and pre-
cise flexibility description for VPP scheduling tasks, where the VPP participants can
be different kinds of single energy units or coalitions of energy units. For most VPP
participants, the cascade classification model is more precise than common classi-
fiers. The application of the cascade classification model as a flexibility description
requires a decoder approach to make the flexibilities accessible for VPP scheduling
algorithms. Since a first attempt for a decoder approach is not precise enough, the
decoder development remains open for further research.

6.2 Perspective

The main goal for future work is the development of an appropriate decoder function
for the application of the cascade classification model as flexibility description in VPP
scheduling algorithms. In this context a basic and a generalized decoder approach
are required according to the basic and the generalized cascade classification model.

Basic Decoder A new basic decoder approach is required, which is not affected
by the slight overestimation of the feasible class of the (basic) cascade clas-
sification model. Furthermore the error propagation from the basic cascade
classification model to the basic decoder should be minimized. Probably also
an adaptation of the basic cascade classification model is necessary.

Generalized Decoder Beside the problems with a basic decoder approach, a gen-
eralized decoder approach poses another problem. The ensemble of cascades
of the generalized cascade classification model need to be integrated into a
generalized decoder approach.

When these main problems with the decoder approaches are solved, the feasibility
estimation of new decoder samples could be improved. Furthermore a comparative
analysis to new decoder samples of related decoder approaches, like the decoder
approach by Bremer 2015 and the one from AVPP scheduling, see Schiendorfer,
Anders, et al. 2015 would be interesting.





A E N E R G Y D ATA S E T S O F S I N G L E
E N E R G Y U N I T S

The cascade classification model is evaluated with energy data sets that are repre-
sentative for VPP scheduling tasks. Such energy data sets are power production and
power consumption time series of controllable producers and consumers. In this
thesis the energy time series of a µCHP and a heat pump are used. Both data sets are
high-dimensional with 96 dimensions and they employ severely imbalanced classes.

a.1 Micro Combined Heat and Power Plant

Combined heat and power plants (CHPs) produce thermal and electrical energy at
the same time, see Thomas 2007. CHPs are available in different dimensions in order
to provide thermal and electrical energy for buildings of different size.

A micro combined heat and power plant µCHP is a small CHP used in detached
households. Most of the times these µCHPs are operated in a heat-controlled mode.
In this case the flexibility of the µCHP can be used to optimize the electrical power
production. In this thesis the µCHP power production time series are generated with
a simulation model1. This simulation model is available in the energy division of the
computer since department of the university of Oldenburg and was developed during
the project INXS2. The µCHP simulation model includes beside a µCHP component a
thermal buffer and the thermal demand of a detached house according to a normed
warm warter demand, see Bremer 2015, p. 155. A µCHP can be operated in different
operation modes, where the technical constraints of the µCHP, the constraints of

1Data sets are available for download on our department website http://www.uni-oldenburg.de/
informatik/ui/forschung/themen/cascade/.

2This project, also called "VPP 2.0 - Konzeption des Datenaustauschs zwischen Anlagencontrollern und
Fahrplanmanager", was conducted in collaboration with the EWE AG from 1.6.2008 to 31.12.2009

http://www.uni-oldenburg.de/informatik/ui/forschung/themen/cascade/
http://www.uni-oldenburg.de/informatik/ui/forschung/themen/cascade/
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the thermal buffer and the constraints resulting from the thermal demand of the
building are complied. The three main constraints are an output limitation, inertia
of the µCHP modulation and the buffer temperature, see Bremer 2015, p.80. The
output limitation describes the modulation of the µCHP between a minimal power
output Pmin and a maximal power output Pmax . The inertia of the modulation limits
the modulation of the power output between two time steps to |pi−pi+1|leqε, where
ε depends on the µCHP. The third constraint is a limitation of the thermal power
production. The thermal demand and buffering of thermal energy always have to lead
to a thermal buffer temperature between an minimal and a maximal temperature.

The µCHP simulation model generates feasible power output time series and can
test new time series concerning their feasibility, whether the power production of
the test time series can be realized or not.

The default parametrization of the simulation model according to a Vaillant EcoPower
4.73 is slightly adapted: n = 96 time steps, an interval length δT = 900 s and
numModes = 500 discrete intervals that represent different CHP operation modes.
Changes between the different operation modes are determined by a gradient,
gradient = 200. This gradient corresponds to a maximal change of 3% of the max-
imal power production of the µCHP. The thermal demand of the household and the
thermal buffer are used with the default parametrization. For classifier training and
validation a set of 1, 000, 000 feasible operation schedules is sampled and for testing
a data set with 1, 000, 000 infeasible operation schedules and 100, 000 feasible op-
eration schedules. The simulated power output time series are scaled according to
the maximal electrical power production of Pel = 4700 W to values between 0 and 1.
Due to this scaling, the class of feasible and the class of infeasible power production
time series form a hypercube. Due to different constraints like technical constraints,
minimal and maximal water temperature of the thermal buffer or the compliance of
the thermal demand of the household, the class of feasible power production time
series does not form one cluster in feature space, but several clusters. These clusters
are different concepts of the feasible class, see Fig. A.1. Furthermore the fragmented
feasible class is much smaller than the infeasible class, because the infeasible class oc-
cupies a much larger volume in space than the feasible class, see Bremer et al. 2010.
Both classes are clearly separable without a class overlap and in low-dimensional

3http://www.vaillant.de/ecopower/, last time visited 7.6.2017

http://www.vaillant.de/ecopower/
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(a) 1st and 2nd dim (b) 95th and 96th dim

Figure A.1: The 1st and the 2nd time step (a) and the last two time steps (b) of the
feasible µCHP power production time series show a middle concept (blue points)
and an edge concept (red points).

space both concepts employ an easily learnable shapes. For some experiments the fea-
sible class is reduced to the middle concept and the feasible edge concept is treated
as infeasible.

Feasible power production time series of the complete µCHP data set are plotted as
time series in Fig. A.2(a) for 24 h with a resolution of 15 minutes. These time series
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Figure A.2: Feasible µCHP power production time series: (a) plot of 50 normalized
time series for 24 hours with 15 minutes resolution (d = 96 steps), (b) autocor-
relation and (c) partial autocorrelation, each plotted for 500 time series.

(operation schedules) employ a decreasing autocorrelation and partial autocorrela-
tion with increasing distance between the considered time steps, see Fig. A.2(b) and
Fig. A.2(c). The autocorrelation and the partial autocorrelation a characteristics of
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one time series. The overall correlation behavior of the whole feasible class can be
characterized by the mean and standard deviation of the (partial) autocorrelation,
see Fig. A.3. These figures show the highest correlation between neighboring time
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Figure A.3: The correlation behavior is plotted for 10000 µCHP time series and
increasing distances (τ) between the time steps: (a) autocorrelation and (b)
partial autocorrelation.

steps and a strong correlation decrease for an increasing distance (τ) between the
time steps. Even the reduced feasible class employs the same correlation behavior.

Beside the correlation behavior and the shape of the feasible class, also the dis-
tribution of feasible and infeasible examples influences the achievable classification
precision. Examples from both classes are distributed more or less homogeneously.
But due to the severe imbalance, the volumes of both classes are represented with
different sample densities. The feasible examples are located close to each other and
the infeasible examples employ larger distances between each other. This means
hardly any infeasible examples can be found close to the class boundary and infeasi-
ble test examples do not yield much information about the selectivity of the learned
decision boundaries.

All in all the µCHP data set employs a simple data structure and will not yield
information about the classifier selectivity.
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a.2 Heat Pump

Heat pumps are utilized as an example of controllable loads. Heat pumps use the
thermal energy e.g., of the surrounding air or from an underground reservoir to
meet the thermal demand of households, see e.g., Bremer 2015, p.135. Usually heat
pumps are operated in combination with thermal buffers, that offer flexibility to the
system in form of an adaptable electrical load of the heat pump. Heat pump power
consumption time series are generated with a simulation model from the Smart Nord
project, Sonnenschein and Hofmann 2015. The simulation model is available in the
energy division of the computer science department of the university of Oldenburg.
The simulation model imitates common heat pump types. Here the simulation model
is used with the parametrer setting according to the heat pump model "Eltron WPF5"
from Stiebel4 and a default thermal buffer and a default heat demand of an apartment
house with reference weather data, Wetterdienst 2010 for the 3rd of April 2010
including 2 simulated days of ahead-of-schedule work. This heat pump is a brine-
water heat pump, that is not modulatable, but it can be switched on and off every
minute. This "switching" allows 16 different mean power consumption values for an
interval of 15 minutes. The heat pump power consumption time series are simulated
for 24 h with a resolution of 15 minutes. For classification experiments 500,000
feasible and 200,000 infeasible power consumption time series are generated. The
time series are scaled according to the maximal power consumption of 2400 W to
values between 0 and 1.

Power consumption time series are plotted in Fig. A.4(a) for 24 h with a resolu-
tion of 15 minutes. These time series (operation schedules) employ a decreasing
autocorrelation and partial autocorrelation for an increasing distance (τ) between
the considered time steps, see Fig. A.4(b) and Fig. A.4(c). The overall correlation
behavior of the feasible class is shown as mean autocorrelation and mean partial
autocorrelation in Fig. A.5. The highest correlation can be found between neigh-
boring time steps just like the µCHP operation schedules. But heat pump operation
schedules employ also a high correlation between time steps with a distance τ= 2
and shows a strong correlation decrease for greater distances τ.

4https://www.stiebel-eltron.de/de/home/produkte-loesungen/erneuerbare_energien/
waermepumpe/sole-wasser-waermepumpen/wpf_5_7_10_13_16basic/wpf_5_basic.html, last
time visited 7.6.2017

https://www.stiebel-eltron.de/de/home/produkte-loesungen/erneuerbare_energien/waermepumpe/sole-wasser-waermepumpen/wpf_5_7_10_13_16basic/wpf_5_basic.html
https://www.stiebel-eltron.de/de/home/produkte-loesungen/erneuerbare_energien/waermepumpe/sole-wasser-waermepumpen/wpf_5_7_10_13_16basic/wpf_5_basic.html
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Figure A.4: Heat Pump power consumption data (WPF5), (a) plot of 10000 nor-
malized heat pump power consumption time series for 24 hours with 15 minutes
resolution (d = 96 steps),(b) auto-correlation, (c) partial auto-correlation. The
figures are plotted for 500 feasible schedules.

The structure of the feasible class of the heat pump operation schedules can be
estimated in feature space. The feasible class consists of one concept that surrounds
the infeasible class, see Fig. A.6. The shape of the low-dimensional feasible concept
as in Fig. A.6 employs a hard to learn shape. Therefore the heat pump data set is
transformed before classification. Some transformations like the fourier transforma-
tion, the autocorrelation function and linear principal component analysis simplify
the data structure, see Fig. A.7. These transformations lead to data structures, that
are easier to learn in low-dimensional space.

Independent from the data set transformations, both classes are severely imbal-
anced with a small feasible class and a large infeasible class. The imbalance and
homogeneously distributed examples of both classes lead the hardly any infeasible
examples near the class boundary. Therefore infeasible test examples do not yield
much information about the selectivity of a classifier, just like the infeasible examples
of the µCHP data set. But the heat pump data set yields information about the effect
of the complex data structure on the classification precision.
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Figure A.5: The correlation behavior is indicated as mean values, standard devia-
tion and minimum and maximum values of a) the autocorrelation and (b) the
partial auto-correlation for increasing distances between the time steps (τ). The
calculations are done with 10000 feasible heat pump schedules.

(a) dim 1/2 (b) dim 95/96

Figure A.6: The 1st and the 2nd time step (a) and the last two time steps (b) of the
feasible heat pump power consumption.
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(a) fft(X) (b) fft(X) (c) fft(X)

(d) acf(X) (e) acf(X) (f) acf(X)

(g) pca(X) (h) pca(X) (i) pca(X)

Figure A.7: Subsets of the transformed feasible heat pump operation schedules plot-
ted for the 1st and 2nd, the 2nd and the 3rd and the 95th and 96th time steps.
The figures are plotted with 100000 feasible examples.



B A R T I F I C I A L D ATA S E T S

Beside energy data sets artificial data sets are used for the classifier evaluation. The
artificial data sets are a Hypersphere data set and a Hyperbanana data set. These
artificial data sets are high-dimensional data sets with severely imbalanced classes
and employ special characteristics for classifier evaluation. The Hypersphere data
set has a feasible class consisting of several concepts and the feasible Hyperbanana
class has a hard to learn shape. Hyperbanana data is often used for classifier testing,
because it is assumed to present a difficult classification task. Both data sets are
presented below.

b.1 Hypersphere Task

The Hypersphere data set consists of a feasible and an infeasible class. Both classes fill
together a hypercube of side length 1. The feasible class consists of four hypersphere-
shaped concepts. These four concepts are generated by stretching and translating
hypersphere data simulated with Dd_tools, D. Tax 2013a. This algorithm yields
representative and uniformly sampled hypersphere samples.

In feature space the shape of the feasible concepts is clearly visible, see Fig. B.1.
For some experiments the feasible class is reduced to the blue middle concept. The
infeasible class occupies the remaining hypercube volume. This class is sampled only
near the class boundary around the feasible concepts. These infeasible examples
are needed for testing the selectivity of the learned classifiers. If the feasible class is
reduced to one concept, than only the corresponding infeasible examples are used.

The correlation behavior of the feasible class is analyzed in a time series-like
representation separately for each concept of the feasible class, see Fig. B.5. Since
the correlation behavior of does not differ among the concepts only the correlation
behavior of the blue middle concept is plotted. The autocorrelation and partial au-
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(a) 1st and 2nd dimension (b) 95th and 96th dimen-
sion

Figure B.1: 2000 feasible Hypersphere examples plotted in feature space for the 1st
and 2nd (a) and the 95th and 96th dimensions (b). In (b) two concepts seem to
be overlapping.

tocorrelation of single feasible examples are plotted in Fig. B.5(b) and Fig. B.5(c)
for increasing distances τ between the dimensions (time steps). Mean values of the
(partial) autocorrelation are shown in Fig. B.6. The feasible Hypersphere examples
of the complete feasible class show no high correlation between near by dimensions,
but a relatively low correlation for all considered correlation lengths τ. This cor-
relation behavior deviates from the assumed correlation behavior in the cascade
classification model and might lead to a low classification precision.

Even though the complete and the reduced Hypersphere data set are not expected
to yield a high classification precision on the simple data structure, classification
results will yield information about the selectivity of the classification boundaries.
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(a) Hypersphere time series (b) autocorrelation (c) partial autocorrelation

Figure B.2: Feasible time series of the reduced Hypersphere data set (blue middle
concept): (a) plot of 10000 96-dimensional examples,(b) autocorrelation and (c)
partial autocorrelation, each plotted for 500 examples.
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Figure B.3: The correlation behavior plotted for 10000 feasible examples of the
Hypersphere middle concept and increasing distances τ between the features: (a)
autocorrelation and (b) partial autocorrelation.
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b.2 Hyperbanana Task

The Hyperbanana data set is an artificial complex data set where the small interesting
class has a Hyperbanana shape. Banana and Hyperbanana data sets are often used
to test new classifiers, because they are considered as difficult classification tasks.
Therefore the results on the Hyperbanana data set is taken as a meaningful result.
As far as there is no 96-dimensional Hyperbanana data set, we have generated a data
set from the extended d-dimensional Rosenbrock function, (B.1),see Shang and Qiu
2006.

f (x) =
d−1
∑

i=1

[100(x2
i − x i+1)

2 + (x i − 1)2] (B.1)

The small and interesting class, or here also called feasible class is sampled from the
Rosenbrock valley with f (x) < 100 and the infeasible class with f (x) >= 100 is
sampled only near the class boundary to test the sensitivity of the decision boundaries
of the classifiers.

Sampling of the banana shaped valley is done by disturbing the minimum of
the extended 96-dimensional Rosenbrock function with normally distributed values
(N (0, 1) · β with β ∈ {40, 50, 60, 70}). The minima of the Rosenbrock function are
presented in Shang and Qiu 2006 for different dimensionalities, but the minimum
for 96 dimensions is missing. Therefore the minimum is approximated with regard
to the minima of lower dimensional Rosenbrock data sets with −0.99 for the first
dimension and with 0.99 for all other dimensions. The procedure of disturbing and
selecting values from the Rosenbrock valley is repeated with the sampled values until
enough data points are found. As far as it is difficult to sample the banana “arms”
all at the same time, they are sampled separately by generating points that are <
or > than a certain value and sampling is continued by repeating disturbance and
selection with these values.

Values from all these repetitions were aggregated to one data set and shuffled.
The samples generated by this procedure are not homogeneously distributed in the
Rosenbrock valley and they do not represent all Hyperbanana “arms” equally.

Overall two different Hyperbanana data sets are generated based on the Rosen-
brock valley. The first data set (HB1) represents the different arms not that good as
the second data set (HB2). Furthermore both data sets employ differences in the
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infeasible examples, see the generation of infeasible examples below.
After the generation of feasible examples, infeasible examples are generated. The

infeasible class surrounds the feasible class and the infeasible class is much larger.
The first data set contains 96-dimensional infeasible examples near the class bound-
ary. These infeasible examples are sampled in the same way as the feasible ones but
starting with the feasible Hyperbanana samples and with 100 ≤ f (x) ≤ 500. The
resulting infeasible examples are more or less homogeneously distributed and due to
the proximity to the class boundary, such infeasible test examples yield information
about the selectivity of the learned decision boundaries. Infeasible examples of the
second data set are generated in the same way, but they are dived into three "rings"
with an increasing distance to the class boundary. The first ring contains values with
100< f (x)≤ 200, the second ring contains values with 200< f (x)≤ 300 and the
third ring contains values with 300< f (x)≤ 500. Data set HB1 employs only infea-
sible test examples from the first ring and data set HB2 employs infeasible examples
from all three rings.

Finally all dimensions (features) x i of the feasible class are scaled to values be-
tween 0 and 1 by x i = [x i + (min(x i)+offset)]/[max(x i)+offset−min(x i)+offset]
with offset = 0.2. The infeasible class is scaled with the same values as the feasible
class. Due to this scaling, both classes fill a hypercube volume.

Since both data sets belong to the same classification task, the corresponding
properties are presented in the following only for the first data set (HB1). In feature
space, see Fig. B.4 the banana shape of the feasible class is shown exemplarily for
the first two features (dimensions) and the last two ones. Considering the feasible
class of the Hyperbanana data set as time series, the correlation behavior of the
single feasible examples can be computed and the results are shown in Fig. B.5. The
overall correlation behavior of the feasible class is plotted in Fig. B.6 as mean and
standard deviation of the autocorrelation and the partial autocorrelation. The highest
correlation appears between neighboring time steps and the correlation decreases
with increasing distances between the time steps.

In summary the Hyperbanana data set is expected to yield meaningful results,
because of the complex data structure and the infeasible examples near the class
boundary.



184 artificial data sets

(a) dim 1/2 (b) dim 95/96

Figure B.4: The 1st and the 2nd time step (a) and the last two time steps (b) of the
feasible Hyperbanana examples.

(a) Hyperbanana time series (b) autocorrelation (c) partial autocorrelation

Figure B.5: Feasible time series of the Hyperbanana data set A-HB1: (a) plot of
10000 96-dimensional examples,(b) autocorrelation and (c) partial autocorrela-
tion, each plotted for 500 examples.
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(a) autocorrelation (b) partial autocorrelation

Figure B.6: The correlation behavior plotted for 500 feasible Hyperbanana examples
and increasing distances τ between the features: (a) autocorrelation and (b)
partial autocorrelation.





C E N E R G Y D ATA S E T S O F CO A L I T I O N S
O F E N E R G Y U N I T S

In the evaluation experiments coalitions of producers and coalitions of producers and
consumers should be considered. The coalitions are homogeneous µCHP coalitions
and mixed coalitions of µCHPs and heat pumps.

Global operation schedules of these coalitions cannot be generated directly, be-
cause they depend on simulation models of all coalition members. Feasible global
schedules are generated based on feasible operation schedules of all coalition mem-
bers and infeasible global operation schedules have to be estimated. Generation
of feasible and infeasible global operation schedules as well as the respective data
set properties are presented in Sect. C.1 and Sect. C.2. The data set of energy unit
coalitions are sampled for a horizon of 24 hours with a resolution of 15 minutes.

c.1 Generation of Feasible Global Operation
Schedules

Generation of feasible global operation schedules and the respective data set proper-
ties are presented in this section. Feasible global operation schedules represent the
overall power production, respectively consumption of all coalition members. Here
only energy unit coalitions without dependences between the energy units (e.g., grid
restrictions) are considered. Generation of feasible examples is done in two steps.
First of all feasible global operation schedules of all coalition members are summed
up to an overall power production. In the second step the representativity of the
feasible global operation schedules of the feasible class is improved. These two steps
are introduced in more detail below.
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c.1.1 Step 1: Sample Generation

In the first step of the generation of feasible global operation schedules, alternatively
feasible unscaled operation schedules of all coalition members are summed up. Below
the generation of feasible global operations schedules and their representativity of
the whole feasible class is presented.

Example Generation

Feasible global operation schedules sum up the unscaled power production time
series, respectively consumption time series of all coalition members. This procedure
is presented in Example C.1.1 for producer coalitions and in Example C.1.2 for mixed
coalitions of producers and consumers.

Example C.1.1 (Generation of Feasible Global Operation Schedules of a Coalition
of Energy Producers)
A feasible global operation schedule (Sg ) of a coalition of m energy producers, e.g.,
µCHPs is composed of one unscaled feasible operation schedule Si with i ∈ 1, . . . , m
of each energy unit. A feasible global operation schedule is computed as

Sg =
m
∑

i=1

Si . (C.1)

Resulting global operation schedules are scaled according to the maximal power
production values of each energy unit Pelmax_i as Sg/(

∑m
i=1 Pelmax_i).

Example C.1.2 (Generation of Feasible Global Operation Schedules of a Coalition
of Energy Producers and Consumers)
A feasible global operation schedule (Sg ) of a coalition of m energy producers, e.g.,
µCHPs and n energy consumers, e.g., heat pumps is composed of one unscaled
feasible operation schedule of each energy producer Spi with i ∈ 1, . . . , m and one
unscaled feasible operation schedule of each energy consumer Sc j with i ∈ 1, . . . , n.
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A feasible global operation schedule is computed as

Sg =
m
∑

i=1

Spi +
n
∑

j=1

Sc j . (C.2)

THe resulting feasible global operation schedules can be scaled according to a maxi-
mal power production and a maximal power consumption. The m energy producers
have the smallest power production Pelmin_p_i = 0 when they are switched off and
they employ each a maximal power production of Pelmax_p_i. The n energy con-
sumers have the smallest power consumption Pelmin_c_i = 0 when they are switched
off and they employ a maximal power consumption each of Pelmax_c_i , with negative
values.

The global operation schedules can employ values between a minimal value min
and maximal value max . The min≤ 0 value is computed as

min=
m
∑

i=1

Pelmin_p_i +
n
∑

j=1

Pelmax_c_ j = 0+
n
∑

j=1

Pelmax_c_ j . (C.3)

The max ≥ 0 value is computed as

max =
m
∑

i=1

Pelmax_p_i +
n
∑

j=1

Pelmin_c_ j =
m
∑

i=1

Pelmax_p_i + 0. (C.4)

Scaling is done as (Sg −min/(max −min)).

Next the representativity of the resulting feasible global operation schedules of the
feasible class is studied in the next subsection.

Representativity of the Generated Feasible Examples

The feasible operation schedules S of all coalition members are multidimensional
random variables. Summing up these random variables to global operation schedules
Sg followed by a normalization yields the arithmetic mean. According to the law of
large numbers, the arithmetic mean of multidimensional random variables converges
towards the expectation values of all components of the random variable, see e.g.,
Lavine 2009; Alpaydin 2010. This convergence of the global operation schedules
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towards the expectation values of all components (time steps) for increasing numbers
of coalition members is shown in Fig. C.1.

As far as the coalition members are identical µCHPs, they could be all operated
in the same way. The corresponding feasible region in feature space for identically
operated µCHPs should look like the feasible region of one µCHP in feature space,
see Fig. A.1.

Thus the global operation schedules Sg generated in the first step and shown in
Fig. C.1 do not represent the whole feasible class, the representativity needs to be
increased especially for coalitions with several members.

In coalitions consisting of only a few identical members, representative feasible
global operation schedules could be generated as before but this time based on the
sum of specific combinations of the operation schedules of all coalition members. In a
coalition of three identical µCHPs all µCHPs could be operated differently, identically
or two µCHPs are operated identically and the third one in another way. The resulting
global operation schedules, respectively the representation of the feasible class in
feature space is shown in Fig. C.2 for this example of 3 µCHPs and coalitions of 5
and 10 µCHPs.

The resulting global operation schedules shown in Fig. C.2 and their representation
in feature space are used in the following as references for comparison. Since the
employed specific summation of operation schedules is not applicable to coalitions of
different energy units as well as large coalitions, a method is needed that generates
more representative feasible global operation schedules. Such a method is presented
in the next section.
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(a) 5 µCHPs step 1, 2 (b) 5 µCHPs step 95, 96

(c) 10 µCHPs step 1, 2 (d) 10 µCHPs step 95, 96

(e) 50 µCHPs step 1, 2 (f) 50 µCHPs step 95, 96

(g) 100 µCHPs step 1, 2 (h) 100 µCHPs step 95, 96

Figure C.1: The first and the last two time steps of 96-dimensional time series are
plotted against each other for increasing numbers of identical µCHPs in the coali-
tions. Each subfigure is plotted with 50, 000 time series segments.
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(a) 3 µCHPs step 1,2 (b) 3 µCHPs step 95,96

(c) 5 µCHPs step 1, 2 (d) 5 µCHPs step 95,96

(e) 10 µCHPs step 1,2 (f) 10 µCHPs step 95, 96

Figure C.2: The first and the last two time steps of 96-dimensional time series are
plotted against each other for increasing numbers of identical µCHPs in the coali-
tions. The time series segments in each subfigure represent global operation sched-
ules resulting from specific combinations of the operation schedules of all coalition
members.
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c.1.2 Step 2: Example Shifting

The second step of generating representative feasible global operation schedules
aims at increasing the representativity of the generated feasible global operation
schedules. Therefore the global operation schedules generated in step 1 are shifted
into the different regions of the volume of the feasible class. Below the shifting
method and the resulting representativity are presented after another.

Shifting of new Feasible Examples

Shifting of the feasible global operation schedules in feature space is done according
to Algorithm 4. The M global operation schedules Sg are shifted away from the

Algorithm 4 Generation of representative global operation schedules
Require: a set of M normalized global operation schedules Sg,i (i = 1, . . . , M ) from

step 1, see Sect. C.1.1 and all underlying normalized operation schedules S j of
all ` coalition members
// shift of the M global operation schedule Sg,i

1: for i = 1 to M do
2: identification of the k nearest neighbors Sg,l (l = 1, . . . , k) of Sg,i

3: C = 1
k

∑k
l=1 Sg,l (C = cluster center of the k nearest neighbors Sg,l )

4: δ = Sg,i − C (shift vector)
5: S′g,i = Sg,i +δ · x (shifted global schedule with factor x )
// approximation of S′g,i by shifting the schedules S j of each coalition member

6:

// towards S′g,i
7: for j = 1 to ` do
8: Ŝ j = S j with the smallest euclidean distance to S′g,i
9: end for

10: Ŝg,i = (
∑`

j=1 Ŝ j ) / ` (normalization of the overall power production )

11: Sg,i = Ŝg,i
12: end for

expectation values one after another. Therefore the k nearest neighbors of the re-
spective global operation schedule Sg,i are identified as Sg,l with l = {1, . . . , k}. Next
the cluster center C of the k nearest neighbors Sg,l is computed. Then Sg,i is shifted
into the opposite direction of the cluster center with the shift vector δ and a factor
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x and the resulting schedule is called S′g,i . Since S′g,i does not have to be feasible, it
is approximated by a nearby global feasible operation schedule. This approximation
is done by drawing the feasible operation schedules S j of all ` coalition members
towards S′g,i . The schedules S j with the shortest euclidean distance to S′g,i are called
Ŝ j . Then the ` schedules Ŝ j of all coalition members are summed up and the result
is normalized to values between 0 and 1. The resulting shifted operation schedules
Ŝ j form the new feasible global operation schedule Ŝg,i. This shifting procedure is
repeated for all remaining global operation schedules Sg,i with i = 2, . . . , M .

The shifting procedure employs two parameters, the number of nearest neigh-
bors k and the factor x to control the shift length. The parameter k can be chosen
independent from the number of coalition members and the dimensionality of the
operation schedules. In pre-tests k = 5 performed well and is used as default value.
In contrast to k the shift length parameter x depends on the number of coalition
members and the number of dimensions of the operation schedules. The higher the
number of coalition members and the higher the dimensionality of the operation
schedules, the higher should be the value of x . The better the choice of x , the better
the distribution of the shifted global operation schedules in feature space, for more
details see the following subsection.

Beside the parameter choice also the implementation of Algorithm 4 benefits from
fine tuning, because amongst others the nearest neighbor search can be very time
consuming.

Representativity of the Shifted Examples

The shifted global operation schedules represent the whole region of the feasible class
more or less, depending on the parametrization of the shifting algorithm, see Fig. C.3
exemplarily showing the effect for a coalition of 5 identical µCHPs. Optimal values
of x lead in 2-dimensional feature space to the largest region covered by feasible
examples which are distributed as homogeneously as possible. To small values of x
reveal examples only in some regions of the volume of the feasible class and to large
values reveal representative examples but with a very inhomogeneous distribution.
In this subsection only shifting results for optimized values of x are considered, see
Tab. C.2. The resulting distribution of feasible examples is shown in Fig. C.4. In
comparison to the global feasible operation schedules without shifting, see Fig. C.1,
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(a) x too small x = 5 (b) x optimal x = 30 (c) x too large x = 100

(d) x too small x = 5 (e) x optimal x = 30 (f) x too large x = 100

Figure C.3: The first and the last two time steps of shifted global operation schedules
are plotted against each other for increasing shift length values x . The time series
segments in each subfigure represent shifted global operation schedules for a
coalition of 5 identical µCHPs.

the shifted ones represent a much larger region of the feasible class in 2-dimensional
feature space. Additionally the shifted global operation schedules of coalitions of 5
and 10 identical µCHPs can be compared to the global operation schedules based
on specific operation schedule combinations of all coalition members, see Fig. C.2.
This comparison yields each time a similar region of the feasible class covered with
examples. For this reason one can assume that the shifted global operation schedules
represent the whole region of the feasible class. Furthermore the shifted global
operations schedules are more homogeneously distributed than the ones based on
specific combinations.
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number of µCHPs x value

5 30
10 50
50 90
100 140

Table C.1: Optimized x values for coalitions of identical µCHPs.

c.1.3 Properties of the Generated Global Feasible Operation Schedules

Even though the generation of feasible global operation schedules was presented in
the previous subsections at the example of homogeneous µCHP coalitions, in this
section also mixed coalitions of µCHPs and heat pumps are considered.

Generation of feasible global operation schedules with the two steps: sample gen-
eration and shifting leads to representative examples of the whole feasible class with
a more or less homogeneous distribution. All in all the generation of global feasible
operation schedules in two steps leads to representative examples of the whole feasi-
ble class with a more or less homogeneous distribution, see Fig. C.4 for homogeneous
µCHP coalitions and see Fig. C.5 for mixed µCHP and heat pump coalitions. The data
structure of the feasible class of all coalitions is complex with several concepts and
and hard to learn shapes. Furthermore homogeneous and mixed coalitions employ
a similar correlation behavior, see the autocorrelation and partial autocorrelation
in Fig. C.6 for homogeneous µCHP coalitions and Fig. C.7 for mixed coalitions.
The highest correlation in homogeneous µCHP coalitions can be found between
neighboring time steps and for time steps with longer distances τ the correlation
decreases rapidly. Mixed coalitions show a similar correlation behavior and they
employ additionally a high correlation between time steps with a lag τ= 2.

Due to the similarities in the data structure and the correlation behavior of ho-
mogeneous and mixed coalitions, similar results can be expected for all coalitions.
Therefore only homogeneous µCHP coalitions with 5, 10, 50 and 100 members are
considered in the following and all evaluation experiments. But even the data struc-
ture and the correlation behavior of these considered homogeneous µCHP coalitions
is very similar.

To achieve good classification results on these data sets, the data structure can



C.1 generation of feasible global operation schedules 197

be simplified with time series transformations. In pre-tests the time series transfor-
mations with the autocorrelation function acf, the fourier transformation fft and the
principal component analysis pca were identified as suitable. These transformations
lead to at best only one feasible concept with an easy to learn shape, see Fig. C.8.

Beside feasible global operation schedules which are necessary for building classi-
fiers and testing them also infeasible global operation schedules are required to test
classification models. In the next section the generation of global infeasible operation
schedules is presented.
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(a) 5 µCHPs step 1,2 (b) 5 µCHPs step 95,96

(c) 10 µCHPs step 1, 2 (d) 10 µCHPs step 95,96

(e) 50 µCHPs step 1,2 (f) 50 µCHPs step 95,96

(g) 100 µCHPs step 1,2 (h) 100 µCHPs step 95, 96

Figure C.4: Feasible global operation schedules of the same coalitions as in Fig. C.1
where the global operation schedules were shifted in feature space. Each subfigure
is plotted with 30,000 time series segments of the first and the last two time steps
of 96-dimensional time series.
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(a) 5 µCHPs, 5 heat pumps
step 1, 2

(b) 5 µCHPs, 5 heat pumps
step 95, 96

(c) 10 µCHPs, 5 heat pumps
step 1, 2

(d) 10 µCHPs, 5 heat pumps
step 95, 96

Figure C.5: The first and the last two time steps of 96-dimensional time series are
plotted against each other for coalitions of different numbers of µCHPs and heat
pumps. Each subfigure is plotted with 30, 000 time series segments.
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(a) 5 µCHPs (b) 5 µCHPs

(c) 10 µCHPs (d) 10 µCHPs

(e) 50 µCHPs (f) 50 µCHPs

Figure C.6: Autocorrelation and partial autocorrelation of homogeneousµCHP coali-
tions with different numbers of energy units. The figures are calculated based on
the 30,000 feasible global operation schedules shown in Fig. C.4.
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(a) 5 µCHPs 5 heat pumps (b) 5 µCHPs 5 heat pumps

(c) 10 µCHPs 5 heat pumps (d) 10 µCHPs 5 heat pumps

Figure C.7: Autocorrelation and partial autocorrelation of mixed µCHP and heat
pump coalitions. The figures are calculated based on the 30,000 feasible global
operation schedules shown in Fig. C.5.
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(a) 5 µCHPs pca(X) (b) 5 µCHPs fft(X) (c) 5 µCHPs acf(X)

(d) 10 µCHPs pca(X) (e) 10 µCHPs fft(X) (f) 10 µCHPs acf(X)

(g) 50 µCHPs pca(X) (h) 50 µCHPs fft(X) (i) 50 µCHPs acf(X)

Figure C.8: Subsets of differently transformed feasible global operation schedules
of the µCHP coalitions, see Fig. C.4. The figures are plotted with 30,000 points.
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c.2 Generation of Infeasible Global Operation
Schedules

After the generation of feasible examples in the previous section, now the genera-
tion of infeasible examples is presented. Since infeasible global operation schedules
cannot be generated directly, they have to be estimated. Even though infeasible op-
eration schedules of all coalition members are available, they cannot be combined
to global operation schedules in the same way as feasible ones. Combinations of
infeasible operation schedules might be also realizable by combinations of feasible
operation schedules.

Therefore a method for estimating infeasible global operation schedules is pre-
sented below in two steps. First of all potentially infeasible global operation schedules
are generated and in a second step their feasibility is estimated.

c.2.1 Sample Generation

Infeasible operation schedules should represent the volume of the infeasible class as
good as possible with homogeneously distributed examples. Additionally infeasible
examples near the class boundary would be helpful to test the selectivity of the
built classifiers. In the following the generation of these two different potentially
infeasible data sets is presented.

Due to the severe imbalance of the volume of the feasible and infeasible class
of single energy units, a severe imbalance can be expected between the feasible
and infeasible class of global operation schedules. Scaled global operation schedules
employ values between 0 and 1 at each time step. This means all time series lie inside
a hypercube. Sampling of new time series could be done by drawing random samples
from this hypercube. Due to the severe imbalance of the classes most hypercube
samples have to be infeasible depending on the dimensionality of the sampled time
series. Since the infeasible examples should represent the volume of the infeasible
class as good as possible the samples are drawn from a uniform distribution on
the interval [0,1] for each time step. The resulting time series are stationary and
similar to white noise, where all time steps are uncorrelated random variables with
a constant mean and a constant variance, see Müller 1990.

Even though these examples are representative they are mainly not located near
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the class boundaries, due to the imbalanced class volumes. Therefore a second set
of potentially infeasible global operation schedules with examples closer to the class
boundary would be helpful. Such a data set should employ similar properties as
feasible examples. In this case such properties could be the correlation behavior and
the overall power production of each global operation schedule. Additionally the
range of maximal changes between two time steps could be interesting, but in the
case of the considered µCHP coalitions with several numbers of members, the power
production could employ changes between 0% to 100% of the power production
within two time steps.

Potentially infeasible time series with the above mentioned properties can be
generated with the help of an autoregressive process (AR). An autoregressive process
of order p is defined as

AR(p) = X t + a1X t−1 + a2X t−2 + · · ·+ apX t−p (C.5)

with the constants ai. The characteristics of an AR(p) are a slowly decreasing au-
tocorrelation function towards zero and a rapidly deceasing partial autocorrelation
function towards zero, see Brockwell and R. A. Davis 1987; Müller 1990; Fuller
1996; Tsay 2005. Furthermore autoregressive processes A high correlation between
neighboring time steps as in feasible global operation schedules is achieved with an
autoregressive process of order p = 1 (AR(1)):

AR(1) = X t + a1X t−1. (C.6)

But an AR(1) is only an approximation. The AR(1) neglects the weak correlation
between time steps with a little longer distances than τ = 1, that is present in the
feasible time series, see e.g. Tab. C.2. The AR(1) process is simulated with the help
of the python package nitimes, see Ghosh et al. 2009 and the respective parameters
ai are estimated based on Yule-Walker equations.

Since the autoregressive process is not limited to values between 0 and 1, the
resulting time series need to be scaled to this value range. After scaling the time
series with the same overall power production as feasible ones need to be selected.
They form set 1 and the remaining infeasible examples form set 2.

After the generation of the two data sets of potentially infeasible global operation
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schedules the feasibility of theses samples has to be estimated.

c.2.2 Feasibility Estimation

Since there are no general feasibility criteria to decide whether a new operation
schedule is feasible or not, they have to be derived. There are mainly two possibili-
ties to derive such criteria. On the one hand various properties of the feasible and
infeasible examples can be compared. Differences in the properties of feasible and
potentially infeasible data sets are taken as feasibility criteria. On the other hand
feasible and potentially infeasible global operation schedules can be approximated
with their nearest feasible neighbor with the scheduling heuristic COHDA, Hinrichs,
Lehnhoff, et al. 2014. Approximations of feasible global operation schedules should
employ shorter distances to the given feasible global operation schedules than ap-
proximations of infeasible ones to the given ones. These two feasibility estimation
methods are presented below in more detail at the example of homogeneous µCHP
coalitions and the potentially infeasible data sets, presented above in Sect. C.2.1.

First Possibility: Feasibility Estimation Based on Data Properties

Especially feasible operation schedules employ characteristic properties and infeasi-
ble operation schedules differ in one or more properties from the feasible ones. Due
to the much smaller volume of the feasible class than the volume of the infeasible
class, the infeasible class should employ diverse characteristics of different properties.
Some data set properties are directly linked to the feasibility, while others give only
indirect hints. Therefore the properties with a direct link to the feasibility should be
considered primarily. If the differences between a feasible and a potentially infeasible
data set are distinct, the potentially infeasible data set can be treated as an infeasible
data set.

Since the choice of helpful properties depends on the application, the properties
comparison of a feasible and potentially infeasible data sets is shown at the example
of a coalition of homogeneous µCHPs. µCHP coalition data sets employ more and
less helpful properties concerning the feasibility estimation. A helpful properties,
which is directly liked to the feasibility is e.g., the overall power production. The
overall power production of feasible time series is limited by the thermal demand
and temperature limits of the thermal buffer. Less helpful properties, which are not
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directly linked to the feasibility are the correlation behavior of the time series and
the step length between two neighboring time steps. Feasible time series employ a
characteristic correlation behavior with a high correlation between neighboring time
steps and a decreasing correlation for time steps with longer distances. Furthermore
they employ a characteristic distribution of power production changes between two
neighboring time steps. Strong deviations from the characteristic behavior of feasible
examples indicates infeasibility.

All these properties are shown in Tab. C.2 exemplarily for a coalition of 5 µCHPs.
The two potentially infeasible data sets (hypercube samples and AR(1) samples)
can be treated as infeasible, because there are more or less strong deviations in all
considered data set properties with only a few similarities between the feasible and
the potentially infeasible data sets. Even the part of the AR(1) samples with a similar
overall power production as feasible global time series can be treated as infeasible,
due to the remaining deviations.

Second Possibility: Feasibility Estimation Based on the Approximation of Global
Operation Schedules with COHDA

A second possibility to estimate the feasibility of potentially infeasible time series
consists in the approximation of a new global operation schedule with CODA. Then
the distance between given and the approximated schedule can be compared for
feasible schedules and potentially infeasible ones. COHDA was developed to approx-
imate new overall schedules for a pool of energy units on the basis of feasible power
production time series for each pool member. COHDA searches for a given global
operation schedule the nearest feasible global operation schedule. The similarity,
respectively distance δd between given global operation schedules and with COHDA
realized global operation schedules is measured with the euclidean distance. The
distance δd should be equal to zero or at least very small for the approximation of
feasible global operation schedules, while δd should be larger for the approximation
of infeasible global operation schedules.

For estimating the feasibility of the hypercube samples COHDA is employed in
combination with a search space model for each energy unit in the pool, see Bremer
and Sonnenschein 2013c; Bremer and Sonnenschein 2013a; Hinrichs, Bremer, and
Sonnenschein 2013. For each hypercube sample three runs are performed with CO-
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feasible examples potentially infeasible set 1 potentially infeasible set 2
hypercube samples AR(1) samples
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Table C.2: Properties of feasible and infeasible global operation schedules at the
example of a coalition of 5 identical µCHPs.
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HDA and the mean euclidean distance δd between the realized time series and the
given global operation schedules are stored. This feasibility estimation is repeated
with feasible global operation schedules to receive reference distances δd .

The feasibility estimation of 96-dimensional hypercube samples and feasible ref-
erence examples was done for µCHP coalitions with different numbers of members.
Furthermore this estimation was done once with the global operation schedules re-
sulting from step 1 and once with the global operation schedules resulting from step
2. In the case of feasible examples from step 1, the resulting distances δd for the
feasible reference examples is mainly much smaller than the δd for the hypercube
samples in all experiments. But nevertheless both distance δd distributions overlap
a little. The results for coalitions of 5, 10 and 50 members are shown in Fig. C.9.

(a) coalition of 5 µCHPs (b) coalition of 10 µCHPs (c) coalition of 50 µCHPs

Figure C.9: Distributions of the distances δd between not representative feasible
overall time series (summed up schedules without shifting) of different numbers
of µCHPs and the approximated ones with COHDA (blue right distribution) and
potentially infeasible overall time series and the ones approximated with COHDA
(red left distribution). The dashed lines indicate the mean values of both distance
distributions.

As far as COHDA is a heuristic, the feasibility of new overall time series can be
only assumed. Since the overlap between the distance δd distribution for feasible
and potentially infeasible global operation schedules (hypercube samples) is only
very small, see Fig. C.9, all hypercube samples are taken as infeasible examples for
the µCHP coalitions.

In the case of feasible operation schedules resulting from step 2, the two distance
δd distributions overlap and a feasibility judgment is hardly possible, see Fig. C.10.
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This is probably due to the parametrization of COHDA and the employed search
space model. But an explanation of this observation requires more research. To
judge the feasibility of global operation schedules further feasibility estimations are
required.

Figure C.10: Distributions of the distances δd between feasible overall time series
of 5 µCHPs and the approximated ones with COHDA (blue left distribution) and
potentially infeasible overall time series and the ones approximated with COHDA
(red right distribution). The dashed lines indicate the mean values of both distance
distributions.

sum of normed overall power production is similar for coalitions with different
numbers of µCHPs.
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Figure C.11: Distributions of the normed power production of feasible and poten-
tially infeasible global operation schedules. The histogram is computed with
30,000 feasible global operation schedules of each coalition.
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