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Abstract

Graph programs provide a formal way to model the behaviour of a wide range of discrete
systems. These programs are an extension of graph rewriting with control structures
(sequence, nondeterministic choice and iteration).
This thesis presents a theoretically founded formalism for specifying properties of graph
programs and a proof-based approach to verifying the partial correctness of a graph
program with respect to a precondition and a postcondition.
First, a novel specification language, namely recursively nested conditions (or 𝜇-condi-
tions) is introduced which can express non-local state properties and is proven to be
distinct from comparable formalisms.
The verification approach consists of two parts:

∙ an adaptation of Dijkstra’s weakest precondition calculus to graph programs and
𝜇-conditions,
∙ a proof calculus for 𝜇-conditions, whose core part is a rule schema for inductive

refutation.

Comparisons with other relevant formalisms are presented. Several additional parts
are elaborated within the same framework, such as a formulation of correctness under
adversity and structure-changing Petri nets.
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Zusammenfassung

Graphprogramme bieten die Möglichkeit, vielerlei Arten diskreter Systeme formal zu mo-
dellieren. Es handelt sich bei diesen Programmen um Graphersetzungssysteme, erweitert
um Kontrollstrukturen (Sequenz, nichtdeterministische Auswahl und Iteration).
In dieser Arbeit wird ein theoretisch begründeter Formalismus zum Spezifizieren von
Eigenschaften von Graphprogrammen eingeführt, außerdem ein beweisbasiertes Verfahren
zum Nachweisen der partiellen Korrektheit von Graphprogrammen bezüglich einer Vor-
und einer Nachbedingung.
Zunächst wird eine neue Spezifikationssprache eingeführt, nämlich rekursiv geschachtelte
Graphbedingungen (𝜇-Bedingungen), die geeignet ist, nichtlokale Zustandseigenschaften
auszudrücken und die sich nachweislich von vergleichbaren Formalismen unterscheidet.
Der Verifikationsansatz besteht aus zwei Teilen:

∙ einer Übertragung von Dijkstra’s Kalkül der schwächsten Vorbedingungen auf
Graphprogramme und 𝜇-Bedingungen
∙ einem Beweiskalkül für 𝜇-Bedingungen, dessen Kernstück ein Regelschema für

induktive Widerlegung ist.

Vergleiche mit mehreren anderen Formalismen werden angestellt. In den weiteren Teilen
der Arbeit werden zusätzliche Betrachtungen innerhalb des gleichen Frameworks präsen-
tiert, beispielsweise Korrektheit von Graphprogrammen unter widrigen Umständen und
strukturveränderliche Petrinetze.
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1. Introduction

“To seek it with thimbles, to seek it with care;
To pursue it with forks and hope;
To threaten its life with a railway-share;
To charm it with smiles and soap!

— Lewis Carroll, The Hunting of the Snark:
Fit the Fourth (The Hunting)

Contents

1.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

This thesis deals with methods and aspects of formally proving the correctness of graph
programs. It aims at addressing problems of the following abstract form:

Asm ⊢ (Sys‖‖‖Env) sat Spec

Under formalised assumptions Asm, a system (model) Sys is composed (‖‖‖) with an
environment model Env which describes the faults or modifications that are outside
the influence of the controller. Given these data, the task is to verify the correctness
of (Sys‖‖‖Env) with respect to Spec under Asm. This means that formal deduction is
applied in order to derive either a proof that the formal specification Spec is indeed
satisfied (sat), or a counterexample where the system does not behave as specified.
To ensure correctness under adverse conditions, one has to contend with difficulties:

1. limited knowledge
2. unpredictable behaviour
3. changing system environment and structure

We concentrate on points 2 (unpredictable behaviour) and 3 (changing structure). Our
scope in this thesis is restricted to discrete, nondeterministic (point 2) systems that
represent changing structures (point 3). In a major part of the thesis, the abstract notion
of system correctness is instantiated (given a precise formal sense) and worked out in the
setting of graph programs. Graph programs play the role of the system model Sys and
Env, graph conditions make up the specification Spec and a classical notion of program
correctness is adapted for sat, then extended to adverse conditions.
The formalism of graph programs serves to describe discrete systems whose states may
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1. Introduction

be modelled as entities (nodes) linked by edges. It generalises graph transformation
systems which in turn generalise Petri nets. Graph programs allow an abstract treatment
of graph-like aspects of ordinary imperative programs, heap operations being expressed
as graph transformations, and also the direct modelling of many discrete systems. Graph
programs come with a notion of interface, which determines the (variable) part of the
state that is currently subject to rewriting. Our goal is to provide a theoretical foundation
for specifying properties of such systems subject to adverse conditions as described above,
and a proof-based approach to verifying these properties.
To this aim, existing work on the correctness of graph programs, namely a Dijkstra-style
verification approach, is extended. Correctness is understood with respect to specifications
consisting of pre- and postconditions as graph conditions. These are graphical expressions
akin to formulas of graph logics. Part of the thesis is dedicated to the examination of the
expressivity of new kinds of graph properties, and the decidability of classes of properties
that are interesting from a modelling point of view, i.e. whether a given system model,
under a set of assumptions (Asm), satisfies (sat) a given specification (Spec) of correct
system behaviour. Non-local state assertions (recursively nested, or 𝜇-conditions) that
can express the existence of paths, amongst other interesting properties, are of interest
in verifying graph programs that model e.g. operations on common data structures
such as search trees. A weakest precondition calculus and a proof calculus are provided
for the novel formalism. A more special instantiation of the general problem using
structure-changing Petri nets is also presented, but these can be subsumed under the
more general graph programs.
To address adverse conditions, it is important to understand how to formalise an integrated
view of the interplay of the environment and the system. It would not be reasonable to
impose a sequentialisation or alternation on system operation and faults, as this does
not do justice to the distributed functioning of large systems or the unpredictability of
environment action. Our original intuition is that Env and Sys can be understood as
actors playing a game. Both parts are composed in parallel (‖‖‖) and interact only via
the shared state. To progress toward that goal, we introduce two-player programs and
extend the notion of weakest precondition to these. The two-player programs contain a
mix of steps belonging either to Env or Sys. No assumption is made on the scheduling
of these steps and the formalism is flexible enough to leave it entirely to the modeller.
Finally, several examples are provided to demonstrate the whole method, from the weakest
precondition computations to the application of the proof calculus. The steps of the
proofs are discussed in detail in the corresponding appendix.

1.1. Contributions

In this thesis, we first investigate language-theoretic notions of correctness and found
that even for structure-changing Petri nets (as an intuitive and apparently simple
special case of graph programs), some properties one would be interested in are already
undecidable while others can be decided, but only for very restricted subclasses.
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1. Introduction

The chief contributions of this thesis are a theory of recursively nested conditions,
together with newly developed methods for proving the correctness of programs relative
to these conditions. Our work on graph conditions includes a weakest precondition
calculus that allows graph programs to be proved correct with respect to 𝜇-conditions by
means of logical deduction using a sound proof calculus, significantly expanding upon
existing work in this direction, and basic results on extending the method to correctness
proofs for programs under adverse conditions.
Specifically, the contributions are as follows:

∙ Part of the proofs, algorithms and presentation (especially of Proposition 6) of these
parts is joint work (electronic journal reference [FE15]): Section 2.3 and Chapter 4.
∙ The work on recursively nested conditions is original (electronic journal reference

[Fli16]): Chapter 3 except Section 3.4 and the whole of Chapter 5 are issued from
that publication.
∙ The material in Section 3.4, Chapter 6 and Chapter 7 is completely new and

hitherto unpublished.

Chapter E of the appendix contains a bibliography of papers (co)authored by the author
of this thesis during the thesis project, in inverse chronological order. The papers that
are part of the work presented here are marked with an asterisk. The rest is mostly work
on formal languages:

*** Nils Erik Flick, Correctness of Graph Programs Relative to Recursively Nested
Conditions [Fli16]
Nils Erik Flick, Quotients of Unbounded Parallelism [Fli15]

*** Nils Erik Flick and Björn Engelmann, Analysis of Petri Nets with Context-Free
Structure Changes [FE15]
Björn Engelmann, Ernst-Rüdiger Olderog and Nils Erik Flick, Closing the Gap –
Formally Verifying Dynamically Typed Programs like Statically Typed Ones Using
Hoare Logic – Extended Version [EOF15]
Manfred Kudlek and Nils Erik Flick, Properties of Languages with Catenation and
Shuffle [KF14]
Manfred Kudlek and Nils Erik Flick, A Hierarchy of Languages with Catenation
and Shuffle [KF13]
Nils Erik Flick, Derivation Languages of Graph Grammars [Fli13]

1.2. Outline

Chapter 2 introduces graph transformation systems and graph programs and Chapter 3
introduces recursively nested conditions. Chapter 4 instantiates the idea of correctness
in typical ways, introducing so-called structure-changing Petri nets. Chapter 5 combines
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1. Introduction

graph conditions with the correctness of graph programs. Chapter 6 explains our ideas
on the interaction between system and environment. Chapter 7 concludes the main part
by providing small case studies. Chapter 8 concludes with an outlook. Each chapter
has an appended bibliography section that lists our sources and situates our work in the
research landscape. Figure 1.1 shows the logical dependencies between the chapters.

Section 2.3:
Structure-Changing
Petri nets

Chapter 4:
Analysis of Petri
Nets with Struc-
ture Changes

Chapter 2:
Graph Programs

Chapter 3:
Recursively Nested
Conditions

Chapter 5:
Correctness of
Graph Programs

Chapter 6:
Correctness under
Adverse Conditions

Chapter 7:
Applications

Chapter 1:
Introduction

general

special

Figure 1.1.: Logical dependencies between the chapters.
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2. Graph Programs

We may even find out why the duck-billed platypus.
— Terry Pratchett, The Last Continent

Contents

2.1. Graphs and Morphisms . . . . . . . . . . . . . . . . . . . . . 10
2.2. Graph Transformation and Graph Programs . . . . . . . . . 11
2.3. Structure-Changing Petri nets . . . . . . . . . . . . . . . . . 17
2.4. Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . 23

In this chapter, we introduce the formalism used to describe the dynamics of system
and environment. These graph programs are constructed from the elementary rewriting
steps which underlie graph transformations in the sense of Ehrig et al. [EEPT06] (double-
pushout graph transformation). This chapter is structured as follows: in Section 2.1,
we define graphs and morphisms, Section 2.3 relates graph transformations and Petri
nets. In Section 2.3, Structure-Changing Petri nets are introduced as a special case. We
assume familiarity with the basic notions of category theory. Bibliographic notes for the
whole chapter are given in Section 2.4.

2.1. Graphs and Morphisms

A graph consists of a set of vertices (or nodes) 𝑉 , a set of edges 𝐸 and two functions
𝑠, 𝑡 : 𝐸 → 𝑉 (source and target). A labelled graph over the (node, edge) label alphabets
Λ𝑉 , Λ𝐸 also has mappings 𝑙𝑉 : 𝑉 → Λ𝑉 , 𝑙𝑒 : 𝐸 → Λ𝐸 . In this text, the sets 𝑉 and 𝐸
(and any label alphabets) are always assumed to be finite. Label alphabets are assumed
to be fixed within each construction. Unlabelled graphs can be considered to be labelled
graphs over singleton alphabets, or defined without the labelling functions.

Notation. The empty graph is denoted by ∅. An edgeless graph is called discrete.

Graphs are related by morphisms: when 𝐺 = (𝑉𝐺, 𝐸𝐺, 𝑠𝐺, 𝑡𝐺, 𝑙𝑣𝐺, 𝑙𝑒𝐺) and 𝐻 = (𝑉𝐻 ,
𝐸𝐻 , 𝑠𝐻 , 𝑡𝐻 , 𝑙𝑣𝐻 , 𝑙𝑒𝐻) are graphs labelled over (Λ𝑉 , Λ𝐸), a morphism 𝑓 : 𝐺→ 𝐻 is a pair
of functions (𝑓𝑉 : 𝑉𝐺 → 𝑉𝐻 , 𝑓𝐸 : 𝐸𝐺 → 𝐸𝐻) such that the following conditions hold:

∙ 𝑓𝑉 ∘ 𝑡𝐺 = 𝑡𝐻 ∘ 𝑓𝐸

∙ 𝑓𝑉 ∘ 𝑠𝐺 = 𝑠𝐻 ∘ 𝑓𝐸
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2. Graph Programs

∙ (𝑙𝑉 )𝐻 = (𝑙𝑉 )𝐺 ∘ 𝑓𝑉 , (𝑙𝐸)𝐻 = (𝑙𝐸)𝐺 ∘ 𝑓𝐸 .

A morphism is said to be injective (surjective, bijective) if both of its components are.
Nodes and edges are collectively called items. The identity morphism on a graph 𝐺, id𝐺,
is the identity on nodes and on edges. A pair of morphisms (𝑓 : 𝐹 → 𝐻, 𝑔 : 𝐺→ 𝐻) is
said to be jointly surjective when every item in their common target is the image of some
item in one of the sources.

Notation. The domain and codomain of a morphism 𝑓 : 𝐺 → 𝐻 are denoted by
dom(𝑓) = 𝐺 and cod(𝑓) = 𝐻. Injective morphisms (also known as monomorphisms or
monos1) are distinguished typographically by a hooked arrow 𝑓 : 𝐺 →˓ 𝐻 and 𝑓 : 𝐺 ⊆ 𝐻
if both components are set inclusions, while double-ended arrows 𝑓 : 𝐺 � 𝐻 denote
surjective ones (also known as epimorphisms or epis2). We use the symbol M to denote
the class of all graph monomorphisms and the symbol A for all graph morphisms. If both
components of a monomorphism 𝑓 are set inclusions, then we write 𝑓 : 𝐺 ⊆ 𝐻 and call 𝑓
an inclusion. An isomorphism of graphs 𝑓 : 𝐺 ∼= 𝐻 is a morphism which is both a mono-
and an epimorphism. This induces an equivalence relation. 𝑓 |𝑋 is the restriction of the
function 𝑓 : 𝑌 → 𝑍 to 𝑋 ⊆ 𝑌 . It is the function with domain 𝑋 that coincides with 𝑓
on every element of 𝑋: ∀𝑥 ∈ 𝑋, 𝑓(𝑥) = 𝑓 |𝑋 (𝑥). Clearly, this determines 𝑓 |𝑋 uniquely
by extensionality.

In this thesis, graphical notations are used. Graphs are depicted using little circles (nodes,
possibly colored to indicate node labels) joined by arrows (edges, possibly decorated with
a symbol to indicate edge labels). The arrows going from the source node to the target
node. Morphisms are represented graphically by drawing morphism arrows between
pictures of graphs. While the layout itself has no formal meaning, we generally try to
place the image of each node or edge in the same relative place, but sometimes this is
not possible. If the convention has to be violated or there is any question of ambiguity,
then little blue numbers are used to specify the images. Figure 2.1 depicts an injective
morphism between two graphs.

↪→

Figure 2.1.: A morphism 𝐺 →˓ 𝐻.

2.2. Graph Transformation and Graph Programs

Next, we introduce graph transformations. We follow the double pushout approach with
injective rules and injective matches, present the definitions in a set-theoretical way. No

1A category theoretical notion that coincides with the notion of injective morphisms in our case.
2Dito, for surjective morphisms.
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2. Graph Programs

knowledge of category theory is needed to understand the definitions.3

The basic device used in graph transformation is the graph transformation rule. A rule
relates a left hand side graph (the subgraph to be replaced) and a right hand side graph:

Definition 1 (Rule). A graph transformation rule, short rule, is a tuple 𝜚 = (𝐿 ←˒
𝐾 →˓ 𝑅) of graphs, where 𝐾 is called the interface and is contained both in the left hand
side graph 𝐿 and in the right hand side graph 𝑅. A rule 𝜚 is called identical and denoted
by id𝐾 if 𝐿 = 𝐾 = 𝑅. A graph transformation system is a set of rules, usually finite.

In the application of a rule, certain nodes and edges will be added, others deleted and the
rest preserved. We describe the effect set-theoretically, where − denotes set difference
and + denotes a disjoint union. Rules are applied to graphs as described below (for
notational convenience, the injective morphisms of the rule can be chosen to be graph
inclusions, and so can those of the transformed graphs):

Definition 2 (Direct Derivation Step). Let 𝜚 be a rule, 𝐺 a graph and 𝑔 : 𝐿 →˓ 𝐺
an injective morphism. The dangling condition requires that for every node 𝑛 ∈ 𝑉𝐺 in
the range of 𝑔𝑉 that is not the image of a node in 𝐾, every edge 𝑒 ∈ 𝐸𝐺 with 𝑠𝐺(𝑒) = 𝑛
or 𝑡𝐺(𝑒) = 𝑛 is in the range of 𝑔𝐸. If 𝑔 satisfies the dangling condition, then 𝑔 is called a
match of 𝐿 in 𝐺. A direct derivation step 𝐺

𝜚,𝑔⇒𝐻 from a graph 𝐺 to a graph 𝐻 with a
rule 𝜚 via a match 𝑔 consists of a double-pushout diagram:

𝐿 𝐾 𝑅

𝐺 𝐷 𝐻

(1) (2)

⊇ ⊆

𝑔 ℎ

⊇ ⊆

where ℎ is also injective and

(1) 𝐷 = 𝐺− 𝑔(𝐿−𝐾), (2) 𝐻 = 𝐷 + ℎ(𝑅−𝐾).

The equation (1) is an abbreviation for 𝑉𝐷 = 𝑉𝐺− 𝑔𝑉 (𝑉𝐿−𝑉𝐾) and 𝐸𝐷 = 𝐸𝐺− 𝑔𝐸(𝐸𝐿−
𝐸𝐾), (2) means 𝑉𝐻 = 𝑉𝐷 + ℎ𝑉 (𝑉𝑅 − 𝑉𝐾) and 𝐸𝐻 = 𝐸𝐷 + ℎ𝐸(𝐸𝑅 − 𝐸𝐾). The labels of
the items of 𝐷 are inherited from 𝐺, and so are sources and targets:
for node and edge labels respectively, (𝑙𝑉 )𝐷 = (𝑙𝑉 )𝐺 |𝑉𝐺

and (𝑙𝐸)𝐷 = (𝑙𝐸)𝐺 |𝐸𝐺
; sources

and targets of edges are determined by 𝑠𝐷 = 𝑠𝐺 |𝐸𝐷
and 𝑡𝐷 = 𝑡𝐺 |𝐸𝐷

while the dangling
condition guarantees that the codomains of the functions 𝑠𝐷 and 𝑡𝐷 are indeed subsets of
𝑉𝐷 and thus the construction defines a graph.
(𝑙𝑉 )𝐻 is defined as follows: for any node 𝑥 ∈ 𝑉𝐻 which is the image ℎ𝑉 (ℎ−1

𝑉 (𝑥)) of some
node ℎ−1

𝑉 (𝑥) ∈ 𝑉𝑅 (which is unique because of the injectivity of ℎ𝑉 ), the label (𝑙𝑉 )𝐻(𝑥)
3However, we make heavy use of the categorial framework in many proofs, because it simplifies the

proofs a lot. Some known theorems are used but not established. In those cases, a source is given
where the proof can be found.

12



2. Graph Programs

is defined as (𝑙𝑉 )𝑅(ℎ−1
𝑉 (𝑥)). Otherwise, 𝑥 must by definition of 𝑉𝐻 be in 𝑉𝐷 ⊆ 𝑉𝐻 and

then (𝑙𝑉 )𝐻(𝑥) = (𝑙𝑉 )𝐷(𝑥). (𝑙𝐸)𝐻 is defined analogously for edges.
(𝑠𝑉 )𝐻 is defined as follows: for any edge 𝑥 ∈ 𝐸𝐻 which is the image ℎ𝐸(ℎ−1

𝐸 (𝑥) of some
edge ℎ−1

𝐸 (𝑥) ∈ 𝐸𝑅 (which is unique because of the injectivity of ℎ𝐸), if (𝑠𝑉 )𝑅(ℎ−1
𝐸 (𝑥)) ∈

𝑉𝑅 − 𝑉𝐾 , then (𝑠𝑉 )𝐻(𝑥) = ℎ𝑉 ((𝑠𝑉 )𝑅(ℎ−1
𝐸 (𝑥))). Otherwise, (𝑠𝑉 )𝑅(ℎ−1

𝐸 (𝑥)) ∈ 𝑉𝐾 ⊆ 𝑉𝐷

and (𝑠𝑉 )𝐻(𝑥) is defined as (𝑠𝑉 )𝑅(ℎ−1
𝐸 (𝑥)). If 𝑥 is not the image via ℎ𝐸 of an edge in

𝐸𝑅, then it is an element of 𝐸𝐷. In this case, (𝑠𝑉 )𝐻(𝑥) = (𝑠𝑉 )𝐷(𝑥). The definition of
(𝑡𝑉 )𝐻 is exactly analogous.

We may omit the match in the notation: 𝐺
𝜚⇒𝐻.

Figure 2.2 shows a direct derivation step. As in the diagram of the definition, the top
row represents the rule. The graph in the bottom left hand corner (𝐺) is transformed
into the graph in the bottom right hand corner (𝐻) by the rule. There are two possible
matches, because there are two edges between the bottom two nodes in the graph 𝐺,
both yielding the same result.

Figure 2.2.: A direct derivation step.

The squares (1), (2) can be shown to be pushout squares in the sense of category theory,
see [EEPT06]. A pushout of 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝐶 is a graph 𝐷 with a pair of
morphisms 𝑓 ′ : 𝐶 → 𝐷 and 𝑔′ : 𝐵 → 𝐷 such that 𝑔′ ∘ 𝑓 = 𝑓 ′ ∘ 𝑔, subject to the universal
condition that any pair 𝑓 ′′ : 𝐶 → 𝐷′ and 𝑔′′ : 𝐵 → 𝐷′ with 𝑔′′ ∘ 𝑓 = 𝑓 ′′ ∘ 𝑔, there is
a unique morphism ℎ : 𝐷 → 𝐷′ with ℎ ∘ 𝑓 ′ = 𝑓 ′′ and ℎ ∘ 𝑔′ = 𝑔′′ (the pair (𝑓 ′, 𝑔′) is
then always jointly surjective). We will also make use of the notion of pullback, which is
the categorial dual of a pushout (same definition, but with all directions of morphisms
reversed) and pushout complement, which is a pair of morphisms that completes a pushout
square as shown in Figure 2.3. That is, when 𝑓 : 𝐴→ 𝐵 and 𝑔′ : 𝐵 → 𝐷 can be completed
to a pushout square with morphisms 𝑔 : 𝐴→ 𝐶 and 𝑓 ′ : 𝐶 → 𝐷, then we say that (𝑔, 𝑓 ′)
is a pushout complement of (𝑓, 𝑔′).
In the category of graphs and morphisms, pushouts and pullbacks are guaranteed to exist
while pushout complements are not. Nevertheless, the following holds:

13



2. Graph Programs

Fact 1 (Pushout Complements [LS04, EEPT06]). The pushout complement of graph
morphisms (𝑓, 𝑔′), if it exists, is uniquely determined provided that 𝑓 is a monomorphism.4
It exists provided that the dangling condition holds and, in the case of 𝑔′ not being a
monomorphism, the so-called identification condition must hold as well, which says that
all non-injectively mapped items of dom(𝑔′) have preimages in dom(𝑓).

𝐴 𝐵

𝐶 𝐷

𝐷′

𝑓

𝑔 (PO)

𝐴 𝐵

𝐶 𝐷

𝑓

𝑔 𝑔′

𝑓 ′

(PO)

Figure 2.3.: Pushouts and pushout complements

A partial monomorphism is a pair of monomorphisms with the same domain. By abuse
of notation, the partial monomorphism (iddom(𝑥), 𝑥) is also denoted 𝑥. The partial
monomorphism (𝑥, iddom(𝑥)) is also denoted 𝑥−1. The class of all partial monomorphisms
is denoted PM. A partial monomorphism (𝑓 : 𝐴 →˓ 𝐵, 𝑔 : 𝐴 →˓ 𝐶) can be understood as
first selecting part of 𝐵 to be mapped (regarding 𝑓 as an inclusion 𝑓 : 𝐴′ ⊆ 𝐵 for some
graph 𝐴′ ∼= 𝐴) and then mapping that subgraph to 𝐶 via 𝑔. Partial monomorphisms
𝑝′ = (𝑙1, 𝑟1), 𝑝′′ = (𝑙2, 𝑟2) compose as 𝑝′; 𝑝′′ = (𝑙1 ∘ 𝑙′2, 𝑟2 ∘ 𝑟′

1) using the pullback (𝑟′
1, 𝑙′2) of

(𝑟1, 𝑙2), as in Figure 2.4.

𝐴1,2

𝐴1 𝐴2

𝐵 𝐶 𝐸

𝑙′2 𝑟′
1

𝑙1 𝑟1 𝑙2 𝑟2

(PB)

Figure 2.4.: Composition of partial monomorphisms (𝑙1, 𝑟1) and (𝑙2, 𝑟2).

We re-define graph transformations in terms of four elementary steps, namely selection,
deletion, addition and unselection. Deletion and addition always apply to a selected
subgraph, and selection and unselection allow the selection to be changed. This approach

4The proof can be found in Lack and Sobociński [LS04], which introduces the more general setting of
adhesive categories. Graphs and graph morphisms are shown in [LS04] to form an adhesive category.
A thorough account based on both sets and categories is found in [EEPT06].

14



2. Graph Programs

to defining graph programs is also called programs with interface, because the currently
selected subgraph acts as a kind of interface in the sequential composition of programs.
This intuition will be made precise when defining the semantics. The role of the interface
is to ensure that an addition, for instance, can be performed in the same place as the
deletion without introducing any special labels to mark that place, as one would be
forced to do in plain graph transformation formalisms.
A graph transformation rule is then nothing else but the sequence of a selection; a
deletion; an addition; an unselection. We also introduce 𝑠𝑘𝑖𝑝 as a no-op used in the
definition of sequential composition. The definition below allows for somewhat more
general combinations of the basic steps, which cannot be expressed as sets of graph
transformation rules. Another reason for breaking up rules into more elementary steps is
to make constructions and proofs easier to follow.
First, the syntax of graph programs is defined.

Definition 3 (Graph Programs). Let 𝑥 be a monomorphism.
Then Sel(𝑥), Del(𝑥), Add(𝑥), Uns(𝑥) are graph programs called the selection, deletion,
addition, unselection of 𝑥, respectively.
If 𝑃 and 𝑄 are graph programs, so are their disjunction 𝑃 ∪𝑄 and sequence 𝑃 ; 𝑄. If 𝑃
is a graph program, so is its iteration 𝑃 *.

The semantics of a graph program is a triple of two monomorphisms and one partial
monomorphism. The two monomorphisms, called input interface and output interface,
represent the selected subgraphs before and after the execution of the program respectively,
while the partial monomorphism records the changes effected by the program. Our
programs are a proper subset of the programs with interfaces in Pennemann [Pen09], and
use the same semantics. Note that some program steps (those leaving the codomain of
the interface unchanged) change only the selection without modifying the graph while
others modify both the selection and the graph.

Definition 4 (Semantics of Graph Programs). In the following table, 𝑥, 𝑙, 𝑟, 𝑦,
𝑚𝑖𝑛 and 𝑚𝑜𝑢𝑡 are monomorphisms, with 𝑥, 𝑙, 𝑟 and 𝑦 arbitrarily chosen to define a
program step, while the input interface 𝑚𝑖𝑛 and the output interface 𝑚𝑜𝑢𝑡 are universally
quantified in the set comprehensions that appear in the definitions below.
Note that each triple (𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, (𝑝𝑙, 𝑝𝑟)) must have cod(𝑝𝑙) = dom(𝑚𝑖𝑛) and cod(𝑝𝑟) =
dom(𝑚𝑜𝑢𝑡) for the relevant compositions of morphisms to exist; there are no restrictions
on the domains and codomains other than those implicit in the postulated compositions
and pushout squares.

Name Program 𝑃 Semantics J𝑃 K
selection Sel(𝑥) {(𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑥) | 𝑚𝑜𝑢𝑡 ∘ 𝑥 = 𝑚𝑖𝑛}
deletion Del(𝑙) {(𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑙−1) | ∃𝑙′, (𝑚𝑜𝑢𝑡, 𝑙, 𝑚𝑖𝑛, 𝑙′) pushout}
addition Add(𝑟) {(𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑟) | ∃𝑟′, (𝑚𝑖𝑛, 𝑟, 𝑚𝑜𝑢𝑡, 𝑟′) pushout}
unselection Uns(𝑦) {(𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑦−1) | 𝑚𝑜𝑢𝑡 = 𝑚𝑖𝑛 ∘ 𝑦}
skip 𝑠𝑘𝑖𝑝 {(𝑚, 𝑚, 𝑖𝑑dom(𝑚)) | 𝑚 ∈M}
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2. Graph Programs

The semantics of disjunction is a set union J𝑃 ∪ 𝑄K = J𝑃 K ∪ J𝑄K and the semantics
of sequence is J𝑃 ; 𝑄K = {(𝑚, 𝑚′, 𝑝) | ∃(𝑚, 𝑚′′, 𝑝′) ∈ J𝑃 K, (𝑚′′, 𝑚′, 𝑝′′) ∈ J𝑄K, 𝑝 = 𝑝′; 𝑝′′},
where (𝑝′; 𝑝′′) is the composition of the partial monomorphisms; the semantics of iteration
is J𝑃 *K =

⋃︀
𝑗∈NJ𝑃 𝑗K where 𝑃 𝑗 = 𝑃 ; 𝑃 𝑗−1 for 𝑗 ≥ 1 and 𝑃 0 = 𝑠𝑘𝑖𝑝.

Programs 𝑃 and 𝑄 can be sequentially composed to a compound program but on the
semantics side, the composition has a result only in the cases where the output interface
of an element of J𝑃 K matches the input interface of an element of J𝑄K.

x l

(PO)

r

(PO)

y

Sel(x) Del(l) Add(r) Uns(y)

(PB)

(l1, r1) (l2, r2)

Figure 2.5.: Illustration of the semantics of the basic graph programs and sequential
composition.

Remark 1. The definitions generalise the state transitions in plain graph transfor-
mation: a rule 𝜚 = (𝐿 𝑙←˒ 𝐾

𝑟→˓ 𝑅) is exactly simulated by the program Sel(∅ →˓
𝐿); Del(𝑙); Add(𝑟); Uns(∅ →˓ 𝑅).

The disjunction 𝑃 ∪𝑄 of graph programs is a nondeterministic choice between 𝑃 and 𝑄.
Nondeterminism also appears in the semantics of selection steps. Sequential composition
inherits the associativity of the composition of partial monomorphisms, which is easily
seen from the categorial constructions used.

Example 1 (A graph program simulating a rule).

Sel
(
∅ ↪→

)
; Del

(
1

3

2

←↩
1 2

)
; Add

(
↪→

)
; Uns

(
←↩ ∅

)

This graph program selects a subgraph of three nodes and two edges, then removes one of
the nodes and both edges, then glues in a new edge between the two preserved nodes, then
forgets its selection.
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2. Graph Programs

2.3. Structure-Changing Petri nets

The well-known Petri nets [Pet62], especially the unbounded place/transition (P/T) nets
(cf. Desel [DR98]), have been regarded as graph transformation systems in their own
right. Usually, one understands them as rewriting systems that operate on labelled
discrete graphs, where nodes correspond to tokens, node colours correspond to places and
transitions are not explicitly represented in the graph (they become graph transformation
rules). Another possibility is to model the net structure explicitly, opening up the option
of rewriting that structure using supplementary rules.
P/T nets can be converted to graphs by turning places and tokens into nodes. Firing of
transitions can then be simulated with graph transformation rules. Transitions can be
explicitly represented as nodes, which allows reconfigurations to be modelled as graph
transformation rules as well, see Figure 2.6. For formal accounts of the encodings of Petri
nets as graph transformation, we refer to the bibliographic notes section at the end of
this chapter and of Chapter 4. Petri nets are system models where resource tokens are
moved around on an immutable underlying structure. They originally lacked a notion of
structure change or reconfiguration, but several structure-changing extensions have been
formulated. In this section, we define Petri nets together with transition replacement
rules similar to graph replacement rules [EEPT06], as a simple instantiation of what is
to be our general framework. Graph transformations are well suited for rewriting the
net structure. In this section, we introduce structure-changing Petri nets, which offer
dynamic context-free rewriting of Petri nets. The intention is to describe a formalism
midway between Petri nets and graph transformation.

Petri Net / Petri Graph

t1 t2

Convention:

represents

r(t1) : ←↩ ↪→ r(t2) : ←↩ ↪→

Figure 2.6.: Encoding P/T nets as graph transformations

Petri nets are popular in the context of workflow modelling [vdA97], where labelled
transitions correspond to tasks to be executed. An important property of workflow nets
is soundness, which is decidable (in the absence of extra features such as reset arcs),
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2. Graph Programs

and intuitively means the workflow can always terminate correctly and there are no
useless transitions. Plain workflow nets, however, lack the ability of representing dynamic
evolution; this shortcoming has been recognised by the workflow modelling community
[vdA01, WRRM08]. Combining some Petri nets with graph transformations promises a
solution for modelling dynamic change in workflows.
We extend Petri nets in the sense of [DR98, PW02] to structure-changing Petri nets.
In such a system, structure-changing rules interfere with the behaviour of a Petri net.
Reconfigurations occur unpredictably, modelling the influence of an uncontrolled environ-
ment, such as the dynamic addition of a component, or the unexpected complication or
iteration of a task.

Notation. We use −−− and +++ to denote set difference and disjoint set union, respectively,
and NNN for the set of natural numbers including 0. The cardinality of a set 𝑋 is denoted
by |𝑋||𝑋||𝑋|, the length of a sequence 𝑤 is also denoted |𝑤||𝑤||𝑤|, and |𝑤|𝑌|𝑤|𝑌|𝑤|𝑌 denotes the number of
occurrences of symbols from 𝑌 ⊆ 𝑋 in 𝑤 ∈ 𝑋*. The symbol 𝜖𝜖𝜖 denotes the empty word.

Assumption 1. There are two disjoint alphabets Σ and 𝑅 of transition labels and rule
names, respectively.

We introduce structure-changing Petri nets with coloured places.

Definition 5 (Petri Nets). A Petri net, briefly called net, is a tuple (𝑃, 𝑇, 𝐹 −, 𝐹 +, 𝑙, 𝑐)
where 𝑃 is a finite set of places, 𝑇 is a finite set of transitions with 𝑃 ∩ 𝑇 = ∅,
𝐹 −, 𝐹 + : 𝑇 × 𝑃 → N are functions assigning preset and postset arc multiplicities,
respectively, 𝑙 : 𝑇 → Σ is the labelling function, 𝑐 : 𝑃 → N is the colouring function.
A marked net is a pair N = (𝑁, 𝑀), where 𝑁 is a net and 𝑀 : 𝑃 → N is called the
marking of N.

Places and transitions are collectively called items. A net is said to be (strongly) connected
if it is (strongly) connected as a graph, regarding arcs as directed edges. A net is acyclic
if it is acyclic as a graph. Isomorphism, denoted 𝑁 ∼=∼=∼= 𝑁 ′ (resp. N ∼=∼=∼= N′) of (marked)
nets means that there are bijections between the respective place and transition sets that
preserve 𝐹 ±, 𝑙 and 𝑐 (and 𝑀). The size of a net is |𝑃 |+ |𝑇 |. A connected net with a
single transition is a 1-net.

Notation. When 𝐹 −(𝑡, 𝑝) = 𝑘, one says there is an arc of weight 𝑘 from 𝑝 to 𝑡.
Likewise, when 𝐹 +(𝑡, 𝑝) = 𝑘, there is an arc of weight 𝑘 from 𝑡 to 𝑝. We write ∙𝑡 for
{𝑝 ∈ 𝑃 | 𝐹 −(𝑡, 𝑝) > 0} and 𝑡∙ for {𝑝 ∈ 𝑃 | 𝐹 +(𝑡, 𝑝) > 0}. When 𝑀(𝑝) = 𝑘, it means that
𝑝 is marked with 𝑘 tokens. When 𝑐(𝑝) = 𝑘, we say that 𝑝 has colour 𝑘. The components
of a net named 𝑁𝑥 will likewise be named 𝑃𝑥 and so on. If there is no subscript, they
will be referenced as 𝑃 and so on. Likewise, the marked net (𝑁𝑥, 𝑀𝑥) is usually referred
to as N𝑥. The pictorial representation of nets as graph-like diagrams is well known, and
a translation to graph grammars has been formalised in [Kre81] and [Cor95].

Example 2 (Graphical representation of a marked net; a 1-net).
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a
t0

p0 p1

b
t1

1 1

12

a

Let 𝑁 be a net. The transition 𝑡 ∈ 𝑇 is enabled by the marking 𝑀 iff for all places
𝑝, 𝐹 −(𝑡, 𝑝) ≤ 𝑀(𝑝). The successor marking 𝑀𝑡 of 𝑀 via 𝑡 is then defined by ∀𝑝 ∈
𝑃, (𝑀𝑡)(𝑝) = 𝑀(𝑝)− 𝐹 −(𝑡, 𝑝) + 𝐹 +(𝑡, 𝑝), and (𝑁, 𝑀) 𝑡⇒ (𝑁, 𝑀𝑡) is called a firing step.
For a sequence 𝑢 ∈ 𝑇 *, the marking 𝑀𝑢 is defined recursively as 𝑀𝜖 := 𝑀 and
𝑀𝑎𝑢 := (𝑀𝑎)𝑢. The sequence 𝑢 is said to be enabled in 𝑀 iff 𝑀𝑢 is defined.

Example 3 (A firing step).

a a
a

a a

Throughout this chapter, all replacement rules are of a simple context-free kind that
replace a single transition by an unmarked net. The adjective context-free is understood in
the sense of hyperedge replacement [Hab92], which is also called context-free replacement.
In our case, transitions correspond to hyperedges.

Definition 6 (Context-free Rule). A context-free rule (short: rule) is a tuple (𝜚, 𝑁𝑙, 𝑁𝑟)
where 𝜚 ∈ 𝑅 is the rule name, 𝑁𝑙 is a 1-net, and 𝑁𝑟 is a net with 𝑃𝑙 ⊆ 𝑃𝑟, and
∀𝑝 ∈ 𝑃𝑙, 𝑐𝑙(𝑝) = 𝑐𝑟(𝑝). 𝑁𝑙 is the left hand side and 𝑁𝑟 the right hand side of the rule.

A match of the 1-net 𝑁𝑙 in the net 𝑁 is a mapping 𝑚 : 𝑃𝑙 ∪ {𝑡𝑙} → 𝑃 ∪ 𝑇 such that
𝑚 maps the sole transition 𝑡𝑙 of 𝑁𝑙 to a transition such that 𝑙(𝑚(𝑡𝑙)) = 𝑙𝑙(𝑡𝑙) and the
places 𝑝𝑙 ∈ 𝑃𝑙 to places in 𝑃 such that ∀𝑝 ∈ 𝑃𝑙, 𝑐(𝑚(𝑝)) = 𝑐𝑙(𝑝). The notion is extended
to matches in marked nets: a match of 𝑁𝑙 in (𝑁, 𝑀) is a match of 𝑁𝑙 in 𝑁 . A match of
the rule (𝜚, 𝑁𝑙, 𝑁𝑟) on a marked net N is a match of 𝑁𝑙 in 𝑁 . An abstract application,
with match 𝑚, of 𝜚 to a marked net N is a pair (N,N′) such that if 𝑡𝑙 is the transition in
𝑁𝑙, 𝑇 ′ = 𝑇 − {𝑚(𝑡𝑙)}+ 𝑇𝑟, 𝑃 ′ = 𝑃 + (𝑃𝑟 − 𝑃𝑙), 𝑀 ′ coincides with 𝑀 on the places from
𝑃 and has value 0 otherwise. The place colours are as in 𝑁 and 𝑁𝑟,

𝐹 ′±(𝑡, 𝑝) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐹 ±(𝑡, 𝑝) 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃

𝐹 ±
𝑟 (𝑡, 𝑝) 𝑡 ∈ 𝑇𝑟, 𝑝 ∈ (𝑃𝑟 − 𝑃𝑙)

𝐹 ±
𝑟 (𝑡, 𝑝′) 𝑡 ∈ 𝑇𝑟, 𝑝 = 𝑚(𝑝′)

0 otherwise.
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N
𝜚⇒ N′ or N

𝜚,𝑚⇒ N′ is called a replacement step.
Note that we always assume 𝑃𝑟∪𝑇𝑟 to be disjoint from 𝑃 ∪𝑇 in a replacement step (hence
the notation “+” instead of “∪” in the above definition). Formally, in a replacement step
𝑁𝑙 and 𝑁𝑟 are replaced with isomorphic copies whose items do not occur in 𝑃 ∪ 𝑇 , and
these copies are used in the rule application.5

Remark 2. Given N, 𝜚 and a 𝑚, the resulting net N′ is uniquely determined.

The following example shows how a rule is applied to yield a replacement step:

Example 4 (A replacement step). Figure 2.7 shows a replacement step induced by a
rule 𝜚 and a match 𝑚. The top row is the rule. The net in the top left hand corner is
the left hand side, which is identified as a subnet in the bottom left hand net. The bottom
right hand net is the result:

0

a

1

c

( )

a
0 1

c

( )

a
0 1

c

( c )

( )

a
0 1

%

m
m

%

Figure 2.7.: A rule 𝜚 and a replacement step.

A step is either a firing step or a replacement step. We define four functions for
extracting the information from a step: for a firing step 𝑒, let 𝜏(𝑒) := 𝑡, 𝜆(𝑒) := 𝑙(𝑡),
from(𝑒) := (𝑁, 𝑀) and to(𝑒) := (𝑁, 𝑀 ′). For a replacement step, let 𝜏(𝑒) := 𝑚(𝑡𝑙),
𝜆(𝑒) := 𝜚, from(𝑒) := N and to(𝑒) := N′. The functions to, from, 𝜏 and 𝜆 canonically
extend to sequences.

Definition 7 (Structure-changing Petri nets). A structure-changing Petri net is a
tuple S = (N,R), where N is a marked net and R is a finite set of rules.

5The use of isomorphic copies should not cause a lot of confusion in our setting and we will not stress
this issue further.
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2. Graph Programs

Remark 3. Every marked net N may be seen as a structure-changing Petri net (N, ∅)
with empty rule set, which will be called a static net and by abuse of notation also denoted
N. We will not distinguish between N and (N, ∅).

A derivation consists of a sequence of steps linking a sequence of marked nets:

Definition 8 (Derivation). A derivation of length 𝑛 ∈ N in a structure-changing Petri
net S = (N,R) is a pair (𝜉, 𝜎) of a sequence 𝜉0...𝜉𝑛−1 of steps and a sequence 𝜎0...𝜎𝑛 of
marked nets such that to(𝜉𝑖) = 𝜎𝑖+1, from(𝜉𝑖) = 𝜎𝑖 for all 𝑖 ∈ {0, ..., 𝑛− 1} and N = 𝜎0.
We write 𝜎0

𝜉⇒R 𝜎𝑛 and say that (𝜉, 𝜎) starts in N = 𝜎0 and ends in 𝜎𝑛.

In the following example, the small numbers serve to track places throughout the
derivation.

Example 5 (A structure-changing Petri net derivation.).

0
𝑎

1

𝜌, 𝑚

0
𝑎

2
𝑎

1

𝑎

0
𝑎

2
𝑎

1

Another simple example is a vending machine which either returns 50 cent pieces or
smaller change, where place colours represent denominations of coins. Its rules are:

Example 6 (Rules for a vending machine.).

50c|

0 1 0 1

20c|

0 1 0 1

10c|

0 1 0 1

50c|

0 1

)

20c|

20c|

10c|

(

0 1

A marked net N′ is said to be reachable in S from N iff there is a derivation in S that
starts in N and ends in N′. The marked nets reachable in S are also called (reachable)
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2. Graph Programs

states of S. We write RS(S) for the set of all reachable states of S. The reachability
graph is the transition system induced by the reachability relation, identifying isomorphic
marked nets. In a static net, instead of derivations one considers transition sequences,
as they uniquely determine derivations. A net, rule or structure-changing Petri net is
𝑘-coloured if the highest colour assigned to any place does not exceed 𝑘 − 1. A marked
net is 𝑚-safe if any reachable marking has at most 𝑚 tokens on any of its places.

Remark 4. Note that the place colouring does not affect the behaviour of the net at all.
It will be used in Section 4.1 to specify abstract markings.

We introduce workflow nets [vdA97], extended by structure-changing rules, are introduced
as a special case of structure-changing Petri nets.

Definition 9 (Workflow Net). A workflow net is a tuple (𝑁, 𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡) consisting of a
net 𝑁 and a pair of distinguished places 𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡 ∈ 𝑃 , the input and output place which
have no input respectively no output arcs, subject to the requirement that adding an extra
transition from 𝑝𝑜𝑢𝑡 to 𝑝𝑖𝑛 would render the net strongly connected.

The data (𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡) need not be made explicit, since these places are easily seen to be
uniquely determined in a workflow net. Thus we are justified in treating a workflow net
as a special net. The start marking of a workflow net 𝑁 , i.e. the marking where only 𝑝𝑖𝑛

is marked with one token and all other places are not marked, is denoted by ∙𝑁 . The end
marking where only 𝑝𝑜𝑢𝑡 is marked with exactly one token is denoted by 𝑁∙. A workflow
net 𝑁 is sound iff from any marking reachable from ∙𝑁 , 𝑁∙ is reachable, and for each
transition 𝑡 there is some marking 𝑀 reachable from ∙𝑁 such that 𝑡 is enabled in 𝑀 .

Definition 10 (Structure-changing workflow net). A structure-changing workflow
net is a structure-changing Petri net S = (N,R) such that
(1) N is a sound workflow net marked with its start marking.
(2) for every rule (𝜚, 𝑁𝑙, 𝑁𝑟) ∈ R, 𝑁𝑙 and 𝑁𝑟 are sound workflow nets; 𝑁𝑙 has two places,
one transition, arc weights 1.
(3)

∑︀
𝑡∈𝑇𝑟

𝐹 +
𝑟 (𝑡, 𝑝𝑜𝑢𝑡) =

∑︀
𝑡∈𝑇𝑟

𝐹 −
𝑟 (𝑡, 𝑝𝑖𝑛) =1 and the input (resp. output) place of 𝑁𝑟 is

𝑝𝑖𝑛 (𝑝𝑜𝑢𝑡).

Condition (2) implies that only single-input, single-output 1-nets are permitted as left
hand sides. The role of condition (3) is to avoid certain complications that otherwise arise
in the analysis. Although the restrictions rule out markings with multiplicities, it is now
possible to create more instances of a subnet by replacing transitions. Structure-changing
workflow nets can still capture situations such as workflows that undergo complications
as they are executed, as in Example 6.
Condition (3) in our opinion does not unduly restrict modelling capacity because a right
hand side that does not fulfil it can be adapted to yield a similar behaviour while fulfilling
(3), as shown in Figure 2.8. In the example, the only difference is that transition 𝑡 must
fire before 𝑡0, 𝑡1, 𝑡2 become activated. The same is done for the output place. It is
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2. Graph Programs

clear that this construction is applicable in all such cases and will have very limited,
predictable effects on the behaviour of the system.

. . .

. . .

. . .

t2

t1

t0

0

not permitted

. . .

. . .

. . .

t2

t1

t0

t
0

permitted

Figure 2.8.: Satisfying condition (3) in the structure-changing workflow net definition
with an extra transition.

Every reachable state of a structure-changing workflow net is a reachable state of some
workflow net. A structure-changing workflow net is called acyclic if every reachable state
is an acyclic net. It is called 1-safe if every reachable state is marked with at most one
token per place.

2.4. Bibliographic Notes

For an in-depth treatment of the theory of graph transformations, we kindly refer the
reader to the monograph of Ehrig et al. [EEPT06]. The definitions presented in this
chapter are not the most general possible: in this thesis, we stick to the concrete case of
graphs rather than the axiomatic framework of adhesive categories.
For encoding Petri nets as graph transformations, there are several sources such as Cor-
radini [Cor95] and Kreowski [Kre81, KW86]. These encodings have different advantages.
Proper care must be taken to reflect concurrent semantics, as researchers have noted
[Cor95]. More recent unified treatments focus on the rewriting of Petri nets and the
relation of graph rewriting and Petri nets, such as the article of Maximova [MEE12].
For the rewriting of graph-like objects, there are more general formulations such as Ehrig
and Prange [EP06], other algebraic approaches founded on category theory such as the
single-pushout (Ehrig et al. [EHK+97]) and sesqui-pushout (Corradini et al. [CHHK06])
approach as well as the older approaches which are not founded on category theory
(Engelfriet and Rozenberg [ER97]). Delzanno et al. [DS14] study verification problems
for reconfigurable systems with whole neighborhood operations, which have somewhat
different properties from ours (these systems lend themselves to well-structured analysis
for coverability properties). This thesis, however, is exclusively based on the double-
pushout approach.
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3. Recursively Nested Conditions

’No’, said Geraldine, ’that’s Lucy. I’m not only your assistant’s
assistant’s sub-assistant, but also the assistant to the assistant to your
personal assistant’s assistant.’
’Wait’, I said, thinking hard, ’that must make you your own assistant.’

— Jasper Fforde, The Woman who Died a Lot
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We propose a new specification language for the proof-based approach to verification
of graph programs by introducing recursively nested conditions (short 𝜇-conditions) as
an alternative to existing formalisms. It will be demonstrated that recursively nested
conditions can express many non-local properties of interest.
Our formalism is an extension of nested conditions by recursive definitions. While other
formalisms can also express many properties of interest, we claim that the recursively
nested conditions defined in this thesis offer a viewpoint sufficiently different from existing
ones to be worth investigating. The theory of recursively nested conditions offers a weakest
precondition calculus that can handle any condition expressible in it (Section 5.1); as
opposed to HR* conditions, there is also a proof calculus; as compared M-conditions,
which relies more heavily on expressing properties directly in (monadic second-order) logic,
ours is more closely related to nested conditions and shares the same basic methodology.
This chapter is structured as follows: Section 3.1 describes the state of the art, Section 3.2
recalls nested graph conditions, Section 3.3 introduces our extension of nested conditions,
in Section 3.4 we characterise their expressive power and compare it to other formalisms,
Section 3.5 gives concluding remarks and an outlook and Section 3.6 gives bibliographic
notes for the chapter.
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3. Recursively Nested Conditions

3.1. State of the Art

The (finite) nested conditions or nested graph conditions of Habel et al. [HPR06, HP09]
are expressions that specify graph properties. They can quantify over subgraphs, contain
logical connectives and be nested (hence the name). Nested conditions are known
to express the same properties of finite graphs as first-order logic. The rationale for
using graph conditions instead of logical formulae facilitates the expression of certain
transformations that occur in the so-called predicate transformer approaches to the
verification of graph programs.
Nested conditions are well-established by now and can often be used as a drop-in
replacement for negative application conditions and other weaker forms of graph condition.
As the number of uses for graph conditions grew, nested conditions have been found to
be insufficient for some applications: via the equivalence to first order logic, it is known
that finite nested conditions can only express properties which are local in the logical
sense (cf. Gaifman [Gai82]), but application domains often call for the ability to express,
for instance, the existence of paths of arbitrary length in a graph, which is a classical
example of a non-local property.
To manipulate infinite objects algorithmically, the infinite objects must have a finite
representation that is appropriate to compute the necessary transformations. Several
extensions of nested graph conditions to non-local conditions have been devised, notably
by Radke [Rad13, Rad16] and Poskitt and Plump [PP14].

3.2. Nested Graph Conditions

In this thesis, we build upon a slightly modified version of nested graph conditions,
equivalent to those in [Pen09]1

Definition 11 (Nested Graph Conditions). Let Cond be the class of infinitary nested
graph conditions, defined inductively as follows (where 𝐵, 𝐶 ′, 𝐶 are graphs):

∙ If 𝐽 is a countable set and for all 𝑗 ∈ 𝐽 , 𝑐𝑗 is a condition (over 𝐵), then
⋀︀

𝑗∈𝐽 𝑐𝑗 is
a condition (over 𝐵).
This includes the case 𝐽 = ∅ (for any 𝐵), which is the base case.
∙ If 𝑐 is a condition (over 𝐵), then ¬𝑐 is also a condition (over 𝐵).
∙ If 𝑎 : 𝐵 →˓ 𝐶 ′ is a monomorphism, 𝜄 : 𝐶 →˓ 𝐶 ′ is a monomorphism and 𝑐′ is a

condition (over 𝐶), then ∃(𝑎, 𝜄, 𝑐′) is a condition (over 𝐵).

It is important to distinguish between the infinitary nested graph conditions and an
important special case, the finitary nested conditions.

1For technical reasons, [Pen09] first defines nested conditions with disjunctions indexed over countable
sets. These could of course “express” any property of finite graphs but these are not really graph
conditions in the sense of admitting a finite expression. The distinction is made explicit here.
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3. Recursively Nested Conditions

Definition 12 (Finitary Nested Graph Conditions). Same definition as Defini-
tion 11, but with the case

⋀︀
𝑗∈𝐽 𝑐𝑗 restricted to finite index sets 𝐽 only.

The finitary nested graph conditions are usually called finite in the literature and
sometimes just nested graph conditions. The current usage is introduced here to avoid
confusion when defining 𝜇-conditions. Indeed, infinitary nested graph conditions only
appear as an auxiliary definition. For the purpose of comparing expressiveness later, the
term “nested graph condition” will always mean a finitary nested graph condition.

Notation. We call 𝑐′ a direct subcondition of ∃(𝛼, 𝜄, 𝑐′), ¬𝑐′ and
⋀︀

𝑗∈𝐽 𝑐𝑗 if one of the
𝑐𝑗 is 𝑐′, and use the term subcondition to mean the reflexive and transitive closure of
this syntactically defined relation. If 𝑐 is a condition over 𝐵, then 𝐵 is its type2 and we
write 𝑐 : 𝐵, and Cond𝐵 is the class of all conditions over 𝐵. The usual abbreviations
define the other standard operators:

⋁︀
𝑗∈𝐽 𝑐𝑗 is ¬

⋀︀
𝑗∈𝐽 ¬𝑐𝑗, ∀ is ¬∃¬. All morphisms

satisfy the conjunction over the empty index set. To avoid a proliferation of special cases,
we introduce ⊤ (true) as a notation for it, and ⊥ (false) for ¬⊤. Hence technically
for each graph 𝐵 there is one ⊤ : 𝐵 and one ⊥ : 𝐵. We use the abbreviation ∃(𝑎)
for ∃(𝑎, 𝜄,⊤), ∃(𝑎, 𝑐) for ∃(𝑎, 𝑖𝑑cod(𝑎), 𝑐) and ∃−1(𝜄, 𝑐) for ∃(𝑖𝑑cod(𝜄), 𝜄, 𝑐) (the notation is
chosen to symbolise a morphism going the other way).

The morphism 𝜄 serves to unselect3 a part of 𝐶 ′. This will become necessary later.

Definition 13 (Satisfaction). A monomorphism 𝑓 : 𝐵 →˓ 𝐺 satisfies a condition 𝑐 : 𝐵,
denoted 𝑓 |= 𝑐, iff 𝑐 = ⊤, 𝑐 = ¬𝑐′ and 𝑓 ̸|= 𝑐′, or 𝑐 =

⋀︀
𝑗∈𝐽 𝑐𝑗 and for all 𝑗 ∈ 𝐽 , 𝑓 |= 𝑐𝑗,

or 𝑐 = ∃(𝑎, 𝜄, 𝑐′) (𝑎 : 𝐵 →˓ 𝐶 ′, 𝜄 : 𝐶 →˓ 𝐶 ′, 𝑐′ : 𝐶) and there exists a monomorphism
𝑞 : 𝐶 ′ →˓ 𝐺 such that 𝑓 = 𝑞 ∘ 𝑎 and 𝑞 ∘ 𝜄 |= 𝑐′.

∃B C ′ C,

G

a ι

q
f

q ◦ ι

c′

|=

A graph 𝐺 satisfies a condition 𝑐 : ∅ iff the unique (mono)morphism ∅ →˓ 𝐺 satisfies 𝑐.

Notation. As one can see in Fig. 3.1, the notation for graph conditions often only
depicts source or target graphs of morphisms, in this case the source of 𝑎 is left implicit
at the outer quantifier ∃(𝑎, 𝜄, 𝑐). The numbers show the morphisms’ node mappings.

2When we mention “types” in the text, we just mean graphs used as types. This is completely unrelated
to the notion of type graph used in the graph transformation literature.

3We use the term “unselection” anytime a morphism is used in the inverse direction: in Definition 11,
the morphism 𝜄 is used to base subconditions on a smaller subgraph, in effect reducing the selected
subgraph; it will also appear in our definition of graph programs as the name of an operation
that reduces the current selection, i.e. the subgraph the program is currently working on, similarly
“selection”.
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3. Recursively Nested Conditions

We also adopt the convention of representing the morphism 𝜄 in a situation ∃(𝑎, 𝜄, 𝑐)
implicitly: we prefer to annotate the variable’s type graph with the images of items under
𝜄 in parentheses.

In the diagram of Definition 13, the triangle indicates that 𝐶 is the type of the subcondition
𝑐′ which appears nested inside ∃(𝛼, 𝜄, 𝑐′).

|= ∃
(

1 2 ←↩ 2

,¬∃
(

2

))

Figure 3.1.: A nested graph condition (stating the existence of two nodes linked by an
edge, the second node not having a self-loop) and a graph satisfying it.

As for a logical formula, the most important aspect of a graph condition is not its
syntactic form but the property expressed by it.

Definition 14 (Logical equivalence).
The symbol ≡ denotes logical equivalence, i.e. for conditions 𝑐, 𝑐′ : 𝐵, 𝑐 ≡ 𝑐′ iff for all
monomorphisms 𝑚 with domain 𝐵, 𝑚 |= 𝑐⇔ 𝑚 |= 𝑐′.

It is often convenient in later proofs to treat quantification and unselection3 separately.
A condition ∃(𝑎, 𝜄, 𝑐) is equivalent to the nested ∃(𝑎,∃−1(𝜄, 𝑐)) (recall that M stands for
the collection of all graph monomorphisms):

Lemma 1 (Decomposing “exists”). ∃(𝑎, 𝜄, 𝑐) ≡ ∃(𝑎,∃−1(𝜄, 𝑐)).

Proof. 𝑓 |= ∃(𝑎,∃−1(𝜄, 𝑐)) ⇔ ∃𝑞 ∈M, 𝑓 = 𝑞 ∘ 𝑎 ∧ 𝑞 ∘ 𝑖𝑑cod(𝑎) |= ∃−1(𝜄, 𝑐)
⇔ ∃𝑞 ∈M, 𝑓 = 𝑞 ∘ 𝑎 ∧ ∃𝑞′ ∈M, 𝑞 ∘ 𝑖𝑑cod(𝑎) = 𝑞′ ∘ 𝑖𝑑cod(𝜄) ∧ 𝑞′ ∘ 𝜄 |= 𝑐′

⇔ ∃𝑞 ∈M, 𝑓 = 𝑞 ∘ 𝑎 ∧ ∃𝑞′ ∈M, 𝑞 = 𝑞′ ∧ 𝑞′ ∘ 𝜄 |= 𝑐′

⇔ ∃𝑞 ∈M, 𝑓 = 𝑞 ∘ 𝑎 ∧ 𝑞 ∘ 𝜄 |= 𝑐′ ⇔ 𝑓 |= ∃(𝑎, 𝜄, 𝑐)

Unselection alone does not add expressivity to nested conditions.

Fact 2 (Equal Expressiveness). Our conditions with 𝜄 are equally expressive as the
nested conditions defined in [Pen09].

Proof. Structural induction over the nesting, using the defining property of the trans-
formation 𝐴 and Definition 13 for the case of ∃−1(𝜄, 𝑐): 𝑓 |= ∃−1(𝜄, 𝑐) ⇔ 𝑓 |= 𝐴(𝜄, 𝑐).
If 𝑐, by induction hypothesis, is equivalent to a nested condition without 𝜄, then so is
∃−1(𝜄, 𝑐) ≡ 𝐴(𝜄, 𝑐).

We conclude with an example of 𝜄 removal.
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3. Recursively Nested Conditions

Example 7 (Paths of length ≤ 2). This condition expresses the existence of a path of
length ≤ 2. It makes use of an unselection. The graph to the left of the colon indicates
the condition’s type.

1 2

: ∃
(

1 2

)
∨ ∃

(

1

3

2

,∃
(

3

2

))

Here is what the condition of Example 7 looks like without the use of unselection. The
disjunction created by the 𝐴 construction has a single member because there is only one

possibility to add the node 1 and the edge to the graph 3

2
.

1 2

: ∃
(

1 2

)
∨ ∃

(

1

3

2

,∃
(

1

3

2

))

At this point, 𝜄 could seem to be a notational convenience at best because it really does
not add expressiveness. However, it plays an essential role later.

3.3. Recursively Nested Conditions

In this section, we define recursively nested graph conditions, short 𝜇-conditions, on the
basis of nested graph conditions. As opposed to nested conditions, the ones defined here
can express path and connectivity properties, which frequently arise in the study of the
correctness of programs with recursive data structures, or in the modelling of networks.
Nested conditions are a very successful approach to the specification of graph properties
for verification. However, they cannot express non-local properties such as connectedness.
Our idea is to generalise nested conditions to capture certain non-local properties by
adding recursion. The expressiveness of the resulting formalism will later be compared
to fixed point logics. The following notations are used throughout the text.

Notation. Sequences (of graphs, placeholders, morphisms) are written with a vector
arrow �⃗�, x⃗, 𝑓 , and their components are numbered starting from 1. The length of
a sequence �⃗� is denoted by ‖�⃗�‖. Indexed typewriter letters x1 stand for placeholders,
i.e. variables. The notation 𝑐 : 𝐵 indicating that 𝑐 has type 𝐵 is also extended to sequences:
�⃗� : �⃗� (provided that ‖�⃗�‖ = ‖�⃗�‖).

To define fixed point conditions, we need something to take fixed points of, and to enforce
existence and uniqueness. The fixed point conditions will be defined as least fixed point
solutions of certain systems of equations.
To represent systems of simultaneous equations, we work on tuples of conditions. If �⃗�
= 𝐵1, . . . , 𝐵‖�⃗�‖ is a sequence of graphs, then Cond�⃗� is the set of all ‖�⃗�‖-tuples �⃗� of
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3. Recursively Nested Conditions

conditions, whose 𝑖-th element is a condition over the 𝑖-th graph of �⃗�. Satisfaction is
extended component-wise: 𝑓 |= �⃗� if and only if ∀𝑘 ∈ {1, . . . , ‖�⃗�‖} 𝑓𝑘 |= 𝑐𝑘.
Choosing a partial order on Cond�⃗�, one can define monotonic operators on Cond�⃗�.
The semantics of satisfaction already defines a pre-order: 𝑐 ≤ 𝑐′ if and only if every
morphism that satisfies 𝑐 also satisfies 𝑐′, which is obviously transitive and reflexive. As
in every pre-order, ≤ ∩ ≤−1 is an equivalence relation compatible with ≤ and comparing
representants via ≤ partially orders its equivalence classes. We introduce variables as
placeholders where further conditions can be substituted4.
Disjunctions

⋀︀
and conjunctions

⋁︀
of countable sets of Cond𝐵 conditions, which by

definition exist for any 𝐵, are easily seen to be least upper bounds, respectively greatest
lower bounds of the sets of conditions. This makes Cond≡𝐵 a complete lattice. Let Cond�⃗�

be ordered with the product order by defining 𝑓 |= �⃗� to be true when the conjunction
holds. This again induces a partial order on the set of equivalence classes, Cond≡�⃗�. Thus,
Cond≡�⃗� is also a complete lattice, and a monotonic operator F has a least fixed point
(lfp), given by the limit of F⃗𝑛(

−→
⊥) for all 𝑛 ∈ N, by the Knaster-Tarski theorem [Tar55].

This is crucial in the definition of a 𝜇-condition. We extend the inductive Definition 11
by placeholders, and define substitutions of conditions for placeholders:

Definition 15 (Graph Conditions with Placeholders). Given a graph 𝐵 and a
finite sequence �⃗� of graphs, a (graph) condition with placeholders from �⃗� over 𝐵 is
either ∃(𝑎, 𝜄, 𝑐), or ¬𝑐, or

⋀︀
𝑗∈𝐽 𝑐𝑗 with a finite index set 𝐽 , or x𝑖, 1 ≤ 𝑖 ≤ ‖�⃗�‖ where x𝑖

is a variable of type 𝐵𝑖.

A placeholder in a condition F can be replaced by a condition of same type, which can
itself contain more placeholders. Substitution means that all occurrences of a given
placeholder are replaced by identical subconditions, and such a replacement is specified
for each of the placeholders that appear in F.

Definition 16 (Substitution). If F is a condition with placeholders x⃗ of types �⃗� and
�⃗� ∈ Cond�⃗�, then F[⃗x/�⃗� ] is obtained by substituting 𝑐𝑖 for each occurrence of x𝑖 for all
𝑖 ∈ {1,...,‖�⃗�‖}.

Satisfaction of such a condition by a morphism 𝑓 is defined relative to valuations, which
are functions that assign a Boolean value to each monomorphism from the type of each
variable to cod(𝑓)

Definition 17 (Valuation). A valuation of the variables x⃗ is a function that assigns,
for every variable x𝑖 : 𝐵𝑖, either ⊤ or ⊥ to each monomorphism 𝑓 : 𝐵𝑖 →˓ cod(𝑓).

As a stepstone to the definition of 𝜇-condition satisfaction later in this section, we now
define satisfaction relative to a valuation.

4Note that in our approach variables stand for subconditions, not for attributes or parts of graphs.
Wherever confusion with similarly named concepts from the literature could arise, we use the word
“placeholder” for “variable”.
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Definition 18 (Satisfaction of Conditions with Placeholders). If val is a valuation,
F is a condition with placeholders x⃗ and x𝑖 is a variable from x⃗, then a morphism 𝑓 (with
dom(𝑓) = 𝐵𝑖 and x𝑖 : 𝐵𝑖) satisfies x𝑖 (written 𝑓 |=val x𝑖) iff val(x𝑖) = ⊤. The other cases
for F are handled as in Definition 13.

We now turn to least fixed points. As discussed above, a least fixed point shall be
defined only up to logical equivalence. To guarantee its existence, the operator must be
monotonic (�⃗� ≤ 𝑑⇒ F⃗(�⃗�) ≤ F⃗(𝑑) for any �⃗�, 𝑑 ∈ Cond�⃗�).

Notation. Let F⃗0(⃗x) := x⃗ and F⃗𝑖(⃗x) := F⃗(F⃗𝑖−1(⃗x)) for 𝑖 ∈ N− {0}.

The following remark is a very useful characterisation of the least fixed point:5:

Remark 5. The least fixed point of F⃗ is equivalent to
⋁︀

𝑛∈𝑁 F⃗𝑛(
−→
⊥).

Proof. This is a fixed point because F⃗(
⋁︀

𝑛∈𝑁 F⃗𝑛(
−→
⊥)) =

⋁︀
𝑛∈𝑁−{0} F⃗

𝑛(
−→
⊥) = ⊥ ∨

⋁︀
𝑛∈𝑁−{0}

F⃗𝑛(
−→
⊥) =

⋁︀
𝑛∈𝑁 F⃗𝑛(

−→
⊥). It is the least fixed point because any other fixed point must

also be a least upper bound of all F⃗𝑛(
−→
⊥) and therefore greater or equal to the one

proposed.

Notation. F⃗(�⃗�) is a short notation for the result of substituting the conditions �⃗� for the
variables x⃗ in each component of F⃗. The notation F(⃗x) merely specifies that any of the
list x⃗ can occur in F, not which ones actually appear or how often. The operator yields
new components F𝑖 which may depend on any of the old components of �⃗�. The operator
binds the variables x⃗.

We are now ready to define recursively nested conditions, short 𝜇-conditions.

Definition 19 (𝜇-Condition). Given a finite list �⃗� of graphs and a corresponding list
of finitary conditions {F𝑖}𝑖∈{1,...,‖�⃗�‖} with placeholders x⃗ : �⃗� (F𝑖 having type 𝐵𝑖), then
𝜇[⃗x]F⃗(⃗x) denotes the least fixed point (lfp) of the operator that to any �⃗� assigns F⃗[⃗x/�⃗�]. A
recursively nested condition, short 𝜇-condition, is a pair (𝑏, 𝑙) consisting of a condition
with placeholders 𝑏, and a finite list of pairs 𝑙 = (x𝑖,F𝑖(⃗x)) of a variable x𝑖 : 𝐵𝑖 and
a condition F𝑖(⃗x) : 𝐵𝑖, with placeholders from x⃗, for some graph 𝐵𝑖, such that F⃗ is
monotonic.

Alternatively, it would be reasonable to define a family of equations without imposing an
order on the variables. We chose the list format for reasons of notational convenience.

Notation. The pair (𝑏, 𝑙) is also denoted (𝑏 | 𝑙) or (𝑏 | x⃗ = F⃗(⃗x)) to place emphasis on
the interpretation of 𝑙 as a recursive specification of the variables used in 𝑏.

5Note that continuity of F⃗ is never used or assumed. Only monotonicity matters.
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A 𝜇-condition with no variables and equations is a finitary nested condition. Figure 3.2
shows a simple 𝜇-condition that is not a finitary nested condition. It is read as follows:
the word “where” stands between main body and equations (we usually represent this as
a vertical bar). The only variable is x1. Its type is indicated in square brackets. The
second existential quantifier uses a morphism to unselect node 1 and the sole edge: its
source is the type of x1, which is syntactically required for using the variable in that
place. The unselection morphism 𝜄 is not written as an arrow, instead it is expressed in
compact notation by appending small blue numbers in parentheses to the node numbers
in its source graph to specify the mapping. To ease reading, we adopt the convention to
always use the same layout for the type of a given variable.

x1

[
1 2

]

︸ ︷︷ ︸
where x1

[
1 2

]

︸ ︷︷ ︸
= ∃

(
1 2

)
∨ ∃
(

1 2

3

, x1
[
1(3) 2(2)

])

︸ ︷︷ ︸
main body left hand side right hand side

occurrence type (with mapping)type

Figure 3.2.: The parts of a 𝜇-condition explained

The expressive power of 𝜇-conditions exceeds that of finitary nested conditions, as
illustrated by example Figure 3.2. This example can be read on an intuitive level as the
result of an indefinitely repeated substitution of the definition of the variable x1 into
itself. In the course of this section, we develop a semantics for 𝜇-conditions that gives a
formal meaning.

Fact 3 (𝜇-Conditions are More General than Nested).
1. 𝜇-conditions generalise finitary nested conditions, consequently all examples for

nested conditions are examples for 𝜇-conditions (with no variables or equations).
2. 𝜇-conditions are strictly more general than finitary nested conditions: Figure 3.2

expresses the existence of a path of unknown length between two given nodes, which
is known not to be expressible as a finitary nested condition.

In fact, many properties of interest in the verification of graph programs will be shown
to be expressible as 𝜇-conditions.

Fact 4 (Expressible Properties). The following properties (families) of graphs can
be expressed by 𝜇-conditions, see also Appendix A:

1. trees
2. binary trees
3. balanced binary trees
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4. acyclic graphs
5. connected graphs

Before giving the formal semantics of 𝜇-conditions, we first develop several technical
results that become necessary when fixed point operators are nested. To be able to
specify mutually recursive nested fixed points, we allow 𝜇-conditions with open variables
(i.e. not occurring as left-hand sides). For a least fixed point of a subset of variables
to exist, the system of equations must correspond to a monotonic operator under any
valuation of the open variables. An operator is said to be monotonic in a subset of
variables when it is monotonic under any valuation of the remaining variables.

Notation. We write the list of pairs 𝑙 = (x𝑖,F𝑖(⃗x))𝑖∈{1,...,‖�⃗�‖} as a system of equations
x⃗ = F⃗(⃗x). We call 𝑏 the main body and 𝑙 the recursive specification of (𝑏 | 𝑙) (and F𝑖(⃗x)
the body or right hand side of the variable x𝑖 in 𝑙, or the 𝑖-th component of 𝐹 ). The list
F⃗ is said to define the variables x⃗.

Such systems of equations may be used in a broader sense, to define nested fixed points:

Definition 20 (Transitive Variable Use). Let {F𝑖}𝑖∈𝐼 be a list of conditions as
in Definition 19. The use relation of F, ;F, is defined on literals {x𝑖,¬x𝑖}𝑖∈𝐼 by
x𝑖 ;F x𝑗 (¬x𝑗) iff x𝑗 occurs as a subcondition under an even (odd) number of negations
in F𝑖. The transitive use paths of F are all sequences of literals 𝜋𝑝1 ...𝜋𝑝𝑚 such that
∀1≤ 𝑖<𝑚

(︁
𝜋𝑝𝑖 ;F 𝜋𝑝𝑖+1

)︁
and ∀1<𝑗 <𝑚

(︁
𝜋𝑝𝑚 ̸= 𝜋𝑝𝑗

)︁
.

Fixed points can be arbitrarily nested provided that cycles are avoided. The precautions
necessary when forming cycles are explained later.

Lemma 2 (Nested Fixed Points). Given conditions with placeholders {F𝑖(�⃗�)}𝑖∈𝐼 that
form a monotonic operator F, if there is a partitioning 𝐼 = 𝐼1 ⊎ 𝐼2 with x⃗1 = {x⃗𝑖}𝑖∈𝐼1 and
x⃗2 = {x⃗𝑖}𝑖∈𝐼2 such that {F𝑖}𝑖∈𝐼1 does not use variables of x⃗2, then 𝜇[⃗x ]F⃗(⃗x) is equivalent
to 𝜇[⃗x2]F⃗𝐼2 (⃗x2) with F⃗𝐼2(x⃗2) = F⃗[⃗x1/𝜇[⃗x1]F⃗𝐼1 (⃗x1)](⃗x2).

Proof. Writing {�⃗�𝑖}𝑖∈𝐼 = �⃗� = (�⃗�1, �⃗�2) for the sequence of all the variables, ⊥⃗ for
sequences of ⊥ of appropriate lengths, ^⃗x1 for the least fixed point solution 𝜇[⃗x1]F⃗𝐼1 (⃗x1),
(1) for 𝜇[⃗x]𝐹 (⃗x) and (2) for 𝜇[⃗x2]F⃗𝐼2 (⃗x2), the argument starts from the evident fact that
⊥⃗ ≤ (^⃗x1, ⊥⃗). It follows by monotonicity of F⃗ and F⃗𝐼1 that (1) ⊆ (2) as all the stages in
the induction compare in this way. Conversely, (^⃗x1, ⊥⃗) ≤ (1) and by monotonicity of F⃗,
F⃗𝑖

𝐼2
(⊥⃗) is always smaller or equal than (1), which is a fixed point of F⃗. This allows us to

conclude that (2) ≤ (1) too.

It is permissible for a variable to depend on another variable regardless of monotonicity,
but only when special care is taken. Cycles can be avoided by working with a stratified
set of variables:
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Definition 21 (Stratification). F is said to be stratified if there is a decomposition into
F⃗𝐼1 , ..., F⃗𝐼𝑛 such that each F⃗𝐼𝑚 is monotonic in x⃗𝐼𝑚 and there are no variables x𝑖 ;

+
F x𝑗,

𝑗 ∈ 𝐼𝑗, 𝑖 ∈ 𝐼𝑖, 𝑗 < 𝑖. Such a decomposition is termed a stratification of F⃗ and the 𝐹𝐼𝑚

are strata of F⃗.

Note that the possible decompositions only depend on the strict partial order of transitive
variable use ;+

F . The order and decomposition of fixed points on ;+
F -incomparable

subsets of variables does not matter (by Lemma 2). Therefore there is no ambiguity in
presenting a nested fixed point as a system of equations without explicit stratification. The
passage to a single fixed point is depicted in Figure 3.4. Monotonicity and stratification
can be enforced syntactically and we only consider such 𝜇-conditions to be well-formed:

Fact 5 (Positive Variables). If there is no transitive use path starting and ending on
the same variable and comporting an odd number of negations, then F⃗ is stratified.

Proof. We prove by structural induction that F𝑖(�⃗�) is monotonic in x𝑗 under even num-
bers of negations and antitonic under odd numbers, i.e. 𝑐 ≤ 𝑑 ⇒ F𝑖[x𝑗/𝑐] ≤ F𝑖[x𝑗/𝑑]
resp. 𝑐 ≤ 𝑑⇒ F𝑖[x𝑗/𝑐] ≥ F𝑖[x𝑗/𝑑]. The base case is either ⊤ or x𝑗′ , 𝑗 ̸= 𝑗′ (trivial), or x𝑗

(monotonic). The other cases are negation, disjunction and existential quantifiers. Exam-
ining Definition 13, negation interchanges both even/odd and monotonicity/antitonicity.
Disjunction, defined via propositional logic too, is monotonic (and it is not possible
that the disjunction contains both monotonic and antitonic uses of x𝑗 because of the
assumption on transitive use paths). Quantifiers ∃(𝑎, 𝜄, 𝑐′) are monotonic in 𝑐′. Hence
the latter two cases do not affect either property. If all components of F⃗ are monotonic
in x𝑗 , then so is 𝐹 . Porting the argument to stratified systems merely requires checking
the monotonicity of each stratum.

Figure 3.3 is a schematic depiction of a condition with creatively nested negations. This
condition is well-formed according to Fact 5 in spite of variable x0 depending negatively
on x1, x1 on x2 and x2 on x1. It has two strata. Nodes represent variables or connectives.

x0 ¬¬¬ x1 ¬¬¬

x2 ¬¬¬

Figure 3.3.: Informal and schematic depiction of a condition with negations.

To illustrate the point of Definition 21, notice how nested fixed points, possibly with open
variables in the inner fixed point that are bound only by the outer fixed point operator,
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can be transformed into a single fixed point. Figure 3.4 informally and schematically
depicts the flattening of a mutually recursive condition from a nested fixed point to a
single fixed point of two variables. In the first variant, x2 would be bound by a fixed
point operator that does not bind x1. In the second variant, both variables are bound by
the same least fixed point operator.

x1 x2 ⇔ x1

x2

Figure 3.4.: Flattening nested fixed points,

The small nodes in Figure 3.4 stand for operators (Boolean operators, quantifiers) used
in the main body and right hand sides and the nodes with variable names for variables.
Edges entering variables indicate variable use while edges leaving them point to the
respective right hand sides. Any loop in this schematic diagram must run through an
even number of negations for a well-formed 𝜇-condition.
Now we can define the semantics of 𝜇-conditions. Any graph condition formalism must
define a notion of satisfaction, since graph conditions are used to define properties of
graphs. As for nested conditions, satisfaction of a condition by a graph is defined via the
auxiliary, more general notion of satisfaction of a condition by a morphism:

Definition 22 (Satisfaction of 𝜇-Conditions). (𝑏 | x⃗ = F⃗(⃗x)) with x⃗ : �⃗� is satisfied
by 𝑓 iff 𝑓 |= (𝑏[⃗x/𝜇[⃗x]F]).

This means that the 𝜇-condition (𝑏 | x⃗ = F⃗(⃗x)) can be understood by substituting the
least fixed point solution of the system of equations x⃗ = F⃗(⃗x) in the main body 𝑏 (for
stratified systems, use appropriate nested fixed points). Satisfaction of 𝜇-conditions with
open variables is analogous to satisfaction of conditions with placeholders, i.e. requires a
valuation to be given.

Remark 6 (Finite Nesting). By the “infinite disjunction” characterisation of the
least fixed point, any 𝜇-condition is equivalent to an infinite nested condition. Infinitely
deep nesting is not needed because the characterisation in Remark 5 yields a countable
disjunction of nested conditions, each one of finite nesting depth.

A morphism satisfies a given 𝜇-condition if and only if it satisfies the finite nested
condition obtained by unrolling the recursive specification up to some finite depth:
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Proposition 1 (Satisfaction at Finite Depth).
𝑓 |= (𝑏 | x⃗ = F⃗(⃗x)) iff ∃𝑛 ∈ N, 𝑓 |= 𝑏[⃗x/F⃗𝑛(

−→
⊥)].

Proof. The least fixed point is equivalent to
⋁︀

𝑖∈𝑁 F⃗𝑖(
−→
⊥), which is satisfied by 𝑓 iff at

least one F⃗𝑛(
−→
⊥) is.

Let us now motivate the necessity of unselection. As an auxiliary notion, the nesting
depth 𝑛 : Cond→ N is defined as 𝑛(

⋀︀
𝑗∈𝐽 𝑐𝑗) = max({0} ∪ {𝑛(𝑐𝑗) | 𝑗 ∈ 𝐽}), 𝑛(¬𝑐) = 𝑛(𝑐),

𝑛(∃(𝑎, 𝜄, 𝑐)) = 𝑛(𝑐) + 1, (𝑛(x𝑖)=0). The absorption construction allows transformations
of conditions that decrease nesting depth when isomorphisms are involved. Define the
reduced condition 𝑟𝑎,𝜄(𝑐′) thus:

Definition 23 (Reduced Condition). If 𝑐′ =
⋀︀

𝑗∈𝐽 𝑐𝑗, then 𝑟𝑎,𝜄(𝑐′) =
⋀︀

𝑗∈𝐽 𝑟𝑎,𝜄(𝑐𝑗). If
𝑐′ = ¬𝑐′′, then 𝑟𝑎,𝜄(𝑐′) = ¬𝑟𝑎,𝜄(𝑐′′). If 𝑐′ = ∃(𝑎′, 𝜄′, 𝑐′′), then 𝑟𝑎,𝜄(𝑐′) = ∃(𝑎′ ∘ 𝜄−1 ∘ 𝑎, 𝑐′).

Using this definition, isomorphisms can be absorbed:

Lemma 3 (Absorption). Any condition with placeholders 𝑐 = ∃(𝑎, 𝜄, 𝑐′) where 𝑎 and
𝜄 are isomorphisms is equivalent to a condition of smaller nesting depth (or equal if
𝑛(𝑐) = 1).

Proof. Directly from Definition 13, 𝑟𝑎,𝜄(𝑐′) ≡ 𝑐 and at the same time, 𝑛(𝑟𝑎,𝜄(𝑐′)) = 𝑛(𝑐′) =
𝑛(𝑐)− 1. The only case where nesting depth does not decrease is when 𝑐′ is a variable,
resulting in nesting depth 1.

We can use the notion of absorption and Lemma 3 to prove that without nontrivial
unselection in the equations, 𝜇-conditions are not more expressive than finitary nested
conditions. This, rather than notational convenience, is the real motivation for introducing
unselection.

Fact 6 (Absorbing 𝜄 Isomorphisms). Any 𝜇-condition (𝑏 | x⃗ = F⃗(⃗x)) where 𝜄 is the
identity in all subconditions of 𝑏 and of the components F𝑖(⃗x) is equivalent to a nested
condition.

Proof. Decompose F⃗ by Lemma 2 such that each stratum F⃗𝐼𝑚 only defines variables of
the same type. This is indeed possible since with no non-trivial unselection, a variable
may transitively depend on itself only via a morphism that is both injective and surjective.
Induction over the number of strata: for each F⃗𝐼𝑚 , after each step of the lfp iteration,
the nesting level can be reduced by Lemma 3 whenever ∃(𝑎, 𝜄, 𝑐) with 𝑎 isomorphism
occurs. Hence an equivalent condition of nesting level 0 or 1 can be reached. It must
be a Boolean combination of conditions of the form ∃(𝑎, 𝜄, x𝑖) with isomorphisms 𝑎 and
𝜄. Finitely many distinct conditions of this form, hence finitely many distinct Boolean
combinations, exist. The monotonic operator F⃗𝐼𝑚 thus converges after finitely many
steps to a finitely deeply nested condition with placeholders, for which the next stratum’s
lfp, by induction hypothesis possessing the desired property, is substituted.
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From the definition of satisfaction via fixed points, it is not immediately clear whether
satisfaction of 𝜇-conditions is decidable at all. The answer is yes, as witnessed by a
polynomial-time algorithm:

Theorem 1 (Deciding Satisfaction of 𝜇-Conditions). Given a morphism 𝑓 : 𝐵 →˓ 𝐺
and a 𝜇-condition 𝑐, it is decidable whether 𝑓 satisfies 𝑐.

Proof. The following algorithm CheckMu decides 𝑓 |= 𝑐. For the type 𝐵𝑖 of each variable
x𝑖, list all monomorphisms 𝑚𝑖𝑘 : 𝐵𝑖 →˓ 𝐺. Build a table which records in each column
a Boolean value for each pair (x𝑖, 𝑚𝑖𝑘). The entries in column 𝑗 + 1 are computed by
evaluating satisfaction of the right hand side corresponding to the row’s variable by the
morphism 𝑚𝑖𝑘 associated with the row, under the valuation given by column 𝑗. Stop after
producing two adjacent columns with the same entries. Output the value of the main
body under that valuation. The algorithm is correct because the 𝑗-th column corresponds
to satisfaction by F⃗𝑗(

−→
⊥), by definition. It terminates because of monotonicity: as values

can never change back to ⊥ from ⊤ while progressing through the columns, there is a
finite number 𝑗* ∈ N such that F⃗𝑗* is satisfied by 𝑓 iff F⃗𝑗*+1 is.

The idea of Theorem 1 is illustrated in Figure 3.5, where part of the table for checking
directed connectedness of a 5-cycle is shown.
Figure 3.5 illustrates the algorithm CheckMu. The table has 20 rows, for the 2! ·

(︀5
2
)︀

= 20
distinct ways that a discrete graph of two nodes (the type of the sole variable x) can
appear as a subgraph of the 5-cycle.

|= ∀
(

1 2

, x

[

1 2

])

x

[

1 2

]
= ∃

(
1 2

)
∨ ∃
(

1 2

3

, x

[

1(3) 2(2)

])

x \ ⊥ F(⊥) F(F(⊥)) F3(⊥) F4(⊥)

X X X X X

X X X X X

X X X X X
.

.

.

Figure 3.5.: Illustration of the satisfaction check algorithm.
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3.4. Expressiveness of Recursively Nested Conditions

In the following, we compare our 𝜇-conditions to other formalisms for expressing non-local
properties: the very powerful grammar-based HR*-conditions of Radke [Rad13, Rad16],
and the M-conditions [PP14] of Poskitt and Plump. 𝜇-conditions are defined in a way
that extends finite nested conditions. We now compare them to several other concepts
found in the literature and present our conclusions.
In this section, HR−-conditions are introduced as are a variant of HR*-conditions with a
certain restriction on the graph grammars.
We will show that 𝜇-conditions are:
∙ equally expressive as first-order logic with least fixed points (Theorem 2).
∙ able to express non-semilinear unary string languages (Corollary 1).
∙ incomparable to M-conditions and HR−-conditions:

there are properties that can be expressed as M-conditions as well as HR−-conditions
but not as 𝜇-conditions (Corollary 2, Corollary 6).
there are properties that can be expressed as 𝜇-conditions but neither as M-
conditions nor as HR−-conditions (Corollary 3, Corollary 5).

We also note that some node-counting monadic second-order properties cannot be
expressed in HR− (Fact 7) despite being expressible in HR* [Rad13]. We conjecture that
the last statement holds true for unrestricted HR*-conditions instead of HR−-conditions.
The results can be summarised in a table, where <> means incomparable and = means
equal expressive power:

𝜇-conditions vs. HR−-conditions <>

𝜇-conditions vs. M-conditions <>

𝜇-conditions and FO+lfp =

To ease our reasoning about the expressiveness of 𝜇-conditions, we introduce a variant,
A-𝜇-conditions, that allows arbitrary morphisms to appear instead of monomorphisms,
both under existential quantifiers and in the definition of satisfaction. This means that
the 𝑎 in ∃(𝑎, 𝜄, 𝑐) may now be an arbitrary morphism, as may the morphisms 𝑞 that occur
in the condition for satisfaction.
We now define A-𝜇-condition in almost the same way as a 𝜇-condition (Definition 19),
except for the restriction that the morphism 𝑎 has to be a monomorphism in a 𝜇-condition,
which is no longer the case for an A-𝜇-condition.

Definition 24 (A-𝜇-condition). The definition of A-𝜇-condition follows Definition 11,
Definition 15, Definition 19 with one exception: in the case ∃(𝑎, 𝜄, 𝑐) of the inductive
definition, 𝑎 is no longer restricted to be a monomorphism. Only 𝜄 is required to be in M.

The following example can only be an A-𝜇-condition due to the non-injective morphism:
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Example 8 (A-𝜇-condition).

x1

[

1 2

]
= ∃

(

1=2

)
∨ ∃

(

1 2

)
∨ ∃

(

1

3

2

←↩ 3

2

, x1

[
1(3)

2(2)

])

We now define A-satisfaction of an A-𝜇-condition. The definition is almost the same as
Definition 13 and Definition 22, except for the case of existential quantifiers, where the
required morphism 𝑞 is now arbitrary.

Definition 25 (A-Satisfaction). A-satisfaction (𝑓 |=A 𝑐) of an A-𝜇-condition 𝑐 by a
morphism 𝑓 ∈ A is defined analogously to Definition 13, but the condition is now an
A-muGC and in the case of 𝑐 = ∃(𝑎, 𝜄, 𝑐′), 𝑞 is arbitrary.

The condition of Example 8 has the meaning that the two given nodes are one and the
same, or there exists a path of unknown length between them. In an M-𝜇-condition, this
does not make sense because two nodes in the interface are always distinct.
For the remainder of this section, we use M-𝜇-condition as a synonym for 𝜇-condition
and M-satisfaction as a synonym for satisfaction of 𝜇-conditions. We call M-semantics
any notion of satisfaction of graph conditions by injective morphisms and A-semantics
any notion of satisfaction by arbitrary morphisms.
We shall now prove that M- and A-𝜇-conditions with their respective notions of satisfaction
(Definition 13 resp. Definition 25) can express the same properties. The informal
justification for the existence of such a transformation is that all M-ness is “local” within
the condition. Unlike in a so-to-speak true M-semantics, injectivity is not enforced with
respect to what has already been unselected, and the size of the interface is globally
bounded. While this leads to a somewhat unnatural semantics of simple-looking conditions
in detail, as shown later on in Example 15, even the “local” M-ness is useful for computing
weakest preconditions (as we will see in Section 5.1). For the problem at hand, we provide
two transformations MtoA and AtoM to convert between M and A for 𝜇-conditions.
Satisfaction of graph conditions by morphisms has originally been introduced as an auxil-
iary notion to recursively define satisfaction of nested graph conditions. Expressiveness
normally refers to objects, not morphisms, otherwise a M-semantics and an A-semantics
are never equivalent as the former specifies only injective morphisms. Therefore the
domain should be ∅ when comparing expressiveness.
In the generic framework of [Pen09], several finiteness assumptions are made. All of these
assumptions hold in the category of graphs and graph morphisms. Specifically, we shall
have recourse to the property that the number of epimorphisms with a given domain is
finite (up to isomorphisms of the codomain).
Given therefore a property of graphs expressed as a 𝜇-condition in M-semantics, the
same property is expressible in A-semantics (similar to the corresponding theorem in
[Rad13]):
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3. Recursively Nested Conditions

We introduce the notation AllNew(𝐵) for a conjunction of nested conditions stating
the non-existence of surjective morphisms of domain 𝐵 that are not isomorphisms:
AllNew(𝐵) :=

⋀︀
𝑒:𝐵�𝑋, not ∼= ¬∃(𝑒).

Construction 1 (M to A). For every M-𝜇-condition (𝑏 | F(⃗c)), each right hand side
of the transformed 𝜇-condition is F′

𝑖(⃗x) = F𝑖(⃗c) ∧AllNew(𝐵𝑖). The variables and their
types themselves are not modified. To the main body and right hand sides of a 𝜇-condition
(𝑏 | x⃗ = F⃗(⃗x)), apply this transformation:
MtoA(∃(𝑎, 𝑐)) = ∃(𝑎,MtoA(𝑐) ∧AllNew(cod(𝑎))).
The other cases are not modified, MtoA is recursively passed down: MtoA(∃−1(𝜄, 𝑐)) =
∃−1(𝜄,MtoA(𝑐)), MtoA(

⋁︀
𝑖 𝑐𝑖) =

⋁︀
𝑖 MtoA(𝑐𝑖) and MtoA(¬𝑐) = ¬MtoA(𝑐).

Within each right hand side, the construction corresponds to Construction 3.16 from
[Pen09].

Example 9 (MtoA for recursively nested conditions).

An M-𝜇-condition:

x1

[

1 2

]
= ∃

(

1 2

)
∨ ∃

(

1

3

2

←↩ 3

2

, x1

[
1(3)

2(2)

])

The resulting A-𝜇-condition:

x1

[

1 2

]
= ¬∃

(

1=2

)
∧
(
∃
(

1 2

,¬∃
(

1=2

))
∨

∃
(

1

3

2

,¬∃
(

1 2=3

)
∧ ¬∃

(

1=2

3

)
∧ ¬∃

(

1=3 2

)
∧ ∃−1

(
3

2

, x1

[
1(3)

2(2)

])))

The graphical representation uses the convention of indicating non-injective morphisms
with equality signs between the identities of the preimage nodes. Types of variables are
indicated in square brackets on the left hand side.

It must be shown that the above construction fulfils its purpose.

Proposition 2 (Correctness of Construction 1). Let (𝑏 | x⃗ = F⃗(⃗x)) be a M-𝜇-condi-
tion whose main body has type 𝐵, and 𝑓 : 𝐵 →˓ 𝐺. Then 𝑓 |= (𝑏 | F) iff 𝑓 |=A MtoA(𝑏 | F).

Proof. Structural induction over nesting within induction over the fixed point iteration.
The interesting case of the structural induction over nesting is 𝑓 |= ∃(𝑎, 𝑐), 𝑓 ∈M. This
means ∃𝑞 ∈M, 𝑓 = 𝑞 ∘ 𝑎. If 𝑓 |= ∃(𝑎, 𝑐) then certainly 𝑓 |=A ∃(𝑎, 𝑐) since by hypothesis,
𝑓 |=A MtoA(𝑐) iff 𝑓 |= 𝑐. Since 𝑎 ∘ 𝑓 ∈M, it satisfies AllNew(𝑎) since by uniqueness of
the epi-mono-factorisation it does not factor through any of the non-trivial epimorphisms.
Conversely, if 𝑓 |=A 𝑐 then either 𝑓 ̸∈M in which case it fails to satisfy the AllNew(𝐵𝑖)
at the outer nesting level of the right hand side, or 𝑓 ∈ M, in which case a structural
induction shows that none of the AllNew() conjuncts have any impact on satisfaction.
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3. Recursively Nested Conditions

Given a property expressed as an A-𝜇-condition, the same property is expressible in
M-semantics:

B R

Q Q

G

p̄

f

ā

∼=

B R

Q

G

E

D′
p̄

f

ea′

a◦
B R

Q E

G

p̄

ι

p̄′

ι′

Figure 3.6.: Diagrams pertaining to Proposition 3’s proof. Cases from left to right: an
epimorphism in the A-condition; a monomorphism; an unselection.

Construction 2 (A to M). To any 𝜇-condition (𝑏 | x⃗ = F⃗(⃗x)) with 𝑏 : ∅, assign
(𝑏′ | x⃗′ = F⃗′(x⃗′)) with 𝑏′ = 𝑏 and the following new types: for each 𝐵𝑖, collect all
possibilities �̄�𝑖,𝑝𝑖𝑗 where 𝑝𝑖𝑗 : 𝐵𝑖 � 𝑄𝑖𝑗 for some6 𝑄𝑖𝑗, up to isomorphism of the
codomains 𝑄𝑖𝑗. The new variables and equations are x′

𝑖,𝑝𝑖𝑗
[�̄�𝑖,𝑝] = F′

𝑖,𝑝𝑖𝑗
(⃗x′), where

F′
𝑖,𝑝𝑖𝑗

(⃗x′) = AtoM𝑝𝑖𝑗 (𝑐). The latter transformation, which takes one epimorphism 𝑝 and a
condition with placeholders whose type corresponds to dom(𝑝), is defined as follows:

AtoM𝑝(∃(𝐵
�̄�� 𝑅, 𝑐)): if �̄� does not factor through 𝑝, then ⊥, else AtoM𝑝′(𝑐) where

𝑝 = 𝑝′ ∘ �̄� (which is indeed uniquely determined).

AtoM𝑝(∃(𝐵 𝑎∘
→˓ 𝑅, 𝑐)) =

⋁︀
(𝑒,𝑎′,𝑝′) ∃

(︂
cod(𝑝) 𝑒∘𝑎′

→ ,AtoM𝑝′(𝑐)
)︂

: where (𝑎′, 𝑝′) is the pushout
of (𝑝, 𝑎∘) and 𝑒 ranges over all epimorphisms with domain cod(𝑎′) such that 𝑒 ∘ 𝑎′ ∈M.

AtoM𝑝(∃−1(𝐵 𝜄←˒ 𝑅, 𝑐)) = ∃−1(𝑄 𝜄′
←˒ 𝑄′,AtoM𝑝′(𝑐)) where (𝑝′, 𝜄′) is the epi-mono-

factorisation of 𝑝 ∘ 𝜄.
Boolean combinations: AtoM𝑝(

⋁︀
𝑖 𝑐𝑖) =

⋁︀
𝑖 AtoM𝑝(𝑐𝑖) and AtoM𝑝(¬𝑐) = ¬AtoM𝑝(𝑐),

It must be shown that the above construction fulfils its purpose. Expressiveness referring
to a class of graph properties, it is acceptable for the transformed condition to be satisfied
by a different morphism of same codomain. This is why a new morphism 𝑓 ′, rather than
𝑓 appears as a satisfying morphism in one direction of the proof.

Proposition 3 (Correctness of Construction 2). Let 𝑐 = (𝑏 | x⃗ = F⃗(⃗x)) be an
A-𝜇-condition. If 𝑓 |=A 𝑐, then there is a morphism 𝑓 ′ of same codomain as 𝑓 such

6𝑄𝑖𝑗
∼= 𝐵𝑖 is allowed.
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3. Recursively Nested Conditions

that 𝑓 ′ |= AtoM𝑝(𝑏) for some surjective 𝑝. If for a graph 𝐺, 𝐺 |= AtoM𝑝(𝑏 | F), then
𝐺 |= (𝑏 | F).

Proof. Induction over nesting within induction over fixed point iteration. These are the
interesting cases for the inner induction step of the proof of 𝐺 |=A 𝑐 ⇒ 𝐺 |= AtoM𝑝(𝑏).

AtoM𝑝(𝑐) where 𝑐 = ∃(𝐵
�̄�� 𝑅) and 𝑝 : 𝐵 � 𝑄: Assuming 𝑓 |=A 𝑐, factorised as 𝑓 = 𝑚∘𝑒

by induction assumption. Also 𝑓 |=A 𝑐, hence there is a morphism 𝑓 ′ : 𝑅 →˓ 𝐺 such that
𝑓 = 𝑓 ′ ∘ �̄�. If 𝑓 is to (M-)satisfy AtoM𝐵�𝑄(𝑐), there must be a graph 𝑄′ and morphisms
𝑢 : 𝑄′ →˓ 𝐺 and 𝑓 ′ : 𝑅 � 𝑄′ such that 𝑢 ∘ 𝑓 ′ = 𝑓 ′ by epi-mono-factorisation. However
the epi-mono factorisation of 𝑓 is unique (cf. [EEPT06]), therefore only 𝑄 ∼= 𝑄′ makes
the diagram commute and if 𝑓 fails to factor through �̄�, this is not possible.

AtoM𝐵�𝑄(𝑐) where 𝑐 = ∃(𝐵 𝑎∘
→˓ 𝑅): as in the right hand diagram (Figure 3.6), with

disjunction over all variants with epimorphism that composes to M on the side opposite
to 𝑎∘ to build the new M-satisfying M-morphism. The pushout again consists of a
mono- and an epimorphism7. 𝑓 |=A 𝑐 ⇒ ∃𝑞, 𝑞 ∘ 𝑎∘ = 𝑓 : assume that 𝑓 = 𝑓 ′ ∘ 𝑝 as an
epi-mono-factorisation. Note that this assumption is trivial for the interface of the main
body and that it automatically holds for 𝑞 = 𝑥 ∘ 𝑒 ∘ 𝑝′, allowing the induction hypothesis
to be used for that decomposition and AtoM𝑒∘𝑝′(𝑐).

AtoM𝑝(𝑐) where 𝑐 = ∃(𝐵 𝜄←˒ 𝑅) and 𝑝 : 𝐵 � 𝑄: observe that post-composition of 𝜄′ with
the morphism 𝑝∘ : 𝑄 →˓ 𝐺 yields the suitable situation to complete the induction step.
At variables, AtoM𝐵�𝑄(x𝑖) = x′

𝑖𝑗 (look up the index 𝑗 associated with 𝐵 � 𝑄). Per
assumption of the outer induction, the new equation AtoM𝐵𝑖�𝑄𝑖𝑗 (x𝑖) holds.
For the converse, observe that if 𝑓 |=A AtoM𝑝(𝑐), composition with appropriate epimor-
phisms from the top part of the diagrams in Figure 3.6 always remains possible and
yields satisfaction of 𝑐 by 𝑓 .

We conclude the subsection with an example of an A-𝜇-condition and the equivalent
M-𝜇-condition obtained using Construction 2. The M-𝜇-condition has two variables
because the nodes in the type of x1 in the original A-𝜇-condition need not be distinct,
and in M-semantics, this yields two distinct cases.

Example 10 (AtoM for recursively nested conditions).

7This is true for graphs and generally in adhesive categories [LS04].
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An A-𝜇-condition:

x1

[

1 2

]
= ∃

(

1 2

)
∨ ∃

(

1

3

2

←↩ 3

2

, x1

[
1(3)

2(2)

])

The resulting M-𝜇-condition:

x
′
1

[

1 2

]
= ∃

(

1 2

)
∨ ∃

(

1 2=3

←↩
2=3

, x′′1

)
∨ ∃

(

1=3 2

←↩
3 2

, x′1

)
∨ ∃

(

1

3

2

←↩
3 2

, x′1

)

x
′′
1

[

1=2

]
= ∃

(

1=2

)
∨ ∃

(

1=2=3

←↩
2=3

, x′′1

)
∨ ∃

(

1=2

3

, x′1

[

3 2

])

3.4.1. Relationship to Fixed Point Logic

In the following, we make precise the relationship between 𝜇-conditions and first-order
fixed point logic for graphs. Following Pennemann [Pen09], Rensink [Ren04, Ren06] and
Courcelle [Cou97], we speak of first-order graph formulae when the theory of graphs is
used. By this we mean a certain first-order signature with:
∙ A ternary relation symbol inc(𝑥, 𝑦, 𝑧) (interpreted as the incidence of edge 𝑥 with

source node 𝑦 and target node 𝑧) and
∙ equality 𝑥 = 𝑦

cf. Definition 3.21 in [Pen09], where the predicate symbols 𝑙𝑎𝑏𝑏(𝑥) for each 𝑏 in a finite
alphabet of node and edge labels are also introduced. We leave these out for now and
discuss unlabelled graphs; it is easy to check that adding labels poses no additional
problems.
The unary predicates node and edge can be defined from the inc predicate.
FO+lfp is the extension of first order logic by least fixed points. Formulae are
formed as in first-order logic, with the supplementary possibility that if 𝜙 is a formula
with �⃗� among its free variables and a free second-order variable 𝑅 of arity 𝑘 such that 𝜙
is positive in 𝑅, then lfp𝑅,�⃗�(𝜙)(⃗𝑡) is a formula, where �⃗� is a 𝑘-tuple of terms.
A free second-order variable of arity 𝑘 is a relation symbol of arity 𝑘 that does not
appear in the signature, and 𝜙 being positive in 𝑅 means that 𝑅 appears only under
even numbers of negations in 𝜙. First-order fixed-point graph formulae are then FO+lfp
for the theory of graphs.
Satisfaction: lfp𝑅,�⃗�(𝜙)(⃗𝑡) is interpreted as a 𝑘-ary relation defined as the least fixed point
of 𝜙, interpreted as an operator on 𝑘-ary relations. Otherwise, the semantics is defined
in precisely the same way as for first order logic. Satisfaction of a graph formula by a
graph follows Pennemann and Courcelle: the graph 𝐺 is regarded as a structure (𝐷𝐺, 𝐼𝐺)
in the straightforward way by taking 𝐷𝐺 = 𝑉𝐺 + 𝐸𝐺 as the universe and 𝐼𝐺 according to
the incidence data 𝑠𝐺, 𝑡𝐺.
As mentioned before, we are only concerned with finite graphs. On the logic side this
means we are dealing with interpretations over finite structures. Fixed point logic can
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express transitive closures of binary relations:

Example 11 (Transitive closure of a binary relation).
𝜙(𝑥, 𝑦) := lfp𝑅,𝑥𝑦 (𝐸(𝑥, 𝑦) ∨ ∃𝑧. 𝐸(𝑥, 𝑧) ∧𝑅(𝑧, 𝑦))

Notice the open variables (𝑥, 𝑦) mentioned under the operator. They play the same role
as the interface of 𝜇-conditions. The formula 𝜙 is interpreted as the least fixed point of
the relation 𝑅 taking the part under the constructor lfp𝑅,𝑥𝑦 as the recursive definition.

The above would be an example for a path expression for graphs as they are usually
defined in other areas of mathematics, i.e. undirected simple graphs consisting of a vertex
set 𝑉 and an edge set 𝐸 ⊆ 𝑉 × 𝑉 , corresponding to the binary predicate 𝐸. Graph
formulae, as described above, use variables for both nodes and edges.
[Pen09] (Theorems 3.25 and 3.28) states the correctness of a transformations from
formulae in first order graph logic to nested graph conditions and vice versa (Cond resp.
Form). In our case, the equivalence likewise relies on translations from 𝜇-conditions to
formulae and vice versa which preserve satisfaction.
The transformation of a FO+lfp formula goes along the same general lines as the Cond
transformation from [Pen09]. Like Cond, it relies on the transformation to A-satisfaction,
and transforms a formula by induction over the structure of the formula. For variables,
various possibilities are maintained according to whether it corresponds to a node or to
an edge, and its incidence. Conds𝜇 differs a little from Cond:8 Let Var be a countable
set of variables used in formulae.
To a formula, it assigns not one but several conditions. The members of Conds𝜇(𝜙) are
pairs (𝑐, 𝜐) of a condition 𝑐 whose type graph 𝐵 is annotated with a partial mapping
𝜐 : 𝑉𝐵 ∪ 𝐸𝐵 ⇀ Var from nodes and edges to free variables of 𝜙, such that 𝜐−1 is a total
function. Unlike Cond, Conds𝜇 does not immediately produce a disjunction but keeps
distinctions between the various possible assignments at a meta-syntactic level until a
logical variable is bound.

𝜙 Conds𝜇(𝜙)

inc(𝑥, 𝑦, 𝑧)
{︁

𝑦 𝑥 𝑧
: ⊤

}︁

𝑥 = 𝑦

⎧⎪⎨⎪⎩ 𝑥 𝑦
: ∃
(︃

1 2
,

1=2

)︃
,

𝑥

𝑦

: ∃

⎛⎝
1

2

,
1=2

⎞⎠ , 9

𝑥𝑦
: ⊥,

𝑦𝑥
: ⊥

⎫⎬⎭
𝜙′ ∧ 𝜙′′ {(𝑐′ ∧ 𝑑′, 𝜐′) | (𝑐, 𝜐𝑐) ∈ Conds𝜇(𝜙′), (𝑑, 𝜐𝑑) ∈ Conds𝜇(𝜙′′), (𝜄𝑐, 𝜄𝑑, 𝜐′) ∈

u(𝜐𝑐, 𝜐𝑑), 𝑐′ = ∃−1(𝜄𝑐, 𝑐), 𝑑′ = ∃−1(𝜄𝑑, 𝑑)} (u defined below)

8Chiefly a matter of convenience of presentation, or author’s preference. The intuition remains the same.
9The nodes are identified in the only possible way.
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¬𝜙′ {(¬𝑐, 𝜐) | (𝑐, 𝜐) ∈ Conds𝜇(𝜙)}

∃𝑥.𝜙′ {(∃(dom(𝜐′) ⊆ dom(𝜐), 𝑐), 𝜐′) | (𝑐, 𝜐) ∈ Conds𝜇(𝜙′)} (⊆: graph inclu-
sion), where 𝜐′ is defined as 𝜐 but undefined for all nodes or edges 𝑖
with 𝜐(𝑖) = 𝑥; nodes which are no longer the source or target of an
edge in dom(𝜐), as well as edges which are no longer in dom(𝜐), are
removed in dom(𝜐′) (so the type graph contains only those items that
are referenced, directly or indirectly, by some logical variable)

𝑅(�⃗�) {x𝑅,𝐵 | 𝐵 ∈ 𝐴(�⃗�)} (see below)

lfp𝑅,�⃗�(𝜙(𝑅, �⃗�)) see below

(posit equations x𝑅,𝐵 = RHS𝑅,𝐵, then 𝜇[−→x𝑅]F(−→x𝑅) with these equa-
tions)

With a list of 𝑘 distinct first-order variables �⃗� we associate the set 𝐴(�⃗�) of all pairs
(𝐵, 𝜐) such that for each node 𝑣 ∈ 𝑉𝐵, either 𝜐(𝑣) is defined or it is incident to an edge 𝑒
such that 𝜐(𝑒) is defined, and for each edge 𝑒 ∈ 𝐸𝐵, 𝜐(𝑒) is defined, and no unnecessary
identifications between unmapped nodes are made. It is simple to show that the number
of such pairs (up to graph isomorphisms) is finite.
A term built from a second-order variable 𝑅(�⃗�) is thus mapped to a set of condition
variables. At last, least fixed point formulae lfp𝑅,�⃗�(𝜙(𝑅, �⃗�)) are handled by taking for
each element 𝐺 ∈ 𝐴(𝑅) the disjunction of those elements of Conds𝜇(𝜙) whose types unify
with 𝐺, thus providing the right hand side RHS𝑅,𝐺 for x𝑅,𝐺 in a system of equations
that defines a syntactically positive operator because 𝜙 is positive in 𝑅.
The transformation u attempts to unify the annotated type graphs by finding a jointly
surjective pair of monomorphisms into a common domain that respects the variable
assignments. Its output is the list of all such possibilities: u(𝜐, 𝜐′) = {(𝜄, 𝜄′, 𝜐′′) | ∃𝑋, 𝜄 :
dom(𝜐) →˓ 𝑋, ∃𝜄′ : dom(𝜐′) →˓ 𝑋 ′ jointly surjective}.
In the case of 𝑥 = 𝑦, the necessity to add the ⊥ conditions is motivated by what would
happen with the statement 𝑥 ̸= 𝑦 otherwise, when 𝑥 happens to be a node and 𝑦 an edge,
such as in the formula inc(𝑥, 𝑦, 𝑧)∧𝑥 ̸= 𝑦. It should evaluate to ⊤, but the corresponding
possibility would have gotten thrown out when forming the Cartesian product, resulting
in the incorrect condition ⊥.

Example 12 (An example application of the Conds𝜇 transformation).
Figure 3.7 shows the transformation of a formula into a condition. The example makes
scant use of the more involved constructions and especially not of fixed points, but it
demonstrates how the basic recursive definition of the transformation works.

Recall the characterisation of the least fixed point of a monotonic operator as an infinite
disjunction, which is valid for the operators in FO+lfp as well.

Lemma 4. There is a transformation Conds𝜇 such that 𝐺 |= 𝐹 iff 𝐺 |=A Conds𝜇(𝐹 ).
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Formula: ∃𝑦∀𝑧∃𝑥(inc(𝑥, 𝑦, 𝑧) ∧ 𝑥 ̸= 𝑦)

inc(x, y, z)
{

y x z
: >

}

x = z



 x y

: ∃
(

1 2

,
1=2

)
,

x

z

: ∃




1

2

,
1=2


 ,

xz
: ⊥,

zx
: ⊥
}

x 6= z



 x y

: ¬∃
(

1 2

,
1=2

)
,

x

z

: ¬∃




1

2

,
1=2


 ,

xz
: >,

zx
: >
}

inc(x, y, z) ∧ x 6= z
{

y x z
: >

}

∃x.inc(x, y, z) ∧ x 6= z
{

y z
: ∃
(

, >
)}

∀z.∃x.inc(x, y, z) ∧ x 6= z
{
y

: ∀
(

,∃
(

, >
))}

∃y,∀z.∃x.inc(x, y, z) ∧ x 6= z
{
∅ : ∃

(
,∀
(

,∃
(

, >
)))}

Figure 3.7.: An example Conds𝜇 application with no recursion.

Proof. We treat the fixed points by induction over the fixed point iteration. The base case,
⊥ on both sides, is trivial. Assume, by way of induction step, that the condition F𝑖

𝑅(x𝑅,𝐵)
holds for exactly the subgraphs induced by the relation defined by 𝑖-fold application of
𝜙(𝑅, �⃗�). By induction over the structure of a formula, the right hand sides for x𝑅,𝐵 must
be shown to be satisfied by the subgraphs induced by the relation defined by 𝑖 + 1-fold
application: the cases of inc(𝑥, 𝑦, 𝑧) and 𝑥 = 𝑦 are straightforward from the semantics:
Jinc(𝑥, 𝑦, 𝑧)K = {(𝑥, 𝑦, 𝑧) ∈ 𝐷𝐺 | 𝑥 ∈ 𝐸𝐺 ∧ 𝑦, 𝑧 ∈ 𝑉𝐺 ∧ 𝑠𝐺(𝑥) = 𝑦 ∧ 𝑡𝐺(𝑥) = 𝑧}, which
corresponds to all the morphisms10 at which the sole condition in Conds𝜇(inc(𝑥, 𝑦, 𝑧)) can
be evaluated (to ⊤), and Conds𝜇(𝑥 = 𝑦) is likewise satisfied by precisely those morphisms
which select twice the same node or edge11. For 𝜙′ ∧ 𝜙′′, the meaning of the construction
is just a shift with unselection, subject to consistency of the variable mappings.

The transformation Formlfp(𝑐) that we introduce now relies upon a normal form (Fact
3.29 in [Pen09]) where every morphism is decomposed into its finitely many elementary
nontrivial morphisms, to with gluing of two items [𝑒 = 𝑒′]𝐵 : 𝐵 → 𝐵′ or addition of one
node [𝑢]𝐵 : 𝐵 → 𝐵′ or edge [𝑒𝑢𝑣]𝐵 : 𝐵 → 𝐵′. It is easy to show that such a decomposition
is always finite for graph morphisms (in general, such finiteness assumptions need to be

10We would speak of subgraphs, but these are non-injective in general.
11The latter with their source and target nodes, as this is unavoidable in graph conditions.
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3. Recursively Nested Conditions

added to the axioms for adhesive categories). The construction is well-defined in spite of
the decomposition not being uniquely determined.
In FO+lfp, simultaneous fixed points are syntactic sugar that allows a least fixed point to
be expressed by simultaneous definitions: a 𝑛-tuple of formulae 𝜙𝑖(𝑅1, ..., 𝑅𝑛, �⃗�𝑖) which
have 𝑛 free second-order variables for defining 𝑛 relations simultaneously (Def. 3.16 in
[Kre02]). To each second-order variable 𝑅𝑖, a list of variables �⃗�𝑖 of the corresponding
arity is allocated. The construction is as follows:

𝑐 Formlfp(𝑐)
∃(id, 𝑐) Formlfp(𝑐)
∃([𝑢], 𝑐) ∃𝑢.(node(𝑢) ∧ Formlfp(𝑐))
∃([𝑒𝑢𝑣], 𝑐) ∃𝑒.(edge(𝑒) ∧ inc(𝑒, 𝑢, 𝑣) ∧ Formlfp(𝑐))
∃([𝑢 = 𝑣], 𝑐) 𝑢 = 𝑣 ∧ Formlfp(𝑐)
∃−1(𝜄, 𝑐) Formlfp(𝑐)
¬𝑐 ¬Formlfp(𝑐)⋁︀

𝑖∈𝐼 𝑐𝑖
⋁︀

𝑖∈𝐼 Formlfp(𝑐𝑖)
x𝑖 𝑅x𝑖(�⃗�𝑖)
𝜇[−→x ]F(−→x ) lfp𝑅x1,...,𝑅x𝑛

{FormlfpF𝑖(−→x )}𝑖∈{1...‖−→x ‖}: a simultaneous fixed point

Here, [𝑢]𝑃 : 𝐵 →˓ 𝐵′ (or, leaving 𝐵 implicit, [𝑢]) is defined for any graph 𝐵 such that
𝑢 ̸∈ 𝑉𝐵 as the inclusion of 𝐵 into the graph 𝐵′ which differs from 𝐵 by 𝑉𝐵′ = 𝑉𝐵 ∪ {𝑢}.
[𝑒𝑢𝑣]𝐵 : 𝐵 →˓ 𝐵′ is the inclusion of 𝐵 into the graph 𝐵′ which has an additional edge
𝑒 ̸∈ 𝐸𝐵 between the nodes 𝑢, 𝑣 ∈ 𝑉𝐵 (i.e. 𝑠𝐵′(𝑒) = 𝑢 and 𝑡𝐵′(𝑒) = 𝑣). If 𝑢 and 𝑣 are nodes
of 𝐵, then [𝑢 = 𝑣]𝐵 : 𝐵 � 𝐵′ is the morphism such that 𝐸𝐵′ = 𝐸𝐵, 𝑉𝐵′ = 𝑉𝐵 − {𝑣},
[𝑢 = 𝑣]𝑉 (𝑣) = 𝑢 and [𝑢 = 𝑣]𝑉 (𝑤) = 𝑤 otherwise, [𝑢 = 𝑣]𝐸 = 𝑖𝑑𝐸𝐵

. 𝑠𝐵′ and 𝑡𝐵′ are
adapted. If 𝑢 and 𝑣 are parallel edges of 𝐵, then [𝑢 = 𝑣]𝐵 : 𝐵 � 𝐵′ is the morphism s.t.
𝑉𝐵′ = 𝑉𝐵, 𝐸𝐵′ = 𝐸𝐵 − {𝑒}, [𝑢 = 𝑣]𝑉 = 𝑖𝑑𝑉𝐵

and [𝑢 = 𝑣]𝐸(𝑣) = 𝑢 and [𝑢 = 𝑣]𝐸(𝑤) = 𝑤
otherwise.

Example 13 (An example application of the Formlfp transformation). Figure 3.8 shows
the transformation of a condition into a formula. The example contains a single fixed
point.

Let us show that the transformation Formlfp fulfils its purpose.

Lemma 5. There is a transformation Formlfp such that 𝐺 |=A 𝑐 iff 𝐺 |= Formlfp(𝑐).

Proof. By induction over the structure of the condition to be transformed. Most cases
are straightforward from the semantics of the logic and of the conditions. Again, the
case of a fixed point operator is handled by induction over the fixed point iteration. The
simultaneous fixed point formulation allows the stages of the fixed point iteration to
be compared, as we can now show by induction that at each stage, the ‖x⃗‖ relations

46



3. Recursively Nested Conditions

Formlfp




x1

[

1 2

]
=

∃
(

1 2

)
∨ ∃

(

1 2=3

←↩
2=3

, x2

)
∨ ∃

(

1=3 2

←↩
3 2

, x1

)
∨

∃
(

1

3

2

←↩
3 2

, x′1

)

x2

[

1=2

]
= ∃

(

1=2

)
∨ ∃

(

1=2=3

←↩
2=3

, x2

)
∨ ∃

(

1=2

3

, x1

[

3 2

])




= lfpRx1
,Rx2

,x11,x12,x21





Rx1
:

∃e. (inc(e, x11, x12))∨

∃e. (inc(e, y, x12) ∧Rx2(x12))∨
∃e. (inc(e, x11, x12) ∧Rx1

(x11x12))∨
∃z. (node(z) ∧ ∃e. (inc(e, x11, z) ∧Rx1

(zx12)))




Rx2 :

∃e. (inc(e, x11, x11))∨(
∃e. (inc(e, x11, x11) ∧Rx2

(x11))∨
∃z. (node(z) ∧ ∃e. (inc(e, x11, z) ∧Rx1

(zx11)))

)

Figure 3.8.: An example Formlfp application with a single fixed point.

correspond exactly to the sets of morphisms of codomain 𝐺 that satisfy the components
of F⃗𝑖(⃗x).

Notice that nested fixed points pose no problem in either direction, as it is perfectly
admissible for a fixed point operator not to bind all variables at once, both in FO+lfp
and in 𝜇-conditions.

Theorem 2. 𝜇-conditions are equally expressive as first-order logic with least fixed point
over finite graphs.

Proof. By Lemma 4 and Lemma 5.

3.4.2. Expressing String Languages

Strings can be treated as special graphs, allowing graph condition formalisms to be
compared on the kinds of string languages they are able to express.

Notation. Given a graph, we define the in-degree of a node 𝑣 as the number of edges
with target 𝑣, its out-degree as the number of edges with source 𝑣 and its degree deg(𝑣)
as the pair of its in- and out-degree, in that order.

The property of being a string graph can be expressed in every non-local graph condition
formalism that has been devised: the condition on the node degrees is already definable
in first order, or nested graph conditions. This, together with the right notion of
connectedness, defines string graphs. The latter property is just:
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conn1 = ∀
(

1 2

, x1
[

1 2

]
∨ x1

[
2 1

])
where x1

[
1 2

]
= ∃

(
1 2

)
∨ ∃
(

1 2

3

, x1
[
1(3) 2(2)

])

To ensure that a condition is only satisfied by string graphs, it is convenient to conjoin the
following to the main body (equivalent versions can be formulated in any of the extensions
of nested conditions considered here). The non-connected edges are an abbreviation:
they represent disjunctions of possibilities of linking these edges to either the depicted
nodes or new nodes.

Construction 3 (String Graph Languages).

string = ∃
(︂

1 2
,¬∃

(︂
1

)︂
∧ ¬∃

(︂
2

)︂
∧ ¬∃

(︂
1

)︂
∧ ¬∃

(︂
2

)︂
∧

∀
(︂

1 3 2
, ∃
(︂

3
,¬∃

(︂
3

)︂
∧ ¬∃

(︂
3

)︂)︂)︂)︂
∧ conn1

where the dangling edges mean that an appropriate disjunction of possibilities12 is combined
conjunctively with the subcondition:

∃
(︂

1
, 𝑐′
)︂

abbreviates for ∃

⎛⎝
1

, 𝑐′ ∧

⎛⎝∃
⎛⎝

1

⎞⎠ ∨ ∃(︂
1 2

)︂⎞⎠⎞⎠
By a unary language we mean a language over a singleton alphabet. Unary languages
are most readily encoded as unlabelled graphs. For all of the graph condition formalisms
considered, it is easy to check that the classes of unary string languages that can be
expressed do not change when working with labelled graphs instead, as labels other than
the one in the language’s unary alphabet simply fail to match.
Conjunctive context-free grammars (CCFG) are an extension of context-free grammars by
conjunctive productions. These grammars express a proper superclass of the context-free
languages. The conjunctive context-free languages are a subclass of the FO+lfp definable
languages on strings [Okh13]. A direct translation of such grammars to 𝜇-conditions is
easily obtained (independently of the translation from and to FO+lfp).

Definition 26 (Conjunctive Context-Free Grammar). A conjunctive (context-free) gram-
mar is a quadruple 𝐺 = (Σ, 𝑁, 𝑃, 𝑆) where Σ and 𝑁 are disjoint finite sets of terminal
and nonterminal symbols respectively, 𝑆 ∈ 𝑁 is the start symbol, and 𝑃 is a finite set
of ordered pairs (rules) of the form (𝐴, {𝛼1, ..., 𝛼𝑛}), written as 𝐴 → 𝛼1&...&𝛼𝑛 with
𝐴 ∈ 𝑁 and each conjunct 𝛼𝑖 is a sequence in (Σ ∪𝑁)*.

The definition is closely related to that of an ordinary context-free grammar. A string is
in the language L(𝐺) if it can be parsed using the rules. [Okh13] gives several equivalent
12Not defined here but the abbreviated subcondition can always be constructed similarly to the transfor-

mation from A to M earlier in this section.
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definitions of L(𝐺). One possibility is to define L(𝛼) for any 𝛼 ∈ (Σ∪𝑁)* (thus also L(𝑆))
as the set of words whose membership can be deduced using the axiom for terminals, the
concatenation rule for conjuncts and the conjunction rule schema (one instance per rule
of 𝑃 ) for single nonterminals:

𝑠∈L(𝑠) (𝑠 ∈ Σ)
𝑢∈L(𝐴) 𝑣∈L(𝐵)

𝑤∈L(𝐴𝐵)
𝐴 ∈ 𝑁 ∪ 𝑇

𝐵 ∈ (𝑁 ∪ 𝑇 )*

𝑤∈L(𝛼1) ... 𝑤∈L(𝛼𝑛)
𝑤∈L(𝐴) (𝐴→ 𝛼1&...&𝛼𝑛 ∈ 𝑃 )

A result of Jeż [Jeż07] delivers a striking example of a non-regular unary language
expressible by a conjunctive context-free grammar (it is well-known that all regular
languages are semilinear):

Example 14 (Non-Semilinear Unary String Language). We translate the equations from
a conjunctive context-free grammar to a recursively nested condition. Each nonterminal
becomes a variable of type , terminals become ∃ ( ) (labelled, in the case of non-
unary alphabets), positive Boolean combinations are represented as such and concatenation
𝑋 → 𝐴𝐵 is achieved by

X
[︂

1 2

]︂
= ∃

(︂
1 3 2

, A
[︂

1 3

]︂
∧ B

[︂
3 2

]︂)︂
The equations of the counterexample are:

𝐴1 → 𝐴1𝐴3N𝐴2𝐴2 | 𝑎
𝐴2 → 𝐴1𝐴1N𝐴2𝐴6 | 𝑎𝑎
𝐴3 → 𝐴1𝐴2N𝐴6𝐴6 | 𝑎𝑎𝑎
𝐴6 → 𝐴1𝐴2N𝐴3𝐴3

Translating these equations to conditions with variables results in a 𝜇-condition that is
satisfied by the language of (unlabelled) string graphs of lengths {4𝑛 | 𝑛 ∈ N}. For a proof
and an explanation of the ingenious construction, we refer to the original paper of Jeż or
Okhotin’s survey [Okh13].

By Construction 3, we get the following corollary:

Corollary 1 (Unary String Languages of 𝜇-Conditions). 𝜇-conditions can express non-
semilinear unary string languages.

3.4.3. Relationship to M-Conditions

M-conditions [PP14] have the same expressiveness as monadic second-order graph logic
(with quantification over node and edge sets). Hamiltonicity is existence of a Hamil-
tonian cycle, that is an edge cycle incident once to every node. It is expressible when
quantification over edge sets is possible, which it is in M-conditions. Hamiltonicity is not
expressible in 𝜇-conditions, by a standard result from finite model theory. Thus we have,
at no further expense:
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Corollary 2. There is a property expressible as an M-condition but not as a 𝜇-condition.

Proof. The existence of a Hamiltonian cycle is not expressible in FO+lfp, hence not
𝜇-conditions, but M-conditions can express it [Lib04].

When expressing families of string graphs with M-conditions as defined in [PP14], it is
quite sufficient to restrict the conditions syntactically to contain only morphisms whose
domain and codomain graphs have nodes of in-degree and out-degree each ≤ 1 because
the injective semantics would otherwise not provide any matches: as graphs that are not
string graphs must not satisfy the condition, any subcondition violating the node-degree
restriction can as well be replaced be ⊥ or ⊤. This leaves the possibilities ∃𝑉 𝑋[𝑐] which
introduces a node set variable 𝑋, ∃𝐸𝑋[𝑐] introducing an edge set variable 𝑋, Boolean
combinations and ∃(𝑎 | 𝛾, 𝑐′) where 𝑎 is an injective graph morphism subject to the node
degree restriction (maximum in-degree 1, maximum out-degree 1) and 𝛾 is a constraint
stating membership of a node in a node set, membership of an edge in an edge set or
the existence of a path from a certain node to another, possibly avoiding certain edges.
It is well known, and stated in [PP14], that the latter can be expressed using only the
remaining means and so can be removed.
Such a restricted M-condition can be transformed into an expression of MSO logic on
strings (finite structures of one successor). We sketch the transformation, which starts
out by performing the translation into MSO formulae from [PP14], then proceeding to
transform conditions ∃(𝑎 | 𝛾, 𝑐) with a morphism 𝑎 requiring the existence of an edge
into formulae ∃𝑎.𝜙, conditions ∃(𝑎 | 𝛾, 𝑐) with a morphism 𝑎 requiring the existence of
a node of degree (1, 1) into formulae of the form 𝑎 < 𝑏 where 𝑎 is the logical variable
associated with the ingoing edge and 𝑏 the one associated with the outgoing edge. Hence
M-conditions on strings have exactly the same expressiveness as monadic second-order
logic on strings. It follows:

Corollary 3. There is a property expressible as a 𝜇-condition but not as an M-condition.

Proof. The language {𝑎4𝑛 | 𝑛 ∈ N}, which is not regular and hence not definable in MSO
[Tho97] and therefore also not expressible as a M-condition, is a separating example.

We conclude that a comparison has been achieved:

Corollary 4 (𝜇 <> M). M-conditions and 𝜇-conditions are incomparable.

Proof. By Corollary 2 and Corollary 3.

The expressiveness of M-conditions itself is known to be strictly included in that of
HR*-conditions. In the following subsection, we compare 𝜇-conditions to these.

50



3. Recursively Nested Conditions

3.4.4. Relationship to HR*-Conditions

HR* conditions are an extension of nested graph conditions, where the graphs and
morphisms that appear in the condition are not fixed, but given by hyperedge replacement
grammars. While HR* and 𝜇-conditions seem to have a similar flavour (both being
non-local conditions that use variables), the formalisms are unrelated and less similar
than they seem at first glance: in the case of HR* the variables stand for subgraphs and
in 𝜇-conditions they stand for subconditions, which is a fundamentally different concept.
HR*-conditions are very powerful and subsume M-conditions, even counting-MSO on
graphs [Rad13]. We consider HR*-conditions with M-semantics. These are known to
be translatable into equivalent A-HR*-conditions ([Rad13], Appendix A). Currently,
nothing but second-order logic is known to encompass the whole of HR*-conditions. All
attempts to find a tighter bound their expressiveness from above have failed so far. In
this subsection, we restrict HR*-conditions slightly and examine their expressive power
on unary string languages, as for 𝜇- and M-conditions in the previous section.
Some useful properties lie within this common fragment: both 𝜇-conditions and HR*-
conditions are able to express (Boolean combinations of) existential statements about
graphs from given hyperedge replacement grammars [Hab92]. Unfortunately, this common
fragment is not all that useful because it is not closed under the weakest precondition
calculus (a crucial ingredient to our method of proving program correctness, to be
introduced in Section 5.1), due to the introduction of new nesting level with a universal
quantifier in the weakest precondition with respect to an unselect step.
Note however that unlike HR*-conditions with M-semantics, a 𝜇-condition with M-
semantics can state the existence of a morphism from a graph generated by the grammar
but cannot state the existence as a subgraph, that is as an injective morphism: items that
are matched by a subcondition ∃(𝑎, 𝑐) may be identical to some that had been unselected
by a morphism 𝜄 at a prior nesting level and this effect cannot be entirely prevented
because the size of the type graph of any subcondition and any variable is bounded.
HR*-conditions, on the other hand, have a “true” M-semantics.
For the path grammar in Figure 3.9, it turns out not to make a difference since both
variants are easily seen to imply each other (Example 15: when a path with repeated
nodes exists, then a possibly shorter one without repeated nodes can be constructed from
it. When a path without repeated nodes exists as a subgraph, then this is also an example
of a path with (zero) repeated nodes). This fact is purely coincidental; it is generally
not the case (neither for HR* nor 𝜇-condition) that a condition in M-semantics, even
one that uses only existential quantification, has the same meaning as the syntactically
identical condition interpreted in A-semantics.

∃
(

+
)

where
+

::=
+
|

Figure 3.9.: Path grammar and existence of a path in HR*.
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Figure 3.10.: The path-ology of (M-)𝜇-conditions.

Example 15 (Existence of a path). Figure 3.10 shows the existence of a path, found
with an injective match vs. a non-injective match. In the case of a non-injective match,
nothing prevents nodes from being traversed again at a later nesting level or iteration,
and the matched path can contain cycles.

Beyond this common fragment, HR*-conditions can express a host of complex properties.
In the following, the definitions are briefly recalled. For thorough definitions, we refer to
[Hab92] throughout. Our definitions are somewhat simplified: there is only a single list
of pins for a pointed graph or hyperedge.

Notation. Λ is a finite alphabet of hyperedge labels, 𝑌𝐺 is the set of hyperedges of a
hypergraph 𝐺.

To define HR*-conditions, one needs hyperedge replacement systems, which are similar to
context-free grammars. Nonterminals are so-called hyperedges with a list of attachment
points or pins. Replacement is performed on hypergraphs, which are a generalisation
of graphs which may also comport hyperedges instead of edges. For our purposes, a
hypergraph 𝐻 is a tuple (𝑉𝐻 , 𝑌𝐻 , att𝐻 , 𝜆𝐻) of a finite set of nodes 𝑉𝐻 and a finite set of
hyperedges 𝑌𝐻 , a mapping att : 𝑌𝐻 → 𝑉 *

𝐻 from hyperedges to finite lists of nodes and
a labelling function 𝜆𝐻 : 𝑌𝐻 → Λ. The length of att(𝑦) is also called the arity of the
hyperedge 𝑦 ∈ 𝑌𝐻 .

Remark 7. A graph can be regarded as a hypergraph whose hyperedges all have arity 2.

A pointed hypergraph (𝐺, 𝑝1, ..., 𝑝𝑛) is a hypergraph 𝐺 together with a list 𝑝1, ..., 𝑝𝑛 of
some of its nodes, called pins. A hyperedge replacement system R = (𝑁, 𝑇, 𝑃 ) consists
of a set 𝑁 of nonterminals and a set 𝑇 of terminals, and a set 𝑃 of productions. The
components are then also written 𝑁R, 𝑇R, 𝑃R. A production is a pair (𝐴, 𝑅) consisting of
a nonterminal 𝐴 (left hand side) and a pointed hypergraph 𝑅 (right hand side). One may
assume that all hypergraphs 𝑅 appearing as the left hand side of a given nonterminal have
the same number of pins, henceforth also called the arity of 𝐴 and denoted arityR(A). In a
derivation step, some appropriately labelled hyperedge 𝑦 ∈ 𝑌𝐻 of the current hypergraph
𝐻 is replaced with a pointed graph from the right hand side of the production, removing
the matched hyperedge and gluing in the right hand side, respecting the ordering of
the pins. The resulting hypergraph is denoted 𝐻[𝑦/𝑅]. A derivation is a sequence of
derivation steps 𝐻 ⇒ 𝐻[𝑦1/𝑅1] ⇒ 𝐻[𝑦1/𝑅1][𝑦2/𝑅2].... It is said to be terminal if the
target of its last step contains no nonterminals.
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The language of a hyperedge 𝑥 in the hyperedge replacement system R is the set of
hypergraphs13 obtained by derivations of arbitrary length in R starting from the hyperedge
𝑥 and is denoted by R(𝑥). A hyperedge replacement system together with a (start)
hypergraph labelled over 𝑁R ∪ 𝑇R is called a grammar. Some normal form theorems are
known [Hab92], for example it is never necessary for a nonterminal to appear with fused
pins and unproductive nonterminals, whose language is empty, can be removed as for
context-free grammars.
A HR*-condition is a pair (𝑐,R) of a condition with nonterminals14 𝑐 and a hyperedge
replacement system R. The nonterminals that appear in the graphs are labelled hy-
peredges, whose labels also appear as left hand sides of productions with the apposite
arities in R. The definition of a condition below is based on [Rad13] (in the new reference
[Rad16], the presentation was streamlined but the notion is the same):

∙ If 𝑎 : 𝑃 →˓ 𝐶 is a monomorphism and 𝑐 is a HR*-condition over 𝐶, then ∃(𝑎, 𝑐) is a
HR*-condition over 𝑃 .
∙ For any two graphs 𝑃 and 𝐶 and HR*-condition 𝑐 over 𝐶, ∃(𝑃 ⊒ 𝐶, 𝑐) is a

HR*-condition over 𝑃 .
∙ As well as the Boolean combinations and true.

The semantics of HR*-conditions is based on substitutions obtained from the grammars
of the hyperedge replacement system. A graph 𝐺 satisfies a condition 𝑐 iff it satisfies the
condition by a substitution, which is a mapping from the nonterminals to graphs issued
from the respective languages. ΣR is the set of all substitutions induced by R and the
image of a labelled hypergraph under the substitution 𝜎, which is obtained by replacing
all labelled hyperedges by their images under 𝜎, is denoted 𝑃 𝜎. Substitutions may be
partial, which is useful in case some nonterminals do not occur. The noteworthy cases in
the semantics are:

∙ ∃(𝑎, 𝑐) for 𝑎 : 𝑃 →˓ 𝐶 is satisfied by a substitution 𝜎 ∈ ΣR and a morphism
𝑝 : 𝑃 𝜎 →˓ 𝐺 if there is a partial substitution 𝜏 that agrees with 𝜎 on 𝑃 (𝑃 𝜎 = 𝑃 𝜏 )
and a monomorphism 𝑞 : 𝐶𝜏 →˓ 𝐺 such that 𝑞 ∘ 𝑎𝜏 = 𝑝 and 𝑞 |=𝜏 𝑐, where
𝑎𝜏 : 𝑃 𝜎 →˓ 𝐶𝜏 agrees with 𝑎 on all items which are not hyperedges and maps all
hyperedges to themselves.
∙ ∃(𝑃 ⊒ 𝐶, 𝑐) is satisfied by 𝜎 and a morphism 𝑝 : 𝑃 𝜎 →˓ 𝐺 if there is a substitution

𝜏 that agrees with 𝜎 on 𝑃 , an inclusion 𝐶𝜏 ⊆ 𝑃 𝜎 and a monomorphism 𝑞 : 𝐶𝜏 →˓ 𝐺
such that 𝑞 = 𝑝 |𝐶𝜏 (i.e. the restriction of 𝑞 to 𝑃 𝜎)15 and 𝑞 |=𝜏 𝑐.
∙ As well as the Boolean combinations and true.

13One can define hyperedge replacement systems that produce families of hypergraphs, but in this section,
expressiveness with respect to graphs is examined. All labels of arity other than 2 are nonterminals
and the hyperedge replacement system merely serves to define sets of plain (but pointed) graphs.

14In the original, these are called conditions with variables, which clashed with our terminology. The
variables introduced in this chapter stand for conditions, while those used in HR*-conditions indicate
non-terminals of graph grammars.

15When comparing with [Rad13], notice that the restriction makes sense in this direction.
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Note that the condition ∃(𝑃 ⊒ 𝐶, 𝑐) is a source of complication. It does not directly
impose any relationship between the items of 𝑃 and 𝐶: any substitution that yields
a subgraph will do, and unlike in the semantics ∃(𝑎, 𝑐) there is no constraint on the
individual nodes, edges, hyperedges. When the same nonterminal is used in 𝑃 and in 𝐶,
the switch from 𝜎 to 𝜏 does not guarantee that for any specific nonterminal 𝜎(𝑥) = 𝜏(𝑥).
It does, however, impose an overall constraint via 𝑃 𝜎 = 𝑃 𝜏 that must not be overlooked.
As a stepstone towards the notoriously powerful HR*-conditions, we introduce HR−-
conditions. These are the same as HR*-conditions but subject to these restrictions:

Definition 27 (HR−-conditions). Same definition as HR*, but
∙ all morphisms under ∃(𝑎, 𝑐) are injective and only injective matches are permitted

(M-semantics16).
∙ the hyperedge replacement system generates only graphs with a bounded number of

connected components (non-proliferating).

Please note that the proposed restriction leads to a proper subclass in terms of expressible
properties, for a reason that also separates node-counting monadic second-order logic
(CMSO) from HR−.

Fact 7 (HR−( HR*). HR−-conditions cannot express all node-counting monadic second-
order properties, because grammars generating nodes with edges are not useful when
expressing families of discrete graphs: all productions creating edges can be eliminated
by integrating [Rad16] the condition of discreteness. A grammar generating arbitrarily
large discrete graphs cannot be non-proliferating. A HR−-condition that specifies a set of
discrete graphs is merely equivalent to some nested condition.

On the other hand, paths and even Hamiltonicity can still be expressed, which shows
that HR−-conditions remain very powerful.
A semilinear set of dimension 𝑑 is a finite union of sets of the form �⃗� +

⋃︀
𝑗∈𝐽 𝑐𝑗 · �⃗�𝑗 ,

where �⃗� ∈ Z𝑑, the index set 𝐽 is finite and ∀𝑗 ∈ 𝐽 , 𝑐𝑗 ∈ N ∧ �⃗�𝑗 ∈ Z𝑑. A language of
string graphs is said to be semilinear if the corresponding language of strings is. For
string languages, the term refers to the image of the language under the letter count, or
Parikh, mapping (cf. Chapter VI of [Hab92]). When the alphabet is unary, the multisets
which are the images of the words under the letter count mapping are just integers and
semilinear sets are unions of arithmetic progressions. It is well known that Presburger
Arithmetic, i.e. first-order logic with integers, addition and ≤, defines precisely the
semilinear sets.
As was argued for M-conditions in Subsection 3.4.3, it is safe to assume that all hyperedge
replacement systems only produce graphs whose nodes have degree at (0, 0), (1, 0), (0, 1)
or (1, 1): briefly, a hyperedge replacement system can always be transformed into one
that produces only disjoint unions of strings (called a string grammar in the following

16A-semantics was only introduced as a variant in [Rad13], so this is not a restriction at all.
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text) by using a larger set of nonterminals annotated with degree information at each
pin and then removing all productions which would violate that property. Therefore this
property can be assumed for any HR−-condition that is satisfied only by string graphs.
We prove some technical results on hyperedge replacement systems and the property of
non-proliferation.
An overloaded notation is used: if 𝑌 is a nonterminal of R = (𝑁, 𝑇, 𝑆), then 𝑌 also
denotes the hypergraph that consists of just one hyperedge 𝑌 attached to arityR(Y)
distinct nodes.

Notation. A partitioning of a set 𝐴 is a set of disjoint nonempty subsets of 𝐴 whose
union equals 𝐴. Let Π(𝐴) denote the set of all partitionings of 𝐴.

Let us propose an example of a hyperedge replacement system with a single nonterminal
and a single rule, which is a string grammar in the above-given sense despite having a
nonterminal with three pins:

Example 16 (A hyperedge replacement system). The following hyperedge replacement
system generates a set of graphs with unbounded numbers of connected components:

Y ::=

Y

Y Y

Now for the restriction that distinguishes HR− from HR*:

Definition 28 (Non-proliferation).
A hyperedge replacement system R = (𝑁, 𝑇, 𝑃 ) is said to be non-proliferating iff there is
a bound 𝑏 ∈ N on the number of connected components of any graph 𝐺 such that 𝑌

*⇒ 𝐺
for 𝑌 ∈ 𝑁 .

A hyperedge replacement system is said to be proliferating if there is no such bound. The
replacement system of Example 16 is proliferating, as the following derivation can be
repeated, yielding an unbounded number of connected components:

Example 17 (Proliferation).
Each application of the rule disconnects the bottom two pins of the nonterminal from the
pin at the top, increasing the number of components permanently by 1 for the rest of the
derivation. Since the process can be repeated, the system of Example 16 is proliferating.

Y ⇒
Y
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With an appropriate start graph, this hyperedge replacement system is a string grammar
because it generates only graphs of maximum degree (1, 1). Being proliferating, it cannot
be used in a HR−-condition.
We now show that non-proliferation is decidable, and we also show how information
about the possible configurations of connected components issued from a hyperedge (and
which pins are linked by these components) can be extracted. The decidability result
holds for all grammars, although it is shown only for string grammars (i.e. grammars
that generate disjoint unions of string graphs).

Remark 8 (Normal form). A hyperedge replacement system can be brought into a
Chomsky-esque normal form: a hyperedge replacement system with the same language
as a given one (for a given start graph), where each production has either two or
zero nonterminals in every right hand side. This is achieved by factoring out a new
nonterminal with arity(Y1) + arity(Y2) pins for each pair of hyperedges labelled 𝑌1, 𝑌2,
or a new nonterminal that generates all the terminal edges present in right hand side, as
long as needed. This process clearly terminates, yielding an equivalent system.

The normal form helps present the following result, which is used in the proof that some
𝜇-condition expressible unary string languages are not expressible by any HR−-condition.
The result we are about to prove states that for string grammars as defined above, not only
is non-proliferation decidable but one can also extract a formula in Presburger arithmetic
that describes the possible lengths of the connected components, both those linked to
nodes preserved from the start graph and those (finitely many due to non-proliferation)
which are newly created in a derivation. An auxiliary construction analyses the hyperedge
replacement system and allows to determine, for each nonterminal:

1. which of its pins can end up being linked by string graphs after a terminal derivation,
2. the possible lengths of these strings.

Construction 4 (Extracting Link Information).
Let (R, 𝑃 ) be a string grammar. Assume that R is in the abovesaid normal form. Assume
by the same technique that 𝑃 contains a single hyperedge 𝑦 of nonterminal label 𝑌 . We
initialise the following replacement parameters:

∙ A natural number 𝑘

∙ An assignment ports : {1, ..., arity(y)} → 2{+,−} is induced by 𝑃 : for each pin of
𝑦, set ports = {+} if there is an ingoing terminal-labelled edge in 𝑃 to that pin,
{−} if there is an outgoing edge, ∅ if there are both, or more than one in-/outgoing
edge, {+,−} otherwise.
∙ An injective mapping color : 𝜎 ⊎ {1, ..., 𝑘} → N.
∙ A partitioning 𝜎 of {1, ..., arity(y)} is valid with respect to ports if it contains only

sets of size at most two, and each {𝑝, 𝑞} ∈ 𝜎 has + ∈ ports(𝑝) and − ∈ ports(𝑞)
or vice versa. Notice that the number of possible ports and 𝜎 is finite for each
nonterminal.
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We will define a procedure that, when given this data, attempts to return a formula with
free variables #1, #2, ...#|𝜎|, #(|𝜎|+ 1), ..., #(|𝜎|+ 𝑘) which describes exactly the lengths
of the connected components of graphs generated by (R, 𝑃 ) under the assumption that the
pins of 𝑦 are linked up in the way indicated by the partition 𝜎. If R is non-proliferating,
then this should be the desired result. If it is not, then the computation should abort,
reporting the failure.
Let 𝑌 = {𝑌𝑘,ports,𝜎 | 𝑌 ∈ 𝑁R, 𝑘 ∈ N, ports ∈ {1, ..., arity(y)} → 2{+,−}, 𝜎 ∈ valid
partitions of {1, ..., arity(y)} under ports}.
For each production (𝑌, 𝑅) ∈ 𝑃 , let Θ(𝑌, ports, 𝜎, color) be the following set of productions:
∙ If 𝑃 contains an edge whose direction17 is inconsistent with 𝜎 (+ must mark the

source and − the target of an edge), then it is empty.
∙ Otherwise, if 𝑅 contains only terminals, then {(𝑌𝑛,ports,𝜎, CCC(𝑅))} for every pos-

sibility for ports, 𝜎, where 𝑛 is the number of connected components of 𝑅 which do
not include a pin of 𝑅. CCC(𝑅)18 differs from 𝑅 in that each terminal 𝑇 of an
edge 𝑒 ∈ 𝑌𝑅 is changed to (𝑐, 𝑇 ), 𝑐 being the color that color assigns to the pins of
𝑅 in the connected component of 𝑒.
∙ Otherwise, there are by assumption two nonterminal hyperedges 𝑢, 𝑣 with 𝜆𝑅(𝑢) = 𝑈 ,

𝜆𝑅(𝑣) = 𝑉 in 𝑌𝑅. Return {(𝑌𝑘, 𝑅′) | 𝑘 ∈ N, 𝑅′ ∈ C𝑘(𝑅, ports, 𝜎, color)}. The set
C𝑘(𝑅, ports, 𝜎, color) is defined as follows: for every solution of 𝑘 = 𝑙 + 𝑚 + 𝑛 in
positive integers, change the label of 𝑢 to 𝑈𝑙,ports𝑢,𝜎𝑢,color𝑢 and 𝑣 to 𝑉𝑙,ports𝑣 ,𝜎𝑣 ,color𝑣 ,
where the indices ports𝑢 and so on run through all choices consistent with the
requirement that a string grammar should result. color is extended injectively to
color𝑢′ : 𝜎𝑢′ → N for 𝑢′ ∈ {𝑢, 𝑣} subject to the consistency requirement that color𝑢′

coincides with color𝑣′ on shared or linked pins, and new values do not clash between
descendants of 𝑈 and of 𝑉 .

R is non-proliferating iff the languages of all nonterminals whose index 𝑘 exceeds a certain
number 𝑏 ∈ N are empty: it is clear by construction and can be proven by induction over
N that 𝑘 equals to the number of connected components (those not containing a pin of
𝑃 ) that will be created in a terminal derivation. To determine that number, search for
a cycle 𝑌𝑘,ports,𝜎 ⇒ 𝐺 with 𝑦′ ∈ 𝑌𝐺, 𝜆𝐺(𝑦′) = 𝑌𝑘′,ports,𝜎 such that after removing 𝑦′, the
remainder of 𝐺 contains a connected component that does not include a pin of 𝐺. The
number of minimal cycles is finite because the search process is independent of 𝑘, 𝑘′ and
there is a finite number of possibilities for ports, 𝜎. Consequently, there is an overall
bound 𝑏R(𝑃 ) for a non-proliferating grammar (R, 𝑃 ), for any start graph 𝑃 . If R proves
to be non-proliferating, then the removal the empty nonterminals is thus computable
and yields a finite grammar whose terminals are pairs (𝑥, 𝑦) where 𝑥 is the number of a
connected component and 𝑦 is an edge label of R.
Finally apply the Parikh theorem for hyperedge replacement: Lemma 4.2, Chapter VI of
[Hab92] to (𝑌 , CCC(𝑃 )) to obtain the desired formula.

17Terminals are edges, by assumption
18The name stands for “connected component colouring”.
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Figure 3.11.: A nonterminal 𝑌10 ∈ 𝑌 and the right hand sides of two of its productions.

The idea is that the new nonterminal 𝑌𝑘 corresponds to a case distinction to treat the
different possibilities of finding a derivation starting from 𝑌 that produces exactly 𝑘
new connected components not containing any pins of the original 𝑌 hyperedge. New
components can come into existence in three ways: either both of their end points are
within 𝑈 , or both are within 𝑉 , or one is within 𝑈 and the other within 𝑉 . These
correspond to different assignments of the numbers 𝑙 and 𝑚 for the former cases, and
ports of 𝑈 and 𝑉 linked via the right hand side of the production for the latter cases.
These ports are then singletons in 𝜎𝑈 and 𝜎𝑉 . An example of such productions is shown in
Figure 3.11. The nonterminals 𝑌 , 𝑈 and 𝑉 have arities five, eight and seven, respectively.
Dashed lines at ports depict 𝜎. Dashed lines between 𝑈1 and 𝑉4 denote identification of
pins. There would be many more right hand sides, for different choices of 𝜎.
Let (𝑐,R) be a HR−-condition. To each nonterminal 𝑌 ∈ 𝑁R, assign the Presburger
formulae 𝜃𝑌,𝑘,ports,𝜎(#1, ..., #(|𝜎|+ 𝑘)) of |𝜎|+ 𝑘 free variables that constrain the open
variable 𝑛 to be in the set of possible lengths of strings generated by that grammar (a
construction for computing such a formula is provided by the result on semilinearity of
hyperedge replacement graph languages in [Hab92]).
Note that R may still generate disconnected graphs. In an injective match of a discon-
nected graph 𝐺 in a graph 𝐻, the connected components of 𝐺 cannot overlap at all.
If 𝐺 and 𝐻 are graphs meeting the restriction on node degrees and furthermore 𝐻 is
connected (i.e. 𝐻 is a string graph), then the length of 𝐻 must be greater than the
sum of the lengths of the connected components of 𝐺. To get the length constraint
that the presence of a subgraph isomorphic to a graph derived by the grammar (R, 𝑃 )
imposes in the satisfaction of a HR−-condition ∃(𝐶 →˓ 𝑃, 𝑐) or ∃(𝑃 ⊒ 𝐶, 𝑐), the formula
constraining the integer variable that holds the length of the subgraph must be defined so
as to account for the number of gaps created. In a postprocessing of the formula obtained
from the Parikh theorem, this length must be the sum of the numbers of edges in the
connected components, augmented by the number of connected components, decreased
by one. The length of the string graph which is the domain of the satisfying morphism is
then constrained from below by the sum of the length of the subgraph and the number
of gaps. In ∃(𝑃 ⊒ 𝐶, 𝑐), 𝑃 𝜎 and 𝐶𝜏 have a finite number of connected components.
The semantics demands that each connected component of 𝐶𝜏 is a subgraph of some
connected component of 𝑃 𝜎, but does not constrain this relation further. For each set of
connected components of 𝐶𝜏 that lies within one of 𝑃 𝜎, a similar constraint as described
above, concerning the lengths and gaps, arises. The proof is sketched here:

58



3. Recursively Nested Conditions

Construction 5 (HR− Presburger Formulae). From a HR−-condition (𝑐,R), we
recursively define a Presburger formula and prove that the resulting formula expresses
precisely the lengths of string graphs that satisfy 𝑐 (a relation which we denote ;). Define
the formula 𝜑𝑐(𝑛, 𝑛𝐺), where 𝑛, 𝑛𝐺 are open variables (𝑛 stands for the size 𝑃 𝜎 when
𝑐 is over 𝑃 , 𝑛𝐺 for the size of the whole graph), for all conditions 𝑐 and prove that
𝑐 ; 𝜑𝑐(𝑛, 𝑛𝐺), i.e. 𝑛 ∈ Z makes 𝜑𝑐 true if and only if there is a string graph 𝑆 of length
𝑛 and a substitution such that 𝑆 |=𝜎 𝑛.
The next case is ∃(𝑎, 𝑐) with 𝑎 : 𝑃 →˓ 𝐶, best handled via an auxiliary construction: for a
condition 𝑐 over the labelled hypergraph 𝑃 , let 𝑃 ; 𝜑(𝑛, 𝑛𝐺) :≡

⋁︀
params

(︀
∃𝑛𝑦1 , ..., 𝑛𝑦|𝑌𝑃 |−1

𝑃 ;params 𝜑(𝑛, 𝑛𝐺)
)︀

where params assigns (𝑘𝑦 ≤ 𝑏R(𝑃 ), ports𝑦, 𝜎𝑦, color𝑦) to each 𝑦 ∈
𝑌𝑃 , 𝑃 ;params 𝜑(𝑛, 𝑛𝐺) is defined as 𝑃 ; 𝜑(𝑛, 𝑛𝐺) but for a fixed choice of replacement
parameters for the grammar (R, 𝑃 ).

Let 𝜑∃(𝑎,𝑐),params(𝑛, 𝑛𝐺) := ∃𝑛′.𝜑𝑐,params(𝑛′, 𝑛𝐺)[𝑠] ∧
⋁︀

I

(︁⋀︀
𝑦∈𝑌cod(𝑎)

(︁
𝜃𝑘𝑦 ,ports𝑦 ,𝜎𝑦 ,color𝑦 (

#1, ..., #(|𝜎|+ 𝑘)) ∧ 𝑛′
𝑦 =

∑︀
(#𝑖) + 𝑘 − 1

)︁
∧
⋀︀

𝑦∈𝑌dom(𝑎)

(︁
𝑛′

𝑦 = 𝑛𝑦

)︁)︁
∧ 𝑛′ < 𝑛𝐺

In the formula, the subscript I abbreviates the set of combinations of 𝑘 ≤ 𝑏R(𝑌, cod(𝑎))
and valid (ports′, 𝜎′, color′) consistent with choices for dom(𝑎), and 𝑘𝑦, ports𝑦, 𝜎𝑦, color𝑦

are the components of params(𝑦), the color𝑦 are consistent with each other (pins that
are shared or connected via nonterminals of 𝑃 receive the same colour), the sum

∑︀
#𝑖

ranges over the colours used in derivations based on 𝑦 only. The substitution 𝑠 substitutes
the primed variables {𝑛′

𝑦 | 𝑦 ∈ 𝑌cod(𝑎)} are for the variables {𝑛𝑦 | 𝑦 ∈ 𝑌cod(𝑎)} in
𝜑𝑐,params(𝑛′, 𝑛𝐺).
The final case is ∃(𝑃 ⊒ 𝐶, 𝑐). Let

∙ I be the set of all possibilities to break up 𝑃 𝜏 into connected components. There are
finitely many of them because of the restriction that distinguishes HR− from HR*.
More precisely, IR(𝑃 ) is the set of all valid (ports, 𝜎) combinations induced by 𝑃 .
∙ J be the analogous set for 𝐶𝜏 .
∙ 𝜃𝑌 𝐼({𝑛𝑖}𝑖∈𝐼) be the Presburger formula obtained from Construction 4 that evaluates

to true whenever the list of variables given evaluates to a possible allotment of
lengths of the connected components of a graph in R(𝑦).

Then, a formula expressing the lengths of ∃(𝑃 ⊒ 𝐶, 𝑐) is:
𝜑∃(𝑃 ⊒𝐶,𝑐)(𝑛, 𝑛𝐺) := ∃𝑛′.𝜑𝑐(𝑛′, 𝑛𝐺)∧𝑛′ <𝑛 ∧

⋁︀
𝐼∈I,𝐽∈J

(︀
∃{𝑛𝑖}𝑖∈𝐼 .∃{𝑛′

𝑗}𝑗∈𝐽 . ∃𝑓 : 𝐽 → 𝐼,

∀𝑖∈𝐼 . 𝑛𝑖 ≥
(︁∑︀

𝑓(𝑗)=𝑖 𝑛′
𝑗 + |{𝑗 ∈ 𝐽 | 𝑓(𝑗) = 𝑖}| − 1

)︁
𝑛 =

∑︀
𝑖∈𝐼(𝑛𝑖) ∧ 𝑛′ =

∑︀
𝑗∈𝐽(𝑛′

𝑗) ∧
𝜃𝑌 𝐼({𝑛𝑖}𝑖∈𝐼) ∧ 𝜃𝑌 𝐽({𝑛𝑗}𝑗∈𝐽)

)︀
.

This latter formula is computed from R and 𝑃 resp. 𝐶 by Construction 4. Then
𝜑∃(𝑃 ⊒𝐶,𝑐),params(𝑛, 𝑛𝐺) is obtained by restricting I to the combinations given by params
and imposing the same restriction on J to ensure 𝑃 𝜎 = 𝑃 𝜏 .

By showing the soundness of Construction 5, it can be shown that HR−-conditions can
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only express semilinear unary string languages.

Lemma 6 (HR− Unary String Lengths). All unary languages of string graphs
expressible by HR−-conditions are semilinear.

Proof. Consider Construction 5. It must be shown that the formula it generates describes
the correct sets of integers. The base case is correct, as true is satisfied by all graphs and
thus imposes only the empty constraint 𝜑true(𝑛, 𝑛𝐺) = ⊤: true ; ⊤. The induction step
is also clear for Boolean combinations: from the definition of satisfaction we see that
¬𝑐 ; 𝜑¬𝑐 = ¬𝜑𝑐(𝑛). The other Boolean combinations are analogous.
For ∃(𝑎, 𝑐), assume that 𝑐 ; 𝜑𝑐(𝑛, 𝑛𝐺). Then for any string graph 𝑆, any monomorphism
𝑝 : 𝑃 𝜎 →˓ 𝑆 fulfilling 𝑝 |=𝜎 ∃(𝑎, 𝑐), adds the edges from the unsubstituted hypergraph
which are still present after substitution, as well as string graphs of length 𝑛𝑦 edges from
each substituted hyperedge (the length being defined in the special way that accounts
for disconnected graphs, as discussed earlier and the connected components as specified
by params). It is also specified that the hyperedges already present in dom(𝑎) must be
substituted in the same way in cod(𝑎). Existence of a suitable substitution is expressed
by the outer (finite) disjunction. Thus ∃(𝑎, 𝑐) ; 𝜑∃(𝑎,𝑐)(𝑛, 𝑛𝐺).
The final case is ∃(𝑃 ⊒ 𝐶, 𝑐). Again, the lengths given by the formula correspond
exactly to the semantics: 𝑐 must be satisfied and we rename its subgraph length variable
to 𝑛′. There must be some way of allotting the connected components of 𝐶𝜏 to lie
inside those of 𝑃 𝜎, which is expressed by the rest of the formula. Thus ∃(𝑃 ⊒ 𝐶, 𝑐) ;
𝜑∃(𝑃 ⊒𝐶,𝑐)(𝑛, 𝑛𝐺).

An example for the semilinear expressive power of HR− over unary string languages:
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Figure 3.12.: A HR−-condition.

Example 18 (Example for Lemma 6). For an illustration of the rather laborious workings
of Lemma 6, consider the example of Figure 3.12. Schematically, the condition is:
𝑐 = ∃(∅ →˓ 𝐶1,¬∃(𝐶1 →˓ 𝐶2, true) ∧ ∃(𝐶1 ⊒ 𝐶3,¬∃(𝐶3 →˓ 𝐶4, true))).
There is only one variant for the connected components in I for each of the nonterminals
of R. Let us sketch how the formula 𝜑𝑐(𝑛, 𝑛𝐺) would be computed from the inside out,
naming the subconditions:
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𝑐0 = ∃(𝐶3 →˓ 𝐶4, true)
𝑐1 = ∃(𝐶1 ⊒ 𝐶3,¬𝑐0)
First of all, notice that there is only one possible arrangement of connected components,
numbering 2, for both 𝑃 and 𝐶 in the ∃(𝐶1 ⊒, 𝐶3,¬𝑐0).
𝜑𝑐0(𝑛, 𝑛𝐺) = ∃𝑛′. (𝑛′ = 2+𝑛′

𝑦1 +𝑛′
𝑦2)∧𝜃𝑈 (𝑛′

𝑦1)∧𝜃𝑈 (𝑛′
𝑦2)∧𝑛′

𝑦1 = 𝑛′
𝑦1∧𝑛′

𝑦2 = 𝑛′
𝑦2∧𝑛′ < 𝑛𝐺

𝜑𝑐1(𝑛, 𝑛𝐺) = ∃𝑛′.¬𝜑𝑐0(𝑛′, 𝑛𝐺) ∧ 𝑛′ < 𝑛 ∧ (∃𝑛1, 𝑛2, 𝑛′
1, 𝑛′

2, 𝑛 = 𝑛1 + 𝑛2∧ 𝑛′ = 𝑛′
1 + 𝑛′

2∧
𝑛1 = 𝑛2 ∧ 𝑛′

1 = 𝑛′
2∧ ((𝑛′

1 < 𝑛1 ∧ 𝑛′
2 < 𝑛2) ∨ (𝑛′

1 < 𝑛2 ∧ 𝑛′
2 < 𝑛1))) (because there is only

one possible arrangement of connected components for both 𝑃 and 𝐶, we have simply
numbered the edge colours resulting for this one possibility). The full formula is obtained
by continuing to gather constraints in this manner. Finally, the computation results in a
formula equivalent to 𝜑𝑐(𝑛, 𝑛𝐺) ≡ 𝑛 = 𝑛𝑔 ∧ ∃𝑥, 𝑦 ∈ N, 2 · (3𝑥 + 2𝑦) + 1.

The comparison to HR−-condition is achieved:

Corollary 5. There is a property expressible as a 𝜇-condition but not as an HR−-
condition.

Proof. From Corollary 1 and Lemma 6.

Corollary 6. There is a property expressible as an HR−-condition but not as a 𝜇-con-
dition.

Proof. The existence of a Hamiltonian cycle is not expressible by 𝜇-conditions, but
HR−-conditions can express it. We recall the condition (Figure 3.13, replacement system
as in Figure 3.9):

∃
(

1 + ,¬∃
(

1 +
))

Figure 3.13.: Hamiltonicity as a HR−-condition.

This also yields one direction of the comparison of 𝜇-conditions with HR*-conditions:

Fact 8 (𝜇 ( HR*). There is a property expressible as an HR*-condition but not as a
𝜇-condition.

Proof. By Corollary 6, HR− ( 𝜇. By definition, HR− ⊆ HR*.

We conclude that a comparison has been achieved:

Corollary 7 (𝜇 <> HR−). HR−-conditions and 𝜇-conditions are incomparable.

Proof. By Corollary 5 and Corollary 6.
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Note that we did not restrict the generation of labelled graphs, and one can easily express
the intersection of two context-free languages by using a conjunction and two context-free
grammars encoded as hyperedge replacement systems. However, this does not contradict
our result since it is of no use in expressing unary string languages. One might also
think that series-parallel graphs allow the same trick to be encoded in HR*-conditions.
However, this would work only for an A-semantics (defined in analogy to the A-semantics
for 𝜇-conditions by removing the restriction that quantified morphisms and matches must
be in M), whereas HR− (as well as the standard definition of HR*-conditions) restricts
matches and quantification to M.

∃
(

A1

)
where

A1
::=

A1 A3

A2 A2

| a

Figure 3.14.: Productions of a hyperedge replacement system for certain series-parallel
graphs which, in A-semantics, encodes a CCFG.

Example 19 (Series-parallel graphs in A-semantics). HR−-conditions in A-semantics
can, by stating the non-injective existence of a series-parallel like graph between two
nodes, simulate a conjunctive context-free grammar (we have only represented one of the
equations in Figure 3.14, as the others are analogous).

Since the same is not possible with M-semantics by Lemma 6, this construction separates
A- and M-HR−conditions.

Corollary 8 (For HR−, A ̸= M). For HR−-conditions, the expressiveness of A-
semantics and M-semantics differs, with A-semantics being able to express non-semilinear
unary string languages.

Should 𝜇-conditions also turn out to be incomparable to A-HR−-conditions, then it cannot
be for the same reason. However, it is also not known whether (M-)HR*-conditions
can express non-semilinear unary languages. Perhaps the method for HR−-conditions
(Lemma 6) could be extended. The following conjecture is open for proof or disproof:

Conjecture 1 (𝜇 <> HR*). HR*-conditions and 𝜇-conditions are incomparable.

3.5. Conclusion and Outlook

We argue that 𝜇-conditions are worth investigating despite the availability of other strong
contenders, because our approach to non-local properties provides a new and different
generalisation of nested conditions.
In analogy to the equivalence between first-order predicate graph logic and nested graph
conditions, we can confirm that 𝜇-conditions have the same expressiveness as fixed point
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extensions to classical first-order logic for finite graphs. Also, it seemed likely because of
the starkly different definitions that the expressiveness of HR* conditions [Rad13] or even
MSO differs from that of 𝜇-conditions. The precise relationship remained to be examined;
we have provided some answers now. Figure 3.15 shows the relationship between 𝜇- and
M-conditions, which is not an inclusion either way. The situation for HR− vs. 𝜇 looks the
same, whereas for HR*, it only follows that 𝜇-conditions are not as least as expressive as
HR* conditions because that much is true for HR− already (Figure 3.16).

𝜇
−𝑋

𝑋
−𝜇

𝜇 ∩𝑋𝜇 ∩𝑋

𝑎4𝑛

strings
Hamilto-

nicity

Figure 3.15.: Comparison of expressiveness between 𝜇- and X, for 𝜇-conditions and X-
conditions with X in {HR−, M}. The separating examples are the same in
both cases.

Figure 3.1619 also depicts those comparisons of graph conditions to graph logics that
have been established. From Fact 7 it follows that there are some CMSO properties not
expressible in HR−, to wit those of discrete graphs.
A-satisfaction is more convenient to relate conditions to logic. M-satisfaction is more
convenient in the Wlp calculus [Pen09], a property that carries over gracefully from
nested conditions to 𝜇-Conditions. Both express the same properties.
It is still unknown whether any of the the results of Subsection 3.4.4 hold for the full
HR* formalism.

Conjecture 2. HR* conditions (in M-semantics) are not as least as expressive as
𝜇-conditions.

In the main part of the thesis (Chapter 5), the notion of partial correctness with respect to
nested graph conditions will be recalled, core constructions known from nested conditions
will be lifted to the new, more expressive conditions and a proof calculus for partial
correctness relative to recursively nested conditions will be presented.

3.6. Bibliographic Notes

𝜇-Conditions were named after the modal 𝜇-calculus [BS06], which is a temporal logic
that also uses least (as well as greatest) fixed points. In the 𝜇-calculus, they are used to
define eventuality modalities based on a next-step operator (◇𝜑 = 𝜇𝑥.𝜑 ∧𝑋𝑥. In this
19Nested [HPR06, HP09], HR* [Rad13], M-conditions [PP14].
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nested

µ HR− M

HR∗

FO

FO+ lfp MSO

CMSO

SO

x

x

x

x

x

Figure 3.16.: Comparison of expressiveness. A black arrow denotes proper containment
of the class of graph properties that can be expressed. A red, dotted arrow
with an “x” denotes non-containment.

formula the 𝜇 stands for the least fixed point of the monotonic operator 𝑥 ↦→ 𝜑∧𝑋𝑥 and
the formula means that the property 𝜑 will hold at some definite point in the future, but
after an unspecified number of steps). A close relationship otherwise is not implied.
Our extension of nested conditions with unselection is somewhat related to lax conditions
[RAB+15]. These look similar to nested conditions and are also built with quantification
and Boolean combinations and can be translated to equivalent nested conditions. However,
lax conditions are defined on typed attributed graphs and do not contain morphisms
at all. Graphs that occur in lax conditions are only related by labellings of nodes and
edges, so that like-named nodes in the condition must refer to the same node in the
matched graph. The commonality is that labels that occur in the outer nesting level do
not necessarily occur in the subcondition, which has an effect not unlike our unselections.
Concerning expressive power, the limits of the ability of first-order logic to express certain
properties of finite structures have been of interest for a long time, and the theory is
well-established by now [Lib04]. A general notion of locality for logics is due to Gaifman
[Gai82]. Hamiltonicity is not definable in FO+lfp in the absence of a predefined linear
order. This can be proved using so-called Pebble games, which incidentally are an infinite
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version of the Ehrenfeucht-Fraïssé games that serve to prove that first-order logic cannot
express non-local conditions. We do not go into detail since the available literature
provides a good exposition, for instance Libkin [Lib04].
For the axiomatization of graphs and results on monadic second-order logic on graphs, cf.
the work of Courcelle [Cou97]. For fixed point logics, we used Libkin’s textbook [Lib04]
and Kreutzer’s PhD thesis [Kre02]. String languages are more commonly studied than
graph languages. There is also a tradition of examining the expressiveness of logics on
strings. For example, it is a well known and celebrated fact that (already existential)
monadic second order logic defines exactly the regular string languages [Tho97].
Among related work for graph conditions we feel the need to mention that Cardelli et al.
[CGG02] devised what they called a spatial logic for querying graphs (in graph databases),
or graph logic. Graph conditions have a completely different background. Advantages of
graph conditions include the easy availability of weakest precondition constructions and
the generic applicability to many kinds of structures, as long as they fulfil the axioms of
adhesive categories [LS04] or later refinements [EEPT06].
It is not mentioned in [Rad13] or later work, and seems to be unknown, whether HR*

with M-semantics is less powerful than with A-semantics. If the result Lemma 6 could be
lifted to HR* rather than HR−, then this would be the case. Nothing but second-order
logic is known to encompass the whole of HR* conditions. The latter inclusion has not
been proven to be proper, although it is conjectured by Radke that HR* is likely not
able to express the existence of a nontrivial automorphism. We are inclined to support
that conjecture, despite being unable to substantiate it so far.
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4. Analysis of Petri Nets with Structure
Changes

Self-induced petrification has its drawbacks, though.
— Jasper Fforde, The Song of the Quarkbeast
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This chapter is oriented at users of Petri nets to introduce reconfigurations via graph
transformations. Its purpose is to provide a contrast to the proof-based methods developed
later and show why fully automatic solutions can be expected to work only in restricted
special cases. As indicated in the introduction, this chapter is not a prerequisite for the
later ones.
In Section 2.3, we recalled that Petri nets are special graph transformation systems,
which in turn (Section 2.2) are special graph programs: they can either be viewed directly
as graph transformation systems with discrete labelled graphs, or the net structure and
marking can be encoded in graph transformation rules. Any definition of structure-
changing Petri nets would be situated, from a modelling point of view, midway between
Petri nets (which are well suited to modelling resource production and consumption in
statically structured processes) and graph transformation systems (which can express
structure changes in great generality).
When structure change (or reconfiguration) rules are restricted, the resulting formalisms
becomes amenable to more analyses than general graph transformation systems and can
still express aspects of dynamic structure. On the flip side, the content of this chapter
is only loosely connected to the rest of the thesis because the positive results do not
generalise to graph programs. The definitions in this chapter are not literally compatible
with those of Chapter 2, special-purpose definitions are used to allow a more compact
presentation of the results. However, bear in mind that an encoding of structure-changing
Petri nets as graph programs is not difficult and the verification methods to be introduced
in later chapters also work for structure-changing Petri nets.
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The results in this chapter are decision procedures for
∙ the firing word problem for 1-safe structure-changing workflow nets
∙ reachability in structure-changing Petri nets
∙ abstract reachability in 1-safe structure-changing workflow nets

and undecidability of the containment of a structure-changing workflow net (labelled
firing sequence) language in a regular language.
The chapter is structured as follows: in Section 4.1 we state our decidability and
undecidability results. Section 4.2 concludes the presentation with an outlook and
Section 4.3 draws parallels to existing work.

4.1. Analysis of Structure-Changing Workflow Nets

In this section, we define and investigate some decision problems for structure-changing
workflow nets. We define the derivation language of a structure-changing Petri net
and show that while language containment in a regular language is undecidable, two
reachability problems are decidable, and the firing word problem is decidable at least for
structure-changing workflow nets. We prove a series of lemmata, corresponding to a local
Church-Rosser property for graph grammars [EEPT06], that allow us to equivalently
re-arrange derivations, which will be used in the proofs of the first and the third result1.

Lemma 7 (Independence). Given a structure-changing Petri net (N,R), a firing step
(𝑁, 𝑀) 𝑡⇒ (𝑁, 𝑀 ′′) and a replacement step (𝑁, 𝑀) 𝜚,𝑚⇒ (𝑁 ′, 𝑀 ′) for some (𝜚, 𝑁𝑙, 𝑁𝑟) ∈ R

and match 𝑚 with 𝑡 ̸= 𝑚(𝑡𝑙), then there is a firing step (𝑁 ′, 𝑀 ′) 𝑡⇒ (𝑁 ′, 𝑀 ′′′) and a
replacement step (𝑁, 𝑀 ′′) 𝜚⇒ (𝑁 ′, 𝑀 ′′′) where 𝑀 ′′′(𝑝) takes the value 𝑀 ′′(𝑝) for 𝑝 ∈ 𝑃
and 0 for 𝑝 ̸∈ 𝑃 .

(𝑁, 𝑀)

(𝑁 ′, 𝑀 ′) (𝑁, 𝑀 ′′)

(𝑁 ′, 𝑀 ′′′)

𝜚 𝑡

𝑡 𝜚

Proof. Immediate from Definition 2.3 and the definition of transition firing.

Example 20. Figure 4.1 shows a firing step (horizontal) and a replacement step (vertical),
which are independent in the sense of Lemma 7.

The result (𝑁 ′, 𝑀 ′′′) is the same only up to an isomorphism, but this will not really
impact any of the results. In the scope of this section, two derivations (𝜉, 𝜎) and (𝜉′, 𝜎′)
are equivalent if they are of the same length 𝑛 and the marked nets 𝜎𝑛 and 𝜎′

𝑛 are
1One could certainly re-use the result from graph grammars, but that would require us to first formally

redefine structure-changing Petri nets as graph transformation systems.
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Figure 4.1.: Independent steps.

isomorphic. Two transition sequences are said to be equivalent if they are equivalent as
derivations. Transition sequences which only differ by a permutation of the steps are
easily seen to be equivalent. In a sound workflow net 𝑁 , a transition sequence 𝑢 is said
to be terminal when (∙𝑁)𝑢 = 𝑁∙. We provide the relevant lemma:

Lemma 8 (Permuting Steps). If S is a structure-changing Petri net, for every deriva-
tion (𝜉, 𝜎) of length 𝑛 in S, under any of the conditions given below there is a derivation
(𝜉𝜋, 𝜎𝜋) also of length 𝑛 such that 𝜎𝑛 and (𝜎𝜋)𝑛 are isomorphic, and 𝜆(𝜉) = 𝑢𝑎𝑏𝑣 and
𝜆(𝜉𝜋) = 𝑢𝑏𝑎𝑣 for some 𝑢, 𝑣 ∈ (𝑅 ∪ Σ)* and 𝑎, 𝑏 ∈ (𝑅 ∪ Σ). If 𝜆(𝜉𝑖) = 𝑎 and 𝜆(𝜉𝑖+1) = 𝑏,
𝑡𝑎 = 𝜏(𝜉𝑖), 𝑡𝑏 = 𝜏(𝜉𝑖+1), from(𝜉𝑖) = N, to(𝜉𝑖) = from(𝜉𝑖+1) = N′ and to(𝜉𝑖+1) = N′′:

Situation Sufficient condition for transposition
𝑎 ∈ Σ, 𝑏 ∈ Σ ∙𝑡𝑏 ∩ 𝑡𝑎

∙ = ∅
𝑎 ∈ Σ, 𝑏 ∈ 𝑅 𝑡𝑎 ̸∈ 𝑇 − 𝑇 ′

𝑎 ∈ 𝑅, 𝑏 ∈ Σ 𝑡𝑏 ̸∈ 𝑇 ′ − 𝑇
𝑎 ∈ 𝑅, 𝑏 ∈ 𝑅 𝑡𝑏 ̸∈ 𝑇 ′ − 𝑇

Proof. 𝑎, 𝑏 ∈ Σ: transitions meeting the requirement can be transposed in an enabled
sequence: in a net 𝑁 , if 𝑀𝑡1𝑡2 exists and ∙𝑡2∩𝑡1

∙ = ∅, then 𝑡2 is enabled in 𝑀 : all places in
∙𝑡2 hold at least as many tokens as in 𝑀𝑡1, and 𝑡1 is enabled in 𝑀𝑡2 because ∀𝑝 ∈ ∙𝑡1∩∙𝑡2
have 𝑀(𝑝) ≥ 𝐹 −(𝑝, 𝑡1) + 𝐹 −(𝑝, 𝑡2). By commutativity of addition 𝑀𝑡1𝑡2 = 𝑀𝑡2𝑡1 and
hence 𝜎|𝑢|+2 = (𝜎𝜋)|𝑢|+2.
𝑎 ∈ Σ, 𝑏 ∈ 𝑅: 𝑏 can be applied to 𝜎|𝑢| because rule applicability is independent of the
marking, and by Lemma 7 the same state 𝜎|𝑢|+2 is reached. The condition is necessary to
meet the requirements of Lemma 7: otherwise, 𝑡𝑎 is not available after the replacement
step.
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𝑎 ∈ 𝑅, 𝑏 ∈ Σ is similar: since the preset of the transition 𝑡𝑏 is unchanged by the application
of 𝑅, 𝑡𝑏 is enabled in the state 𝜎|𝑢| and Lemma 7 applies.
𝑎, 𝑏 ∈ 𝑅: since only the matched transition is replaced and all others remain unchanged,
the rules can be swapped, yielding an isomorphic result. In this case and the previous
one, the condition is necessary because otherwise the transition 𝑡𝑏 is not present prior to
the event 𝜎𝑖.

The homomorphism 𝑡 ↦→ (if 𝑡 ∈ 𝐴 then 0 else 1) defines a pre-order w𝐴,𝐵w𝐴,𝐵w𝐴,𝐵 on sequences of
(𝐴 + 𝐵)* by comparing the images of sequences under the lexicographic order induced by
0 < 1 on {0, 1}*. This can be used to re-order a sequence to a normal form:

Lemma 9 (Ordering transitions sequences). Given a transition sequence 𝑢 in a
marked net with 𝑇 = 𝑇 ′ + 𝑇 ′′, and 𝑇 ′ × 𝑇 ′′ contains only pairs (𝑡′, 𝑡′′) where ∙𝑡′′ ∩ 𝑡′∙ = ∅,
then any transition sequence that is equivalent to 𝑢 and minimal with respect to w𝑇 ′,𝑇 ′′ is
in 𝑇 ′*𝑇 ′′*.

Proof. A strictly decreasing step along the lexicographic order is possible as long as
Lemma 8 can still be applied to a contiguous subsequence 𝑡′′𝑡′, yielding another equivalent
transition sequence.

Definition 29 (Causal Dependency). A step 𝑒𝑖 of a derivation (𝜉, 𝜎) causally precedes
another step 𝑒𝑗, 𝑖 < 𝑗, if either 𝜆(𝜉𝑖), 𝜆(𝜉𝑗) ∈ Σ and 𝜏(𝜉𝑖)∙ ∩ ∙𝜏(𝜉𝑗) ̸= ∅, or 𝜆(𝜉𝑖) ∈
𝑅, 𝜆(𝜉𝑗) ∈ Σ and 𝜏(𝜉)𝑗 ∈ codomain(𝑚𝑖) or 𝜆(𝜉𝑖), 𝜆(𝜉𝑗) ∈ 𝑅 and 𝜏(𝜉)𝑗 ∈ from(𝑒𝑖). The
causal dependency relation is the transitive closure of the causal precedence relation.
Lemma 10 (Ordering and causal dependency). Any derivation (𝜉, 𝜎) equivalent to
a given one and minimal with respect to wΣ,𝑅 has 𝜆(𝜉) = 𝑟0𝑠0...𝑠𝑛𝑟𝑛+1 where ∀𝑖, 𝑠𝑖 ∈
Σ, 𝑟𝑖 ∈ 𝑅* and if 𝜉𝑖,0...𝜉𝑖,𝑛 = 𝑟𝑖, then 𝜉𝑖,𝑗 causally precedes 𝜉𝑖,𝑗+1, and 𝜉𝑖,𝑛 causally
precedes 𝑠𝑖+1.

Proof. Analogous to Lemma 9. As long as there is a contiguous subsequence 𝜉𝑖𝜁𝜉𝑗 where
𝜆(𝜉𝑖) ∈ 𝑅, 𝜆(𝜁) ∈ 𝑅*, 𝜆(𝜉𝑖+1) ∈ Σ and 𝜉𝑖 does not causally precede any of 𝜁𝜉𝑗 , by
induction over the length of 𝜁 and using Lemma 7, an equivalent but strictly wΣ,𝑅-smaller
derivation with ...𝜁𝜉𝑗𝜉𝑖... can be constructed.

4.1.1. Firing Word Problem

A language-theoretic approach to Petri nets looks at their labelled firing sequences. To
each transition a letter is assigned and the Petri net is treated as a generator of possible
outputs (usually with a termination criterion), cf. Chapter 6 in [PW02].

Definition 30 (Firing language). Let F be the homomorphism that deletes all letters
of 𝑅 and leaves transition labels Σ unchanged. The firing language of a structure-changing
Petri net S = (N,R) is

F(S) := {F(𝑤) ∈ Σ* | ∃N′ : N
𝑤⇒R N′}
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Due to the deleting homomorphism, it is not trivial to see whether a given word 𝑤 occurs
in the firing language of S.

Problem 1 (Firing word problem).

Given: a structure-changing Petri net S and a word 𝑤 ∈ Σ*

Question: 𝑤 ∈ F(S)? Is 𝑤 contained in the firing language of S?

We examine the firing word problem for 1-safe structure-changing workflow nets.

Problem 2 (Problem 1 for 1-safe structure-changing workflow nets).

Given: a 1-safe structure-changing workflow net S and a word 𝑤 ∈ Σ*

Question: 𝑤 ∈ F(S)? Is 𝑤 contained in the firing language of S?

The question is decidable for 1-safe structure-changing workflow nets by the following
means: while applying rules, one keeps track of the minimum length of any word in which
each transition could occur (the minimum word length defined below). Rule matches on
transitions that can only be used in words longer than 𝑤 need not be explored, because
under the postulated assumptions the minimum word length is non-decreasing under
replacement. Rules are only applied to enabled transitions. The creation of redundant
transitions is limited by condition (3) of the definition of a structure-changing workflow
net.
In a static net N = (𝑁, 𝑀), let ‖ · ‖N : 𝑇 ⇀ N be the partial function assigning to each
transition 𝑡 of the net the minimum length of any derivation using 𝑡. It is undefined if
there is no such derivation, otherwise ‖𝑡‖N = 𝑚𝑖𝑛({|𝑢𝑡| | 𝑢𝑡 ∈ 𝑇 *,∃𝑀 ′ = 𝑀𝑢𝑡}). We
call 𝑢𝑡 with |𝑢𝑡| = ‖𝑡‖N a minimum-length 𝑡-word of N. It contains 𝑡 exactly once at the
end, or a proper prefix would suffice. Note also that sequences in 𝑇 * rather than label
words in Σ*, are considered. Calculating ‖𝑡‖N might in general not be efficient, but it is
in principle possible for all nets. The following lemma relates the minimum lengths of
derivations using transitions of the replaced net to those of the original net and the right
hand side.

Lemma 11 (Minimum length of derivation using a transition). Let S = (N,R)
be a 1-safe structure-changing workflow net. Suppose N

*⇒ N′, and N′ 𝜚,𝑚⇒ N′′ is a
replacement step using rule (𝜚, 𝑁𝑙, 𝑁𝑟) (let 𝑡 = 𝑚(𝑡𝑙)). Then each transition 𝑡 ∈ 𝑇 ′′ − 𝑇 ′

has ‖𝑡‖N′′ = ‖𝑡‖N′ − 1 + ‖𝑡‖(𝑁𝑟,∙𝑁𝑟) ≥ ‖𝑡‖N′, and each transition 𝑡 ∈ 𝑇 − {𝑡} has
‖𝑡‖N′′ ≥ ‖𝑡‖N′.

Proof. Let 𝑢𝑡 be a minimum-length 𝑡-word in N and 𝑣𝑡 a minimum-length 𝑡-word in
(𝑁𝑟, ∙𝑁𝑟). Then 𝑢𝑣𝑡 is a minimum-length 𝑡-word in N′.
A transition sequence 𝑣 ∈ 𝑇 *

𝑟 is enabled in some marking in 𝑁𝑟 precisely when it is in the
corresponding marking (mapping the places via 𝑚) in 𝑁 ′′ and has the same effect on the
places of 𝑃𝑟 − 𝑃𝑙 + 𝑚(𝑃𝑙) and no effect on all other places. If 𝑢 is a transition sequence
enabled in 𝑀 ′, then Lemma 9 guarantees the existence of a transition sequence �̃� that can
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be decomposed as �̃� = 𝑢𝑣, where 𝑢 ∈ 𝑇 ′* and 𝑣 ∈ (𝑇 ′′ − 𝑇 ′)*. For any such 𝑢𝑣, because
𝑀𝑢 exists and enables 𝑡, 𝑢𝑡 is also a possible transition sequence, and furthermore the
shortest one containing 𝑡.
As to the second statement, let 𝑢𝑡 be a minimum-length 𝑡-word of N′′. Decomposing 𝑢 as
𝑢0𝑡0𝑢1...𝑡𝑛𝑢𝑛+1 with 𝑢𝑖 ∈ 𝑇 ′* and 𝑡𝑖 ∈ 𝑇 ′′ − 𝑇 ′, there is an equivalent w𝑇 ′′−𝑇 ′,𝑇 ′-minimal
enabled transition sequence �̃� = �̃�′

0𝑠0�̃�′
1𝑠1...�̃�′

𝑚+1 with �̃�′
𝑖 ∈ 𝑇 ′*, 𝑠𝑘 ∈ (𝑇 ′′ − 𝑇 ′)* and

𝑠0 · ... · 𝑠𝑚 = 𝑡0 · ... · 𝑡𝑛, and �̃�′
0 · ... · �̃�′

𝑚+1 = 𝑢0 · ... · 𝑢𝑛+1, and 𝑠𝑘 is terminal in 𝑁𝑟:
assuming the contrary would imply that any equivalent transition sequence of the form
�̃�′

0𝑠0�̃�′
1𝑠1...�̃�′

𝑚 has some 𝑠𝑘 such that the condition (∙𝑁𝑟)𝑠𝑘 = 𝑁𝑟
∙ is violated. Every

transition 𝑡𝑖 added in the replacement step falls into one of three sets, which we call start,
middle and end. A start transition is one enabled in ∙𝑁𝑟. A end transition is one that
has the end place of 𝑁𝑟 in its postset. A middle transition is any other transition of 𝑁𝑟.
So if �̃�′

0𝑠0�̃�′
1𝑠1...�̃�′

𝑚 is such a sequence where for some 𝑘 ∈ {0.....𝑚}, (∙𝑁𝑟)𝑠𝑘 differs from
𝑁𝑟

∙ then the first transition of 𝑠𝑘+1 (if 𝑘 < 𝑚− 1) can neither be a start, nor middle,
nor end transition. The latter two lead to a contradiction with w𝑇 ′′−𝑇 ′,𝑇 ′-minimality,
while the former would contradict 1-safety.
Therefore one can construct a 𝑡-word of N′, namely ˜̃𝑢′′ = �̃�′

0𝑡�̃�′
1...�̃�′

𝑚𝑡, which is in any
case at most as long as 𝑢𝑡, thus ‖𝑡‖N′ ≤ ‖𝑡‖N′′

The firing word problem is decidable for 1-safe structure-changing workflow nets in spite
of structure changes. The idea of the proof was anticipated in the text following the
problem description:

Proposition 4 (Decidability of Problem 2). It is decidable for any 1-safe structure-
changing workflow net S and word 𝑤 ∈ Σ* whether 𝑤 ∈ F(S).

Proof. The algorithm in Figure 4.2 decides the question. 𝑗 is a natural number, and a
pair of marked nets is in the relation ∼=𝑗 if the marked nets have the same subnet induced
by considering only the transitions that can contribute to words of length up to 𝑗, and
the places attached to these transitions.
We prove that the algorithm terminates and outputs the correct answer.
The procedure Word iterates over 𝑤. It is correct, by induction on the length of 𝑤: the
induction basis is witnessed by the trivial case of the empty word. Induction hypothesis:
for any 𝑗 ≤ |𝑤| ∈ N, the prefix 𝑢 of 𝑤 of length 𝑗 is in the language iff 𝑆𝑡 is not empty.
Induction step: for any derivation (𝜉, 𝜎) with F(𝜆(𝜉)) = 𝑎𝑢, Lemma 10 yields another
derivation (𝜉′, 𝜎′), with 𝜆(𝜉′) = 𝑧𝑎𝑢′, 𝑧 ∈ 𝑅* and F(𝑢′) = 𝑢, and each step 𝑒𝑖 (𝑖 ≤ |𝑧|)
causally preceded by the previous.
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1: procedure Word(N, 𝑤)
2: 𝑆𝑡 := {N}
3: while 𝑤 ̸= 𝜖 do
4: 𝑆𝑡 := Explore(𝑆𝑡, |𝑤|)
5: 𝑎𝑤 := 𝑤 ; 𝑎 was the first letter, 𝑤 now contains the rest
6: 𝑆𝑡 := {(𝑁, 𝑀𝑎) | (𝑁, 𝑀) ∈ 𝑆𝑡} ; try successor by firing, if defined
7: return {(𝑁, 𝑀) ∈ 𝑆𝑡 |𝑀 = 𝑝𝑜𝑢𝑡} ≠ ∅
8: procedure Explore(𝑆𝑡, 𝑗)
9: repeat

10: for all N ∈ 𝑆𝑡 do ; gather relevant successors by replacement
11: for all enabled transitions 𝑡 of N do
12: for all matches 𝑚 of rules 𝜚 on 𝑡 do
13: N′ := result of replacement step ; N 𝜚,𝑚⇒ N′

14: if ̸ ∃N′′ ∈ 𝑆𝑡 : N′ ∼=𝑗 N′′ then
15: add N′ to 𝑆𝑡
16: until no new states found
17: return 𝑆𝑡

Figure 4.2.: Algorithm for the firing word problem

𝑧1 𝑎1 𝑧2 𝑎2

⏟  ⏞  
∈𝑅*

∈

Σ

⏟  ⏞  
∈𝑅*

∈

Σ

...

...

Each of the replacement steps 𝑒𝑖 whose corresponding rule names form the 𝑧 prefix
causally precedes the next; unless |𝑧| = 0, the first transition to be fired, labelled 𝑎, is
created in the step 𝑒|𝑧|−1. In any of the first |𝑧| steps, the matched transition is enabled.
This makes it unnecessary to ever directly explore the replacement of disabled transitions.
It remains to be seen that the subset of reachable states of S that actually need to be
explored further for the word 𝑢 is finite: it is always the case that |𝑧|, which may well be
0, can be bounded from above by a constant depending only on the rules. The reason
why the Explore procedure terminates rests with the comparison that decides whether
states are added to 𝑆𝑡. The comparison is done according to the equivalence relation ∼=𝑗 .
By Lemma 11, minimum word lengths only increase and therefore all transitions with
minimum word length exceeding 𝑗 can be ignored in the exploration.
Only a finite number of equivalence classes of ∼=𝑗 occur in the application of replacement
steps from R. Let 𝑛 be the maximum number of items in a right hand side of any rule of
R. Regarding each state as a directed graph whose nodes are the places and transitions,
and whose arcs are directed edges, let 𝑑 be the function assigning to each item 𝑖𝑡 the
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length of the shortest directed path from the place 𝑝𝑖𝑛 to 𝑖𝑡. Then by induction on the
length of the derivation, no rule application leads to a state which, as a graph, has any
node with more than 𝑛 successors. The number of items with 𝑑 up to 2𝑗 is bounded by
𝑛2𝑗 . There is a finite number of 1-safe nets with these properties.
The set of items of N with 𝑑 up to 2𝑗 clearly includes all transitions 𝑡 with ‖𝑡‖N ≤ 𝑗.
Firing may reduce the minimum word length of any transition by at most 1. This makes
it safe to compare states by ∼=𝑗−1 at the next iteration.

The role of the ∼=𝑗 check is that since items that are too far from any marked place can
never be used (a notion that was made precise in Lemma 11), nets that differ only in
these items can be regarded as equivalent as regards the question at hand. The check is
necessary to ensure termination, since otherwise Explore could diverge even before the
first firing is attempted in line 6.

Example 21 (Firing word problem). As an example, consider a structure-changing
workflow net S = (N,R) with N =

0
𝑎

1
and R = {𝜚}:

0

a

1

c

( )

a
0 1

%

Let us use the algorithm to decide whether ((𝑐𝑐𝑎)) ∈ F(S).
Initially, 𝑆𝑡 contains only N.

Word initialises its state to 𝑆𝑡 = {
0

𝑎

1
}.

Since 𝑤 is not yet empty, Explore is called on this set 𝑆𝑡 and |𝑤| = 7.
One enabled transition exists in the sole net in 𝑆𝑡, and it can be replaced once to yield a
net shaped like this:

𝑐

( )

𝑎
0 1

,

which is not ∼=7-equivalent to the net in 𝑆𝑡 and therefore added to 𝑆𝑡.
After Explore, 𝑆𝑡 contains these nets:
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0
𝑎

1

,

𝑐

( )

𝑎
0 1

.

Then 𝑤 is set to (𝑐𝑐𝑎)) and the variable 𝑎 to the letter (. Firing of a transition labelled (
is attempted, which fails for the first net and yields one successor for the other. Now 𝑆𝑡
contains this net:

𝑐

( )

𝑎
0 1

.

Since (𝑐𝑐𝑎)) ̸= 𝜖, Explore is called again. After Explore, since the new net is not
∼=6-equivalent to the one net already in 𝑆𝑡, 𝑆𝑡 contains two nets:

𝑐

( )

𝑎
0 1

,

𝑐

( 𝑐 )

( )

𝑎

0 1
.

and 𝑎 = (. After firing of a transition labelled (, 𝑆𝑡 contains one net:

𝑐

( 𝑐 )

( )

𝑎

0 1
.

After Explore, 𝑆𝑡 is

𝑐

( 𝑐 )

( )

𝑎

0 1
,

𝑐

( 𝑐 )

( 𝑐 )

( )

𝑎

0 1

and the variable 𝑎 holds the letter 𝑐. After firing of a transition labelled 𝑐: 𝑆𝑡 is
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𝑐

( 𝑐 )

( )

𝑎

0 1
,

𝑐

( 𝑐 )

( 𝑐 )

( )

𝑎

0 1
,

𝑐

( 𝑐 )

( )

𝑎

0 1
,

𝑐

( 𝑐 )

( 𝑐 )

( )

𝑎

0 1

After Explore, 𝑆𝑡 is unchanged because all the resulting nets are already present. The
variable 𝑎 again holds the letter 𝑐. After firing of a transition labelled 𝑐, 𝑆𝑡 is

𝑐

( 𝑐 )

( )

𝑎

0 1
,

𝑐

( 𝑐 )

( 𝑐 )

( )

𝑎

0 1

After this, Explore still adds nothing new. A transition labelled 𝑎 can be fired in one of
the nets. In the last two iterations no replacement rules apply and the remaining letters ))
are used for firing. In the end, 𝑆𝑡 contains exactly one net marked with the end marking:

𝑐

( 𝑐 )

( )

𝑎

0 1

and the algorithm outputs a positive answer. We conclude that ((𝑐𝑐𝑎)) ∈ F(S).
The structure-changing workflow net of Example 21 is too tame to exhibit the type of
behaviour that warrants the ∼=𝑗 check, because when 𝜚 is applied to an enabled transition, it
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always reduces the number of enabled and replaceable transitions by one, since transitions
with more than one outgoing edge cannot be replaced by definition of a structure-changing
workflow net. The need for the check becomes clearer when there is a second rule:

0

c

1 0

c

2

c

1

%2

When a transition labelled 𝑐 is enabled and the remaining word to be checked is of the
form 𝑐𝑢, 𝑢 ∈ 𝑇 * (or indeed any other non-empty word), the algorithm must make sure not
only to check whether the word can be obtained as a firing word by firing the transition 𝑐
directly, but also whether it could be obtained by applying replacement steps until another
transition labelled 𝑐 comes up. Here, the ∼=𝑗 check keeps the search from diverging.

Note also that a variant of the algorithm can be used to check directly for prefixes of
firing words:

Fact 9. By returning 𝑆𝑡 ̸= ∅ instead of {(𝑁, 𝑀) ∈ 𝑆𝑡 | 𝑀 = 𝑝𝑜𝑢𝑡} ≠ ∅, the algorithm
can be made to check whether 𝑤 is a prefix of any word of F(S).

Proof. The proof follows the same lines as Proposition 4. Instead of checking whether a
terminal marking can be reached by a derivation with image 𝑤, an arbitrary marking is
necessary and sufficient for a positive output of the algorithm.

4.1.2. Reachability Problems

In this section, before defining abstract reachability we first show that concrete reachability
(without using any abstraction) of a given marked net is decidable. Our construction for
deciding concrete reachability is similar to the unfolding construction used in [BCKK04]
in a different context. The idea is to unfold all possible rule applications until the size of
the smallest net obtained using a new match exceeds the queried N, since the size of the
net grows monotonically with each rule application and the set of rules is finite.
In the construction, for each possible match, the net is extended the same way as in a
rule application but the matched transitions are preserved. To control the simulation,
the rule transitions and control places take care of disabling or enabling net transitions
according to the simulated rule applications.
Let match𝜚(𝑁) ⊆ 𝑇 × 𝑃 * be the set of all matches of rule 𝜚 on net 𝑁 , each match being
uniquely determined by target transition and place mapping (we assume here that every
left hand side is equipped with an arbitrary total order on the place set, inducing a
bijection between place mappings and sequences over 𝑃 ).

Construction 6 (𝑘-unfolding). Given a 𝑛-coloured structure-changing Petri net (N,R),
let 𝑁0 be the net obtained from 𝑁 by adding new places {𝑝𝑡 | 𝑡 ∈ 𝑇} and arcs of weight
1 from each 𝑡 to its respective 𝑝𝑡 and back. The new colour 𝑛 is chosen for all the 𝑝𝑡
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places. To each item created in the construction, we assign a history, which is a sequence
of steps. All transitions 𝑡 of 𝑁0 have hist(𝑡) = 𝜖. Items added in a rule application 𝑒𝜇,𝜚

matching 𝑡 ∈ 𝑇𝑖 will have history ℎ𝑖𝑠𝑡(𝑡) · 𝑒𝜇,𝜚.
For 𝑖 ≤ 𝑘, the set 𝑇𝑖+1 is computed from 𝑇𝑖 by disjointly adding, for every match 𝜇 of any
rule (𝜚, 𝑁𝑙, 𝑁𝑟) ∈ R, the transitions 𝑇𝑟 − 𝑇𝑙, and one transition for each match, which we
call match transition: {𝑡hist(𝑡)·𝑒𝜇,𝜚

| 𝜇 ∈ match𝜚(𝑁𝑖)} where 𝑒𝜇,𝜚 is the replacement step
determined by 𝜚, 𝜇 and 𝑁𝑖.
The set 𝑃𝑖+1 is computed from 𝑃𝑖 by disjointly adding, for every match 𝜇 of any rule
(𝜚, 𝑁𝑙, 𝑁𝑟) ∈ R, the places of 𝑃𝑟 − 𝑃𝑙, and one control place for every right hand side
transition: 𝑃ctrl = {𝑝𝑡 | 𝑡 ∈ 𝑇𝑖+1 − 𝑇𝑖, 𝑙(𝑡) ∈ Σ}.
The arc weights in 𝑁𝑖+1 are as follows:

𝐹 ±
𝑖+1(𝑡, 𝑝) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐹 ±
𝑖 (𝑡, 𝑝) 𝑡 ∈ 𝑇𝑖, 𝑝 ∈ 𝑃𝑖

𝐹 ±
𝑟 (𝑡, 𝑝) 𝑡 ∈ 𝑇𝑟, 𝑝 ∈ (𝑃𝑟 − 𝑃𝑙) (*)

𝐹 ±
𝑟 (𝑡, 𝑝′) 𝑡 ∈ 𝑇𝑟, 𝑝 = 𝑚(𝑝′) (*)

1 𝑡 ∈ 𝑇𝑖 + 𝑇𝑟, 𝑝 = 𝑝𝑡

1 𝑡 = 𝑡𝑥, 𝑐(𝑝) = 𝑛, hist(𝑝) = 𝑥𝑒 (𝐹 +only)
1 𝑡 = 𝑡𝑥𝑒, 𝑐(𝑝) = 𝑛, hist(𝑝) = 𝑥 (𝐹 −only)
0 otherwise,

where (*) applies to items obtained from the same match of a rule (𝜚, 𝑁𝑙, 𝑁𝑟), 𝑥 is any
sequence of steps and 𝑒 is any step. The 𝑝𝑡 places are always assigned colour 𝑛 and the 𝑡𝑥

transitions are labelled with the corresponding rule name from 𝑅. The marking 𝑀𝑘 agrees
with 𝑀 on the places of 𝑁0, has 1 on each 𝑝𝑡 place and 0 elsewhere. N𝑘 = (𝑁𝑘, 𝑀𝑘) is
the 𝑘-unfolding of (N,R).

Example 22 (A structure-changing workflow net S = (N,R)).



a

a

,



%,

a
0 1

cb
0 1








Example 23 (The 0-unfolding N0 and the 1-unfolding N1 of S2).

2where 𝜇 indicates match transitions
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a

a

a

a

µ µ

cb cb

Let 𝜅′ = 𝜅′(S,N𝑄) ∈ N be the smallest number such that every marked net N reachable
in any derivation (𝜉, 𝜎) without state cycles (i.e. repetition-free 𝜎) and with |𝜆(𝜉)|𝑅 ≥ 𝜅′

has no derivation N
*⇒R (𝑁𝑄, 𝑀) for any 𝑀 . The number 𝜅′ is well-defined because net

size increases monotonically along any derivation, and only finitely many nets of any
given size are reachable. For the same reason, 𝜅′ can be effectively over-approximated by
considering all derivations with |𝜆(𝜉)|Σ = 0 that produce nets of size at most |𝑃𝑄|+ |𝑇𝑄|.
Because reconfigurations do not decrease the size of a net, the reachability of a concrete
marked net is decidable for any structure-changing Petri net.

Proposition 5 (Decidability of concrete reachability). It is decidable whether a
given marked net N𝑄 is reachable in a given structure-changing Petri net S = (N,R).

Proof. The idea is to determine the number 𝜅′(S,N𝑄) and reduce the question to reach-
ability in a 𝜅-unfolding N𝜅 of S for 𝜅 ≥ 𝜅′(S,N𝑄), the Petri net reachability problem
being well-known to be decidable [PW02].

(�̂� , �̂�) (𝑁𝜅, 𝑀)

(𝑁 ′, �̂� ′) (𝑁𝜅, 𝑀 ′)

strip
𝜚 or 𝑡

strip

𝑡𝜇 or 𝑡

We prove a mutual simulation of S and N𝜅 for any derivation 𝜉 with up to 𝜅 rule
applications by induction on the length of 𝜉. As argued in the definition of 𝜅(S,N𝑄), no
derivation with |𝜆(𝜉)|𝑅 > 𝜅 yields N𝑄. If |𝜆(𝜉)|𝑅 ≤ 𝜅, by induction on the length of the
derivation, N𝜅 and S simulate each other via a mapping strip, defined as follows: the
image of (𝑁𝜅, 𝑀) is the marked net N̂ with transitions 𝑇 = {𝑡 ∈ 𝑇 |𝑀(𝑝𝑡) > 0}, places
𝑃 = (𝑃 − 𝑃ctrl)− {𝑝 ∈ 𝑃 | ∀𝑡 ∈ ∙𝑝 ∪ 𝑝∙, 𝑡 ̸∈ 𝑇} and 𝐹 −, 𝐹 +, �̂�, 𝑐 are 𝐹 −, 𝐹 +, 𝑙, 𝑐 with
their domains restricted to 𝑃 , 𝑇 .
If N̂

𝑥⇒R N̂′, if 𝑥 ∈ 𝑅, and by hypothesis, N̂ = strip(N′′) for N′′ = (𝑁𝜅, 𝑀) for some
marking, then 𝑀𝑡𝑥 = 𝑀 ′ such that strip(𝑁𝜅, 𝑀 ′) = N̂′: there is a transition 𝑡𝑥 because
all rule matches for derivations of up to 𝜅 rule applications are represented as transitions
in 𝑁𝜅; the preset of 𝑡𝑥 contains exactly the matched transition 𝜏(𝑥) = strip(𝑡) for some
𝑡 ∈ 𝑇 . This transition is not in 𝑇 ′. Instead, the items of the right hand side are present
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in strip(𝑁𝜅, 𝑀 ′), according to the replacement step 𝑥. If 𝑥 ∈ Σ, then the step is also
simulated in strip(N).
If in 𝑁𝜅, 𝑀𝑡𝑥 = 𝑀 ′, then it is easy to see that the images under strip of (𝑁𝜅, 𝑀) and
(𝑁𝜅, 𝑀 ′) are related by the replacement step with match 𝜇. If 𝑀𝑡 = 𝑀 ′ for a non-match
transition, this corresponds via strip to a firing of that transition.
The simulation faithfully preserves all events in derivations of length up to 𝜅.

Fact 10 (Bounded reconfigurations). If the number of structure changes that will
occur during the runtime of the system is 𝑘 ∈ N, then the reachability graph of the
𝑘-unfolding of any structure-changing Petri net S is bisimilar to that of S even in the
most general case of Petri net rewriting and only the procedures of Petri net analysis are
required.

Let us now turn our attention to a different notion of reachability, namely reachability of
abstract markings. Since the state space of a structure-changing Petri net can be infinite,
to specify interesting state properties it is insufficient to specify the number of tokens
on specific concrete places. Instead, we fix a finite set of colours and state constraints
generically, for all places of a given colour. The place colours may carry a model-specific
meaning, or just encode structural information about the net. We will therefore introduce
a notion of abstract marking: a multiset that counts the total number of tokens on places
of each colour in a structure-changing Petri net.
A multiset over a finite set 𝑆, or 𝑆-multiset, is a function 𝑆 → N. The set of 𝑆-multisets
is denoted N𝑆 . The singleton multiset mapping 𝑎 to 1 and everything else to 0 is also
written 𝑎. The size |𝑚| of a multiset 𝑚 is the sum of the values. Multiset addition is
component-wise. A sum

∑︀
𝑥∈𝑚 𝑓(𝑥) over a multiset 𝑚 ∈ N𝑆 is defined with multiplicities,∑︀

𝑥∈𝑆 𝑚(𝑥)𝑓(𝑥). Multisets are compared using the product order, i.e. 𝑚 ≤ 𝑚′ iff
∀𝑠∈𝑆, 𝑚(𝑠) ≤ 𝑚′(𝑠). In marked nets, we redefine ∙𝑡 and 𝑡∙ to mean the 𝑃 -multisets
𝑝 ↦→ 𝐹 ±(𝑡, 𝑝) for ± = +,−, respectively. The definition of enabledness canonically extends
to multisets of transitions. For any marked net N = (𝑁, 𝑀) with 𝑁 = (𝑃, 𝑇, 𝐹 −, 𝐹 +, 𝑙, 𝑐),
we define the colour abstraction 𝛼 : N→ N to be the function 𝑖 ↦→

∑︀
𝑝∈𝑐−1(𝑖) 𝑀(𝑝). For

𝑘-coloured nets, we restrict the domain of 𝛼 to 0, ..., 𝑘 − 1. The set of images under 𝛼 of
the reachable states of S is denoted by ARS(S), for abstract reachability set.
If N = (𝑁, 𝑀) is a marked net, define a set of multisets over {0, ..., 𝑘 − 1} + 𝑇 , the
extended reachability set ER(N), as ER(N) = ARS(N) + {𝛼(𝑚 −

∑︀
𝑡∈𝑠

∙𝑡) + 𝑠 | 𝑚 ∈
RS(N), 𝑠 ∈ N𝑇 enabled by 𝑚}. The set ER(N) is finite if N is a sound workflow net
with its start marking. Intuitively, it represents all snapshots of the net’s state before,
after and during possibly concurrent firing events. Transitions in a multiset from ER(N)
are said to be activated (with multiplicity).
The reason why activated transitions are used in the analysis is that from the point
of view of the remainder of the net, an activated transition 𝑡 behaves exactly like an
incompletely executed sound workflow net that replaces the transition 𝑡.
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ER(𝑆)

ER(𝑅0)

𝑥0 + 𝑡0

𝑡0 ⇒ 𝑅0
𝑥1 + 𝑡1

𝑡𝑘 ⇒ 𝑅𝑘

...

𝑥𝑘 + 𝑡𝑘

ER(𝑅𝑘)

1 2

2 0

3 1 6 3 7 3≤

𝛼

𝛼

𝑥𝑘+1 + 𝑡𝑘+1 0 1 6 4 7 3̸≤
𝛼

sum

𝛼

target

Figure 4.3.: The abstract reachability procedure visualised

Problem 3 (Abstract reachability).

Given: a 𝑘-coloured structure-changing Petri net S for some 𝑘 ∈ N
𝑞 : {0, ..., 𝑘 − 1} → N

Question: 𝑞 ∈ ARS(S)? Is the abstract marking 𝑞 reachable?

Given a structure-changing Petri net S = (N,R), we let A(S)A(S)A(S) denote the set that comprises
N and the right hand sides of all rules in R. Let T(S)T(S)T(S) =

⨄︀
𝑁𝑤∈A(S) 𝑇𝑤 be the set of all

transitions occurring in any right hand side or in the start net. (
⨄︀

stands for a disjoint
union of multiple sets). For the intuition behind the following proposition (stating that
it is decidable for 1-safe structure-changing workflow nets whether any net with a given
abstract marking is reachable), we refer the reader to Figure 4.3.

Proposition 6 (Decidability of Problem 3). The abstract reachability problem is
decidable for 1-safe structure-changing workflow nets.
Proof. The following algorithm (Figure 4.4), given a structure-changing workflow net S

and 𝑞 ∈ N𝑘, decides whether there is any reachable state N ∈ ARS(S) such that 𝛼(N) = 𝑞.
Let T = T(S).
Let us define a directed graph W = (𝑉, 𝐸) (in the usual mathematical sense, 𝐸 ⊆ 𝑉 ×𝑉 ),
in general infinite, with a finite set of distinguished root nodes 𝑅 ⊆ 𝑉 . The node set 𝑉
is the set of all multisets over {0, ..., 𝑘 − 1}+ T, and 𝑅 = ER(N). The edge set contains
all pairs (𝑡 + 𝑚, 𝑥 + 𝑚) where 𝑡 ∈ T, 𝑥 ∈ ER(𝑁𝑟) and 𝑁𝑟 is the right hand side of a rule
that matches 𝑡 (whether a rule can match 𝑡 can be checked directly from A(S)).
Termination of AbstrReach(S, 𝑞): observe that multiset size increases monotonically
along the edges due to the fact that the empty marking cannot be reachable in a sound
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1: procedure AbstrReach(S, 𝑞)
2: Queue := ER(N); Visited := ∅
3: while Queue not empty do
4: 𝑚 := pop(Queue)
5: if 𝑚 = 𝑞 then
6: return true
7: else
8: if not (|𝑚| > |𝑞| or 𝑚|𝑃 ̸≤ 𝑞 or 𝑚 ∈ Visited) then
9: for all 𝑡, 𝑚′ such that 𝑚 = 𝑡 + 𝑚′ do

10: for all {𝜇 ∈ 𝑚𝑎𝑡𝑐ℎ𝜚(𝑡) | (𝜚, 𝑁𝑙, 𝑁𝑟) ∈ R} do
11: append(Queue, {𝑚′ + 𝑚 | 𝑚 ∈ ER(𝑁𝑟, ∙𝑁𝑟}))
12: Visited := Visited ∪ {𝑚}
13: return false

Figure 4.4.: Algorithm for the abstract reachability problem

workflow net. To check for the abstract reachability of 𝑞, it suffices to explore a spanning
forest of the prefix of W induced by the nodes of size not exceeding |𝑞|, of which there
are finitely many. This search is precisely what the algorithm performs. Each node has
finitely many descendants due to the finite ER sets of the right hand side nets. Hence
branching is finite and by Kőnig’s Lemma each tree in the spanning forest is finite (and
the forest has finitely many roots), hence the search terminates.
Correctness of AbstrReach(S, 𝑞): note that besides those containing at least one
activated transition, W contains only colour abstractions of reachable markings: a
derivation leading to a suitable marked net can simply be read off a path in W, because
in the case of 1-safe structure-changing workflow net it is immaterial which transition
is replaced, so the abstraction preserves all information needed to construct a suitable
derivation. Let us show that the procedure constructs a prefix of W breadth-first.
By induction on the number of replacement steps in a wΣ,𝑅-minimal derivation, we show
that for 𝑖 ∈ N, the procedure always reaches a state where Visited contains the colour
abstractions of all states reachable within 𝑖 replacement steps and Queue contains those
of all states reachable with 𝑖 + 1 replacement steps.
As long as no rule is applied, the statement holds (the set of states reachable with −1
replacement steps is empty and the set of states reachable with 0 derivation steps equals
ER(N). ER(N) = Queue).
Suppose that the induction hypothesis holds for any derivation (𝜉, 𝜎) up to a certain
length. Any new replacement step N

𝜚⇒ N′ using a rule 𝜚 must match some activated
transition 𝑡. Any state obtained by replacing 𝑡 and executing a non-terminal transition
sequence in the right hand side has an abstract marking 𝑚 + 𝑚′′, where 𝑚 + 𝑡 ∈ ER(N)
and 𝑚′′ is in the subset of the abstract reachability set of (N′,R) accessible with zero
replacement steps. Regardless of the inner loops (which are sure to terminate), the
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multisets in Queue, which by hypothesis are exactly the abstract states reachable with 𝑖
replacement steps, are moved one by one into Visited while the successors appended at
the back of Queue are precisely the abstract states reachable in 𝑖 + 1 replacement steps.
It follows that the algorithm is correct. It explores W (in a breadth-first search as
measured by the number of replacement steps needed to reach a certain abstract marking)
until reaching nodes whose size exceeds |𝑞|, and checks whether 𝑞 is obtained.

The complexity of the abstract reachability problem is inherited from the corresponding
class of static 1-safe nets. For 1-safe nets in general, reachability is PSPACE-complete
whereas it is just NP-complete for acyclic 1-safe nets [Esp96].

Proposition 7 (Complexity of acyclic Problem 3). The abstract reachability problem
for acyclic 1-safe structure-changing workflow nets is NP-complete.
Proof. It follows from the proof of Proposition 6 that the problem is not only decidable,
but in NP: the answer is positive iff there exists a certain easily checked polynomial-length
object, namely the path through W at most 𝑂(|R| · |𝑞|) nodes of length 𝑂(|𝑞|) each.
NP-hardness is straightforwardly shown by a reduction from the corresponding problem
for acyclic 1-safe nets. The reachability problem of 1-safe nets can be reduced to the
reachability problem of 1-safe workflow nets (see Figure 4.5). This reduction goes as
follows: for every place in the 1-safe marked net (𝑁, 𝑀0), a complementary place is
added; start end place and 2 + 3|𝑃 | extra items are added; the simulation is initialised by
filling in the start marking and its complement, and it can be aborted without producing
erroneous runs by emptying the net. Reachability of 𝑀 from 𝑀0 becomes reachability of
the corresponding marking from the start marking of the workflow net. The workflow
net can be seen to be sound. To preserve acyclicity, one removes the complementary
places. The reduction of the reachability problem for 1-safe workflow nets to an abstract
reachability problem for the corresponding static 1-safe structure-changing workflow net
is trivial: places are coloured bijectively.

Proposition 8 (Complexity of Problem 3). The abstract reachability problem for
1-safe structure-changing workflow nets is PSPACE-complete.

Proof. PSPACE-hardness again follows from the corresponding problem for 1-safe nets,
the reduction using the same construction presented above. The procedure proposed in
the proof of Proposition 6 is also easily seen to be in PSPACE because the upper bound
on 𝜅 is polynomial in |𝑞| and |𝑅|.

As a bonus, W can be used to decide coverability of an abstract marking 𝑞, i.e. the
question whether any state N with 𝛼(N) ≥ 𝑞 can be reached. Coverability properties are
often used as correctness specifications, where an error state is any state that contains
one of a set of specified minimal error states, and a system is correct when it cannot
reach such a state (see, for example, [Str14]).
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𝑝𝑖𝑛 𝑝𝑜𝑢𝑡⏟  ⏞  
initialisation of 𝑀0

(complementary places)

⏞  ⏟  simulation of 𝑁
(complementary places)⏟ ⏞ 𝑝1 ⏟ ⏞ 𝑝2 ⏟ ⏞ 𝑝3

Figure 4.5.: Reduction from 1-safe nets to 1-safe workflow nets.

Proposition 9 (Decidability of coverability). Coverability of an abstract marking
is decidable for 1-safe structure-changing workflow nets.

Proof. W is the reachability graph of a net with place set {0, ..., 𝑘−1}+T and appropriate
transitions that have as preset 𝑡 ∈ T and postset 𝑚, for every 𝑚 ∈ ER(𝑁𝑟, ∙𝑁𝑟), where
𝑁𝑟 is the right hand side of a rule matching 𝑡. Hence coverability is reduced to Petri net
coverability, which is decidable (cf. [PW02]).

4.1.3. Containment Problems

In this section, we study the inclusion of the firing language of a structure-changing
workflow net in a given regular language. The motivation is that the regular language can
specify all desirable net behaviour, and the problem is to check whether any undesirable
firing sequences exist or not.

Problem 4 (Containment in Regular Language).

Given: a regular language 𝐿 ⊆ Σ*

a 1-safe structure-changing Petri net S
Question: F(L(S)) ⊆ 𝐿?

It is well known that the emptiness of the intersection of two context-free languages is
undecidable. This problem can be used to show that it is undecidable whether the firing
language of even an acyclic 1-safe structure-changing workflow net is contained in a given
regular language, which could otherwise be used as a notion of correctness (the regular
language specifying correct executions of the net).

Proposition 10 (Undecidability of abstract language compliance). Containment
of a structure-changing workflow net language in a regular language is undecidable even
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when restricted to acyclic 1-safe structure-changing workflow nets with at most two tokens
in every reachable state.

Proof. By reduction from the emptiness problem for the intersection of two context-
free languages. Let 𝐺1 = (𝑉1, 𝑇, 𝑃1, 𝑆1) and 𝐺2 = (𝑉2, 𝑇, 𝑃2, 𝑆2) be two context-free
grammars in Greibach normal form. We assume their non-terminal alphabets disjoint
w.l.o.g. (𝑉1 ∩ 𝑉2 = ∅).
To distinguish the words from the two grammars, we introduce a second terminal alphabet
𝑇 := {�̂� | 𝑎 ∈ 𝑇} and a function dup(𝜖) := 𝜖, dup(𝑎𝑤) := 𝑎�̂� · dup(𝑤).
We construct the structure-changing workflow net S(𝐺1, 𝐺2) = (N,R1 ∪ R2) as shown:

𝑆2

𝑠 𝑆1 𝑒

For every production 𝑋 → 𝑎𝑋1...𝑋𝑛 in 𝐺1, we add a rule replacing a transition labelled
𝑋 with a linear sequence of transitions labelled 𝑎, 𝑋1, ..., 𝑋𝑛 to R1. For productions in
𝐺2, we do the same, but replace the terminal label 𝑎 with �̂� and add the rules to R2.
Disjointness of non-terminal alphabets ensures that the rules in R𝑖 are only applicable in
the subnet resulting from 𝑆𝑖 (for 𝑖 ∈ {1, 2}). The words accepted in these subnets hence
correspond to those generated by the respective grammars. Let 𝐿 be 𝑠{𝑎�̂� | 𝑎 ∈ 𝑇}*𝑒
with {𝑠, 𝑒} ̸⊆ 𝑇 . Now,

L(𝐺1) ∩ L(𝐺2) = ∅ ⇔ F(S(𝐺1, 𝐺2)) ⊆ 𝐿

L(𝐺1) ∩ L(𝐺2) = ∅ ⇔ F(S(𝐺1, 𝐺2)) ∩ 𝐿 = ∅
∃𝑤 ∈ L(𝐺1) ∩ L(𝐺2) ⇔ ∃𝑤 ∈ F(S(𝐺1, 𝐺2)) ∩ 𝐿

⇒: if 𝑤 is generated from both 𝐺1 and 𝐺2, then a derivation for it exists in both
grammars. Since context-free derivations in 𝐺1 and 𝐺2 can be translated into sequences
of rule applications in the corresponding subnet, there obviously is a reachable net in
S(𝐺1, 𝐺2) able to accept 𝑠 · dup(𝑤)𝑒 ∈ 𝐿.
⇐: All words in 𝐿 can be written as 𝑠dup(𝑤)𝑒 for some 𝑤 ∈ 𝑇 *. To also be accepted by
S(𝐺1, 𝐺2), there must be a derivation (𝜉, 𝜎) with 𝑓(𝜆(𝜉)) = 𝑠 ·dup(𝑤)𝑒. Now, 𝑤 ∈ L(𝐺1),
since 𝑤 = 𝑓(𝜆(𝜉)) and the subsequence of R1-steps in 𝜉 directly corresponds to a derivation
in 𝐺1. A symmetric argument holds for 𝐺2.
S(𝐺1, 𝐺2) is a 1-safe structure-changing workflow net easily seen to have as reachable
states only acyclic nets marked with one or two tokens.
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4.2. Conclusion and Outlook

Reconfigurable Petri nets are of considerable practical interest, mainly in workflow
modelling. We have introduced structure-changing Petri nets with context-free transition
replacement rules based on graph replacement and studied a number of decision problems
that arose. Suitably translated, our results apply to many formalisms that add structure
changes to Petri nets. An overview of the results follows. The column headings stand
for structure-changing Petri nets and general, 1-safe, acyclic 1-safe structure-changing
workflow nets respectively, “yes” means decidable, “no” undecidable, “?” unknown:

scpn scwn 1-safe acyclic 1-safe
concrete reachability yes yes yes yes Proposition 5
abstract reachability ? ? yes yes Proposition 6
firing word problem ? ? yes yes Proposition 4
regular containment no no no no Proposition 10

The firing word problem turned out to be nontrivial (we treated the firing word problem
for 1-safe structure-changing workflow nets, leaving Problem 1 as an open question).
Proposition 10 places severe limitations on the algorithmic analysis of structure-chang-
ing Petri nets. Even for systems with a simple structure and a globally bounded token
number, language containment questions are undecidable due to the possibility of imposing
synchronisation on concurrent context-free processes.
The severe limitations encountered, which preclude automatic analyses in general, are
linked to the ability of modelling certain situations. In Petri net theory, it is folklore
that “any” proper extension of P/T nets can encode arbitrary computations. This is
due to P/T nets coming extremely close to simulating two-counter machines, rendering
many questions undecidable. However, one can still attempt to find subclasses such as
bounded nets where analogous questions can be answered. Here, a similar phenomenon
is encountered for reconfigurations even of bounded nets: under very modest extensions,
the formalism is liable to exhibit uncomputable behaviour.
What is the morale?

1. Structure-changing nets with arbitrary replacement rules hardly seem to offer
promising analysis methods. It seems most fruitful to investigate classes of nets
that behave sufficiently like the “simple” ones presented here, and on the other
hand to apply general analysis methods known from graph replacement.

2. Decidable problems for relatively simple subclasses of structure-changing Petri nets
and case studies should be performed to evaluate which features are still lacking in
order to model real dynamic workflows. We suspect that not all restrictions are
necessary and are working to determine the decidability boundary more accurately.
We conjecture that the word problem is decidable for general structure-changing
workflow nets.
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3. In the spirit of system correctness under adverse conditions, it will be interesting
to turn the reachability problems into game problems by considering some non-
trivial scheduling between the two kinds of steps, and universal quantification for
replacement steps: until now, rule application and firing cooperate.

Overall, the practical interest of the results in this chapter is to warn of the difficulty of
finding interesting decidable subclasses of problems relating to the correctness of graph
programs: because the problems posed can be understood as specifications to be checked
and structure-changing Petri nets can be encoded as graph programs, we interpret the
results as showing the fundamental insufficiency of fully automatic reasoning for the
verification of graph programs. The conclusion that one should move on to even more
general formalisms is only partly paradoxical; on the one hand, it may be possible to
obtain further special decidability results, on the other hand fully tackling the verification
of structure-changing Petri nets already calls for general (incomplete) methods and
therefore little is gained from the restriction in modelling power.

4.3. Bibliographic Notes

Petri nets can be extended with structure changes via graph replacement rules, as in
the work of Padberg and Urbášek, Modica et al., Ehrig et al., Padberg [PU03, MGH11,
EHP+07, Pad12]. Graph grammars define replacement steps according to rules that
serve to reconfigure the Petri net dynamically and can be mixed with transition firings.
The work just mentioned, and ours, is closely related to graph grammars and results
from graph replacement such as local Church-Rosser and concurrency theorems can
be adapted, see Ehrig et al., Modica and Hoffmann. [EHP+07, MGH11] and especially
Maximova [MEE12]. This chapter concentrated on Petri net specific aspects such as
reachability of markings. Baldan et al. [BCKK04] use Petri net abstractions and unfolding
for model checking graph transformation systems. See also Ermel et al. [EE08, EMB+09]
and the recent survey of Padberg and Hoffmann [PH15].
Further noteworthy work includes the box calculus of Best [BDH92], the recursive Petri
nets of Haddad and Poitrenaud [HP99], the reconfigurable nets of Badouel, Llorens and
Oliver [BLO03, LO04] and the open nets of Baldan [BCE+07]. These extensions are
much more general and allow structure changes beyond dynamic transition refinement.
An alternative would be applying higher-level transformations to the rules, as in Prange
et al. [PEHP08].
Safe nets-in-nets (Köhler and Heitmann [KBH10, KBH13]), nested nets (Lomazova
[Lom08]) and Hypernets (Mascheroni [Mas11]) represent a different kind of dynamic
structure. With unbounded nesting of net tokens, it is possible to simulate a 2-counter
machine with zero-tests. The notion of activated transitions and transition refinement
are also found in Köhler and Rölke [KR07]. Note that nested Petri net states are also
representable as graph transformation systems and a unification of the formalisms could
be fruitful.
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Finally, in van Hee et al. [vSV03], a notion of refinement for workflow nets was investigated,
but with different aims: while literature on lifting results from the analysis of Petri nets
to structure-changing Petri nets is relatively scarce, reduction-based approaches for the
analysis of Petri nets through graph reductions are sometimes seen.
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“[...] It is based on rigorous mathematical deduction, which I have gone
over myself and which I urge you all to consider. [...]”

— Isaac Asimov, Foundation’s Edge
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Program verification is the art of establishing the correctness of a program with respect
to a specification by means of formal deduction. This chapter constitutes the main part
of the thesis. The general verification framework is introduced and instantiated.
We now work in the more general framework of graph transformations. Sys and Env
are re-interpreted as sets of arbitrary graph transformation rules, or more generally
graph programs as defined in Chapter 2. Rules or program steps again effect local
transformations of a global state (shared between system and environment), in the sense
that the part affected by a rule is of bounded size.
Graph transformations provide a formal way of modelling the graph-based behaviour
of a wide range of systems by way of diagrams, amenable to formal verification. One
approach to verification proceeds via model checking of abstractions, notably Gadducci
et al., Baldan et al., König et al., Rensink et al. [GHK98, BKK03, KK06, RD06].
This can be contrasted with the proof-based approaches of Habel, Pennemann and
Rensink [HPR06, HP09] and Poskitt and Plump [PP13]. Here, state properties are
expressed by nested graph conditions, and a program can be proved correct with respect
to a precondition 𝑐 and a postcondition 𝑑 (which are graph conditions). Figure 5.1 on
the following page presents a schematic overview of the approach, which is the starting
point for this chapter.

88



5. Correctness of Graph Programs

precondition
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Figure 5.1.: Overview of the proof-based verification approach.

Correctness proofs are performed in the style of Dijkstra’s predicate transformer approach
(adapted to graph conditions instead of the usual first-order logic with arithmetic) in
Pennemann’s thesis [Pen09], while Poskitt’s thesis [Pos13] features a Hoare logic for
partial and total correctness. The fundamental difference to the Hoare approach is
that the latter constructs proof trees according to rules for deductive reasoning about
specifications, while the Dijkstra approach relies on obtaining a precondition for the
whole program first and attempting to solve the implication problem later.
Hoare logic is related to the Dijkstra approach but relies on the construction of proof trees.
Dijkstra’s approach attempts to construct and present the whole proof by applications
of the weakest precondition (or strongest postcondition) transformation, which is a
mechanical process on all straight line programs but cannot be fully automated for
loops (recursion, iteration). Finally, the implication problem has to be solved to check
whether the specified precondition (in the weakest precondition case) implies the weakest
precondition (or approximation thereof) obtained from the program and the postcondition.
The above-cited work of Pennemann on the one hand and Plump on the other is based
on nested conditions, which cannot express non-local properties of graphs, such as
connectivity. In this chapter, we consider correctness with respect to non-local properties,
namely the recursively nested conditions of Chapter 3 (with a similar aim as Poskitt and
Plump’s more recent work [PP14], which however uses Hoare logic and a M-conditions),
and we present an extension to the proof calculus from [Pen09].
Nested conditions were first proposed by Habel and Pennemann. They can be used
as constraints to specify state properties, or as application conditions to restrict the
applicability of a rule. For Petri nets, as in the previous chapter, one can use a logic to
specify sets of markings. To be able to express connectivity properties, 𝜇-conditions were
introduced in Chapter 3. The next goal is to show that constructions from verification
with respect to nested conditions carry over to the new, more expressive conditions.
The contributions of this chapter are a generalisation of existing methods to handle the
interaction with an environment, and a proof calculus for partial correctness with respect
to 𝜇-conditions, together with the proofs and an exemplary application of our method.
In the context of (graph) program correctness, Habel, Pennemann and Rensink [HPR06],
Habel and Pennemann [HP09], Pennemann [Pen09] propose a Dijkstra-like [Dij76] notion
of partial correctness: 𝑆𝑦𝑠 is correct with respect to a pair of nested conditions (𝑐, 𝑑)
when 𝑑 holds in every state reachable from a state where 𝑐 holds. A Hoare calculus for
verification of graph programs appears first in Poskitt and Plump [PP12].
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In both the Dijkstra-style and the Hoare-style approach, one asks for correctness of a
graph program with respect to a program specification (𝑐, 𝑑). Both approaches involve
the computation of weakest preconditions of a postcondition relative to a program (the
definition is recursive, starting from program steps). The Hoare approach works by
having the prover construct proof trees, starting from axioms that reflect the operational
semantics of single program steps.
However, a weakest precondition may not be expressible in the assertion language or
not computable. The implication check “⇒” may be undecidable. Programs with loops
(represented by iteration in graph programs) formally result in infinite disjunctions of
weakest preconditions. These infinite objects do not necessarily have a finite representation.
To actually verify a program 𝑃 *, it is necessary to devise a loop invariant: a valid
specification (𝑐, 𝑐). These shortcomings are inherent in the verification of arbitrary
programs in a Turing-complete language, such as graph programs, and prevent fully
automatic reasoning in general.
The structure of the chapter is as follows: we develop the weakest precondition calculus
for 𝜇-conditions and prove its soundness in Section 5.1. Then in Section 5.2 we present
a proof calculus for 𝜇-conditions, to be used together with the weakest precondition
calculus. Section 5.3 concludes the chapter with an outlook and Section 5.4 provides
context by collating related work.

5.1. Weakest Liberal Preconditions

The weakest liberal precondition transformation lies at the core of the Dijkstra-style
approach. The existence of a construction for this transformation is a desirable property
of a graph condition formalism. It can be used to prove correctness:

Definition 31 (Partial Correctness). A graph program 𝑃 is (partially) correct with
respect to a precondition 𝑐 and a postcondition 𝑑 if and only if for all (𝑓, 𝑓 ′, 𝑝) ∈ J𝑃 K,
𝑓 |= 𝑐 implies 𝑓 ′ |= 𝑑.

The related notion of total correctness imposes the supplementary requirement that a
program must terminate from any state satisfying the precondition. Total correctness
implies partial correctness. Only partial correctness is considered here. In this section,
we present a construction to compute the weakest liberal precondition of a 𝜇-condition
with respect to any iteration-free graph program 𝑃 . “Liberal” means that termination of
𝑃 is not implied, it is thus the notion of weakest precondition that is adequate for partial
correctness. As only iteration causes non-termination, it is redundant in the absence of
iteration and weakest precondition and weakest liberal precondition are the same.

Definition 32 (Weakest Liberal Precondition). The weakest liberal precondition
(wlp) of 𝑑 with respect to the program 𝑃 , wlp(𝑃, 𝑑), is the least condition with respect
to implication such that 𝑓 |= wlp(𝑃, 𝑑) ⇒ 𝑓 ′ |= 𝑑 if (𝑓, 𝑓 ′, 𝑝) ∈ J𝑃 K for some partial
monomorphism 𝑝.
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We show that under this assumption there is a 𝜇-condition that expresses precisely the
weakest liberal precondition of a given 𝜇-condition with respect to a rule, and it can
be computed. The result is similar to the situation for nested conditions. To derive it,
we use the shift transformation 𝐴𝑚(𝑐) from [Pen09] whose fundamental property is to
transform any nested condition 𝑐 into another nested condition such that 𝑚′′ |= 𝐴𝑚(𝑐) if
and only if 𝑚′′ ∘𝑚 |= 𝑐 for all composable pairs 𝑚′′, 𝑚 of monomorphisms (Lemma 5.4
from [Pen09]). Since this and similar constructions play an important role in this section,
we recall it here.
The shift construction and its cousins, to be introduced in this section, require us
to consider equivalence classes of epimorphisms. An equivalence class of the relation
introduced in Definition 33 is usually called a quotient object:

Definition 33 (Quotient Objects ([Bor94], p. 132), ∼=Epi). Let 𝑓, 𝑔 are epimorphisms
with dom(𝑓) = dom(𝑔). 𝑓 ∼=Epi 𝑔 holds whenever there is an isomorphism 𝑣 : cod(𝑓) ∼=
cod(𝑔) such that 𝑣∘𝑓 = 𝑔. Clearly, the relation ∼=Epi is reflexive, symmetric and transitive.

𝐴

𝐵

𝐶

𝑓

𝑔

𝑣∼=

The epimorphisms (surjective morphisms) from any given graph 𝐺 certainly fall into
finitely many ∼=Epi equivalence classes since each epimorphism with source 𝐺 has a
codomain that is at most as large as 𝐺.

Definition 34 (Shift Construction ([Pen09], Lemma 5.4)). Let 𝑚 ∈ M and 𝑐 :
dom(𝑚). Then 𝐴𝑚(¬𝑐′) = ¬𝐴𝑚(𝑐′) and 𝐴𝑚(

⋀︀
𝑗∈𝐽 𝑐𝑗) =

⋀︀
𝑗∈𝐽 𝐴𝑚(𝑐𝑗). The case of

existential quantification 𝑐 = ∃(𝑎, 𝑐′) is as follows: let (𝑚′, 𝑎′) be the pushout of (𝑚, 𝑎).
Let Epi be the set of all ∼=Epi-equivalence classes of epimorphisms 𝑒 with domain cod(𝑚′)
whose (arbitrarily chosen) representants compose to monomorphisms 𝑏 := 𝑒 ∘ 𝑎′ and
𝑟 := 𝑒 ∘𝑚′. Then 𝐴𝑚(∃(𝑎, 𝑐′)) =

⋁︀
𝑒∈Epi ∃(𝑏, 𝐴𝑟(𝑐′)).

Intuitively, the shift construction instantiates the diagram of Figure 5.2 in all possible
ways, starting from the morphisms 𝐴 →˓ 𝐵 and 𝐴 →˓ 𝐶 and their pushout.
The fundamental property of the shift over a monomorphism 𝑚 is that it transforms any
condition over dom(𝑚) into one over cod(𝑚), preserving and reflecting satisfaction:

Lemma 12 (Fundamental Property of Shift ([Pen09], Lemma 5.4)). For all 𝑚 ∈M

and 𝑐 : dom(𝑚), we have ∀𝑚′′ ∈ M, dom(𝑚′′) = cod(𝑚) ⇒ 𝐴𝑚(𝑐) : cod(𝑚′′) such that
(𝑚′′ |= 𝐴𝑚(𝑐)⇔ 𝑚′′ ∘𝑚 |= 𝑐)

With help of the unselection 𝜄 in ∃(𝑎, 𝜄, 𝑐), it is at first glance very easy to exhibit a
weakest liberal precondition with respect to Uns(𝑦): it is sufficient to wrap the main
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Figure 5.2.: Diagram for shift

body 𝑏 : dom𝑦 in an existential quantification, ∃−1(𝑦, 𝑏). However, to handle the addition
and deletion steps, a construction becomes necessary to make the affected subgraph
appear explicitly. This information is crucial to obtain the weakest liberal precondition
with respect to Add(𝑟) and Del(𝑙) and is of crucial importance at any nesting level in
order to obtain the correct result. To that aim, we define a partial shift transformation
which makes sure that the type of the main body of the transformed 𝜇-condition is never
unselected but is instead mapped in a consistent way as a subgraph of the type of each
variable.
The following construction serves to obtain the new types; it makes precise the intuition
that all possible intersections of the old type and the current interface must be taken
into account in order to track the changes that must be effected when the interface
changes. When the construction is used, the following is given as input: a condition
with placeholders 𝑐 : 𝐵 or a (left hand side) variable x𝑖 : 𝐵; a graph 𝑅 that will remain
constant throughout the construction; a pair of morphisms 𝑥 : 𝐵 →˓ 𝐻 and 𝑦 : 𝑅 →˓ 𝐻
with common codomain, (𝑥, 𝑦) assumed to be jointly surjective.

Construction 7 (New type for partial shift). Assume that an arbitrary total order
on all graph morphisms is fixed. Given a 𝜇-condition 𝑐 = (𝑏 | x⃗ = 𝜇[�⃗�]F⃗(⃗x)), for each
variable x𝑖 of �⃗�, morphisms 𝑓𝑖𝑗 are obtained from �⃗�′ by collecting arbitrary representants
of all ∼=Epi-classes of epimorphisms (indexed by 𝑗 ∈ 𝐽 , known to be finite in the case of
graphs) that compose to monomorphisms with the pushout morphisms in the diagram:

∅ 𝑅

𝐵𝑖 𝑋 𝐵′
𝑖𝑗

𝑓𝑖𝑗

X𝑅,𝑐(x𝑖) is defined as the sequence of morphisms 𝑓 = {𝑓𝑖𝑗}𝑗∈𝐽 in ascending order. The
new list of variables �⃗� ′ and their respective types �⃗�′ are obtained by concatenating all
X𝑅,𝑐(x𝑖) of the variables of �⃗�, ordered by the outer index 𝑖 and then by the inner index 𝑗.
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The ordering that appears in the definition is an artefact of our decision to use lists of
equations, rather than unordered families. Using the new lists of types and variables, we
can now proceed to define the bulk of the partial shift operation, namely its effect on the
right hand sides.

Construction 8 (Partial shift P𝑥,𝑦). Given jointly surjective monomorphisms 𝑥 :
𝐵 →˓ 𝐻 and 𝑦 : 𝑅 →˓ 𝐻, we define the partial shift of (𝑏 | 𝜇[�⃗�]F) with respect to
(𝑥, 𝑦) as P𝑥,𝑦(𝑏 | 𝜇[�⃗�]F) := (P𝑥,𝑦(𝑏) | 𝜇[�⃗� ′]F′), where the new equations are obtained
by applying P𝑓𝑖𝑗 ,𝑦 to the variables of the left hand sides with all possible morphisms 𝑓𝑖𝑗

from 𝑅 (cf. Construction 7) and accordingly to the right hand sides. On condition
bodies, P𝑥,𝑦 is defined as follows: Boolean combinations of conditions are transformed
to the corresponding combinations of the transformed members. The cases of variable
occurrences, existential quantification and unselection are as follows:
For any jointly surjective pair of monomorphisms 𝑥 : 𝐵 →˓ 𝐻 and 𝑦 : 𝑅 →˓ 𝐻, P𝑥,𝑦(x𝑖) :=
∃(𝑣, x𝑥,𝑦

𝑖 ) if x𝑖 : 𝐵, where x𝑥,𝑦
𝑖 : 𝐻 is a new variable, 𝐻 is isomorphic to cod(𝑦), and

𝑣 : cod(𝑦) ∼= 𝐻 is the isomorphism from cod(𝑦) to the type 𝐻 (which is arbitrarily
fixed once and for all for the variable x𝑥,𝑦

𝑖 ). Quantification is processed separately from
unselection (Lemma 1):
For any jointly surjective pair of monomorphisms 𝑥 : 𝐵 →˓ 𝐻 and 𝑦 : 𝑅 →˓ 𝐻,
P𝑥,𝑦(∃(𝐵 𝑎→˓ 𝐶 ′, 𝑐′)) :=

⋁︀
Epi ∃(𝐻 →˓ 𝐸,P𝑏,𝑟∘𝑦(𝑐′)), where Epi is the set of all ∼=𝐸𝑝𝑖-

classes of epimorphisms 𝑒 with domain 𝐻 ′ that compose to monomorphisms 𝑟 = 𝑒 ∘ 𝑥′

and 𝑏 = 𝑒 ∘ ℎ with the pushout morphisms (see diagram below left). Epi
For any jointly surjective pair of monomorphisms 𝑥 : 𝐶 ′ →˓ 𝐸 and 𝑦 : 𝑅 →˓ 𝐸, let
P𝑥,𝑦(∃−1(𝐶 ′ 𝜄←˒ 𝐶, 𝑐′)) := ∃−1(𝜄′,P𝑖,𝑦′(𝑐′)): form the pullback of 𝑟 ∘ 𝜄 and 𝑏 ∘ 𝑦, then
pushout the obtained morphisms to (𝑦′, 𝑖) (see diagram below right).

B C ′

H H ′ E

R

a

y

h

x x′

e

b

r

r ◦ y

C ′ C

E J

R

B

x

ι

y

i

ι′

y′

The pair of monomorphisms (𝑥, 𝑦) given as parameters for the partial shift are always
assumed to be jointly surjective, even if the assumption is not strictly necessary to
define Construction 8; this property is guaranteed to carry over to (𝑏, 𝑟 ∘ 𝑦) in the case
of existential quantification and to (𝑖, 𝑦′) in the case of unselection. Note that partial
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shift constructs a new monomorphism 𝑦′ := 𝑟 ∘ 𝑦 : 𝑅 →˓ 𝐸, respectively 𝑦′ : 𝑅 →˓ 𝐽 , at
each nesting level of the construction with placeholders it processes. This yields, for
each subcondition occurrence 𝑐′ : 𝐵′ in 𝑐, one new monomorphism 𝑦𝑐′ : 𝑅 →˓ 𝐵′ that is
consistent with the morphisms occurring in the partially shifted condition in the sense
that the compositions commute (𝑦′ = 𝑟 ∘𝑦 or 𝑦 = 𝑦′ ∘ 𝜄′). As the subsequent constructions
heavily rely on these monomorphisms 𝑦𝑐′ , they must be viewed as an integral part of
partial shift’s output, not a temporary result.

Remark 9 (Ambiguous Variable Contexts). In a 𝜇-condition it is not necessarily
true that in all contexts where x𝑖 is used, it appears with the same morphism 𝑅 →˓ 𝐵𝑖

(where 𝑅 is the type of 𝑏). It is however possible to equivalently transform every 𝜇-condi-
tion into a “normal form” that has that property. Applying P𝑖𝑑𝑅,𝑖𝑑𝑅

will by construction
result in a 𝜇-condition with unambiguous inclusions 𝑅 →˓ 𝐵𝑖 for all variables (namely
the morphisms from the sequences X𝑅,𝑐). 𝜇-condition.

Proof. By construction, each occurrence of a variable x𝑥,𝑦
𝑖 created in the partial shift

has the same type 𝐻 (not merely an isomorphic one). The monomorphism 𝑦 : 𝑅 →˓ 𝐻
constructed by Construction 8 must be the same wherever the variable occurs because 𝑅
is never unselected.

The property of unambiguous variable contexts is also preserved by the constructions
introduced later in this section. Unreachable variables created by X and P can be pruned
to obtain an equivalent
Equivalence of conditions with placeholders (unlike 𝜇-conditions) is defined for conditions
using the same sets of variables, as equivalence in the sense of nested conditions under
any valuation. We extend 𝐴 to conditions with placeholders by defining 𝐴𝑚(x) as
∃(𝑖𝑑cod(𝑚), 𝑚, x) for x : 𝐵. We show below that P𝑥,𝑦 is equivalent to 𝐴𝑥. The reason
for introducing P𝑥,𝑦 is to gain precise control over the types of the variables in the
transformed condition, which should all include the type of the main body. Intuitively,
as this corresponds to the currently selected subgraph of a graph program, additions and
deletions are applied to that subgraph and one must ensure that the changes apply to
the whole 𝜇-condition. Three minor lemmata are required:

Lemma 13 (Removal of unselection). If 𝑐′ is a condition with placeholders, then
∃(𝑎, 𝜄, 𝑐′) ≡ ∃(𝑎, 𝐴𝜄(𝑐′)) (𝐴 as defined in Definition 34).

Proof. Using the fundamental property of 𝐴, the nontrivial case being 𝑚 |= ∃(𝑎, 𝜄, 𝑐′)
⇔ ∃𝑞 ∈M, 𝑞∘𝑎 = 𝑚∧𝑞∘𝜄 |= 𝑐′ ⇔ ∃𝑞 ∈M, 𝑞∘𝑎 = 𝑚∧𝑞 |= 𝐴𝜄(𝑐′)⇔ 𝑚 |= ∃(𝑎, 𝐴𝜄(𝑐′)).

Lemma 14 (Shift composition and decomposition). Given two morphisms 𝑚′′, 𝑚′,
if 𝑚′′ ∘𝑚′ exists, then 𝐴𝑚′′∘𝑚′(𝑐) ≡ 𝐴𝑚′′(𝐴𝑚′(𝑐)) for all conditions (with placeholders) 𝑐.

Proof. 𝑓 |= 𝐴𝑚′′∘𝑚′(𝑐) ⇔ 𝑓 ∘ 𝑚′′ ∘ 𝑚′ |= 𝑐 ⇔ 𝑓 ∘ 𝑚′′ |= 𝐴𝑚′(𝑐) ⇔ 𝑓 |= 𝐴𝑚′′(𝐴𝑚′(𝑐))
(Lemma 5.4 in [Pen09])
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Partial shift transforms a (recursively nested) condition to another, equivalent one:

Lemma 15 (Partial shift). The conditions P𝑥,𝑦(𝑐) and 𝐴𝑥(𝑐) are equivalent.

Proof. By induction over the recursion depth, and structural induction over 𝑐: If 𝑐 is a
variable symbol x𝑖, then either recursion depth is 0 and the assertion is proved, since
it is ⊥, or it is true because the right hand side of the equation for x𝑖 has the property.
The case ∃(𝑎, 𝜄, 𝑐′) of the structural induction is handled as follows (disjunctions ranging
over the suitable epimorphisms 𝑒 and compositions 𝑏, 𝑟):
𝑚 |= 𝐴𝑥(∃(𝑎, 𝜄, 𝑐′))⇔ 𝑚 |= 𝐴𝑥(∃(𝑎, 𝐴𝜄(𝑐′))) according to Lemma 13
⇔ 𝑚 |=

⋁︀
∃(𝑏, 𝐴𝑒∘𝑥′(𝐴𝜄(𝑐′))) by Lemma 12

⇔ 𝑚 |=
⋁︀
∃(𝑏, 𝐴𝑒∘𝜄′(𝐴𝑖(𝑐′)) by Lemma 14 (twice)

⇔ 𝑚 |=
⋁︀
∃(𝑏, 𝑒 ∘ 𝜄′, 𝐴𝑖(𝑐′)) by Lemma 13

⇔ 𝑚 |=
⋁︀
∃(𝑏, 𝑒 ∘ 𝜄′,P𝑖,𝑟′(𝑐′)) by induction hypothesis

⇔ 𝑚 |= P𝑥,𝑟′(∃(𝑎, 𝜄, 𝑐′)) by Construction 8

The constructions and proofs in the following section use the pushout-pullback decompo-
sition [HEP06], also known as the special pushout-pullback lemma [EEPT06]. The proof
of this standard lemma can be found in [EEPT06]:

Lemma 16 (Pushout-pullback decomposition [EEPT06]).
Consider graphs 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 and morphisms arranged as in the diagram:

𝐴 𝐵 𝐶

𝐷 𝐸 𝐹

(1) (2)

𝑎

If 𝑎 : 𝐴 →˓ 𝐵 is a monomorphism and the square (2) is a pullback and the outer square
is a pushout square, then (1) and (2) are both pullback and pushout squares.

5.1.1. The Addition and Deletion Transformations

We introduce two transformations 𝛿′
𝑙(𝑐), 𝛼′

𝑟(𝑐) (based on auxiliary transformations 𝛿𝑙,𝑦(𝑐)
and 𝛼𝑟,𝑦(𝑐)). These are applied to main body and right hand sides and serve to compute
the weakest precondition with respect to addition and deletion, respectively1, of a 𝜇-
condition that has already undergone partial shift. Recall the statement of Remark 9
that partial shift fixes inclusions from the current interface to each graph occurring in
the condition (as domain or codomain of a morphism 𝑎 or 𝜄). When the condition 𝑐
obtained after partial shift is evaluated on a morphism to check satisfaction, the current
interface is never unselected in the recursion but appears included in each variable type.
The condition 𝛼′

𝑟(𝑐) stipulates the existence of cod(𝑟) (the Add(𝑟) step’s input interface)
1The letters were chosen to indicate the effect of the transformation: to compute the weakest precondition

with respect to addition, 𝛿′ needs to delete portions of the morphisms in the condition, and vice versa.
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instead of dom(𝑟) (the output interface), which is intuitively why it yields the correct
expression of the weakest precondition of 𝑐 with respect to Add(𝑟). It might well be that
an occurrence of cod(𝑟) cannot have been obtained by a rule application because the
pushout demanded by the semantics of Add(𝑟) fails to exist, in which case 𝛼′ eliminates
a branch of the condition. Likewise, in 𝛿′

𝑙(𝑐), cod(𝑙) takes the place of dom(𝑙) since this
corresponds exactly to the effect of the step Del(𝑙).2

Construction 9 (Transformation 𝛿′). Let 𝑐 : 𝐵 be a condition with placeholders. If
𝑟 :𝐾 →˓𝑅 and 𝑦 :𝑅 →˓𝐵 are monomorphisms, then 𝛿𝑟,𝑦(𝑐) is defined as follows: 𝛿𝑟,𝑦(¬𝑐) =
¬𝛿𝑟,𝑦(𝑐) and 𝛿𝑟,𝑦(

⋀︀
𝑗∈𝐽 𝑐𝑗) =

⋀︀
𝑗∈𝐽 𝛿𝑟,𝑦(𝑐𝑗). For 𝑐 = ∃(𝑎, 𝜄, 𝑐′), use the decomposition from

Lemma 1 and handle the cases of ∃(𝑎, 𝑐) and ∃−1(𝜄, 𝑐) separately:3

B C ′

R

W X

K

a

y

y′

h′

r

h

a′

r′r′′

C ′ C

R

X V

K

ι

y
y′

h′

r

h

ι′

r′ r′′′

︸ ︷︷ ︸
δr,y(∃(a, c)) and δr,y(∃−1(ι, c))

Case of 𝛿𝑟,𝑦(∃(𝑎, 𝑐)): given are 𝑟 : 𝐾 →˓ 𝑅, 𝑎 : 𝐵 →˓ 𝐶 ′, the subcondition 𝑐 : 𝐶 ′ and the
monomorphisms 𝑦, 𝑦′, ... obtained in the partial shift construction. The diagrams below
depict the steps of the construction, which are detailed below.

B C ′

R

K

a

y
y′

r

c B C ′

R

X

K

a

y
y′

r

h′

r′ c

(PO)

2In the case of Del(𝑙), it is possible that 𝛿′
𝑙(𝑐) specifies an occurrence of 𝑙 which cannot be the input of

a Del(𝑙) step. Hence to obtain the actual weakest precondition, a nested condition expressing the
applicability of Del(𝑙) must be adjoined to 𝛿′

𝑙(𝑐).
3The morphism 𝑦′, like 𝑦, was obtained during partial shift; the transformations yield corresponding

morphisms ℎ′ from the new program interface to each graph occurring in the condition body.
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B C ′

R

W X

K

a

y
y′

r

h′

r′

c

a′

r′′ (PB)
B C ′

R

W X

K

a

y
y′

r

h′

r′

h

a′

r′′

c

δr,y′(c)

If no pushout complement of 𝑟 and 𝑦′ = 𝑎 ∘ 𝑦 exists, then 𝛿𝑟,𝑦(∃(𝑎, 𝑐)) = ⊥. Otherwise,
obtain it as (ℎ′, 𝑟′) (ℎ′ : 𝐾 →˓ 𝑋, 𝑟′ : 𝑋 →˓ 𝐶 ′) and pullback (𝑎, 𝑟′) to (𝑎′, 𝑟′′) with source
𝑊 ; this yields a unique morphism ℎ from 𝐾 to 𝑊 to make the diagram commute. Apply
Lemma 16 to the compositions ℎ′ = 𝑎′ ∘ ℎ and 𝑦′ = 𝑎 ∘ 𝑦 to see that the left and top
squares in the diagram are pushouts. Then 𝛿𝑟,𝑦(∃(𝑎, 𝑐)) = ∃(𝑎′, 𝛿𝑟,𝑦′(𝑐)).
Case of 𝛿𝑟,𝑦(∃−1(𝜄, 𝑐)): given are 𝑟 : 𝐾 →˓ 𝑅, 𝜄 : 𝐶 →˓ 𝐶 ′, the subcondition 𝑐 : 𝐶 and the
monomorphisms 𝑦, 𝑦′, ... obtained in the partial shift construction. The diagrams below
depict the steps of the construction, which are detailed below.

C ′ C

R

K

ι

y
y′

r

c C ′ C

R

X

K

(PO)
ι

y
y′

r

h

r′

c

C ′ C

R

X V

K

(PB)

ι

y
y′

r

h

ι′

r′ r′′′

c C ′ C

R

X V

K

ι

y
y′

h′

r

h

ι′

r′ r′′′

c

δr,y′(c)

Construct a pushout complement (ℎ, 𝑟′) where ℎ : 𝐾 →˓ 𝑋 and 𝑟′ : 𝑋 →˓ 𝐶 ′. If it does
not exist, then 𝛿𝑟,𝑦(∃−1(𝜄, 𝑐)) = ⊥. Otherwise construct a pullback (𝜄′, 𝑟′′′) of (𝜄, 𝑟′) with
𝑉 := dom(𝜄′). The pullback property yields existence and uniqueness of ℎ′ : 𝐾 → 𝑉 that
makes the diagram commute. Then 𝛿𝑟,𝑦(∃−1(𝜄, 𝑐)) = ∃−1(𝜄′, 𝛿𝑟,𝑦′(𝑐)).
For variables, 𝛿𝑟,𝑦(x𝑖) = x′

𝑖 is a new variable of type 𝐾 (see Remark 9).

Note that the construction is well-defined due to Fact 1, since the pushout complement
constructed on the left face of the diagram for the subcondition 𝑐 must agree with the
pushout complement constructed on the oblique face of the diagram for the condition
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5. Correctness of Graph Programs

∃(𝑎, 𝑐) or ∃−1(𝜄, 𝑐). But this is only true up to isomorphism of the graph in the pushout
complement, 𝑊 in the case of existential quantification or 𝑋 in the case of unselection
(Boolean combinations pose no problem, as they merely transmit the choice of pushout
complement). This minor issue is best resolved by stipulating that the pushout com-
plements must always be chosen consistently, by judicious use of Lemma 3, adapting
Construction 9 to compose the appropriate isomorphisms after 𝑎′ and before 𝜄′.
The transformation 𝛼′, which handles deletions steps by adding the deleted parts to
the condition, is largely analogous, but there are some differences due to the fact that
pushouts, rather than pushout complements, are constructed.

Construction 10 (Transformation 𝛼′). Let 𝑐 : 𝐵 be a condition with placeholders.
𝑙 :𝐾 →˓𝐿 and 𝑦 :𝐾 →˓𝐵 are monomorphisms, then 𝛼𝑙,𝑦(𝑐) is defined as follows: 𝛼𝑙,𝑦(¬𝑐) =
¬𝛼𝑙,𝑦(𝑐) and 𝛼𝑙,𝑦(

⋀︀
𝑗∈𝐽 𝑐𝑗) =

⋀︀
𝑗∈𝐽 𝛼𝑙.𝑦(𝑐𝑗). For 𝑐 = ∃(𝑎, 𝜄, 𝑐′), use the decomposition from

Lemma 1 and handle the cases of ∃(𝑎, 𝑐) and ∃−1(𝜄, 𝑐) separately:

B C ′

K

W X

L

a

y

y′

h′

l

h

a′

l′ l′′

C ′ C

K

X V

L

ι

y
y′

h′

l

h

ι′

l′′ l′′′

︸ ︷︷ ︸
αl,y(∃(a, c)) and αl,y(∃−1(ι, c))

Case of 𝛼𝑙,𝑦(∃(𝑎, 𝑐)): given are 𝑙 : 𝐾 →˓ 𝐿, 𝑎 : 𝐵 →˓ 𝐶 ′, the subcondition 𝑐 : 𝐶 ′ and the
monomorphisms 𝑦, 𝑦′, ... obtained in the partial shift construction. The diagrams below
depict the steps of the construction, which are detailed below.

B C ′

K

L

a

y

y′
l

c B C ′

K

W

L

(PO)
a

y

y′

l

h

l′

c

B C ′

K

W X

L

(PO)

a

y

y′

l

h

a′

l′ l′′

c B C ′

K

W X

L

a

y

y′

h′

l

h

a′

l′ l′′

c

αl,y′(c)
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Construct a pushout (𝑙′, ℎ) of (𝑦, 𝑙) and a pushout (𝑙′′, 𝑎′) of (𝑙′, 𝑎). The monomorphism
ℎ′ is obtained as 𝑎′ ∘ ℎ and the composed square is a pushout by pushout composition.
Then 𝛼𝑙,𝑦(∃(𝑎, 𝑐)) = ∃(𝑎′, 𝛼𝑙,𝑦′(𝑐)).
Case of 𝛼𝑙,𝑦(∃−1(𝜄, 𝑐)): given are 𝑙 : 𝐾 →˓ 𝐿, 𝜄 : 𝐶 →˓ 𝐶 ′, the subcondition 𝑐 : 𝐶 and the
monomorphisms 𝑦, 𝑦′, ... obtained in the partial shift construction. The diagrams below
depict the steps of the construction, which are detailed below.

C ′ C

K

L

ι

y
y′

l

c C ′ C

K

X

L

(PO)
ι

y
y′

l

h

l′′

c

C ′ C

K

X V

L
(PO)

ι

y
y′

h′

l

h

l′′ l′′′

c C ′ C

K

X V

L

ι

y
y′

h′

l

h

ι′

l′′ l′′′

c

αl,y′(c)

Let (ℎ, 𝑙′′) be a pushout over (𝑦, 𝑙) and (ℎ′, 𝑙′′′) a pushout over (𝑦′, 𝑙). The commuting
morphism from the latter pushout object to 𝑋 is 𝜄′. Then 𝛼𝑙,𝑦(∃−1(𝜄, 𝑐)) = ∃−1(𝜄′, 𝛼𝑙,𝑦′(𝑐)).
For variables, 𝛼𝑙(x𝑖) is a new variable of type 𝐿 (see Remark 9).

In contrast to the partial shift P, the transformations 𝛼′ and 𝛿′ leave the number of
variables unchanged. Only the types of the variables are modified.
Finally, 𝛿′

𝑟(𝑐) and 𝛼′
𝑙(𝑐) are derived from the more general Construction 9 and Construc-

tion 10 by evaluating these construction using the identity on the external interface (i.e.
the type of the main body) for both morphism arguments.
Definition 35 (Transformations 𝛿′ and 𝛼′).
𝛿′

𝑟(𝑐) = 𝛿𝑟,𝑖𝑑(P𝑖𝑑,𝑖𝑑(𝑐)) and 𝛼′
𝑙(𝑐) = 𝛼𝑙,𝑖𝑑(P𝑖𝑑,𝑖𝑑(𝑐)).

We recall that for any 𝑙 : 𝐾 →˓ 𝐿, there is a deletability condition Δ(𝑙) that expresses
the possibility of effecting Del(𝑙), i.e. Δ(𝑙) is satisfied exactly by the first components of
tuples in JDel(𝑙)K. We describe Δ(𝑙) only informally: 𝑓 |= Δ(𝑙) states the non-existence
of edges that are in 𝑖𝑚(𝑓) but incident to a node in 𝑖𝑚(𝑓)− 𝑖𝑚(𝑓 ∘ 𝑙).
Now we have all ingredients for a weakest liberal precondition theorem for 𝜇-condi-
tions. The proofs again rely on the general algebraic framework underlying double-
pushout rewriting [EEPT06], hence the language of category theory is used for a concise
presentation.
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5. Correctness of Graph Programs

Having introduced nested conditions, we make a minor modification of Definition 3 (graph
programs). As nested conditions were originally conceived as (negative) application
conditions to graph transformation rules, it is convenient to regulate the applicability of
a selection by making it dependent on a nested condition.

Definition 36 (Conditional Selection).

Name Program 𝑃 Semantics J𝑃 K
conditional selection 𝑆𝑒𝑙(𝑥, 𝑐) {(𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑥) | 𝑚𝑜𝑢𝑡 ∘ 𝑥 = 𝑚𝑖𝑛, 𝑚𝑖𝑛 |= 𝑐}

5.1.2. Correctness of the Constructions

We exhibit and prove the weakest precondition transformation for the four elementary
graph programs and the cases of sequential and nondeterministic composition.

Definition 37 (Weakest Precondition Construction). Define a transformation Wlp
that accepts a graph program and a condition with placeholders (a 𝜇-condition) and outputs
a condition with placeholders (respectively a 𝜇-condition):

1. Wlp(Uns(𝑦), 𝑑) = ∃−1(𝑦, 𝑑)
2. Wlp(Add(𝑟), 𝑑) = (𝛿′

𝑟(𝑏) | 𝜇x⃗′ = F⃗′(⃗x′)) where 𝑑 = (𝑏 | 𝜇x⃗ = F⃗(⃗x)), and x⃗′, F⃗′ are
obtained by applying 𝛿′

𝑟 to the main body and the equations (adapting the variable
types).

3. Wlp(Del(𝑙), 𝑑) = (Δ(𝑙)⇒ 𝛼′
𝑙(𝑑) | 𝜇x⃗′ = F⃗′(⃗x′)), new equations analogous to Add(𝑟)

4. Wlp(Sel(𝑥, 𝑐′), 𝑑) = ¬∃(𝑥, (𝑐′ ∧ ¬𝑑))
5. Wlp(𝑃 ∪𝑄, 𝑑) = Wlp(𝑃, 𝑑) ∧Wlp(𝑄, 𝑑)
6. Wlp(𝑃 ; 𝑄, 𝑑) = Wlp(𝑝, Wlp(𝑄, 𝑑))

Wlp is ordinarily applied to a condition with placeholders. If 𝑑 is a 𝜇-condition in case 1
or 4, then Wlp is applied to the main body.

The main result for this chapter can now be stated:

Theorem 3 (Weakest Liberal Precondition). For each rule 𝜚, there is a trans-
formation4 Wlp𝜚 that maps 𝜇-conditions to other 𝜇-conditions and assigns, to each
condition 𝑐 such that 𝑚′ |= 𝑐, another condition Wlp𝜚(𝑐) such that 𝑚 |= Wlp𝜚(𝑐) when-
ever (𝑚, 𝑚′, 𝑝) ∈ J𝜚K and Wlp𝜚(𝑐) is the least condition, with respect to implication, with
this property (weakest liberal precondition). That transformation is Definition 37.

Proof. The proofs for Sel(𝑥), Sel(𝑥, 𝑐′), 𝑃 ∪𝑄 and 𝑃 ; 𝑄 are exactly as in [Pen09], while
correctness of the first step, Uns(𝑦), is immediate from the semantics.
For deletion and addition step, we proceed by inductively comparing 𝑑 to Wlp(Del(𝑙), 𝑑)
resp. Wlp(Add(𝑟), 𝑑), which in turn requires inductively comparing conditions with

4Caution: wlp is the notion as defined in Definition 32 while Wlp is the construction.
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placeholders that appear in the main body and right hand sides. The outer induction
over N (see Remark 5) compares the least fixed points. This takes care of the case of
variables. The induction hypothesis here states that the valuation at the current iteration
satisfies the hypothesis. As the variables satisfy the system of equations, we show by
induction over the nesting that the construction is correct for the right hand sides under
any valuation satisfying the hypothesis.
For Boolean combinations, the induction step follows directly from the definition of
satisfaction under a valuation (Definition 18) and from the definitions 𝛿𝑟,𝑦(¬𝑐) = ¬𝛿𝑟,𝑦(𝑐)
and 𝛿𝑟,𝑦(

⋀︀
𝑗∈𝐽 𝑐𝑗) =

⋀︀
𝑗∈𝐽 𝛿𝑟,𝑦(𝑐𝑗) (analogously for 𝛼′).

The interesting case of the induction over the nesting lies in comparing satisfaction of
∃(𝑎, 𝜄, 𝑐) to 𝛼𝑙,𝑦(∃(𝑎, 𝜄, 𝑐)), resp. 𝛿𝑟,𝑦(∃(𝑎, 𝜄, 𝑐)). The goal is to obtain bi-implications
in both cases: whenever (𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑝) ∈ JDel(𝑙)K, 𝑚𝑜𝑢𝑡 |= 𝑐 ⇔ 𝑚𝑖𝑛 |= Wlp(Del(𝑙), 𝑐)
and whenever (𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑝) ∈ JAdd(𝑟)K, 𝑚𝑜𝑢𝑡 |= 𝑐⇔ 𝑚𝑖𝑛 |= Wlp(Add(𝑟), 𝑐). We again
decompose any subcondition ∃(𝑎, 𝜄, 𝑐) into a quantification of the form ∃(𝑎, 𝑐) and an
unselection of the form ∃(𝜄, 𝑐) by Lemma 1. The bi-implications are shown in two parts
⇒, ⇐ each.
The diagrams below depict the situation in each case (deletion and addition). The
lower halves of the diagrams (including the graphs 𝑊 , 𝑋) are the diagrams from the
constructions 𝛼′, 𝛿′. Dotted arrows represent the morphisms whose existence must be
shown, solid arrows represent the morphisms from the assumptions. In all four cases,
the induction hypothesis asserts correctness of the weakest precondition construction for
the morphisms named 𝑦′ = 𝑎 ∘ 𝑦 and 𝑎′ ∘ ℎ in Construction 9 and Construction 10 and
the induction step concludes correctness at 𝑦 and ℎ. The definition is recursive over the
finite nesting of the right hand side, so we assume that 𝛼𝑙,𝑦′(𝑐) resp. 𝛿𝑟,𝑦′(𝑐) is already
defined for the subcondition and the induction hypothesis holds there.

G
D

B C ′

W X

L

Kl

y

a

y′

c

αl,y′(c)

G
D

B C ′

W X

L

K

c

αl,y′(c)

(⇒) (⇐)
Case JDel(l)K / α′
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D
G′

B C ′

W X

K

Rr

y

a

y′

c

δr,y′(c)

D
G′

B C ′

W X

K

R

c

δr,y′(c)

(⇒) (⇐)
Case JAdd(r)K / δ′

For (𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑙−1) ∈ JDel(𝑙)K with 𝑚𝑜𝑢𝑡 : 𝐾 →˓ 𝐷, 𝑚𝑖𝑛 : 𝐿 →˓ 𝐺, a pushout is given
by the semantics. The pushout is depicted in the diagram below. Assume further that
𝑚𝑜𝑢𝑡 |= ∃(𝑎, 𝑐) with 𝑎 : 𝐵 →˓ 𝐶 ′, and that partial shift has been applied, yielding the
monomorphisms 𝑦 : 𝐾 →˓ 𝐵 and 𝑦′ : 𝐾 →˓ 𝐶 ′. The diagrams below show the starting
situation and the induction step, detailed below.
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mout

l′

l
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B C ′
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K
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l

l′′
h

y y′
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B C ′

W X

L

K

l′

l

l′′
h

y y′

a′

a

q

g q′

Consider 𝛼𝑙,𝑦(∃(𝑎, 𝑐)), where the morphism 𝑦 : 𝐾 →˓ 𝐵 is obtained from the partial shift
construction. Build the pushout over (𝑙′′, 𝑑) and compose it with the lower pushout
square, which must be equal the outer pushout by the uniqueness of pushout composition.
The morphism 𝑔 : 𝑊 →˓ 𝐺 obtained in the pushout and the unique commuting morphism
𝑞′ : 𝑋 →˓ 𝐺, together with the transformed subcondition 𝛼𝑙,𝑦′(𝑐), yield satisfaction of the
condition 𝛼𝑙,𝑦(∃(𝑎, 𝑐)) by 𝑚𝑖𝑛.
For (𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑙−1) ∈ JDel(𝑙)K with 𝑚𝑜𝑢𝑡 : 𝐾 →˓ 𝐷, 𝑚𝑖𝑛 : 𝐿 →˓ 𝐺 and 𝑚𝑖𝑛 |= 𝛼𝑙,𝑦(∃(𝑎, 𝑐))
via 𝑔: construct a pullback 𝑙* and 𝑔 with object 𝐵′, consider the universal morphism from
𝐾 to 𝐵′ and conclude that since a canonical isomorphism 𝐵′ ∼= 𝐵 exists by uniqueness
of the pushout complement (since ℎ : 𝐿 →˓𝑊 is a monomorphism [EEPT06]) yielding a
morphism 𝑑 : 𝐵 →˓ 𝐷 to complete the pushout square by the special PO-PB lemma.
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For (𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑟) ∈ JAdd(𝑟)K with 𝑚𝑜𝑢𝑡 : 𝑅 →˓ 𝐺′, 𝑚𝑖𝑛 : 𝐾 →˓ 𝐷 and 𝑚𝑜𝑢𝑡 |= ∃(𝑎, 𝑐) via
𝑔′: pullback 𝐷 →˓ 𝐺′ and 𝐵 →˓ 𝐺′ with object 𝑊 ′, then use universality to obtain the
unique commuting morphism 𝐾 →˓ 𝑊 ′, which yields a decomposition of the pushout
square from the semantics, which by the special PO-PB lemma consists of pushouts and
by uniqueness of M-pushout complements implies 𝑊 ∼= 𝑊 ′.
For (𝑚𝑖𝑛, 𝑚𝑜𝑢𝑡, 𝑟) ∈ JAdd(𝑟)K with 𝑚𝑜𝑢𝑡 : 𝑅 →˓ 𝐺′, 𝑚𝑖𝑛 : 𝐾 →˓ 𝐷 and 𝑚𝑖𝑛 |= 𝛿𝑟,𝑦(∃(𝑎, 𝑐))
via 𝑔, in the same way as the opposite direction of the Del(𝑙) case.
In the case of Del(𝑙), the condition for the pushout complement required by the semantics
to exist is precisely Δ(𝑙). In the case of Add(𝑟), the construction of 𝛿′ asserts the existence
of the pushout. From the induction hypothesis and universality of the morphisms
constructed to complete the diagrams, the diagrams must commute and we conclude
that 𝑚𝑜𝑢𝑡 |= 𝑐⇔ 𝑚𝑖𝑛 |= Wlp(Del(𝑙), 𝑐), resp. 𝑚𝑜𝑢𝑡 |= 𝑐⇔ 𝑚𝑖𝑛 |= Wlp(Add(𝑟), 𝑐) under
the given circumstances.
The unselection part is a straightforward adaptation of the proof above: morphisms
compose unequivocally and the appropriate morphisms from the program interface to
the graphs appearing in the right hand side (𝐵, 𝐶 ′... resp. 𝑊, 𝑋... in the transformed
condition) again exist, as required by the induction hypothesis at the higher nesting level.
The proof mirrors the part for quantification:

G
D

C ′ C

X V

L

Kl

y

ι

y′

c

αr,y′(c)

G
D

C ′ C

X V

L

Kl

y

ι

y′

c

αr,y′(c)

(⇒) (⇐)
Case JDel(l)K / α′
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D
G′

C ′ C

X V

K

Rr

y

ι

y′

c

δr,y′(c)

D
G′

C ′ C

X V

K

Rr

y

ι

y′

c

δr,y′(c)

(⇒) (⇐)
Case JAdd(r)K / δ′

The cases (𝛼𝑙,𝑦(∃−1(𝜄, 𝑐)), ⇒) and (𝛿𝑟,𝑦(∃−1(𝜄, 𝑐)), ⇐) again require only the construction
of pushouts and rely on the uniqueness of pushout composition in the same way as the
corresponding cases for ∃(𝑎, 𝑐), while the remaining two cases are proved by constructing
pullbacks and applying Lemma 16, as for ∃(𝑎, 𝑐).

5.1.3. Programs with Iteration

Programs with iteration are problematic because their weakest liberal precondition is
neither computable (a graph program can simulate a Turing machine, then consider the
wlp of halting with output “yes”) nor in general a 𝜇-condition ([Pen09] stated that for
nested conditions, it is again a nested condition but meant infinitary nested conditions,
which can indeed express any property of finite graphs but need not be equivalent to any
finitary nested condition or even 𝜇-condition!).
The technique to deal with the iteration 𝑃 * of a program 𝑃 is to attempt to approximate
the weakest liberal precondition by some precondition 𝑒 implied by it, for which {𝑒}𝑃{𝑒}
is correct (i.e. which is an invariant). If 𝑐⇒ 𝑒 and 𝑒⇒ 𝑑 can be established, then the
specification is correct. If not, then the answer is unknown. If the answer is unknown, a
counterexample search may yet yield a negative answer.
In programs with nested iteration operators, the method sketched here requires successive
attempts at finding invariants and demands non-mechanical input for each. This can be
regarded as a shortcoming of the Dijkstra method but it is impossible to avoid this issue
entirely due to the undecidability of partial correctness.

5.1.4. An Example of a Weakest Liberal Precondition

For purposes of illustration, we construct a weakest liberal precondition of a 𝜇-condition
step by step. Figure 5.3 shows a graph program which matches a node with exactly one
incoming and one outgoing edge and replaces this by a single edge.
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Sel
(
∅ ↪→

)
;Del

(
1

3

2

←↩
1 2

)
; Add

(
↪→

)
;Uns

(
←↩ ∅

)

Figure 5.3.: The program 𝜚contract = Selc; Delc; Addc; Unsc.

The effect of the rule 𝜚contract is to contract paths, and it can be applied as long as no
other edges are attached to the middle node. Figure 5.4 shows a 𝜇-condition whose
weakest liberal precondition we wish to compute. It is a typical example of a 𝜇-condition,
which evaluates to ⊤ on those graphs that are fully (directed-) connected, i.e. where any
pair of nodes is linked by a directed path.

∀
(

1 2
, x1
)

where x1

[
1 2

]
= ∃

(
1 2

)
∨ ∃
(

1 2

3

, x1
[
1(3) 2(2)

])

Figure 5.4.: A 𝜇-condition 𝑐5.4 = (𝑏 | 𝑙) expressing connectedness.

Our example shows a graph program (graph transformation rule), a condition and the
weakest precondition with respect to the unselection step of the rule. In Wlp(Unsc, 𝑐5.4)
(Figure 5.5), the nodes under the universal quantifier in Figure 5.5 are not the same as
those of the existential one, as these have been unselected: the type of the subcondition
∀
(︀

1 2
, x1
)︀

is ∅. The existential quantifier was introduced by the weakest precondition
construction for unselection.
The weakest precondition with respect to the unselection is shown in Figure 5.5, before
application of the partial shift.

∃
(
3 4

←↩ ∅,∀
(
1 2

, x1
))

where x1

[
1 2

]
= ∃

(
1 2

)
∨ ∃
(
1 2

3

, x1
[
1(3) 2(2)

])

Figure 5.5.: Wlp(Unsc, 𝑐5.4).

In Figure 5.7 and Figure 5.8, partial shift has been applied to the condition Wlp(Unsc, 𝑐5.4)

node/edge decoration meaning
items (nodes and edges) selected for Wlp(Uns(y), c)
items to be deleted to obtain Wlp(Add(r), c)
items to be added to obtain Wlp(Del(l), c)

Figure 5.6.: Legend for the partial shift and weakest precondition example.
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∃
(

1 2

5

,∀
(

1 2

3 4

5

, x7

)
∧ ∀
(

1 2

3

5

, x6

)
∧ ∀
(

1 2

3

5

, x4

)
∧

∀
(

1 2

3

5

, x5

)
∧∀
(

1 2

5

3

, x3

)
∧∀
(

1 2

5

, x1

)
∧ ∀
(

1 2

5

, x2

))

Figure 5.7.: Construction of Wlp(Delc; Addc; Unsc, 𝑐5.4) .

x1

[
1 2

5

]
= ∃

(
1 2

5

)
∨ ∃
(
1 2

5

)
∨ ∃
(

1 2

5

3

, x6

[
1(1) 2(2)

3(3)

5(5)

])

x2

[
1 2

5

]
= ∃

(
1 2

5

)
∨ ∃
(

1 2

5

3

, x5

[
1(1) 2(2)

5(5)

3(3)
])

x3

[
1 2

3

5

]
= ∃

(
1 2

3

5

)
∨ ∃
(

1 2

3
4

5

, x7

[
1(1) 2(2)

5(5)

3(3) 4(4)
])
∨ ∃
(

1 2

5

3(3)

, x4

[
1(1) 2(2)

5(5)

3(3) ])
∨

∃
(

1 2

5

3(3)

, x4

[
1(1) 2(2)

5(5)

3(3) ])

x4

[
1 2

5

3
]
= ∃

(
1 2

5

3
)
∨ ∃
(

1 2

3
4

5

, x7

[
1(1) 2(2)

5(5)

3(3) 4(4)
])
∨ ∃
(

1 2

5

3(3)

, x3

[
1(1) 2(2)

5(5)

3(3) ])

x5

[
1 2

3

5

]
= ∃

(
1 2

3

5

)
∨ ∃
(

1 2

5

3 4

, x5

[
1(1) 2(2)

5(5)

3(4)
])
∨ ∃
(

1 2

5

3

, x2

[
1(1) 2(2)

5(5)

])

x6

[
1 2

5

3
]
= ∃

(
1 2

5

3
)
∨ ∃
(

1 2

5

3 4

, x6

[
1 2

5

3(4) ])
∨ ∃
(

1 2

5

3

, x1

[
1(1) 2(2)

5(5)

])

x7

[
1 2

5

3 4
]
= ∃

(
1 2

5

3 4
)
∨ ∃
(

1 2

5

6
3 4

, x7

[
1(1) 2(2)

5(5)

3(6) 4(4)
])
∨ ∃
(

1 2

5

3 4

, x4

[
1(1) 2(2)

5(5)

3(4) ])
∨

∃
(

1 2

5

3
4

, x3

[
1(1) 2(2)

5(5)

3(4) ])

Figure 5.8.: Construction of Wlp(Delc; Addc; Unsc, 𝑐5.4: equations for the variables.

of Figure 5.5, and the modifications the condition undergoes in the computation of the
weakest precondition with respect to Addc and Delc (namely, application of 𝛿′

𝑟 and
𝛼′

𝑙 to the main body) are highlighted in various colours (see Figure 5.6 for a legend).
Construction 7 has yielded a new list of variables5, x1, ..., x7, the corresponding equations
are shown in Figure 5.8, in abbreviated notation: variable types are suppressed in

5Although this particular 𝜇-condition 𝑐5.4 had only one variable, a partial shift usually yields one with
multiple variables.
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x1

[
1 2

]
= ∃

(
1 2

)
∨ ∃
(
1 2

)
∨ ∃
(

1 2

3

, x6

[
1(1) 2(2)

3(3) ])

x1

[
1 2

]
= ∃

(
1 2

)
∨ ∃
(
1 2

)
∨ ∃
(

1 2

3

, x6

[
1(1) 2(2)

3(3) ])

x1

[
1 2

5

]
= ∃

(
1 2

5

)
∨ ∃
(
1 2

5

)
∨ ∃
(

1 2

5

3

, x6

[
1(1) 2(2)

3(3)

5(5)

])

Figure 5.9.: The first equation from Figure 5.8, all three steps in detail.

subconditions ∃(𝑎, 𝜄, x𝑖) if the mapping 𝜄 from the type to the target of 𝑎 is the identity.
No other simplifications were applied.
In the computation of the weakest precondition with respect to Addc and Delc, the
transformations 𝛿′

𝑟 and 𝛼′
𝑙 are not only applied to the main body, but also to the right

hand sides of all the variables obtained via partial shift. We have highlighted the type of
the main body of Wlp(Unsc, 𝑐5.4) throughout Figure 5.7. When following the construction
through the nesting levels, please keep in mind that one may sometimes choose among
isomorphic pushout objects and furthermore the numbers of new nodes are arbitrary.
However, the nodes 1, 2 and (as created by the transformation 𝛼′) 5 are never “unselected”
and therefore present in every type occurring in the weakest preconditions, similarly for
the edges (not numbered because their mapping is unambiguous in the example).
Edges drawn as dotted lines are deleted to compute Wlp(Addc, Wlp(Unsc, 𝑐5.4)) as per
Construction 9; the hollow edges and nodes are those that are added in the transformation
to compute Wlp(Delc, Wlp(Addc, Wlp(Unsc, 𝑐5.4))) as per Construction 10. The actual
weakest precondition with respect to Delc is obtained by adjoining Δ(𝑙)⇒ to the main
body after applying said transformation (Δ(𝑙) omitted in Figure 5.7 as it is straightforward
to compute); the filled nodes are neither deleted nor added (if there were any preserved
edges in the examples, these would be drawn as unbroken lines; deleted nodes would
be drawn as double circled nodes). A universal quantifier with ∅ →˓ 𝐿 completes the
weakest precondition with respect to the rule, as for nested conditions.
Figure 5.9 shows in detail, rather than in the condensed form of Figure 5.8, what happens
to the first equation of Wlp(Unsc, 𝑐5.4) when the transformations Definition 37 are applied.
In this example, the deletion step Delc deletes only edges, so the check for the existence
of a pushout complement (first case of Construction 9) never fails.

5.2. Correctness Relative to Recursively Nested Conditions

We have shown how the weakest liberal precondition construction for nested conditions
carries over to 𝜇-conditions. The next task, for which we offer a partial solution in
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this section, is to develop methods for the deduction of correctness relative to 𝜇-condi-
tions by extending Pennemann’s proof calculus K. We recall that K works on nested
conditions which are in conjunctive normal form at each nesting level; it features rules
called (supporting) lift and (partial) resolve: the former serve to lift a member of a
conjunction to a deeper nesting level, conjoining its shift to the subcondition of an
existential quantifier, while the latter seek to derive contradictions. The rule descend
allows a member ∃(𝑎,⊥ ∧ 𝑐) of a clause to be replaced by ⊥.

5.2.1. A Proof Calculus

In a proof calculus we may adopt all rules of K, as their soundness is not impacted by
working with recursively nested conditions. However dealing with recursive definitions
requires an extension.
The strategy used in Pennemann’s ProCon theorem prover [Pen09] (converting the
condition to be refuted to a conjunctive normal form at each nesting level and deriving
contradictions at the innermost nesting levels) is not applicable in the presence of
recursion. In our calculus K𝜇, no such normal form is required. Instead, we add all
Boolean manipulations as rules, and propose an induction rule to deal with situations
involving fixed points. This proves to be sufficient to handle all situations encountered in
the examples.
We employ a sequent notation: the inference rules manipulate sequents F : Γ ⊢ Δ, where
F is a system of equations, Γ and Δ are sets of 𝜇-condition bodies, with the intended
meaning that the disjunction of Δ can be deduced from the conjunction of Γ where the
least fixed point solution of F is substituted for the variables. Additionally, variables
are annotated with an arithmetic expression over natural numbers and identifiers 𝑛1, ...,
which serve the important purpose of ensuring well-foundedness in the recursive refutation
rule. Note that it is always sound to increment an annotation in an inference because by
monotonicity, F𝑛

𝑖 (⊥⃗) ⇒ F𝑛+1
𝑖 (⊥⃗). The context rule allows access to any subcondition.

𝐶𝑡𝑥 is a 𝜇-condition syntactically monotonic (or antitonic) in a distinguished open
variable x of same type as 𝑐, 𝑐′ and F is arbitrary:

F′ : 𝑐 ⊢ 𝑐′ (resp. 𝑐′ ⊢ 𝑐)
F ⊎ F′ : 𝐶𝑡𝑥[x/𝑐] ⊢ 𝐶𝑡𝑥[x/𝑐′] if 𝐶𝑡𝑥 is monotonic (antitonic) in x

(Ctx)

Note that variables used in 𝑥 and 𝑥′ may have to be renamed in order not to conflict
with those in 𝐶𝑡𝑥, hence we write ⊎. Soundness is then immediate. Another auxiliary
rule allows unrolling x𝑖 to the 𝑖-th component F𝑖(⃗x). When used inside a nested context
via Rule Ctx, it replaces a specific occurrence of a variable by its right hand side:

F : Γ ⊢ Δ, x(𝑛)
𝑖

F : Γ ⊢ Δ,F𝑖(⃗x(𝑛−1)) F𝑖(⃗x) is the right hand side for x𝑖 in F
(Unroll1)
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In Rule Unroll1, the annotations of the variables in the new expression are decremented:
when 𝑓 |= F

(𝑛)
𝑖 (⊥⃗), then it satisfies x𝑖 in the next step of the fixed point iteration (cf.

Theorem 1), hence in the conclusion the variables used in the right hand side are all
annotated with (𝑛−1). This rule is sound by the fixed point semantics.
The annotations play a crucial role in the proof calculus, because they allow the absurd
proposition ⊥ to be deduced inductively by proving that absurdity follows from the
premisses at each finite stage of the fixed point iteration. The following recursive
refutation rule schema works by exploiting the annotations (𝑛′ <�⃗�: whatever numbers
are substituted for the identifiers of 𝑛′ and �⃗�, the comparison must hold):

∀𝑖 ∈ 𝐼.H𝑖(⃗x(�⃗�)) ⊢ G⃗(H⃗(⃗x(𝑛′))) G⃗(⊥⃗) = ⊥⃗⋁︀
𝑖∈𝐼 .H𝑖(⃗x) = ⊥ 𝑛′ < �⃗�; G⃗ monotonic.

(Empty)

If one can find suitable 𝐼, H⃗, G⃗, then by well-foundedness of <, induction over �⃗� shows that
at any level of the fixed point iteration, the expressions H𝑖(⃗x) imply absurdity, therefore
substituting the least fixed points ^⃗x of the variables must also result in H𝑖(⃗x)[⃗x/^⃗x]
evaluating to ⊥:

Lemma 17 (Soundness of Rule Empty). Rule Empty is sound.

Proof. By induction over the well-founded order <⊆ N‖𝐼‖ × N‖𝐼‖, at �⃗� = 0⃗ all variables
must evaluate to ⊥ according to Definition 22. Induction step: assuming that the
hypothesis H⃗(⃗x(�⃗�′)) ≡ ⊥⃗ holds at every �⃗�′ < �⃗�, H⃗(⃗x(�⃗�′)) ≡ ⊥⃗ and G⃗(H⃗(⃗x(�⃗�′))) ≡ ⊥⃗,
therefore our induction hypothesis also holds at �⃗�. By Proposition 1, all components of
H⃗ are ⊥ in the least fixed point.

A useful instantiation is based on defining conjuncts H𝑖,𝑗 := ∃−1(𝜄𝑖, x𝑖) ∧ ¬∃−1(𝜄𝑗 , y𝑗)
where x𝑖 and x𝑗 range over the variables of two 𝜇-conditions whose main bodies have
been combined as 𝑏 ∧ ¬𝑏′ (this situation is frequently encountered when attempting
to prove that a specified precondition implies a weakest precondition in the Dijkstra
approach). The goal is to express the H𝑖,𝑗 in terms of (annotated versions of) each other
and then to apply Rule Empty to deduce that in the least fixed point, the chosen variable
combinations H𝑖,𝑗(�⃗�) are unsatisfiable.
Several details require attention: Boolean operations must be extended to 𝜇-condi-
tions, which entails variable renaming and union of the systems of equations; rules for
exploiting logical equivalences between different Boolean combinations are needed to
rewrite conditions into a form suitable for the application of the rules of K ([Pen09]
instead puts each Boolean combination appearing as a subcondition into conjunctive
normal form prior to the application of rules). Proof trees in our sequent-style calculus
K𝜇 start with instances of the axiom (𝐴 ⊢ 𝐴 with no antecedents), and make use of
all the classical sequent rules [Gen35a] not involving quantifiers. The sequent rules are
upgraded to sequents with equations F, as introduced above. Each antecedent may come
with equations, but they must not conflict (renaming variables as needed).
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∃(a, c) ∧ d

∃(a, c ∧ ∃−1(a, d))

(Supporting)Lift

¬∃(a) ∃(b, d)

¬∃(m∗)

If ∃m ∈ M, m ◦ b = a and
(m∗, b∗) isM-pushout com-
plement of (b,m), d 6≡ ⊥

PartialResolve

K (adapted)

∃(a◦a′,c)
∃(a,∃(a′,c)) ,

∃(a,ι◦ι′,c)
∃(a,ι′,∃−1(ι,c)) ,

∃(id,id,c)
c , ∃−1(ι,c)

Aι(c)
, ∃(a,c)

ra(c)

Morphism manipulation rules

Γ ` ∆

D,Γ ` ∆

Thinning

D,D,Γ ` ∆

D,Γ ` ∆

Contraction

∆, D,E,Γ ` Θ

∆, E,D,Γ ` Θ

Interchange

(all similarly on succedent)

Γ ` Θ, D D,∆,` Λ

Γ,∆ ` Θ,Λ

Cut

Structural rules

Γ ` Θ, A Γ ` Θ, B

Γ ` Θ, A ∧B

UES

A,Γ ` Θ

A ∧B,Γ ` Θ

UEA

A,Γ ` Θ B,Γ ` Θ

A ∨B,Γ ` Θ

OEA

Γ ` Θ, A

Γ ` Θ, A ∨B

OES

Logical rules

Figure 5.10.: Resolution-Like (K), Morphism-manipulation and Classical rules.

As well as the major rules presented above, we adapt rules from K (see box): the partial
resolve rule is unchanged, the (supporting) lift rules without automatic application of
shift merely make use of unselection. We also use the classical rules for Boolean logic
[Gen35a], structural rules for morphism decomposition and removal of trivial nesting
( ∃(𝑎∘𝑎′,𝑐)

∃(𝑎,∃(𝑎′,𝑐)) , ∃(𝑎,𝜄∘𝜄′,𝑐)
∃(𝑎,𝜄′,∃−1(𝜄,𝑐)) and vice versa, ∃(𝑖𝑑,𝑖𝑑,𝑐)

𝑐 ) (all of these are upgraded to operate
on a single condition body on the right side of a sequent). The other rules from K are
adapted: the descent rule ∃(𝑎,⊥∧𝑐)

⊥ is replaced by a more versatile absorption rule Absorb
∃(𝑎,𝑐)
𝑟𝑎(𝑐) (mirroring Lemma 3 except that 𝑎 need not be an isomorphism, 𝑟𝑎 is defined as in

Definition 23); a 𝜄-removal rule (∃−1(𝜄,𝑐)
𝐴𝜄(𝑐) ) which is correct by Lemma 13.

The boxes of Figure 5.10 and Figure 5.11 are a synopsis of the rules. Greek capital letters
stand for lists of expressions and Latin ones for formulae (here: graph conditions). The
rules of the left-hand boxes are applied to a condition on the right hand side of a sequent.
The rules of K have been transmogrified into the new format, which means they no longer
need to operate on clauses; furthermore, Lift and SupportingLift are merged into
a rule that does not automatically apply 𝐴. Thanks to unselection, the application of
𝐴 is now a separate rule Shift. The Descent rule is no longer necessary because a
conjunction with ⊥ can be transformed to ⊥ via classical logical rules and Absorb may
then remove the quantifier.
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F ′ : c ` c′ (resp. c′ ` c)

F ] F ′ : Ctx[x/c] ` Ctx[x/c′] if Ctx is monotonic (antitonic) in x

(Ctx)

F : Γ ` ∆, x
(n)
i

F : Γ ` ∆,Fi(~x
(n−1)) Fi(~x) is the right hand side for xi in F

(Unroll1)

∀i ∈ I.Hi(~x
(~n)) ` ~G( ~H(~x(

~n′))) ~G(~⊥) = ~⊥
∨

i∈I .Hi(~x) = ⊥ ~n′ < ~n; ~G monotonic.
(Empty)

Figure 5.11.: Rule schemata for handling recursion (synopsis).

From amongst the logical rules of the classical sequent calculus, the rules for quantification
are not adopted as we do not have logical variables in graph conditions. To access inner
nesting levels, we use Ctx instead.

Theorem 4 (Soundness of K𝜇).
The calculus K𝜇 := rules of Figure 5.10 and Figure 5.11 is sound.

Proof. The soundness of the K rules has been established in [Pen09], the supplementary
rules have been established in the text above. The classical sequent rules without
quantification rely on propositional logic only.

In conclusion, the elements of nesting, Boolean combinations and recursion are handled
by the corresponding rules: K and morphism manipulation rules for nesting, classical
sequent rules for Boolean combinations and Empty, Unroll1, Ctx for recursion.

5.2.2. An Example of a Proof

For this subsection, we have opted for a minimalistic first example without the blowup
from the weakest liberal precondition in Subsection 5.1.4. The example (Figure 5.12)
uses a minimal number of variables to show the calculus K𝜇 and its inductive refutation
rule at work. We examine the 𝜇-condition x1 ∧ ¬x2, whose main body has type

[︀
1 2

]︀
.

Consider the following system F:

Example 24 (System of equations used in the example proof).

x1

[
1 2

]
= ∃

(
1 2

)
∨ ∃
(
1 2

3

, x1
[
1(3) 2(2)

])

x2

[
1 2

]
= ∃

(
1 2

)
∨ ∃
(
1 2

3

, x2
[
1(3) 2(2)

])
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While the equations are syntactically identical up to variable renaming, this is not
exploited by K𝜇, hence the proof (Figure 5.12) is not a one-liner: it starts by defining a
suitable list of auxiliary conditions H⃗ (in this case actually a single one, which we name
H1,2

6), unrolling both variables once (1), then uses distributivity of conjunction over
disjunction (derivable as a logical rule) to resolve the base case of the right hand side of
x1 (2), then shifts the other branch of x2 over the corresponding branch of x1. In a lift
and shift step (3), a conjunction of two subconditions is obtained (depending on whether
the nodes 3 are identified). In step (4), one of these is dropped and the other is used to
obtain x1 ∧ ¬x2, with lower annotations, as a subcondition. Finally we show that the
context of this subcondition (monotonic by virtue of being syntactically positive) has
least fixed point ⊥, and apply Rule Empty.

F : xn1 ∧ ¬xm2 ` F1(~x
(n−1)) ∧ ¬F2(~x

(n−1)) H1,2(~x) = x1 ∧ ¬x2
(1)

F : x
(n)
1 ∧ ¬x(n)2 `

(
∃
(

1 2

)
∨ ∃

(
1 2

3

, x
(n−1)
1

[
1(3) 2(2)

]))
∧¬∃

(
1 2

)
∧ ¬∃

(
1 2

3

, x
(n−1)
2

[
1(3) 2(2)

])
(2)

F : ... ` ∃
(

1 2

3

, x
(n−1)
1

[
1(3) 2(2)

])
∧ ¬∃

(
1 2

3

, x
(n−1)
2

[
1(3) 2(2)

])
(3)

F : x
(n)
1 ∧ ¬x(n)2 ` ∃

(
1 2

3

, x
(n−1)
1

[
1(3) 2(2)

]
∧ ¬x(n−1)

2

[
1(3) 2(2)

])

∃
(

1 2

3

,⊥
)
`

∃
(

1 2

3

,⊥
)

∃
(

1 2

3

,⊥
)
` ⊥

F : x1 ∧ ¬x2 ` ⊥

Figure 5.12.: Deducing a contradiction from x1 ∧ ¬x2 under the system of equations F.
Multiple steps have been contracted into single inference lines for brevity.

5.3. Conclusion and Outlook

In this chapter, several results about recursively nested conditions were achieved: a weakest
liberal precondition transformation (Theorem 3), a sound proof calculus (Theorem 4).
Correctness relative to 𝜇-conditions was defined and discussed and appears to be a fruitful
ground for further investigations.
A summary overview of graph conditions for non-local properties is attempted below.

6Note that a larger example would likely have required more than one branch to handle each conjunct.
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reference [Pen09] (here) [Rad16] [PP14]
conditions Nested 𝜇- HR* M
wlp yes yes yes yes
proof calculus complete yes future work Hoare logic
theorem prover yes future work

A proof calculus is presented in [PP14] but completeness of a proof calculus has only
recently been obtained by Lambers and Orejas [LO14] for nested conditions and remains
to be researched for the other approaches.
The different formalisms can be said to occupy different niches. HR* conditions are known
to properly contain the monadic second-order definable properties [Rad13] and nested
conditions are a special case of each of the other three, and we have provided some results
towards separating 𝜇-conditions from M- or HR* conditions in Section 3.4. M-conditions
have the advantage of being closely related to MSO logic, just as 𝜇-conditions are closely
related to fixed point logic. 𝜇-Conditions have the advantage of a conceptually simple
definition and a very graph-condition-like weakest precondition transformation.
As the examples show, our weakest precondition calculus (a weakest precondition calculus
now also exists for HR* conditions [Rad16] and is readily available by logical means in
the M-conditions formalism [PP14]) produces unwieldy expressions due to partial shift,
each time an unselection is encountered in the computation of a weakest precondition.
A related blowup is inherited from the weakest precondition calculus of [Pen09], which
makes use of the shift construction. In our case however, this construction is a proof
rule and can be applied selectively. We can heuristically simplify the expressions and
empirically found that many frequently occurring cases can in principle be resolved
automatically. Many of these points will be discussed again on practical examples in
Chapter 7.
It is an issue with any kind of graph conditions that the weakest precondition calculus
cannot be said to be complete, because that would mean that any graph program
and postcondition asserted as a 𝜇-Condition has a corresponding expression for the
precondition. This cannot be, as any recursively enumerable graph language would
have to be expressible as a 𝜇-condition (with finite index sets at disjunctions!), whereas
satisfaction for 𝜇-conditions by a graph is decidable, indeed in polynomial time. It should
therefore be stressed that we did not aim for (relative) completeness in the sense of
[Coo78], which is defined for Hoare logics as completeness under the assumption that
the implication problem of the assertion language could be solved. Because of the lack
of expressiveness of the assertion language – in contrast to the usual approach, which
uses first-order logic with arithmetic and hence has the required expressiveness, a graph
condition can only mention nodes and edges that are actually present in a state and
is limited to certain expressible properties for preconditions. Therefore the assertion
language does not meet the criterion of expressiveness, and neither completeness nor
relative completeness is attainable in our setting without supplementary constructions.
This limitation is shared with all graph condition formalisms on the grounds that all
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properties that can be expressed with (finite) graph conditions are decidable (in the case
of 𝜇-conditions, in polynomial time).
Concerning the lack of expressiveness, we believe that it makes sense to embed our work
in a more general Hoare logic to deal with the graph-like properties that can be expressed.
Also, an extension of 𝜇-conditions by temporal operators parameterised on programs
might provide a way to attain completeness, as such a formalism could express weakest
preconditions symbolically, similarly to dynamic logic [HKT00].
It indeed appears that 𝜇-conditions might readily generalise to temporal properties,
even with the option to nest temporal operators inside quantifiers, which would allow
properties such as the preservation of a specific node to be expressed (but require further
proof rules). This could be achieved by introducing a next operator parameterised on
atomic subprograms (the basic steps of Definition 3) and since in the semantics of these
program steps the relationship between the interfaces is deterministic, this would again
confer an unambiguous type to such an expression and make it suitable for use as a
subcondition. Whether this offers any new insights remains to be seen.
Future work must include more work on the power of the proof calculus because it would
be important to know the limitations of our method.
Future work will also include tool support with special attention to semi-automated
reasoning, based on the reasoning engine Enforce implemented in [Pen09]. To extend
the weakest liberal precondition construction to programs with iteration, one would have
to provide, or have the prover attempt to determine, an invariant, as in the original work
of Pennemann. To obtain termination proofs for total rather than partial correctness,
one may proceed as in [Pos13] and prove termination variants.
Eventually, the formalism should be upgraded to express algebraic operations on attributes
(labels), extending our work to a practical verification method that separates the graph
specific concerns from other aspects and allows proofs of properties that depend on
both, for example involving data structures whose elements should remain ordered. This
proposed extension should be easy to implement, as a body of research is already available
on attribution concepts for graph transformations.
Finally, the limitations imposed by undecidability prompt the search for classes of
programs and conditions where correctness is decidable.

5.4. Bibliographic Notes

In the following, bibliographic notes on the various aspects treated in this chapter are
listed. These concern program correctness (the general notion from software verification),
proof calculi and related constructions for non-local graph conditions, other subjects in
the verification of graph programs.
The original reference for Dijkstra’s predicate transformer approach is [Dij76], Hoare’s
axiomatic approach to program correctness is [Hoa83]. In Hoare logic, much attention
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has always been given to completeness [Coo78]. On the subject of proving correctness
in Hoare logic (axiomatic semantics), we refer to the monograph of Apt and Olderog
[AO97]. A Hoare calculus for the verification of graph programs is found in Poskitt and
Plump [PP14], which was already mentioned in Chapter 3. Partial correctness can be
complemented with termination analyses such as [BKZ14], or well-founded termination
rules as in [Pos13], to yield total correctness.
An approach related to ours, based on Hoare logic, is separation logic. Separation logic
appears in a growing number of publications in the context of software verification. It was
devised because, in the word of Reynolds [Rey02], “in logics, sharing is the default and
non-sharing tedious to declare and because methods for reasoning about shared mutable
data structures weren’t practical”. Separation logic is not a graph condition formalism
and has a different scope. Our definitions can in principle be used for many kinds of
graph-like structures. However, a comparison or even a combination would certainly be
interesting when our work is applied to software verification.
It has indeed been demonstrated that graph transformation systems have the potential
to be a practical tool in the verification of operations on data structures [BCE+05].
There is an ongoing effort to base the verification of concurrent object-oriented programs
on shape analysis (for example Yahav and Sagiv [YS10]), which has been related to
graph transformation based methods in the work Rensink [RD06] and Zambon and
Rensink [ZR11, RZ12]. Even more recently Heußner et al., Corrodi et al. [HPCM15,
CHP16] have published work on the verification of concurrent object-oriented programs
using graph programs, using the GROOVE model checker [KR06]. For a treatment of
data values, attributed graphs can be used. The monograph of Ehrig et al. [EEPT06]
offers a treatment of attributed graph transformations, which is also an active area of
research. On the specification side, graph conditions should at least be able to express
constraints on attributes, such as the E-conditions of Orejas [Ore11]. Inference rules
must account for the attributes as well.
Apart from the proof-based approach to verification of graph transformation systems,
another notion of correctness is via abstract model checking of the transition systems.
The state space of the graph transformation system, which is in general infinite, is
condensed into a finite number of abstract states; specifications are given as temporal
logic formulas whose propositions are graph conditions. References are Gadducci et al.,
Baldan et al., König et al., Rensink et al. [GHK98, BKK03, KK06, RD06]. These could
in principle be adapted to graph programs: in Section 6.1, graph programs will be given
an operational semantics, which is a prerequisite for applying this method.
Shape analysis is an approach to software verification that works with graph abstractions
of pointer structures [SRW99, LZC13, DN03]. The latter work uses reduction by graph
rewriting systems to define valid pointer structures. We envisage shape analysis as a
possible future application of our work. The link between the abstract model checking
mentioned above, and deductive methods such as ours, could be provided by abstraction
refinement [CGJ+03], which has to our knowledge not yet been researched for graph
programs.
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The PhD thesis of Radke [Rad16] contains new methods and results for HR* conditions,
such as an integration into rules, which is based on a shift construction. Poskitt and
Plump [PP14] have presented a weakest precondition calculus for another extension of
nested conditions (monadic second-order conditions) and demonstrated its use in a Hoare
logic. The method is arguably closer to reasoning directly in a logic and less graph
condition like, but seems successful at solving some of the same problems in a different way.
Strecker et al. [Str08, PST13] have performed verification of graph transformation system
within general-purpose theorem proving environments, with positive path conditions.
Dyck and Giese [DG15] automatically check certain kinds of inductive invariants of graph
transformation systems.
As for the proof calculus presented in this chapter, the original purpose of Gentzen’s
sequent calculus [Gen35a, Gen35b] was to provide deep results in proof theory, the famous
Hauptsatz. Our usage is quite humble in comparison and serves mainly to formulate
Rule Empty as an inference rule.
The soundness of K in the context of nested conditions has been established in the
publications introducing them; recently a tableaux based completeness proof of K has
been found by Lambers and Orejas [LO14]. The resolution-style proof rules of K are
clearly sound for 𝜇-conditions as well. Navarro, Pino, Orejas and Lambers are developing
a formalism [MN16] supporting (specifically) path conditions and proofs with nested
tableaux, which does not seem to be far removed from our work. It will certainly prove
worthwhile to compare their proof calculus, ours and those for temporal logics (cf. e.g.
Studer [Stu08]). Sound and complete tableau-like proof systems are also known for
the propositional 𝜇 calculus [Cle90] and propositional linear temporal logic [GHL+07].
These logics make use of recursive definitions and tableaux may have loops. There is
an undeniable structural resemblance between tableaux with loops and proofs using
Rule Empty.
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In the study of structure-changing Petri nets and structure-changing workflow nets in
Chapter 4, system and environment are treated on an equal footing. Both are modelled
as rule sets whose rules could be interleaved in arbitrary order.
Adverse conditions are only modelled insofar as the two rule sets contained different
kinds of rules (firing and reconfiguration, respectively) and reconfiguration could be said
to be an adverse condition for the correct termination of a workflow. The leading idea is
to imagine the interaction between system and environment as interleaving or parallelism
between their respective actions.
Simply partitioning the rule set is insufficient to express the distinction between a
controlled system and an uncontrolled environment. The study of correctness of graph
programs under adverse conditions is also concerned with this distinction.
The notion of correctness presented in this chapter is abstract in the sense that the
problems of controller design or program synthesis are excluded, but it is usable within
the proof-based framework of Chapter 5 and allows proofs to be carried out in the same
way as for the programs of Chapter 5.
An adverse condition model formally describes the possible influences of the environment.
It may include assumptions on the frequency of faults and conditions under which the
various faults may occur. Assumptions on their frequency are modelled in our framework
as part of Asm. Assumptions on the precise circumstances under which a fault can occur
however are part of Env because they are best represented as application conditions
in graph rules, if the faults are represented as transformations rules too. Thus the
possible interplays between system and environment are determined both by the possible
schedulings (frequency of faults) and shapes of rules.
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In the systems we consider, state spaces (though never the individual states) easily
become very large or even countably infinite. The ability to formulate abstractions
and perform computations on them is essential to deal with these systems. When we
employ the term “error state”, we mean a very simple instance of abstraction building.
It implies a lumping of all conceivable states of the system into two meta-states: error
and non-error. Figure 6.1 shows an abstract state space of a system with reversible
(repairable) errors.

non-error

error

errunerr

Sys

Sys, err

Figure 6.1.: Reversible errors: abstract transition system over-approximating the possible
behaviours. The transitions are not always enabled in a concrete state.

The meta-states error and non-error are represented symbolically, as formulæ in a logic
or as graph conditions. The proof goal then is to show that the transition labelled unerr
is always possible.
This chapter is structured as follows: Section 6.1 briefly recalls the special case of structure-
changing Petri nets to motivate our notion of correctness under adverse conditions. In
Section 6.2, a formal framework is presented that distinguishes system from environment
actions according to a simple control model that allows system actions to be chosen
arbitrarily to satisfy the specification, while the remaining nondeterminism is adverse.
This framework is instantiated in concrete terms and we show how to extend the weakest
precondition calculus to such systems. This enables an investigation of the interaction of
system and environment under the assumption of intermittent faults within the basic
framework of partial correctness. Section 6.3 concludes with an outlook and Section 6.4
lists bibliographic notes.

6.1. Adverse Reconfigurations

As a motivation, let us reconsider the case of structure-changing Petri nets investigated
in Chapter 4. The reachability problems asked for the possibility of reaching a certain
state, or abstract state (which was a set of states specified by a multiset of place colours),
under any choice of firings and reconfigurations. Such an abstract state may model an
error state, for instance, and the structure-changing workflow net S = (N,R) is “correct”
if such a state cannot be reached. We may instead envisage a new abstract reachability
problem “under adversity”, asking for the existence of a sequence of firing steps that
are interleaved with finite sequences of uncontrolled reconfigurations. After each Sys
firing step, Env performs a number (according to model assumptions, either arbitrary or
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constrained) of reconfiguration steps. The nondeterminism of the environment is then
modelled by defining ⇒′

S:= {(N,N′) | ∃N′′, 𝑡 ∈ Σ, 𝜚 ∈ 𝑅*, N
𝑡⇒ N′′ 𝜚⇒ N′} and extending

the relation to sets as ⇒′′
S:= {(N,N′) | N′ =

⋃︀
N∈N{N′ | N⇒′

S N′}}.
Now the situation is slightly different. As reconfigurations have been introduced to model
adverse conditions, they really should be uncontrolled. In the behaviour of (Sys‖‖‖Env),
adverse rules should be universally quantified: the question is not only whether a certain
derivation exists, but whether all the derivations that differ in the choice of environment
steps can still be controlled by system steps so as to fulfil the specification.
We may formulate a modified abstract reachability problem such as the following: given
a 𝑘-coloured structure-changing Petri net S = (N,R) for some 𝑘 ∈ N and some multiset
𝑞 : {0, ..., 𝑘 − 1} → N, is there a set N such that {N}⇒′′*

SN and 𝛼(N) = {𝑞}? This is an
example in nuce of our idea of correctness under adverse conditions, to be introduced in
this chapter. However, we will not pursue the specific case of structure-changing Petri
nets any further and instead formulate correctness under adverse conditions in the more
general framework of graph programs and graph conditions, which can be specialised
to structure-changing Petri nets should the need arise: by virtue of the translation
sketched in Section 2.3 and by encoding Definition 6 as a graph transformation rule,
structure-changing Petri nets are a special case of graph transformation systems. The
negated abstract reachability problem is then easily seen to fit our program correctness
framework introduced in the previous chapter. However, the non-negated version asks
for reachability rather than safety and the modified one sketched in this section requires
an interleaving of safety and reachability. In the following, we propose an extension of
the formalism to allow such properties to be verified.

6.2. Modelling Control: Own and Adverse Steps

System and environment actions (steps) must have a different semantics because the
former are controlled (the composition of Sys and Env being correct as long as there
exists a choice of next action satisfying the postcondition), while the latter are not,
in the sense that to be correct, all possibilities must lead into a state satisfying the
postcondition.
It is worth noting that in the verification methods for graph programs we base our work
on, neither the specification consisting of pre- and postconditions nor the semantics
(Definition 3) of graph programs makes any reference to intermediary states. This is
unlike the work on model checking listed in Section 5.4, since temporal specifications rely
on such a notion: in order for temporal modalities to be interpretable, a step semantics
must be defined instead. The same is true for this section.
We stress that the extended formalism presented in this chapter represents a point in a
design space and different design choices are possible to fit into the framework:
∙ The choice of program operators (we construct program terms using the Kleene

operators).
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∙ The treatment of parallelism (we defer the treatment of parallelism for the time
being)
∙ The separate interfaces which will be introduced

6.2.1. 2-Player Programs and Their Semantics

One can view the controller Sys and the environment Env as two participants in a
game. We start by proposing a modified version of Definition 3 (graph programs, now
also called (program) terms because of the new, step-wise execution semantics detailed
in the following part). The definition is exactly as Definition 3 apart from the index
± ∈ {+,−}1 The only formal difference is a superscript that labels each program with
one of these two symbols.

Definition 38 (2-Player Graph Programs).
A two-player graph program is one of the following:

∙ elementary terms Sel±(𝑥), Del±(𝑙), Add±(𝑟), Uns±(𝑦) for ± ∈ {+,−},
∙ 𝑠𝑘𝑖𝑝± for ± ∈ {+,−},
∙ If 𝑃 and 𝑄 are two-player graph programs then so are 𝑃 ∪+ 𝑄 and 𝑃 ∪− 𝑄 if

in(𝑃 ) = in(𝑄) and out(𝑃 ) = out(𝑄), 𝑃 *+ and 𝑃 *− if in(𝑃 ) = out(𝑃 ), 𝑃 ; 𝑄 if
in(𝑄) = out(𝑃 ) (in and out are defined below).

To every program an input and an output interface are unambiguously assigned. The
sequential composition 𝑃 ; 𝑄 is only well-formed when 𝑃 and 𝑄 agree on their interfaces.
These input and output interfaces are defined as (for ± ∈ {+,−}):

program 𝑃 in(𝑃 ) out(𝑃 )
Sel±(𝑥) dom(𝑥) cod(𝑥)
Del±(𝑙) cod(𝑙) dom(𝑙)
Add±(𝑟) dom(𝑟) cod(𝑟)
Uns±(𝑦) cod(𝑦) dom(𝑦)

𝑃 ; 𝑄 in(𝑃 ) out(𝑄)
𝑃 *± in(𝑃 ) out(𝑃 )

The interfaces of programs can be checked statically as it is determined by the morphisms
used. The interfaces of 𝑠𝑘𝑖𝑝± are indeterminate, subject to the condition that input
equals output, so there is really one 𝑠𝑘𝑖𝑝+

𝑃 and one 𝑠𝑘𝑖𝑝−
𝑃 for each graph 𝑃 .

For example, Figure 6.2 below is a two-player program with input and output interface
∅. Its intuitive meaning is as follows: the environment chooses how often the loop is
executed. At each iteration, the controller decides whether an addition or a deletion of
a loop should take place. The choice of match is again up to the environment, i.e. the
controller cannot decide which loop is deleted or where it is added.

1We use ± when a definition is analogous for + and −. We use the symbol + to indicate system actions
(program terms, sets ...) and − for all such belonging to the environment.
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(
Sel−( ); Add−( ↪→ ); Uns−( ) ∪+ Sel−( ); Del−( ←↩ ); Uns−( )

)∗−

Figure 6.2.: A two-player program.

Notation. All morphisms in the diagrams of the following pages are mono, even if
represented as straight arrows.

To lift programs with interface to a two-player setting, a conscious design choice is in
order. The modelling of the interaction between two processes can be made more natural
by changing the definition of J·K. Instead of just a graph with a single selection, the
states reached by a program are now graphs annotated with two, possibly intersecting,
selections. One subgraph selection 𝐵+ →˓ 𝐺 belongs to the ocntrollre and the other
selection 𝐵− →˓ 𝐺 belongs to the environment, and the selections can overlap.

Definition 39 (2-Player Interfaces). Y is the class of all diagrams of the following
type, where the two morphisms (𝑦+, 𝑦−) are jointly surjective:

𝐵+ 𝐵−

𝐵

𝐺

𝑦+ 𝑦−

𝑔

Formally, instead of tuples of two monomorphisms and one partial monomorphism, the
elements in our new semantics of two-player programs are quadruples (𝑌in, 𝑌out, 𝑝+, 𝑝−) ∈
Y × Y × PM × PM where 𝑌in = (𝑦in

+, 𝑦in
−, 𝑔in), 𝑌out = (𝑦out

+, 𝑦out
−, 𝑔out) and 𝑝+ is

a partial monomorphism from dom(𝑦in
+) to dom(𝑦out

+) and 𝑝− from dom(𝑦in
−) to

dom(𝑦out
−).

The idea is that the intuitive meaning and the formal semantics should deviate as little as
possible from the plain (non two-player) case so we can adapt the proofs from Section 5.1.
The condition itself is oblivious of the individual selections.2 Satisfaction is not changed
at all, it simply ignores the individual interfaces:

Definition 40 (Satisfaction). If 𝑌 = (𝑦+, 𝑦−, 𝑓) ∈ Y and 𝑐 is a 𝜇-condition, then
𝑌 |= 𝑐 iff 𝑓 |= 𝑐.

We can now define a semantics for two-player graph programs, closely related to the
semantics of graph programs as defined in Chapter 2: a selection step is still a selection
step, although it changes only the selection whose superscript (+ or −) corresponds to

2This, too, is only a design choice to simplify the presentation.
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that of the program term. An addition step is still an addition step and changes the
graph as well as the selection of one player. An unselection step unselects part of one
player’s selection. There are no new impediments except for deletion, which is forbidden
when an item that should be deleted is still selected by the other player.

Definition 41 (Semantics of 2-Player Programs). Let 𝑌in = (𝑦in
+, 𝑦in

−, 𝑔in) and
𝑌out = (𝑦out

+, 𝑦out
−, 𝑔out) throughout.

JSel+(𝑥)K± = {(𝑌in, 𝑌out, 𝑝+, id𝐵in−) | (𝑌in, 𝑌out, 𝑝+, id𝐵in−) ∈ (Y× Y× PM× PM)} such
that 𝑥 : 𝐵in

+ →˓ 𝐵out
+ is a monomorphism, 𝐵in

− = 𝐵out
−, (𝑥′′, 𝑦′) is a pushout of

(𝑦in
+, 𝑥), 𝑒 a surjective morphism with domain cod(𝑦′) (in the diagram 𝐸 stands for

cod(𝑒)) and (𝑥′, 𝑦out
+) = (𝑒 ∘ 𝑥′′, 𝑒 ∘ 𝑦′), and there exists a morphism 𝑔out : cod(𝑥′) →˓ 𝐺

to make the diagram commute, then 𝑌out is defined with 𝑦out
+ = 𝑥′ ∘ 𝑦in

+, and 𝑝+ = 𝑥.
JSel−(𝑥)K± is exactly analogous, i.e. {(𝑌in, 𝑌out, id𝐵in+ , 𝑝−) | (𝑌in, 𝑌out, id𝐵in+ , 𝑝−) ∈
(Y× Y× PM× PM} with all + and − swapped subsequently.
JUns+(𝑦)K± = {(𝑌in, 𝑌out, 𝑝+, id𝐵in−) | (𝑌in, 𝑌out, 𝑝+, id𝐵in−) ∈ (Y×Y×PM×PM)} such
that (𝑦out

+, 𝑦out
−) is the pushout over the pullback of (𝑦in

−, 𝑦in
+ ∘ 𝑦); unique morphism

𝑔out from the pushout object (this is necessarily jointly surjective, as required). Uns− is
defined analogously. The situation for Uns+ is represented below:

B′′

B− B′+

B B+

(PB)

B′′

B− B′+

B′

(PO)

JAdd+(𝑟)K± = {(𝑌in, 𝑌out, 𝑝+, id𝐵in−) | (𝑌in, 𝑌out, 𝑝+, id𝐵in−) ∈ (Y×Y×PM×PM)} such
that (𝑔′, 𝑝′) is pushout of (𝑟, 𝑔in ∘ 𝑦in

+), (𝑦out
+, 𝑟′) is pushout of (𝑟, 𝑦in

+), 𝑔out is obtained
as the morphism from the inner pushout object cod(𝑟′) to cod(𝑟′) = 𝐺′ and 𝑦out

− is
𝑟′ ∘ 𝑦in

−.
JDel+(𝑙)K± = {(𝑌in, 𝑌out, 𝑝+, id𝐵in−) | (𝑌in, 𝑌out, 𝑝+, id𝐵in−) ∈ (Y×Y×PM×PM)} where
𝑝+ = 𝑙−1 such that (𝑙′, 𝑦in

+) is a pushout over (𝑙, 𝑦out
+) and (𝑙′′, 𝑔in) is a pushout over

(𝑙′, 𝑔out).
Composition is analogous to Definition 3 (existence of two composite partial monomor-
phisms) and 𝑃 ∪𝑄, 𝑃 * are also as before: J𝑃 ∪𝑄K± = J𝑃 K± ∪ J𝑄K± , J𝑃 ; 𝑄K± = {(𝑌in,
𝑌out, 𝑝+; 𝑝′+, 𝑝−; 𝑝−+ | ∃(𝑌in, 𝑌 ′, 𝑝+, 𝑝−) ∈ J𝑃 K±, (𝑌 ′, 𝑌out, 𝑝′+, 𝑝′−) ∈ J𝑄K±}.

An atomic program or action is any of the elementary steps.
In the following illustration Figure 6.3 of Definition 41, the diagrams depict the situations
for the atomic 2-player . The input interface 𝑌in = (𝑦in

+, 𝑦in
−, 𝑔in) is highlighted in a

brighter shade and the output interface 𝑌out = (𝑦out
+, 𝑦out

−, 𝑔out) is highlighted in a
darker shade. Recall that two-player interfaces are Y-shaped diagrams. In order not to
disturb the symmetry between the semantics of the (+)-steps and the (−)-steps, only
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6. Correctness under Adverse Conditions

the Y diagrams of the bottom row are oriented as in ?? with the 𝑦+ morphism starting
at the top left hand corner, while the Y diagrams in the top row are mirrored on the
vertical axis. Note that all morphisms are monomorphisms even though normal arrows
are used.

B− B+ B′+

B

G

B′
Ee

yin
− (PO)

x

y′

x′′

JSel+(x)K±

B− B+ B′+

B B′

G

B′′

y

JUns+(y)K±

B− B+ B′+

B B′

G G′

r

r′

g′
(PO)

(PO)

JAdd+(r)K±

B− B+ B′+

B B′

G G′

l

l′′

l′
(PO)

(PO)

JDel+(l)K±

B+ B− B′−

B

G

B′
Ee

x

y′

x′′

JSel−(x)K±

B+ B− B′−

B B′

G

B′′

y

JUns−(y)K±

B+ B− B′−

B B′

G G′

r

r′

JAdd−(r)K±

B+ B− B′−

B B′

G G′

l

l′′

l′

JDel−(l)K±

Figure 6.3.: Atomic 2-player graph programs. Input and output interfaces are highlighted.

The justification for postulating the existence of a factorisation in J𝐷𝑒𝑙±K is that a
deletion step must not be able to damage the other player’s interface. This peculiarity
will be reflected in the Wlp-like construction.
The second, more important change vis-à-vis the one-player situation is that a control
model must be introduced and intermediary steps defined because choice of action now
becomes important. So far, correctness meant that no execution starting from a state
satisfying 𝑐 resulted in a bad state satisfying ¬𝑑. In other words, all choice was considered
to be adverse. When some actions are controlled, it might be possible to avoid bad states
by resolving nondeterminism in a safe way (if one exists). The semantics of a two-player
program is a transition system, and in game-theoretic terms our focus is on safety games.
Introducing a notion of control will distinguish some cases 𝑋+, 𝑋− that are otherwise
handled identically in Definition 41 such as 𝑋 ∪+ 𝑌 vs. 𝑋 ∪− 𝑌 .
The plan is now to introduce abstract process steps in the manner of a process algebra,
then combine these with the J·K semantics of the steps, similarly to the notion of
Structural Operational Semantics introduced by Plotkin [Plo04]. Finally, the appropriate
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6. Correctness under Adverse Conditions

generalisation of the weakest precondition calculus will be developed. A transition system
(labelled over a transition label alphabet Σ) consists of a set of states 𝑆, a relation
Ξ ⊆ 𝑆 × Σ× 𝑆 and a start state 𝑠0.

Notation. Let Σ(𝑃 ) be the set of all atomic programs which syntactically appear in the
term 𝑃 . The symbol X stands for the empty program 𝑠𝑘𝑖𝑝 and 𝜏 stands for 𝑠𝑘𝑖𝑝 as an
atomic action:

Definition 42 ((+)- and (−)-programs). Let X+ be the collection of all program terms
whose topmost operator (in a sequence 𝑃 ; 𝑄, defined as the topmost operator of 𝑃 ) has
the superscript (+) and X− analogously for superscript (−).

By this definition, every program belongs either to X+ or X−. We introduce a semantics
that assigns control of the next step to the respective player (controller Sys for (+),
environment Env for (−)).

Definition 43 (Abstract Process Steps). The labelled transition system X(𝑃 ) =
(X(𝑃 ), 𝜉, 𝑃 ), with labels from Ξ = Σ𝑃 × {+,−} where X(𝑃 ) is the set of all reachable
terms given by the rules below, 𝜉 ⊆ X(𝑃 )× Ξ× X(𝑃 ). Its set of transitions 𝜉 is given by
the rules in the table below:

Atomic:
𝑋

𝑋→+X
for atomic 𝑋 ∈ X+

𝑋
𝑋→−X

for atomic 𝑋 ∈ X−.

Choice: 𝑃 ∪+ 𝑄
𝜏→+ 𝑃 𝑃 ∪+ 𝑄

𝜏→+ 𝑄 𝑃 ∪− 𝑄
𝜏→− 𝑄 𝑃 ∪− 𝑄

𝜏→− 𝑄

Sequence: 𝑃
𝑋→+𝑃 ′

𝑃 ;𝑄 𝑋→+ 𝑃 ′;𝑄
𝑃

𝑋→+X
𝑃 ;𝑄 𝑋→+ 𝑄

𝑃
𝑋→−𝑃 ′

𝑃 ;𝑄 𝑋→− 𝑃 ′;𝑄
𝑃

𝑋→−X
𝑃 ;𝑄 𝑋→− 𝑄

Iteration: 𝑃 *+ 𝜏→+ X 𝑃 *+ 𝜏→+ 𝑃 ;𝑃 *+
𝑃 *− 𝜏→− X 𝑃 *− 𝜏→− 𝑃 ;𝑃 *−

Notation. Next(𝑃 ) is the set of all atomic programs 𝑋 such that 𝑃
𝑋→± 𝑃 ′ for some

𝑃 ′,± according to Definition 43.

Note that by Definition 43, each program term unambiguously assigns control to one of
the players because the transitions leaving it can easily be seen to be all of one type (+,
−). This matches Definition 42 and so we define subsets of X+ and X− associated with a
program 𝑃 :

Definition 44 (State Ownership). For each two-player graph program 𝑃 , let
X+(𝑃 ) := {𝑄 | 𝑃 *→ 𝑄} ∩ X+

X−(𝑃 ) := {𝑄 | 𝑃 *→ 𝑄} ∩ X−
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6. Correctness under Adverse Conditions

Some of the abstract transitions are never accompanied by any change of the state, they
correspond to a choice being made. Luckily, because of their regular nature, our program
terms present no additional difficulty.

Lemma 18 (Finite Abstract Transition Systems).
The transition system (X(𝑃 ), Ξ, 𝜉, 𝑃 ) is finite for any two-player graph program 𝑃 .

Proof. The transitions are derivatives of a regular expression in the sense of Brzo-
zowski [Brz64]. The claim follows using Theorem 4.3 in [Brz64].

The steps of this transition system are abstract and when starting from an actual state,
there may be zero or more transitions actually possible. A configuration of 𝑃 is an
ordered pair (𝑠, 𝑋) ∈ Y× X(𝑃 ):

Definition 45 (Step Semantics).
(𝑠, 𝑃 ) →± (𝑠′, 𝑃 ′) if 𝑃

𝑋→ ±𝑃 ′ according to Definition 43 and (𝑠, 𝑠′, 𝑝+, 𝑝−) ∈ J𝑋K for
some partial monomorphisms 𝑝+, 𝑝−.

6.2.2. Weakest Preconditions

Having defined programs with ownership and endowed them with a step semantics
compatible with previous definitions, we proceed to define a precondition construction
and a suitable extension of the notion of weakest precondition. The new definitions
are designed to extend the definitions from Chapter 6 to the two-player setting. Since
conditions and their satisfaction only depends on the common interface 𝑃 and not 𝑃 −

and 𝑃 + due to the way it was defined, intuitively a weakest precondition construction
looks like Figure 6.4 for each of the atomic programs. The “proc” in the name of the
construction stands for “process”.
Furthermore, the weakest-precondition-like construction must reflect the two types of
nondeterminism. The following definition is arranged to highlight the analogy between
the (+) and (−) cases. The (−) case is similar to the constructions of Chapter 6 but must
now also account for the effect on the player interfaces; this is the only difference. The
(+) case mirrors the (−) case and it will subsequently be shown that this construction is
appropriate, after introducing the extended notion of correctness.

Construction 11 (2-Player “Weakest Precondition”). The cases in the following
table defines a transformation Wlproc𝑃 : Y→ Y for each elementary two-player program
𝑃 .

WlprocSel+(𝑥,𝑐′)(𝑦0, 𝑦1, 𝑑) =
(𝑦′

0, 𝑦′
1, ∃(𝑥′, 𝑐′ ∧ 𝑑)) where (𝑦′

0, 𝑥′) is a
pushout complement of (𝑥, 𝑦0) and 𝑦1 =
𝑥′ ∘𝑦′

1. If no such factorisation of 𝑦1 exists
or if the pushout complement fails to exist,
then Wlproc(𝑦0, 𝑦1, Sel+(𝑥, 𝑐′), 𝑑) = ⊥.

WlprocSel−(𝑥,𝑐′)(𝑦0, 𝑦1, 𝑑) =
(𝑦0, 𝑦′

1, ∀(𝑥′, 𝑐′ ∧ 𝑑)) (constructed analo-
gously to Sel+ case)
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6. Correctness under Adverse Conditions

WlprocDel+(𝑙)(𝑦0, 𝑦1, 𝑑) = (𝑦′
0, 𝑦′

1, 𝑑′) where
𝑑′ = Δ(𝑙′) ∧ 𝛼′

𝑙′(𝑑) (similarly, but 𝑦′
1 =

𝑙′∘𝑦1): (𝑦′
0, 𝑙′) pushout of (𝑦0, 𝑙), then (𝑔, 𝑙′′)

by pushout (𝑔′, 𝑙′). 𝑙′′ is discarded.

WlprocDel−(𝑙)(𝑦0, 𝑦1, 𝑑) = (𝑦′
0, 𝑦′

1, 𝑑′) where
𝑑′ = Δ(𝑙′)⇒ 𝛼′

𝑙′(𝑑) = Wlp(Del(𝑙′), 𝑑)
(otherwise analogous to Del+)

WlprocAdd+(𝑟)(𝑦0, 𝑦1, 𝑑) =
(𝑦′

0, 𝑦′
1, Wlp(Add(𝑟′), 𝑑)) (𝑦′

1 as for Sel
again)

WlprocAdd−(𝑟)(𝑦0, 𝑦1, 𝑑) =
(𝑦′

0, 𝑦′
1, Wlp(Add(𝑟′), 𝑑))

WlprocUns+(𝑦)(𝑦0, 𝑦1, 𝑑) =
(𝑦′

0, 𝑦′
1, Wlp(Uns(𝑦′), 𝑑)) (𝑦′

1 as for Del
again)

WlprocUns−(𝑦)(𝑦0, 𝑦1, 𝑑) =
(𝑦′

0, 𝑦′
1, Wlp(Uns(𝑦′), 𝑑))

Wlproc𝑃 ∪−𝑄(𝑦0, 𝑦1, 𝑑) = (𝑦′
0, 𝑦′

1, 𝑥 ∧ 𝑦)
where (𝑦′

0, 𝑦′
1, 𝑥) = Wlproc(𝑃, 𝑦0, 𝑦1, 𝑑)

and (𝑦′
0, 𝑦′

1, 𝑦) = Wlproc(𝑄, 𝑦0, 𝑦1, 𝑑) (ac-
cording to definition, 𝑃 and 𝑄 must agree
on input and output interfaces for 𝑃 ∪𝑄
to be defined)

Wlproc𝑃 ∪+𝑄(𝑦0, 𝑦1, 𝑑) = (𝑦′
0, 𝑦′

1, 𝑥 ∨ 𝑦)
where (𝑦′

0, 𝑦′
1, 𝑥) = Wlproc(𝑃, 𝑦0, 𝑦1, 𝑑)

and (𝑦′
0, 𝑦′

1, 𝑦) = Wlproc(𝑄, 𝑦0, 𝑦1, 𝑑)

Sequence is handled recursively: Wlproc𝑃 ;𝑄(𝑦0, 𝑦1, 𝑑) = Wlproc𝑃 (Wlproc𝑄(𝑦0, 𝑦1, 𝑑))

The cases of 𝑃 *+ and 𝑃 *− would be infinite Boolean combination, which are not allowed.
The construction can be formally extended to these cases to yield expressions which are
not 𝜇-conditions and can in general only be approximated by 𝜇-conditions. Several more
steps are needed before we can formulate and prove the main result of the chapter, which
is the soundness of Construction 11:

Lemma 19 (Steps and Denotation).
J𝑃 K± =

⋃︀
𝑃

𝑋1...𝑋𝑛→
*
X
J𝑋1; ...; 𝑋𝑛K±, where 𝑋1, ...𝑋𝑛 are atomic steps.

Proof. By structural induction over 𝑃 . The base case for atomic steps holds by Def-
inition 43. J𝑃 ∪ 𝑄K± = J𝑃 K± ∪ J𝑄K± while 𝑃 ∪ 𝑄 → 𝑅 iff 𝑃 → 𝑅 or 𝑄 → 𝑅, thus
the statement holds by assumption on 𝑃 and 𝑄 and set union; J𝑃 ; 𝑄K±: assuming
the statement holds for 𝑄 and 𝑃 ′, it holds because 𝑃 ; 𝑄

𝑋→ 𝑃 ′; 𝑄 iff 𝑃
𝑋→ 𝑃 ′ and⋃︀

𝑃
𝑋→𝑃 ′J𝑋; 𝑃 ′; 𝑄K± = J𝑋K±; J𝑃 ′; 𝑄K±. J𝑃 *±K± is defined as {𝑠𝑘𝑖𝑝±}∪± {𝑃}∪± {𝑃 ; 𝑃}...,

induction over the natural numbers and statement for ∪.

This notion of semantics is not quite adequate for the modelling of controlled actions.

Definition 46 (Strategies). A strategy is a function 𝜒 : X+(𝑃 )× Y→ Σ𝑃 × (Y× Y×
PM× PM) which selects an action 𝑋 from Next(𝑃 ) and tuple (𝑦, 𝑦′, 𝑝+, 𝑝−) from J𝑋K.

A strategy thus selects, given the pair (𝑃, 𝑦) of program term and current state, one
possible action 𝑋 such that 𝑃

𝑋→+ 𝑃 ′, and one element from the set J𝑋K. It can be
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P− P ′− P+ P ′+

P P ′

G G′

p− p+

Wlp

d

Figure 6.4.: Towards adapting weakest preconditions.

said to resolve the nondeterminism inherent in the definition of the semantics of graph
programs.
In other words, a strategy seeks to ensure a certain behaviour by picking a successor
configuration at each (𝑠, 𝑃 ) where 𝑠 ∈ X+. If there is no suitable configuration to
ensure that the specified postcondition holds, there is also no suitable strategy and
the specification will be incorrect. The asymmetry between the (+) and (−) cases is
intentional.

Definition 47 (𝜒-Ensured semantics). Let J𝑃 K𝜒 be defined recursively as follows:
∙ If 𝑃 ∈ X−, then J𝑃 K𝜒 :=

⋃︀
𝑃

𝑋→−𝑃 ′J𝑋K; J𝑃 ′K𝜒

(using composition of partial monomorphisms).
∙ If 𝑃 ∈ X+, then J𝑃 K𝜒 = J𝑋K; J𝑃 ′K𝜒 where (𝑃, 𝑋, 𝑃 ′) = 𝜒(𝑃 ).

A specification {𝑐}𝑃{𝑑} is now said to be correct if there exists a strategy that ensures a
choice of correct successor states.

Definition 48 (Correctness). If 𝑃 is a two-player graph program, a specification
{𝑐}𝑃{𝑑} is correct if there exists a strategy 𝜒 : X+(𝑃 )→ Σ𝑃 such that 𝑦′ |= 𝑑 whenever
(𝑦, 𝑦′, 𝑝+, 𝑝−) ∈ J𝑃 K𝜒 with 𝑦 |= 𝑐.

The role of 𝜒 is to resolve nondeterminism at (concrete) (+)-owned configurations by
providing a choice of system-controlled actions for each possible configuration, while
nondeterminism at (−)-owned states is not resolved. The choice of action and match
for (+) is constrained only by the semantics J·K±. The programs 𝑃 ∪− 𝑄 and 𝑃 ∪+ 𝑄
represent choice points without any state transitions. From general considerations on
game theory, its is known that considering positional strategies are sufficient even for
parity games [GTW02].

127



6. Correctness under Adverse Conditions

The case of a program without any + steps or operators trivially reduces to the weakest
precondition and correctness notion of the previous chapter. That is,

Fact 11 (Adverse-only correctness). A program built from only (−)-steps and adverse
choice ∪− and adverse iteration 𝑃 *− is correct with respect to a pre- and condition (𝑐, 𝑑)
iff the program in the sense of Definition 3 obtained by stripping the − superscripts is
correct in the sense of Definition 31.

Proof. From Definition 46, the requirement of existence of a strategy is vacuous in this
case. From Construction 11, the selection 𝑦− is always empty and by joint surjectivity,
𝑦+ is the identity. Therefore the definition of correctness reduces to that of one-player
programs as defined in Definition 3, Definition 31.

The crucial part, as for the graph programs and conditions of the previous chapter, is
that the weakest precondition construction is correct. Now one can re-use the reasoning
of Theorem 3, adapting the proofs for the plain case to choice and two-player interfaces.

Theorem 5 (Weakest Precondition). Wlproc𝑃 (𝑑) is the least condition with respect
to implication such that 𝑌 |= Wlproc𝑃 (𝑑) ⇒ 𝑌 ′ |= 𝑑 if and only if there is a strategy
𝜒 : X+(𝑃 )→ Σ𝑃 such that (𝑌, 𝑌 ′, 𝑝+, 𝑝−) ∈ J𝑃 K𝜒 for some pair of partial monomorphisms
(𝑝+, 𝑝−).

Proof. Case of a sequence of atomic steps: induction over the length of the sequence
with 𝑃 = 𝑋; 𝑃 ′. Assume that the property holds for Wlproc𝑃 ′ and conclude that also
for 𝑃 , Wlproc𝑃 (𝑑) is implied by a precondition 𝑐 if and only if {𝑐}𝑃{𝑑} is correct:

∙ If 𝑌in |= Wlproc𝑋(𝑑), 𝑋 ∈ X+, there must exist a (𝑌in, 𝑌out, 𝑝+, 𝑝−) ∈ J𝑋K such
that 𝑌out |= 𝑑.
∙ If 𝑌in |= Wlproc𝑋(𝑑), 𝑋 ∈ X−, then for all (𝑌in, 𝑌out, 𝑝+, 𝑝−) ∈ J𝑋K, 𝑌out |= 𝑑 must

hold.

This must be shown for every program.
Sel−(𝑥, 𝑐′): since the semantics (see Definition 41) does not add anything to selection of
other player, if 𝑌 ′ |= 𝑑, then the condition on the required factoring of 𝑦1 and the existence
of the pushout complement holds at any valid precondition because the semantics contains
only (𝑌in, 𝑌out, 𝑝+, 𝑝−) related in this way. Then use the proof of Theorem 3 on the lower
part of the diagram (disregarding the individual selections 𝑦in, 𝑦out) and transform 𝑑 to
Wlp(Sel(𝑥, 𝑐′), 𝑑).
Sel+(𝑥, 𝑐′) is analogous but for the quantification: according to Definition 46 and Def-
inition 48, for any correct specification, there exists a choice (𝑌in, 𝑌out, 𝑝, 𝑝) such that
𝑌out |= 𝑑. The existential quantifier states the existence of a suitable extension of the
current 𝑦in

+, determining a suitable tuple from the semantics.
Del−(𝑙): in the semantics, use the special PO-PB lemma to see that the existence of two
pushout squares is postulated. The requirement that whenever (𝑌in, 𝑌out, 𝑝+, 𝑝−) with
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𝑌in |= 𝑐 (⇔ 𝑔in |= 𝑐 per definition), 𝑌out |= 𝑑 (𝑔out |= 𝑑) is that of a plain weakest liberal
precondition (Theorem 3).
Del+(𝑙): same as Del−(𝑙), but with Δ(𝑙′) ∧ 𝛼′

𝑙(𝑑) instead of Δ(𝑙′) ⇒ 𝛼′
𝑙(𝑑): there is no

choice because the program term has only one outgoing transition, but the definition of
wlproc states that a transition must nevertheless exist.
Add−(𝑟) and Add+(𝑟) are analogous to Del−(𝑟) and Del+(𝑟): as addition steps never
fail, the (−) and the (+) case are alike except for the quantifier.
Uns−(𝑟) and Uns+(𝑟): the reduction to Wlp is again analogous to the previous cases.
Unselection steps never fail and there is no choice, hence (−) and (+) are alike.
𝑃 ∪− 𝑄 and 𝑃 ∪+ 𝑄: in the former case, the outgoing transitions from (𝑃 ∪− 𝑄, 𝑠) lead
to (𝑃, 𝑠) and (𝑄, 𝑠) and each must satisfy the respective Wlproc𝑃 (𝑑) resp. Wlproc𝑄(𝑑).
In the latter case, only one must satisfy it because 𝜒 can be chosen accordingly to assign
one of (𝑃, 𝑠) or (𝑄, 𝑠) to (𝑃 ∪+ 𝑄, 𝑠).

Example 25 (An example with labelled discrete graphs). The wlproc transformation
has been illustrated on labelled discrete graphs in Figure 6.5, which is found at the end of
the chapter due to its bulk. We have abstained from constructing an example with more
complicated graphs or conditions, but the techniques from this chapter are designed to be
combined with those from the previous one.

Deadlocks, i.e. the absence of steps from a certain configuration, have different conse-
quences according to whether the deadlocked configuration belongs to the system or the
environment. This concerns the situation of a program whose next step to be executed is
a selection or a deletion, both of which may fail under certain conditions stated in the
semantics. What seems like an asymmetric treatment of the players is indeed asymmetric,
but it is merely an artefact of our definitions and we see no obstacles to refining these for
a more satisfactory treatment.

Remark 10. If 𝑠 |= 𝑐 and (𝑠, 𝑃 ) has no outgoing transition with the (+)-program 𝑃 ,
then the wlproc of 𝑑 will be unsatisfiable together with 𝑐 and the specification will be
incorrect. If it belongs to a (−)-program however, the specification is correct.

6.3. Conclusion and Outlook

The main statement of this chapter is Theorem 5, the correctness of the weakest precon-
dition construction for two-player graph programs, built upon and extending Theorem 3.
In the literature, the distinction introduced in this chapter is also known as angelic versus
demonic nondeterminism (cf., for instance [CvW03]).
We have demonstrated that one and the same framework is useful for describing systems
under adverse conditions. While the basic idea is clear, there are many degrees of freedom
in designing the formalism. We proposed one and demonstrated how it fits into the
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6. Correctness under Adverse Conditions

framework of Dijkstra-style partial correctness of graph programs. Some aspects are
not fully satisfactory: it falls short of handling true concurrency; unintuitive treatment
of deadlocks; conditions only speak about the graph part of a configuration and lack
the means to distinguish configurations that differ by the remaining program. We feel
confident that these shortcomings can easily be remedied in further work.
Defining the operational semantics of graph programs as a process algebra without
concurrency, whose terms are partitioned according to ((+) and (−)) ownership is a
deliberate choice in order to simplify the definitions and results in this chapter, though it
is not the only conceivable possibility.
There are many possibilities for extensions. For example:

∙ Controller synthesis, which extends the scope of this thesis
∙ Properties beyond safety (when not reaching bad states is not enough). Reachability

games would be a first step in that direction. When methods for proving total
correctness become available in future work, these could likely be extended to
reachability in the case of adverse conditions.
∙ A combination with temporal modalities would also allow for greater flexibility

in the formulation of specifications. Our step semantics already offers one of the
prerequisites.
∙ Concurrency. Philosophically, being forced to work with the notion of a global,

always synchronously viewed state is a rather unsatisfactory feature of a formalism
that describes local state changes, especially in view of the fact that the machinery
for true concurrency in graph transformations is well-developed. Asynchronous
games have also been researched as an abstract notion, see Rideau and Winskel
[RW11]. Winskel’s asynchronous games could be instantiated with graph transfor-
mations, using an event structure semantics [CEL+96].

Systems modelled by graph transformations may be large, distributed and accordingly
exhibit concurrent behaviour for which a satisfactory treatment already exists (notions of
locality and parallel independence [EEPT06] in graph transformation). A future version of
this work would make use of the existing theory to describe, and reason about, concurrent
behaviour.
A parallel composition acquires a meaning only when intermediary steps are distinguished,
otherwise the only ways two graph programs could interact would be considering whether
their track morphisms [EEPT06] are parellelly independent (see ibid.). But in modelling
interaction between system and environment, it is desirable to have a fine enough
semantics to be able to detect deadlocks. Although such an operator is not defined in
this work, it is a candidate for a future extension.
Rules could also interact in other ways, such as amalgamation (due to Boehm, Fonio
and Habel [BFH87]). This may be a better model of faulty executions of actions when
the occurrences of a certain error in a real world system are always concomitant with
the execution of a system action. A rule is executed during the normal functioning
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of the system, but it malfunctions and some error rule is sometimes executed at the
same time. This can model situations that do not occur when rules cannot directly
interact. Amalgamable pairs of rule applications contain a common subrule and no
delete/keep conflicts may exist, however a common deletion may be “factored out”,
leaving two parallel independent steps. We mention it because it provides an alternative
to concurrency.
As an explicit justification of further design choices made in this chapter: the two-player
interfaces are in principle entirely dispensable for the second part. It would have been
entirely possible to declare only whole graph transformation rules as atomic steps 𝜚,
which have in(𝜚) = out(𝜚) = ∅. However, we wanted to stick closely to Chapter 5 and had
to introduce the interfaces for improved modelling, the easier to keep own and adverse
program parts from interfering in undesired ways.

6.4. Bibliographic Notes

Specifically for the verification of graph transformation systems, Heckel et al. [Hec98,
HEWC97], Koch [Koc99], Baldan et al. and Rensink [BCKL07, Ren08] work with
temporal logic, which is also based on a step semantics (of graph transformation systems,
i.e. rule applications).
The interaction between system and environment can be understood as a game. Structure
rewriting games have been introduced by Kaiser [Kai09]. They are based on hypergraph
rewriting. Literature on games on graph transformation systems or Petri nets is otherwise
scarce [RSVB05], with little use of true concurrency either. The new Petri games of
Olderog et al., however, are defined such that strategies can only view the causal history
of a local state [Old14, FO14, FGO15]. For control structures including transactional
rules in graph rewriting see also Baldan et al. [BCD+08]. For process algebras see
Fokkink [Fok00].
Classes of games on graph transformation systems have also been studied (often without
employing the terminology and machinery of the graph transformation community) in
the group of Wolfgang Thomas by Radmacher et al. [RT08], Gross et al. [GRT10], Klein
et al. [KRT12], Gruner et al. [GRT13], presenting detailed complexity results for specific
graph transformation games whose players have asymmetric roles (routing on a network
vs. changing network structure).
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Figure 6.5.: An example with labelled discrete graphs.
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Kryten: Let me think of a cogent paradigm, Sir.
Cat: I’d rather have a good example.

— Red Dwarf, Series VII (Nanarchy)
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This chapter contains a series of basic examples to demonstrate how our method works.
It is structured as follows. Section 7.1 is an example outlining all steps in the verification
of a small program. The focus is on the weakest precondition and only a selected
branch of the proof search is shown because the whole process is somewhat repetitive.
Section 7.2 demonstrates the power of K𝜇 to prove the equivalence of various path
conditions. Detailed discussion of full K𝜇-proofs can be found in that section and the
corresponding appendix. Section 7.3 concludes with an outlook.
Only the plain notion of correctness from Chapter 5 rather than the two-player variant is
used in this chapter, because the procedure and all the essential features of the method
are the same whether using the basic definitions or the extended, two-player ones.
The weakest preconditions and rule applications have been computed using our graph
conditions toolkit, which is available under the GNU General Public License v3. Features
implemented include an example generator for graph constructions, satisfaction of 𝜇-con-
ditions, the weakest precondition calculus for 𝜇-conditions and graph programs (also
two-player) and computer-aided application of K𝜇 proof steps.

7.1. Simple Expanding Network

Our first example is a sanity check to show that our method can prove the preservation of
connectivity under repeated applications of an appropriate graph transformation rule. The
example program Expand expands edges of a graph that represents a network, perhaps a
very simple model of a railroad network where the edges represent track segments. It is
the iteration 𝑃 (Figure 7.1). 𝑃 itself removes a single track (edge) between two waypoints
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(nodes) and glues in a new waypoint and two new tracks. Expand = 𝑃 * repeats this
operation for an indefinite number of steps.

P = Sel
(
∅ ↪→

)
; Del

(
←↩

)
; Add

(
1 2

↪→
1

3

2

)
; Uns

(
←↩ ∅

)

Figure 7.1.: A program Expand for expanding an edge.

As pre- and postcondition, we consider directed connectedness (condition conn:) the
existence of a path between any pair of nodes (Figure 7.2). The goal is to show that
Expand is correct relative to (conn, conn). Intuitively, this statement holds. In the
following, we apply our methods and compute the weakest precondition (the illustrations
are in Appendix B. Then, we must establish the desired invariant by proving the
implication conn = Wlp(𝑃, conn).

x0

[
∅
]
= ∀

(
[]0 []1

, x1

)

x1

[
0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, x1

[
0(2) 1(1)

])

Figure 7.2.: The pre- and postcondition conn: directed connectedness.

Notation. In this whole chapter, the use of the cumbersome sequent notation, which is
relevant only for the formal definition of Rule Empty, is avoided. Instead, all proofs are
presented as sequences of logical inferences whose soundness follows from the soundness
of K𝜇.

The plan of attack is always to derive the contradiction by eventually invoking Rule Empty.
Recall that invoking Rule Empty requires identifying a suitable set of expressions H𝑖

depending on new variables, which are themselves defined in terms of x⃗ via equations G⃗.
The proof structure is not unlike a tableau, unfolding branches until a promising choice
of H𝑖 and G⃗ becomes apparent. Much like a tableau proof, the prover seeks to close
all branches, by reducing them – not directly to contradictions, but to versions of each
other’s root expressions with strictly lower annotations, and Rule Empty then allows
to see the desired contradiction by well-foundedness. A selected part of the proof is
presented and discussed in Section C.1 in the appendix.

7.2. Path Assertions

The existence of a path between two nodes is perhaps the simplest conceivable example of
a non-local graph condition. We have seen how to express it recursively as a 𝜇-condition.
The variant first mentioned in Fact 3 and used throughout this text as an example is by
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no means the only possibility. The condition shown in Figure 7.3, here called 𝜋, is merely
the usual path condition after partial shift: while one can also prove this fact using K𝜇, let
it suffice to say that by Lemma 15, 𝜋 is equivalent to the originally defined path condition.
The difference is that both the first and the last node are never unselected, whereas in
the original condition only the last node is never unselected. But it is intuitively clear
that the existence of a path can be expressed in widely disparate ways. For example,
one may just as well trace the path backwards, starting at the second node (condition 𝜏 ,
Figure 7.6).

ρ0

[
0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, ρ1

[
0(0) 1(1)

2(2)
])

ρ1

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, ρ1

[
0(0) 1(1)

2(3)
])
∨ ∃
(

[0]0 [1]1

[2]2

, ρ0

[
0(0) 1(1)

])

Figure 7.3.: Path condition 𝜋 with fixed external interface.

τ

[

0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, τ
[

0(0) 1(2)

])

Figure 7.4.: Path condition 𝜏 , starting at the last node.

The question of this section is:
Can K𝜇 prove the equivalence of the syntactically distinct path conditions 𝜋, 𝜏?

Answering this question would help gauge the power of K𝜇. The interest of the question
is independent from the plausibility of such a proof obligation coming up in a real
correctness proof (which is hard to foretell).

7.2.1. A Proof of Equivalence

Before attempting to prove the equivalence of 𝜋 and 𝜏 , consider the condition Figure 7.5.
It is a slightly modified variant of Figure 7.3 where the first node is not used twice in a
path. Is K𝜇 able to prove this equivalence?

π0

[
0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, π1

[
0(0) 1(1)

2(2)
])

π1

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, π1

[
0(0) 1(1)

2(3)
])

Figure 7.5.: Path condition 𝜌 with fixed external interface, never re-using the first node.
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𝜌⇔ 𝜋 is established by deriving ⊥ from the 𝜇-conditions 𝜋 ∧ ¬𝜌 and 𝜌 ∧ ¬𝜋 (complete,
detailed, commented proofs in Subsection C.2.1 in the appendix). As in the previous
section, the keystone of the proof is a single application of Rule Empty.

7.2.2. Forwards, Backwards and Tree Recursive Paths

Another possibility for expressing the existence of a path is, as suggested at the beginning
of this section, to build it backwards. Yet another possibility is to opt for a tree recursive
formulation (Figure 7.6, Figure 7.7)).

τ

[

0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, τ
[

0(0) 1(2)

])

Figure 7.6.: Path condition 𝜏 , starting at the last node.

β

[

0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, β
[

0(0) 1(2)

]
∧ β
[

0(2) 1(1)

])

Figure 7.7.: Tree recursive path condition 𝛽.

It is intuitively clear that these conditions all express the same property. Can K𝜇 derive
the equivalences? The plan for the remainder of this section is to prove the equivalence
of 𝜋 and 𝛽, from which the equivalence of 𝜏 and 𝛽 will follow on grounds of symmetry,
completing the picture. From now on, 𝜋 will no longer denote the partially shifted
condition but the original one because the proofs are shorter in that case.

π

[

0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, π
[

0(2) 1(1)

])

Figure 7.8.: Path condition 𝜋, starting at the first node.

The complete, detailed, commented proofs establishing that 𝜋 ⇔ 𝛽 can be found in
Subsection C.2.1. It follows by symmetry that 𝜏 ⇔ 𝛽, because the proofs for 𝜋 ⇒ 𝛽 and
𝛽 ⇒ 𝜋 can be read as proofs for 𝜏 ⇒ 𝛽 and 𝛽 ⇒ 𝜏 respectively, by reversing all edges1.
It follows that 𝜋 ⇔ 𝜏 .
We conclude that K𝜇 is indeed able to prove equivalences between the disparately
constructed path conditions.

7.3. Conclusion

In this chapter, we have demonstrated the effectiveness of our method on small examples:
an invariant of a simple graph program and several equivalences of conditions were
established. The latter means that our proof calculus K𝜇 meets the expectation that it

1This should be formulated as a lemma, but the fact is immediate.
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should be able to prove the equivalence of all the proposed path conditions. All proofs
of this chapter were made using tool support, but still completely manually directed.
The user experience would be much improved by an automatic search, which would
be the most urgent future work for this part. This nonwithstanding, K𝜇 also proved
quite suitable for back-of-the-envelope reasoning, provided that one uses an abbreviated
notation. and reasons at an intermediate level, for example effecting several lifts at once.
In the future, we plan to undertake larger case studies that involve realistic programs
that express, for instance, distributed algorithms or concurrent access to shared data
structures. An example of how to specify data structures with 𝜇-conditions can be found
in Appendix A.
Comparisons between data values are left as a future extension, since we found this
aspect orthogonal to the problems addressed in this work. However, operations on data
such as said value comparisons could be easily implemented by using a graph attribution
concept such as [PH16] (which was designed with the aim of preserving much of the
theory of ordinary graph transformation), since the theory of graph transformations
and graph conditions applies generically to a wide range of structures beyond labelled
graphs. It would then be sufficient to work in a suitable category of attributed graphs
and straightforwardly add proof rules dealing with the operations of the attribute algebra.
Thus in a hybrid proof the graph-like aspects would be covered by the K𝜇 rules while
operations on the attributes would be covered by supplementary rules specific to the
attribute algebra.
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8. Conclusion and Outlook
‘And in case it crossed your mind to wonder, as I can see how it possibly
might, I am completely sane. Which is why I call myself Wonko the
Sane, just to reassure people on this point.’

— Douglas Adams, So Long and Thanks for All the Fish

Contents

8.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

We have examined multiple aspects of formally proving the correctness of graph programs
under adverse conditions, concentrating on a proof-based approach based on recursively
nested graph conditions.

8.1. Summary

Goals that have been achieved:

∙ A novel formalism of recursively nested graph conditions, short 𝜇-conditions (Chap-
ter 3), which is conceptually simple yet expressive enough to cover non-local
properties of practical relevance, such as the balancedness of a binary tree (Fig-
ure A.3).
∙ A weakest precondition construction for 𝜇-conditions, which is complete in the

absence of iteration (Theorem 3).
∙ A sound proof calculus K𝜇 for 𝜇-conditions (Chapter 5).
∙ A demonstration that the framework can be used for correctness under adverse con-

ditions: formulation of (one variant of) adversity for safety properties (Chapter 6).
∙ A detailed comparison of 𝜇-conditions to related formalisms in terms of expressive-

ness.
∙ Some decidability results for structure-changing workflow nets (Chapter 4), which

can be regarded as a restricted class of graph programs.

The choice to forgo the more general formulation of the results based on the axiomatic
framework of adhesive categories, sticking to graphs instead, is mostly a matter of
presentation. We encountered no obstacles to generalising our results to more general
cases. Indeed, many proofs are already expressed in categorial language.
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8.2. Future Work

Since graphs are an abstraction of data structures and graph programs model their
modification by an imperative program, we envisage potential applications to software
verification, for example in the framework of Hoare logics for a dynamically typed, object
oriented programming language presented in the PhD thesis of Engelmann [Eng16].
Although the emerging standard approach would admittedly be to use separation logic
[Rey02] for reasoning about pointer structures or references between objects, graph
transformations have also recently been used in that domain [HPCM15].
Some ideas for future work:

∙ Addressing incompleteness issues. Is the restriction to expressible preconditions a
problem in practice?
∙ Integration with Hoare logic, thus gaining flexibility and doing away with possibly

lacking modularity of the Dijkstra approach noted by Poskitt [Pos13].
∙ Under what conditions might verification methods based on 𝜇-conditions hold an

advantage over separation logic? A question to be examined from the theoretical
and empirical angle.
∙ Making the methods developed available as a shape analysis tool for the verification

of imperative programs (software verification).
∙ Constructing an automatic refutation search and a search to constructively detect

the existence of models. Certainly an automatic theorem prover for K𝜇 would be a
worthwhile goal in the context of the present work.
∙ A more thorough look into the power of the proof calculus, most likely drawing on

literature on proof calculi for modal logics. Gaining an accurate idea of the power
of K𝜇 is an open challenge.
∙ A comparison of the expressiveness of 𝜇-conditions and full HR* instead of HR−

(Subsection 3.4.4). It is an open question whether HR* is more expressive than
𝜇-conditions.
∙ Working out the generalisation to more general types of structures beyond graphs,

by porting all the results to adhesive categories having the appropriate finiteness
property (finite number of epimorphisms with a given domain, up to isomorphisms
of the codomain), and decidability properties.
∙ A fuller treatment of adverse conditions, including synthesis of correct controllers,

would be highly desirable.
∙ Reachability and liveness properties as well as safety would be highly interesting

because typical requirements of systems that interact with an environment require
such properties, which cannot yet be specified. On a related note, total correctness.
∙ There exists work on the model checking of temporal graph properties. On the other

hand the modal 𝜇 calculus [BS06] defines temporal modalities using an immediate
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next-step operator and least fixed points. It should be possible to develop a system
that encompasses both and is endowed with a sound and useful proof calculus.
∙ Defining modes of interaction beyond those formulated in Chapter 6, such as

asynchronous interactions with conflict and concurrency between system and envi-
ronment actions, and extending the proof method to them, would be very desirable
considering that concurrent semantics for graph transformations are otherwise
well-established.
∙ The adverse conditions formulation of Chapter 6 models perfect knowledge of a

global system state and omniscience on the part of the system player. From among
the three aspects of adverse conditions mentioned in the introduction (limited
knowledge, unpredictable behaviour, changing system environment and structure),
the aspect of limited knowledge of the system state is left to future work.
∙ Timed and probabilistic systems could well be the subject of future investigations,

as both types of behaviour constitute refinements of the discrete, nondeterministic
systems considered here.
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A. Expressible Conditions

In this appendix we present properties that can be expressed by 𝜇-conditions.
The property of being a tree can be expressed as the conjunction of the existence of a
node with no ingoing edges (the root node) from which every other node is reachable
and the absence of any nodes with two ingoing edges. Clearly, this can be done with
𝜇-conditions. 𝜋 is the path condition defined as in , and the remaining constraints are
just nested conditions.

tree

[
1
]
= ∀

(
1 2

, π

[
1 2

])
∧ ¬∃

(
1 2

)
∧ ¬∃−1

(
1

←↩ ∅,∃
( ))

π

[

1 2

]
= ∃

(
1 2

)
∨ ∃
(

1 2

3 , π
[

1(3) 2(2)

])

Figure A.1.: 𝜇-Condition specifying trees.

For binary trees, the condition is adapted to labelled graphs: binary trees are encoded as
graphs with edge label alphabet {𝑙, 𝑙, 𝑟, 𝑟}. A node is decorated with a self-loop labelled
𝑙 if it has no left child node, 𝑟 if it has no right child node. Otherwise, an edge labelled 𝑙
denotes a left child and 𝑟 a right child. In Figure A.2, quantification over graphs with
unlabelled edges should be read as an abbreviation for a disjunction over all possible
instantiations with labels from {𝑙, 𝑟} (the disjunction is always finite because our label
alphabets are always finite):
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(
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(
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3

l
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[

1(3) 2(2)

])
∨ ∃
(

1 2

3
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, π′
[

1(3) 2(2)
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Figure A.2.: 𝜇-Condition specifying binary trees.

Figure A.3 exhibits a graph condition that expresses an important property of binary trees.
Self-balancing binary search trees are data structures that have become indispensable for
many applications, see Knuth [Knu97]:
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Figure A.3.: Balancedness of a binary tree.

The property bal+1 (Figure A.3) says that for every path (through the tree) starting at
the left child node of 1, there is a path of the same length starting from the node 1 itself.
Because the successor nodes on the parallel paths are always disjoint by M-semantics,
this can only be a path through the right subtree. When universally quantified, this
𝜇-condition constrains the depth of any left subtree of a node to be at most one more
than the depth of the right subtree. Together with the symmetric condition obtained by
swapping 𝑙 and 𝑟, this property is balancedness of a binary tree. The size of the condition
is considerable, which is partly due to the fact that the property is complicated. We
suggest that by treating labels symbolically as in the work of Orejas et al. [OEP10], the
notation could be made more concise.
A table of expressible properties is provided for perusal and reference. Definitions are
re-used throughout the table (shared definitions are not re-stated every time):
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]
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]
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∀
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[
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
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It is important to understand the limitations of path constraints expressed by 𝜇-conditions.
Paths cannot be forced not to contain cycles and multiple paths cannot be forced to be
disjoint by way of 𝜇-conditions alone, except if the graph itself is constrained in such a
way. Restrictions on node degrees can be used to specify graphs that not to contain any
cycles or crossings of paths. Edge labels can be used to rule out only cycles or crossings
on paths with certain labels.
Known limitations were noted in Section 3.4. The most important point is that any
property that is not computable in polynomial time is also not expressible as a 𝜇-condition.
For a different reason, Hamiltonicity, still not known to be outside of polynomial-time,
cannot be expressed either.
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This appendix lists the computed weakest liberal preconditions from Section 7.1. The
weakest liberal precondition with respect to the Add; Del; Uns part of the program is com-
puted from the postcondition in several intermediate steps, which are shown in Figure B.1
to Figure B.6 (including several simplifications to decrease clutter). First Wlp(Uns, 𝑑) is
computed including the partial shift, then Wlp(Del; Uns, 𝑑) = Wlp(Del, Wlp(Uns, 𝑑)) and
so forth. The weakest precondition Wlp(𝑃, 𝑑) is shown in Figure B.7). The implication
problem 𝑐 ⇒ Wlp(𝑃, 𝑑) is shown in Figure B.8 and represents the final result of the
computation. If the condition of Figure B.8 can be refuted using the K𝜇 calculus, then
the program is correct with respect to the specification.
In detail, the steps are as follows:
After applying the Wlp construction including partial shift to the unselection step of the
rule, the condition becomes as in Figure B.1 and Figure B.2. The resulting condition is
much bulkier than 𝑑 itself because the unselection step is implicitly followed by a partial
shift. A partial shift of a condition 𝑐 results in a condition of 𝑂(𝑚 × 𝑛 × 𝑜) variables,
where 𝑚 is the size of the largest graph appearing as a variable type in 𝑐, 𝑛 is the size of
the type of the main body of 𝑐 and 𝑜 is the number of variables in 𝑐. Steps other than
unselect by definition never increase the number of variables. By inlining the right hand
sides of variables that directly depend on just one different variable or on none at all, the
number can be further reduced (this was performed in Figure B.5).
The weakest precondition with respect to the addition is in Figure B.3 and Figure B.4.
This precondition can be simplified by removing the subconditions ⊥ that sprung into
existence because the construction 𝛿′ outputs ⊥ under certain circumstances, by removing
nestings with identity morphisms and by simplifying chain variables that have just one
other variable on their right hand side (Figure B.5).
Figure B.6 shows the result of applying the 𝛼′ transformation and modifying the main
body with the deletability condition Δ(𝑙)⇒ (which turns out to be trivial, since no nodes
are deleted). Finally, the selection is handled by wrapping the condition in a universal
quantification of the selected morphism. The whole expression was further simplified
by removing redundant variables Figure B.7. The next step after having computed the
weakest precondition Wlp(𝑃, 𝑑) is to attack the implication problem Figure B.8 using
K𝜇. The variables have been suitably renumbered. If 𝑑 is indeed an invariant that can
be proven by K𝜇, one should be able to derive a refutation of 𝑐 ∧ ¬Wlp(𝑃, 𝑑).

Notation. Recall that the small blue numbers are node identities, the numbers in square
brackets fix the morphism under a quantifier by indicating the preimages, for example
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in [2]1, 1 is the node identity in the target of the morphism and 2 is its preimage in
the source graph. Empty square brackets mean that a node of the target graph has no
preimage. For variable types and unselections, the notation 1(2) means that the node 2
in parentheses is mapped to the node 1 in the type, respectively that the node previously
known as 2 is now identified by the number 1.

Please note that these pictures were automatically generated by a layout algorithm that
does not respect the convention that the target graph of a morphism should have a
similar layout as the source graph. Mappings are conveyed by node numbers only.
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Figure B.1.: Wlp(Uns, 𝑑) (part I). The nodes of the external interface (of the main body,
conventionally called x0) are highlighted in blue.
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Figure B.2.: Wlp(Uns, 𝑑) (part II).
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2(3)

, x2

[
0(0) 1(1)

2(2)
]))
∨ false ∨∃

(
[0]0 [1]1

[2]2

,∃
(

0 1

2

←↩
0(0) 1(1)

, x10

[
0(0) 1(1)

]))

x3

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨∃
(

[0]0 [1]1

[2]2 []3

,∃
(

0 1

2 3

←↩
0(0) 1(1)

2(2) 3(3)

, x1

[
0(0) 1(1)

2(3) 3(2)
]))
∨ false ∨∃

(
[0]0 [1]1

[2]2

,∃
(

0 1

2

←↩
0(0) 1(1)

2(2)

, x9

[
0(0) 1(1)

2(2)
]))

x4

[
0 1

2
]
= false ∨ ∃

(
[0]0 [1]1

[2]2 []3

,∃
(

0 1

2 3

←↩
0(0) 1(1)

2(3)

, x4

[
0(0) 1(1)

2(2)
]))
∨ ∃
(

[0]0 [1]1

[2]2

,∃
(

0 1

2

←↩

0(0) 1(1)
, x7

[
0(0) 1(1)

]))
∨ ∃
(

[0]0 [1]1

[2]2

,∃
(

0 1

2

←↩
0(0) 1(1)

, x11

[
0(0) 1(1)

]))

x5

[
0 1

2
]
= false ∨ false ∨ false ∨ ∃

(
[0]0 [1]1

[2]2

,∃
(

0 1

2

←↩
0(0) 1(1)

2(2)

, x3

[
0(0) 1(1)

2(2)
]))
∨ false

Figure B.3.: Wlp(Del; Uns, 𝑑) (part I)
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B. Computed Weakest Preconditions

x6

[
0 1

]
= false ∨ ∃

(
[0]0 [1]1

)
∨ false ∨ false

x7

[
0 1

]
= false ∨ ∃

(
[0]0 [1]1

[]2

,∃
(

0 1

2

←↩
0(0) 1(1)

2(2)

, x4

[
0(0) 1(1)

2(2)
]))
∨ ∃
(

[0]0 [1]1
,∃
(

0 1
←↩

0(0) 1(1)
, x11

[
0(0) 1(1)

]))

x8

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃

(
[0]0 [1]1

[2]2 []3

,∃
(

0 1

2 3

←↩
0(0) 1(1)

2(3)

, x8

[
0(0) 1(1)

2(2)
]))
∨ ∃

(
[0]0 [1]1

[2]2

,∃
(

0 1

2

←↩
0(0) 1(1)

, x12

[
0(0) 1(1)

]))
∨ false

x9

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃

(
[0]0 [1]1

[2]2 []3

,∃
(

0 1

2 3

←↩
0(0) 1(1)

2(2) 3(3)

, x1

[
0(0) 1(1)

2(3) 3(2)
]))
∨ ∃

(
[0]0 [1]1

[2]2

,∃
(

0 1

2

←↩
0(0) 1(1)

2(2)

, x3

[
0(0) 1(1)

2(2)
]))
∨ false ∨ ∃

(
[0]0 [1]1

[2]2

,∃
(

0 1

2

←↩
0(0) 1(1)

2(2)

,

x5

[
0(0) 1(1)

2(2)
]))

x10

[
0 1

]
= ∃

(
[0]0 [1]1

)
∨∃
(

[0]0 [1]1

[]2

,∃
(

0 1

2

←↩
0(0) 1(1)

2(2)

, x2

[
0(0) 1(1)

2(2)
]))
∨ false ∨∃

(
[0]0 [1]1

,∃
(

0 1
←↩

0(0) 1(1)
, x6

[
0(0) 1(1)

]))

x11

[
0 1

]
= false ∨∃

(
[0]0 [1]1

)
∨∃
(

[0]0 [1]1

[]2

,∃
(

0 1

2

←↩
0(0) 1(1)

2(2)

, x4

[
0(0) 1(1)

2(2)
]))
∨∃
(

[0]0 [1]1

,∃
(

0 1
←↩

0(0) 1(1)
, x7

[
0(0) 1(1)

]))

x12

[
0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

,∃
(

0 1

2

←↩
0(0) 1(1)

2(2)

, x8

[
0(0) 1(1)

2(2)
]))
∨ false

x13

[
0 1

]
= false ∨ false ∨ false ∨ ∃

(
[0]0 [1]1

,∃
(

0 1
←↩

0(0) 1(1)
, x12

[
0(0) 1(1)

]))

Figure B.4.: Wlp(Del; Uns, 𝑑) (part II)
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B. Computed Weakest Preconditions

x0

[
0 1

]
= ∀

(
[0]0 [1]1

[]2 []3

, x1

)
∧ ∀
(

[0]0 [1]1

[]2

, x2

)
∧ ∀
(

[0]0 [1]1

[]2

, x3

)
∧ ∀
(

[0]0 [1]1

[]2

, x4

)
∧ ∀
(

[0]0 [1]1

[]2

,∃
(

[0]0 [1]1

[2]2
)
∨ ∃

(
[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])
∨ ∃

(
[0]0 [1]1

[2]2

, x7

[
0(0) 1(1)

2(2)
]))
∧ x5 ∧

∀
(

[0]0 [1]1

[]2

, x6

)
∧ ∀
(

[0]0 [1]1

[]2

, x7

)
∧ x8 ∧ ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, x6

[
0(0) 1(1)

2(2)
])

x1

[
0 1

2 3
]
= ∃

(
[0]0 [1]1

[2]2 [3]3
)
∨∃
(

[0]0 [1]1 [2]2

[3]3 []4

, x1

[
0(0) 1(1)

2(4) 3(3)
])
∨∃
(

[0]0 [1]1

[2]2 [3]3

, x3

[
0(0) 1(1)

2(3)
])
∨∃
(

[0]0 [1]1

[2]2 [3]3

, x7

[
0(0) 1(1)

2(3)
])

x2

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x2

[
0(0) 1(1)

2(3)
])
∨ ∃
(

[0]0 [1]1

[2]2
)

x3

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])
∨ ∃
(

[0]0 [1]1

[2]2

, x7

[
0(0) 1(1)

2(2)
])

x4

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2 []3

, x4

[
0(0) 1(1)

2(3)
])
∨ ∃
(

[0]0 [1]1

[2]2

, x5

[
0(0) 1(1)

])
∨ ∃
(

[0]0 [1]1

[2]2
)

x5

[
0 1

]
= ∃

(
[0]0 [1]1

[]2

, x4

[
0(0) 1(1)

2(2)
])
∨ ∃
(

[0]0 [1]1

)

x6

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x6

[
0(0) 1(1)

2(3)
])
∨ ∃
(

[0]0 [1]1

[2]2

, x8

[
0(0) 1(1)

])

x7

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])
∨ ∃
(

[0]0 [1]1

[2]2

, x3

[
0(0) 1(1)

2(2)
])
∨ ∃
(

[0]0 [1]1

[2]2
)
∨

∃
(

[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])
∨ ∃
(

[0]0 [1]1

[2]2

, x7

[
0(0) 1(1)

2(2)
])

x8

[
0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, x6

[
0(0) 1(1)

2(2)
])

Figure B.5.: Wlp(Del; Uns, 𝑑) (simplified)
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B. Computed Weakest Preconditions

x0

[
0 1

]
= ¬

(
true ′

)
∨ ∀
(

[0]0 [1]1

[]2 []3

, x1

)
∧ ∀
(

[0]0 [1]1

[]2

, x2

)
∧ ∀
(

[0]0 [1]1

[]2

, x3

)
∧ ∀
(

[0]0 [1]1

[]2

, x4

)
∧

∀
(

[0]0 [1]1

[]2

,∃
(

[0]0 [1]1

[2]2
)
∨∃
(

[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])
∨∃
(

[0]0 [1]1

[2]2

, x7

[
0(0) 1(1)

2(2)
]))
∧x5

∧ ∀
(

[0]0 [1]1

[]2

, x6

)
∧ ∀
(

[0]0 [1]1

[]2

, x7

)
∧ x8 ∧ ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, x6

[
0(0) 1(1)

2(2)
])

x1

[
0 1

2 3
]
= ∃

(
[0]0 [1]1

[2]2 [3]3
)
∨∃
(

[0]0 [1]1 [2]2

[3]3 []4

, x1

[
0(0) 1(1)

2(4) 3(3)
])
∨∃
(

[0]0 [1]1

[2]2 [3]3

, x3

[
0(0) 1(1)

2(3)
])
∨∃
(

[0]0 [1]1

[2]2 [3]3

, x7

[
0(0) 1(1)

2(3)
])

x2

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x2

[
0(0) 1(1)

2(3)
])
∨ ∃
(

[0]0 [1]1

[2]2
)

x3

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])
∨ ∃
(

[0]0 [1]1

[2]2

, x7

[
0(0) 1(1)

2(2)
])

x4

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2 []3

, x4

[
0(0) 1(1)

2(3)
])
∨ ∃
(

[0]0 [1]1

[2]2

, x5

[
0(0) 1(1)

])
∨ ∃
(

[0]0 [1]1

[2]2
)

x5

[
0 1

]
= ∃

(
[0]0 [1]1

[]2

, x4

[
0(0) 1(1)

2(2)
])
∨ ∃
(

[0]0 [1]1

)

x6

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x6

[
0(0) 1(1)

2(3)
])
∨ ∃
(

[0]0 [1]1

[2]2

, x8

[
0(0) 1(1)

])

x7

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])
∨ ∃
(

[0]0 [1]1

[2]2

, x3

[
0(0) 1(1)

2(2)
])
∨ ∃
(

[0]0 [1]1

[2]2
)
∨

∃
(

[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])
∨ ∃
(

[0]0 [1]1

[2]2

, x7

[
0(0) 1(1)

2(2)
])

x8

[
0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, x6

[
0(0) 1(1)

2(2)
])

Figure B.6.: Wlp(Add; Del; Uns, 𝑑)
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B. Computed Weakest Preconditions

x0

[
∅
]
= ¬∃

(
[]0 []1

,¬x5 ∨ ¬∃
(

[0]0 [1]1

)
∧ ¬∃

(
[0]0 [1]1

[]2

, x4

[
0(0) 1(1)

2(2)
])
∨ ∃

(
[0]0 [1]1

[]2

,¬x2
)
∨

∃
(

[0]0 [1]1

[]2

,¬∃
(

[0]0 [1]1

[2]2

, x6

[
0(0) 1(1)

2(2)
])
∧ ¬∃

(
[0]0 [1]1

[2]2
)
∧ ¬∃

(
[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
]))
∨

∃
(

[0]0 [1]1

[]2 []3

,¬x1
))

x1

[
0 1

2 3
]
= ∃

(
[0]0 [1]1

[2]2 [3]3

, x6

[
0(0) 1(1)

2(3)
])
∨ ∃

(
[0]0 [1]1

[2]2 [3]3

, x3

[
0(0) 1(1)

2(3)
])
∨ ∃

(
[0]0 [1]1

[2]2 [3]3
)
∨ ∃

(
[0]0 [1]1 [2]2

[3]3 []4

, x1

[
0(0) 1(1)

2(4) 3(3)
])

x2

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x2

[
0(0) 1(1)

2(3)
])

x3

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2

, x6

[
0(0) 1(1)

2(2)
])
∨ ∃
(

[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])

x4

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2

, x5

[
0(0) 1(1)

])
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x4

[
0(0) 1(1)

2(3)
])

x5

[
0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, x4

[
0(0) 1(1)

2(2)
])

x6

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2

, x3

[
0(0) 1(1)

2(2)
])
∨ ∃

(
[0]0 [1]1

[2]2
)
∨ ∃

(
[0]0 [1]1

[2]2

, x6

[
0(0) 1(1)

2(2)
])
∨ ∃

(
[0]0 [1]1

[2]2
)
∨

∃
(

[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x1

[
0(0) 1(1)

2(3) 3(2)
])

Figure B.7.: Wlp(𝑃, 𝑑) (simplified further)
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B. Computed Weakest Preconditions

x0

[
∅
]
= x1 ∧ ¬x3

x1

[
∅
]
= ∀

(
[]0 []1

, x2

)

x2

[
0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, x2

[
0(2) 1(1)

])

x3

[
∅
]
= ¬∃

(
[]0 []1

,¬x8 ∨¬∃
(

[0]0 [1]1

)
∧¬∃

(
[0]0 [1]1

[]2

, x7

[
0(0) 1(1)

2(2)
])
∨∃
(

[0]0 [1]1

[]2

,¬x5
)
∨

∃
(

[0]0 [1]1

[]2

,¬∃
(

[0]0 [1]1

[2]2

, x9

[
0(0) 1(1)

2(2)
])
∧¬∃

(
[0]0 [1]1

[2]2
)
∧¬∃

(
[0]0 [1]1

[2]2 []3

, x4

[
0(0) 1(1)

2(3) 3(2)
]))

∨ ∃
(

[0]0 [1]1

[]2 []3

,¬x4
))

x4

[
0 1

2 3
]
= ∃

(
[0]0 [1]1

[2]2 [3]3

, x9

[
0(0) 1(1)

2(3)
])
∨∃
(

[0]0 [1]1

[2]2 [3]3

, x6

[
0(0) 1(1)

2(3)
])
∨∃
(

[0]0 [1]1

[2]2 [3]3
)
∨∃
(

[0]0 [1]1 [2]2

[3]3 []4

, x4

[
0(0) 1(1)

2(4) 3(3)
])

x5

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x5

[
0(0) 1(1)

2(3)
])

x6

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2

, x9

[
0(0) 1(1)

2(2)
])
∨ ∃
(

[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x4

[
0(0) 1(1)

2(3) 3(2)
])

x7

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2

, x8

[
0(0) 1(1)

])
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x7

[
0(0) 1(1)

2(3)
])

x8

[
0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, x7

[
0(0) 1(1)

2(2)
])

x9

[
0 1

2
]
= ∃

(
[0]0 [1]1

[2]2

, x6

[
0(0) 1(1)

2(2)
])
∨ ∃
(

[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2

, x9

[
0(0) 1(1)

2(2)
])
∨ ∃
(

[0]0 [1]1

[2]2
)
∨

∃
(

[0]0 [1]1

[2]2 []3

, x4

[
0(0) 1(1)

2(3) 3(2)
])
∨ ∃
(

[0]0 [1]1

[2]2 []3

, x4

[
0(0) 1(1)

2(3) 3(2)
])

Figure B.8.: The implication problem: disprove this (¬(𝑐⇒Wlp(𝑃, 𝑑)))
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C. Example Proofs

This appendix contains commented listings of the proofs from Appendix B.

C.1. Simple Expanding Network

The proof obligation is to derive ⊥ from the combination of variables, whose definitions
are given in Figure B.8:

x
(n−1)
1 ∧ ¬x(n−1)

3

Figure C.1.: The initial proof obligation.

This is indeed possible and therefore the program provably fulfils the specification. Only
a selected branch of the proof search is shown, because providing the full proof here
would probably not provide any supplementary insight (see Section 7.2 for examples
including full K𝜇 proofs).
From the condition of Figure C.1, a larger expression is obtained after unrolling the
definitions of the variables using Rule Unroll1. It is still a conjunction of two expressions:

∀
(

[]0 []1
, x

(n−2)
2

)
∧

∃
(

[]0 []1
,
(
¬x(n−2)

8 ∨ ¬
((
∃
(

[0]0 [1]1

)
∨ ∃

(
[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, x
(n−2)
7

)))
∨ ∃

(
[0]0 [1]1

[]2

,¬x(n−2)
5

)
∨

∃
(

[0]0 [1]1

[]2

,¬
((
∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

2(2)

, x
(n−2)
9

)
∨ ∃
(

[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3) 3(2)

, x
(n−2)
4

))))
∨

∃
(

[0]0 [1]1

[]2 []3

,¬x(n−2)
4

)))

Then the first conjunct of the outer conjunction is lifted over the existential quanti-
fier of the second conjunct, without applying the 𝐴 construction (Shift). The lifted
subcondition is underlined:
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∃
(

[]0 []1
,
((
¬x(n−2)

8 ∨¬
((
∃
(

[0]0 [1]1

)
∨∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, x
(n−2)
7

)))
∨∃
(

[0]0 [1]1

[]2

,¬x(n−2)
5

)

∨∃
(

[0]0 [1]1

[]2

,¬
((
∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

2(2)

, x
(n−2)
9

)
∨∃
(

[0]0 [1]1

[2]2
)
∨∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3) 3(2)

, x
(n−2)
4

))))

∨ ∃
(

[0]0 [1]1

[]2 []3

,¬x(n−2)
4

))
∧ ∃−1

(
∅,∀
(

[]0 []1
, x

(n−2)
2

)))

Distributivity is applied, which was not explicitly formulated as a rule, but follows from
the logical rules of K𝜇.

∃
(

[]0 []1
,
((
¬x(n−2)

8 ∧∃−1
(
∅,∀
(

[]0 []1
, x

(n−2)
2

)))
∨
(
¬
((
∃
(

[0]0 [1]1

)
∨∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

,

x
(n−2)
7

)))
∧∃−1

(
∅,∀
(

[]0 []1
, x

(n−2)
2

)))
∨
(
∃
(

[0]0 [1]1

[]2

,¬x(n−2)
5

)
∧∃−1

(
∅,∀
(

[]0 []1
, x

(n−2)
2

)))
∨

(
∃
(

[0]0 [1]1

[]2

,¬
((
∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

2(2)

, x
(n−2)
9

)
∨∃
(

[0]0 [1]1

[2]2
)
∨∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3) 3(2)

, x
(n−2)
4

))))

∧ ∃−1
(
∅,∀
(

[]0 []1
, x

(n−2)
2

)))
∨
(
∃
(

[0]0 [1]1

[]2 []3

,¬x(n−2)
4

)
∧ ∃−1

(
∅,∀
(

[]0 []1
, x

(n−2)
2

)))))

The five branches of the disjunction are named and handled separately. These named
branches play the role of the G in Rule Empty, while the expressions respectively deduced
from them by use of inference rules constitute the components of H. This exposition
focuses on the first and last one only, which are typical. The full proof must
handle all five. We adopt the convention of naming the new variables defined by the
conditions G𝑖(⃗x) with the new letter y, so as not to confuse them with the variables of
the original 𝜇-condition:

∃
(

[]0 []1
,
(
y
(n)
14 ∨ y

(n)
13 ∨ y

(n)
12 ∨ y

(n)
11 ∨ y

(n)
10

))

Let us examine the last branch of the disjunction.

y
(n)
10

[
[]0 []1

]
= ∃

(
[0]0 [1]1

[]2 []3

,¬x(n−2)
4

)
∧ ∃−1

(
∅,∀
(

[]0 []1
, x

(n−2)
2

))

After lifting the second conjunct inside the quantifier of the first one and applying 𝐴, a
great number of cases are created.
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∃
(

[0]0 [1]1

[]2 []3

,
(
¬x(n−2)

4 ∧ ¬
((
∃
(

[0]0 [1]1 [2]2

[3]3 []4 []5

←↩
0(4) 1(5)

,¬x(n−2)
2

)
∨ ∃
(

[3]0 [0]1 [1]2

[2]3 []4

←↩
0(4) 1(0)

,

¬x(n−2)
2

)
∨ ∃

(
[3]0 [0]1 [1]2

[2]3 []4

←↩
0(0) 1(4)

,¬x(n−2)
2

)
∨ ∃

(
[2]0 [0]1 [1]2

[3]3 []4

←↩
0(4) 1(0)

,¬x(n−2)
2

)
∨

∃
(

[2]0 [0]1 [1]2

[3]3 []4

←↩
0(0) 1(4)

,¬x(n−2)
2

)
∨ ∃−1

(
0(2) 1(3)

,¬x(n−2)
2

)
∨ ∃−1

(
0(3) 1(2)

,¬x(n−2)
2

)
∨

∃
(

[1]0 [0]1 [2]2

[3]3 []4

←↩
0(4) 1(0)

,¬x(n−2)
2

)
∨ ∃

(
[1]0 [0]1 [2]2

[3]3 []4

←↩
0(0) 1(4)

,¬x(n−2)
2

)
∨ ∃−1

(
0(1) 1(3)

,

¬x(n−2)
2

)
∨ ∃−1

(
0(1) 1(2)

,¬x(n−2)
2

)
∨ ∃−1

(
0(3) 1(1)

,¬x(n−2)
2

)
∨ ∃−1

(
0(2) 1(1)

,¬x(n−2)
2

)
∨

∃
(

[0]0 [1]1 [2]2

[3]3 []4

←↩
0(4) 1(0)

,¬x(n−2)
2

)
∨ ∃

(
[0]0 [1]1 [2]2

[3]3 []4

←↩
0(0) 1(4)

,¬x(n−2)
2

)
∨ ∃−1

(
0(0) 1(3)

,

¬x(n−2)
2

)
∨ ∃−1

(
0(0) 1(2)

,¬x(n−2)
2

)
∨ ∃−1

(
0(0) 1(1)

,¬x(n−2)
2

)
∨ ∃−1

(
0(3) 1(0)

,¬x(n−2)
2

)
∨

∃−1
(

0(2) 1(0)
,¬x(n−2)

2

)
∨ ∃−1

(
0(1) 1(0)

,¬x(n−2)
2

)))))

Only one of the cases created in the lift is relevant, the others are quickly discarded by
logical rules (the case distinction is a disjunction under an odd number of negations,
therefore subconditions which can be shown to be equivalent to ⊥ can be removed).

∃
(

[0]0 [1]1

[]2 []3

,
(
¬x(n−2)

4 ∧ ∃−1
(

0(2) 1(3)
, x

(n−2)
2

)))

The outer nesting level will not be modified any more and we concentrate on the direct
subcondition:

¬x(n−2)
4 ∧ ∃−1

(
0(2) 1(3)

, x
(n−2)
2

)

To proceed, the variable x2 can be unrolled,

¬x(n−2)
4 ∧ ∃−1

(
0(2) 1(3)

,
(
∃
(

[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

←↩
0(2) 1(1)

, x
(n−3)
2

)))

Then a shift is applied to get rid of the unselection, then the conjunction with ¬x(𝑛−2)
4 is

distributed over the disjunction.
(
∃
(

[2]0 [3]1

[0]2 [1]3
)
∧ ¬x(n−2)

4

)
∨
(
∃
(

[2]0 [3]1 [0]2

[1]3 []4

←↩
0(4) 1(1)

, x
(n−3)
2

)
∧ ¬x(n−2)

4

)
∨

(
∃
(

[1]0 [2]1

[3]2 [0]3

←↩
0(0) 1(2)

, x
(n−3)
2

)
∧ ¬x(n−2)

4

)
∨
(
∃
(

[0]0 [2]1

[3]2 [1]3

←↩
0(0) 1(2)

, x
(n−3)
2

)
∧ ¬x(n−2)

4

)

In the latter expression, the first branch of the outer disjunction created from distributivity
can be seen to contain a subcondition without variables (a “base case” of a recursive
condition) and its negation. This can be resolved using the rules from K. The following
two pictures show the situation before resolving the “base case” subcondition, and after
thus resolving the first branch:
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(
∃
(

[2]0 [3]1

[0]2 [1]3
)
∧¬∃

(
[0]0 [1]1

[2]2 [3]3

←↩
0(0) 1(1)

2(3)

, x
(n−3)
9

)
∧¬∃

(
[0]0 [1]1

[2]2 [3]3

←↩
0(0) 1(1)

2(3)

, x
(n−3)
6

)
∧¬∃

(
[0]0 [1]1

[2]2 [3]3
)

∧ ¬∃
(

[0]0 [1]1 [2]2

[3]3 []4

←↩
0(0) 1(1)

2(4) 3(3)

, x
(n−3)
4

))
∨
(
∃
(

[2]0 [3]1 [0]2

[1]3 []4

←↩
0(4) 1(1)

, x
(n−3)
2

)
∧ ¬x(n−2)

4

)
∨

(
∃
(

[1]0 [2]1

[3]2 [0]3

←↩
0(0) 1(2)

, x
(n−3)
2

)
∧ ¬x(n−2)

4

)
∨
(
∃
(

[0]0 [2]1

[3]2 [1]3

←↩
0(0) 1(2)

, x
(n−3)
2

)
∧ ¬x(n−2)

4

)

(
∃
(

[2]0 [3]1 [0]2

[1]3 []4

←↩
0(4) 1(1)

, x
(n−3)
2

)
∧¬x(n−2)

4

)
∨
(
∃
(

[1]0 [2]1

[3]2 [0]3

←↩
0(0) 1(2)

, x
(n−3)
2

)
∧¬x(n−2)

4

)
∨

(
∃
(

[0]0 [2]1

[3]2 [1]3

←↩
0(0) 1(2)

, x
(n−3)
2

)
∧ ¬x(n−2)

4

)

When all the occurrences of the variables x4 are unrolled after lifting and only the relevant
branches kept, the following condition results.
(
∃
(

[2]0 [3]1 [0]2

[1]3 []4

←↩
0(4) 1(1)

, x
(n−3)
2

)
∧ ¬∃

(
[0]0 [1]1 [2]2

[3]3 []4

←↩
0(0) 1(1)

2(4) 3(3)

, x
(n−3)
4

))
∨
(
∃
(

[1]0 [2]1

[3]2 [0]3

←↩

0(0) 1(2)
, x

(n−3)
2

)
∧ ¬∃

(
[0]0 [1]1

[2]2 [3]3

←↩
0(0) 1(1)

2(3)

, x
(n−3)
6

))
∨
(
∃
(

[0]0 [2]1

[3]2 [1]3

←↩
0(0) 1(2)

, x
(n−3)
2

)
∧

¬∃
(

[0]0 [1]1

[2]2 [3]3

←↩
0(0) 1(1)

2(3)

, x
(n−3)
9

))

Further rearrangements by inference rules (lifts have been applied to gather subconditions;
𝐴 has been applied and irrelevant possibilities created in the lifts have been pruned using
logical rules. After lifting, unrolling x4 and pruning irrelevant branches):

∃
(

[2]0 [3]1 [0]2

[1]3 []4

,
(
∃−1

(
0(4) 1(1)

, x
(n−3)
2

)
∧¬
(
∃−1

(
0(2) 1(3)

2(4) 3(1)

, x
(n−3)
4

))))
∨∃
(

[1]0 [2]1

[3]2 [0]3

,
(
∃−1

(
0(0) 1(2)

,

x
(n−3)
2

)
∧ ¬

(
∃−1

(
0(3) 1(0)

2(2)

, x
(n−3)
6

))))
∨ ∃

(
[0]0 [2]1

[3]2 [1]3

,
(
∃−1

(
0(0) 1(2)

, x
(n−3)
2

)
∧ ¬

(
∃−1

(
0(0) 1(3)

2(2)

,

x
(n−3)
9

))))

Common unselections are factored out by Absorb:

∃
(

[2]0 [3]1 [0]2

[1]3 []4

←↩
0(1) 1(4)

2(2) 3(3)

,
(
∃−1

(
0(1) 1(0)

, x
(n−3)
2

)
∧ ¬
(
∃−1

(
0(2) 1(3)

2(1) 3(0)

, x
(n−3)
4

))))
∨ ∃
(

[1]0 [2]1

[3]2 [0]3

←↩

0(0) 1(2)

2(3)

,
(
∃−1

(
0(0) 1(1)

, x
(n−3)
2

)
∧ ¬

(
∃−1

(
0(2) 1(0)

2(1)

, x
(n−3)
6

))))
∨ ∃

(
[0]0 [2]1

[3]2 [1]3

←↩
0(0) 1(2)

2(3)

,

(
∃−1

(
0(0) 1(1)

, x
(n−3)
2

)
∧ ¬
(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−3)
9

))))

Focusing on the first branch of the previously obtained expression by naming it (the
others have to be addressed separately to arrive at the full proof) (Figure C.2),
then unrolling the occurrence of x2, then applying distributivity yields this:
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y
(n)
16 = ∃−1

(
0(0) 1(1)

, x
(n−3)
2

)
∧ ¬
(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−3)
9

))

Figure C.2.: The first branch of the previously obtained consequence of y(𝑛)
10 .

∃
(

[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

←↩
0(3) 1(1)

, x
(n−4)
2

)
∨ ∃
(

[0]0 [1]1

[2]2

←↩
0(2) 1(1)

, x
(n−4)
2

)
∨

∃−1
(

0(2) 1(1)
, x

(n−4)
2

))
∧ ¬
(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−3)
9

)

∃
(

[0]0 [1]1

[2]2
)
∧ ¬

(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−3)
9

)))
∨
(
∃
(

[0]0 [1]1

[2]2 []3

←↩
0(3) 1(1)

, x
(n−4)
2

)
∧ ¬

(
∃−1

(
0(0) 1(2)

2(1)

,

x
(n−3)
9

)))
∨
(
∃
(

[0]0 [1]1

[2]2

←↩
0(2) 1(1)

, x
(n−4)
2

)
∧ ¬

(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−3)
9

)))
∨
(
∃−1

(
0(2) 1(1)

,

x
(n−4)
2

)
∧ ¬
(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−3)
9

))

One branch of the condition can again be resolved by unrolling x9, keeping only its base
case which happens, after lifting over the unselection, to be the negation of the first
subcondition ∃(𝑎,⊤). One branch is thus resolved:

∃
(

[0]0 [1]1

[2]2 []3

←↩
0(3) 1(1)

, x
(n−4)
2

)
∧ ¬

(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−3)
9

)))
∨
(
∃
(

[0]0 [1]1

[2]2

←↩
0(2) 1(1)

, x
(n−4)
2

)

∧ ¬
(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−3)
9

)))
∨
(
∃−1

(
0(2) 1(1)

, x
(n−4)
2

)
∧ ¬
(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−3)
9

))

∃−1
(

0(2) 1(1)
, x

(n−4)
2

)
∧ ¬
(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−3)
9

)

Figure C.3.: One of the remaining branches of the previous expression.

Applying several inference rules (distributivity, unrolling) to one of the remaining branches
(Figure C.3):

∃
(

[1]0 [2]1

[0]2 []3

,
(
∃−1

(
0(3) 1(0)

, x
(n−5)
2

)
∧ ¬

(
∃−1

(
0(2) 1(1)

2(3) 3(0)

, x
(n−4)
4

))))
∨ ∃

(
[0]0 [1]1

[2]2

,
(
∃−1

(
0(0) 1(1)

,

x
(n−5)
2

)
∧ ¬
(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−4)
9

))))

Finally we have obtained a previously encountered expression (Figure C.2, not the
similar-looking but subtly different Figure C.3!), with strictly decreased annotations.
The significance of this is that y(𝑛)

15 := Figure C.2 implies some condition which has a
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(syntactically positive1) subcondition equivalent to y(𝑛−1)
15 .

In order to complete the proof, the same procedure must be applied to every branch until
each named branch y𝑖 = G𝑖(x) is seen to be a monotonic combination H𝑖(⃗y) of all the
other named branches. Then, if H(⊥⃗) = ⊥ (which can even be detected automatically
in a typical proof, especially when the components H𝑖 have no subcondition where no
variable occurs), it follows from the soundness of Rule Empty that all of the G𝑖(x) are
unsatisfiable in the least fixed point solution.

∃−1
(

0(0) 1(1)
, x

(n−5)
2

)
∧ ¬
(
∃−1

(
0(0) 1(2)

2(1)

, x
(n−4)
9

))

Figure C.4.: Branch done.

C.2. Path Assertions

This section contains the detailed proofs for showing the equivalence of the various path
conditions from Section 7.2.

C.2.1. A Proof of Equivalence

We present the proof for 𝜋 ⇒ 𝜌, then 𝜌⇒ 𝜋. First 𝜋 ⇒ 𝜌: in the following list of steps,
several rules are applied to the main body of the condition: the sole occurrence of 𝜋0 is
unrolled, distributivity is applied, a subcondition ¬𝜌0 is unrolled and transformed to a
conjunction. To recapitulate: unroll 𝜋0, distributivity, unroll one occurrence of 𝜌0, apply
De Morgan’s rule:

y
(n−1)
0 = π

(n−1)
0 ∧ ¬ρ(n−1)

0

∃
(

[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, π
(n−2)
1

))
∧ ¬ρ(n−1)

0

(
∃
(

[0]0 [1]1

)
∧ ¬ρ(n−1)

0

)
∨
(
∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, π
(n−2)
1

)
∧ ¬ρ(n−1)

0

)

(
∃
(

[0]0 [1]1

)
∧ ¬

((
∃
(

[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, ρ
(n−2)
1

))))
∨
(
∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

,

π
(n−2)
1

)
∧ ¬ρ(n−1)

0

)

(
∃
(

[0]0 [1]1

)
∧ ¬∃

(
[0]0 [1]1

)
∧ ¬∃

(
[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, ρ
(n−2)
1

))
∨
(
∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

,

π
(n−2)
1

)
∧ ¬ρ(n−1)

0

)

1As one may check because all branches that were followed up appeared under zero negations.
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At this point, the whole condition is a disjunction of two members. One of these contains
a subcondition with no variables in conjunction with its negation. These can be resolved
to ⊥, eliminating one branch of the disjunction:
(
∃
(

[0]0 [1]1
←↩

0(0) 1(1)
,¬∃

(
[0]0 [1]1

))
∧ ¬∃

(
[0]0 [1]1

)
∧ ¬∃

(
[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, ρ
(n−2)
1

))
∨

(
∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, π
(n−2)
1

)
∧ ¬ρ(n−1)

0

)

The first conjunct, after effecting the shift (construction 𝐴), resolves by PartialResolve,
leaving this behind:

∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, π
(n−2)
1

)
∧ ¬ρ(n−1)

0

Next, the second conjunct is lifted into the quantifier of the first one, then duplicated for
later use, then one occurrence of 𝜌0 is unrolled.

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

2(2)

, π
(n−2)
1

)
∧ ∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)))

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

2(2)

, π
(n−2)
1

)
∧ ∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧ ∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)))

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

2(2)

, π
(n−2)
1

)
∧ ∃−1

(
0(0) 1(1)

,¬
((
∃
(

[0]0 [1]1

)
∨ ∃

(
[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

,

ρ
(n−2)
1

))))
∧ ∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

))

A shift is applied and unwanted conjuncts removed.

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

2(2)

, π
(n−2)
1

)
∧ ∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧ ¬∃

(
[0]0 [1]1

[2]2
)
∧ ¬
((
∃
(

[0]0 [1]1

[2]2 []3

←↩

0(0) 1(1)

2(3)

, ρ
(n−2)
1

)
∨ ∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

2(2)

, ρ
(n−2)
1

)
∨ ∃−1

(
0(0) 1(1)

2(2)

, ρ
(n−2)
1

))))

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

2(2)

, π
(n−2)
1

)
∧ ∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧ ¬
(
∃−1

(
0(0) 1(1)

2(2)

, ρ
(n−2)
1

)))

In this step, a common unselection is factored out (Absorbed, in fact) and the resulting
subcondition is given a name. Effectively a new variable is introduced.

∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

,
(
π
(n−2)
1 ∧ ∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧ ¬ρ(n−2)

1

)))

∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, y
(n)
6 with y

(n)
6

[
0 1

2 ]
= π

(n−2)
1 ∧ ∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧ ¬ρ(n−2)

1

We continue working on the new named subcondition, unrolling 𝜋1, then applying
distributivity, then also applying distributivity to the ∃(𝜄,¬𝜌

(𝑛−1)
0 ) subcondition.
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(
∃
(

[0]0 [1]1

[2]2
)
∨∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, π
(n−3)
1

)
∨∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

, π
(n−3)
0

))
∧∃−1

(
0(0) 1(1)

,

¬ρ(n−1)
0

)
∧ ¬ρ(n−2)

1

((
∃
(

[0]0 [1]1

[2]2
)
∧¬ρ(n−2)

1

)
∨
(
∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, π
(n−3)
1

)
∧¬ρ(n−2)

1

)
∨
(
∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

,

π
(n−3)
0

)
∧ ¬ρ(n−2)

1

))
∧ ∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)

(
∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧ ∃
(

[0]0 [1]1

[2]2
)
∧ ¬ρ(n−2)

1

)
∨
(
∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧ ∃
(

[0]0 [1]1

[2]2 []3

←↩

0(0) 1(1)

2(3)

, π
(n−3)
1

)
∧¬ρ(n−2)

1

)
∨
(
∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

, π
(n−3)
0

)
∧¬ρ(n−2)

1

)

At every conjunct, we keep only what is relevant. Then we eliminate the “base case” in
the first conjunct by unrolling that occurrence 𝜌1 and cancelling, as described before in
similar cases:
(
∃
(

[0]0 [1]1

[2]2
)
∧¬ρ(n−2)

1

)
∨
(
∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, π
(n−3)
1

)
∧¬ρ(n−2)

1

)

∨
(
∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧ ∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

, π
(n−3)
0

))

(
∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, π
(n−3)
1

)
∧¬ρ(n−2)

1

)
∨
(
∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)

∧ ∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

, π
(n−3)
0

))

The latter of the two remaining conjuncts is treated with a Lift.
(
∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧ ∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, π
(n−3)
1

)
∧ ¬ρ(n−2)

1

)
∨ ∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

,
(
π
(n−3)
0 ∧ ¬ρ(n−1)

0

))

The previous step resulted in a subcondition that matches with y0, with decreased indices.
This situtation is desirable, as it leads towards the applicability of Rule Empty.

∃
(

[0]0 [1]1

[2]2 []3

,
(
∃−1

(
0(0) 1(1)

2(3)

, π
(n−3)
1

)
∧∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧¬∃

(
[0]0 [1]1

[2]2 [3]3
)
∧¬∃

(
[0]0 [1]1 [2]2

[3]3 []4

←↩

0(0) 1(1)

2(4)

, ρ
(n−3)
1

)
∧¬∃

(
[0]0 [1]1

[2]2 [3]3

←↩
0(0) 1(1)

2(3)

, ρ
(n−3)
1

)
∧¬
(
∃−1

(
0(0) 1(1)

2(3)

, ρ
(n−3)
1

))))
∨∃
(

[0]0 [1]1

[2]2

←↩

0(0) 1(1)
, y

(n−1)
0

)

Eliminating conjuncts that are irrelevant to the situation at hand, and factoring out a
common unselection:
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∃
(

[0]0 [1]1

[2]2 []3

,
(
∃−1

(
0(0) 1(1)

2(3)

, π
(n−3)
1

)
∧ ∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧ ¬

(
∃−1

(
0(0) 1(1)

2(3)

, ρ
(n−3)
1

))))
∨

∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

, y
(n−1)
0

)

∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

,
(
π
(n−3)
1 ∧∃−1

(
0(0) 1(1)

,¬ρ(n−1)
0

)
∧¬ρ(n−3)

1

))
∨∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

, y
(n−1)
0

)

Matching the previously named y6 completes this branch of the proof:

∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, y
(n−1)
6

)
∨ ∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

, y
(n−1)
0

)

At this moment, one checks that both y0 and y6 are now positive combinations of y0 and
y6, which can be checked by substitution of ⊥ to imply ⊥ in the least fixed point solution.
Since y0 is by definition equivalent to the main body of the condition to be refuted, this
has been shown to imply ⊥, hence the refutation was successful and 𝜋 ⇒ 𝜌 is established.
Let us now prove the other direction, 𝜌⇒ 𝜋, which requires fewer steps. The beginning
is analogous to our proof of the direction 𝜋 ⇒ 𝜌 . The remainder of the proof is simpler
because for this direction there is no need to “presciently” duplicate a subcondition at
this point.

ρ
(n−1)
0 ∧ ¬π(n−1)

0
(
∃
(

[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, ρ
(n−2)
1

))
∧ ¬π(n−1)

0

(
∃
(

[0]0 [1]1

)
∧ ¬π(n−1)

0

)
∨
(
∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, ρ
(n−2)
1

)
∧ ¬π(n−1)

0

)

∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, ρ
(n−2)
1

)
∧ ¬π(n−1)

0

Now we lift, unroll 𝜋0, apply a shift and discard the unwanted conjuncts, which in
this case again happen to be those that do not perform a maximal amount of node
identification.

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

2(2)

, ρ
(n−2)
1

)
∧ ∃−1

(
0(0) 1(1)

,¬π(n−1)
0

)))

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

2(2)

, ρ
(n−2)
1

)
∧ ∃−1

(
0(0) 1(1)

,
(
¬∃
(

[0]0 [1]1

)
∧ ¬∃

(
[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

,

π
(n−2)
1

)))))

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

2(2)

, ρ
(n−2)
1

)
∧ ¬∃

(
[0]0 [1]1

[2]2
)
∧ ¬∃

(
[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, π
(n−2)
1

)
∧

¬∃
(

[0]0 [1]1

[2]2

←↩
0(0) 1(1)

2(2)

, π
(n−2)
1

)
∧ ¬
(
∃−1

(
0(0) 1(1)

2(2)

, π
(n−2)
1

))))
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∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

2(2)

, ρ
(n−2)
1

)
∧ ¬
(
∃−1

(
0(0) 1(1)

2(2)

, π
(n−2)
1

))))

Again, we factor out common unselection and name the resulting subcondition. This
decision is prompted by the possibility of creating a conjunction of “naked” occurrences
of 𝜌 and ¬𝜋, which looks like a decent candidate to be used in Rule Empty.

∃
(

[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

,
(
ρ
(n−2)
1 ∧ ¬π(n−2)

1

))
with ∃

(
[0]0 [1]1

[]2

←↩
0(0) 1(1)

2(2)

, y
(n)
6

)

Having named y6, it is necessary to keep working on it in the usual fashion: unroll, apply
distributivity, eliminate the base case.

y
(n)
6

[
0 1

2 ]
= ρ

(n−2)
1 ∧ ¬π(n−2)

1

(
∃
(

[0]0 [1]1

[2]2
)
∨ ∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, ρ
(n−3)
1

))
∧ ¬π(n−2)

1

(
∃
(

[0]0 [1]1

[2]2
)
∧ ¬π(n−2)

1

)
∨
(
∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, ρ
(n−3)
1

)
∧ ¬π(n−2)

1

)

∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, ρ
(n−3)
1

)
∧ ¬π(n−2)

1

The ¬𝜋
(𝑛−2)
1 subcondition is lifted inside the quantifier, unrolled and a shift is applied.

∃
(

[0]0 [1]1

[2]2 []3

,
(
∃−1

(
0(0) 1(1)

2(3)

, ρ
(n−3)
1

)
∧ ∃−1

(
0(0) 1(1)

2(2)

,¬π(n−2)
1

)))

∃
(

[0]0 [1]1

[2]2 []3

,
(
∃−1

(
0(0) 1(1)

2(3)

, ρ
(n−3)
1

)
∧ ∃−1

(
0(0) 1(1)

2(2)

,
(
¬∃
(

[0]0 [1]1

[2]2
)
∧ ¬∃

(
[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

,

π
(n−3)
1

)
∧ ¬∃

(
[0]0 [1]1

[2]2

←↩
0(0) 1(1)

, π
(n−3)
0

)))))

∃
(

[0]0 [1]1

[2]2 []3

,
(
∃−1

(
0(0) 1(1)

2(3)

, ρ
(n−3)
1

)
∧ ¬∃

(
[0]0 [1]1

[2]2 [3]3
)
∧ ¬

((
∃
(

[0]0 [1]1 [2]2

[3]3 []4

←↩
0(0) 1(1)

2(4)

, π
(n−3)
1

)
∨

∃
(

[0]0 [1]1

[2]2 [3]3

←↩
0(0) 1(1)

2(3)

, π
(n−3)
1

)
∨ ∃−1

(
0(0) 1(1)

2(3)

, π
(n−3)
1

)))
∧ ¬∃

(
[0]0 [1]1

[2]2 [3]3

←↩
0(0) 1(1)

, π
(n−3)
0

)))

After eliminating unneeded conjuncts and factoring out a common unselection, y6 is
matched with decreased annotations, concluding the proof since now both y0 and y6 are
seen to imply positive combinations H⃗ of y0 and y6 with H⃗(⊥⃗) = ⊥⃗.

∃
(

[0]0 [1]1

[2]2 []3

,
(
∃−1

(
0(0) 1(1)

2(3)

, ρ
(n−3)
1

)
∧ ¬∃

(
[0]0 [1]1 [2]2

[3]3 []4

←↩
0(0) 1(1)

2(4)

, π
(n−3)
1

)
∧ ¬∃

(
[0]0 [1]1

[2]2 [3]3

←↩

0(0) 1(1)

2(3)

, π
(n−3)
1

)
∧ ¬
(
∃−1

(
0(0) 1(1)

2(3)

, π
(n−3)
1

))))

∃
(

[0]0 [1]1

[2]2 []3

,
(
∃−1

(
0(0) 1(1)

2(3)

, ρ
(n−3)
1

)
∧ ¬
(
∃−1

(
0(0) 1(1)

2(3)

, π
(n−3)
1

))))
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∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

,
(
ρ
(n−3)
1 ∧ ¬π(n−3)

1

))

∃
(

[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

, y
(n−1)
6

)

𝜌⇒ 𝜋 is established.

C.2.2. Forwards, Backwards and Tree Recursive Paths

First, 𝜋 ⇒ 𝛽. This direction is straightforward using the experience from the previous
proofs. The beginning is analogous to the previous proofs: the variable for the condition
𝜋 that appears positively is unrolled once and its base case eliminated.

y
(n)
0

[
0(2) 1(1)

]
= π(n−1) ∧ ¬β(n−1)

(
∃
(

[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

←↩
0(2) 1(1)

, π(n−2)
))
∧ ¬β(n−1)

(
∃
(

[0]0 [1]1

)
∧ ¬β(n−1)

)
∨
(
∃
(

[0]0 [1]1

[]2

←↩
0(2) 1(1)

, π(n−2)
)
∧ ¬β(n−1)

)

∃
(

[0]0 [1]1

[]2

←↩
0(2) 1(1)

, π(n−2)
)
∧ ¬β(n−1)

Next, 𝛽 is unrolled. Its base case is of no use here, so it is simply dropped from the
conjunction. Then the subcondition issued from the right hand side of 𝛽 is lifted over
the quantifier and shifted. One of the conjuncts resulting from the shift, positing the
existence of a fourth node, does not appear to lead anywhere and is dropped. The useful
case is that with only three nodes, where the “middle” node (which appears with number
2 in Figure 7.7) is identified with the target of the edge in the right hand side of 𝜋.

∃
(

[0]0 [1]1

[]2

←↩
0(2) 1(1)

, π(n−2)
)
∧ ¬∃

(
[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(2)

, β(n−2)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−2)
)))

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(2) 1(1)

, π(n−2)
)
∧ ¬∃

(
[0]0 [1]1

[2]2 []3

←↩
0(0) 1(1)

2(3)

,
(
∃−1

(
0(0) 1(2)

, β(n−2)
)
∧

∃−1
(

0(2) 1(1)
, β(n−2)

)))
∧ ¬
(
∃−1

(
0(0) 1(1)

2(2)

,
(
∃−1

(
0(0) 1(2)

, β(n−2)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−2)
)))))

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(2) 1(1)

, π(n−2)
)
∧ ¬

(
∃−1

(
0(0) 1(1)

2(2)

,
(
∃−1

(
0(0) 1(2)

,β(n−2)
)
∧

∃−1
(

0(2) 1(1)
,β(n−2)

)))))

After some simplification of the unselections and manipulations of the Boolean structure
to gather the cases (shown below), the first subcondition is seen to resolve against the
existence of the edge in the outer quantifier: after unrolling the first occurrence of 𝛽, the
base case is kept and used in the resolution.
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∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(2) 1(1)

, π(n−2)
)
∧ ¬
(
∃−1

(
0(0) 1(2)

, β(n−2)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−2)
))))

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(2) 1(1)

, π(n−2)
)
∧
(
¬
(
∃−1

(
0(0) 1(2)

, β(n−2)
))
∨ ¬
(
∃−1

(
0(2) 1(1)

, β(n−2)
)))))

∃
(

[0]0 [1]1

[]2

,
((
¬
(
∃−1

(
0(0) 1(2)

, β(n−2)
))
∧∃−1

(
0(2) 1(1)

, π(n−2)
))
∨
(
¬
(
∃−1

(
0(2) 1(1)

, β(n−2)
))
∧

∃−1
(

0(2) 1(1)
, π(n−2)

))))

The gathering of unselections (intermediary steps implicit between the first and second
line: after unrolling the first 𝛽 and discarding all but the base case, resolution using rules
from K can ensue:

∃
(

[0]0 [1]1

[]2

,
(
¬
(
∃−1

(
0(0) 1(2)

, β(n−2)
))
∨
(
¬
(
∃−1

(
0(2) 1(1)

, β(n−2)
))
∧ ∃−1

(
0(2) 1(1)

, π(n−2)
))))

∃
(

[0]0 [1]1

[]2

,
(
¬
(
∃−1

(
0(2) 1(1)

, β(n−2)
))
∧ ∃−1

(
0(2) 1(1)

, π(n−2)
)))

∃
(

[0]0 [1]1

[]2

←↩
0(2) 1(1)

,
(
¬β(n−2) ∧ π(n−2)

))

The end of the proof is reached by matching y0 with lower annotations:

∃
(

[0]0 [1]1

[]2

←↩
0(2) 1(1)

, y
(n−1)
0

)

𝜋 ⇒ 𝛽 is thus established.
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The direction 𝛽 ⇒ 𝜋 is not as straightforward. It is best attacked by establishing a
lemma first: 𝛽 will be shown to be imply the condition 𝛾 (Figure C.5), which wraps 𝛽 in
an outer condition syntactically closer to 𝜋. Then the goal becomes to establish 𝛾 ⇒ 𝜋.

γ

[

0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

,∃
(

[0]0 [1]1

[2]2
)
∧ β
[

0(2) 1(1)

])

β

[

0 1

]
= ∃

(
[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

, β̂
)

β̂

[

0 1

2

]
= β

[
0(0) 1(2)

]
∧ β
[

0(2) 1(1)

]

Figure C.5.: The auxiliary condition 𝛾.

As usual, we start with 𝛽 ∧ ¬𝛾 and eliminate one branch of the unrolled condition 𝛽.
The ¬𝛾 subcondition is duplicated for later use. To distinguish between the occurrences
of 𝛽 originating from the subcondition 𝛽 initially present and those originating from 𝛾,
the latter are primed. For K𝜇, it makes no difference whether otherwise syntactically
equal conditions use a different set of variables.

β(n−1) ∧ ¬γ(n−1)

(
∃
(

[0]0 [1]1

)
∨ β̂(n−2)

)
∧ ¬γ(n−1)

β̂(n−2) ∧ ¬γ(n−1)

β̂(n−2) ∧ ¬γ(n−1) ∧ ¬γ(n−1)

After unrolling the occurrence of 𝛽 and one of the occurrences of 𝛾, the condition is:

β̂(n−2) ∧ ¬
((
∃
(

[0]0 [1]1

)
∨ ∃
(

[0]0 [1]1

[]2

,
(
∃
(

[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(2) 1(1)

, β′(n−2)
)))))

∧ ¬γ(n−1)

β̂(n−2) ∧ ¬γ(n−1) ∧ ¬∃
(

[0]0 [1]1

[]2

,
(
∃
(

[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(2) 1(1)

, β′(n−2)
)))

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(2)

, β(n−3)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)))

∧ ¬γ(n−1) ∧ ¬∃
(

[0]0 [1]1

[]2

,

(
∃
(

[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(2) 1(1)

, β′(n−2)
)))

Further manipulations lead to a situation where the duplicate ¬𝛾 (with the unselection
it has acquired from a Lift), the positive occurrences of 𝛽 and a disjunction of two
(negated) members form a conjunction inside the quantifier that was inherited from the
right hand side of the positive occurrence of 𝛽:
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∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

,∃−1
(

0(0) 1(2)
, β(n−3)

)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)
∧ ¬∃

(
[0]0 [1]1

[]2

,

∃
(

[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(2) 1(1)

, β′(n−2)
)))))

∧ ¬γ(n−1)

(
∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(2)

, β(n−3)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)
∧ ¬

(
∃
(

[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(2) 1(1)

,

β′(n−2)
))))

∧ ¬γ(n−1)
)

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(2)

, β(n−3)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)
∧
(
¬∃
(

[0]0 [1]1

[2]2
)
∨ ¬

(
∃−1

(
0(2) 1(1)

,

β′(n−2)
)))))

∧ ¬γ(n−1)

∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(1)

,¬γ(n−1)
)
∧ ∃−1

(
0(0) 1(2)

, β(n−3)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)
∧

(
¬∃
(

[0]0 [1]1

[2]2
)
∨ ¬
(
∃−1

(
0(2) 1(1)

, β′(n−2)
)))))

One of the two members of the disjunction can be addressed straight away, by noticing
that its 𝛽 can be cancelled out by an occurrence of 𝛽′ that appears inside an identical
unselection.2

∃
(

[0]0 [1]1

[]2

,
((
¬∃
(

[0]0 [1]1

[2]2
)
∨
(
¬
(
∃−1

(
0(2) 1(1)

, β′(n−2)
))
∧∃−1

(
0(2) 1(1)

, β(n−3)
)))

∧ ∃−1
(

0(0) 1(1)
,¬γ(n−1)

)
∧ ∃−1

(
0(0) 1(2)

, β(n−3)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)))

∃
(

[0]0 [1]1

[]2

,
((
¬∃
(

[0]0 [1]1

[2]2
)
∨∃−1

(
0(2) 1(1)

,
(
¬β′(n−2) ∧ β(n−3)

)))
∧∃−1

(
0(0) 1(1)

,

¬γ(n−1)
)
∧ ∃−1

(
0(0) 1(2)

, β(n−3)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)))

Let us name the other branch too because the outer nesting level will not be affected by
any of the following steps.

∃
(

[0]0 [1]1

[]2

,
(
y
(n)
9 ∨ ∃−1

(
0(2) 1(1)

, y
(n)
8

)))

Continuing work on the newly named subcondition, the first occurrence of 𝛽 is unrolled
and its base case resolved. Fast-forwarding these steps yields:

y
(n)
9

[
[0]0 [1]1

[]2
]
= ¬∃

(
[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(0) 1(1)

,¬γ(n−1)
)
∧ ∃−1

(
0(0) 1(2)

, β(n−3)
)
∧ ∃−1

(
0(2) 1(1)

,

β(n−3)
)

2Instead of explicitly performing the cancellation, let it be stated (without proof) that two syntactically
equal 𝜇-conditions can always be resolved against each other using K𝜇.
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¬∃
(

[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(0) 1(1)

,¬γ(n−1)
)
∧
(
∃
(

[0]0 [2]1

[1]2
)
∨ ∃−1

(
0(0) 1(2)

, β̂(n−4)
))
∧ ∃−1

(
0(2) 1(1)

,

β(n−3)
)

∃−1
(

0(0) 1(2)
, β̂(n−4)

)
∧ ∃−1

(
0(0) 1(1)

,¬γ(n−1)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)
∧ ¬∃

(
[0]0 [1]1

[2]2
)

Unrolling 𝛽 and shifting yields an expression with a disjunction of two cases. We apply
distributivity to the other three conjuncts to move the disjunction to the top level:

∃−1
(

0(0) 1(2)
,∃
(

[0]0 [1]1

[]2

,
(
∃−1

(
0(0) 1(2)

, β(n−5)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−5)
))))

∧ ∃−1
(

0(0) 1(1)
,

¬γ(n−1)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)
∧ ¬∃

(
[0]0 [1]1

[2]2
)

(
∃
(

[0]0 [2]1

[1]2 []3

←↩
0(0) 1(1)

2(3)

,
(
∃−1

(
0(0) 1(2)

, β(n−5)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−5)
)))

∨ ∃−1
(

0(0) 1(2)

2(1)

,
(
∃−1

(
0(0) 1(2)

, β(n−5)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−5)
))))

∧ ∃−1
(

0(0) 1(1)
,¬γ(n−1)

)
∧ ∃−1

(
0(2) 1(1)

,

β(n−3)
)
∧ ¬∃

(
[0]0 [1]1

[2]2
)

Naming the two direct subconditions of the disjunctions to treat them in turn:
y
(n)
11 ∨ y

(n)
10

Let us attempt to handle the subcondition with three nodes first:

y
(n)
11

[
0 1

2 ]
= ∃−1

(
0(0) 1(2)

2(1)

,
(
∃−1

(
0(0) 1(2)

, β(n−5)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−5)
)))
∧ ∃−1

(
0(0) 1(1)

,

¬γ(n−1)
)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)
∧ ¬∃

(
[0]0 [1]1

[2]2
)

Composing the unselections as far as possible reveals that one occurrence of 𝛽 occurs
under the same unselection as ¬𝛾, which leads back to y0 with a lower annotation for 𝛽.
The annotation of 𝛾 is irrelevant because it occurs negatively.

∃−1
(

0(0) 1(1)
,¬γ(n−1)

)
∧ ∃−1

(
0(2) 1(1)

, β(n−3)
)
∧ ¬∃

(
[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(0) 1(1)

, β(n−5)
)
∧

∃−1
(

0(1) 1(2)
, β(n−5)

)

∃−1
(

0(2) 1(1)
, β(n−3)

)
∧¬∃

(
[0]0 [1]1

[2]2
)
∧∃−1

(
0(1) 1(2)

, β(n−5)
)
∧∃−1

(
0(0) 1(1)

,
(
¬γ(n−1)∧β(n−5)

))

∃−1
(

0(0) 1(1)
,¬γ(n−1) ∧ β(n−5)

)

∃−1
(

0(0) 1(1)
, y

(n−4)
0

)
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The remaining subcondition turns out to be considerably more difficult to resolve. We
first apply a Lift, duplicate the subcondition with 𝛾 and unroll one occurrence:

∃
(

[0]0 [2]1

[1]2 []3

,
(
∃−1

(
0(1) 1(2)

, β(n−3)
)
∧ ∃−1

(
0(0) 1(3)

, β(n−5)
)
∧ ∃−1

(
0(3) 1(1)

,

β(n−5)
)))
∧ ¬∃

(
[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(0) 1(1)

,¬γ(n−1)
)

∃
(

[0]0 [2]1

[1]2 []3

,
(
∃−1

(
0(1) 1(2)

, β(n−3)
)
∧ ∃−1

(
0(0) 1(3)

, β(n−5)
)
∧ ∃−1

(
0(3) 1(1)

,

β(n−5)
)))
∧ ¬∃

(
[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(0) 1(1)

,¬γ(n−1)
)
∧ ∃−1

(
0(0) 1(1)

,¬γ(n−1)
)

Applying Shift to the unrolled right hand side of 𝛾, the condition expands to the
following (some branches already pruned):

∃
(

[0]0 [2]1

[1]2 []3

,
(
¬
((
∃
(

[0]0 [1]1 [2]2

[3]3 []4

,
(
∃
(

[0]0 [1]1 [2]2

[4]3 [3]4
)

∧ ∃−1
(

0(4) 1(1)
, β′(n−4)

)
∧

∃−1
(

0(1) 1(2)
, β′(n−4)

)))
∨
(
∃
(

[0]0 [1]1

[2]2 [3]3
)
∧ ∃−1

(
0(3) 1(1)

, β′(n−4)
)
∧ ∃−1

(
0(1) 1(2)

,

β′(n−4)
))))

∧ ∃−1
(

0(1) 1(2)
, β(n−3)

)
∧ ∃−1

(
0(0) 1(3)

, β(n−5)
)
∧ ∃−1

(
0(3) 1(1)

,

β(n−5)
)))
∧ ¬∃

(
[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(0) 1(1)

,¬γ(n−1)
)

There are no more common unselections to be factored out. The obvious way forward
would be a lift to attempt to combine subconditions, but the only existential quantifier
(rather than unselection) appears in negated form and cannot be accessed. Therefore, we
choose to extend the big conjunction by one more conjunct ∃(𝑎) ∧ ¬∃(𝑎) (where 𝑎 is a
morphism that posits the existence of a fifth node, see Figure C.6). This is equivalent to
⊤. Thus we use the classical law of the excluded middle, then distributivity and lift the
recalcitrant negated subcondition over ∃(𝑎).

∃
(︃

[0]0 [2]1 [1]2

[3]3 []4
)︃
∧ ¬∃

(︃
[0]0 [2]1 [1]2

[3]3 []4
)︃

Figure C.6.: Excluded middle.

This way, the fifth node, which before only appeared under a negated quantifier, becomes
accessible to lifting of subconditions from outside. First, we use distributivity to obtain a
disjunction of two subconditions, one with ∃(𝑎) and the other with ¬∃(𝑎) in conjunction
with the remaining conjuncts of the current condition.

168



C. Example Proofs

∃
(

[0]0 [2]1

[1]2 []3

,
(
∃−1

(
0(1) 1(2)

, β(n−3)
)
∧∃−1

(
0(0) 1(3)

, β(n−5)
)
∧∃−1

(
0(3) 1(1)

, β(n−5)
)

∧
(
¬∃
(

[0]0 [1]1 [2]2

[3]3 []4
)
∨ ∃
(

[0]0 [1]1 [2]2

[3]3 []4

,¬
((
∃
(

[0]0 [1]1 [2]2

[4]3 [3]4
)
∧ ∃−1

(
0(4) 1(1)

, β′(n−4)
)

∧ ∃−1
(

0(1) 1(2)
, β′(n−4)

)))))
∧ ¬

((
∃
(

[0]0 [1]1

[2]2 [3]3
)
∧ ∃−1

(
0(3) 1(1)

, β′(n−4)
)
∧

∃−1
(

0(1) 1(2)
, β′(n−4)

)))))
∧ ¬∃

(
[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(0) 1(1)

,¬γ(n−1)
)

The case with ¬∃(𝑎) reduces to a finite case distinction, because repeated unrolling of
𝛽 is unnecessary: early use of ¬∃(𝑎) removes all branches that have five nodes or more,
then each of the resulting cases can be resolved by unrolling 𝛾 as far as necessary. We
consider the branch finished because K𝜇 can clearly detect its unsatisfiability without
even using Rule Empty.

¬∃
(

[0]0 [2]1 [1]2

[3]3 []4
)
∧ ∃−1

(
0(0) 1(2)

2(1)

,¬∃
(

[0]0 [1]1

[2]2
))
∧ ∃−1

(
0(0) 1(1)

,¬γ(n−1)
)
∧

∃−1
(

0(1) 1(2)
, β(n−3)

)
∧ ∃−1

(
0(0) 1(3)

, β(n−5)
)
∧ ∃−1

(
0(3) 1(1)

, β(n−5)
)

The case with ∃(𝑎) is more interesting:

∃
(

[0]0 [2]1

[1]2 []3

,
(
∃−1

(
0(1) 1(2)

, β(n−3)
)
∧∃−1

(
0(0) 1(3)

, β(n−5)
)
∧∃−1

(
0(3) 1(1)

, β(n−5)
)

∧
(
¬∃
(

[0]0 [1]1 [2]2

[3]3 []4
)
∨ ∃
(

[0]0 [1]1 [2]2

[3]3 []4

,¬
((
∃
(

[0]0 [1]1 [2]2

[4]3 [3]4
)
∧ ∃−1

(
0(4) 1(1)

, β′(n−4)
)

∧ ∃−1
(

0(1) 1(2)
, β′(n−4)

)))))
∧ ¬

((
∃
(

[0]0 [1]1

[2]2 [3]3
)
∧ ∃−1

(
0(3) 1(1)

, β′(n−4)
)
∧

∃−1
(

0(1) 1(2)
, β′(n−4)

)))))
∧ ¬∃

(
[0]0 [1]1

[2]2
)
∧ ∃−1

(
0(0) 1(1)

,¬γ(n−1)
)

Regrouping the members of negated conjunctions and applying De Morgan’s rule to both,
(
∃
(

[0]0 [1]1 [2]2

[3]3 []4

,
(
¬
((
∃
(

[0]0 [1]1 [2]2

[4]3 [3]4
)
∧ ∃−1

(
0(4) 1(1)

, β′(n−4)
)))
∨ ¬

(
∃−1

(
0(1) 1(2)

,

β′(n−4)
))))

∧
(
¬
((
∃
(

[0]0 [1]1

[2]2 [3]3
)
∧ ∃−1

(
0(3) 1(1)

, β′(n−4)
)))

∨ ¬
(
∃−1

(
0(1) 1(2)

,

β′(n−4)
)))

∧ ∃−1
(

0(0) 1(2)

2(1)

,¬
(
∃−1

(
0(0) 1(1)

, γ(n−1)
)))
∧ ∃−1

(
0(1) 1(2)

, β(n−3)
)
∧

∃−1
(

0(0) 1(3)
, β(n−5)

)
∧ ∃−1

(
0(3) 1(1)

, β(n−5)
))

we see that each of the resulting disjunctions has a branch that can be resolved using
one of the positive occurrences of 𝛽:
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C. Example Proofs

((
¬
((
∃
(

[0]0 [1]1

[2]2 [3]3
)
∧ ∃−1

(
0(3) 1(1)

, β′(n−4)
)))

∨ ∃−1
(

0(1) 1(2)
,
(
¬β′(n−4) ∧

β(n−3)
)))

∧ ∃
(

[0]0 [1]1 [2]2

[3]3 []4

,
(
¬
((
∃
(

[0]0 [1]1 [2]2

[4]3 [3]4
)
∧ ∃−1

(
0(4) 1(1)

, β′(n−4)
)))

∨

∃−1
(

0(1) 1(2)
,
(
¬β′(n−4) ∧ β(n−3)

))))
∧ ∃−1

(
0(0) 1(2)

2(1)

,¬
(
∃−1

(
0(0) 1(1)

, γ(n−1)
)))

∧ ∃−1
(

0(0) 1(3)
, β(n−5)

)
∧ ∃−1

(
0(3) 1(1)

, β(n−5)
))

The remaining cases are:

¬
(
∃
(

[0]0 [1]1 [2]2

[3]3 [4]4
)
∧ ∃−1

(
0(3) 1(1)

, β′(n−4)
))
∧ ¬

(
∃
(

[0]0 [1]1 [2]2

[4]3 [3]4
)
∧ ∃−1

(
0(4) 1(1)

,

β′(n−4)
))
∧ ¬∃

(
[0]0 [1]1 [2]2

[3]3 [4]4
)
∧ ∃−1

(
0(3) 1(1)

, β(n−5)
)
∧ ∃−1

(
0(0) 1(3)

, β(n−5)
)

Paying attention to the morphisms, one cannot fail but notice that the unselection of
the node 2 can be moved all the way to the top of the subcondition corrently under
investigation.

∃−1
(

0(0) 1(1)

2(3) 3(4)

,
(
¬
(
∃
(

[0]0 [1]1

[2]2 [3]3
)
∧ ∃−1

(
0(2) 1(1)

, β′(n−4)
))
∧¬
(
∃
(

[0]0 [1]1

[3]2 [2]3
)
∧ ∃−1

(
0(4) 1(1)

,

β′(n−4)
))
∧ ¬∃

(
[0]0 [1]1

[2]2 [3]3
)
∧ ∃−1

(
0(2) 1(1)

, β(n−5)
)
∧ ∃−1

(
0(0) 1(2)

, β(n−5)
)))

The final step is to notice that the direct subcondition of the outer unselection is equivalent
to y0 with a lower annotation for 𝛽, shifted over the existence of a fourth node. Thus,
the proof is completed at this point (modulo minor rearrangements and Unroll, with
attention to the annotations):

¬
(
∃
(

[0]0 [1]1

[2]2 [3]3
)
∧ ∃−1

(
0(2) 1(1)

, β′(n−4)
))
∧ ¬

(
∃
(

[0]0 [1]1

[3]2 [2]3
)
∧ ∃−1

(
0(4) 1(1)

, β′(n−4)
))
∧

¬∃
(

[0]0 [1]1

[2]2 [3]3
)
∧ ∃−1

(
0(2) 1(1)

, β(n−5)
)
∧ ∃−1

(
0(0) 1(2)

, β(n−5)
)

It remains to show 𝛾 ⇒ 𝜋. Since the lemma 𝛽 ⇒ 𝛾 has been established, there is
no obstacle to starting from the assumption 𝛽(𝑛−1) ⇒ ¬𝜋, using Ctx to change the
subcondition 𝛽(𝑛−1) to 𝛾(𝑛−1), performing the first steps as in all the previous proofs and
obtaining a subcondition 𝛽(𝑛−2) ⇒ ¬𝜋 that occurs positively as the only branch, thus
establishing 𝛽 ⇒ 𝜋 and reaching the goal.
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D. Table of Symbols

The following table lists most symbols introduced, together with (if applicable) the
number of their definition and the page of first appearance.

symbol usage
structure-changing Petri nets
Σ alphabet of transition labels (page 18)
𝑅 alphabet of rule names (page 18)
𝑁 = (𝑃, 𝑇, 𝐹 −, 𝐹 +, 𝑙, 𝑐)
(possibly with subscripts
𝑁𝑥 = (𝑃𝑥, ...))

a Petri net: places, transitions, in- and outgoing arc weights of
transitions, transition labels, place colours (Definition 5, page 18)

N = (𝑁, 𝑀) (possibly
with subscripts)

a marked net (Definition 5, page 18)

S = (R,N0) a structure-changing Petri net (Definition 7, page 20)
(𝜉, 𝜎) derivation in a structure-changing workflow net (Definition 8,

page 21)
F homomorphism leaving Σ letters unchanged, deleting 𝑅 letters

(page 69)
F(S) firing language of the structure-changing Petri net S (Defini-

tion 30, page 69)
graph programs and 𝜇-conditions
M the class of graph monomorphisms (page 11)
A the class of all graph morphisms (page 11)
𝑓 : 𝐹 → 𝐺 𝑓 is a graph morphism from 𝐹 to 𝐺 (page 11)
𝑓 : 𝐹 →˓ 𝐺 𝑓 is a graph monomorphism from 𝐹 to 𝐺 (page 11)
𝑓 : 𝐹 ⊆ 𝐺 𝑓 is a graph inclusion from 𝐹 to 𝐺 (page 11)
𝑓 : 𝐹 � 𝐺 𝑓 is a graph epimorphism from 𝐹 to 𝐺 (page 11)
𝑓 : 𝐹 ∼= 𝐺 𝑓 is a graph isomorphism from 𝐹 to 𝐺 (page 11)
PM the class of all partial monomorphisms (= M×M) (page 14)
𝐵, 𝐶, 𝐺, 𝐻, ... some graphs (all plain capital letters may designate graphs)
𝑃 some programs
Sel(𝑥), Del(𝑙), Add(𝑟),
Uns(𝑦), 𝑠𝑘𝑖𝑝

elementary programs (Definition 3, page 15)

𝑃 ; 𝑄, 𝑃 ∪𝑄, 𝑃 * composite programs
∼=Epi quotient equivalence relation (Definition 33, page 91)
𝑎, 𝑓, 𝑔 (plain letters) some graph morphisms
𝑐 (plain letters) some graph conditions (any kind)
𝑐 : 𝐵 𝑐 is of type 𝐵 (page 26)

171



D. Table of Symbols

x𝑖 (typewriter letters) graph condition variables (placeholders). Its type conventionally
has the same index x𝑖 : 𝐵𝑖 (Definition 15, page 29)

F condition with placeholders (Definition 15, page 29)
F𝑖 condition with placeholders as right hand side of the equation

for a recursively specified variable (page 32)
x⃗ list of variables (page 28)
Cond class of infinitary nested conditions (Definition 11, page 25)
Cond�⃗� class of sequences of infinitary nested conditions of types �⃗�

(page 26)
F[⃗x/�⃗� ] substitution (Definition 16, page 29)
F⃗, G⃗... some operators (page 29)
(𝑏 | 𝑙) a 𝜇-condition with main body 𝑏 and recursive specification 𝑙

(page 30)
𝜇-conditions: semantics and constructions
𝑓 |= 𝑐 satisfaction of condition 𝑐 : 𝐵 by monomorphism 𝑓 ∈ M,

dom(𝑓) = 𝐵 (Definition 13, page 26)
𝑓 |=A A-satisfaction of A-condition 𝑐 : 𝐵 by morphism 𝑓 ∈ A,

dom(𝑓) = 𝐵 (Definition 25, page 38)
Wlp weakest precondition transformation (Definition 37, page 100)
𝛿′

𝑟(𝑐) deletion transformation used to compute Wlp of addition (Con-
struction 10, page 98)

𝛼′
𝑟(𝑐) addition transformation used to compute Wlp of deletion (Con-

struction 9, page 96)
J𝑃 K semantics of program 𝑃 (Definition 3, page 15)
𝐴𝑚(𝑐) shift of 𝑐 : dom(𝑚) over 𝑚 ∈M (Definition 34, page 91)
P𝑥,𝑦 partial shift with respect to jointly surjective 𝑥 : 𝐵 →˓ 𝐻 and

𝑦 : 𝑅 →˓ 𝐻 (Construction 8, page 93)
2-player programs
Y the class of all two-player interfaces (Definition 39, page 121)
Wlproc two-player extension of Wlp (Construction 11, page 125)
𝜒 strategy (Definition 46, page 126)
X− terms owned by (−) (Definition 42, page 124)
X+ terms owned by (+) (Definition 42, page 124)
𝑃, 𝑃 ′, 𝑄, 𝑄′ (sometimes) some program terms
Sel+(𝑥) ... (with super-
script + or −)

program terms (Definition 38, page 120)

𝑋 some atomic program term
J𝑃 K𝜒 𝜒-ensured semantics of program 𝑃 (Definition 47, page 127)
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