
Characterisation of a Class of
Petri Net Solvable Transition Systems

Von der Fakultät für Informatik, Witschafts- und Rechtswissenschaften
der Carl von Ossietzky Universität Oldenburg
zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation

von Herrn Evgeny Erofeev
geboren am 22.07.1990 in Komsomolsk-am-Amur

Gutachter: Prof. Dr. Eike Best, Carl von Ossietzky Universität Oldenburg
Prof. Dr. Lucia Pomello, Università degli studi di Milano-Bicocca

Tag der Disputation: 20. April 2018

Abstract

The problem of Petri net synthesis is widely studied in the literature, being set in
a range of contexts. At the same time, the question for a characterisation of syn-
thesisable state spaces, which is related to synthesis, seems to be less investigated
and developed. The current work is an attempt to put more insight into the latter,
keeping in mind the former as the main goal. We study a relatively restricted class
of transition systems representing the reachability graph of the sought Petri net.
Looking at the case with only two transitions allows to obtain notable results, not
only at characterising of state spaces but also at synthesising of the Petri net.

Among such results is a language-theoretical characterisation of finite binary
sequences and cycles synthesisable into a Petri net. Synthesis algorithms, based
on the characterisation, demonstrate a better runtime in comparison to the region
based synthesis.

A classification for a complete enumeration of minimal unsolvable binary words
is presented. This classification gives rise to a characterisation for the class of all
minimal unsolvable words in the form of extended regular expressions. A procedure
for pre-synthesis, which recognises failures early and uses the characterisation,
demonstrates good results for rejecting a given input, without having to start the
synthesis process itself.

For Petri nets over the binary transition set, a graph-theoretical characterisa-
tion of their reachability graphs is presented in the form of state spaces which are
geometrically convex sets. The characterisation relies on the notion of generalised
cycles. Based on this characterisation and the absence of Parikh-non-zero g-cycles,
an algorithm for over-approximating a finite language by a Petri net language is
suggested.

i

Zusammenfassung

Das Problem der Petrinetzsynthese wurde schon umfassend untersucht und passt
in viele Kontexte. Gleichzeitig scheint die Frage nach einer Charakterisierung
von synthetisierbaren Zustandsräumen, welche mit der Synthese zusammenhängt,
weniger untersucht und entwickelt zu sein. Die vorliegende Arbeit ist ein Versuch
mehr Einsicht für letzteres zu geben, während ersteres als Hauptziel im Auge
behalten wird. Wir untersuchen eine relativ eingeschränkte Klasse von Transitions-
systeme, die den Erreichbarkeitsgraph des gesuchten Petrinetzes repräsentieren.
Die Einschränkung auf den Fall mit nur zwei Transitionen erlaubt es nennenswerte
Resultate zu erzielen, nicht nur bei der Charakterisierung von Zustandsräumen,
sondern auch bei der Synthese von Petrinetzen.

Zu diesen Resultaten gehört eine sprach-theoretische Charakterisierung von
endlichen, binären Sequenzen und Kreisen, die in Petrinetze synthetisierbar sind.
Auf dieser Charakterisierung basierende Synthesealgorithmen zeigen eine bessere
Laufzeit im Vergleich zur Regionen-basierte Synthese.

Eine Klassifizierung zur vollständigen Aufzählung aller minimal-unlösbaren,
binärer Wörter wird vorgestellt. Diese Klassifizierung führt zu eine Charakte-
risierung der Klasse aller minimal-unlösbaren Wörter in Form eines erweiterten
regulären Ausdrucks. Eine Prozedur zur Präsynthese, die Fehlschläge früh erkennt
und die Charakterisierung verwendet, demonstriert gute Resultate darin eine gege-
bene Eingabe abzulehnen, ohne dass der Synthese-Prozess selbst gestartet werden
muss.

Für Petrinetze über der binären Transitionsmenge wird eine Graph-theoretische
Characterisierung ihrer Erreichbarkeitsgraphen vorgestellt. Die Charakterisierung
setzt auf das Konzept eines generalisierten Kreises auf. Basierend auf dieser
Charakterisierung und dem Fehlen von Parikh-nicht-null g-Kreisen wird ein Al-
gorithmus zur Überapproximation einer endlichen Sprache durch eine Petrinetz-
sprache vorgeschlagen.

ii

Acknowledgements

First and foremost I would like to thank my supervisor, Eike Best, whose con-
tinuous support, kindness and constructive criticism were substantial inspiration
sources for me, and without whose guidance this thesis would not have been writ-
ten. For the many productive discussions, I am very thankful to Uli Schlachter,
Harro Wimmel, Thomas Hujsa, Valentin Spreckels, who were always open to all
sorts of questions.

A great thank you goes to Kamila Barylska, Łukasz Mikulski and Marcin
Piątkowski. I have benefited a lot from seminal collaborations with them.

I would furthermore like to thank Lucia Pomello for taking over the co-refereeing,
for valuable comments and the discussion on my thesis.

I thank Ernst-Rüdiger Olderog, Raymond Devillers, Irina Virbitskaite and
Maciej Koutny for their interest to the work on different stages and the feedbacks.

In Oldenburg I experienced a pleasant working environment which was created
by many people together (in alphabetical order): Marion Bramkamp, Björn Engel-
mann, Nils-Erik Flick, Manuel Gieseking, Andrea Göken, Annegret Habel, Martin
Hilscher, Sven Linker, Heinrich Ody, Christoph Peuser, Maike Schwammberger,
Thomas Stratmann, Mani Swaminathan, Ira Wempe, Elke Wilkeit.

On the non-scientific side, I am immensely thankful to my family for their
encouragement and patience.

iii

Contents

1 Introduction 3

2 Synthesisability of simple labelled transition systems 7
2.1 Basic notions and notations . 8
2.2 Theory of regions and separation problems 17
2.3 Motivating remarks . 24
2.4 Separation problems for linear lts 27
2.5 Structural properties of (un)solvable words 31
2.6 A necessary and sufficient condition for separability 50
2.7 A letter-counting based synthesis algorithm 55

2.7.1 Experimental results of ABSolve algorithm 58
2.7.2 Synthesis of binary words with bounded Petri nets 59

2.8 Cyclic lts over a binary alphabet 63
2.8.1 A synthesisability criterion for cyclic lts 64
2.8.2 A synthesis algorithm for cycles 66

2.9 Special cyclic forms of synthesisable lts 69
2.10 Synthesis of words by special classes of Petri nets 70

2.10.1 Synthesis with output-non-branching Petri nets 71
2.10.2 Synthesis with bounded Petri nets 72
2.10.3 Synthesis with pure Petri nets 74

2.11 Summary . 82

3 Characterisation of minimal unsolvable words 85
3.1 Minimality of non-synthesisable binary words 85
3.2 A classification of binary muws by shape 86
3.3 Extension of muws . 97

3.3.1 Extendable and non-extendable muws 97
3.3.2 Extension morphisms and operations 102

1

CONTENTS

3.3.3 Minimality of extensions . 104
3.4 Compression of muws . 112
3.5 The generative nature of muws . 114
3.6 A pattern-matching pre-synthesis algorithm 122
3.7 Pre-synthesis quick fail check of lts 125
3.8 Reversibility of muws . 127
3.9 Summary . 135

4 Synthesis of Petri nets from finite languages 137
4.1 Synthesisability of words over finite alphabets 138
4.2 Generalising the counting condition is complicated 141
4.3 Generalised cycles of lts . 146
4.4 Abstract regions of lts . 150
4.5 Generalised cycles with non-zero Parikh vectors 153
4.6 Generalised cycles with zero Parikh vectors 158
4.7 Over-approximation of finite languages 163

4.7.1 Pure over-approximation . 165
4.7.2 Over-approximation with side-conditions 167

4.8 Zero g-cycles and language equivalence 170
4.9 Summary . 171

5 Conclusion 173
5.1 Summary . 173
5.2 Outlook . 174

Bibliography 177

Index 185

Appendix 187

2

Chapter 1

Introduction

The relationship between a Petri net and its reachability graph can be viewed
from a system analysis or from a system synthesis viewpoint. In system analysis,
a system could, for instance, be modelled by a marked Petri net whose (unique
up to isomorphism) reachability graph serves to facilitate its behavioural analysis
[Rei13]. We may get various kinds of interesting structural results for special classes
of Petri nets. For example, if the given system is described by a marked graph,
then its reachability graph enjoys a long list of useful properties (e.g., in [CHEP71]
the authors establish that for every finite, strongly connected graph there exists a
live and safe marking, and that live markings can be partitioned into equivalence
classes). In system synthesis, a behavioural specification is typically given, and a
system implementing it is sought. For example, one may try to find a Petri net
whose reachability graph is isomorphic to a given edge-labelled directed graph (or
a labelled transition system) [BBD15]. We may get structural results of a different
nature in this case. For instance, in [BD14b] the authors describe a complete
structural characterisation of the class of marked graph reachability graphs in
terms of a carefully chosen list of graph-theoretical properties (e.g. reversibility,
persistency, uniformity of small cycles etc.).

In this work, we investigate labelled transition systems which are finite and
totally reachable (and satisfy some other necessary properties like persistency),
and consider some special classes thereof. The ultimate aim is to characterise,
graph-theoretically, exactly which ones of them are synthesisable into an unla-
belled place/transition Petri net [Mur89]. Such a characterisation is difficult and

3

CHAPTER 1. INTRODUCTION

has not yet been achieved in general. We begin to study the problem by restrict-
ing attention to a limited special case: non-branching, linearly ordered transition
systems having at most two edge labels, and continue by involving cycle-shaped
transition systems, and also some branching representatives thereof in the later
sections. That is, we study the class of binary sequences, cycles and finite labelled
transition systems over binary set of labels, and our aim is to characterise the Petri
net synthesisable ones amongst them.

The theory of regions [BD98] provides an indirect characterisation of this class
by means of an algorithm based on solving systems of linear inequalities and syn-
thesising a Petri net if possible. Our aim is to initiate a combinatorial approach
and to provide a complete characterisation of a generative nature for a special kind
of labelled transition systems. In this work, we describe two alternative, more di-
rect, characterisations, and provide proofs of their validity. The first condition
characterises the class of Petri net synthesisable binary words in terms of a letter-
counting relationship. The second condition characterises the same class in terms
of a pseudo-regular expression, characterising also minimality of the sequences.
Both conditions seem to be more efficient to check feasibility of synthesis than by
using the general synthesis algorithm.

Furthermore, we proceed with a characterisation of synthesisability of finite
labelled transition systems of an arbitrary shape with a binary label set, and
figure out what kind of shape those can have which are produced by unlabelled
Petri nets.

The further content of the present thesis is structured as follows. In Chap-
ter 2 the main concepts of Petri nets, labelled transition systems and synthesis
of Petri nets from transition systems are introduced. An overview of the general
tool for Petri net synthesis – the theory of regions – is made, demonstrating the
weak connection between the graph-theoretical properties of a labelled transition
system and its synthesisability into a Petri net. With the aim to find a struc-
tural characterisation of solvable transition systems, we restrict our attention to a
special class thereof: linear non-branching with a binary set of labels. This class
is associated in a natural way with the class of finite sequences over two-letter
alphabet, whose language-theoretic properties are then gradually studied with the
focus on solvability by Petri nets [BBE+15, BBE+16]. This yields a criterion for
solvability of the class of binary sequences (see also [BESW16]) and hence for the

4

class of linear transition systems. An algorithm for synthesis of Petri nets from
transition systems of this class is presented. The characterisation, as well as the
algorithm, are extended to the class of cyclical labelled transition systems.

Chapter 3 deals mainly with the concept of a minimal unsolvable word, and
has as its main goal to provide a complete characterisation of minimal unsolvable
binary sequences. The characterisation is presented in the form of (a pair of
reciprocal) morphisms (see [EBMP16]), which demonstrate the generic nature of
minimal unsolvable sequences. The interest for such a characterisation is justified
by the search for a quick-fail procedure which allows to check solvability of given
sequences without initiating the process of synthesis itself. The algorithm for such
an examination of a sequence is described.

Chapter 4 tackles the problem of solvability of labelled transition systems over
a binary set of labels in a more general context. The property of existence of
(generalised) cycles with non-zero Parikh vectors in a transition system is crucial
for the chapter. For the class of transition systems with such a cycles the classifi-
cation of possible shapes is presented [EW17], with the corresponding Petri nets
as a possible synthesis output. For the class of transition systems without such
cycles we present a geometrical characterisation of Petri net solvable among them,
which relies on the notion of a convex hull introduced for the set of states. This
characterisation yields an algorithm for the minimal over-approximating of a finite
language with a Petri net language, which is presented in the end of the chapter.

A summary of the results of the work and concluding remarks are given in
Chapter 5.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Synthesisability of simple labelled
transition systems

This chapter explores various questions of the synthesisability of labelled transi-
tion systems having uncomplicated shapes with Petri nets. Among those we are
mostly focused on linear transition systems having two labels and transition sys-
tems involving cycles in their structure with the same restriction. Starting from
the basic definitions of the main formalisms – labelled transition systems and Petri
nets – used throughout the text, and explanations of their properties, generic at-
tributes and possible interrelations, we will introduce the task of synthesis of a
Petri net from a given formal specification which is in our case represented as a
labelled transition system. We will have a brief look over the general approach for
the Petri net synthesis – the theory of regions, which establishes a characterisa-
tion for a labelled transition system to be isomorphic to the reachability graph of
some Petri net. After the consideration of this characterisation we will initiate a
discussion about possible shapes of synthesisable transition systems of a relatively
simple class mentioned above. A number of necessary and sufficient conditions will
be presented with the corresponding proofs, which give rise to the algorithms for
constructing a Petri net synthesising a given transition system. The algorithms
happen to be more efficient than the general algorithm which directly relies on
the theory of regions. The price of this runtime improvement is the range of ap-
plicability of the suggested algorithms – the restricted size of the set of labels
and the shape of the initial transition system. The contents of the chapter are

7

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

oriented on [BBE+15, BBE+16, BESW16] by the author and co-authors, where
many results were first presented.

2.1 Basic notions and notations

Labelled transition systems
When modelling the behaviour of real systems there is often a need to describe

sequential changing of configurations or states in the operating process of a given
system in an abstract manner. One of the convenient tools for this purpose are
(labelled) transition systems. A transition system consists of a set of states and
a collection of transitions. The states of the transition system correspond to the
possible configurations of the system under consideration, and the transitions de-
scribe how the system can switch from one state to some other ones. For example,
one can describe a chess game by a transition system whose set of states is the
set of all possible placements of pieces on the board, and the set of transitions
is determined by the legal moves of all the pieces. Depending on the context, a
transition system is often equipped with a labelling function which assigns a label
to each transition, and possibly with an initial state which defines the starting
configuration of the system. In case of a chess game a suitable labelling function is
the one which assigns a particular piece to a transition which represents a move of
this piece, and for the initial state the natural candidate is the starting placement
of pieces on the board.

Definition 1. A labeled transition system with initial state, abbreviated lts, is a
tuple (S, T,→, s0) where

• S is a nonempty set of states (nodes),

• T is a set of labels with T ∩ S = ∅,

• →⊆ S × T × S is the transition relation (set of edges),

• s0 ∈ S is an initial state.

8

2.1. BASIC NOTIONS AND NOTATIONS

A label t is enabled (or activated, or fireable) at state s ∈ S, denoted by s[t〉,
if there exists some state s′ ∈ S such that (s, t, s′) ∈→. Instead of (s, t, s′) ∈→
we also use the notation s[t〉s′ to denote that s′ is reachable from s through the
execution of t. A state s′ is reachable from state s through the execution of a
sequence of labels σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s to s′

whose edges are labelled consecutively by σ. The set of states reachable from s is
denoted by [s〉. A sequence σ ∈ T ∗ is allowed (or firable) from a state s, denoted by
s[σ〉, if there is some state s′ such that s[σ〉s′. For clarity, in case of long formulas
we write |r α |s β |q instead of r [α〉 s [β〉 q.

An lts is usually graphically represented as a directed graph. For a triple
(s, t, s′) with s, s′ ∈ S and t ∈ T , an arrow labelled by t is drawn from s to s′.
Later, the set T will correspond exactly to the set of transitions of a Petri net.
This is why the letter T is used for arc labelings. Note however that there could
be many different arrows (s, t, s′), (r, t, r′), . . ., all with the same label t, denoting
different state-to-state changes effected by a single transition, t.

To avoid a source of confusion that is not uncommon, we mention that the
triples (s, t, s′) ∈ S×T ×S of an lts are often called “transitions” in the literature.
However, such triplets should not be confused with the transitions t ∈ T of a Petri
net. When speaking of labels, or letters, or transitions, elements of the set T (and
thus the transitions of a Petri net, or the labels of an lts) are meant. By contrast,
triples such as (s, t, s′) will not normally be given any special names in this text
(except perhaps calling them arcs, or arrows). They usually occur as the building
block of paths in an lts.

The following properties of labelled transition systems will be important for
our following consideration.

Definition 2. A labelled transition system (S, T,→, s0) is called

• totally reachable if [s0〉 = S, i.e, every state is reachable from the initial
state,

• finite if S and T (hence also →) are finite sets,

• label-deterministic, or just deterministic, iff, for all s ∈ [s0〉 and for all
t ∈ T , if s[t〉s′ and s[t〉s′′ then s′ = s′′, i.e., from any state, the same label
may not lead to two different successor states.

9

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

Example 1. In the left of Fig. 2.1 an example of a finite, totally reachable labelled
transition system

TS = ({s0, . . . , s3}, {a, b, c}, {(s0, a, s1), (s0, c, s2), (s1, b, s2), (s1, b, s3), (s3, a, s0)}, s0)

with the initial state s0 and having three labels, a, b and c, is depicted. This
transition system is not deterministic since s1[b〉s2, s1[b〉s3 and s2 6= s3. In the right
of the figure, the arrow (s1, b, s3) is dropped. Since there is no path σ ∈ {a, b, c}∗

such that s0[σ〉s3, the new transition system TS ′ is no longer totally reachable,
although it is deterministic.

s0
s1

s2

s3

a
c b

ba

TS :

s0
s1

s2

s3

a
c b

a

TS ′ :

Figure 2.1: Finite, totally reachable, non-deterministic lts (left); finite, determi-
nistic, not totally reachable lts (right).

In what follows, when talking about labelled transition systems, the properties
from Definition 2 will be satisfied all of the time, unless we explicitly claim the
opposite.

Petri nets
Petri nets are a well-known formalism, which is widely used for modelling and

investigating parallel and distributed systems. A Petri net consists of places, tran-
sitions, and a flow function connecting them. In a graphical representation places
are usually shown as hollow circles, transitions as squares, and a flow function as
directed arcs with weights.

Definition 3. A finite Petri net is a tuple (P, T, F) such that

• P is a finite set of places,

10

2.1. BASIC NOTIONS AND NOTATIONS

• T is a finite set of transitions, with P ∩ T = ∅,

• F is a flow function F : ((P ×T)∪ (T ×P))→ N, specifying the arc weights.

According to the definition, in a Petri net arcs can connect a transition with a
place, or a place with a transition, but never two places or two transitions. Places
of a Petri net can carry tokens on them, and the particular distribution of tokens
over the places determines the (global) state of a Petri net. This distribution of
tokens can be formally defined as a function, which corresponds a natural number
to each place, and is called marking of a Petri net. An initial marking of a Petri
net determines the initial state of the model, and a Petri net is called initially
marked if it is equipped with an initial marking.

Definition 4. A marking M of a Petri net (P, T, F) is a function M : P → N.
An initially marked Petri net is a 4-tuple (P, T, F,M0), where (P, T, F) is a Petri
net and M0 is the initial marking.

Let us note that the total number of tokens in all places of a Petri net in general
changes by the execution of the transitions.

Example 2. The Petri net

N = ({p1, p2}, {a, b}, {((p1, a), 1), ((a, p2), 1), ((p2, b), 2), ((b, p1), 2)})

on the left of Fig. 2.2 has two places p1 and p2, and two transitions a and b. Place
p1 has initially two tokens on it, while p2 has only one token, so the initial marking
of N is M0(p1, p2) = (2, 1).

p1

p2

a b

2

2
(N,M0)

M0

(
p1

p2

)
=

(
2
1

)

Figure 2.2: Petri net N with its initial marking M0.

11

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

Transitions of a Petri net represent activities (or actions) within the modelled
system. For a transition, a place is an input place if there is a non-zero-weighted
arc from the place to the transition, and an output place – if there is a non-zero-
weighted arc from the transition to the place. A place is said to be a side-condition
for a given transition, if it is an input and an output place for the transition.

Definition 5. For a given transition t0 ∈ T of net N = (P, T, F), place p ∈ P is
called an input place for t0 iff t0 ∈ p•, where p• = {t ∈ T | F (p, t)>0}, an output
place for t0 iff t0 ∈ •p, where •p = {t ∈ T | F (t, p) > 0)}. Place p ∈ P is a side-
place (or side-condition) iff p•∩•p 6= ∅, and is a side place for t0 iff t0 ∈ p•∩•p.
Petri net N is called pure or side-place free if it has no side-places. If for every
p ∈ P it holds that |p•| ≤ 1, net N is called output-non-branching (or ON-net).

The occurrence of an action in the modelled system is associated with the firing
of the corresponding transition of a Petri net representing this system. While
firing, a transition consumes tokens from its input places (as many as the arc-
weights require) and produces tokens on its output places (also, according to the
arc-weights). So, firing a transition can change the marking (the distribution of
tokens over places) of a Petri net, i.e. change the global state of the whole model.
This switching between markings is called the token game, and it is regulated by
the firing rule. The firing rule allows a transition for firing only if each of its
input places have not less tokens on them than the weight of the arc from the
place to this transition. The new marking, achieved after the firing of a transition,
is defined for each place as the sum of the previous marking and the difference
between arc-weights from the transition to the place and from the place to the
transition.

Definition 6. In a given initially marked Petri net N = (P, T, F,M0), a transition
t ∈ T is enabled for firing (or simply enabled) at a marking M , denoted by M [t〉,
if M(p) ≥ F (p, t) for all places p ∈ P . The firing of t leads from marking M to
the marking M ′, denoted by M [t〉M ′, if M [t〉 and M ′(p) = M(p)+F (t, p)−F (p, t)

for all places p ∈ P . This can be inductively extended to M [σ〉M ′ for sequences of
transitions σ ∈ T ∗.

For the transitions of a Petri net the notion of effect can be introduced. The
effect of a transition is a function which for every place of the net determines how
the marking of the place is changing while firing the transition.

12

2.1. BASIC NOTIONS AND NOTATIONS

Definition 7. In a given initially marked Petri net N = (P, T, F,M0), the effect
of a transition t ∈ T for place p ∈ P is the function which assigns an integer value
for each p and t as follows E(p)(t) = F (t, p)−F (p, t). In what follows we will also
use the notation Ep(t) instead of E(p)(t). We can extend the notion of effect E for
a place p to a sequence τ ∈ T ∗. The effect of the empty sequence ε is Ep(ε) = 0.

The effect of a sequence tτ with t ∈ T is defined as Ep(tτ) = Ep(t) + Ep(τ).

Let us note that since the effect is completely defined by the flow function of
the Petri net, it does not give any new information about the net but serves mostly
for the sake of convenience. On the other hand, one cannot substitute the flow
function by the effect in general, due to possible side-conditions.

Markings (or states) of a given Petri net differ from each other by the num-
ber of tokens assigned to places by them. For an initially marked Petri net, a
marking is called reachable, if it can be achieved from the initial marking by the
token game. Markings of a Petri net allow to investigate behavioural aspects of
the Petri net, and hence the modelled system – among such aspects are problems
of safety [Yen91, CEP93], reachability [Kos82, Lam92, May81, Esp98], reversibi-
lity [KPP06, ÖA08, WDC11, HDK15], behavioural homogeneity [CHEP71], exis-
tence of a home-state [BE16, BS15, BV84] or checking for it [AK77], etc.

Definition 8. For the initially marked Petri net N = (P, T, F,M0), and its mark-
ings M and M ′, M ′ is called reachable from M , if there is a sequence σ ∈ T ∗ such
that M [σ〉M ′. [M〉 denotes the set of all markings reachable from a given marking
M . [M0〉 denotes the set of all markings reachable in net N .

Example 3. In the initially marked Petri net (N,M0) (see the top left of Fig. 2.3)
transition a is enabled for firing, since its input place p1 has two tokens on it, which
is greater than the weight of the arc from p1 to a: M0(p1) = 2 ≥ 1 = F (p1, a). At
the same time, transition b is not enabled (it is disabled) at marking M0, because
place p2, which is an input place for b, has a single token on it, and the weight of
the arc from p2 to b is equal to 2: M0(p2) = 1 � 2 = F (p2, b). By firing, transition
a consumes F (p1, a) = 1 token from its input place p1 and produces F (a, p2) = 1

token on its output place p2. After the firing of the transition a at marking M0,
Petri net N reaches the new marking M1(p1, p2) = (1, 2) (see the bottom right of
Fig. 2.3). At marking M1, both transitions a and b are enabled for firing, since
M1(p1) = 1 ≥ 1 = F (p1, a) and M1(p2) = 2 ≥ 2 = F (p2, b). By firing a or b

13

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

from the marking M1, Peri net N reaches the marking M2 = (0, 3) or M3 = (3, 0),
respectively (on the top right and bottom left of Fig. 2.3, resp.), from both of which
the initial marking M0 can be reached again.

p1

p2

a b

2

2
(N,M0)

p1

p2

a b

2

2
(N,M2)

〈b]

p1

p2

a b

2

2

[a
〉

(N,M3)

p1

p2

a b

2

2
(N,M1)

[a
〉[a〉

〈b]

Figure 2.3: Petri net N with its initial marking M0 (on the top left), and the
markings M2, M1, M3 (clockwise) reachable from M0.

According to the definition of markings of a Petri net, the number of tokens
on each place is always finite for any marking. It can happen that the token game
leads to an indefinitely increasing of the amount of tokens on some place(s). If
this is the case, such a Petri net is called unbounded. If for any reachable marking
of a given Petri net, the number of tokens in each place does not exceed a certain
finite number, the Petri net is called bounded.

Definition 9. An initially marked Petri net N = (P, T, F,M0) is called bounded
(or k-bounded) iff M(p) ≤ k for all p ∈ P , M ∈ [M0〉, where k ∈ N. If for every
k ∈ N there exists M ∈ [M0〉 and p ∈ P such that M(p) > k, Petri net N is called
unbounded. A 1-bounded Petri net is also called safe.

Example 4. Petri net Nu depicted in Fig. 2.4 is unbounded. Indeed, at the mark-
ing M0(p, q) = (1, 0) (on the left of the figure), transition t is enabled. After the

14

2.1. BASIC NOTIONS AND NOTATIONS

firing of t, the number of tokens on place p remains unchanged, since t consumes
one token from this place, and then produces one token on both p and q. The
new marking reached from M0 through the firing of t is M1(p, q) = (1, 1) (see in
the middle of the figure). Transition t is again enabled at the marking M1, and
M1[t〉M2, where M2(p, q) = (1, 2) (on the right). So, consecutive firings of t leave
the single token on place p and continuously increase the number of tokens on
place q.

p q
t

Nu :

(Nu,M0)

p q
t[t〉

(Nu,M1)

p q
t[t〉

(Nu,M2)

Figure 2.4: Unbounded Petri net Nu.

Since the number of places of a Petri net is finite, there is always only a finite
number of reachable markings for a bounded initially marked Petri net. This
allows to introduce a notion of a reachability graph of a Petri net, as a labelled
directed graph whose set of nodes consists of all reachable markings of the Petri
net, the set of labels is given by the set of transitions of the Petri net, and the set
of edges is defined by enabledness of transitions at the corresponding markings.

Definition 10. The reachability graph RG(N) of a Petri net N = (P, T, F, M0) is
the labelled transition system with the set of nodes [M0〉, i.e., all markings reachable
from M0, the initial state M0, i.e., the initial marking of N , the set of arc labels
T , i.e., the set of transitions of N , and the set of edges {(M, t,M ′) | M,M ′ ∈
[M0〉 ∧M [t〉M ′}, i.e., there is an edge from M to M ′ labelled with t iff M [t〉M ′.

Petri net properties are classified into structural ones and behavioural ones.
Structural properties are concerned with the sets P and T , their connection relation
(the flow function) F , and possibly also the initial marking M0. Behavioural
properties are concerned with the reachability graph of the net. We will consider
some properties of these kinds throughout the next sections.

15

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

Example 5. The initially marked Petri net N from Fig. 2.2 has four reachable
markings: M0 = (2, 1), M1 = (1, 2), M2 = (0, 3), M3 = (3, 0) (see Fig. 2.3).
The reachability graph RG = ([M0〉, {a, b}, {(M0, a,M1), (M1, a,M2), (M1, b,M3),
(M2, b,M0), (M3, a,M0)}, M0) of N is shown on the left-hand side of Fig. 2.5. Its
initial state is the initial marking M0 of N , and the edge labels a and b define the
changing of markings of N by firing the transitions a and b in the net.

M0 = (2, 1) M1 = (1, 2)

M2 = (0, 3)

M3 = (3, 0)

a
a

b

b

a

RG

s0
s1

s2

s3

a

a

b

b

a

TS

Figure 2.5: RG (on the left) is the reachability graph of the Petri net N (see
Fig. 2.2), TS (on the right) is isomorphic to RG.

In what follows we will associate the reachability graph of the sought Petri
net with the labelled transition system describing the desired behaviour. In order
to clarify when they coincide, we introduce the notion of isomorphism of two
transition systems, and we will not distinguish isomorphic transition systems unless
the opposite is claimed.

Definition 11. Two labelled transition systems TS1 = (S1, T,→1, s01) and TS2 =

(S2, T,→2, s02) are isomorphic if there is a bijection ζ : S1 → S2 with ζ(s01) = s02

and (s, t, s′) ∈→1⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.

Consideration of reachability graphs up to isomorphism allows to abstract from
precise markings of Petri nets, and to pay attention only to the behavioural aspects
of nets and their state spaces, in particular admissible firing sequences.

Example 6. For the transition system TS = ({s0, . . . , s3}, {a, b},→, s0)}, where
→= {(s0, a, s1), (s1, a, s2), (s1, b, s3), (s2, b, s0), (s3, a, s0)}, on the right-hand side

16

2.2. THEORY OF REGIONS AND SEPARATION PROBLEMS

of Fig. 2.5 and the reachability graph RG on the left-hand side of Fig. 2.5, there
is a bijection ζ : [Mo〉 → S, where ζ(Mi) = si for 0 ≤ i ≤ 3. Since the set of
labels of TS coincides with the set of transitions of N , and due to the fact that
Mi[t〉Mj ⇐⇒ (si, t, sj) ∈→, for 0 ≤ i, j ≤ 3 and t ∈ {a, b}, the transition system
TS and the reachability graph RG are isomorphic. This means that in Petri net
N in Fig. 2.2, for which RG is the reachability graph, we can fire exactly those
sequences from T ∗ which are allowed in TS.

Isomorphism between a labelled transition system and the reachability graph
of some Petri net means that this net realises (or implements) the behaviour pre-
scribed by the transition system. An lts for which such a Petri net exists is called
solvable with a Petri net.

Definition 12. If a labelled transition system TS is isomorphic to the reachability
graph of a Petri net N , we say that N PN-solves (or simply solves) TS.

Since RG and TS in Fig. 2.5 are isomorphic, the transition system TS is
solvable e.g. by the Petri netN from Fig. 2.2. In the following sections and chapters
we shall investigate the conditions under which a given labelled transition system
is solvable (or unsolvable, i.e. there is no Petri net with the reachability graph
isomorphic to the lts), and what structural shape solvable transition systems can
have.

2.2 Theory of regions and separation problems

The theory of regions was introduced by Ehrenfeucht and Rozenberg in [ER90]
where the authors investigate labelled partial (set) 2-structures, applications to the
theory of concurrent systems and the problems of characterising and synthesising of
state spaces of basic Petri net classes. Later the theory was gradually developed to
be applicable for the range of nets from elementary nets to Petri nets (see [BD98]).

For a given labelled transition system each region consists of a set of functions
from the sets of states and labels of the lts into the set of non-negative integers.
The set of labels of the lts is used as the set of transitions the sought Petri net,
and one needs to construct a suitable set of places. From each region a place of
the sought Petri net can be constructed in a determined way. The functions of

17

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

a region are interconnected, which, being translated into the place with its arc
weights, imposes restrictions for the behaviour of the net. Having enough many
valid regions, one can transform them into the places and obtain the Petri net for
the initial transition system.

Definition 13. A region of a labelled transition system (S, T,→, s0) is a triple of
functions

ρ = (R,B,F) ∈ (S → N, T → N, T → N)

such that for every arrow s[t〉s′ with s ∈ [s0〉,

R(s) ≥ B(t) and R(s′) = R(s)− B(t) + F(t)

hold. For the sake of succinctness, we abbreviate E = F − B (E for effect, which
could be negative).

We can extend the notion of effect E for a region to a sequence τ ∈ T ∗. The
effect of the empty sequence is E(ε) = 0. The effect of a sequence tτ with t ∈ T
is defined as E(tτ) = E(t) + E(τ). For instance, E(abbaa) = 3·E(a) + 2·E(b). In
general, E(τ) =

∑
t∈T #t(τ) · E(t), where #t(τ) denotes the number of times t

occurs in τ .

Example 7. For the lts TS in the Fig. 2.6 each region must satisfy the following
system of linear equations, according to the Definition 13:



R(s0) ≥ B(a)

R(s1) = R(s0)− B(a) + F(a)

R(s1) ≥ B(a)

R(s1) ≥ B(b)

R(s2) = R(s1)− B(a) + F(a)

R(s2) ≥ B(b)

R(s3) = R(s1)− B(b) + F(b)

R(s3) ≥ B(a)

R(s0) = R(s0)− 2 · B(a) + 2 · F(a)− B(b) + F(b)

(2.1)

18

2.2. THEORY OF REGIONS AND SEPARATION PROBLEMS

The triple of functions ρ = (R,B,F) with

R : s0 → 2, s2 → 0 B : a→ 1 F : a→ 0

s1 → 1, s3 → 3 b→ 0 b→ 2

is a valid region of TS, since it satisfies the system (2.1). For instance, for the
label a and the arrow (s0, a, s1)

R(s0) = 2 ≥ 1 = B(a) and R(s1) = R(s0)− B(a) + F(a) = 1

which correspond the first and the second line of (2.1), respectively. The other
conditions can be checked similarly.

s0
s1

s2

s3

a

a

b

b

a

TS :

Figure 2.6: Transition system TS.

The theory of regions establishes an indirect characterisation of synthesisability
of a transition system to a Petri net. This characterisation relies on the solvability
of linear inequalities systems, which corresponds to fulfilling of two properties
called separation properties.

The first separation property (states separation property) requires each pair of
two distinct states to be distinguishable by some valid region of the lts. The second
one (event-state separation property) for every pair of a state and a label of the lts
such that the label is not activated at the state, needs a region which restricts the
label at the state to be present. More formally, in terms of the theory of regions,
a labelled transition system (S, T,→, s0) satisfies

• the state separation property iff for all s, s′ ∈ [s0〉 such that s 6= s′ there exists
a region ρ = (R,B,F) with R(s) 6= R(s′),

19

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

• the event-state separation property iff for all s ∈ [s0〉 and for all t ∈ T , if
¬s[t〉 then there exists a region ρ = (R,B,F) such that R(s) < B(t).

In the synthesis of Petri nets, the regions of a labelled transition system are
transformed into places of the sought Petri net. For a given region ρ = (R,B,F)

of some lts (S, T,→, s0) a place p can be constructed by defining the values of the
flow function

F (p, t) = B(t) and F (t, p) = F(t)

and the initial marking

M0(p) = R(s0).

Then, all the markings of p which are reachable from M0 through the executions
of the sequences enabled in the lts are given by

Ms(p) = R(s) for s ∈ S.

The two separation properties become two separation problems, which are to
be solved in order to perform the synthesis procedure. The first of them, states
separation problem (SSP for short), requires that for every two distinct states of
a transition system, a place having unequal markings at these states is present.
The second one, event-state separation problem (ESSP for short), for every pair
of a state and a transition which is not enabled at this state, needs a place which
marking at this state forbids firing of this transition. If the latter problem is
solvable for a given pair of a state and a transition, we shall say that this transition
is separable at this state.

Solvability of these two separation problems SSP and ESSP is necessary and
sufficient for the lts being generated by a Petri net in the following sense (see
e. g. [BD14a] or [BD98] for the details)

Theorem 1. [BD14a] A (finite, totally reachable, deterministic) lts is the reach-
ability graph of a Petri net if and only if it satisfies states separation property and
event-state separation property.

20

2.2. THEORY OF REGIONS AND SEPARATION PROBLEMS

Example 8. For the transition system TS from Fig. 2.6 the following instances
of separation problems can be listed

SSP : ESSP :

all pairs of distinct states: b is not activated at s0: ¬s0[b〉,
s0 6= s1, s0 6= s2, s0 6= s3, a is not activated at s2: ¬s2[a〉,
s1 6= s2, s1 6= s3, s2 6= s3 b is not activated at s3: ¬s3[b〉

Each of these problems can be translated into the system of linear inequalities,
and the solvability of the system means the solvability of the original separation
problem. For example, in order to construct a region which handles the instance
¬s2[a〉 of ESSP one has to solve the following system of inequalities:

R(s0) ≥ B(a) (1)

R(s1) = R(s0)− B(a) + F(a) (2)

R(s1) ≥ B(a) (3)

R(s1) ≥ B(b) (4)

R(s2) = R(s1)− B(a) + F(a) (5)

R(s2) ≥ B(b) (6)

R(s3) = R(s1)− B(b) + F(b) (7)

R(s3) ≥ B(a) (8)

R(s0) = R(s0)− 2 · B(a) + 2 · F(a)− B(b) + F(b) (9)

R(s2) < B(a) (10)

(2.2)

The lines (1)-(9) of (2.2) repeat the system (2.1) which guarantees that each
solution of the system is a valid region of TS. The newly added inequality

R(s2) < B(a)

ensures that if a solution (in the form of a region of TS) of the extended system
(2.2) is found, the place obtained from this region disables transition a at the
marking corresponding to state s2.

21

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

p

a b
2

q

a b
2

Figure 2.7: The place p obtained from the region ρ. The place q obtained from
the region θ.

The region ρ = (R,B,F) with

R : s0 → 2, s2 → 0 B : a→ 1 F : a→ 0

s1 → 1, s3 → 3 b→ 0 b→ 2

defined in Example 7 is a solution of (2.2). Indeed, from Example 7 we know that
is satisfies equations (1)-(9) of (2.2). Due to

R(s2) = 0 < 1 = B(a),

equation (10) of (2.2) is also satisfied. Hence, region ρ separates a at s2 or in
other words a is separable at s2.

For the region ρ we can construct the corresponding place p of a net N with
transitions a and b as follows: The function B defines how many tokens the tran-
sition consumes from the place p by each its firing, and the function F defines how
many tokens it produces by each firing. The marking of the place p is determined
by the function R. Since we are looking for the Petri net with the reachability
graph isomorphic to TS, R exactly defines the marking of p for each node of the
reachability graph (i.e. for each marking reachable in N). Finally, we obtain a
place p (see in the left of Fig. 2.7) with the initial marking and the arc weights as
follows:

M0(p) = 2

F (p, a) = 1, F (p, b) = 0, F (a, p) = 0, F (b, p) = 2.

For the event/state separation problem ¬s0[b〉 one can construct the following

22

2.2. THEORY OF REGIONS AND SEPARATION PROBLEMS

s0
s1

s2

s3

a

a

b

b

a

TS

p

q
a b

2

2
N

Figure 2.8: Transition system TS. Petri net N with RG(N) isomorphic to TS.

region θ = (R,B,F) with

R : s0 → 1, s2 → 3 B : a→ 0 F : a→ 1

s1 → 2, s3 → 0 b→ 2 b→ 0
(2.3)

Since the system (2.1) is satisfied for θ, it is a valid region of TS as well. Due to

R(s0) = 1 < 2 = B(b),

the instance ¬s0[b〉 of ESSP is solved by θ. The region θ is translated into the place
q (see in the right of Fig. 2.7) with

M0(q) = 1

F (q, a) = 0, F (q, b) = 2, F (a, q) = 1, F (b, q) = 0.

Let us also note that the region θ also solves the instance ¬s3[b〉 of the event-state
separation problem. This means that there is no need to construct any additional
region (and a place, respectively) for this instance of ESSP. Moreover, since for
θ (as well as for ρ) the values of the function R are different for all the states of
TS, all the SSP issues are also solved by any of these regions. Hence, the net N
in Fig. 2.8 with the places p and q solves TS.

23

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

2.3 Motivating remarks

The following decision problem can be considered as an instance of a Petri net
synthesis task:

Input: A finite, totally reachable, label-deterministic

labelled transition system TS.

Question: Is there some bounded Petri net N which solves TS?

Finiteness of the input lts corresponds to the boundedness of the sought Petri net.
Total reachability of the transition system is necessary due to the fact that the
reachability graph of a Petri net is always a totally reachable transition system. As
for any Petri net a firing of a transition uniquely determines the marking reachable
through this firing, the input lts is required to be label-deterministic.

According to the theory of regions, in order to decide this problem we have to
check whether TS satisfies both separation properties, that have been described
in the previous section. Checking satisfiability of separation properties relies on
constructing the regions of an lts. But, even for a finite lts the set of its regions
is infinite. One can try to find a finite region basis [BDLM07], but constructing
this basis is not an easy task. Moreover, even having this basis, in order to check
whether states separation property is satisfied, it is required to examine all pairs of
distinct states of the lts, and in order to check satisfiability of event-state separation
property – all pairs of label/state. This procedure may happen to be not efficient,
although there are tools such as APT [S+13] or synet [Cai02] which are capable
to produce a very good result of the Peri net synthesis. Furthermore, for some
special classes of Petri nets more precise statements can be made [BD14b].

What is more important in our consideration, starting from the shape of an
arbitrary labelled transition system, it looks rather difficult to answer if there is
a Petri net solving it, and even harder to predict how such Petri net (if there
exists one) can look like. While synthesising a Petri net from an lts, only the
set of transitions is fixed, being the set of labels of the lts. The set of places
can differ significantly, as in the number of tokens in the initial marking, so also
in their connections to the transitions. Even in case of a successful synthesis
procedure, the output is not guaranteed to be unique, and sometimes it is not

24

2.3. MOTIVATING REMARKS

even irredundant. For instance, the output of synthesis with the tool synet (as
well as with the tool APT) differs, depending on the particular way an lts was
presented to the tool (state numbering or ordering of transitions). Nevertheless,
the obtained Petri nets have isomorphic reachability graphs, which is guaranteed by
the correctness-by-design of the output of synthesis procedure. Also, some places
that were created at the earlier stages of the synthesis procedure may become
redundant after adding some newly created places at later stages. Although the
tool APT exploits some heuristics in order to exclude redundant places (if there are
any) and to minimise the total number of produced places, the output Petri net
can still differ for isomorphic labelled transition systems as inputs. All this gives
us an intuition that the structure of a reachability graph has no strong relation to
the structure of some Petri net it can originate from.

Example 9. For the labelled transition system TS in Fig. 2.9 the result of the
synthesis of a Petri net with a reachability graph isomorphic to TS varies depending
on the tool which is used. For instance, synet produced the Petri net N1 in the
right of Fig. 2.9, which happens to be pure (without side-conditions) and has 4
places. The same transition system being provided as an input to APT, results the
Petri net N2 (see Fig. 2.10) which has 7 places. On the other hand, APT allows
to initiate an optimisation of the synthesis with the key minimise. The result of
such synthesis from the same input transition system is N3 in Fig. 2.11, having
only 2 places.

s0
s1

s2
s3

s4
s5

a

c

d

b a
a

b

e

b

TS

a b c

2

d e

2

N1

Figure 2.9: TS is isomorphic to the reachability graph of the Petri net N1 which
is synthesised by synet.

Albeit, there are results establishing structural properties of reachability graphs,

25

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

a b c

2

2

d

2

2

e

N2

Figure 2.10: N2 is synthesised by APT from TS (see Fig. 2.9).

4

a

2

3

b

2

3

c

3

5 2

d

3

2

5

e

4

5

N3

Figure 2.11: N3 is produced from TS (see Fig. 2.9) by APT with minimisation.

26

2.4. SEPARATION PROBLEMS FOR LINEAR LTS

obtained from Petri nets satisfying certain restrictions [LR78, KCK+95], only some
of them (for instance [BD14b]) provide a characterisation of state spaces, which can
be implemented with Petri nets (of a particular class). In this work, we are focused
on the problem of characterising syntehsisable state spaces, and we investigate how
such a characterisation can contribute to the field of Petri net synthesis.

2.4 Separation problems for linear lts

In the present section we restrict our attention to one of the simplest shapes
of labelled transition systems – finite lines, which can be associated with finite
sequences of symbols (words) over some finite alphabet in a natural way.

Definition 14. A word over alphabet T is a finite sequence w ∈ T ∗. A word is
called binary if |T | = 2. The empty word, i.e., the word that has no letters in
it, is denoted by ε. A word w′ ∈ T ∗ is called a subword (or factor) of w ∈ T ∗ if
w = u1w

′u2 for some u1, u2 ∈ T ∗ (i.e. factor of w is a contiguous segment of w).

The following definition determines a mapping which uniquely assigns a finite
transition system to each finite sequence over a given alphabet T .

Definition 15. A sequence w = t1t2 . . . tn ∈ T ∗ of length n ∈ N uniquely corre-
sponds to a finite transition system TS(w) = (S, T,→, s0), where

• S = {s0, . . . , sn} – the set of states of the transition system,

• T – the set of labels which coincides with the alphabet,

• →= {(i− 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T} – the set of arrows,

• s0 ∈ S – the initial state.

This correspondence allows us to extend the notion of solvability of labelled
transition systems with Petri nets to finite sequences. We will say that Petri net
N with the set of transitions T solves a word w ∈ T ∗ if N solves TS(w).

Definition 16. The word w is called solvable (or Petri net solvable, or PN-
solvable) if TS(w) is solvable by some Petri net N , otherwise unsolvable.

27

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

Example 10. The sequence w = abcb over T = {a, b, c} has, for instance, abc
or bc as its contiguous fragments, hence subwords, while acb is not a subword of
w. The transition system TS = TS(w) is depicted on the left of Fig. 2.12. This
transition system is isomorphic to the reachability graph of the Petri net N in the
right of Fig. 2.12. Thus, TS is solvable, implying that the sequence w is solvable
as well.

s0 s1 s2 s3 s4

a b c b

TS(abcb)

a

bc

N

Figure 2.12: Transition system TS = TS(abcb), and net N with RG(N) ∼= TS.

The notion of a Parikh vector of a sequence of symbols is widely used in the
literature, introducing some sort of measuring for sequences and allowing to reason
about their ‘similarities’ or internal structure.

Definition 17. For a finite sequence σ ∈ T ∗ of labels, the Parikh vector Ψ(σ)

is a T -vector (i.e., a vector of integer numbers with index set T), where Ψ(σ)(t)

denotes the number of occurrences of t in σ, i.e. Ψ(σ)(t) = #t(σ). For states s,
p, in sequence |s0u|sv|pw ∈ T ∗, the notation Ψ(p− s) = Ψ(uv)− Ψ(u) is used for
the Parikh vector of the path v from s to p. We use Ψ(s) = Ψ(s − s0) = Ψ(u) to
denote the Parikh vector of the path u from the initial state s0 to s.

We have earlier considered the two kinds of separation problems, SSP and
ESSP, which according to the theory of regions [BD98] represent the necessary
and sufficient condition for synthesis of a Petri net from a given transition system.
The first of them, states separation problem, requires for every pair of unequal
states of the initial lts the existence of a region which distinguishes them from
each other. The other one, event-state separation problem, needs for every pair of
a transition and a state at which this transition is not enabled a region preventing

28

2.4. SEPARATION PROBLEMS FOR LINEAR LTS

the transition from occurrence at the state. We shall now examine these conditions
for the special class of labelled transition systems – the ones that are derived from
finite sequences using the mapping TS (see Definition 15).

Let T be a finite nonempty alphabet, and w ∈ T ∗ be a finite sequence of
length |w| = n over T . We can construct a finite labelled transition system
TS(w) = (S, T,→, s0) from w. In order to synthesise – if possible – a Petri
net with the reachability graph isomorphic to TS(w), T must, of course (since we
do not consider any transition labels), be used directly as the set of transitions.

There are |S| = n + 1 states in TS(w), and to satisfy the state separation
property one has to solve 1

2
·(|S|·(|S|−1)) = 1

2
· (n+1) ·n state separation problems

– one problem for each pair of distinct states. It turns out that all such problems
are solvable if the transition system originates from a sequence (word). Moreover,
it is always possible to construct a region which solves all state separation problems
of such an lts. For instance, we can define the region ρ = (R,B,F) as follows:

R : si → i, ∀0 ≤ i ≤ n, B : t→ 0, F : t→ 1, ∀t ∈ T (2.4)

which serves as a solution for all instances of SSP of TS(w). Indeed, R has unique
value i for each state si ∈ S (in fact, this region just counts the number of letters
that have been read up to the state), hence TS(w) satisfies states separation
property.

Example 11. For the TS(abcb) (see Fig. 2.12) the region ρ as in (2.4) is defined
as follows:

R : s0 → 0, s1 → 1, B : a→ 0, b→ 0, F : a→ 1, b→ 1,

s2 → 2, s3 → 3, c→ 0 c→ 1

s4 → 4

Since the values are distinct for distinct states:

R(si) 6= R(sj), for i 6= j, 0 ≤ i, j ≤ 4,

this region ρ solves all the instances of SSP for transition system TS(abcb).

The situation is different when talking about event-state separation property.

29

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

In order to satisfy this property, for the transition system TS(w), |S| · |T |− |S|+1

event-state separation problems need to be solved (we have |T | − 1 instances of
ESSP for each of the |S|−1 first states in TS(w), and |T | instances of ESSP for the
last state). Unlike SSP, this kind of problems in general does not have the same
solution for transition systems from the class under consideration. Furthermore,
some ESSP instances may not be solvable at all for transition systems derived from
words (see e.g. [BBE+16] for details). For example, when considering the word

ab|s2baa,

and the labelled transition system TS(abbaa) (see Fig. 2.13) obtained from it, the
instance ¬s2[a〉 of ESSP has to be solved. In other words, we have to construct
a region ρ = (R,B,F) which restricts a at state s2. For ρ, we have to guarantee
R(s2) < B(a).

s0 s1 s2 s3 s4 s5

a b b a a

TS(abbaa)

Figure 2.13: Transition system derived from abbaa.

Assume that there exists ρ which solves the instance ¬s2[a〉 of ESSP. Then it
satisfies the following inequalities:

(0) B(a) ≤ R(s0), since state s0 activates a;

(4) B(a) ≤ R(s0) + E(abba), since state s4 activates a;

(2) R(s0) + E(ab) < B(a), due to the assumption about ρ.

This set of inequalities cannot be solved in the natural numbers. Combine (0)
and (2) to obtain 0 < −E(ab); combine (4) and (2) to obtain 0 < E(abba) −
E(ab) = E(ab); contradiction. This demonstrates that even simple sequences can
be unsolvable with Petri nets. Although, the theory of regions suggests us a way
to check a sequence (or lts) for its solvability, we see that it can be quite time

30

2.5. STRUCTURAL PROPERTIES OF (UN)SOLVABLE WORDS

consuming, which suggest us a reasonable question: how can we figure out if
the given labelled transition system is (un-)solvable in some uncomplicated way?
To be more precise, we would like to give a characterisation for some class(es)
of (un)solvable labelled transition systems. We will gradually achieve this aim
throughout the following sections and chapters. More particularly, we will present
a language-theoretical criterion for solvability of binary sequences with Petri nets,
together with a synthesis algorithm based on this criterion. With the use of the
criterion, a classification of unsolvable sequences will be described, which gives
rise to an efficient procedure for checking whether a given binary sequence is not
solvable. Moreover, in the last chapter we extend our view to finite sets of sequences
(languages), and present a characterisation of the solvability of such sets with Petri
nets.

2.5 Structural properties of (un)solvable words

In this section we shall consider some necessary and sufficient properties of solvable
words step by step. Among other things, we will investigate how the shape of a
word can affect its solvability. E.g., the unsolvability of a factor of a sequence,
implies the unsolvability of the whole sequence, and the same for a relatively big
difference between lengths of blocks of the same letter inside the sequence. We
will also show that some kinds of consecutive modifications can or cannot preserve
solvability of separation problems. For instance, prepending of the initial letter to
a solvable sequence retains the solvability. Moreover, a presence of a factor of some
pseudo-regular form will be proved as a sufficient condition for the unsolvability.
A notion of a minimal unsolvable word will be introduced as a convenient tool for
focusing on the crucial properties implying the (un)solvability.

We think that the first natural step in the investigation would be to ‘localise’
the part which is problematic for the solvability. It turns out that if a sequence w
is solvable, then of all its subwords w′ are. To see this, let the Petri net solving
w be executed up to the state before w′, take this as the new initial marking, and
add a pre-place with #a(w

′) tokens to a and a pre-place with #b(w
′) tokens to b.

Thus, the unsolvability of any proper subword of w entails the unsolvability of w.

Proposition 1. (solvability of subwords) If w = xvy with x, y ∈ {a, b} is a

31

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

solvable finite sequence, then xv and vy are also solvable.

Thanks to the Proposition 1, it is convenient to introduce the notion of a
minimal unsolvable word, namely,

Definition 18. A word (finite sequence) w is called a minimal unsolvable word
(muw) if it is an unsolvable word, and all of its proper subwords are solvable.

A complete list of minimal unsolvable words over {a, b} up to length 110 can
be found, amongst some other lists, in [P+15] (see also Appendix for the list of
minimal unsolvable binary words up to the length 20). Since we have such a list,
we begin with an attentive watch of it in order to parse some possible regularities
of these words. Observe, for instance, that in this list, every word starts and ends
with the same letter. This is a consequence of the next proposition.

Proposition 2. (solvability of aw and wb implies solvability of awb) If both
aw and wb are solvable, then awb is also solvable.

Proof. Assume that aw and wb are PN-solvable words over {a, b}. If w = bk (or
w = ak) for k ∈ N then awb = abk+1 (awb = ak+1b, respectively) is obviously
solvable (see, for instance, Figure 2.14). Hence we assume that w contains at least

a
k + 1

b k + 1 a b
k + 1

Figure 2.14: Petri nets solving sequences abk+1 (l.h.s) and ak+1b (r.h.s.) for k ≥ 0.

one a and one b. Let N1 = (P1, {a, b}, F1,M01) and N2 = (P2, {a, b}, F2,M02) be
Petri nets such that N1 solves aw and N2 solves wb. We can assume that N1 and
N2 are disjoint, except for their transitions a and b. Forming the union of N1 and
N2 by synchronisation at a and b gives a net which allows for execution all (and
only) sequences allowed by both N1 and N2. Before forming such a union, we
modify N1 and N2 as follows:

(i) Since N1 solves the sequence aw, we have to modify it in such a way that
it allows one last b after executing aw and stops computations having awb
executed. In order to reach this goal, in N1, for each place p in •b ∩ P1,
we have to add another F1(p, b) tokens in the initial marking M01(p). This

32

2.5. STRUCTURAL PROPERTIES OF (UN)SOLVABLE WORDS

additional tokens enable transition b after the sequence aw. It may be the
case that before the modification such place p has been used to restrict firings
of transition a, and the added surplus tokens break this function of p. To
prevent this, if p in •a∩ P1, then increase both weights F1(p, a) and F1(a, p)

by the quantity F1(p, b); otherwise, keep the arc weights unchanged. These
new arc weights keep additional tokens on p untouched while executing aw,
and does not influence the firing of b afterwards. Since the last b in awb could
have enabled a at the final state, we construct a counting place qa which is
an input place for transition a with a unit arc weight F (qa, a) = 1, and which
has #a(aw) tokens on it initially. Thus, a remains disabled while executing
awb exactly at states in which it was disabled before the modification and
becomes permanently disabled after aw.

(ii) AsN2 solves the word wb, we need to transfigure it to allow awb for execution.
To achieve this, for each place q in •a ∩ P2 we supplement another F2(q, a)

tokens to its initial marking M02(p). These tokens are enough to enable the
additional a initially. Further, for each place p in a• ∩ P2 ∩ •b, increase the
both arc weights F2(p, b) and F2(b, p) by the quantity F2(a, p). The new arc
weights lead to the same effect of b on p but prevent premature occurrences
of b in the part wb (which could have been allowed by adding the tokens
in front of b after the firing of the initial a in awb). Moreover, if there is
a place p in •a ∩ •b ∩ P2, b could have been allowed at the very beginning
of awb by changing the initial marking M02(p). To prevent this, construct
a new place p′ in N2, such that F2(a, p′) = F2(b, p′) = F2(p′, b) = 1 and
F2(p′, a) = M0(p′) = 0. This place prevents firing of transition b at the
beginning of awb, and it does not influence the behaviour of N2 after the
first a has occurred.

Define N as the union of the two nets thus modified (see Example 12 for details).
In general, N solves awb in the following way: the initial a is allowed in N1 by
definition and in N2 by the additional tokens. The subsequent w is allowed in both
nets, and hence in their synchronisation. The final b is allowed in N2 by definition
and in N1 by the additional tokens. No premature b is allowed by the arc weight
increase, and no additional a is allowed after executing of awb because of a counting
place qa constructed in N1. All intermediate occurrences of a are regulated by the

33

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

modification of N1, and the same of b – by the modification of N2.

The following example illustrates the construction suggested in the proof of
Proposition 2.

Example 12. For demonstrating the transformations described in Proposition 2,
consider the case w = bab. Both sequences aw = abab and wb = babb are solvable,
(for instance, by Petri nets N1 and N2 from Fig. 2.15 and 2.16, respectively).
First, we modify the net N1 according to the steps described in item (i) of the
proof. The result of this modification is the net N ′1 in Fig. 2.15. The tokens
added during the transformations are drawn as hollow circles and newly constructed
places and adjacent arcs are dashed. Let us notice, although N ′1 can execute the
sequence awb = ababb, it also allows some more behaviour (see its reachability
graph RG(N ′1) in Fig. 2.15). For this reason it is not enough to use only one
transformed net. The modification N ′2 (see Fig. 2.16) of the net N2 is obtained by
the item (ii) of the proposition proof. After the synchronisation of the two nets
N ′1 and N ′2 by transitions, we derive the net N (see Fig. 2.16), whose reachability
graph is isomorphic to TS(awb). Hence, N solves the sequence awb = ababb. Let
us also notice that the resulting net N is not necessarily an optimal solution (in
the sense of the size of the net). It is easy to see, that some places of the net N are
redundant: for instance, places q1, qa and q2 have the same function – restricting
the total number of firings of transition a. Similarly, places r1 and r2 also duplicate
each other.

p1

q1

r1

a

b

N1

qa

p1

q1r1

a

b

N ′1

s0
s3

s2

s1 s4

s5

s6 s7

a

b a

b a

b a

b

b

RG(N ′1)

Figure 2.15: N1 (l.h.s.) solves abab; N ′1 (derived from from N1) allows ababb.

34

2.5. STRUCTURAL PROPERTIES OF (UN)SOLVABLE WORDS

p2

q2

r2

a
2

b

N2

p2

q2

r2

a

b

32

N ′2

q1

q2

qa

p1

p2

r1

r2

a
2

b

2 3

N

Figure 2.16: N2 solves babb; N ′2 (obtained from N2) allows ababb for firing; net
N solves ababb, N is derived from N ′1 (see Fig. 2.15) and N ′2 by synchronising at
transitions.

The next observation from the list [P+15] is that for any minimal unsolvable
word, if it starts with a (or with b) then the next letter is always b (a, respec-
tively). This observation is confirmed by the following proposition, establishing
that prepending of the first letter to a solvable word does not violate its solvability.

Proposition 3. [BBE+16](solvable words starting with a can be prefixed
by a) If a word av is PN-solvable then aav is, too.

Proof. Let N = (P, {a, b}, F,M0) be a net solving av. We shall construct a net
which solves aav. The idea is to obtain such a net by ‘unfiring’ a once from the
initial marking of N . Since this may lead to a non-semipositive marking of some
places from P , which we would like to avoid, we will first normalise and modify
the net N , obtaining another solution N ′ of av, and then construct a solution N ′′

for aav as a modification of N ′.

(i) For normalisation, we assume that there are two places pb and qa; the first
prevents b explicitly in the initial phase, and the second prevents firing of
a after the last of its occurrences in av. They are defined by M0(pb) = 1,
F (a, pb) = 1, F (b, pb) = `+1 = F (pb, b), where ` ≥ 1 is the number of a
before the first b in av, and M0(qa) = k, F (qa, a) = 1, where k ≥ 1 is the
number of a in av (i.e. k = #a(av)). All other undefined values of F for pb
and qa are supposed to be equal 0.

(ii) Let NUF (a) = {p ∈ a• |M0(p) < F (a, p)} be the set of places which do
not allow the ‘unfiring’ of a at the initial marking M0. Note that neither

35

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

pb nor qa are in NUF (a). Note also that for every place p ∈ NUF (a),
F (p, a) ≤ M0(p) < F (a, p) – the first inequality holds because a is initially
enabled, the second – by p ∈ NUF (a). That is, while firing a produces on
such places more tokens than consumes, i.e. a has a positive effect on every
p ∈ NUF (a). Without loss of generality, b has a negative effect on every
place from NUF (a). Indeed, if, by contraposition, for some p ∈ NUF (a) the
effect of b on p is non-negative, then this place p does not prevent transition
b from firing, once b has been enabled. On the other hand, all premature
occurrences (the ones before the first b in av) of b are already restricted by
the place pb. Hence, such place p could be deleted without changing the
behaviour of N .

(iii) For every place p ∈ NUF (a) we add the quantity F (a, p) uniformly to its
initial markingM0(p), and to F (p, b), and to F (b, p), eventually obtaining the
modified net N ′ = (P ′, {a, b}, F ′,M ′

0). We shall show that N ′ also solves av,
as N . First, both M0[a〉 ∧ ¬M0[b〉 and M ′

0[a〉 ∧ ¬M ′
0[b〉 (the former holds by

the definition of N , the latter – by the construction). For an inductive proof,
suppose that M0[a〉M1[τ〉M and M ′

0[a〉M ′
1[τ〉M ′. We have M [b〉 iff M ′[b〉 by

the construction. If M [a〉, then also M ′[a〉, since M ≤ M ′. Next, suppose
that ¬M [a〉; then there is some place q such that M(q) < F (q, a). We show
that, without loss of generality, q /∈ NUF (a), so that q also disables a at M ′

in N ′. If M disables a after the last a in av, we can take q = qa /∈ NUF (a).
IfM disables a before its last occurrence in av, then q cannot be in NUF (a),
since b acts negatively on such places.

Now, we construct a net N ′′ = (P ′, {a, b}, F ′,M ′′
0) from N ′ by defining M ′′

0 (p) =

M ′
0(p) − F ′(a, p) + F ′(p, a) for every place p ∈ P ′. By the construction, aav is a

firing sequence of N ′′. Furthermore, M ′′
0 does not enable b because of pb.

The following example explains the construction described in Proposition 3.

Example 13. Consider the word av = abab. This word is solvable, and a possible
solution is the net N (see l.h.s. of Fig. 2.17). Since the net N does not possess the
states qa and pb, they are constructed additionally (in l.h.s. of Fig. 2.17 they are
drawn dashed). These new places do not influence the behaviour of the net. After
this normalisation we can construct the set NUF (a) = {p1} which is a singleton for

36

2.5. STRUCTURAL PROPERTIES OF (UN)SOLVABLE WORDS

this case. Modification of the arc weights and the initial marking of p1 yields the
net N ′ (in the middle of Fig. 2.17). From the initial marking of net N ′ we are able
to ‘unfire’ (or ‘back-fire’) transition a, which leads to the new initial marking in
the net N ′′ (r.h.s. of Fig. 2.17). The reachability graph of the net N ′′ is isomorphic
to the transition system TS(aabab) = TS(aav), i.e. N ′′ solves aav = aabab.

p1

pb

qa

a

b2
2

normalised N

p1

pb

qa

a

b2
2

22

N ′

p1

pb

qa

a

b2
2

22

N ′′

Figure 2.17: N (the solid part of in l.h.s.) solves abab; normalisation of N (l.h.s.)
does not change the behaviour; N ′ obtained from normalised N ; N ′′ (r.h.s.) solves
aabab.

Hence, if a word av is minimal unsolvable, then, as a consequence of Proposi-
tion 3, v definitely starts with a letter b. That is, no minimal unsolvable word can
start with aa (nor with bb, for that matter).

Studying the list [P+15] further, it can also be observed that all words starting
and ending with b are just symmetrical images of those starting and ending with a
under swapping letters. More interestingly, all minimal unsolvable words starting
and ending with the letter a happen to satisfy the following general pattern:

(a b α) b∗ (b a α)+ a , with α ∈ {a, b}∗ (2.5)

with a not being separated (at least) at the state between the b∗ and the second
bracket (and thus, before the first b in the second bracket, which exists because the
bracket contains at least one instance of baα). For example, abbaa satisfies (2.5)
with α = ε, the star ∗ being repeated zero times, and the plus + being repeated

37

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

once. Another example is abbbaa, where α = ε, the star ∗ is repeated only once,
and the plus + is repeated once as well. The word ababaabaaa can be decomposed
as (aba)(baa)(baa)a, from where we see that it satisfies (2.5) with α = a, the star ∗

being repeated zero times, and the plus + being repeated twice.
The following proposition establishes that all words which contain a subword

of form (2.5) are generally PN-unsolvable:

Proposition 4. [BBE+15](sufficient condition for the unsolvability of a
word) If a word over {a, b} has a subword of the form

(a b α) b∗ (b a α)+ a , with α ∈ {a, b}∗,

then it is not PN-solvable.

Proof. Let s0 be the state before the first a, s the state before the first b in the
second bracket, s′ the state after this b, and r the state before the final a:

(|s0 a b α) b∗ (|s b |s′ a α)+ |r a

For a word w having a subword of this form, we prove that such a subword cannot
be solved (implying that w cannot be solved either). Because baα occurs at least
once in the second bracket, s 6= r, b is enabled at state s, and a is not enabled
at s. Suppose that some place q of a general form as in Fig. 2.18 with the initial
marking M0(q) = m exists, which prevents a from firing at state s. Abbreviate
Eq(abα) to E and Eq(b) to Eb. For place q, we have the following inequalities (for
the corresponding states):

(s0) a− ≤ m

(s′) a− ≤ m+ E + k·Eb + Eb for some fixed k ≥ 0

(r) a− ≤ m+ E + k·Eb + `·E for the same k and some fixed ` > 0

(s) 0 ≤ −m− E − k·Eb + a− − 1 for the same k

(s0) is true because a is enabled at s0. (s′) is true because a is enabled at s′. (r)
is true because a is enabled at r; and ` > 0 because the second bracket repeats at
least once. Finally, (s) is true because, by the assumption, q disables a at state s.
Adding (s′)+(s) gives 1 ≤ Eb. Adding (s0)+(s) gives 1 ≤ −E − k·Eb, and using

38

2.5. STRUCTURAL PROPERTIES OF (UN)SOLVABLE WORDS

also 1 ≤ Eb and k ≥ 0 gives 1 ≤ −E− k·Eb ≤ −E. Adding (r)+(s) gives 1 ≤ `·E,
contradicting 1 ≤ −E because of ` > 0. The system cannot be solved, and no
place q preventing a from firing at state s exists.

m

q

p

a b

a−

a+

b−

b+

Figure 2.18: A general form of a place of Petri net with transitions a and b.
The place has its initial marking m ≥ 0, and four non-negative arc weights
a−, a+, b−, b+. It is named p if used for preventing b and named q if used for
preventing a.

Proposition 4 gives us a first intuition that, besides known region-theoretical
approach, solvability of special classes of transition systems, like sequences, with
Petri nets can also be characterised more directly, i.e. language-theoretically. The
following proposition continues this idea, and establishes a next sufficient condition
for the unsolvability of finite sequences. The condition relies on the fractions of
letters within factors of a sequence.

Proposition 5. [BBE+16](another sufficient condition for unsolvability)
Suppose α, β ∈ {a, b}+ and w = αβa, where α starts with a, β starts with b, and

#a(β)·#b(α) ≥ #a(α)·#b(β) (2.6)

Then w is unsolvable.

Proof. Let s0 be the state before α, s the state before β, and r the state before
the final a:

w = |s0 α |s β |r a.

Assume that there is a place q (see Fig. 2.18) which prevents firing of a at state
s and has initial marking m at s0. Let Ea = Eq(a), Eb = Eq(b), Eα = Eq(α) and
Eβ = Eq(β). Then for Eα = #a(α)·Ea + #b(α)·Eb and Eβ = #a(β)·Ea + #b(β)·Eb

39

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

we have:

(s0) a− ≤ m (since α starts with a)
(r) a− ≤ m+ Eα + Eβ (since r enables a)
(s) 0 ≤ −m− Eα + a− − 1 (since ¬s[a〉)

Adding (s0)+(s) yields 1 ≤ −Eα, hence (A): −(#a(α)·Ea + #b(α)·Eb) ≥ 1.
Adding (r)+(s) yields 1 ≤ Eβ, hence (B): (#a(β)·Ea + #b(β)·Eb) ≥ 1.
Also, Eb ≥ 1 because q prevents a at s, but a becomes enabled after one or more
firings of b. Then,

−#a(β) ≥ #a(β)·#a(α)·Ea + #a(β)·#b(α)·Eb (multiplying (A) by #a(β))

≥ #a(β)·#a(α)·Ea + #a(α)·#b(β)·Eb (using (2.6) and Eb ≥ 1)

≥ #a(α) (multiplying (B) by #a(α))

However, −#a(β) ≥ #a(α) implies #a(β) = #a(α) = 0, and this is a contradiction
since α contains at least one a. Thus, such a place q does not exist.

For sequence abbaa, which is known to be unsolvable, equation (2.6) can be
checked with the following decomposition:

ab |s baa = α |s βa, where α = ab, β = ba.

Then we have

#a(β)·#b(α) = 1 ≥ 1 = #a(α)·#b(β),

i.e. (2.6) is satisfied (being an equality in this case). If we check (2.6) for another
unsolvable sequence abbbaa, then for the decomposition

abb |s baa = α |s βa, where α = abb, β = ba

the equation reads as

#a(β)·#b(α) = 2 ≥ 1 = #a(α)·#b(β)

40

2.5. STRUCTURAL PROPERTIES OF (UN)SOLVABLE WORDS

which holds true. On the other hand, for a solvable sequence ababba (Petri net N
in Fig. 2.19 is its possible solution) there are three possible decompositions such
that α starts with a and β starts with b:

a |s babba = α |s βa, where α = a, β = babb,

aba |s bba = α |s βa, where α = aba, β = bb,

abab |s ba = α |s βa, where α = abab, β = b.

It can be directly checked that (2.6) is not satisfied for all of these decompositions.

p2

q2

r2

a
2

2

b

2

N

Figure 2.19: Net N solves ababba.

Some more structural (language-theoretical) properties about the shapes of
(un-)solvable sequences can be obtained. It is easy to see from the list [P+15] that
there can be factors aa or bb inside a minimal unsolvable word. However, the next
proposition (together with the previous proposition) implies that we cannot have
both – unless one of them is at the very end of the word, as in abbaa.

Proposition 6. [BBE+15](no aa and bb inside a minimal unsolvable word)
If a minimal unsolvable word is of the form u = aαa, then either α does not contain
the factor aa or α does not contain the factor bb.

Proof. By contraposition. Assume that α contains a factor aa and a factor bb.
Two cases are possible:

Case 1: There is a block of a’s which follows a block of b’s. Let am and bn be
such blocks, assume that bn is followed by am and that there are no blocks of a’s

41

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

or of b’s between them. Then u is of the following form

|s0 . . . |q abn(ab)kam |r . . .

where n,m ≥ 2, k ≥ 0. Recombine the letters in u to the following form:

|s0 . . . |q (ab)bn−2(ba)k+1aam−2 |r . . .

Since u ends with a, and the block am is a factor of α, u′ = (ab)bn−2(ba)k+1a

is a proper subword of u. On the other hand, u′ has the form (abw)b∗(baw)+a,
with w = ε, which implies unsolvability of u′ by Proposition 4, contradicting the
minimality of u.

Case 2: All groups of a precede all groups of b. In this case u is of the form

aax0bax1 . . . baxnby0aby1aby2 . . . abyma

where at least one of xi and one of yj is greater than 1. Consider ` = max{i |
xi > 1}. If ` = 0, we get a contradiction to Proposition 3. Hence, ` > 0. Let
t = min{j | yj > 1}. Then u has the form

|s0 a . . . |q bax`(ba)n−`(ba)tbyt |r . . . a

Recombine the letters in u to the form

|s0 a . . . |q (ba)ax`−2(ab)n−`+t+1bbyt−2 |r . . . a

Notice that n−`+t+1 ≥ 1. Hence, u has a proper subword (ba)ax`−2(ab)n−`+t+1b,
which is of the form (baw)a∗(abw)+b with w = ε, implying its unsolvability, due
to Proposition 4 with inverted a and b. This again contradicts the minimality
of u.

Proposition 6 establishes that factors aa and bb cannot occur inside minimal
unsolvable words simultaneously. We shall now see that solvable words may contain
both aa and bb as subwords, but only if one of these subwords appears at the
beginning of the word, created by the prefixing mechanism of Proposition 3. This
is indeed the case:

42

2.5. STRUCTURAL PROPERTIES OF (UN)SOLVABLE WORDS

Proposition 7. [BESW16](never aa and bb in solvable words after initial
a+) Let w ∈ {a, b}∗ be a solvable word, decomposable into w = anbα with n ≥ 1

and α ∈ {a, b}∗. Then, bα does not contain the factor aa or it does not contain
the factor bb.

Proof. Assume w contains both factors aa and bb in bα. Select ‘neighbouring’ fac-
tors aa and bb, such there is no other factor aa or bb in between. Since neither cho-
sen factor is at the start of the word, w can be decomposed into w = βabibb(ab)jaaγ

or w = βbaiaa(ba)jbbγ with β, γ ∈ {a, b}∗ and i, j ≥ 0. The neighbours aa and bb
have been underlined. W.l.o.g. let us assume the latter form.

Let N = (P, T, F,M0) be a Petri net solving w and select states s, s′, and s′′

such that

w = β|s′baia|sa(ba)jb|s′′bγ.

Since b cannot fire at s, there must be a place p ∈ P with Ms(p) < b− (compare
Fig. 2.18). At s′ and s′′ the transition b can fire, so Ms′(p) ≥ b− ≤ Ms′′(p) holds.
As firing a enables b again after s, a must produce tokens on p and Ep(a) > 0.
Since b does not remain enabled from s′ to s, it has to consume tokens from p, so
Ep(b) < 0. Computing the token differences on p between our chosen states we
then obtain

0 > Ms(p)−Ms′(p) = (i+ 1) · Ep(a) + Ep(b) and

0 < Ms′′(p)−Ms(p) = (j + 1) · Ep(a) + (j + 1) · Ep(b).

Comparing the lines gives Ep(a) > −Ep(b) > (i+1)·Ep(a), which is a contradiction
to Ep(a) > 0, i.e. w is not solvable.

This fact reduces the potentially solvable words to the regular expression

a∗b+(ab+)∗(a|ε) | b∗a+(ba+)∗(b|ε) | ε,

where in the first subexpression aa may only occur at the beginning of the word
and in the second one the roles of a and b are switched. The following results are
shown for the first expression only, but hold for both.

43

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

If we compare two different blocks of the form ab+ in the regular expression we
find that their lengths must be nearly equal.

Lemma 1. [BESW16](block lengths differ by at most 1)
Let w ∈ a∗b+(ab+)∗(a|ε) be a word that contains both babia and abbib with i ≥ 1 as
subwords. Then, w is not solvable.

Proof. Two cases are possible.
Case 1: Consider first the situation where babia precedes abbib, i.e.

w = α|sbabi|s′(abbi)kabbi|s′′bβ

with α, β ∈ {a, b}∗. If there are more or less than i+1 b’s in any of the intermediate
k ≥ 0 blocks we can choose factors babia and abbib that are closer together (possibly
even having an a in common). Assume p to be a place of a Petri net solving w
with Ms′(p) < b− ≤ Ms(p), i.e. Ep(babi) = Ms′(p) −Ms(p) < 0. Due to Parikh
equivalence, Ep(babi) = Ep(abbi), we know

Ms′′(p) = Ms′(p) + (k + 1) · Ep(abbi) < Ms′(p) < b−,

which is a contradiction to b being enabled at s′′.
Case 2: The next possibility,

w = α|sabbibj(babi)k|s′babi|s′′aβ

with α, β ∈ {a, b}∗ and j, k ≥ 0, we also obtain by choosing the factors – first
abbib, then babia this time – as close together as possible. Assume p a place with
Ms′(p) < a− ≤Ms′′(p), then with Ms′′(p)−Ms′(p) = Ep(babi) = Ep(abbi) > 0 and
Ep(b) > 0 (since firing b at s′ enables a), we obtain Ms(p) = Ms′(p)−k ·Ep(babi)−
j · Ep(b)− Ep(abbi) < Ms′(p) < a−. This contradicts a being enabled at s.

Solvable words must then fulfill a kind of balancing property where the blocks
of b’s almost all have almost the same length.

Proposition 8. (balancing property) Let w = akbx1abx2 . . . abxn with k ≥ 0,
n ≥ 2, x1, . . . , xn ≥ 1. Then, the following hold:

1. w solvable ⇒ xj − 1 ≤ xi for 2 ≤ i ≤ n− 1, 2 ≤ j ≤ n.

44

2.5. STRUCTURAL PROPERTIES OF (UN)SOLVABLE WORDS

2. wa solvable ⇒ xj − 1 ≤ xi for 2 ≤ i, j ≤ n.

3. If k > 0 the above implications also hold for j = 1.

Proof. Assume there are i and j such that one of the above implications does not
hold. Then, w (or wa) contains the subwords babxia (since i ≥ 2) as well as abbxib
as a (possibly trivial) prefix of abxj . Lemma 1 shows that the word is not solvable,
yielding a contradiction.

For solvable words the first block of b’s can have arbitrary length. For instance,
the words

abab9ab9ab9a and b9abbabbabba

both are solvable, though the length of the first block is less than the lenghts of the
inner blocks for the former word and bigger than the lengths of the inner blocks
for the latter word. The last block of b’s cannot be longer, but it can be much
shorter than the average b-block if no final a follows, i.e.

ab9ab9ab9ab

is solvable while

abababab9

is not. In the former case, we may even append some more b’s, which is confirmed
by the following lemma.

Lemma 2. [BESW16](prolonging the last b-block) Let w = akbx1abx2a . . . abxn

be a solvable word with k ≥ 0 and xi − 1 > xn for all 1 ≤ i < n. Then,
w′ = akbx1abx2a . . . abxn+1 is solvable.

Proof. Consider the case k ≤ 1 first. Assume N = (P, T, F,M0) to be a Petri net
solving

w = akbx1abx2 . . . abxi−1 |s′abxi−1|s′′ba . . . b|sabxn|f

45

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

with a place p that prevents b at some s′ before s. Then, Ms′(p) < b− and
Ms′′(p) = Ms′(p) + Ep(abxi−1) ≥ b−, i.e. Ep(abxi−1) > 0. With Ms(p) ≥ b+ (b fires
directly before s) and Ep(b) < 0 (b fires directly before s′), we conclude

Mf (p) = Ms(p) + Ep(abxn) ≥ b+ + Ep(abxn) = b+ + Ep(abxi−1)− Ep(bxi−1−xn) >

> b+ − (xi − 1− xn) · Ep(b) ≥ b+ − Ep(b) = b−

Therefore, a place p preventing b at such s′ cannot prevent b at the end of w.
At s, b can be prevented by a new place p′ with b− = 1, b+ = 0, a− = 0,
a+ = min{x1, . . . , xn−1}, and an initial token count of

n−1∑
i=1

xi − (n− 2 + k) ·min{x1, . . . , xn−1}

which is non-negative. Then, Ms(p
′) = 0 and Mf (p

′) = Ms(p
′) + a+ − xn > 0.

A place q preventing a (except after the last a) must have Eq(b) > 0, so it cannot
prevent b at the end either. After the last a, a new place with #a(w) initial tokens,
a− = 1, and a+ = 0 can disable any further a. With these modifications, a place
preventing b at the end of the word w is not needed to prevent any other occurrence
of a or b any more. We can now delete all places preventing b at the end of w from
N and create a new place with 1 +

∑n
i=1 xi tokens, b− = 1, and b+ = 0, to prevent

b after w′ is complete. The modified Petri net solves w′.
In case k > 1, we cut off all leading a’s but one, apply the above proof, and

then reprepend the missing a’s using Proposition 3.

Let us now define morphic mappings for the sequences over the same alphabets.

Definition 19. For two alphabets Σ1 and Σ2, a mapping φ : Σ∗1 → Σ∗2 is called
a morphism if we have φ(u · v) = φ(u) · φ(v) for every u, v ∈ Σ∗1, whenever all
operations are defined.

A morphism φ is uniquely determined by its values on the alphabet. More-
over, φ maps the neutral element (the empty sequence) of Σ∗1 into the neutral
element of Σ∗2. It turns out that some morphic modifications of sequences preserve
their solvability. The following lemma shows that deleting one b from each block
of b’s will also not turn a word unsolvable.

46

2.5. STRUCTURAL PROPERTIES OF (UN)SOLVABLE WORDS

Lemma 3. [BESW16](length reduction of b-blocks)
Let w = akbx1abx2a . . . abxnaj with j ∈ {0, 1}, k ≥ 0, and x1, . . . , xn ≥ 2 be a
solvable word. Then, also w′ = akbx1−1abx2−1 a . . . abxn−1aj is solvable.

Proof. For k > 1, cut off all leading a’s but one, apply the following proof for
k = 1, and reprepend the missing a’s using Proposition 3. So, let now k ≤ 1. In
case j = 1, we apply the proof to the word wb [and w′], which by Lemma 2 and
Proposition 1 is solvable if and only if w is. If k = 0 we use the words w and bw′,
where k = 0 and j = 1 are, of course, combinable, and w′ is solvable if bw′ is. After
applying the above modifications, note that with the homomorphism h(a) = ab

and h(b) = b holds h(w′) = w.

Let N be a Petri net solving w. For each place p with arc weights a+, a−, b+,
and b− let ip = max{0,−a+ − Ep(b)} and define a place p′ for a new Petri net
N ′ with M ′

0(p′) = M0(p) + ip, b′− = b− + ip, b′+ = b+ + ip, a′− = a− + ip, and
a′+ = a+ + Ep(b) + ip. In all cases, a′+ − a′− = Ep(ab) and b′+ − b′− = Ep(b) and all
new arc weights (especially a′+) are non-negative. By induction over the length of
prefixes of w′, the state reached in N ′ after some prefix v of w′ is the state reached
in N after the according prefix h(v) of w plus the additional ip. We conclude that
w′ and only w′ can fire in N ′, i.e. N ′ solves w′.

The following example shows how some homomorphic mappings of sequences
can preserve solvability.

Example 14. Let us consider the sequence

w = abbbabbabbabbbabba

which is solvable, for instance, with the Petri net N in Fig. 2.20. According to
the construction from the proof of Lemma 3, in order to obtain a net solving
the sequence w′ = abbabababbaba where each block of b is 1 letter shorter than
the corresponding block of w, we have to append one more b at the end of w.
Notice, that h(w′) = wb, where h(a) = ab and h(b) = b. We shall construct places
p′0, p′1 and p′2 by modifying initial markings and arc weights of places p0, p1, p2,
respectively:

47

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

ip = max{0,−a+ − Ep(b)}
M0(p′) = M0(p) + ip

b′− = b− + ip

b′+ = b+ + ip

a′− = a− + ip

a′+ = a+ + E(b) + ip

The resulting net N ′ with places p′0, p′1, p′2 is shown in Fig. 2.20.

2p0

7 p2

13p1

a
7

7

b
3

3

N

2p′0

7 p′2

14p′1

a
7

3

4

b
2

3

3

N ′

Figure 2.20: N solves sequence abbbabbabbabbbabba, N ′ solves sequence
abbabababbaba with reduced lengths of b-blocks.

In this section we have seen that solvability of an lts from the considered
class (the ones originated from finite binary sequences) is indeed connected with
the structural characteristics (language-theoretical properties) of the lts in many
various ways. Among such a characteristics we have seen the involving of a pat-
tern (2.5) as a subsequence, the fraction (2.6) of the letters inside the sequence,
the lengths of the blocks made of the same letter (see Lemma 1 and Proposition 8).
Moreover, we have seen how some of the structural properties of the lts can be
simulated in the structure of a Petri net solving it: like prepending of the initial
letter to the solvable sequence, or reducing the length of the blocks by the same
number.

The set of conditions for the synthesisability of a word with a Petri net described
above can be summarised into one criterion. This criterion sets a number of

48

2.5. STRUCTURAL PROPERTIES OF (UN)SOLVABLE WORDS

restrictions for the shape of a binary word, which are necessary conditions for its
synthesisability. These conditions all together can be checked in a linear (in the
length of a given word) time.

Theorem 2. [BESW16](linear time necessary criterion)
If a word w ∈ {a, b}∗ is solvable, it is the empty word w = ε or it has the form
w = akbx1abx2a . . . abxnaj or w = bkax1bax2b . . . baxnbj, where j, k, n, x1, . . . , xn ∈ N
with j ≤ 1, n ≥ 0 and there is some x ∈ N such that x2, . . . , xn−1 ∈ {x, x + 1}
and xn ≤ x + 1. Furthermore, if j > 0 also xn ∈ {x, x + 1}, and if k > 0 also
x1 ≤ x+ 1.

The criterion is in linear time as we can detect the structure of a word w by
going over it once from left to right. Remembering the block lengths that occurred
so far allows us to check if the next block also has a valid length.

What we do not know so far is when a block may have length x + 1 in the
criterion, and when only length x is allowed. For instance

abababbabba,

ababbababba,

ababbabbaba,

abbababbaba,

abbabababba

are solvable sequences while

abbabbababa

is unsolvable. One could suspect that the high number of early b’s makes the latter
word unsolvable. But the sequence

abbabbabbaba

is solvable, though its early b-blocks are relatively (within the sequence) long.
Hence, the dependency between the order of short and long blocks within the
given sequence and the solvability of the sequence is not as straightforward as the
first intuition says. This dependency will be made precise in the following section.

49

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

2.6 A necessary and sufficient condition
for separability

While the previous section establishes some sufficient and some necessary condi-
tions for synthesisability and non-synthesisability of an entire word, this section
is dedicated to the investigation of the separability of a single transition at some
state, or, in terms of the theory of regions, solvability of a single instance of ESSP.
Although the theory of regions outsources this question to the solvability of a sys-
tem of linear inequalities, we shall find a more straightforward condition for the
separability of a transition. This condition relies on the shape of a given word, and
can be checked without involving any intermediate means, i.e. it can be described
language-theoretically.

The notion of the separability of a label at a given state of a labelled transition
system can be naturally translated in the separability of a letter within the given
sequence as follows

Definition 20. For a decomposition w = u|sxv of a sequence w ∈ {a, b}∗ with
x ∈ {a, b} and u, v ∈ {a, b}+, we call y ∈ {a, b} with y 6= x separable at state s iff
we can construct a Petri net N with transitions a and b and one place p such that
w can be fired completely in N and y is not enabled at s.

Existence of a place which separates a letter at some state does not imply
the solvability of the whole sequence. It does not even imply that this letter is
separated at the other states when necessary. Similarly to the solvability of lts,
for the solvability of a given sequence w, one has to provide a solution for each
instance of ESSP in TS(w).

Example 15. As an instance consider sequence w = abba|s1babb|s5, and check
separability of a at state s1. A possible Petri net with a place q separating a at
s1 is depicted in Fig. 2.21. Although this net allows the sequence w for firing, it
is nevertheless not a solution of w, i.e. RG(N) � TS(w). Indeed, besides word
w, N also allows for firing for example sequence abbb. Place q does not solve the
instance ¬s5[a〉, i.e. in N transition a can fire after w. Moreover, N allows infinite
sequences for firing.

The following lemma supports our earlier intuition that the inequality (2.6),

50

2.6. A NECESSARY AND SUFFICIENT CONDITION FOR SEPARABILITY

q

a
3

b
2

N

s3s0 s1 s2 s4 s5

b b b b

a

b

a a aa

· · ·

RG(N)

Figure 2.21: a is separable at state s1 in abba|s1babb.

which has been proved to be a sufficient condition for the unsolvability of a se-
quence, can be extended to a characterisation of solvability of binary sequences.
More precisely, it gives rise to a criterion for the separability of a label at a state.
In the lemma (the negation of) (2.6) is proved to be a necessary and sufficient con-
dition for the solvability of an instance of ESSP. The sufficiency of the criterion is
proved constructively, i.e. a procedure for creating a place of the sought Petri net
is presented.

Lemma 4. [BESW16](characterisation of separable states) For a word w ∈
{a, b}∗ let w = u|sxv be an arbitrary decomposition with x ∈ {a, b}. Let y ∈ {a, b}
with y 6= x be the other letter in our alphabet. Then, y is separable at s if and only
if

∀α, β, γ, δ : (w = αyβ|sxγyδ ⇒ #y(yβ) ·#x(xγ) > #x(yβ) ·#y(xγ)).

Proof. W.l.o.g. we assume that #x(w) ·#y(w) > 0.
”⇒”: Let p be a place (of some Petri net) enabling y at s′ and s′′ but not at s

in a decomposition

w = α|s′yβ|sxγ|s′′yδ.

Since p disables y at s but not at s′′, the number of tokens on p must increase
from s to s′′, and also from s to the first y after s, where only letters x are present.
Thus, x effectively increases the token count on p, i.e. Ep(x) > 0.

Assume firing y would not lower the token count on p. Since y is enabled at s′,
it will also be enabled at every state afterwards, even at s. So, p would not disable
y at s. We conclude that y effectively removes tokens from p, i.e. Ep(y) < 0.

51

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

Since y can fire at s′ but not at s, tokens are consumed by yβ, i.e.

#y(yβ) · (−Ep(y)) > #x(yβ) · Ep(x).

From s to s′′, for analogous reasons, tokens are produced on p, so

#x(xγ) · Ep(x) > #y(xγ) · (−Ep(y)).

Multiply the first inequation by #x(xγ) and the second one by #x(yβ), then divide
both by −Ep(y) to make them comparable:

#y(yβ) ·#x(xγ) > #x(yβ) · Ep(x)

−Ep(y)
·#x(xγ) > #x(yβ) ·#y(xγ).

”⇐”: Let

S ′ = {s′ | ∃α, β : w = α|s′yβ|sxv} and S ′′ = {s′′ | ∃γ, δ : w = u|sxγ|s′′yδ}.

Denoting by #x(s
′, s) the number of occurrences of x between states s′ and s (and

analogously for y and for pairs of states (s, s′′)), let us define ratios of y and x in
Q ∪ {−∞,∞} via

rmax(s) = min
s′∈S′

{
#y(s

′, s)

#x(s′, s)

}
and rmin(s) = max

s′′∈S′′

{
#y(s, s

′′)

#x(s, s′′)

}
.

In case S ′ = ∅ we assume the minimum rmax(s) to be ∞ as a default value, if
S ′′ = ∅ the maximum rmin(s) will be −∞. #x(s, s

′′) and #y(s
′, s) cannot both

be zero (as there is an x directly after s and at least one y after s′ or s′′), so no
ambiguous fraction 0

0
can occur. If #x(s

′, s) is zero, we assume the default value
of ∞ for this fraction. See Fig. 2.22 for a visualisation.

We show now that rmax(s) > rmin(s). This is trivial in case one of the two
assumes its default value ∞ or −∞. Otherwise, for all decompositions

w = α|s′yβ|sxγ|s′′yδ with s′ ∈ S ′ and s′′ ∈ S ′′

52

2.6. A NECESSARY AND SUFFICIENT CONDITION FOR SEPARABILITY

−1

p

a
3

b
2

p :
select 3

2
∈]2/2,∞[

(2− 1 tokens on p at s)

p

a
3

b
3

1

avoid negative initial marking:

s0

s1
s2 s3 s4 s5 s6 s7 s8 s9a

a b b a b a b b
· · ·

1/0

2/0

0/1

1/2

2/2s
rmax(s) =∞ rmin(s) = 2/2

TS :

w = aabbababb

Figure 2.22: TS corresponding to aabbababb with a state s at which b must not oc-
cur (here in our notations x = a, y = b and s = s4). We compute maximal/minimal
b/a-ratios rmin(s)/rmax(s) for words starting with b ending at s and starting at s
ending in front of a b, respectively. The production/consumption ratio for a place
p in a Petri net prohibiting b at s must fall into the open interval]rmin(s), rmax(s)[.
A loop around b can be added to prevent a negative initial marking.

the following holds

#y(yβ) ·#x(xγ) > #x(yβ) ·#y(xγ).

We now select those s′ ∈ S ′ and s′′ ∈ S ′′ that yield the ratio values rmax(s) and
rmin(s) in the above definitions, respectively. For these two states we obtain:

rmax(s) =
#y(s

′, s)

#x(s′, s)
=

#y(yβ)

#x(yβ)
>

#y(xγ)

#x(xγ)
=

#y(s, s
′′)

#x(s, s′′)
= rmin(s).

We now create a Petri net with two transitions x and y and a single place p
that will disable y at s but not at any other state in S ′ ∪ S ′′, and also will not
disable x at all. Such a Petri net (among others) allows w for firing. In a first

53

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

step, let us choose arc weights y− ∈ N+ (from p to y) and x+ ∈ N+ (from x to p)
such that

rmax(s) >
x+

y−
> rmin(s),

which is possible, compare Fig. 2.22. Furthermore, let us assume there are y− − 1

tokens on p at state s, so p disables y at s. Choose any state s′ ∈ S ′, then

#y(s
′, s)

#x(s′, s)
≥ rmax(s) >

x+

y−
.

In case #x(s
′, s) > 0, we can multiply with this value and with y− to obtain

#y(s
′, s) · y− > #x(s

′, s) · x+.

In case #x(s
′, s) = 0 the above inequality is true, since s′ is immediately followed

by a y. The inequality shows that there are more tokens on p in s′ than in s. Due
to our choice of y− − 1 tokens for s, y is not disabled at s′ by p.

Accordingly, for a state s′′ ∈ S ′′, we have

x+

y−
> rmin(s) ≥ #y(s, s

′′)

#x(s, s′′)

and by multiplying with the non-zero denominators we get

#x(s, s
′′) · x+ > #y(s, s

′′) · y−.

So, at s′′ there are more tokens on p than at s, and p cannot disable y at s′′.
It remains to be shown that there are always at least zero tokens on p at any

possible state. This is already known for all states from S ′ ∪ S ′′ (having at least
y− tokens) and for all states ŝ immediately following a state from S ′ ∪S ′′ (only y−
tokens are consumed). Since from such an ŝ until the next state in S ′ ∪ S ′′ only x
occurs in the word w, the number of tokens will only be increased. So, all states
beginning with the first state from S ′ ∪ S ′′ in the word w are covered. Before this
first state, only letters x occur in w, so it suffices to check if the initial state of the
Petri net has at least zero tokens on p.

If the initial state s0 is in S ′ ∪ S ′′, we are done. Otherwise, we compute the

54

2.7. A LETTER-COUNTING BASED SYNTHESIS ALGORITHM

initial number of tokens via Ms(p) = y− − 1 in w:

n = y− − 1 + #y(s0, s) · y− −#x(s0, s) · x+.

Only in case of an initial marking n < 0 we have a problem. This can be eas-
ily solved, though, by creating an arc from y to p with weight F (y, p) = −n
and replacing the values for the reverse arc weight and the initial marking by
F (p, y) = y− − n and M0(p) = n − n = 0. The additional −n tokens are never
used up but are always needed for y, so they will neither allow any additional firing
of y nor prevent any required one.

We have now formulated an exact criterion for separability of a transition at
some state, which is based exclusively on the shape of the word under conside-
ration, i.e. we have provided a language-theoretical (or graph-theoretical, when
talking about labelled transition systems) condition for solvability of an instance
of ESSP without involving regions. The next step is to gather the results of the
previous investigations for establishing a solvability criterion of the sequences.

The following theorem, being a natural continuation of Lemma 4, presents a
criterion for the synthesisability of a given binary word, which is based on the
graph-theoretical properties of the word and does not involve the region mecha-
nism.

Theorem 3. [BESW16](characterisation of solvable words)
A word w ∈ {a, b}∗ is Petri net solvable if and only if the following formula holds
for x = a ∧ y = b as well as for x = b ∧ y = a:

∀α, β, γ, δ : (w = αyβxγyδ ⇒ #y(yβ) ·#x(xγ) > #x(yβ) ·#y(xγ)).

The theorem serves as a theoretical characterisation of the class of solvable
finite sequences over 2-letters alphabet. Based on the theorem, in the following
section we shall present an algorithm for Petri net synthesis from such sequences.

2.7 A letter-counting based synthesis algorithm

The criterion for the synthesisability of binary words provides an algorithm that
takes a word as an input, and produces a Petri net which solves this word as an

55

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

output. This algorithm solves all necessary separability problems consecutively
by constructing a place for each such problem. Moreover, a modified version of
the algorithm allows to combine separability problems into groups and construct
a single common solution for all problems of a group. Beside the theoretical esti-
mation of the complexity of algorithm, some experimental results of the described
algorithm are provided. These results compare the new algorithm with a general
linear-algebraic approach from the theory of regions, demonstrating the relative
promptness of the new algorithm for constructing a Petri net as well as for quickly
checking for the synthesisability of a word in general, without producing a net.

As we have seen in Section 2.2 the same region, and hence the same place of
a Petri net can solve several separation problems, i.e. it is possible to disable for
several transitions their firings at some marking of a Petri net, or to disable the
firings of some transition at several distinct markings (states of an lts, respectively)
with some place of the net. The following proposition establishes the condition
when the same place of a Petri net can be used for the separation of a transition
(letter) at distinct states of a given binary word.

Proposition 9. (shared separating places) Let w = u|sxv|ŝxz be a solvable
word with x ∈ {a, b} and with two states s, ŝ after which the same letter x occurs.
Then, for s and ŝ, we can use the same place for the separation if and only if the
open intervals]rmin(s), rmax(s)[and]rmin(ŝ), rmax(ŝ)[(from the proof of Lemma 4)
have a non-empty intersection.

Proof. The first direction of the proof of Lemma 4 shows that for state s (ŝ) the
arc weight ratio x+

y−
of the occurring letter x compared to the separation letter y

must lie inside the open interval]rmin(s), rmax(s)[(]rmin(ŝ), rmax(ŝ)[, respectively).
If one separation place is enough for both states, the arc weight ratio must fall
into both open intervals. Similarly, if the intervals have a non-empty intersection,
the arc weight ratios in the second part of the proof of Lemma 4 can be chosen
identical, so the same place is generated for both states. The different separation
states may require a different number of loops at y to prevent a negative initial
marking. In this case, the higher number of loops will always suffice.

The algorithm 1 – ABSolve – for the Petri net synthesis for a finite word w has
runtime in O(|w|2) because the first part of the algorithm (with the for-loops) is
quadratic, and the while-loop is executed up to |w| times. For the choice of I,

56

2.7. A LETTER-COUNTING BASED SYNTHESIS ALGORITHM

Algorithm 1 ABSolve
Input: w ∈ {a, b}∗
Output: A Petri net N = (P, {a, b}, F,M0) solving w if it exists
P ← ∅, F ← ∅, M0 ← ∅
for i = 0 to |w| − 1 do {separation point s}
rmin[i]← −∞, rmax[i]←∞ {defaults}
N [0]← 0, N [1]← 0 {for counting a’s and b’s}
if w[i] = ′a′ then R← 1 else R← 0 {fraction selector}
for j = i− 1 down to 0 do {compute rmax}
if w[j] = ′a′ then N [0]← N [0] + 1 else N [1]← N [1] + 1

if w[j] 6= w[i] and rmax[i] >
N [R]
N [1−R]

then rmax[i]← N [R]
N [1−R]

endfor
N [0]← 0, N [1]← 0
for j = i+ 1 to |w| − 1 do {compute rmin}
if w[j − 1] = ′a′ then N [0]← N [0] + 1 else N [1]← N [1] + 1

if w[j] 6= w[i] and rmin[i] < N [R]
N [1−R]

then rmin[i]← N [R]
N [1−R]

endfor
if rmin[i] ≥ rmax[i] then return {unsolvable}

endfor
S ← {0, . . . , |w| − 1} {unprocessed intervals}
while S 6= ∅ do
choose I ⊆ S with |{w[i]|i ∈ I}| = 1 and

⋂
i∈I]rmin[i], rmax[i][6= ∅

S ← S\I
choose m

n
∈
⋂
i∈I]rmin[i], rmax[i][

P ← P ∪ {pI}
`← w[min I] {doesn’t matter which i ∈ I}
if ` = ′a′ then F (a, pI)← m, F (pI , b)← n else F (b, pI)← m, F (pI , a)← n
compute the minimal M0(pI) ∈ Z for i ∈ I from M(pI) = n− 1
{via backward firing M0[w[0] . . . w[i− 1]〉M}

if M0(pI) < 0 and ` = ′a′ then
F (b, pI)← F (b, pI)−M0(pI), F (pI , b)← F (pI , b)−M0(pI), M0(pI)← 0

if M0(pI) < 0 and ` = ′b′ then
F (a, pI)← F (a, pI)−M0(pI), F (pI , a)← F (pI , a)−M0(pI), M0(pI)← 0

endwhile
return (P, {a, b}, F,M0)

57

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

select one interval and intersect consecutively with any other interval unless the
intersection would become empty, resulting in O(|w|) time. The choice of m

n
can

be done in constant time unless some ‘optimal’ value is sought. The computation
of M0(pI) by backward firing is in O(|w|). So, overall the while-loop is in O(|w|2)

in the worst case.

2.7.1 Experimental results of ABSolve algorithm

In an implementation using the region-based approach, usually (as in APT [S+13])
one of the freely available ILP solvers is used, and these normally (e.g. see [LPK00,
nlA06]) implement the simplex algorithm. The simplex algorithm can have expo-
nential run times, but typically solves a system of equations in linear time, which
is much better than Karmarkar’s [Kar84] worst case complexity.

To see how our algorithm fares compared to the region-based approach, we used
the tools Synet [Cai02] and APT [S+13], both of which can synthesise Petri nets,
and let all three run on the same computer. APT and our algorithm ABSolve have
been implemented in Java while Synet was written in OCaml, which is known to
produce efficient code. For each single test that was done we randomly generated
4000 words meeting certain criteria and fed them to all tools (including a pseudo-
tool “no-op” doing virtually nothing, in order to see the time spent only for reading
words), trying to synthesise the whole set of words. From the composite result we
computed the average run time per word.

We made tests for words in (a|b)l with a fixed word length l ∈ {1, . . . , 700},
i.e. 700 tests times 4000 words per tool, and again for words from (ab|abb)l, where
we expected a higher probability for solvable words. (For l = 1 randomisation
means we tested the words a and b each about 2000 times, but e.g. at l = 50 it
is extremely unlikely that we tested the same word twice.) Fig. 2.23 shows the
results for (a|b)l on a logarithmic time scale. ABSolve is about a factor 103 faster
than APT and Synet, and by the same factor slower than “no-op”. In Fig. 2.24 we
normalised all curves by dividing all values of each curve by its value at l = 350 in
order to see the linear time scales. We can see that ABSolve and APT both seem to
have run time O(n) while Synet shows a clearly parabolic curve, i.e. O(nk) with
k > 1. Fig. 2.25 shows the results for (ab|abb)l. The times are higher than for
(a|b)l, but this seems to be mostly due to the increased word length.

58

2.7. A LETTER-COUNTING BASED SYNTHESIS ALGORITHM

We then tried to compare random sets of solvable words with sets from all
words. From about l = 40 upwards it takes a lot of time to randomly generate
solvable words (by randomly creating words and then picking the solvable ones) as
solvable words become scarce. For an enumeration of all solvable words (ordered by
length) without synthesising Petri nets we need to remember all solvable words of
the same length and their rmax[i]-values (in a breadth-first manner). If we append
a letter x to some word w, all comparisons of rmin and rmax for wx have already
been done when we inspected w, except (possibly) for the comparison of rmax[i]
with the ratio of the subword from position i to |wx| − 1, for each i. Starting with
i = |wx| − 1 and counting down, these comparisons can be done in linear time. So
our enumeration takes at most O(|w|) time per solvable word w.

Fig. 2.26 shows that solvable words take distinctly more time with APT or
ABSolve than arbitrary ones. This is the result of quick fail strategies in both
algorithms (we stop checking at the first unsolvable system of equations or the
first empty open interval, respectively). It also explains the linear run time for
ABSolve and APT (we expect at least quadratic for solvable words) and the visible
hook at the beginning of the curve for ABSolve in the other three pictures. Synet
has identical times for solvable and for arbitrary words and was thus left out of the
picture. A likely reason for this is the missing quick fail mechanism in this tool.

2.7.2 Synthesis of binary words with bounded Petri nets

The algorithm ABSolve studied earlier can be adapted for a special case of synthesis
– synthesis with k-bounded Petri nets (where in every reachable marking every
place has at most k tokens). This class of Petri nets is often used in applications
(e.g. in process mining [vdAG07]).

The first point of modification is at the step

Algorithm 1 ABSolve

. . .

choose m
n
∈
⋂
i∈I]rmin[i], rmax[i][

. . .

When choosing m
n
in a run of the algorithm for synthesis of a k-bounded net, both

59

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

l

time/s

0 100 200 300 400 500 600 700

10−9

10−8

10−7

10−6

10−5

10−4

10−3

ABSolve

no-op

APT

Synet

avg. over words (a|b)l
on a log. time scale

Figure 2.23: Tests were done for random sets of 4000 words for each l with
1 ≤ l ≤ 700 where words stem from (a|b)l. Time scale is logarithmic.

l

time

0 100 200 300 400 500 600 700

ABSolve
APT

Synet

Synet

avg. over words (a|b)l,
separate linear time
scales normalised
at l = 350

Figure 2.24: All curves from Fig. 2.23 are normalised by dividing all values of
each curve by its value at l = 350.

60

2.7. A LETTER-COUNTING BASED SYNTHESIS ALGORITHM

l

time/s

0 100 200 300 400 500 600 700

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ABSolve

no-op

APT

Synet

avg. over words (ab|abb)l
on a log. time scale

Figure 2.25: Tests were done for random sets of 4000 words for each l with
1 ≤ l ≤ 700 where words stem from (ab|abb)l. Time scale is logarithmic.

l

time/s

0 10 20 30

10−7

10−6

10−5

10−4

10−3

all

all

solvable

solvable

ABSolve

APT

solvable words against all

words in (a|b)l

Figure 2.26: Comparison of random sets of solvable words with sets from all words.

61

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

m ≤ k and n ≤ k must hold, since these values are then used as arc weights of a
constructed place in the sought Petri net, precisely at the following step

Algorithm 1 ABSolve

. . .

if ` = ′a′ then F (a, pI)← m, F (pI , b)← n else F (b, pI)← m, F (pI , a)← n

. . .

This implies that the number of possible values for m and n does not depend on
|w|. We need to check, though, if the created place could have more than k tokens
on it in some reachable marking of the net. This can be done in linear time for fixed
m, n, by ‘firing’ the word and computing the maximal token difference. Unluckily,
it is possible that the intersection of intervals of the form]rmin(s), rmax(s)[does
not allow for a valid choice of m and n while there are valid choices for each
interval separately. This means that the criterion from Theorem 3 is no longer
a characterisation for the synthesisability with k-bounded Petri nets. While the
necessary condition of the criterion remains unchanged, the sufficient part of the
criterion is not true for this restricted class of Petri nets. As an instance, consider
the word w = a |s ab which satisfies the criterion. Assume there is a safe (1-
bounded) Petri net Naab = (P, T, F,M0) solving w, then a place p which separates
b at state s must be present. This implies F (p, b) > 0. Due to the safety of Naab,
we have F (p, b) = 1. Since p forbids the firing of b at s, then p has no tokens on
it at the marking M corresponding to state s. On the other hand, b has to fire in
Naab after the execution of aa, implying that a increases the marking of p while
firing, i.e. F (a, p) > 0. This yields that the marking of p after the execution of aa
starting from the initial marking is at least 2, which contradicts the safety of Naab.
Hence, w cannot be solved with any safe Petri net, although it can be solved in
general case (see e.g. net N in Fig. 2.27, as a possible solution).

a b
2

Figure 2.27: Petri net N solving aab.

62

2.8. CYCLIC LTS OVER A BINARY ALPHABET

The modified version of the algorithm has the changed complexity, determined
by the parameter k for the bound. The first half remains unchanged. The second
part was in O(|w|2) before the modification. Since both m and n in the fraction m

n

have to be non-negative integers not exceeding k now, we have to check at worst
k2 possibilities for the fraction. As we have already mentioned, validation of the
place (its k-boundedness) can be done in linear time for each possible choice of
the nominator and the denominator of the fraction. Hence, if we create one place
for each interval we could do the second half of ABSolve in O(k2 · |w|2). But an
optimal solution with as few places as possible is much harder to gain.

2.8 Cyclic lts over a binary alphabet

This section is devoted to another simple form of transition systems – cycles. For
state s and s′ of a transition system, a path s

σ→ s′ is a cycle if and only if
s = s′. We will treat necessary and sufficient conditions for synthesisability of
transition systems which are cycles or almost cycles (in the sense that beside a
loop, a transition system has a linear part which leads to the loop, i.e. it has a
form of lasso).

Definition 21. A word w = t1 . . . tn (with ti ∈ T) is cyclically solvable if the
transition system

TScyc(w) = ({0, . . . , n}, T, {(i− 1, ti, i) | 0 < i < n ∧ ti ∈ T} ∪ {(n, tn, 0)}, 0)

is solvable. TScyc(w) represents the ‘infinite word’ wω. Word w is called minimal
cyclically solvable if it is cyclically solvable and there is no shorter word v, |v| <|w|,
with wω = vω.

If a word w is cyclically solvable, then a Petri net solving TScyc(w) reproduces
its initial marking by firing w and allows for the (infinite) firing of wω. For example,
word abbab is cyclically solvable, which can be seen in Fig. 2.28: on the left,
transition system TScyc(abbab) is depicted which is isomorphic to the reachability
graph of net N on the right, hence solvable. The net N reproduces its initial
marking after every firing of sequence abbab.

63

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

0

1

2

3

4

a

b

b

a

b

TScyc(abbab)

a
3

3

b

2

2

N

Figure 2.28: An lts TScyc(abbab) and Petri net N with RG(N) ∼= TScyc(abbab).

2.8.1 A synthesisability criterion for cyclic lts

Similarly as for a linear-shaped transition system, we provide a criterion for sepa-
rability of a transition in a transition system having the shape of a cycle. This
criterion, as we show, can be extended to a synthesisability criterion of this class
of transition systems.

Theorem 4. [BESW16](characterisation of cyclically solvable binary words)
A word w ∈ {a, b}+ is cyclically solvable if and only if ∀x, y ∈ {a, b}∀α, β, γ, u, v:

(x 6= y ∧ w = uv ∧ vu = xαyβ)⇒ #x(xα) ·#y(w) > #y(xα) ·#x(w).

Proof. “⇒”: Let N be the Petri net solution for TScyc(w). Due to the reproduction
of the initial marking, w can be fired indefinitely in N . For ww = uvuv we can
investigate the decomposition of

vuvu = xα|s′yβ|sxα|s′′yβ.

Looking at the subword from s′ to s′′, by Lemma 4 we know

#y(yβ) ·#x(xα) > #x(yβ) ·#y(xα).

Since

#y(w) = #y(xα) + #y(yβ) and #x(w) = #x(xα) + #x(yβ),

64

2.8. CYCLIC LTS OVER A BINARY ALPHABET

the ratio of y by x (∈ Q ∪ {∞}) in w must lie between those in xα and yβ:

#y(yβ)

#x(yβ)
>

#y(w)

#x(w)
>

#y(xα)

#x(xα)
.

The latter inequality completes this direction of the proof.

“⇐”: Consider a decomposition of the ‘rolled out’ version wω of w

. . . |s′ŵi|ŝ′yβ|sxα|ŝ′′w̃j|s′′y . . .

where ŵ = yβγ and w̃ = δxα (with some γ, δ ∈ {a, b}∗) have the same Parikh
vector as w and i, j ≥ 0. Note that xα and yβ may each have a length up to |w|−1,
so they might not concatenate up to w. We will now show that all possible finite
subwords from some s′ to s′′ around our separation point s fulfill the condition of
Lemma 4, the lemma is applicable with the result of y being separable at s.

If xα is a factor in w, we know

#x(xα) ·#y(w) > #y(xα) ·#x(w).

If xα = uv is distributed such that w = vyγu, we come to the same conclusion
by using the rolled version uvyγ in the precondition. For yβ, consider the rolled
version xγyβ of w (with γ chosen accordingly). We then know

#x(xγ) ·#y(w) > #y(xγ) ·#x(w)

and conclude that the ratio of x by y in w must be between those in xγ and yβ, i.e.

#y(yβ)

#x(yβ)
>

#y(w)

#x(w)
>

#y(xγ)

#x(xγ)
.

Overall, we get

#y(yβ)

#x(yβ)
>

#y(w)

#x(w)
>

#y(xα)

#x(xα)
,

65

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

which is the precondition for Lemma 4 at ŝ′ and ŝ′′. We can now argue that

#y(yβ)

#x(yβ)
>

#y(ŵyβ)

#x(ŵyβ)
>

#y(w)

#x(w)

(and analogously for xα and xαw̃). But we have begun with the decomposition

. . . |s′ŵi|ŝ′yβ|sxα|ŝ′′w̃j|s′′y . . . ,

where ŵ and w have the same Parikh vector, so the same number of x and y are
in it. The argument can be applied repeatedly until ŵi and w̃j are reached, and
we get

#y(ŵ
iyβ)

#x(ŵiyβ)
>

#y(w)

#x(w)
>

#y(xαw̃
j)

#x(xαw̃j)
.

So, the precondition for Lemma 4 is fulfilled for arbitrary s′ and s′′ that are followed
by y, and by arbitrary s followed by x. Lemma 4 is applicable and y is separable
at s. Since s is chosen arbitrarily (according to the decomposition w = uv ∧ vu =

xαyβ), the infinite word wω is solvable and thus w is cyclic solvable. This concludes
the proof.

The theorem establishes a necessary and sufficient condition for a labelled tran-
sition system having the form of a cycle to be solvable by a Petri net. As in the
case of finite sequences, exploiting the similarities of the characterisations, we
shall present a Petri net synthesis algorithm originating from the condition in the
theorem.

2.8.2 A synthesis algorithm for cycles

Relying on the criterion from the previous paragraph, we present a synthesis algo-
rithm for transition systems having the form of a cycle. A theoretical estimation
of the complexity of the algorithm is provided as well, being better than the one
known for the general synthesis algorithm.

With increasing i and j the ratios of y and x in the words ŵiyβ and xαw̃j

converge against #y(w)

#x(w)
(without ever reaching it). Thus, the open interval in

Lemma 4 from which we can choose the arc weight ratio for the place p to be

66

2.8. CYCLIC LTS OVER A BINARY ALPHABET

created turns into a single point #y(w)

#x(w)
– independent of the separation point, as

long as we prevent the same transition y. We conclude:

Proposition 10. (nets for cyclically solvable words) If w ∈ {a, b}+ is cycli-
cally solvable, there is a Petri net solving it that has at most two places. The arc
weights of these places are determined by the ratios #a(w)

#b(w)
and #b(w)

#a(w)
, respectively.

In case of a finite sequence, in order to define the initial marking for each place
of the sought net in algorithm ABSolve we applied the ‘unfiring procedure’. Since
we are now dealing with loops, it is unclear how can we define the termination
point for such an unfiring. The following proposition gives us an understanding
for choosing of the initial marking of the synthesised Petri net. Particularly, the
proposition establishes that for a cyclically solvable word w, the total number of
tokens on both place of the Petri net from Proposition 10 (which solves TScyc(w))
is a constant for any reachable marking of the net. This constant is determined
by the length of w. Since the reachability graph of the net has the shape of a
cycle, each of |w| − 1 markings is revisited indefinitely (in a cycle) while the token
game. Hence, the initial marking can be defined by rotation of w and the possible
reachable markings.

Proposition 11. (token count for cyclic solvable words) Let w ∈ {a, b}+

be minimal cyclically solvable. There is a Petri net N = ({p1, p2}, {a, b}, F , M0)

solving wω such that for all M ∈ [M0〉, M(p1) +M(p2) = |w| − 1.

Proof. From Proposition 10 we have a Petri net solution with two places and two
transitions and know that we may choose arc weights F (p1, a) = F (a, p2) = #b(w)

and F (p2, b) = F (b, p1) = #a(w). Thus,

∀M ∈ [M0〉: M(p1) +M(p2) = M0(p1) +M0(p2).

Let w[i] be the ith letter of w and let Mi markings with Mi−1[w[i]〉Mi for 1 ≤ i ≤
|w|. Then, M0 = M|w| and due to the minimal cyclic solvability of w, Mi 6= Mj for
0 ≤ i < j < |w| (otherwise for some rotation v of w[i+1] . . . w[j] we have vω = wω).
We conclude |[M0〉| = |w|. Since |P | = 2, there are at most M0(p1) + M0(p2) + 1

reachable states in N , i.e. M0(p1) + M0(p2) ≥ |w| − 1. Assume that for n =

M0(p1) + M0(p2), n ≥ |w| is satisfied. Then, markings (#b(w) + k,#a(w) + `)

67

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

with k, ` ≥ 0 must be unreachable as they allow firings of both transitions. The
remaining possible markings

(0, n), . . . , (#b(w)−1, n−#b(w)+1) and (n, 0), . . . , (n−#a(w)+1,#a(w)−1)

are exactly the |w| = #a(w) + #b(w) markings reachable in N . Now, (0, n) [b〉
(#b(w), n −#b(w)) would reach an unreachable marking, a contradiction. Thus,
M0(p1) +M0(p2) = |w| − 1.

The proposition allows us to define the initial marking for each place of the
sought net in the case of synthesis from a cycle.

Algorithm 2 – ABCycSolve – for cyclic solving of a word w is in O(|w|2), since
the outer for-loop runs through the all possible rotations of w, and the inner
for-loop checks the ratio of the letters for all prefixes of the rotations.

Algorithm 2 ABCycSolve
Input: w ∈ {a, b}+

Output: Petri net solving wω if it exists
compute W [0]← #a(w), W [1]← #b(w)
m0 ← 0, m← 0 {tokens available for a}
for i = 0 to |w| − 1 do {rotations of w}
v ← w[i] . . . w[|w| − 1]w[0] . . . w[i− 1]
if v[0] = ′a′ then R← 0 else R← 1 {fraction selector}
N [0]← 0, N [1]← 0 {for counting a’s and b’s}
for j = 0 to |v| − 1 do {prefixes of v}
if v[0] 6= v[j] and N [R] ∗W [1−R] ≤ W [R] ∗N [1−R]
then return {unsolvable}

if v[j] = ′a′ then N [0]← N [0] + 1 else N [1]← N [1] + 1
endfor
if v[0] = ′a′ then m← m−W [1] else m← m+W [0] {fire}
if m < 0 then m0 ← m0 −m, m← 0

endfor
F (p1, a)← #b(w), F (a, p2)← #b(w), F (p2, b)← #a(w), F (b, p1)← #a(w)
return ({p1, p2}, {a, b}, F, {p1 → m0, p2 → |w| − 1−m0})

So far we have presented the characterisation for the class of finite sequences
and loops solvable with Petri nets. In the following section we shall combine these
two shapes, concluding with a general theorem.

68

2.9. SPECIAL CYCLIC FORMS OF SYNTHESISABLE LTS

2.9 Special cyclic forms of synthesisable lts

A specific kind of transition systems havig the shape of a lasso, which we shall
discuss in the next lemmata, leads to a general theorem characterising the synthe-
sisability of a class of transition systems with at most two transitions and having
uncomplicated shape, precisely those which consist of a finite prefix and a cyclic
remainder.

Checking words in which the cyclic part contains only one letter, we have:

Lemma 5. [BESW16](solvable binary words of the form vaω) Let v ∈
{a, b}+. The infinite word vaω is solvable if and only if v ∈ b∗a∗.

Proof. “⇐”: If #b(v) > 0, the Petri netN = ({p1, p2}, {a, b}, F,M0) with F (p1, a) =

F (a, p1) = #b(v), F (p2, b) = 1 = F (b, p1), M0(p2) = #b(v), and M0(p1) = 0 solves
vaω. With #b(v) = 0, the Petri net (∅, {a}, ∅, ∅) is a solution.

“⇒”: Assume v /∈ b∗a∗, then a decomposition vaω = u|sa|s′b|s′′aω exists. A
place q preventing a at s′ exists with Ms′(q)−Ms(q) = Eq(a) < 0. Thus, a cannot
fire infinitely often at s′′.

A criterion for solvability of the words where the cyclic remainder contains
both letters at least once is established in the next lemma.

Lemma 6. [BESW16](solvable binary words of the form vwω) Let v ∈
{a, b}+ and w ∈ {a, b}+\(a+ ∪ b+). The infinite word vwω is solvable if and only
if w is cyclically solvable and v is a postfix of wi for some i ≥ 1.

Proof. “⇒”: For arbitrary late parts of vwω (those which are contained by wω),
Lemma 4 results in the same conditions as for wω, i.e. if vwω is solvable by N =

({p1, p2}, {a, b}, F,M0), so is wω (possibly with a different initial marking). W.l.o.g.
let w be minimal cyclic solvable (otherwise rewrite vwω accordingly). If v is not a
postfix of wi (with i such that |v| ≤ |wi|), we find u, x, y with (w.l.o.g.) v = xau

and wi = ybu, andM0[xa〉M [uyb〉M for some markingM . By the condition of the
lemma, w contains an a and a b. W.l.o.g. p1 receives tokens from b and delivers to
a, and p2 covers the other direction. Then,

M(p1) +M(p2) ≥ F (b, p1) + F (a, p2) = #a(w) + #b(w) = |w|,

69

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

contradicting Proposition 11.
“⇐”: If v is a postfix of wi we can rewrite vwω as uω with u and w being rota-

tions of each other, and thus having the same Petri net solving them by Theorem 4,
differing only at the initial marking.

So, words vwω with w ∈ {a, b}+\(a+ ∪ b+) are solvable only if they can be
rewritten as uω.

Summing up these lemmas, we obtain the following theorem for words that
consist of a finite prefix and a cyclic remainder.

Theorem 5. [BESW16](solvable cyclic binary words with a prefix)
A word vwω with v, w ∈ {a, b}∗ is solvable if and only if w = ε or vwω can be
rewritten as a cyclically solvable word uω or it has the form a+bω or b+aω.

Since we can encode both a finite sequence and a loop by the regular expression
vwω, the theorem gives a characterisation for both of these classes, referring for
the details to Theorems 3 and 4, respectively.

2.10 Synthesis of words by special classes of
Petri nets

As we have already seen, there are various synthesis algorithms, allowing to con-
struct a Petri net implementation from the given specification. In some application
the implementation may be sought only in particular class of Petri nets, for in-
stance safe (1-bounded) ones (e.g. in asynchronous circuits design [YK98]), or pure
ones (e.g. in control theory [GRX02]). In such cases, taking into account that the
synthesis procedure can be time-consuming, it may be of use to know in advance
if the synthesis is possible, without initiating the synthesis itself. To have such
a possibility one would need some necessary conditions for synthesisability with
various classes of Petri nets, that can be checked on the given specification rel-
atively quickly, i.e. the conditions need to be formulated graph-theoretically. In
this section we will have a look at such possible conditions for various classes of
Petri nets.

70

2.10. SYNTHESIS OF WORDS BY SPECIAL CLASSES OF PETRI NETS

2.10.1 Synthesis with output-non-branching Petri nets

The property of output-non-branching (i.e. a place cannot have more than one
output transitions) is of a big importance for the cases when one needs to elimi-
nate the situation of conflict of different agents for the same resource. The next
proposition demonstrates that in case of sequential behaviour of a Petri net with
two transitions, we can always exclude such situations.

Proposition 12. If w ∈ {a, b}∗ is solvable, it is solvable by an ON-net.

Proof. Let N = (P, T, F,M0) be a net solving w. If N is output-non-branching
then we are done. If N is not an ON-net, we then modify N in order to obtain
an ON-net with the same reachability graph. For each place p (of a general form
as in Fig. 2.29) which is not ON, depending on the effects Ea = E(p)(a) and
Eb = E(p)(b) of transitions a and b for this place, respectively, we can apply the
following transformation:

• Ea ≥ 0, Eb ≥ 0

If w starts with a, p never separates a at any state s. Hence, we can modify
p as follows: m′ = m, a′− = 0, a′+ = Ea, b′− = b−, b′+ = b+. If w starts with
b then p never separates b at any state s. The modification of p in this case:
m′ = m, a′− = a−, a′+ = a+, b′− = 0, b′+ = Eb.

• Ea < 0, Eb < 0

In this case p can separate a and b only after their very last occurrences.
Therefore, it can be substituted with two places pa and pb, such thatM0(pa) =

#a(w), F (pa, a) = 1, F (pa, b) = F (pa, b) = F (pa, b) = 0 and M0(pb) =

#b(w), F (pb, b) = 1, F (pb, b) = F (pb, b) = F (pb, a) = 0, correspondingly.

• Ea ≥ 0, Eb < 0 (Ea < 0, Eb ≥ 0 is symmetrical)
If a is initially disabled, it never occurs. Then, w starts with a, and p can
only separate a after its very last occurrence. Then, modify p: m′ = m,
a′− = 0, a′+ = Ea, b′− = b−, b′+ = b+; and add an additional place pa:
M0(pa) = #a(w), F (pa, a) = 1, F (pa, b) = F (pa, b) = F (pa, b) = 0.

71

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

m

p

a b

a−

a+

b−

b+

Figure 2.29: A place p with arc weights a−, a+, b−, b+ and initial marking m.

Proposition 12 establishes that for the class of linear transition systems over the
binary set of labels solvability with ON-nets is equivalent to solvability in general.
As we have seen in Section 2.7.2, this is not the case for the class of bounded Petri
nets.

2.10.2 Synthesis with bounded Petri nets

The propositions below deal with boundedness of the sought Petri net, which is
also often of interest in applications (see e.g. [vdA00], [MKMH86]).

Proposition 13. If a finite sequence w ∈ {a, b}∗ has a factor uk+1, where u ∈
{a, b}∗ and k ∈ N, then w is not solvable with a k-bounded PN.

Proof. By contradiction, assume, there is a k-bounded Petri net N that solves w.
If the effect of u on some place p of N is E(p)(u) 6= 0, then the marking of p after
executing uk+1 is either > k (in case E(p)(u) > 0) or < −k (in case of E(p)(u) < 0),
which contradicts the k-boundedness of p. If for every place p of N the effect of u
on p is E(p)(u) = 0, then N executes an infinite number of u in a row contradicting
the finiteness of w.

The condition from Proposition 13 can be used for the goal-oriented synthesis
(when the solution is sought as a member of some special class of net, in particular
k-bounded here) in order to detect quickly the unsolvability of the input lts (or
sequence) without initiating the synthesis procedure itself. Another result of this
kind is established in the next lemma.

Proposition 14. Let w ∈ {a, b}∗. If #a(w) ≥ 3 ∧ #b(w) ≥ 3, then w is not
2-boundedly PN-solvable.

Proof. Assume a contrary, i.e. there is 2-bounded net N that solves w. Then,
for every place p of N , E(p)(a) · E(p)(b) < 0. Indeed, if E(p)(a) = 0, then, due

72

2.10. SYNTHESIS OF WORDS BY SPECIAL CLASSES OF PETRI NETS

to #b(w) ≥ 3 and 2-boundedness of N , E(p)(b) = 0. Hence, p is useless. If
E(p)(a) · E(p)(b) > 0, then either both effects are positive or both are negative.
This contradicts 2-boundedness of N , because of too many occurrences of both
letters in w.

W.l.o.g. w ends with a. Let P1 = {p is a place of N | E(p)(a) > 0}. If
E(p)(a) = 2 for all p ∈ P1, b is enabled after w, which is a contradiction. Hence,
there is q ∈ P1 such that q contains 1 token after executing of w and F (q, b) = 2.
This implies F (a, q) = 1 and F (q, a) = 0. Moreover, F (b, q) = 0, otherwise q con-
tains 2 tokens after executing the last a. Thus, there are exactly two a’s between
different occurrences of b in w:

w = ...baabaab...

As w ends with a, it cannot start with a, because otherwise it has a subword
abaabaaba = (aba)3, i.e. it is not 2-boundedly solvable by Proposition 13. Hence,
w starts with b. Since baabaabaa = (baa)3, it cannot be solved with a 2-bounded
PN. Therefore,

w = baabaaba

Consider an arbitrary place r in N such that E(r)(a) < 0 (such r exists, since
a is separated at the end of w). Due to the E(r)(a) · E(r)(b) < 0, E(r)(b) > 0.
If E(r)(a) = −2, then a is disabled after first ba. Then, E(r)(a) = −1. For
E(r)(b) = 1, baabaa is not executable with 2-bounded PN for any initial marking
of r. Hence, E(r)(b) = 2 and r initially has no tokens in it. Finally, r enables a
after w. As r is arbitrary, we have a contradiction to 2-bounded PN-solvability
of w.

Since for each letter the number of its occurrences in a sequence can be found
in a linear (in the length of the sequence) time, the condition from Proposition 14
suggests a linear procedure for a quick-fail check of the 2-bounded unsolvability
of the input sequence, which is faster than the complexity of synthesis algorithms
(e.g. ABSolve).

73

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

2.10.3 Synthesis with pure Petri nets

If a word w = bx1a . . . abxn can be solved, then side-places may be necessary to
do it. For instance, bbab |s bababab is solvable (e.g. by net N1 in the left of
Fig. 2.30), but it cannot be solved side-place-freely. (More precisely: a side-place
is needed in order to separate a at state s.) However, we will show that in the worst
case, only some side-places q around a, preventing a at some state, are necessary.
Also, such side-places are unnecessary if x1 is small enough, in the sense that
x1 ≤ min{x2, . . . , xn−1}. For example, babbababab can be solved without any side-
places (net N2 in Fig. 2.30 is a possible pure solution). The ‘smallness’ of x1 is
sufficient but not necessary. For instance, bbabbabab has a side-place-free solution
(e.g. net N3 in the right of Fig. 2.30), even though x1 6≤ min{x2, . . . , xn−1}.

a

6 2

2

b
3

N1

a

4

2

b
3

N2

a

5

2

b
3

N3

Figure 2.30: N1 is a (non-pure) solution for bbabbababab; N2 is a possible pure
solution for babbababab; N3 solves bbabbabab side-place-freely.

In the following, we assume w to be of the following form (2.7). The states
si (1 ≤ i ≤ n − 1) denote the important states at which b has to be prevented,
and the states rk (1 ≤ k ≤ n − 1) denote the important states at which a has to
be prevented. At or after the last group of b’s, a can be prevented by a counting
place, and at the final state, b can similarly be prevented by a counting place.

w = bx1−1 |r1 b |s1 a bx2−1 |r2 b |s2 a . . . |sk−1
a bxk−1 |rk b |sk a . . . |sn−1 a b

xn (2.7)

Proposition 15. [BBE+16](side-place-free solvability with few initial b’s)
If w = bx1abx2a . . . abxn is solvable, then side-places are necessary, at worst, between
a and q, where q is some place preventing a at one of the states rk with 1 ≤ k <

74

2.10. SYNTHESIS OF WORDS BY SPECIAL CLASSES OF PETRI NETS

n − 1. If w = bx1abx2a . . . abxn is solvable and x1 ≤ min{x2, . . . , xn−1}, then w is
solvable side-place-freely.

Proof. The first claim follows from Lemmata 7 and 8 below. The second claim
follows from Lemma 9.

As usual, we utilise the general form of a place in Petri net with transitions a
and b as in Fig. 2.31.

ma b

a−

a+

b−

b+

Figure 2.31: A place with arc weights a−, a+, b−, b+ and initial marking m.

Lemma 7. [BBE+15](side-place-freeness around b) If w = bx1a . . . abxn is
solvable, then w is solvable without side-place around b.

Proof. We show that side-places around b are necessary neither for preventing any
b (cf. (A) below), nor for preventing any a (cf. (B) below).

(A): Suppose some place p prevents b at some state sk, for 1 ≤ k ≤ n − 1.
(The only other state at which b must be prevented is state sn, but that can
clearly be done by a non-side-place, e.g. by an incoming place of transition b that
has #b(w) =

∑n
i=1 xi tokens initially.) Note that b− > b+, because place p allows b

to be enabled at the state preceding sk but not at sk. Similarly, a− < a+, because b
is not enabled at state sk but at the immediately following state, which is reached
after firing a. From the form (2.7) of w, we have

b+ ≤ m+ x1(b+ − b−)

b+ ≤ m+ (x1 + x2)(b+ − b−) + (a+ − a−)

· · ·
b+ ≤ m+ (x1 + . . .+ xn)(b+ − b−) + (n− 1)(a+ − a−)

0 ≤ −m− (x1 + . . .+ xk)(b+ − b−)− (k − 1)(a+ − a−) + b− − 1

(2.8)

75

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

The first n inequations assert the semipositivity of the marking of place p (more
precisely, its boundedness from below by b+, since p may be a side-place) at the n
states s1, . . . , sn. In our context, if these inequalities are fullfilled, then the marking
is ≥ b+ at all states, as a consequence of b− ≥ b+, a− ≤ a+, and the special form
of the word. The last inequality comes from ¬(sk[b〉).

We certainly have 0 ≤ b+ < b− ≤ m, because of b− > b+ as noted above, and
because b is initially enabled. If b+ = 0, then p is not a side-place around b, and
there is nothing more to prove (for p). If b+ ≥ 1, we consider the transformation

b′+ = b+ − 1 and b′− = b− − 1 and m′ = m− 1

The relation 0 ≤ b′+ < b′− ≤ m′ still holds for the new values. Also, all inequalities
in (2.8) remain true for the new values: in the first n lines, 1 is subtracted on each
side, and on the last line, the increase in −m is offset by the decrease in b−.

We have thus shown that subtracting one arc from b to p, one arc from p to
b, and removing one initial token from p, leaves the region inequalities invariant.
Thus, we get a solution preventing b with a ‘smaller’ side-place, and we can continue
until eventually b+ becomes zero. This finishes part (A) of the proof.

(B): A side-place around b might still be necessary to prevent a at some state.
We show next that such side-places are also unnecessary. Suppose some place q as
in Fig. 2.31 prevents a at state rk, for 1 ≤ k ≤ n−1. Symmetrically to the previous
case, we have b+ > b−. This is true because, while q does not have enough tokens
to enable a at state rk, it must have enough tokens to enable a at the directly
following state (which we may continue to call sk). But we also have (w.l.o.g.)
a+ < a−. For k ≥ 2, this follows from the fact that if the previous a (enabled at
the state sk−1 just after rk−1) acts positively on q, then q also has sufficiently many
tokens to enable a at state rk. For k = 1, it is possible to argue that a+ < a−

is valid without loss of generality. For suppose that q disables a only at r1 and
nowhere else. (This is no loss of generality because for the other states rk, k ≥ 2,
copies of q can be used.) Then we may consider q′ which is an exact copy of q,
except that a+ = a− − 1 for q′. This place q′ also disables a at state r1 (because
it has the same marking as q). Moreover, it does not disable a at any other state
after r1 because it always has ≥ a− − 1 tokens, and after the next b, ≥ a− tokens,
since b+ > b−.

76

2.10. SYNTHESIS OF WORDS BY SPECIAL CLASSES OF PETRI NETS

Because of b+ > b− and a+ < a−, place q also prevents a at all prior states in
the same group of b’s. Moreover, in the last (i.e. nth) group of b’s, a can easily be
prevented side-place-freely. For place q with initial marking m, we have

a+ ≤ m+ x1(b+ − b−) + (a+ − a−)

a+ ≤ m+ (x1 + x2)(b+ − b−) + 2(a+ − a−)

· · ·
a+ ≤ m+ (x1 + . . .+ xn−1)(b+ − b−) + (n− 1)(a+ − a−)

0 ≤ −m− (x1 + . . .+ xk − 1)(b+ − b−)− (k − 1)(a+ − a−) + a− − 1

(2.9)

The first n−1 inequations assert the semipositivity of the marking of place q (more
precisely, its boundedness from below by a+, since q may be a side-place of a) at
the n− 1 states just after the a’s in (2.7). If they are fullfilled, then the marking
is ≥ a+ at all states after the first a, as a consequence of b+ > b− and the special
form of the word. The last inequality asserts that place q prevents transition a at
state rk, hence effects the event-state separation of a at rk.

If b− is already zero, place q is not a side-place of b. Otherwise, we may perform
the transformation

b′+ = b+ − 1 and b′− = b− − 1 and m′ = m

because of b+ > b− as noted above. The left-hand sides of the first n−1 inequalities
in (2.9) do not decrease, and neither do the right-hand sides. The same is true for
the last inequality. This finishes part (B) of the proof.

Lemma 8. [BBE+15](side-place-freeness around a, preventing b)
Suppose w = bx1abx2a . . . abxn. If w is solvable by a net in which some place p
separates b, then we may w.l.o.g. assume that p is not a side-place around a.

Proof. The equation system (2.8) is invariant under the transformation

a′+ = a+ − 1 and a′− = a− − 1 and m′ = m

as neither left-hand sides nor right-hand sides change their values.

Lemma 9. [BBE+15](side-place-freeness around a, preventing a)
Suppose w = bx1abx2a . . . abxn. If x1 ≤ min{x2, . . . , xn−1} and if w is solvable by a

77

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

net in which some place q prevents transition a at state rk with 1 ≤ k ≤ n, then
we may w.l.o.g. assume that q is not a side-place around a.

Proof. For preventing a at state rn, we only need a place with no input and a
single output transition a (weight 1) which has n− 1 tokens initially.

Suppose q prevents a at state rk, with 1 ≤ k ≤ n− 1. From previous consider-
ations, we know a+ ≤ a− and b+ > b−, and we may assume, from Lemma 7, that q
is not a side-place around b, i.e., that b− = 0. The initial marking m of q and the
remaining arc weights a+, a−, b+ satisfy the following system of inequations (which
is the same as (2.9), except that it is simplified by b− = 0):

a+ ≤ m+ x1(b+) + (a+ − a−)

a+ ≤ m+ (x1 + x2)(b+) + 2(a+ − a−)

· · ·
a+ ≤ m+ (x1 + . . .+ xn−1)(b+) + (n− 1)(a+ − a−)

0 ≤ −m− (x1 + . . .+ xk − 1)(b+)− (k − 1)(a+ − a−) + a− − 1

(2.10)

If a+ = 0, then q is already of the required form. For a+ > 0, we have two cases.
Case 1: m > 0 and a+ > 0. Then consider the transformation

m′ = m− 1 and a′+ = a+ − 1 and a′− = a− − 1

By m > 0 and a− ≥ a+ > 0, we get new values m′, a′+, a′− ≥ 0. Moreover, (2.10)
remains invariant under this transformation. So, q′ serves the same purpose as q,
and it has one incoming arc from a less than q. By repeating this procedure, we
either get a place which serves the same purpose as q, or we hit Case 2.

Case 2: m = 0 and a+ > 0. In this case, we consider the transformation

m′ = m = 0 and a′+ = 0 and a′− = a−

Such a transformation also guarantees m′, a′+, a′− ≥ 0. Also, the last line of (2.10)
is clearly satisfied with these new values, since the value of its right-hand stays
the same (for k = 1) or increases (for k > 1). To see that the first n − 1 lines of
(2.10) are also true with the new values, and that we can, therefore, replace q by
q′, we may argue as follows. At any marking m̃ reached along the execution of w,

78

2.10. SYNTHESIS OF WORDS BY SPECIAL CLASSES OF PETRI NETS

we have the following:

m̃(q) ≥ m̃(q′) ≥ 0 (2.11)

These inequalities imply that the new place q′ prevents a at rk, whenever the old
one, q, does, and that, moreover, no occurrences of a are excluded by the place q′

where they should not be prohibited.
The first of the inequalities (2.11) holds because it holds initially (when m̃ = m,

then m̃(q) = m = m′ = m̃(q′)), and because the effect of a before the transfor-
mation is (a+ − a−), and after the transformation, it is (−a−). In other words, a
reduces the token count on q′ more than it does so on q, while b has the same effect
on q′ as on q. To see the second inequality in (2.11), let x = min{x2, . . . , xn−1}.
Then

a− ≤ x1 · b+ ≤ x · b+

The first inequality follows because m = 0 and q has enough tokens after the first
x1 occurrences of b in order to enable a. The second inequality follows from x1 ≤ x.
But then, since a only removes a− tokens from q′ and the subsequent block of b’s
puts at least x · b+ tokens back on q′, the marking on q′ is always ≥ 0, up to and
including the last block of b’s.

Solving a word of the form w = bx1a . . . abxn side-place-freely allows us to draw
some conclusion about prepending a letter a to it. In fact, we have:

Proposition 16. [BBE+16](side-place-free solvability of bx1abx2a . . . abxn)
Sequence w = bx1abx2a . . . abxn is solvable side-place-freely if and only if aw is solv-
able.

Proof. Lemmata 10 and 11 for (⇒), and Lemma 12 for (⇐).

Lemma 10. [BBE+16](preventing a in aw) Suppose w = bx1abx2a . . . abxn is
solvable side-place-freely. Then in aw, all occurrences of a can be separated side-
place-freely.

Proof. Because a can be prevented side-place-freely in w at any state rk, the system
(2.9) has a solution with a+ = 0 and b− = 0 for any fixed 1 ≤ k ≤ n − 1. This

79

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

refers to a pure input place q of a, which may or may not be an output place of
b. In order to prevent a in aw side-place-freely, we need to consider the states rk
as before (but shifted to the right by one index position, still just before the last
b of the kth group of b’s) and a correspondingly modified system as follows:

0 ≤ m′ + (x1 + . . .+ xi) · (b′+) + (i+ 1) · (−a′−) for all 0 ≤ i ≤ n− 1

0 ≤ −m′ − (x1 + . . .+ xk − 1) · (b′+)− k · (−a′−) + a′− − 1
(2.12)

where m′, b′+ and a′− refer to a new pure place q′ preventing a at state rk in aw.
The line with i = 0 was added because a must be enabled initially. Consider the
transformation

m′ = m+ a− and b′+ = b+ and a′− = a−

These values satisfy (2.12), provided m, b+ and a− (together with a+ = 0 and
b− = 0) satisfy (2.9). The line with i = 0 follows from m′ = m + a− ≥ 0. The
other lines corresponding to i ≥ 1 reduce to the corresponding lines in (2.9), since
the additional (−a−) at the end of each line is offset by the additional (+a−) at
the beginning of the line. The last line (which belongs to state rk at which a is
separated) corresponds to the last line of (2.9), because the decrease by a− at the
beginning of the line is offset by an increase by a− in the term k · (−a′−) (compared
with (k − 1) · (−a−) as in (2.9)).

Let p′ be a general new place which is supposed to prevent b at state sk in aw.
In order to check the general solvability of aw if w is side-place-freely solvable, we
consider a general transformation

m′ = m+µ , b′+ = b+ +β+ , b′− = b−+β− , a′+ = a+ +α+ , a′− = a−+α−

where µ ≥ −m, β+ ≥ −b+, β− ≥ −b−, α+ ≥ −a+ and α− ≥ −a−, as well as a
new inequality system:

b′+ ≤ m′ + (x1 + . . .+ xi) · (b′+ − b′−) + i · (a′+ − a′−) for 1 ≤ i ≤ n

0 ≤ −m′ − (x1 + . . .+ xk) · (b′+ − b′−)− k · (a′+ − a′−) + b′− − 1

80

2.10. SYNTHESIS OF WORDS BY SPECIAL CLASSES OF PETRI NETS

This system has to be compared with a restricted form of (2.8) (setting b+ = a− =

0, since the solution of w is pure). Doing this by line-wise comparison, we get the
following inequality system for the new value differences:

µ ≥ −m, β+ ≥ −b+, β− ≥ −b−, α+ ≥ −a+, α− ≥ −a−
β+ ≤ µ+ (x1 + . . .+ xi) · (β+ − β−) + i · (α+ − α−) + a+

0 ≤ −µ− (x1 + . . .+ xk) · (β+ − β−)− k · (α+ − α−)− a+ + β−

(2.13)

The lines with i must be solved simultaneously for every 1 ≤ i ≤ n while the line
with k must be solved individually for every 1 ≤ k ≤ n− 1, in order to get a place
preventing b at state sk. This leads to the following lemma.

Lemma 11. [BBE+16](solving aw from w) Suppose w = bx1abx2a . . . abxn is
solvable side-place-freely. Then aw is solvable.

Proof. Suppose that a pure place p with parameters b− (arc into b), a+ (arc from
a) and m (initial marking) is given and suppose it separates b from sk in w. This
place solves (2.8) for that particular k. We distinguish two cases:

Case 1: a+ ≤ m. In this case, the place p can essentially be re-used for the
same purpose in the solution (that we construct in this way) for aw, since (2.13)
is solved by putting

µ = −a+ , β+ = β− = 0 , α+ = α− = 0

Hence, a place p′ which differs from p only by its initial marking (m′ = m − a+

instead of m) separates b at sk in aw.
Case 2: a+ > m. In this case, (2.13) can be solved by

µ = −m , β+ = β− = a+ −m , α+ = α− = 0

That is, we may replace p by a place p′ with zero initial marking and adding
uniformly the value a+ − m to the incoming and outgoing arcs of b, creating a
side-place around b.

Lemma 12. [BBE+16](solving w side-place-freely from aw)
If w=bx1abx2a . . . abxn and aw can be solved, then w has a side-place-free solution.

81

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

Proof. Suppose that aw has a solution in which some place q′, preventing a, is a
side-place around a. Because q′ prevents a, a′− > a′+ (unless it is the first a, but
then we don’t need q′ in solving w). Because a is enabled initially, m′ ≥ a′−. But
then, the transformation a′′− = a′−−a′+, a′′+ = 0, m′′ = m′−a′+ yields another place
q′′ which is not a side-place around a but serves the same purpose as q′. The rest of
the proof follows because the above transformations (removing side-places around
b, or side-places around a which prevent b) do not introduce any new side-places
around a.

As the main result of this section, Proposition 16 establishes the characterisa-
tion for pure Petri net solvability of sequences of a special form w = bx1abx2a . . . abxn

which relies on the (general) solvability of the sequence aw.

2.11 Summary

The question of characterising the solvability of labelled transition systems by Petri
nets has been considered in the present chapter. More precisely, we have focused on
the class of binary linear and cyclic transition systems which can be represented in
the form of finite sequences. As the main results of our investigations, we can recall
the letter-counting criterion (first appeared in [BBE+15] and [BBE+16], sufficiency
proved in [BESW16]) and the synthesis algorithm ABSolve [BESW16] based on
the criterion, which demonstrates better run times than the classical region-based
approach, and which can be modified for synthesis of only bounded Petri net
solution when the one exists. The criterion and the algorithm, initially obtained
for linear transition systems, were generalised for cyclically solvable lts [BESW16]
Besides the solvability of an lts in general, we discussed the problem of the goal-
oriented synthesis, i.e. the case when the solution is required in the form of Petri
net of some special class. Precisely, the classes of output-non-branching, bounded
and pure [BBE+16] Petri nets were considered. The solvability of finite sequences
(in case of a binary alphabet) with a special classes of nets can be equivalent to
the solvability in general (as in the case of output-non-branching Petri nets, see
Proposition 12), can rely on the solvability of a longer sequence containing the
initial one (as for pure nets [BBE+15]), or can be not directly implied by the
general solvability (as for bounded Petri nets). It was also shown that besides the

82

2.11. SUMMARY

synthesis algorithms that can be derived from a graph-theoretical (or language-
theoretical for sequences) characterisation of the solvability, one can hope to gain
some methods for a quick-fail check if the synthesis is possible without initiating
the synthesis procedure itself. In particular, we have seen that the presence of a
subword which satisfies the factor (abα)b∗(baα)+a [BBE+15] in a given sequence
implies the unsolvability of the sequence in general. And the presence of a repeating
factor can yield the unsolvability of the sequence with a bounded Petri net (see
Proposition 13).

83

CHAPTER 2. SYNTHESISABILITY OF SIMPLE TRANSITION SYSTEMS

84

Chapter 3

Characterisation of minimal
unsolvable words

3.1 Minimality of non-synthesisable binary words

Throughout the previous chapter we have investigated graph-theoretical condi-
tions for finite sequences to be (un-)solvable with Petri nets. We have also men-
tioned that sometimes it makes sense to run some kind of pre-synthesis check in
order to detect whether the synthesis is possible (can be finished successfully).
Among other things, the notion of a minimal unsolvable word has been intro-
duced [BBE+15]. This notion plays a crucial role in the current chapter which is
base on works [EBMP16, BMP+16] by the author and co-authors. Here we aim to
provide a complete characterisation for the class of minimal unsolvable words over
a binary alphabet. As the use of such a result we see the possibility to develop a
technique for a fast pre-synthesis check of the unsolvability of the input sequence,
without initiating the synthesis itself. Since the unsolvability of a (proper) sub-
word implies the unsolvability of the whole word, so as to reach our aim, we will
start with attentive investigation of the graph-theoretical characteristics of muws
and construct their classification.

85

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

p2

q

p1

a
k + 1

b

k + 2

N1 :

M0

p1

p2

q

 =

k + 1
0

k + 1



p2

q

p1

a

b

N2 :

M0

p1

p2

q

 =

k + 1
0
1



Figure 3.1: N1 solves ab(ab)kaa, N2 solves ab(ab)ka, for k ≥ 0.

3.2 A classification of binary muws by shape

Let w be a minimal unsolvable binary word starting with a. By Proposition 2 we
have two possible cases: either w ends with a single a, or it has many (more than
one) a’s at the end. So far we know

w = abua.

Proposition 6 implies that bu either does not contain the infix aa or does not
contain the infix bb or both. Assume that bu has neither factors aa nor factors bb
inside. Then the following two cases for a muw w are possible, depending on if u
ends with a or with b:

ab(ab)kaa or ab(ab)ka, where k ≥ 0.

Petri nets N1 and N2 in Fig. 3.1 solve the first and the second of these forms,
respectively. From Proposition 6 and this observation, we deduce that in a minimal
unsolvable word of the form aαa, α has either the factor aa or the factor bb, but
never both.

Thus, w has one of the following forms, where xi > 0 for 1 ≤ i ≤ n and xi > 1

for some i:

86

3.2. A CLASSIFICATION OF BINARY MUWS BY SHAPE

1. abx1abx2a . . . abxna : starts and ends with a, single a at the end, no aa;

2. abax1bax2b . . . baxnba : starts and ends with a, single a at the end, no bb;

3. abx1abx2a . . . abxnaa : starts and ends with a, many a’s at the end, no aa
inside;

4. abax1bax2b . . . baxna : starts and ends with a, many a’s at the end, no bb.

All those patterns can be comprised into the following three general forms of
a muw w :

abx1abx2a . . . abxna with xi > 0 for 1 ≤ i ≤ n (3.1)

babx2abx3a . . . abxn with xi > 0 for 2 ≤ i ≤ n (3.2)

abx1abx2a . . . abxnaa with xi > 0 for 1 ≤ i ≤ n (3.3)

Form (3.1) represents item 1, form (3.2) represents items 2 and 4 (modulo swapping
a/b and with bb appearing inside), and form (3.3) represents item 3. In the rest of
this section we will analyse these forms more precisely.

Consider first some muw w of the form (3.1). In case of n = 1 we have

abxa, where x ≥ 2.

The words of this form can be solved by Petri nets as in Fig. 3.2. Hence, the words
corresponding to pattern (3.1) are solvable for n = 1.

Consider the special instance, n = 2, of pattern (3.1). The words of the
following two classes

abx+1abxa or abx−kabxa with 0 ≤ k < x,

are solvable, and Petri nets N1 and N2 in Fig. 3.3 are possible solutions for words
of the first and of the second of these forms, respectively. Thus, if w = abx1abx2a

87

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

q

p1

p2

a x

b

N :

M0

p1

p2

q

 =

x0
x



Figure 3.2: N solves abxa.

is minimal unsolvable, then x1 − x2 ≥ 2.

Consider an arbitrary minimal unsolvable word w = abx1abx2a . . . abxna of the
form (3.1) with n ≥ 3, xi > 0 for 1 ≤ i ≤ n. Let x = min{xi | 2 ≤ i ≤ n}. Due to
Proposition 8, xi ∈ {x, x + 1} for 2 ≤ i ≤ n, and then x1 ≤ x + 2. If x1 < x + 1,
by Lemmata 9 and 11, the word w is solvable, contradicting the choice of w as a
muw. Hence, x + 1 ≤ x1 ≤ x + 2, and min{xi | 1 ≤ i ≤ n} = x. We now show
xn = x. Two cases are possible:
Case 1: x1 = x+ 2. If xn = x+ 1, then xj = x for some 1 < j < n, which, due to
Proposition 8, contradicts the minimality of w. Hence, xn = x, and w follows the
pattern abx+2a(bx+1a)+bxa.
Case 2: x1 = x + 1. By contraposition, assume xn = x + 1. Then, xj = x for
some 2 ≤ j ≤ n − 1. Let j1 = max{j | xj = x}. Assume a is not separated from
some state sk in w.

If k < j1, then, by Lemma 4, for

w = a bx1 a . . . a bxk−1︸ ︷︷ ︸
α

|sk

β′︷ ︸︸ ︷
b a . . . bxj1 a . . . bxn︸ ︷︷ ︸

β

a

we have

#a(β) ·#b(α) ≥ #a(α) ·#b(β).

Since #a(α) 6= 0 by the form of w, and #a(β) 6= 0 due to j1 ≤ n−1, this inequality

88

3.2. A CLASSIFICATION OF BINARY MUWS BY SHAPE

q

p3

p1

p2

a

x

2x+ 1

b

2

N1 :

M0


p1

p2

p3

q

 =


0
1

2x+ 1
2x+ 1



q

p1

p2

a

x

x

b

k

k + 1

N2 :

M0

p1

p2

q

 =

2x− k
0

x+ k



Figure 3.3: N1 solves abx+1abxa, N2 solves abx−kabxa.

89

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

is equivalent to

#b(α)

#a(α)
≥ #b(β)

#a(β)
.

From the choice of j1 we have

#b(β)

#a(β)
≥ #b(β

′)

#a(β′)
,

implying

#b(α)

#a(α)
≥ #b(β)

#a(β)
≥ #b(β

′)

#a(β′)
.

The left and the right part of the last inequality can be rewritten as

#a(β
′) ·#b(α) ≥ #a(α) ·#b(β

′).

According to Proposition 5, this entails the unsolvability of the proper subword
αβ′a of w, which contradicts the minimality of w.

Assume now that k ≥ j1. Then in

w = a bx1 a . . . a bxj1 a . . . bxk−1︸ ︷︷ ︸
α

|sk b a . . . bxn︸ ︷︷ ︸
β

a,

by Lemma 4, we have

#a(β) ·#b(α) ≥ #a(α) ·#b(β).

By the form of w, we have #a(α) 6= 0. Transition a can be disabled from firing in
the block bxn with a place p having #b(w) · n tokens on it initially, the weight of
the arc from p to a is #b(w), and the weight of the arc from b to p is 1. Hence,
#a(β) 6= 0, and the inequality can be rewritten as

#b(α)

#a(α)
≥ #b(β)

#a(β)
.

90

3.2. A CLASSIFICATION OF BINARY MUWS BY SHAPE

On the other hand, thanks to the choice of xj1 , we have

x+ 1 >
#b(α)

#a(α)
and

#b(β)

#a(β)
> x+ 1.

Together with the previous inequality this yields

x+ 1 > x+ 1,

which is a contradiction. Hence, xn = x.

From the consideration above, we can deduce that all minimal unsolvable words
of the form (3.1) match one of the following three refined patterns where x > 0:

abx+kabxa, with k > 2 or

abx+2(abx+1)∗abxa or

abx1abx2a . . . abxna, with x1 = x+ 1, xn = x, xi ∈ {x, x+ 1}, n ≥ 3

(3.1′)

Let us now study pattern (3.2). In case of n = 2 we have

babx, where x > 1.

The words of this form can be solved by Petri nets as in Fig. 3.4.

q1

q2

p

a

x

x

b

N :

M0

 p
q1

q2

 =

 1
x− 1

1



Figure 3.4: N solves babx.

We now consider an arbitrary minimal unsolvable word

w = babx2abx3a . . . abxn

91

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

with n ≥ 3 and xi > 0 for 2 ≤ i ≤ n of the form (3.2). Let x = min{xi | 2 ≤
i ≤ n− 1}. Due to Proposition 8, xi ∈ {x, x + 1} for all 2 ≤ i ≤ n− 1, and then
xn ≤ x+ 2. Assume xn ≤ x. Consider state s in w

w = b a bx2 a . . . a bxk︸ ︷︷ ︸
α

|s

β′︷ ︸︸ ︷
a . . . bxn−1−1 b a bxn−1︸ ︷︷ ︸

β

b,

from which b is not separated. Transition b can be separated from the state right
after the first b with a place p having an arc from a to p with the weight equal to
max{xi | 2 ≤ i ≤ n}, an arc from p to b with weight 1, and initially 1 token on
it. Hence, k 6= 1. Transition b can easily be separated at the very end of w by an
input place p of b, having #b(w) tokens on p initially. Hence, k 6= n. If k = n− 1,
we have

#a(α) ·#b(β) = (n− 2) · (xn − 1)

#a(β) ·#b(α) = 1 · (1 + x2 + . . .+ xn−1).

The assumption that xn ≤ x implies

#a(α) ·#b(β) ≤ (n− 1) · (x− 1).

On the other hand, since xi ∈ {x, x+ 1} for all 2 ≤ i ≤ n− 1, then

#a(β) ·#b(α) ≥ 1 + (n− 1) · x.

Thus,

#a(α) ·#b(β) < #a(β) ·#b(α),

which, due to the minimal unsolvability of w, contradicts Lemma 4. Hence, k <
n− 1. From Lemma 4, because of the minimal unsolvability of w, we have

#a(α) ·#b(β) ≥ #a(β) ·#b(α)

92

3.2. A CLASSIFICATION OF BINARY MUWS BY SHAPE

which is equivalent to

#b(β)

#a(β)
≥ #b(α)

#a(α)
,

where #a(β) 6= 0 because of k < n − 1, and #a(α) 6= 0 due to k > 1. Since we
assumed xn ≤ x,

#b(β
′)

#a(β′)
≥ #b(β)

#a(β)
.

The last inequality can be rewritten as

#a(α) ·#b(β
′) ≥ #a(β

′) ·#b(α),

which implies, due to Lemma 4, that αβ′b is not solvable. Since it is a proper
subword of w, we get a contradiction to the minimality of w. Thus x + 1 ≤ xn ≤
x+ 2.

We now demonstrate x2 = x. Consider two possible cases:
Case 1: xn = x+ 2. Take j = max{i | xi = x}. Then for the subword

u = b a bxj (a bx+1)k︸ ︷︷ ︸
α

|s a bxn−1︸ ︷︷ ︸
β

b

of w with k ≥ 0, the following inequality is satisfied:

#b(β) ·#a(α) = (x+ 1) · (k + 1) ≥ (1 + x+ (x+ 1) · k) · 1 = #b(α) ·#a(β).

This means that u is unsolvable. If j > 2, u is a proper subword of w, contradicting
the minimality of w. Hence, in this case, x2 = x and xi = x+ 1 for 2 < i < n.
Case 2: xn = x + 1. Let j1 = min{i | xi = x}. By the definition of x, j1 6= n.
Assume x2 = x + 1. Consider a state sk in w after the group bxk , such that b is
not separated at sk. If k > j1, then, by Lemma 4, for

w = b a bx2 a bx3−1

α′︷ ︸︸ ︷
b a . . . bxj1 a . . . bxk︸ ︷︷ ︸

α

|sk a . . . bxn−1︸ ︷︷ ︸
β

b

93

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

the following inequality holds

#b(β) ·#a(α) ≥ #a(β) ·#b(α).

This is equivalent to

#b(β)

#a(β)
≥ #b(α)

#a(α)
,

where #a(β) 6= 0 by the choice of sk, #a(α) 6= 0 due to the fact that b can be
separated from the state after the first b. As x2 = x+ 1 and xj1 = x, we have

#b(α)

#a(α)
≥ #b(α

′)

#a(α′)
.

Together with the previous inequality, we get

#b(β)

#a(β)
≥ #b(α

′)

#a(α′)

which is equivalent to

#b(β) ·#a(α
′) ≥ #a(β) ·#b(α

′).

From this, according to Proposition 5, it follows that the proper subword α′βb of
w is unsolvable, contradicting the minimality of w. Suppose that k ≤ j1. Then,
by Lemma 4, for

w = b a bx2 a . . . bxk︸ ︷︷ ︸
α

|sk a . . . bxj1−1 b a . . . bxn−1︸ ︷︷ ︸
β

b

the following inequality is satisfied

#b(β) ·#a(α) ≥ #a(α) ·#b(β).

Since #a(β) 6= 0, thanks to the special form of the word, and #a(α) 6= 0 due to

94

3.2. A CLASSIFICATION OF BINARY MUWS BY SHAPE

k < n, this inequality can be written as

#b(β)

#a(β)
≥ #b(α)

#a(α)
.

On the other hand, due to xn = x+ 1 and by the choice of j1, we have

x+ 1 >
#b(β)

#a(β)
and

#b(α)

#a(α)
≥ x+ 1.

Hence, due to the previous inequality,

x+ 1 > x+ 1,

which is a contradiction. Thus, x2 = x. From this we deduce the following
refinement of pattern (3.2), where x > 0:

babx(abx+1)∗abx+2 or

babx2abx3a . . . abxn , with x2 = x, xn = x+ 1, xi ∈ {x, x+ 1}, n ≥ 3
(3.2′)

The last pattern to be studied in detail is (3.3):

w = abx1abx2a . . . abxnaa with xi > 0 for 1 ≤ i ≤ n.

Since w necessarily has bb as a factor, xi ≥ 2 for some 1 ≤ i ≤ n. If n = 1 then
x1 ≥ 2. We shall prove now that if n > 1 then x1 = 2, x2 = . . . = xn = 1. Let
j = max{1 ≤ i ≤ n | xi ≥ 2}. For the subword

v = abxj−1︸ ︷︷ ︸
α

| ba . . . aba︸ ︷︷ ︸
β

a

of w, where xj ≥ 2 and xj+1 = . . . = xn = 1, we have

#a(β) ·#b(α) = (n− j + 1) · (xj − 1) ≥ 1 · (n− j + 1) = #a(α) ·#b(β),

implying that v is not solvable, due to Proposition 5. If j > 1, v is a proper
subword of w, which contradicts the minimal unsolvability of w. Hence, xi ≤ 1 for

95

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

i > 1. Thus, there are two possibilities for w of the form (3.3):

abxaa, with x > 2 or abb(ab)kaa, with k ≥ 0 (3.3′)

In sum, we have established that minimal unsolvable word must satisfy one of
the following three forms:

abx+kabxa, with x > 0, k > 2 or

abx+2(abx+1)∗abxa, with x > 0 or

abx1abx2a . . . abxna, with x1 = x+ 1, xn = x, xi ∈ {x, x+ 1}, x > 0, n ≥ 3

(3.1′)

babx(abx+1)∗abx+2, with x > 0 or

babx2abx3a . . . abxn , with x2 = x, xn = x+ 1, xi ∈ {x, x+ 1}, x > 0, n ≥ 3
(3.2′)

abxaa, with x > 2 or abb(ab)kaa, with k ≥ 0 (3.3′)

The sets of words generated by all patterns (3.1′)-(3.3′) are mutually disjoint.
Indeed, the forms in (3.1′) are different since the lengths of b-blocks in the first
form differ by k > 2, in the second form differ by exactly 2, and in the third form
differ by 1. Similar argument can be applied to distinguish the forms in (3.2′) and
in (3.3′). Every word satisfying the forms from (3.2′) begins with the same letter
that occurs as long blocks inside the word (in (3.2′) this letter is b, but due to the
symmetry we consider the forms up to swapping a and b). This is different from
the words satisfying (3.1′) or (3.3′), hence (3.2′) is disjoint with (3.1′) and with
(3.3′). Since all the words from (3.3′) end with the doubled letter, which is never
the case for words satisfying (3.1′), the forms (3.1′) and (3.3′) are also disjoint.
Thus, all the forms represent disjoint sets of muws.

With this refined classification of the possible forms of muws, in the follow-
ing section we shall suggest a (generative) language-theoretical characterisation of
them. To this aim, we divide all the muws into classes of extendable and non-

96

3.3. EXTENSION OF MUWS

extendable words, and demonstrate how (some) muws can be derived from other
muws.

3.3 Extension of muws

In this section we provide a complete characterisation of the class of minimal un-
solvable binary words. The general idea is to split the whole set into two disjoint
classes: extendable and non-extendable. The extendable words turn out to serve
as origins for more complex minimal unsolvable words. For instance, the muw
abbbaba can be extended to ababababaababaa which is also minimal unsolvable.
The extension is given by mapping the initial a into ab, the final a into aa, every
other a into aab and every b into ab. This rule will be defined formally as an exten-
sion operation in this section. The non-extendable words might be also regarded
as origins for more complex unsolvable, but not minimal, binary words. As an
example of this class, consider the muw abbbaa. If we apply the same principle of
the extension to this muw, we obtain ababababaabaa which is also unsolvable but
not minimal, since its proper subword abababaabaa is unsolvable. In the class of
extendable muws we distinguish a subclass of simplest extendable ones (abbbaba is
one of them). The words of this subclass satisfy the pattern (2.5)

(a b α) b∗ (b a α)+ a , with α ∈ {a, b}∗ (2.5)

with the factor α in the form ai or bi. Such words are called base extendable.
After introducing the class of base extendable words, we provide an extension
operation based on simple extension morphisms. Morphisms which are reciprocal
to the extension morphisms are used in the subsequent section, where we define
the converse procedure, called compression.

3.3.1 Extendable and non-extendable muws

The following definitions should be understood modulo swapping a/b. As in the
second part of the previous section, we focus on binary words not containing the
infix aa.

We are now introducing the formal definitions of the (base) extendable and

97

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

non-extendable minimal unsolvable words.

Definition 22. (base extendable words) A word u ∈ {a, b}∗ is called base
extendable if it is of the form

abbj(babj)ka with j > 0, k ≥ 1, or

babj(abbj)kb with j ≥ 0, k ≥ 1.
(3.4)

The class of base extendable words is denoted by BE.

The word abbbaba, considered above, satisfies the first pattern of Definition 22,
and hence it is a base extendable word. The simplest (shortest) word satisfying
the second pattern of the definition is baabb (obtained for j = 0 and k = 1). It is
easy to see that this word is essentially the shortest muw abbaa modulo swapping
a and b.

Definition 23. (non-extendable words) A word u ∈ {a, b}∗ is called non-
extendable if it is of the form

abbjbkbabja with j ≥ 0, k ≥ 1.

The class of all non-extendable words is denoted by NE.

The word abbbaa satisfies the definition, and hence is non-extendable.
We now establish that all words from classes BE and NE are minimal unsolv-

able.

Proposition 17. [EBMP16](minimal unsolvability of base extendable and
non-extendable words) If w belongs to the class BE or the class NE, then it is
unsolvable and minimal with that property.

Proof. A word w is a muw if and only if w is unsolvable and both every proper
prefix and every proper suffix of w are solvable. Every word w from BE ∪ NE is
of the form (2.5), hence unsolvable. We shall prove the minimality of such a w by
providing Petri nets solving its maximal proper prefix and suffix.

Case 1 (base extendable words):
(a) w = abbj(babj)ka, with j ≥ 0 and k ≥ 1. This form satisfies (2.5) with

α = bj, the star ∗ being repeated zero times, and the plus + being repeated k

times. Due to Proposition 4, all binary words of this form are unsolvable.

98

3.3. EXTENSION OF MUWS

The maximal proper prefix abbj(babj)k of this word can be solved by the Petri
net N1 in Fig. 3.5. Place q in this net enables the initial a, and then disables it
unless b has been fired j + 2 times. After the execution of the block bbjb there are
k − 1 tokens more than a needs to fire on place q. These surplus tokens allow a

to be fired after each sequence bjb, but not earlier. Place p has initially 1 token
on it, which is necessary to execute the block bbjb after the first a, and this place
has only j+ 1 tokens after each next a, preventing b at states where a must occur.
Place d prevents a premature occurrence of b at the very beginning of the prefix,
and places ca and cb restrict the total number of firings of a and b, respectively.

q

cb

d

p

ca

a

j + 1

1 + k · (j + 1)

b

k

N1 :

M0


p
q
d
ca
cb

 =


1

1 + k · (j + 1)
0

k + 1
(j + 1) · (k + 1)



q

cb

ca

p

a

j + 1

(k + 1) · (j + 2)− 1

k + 1

b

k + 1

N2 :

M0


p
q
ca
cb

 =


j + 2

0
k + 1

(k + 1) · (j + 1)



Figure 3.5: N1 solves the prefix abbj(babj)k. N2 solves the suffix bbj(babj)ka.

For the maximal proper suffix bbj(babj)ka of w, one can consider the Petri
net N2 in Fig. 3.5 as a possible solution. Indeed, place q prevents premature
occurrences of a in the first block bbjb, and enables a only after this and each next
block bjb. Doing so, it collects one additional token after each bjb, which allows
this place to enable the very last a after sequence bj. The initial marking allows
to execute the sequence bbjb at the beginning, and at most j + 1 b’s in a row after
that, thanks to place p. Place cb restricts the total number of b’s allowing only

99

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

block bj at the end.
Thus we deduce that any word of the form abbj(babj)ka with j > 0 and k ≥ 1

is a muw.
(b) w = babj(abbj)kb, with j ≥ 0 and k ≥ 1. The word w satisfies (2.5) with

swapped a and b, α = bj, the star ∗ being repeated zero times, and the plus +

being repeated k times. Due to Proposition 4, all binary words of this form are
unsolvable. Petri nets N1 and N2 in Fig. 3.6 are possible solutions for the maximal
proper prefix and the maximal proper suffix of w, respectively.

q

cb

d

p

ca

a

(j + 1) · (k + 1)− 1

j + 1

b
k + 1

N1 :

M0


p
q
d
ca
cb

 =


k + 1
j + 1

0
k + 1

(j + 1) · (k + 1)



q

cbca

p

a

k · (j + 1) + 1

j + 1

b

k + 1

2k + 1

N2 :

M0


p
q
ca
cb

 =


0

j + 2
k + 1

(k + 1) · (j + 1)



Figure 3.6: N1 solves the prefix babj(abbj)k. N2 solves the suffix abj(abbj)kb.

Remark (On the special structure of Petri nets solving prefixes and suffixes):
The Petri net N1 in Fig. 3.5, which solves the maximal proper prefix abbj(babj)k of
the word w = abbj(babj)ka in the class BE , has a special structure. Place d serves
for preventing an undesirable b at the very beginning of w, and places ca and cb
restrict the total number of a and b, correspondingly. So, the internal structure of
the word, being executed by N1, is completely determined by the two places p and
q, which prevent b and a, respectively, exactly at those states where it is necessary.

100

3.3. EXTENSION OF MUWS

For later purpose, we refer it places p, q and transitions a, b in Fig. 3.5 as core
parts of these nets, and to the remaining places as additional parts.

q

cbca

p

a

j + k + 2

j + k + 2

b

N1 :

M0


p
q
ca
cb

 =


0

j + k + 2
2

2 · (j + 1) + k



q

cbca

p

a

j + 1

j + k + 2

k + 2

b

N2 :

M0


p
q
ca
cb

 =


j + k + 2

0
2

2 · (j + 1) + k



Figure 3.7: N1 solves the prefix abbjbkbabj. N2 solves the suffix bbjbkbabja.

Case 2 (non-extendable words):
We now demonstrate that any binary word of the form w = abbjbkbabja with

j ≥ 0 and k ≥ 1 in the class NE is minimal unsolvable. For w (2.5) is satisfied
with α = bj, the star ∗ being repeated k times, and the plus + being repeated only
once. Due to Proposition 4, w is unsolvable. To show the minimality of w, we
provide Petri nets N1 and N2 (see Fig. 3.7) solving its maximal proper prefix and
its maximal proper suffix, respectively.

Example 16. Let us consider a word w = abbbaba, which is of the form (2.5),
with α = b, the star ∗ being repeated zero times, and the plus + being repeated
just once. By Definition 22, w is a base extendable word with j = 1 and k = 1.
The word w is unsolvable (by Proposition 4) and minimal with that property. We
show the minimality by introducing Petri nets solving a proper prefix abbbab and a
proper suffix bbbaba of w. Those Petri nets, constructed on the basis of the proof
of Proposition 17, are depicted in Fig 3.8.

101

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

q

cb

d

p

ca

a

2

3

b

N1 :
q

cbca

p

a

2

5

2

b

2

N2 :

Figure 3.8: N1 solves the prefix abbbab. N2 solves the suffix bbbaba.

Notice that both Petri nets contain the core parts consisting of places p and q,
which are responsible for the required behaviour of the nets, as well as auxiliary
places – a delay place d and counter places ca and cb.

3.3.2 Extension morphisms and operations

Let us now explain how some minimal unsolvable words can be obtained from
other minimal unsolvable words. For this purpose we use the following notion of
extension operation:

Definition 24. (extension operation) For a word u = xwx with w ∈ {a, b}∗,
x ∈ {a, b}, an extension operation E is defined as follows:

E(awa) =
⋃∞
i=1

{
abMa,i(w)ai+1, aMb,i(wa)

}
,

E(bwb) =
⋃∞
i=1

{
baMb,i(w)bi+1, bMa,i(wb)

}
,

where Ma,i and Mb,i are morphisms defined as follows

Ma,i =

{
a 7→ ai+1b

b 7→ aib
and Mb,i =

{
a 7→ bia

b 7→ bi+1a
.

From a non-extendable word this operation derives again unsolvable but not
minimal words.

Example 17. For the minimal unsolvable word abbbaba, which is in the class BE,

102

3.3. EXTENSION OF MUWS

using the extension operation E we can obtain, for instance, the word

ababababaababaa = abMa,1(bbbab)a2 ∈ E(abbbaba).

This word is minimal unsolvable. If we apply the operation E to the muw abbbaa,
which is in the class NE, in the similar way, then we obtain

ababababaabaa = abMa,1(bbba)a2 ∈ E(abbbaa).

This word is unsolvable, but not minimal with this property, since its proper sub-
word abababaabaa is also unsolvable.

In what follows, for a given w ∈ {a, b}∗, we shall call u ∈ E(w) an extension of
w (when E(w) is defined).

Proposition 18. [EBMP16](unsolvability of extensions of non-extendable
words) If w ∈ NE, then any extension u ∈ E(w) is unsolvable but not minimal
unsolvable.

Proof. Consider an arbitrary w ∈ NE , where w = abbjbkbabja with j ≥ 0, k ≥ 1.
Depending on the particular morphism Mx,i with x = a or x = b for some i ≥ 1,
the extension ux ∈ E(w) of w = aw1a can be constructed as

ua = aMa,i(w1)ai+1 = a aib (aib)j (aib)k aib ai+1b (aib)j ai+1 =

= a (aib)k−1 ai−1 ab aib (aib)j ai︸ ︷︷ ︸
αa

| ba aib (aib)j ai︸ ︷︷ ︸
αa

a

or

ub = aMb,i(w1a) = a bi+1a (bi+1a)j (bi+1a)k bi+1a bia (bi+1a)j bia =

= (abi+1)k ab bia (bi+1a)j bi︸ ︷︷ ︸
αb

| ba bia (bi+1a)j bi︸ ︷︷ ︸
αb

a,

respectively. By Proposition 4, the word abαbbaαba is unsolvable, which implies
the unsolvability of ub. Due to k ≥ 1, abαbbaαba is a proper subword of ub. Hence,
ub is not minimal unsolvable. Analogously, the unsolvability of abαabaαaa implies
the non-minimal unsolvability of ua.

Argumentation holds modulo swapping a and b.

103

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

We shall show, in what follows, that the extension operation produces muws
from the base extendable words and their extensions.

3.3.3 Minimality of extensions

The class of extendable minimal unsolvable words is defined recursively basing on
the class BE .

Definition 25. (extendable words) For a word w ∈ {a, b, }∗

1. if w ∈ E(v) for some base extendable v, then w is extendable,

2. if w ∈ E(v) for some extendable v, then w is extendable,

3. there are no other extendable words.

The class of all extendable words is denoted by E.

The class of extendable words consists only of muws, which will be shown in
the next two lemmata. What is more important: this class is disjoint with the
other classes defined earlier, and it completes the classification of all possible muws
over the binary alphabet, as we shall see in the next sections.

Lemma 13. [EBMP16](unsolvability of extendable words) Let u ∈ {a, b}∗

be of the form abv(bav)ka or bav(abv)kb with k > 0. Then E(u) is a set of PN-
unsolvable words.

Proof. Let u = abv(bav)ka (k > 0). Then

E(u) =
⋃
i∈N

{
abaibMa,i(v)

(
aibai+1bMa,i(v)

)k
ai+1,

abi+1aMb,i(v)
(
bi+1abiaMb,i(v)

)k
bia
}

=
⋃
i∈N

{
ab(aibMa,i(v)ai)

(
ba(aibMa,i(v)ai)

)k
a,

ab(biaMb,i(v)bi)
(
ba(biaMb,i(v)bi)

)k
a
}

=
⋃
i∈N

{
abv

(a)
i

(
bav

(a)
i

)k
a, abv

(b)
i

(
bav

(a)
i

)k
a
}
.

Therefore, by Proposition 4, E(u) is a set of PN-unsolvable words. The case
u = bav(abv)kb can be proved similarly.

104

3.3. EXTENSION OF MUWS

Knowing that members of E are unsolvable, we now continue with the investi-
gation of their minimality.

Lemma 14. [EBMP16](minimality of extendable words) If w ∈ E, then w
is minimal unsolvable.

Proof. (Sketch) By Lemma 13, any extendable word is unsolvable. According
to Definition 25, for every w ∈ E there is a sequence w0, w1, . . . , wr such that
w0 ∈ BE , wj ∈ E and wj ∈ E(wj−1) for 1 ≤ j ≤ r, and wr = w. We will argue by
induction on r, and check the existence of Petri nets solving the maximal proper
prefix and suffix of w. Every base extendable word w0 is minimal unsolvable,
and there are Petri nets N0

1 and N0
2 with core parts and additional parts, which

solve the maximal proper prefix and suffix of w0. Suppose, for 1 ≤ j ≤ r − 1,
there are Petri nets N j

1 and N j
2 doing similar job, for wj, and which have been

obtained from N j−1
1 and N j−1

2 , respectively, with the appropriate transformations
of their core parts. The morphism Mx,i with x ∈ {a, b}, that has been used to
derive wj from wj−1, determines this transformation uniquely. The inductive step
consists of proving that N r

1 and N r
2 obtained from N r−1

1 and N r−1
2 , respectively,

solve the maximal proper prefix and the suffix of wr. Having morphism Mx,i,
the transformation and two core parts (new and old), it can be directly checked
that place p disables/enables transition b in prefix of wr−1 as a place of (core part
of) N r−1

1 if one only if it does the same as the place of (core part of) N r
1 at the

corresponding state in prefix of wr. Similar checking can be done for place q and
transition a, and also for suffixes of wr−1 and wr with nets N r−1

2 and N r
2 . The

additional parts of nets N r
1 and N r

2 can be implemented with a place ‘from initial
to non-initial’ transition, having zero tokens initially and ‘sufficiently many’ tokens
after, and a place which is a counter for the (total) number of firings.

Example 18. Consider again the word w = abbbaba. From the previous consider-
ations (see Example 16) we know that this word is base extendable, and therefore
it is a muw. By the application of the extension operation, using the morphism

Ma,1 =

{
a 7→ aab

b 7→ ab
, we obtain the word

wa,1 = ab ababa ba ababa a,

105

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

Ma,i Mb,i

a+ 7−→ a+ + b− a+ 7−→ a+ + i · (a+ + b−)
b− 7−→ b− + i · (a+ + b−) b− 7−→ a+ + b−

b+ 7−→ b+ + i · (a− + b+) b+ 7−→ a− + b+

Ñ1 a− 7−→ a− + b+ a− 7−→ a− + i · (a− + b+)
M(p) 7−→ b− + i · (a+ + b−) M(p) 7−→ a+ + b−

M(q) 7−→ a− + b+ M(q) 7−→ a− + i · (a− + b+)

a+ 7−→ a+ + b− a+ 7−→ a+ + i · (a+ + b−)
b− 7−→ b− + i · (a+ + b−) b− 7−→ a+ + b−

b+ 7−→ b+ + i · (a−0 + b+ − a+
0) b+ 7−→ b+ + a−0 − a+

0

Ñ2 a−0 7−→ a−0 + b+ a−0 7−→ a−0 + i · (b+ + a−0 − a+
0)

a+
0 7−→ a+

0 a+
0 7−→ a+

0

M(p) 7−→ b− + (i+ 1) · (a+ + b−) M(p) 7−→ a+ + (i+ 1) · (a+ + b−)
M(q) 7−→ 0 M(q) 7−→ 0

Table 3.1: Correspondence between morphisms and transformations

which is of the form (2.5) with α = ababa, the star ∗ being repeated zero times,
and the plus + being repeated just once, hence – by Proposition 4 – unsolvable. On
the basis of the Petri nets of Fig. 3.8, and according to Table 3.1, we construct
Petri nets (depicted in Fig. 3.9) solving the maximal proper prefix ababababaababa
and the maximal proper suffix babababaababaa of wa,1. Thus, wa,1 is a minimal
unsolvable word.

q

6cb

d

4p

8 ca

a

3

4

b
4

5

N1 :
q

6

cb

8

ca

7p

a

3

7

2

b4

7

N2 :

Figure 3.9: N1 solves the prefix ababababaababa and N2 solves the suffix
babababaababaa of wa,1 = ababababaababaa.

(Complete proof) Let w ∈ E be an arbitrary extendable word. By Lemma 13,
w is unsolvable. According to Definition 25, there is a sequence w0, w1, . . . , wr such

106

3.3. EXTENSION OF MUWS

that w0 ∈ BE , wj ∈ E and wj ∈ E(wj−1) for 1 ≤ j ≤ r, and wr = w. We will argue
by induction on the length r of this sequence. From the previous consideration we
know that the base extendable word w0 is minimal unsolvable, and there are Petri
nets N0

1 and N0
2 with core parts and additional parts, which are solutions for the

maximal proper prefix and the maximal proper suffix of w0. Assume now that for
every 1 ≤ j ≤ r − 1, there are Petri nets N j

1 and N j
2 which are solutions for the

maximal proper prefix and the maximal proper suffix of wj, and which have been
obtained from N j−1

1 and N j−1
2 , respectively, with the appropriate transformation

from Table 3.1 (this transformation is uniquely defined by the morphism Mx,i

with x ∈ {a, b}, that has been used to derive wj from wj−1). We now prove that
knowing morphism Mx,i with x ∈ {a, b}, which is used for producing wr from
wr−1, and using the corresponding transformation, Petri nets N r

1 and N r
2 , which

are derivatives of N r−1
1 and N r−1

2 , are indeed solutions for the maximal proper
prefix and the maximal proper suffix of wr.

The next four cases are possible:

1. N r
1 derived from N r−1

1 , for wr−1 = aw′a and wr = aMb,i(w
′a), with i ≥ 1.

2. N r
1 derived from N r−1

1 , for wr−1 = aw′a and wr = abMa,i(w
′)ai+1, with i ≥ 1.

3. N r
2 derived from N r−1

2 , for wr−1 = aw′a and wr = aMb,i(w
′a), with i ≥ 1.

4. N r
2 derived from N r−1

2 , for wr−1 = aw′a and wr = abMa,i(w
′)ai+1, with i ≥ 1.

Let us consider the first case. (The other three cases can be checked analo-
gously.) Let N r

1 be produced from N r−1
1 , when wr−1 = aw′a and wr = aMb,i(w

′a),
for some i ≥ 1. Having the core part Ñ r−1

1 (see Fig. 3.10) of the solution N r−1
1 for

aw′, with the transformations of the arc weights and the new initial marking

a+ 7−→ a+ + i · (a+ + b−)

b− 7−→ a+ + b−

b+ 7−→ a− + b+

a− 7−→ a− + i · (a− + b+)

m

(
p

q

)
=

(
a+ + b−

a− + i · (a− + b+)

) (3.5)

107

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

for morphism Mb,i we can construct the new core part Ñ r
1 for aw′′, where aw′′a =

wr. Let now check that the constructed core part implements the internal part of
aw′′. We shall show that place p prevents all undesirable b inside aw′′ and enables
all b that need to occur, and similarly for place q and transition a. Since we have
used morphism Mb,i for the extension operation, we have a special form of the
extension wr = abx1abx2a . . . abxna ∈ E(wr−1), with xj ∈ {i, i+ 1}. Assume that p
disables some b that must occur at state s in

aw′′ = abx1a . . . abxk−m |s bma . . . ,

where s is the leftmost state in aw′′ with this property, and k ≥ 1. By (3.5), each
firing of a brings a+ + i · (a+ + b−) tokens on place p, and b consumes a+ + b−

tokens on every its occurrence. Hence, p can only disable the last but one b in a
group bi+1, i.e. xk = i+ 1 and m = 1. Assume now that there are l groups of bi+1

in abx1a . . . abxk−1 |s. By the initial assumption, the marking of p at s is less than
the weight of the arc from p to b, i.e.

Ms(p) = (a+ + b−) + k · (a++ i · (a+ + b−))−
−k · i · (a+ + b−)− l · (a+ + b−) < a+ + b−

⇐⇒ (k − l) · a++(1− l) · b− < b−

On the other hand, since every sequence bi+1a in wr corresponds to b in wr−1, and
every sequence bia corresponds to a, at state s1 of wr−1 = a . . . |s1b . . . a, where
the b right after s1 corresponds to the block bxka in wr, the marking of place p
in net Ñ r−1

1 , is Ms1(p) = b− + (k − l) · a+ − l · b−. Hence, Ms1(p) < b−, which
contradicts the assumption that the net Ñ r−1

1 solves the word aw′. Thus, after the
transformation (3.5) place p allows all necessary occurrences of b. Hence place p
also allows b to fire initially.

We now have to show that p disables b at all states where a has to occur, except
the initial one. Suppose a contrary, i.e. there is a state s in

aw′′ = abx1a . . . abxk |s a . . . abxn ,

with k ≥ 1, such that Ms(p) ≥ a+ + b−. W.l.o.g. let s to be the leftmost (except

108

3.3. EXTENSION OF MUWS

q

p

a

a+

a−

b
b−

b+

Ñ1
r−1 :

M0

(
p
q

)
=

(
b−

a−

)

Figure 3.10: Core part of Petri net N r−1
1 solving maximal proper prefix of wr−1.

the initial) state with that property. Assume xk = i+ 1. For the state s′ in

abx1a . . . |s′ abxk |s a . . . abxna

we then have

Ms(p) = Ms′(p) + a++ i · (a+ + b−)− (i+ 1) · (a+ + b−) ≥ a+ + b−

⇐⇒ Ms′(p) ≥ b− + (a+ + b−).

The last inequality means that b is not separated at state s′. If k = 1, then, by
(3.5), Ms′(p) = M(p) = a+ + b−, which contradicts the last inequality. If k > 1,
then we get a contradiction to the choice of s. Hence, xk = i. Let l be the number
of blocks bi+1 in abx1a . . . abxk |s. Then

Ms(p) = (a+ + b−) + k · (a+ + i · (a+ + b−))−
− k · i · (a+ + b−)− l · (a+ + b−) ≥ a+ + b−

⇐⇒ (k − l) · a+ + (1− l) · b− ≥ b−.

Since wr has been obtained using morphism Mb,i, sequence bxka corresponds to a
letter a in wr−1. Therefore, in wr−1 = a . . . |s1a . . ., where s1 fits the state right
before bxka in wr, b is not separated at state s1. This contradicts the assumption
that Ñ r−1

1 solves aw′. Thus, in the net Ñ r
1 that was derived from Ñ r−1

1 by (3.5), p
disables b whenever and only if it is necessary inside aw′′.

For separating b at the initial marking, one can construct additional place p1,
having 0 tokens on it initially, and being a pure input place for b and pure output
place for a, with unit arc weights. For restricting the total number of occurrences

109

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

of b, it is enough to construct a place p2 with #b(wr) tokens on it initially, which
is a pure input place for b, with the arc weight equal to 1.

Let us now consider place q and transition a. First we will show that q allows
a to fire at each state where this is necessary. It is clear that q enables a initially.
Assume that there is a state s in

aw′′ = abx1abx2a . . . abxk |s abxk+1a . . . ,

with k ≥ 1, such that q disables a at s. Due to (3.5), each firing of b brings a−+b+

tokens on q. Hence xk = i. Suppose that there are l blocks bi+1 in abx1a . . . abxk |s.
Then, we have

Ms(q) = a− + i · (a− + b+)− k · (a− + i · (a− + b+))+

+ k · i · (a− + b+) + l · (a− + b+) < a− + i · (a− + b+)

⇐⇒ a− + l · b+ − (k − l) · a− < a−

Due to the fact that aw′′a has been obtained from aw′a using morphism Mb,i,
the block bxka corresponds to a right after the state s′ in wr−1 = a . . . |s1a The
last inequality means that Ms1(q) < a−, which contradicts the assumption that
Ñ r−1

1 solves the word aw′. Thus, place q after the transformation (3.5) allows each
mandatory firing of a.

We now demonstrate that q disables a at every place, where b has to occur.
Suppose that this is not true, i.e. there is a state s in

aw′′ = abx1a . . . abxk−m |s bma . . . ,

with k,m > 0, at which a is enabled by place q. W.l.o.g. let s be the leftmost
state in aw′′ with that property. Due to the initial marking of q provided in (3.5),
k > 1. Hence, for state s and place q we have

Ms(q) = a− + i · (a− + b+)− k · (a− + i · (a− + b+))

+ (x1 + · · ·+ xk −m) · (a− + b+) ≥ a− + i · (a− + b+).

110

3.3. EXTENSION OF MUWS

If xk−1 = i, then

Ms1(q) = a− + i · (a− + b+)− (k − 1) · (a− + i · (a− + b+))

+ (x1 + · · ·+ xk−1 −m) · (a− + b+) ≥ a− + i · (a− + b+) + a−,

implying that a is enabled by q at state s1 in

aw′′ = abx1a . . . abxk−1−m |s1 bma . . . ,

which contradicts the choice of s. Then, xk−1 = i+ 1. This means, the block bxka
corresponds to a letter b in aw′a, and state s in aw′′ corresponds to the state s0 in
aw′ = a . . . |s0 b On the other hand,

Ms(q) = a− + i · (a− + b+)− k · (a− + i · (a− + b+))

+ (x1 + · · ·+ xk −m) · (a− + b+) ≥ a− + i · (a− + b+)

⇐⇒ a− − (k − l) · a− + l · b+ ≥ a− + (m− 1) · (a− + b+).

Since m ≥ 1, we have Ms0(q) ≥ a− in the net Ñ r−1
1 , implying that a is enabled

at state s0. This contradicts the fact that Ñ r−1
1 solves aw′. Thus, q disables a at

every state in aw′′ where b has to occur.
Redundant occurrence of b at the very beginning of aw′′, that is not handled by

p, can be easily restricted by place p1, having zero tokens initially, the arc weight
from a to p1 is i + 1 and the arc weight from p1 to b is 1. The length of the
execution performed by Ñ r

1 can be restricted with a letter-counting place, having
no inputs and a single output for each transition, and the initial number of tokens
equal to the length of aw′′. As the result, we have Petri net N r

1 , solving exactly
aw′′, with the core and the additional parts.

The other three possible cases from Table 3.1 can be checked analogously.

So far, we have introduced three classes of minimal unsolvable words over {a, b}:
base-extendable, non-extendable and extendable. These classes are mutually dis-
joint, and moreover, words from E are images of words from BE and E under the
extension operation E, while images of members of NE under the same operation
E are not minimal, though they are unsolvable as well. The goal of the next section

111

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

is to complete our classification by demonstrating that all muws are in these three
classes. To reach this goal, we will introduce the compression operation which will
be, in some sense, a complement of the extension operation.

3.4 Compression of muws

Consider minimal unsolvable words w.r.t. the classification obtained in Section 3.2.
All possible patterns from (3.1)–(3.3), and more precisely their refined variants
from (3.1′)–(3.3′), can be distinguished into base extendable

ab(ba)k+1a, with k ≥ 0, for the second pattern from (3.3′),

abbx(babx)ka, with x > 0, k > 0, for the second pattern from (3.1′),

babx(abbx)kb, with x > 0, k > 0, for the first pattern from (3.2′),

non-extendable

abbx−1baa, with x ≥ 2 for the first pattern from (3.3′),

abbxbk−1babxa, with x > 0, k > 2 for the first pattern from (3.1′),

and the rest, which we call C (compressible)

abx1abx2a . . . abxna, with x1 = x+ 1, xn = x, xi ∈ {x, x+ 1}, x > 0, n ≥ 3,

for the third pattern from (3.1′),

babx2abx3a . . . abxn , with x2 = x, xn = x+ 1, xi ∈ {x, x+ 1}, x > 0, n ≥ 3,

for the second pattern from (3.2′).

From this classification we derive that

MUW = BE ∪ NE ∪ C,

where BE , NE and C are mutually disjoint classes, andMUW denotes the class
of all minimal unsolvable words. Note, that since all words in the class E are
unsolvable and minimal with that property, and E is disjoint with BE and NE , we
have E ⊆ C. In the rest of this section and in the next section we proceed to show

112

3.4. COMPRESSION OF MUWS

C ⊆ E .
In the previous sections we demonstrated how to construct new minimal un-

solvable words on the basis of extendable words. The purpose of this section is
to introduce an inverse transformation, which allows to compress longer minimal
unsolvable words into shorter ones.

Definition 26. (compression function) For a word v = xux with u ∈ {a, b}∗,
x ∈ {a, b}, a compression function C is defined as follows :

C(abuai+1) = aM−1
a,i (u)a, C(baubi+1) = bM−1

b,i (u)b,

C(auba) = aM−1
b,i (uba), C(buab) = bM−1

a,i (uab),
(3.6)

where i ≥ 1 and M−1
a,i , M

−1
b,i are morphisms defined as follows:

M−1
a,i :

ai+1b 7→ a

aib 7→ b
and M−1

b,i :

bia 7→ a

bi+1a 7→ b.

Among all possible forms from the classification of minimal unsolvable words,
C is defined exactly for patterns from the class C. Moreover, the form of the word
explicitly defines the morphism M−1

x,i which is used when applying C to the word.
Let us notice that since E ⊆ C, all words from E are compressible by C.

From Definitions 24 and 26, it is clear that Mx,i is reciprocal to M−1
x,i for x ∈

{a, b}, i ≥ 1. The following lemma establishes that the extension operation E and
the application of compression function C are complements of each other.

Lemma 15. (compression and extension functions)

1. If v ∈ BE ∪ E and u ∈ E(v), then C(u) = v;

2. If u ∈ C and v = C(u), then u ∈ E(v).

Proof. 1. Consider some v ∈ BE ∪ E . Then v = xv1x, where x ∈ {a, b}. Hence,
for distinct x, y ∈ {a, b} and i ≥ 1, we have two possible cases:

• u = xyMx,i(v1)xi+1. By the definition of the compression function,

C(u) = C(xyMx,i(v1)xi+1) = xM−1
x,i (Mx,i(v1))x = xv1x = v.

113

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

• u = xMy,i(v1x). By the definition of the compression function,

C(u) = C(xMy,i(v1x)) = C(xMy,i(v1)yix) = xM−1
y,i (My,i(v1)yix) = xv1x = v.

2. Consider some u ∈ C. According to the definition of C, u starts and ends with
x ∈ {a, b}. Due to Definition 26 of C and the definition of C, u uniquely determines
which compression morphism can be applied to it. Two cases are possible:

• v = C(u) = xM−1
x,i (u1)x for u = xyu1x

i+1, x 6= y ∈ {a, b}. Then,

E(v) =
∞⋃
j=1

{xyMx,j(M
−1
x,i (u1))xi+1, xMy,j(M

−1
x,i (u1)x)}.

As u = xyMx,j(M
−1
x,i (u1))xi+1 for j = i, then u ∈ E(v).

• v = C(u) = xM−1
y,i (u1xy

ix) for u = xu1xy
ix, x 6= y ∈ {a, b}. Then,

E(v) =
∞⋃
j=1

{xyMx,j(M
−1
y,i (u1x))xi+1, xMy,j(M

−1
y,i (u1xy

ix))}.

As u = xMy,j(M
−1
y,i (u1xy

ix)) for j = i, then u ∈ E(v).

3.5 The generative nature of muws

In this section we will demonstrate that applying the compression function to
muws (in class C) is an endomorphism within the classMUW , i.e. the results are
also minimal unsolvable words. We begin with three technical lemmas. The first
of them supports the intuition that letter a is separable within a block of b’s only
if it is separable at the end of the block.

Lemma 16. Suppose w = α|sbm−1|s̃baβ, with m ≥ 1. If a is not separable at state
s, then it is not separable at state s̃, as well.

Proof. By contraposition. Assume there is a Petri net N = (P, T, F,M0) with a
place p ∈ P such that w can be fired completely, and Ms̃(p) < F (p, a). Since a is

114

3.5. THE GENERATIVE NATURE OF MUWS

enabled at state s′ such that s̃[b〉s′, then E(p)(b) > 0. Hence, Ms(p) ≤ Ms̃(p) <

F (p, a), i.e. a is separable at state s with place p.

The next two lemmas explain how a possible failure of separation of the starting
(and hence the ending) letter from a state is connected with the position of this
state inside the blocks of a muw. We consider both patterns from the definition of
the class C, and we will see that the letters cannot be separated either in the end
of the long blocks, or immediately after the short blocks, depending on the chosen
pattern.

Lemma 17. If w = abx1abx2a . . . abxna, with x1 = x+ 1, xn = x, xi ∈ {x, x+ 1},
x > 0, n ≥ 3, is a minimal unsolvable word, and separation failure occurs in group
bxk , then xk = x+ 1.

Proof. By Lemma 16, a is not separated at some state s in

w =

α′︷ ︸︸ ︷
a bx1 a . . . a bxk−1−1 |

β′︷ ︸︸ ︷
b a bxk−1︸ ︷︷ ︸

α

|s b a . . . a bxn−1 a bxn︸ ︷︷ ︸
β

a,

implying, according to Lemma 4, that

(x1 + . . .+ xk − 1) · (n− k) ≥ (1 + xk+1 + . . .+ xn) · k

which can be rewritten as

x1 + . . .+ xk − 1

k
=

#b(α)

#a(α)
≥ #b(β)

#a(β)
=

1 + xk+1 + . . .+ xn
n− k

,

where #a(α) 6= 0 and #a(β) 6= 0. Assume now that xk = k. Since for every
1 ≤ i ≤ n we have x ≤ xi ≤ x+ 1, then

#b(α
′)

#a(α′)
≥ #b(α)

#a(α)
,

where #a(α
′) 6= 0 because w starts with a. From x1 = x+ 1, it follows that k > 1.

Due to xn = x = xk,

#b(β
′)

#a(β′)
=

#b(β)

#a(β)
,

115

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

where #a(β
′) 6= 0 since k > 1. Thus,

#b(α
′)

#a(α′)
≥ #b(β

′)

#a(β′)
,

which implies, by Lemma 4, the unsolvability of α′β′a, contradicting the minimality
of w.

The other pattern from the definition of class C is handled similarly:

Lemma 18. If w = babx2abx3a . . . abxn, with x2 = x, xn = x + 1, xi ∈ {x, x + 1},
x > 0, n ≥ 3, is a minimal unsolvable word, and separation failure occurs after
group bxk , then xk = x.

Proof. For state s in w, from which b is not separated,

w =

α′︷ ︸︸ ︷
b a bx2−1 b a . . . a bxk−1 |

β′︷ ︸︸ ︷
a bxk︸ ︷︷ ︸

α

|s a . . . a bxn−1−1 b a bxn−1︸ ︷︷ ︸
β

b.

According to Lemma 4, we have

(k − 1) · (xk+1 + . . .+ xn − 1) ≥ (1 + x2 + . . .+ xk) · (n− k),

which is equivalent to

xk+1 + . . .+ xn − 1

n− k
=

#b(β)

#a(β)
≥ #b(α)

#a(α)
=

1 + x2 + . . .+ xk
k − 1

,

where #a(β) 6= 0 since β starts with a, and #a(α) 6= 0 because k > 1. Assume
xk = k + 1. Since for all 2 ≤ i ≤ n, we have x ≤ xi ≤ x+ 1,

#b(α
′)

#a(α′)
≤ #b(α)

#a(α)
,

where #a(α
′) 6= 0 because k > 2. From xn = x+ 1 = xk it follows that

#b(β)

#a(β)
=

#b(β
′)

#a(β′)
,

116

3.5. THE GENERATIVE NATURE OF MUWS

where #a(β
′) 6= 0 due to β′ starting with a. Hence,

#b(β
′)

#a(β′)
≥ #b(α

′)

#a(α′)
.

Due to Lemma 4, this implies the unsolvability of α′β′b, contradicting the mini-
mality of w.

Consider now an arbitrary minimal unsolvable word

w = aw1 = abx1abx2a . . . abxna

in C, with x1 = x + 1, xn = x, xi ∈ {x, x + 1}, x > 0, n ≥ 3. According to the
special form of w, C can merely be applied to w in the form C(w) = aM−1

b,x (w1).
Note that u = C(w) is also unsolvable. Due to Lemma 17, for state s in

w = a bx1 a . . . a bxk−1︸ ︷︷ ︸
α

|s b a . . . a bxn︸ ︷︷ ︸
β

a,

from which a is not separated, we have xk = x+ 1. By Lemma 4,

(n− k) · (x1 + x2 + · · ·+ xk − 1) ≥ k · (xk+1 + · · ·+ xn + 1)

Assume that there are l groups of bx in α (except the part of bxk), and m groups of
bx in β. Due to the form of w, we have 0 ≤ l < k − 1 and 0 < m ≤ n− k. Hence,

#a(β) ·#b(α) ≥ #a(α) ·#b(β)

⇐⇒ (n− k) · (k · (x+ 1)− l − 1) ≥ k · ((n− k) · (x+ 1)−m+ 1)

⇐⇒ k · l + k ·m− n · l − n ≥ 0.

After applying the compression function to w, due to the definition of C andM−1
b,x ,

for every sequence bxa and for every sequence bx+1a in w, we obtain a and b in
u, respectively. Hence, u has n + 1 letters in all, starts with ab and ends with a,
thanks to the definition of C and the shape of w, and, by Lemma 17, has b on the

117

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

(k + 1)th position:

u = a b . . .︸ ︷︷ ︸
α′

|s′ b . . .︸︷︷︸
β′

a,

where |α′| = k, |β′| = n− k. Moreover, #a(α
′) = l+ 1 and #a(β

′) = m− 1. Thus,
we have #a(β

′)·#b(α
′) = m·(k−l−1) and #a(α

′)·#b(β
′) = (l+1)·(n−k−m+1).

Then,

#a(β
′) ·#b(α

′)−#a(α
′) ·#b(β

′) = k · l + k ·m− n · l − n+ k − l − 1 ≥ 0,

where the last inequality is because of k · l + k ·m − n · l − n ≥ 0 and l < k − 1.
Due to Lemma 4, this implies the unsolvability of u.

Let us now consider an arbitrary minimal unsolvable word

w = babx2abx3a . . . abxn

from the class C, with x2 = x, xn = x + 1, xi ∈ {x, x + 1}, x > 0, n ≥ 3, and
check that u = C(w) is unsolvable as well. The form of w = bw1b

x+1 explicitly
determines that C(w) = bM−1

b,x (w1)b. By Lemma 18, for state s from which b is
not separated in

w = b a bx2 a . . . bxk︸ ︷︷ ︸
α

|s a bxk+1 a . . . a bxn−1︸ ︷︷ ︸
β

b,

we have xk = x. From Lemma 4,

(k − 1) · (xk+1 + . . .+ xn − 1) ≥ (1 + x2 + . . .+ xk) · (n− k).

Assume, there are l groups of bx+1 in α and m groups of bx+1 in β. Due to the
form of w, we have 0 ≤ l < k and 0 ≤ m ≤ n− k, and

(k − 1) · (x · (n− k) +m) ≥ (1 + x · (k − 1) + l) · (n− k)

⇐⇒ k ·m−m− n+ k − l · n+ l · k ≥ 0.

After applying the compression function C to w, according to the definition of
M−1

b,x , for every sequence bx+1a and every sequence bxa in w, we obtain a and b in

118

3.5. THE GENERATIVE NATURE OF MUWS

u, respectively. Hence, u has n letters in all, starts with ba and ends with b, by
the definition of C and the special shape of w. By Lemma 18, u has a on its kth
position:

u = ba . . .︸ ︷︷ ︸
α′

|s′ a . . .︸︷︷︸
β′

b,

where |α′| = k − 1, |β′| = n − k. Moreover, #b(α
′) = l and #b(β

′) = m. Thus,
#a(α

′) ·#b(β
′) = (k − 1− l) ·m and #b(α

′) ·#a(β
′) = l · (n− k −m). Then,

#a(α
′) ·#b(β

′)−#b(α
′) ·#a(β

′) = k ·m−m− l · n+ l · k ≥
≥ k ·m−m− l · n+ l · k + k − n ≥ 0.

By Lemma 4, this means that u is unsolvable.
So far, we have shown that the compressed image of any word in C is unsolvable.

Now we shall prove that C ⊆ E . Suppose that this is not true, i.e. C \ E 6= ∅. Take
some shortest word u ∈ C \ E and let w = C(u). Since w is unsolvable, two cases
are possible:
Case 1: w is a minimal unsolvable word. Due to the choice of u as shortest in
C \ E , and the fact that w is shorter than u, we have w /∈ C \ E . Hence, w belongs
to one of disjoint classes BE , NE , E . If w ∈ BE or w ∈ E , then, by Definition 25
and Lemma 15, u ∈ E(w) ⊆ E , which contradicts the choice of u ∈ C \ E . If
w ∈ NE , then by Proposition 18, u ∈ E(w) is not a minimal unsolvable word,
contradicting the minimality of u.
Case 2: w is not a minimal unsolvable word. We shall prove that u is also
not a minimal unsolvable word. Assume now that w = w1vw2, where v is a
minimal unsolvable word and w1w2 6= ε, and that w has been obtained from u

using compression morphism M−1
x,i , where x ∈ {a, b}. Since v is a proper subword

of w, and w is shorter than u, then v /∈ C \ E . From the minimal unsolvability of
v we have v ∈ BE ∪ E ∪ NE . Hence, any extension v′ of v is unsolvable (possibly
not minimal in case v ∈ NE). For x 6= y, where x, y ∈ {a, b}, we have either
v = xv1x, or v = yv1y. Consider these two possibilities.

1. v = xv1x. In this case, according to Definition 24, we consider the extension
v′ = xyMx,i(v1)xi+1 ∈ E(v). Assume both w1 and w2 are non-empty words.
Hence Mx,i(v) = xi+1yMx,i(v1)xi+1y is a proper subword of u. As v′ is a

119

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

subword of Mx,i(v), we get a contradiction to the minimal unsolvability of u.
Assume that w1 = ε. Then, being a proper prefix of w, after extension v will
be morphed to xyMx,i(v1)xi+1y, which again has v′ as a subword, implying
a contradiction to the minimality of u. If w2 = ε, extension u of w with
morphism Mx,i has a proper subword xi+1yMx,i(v1)xi+1, and hence, contains
v′ as well. This contradicts the minimal unsolvability of u.

2. v = yv1y. Let now v′ = yMx,i(v1y) ∈ E(v). In case w1 is a non-empty word,
Mx,i(v) = xiyMx,i(v1y) is a proper subword of u, and contains v′ as a factor.
This contradicts the minimality of u. If w1 = ε, u has v′ as a proper prefix,
which again contradicts the minimal unsolvability of u.

Thus, C = E , which establishes the following result on classification of all minimal
unsolvable words according to their generative nature

Theorem 6. [EBMP16](generative nature of minimal unsolvable binary
words) Let w be a minimal Petri net unsolvable binary word. Then we have the
following exclusive alternatives:

• w is a non-extendable word (w ∈ NE),

• w is a base extendable word (w ∈ BE),

• w is an extendable word (w ∈ E).

Based on Theorem 6 and the proofs of Proposition 17 and Lemma 13, we can
formulate the following

Corollary 1. (a necessary condition for unsolvability) A word over {a, b}
is not PN-solvable if and only if it has a subword of the form

(a b α) b∗ (b a α)+ a , with α ∈ {a, b}∗ .

In the last case of the alternatives stated in Theorem 6 (i.e., the case w ∈ E),
applying C to w consecutively, we can recover the (unique) sequence of minimal
unsolvable words w0, w1, . . . , wr, such that w0 ∈ BE , wr = w, wi ∈ E and wi−1 =

C(wi) for 1 ≤ i ≤ r. Moreover, starting from a word w0, its maximal proper
prefix and maximal proper suffix, and Petri nets solving them (in special forms,

120

3.5. THE GENERATIVE NATURE OF MUWS

that are provided in the thesis), using appropriate transformations, we can derive
Petri nets solving the maximal proper prefixes and the maximal proper suffixes of
wi for all 1 ≤ i ≤ r.

Example 19. Let us consider word v = ba aabaaabaa ab aabaaabaa b. It is unsolv-
able by Proposition 4, because it is of the form baα a∗ (abα)+ b (which is exactly
the form (2.5)) with α = aabaaabaa, the star ∗ being repeated zero times, and the
plus + being repeated just once. Due to Theorem 6, if v is minimal, then it be-
longs to one of the classes BE , NE , E. Since it does not fit the patterns of classes
BE , NE, we now aim to check whether v ∈ E. In order to do this we compress v
with the function C. It can be seen that the word can be written in the form

v = b(aaab)(aaab)(aaab)(aab)(aaab)(aab),

hence we need to consider the morphism

M−1
a,2 :

aaab 7→ a

aab 7→ b
,

and by the compression we obtain the word v−1
a,2 = baaabab. Let us notice that v−1

a,2

is dual of the word w = abbbaba (see Example 16), up to swapping a and b, hence
it is a minimal unsolvable word. Function C cannot be applied to w = C(v), which
accords with the fact that w ∈ BE.

Moreover, starting with the word w = abbbaba, together with Petri nets solving
its proper prefix and suffix (see Fig. 3.8) and applying the morphism

Mb,2 :

a 7→ bba

b 7→ bbba

we obtain the word wb,2 = ab bbabbbabb ba bbabbbabb a which is dual of v. By the
previous considerations we can easily construct Petri nets solving the maximal
proper prefix and the maximal proper suffix of wb,2, hence, by swapping letters we
can obtain Petri nets for a proper prefix and a proper suffix of v. Such nets are
depicted in Fig. 3.11. Now we can state that the word v is not only unsolvable, but
also minimal with that property.

121

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

q

6cb

d

11p

16 ca

a

4

3

b
11

8

N1 :
11 q

6

cb

16

ca

p

a

5

3

b

2

15

8

N2 :

Figure 3.11: N1 solves the prefix baaabaaabaaabaabaaabaa and N2 solves the suffix
aaabaaabaaabaabaaabaab of v = baaabaaabaaabaabaaabaab.

3.6 A pattern-matching pre-synthesis algorithm

The classification of minimal unsolvable words presented in the previous sections
leads to an efficient algorithm for verifying the solvability/unsolvability of a binary
word. By Definition 23, all non-extendable words are of the form

(Ia) abxabya or (Ib) baxbayb,

where x > y + 2, y ≥ 0, and by Definitions 22 and 25, all extendable words
(including base extendable ones) are of the form

(IIa) abw(baw)ka or (IIb) baw(abw)kb,

where k ≥ 1 and w ∈ {a, b}∗.
Recall that a word v ∈ {a, b}∗ containing a minimal unsolvable word as a factor

is also unsolvable. Moreover, due to the Theorem 6, v is unsolvable if it contains at
least one of the patterns (Ia) (Ib), (IIa) or (IIb). Therefore, checking the solvability
of a binary word can be presented as a pattern-matching problem.

The algorithm described below takes a binary word v as an input and returns
true if v is solvable and false otherwise, i.e. any of the above mentioned patterns
was found in v.

As the first step, we search for the patterns (Ia) and (Ib). We scan the input
word from left to right comparing the sizes of the two blocks of consecutive b’s
between any three consecutive occurrences of a and the sizes of the two blocks of

122

3.6. A PATTERN-MATCHING PRE-SYNTHESIS ALGORITHM

consecutive a’s between any three consecutive occurrences of b. This can be done
in O(n) time and O(1) space.

The second step is to search for the patterns (IIa) and (IIb). It utilizes the
Knuth-Morris-Pratt failure function, called also the border table (see [CLRS09]).
For any position i in v, it contains the length of the longest factor u which is at
the same time a proper prefix and a proper suffix of v[1..i]. Such a factor is called
a border of v[1..i].

The search for the patterns (IIa) and (IIb) is performed as follows. For any
possible pair of letters v[i..i+1] = ab (v[i..i+1] = ba respectively), we temporarily
swap v[i] with v[i + 1] and then build the border table for the suffix of v starting
at position i. After discovering a repetition v[i..j] (i.e., the fact that the difference
between j and the length of the border divides j − i + 1), we check whether it is
followed by a (b, respectively) and report the occurrence of the pattern.

The border table for a single suffix of the input word v can be constructed
in O(n) time and O(n) space (see [CLRS09]). We have to process at most O(n)

suffixes of v, therefore the second step and the whole algorithm runs in O(n2) time
and O(n) space.

word length ABSolve Pattern-matching alg. Java regular expressions

1 34 22 135
2 68 76 276
3 215 230 543
4 595 608 1082
5 1710 1646 5107
6 4941 3802 17019
7 21642 9966 48985
8 70047 39403 125728
9 177239 105482 292125
10 437897 227730 660942
15 23218586 6009431 28453021
20 1198560013 145795309 1205013146

Table 3.2: Comparison of the time (in nanoseconds) of different algorithms

In the Table 3.2, we can see some experimental results of checking binary
words for PN-solvability with different algorithms. Here we compare the algo-

123

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

rithm ABSolve described earlier with the algorithms that look for patterns (Ia),
(Ib), (IIa) or (IIb) as a subsequence of the word under consideration. The number
given in a corresponding entry of the table means the time (in nanoseconds) for
checking all possible binary sequences of a fixed length for solvability. These data
are normalised in Fig. 3.12, where one can see an average time (in nanoseconds) to
check the solvability of a binary sequence of a fixed length. We can see that, while
being pretty close in time for short sequences, the pattern-matching algorithm
essentially overtakes the ABSolve algorithm for longer sequences. Both special-
ized methods perform better than using inbuilt regular expressions. The results
for longer words are almost equal for ABSolve and Java regular expressions. For
ABSolve we expect a roughly linear curve, and likely similar for Java regular ex-
pressions. For the pattern-matching approach, a further decreasing of the average
time for checking a word is not expected. It is more likely to change for a (rel-
atively slow) increasing. All the implementations are done in Java 8, and we let
them run on the same machine. The data in Table 3.2, respectively in Fig. 3.12,
are mean values after 10 runs of each single experiment.

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1,000

1,200

length of word, letters

av
er
ag
e
ti
m
e
pe

r
w
or
d,

ns

Java regular exp.
ABSolve
Pattern Matching

Figure 3.12: Time per word of a given length to check its unsolvability

124

3.7. PRE-SYNTHESIS QUICK FAIL CHECK OF LTS

3.7 Pre-synthesis quick fail check of lts

We have earlier established the fact that the unsolvability of a subsequence im-
plies the unsolvability of the whole sequence under consideration. In the previous
section, basing on such a criterion, we have constructed an algorithm for the quick
pre-synthesis check of a word for possible unsolvability. The algorithm turned out
to be faster than to try at first to synthesise a Petri net and then to fail in case of
an unsolvable input transition system. This fact supports the importance of the
pre-synthesis check procedures, and leads us to further development of this line of
investigation. A first step on this way is presented in the current section, which
establishes that unsolvability of the linear parts of a transition system implies
(under some restrictions) the unsolvability of the whole input transition system.

The idea of the pre-synthesis quick fail check can be extended to a bigger
classes of labelled transition systems, but with some restrictions. The following
proposition demonstrates how the unsolvability of some part of a given lts can
imply the unsolvability of the whole transition system.

Proposition 19. Let lts = (S, T,→, s0) be a labelled transition system and wts =

({0, . . . , n},→w, {a, b}, 0) = TS(w) for a finite word w over {a, b}, such that
{a, b} ⊆ T , {0, . . . , n} ⊆ S, and →w= {(i− 1, ti, i) | 1 ≤ i ≤ n ∧ ti ∈ {a, b}} ⊆→.
Suppose that the word w = t1 . . . tn is unsolvable, and define the set of unsolvable
instances of ESSP J = {(j, t) | j ∈ S, 0 ≤ j ≤ n, t ∈ {a, b} \ {tj+1}∧ ESSP for
(j, t) is unsolvable for wts}. If (j, t, s) /∈→ for all (j, t) ∈ J and s ∈ S, then lts

is not PN-solvable.

Proof. By contraposition. Assume there is a Petri net N = (P, T, F,M0) such
that RG(N) ∼= lts. We are aiming to transform N to a Petri net solving w, in two
phases.

(i) 1. Remove every transition t /∈ {a, b} with its incident arcs. Then remove
all places from P which now became isolated. Let P ′ be the new set of
places, derived from P after this step.

2. Construct a new place pc, having n tokens on it initially, and one output
arc with unit weight to each of a and b.

125

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

After these two steps Petri net N1 = (P1 = P ′ ∪ {pc}, {a, b}, F1,M
1
0), with

F1(p, t) =

{
F (p, t), p ∈ P ′

1, p = pc
,

F1(t, p) =

{
F (t, p), p ∈ P ′

0, p = pc
,

M1
0 (p) =

{
M0(p), p ∈ P ′

n, p = pc
,

where p ∈ P1, t ∈ {a, b}, and M0 is the marking of N , corresponding to
state 0 ∈ S, can be constructed. We check that N1 allows to execute the
sequence w. Place pc enables w, since it has n = |w| tokens initially. Since
net N allows the execution of w at marking M0, so does each place p ∈ P ′.
Hence, N1 enables the firing of w, and, due to place pc, finishes all executions
after it. But N1 may also have some more behaviour, which we do not want.
We shall treat this in the next phase.

(ii) For each pair (i, t, s′) ∈→ \ →w, where 0 ≤ i < n and t ∈ {a, b}, construct
a new place q with initial marking mq and arc weights a+

q , a−q , b+
q , b−q , such

that q separates t at i in w = t1 . . . ti |i ti+1 . . . tn and allows the execution
of w. By the condition of the proposition, we have (i, t) /∈ J , implying that
such a place q always exists. Let Q be the set of all such constructed places.
The Petri net Nw = (Pw, {a, b}, Fw,Mw

0) with

Fw(p, t) =

{
F1(p, t), p ∈ P1

t−p , p ∈ Q
,

Fw(t, p) =

{
F1(t, p), p ∈ P1

t+p , p ∈ Q
,

Mw
0 (p) =

{
M0

1 (p), p ∈ P1

mp, p ∈ Q
,

where p ∈ Pw, t ∈ {a, b}, now solves w. Indeed, since P1 ⊆ Pw, no new
firings of transitions (no new behaviour) have been enabled in comparison

126

3.8. REVERSIBILITY OF MUWS

to N1. On the other hand, for any pair (j, t) such that t 6= tj+1 and t was
enabled at state j in N1, there is a corresponding place q ∈ Q ⊆ Pw which
forbids the firing of t at state j.

Hence, RG(Nw) ∼= wts, contradicting the unsolvability of w. Thus, lts is not
isomorphic to the reachability graph of any unlabelled Petri net.

Remark. One cannot hope to relax the condition of the proposition. Indeed,
the labelled transition system wts = ({0, . . . 5},→w, {a, b}, 0) (see Fig. 3.13), which
corresponds to the minimal unsolvable word w = abbaa, is a subsystem of lts =

({0, . . . , 5, 6},→,{a, b}, 0). The set of unsolvable instances of ESSP for wts is
J = {(2, a)}, because a is not separable from state 2. Since (2, a, 6) ∈→, the
condition is not satisfied for wts and lts. But lts is isomorphic to the reachability
graph of the Petri net N also shown in Fig. 3.13, i.e. it is solvable.

0 1 2 3 4 5

a b b a a
wts

0 1 2 3 4 5

6

a b ba a a
lts

a b

p0

p1

p2

p32

2

N

Figure 3.13: wts corresponds to unsolvable word w = abbaa. However lts is
solvable by N .

3.8 Reversibility of muws

Besides the task of Petri net synthesis itself and the pre-synthesis checking, the
results obtained so far have their reverberation in the area of reversible com-
putation which deals with (typically local) mechanisms for undoing the effects
of actions executed by a dynamic system. Such an approach has been applied,
in particular, to various kinds of process calculi and event structures (see, e.g.,
[BB92, CL11, DK04, DK05, LMS10, PU15, PUY12, PU07]), and to a category
theory based setting [DKS07].

127

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

We now use our previous results in the context of reversibility in Petri nets. A
key construction we investigate amounts to adding ‘reverse’ versions of selected net
transitions [BMP+16]. A ‘straightforward’ reverse simply changes the directions of
arcs adjacent to a transition being reversed, and we look at synthesising a PT-net
with ‘reversed’ behaviour given by an lts. As shown in [BKMP16], such a static
modification can severely impact on the behaviour of the system, e.g., the problem
of establishing whether the modified net has the same states as the original one is
undecidable.

In this section we show that it is, in general, impossible to reverse a transition
using its straightforward reverse without changing the state space. What is more,
the situation does not change if we relax the notion of a reverse by only requiring
that the effect of its execution is opposite to that of the original transition. We
will also have a closer look at the possibility to reverse a word, and in particular
we will try to investigate the solvability of reverses of minimal unsolvable words.

Definition 27. (transition reverses) A (strict) reverse of a transition t ∈ T

in a net N = (P, T, F,M0) is a new transition t such that F (p, t) = F (t, p) and
F (t, p) = F (p, t). An effect-reverse of a transition t ∈ T is a new transition t such
that Ep(t) = −Ep(t), for all places p ∈ P .

To improve readability, we depict newly created reverses and adjacent arcs by
dashed lines. For a given transition t, its strict reverse t is unique and, at the same
time, it is an effect-reverse of t. However, an effect-reverse t is not necessarily a
strict reverse (see Fig. 3.14).

•

•a a

2 2

•

•a a

2 2

Figure 3.14: A transition a and its (strict) reverse a (lhs), and an effect-reverse a,
which is not a strict reverse (rhs).

The following definition explains the modification of a transition systems by
adding and removing reverses of its labels.

128

3.8. REVERSIBILITY OF MUWS

Definition 28. (lts extension) Let TS = (S, T,→, s0) be a solvable lts. The
extension of TS by reversing t ∈ T is an lts TS[+t] = (S, T ∪{t},→′, s0) such that,
for all s1, s2 ∈ S:

• (s1, a, s2) ∈→′ if (s1, a, s2) ∈→, for all a ∈ T ;

• (s1, t, s2) ∈→′ if (s2, t, s1) ∈→.

The notion of extension can be extended to a finite set of labels {t1, . . . , tn} ⊆ T .
The resulting lts will be denoted by TS[+t1,...,tn].

With the next proposition we establish that, despite the inequality between
the strict and an effect-reverse of the transition from the point of their definitions,
when talking about solvability of the modified transition system, the existence of
one of them implies the existence of another one.

Proposition 20. [BMP+16] Let TS = (S, T,→, s0) be a solvable lts and a ∈ T .
If TS[+a] is solvable then there exists its solution such that a is a strict reverse
of a.

Proof. Let us consider a net N = (P, T ∪ {a}, F,M0) that solves TS[+a] and its
transitions a, a. The effects of these transitions are opposite (by the definition of
TS[+a]). This means that, for every p ∈ P , we have F (a, p)− F (p, a) = F (p, a)−
F (a, p).

We will show that N ′ = (P, T ∪ {a}, F ′,M0) is also a solution for TS[+a],
where: (i) F ′(a, p) = F ′(p, a) = max(F (a, p), F (p, a)) and F ′(p, a) = F ′(a, p) =

max(F (p, a), F (a, p)), for every p ∈ P ; and (ii) F ′(b, p) = F (b, p) and F ′(p, b) =

F (p, b), for all p ∈ P and b /∈ {a, a}.
By the monotonicity of Petri nets and their firing rule, it is enough to prove

that, for every reachable marking M of the net N and every transition x ∈ T , if x
is enabled at M in N then x is enabled at M in N ′.

Indeed, suppose that there exists a marking M at which x is enabled in N

but not in N ′. By the definition of F ′, x = a or x = a. Let us suppose that
x = a. Then we have M [a〉M ′, and there exists a place p ∈ P such that F (p, a) ≤
M(p) but F ′(p, a) > M(p). By the definition of F ′, we get F ′(p, a) = F ′(a, p) =

F (a, p) > M(p) ≥ F (p, a). Since F (a, p)−F (p, a) = F (p, a)−F (a, p), we also get
F ′(a, p) = F (p, a) = F ′(p, a).

129

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

Hence, we know that M ′[a〉M both in N and in N ′. This means that M(p) ≥
F (a, p) = F ′(a, p) = F ′(a, p), which yields a contradiction and proves that a is
enabled at M in N ′.

The case x = a is similar.

Petri net N1 in Fig. 3.15 without the dashed part. It solves the word bbabab,
and so its reachability graph is isomorphic to TS1. TS2 obtained from TS1 by
adding a reverse for transition b is solvable by N1 with the dashed part. Note
that, in N1, b is a strict reverse of b. Similarly, we may reverse a in TS1, obtaining
TS3 in Fig. 3.16. This lts is solvable by the net N2 with the dashed part.

p1

p2

••

a b b

3

2 2

N1 :

b

b

a b

a

b

TS1 :

b

b

a b

a

b

TS2 :

b

b

b

b

Figure 3.15: Adding a reverse b in TS2 = TS
[+b]
1 does not violate solvability.

N2 :

p1

p2

p3

p4

••

••

aa b

2

2

b

b

a b

a

b

TS3 :

a a

Figure 3.16: TS3 = TS
[+a]
1 is solvable by N2.

If adding reverses for two labels yields a solvable lts, then the lts containing
both reverses is also solvable.

130

3.8. REVERSIBILITY OF MUWS

Proposition 21. [BMP+16] Let TS = (S, T,→, s0) be solvable and a 6= b ∈ T .
If both TS[+a] and TS[+b] are solvable, then so is TS[+a,b].

Proof. Let Na = (P a, T a, F a,Ma
0) be a solution for TS[+a] with an added isolated

transition b. Thus, b is always enabled and its execution does not affect the
marking. We define N b = (P b, T b, F b,M b

0) similarly.
Without loss of generality, we assume that the sets of places of Na and N b

are disjoint, and that their sets of transitions are the same. Thus, we can define
a net N as a synchronisation on transitions of Na and N b, with an additional
modification: (i) for every p ∈ P b, F (p, a) = F (a, p) and F (a, p) = F (p, a); and
(ii) for every p ∈ P a, F (p, b) = F (b, p) and F (b, p) = F (p, b).

Any firing sequence of N not containing a or b is not affected and leads to the
same projected markings as in Na and N b. Note that the reachability graph of N
has almost the same structure as in case of Na and N b, with all the transitions
except a and b behaving in the same way as before synchronisation.

Assume now thatMa[a〉M ′a in Na. By the above argument, we can look at the
corresponding markings M and M ′ of N , and have to show that M [a〉M ′. By the
definition of TS[+a], we know thatM ′a[a〉Ma and, by the above argument,M ′[a〉M .
Thus, by the firing rule, we have that for all places p, M(p) ≥ F (a, p). By the
construction, this means thatM(p) ≥ F (p, a), and soM [a〉. By F (a, p)−F (p, a) =

−(F (a, p)− F (p, a)) and the firing rule, we derive M [a〉M ′.
The same argument applies for b.

It follows from the proof of the last result that a solution for TS[+t,u] can be
obtained by synchronising any solutions for TS[+t] and TS[+u] with disjoint sets of
places on the (common) transitions in T , and then making t a strict reverse w.r.t.
the solution for TS[+u], and making u a strict reverse w.r.t. the solution for TS[+t].

Using Proposition 21 and starting from two solutions, N1 for TS2 = TS
[+a]
1 and

N2 for TS3 = TS
[+b]
1 , we can construct a solution N3 for TS4 = TS

[+a,b]
1 depicted

in Fig. 3.17.
A sequence w written from right to left will be called the mirror image (or

simply mirror) of a word w and denoted as wR. The next proposition establishes
that mirrors of minimal unsolvable words are always solvable.

131

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

p1

p2

p3

p4

p5

p6

••

••

••

aa b b

2

3

2

2

3

3

2

N3 :

b

b
a

b

a

b

TS4 :

b

b

b

b

a

a

Figure 3.17: N3 solving TS4 = TS
[+a,b]
1 derived by synchronising the transitions

of N1 in Fig. 3.15 and N2 in Fig. 3.16.

Proposition 22. [BMP+16] Let w ∈ {a, b}∗ be a minimal unsolvable word. Then
TS(wR) is solvable.

Proof. Let w be a minimal unsolvable word. According to Theorem 6, we can
consider three subcases (the others are symmetrical modulo swapping a and b):

Case 1: w = abxabx−ka, then wR = abx−kabxa and 3 ≤ k ≤ x.
Petri net NA depicted in Figure 3.18 is a possible solution for this word. Indeed,
initial marking M0 allows only firing of transition a. In case k = x, this single
firing does not enable b, and place q has enough tokens for one more occurrence
of a. This second a consumes all the tokens from place q, disabling a, and enables
b to fire x times. Transition a remains disabled until b has occurred x times in a
row, and can be fired only once after. This finishes the execution of NA for the
case x = k. If x > k, place q enables a to fire only once at the beginning. This
first occurrence of a enables b to fire x−k times due to the side-condition place p2.
After the execution of block bx−k, a becomes enabled to occur once again. This
occurrence brings x tokens on p2, and together with the tokens that have already
been there, it allows for firing block bx. Then, due to place p1, only single a can
occur, which finishes the execution of NA.

132

3.8. REVERSIBILITY OF MUWS

q

p1

p2

a

x

x

b

k

k + 1

NA :

M0

p1

p2

q

 =

2x− k
0

x+ k



Figure 3.18: NA solves abx−kabxa.

q

cb

d

p

ca

a

j + 1

1 + k · (j + 1)

b

k

NB :

M0


p
q
d
ca
cb

 =


1

1 + k · (j + 1)
0

k + 1
(j + 1) · (k + 1)



qR

pR

a

j + 1

1 + k · (j + 1)

b

k

ÑR
B :

M0

(
pR

qR

)
=

(
1
k · j

)

Figure 3.19: NB solves the prefix w1. ÑR
B defines the internal execution of wR1 .

133

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

Consider the case w = abbj(babj)ka (for its extensions the proof is analogous).
Due to the minimality, the maximal proper prefix w1 = abbj(babj)k of w is solvable,
and the Petri net NB in Fig. 3.19 is a possible solution for this prefix. Let us
consider the inversed core part ÑR

B of this net, which is derived by changing the
directions of arcs between places and transitions, with the final marking of NB

as the initial marking. In Lemma 14 it has been shown that the places p and
q completely define the order of execution of a and b inside w1. Transition a

is not enabled initially in ÑR
B . Since the markings of places pR and qR in this

net now repeat all reachable markings of NB (restricted to places p and q) in an
inversed order while firing wR1 , this net allows the execution of wR1 . We can add
counter places cRa and cRb for a and b with initial markings k+ 1 and (j+ 1)(k+ 1),
respectively. These places will stop executions after the firing of wR1 . We now show
that the resulting net NB (see Fig. 3.20) does not have any additional behaviour
except wR1 . Assume that for some marking M reachable in NB, M [a〉 and M [b〉.
Let M be the marking of NB corresponding to M and consider the case when M
is reached in NB by firing transition a from some other marking M ′. Due to place
cRb , M is not the marking before the very last a in wR1 . Hence, as a does not occur
more than once in a row, there is a marking M ′′ such that M ′′[b〉M ′[a〉M in NB.
From M [b〉 we have M(q) = M(qR) ≥ k. This implies M ′(q) ≥ k + 1 + k · (j + 1).
SinceM ′′[b〉M ′,M ′′(q) ≥ 1+k ·(j+1). Therefore,M ′′[a〉 which contradictsM ′′[b〉.
Hence, there is no markingM ′ reachable in NB, such thatM ′[a〉M . The case when
M is reached from M ′ through firing of transition b is similar.

pR

cRb

qR

cRa

a

1 + k · (j + 1)

(j + 1)

b
k

NB:

M0


pR

qR

cRa
cRb

 =


1
k · j
k + 1

(k + 1) · (j + 1)



Figure 3.20: NB solves the reversed prefix wR1 .

Thus, wR1 is solvable. By Proposition 3 we can ‘unfire’ one a in NR
B . In order to

do this we increase arc weights between qR and b by 1+k ·(j+1), and change initial

134

3.9. SUMMARY

markings of cRa and pR to k+ 2 and j+ 2, correspondingly. The net obtained after
such a transformation allows to execute a initially and has the same behaviour as
NR
B afterwards, thus solves wR.
Case 3: w = babj(abbj)kb with j ≥ 0, k ≥ 1, or one of its extensions.

This case is analogous to case 2. Petri net NC solving wR is depicted in Fig. 3.21.

pR

cRb

cRa
qR

a

j + 1

(k + 1) · (j + 2)− 1

k + 1

b

k + 1

NC :

M0


pR

qR

cRa
cRb

 =


0

j + 2
k + 1

(k + 1) · (j + 1) + 1



Figure 3.21: NC solves (babj(abbj)kb)R.

Due to Propositions 21 and 22, reversing both transitions in the mirror image
wR of some minimal unsolvable word w over {a, b} yields the solvability of w,
which is a contradiction. Hence, the following corollary holds:

Corollary 2. Let w ∈ {a, b}∗ be a minimal unsolvable word and TS = TS(wR).
Then TS[+a] or TS[+b] is unsolvable.

As we have seen, the unsolvability of sequences is not an isolated issue: it
has its implications in a wider context. In particular, it allows to talk about the
solvability of complicated transition systems which contain a linear one as a part.
Besides, in the current section we have discussed a less obvious continuation of
this line of research – reversible computations. In this area we also have seen
a possibility for applying existing results in order to detect the impossibility of
reversing for some labels in the transition system without its solvability.

3.9 Summary

The class of minimal unsolvable binary words was studied in the present chapter.
Among the main results of the investigation, we can recall an introduced classi-

135

CHAPTER 3. CHARACTERISATION OF MINIMAL UNSOLVABLE WORDS

fication for a complete enumeration of the muws (first initiated in [BBE+16] and
completed in [EBMP16]), and a presented algorithm for a quick check of the un-
solvability of a given binary sequence. Besides some repercussions of the character-
isation in the field of reversible computations were mentioned (see also [BMP+16]).
The classification of muws partitions the entire class into three main groups. Non-
extendable minimal unsolvable words form the first main group. These words
satisfy the patterns abxabya and baxbayb with x > y + 2, y ≥ 2. The other two
main groups, namely base extendable and extendable muws, follow the patterns
abw(baw)ka and baw(abw)kb with k ≥ 1. All of these forms can be generalised by
the pattern (abα)b∗(baα)+a ([BBE+15]), which was first discussed in the previous
chapter, and whose presence as a subword is now proved to be a characterisation
of the (possibly non-minimal) unsolvability of a binary sequence. Base extendable
words can serve as origins from which, with the use of the extension operation, the
class of extendable muws can be derived. The classification of muws suggests a
pattern-matching algorithm which allows to detect an unsolvable synthesis input
without initiating the synthesis process. The algorithm demonstrates a better run-
time in comparison with the earlier introduced algorithm ABSolve. This exploiting
of the characterisation of unsolvable state spaces (which are binary words here)
via general patterns continues the discussion on the pre-synthesis idea, which was
initiated before.

136

Chapter 4

Synthesis of Petri nets from finite
languages

Throughout the previous chapters we have established a number of necessary and
sufficient conditions for the solvability of finite sequences with Petri nets. These
conditions have different forms: some of them can be formulated as a pattern-
matching, while the other ones can be expressed as graph-theoretical conditions
between subsequences of the whole sequences. We have also seen that the sol-
vability of this restricted class can find applications in some other (not directly
related) areas. In this chapter, which partly based on [EW17] by the author and
a co-author, we aim to broaden our view, to look at finite alphabets and finite
languages over them, and to relax our restriction to the binary case. The results
and the intuition that we gained from the previous chapters will be of use in this
broader area. We begin with an observation of which of our earlier results can be
extended and to what border, in particular for finite sequences, and continue with
cyclic structures and finite languages. Besides, we will also discuss why (possible)
extending the counting criterion is not too promising in terms of the efficiency
of synthesis. In the following, we will present a characterisation of a bigger class
of solvable finite transition systems with the synthesis algorithms based on this
characterisation.

137

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

4.1 Synthesisability of words over finite
alphabets

While sufficient conditions for Petri net synthesisability are scarce in the litera-
ture, the ones provided earlier (see Theorem 3 in Section 2.6 and Corollary 1 in
Section 3.5) for binary sequences turned out to be strong enough to use them for
sequences over arbitrary finite alphabets. Here we present a sufficient condition
for the synthesisability of finite sequences over an arbitrary finite alphabet.

Definition 29. Let T be a finite alphabet, and w ∈ T ∗ a finite sequence over T .
For a subset T ′ ⊆ T , a sequence w′ ∈ T ′∗ is called a projection of w to T ′ if
w′ = PrT ′(w), where PrT ′ is defined as follows:

PrT ′(u) =


ε, for u = t ∈ T \ T ′,
t, for u = t ∈ T ′,
PrT ′(t)PrT ′(v), for u = tv, t ∈ T , v ∈ T ∗.

Proposition 23. (sufficient condition for solvability of arbitrary sequences)
Let w be a finite sequence over an alphabet T . If Pr{t1,t2}(w) is solvable for all
t1, t2 ∈ T , then w is solvable.

Proof. Let w be a sequence over T , and let all projections of w to binary subal-
phabets of T be solvable. Consider a, b ∈ T such that a 6= b and

w = . . . |sb u |s′a . . . ∧ Ψ(u)(a) + Ψ(u)(b) = 0.

In order to construct a Petri net solving w, we have to find a place that separates
a at state s.

Using the isomorphism between sequences and labelled transition systems, and
Definition 29, for T ′ ⊆ T we can define a mapping PrT ′,w : S → S ′ between sets
of states of TS(w) = (S, T,→, s0) and TS(PrT ′(w)) = (S ′, T ′,→′, s′0) as follows:

PrT ′,w(si) = smax{j≤i|tj∈T ′}, for si ∈ S

If Pr{a,b}(w) is solvable with some Petri net, then there is a place p such that p
disables a at Pr{a,b},w(s). Place p is only affected by transitions a and b. Hence it

138

4.1. SYNTHESISABILITY OF WORDS OVER FINITE ALPHABETS

disables a at s and enables a at all states in {s′′ ∈ S | Pr{a,b},w(s′′) = Pr{a,b},w(s)},
i.e., p solves ESSP for ¬s[a〉. Similarly, we can construct a solution for every
instance of ESSP in w, thus w is solvable.

Proposition 23 implicitly suggests an approach for constructing of a Petri net
solving a sequence over a ‘big’ alphabet from the solutions of its subsequences. In
order to do this we have to merge Petri nets solving projections by transition pairs,
and retain all places, markings and arcs. The following example demonstrates this
approach.

Example 20. We examine the sequence w = abacba over the three-letter alphabet
T = {a, b, c}. Since T has 3 binary subalphabets, there are 3 corresponding binary
projections of w:

Pr{a,b}(w) = ababa, Pr{a,c}(w) = aaca, Pr{b,c}(w) = bcb.

All three projections are solvable – their possible solutions are Petri nets Nab,
Nac and Nbc, respectively (see Fig. 4.1). In order to construct a solution for the

p0

p1

p2

a b

Nab

q0

q1

q2

a c
2

2

Nac

r0

r1

r2

b c

Nbc

Figure 4.1: Petri nets Nab, Nac, Nbc are solutions for ababa, aaca, bcb, respectively.

sequence w, we can compose all the solutions for its binary projections by merging
them through the transitions. The Petri net N in Fig. 4.2 – the result of this
composition – has the reachability graph isomorphic to TS(w), and hence solves
w = abacba. Let us notice that places r1 and q0 in the net N duplicate each other:
both restrict the total number of firings of c. Hence one of these places is redundant.

139

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

p0

p1

p2

q0

q1

q2

r0

r1

r2

a

b

c2

2N

Figure 4.2: Petri net N , solving abacba, is composed from Nab, Nac and Nbc (see
Fig. 4.1) by merging them via transitions.

The next example shows that the condition from Proposition 23 is not necessary
for the solvability of a sequence. Thus, the solvability of binary projections of a
given sequence can be used in a pre-synthesis phase, but it is not a necessary
condition for a successful synthesis of a Petri net.

Example 21. Consider the sequence w = abcbaa over the alphabet T = {a, b, c}.
The sequence is solvable, since the Petri net N depicted in Fig. 21 has a reachability
graph isomorphic to TS(w). Nevertheless, the projection Pr{a,b}(w) = abbaa is
known to be a (minimal as well as lenght-minimal) unsolvable word.

a

b
c

2

2

N

Figure 4.3: Petri net N has a reachability graph isomorphic to TS(abcbaa).

140

4.2. GENERALISING THE COUNTING CONDITION IS COMPLICATED

4.2 Generalising the counting condition is
complicated

In this section, we explain why the counting criterion is not likely to yield substan-
tially better synthesis algorithms than region-based synthesis, even if pre-synthesis
is taken into account, subject to alphabets consisting of 3 and more letters. We
start our consideration with several examples and then try to generalise what they
suggest.

The sequence abcbaca is unsolvable which can be seen as follows. Since Ψ(abc) =

Ψ(bac), both words must have the same effect as firing sequences. Consider the
separation point y in |xabc|ybac|za: a cannot fire at y, but it can fire at x (the
start of abc) and at z (after bac). So there must be a critical place p with enough
tokens on it to fire a at x and z, but not enough at y. This contradicts the Parikh
equivalence of abc and bac, which forces both to have the same effect on p – either
both positive or both negative or both with no effect.

Let us look at another unsolvable sequence abcbaccbaa. Here, 2 · Ψ(abc) =

Ψ(baccba), so the effect of both words has the same sign. Again, in |xabc|ybaccba|za
the number of tokens on a critical place must be lower at y than at x and at z,
which is impossible. Therefore, a separation failure occurs at y, i.e. there exists no
Petri net that has abcbaccbaa as a firing sequence and disables a at y at the same
time. This even holds for Petri nets that can fire more than one word.

The sequence |xaccb|yc|sab|za is also unsolvable. At y, the number of tokens
on some critical place p is too low to fire a, but at s and z it is high enough.
Assume there would be a net solving this word. Remove all non-critical places
(with enough tokens at y to allow a). The remaining net can still fire the word
and can still not fire a at y. Since c adds enough tokens to all critical places
to enable a (after y), we can add another c to our firing sequence at this point,
getting the word |xaccb|yccab|za. This word can be fired in our reduced net, and at
y the transition a can still not fire. This contradicts the above paragraph telling
us that such a Petri net cannot exist. Therefore, there is a separation failure at y
in |xaccb|yc|sab|za also, i.e. the word is unsolvable.

141

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

So, if we have |xav|yw1|z1aw2|z2a . . . wn|zna such that

Ψ(av) =
n∑
i=1

ki ·Ψ(w1 . . . awi)

with all rational ki ≥ 0, then the word is unsolvable since all the words w1 . . . awi

increase the token count on all critical places while av with the same relative
occurrence of transitions decreases the token count.

The sequence |xabca|ycaaab|za is unsolvable. We cannot obtain the same rela-
tive Parikh vector on both sides of y, i.e. Ψ(abca) = k1 · Ψ(c) + k2 · Ψ(ca) + k3 ·
Ψ(caa)+k4 ·Ψ(caaab) cannot be solved. There is a different argument, though: the
transition a must have a negative effect on all critical places, since a fires directly
before y. On the other hand, the effect of abca is also negative while the effect
of caaab is positive, meaning that Ψ(caaab) − Ψ(abca) = Ψ(a) also must have a
positive effect on the critical places, a contradiction.

Let us now examine the unsolvable sequence |xaccbc|yccab|za. Since accbc has
a negative effect on the critical places and ccab has a positive effect, we conclude
from Ψ(accbc)− Ψ(ccab) = Ψ(c) that c has a negative effect. On the other hand,
cc enables a after y, showing that c must have a positive effect, a contradiction.

Finally, the sequence |xaccab|ycbaa|za is also unsolvable. This case is a bit more
complicated. Due to Ψ(accab) − Ψ(cbaa) = Ψ(c) we know that c has a negative
effect on the critical places. But since Ψ(cba) − Ψ(ab) = Ψ(c), where cba has a
positive effect and ab (in front of y) has a negative effect, c itself must also have a
positive effect, a contradiction.

With these types of argument, all minimal unsolvable words over {a, b, c} up
to at least length 10 can be shown unsolvable. The general argument (that also
holds in the first examples) is that if we find a transition [sequence] which must
have a positive and a negative effect for the same critical place(s), then we have
found a separation failure and the word is unsolvable. This sounds a lot like a
region approach.

Note that the two-letter case is a special case of our general argument of ‘a
positive and a negative effect’ for unsolvable words. In a word |xav|ybw|za with
v, w ∈ {a, b}∗, b must have a positive effect, since a is disabled at y but not at z,
and it cannot enable itself – so b must do it. If #a(av) ·#b(bw) ≤ #b(av) ·#a(bw)

142

4.2. GENERALISING THE COUNTING CONDITION IS COMPLICATED

– i.e. the condition for unsolvability of words over two letters – we can find factors
j, k > 0 such that j ·#a(av) = k ·#a(bw) and j ·#b(av) ≥ k ·#b(bw), giving a a
negative effect on the critical place(s).

Let us now think about the following Question Q: If a positive and a negative
effect on the same place does not follow from any logical deduction, is the word
then solvable? This could be possible. Any quantitative (not sign-based) relation
on token effects might be achievable by multiplying all arc weights and token
counts by some high number and then doing small changes somewhere in the net.

If the answer to Question Q is “yes”, then we can also ‘easily’ detect whether
a word is minimal unsolvable, and we also know why minimal unsolvable words
must start and end with the same letter and why no separation failure against the
other letters occurs anywhere in such words.

If a minimal unsolvable word starting and ending with a would contain a sepa-
ration failure against another letter (say b), then the contradictory argument could
not use the whole word, i.e. we could at least cut off a prefix up to (but excluding)
the first b and a postfix after the last b and still have an unsolvable word.

Example 22. Consider the word abccabbcabaa. This word has, according to APT,
two separation failures, one between the two c’s, one between the two b’s. So, for

|xabc|yc|z1abbc|z2ab|z3a|z4a,

in Ψ(z1 − y) = Ψ(c), transition c has a positive effect on the critical places at y
while in Ψ(z4−y)−3·Ψ(y−x) = −Ψ(c) it has a negative effect on the same places.
Since the latter calculation uses the whole word (from x to the final a which defines
z4), cutting off any letters at the start or end would invalidate this argument. It
also seems to be the only way to obtain the necessary contradiction.

If we find another separation failure at which we do not need the whole word
for our contradiction, we could cut off letters at the start or end and the reduced
word would remain unsolvable. So it would not be minimal. Let us check the other
separation failure:

|x1abcc|x2ab|ybc|z1ab|z2a|z3a.

Here, we can argue for a negative effect for a: 2 ·Ψ(z1−y)−Ψ(y−x1) = −2 ·Ψ(a),

143

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

and for c: Ψ(z3 − y) − Ψ(y − x1) = Ψ(c), as well as positive effects for b:
2 ·Ψ(z2 − y)−Ψ(y − x1) = 2 ·Ψ(b), and for c: Ψ(z3 − y)− 2 ·Ψ(y − x2) = Ψ(c).
The contradiction again comes from transition c and for that argument we need
again the whole word. There seems to be no shorter argument. Since there are no
other separation failures, the word must be minimal unsolvable.

We never need to show that a transition sequence has a positive and a negative
effect at the same time. If we have∑

i

ji ·Ψ(zi − y)−
∑
i

ki ·Ψ(y − xi) = Ψ(τ)

and ∑
i

j′i ·Ψ(zi − y)−
∑
i

k′iΨ(y − xi) = −Ψ(τ)

then ∑
i

(ji + j′i) ·Ψ(zi − y) =
∑
i

(ki + k′i) ·Ψ(y − xi).

It is sufficient to sum up the same Parikh vector in both the (allowed) prefixes and
postfixes at y to get a contradiction and thus a separation failure.

Revisit abca|ycaaaba and mark the start and end points of the subwords ending
and starting at y, respectively:

|x1abc|x2a|yc|z1a|z2a|z3ab|z4a.

Now Ψ(z4− y) = Ψ(y−x1) + Ψ(y−x2), which contradicts caaab having a positive
and abca and a having a negative effect on the critical places at y.

We can show the following ring of conclusions:

Take some word u1u2 . . . um|v1v2 . . . vna over Σ, such that each subword ui

and vj except v1 starts with an a and no other subwords do. Assume there is a
separation failure against a for the ESSP in front of v1.

144

4.2. GENERALISING THE COUNTING CONDITION IS COMPLICATED

Then, from the theory of regions, we know that the linear system

#a(u1 . . . um) #b(u1 . . . um) #c(u1 . . . um) . . .

#a(u2 . . . um) #b(u2 . . . um) #c(u2 . . . um) . . .
...

...
...

#a(um) #b(um) #c(um) . . .

−#a(v1) −#b(v1) −#c(v1) . . .

−#a(v1v2) −#b(v1v2) −#c(v1v2) . . .
...

...
...

−#a(v1 . . . vn) −#b(v1 . . . vn) −#c(v1 . . . vn) . . .




Ea
Eb
Ec
...

 < 0

is unsolvable. The subwords starting with a and ending at the separation point
must reduce the number of tokens on the place to be constructed for the ESSP,
while the subwords starting at the separation point and ending before an a must
increase this token count (expressed by the negative coefficients).

Then, by Gordan’s Theorem [Dan63], the following dual linear system must
have a non-zero, non-negative solution:


#a(u1 . . . um) . . . #a(um) −#a(v1) . . . −#a(v1 . . . vn)

#b(u1 . . . um) . . . #b(um) −#b(v1) . . . −#b(v1 . . . vn)

#c(u1 . . . um) . . . #c(um) −#c(v1) . . . −#c(v1 . . . vn)
...

...
...

...





x1

...
xm

y1

...
yn


= 0

We can rewrite this as
#a(u1 . . . um) . . . #a(um)

#b(u1 . . . um) . . . #b(um)

#c(u1 . . . um) . . . #c(um)
...

...


x1

...
xm

 =


#a(v1) . . . #a(v1 . . . vn)

#b(v1) . . . #b(v1 . . . vn)

#c(v1) . . . #c(v1 . . . vn)
...

...


y1

...
yn



145

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

or, using Parikh vectors, even shorter as

(
Ψ(u1 . . . um) . . . Ψ(um)

)x1

...
xm

 =
(

Ψ(v1) . . . Ψ(v1 . . . vn)
)y1

...
yn

 .

We can interpret this as the existence of a sequence σ whose Parikh vector can
be expressed as a linear combination of the ui’s (always ending at the separation
point) as well as of the vj’s (starting from there), i.e.

Ψ(σ) =
∑
i

Ψ(ui . . . um) · xi and Ψ(σ) =
∑
j

Ψ(v1 . . . vj) · yj.

This sequence can be arbitrarily long (consider aw|waa with w ∈ (Σ \ {a})+) for
which the only solution to the linear system is x1 = y2 and y1 = 0).

The effect of this sequence on the place p to be constructed for the ESSP must
be negative (Ep(σ) < 0)) and positive (Ep(σ) > 0) at the same time. We conclude
that there must be a separation failure for this ESSP.

This not only is a positive solution to Question Q, it also shows that a gen-
eralised counting condition for words over three or more letters, if the one were
found, would be derivable from the theory of regions. In other words, one cannot
hope for a significant enhancement of the synthesis efficiency in comparison with
the region based approach.

4.3 Generalised cycles of lts

In the previous section, we have argued that the counting criterion, which is a
convenient tool when talking about the solvability of the class of binary sequences,
does not seem to offer much advantages in the case of more than two letters. In
this section, we will extend our investigation in another respect: we analyse the
solvability of finite sets of sequences (languages) while keeping the condition for
the transition systems representing a language to have at most two labels.

Definition 30. For state s and s′ of a transition system, s t
 s′ is used as an

abbreviation for (s
t→ s′ ∨ s t← s′) and called a generalised edge or a g-edge (in

the underlying undirected graph). A path (g-path) σ ∈ T ∗ from s to s′, written as

146

4.3. GENERALISED CYCLES OF LTS

s
σ→ s′ (s σ

 s′), is given inductively by s = s′ for the empty word σ = ε and by
∃s′′ ∈ S: s w→ s′′

t→ s′ (s w
 s′′

t
 s′) for σ = wt with w ∈ T ∗ and t ∈ T . A path

s
σ→ s′ (g-path s σ

 s′) is a cycle (g-cycle) if and only if s = s′.

For the sake of convenience we will consider undirected paths within lts. Parikh
vectors can be generalised for them by counting arrows negatively if they point in
backward direction. We will use the notation ←−a to indicate that label a occurs in
backward direction in a path.

Definition 31. A labelled transition system is called general-cycle-neutral (gc0)
if for every general cycle σ ∈ T ∗: Ψ(σ) = 0, Ψ(σ) being the Parikh vector of σ.

Example 23. Transition system TS1 on the left of Fig. 4.4 has a cycle ab at
its initial state with Parikh vector Ψ(ab) = (1, 1). For the same path in backward
direction

←−
b←−a , the Parikh vector is Ψ(

←−
b←−a) = (−1,−1) again not equal to 0, which

means TS1 is not general-cycle-neutral. On the right of Fig. 4.4 for transition
system TS2 and its cycles ab←−a

←−
b and ba

←−
b←−a we have Ψ(ab←−a

←−
b) = Ψ(ba

←−
b←−a) =

(0, 0) implying that the property gc0 is satisfied for TS2.

a

b

TS1

b

a

a

b

TS2

Figure 4.4: TS1 is not gc0; TS2 is general-cycle-neutral.

A deterministic labelled transition system, with a label set T , which satisfies
property gc0 can be interpreted as a part of a |T |-dimensional space where the
dimensions correspond to the labels, and the nodes of the lts correspond to the
points of the space having (non-negative) integral coordinates.

Proposition 24. Let TS = (S, T,→, s0) be a deterministic, totally-reachable
labelled transition system satisfying the property gc0. Then every state s ∈ S

uniquely corresponds to a T -vector.

147

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

Proof. Due to total-reachability, for any state s ∈ S, there is a path σs ∈ T ∗

such that s0[σs〉s. Assume that for some s ∈ S, there are σ′1, σ′2 ∈ T ∗ such that
s0[σ′1〉s, s0[σ′2〉s, and Ψ(σ′1) 6= Ψ(σ′2). Then, there is a (possibly empty) path
τ ∈ T ∗ and such that σ′1 = τδ1 and σ′2 = τδ2. Let s′′ ∈ S be such that s0[τ〉s′′.
By Ψ(σ1) 6= Ψ(σ2), we have Ψ(δ1) 6= Ψ(δ2). On the other hand, it holds that
s′′[δ1〉s and s′′[δ2〉s. This means that δ1(δ2)−1 is a general cycle (from s′′ to s′′),
and Ψ(δ1(δ2)−1) 6= 0, contradicting the property gc0.

m

p

a

a−

a+

b

b−

b+

Figure 4.5: General place p of a Petri net with two transitions a and b.

With the interpretation of states of the lts as points of space, we can study
the synthesisability of the class of totally-reachable, deterministic, gc0 labelled
transition systems with Petri nets. To this end, we consider the circumstances
under which labels can be enabled or disabled at some state. For a synthesisable
labelled transition system, enabling and disabling of labels is determined by the
markings of the places in the Petri net solving the lts. Let us restrict our attention
to the case of binary set of labels T (the more complicated cases can be considered
similarly). A general place of a Petri net with a binary set of transitions is depicted
in Fig. 4.5. Every state of the lts uniquely corresponds to a Parikh-vector, or a
point in 2-dimensional space represented as a coordinate plane with x-axis as the
abscissa line, y-axis as the ordinate line, and O as the origin, Oxy for short. A
markingMs(p) of the place p at state s can be described by the following equation:

Ms(p) = m+ (a+ − a−) · x+ (b+ − b−) · y,

where x = Ψ(s)(a) and y = Ψ(s)(b). This equation is linear for both variables x
and y, hence it determines a line in space Oxy. Assume that we aim to enable
transition a with the place p. This can be done for points of Oxy satisfying the

148

4.3. GENERALISED CYCLES OF LTS

following inequation

m+ (a+ − a−) · x+ (b+ − b−) · y ≥ a−. (4.1)

Inequation (4.1) determines a half-space of Oxy. For instance, place p1 in Fig. 4.6
allows transition a for firing only at the states corresponding to points from the
shaded domain (r.h.s. of Fig. 4.6).

3

p1

a

2

b

3

−x+ 2 · y + 1 ≥ 0

y

x
0

1

2

1 2 3 4

Figure 4.6: p1 enables a only at the states corresponding to the points from the
shadowed half-space of Oxy.

Example 24. Transition system TS in Fig. 4.7 is deterministic and satisfies the
property gc0, hence it has a 2-dimensional interpretation (r.h.s. of Fig. 4.7). The
initial state s0 of TS corresponds to the origin O of the coordinate system Oab,
and other states correspond to the space-points whose coordinates are defined by the
Parikh vector of the state. For instance, state s2 can be reached from the initial
state s0 by executing ab, hence s2 corresponds to the point S2 with coordinates
Ψ(ab) = (1, 1) in Oab.

The example together with Proposition 24 may give us a first intuition about
the class of finite languages which are solvable with Petri nets. In the follow-
ing sections, this intuition will be presented more clearly and developed into a
characterisation, together with over-approximation algorithms based on it.

149

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

s0

s1

s2

s3

s4

a
b

a

a

b

TS

b

a
0

S1

S2 S3

S4

1

1 2

Figure 4.7: TS satisfies property gc0. A 2-dimensional interpretation of TS in
Oab (r.h.s.).

4.4 Abstract regions of lts

In Section 2.2, where we made a short presentation of the theory of regions, we
have introduced the notion of a region. In the following paragraphs, we shall use
the notion of an abstract region, which is more general compared to the regions
considered before. This generality of the new notion of regions allows to adjust
the initial state space in order to make it synthesisable with Petri nets.

Definition 32. An abstract region r of an lts (S, {t1, . . . , tn},→, s0) is a tuple
r = (r0, r1, . . . , rn) ∈ NS × Zn with two consistency properties:

• ∀s, s′ ∈ S ∀i ∈ {1, . . . , n}: s ti→ s′ ⇒ r0(s′) = r0(s) + ri

• for every g-cycle σ in the lts,
∑n

i=1 Ψ(σ)(ti) · ri = 0.

From this, it follows easily that the value r0(s) is fully defined by r0(s0) and
the ri with 1 ≤ i ≤ n. Let us also note that an abstract region r = (r0, r1, . . . , rn)

for T = {t1, . . . , tn} can be obtained from a region ρ = (R,B,F) introduced earlier
and its effect E as follows:

r0 = R, ri = E(ti), for 1 ≤ i ≤ n.

An abstract region in a reachability graph gives rise to an equivalence class
of places p where M0(p) = r0(s0) and ri = F (ti, p) − F (p, ti). This means that
unlike ordinary regions, the places obtained from abstract regions are defined up
to the effect of transitions (the exact values of arc weights can vary). If the

150

4.4. ABSTRACT REGIONS OF LTS

region distinguishes the states s and s′ of two reachable markings M and M ′ (by
r0(s) 6= r0(s′)), the firing rule of the Petri net ensures that M(p) 6= M ′(p).

Lemma 19. [EW17](indistinguishable regions) Let r = (r0, r1, . . . , rn) be an
abstract region of some (totally reachable) lts (S, {t1, . . . , tn},→, s0). If r does
not solve an instance {s, s′} of SSP (by distinguishing s and s′), neither does
r′ = (k · r0 + i, k · r1, . . . , k · rn) with i, k ∈ Z.

Proof. If k · r0(s) + i < 0, r′ is not a region, there is nothing to prove. Assume
that r0(s) = r0(s′), i.e. r does not distinguish s ans s′. Then, (k · r0(s′) + i) −
(k · r0(s) + i) = k · (r0(s′) − r0(s)) = 0, which means that r′ does not distinguish
s and s′ as well.

Places constructed from abstract regions are sufficient to deal with all states
separation problems but not with all event-state separation problems. For fully
determined places (with exactly known values for F (p, ti) and F (ti, p)) one would
have to consider ordinary regions (which are more refined). Instead, here we argue
directly about the loops at some place p in a Petri net, i.e. about the value

kti = min{F (p, ti), F (ti, p)}

for each transition ti ∈ {t1, . . . , tn}. Together with a region r = (r0, r1, . . . , rn) for
p, they fully determine the arc weights between p and its neighbouring transitions.
More precisely, since ri is equal to the effect of ti for p, i.e. ri = F (ti, p)−F (p, ti),
then the arc weights are determined as:

F (ti, p) = kti , F (p, ti) = kti + |ri|, if ri < 0, or

F (ti, p) = kti + ri, F (p, ti) = kti , if ri ≥ 0.

Places derived from the same region, distinguished by the loop values kt only, can
easily be unified.

Lemma 20. [EW17](loop maximisation) Let N = (P, T, F,M0) be a Petri net
with p1, p2 ∈ P and kt ∈ Z for each t ∈ T such that M0(p2) = M0(p1), and ∀t ∈ T :
F (p2, t) = F (p1, t) + kt and F (t, p2) = F (t, p1) + kt. Define a new Petri net N ′

by adding kt to each of F (p1, t) and F (t, p1) if kt > 0, for every t ∈ T , and then
deleting p2 including all adjacent arcs. N ′ has the same reachability graph as N .

151

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

Proof. Note that M(p1) = M(p2) holds for all reachable markings M in N . A
transition t is disabled in N at M by place p1 or p2, if M(p1) < F (p1, t) or
M(p2) < F (p2, t), or put differently, if M(p1) < max{F (p1, t), F (p2, t)}. This
maximum is exactly the arc weight F (p1, t) as defined for N ′. Since the token
change on p1 by firing a transition is the same in N and N ′ and enabledness
of transitions also remains unchanged from N to N ′, both nets have the same
reachability graph.

Example 25. For the transition system TS on the left of Fig. 4.8 we can construct
an abstract region r = (0, 1,−1). It can be directly checked that all the constraints
for r and TS from Definition 32 are satisfied. This region gives rise to a class of
places p with M0(p) = 0, F (a, p)−F (p, a) = 1 and F (b, p)−F (p, b) = −1. Places
p1 and p2 of net N in the middle of Fig. 4.8 satisfy these restrictions, hence belong
to the class. These places differ in the number of loops around transition b in N ,
in particular p2 being a side-condition with a single loop and p1 being pure. For
ka = 0 and kb = 1, the premises of Lemma 20 are satisfied. Hence, one can modify
N into net N ′ (in the right of Fig. 4.8) which has the reduced number of places but
the same behaviour. Indeed, the reachability graphs of N and N ′ are isomorphic
to TS.

s0 s1 s2

a
b

b

TS

p1

p2

a

b

2

N

p1a

b

2

N ′

Figure 4.8: Places p1 and p2 in N and p1 in N ′ correspond to the same abstract
region of TS.

So, of all places constructed from the same abstract region, it is enough to have
only one, i.e. the place with the maximal number kt of loops, separately computed
for each adjacent transition t in the Petri net. This place performs the functions
of all the others, obtained from the same region.

152

4.5. GENERALISED CYCLES WITH NON-ZERO PARIKH VECTORS

4.5 Generalised cycles with non-zero
Parikh vectors

In the present and the following sections we continue our investigations in charac-
terising of solvable state spaces. We now relax the restrictions for the shape of the
initial lts, but retain the binary transition set. In other words, we now would like
to characterise the reachability graphs of Petri nets with at most two transitions.
As a first case, we consider reachability graphs that contain at least one generalised
cycle with a non-zero Parikh vector.

Theorem 7. [EW17](shapes with non-zero Parikh cycles) If the reachability
graph of a Petri net (P, {a, b}, F,M0) contains a g-cycle with a non-zero Parikh
vector, it has one of the seven general shapes shown in Figures 4.9, 4.11, and 4.13
or it consists of the initial state without any edges.

Proof. Let (S, {a, b},→, s0) be a synthesisable lts, i.e. the reachability graph of
some Petri net (P, {a, b}, F,M0), with some g-cycle s σ

 s such that Ψ(σ) 6= 0.
From the definition of abstract regions, we know that every g-cycle must have

a weighted sum of zero in any abstract region of the lts. Let r = (r0, ra, rb) be any
such region, then Ψ(σ)(a) · ra + Ψ(σ)(b) · rb = 0. Our knowledge about ra and rb
depends directly on the Parikh vector of σ.

Case 1: Ψ(σ)(a) = 0. Then, Ψ(σ)(b) 6= 0 and thus rb = 0, but we know
nothing about ra. As a consequence, following a b-edge s b→ s′ in the lts cannot
modify the region value, i.e. r0(s′) = r0(s) + rb = r0(s). Therefore, no region
can distinguish s and s′, and neither can any place distinguish the corresponding
markings in the Petri net; the markings must be identical. We conclude that
s = s′ for every b-edge s b→ s′, all b-edges must be loops in the reachability graph.
Fig. 4.9 depicts all possible reachability graphs depending on whether regions with
negative, zero, or positive ra occur in the lts, together with a class of sample Petri
nets with such reachability graphs.

• If in all regions r = (r0, ra, 0), ra = 0, transition a cannot change the marking
in the Petri net either. If a can fire at all, we obtain the reachability graph
in the first row of Fig. 4.9. If a cannot fire, we get the second row.

153

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

ba 0

b

a

ba 0

b

ba
q

q

0 1 qa a a

b b

ba

f

q

q

f−r
f−r

0 1 q r fa a a a a a

b b b b

Figure 4.9: Reachability graphs with loops (cycles of length 1). For easy identifi-
cation of markings in the Petri nets on the left side, consider corresponding states
as consecutively named 0, 1, 2,

• If there is a region with ra > 0 but none with ra < 0, and assuming that
a can fire at all, its firing will increase the number of tokens on any place
connected to it. With increasing markings we obtain an infinite series of
pairwise distinguishable states as in the third row of Fig. 4.9. Since b occurs
in the reachability graph, there is some earliest state q at which it forms a
loop. As the markings rise from this point on, b is also activated at all later
states.

• If there is a region with ra < 0, there must be a place from which a removes
tokens. There is some f ∈ N such that a can fire exactly f times. The
transition b can be deactivated at an earlier state r, if the place is a side-
place of b (in the picture with arc weight f − r). If there is also a region
with ra > 0, b may not be activated until some state q just as in the previous
subcase.

Case 2: Ψ(σ)(b) = 0. This case is analogous to the previous one.
Case 3: Ψ(σ)(a) · Ψ(σ)(b) > 0. Then, ra · rb < 0 and rb = −Ψ(σ)(a)

Ψ(σ)(b)
· ra, so

ra and rb have a fixed ratio in every region. For every pair of such regions, we

154

4.5. GENERALISED CYCLES WITH NON-ZERO PARIKH VECTORS

i j

b

a
m+ k1 k1

m+ k2k2

n+ k3
k3n+ k4

k4

Figure 4.10: A representative class of Petri nets for the case Ψ(σ)(a) ·Ψ(σ)(b) > 0.

can use Lemma 19 to find a new region that is a common multiple with modified
initial value r0, i.e. any two such regions solve exactly the same state separation
problems. Therefore, only two regions are of interest, one with ra < 0 and rb > 0

that can prevent an a, and one with ra > 0 and rb < 0 which can prevent b. By
Lemma 20, the number of places constructed from each region can be reduced to
one, the one with the maximal number of loops at each transition. Therefore,
it is sufficient to have at most two regions, (r0, ra, rb) and (r′0,−ra,−rb), and to
construct one place from each region. A representative class of Petri nets with
such two regions is shown in Fig. 4.10.

An lts TS = (S, {a, b},→, 0) representing the reachability graph of the Petri
net in Fig. 4.10 can be formally described as follows:

S = {−j, . . . ,+i} ∩ gcd(m,n) · Z
∀x ∈ S :

x
a→ x+m is present in → ⇐⇒ k2 − j ≤ x ∧ x+m ≤ i− k1

x
b→ x− n is present in → ⇐⇒ k3 − j ≤ x− n ∧ x ≤ i− k4

For simplicity, we have named the initial state 0, which leads to states with negative
numbers. By adding j, we can obtain the values of a possible region. Some
unreachable states are easy to exclude (by intersecting with gcd(m,n) · Z), others
may occur if the initial state does not lie on a cycle.

If we omit one of the two regions (places), the state space will become infinite,
as either the boundary −j or the boundary i will fall. We may think of this as
replacing −j by −∞ or i by ∞. If we omit both places, the reachability graph

155

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

collapses to the first row of Fig. 4.9.

Fig. 4.11 visualises an example of a reachability graph with a cycle, using a
Petri net according to Fig. 4.10 which has parameters m = 5, n = 3, i = 32,
j = 0, k1 = 0, k2 = 0, k3 = 9, and k4 = 0. The value k3 = 9 ensures that the two
initial a’s cannot be undone (due to the loop between b and the right place, the
initial marking 0 of the place can never be reached again). This also makes the
states 1 to 4 and 6 to 8 unreachable. Incrementing i by one will add one a-edge
at the highest state without such an edge to some new state and one b-edge at
the new state. Setting i to 33 will add an a-edge from 28 to 33 (new) and one
b-edge from 33 to 30. Each increment will complete a new diamond in the graph.
E.g., here 28

b→ 25
a→ 30 will be complemented by 28

a→ 33
b→ 30, and states 28,

25, 33, 30 will form a diamond. Incrementing j will analogously add a diamond
at the other end. Adding loops in the net via incrementing parameters k1 to k4

essentially cuts off such diamonds again (by disabling transitions at the vertexes
of dimonds), unless the cutting point is near the initial state. In this case, only
one kind of edge is removed. The initial state will then not lie on a cycle anymore
but form a path (using the other kind of edges) that leads to the cyclic part of
the lts. The parameters m and n determine the length of cycles in the lts and the
ratio of a and b on these cycles.

Case 4: Ψ(σ)(a)·Ψ(σ)(b) < 0. With the same reasoning as in the previous case
except that ra · rb > 0, we find again that two regions (r0, ra, rb) and (r′0,−ra,−rb)
and one place constructed from each region are enough. This leads to the class of
Petri nets in Fig. 4.12. An lts TS = (S, {a, b},→, 0) representing the reachability
graph is formally described as follows:

S = {0, . . . , i}
∀x ∈ S :

x
a→ x+m is present in → ⇐⇒ k2 − j ≤ x ∧ x+m ≤ i− k1

x
b→ x+ n is present in → ⇐⇒ k3 − j ≤ x ∧ x+ n ≤ i− k4

Some states may be unreachable.

Unlike in Case 3, there is a steady token flow from the left to the right place,
no matter which transition is fired. Therefore, the right place determines when
a transition may start firing and the left place when the firing must cease. Since

156

4.5. GENERALISED CYCLES WITH NON-ZERO PARIKH VECTORS

21

24

19

22

17

20

23

18

a

b a

b

b

ab

b

16

b

a

15

ba

14

b

a

13

b

a

12

b

a

11
b a

10

b

a

9

b

a

25

a

b

26
a

b

27
a b

28

a

b
29

a

b

30

a

b

31 ab

32

a

b

5 0

s0aa

Figure 4.11: Visualisation of a reachability graph with (standard) cycles

i j

b

a
m+ k1 k1

m+ k2k2

n+ k3
k3n+ k4

k4

Figure 4.12: A representative class of Petri nets for the case Ψ(σ)(a) ·Ψ(σ)(b) < 0.

157

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

8 7 6 5 4 3 2 1 0

a a a a a a

b b b b b

0 1 2 3 4 5 6 7 8
. . .

a a a a a a a a

b b b b b b b b

Figure 4.13: Visualisation of reachability graphs containing g-cycles with non-zero
Parikh vector, but no directed cycles

the left place will at some point stop both transitions from firing, the reachability
graph will normally be finite. Only if we remove the left place from the net, we
can obtain an infinite behaviour (with states then named according to the number
of tokens on the right place). These possibilities are shown in Fig. 4.13.

E.g., the upper reachability graph (with the dotted edge) corresponds to the
Petri net with parameters i = 8, j = 0, m = 2, n = 3, and k1 = k2 = k3 = k4 = 0.
Introducing loops at the left place will prevent the rightmost edges, i.e. setting
k4 = 1 will eliminate the dotted b-edge, setting it to 2 will also prevent the b-edge
ending at state 1, and so on.

The lower reachability graph corresponds to a Petri net without the left place
and its adjacent edges, having the parameters j = 0, m = 2, n = 3, and k2 =

k3 = 0. Adding a loop at the right place prevents edges beginning at the initial
state. Setting k3 = 1 will remove the b-edge at 0 and make state 3 unreachable.
Therefore, the edges from state 3 also become unusable (shown as dotted lines).

With Cases 1 to 4, we have covered all possible g-cycles with non-zero Parikh
vector that might occur in a reachability graph of a Petri net with transitions a
and b.

4.6 Generalised cycles with zero Parikh vectors

Let us now assume that our transition system does not have any g-cycle σ with
Ψ(σ) 6= 0. In this case, the transitions a and b are independent, and we may project
the lts onto the plane N2, with the initial state mapped to (0, 0). The transitions
a and b become the base vectors, i.e. firing a increments the first component

158

4.6. GENERALISED CYCLES WITH ZERO PARIKH VECTORS

a a a

a a a a a

a a a a a a a a a

a a a a a a a a a

a a a a a a

a a a

b b b b

b b b b b b

b b b b b b b b b b

b b b b b b

b b b b

(1
, 2
,−

1)

(5, 0,−1)

(35,−2,−5)

(1
0,
−

1,
0)

(6,−2, 7)

Figure 4.14: An lts without Parikh-non-zero g-cycles, limited by 5 regions (shown
as dotted lines at which the value of a region (r0, ra, rb) is zero). The initial state
is at the lower left and can be viewed as the origin (0, 0) of the plane N2, where a
and b are the unit vectors of the two dimensions

of a state, (x, y)
a→ (x + 1, y), and firing b increments the second component,

(x, y)
b→ (x, y + 1), whenever the transitions are allowed.

Since all g-cycles σ have zero Parikh vectors, Ψ(σ) = 0, the equation

Ψ(σ)(a) · ra + Ψ(σ)(b) · rb = 0

does not restrict the values for ra and rb of a region in any way. If we distinguish
regions (r0, ra, rb) by the signs of ra and rb, there are essentially nine types of
regions. Regions with non-negative values for ra as well as rb do not restrict the
enabledness of transitions. With positive values for ra and rb, the five remaining
types can be written as

(r0,−,+), (r0,−, 0), (r0,−,−), (r0, 0,−), and (r0,+,−),

where +, or −, or 0 means that the corresponding coordinate is > 0, or < 0, or
= 0, respectively. An example lts with one region of each of the five types is shown
in Fig. 4.14.

Let now N = (P, {a, b}, F,M0) be a Petri net and G the projection of the
reachability graph onto N2. Furthermore, let R be the set of regions of G.

159

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

Lemma 21. [EW17](inner states) Let N be pure (i.e. ∀p, t : F (p, t) ·F (t, p) =

0) and (x, y) ∈ G be some state. If ∀(r0, ra, rb) ∈ R: r0((x + 1, y)) ≥ 0, then
(x+ 1, y) ∈ G with (x, y)

a→ (x+ 1, y). If ∀(r0, ra, rb) ∈ R: r0((x, y+ 1)) ≥ 0, then
(x, y + 1) ∈ G with (x, y)

b→ (x, y + 1).

Proof. Note first that for any state (x, y) ∈ N2 and any region (r0, ra, rb) ∈ R,
r0((x + 1, y)) = r0((x, y)) + ra and r0((x, y + 1)) = r0((x, y)) + rb holds by the
definition of a region, since we use a and b as base vectors in N2.

If ¬(x, y)
a→ in G, there is a region (r0, ra, rb) ∈ R with ra < 0. For a place p

constructed from such a region, ra = F (a, p)−F (p, a) < 0 holds. Since N is pure,
F (p, a) > 0 and F (a, p) = 0. Then, r0((x+1, y))−r0((x, y)) = ra = −F (p, a), and
with r0((x + 1, y)) ≥ 0 we conclude r0((x, y)) ≥ F (p, a). Since by construction of
p, r0((x, y)) is the number of tokens on p at the state (x, y), p cannot prevent a
firing of a at the corresponding marking. Since the region and p were arbitrary,
(x, y)

a→ (x+ 1, y) holds in G, i.e. (x+ 1, y) ∈ G.
An analogous reasoning holds for state (x, y + 1) and transition b.

Theorem 8. [EW17](reachability graphs of pure nets without Parikh-
non-zero g-cycles) An lts G in which all g-cycles have Parikh vector zero is the
reachability graph of a pure Petri net N = (P, {a, b}, F,M0) if and only if it can be
viewed as a weakly connected convex subset of N2 containing the initial state (0, 0)

such that for each two states (x, y), (x+ 1, y) ∈ G: (x, y)
a→ (x+ 1, y) and for each

two states (x, y), (x, y + 1) ∈ G: (x, y)
b→ (x, y + 1).

Proof. Convex subsets of N2 can be defined by cutting off parts of N2 using straight
lines, and these lines may not cut off the initial state, so the five types of regions
identified above give rise to exactly this kind of convex subset.

Using Lemma 21 proves that all necessary states and edges exist. In some ex-
treme cases we may obtain states that cannot be connected via g-paths. E.g. with
regions (0, 1,−1), (0,−1, 1), (0, 1, 0), and (0, 0, 1), the states (x, x) with x ∈ N.
Then, only the weakly connected component of the graph that contains the initial
state forms the reachability graph.

It remains to show that a pure Petri net can be found such that its reachability
graph does not identify any two of the states in N2. This can be done using the
regions (0, 1, 0) and (0, 0, 1), i.e. by adding to each postset of a and b one new

160

4.6. GENERALISED CYCLES WITH ZERO PARIKH VECTORS

6

5

35

10

ba

2
2 3

72

Figure 4.15: A pure Petri net with the lts from Fig. 4.14 as its reachability graph.
Each region forms one place. Though unnecessary in this case, we add regions
(0, 1, 0) and (0, 0, 1) to ensure that no two states can have the same marking

place with an empty initial marking, counting the number of a’s or b’s that have
occurred.

Figure 4.14 is a typical representative of such a reachability graph of a pure net
(over transitions a and b). The regions cutting off parts of N2 may vary in number
and direction, and they may not even make the graph finite, but the ‘inside area’
(the convex subset of N2) will always be completely filled with states and edges.
A pure Petri net synthesising the lts from Fig. 4.14 can be seen in Fig. 4.15.

To characterise the reachability graphs of non-pure nets in the same way, we
need to consider the effect of adding a self-loop between a place (representing some
region (r0, ra, rb)) and the transition a or b. The dotted lines in Fig. 4.14 show
where the corresponding region has the value zero, or put differently, they are the
border that edges do not cross. We can also interpret them as two different lines
at the same location, one preventing the a-edges, the other preventing the b-edges
from crossing into the half-plane of negative region values. Let us call these lines
the a-line and b-line of the region.

Lemma 22. [EW17](shifting enabledness lines) Let N = (P, {a, b}, F,M0)

be a pure Petri net with a place p ∈ P (with corresponding region (r0, ra, rb)), and
let N ′ by derived from N by adding k ∈ N to both F (p, a) and F (a, p). Let G and
G′ be the reachability graphs of N and N ′ projected to N2. If ra 6= 0 then, from
G to G′, the a-line is shifted by the fraction of k

ra
of the unit-a-vector. If ra = 0

and rb 6= 0, then the a-line is shifted by the fraction of k
rb

of the unit b-vector. If
ra = rb = 0, either nothing happens (in case r0 ≥ k) or G′ collapses and does not
contain any a-edges (if r0 < k).

161

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

Proof. Note first that G′ is a subgraph of G since N ′ has a more restricted be-
haviour than N . If ra 6= 0, any a-edge changes the number of tokens on p by ra,
therefore the k

ra
th fraction of an a-edge increases the number of tokens on p by k.

This is exactly the additional amount of tokens needed in G′ to allow an a-edge,
thus the a-line moves from G to G′ by the k

ra
th fraction of a unit-a-vector (possible

in the opposite direction if ra < 0).
If ra = 0, still a-edges are allowed only if the region value is at least k, since

in N ′ we have F (p, a) = k = F (a, p). With the same reasoning as above, the line
with exactly k tokens on p can be moving the k

rb
th fraction of a unit-b-vector away

from the b-line, which makes this the new a-line in G′.
If the region is (r0, 0, 0) neither transition can change the start value r0. We

either have r0 ≥ k, i.e. r0 ≥ F (p, a) = F (a, p), so the number of tokens on p is
sufficient to allow an a at all states. Or we have r0 < k, in which case there are
no a-edges in G′ at all and G′ represents some word from b∗.

This lemma can symmetrically be formulated for the transition b as well. In
Fig. 4.16, we see the effect of adding one self-loop around a for each of the five
places representing one of the regions (1, 2,−1), (5, 0,−1), (35,−2,−5), (10,−1, 0),
and (6,−2, 7). The lemma also includes regions like (0, 1, 0), that usually will not
be shown in the lts because they are positioned left of or below the origin. A
shifted line from such a region can easily cut off the origin and thus collapse the
reachability graph, as in the case of (r0, 0, 0) in the lemma.

We can then characterise the reachability graphs of nets (P, {a, b}, F,M0) as
follows.

Theorem 9. [EW17](reachability graphs of nets without Parikh-non-zero
g-cycles) Let C ⊆ N2 be a convex area and let Ca, Cb be derived from C by shifting
borders of C only. Let G be the graph including (0, 0) such that (x, y)

a→ (x+1, y) ∈
G ⇐⇒ (x, y) ∈ G ∩ Ca, (x + 1, y) ∈ Ca and (x, y)

b→ (x, y + 1) ∈ G ⇐⇒ (x, y) ∈
G ∩ Cb, (x, y + 1) ∈ Cb. Then, G is the projection of a reachability graph of a
Petri net N = (P, {a, b}, F,M0) to N2. If the reachability graph of a Petri net
(P, {a, b}, F,M0) does not contain g-cycles σ with Ψ(σ) 6= 0, Ca and Cb meeting
the above conditions can always be found.

As the main result of the section, we have obtained a characterisation of the
state spaces of bounded Petri nets having at most two transitions. The condition of

162

4.7. OVER-APPROXIMATION OF FINITE LANGUAGES

a a a a a

a a a a a a a

a a a a a a a a

a a a a a

a a

b b b b

b b b b b b

b b b b b b b b b

b b b b b b

b b b

(1
, 2
,−

1)

b a

b (5, 0,−1)

a

b

(35,−2,−5)

a

b

(1
0,
−

1,
0)

a
b

(6,−2, 7)
a

Figure 4.16: The reachability graph of the net of Fig. 4.15 if we add, for each of
the five original regions, a self-loop between the corresponding place and a. The
line where a region has value zero is split into two: one line that a-edges cannot
permeate and one line that b-edges cannot cross (marked with letters a and b)

boundedness relates to the fact that we initiated our investigation for finite labelled
transition systems. The characterisation establishes that these state spaces can be
represented as a convex sets of integral points of |T |-dimensional space, where T is
the alphabet being used. In what follows, we present a synthesis algorithm based
on this characterisation in two versions: when a Petri net is sought in the class
of pure nets, and without this restriction. An important remark should be made,
namely, unlike in the first chapters, we will now look for a possibly minimal Petri
net over-approximation of the input behaviour.

4.7 Over-approximation of finite languages

Assume now that we are given a finite language L ⊆ T ∗ over a binary alphabet
T = {a, b}, and we aim to synthesise a Petri net which allows firing all the words
of this language. Due to the fact that for each Petri net, every prefix of a feasible
transition sequence is also feasible, we will assume L to be prefix-closed, i.e. for
every uv ∈ L with u, v ∈ {a, b}∗, u ∈ L holds. For a Petri net N , let L(N) be the
set of all transition sequences fireable in N . It may be the case that there is no
net N such that L(N) = L. E.g., if L = {abbaa}. Nevertheless, there exists a net

163

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

N such that L ⊆ L(N). For instance, the Petri net N having a single place p with
its initial marking M0(p) = maxw∈L |w|, and two transitions a and b such that
F (p, a) = F (p, b) = 1 and F (a, p) = F (b, p) = 0. Hence the challenging problem
is to find a net N such that L ⊆ L(N) and the difference between L(N) and L is
‘minimal’. In order to define this minimality formally, a projection of a word or a
finite language over T to a |T |-dimensional space is defined.

Definition 33. A word w = t1t2 . . . tn of length n ∈ N over alphabet T uniquely
corresponds to a finite (projective) transition system

PTS(w) = (S, T,→, s0), where

S = {Ψ(ε),Ψ(t1), . . . ,Ψ(t1 . . . tn)},
→ = {(Ψ(t1 . . . ti−1), ti,Ψ(t1 . . . ti)) | 0 < i ≤ n ∧ ti ∈ T},
s0 = Ψ(ε)

For a finite language L we can uniquely define a (projective) transition system

PTS(L) =
⋃
w∈L

PTS(w),

where for words w1, w2 ∈ T ∗ and PTS(w1) = (S1, T,→1,Ψ(ε)), PTS(w2) =

(S2, T,→2,Ψ(ε)) we write

PTS(w1) ∪ PTS(w2) = (S1 ∪ S2, T,→1 ∪ →2,Ψ(ε)).

Unlike the introduced in Chapter 2 transition system TS(w) for a word w

over T , where the states were ordinary numbers, in PTS(w) each state is a Parikh
vector, i.e. it can be considered as a point of |T |-dimensional space.

Definition 34. Given a finite language L, we say that a Petri net N mini-
mally over-approximates L iff L ⊆ L(N) and for transition system PTS(L) =

(S1, T,→1,0) and PTS(L(N)) = (S2, T,→2,0), the set S2 \ S1 is minimal.

The characterisations established in Theorems 8 and 9 suggest possible algo-
rithms for such an over-approximation of finite languages over the binary alphabet,
dealt with in the next subsections 4.7.1 and 4.7.2.

164

4.7. OVER-APPROXIMATION OF FINITE LANGUAGES

4.7.1 Pure over-approximation

Given a finite language L over the binary alphabet, regarding Theorem 8, in order
to find a (minimal) language of a pure Petri net which includes L, we have to find
the convex hull of S in N2 – the minimal convex set of points of N2 containing S,
where S is the set of states of PTS(L).

Let L = {abbabaa, bbababaa} be an example language for which we seek to pro-
duce a Petri net whose language includes L. From L we can construct PTS(L) =

(S, {a, b},→, (0, 0)) without Parikh-non-zero g-cycles (l.h.s. in Fig. 4.17) whose
states can be considered as points of N2 (r.h.s. in Fig. 4.17).

b
b

a

a
b

b
b

a

a

b

b
a

a

a
a

b

a
1 2 3 4

1

2

3

4

0

b

b

b

b

b b

b

a

a a

a a a

a a

Figure 4.17: The lts (l.h.s.) derived from language L and its projection (r.h.s.)
to N2.

Constructing of the convex hull of S can be done using Jarvis march [Jar73],
Graham’s algorithm [Gra72] or Quickhull [Edd77] algorithms which produce the
hull of a given finite set of points as an ordered set of points.

Then the borders of the hull (which are lines in case of N2) are essentially
regions of a reachability graph, and hence they are places of the net implementing
the over-approximation of L. Since we are considering the case of pure nets,
these regions can immediately be translated into places of the net (see r.h.s. in
Fig. 4.18). To obtain the sought language, we have to add all the points of N2

inside the hull to S together with all the missing arrows inside the hull. The
set of sequences enabled in the derived labelled transition system determines the

165

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

over-approximating language (l.h.s. in Fig. 4.18).

Algorithm 3 Pure over-app.
Input: finite (prefix-closed) language L ∈ {a, b}∗

Output: pure Petri net over-approximating L
compute set S = {(x, y) | Ψ(w) = (x, y), w ∈ L}
find the convex hull H = {(xi, yi)}ki=0 ⊆ S of S (enumerated clockwise)
define the set of places P = ∅
for i = 0 to k − 1 do {construct the set of regions R (and places P)}
ria ← yi − yi+1 {define region as a line through two points}
rib ← xi+1−xi {orthogonal direction is chosen according to the ordering of H}
ri0 ← −ria · xi − rib · yi
define place pi
M0(pi)← ri0
if ria ≥ 0 then F (a, pi)← ria, F (pi, a)← 0 else F (pi, a)← ria, F (a, pi)← 0

if rib ≥ 0 then F (b, pi)← rib, F (pi, b)← 0 else F (pi, b)← rib, F (b, pi)← 0

add place pi to P
endfor
return (P, {a, b}, F,M0)

b

a
1 2 3 4

1

2

3

4

0

b

b

b

b

b b

b

a

a a

a a a

a a

a a

a

b

b

b b

(2
, 1
,−

1)

b

(4, 0,−1) b

(4
,−

1,
0)

a

(1
,−

1,
1)

a
b

a

Figure 4.18: The minimal convex hull of S (l.h.s.) and a pure Petri net (r.h.s.)
derived from it; hollow states and thick arrows on the left were added to PTS(L).

166

4.7. OVER-APPROXIMATION OF FINITE LANGUAGES

b

a
1 2 3 4

1

2

3

4

0

(2
, 1
,−

1)

a
(4, 0,−1) a

(4
,−

1,
0)

a

(1
,−

1,
1)

a

b

a
1 2 3 4

1

2

3

4

0

(2
, 1
,−

1)

b

(2
,−

1,
0)

b

(2
,−

2,
1)

b

(5
, 0
−

2,
4
−

3)

a
(4
,0
−

1,
2
−

2)
a

Figure 4.19: L.h.s.: solid dots denote the a-adjacent states, dotted lines form
the convex hull of this set of states, r.h.s.: symmetrical under swapping a and b;
regions (5, 0 − 2, 4 − 3) and (4, 0 − 1, 2 − 2) were derived by transforming places
corresponding to (2,−2, 1) and (2,−1, 0), respectively, into side-conditions.

4.7.2 Over-approximation with side-conditions

Petri nets with side-conditions are a more powerful class than pure Petri nets.
Hence we can achieve better results in the minimal over-approximation of a given
language. As was established in Lemma 22, the same region can make different
borders for a and b in N2 when loops around transitions are present.

Let L = {abbabaa, bbababaa} be again the same language as before, and the lts
representing it with the projection as in Fig. 4.17. As we have established in Sec-
tion 4.6, regions are represented as lines in N2, and these lines are essentially the
borders restricting the state space (the arcs cannot cross these borders). Accord-
ing to Lemma 22, being considered as a line, the same region can simultaneously
impose for each transition its own border. In order to find an over-approximating
Petri net, we first build regions for each letter, a and b, separately. E.g., for b
in the example in r.h.s. Fig. 4.19, we construct the regions (2, 1,−1), (2,−1, 0),
and (2,−2, 1), represented as dotted lines, which only take states into account that
have an adjacent b-edge. These regions, together with the abscissa and the ordinate
axis of N2, form the convex hull for b-adjacent states, but some states only adja-
cent to a-edges may be outside, precisely states (3, 3), (4, 3), (3, 4), (4, 4). Using
the mechanism of Lemma 22, we can adjust the regions (2,−1, 0) and (2,−2, 1),

167

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

obtaining new borders (drawn as dashed) for a-edges. Each region (border of the
hull) is then translated into a place of a net. The same must be done for the states
adjacent to a-edges, taking care of b-edges outside the convex hull. The sought
net is obtained as a union of the places derived from the borders of a-adjacent
and of b-adjacent states. Algorithm 4 describes this process formally. In order
to construct a convex hull, one can use the Quickhull [Edd77] algorithm which
produces the hull in O(n2) in the worst case, where n is the size of the initial set.
For a language L, we have n ≤ |L| · l (l being the length of the longest word). The
complexity of the partialSolution procedure is O(n2) in the worst case. Hence,
the total complexity of the algorithm does not exceed O(n2). Applying the algo-
rithm to the language L, we obtain the Petri net on the left hand side of Fig. 4.20,
its reachability graph being depicted on the right hand side.

168

4.7. OVER-APPROXIMATION OF FINITE LANGUAGES

Algorithm 4 Over-approximation of a finite language
Input: finite (prefix-closed) language L ∈ {a, b}∗

Output: Petri net over-approximating L
compute sets Wa = {(x, y) | Ψ(wa) = (x, y) ∨Ψ(w) = (x, y), wa ∈ L}

Wb = {(x, y) | Ψ(wb) = (x, y) ∨Ψ(w) = (x, y), wb ∈ L}
find the convex hulls Ha = ((xi, yi))0≤i≤ka ⊆ Wa of Wa (enumerated clockwise)

Hb = ((xj, yj))0≤j≤kb ⊆ Wb of Wb (enumerated clockwise)
(Pa, T, Fa,M0,a)← partialSolution(a, b,Wa,Wb, Ha)

(Pb, T, Fb,M0,b)← partialSolution(b, a,Wb,Wa, Hb)

N ← (Pa ∪ Pb, {a, b}, Fa ∪ Fb,M0,a ∪M0,b)

return N

procedure partialSolution(a, b,Wa,Wb, H)

{construct the net restricting the firings of one transition}
begin procedure
m← |H|, P ← ∅ {find the size m of the hull, define the set of places P}
for i = 0 to m− 1 do {construct places from H taking into account Wb}
ria ← yi − yi+1 {define a region as a line through two points}
rib ← xi+1 − xi {orthogonal’s direction accords with the ordering of H}
ri0 ← −ria · xi − rib · yi
define place pi
M0(pi)← ri0
if ria ≥ 0

then F (a, pi)← ria, F (pi, a)← 0

else F (pi, a)← ria, F (a, pi)← 0

if rib ≥ 0

then F (b, pi)← rib, F (pi, b)← 0

else F (pi, b)← rib, F (b, pi)← 0

if Wb \Wa 6= ∅
then

(x′, y′) ← arg max{(x,y)∈Wb\Wa|ri0+x′·ria+y′·rib<0}{|ri0 + x · ria + y · rib|}
{arg max returns the argument yielding the maximum of the set}

k ← |x′ · ria + y′ · rib| − ri0 {define the ‘moving factor’}
M0(pi)←M0(pi)+k, F (pi, a)← F (pi, a)+k, F (a, pi)← F (a, pi)+k

{adjust the restrictions to include outer states}
add place pi to P

endfor
return (P, {a, b}, F,M0)

end procedure

169

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

ba
2

2

2

3 4
b

b

b

b

b b

b

a

a a

a a a

a a a

a a

Figure 4.20: The net obtained by the algorithm and its reachability graph.

4.8 Zero g-cycles and language equivalence

The algorithm presented in the previous section for the over-approximating of
a given language with a Petri net language translates the initial language into
a labelled transition system with all zero g-cycles. We will now show that the
restriction of not using of non-zero g-cycles does not influence the result language
of the over-approximation procedure, i.e. that for any finite solvable lts TS with
non-zero g-cycles there is a solvable general-cycle-neutral lts TS ′ such that the
languages of TS and TS ′ coincide. To this end we introduce the notion of language
equivalence of two transition systems. The set L(TS) = {w ∈ T ∗ | ∃s ∈ S : s0[w〉s}
is called the language of the transition system TS. Transition systems TS1 =

(S1, T,→1, s01) and TS2 = (S2, T,→2, s02) over the same set of labels are called
language equivalent if their languages are equal, i.e. L(TS1) = L(TS2).

Lemma 23. If TS = (S, T,→, s0) is solvable, there is a language equivalent tran-
sition system TS ′ which is solvable and satisfies the property gc0.

Proof. If TS satisfies gc0 then we are done. Otherwise let N = (P, T, F,M0) be
a Petri net with RG(N) ∼= TS. For every t ∈ T , construct a place pt such that
F ′(t, pt) = 1, F ′(pt, t) = 0, M ′

0(pt) = 0. The net N ′ = (P ∪ {pt | t ∈ T}, T, F ′,M ′
0)

with F ′(t, p) = F (t, p), F ′(p, t) = F (t, p) and M ′
0(p) = M0(p) for all t ∈ T ,

p ∈ P has the reachability graph RG(N ′) which is language equivalent to TS.
Indeed, since the newly created places do not forbid any firing sequence, the set of
firable sequences of N ′ coincides with the one of N . On the other hand, the new

170

4.9. SUMMARY

32

ba

5 3

5

12

9

N :

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a a a a a a

a a a a

a a a a

a a a a

a a a

a a a a

b b b b

...
...

...
...

Figure 4.21: An ‘unfolded’ Petri net with infinite reachability graph.

places distinguish the states of RG(N ′) which are reached through the execution
of Parikh-non-equivalent sequences, implying that RG(N ′) satisfies gc0.

Remark. For a finite lts which is not gc0 the ‘unfolding’ construction of Lemma 23
creates an infinite language equivalent transition system. For instance, the lts from
Fig. 4.11, which has the net N (the solid part) from Fig. 4.21 as a possible solution,
the lts from Fig. 4.21 will be constructed. This lts is the reachability graph of N
with additional places which are depicted as dashed.

4.9 Summary

In the current chapter we continued the investigation of solvability of labelled
transition systems. Possibilities for generalising the earlier results, in particular
the counting criterion, for a bigger alphabets were discussed. Besides, we dealt
with arbitrary transition systems over the binary label set. For the class of finite
transition systems that do not satisfy the property gc0, i.e. that have non-zero
g-cycles, and that are isomorphic to reachability graphs of some Petri nets, a
classification was presented. Moreover, a characterisation for the class of labelled
transition systems without non-zero generalised cycles, which are synthesisable into
Petri nets, was suggested. This characterisation first appeared in [EW17], and it

171

CHAPTER 4. SYNTHESIS OF PETRI NETS FROM FINITE LANGUAGES

represents synthesisable state spaces as convex sets of integral points of space.
Basing on the characterisation, two algorithms for over-approximating a finite
language with a Petri net language were described, for side-condition-free Petri
nets and for the general case. The sought Petri net in both of these algorithms
is obtained from the convex hull of the points which represent the states of the
initial transition system.

172

Chapter 5

Conclusion

5.1 Summary

We investigated the question of state spaces characterisation in the context of
Petri net synthesis. For the class of finite binary sequences a language-theoretical
characterisation was presented in the form of the counting criterion. The criterion
states that for a given sequence, the solvability of every instance of ESSP can be
verified by comparing the fractions of letters within the sequence. A synthesis
algorithm ABSolve, which is based on the criterion, was presented. The algo-
rithm has a better runtime in comparison to the region-base synthesis algorithms
implemented in the tools APT and Synet. The counting criterion was extended
for the cycles, and the synthesis algorithm ABCycSolve for this case of input was
presented.

We introduced the notion of minimal unsolvable word as a word which is un-
solvable and whose proper subwords are solvable. For minimal unsolvable words
a classification for a complete enumeration is suggested, which distinguishes two
main classes of muws: extendable and non-extendable. Non-extendable muws are
characterised by extended regular expressions. In the class of extendable words,
the subclass of base extendable ones is considered, which is defined by extended
regular expressions; all the extendable words which are not base extendable were
proven to be images of base extendable, and they can be derived with the exten-
sion morphisms. Another characterisation of the unsolvability of binary sequence
was derived from the classification. It was formulated in the form of an extended

173

CHAPTER 5. CONCLUSION

regular expression (abw)b∗(baw)+a whose presence in a sequence is necessary and
sufficient for the unsolvability. The presented classification of minimal unsolvable
words resulted in the construction of the Pattern-matching algorithm for a fast
detecting of the unsolvability of a sequence. The algorithm utilises the extended
regular expressions from the classification, without initiating the synthesis pro-
cess itself, and demonstrates a faster runtime than ABSolve. It can be used as a
pre-synthesis tool for a quick reject of a failure synthesis input.

A graph-theoretical characterisation of the reachability graphs of Petri nets
over the binary transition set is presented. The characterisation relies on the
notion of generalised cycles. For reachability graphs with non-zero g-cycles eight
possible shapes were adduced, with the corresponding forms of Petri nets. A
geometrical characterisation for the reachability graphs without non-zero g-cycles
was provided. The characterisation establishes that the set of states of such a
reachability graph, being projected on N2, must form a convex set. With the use
of the characterisation, an algorithm for (minimal) over-approximating a finite
(binary) language by a Petri net language is suggested.

5.2 Outlook

In the case of binary sequences and cycles, the presented characterisations of solv-
able state spaces demonstrated their utility in synthesis (the counting criterion),
as well as in pre-synthesis checking (the classification of muws). But, as it was
discussed, trying to get some language-theoretical conditions for the solvability
of sequences over alphabets with three and more letters inevitably leads to the
theory of regions. Hence, there is no much hope for a significant improvement of
the synthesis efficiency in comparison with the region based approach.

Nevertheless, it would be interesting to extend the characterisations to less
restricted classes of transition systems. We did the first step in this direction,
representing the characterisation of Petri net solvable state spaces as convex sets,
and suggesting algorithms for constructing an over-approximation of languages. A
natural continuation of this line of work is to use more than two transitions. In
these cases the places of the net should be constructed from the hyper-planes which
are the borders of the convex hull in the corresponding |T |-dimensional space, T
being the set of labels of the transition system (the alphabet of the language).

174

5.2. OUTLOOK

Another possible line of continuation is further developing of pre-synthesis tech-
niques. We have seen that they can be beneficial for a quick reject of unsolvable
input on earlier stages of synthesis. This approach could be especially interest-
ing being combined with the question of goal-oriented Petri net synthesis, i.e.
synthesis of Petri nets which satisfy some prescribed properties (as boundedness,
pureness, being a marked graph, choice-freeness, etc.). In this case, a possibility
for a pre-synthesis check whether the required properties can be satisfied for the
input, would exclude a verification phase which can happen to be time-consuming.

175

CHAPTER 5. CONCLUSION

176

Bibliography

[AK77] Toshiro Araki and Tadao Kasami. Decidable problems on the strong
connectivity of Petri net reachability sets. Theoretical Computer Sci-
ence, 4(1):99 – 119, 1977.

[BB92] Gérard Berry and Gérard Boudol. The chemical abstract machine.
Theoretical Computer Science, 96(1):217–248, 1992.

[BBD15] Eric Badouel, Luca Bernardinello, and Philippe Darondeau. Petri Net
Synthesis. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2015.

[BBE+15] Kamila Barylska, Eike Best, Evgeny Erofeev, Łukasz Mikulski, and
Marcin Piątkowski. On binary words being Petri net solvable. In Pro-
ceedings of the International Workshop on Algorithms & Theories for
the Analysis of Event Data, ATAED 2015, Brussels, Belgium, volume
1371, pages 1–15. CEUR-WS.org, 2015.

[BBE+16] Kamila Barylska, Eike Best, Evgeny Erofeev, Łukasz Mikulski, and
Marcin Piątkowski. Conditions for Petri net solvable binary words.
T. Petri Nets and Other Models of Concurrency, 11:137–159, 2016.

[BD98] Eric Badouel and Philippe Darondeau. Theory of regions. In Wolfgang
Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets I:
Basic Models, Advances in Petri Nets, volume 1491 of Lecture Notes
in Computer Science, pages 529–586. Springer, 1998.

[BD14a] Eike Best and Raymond Devillers. Persistent Systems with Unique
Minimal Cyclic Parikh Vectors. Technical Report 02/14, Dep. Infor-
matik, Carl von Ossietzky Universität Oldenburg, 2014. 80 pages.

177

BIBLIOGRAPHY

[BD14b] Eike Best and Raymond R. Devillers. Characterisation of the state
spaces of live and bounded marked graph Petri nets. In Language and
Automata Theory and Applications - 8th International Conference,
LATA 2014, Madrid, Spain, March 10-14, 2014. Proceedings, pages
161–172, 2014.

[BDLM07] Robin Bergenthum, Jörg Desel, Robert Lorenz, and Sebastian Mauser.
Process mining based on regions of languages. In Business Process
Management, 5th International Conference, BPM 2007, Brisbane,
Australia, September 24-28, 2007, Proceedings, pages 375–383, 2007.

[BE16] Eike Best and Javier Esparza. Existence of home states in Petri nets
is decidable. Information Processing Letters, 116(6):423 – 427, 2016.

[BESW16] Eike Best, Evgeny Erofeev, Uli Schlachter, and Harro Wimmel. Char-
acterising Petri net solvable binary words. In Application and The-
ory of Petri Nets and Concurrency - 37th International Conference,
PETRI NETS 2016, Toruń, Poland, June 19-24, 2016. Proceedings,
pages 39–58, 2016.

[BKMP16] Kamila Barylska, Maciej Koutny, Łukasz Mikulski, and Marcin
Piątkowski. Reversible computation vs. reversibility in Petri nets.
In Reversible Computation - 8th International Conference, RC 2016,
Bologna, Italy, July 7-8, 2016, Proceedings, pages 105–118, 2016.

[BMP+16] Kamila Barylska, Łukasz Mikulski, Marcin Piątkowski, Maciej
Koutny, and Evgeny Erofeev. Reversing transitions in bounded Petri
nets. In Proceedings of the 25th International Workshop on Concur-
rency, Specification and Programming, Rostock, Germany, September
28-30, 2016, pages 74–85, 2016.

[BS15] Eike Best and Uli Schlachter. Analysis of Petri nets and transition
systems. In Proceedings 8th Interaction and Concurrency Experience,
ICE 2015, Grenoble, France, 4-5th June 2015, pages 53–67, 2015.

[BV84] Eike Best and Klaus Voss. Free choice systems have home states. Acta
Informatica, 21(1):89–100, 1984.

178

BIBLIOGRAPHY

[Cai02] Benoit Caillaud, 2002. The tool Synet, http://www.irisa.fr/s4/
tools/synet.

[CEP93] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results
for 1-safe nets. In Foundations of Software Technology and Theoretical
Computer Science, 13th Conference, Bombay, India, December 15-17,
1993, Proceedings, pages 326–337, 1993.

[CHEP71] F. Commoner, A.W. Holt, S. Even, and A. Pnueli. Marked directed
graphs. Journal of Computer and System Sciences, 5(5):511 – 523,
1971.

[CL11] Luca Cardelli and Cosimo Laneve. Reversible structures. In François
Fages, editor, Proceedings of 9th International Computational Methods
in Systems Biology (CMSB’11), pages 131–140. ACM, 2011.

[CLRS09] Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and
Clifford Stein, editors. Introduction to algorithms. MIT Press, third
edition, 2009.

[Dan63] George B. Dantzig. Linear programming and extensions. Rand Cor-
poration Research Study. Princeton Univ. Press, Princeton, NJ, 1963.

[DK04] Vincent Danos and Jean Krivine. Reversible communicating systems.
In Proceedings of 15th International Conference on Concurrency The-
ory (CONCUR’04), volume 3170 of Lecture Notes in Computer Sci-
ence, pages 292–307. Springer-Verlag (New York), 2004.

[DK05] Vincent Danos and Jean Krivine. Transactions in RCCS. In Proceed-
ings of 16th International Conference on Concurrency Theory (CON-
CUR’05), volume 3653 of Lecture Notes in Computer Science, pages
398–412. Springer-Verlag (New York), 2005.

[DKS07] Vincent Danos, Jean Krivine, and Pawel Sobocinski. General re-
versibility. Electronic Notes Theoretical Computer Science, 175(3):75–
86, 2007.

179

http://www.irisa.fr/s4/tools/synet
http://www.irisa.fr/s4/tools/synet

BIBLIOGRAPHY

[EBMP16] Evgeny Erofeev, Kamila Barylska, Łukasz Mikulski, and Marcin
Piątkowski. Generating all minimal Petri net unsolvable binary words.
In Proceedings of the Prague Stringology Conference 2016, Prague,
Czech Republic, August 29-31, 2015, pages 33–46, 2016.

[Edd77] William F. Eddy. A new convex hull algorithm for planar sets. ACM
Trans. Math. Softw., 3(4):398–403, 1977.

[ER90] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Partial (set) 2-
structures. Acta Informatica, 27(4):343–368, 1990.

[Esp98] Javier Esparza. Reachability in live and safe free-choice Petri nets is
NP-complete. Theoretical Computer Science, 198(1):211 – 224, 1998.

[EW17] Evgeny Erofeev and Harro Wimmel. Reachability graphs of two-
transition Petri nets. In Proceedings of the International Workshop
on Algorithms & Theories for the Analysis of Event Data, ATAED
2017, Zaragoza, Spain, pages 39–54, 2017.

[Gra72] R.L. Graham. An efficient algorith for determining the convex hull
of a finite planar set. Information Processing Letters, 1(4):132 – 133,
1972.

[GRX02] Asma Ghaffari, Nidhal Rezg, and Xiaolan Xie. Maximally permissive
and non-blocking control of Petri nets using theory of regions. In
Proceedings of the 2002 IEEE International Conference on Robotics
and Automation, ICRA 2002, May 11-15, 2002, Washington, DC,
USA, pages 1895–1900, 2002.

[HDK15] Thomas Hujsa, Jean-Marc Delosme, and Alix Munier Kordon. On the
reversibility of live equal-conflict Petri nets. In Application and The-
ory of Petri Nets and Concurrency - 36th International Conference,
PETRI NETS 2015, Brussels, Belgium, June 21-26, 2015, Proceed-
ings, pages 234–253, 2015.

[Jar73] R.A. Jarvis. On the identification of the convex hull of a finite set
of points in the plane. Information Processing Letters, 2(1):18 – 21,
1973.

180

BIBLIOGRAPHY

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4(4):373–395, 1984.

[KCK+95] Alex Kondratyev, Jordi Cortadella, Michael Kishinevsky, Enric Pas-
tor, Oriol Roig, and Alexandre Yakovlev. Checking signal transition
graph implementability by symbolic BDD traversal. In European De-
sign and Test Conference, ED&TC 1995, Paris, France, pages 325–
332, 1995.

[Kos82] S. Rao Kosaraju. Decidability of reachability in vector addition sys-
tems (preliminary version). In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, pages 267–281,
New York, NY, USA, 1982. ACM.

[KPP06] Danko Kezić, Nedjeljko Peric, and Ivan Petrovic. An algorithm
for deadlock prevention based on iterative siphon control of Petri
nets. AUTOMATIKA: Journal for Control, Measurement, Electron-
ics, Computing and Communications, 47(1-2):19–30, 2006.

[Lam92] J. L. Lambert. A structure to decide reachability in Petri nets. The-
oretical Computer Science, 99(1):79–104, 1992.

[LMS10] Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani. Re-
versing higher-order Pi. In Proceedings of 21th International Confer-
ence on Concurrency Theory (CONCUR’10), volume 6269 of Lecture
Notes in Computer Science, pages 478–493. Springer, 2010.

[LPK00] GNU Linear Programming Kit, 2000. https://www.gnu.org/
software/glpk/.

[LR78] Lawrence H. Landweber and Edward L. Robertson. Properties of
conflict-free and persistent Petri nets. J. ACM, 25(3):352–364, 1978.

[May81] Ernst W. Mayr. An algorithm for the general Petri net reachability
problem. In Proceedings of the Thirteenth Annual ACM Symposium
on Theory of Computing, STOC ’81, pages 238–246, New York, NY,
USA, 1981. ACM.

181

https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/

BIBLIOGRAPHY

[MKMH86] Tomohiro Murata, Norihisa Komoda, Kuniaki Matsumoto, and Koichi
Haruna. A Petri net-based controller for flexible and maintainable
sequence control and its applications in factory automation. IEEE
Transactions on Industrial Electronics, 33(1):1 – 8, 1986.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications. Pro-
ceedings of the IEEE, 77(4):541–580, 1989.

[nlA06] Sergey Bochkanov. The numerical library ALGLIB, 2006. http://
www.alglib.net.

[ÖA08] Hanife Apaydin Özkan and Aydın Aybar. A reversibility enforcement
approach for Petri nets using invariants. Wseas Transaction on Sys-
tems, 7:672–681, 2008.

[P+15] Marcin Piatkowski et al., 2015. A list of unsolvable words, http:
//folco.mat.umk.pl/unsolvable-words.

[PU07] Iain Phillips and Irek Ulidowski. Reversing algebraic process calculi.
Journal of Logic and Algebraic Programming, 73(1-2):70–96, 2007.

[PU15] Iain Phillips and Irek Ulidowski. Reversibility and asymmetric con-
flict in event structures. Journal of Logic and Algebraic Methods in
Programming, 84(6):781–805, 2015.

[PUY12] Iain Phillips, Irek Ulidowski, and Shoji Yuen. A reversible process
calculus and the modelling of the ERK signalling pathway. In Pro-
ceedings of 4th Workshop on Reversible Computation (RC’12), volume
7581 of Lecture Notes in Computer Science, pages 218–232. Springer,
2012.

[Rei13] Wolfgang Reisig. Understanding Petri Nets - Modeling Techniques,
Analysis Methods, Case Studies. Springer, 2013.

[S+13] Uli Schlachter et al., 2013. The tool APT, http://github.com/
CvO-Theory/apt.

182

http://www.alglib.net
http://www.alglib.net
http://folco.mat.umk.pl/unsolvable-words
http://folco.mat.umk.pl/unsolvable-words
http://github.com/CvO-Theory/apt
http://github.com/CvO-Theory/apt

BIBLIOGRAPHY

[vdA00] Wil M. P. van der Aalst. Workflow verification: Finding control-flow
errors using Petri-net-based techniques. In Business Process Man-
agement, Models, Techniques, and Empirical Studies, pages 161–183,
2000.

[vdAG07] Wil M. P. van der Aalst and Christian W. Günther. Finding structure
in unstructured processes: The case for process mining. In Proceed-
ings of the Seventh International Conference on Application of Con-
currency to System Design, ACSD ’07, pages 3–12, Washington, DC,
USA, 2007. IEEE Computer Society.

[WDC11] Pengwei Wang, Zhijun Ding, and Hua Chai. An algorithm for generat-
ing home states of Petri nets. Journal of Computational Information
Systems, 7(12):4225–4232, 2011.

[Yen91] Hsu-Chun Yen. A polynomial time algorithm to decide pairwise con-
currency of transitions for 1-bounded conflict-free Petri nets. Infor-
mation Processing Letters, 38(2):71 – 76, 1991.

[YK98] Alexandre V. Yakovlev and Albert M. Koelmans. Petri nets and dig-
ital hardware design. In Wolfgang Reisig and Grzegorz Rozenberg,
editors, Lectures on Petri Nets II: Applications: Advances in Petri
Nets, volume 1491 of Lecture Notes in Computer Science, pages 154–
236, Berlin, Heidelberg, 1998. Springer.

183

BIBLIOGRAPHY

184

Index

compression function, C, 113
cycle, 63

generalised, g-cycle, 147

effect, E, 13
of a region, 18
of a sequence, 13
of a transition, 13

extension operation, E, 102

language, 163
over-approximation, 164
prefix-closed, 163

lts, 8
deterministic, 9
extension, 129
finite, 9
general-cycle-neutral, gc0, 147
isomorphism, 16
language, 170
language equivalent, 170
projective, 164
solvable, 17
totally reachable, 9

marking, 11
reachable, 13

Parikh vector, Ψ, 28

path, 146
generalised, g-path, 146

Petri net, 10
k-bounded, 14
initially marked, 11
output-non-branching, ON, 12
pure, 12
safe, 14

place, 10
input, 12
output, 12
side-condition, 12

reachability graph, 15
region, 18

abstract, 150

separation problem, 20
ESSP, 20
SSP, 20

subword, 27

token game, 12
transition, 11

effect-reverse, 128
enabled, 12
separable, 50
strict reverse, 128

185

INDEX

word, 27
base extendable, BE , 98
compressible, C, 112
cyclically solvable, 63
extendable, E , 104
extension, 103
minimal cyclically solvable, 63
minimal unsolvable, 32
mirror image, 131
non-extendable, NE , 98
projection, 138
solvable, 27
unsolvable, 27

186

Appendix

A list of minimal unsolvable binary words
A list of minimal unsolvable words up to length 20 modulo swapping a and b.

Notation L = n means the length of the words in the corresponding group. Since
the shortest unsolvable word is abbaa, the list begins with length 5.

[L = 5] :
abbaa

[L = 6] :
abbbaa

[L = 7] :
ababaaa
abbabaa
abbbaba
abbbbaa

[L = 8] :
abbbbaba
abbbbbaa

[L = 9] :
abaabaaaa
abbababaa

abbbbabba
abbbbbaba
abbbbbbaa

[L = 10] :
ababaabaaa
abbbabbaba
abbbbbabba
abbbbbbaba
abbbbbbbaa

[L = 11] :
abaaabaaaaa
abababaabaa
abbabababaa
abbabbababa
abbbbbabbba
abbbbbbabba
abbbbbbbaba
abbbbbbbbaa

187

A LIST OF MUWS

[L = 12] :
abbbbbbabbba
abbbbbbbabba
abbbbbbbbaba
abbbbbbbbbaa

[L = 13] :
abaaaabaaaaaa
abaabaaabaaaa
ababaabaabaaa
abbababababaa
abbbabbabbaba
abbbbabbbabba
abbbbbbabbbba
abbbbbbbabbba
abbbbbbbbabba
abbbbbbbbbaba
abbbbbbbbbbaa

[L = 14] :
abbbbbbbabbbba
abbbbbbbbabbba
abbbbbbbbbabba
abbbbbbbbbbaba
abbbbbbbbbbbaa

[L = 15] :
abaaaaabaaaaaaa
abaabaabaaabaaa
ababababaababaa
abbabababababaa

abbababbabababa
abbbabbbabbabba
abbbbbbbabbbbba
abbbbbbbbabbbba
abbbbbbbbbabbba
abbbbbbbbbbabba
abbbbbbbbbbbaba
abbbbbbbbbbbbaa

[L = 16] :
abaaabaaaabaaaaa
ababaabaabaabaaa
abababaababaabaa
abbabbababbababa
abbbabbabbabbaba
abbbbbabbbbabbba
abbbbbbbbabbbbba
abbbbbbbbbabbbba
abbbbbbbbbbabbba
abbbbbbbbbbbabba
abbbbbbbbbbbbaba
abbbbbbbbbbbbbaa

[L = 17] :
abaaaaaabaaaaaaaa
abaabaaabaaabaaaa
ababaababaabaabaa
abbababababababaa
abbabbabbababbaba
abbbbabbbabbbabba
abbbbbbbbabbbbbba
abbbbbbbbbabbbbba
abbbbbbbbbbabbbba

188

A LIST OF MUWS

abbbbbbbbbbbabbba
abbbbbbbbbbbbabba
abbbbbbbbbbbbbaba
abbbbbbbbbbbbbbaa

[L = 18] :
abbbbbbbbbabbbbbba
abbbbbbbbbbabbbbba
abbbbbbbbbbbabbbba
abbbbbbbbbbbbabbba
abbbbbbbbbbbbbabba
abbbbbbbbbbbbbbaba
abbbbbbbbbbbbbbbaa

[L = 19] :
abaaaaaaabaaaaaaaaa
abaaaabaaaaabaaaaaa
abaaabaaabaaaabaaaa
ababaabaabaabaabaaa
abababababaabababaa
abbabababababababaa
abbabababbababababa

abbbabbabbabbabbaba
abbbbabbbbabbbabbba
abbbbbbabbbbbabbbba
abbbbbbbbbabbbbbbba
abbbbbbbbbbabbbbbba
abbbbbbbbbbbabbbbba
abbbbbbbbbbbbabbbba
abbbbbbbbbbbbbabbba
abbbbbbbbbbbbbbabba
abbbbbbbbbbbbbbbaba
abbbbbbbbbbbbbbbbaa

[L = 20] :
abbbbbbbbbbabbbbbbba
abbbbbbbbbbbabbbbbba
abbbbbbbbbbbbabbbbba
abbbbbbbbbbbbbabbbba
abbbbbbbbbbbbbbabbba
abbbbbbbbbbbbbbbabba
abbbbbbbbbbbbbbbbaba
abbbbbbbbbbbbbbbbbaa

189

	Title: Characterisation of a class of Petri net solvable transition systems
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Synthesisability of simple labelled transition systems
	Basic notions and notations
	Theory of regions and separation problems
	Motivating remarks
	Separation problems for linear lts
	Structural properties of (un)solvable words
	A necessary and sufficient condition for separability
	A letter-counting based synthesis algorithm
	Experimental results of ABSolve algorithm
	Synthesis of binary words with bounded Petri nets

	Cyclic lts over a binary alphabet
	A synthesisability criterion for cyclic lts
	A synthesis algorithm for cycles

	Special cyclic forms of synthesisable lts
	Synthesis of words by special classes of Petri nets
	Synthesis with output-non-branching Petri nets
	Synthesis with bounded Petri nets
	Synthesis with pure Petri nets

	Summary

	Characterisation of minimal unsolvable words
	Minimality of non-synthesisable binary words
	A classification of binary muws by shape
	Extension of muws
	Extendable and non-extendable muws
	Extension morphisms and operations
	Minimality of extensions

	Compression of muws
	The generative nature of muws
	A pattern-matching pre-synthesis algorithm
	Pre-synthesis quick fail check of lts
	Reversibility of muws
	Summary

	Synthesis of Petri nets from finite languages
	Synthesisability of words over finite alphabets
	Generalising the counting condition is complicated
	Generalised cycles of lts
	Abstract regions of lts
	Generalised cycles with non-zero Parikh vectors
	Generalised cycles with zero Parikh vectors
	Over-approximation of finite languages
	Pure over-approximation
	Over-approximation with side-conditions

	Zero g-cycles and language equivalence
	Summary

	Conclusion
	Summary
	Outlook

	Bibliography
	Index
	Appendix

