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Zusammenfassung

In dieser Dissertation wird die Art der Verbindung zwischen statischen Typsystemen
und Programmverifikation untersucht, oder – andersherum ausgedrückt – es wird der
Frage nachgegangen, warum es keine verifizierbaren, dynamisch getypten Program-
miersprachen gibt. Der Kern dieser Frage ist kontrovers – die meisten Informatiker
assoziieren statische Typsysteme sowohl mit Korrektheit als auch mit Verifikation –
wir hingegen werden in dieser Dissertation zeigen, dass die häufig anzutreffende Kom-
bination aus statischem Typsystem und Programverifikation nicht auf Notwendigkeit
beruht, sondern lediglich auf Bequemlichkeit.

In diesem Sinne werden wir eine dynamisch getypte Programmiersprache definieren
und sie mit einer Programmlogik ausstatten, deren Korrektheit und (relative) Vollstän-
digkeit wir beweisen werden, genau wie es heutzutage auch bei Programmlogiken für
statisch getypte Sprachen gängig ist.

Um die Verifikations-Kluft zwischen dynamisch und statisch getypten Sprachen vol-
lends zu überbrücken, werden wir des Weiteren die Unterschiede zwischen der Veri-
fikation von statisch getypten und dynamisch getypten Programmen analysieren, Ur-
sachen, die zu einem erhöhten Verifikationsaufwand in letzterem Fall führen können,
identifizieren und einen Ansatz entwickeln, derartige Probleme zu beseitigen. Das Ziel
ist es, nur dann zusätzlichen Verifikationsaufwand zu haben, wenn das Programm die
dynamische Typisierung sehr stark ausnutzt und den Pfad dessen, was in einer statisch
getypten Sprache möglich wäre, deutlich verlässt.

Anders ausgedrückt: Solange das Programm prinzipiell auch statisch getypt sein
könnte, sollte es bei der Verifikation keinerlei Unterschied machen, ob man es in
einer statisch getypten oder einer dynamisch getypten Sprache geschrieben hat. Je
mehr das Programm jedoch davon abweicht, desto mehr müssen Abweichungen erst
manuell “repariert” werden (indem man manuell ihre Typ-Sicherheit beweist), bevor
die erwähnte Methodik angewendet werden kann.

Zu guter Letzt werden wir die gewonnenen Erkenntnisse nutzen, um eine neuar-
tige Typisierung namens “Consensual Typing” für verifizierbare Programmiersprachen
zu definieren, die statische und dynamische Typisierung auf eine Art kombiniert,
die es ermöglicht, die Typ-Sicherheit von dynamisch getyptem Programmcode zu
garantieren, ohne ihn in statisch getypten umschreiben zu müssen und dabei sowohl
Soft- als auch Gradual-Typing generalisiert.
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Summary

This thesis investigates the connection between static typing and program verifica-
tion, or - phrased from the opposite direction - seeks to answer the question “why are
there no verifiable, dynamically typed programming languages?”. While this question
is a controversial one – for many people static type systems are strongly associated with
both correctness and verification – we will demonstrate in this thesis that although
common, the combination of static typing and program verification is not based on
neccessity, but on convenience. To that end, we will define a dynamically typed pro-
gramming language along with a program logic that we demonstrate to be both sound
and (relative) complete, just like its state-of-the-art counterparts for statically typed
languages are.

Furthermore, in an attempt to close the gap between the two typing disciplines with
respect to verification even further, we analysed the differences in terms of verification
between dynamically typed programs and statically typed ones, identified sources for
inconvenience in the former case and developed an approach to mitigate these by
making the overhead experienced during verification proportional to the program’s
deviations from what would be allowed in static typing.

In other words: whenever a program written in a dynamically typed programming
language is statically typable, there is no difference in terms of verification to the
statically typed case. However, when the program deviates from being statically ty-
pable, these deviations must first be “repaired” by proving them type-safe, before the
methodology from the previous case can be applied.

Finally, we leverage above insights to define the novel typing discipline “consensual
typing” for verifiable programming languages, which combines static and dynamic
typing in a way that allows deriving type safety guarantees for dynamically typed
code without rewriting it into statically typed code and thereby generalizes both soft-
and gradual typing.
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Part I.

Introduction

“Where we are going always reflects where we came from”

– Clone Wars Season 4 Episode 11
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Dynamically typed programming languages do not rely on a static type system
to ensure that operations are only applied to suitable operands. Instead, they al-
low every syntactically correct program to be executed and check the suitability of
operands at runtime. Detected type errors hence cause runtime exceptions rather
than compile-time errors. There is a controversial discussion about the issue of typing
in the programming community. Some consider dynamically typed languages as “too
slow”, “unsafe” and hence “unfit for any serious programming”, while others consider
them as superior for writing elegant, reusable and extensible programs. Bracha [16]
for example noted that dynamic typing allows a much cleaner conceptual distinction
between programming language semantics and program analyses used for bug detec-
tion.

However, in safety-critical application scenarios, statically typed languages were
predominant and this is most probably the reason why the verification community
largely ignored dynamically typed languages. As a result, most program verification
methodologies (with the notable exception of ACL2 [15]) nowadays are tailored to
statically typed languages.

This situation is ironic for multiple reasons:

• The argument that anyone who seeks to engineer a safety-critical application
will most probably do so in a statically typed language assumes that all software
is written from scratch and with safety in mind. However, experience from
Software Engineering clearly suggests that code written today as a temporary
fix in a dynamically typed language might very well end up as a permanent
solution in a safety-critical application scenario.

• Contemporary software is increasingly polyglot. Hence, as hybrid languages like
Objective-C are put forward and frameworks like the JVM or .NET allow mixing
languages with static- and dynamic typing, the probability of dynamically typed
code being used as part of safety-critical systems increases.

• Program verification is about correctness, not performance. Hence the perfor-
mance advantage of static typing is irrelevant in this context.

• Program verification is able to guarantee undecidable program properties. This
is in contrast to the type checkers used for static typing which restrict the pro-
gramming language to make the type safety problem decidable. It does, however,
make only little sense to restrict a verifiable programming language for this pur-
pose, since in this case a more powerful mechanism (program verification) is
readily available and used for all other properties.

With the goal of showing avenues for consolidation of this rather odd state-of-the-
art and closing the gap between the two typing disciplines with respect to verification,
this thesis makes the following contributions:

• Analyzing the role of type information in program verification (mostly Hoare
logic) with a focus on establishing that it is not required for a sound and (rela-
tive) complete application of the methodology, but rather used for various opti-
mizations,
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• Demonstrating the previous point by providing a sound and (relative) complete
Hoare logic for a dynamically typed programming-language,

• Showing that it is possible to derive type information also for dynamically typed
programs,

• Proposing Interactive Type Inference, combining a Type Inference Algorithm and
a Program Logic into a semi-automatic procedure that makes the effort required
for deriving type information of a dynamically typed program proportional to
its deviations from what would be allowed in static typing,

• Proposing a methodology using above ideas to make verification of dynamically
typed programs equivalent to that of statically typed programs both in terms of
effort and convenience, by first establishing their type safety, and

• Proposing Consensual Typing , a typing discipline for verifiable programming
languages combining the benefits of static- and dynamic typing and thereby
generalizing both Soft- and Gradual Typing.

This thesis is organized into two main parts: The First Part titled “Program Logic”
is concerned with analyzing the impact of Dynamic Typing on the more theoretical
aspects of verification like proof systems and their proof-theoretical properties such as
soundness and (relative) completeness. The Second Part titled “Type Information” is
concerned with its impact on the more practical aspects of a verification system such
as verbosity, the size of verification conditions as well as their solvability.

Afterwards, a third part, titled “Applications” will describe our efforts to implement
the concepts mentioned, their application to a number of case studies and how else
they can be of use. A Fourth Part, titled “Further Avenues of Research” will elaborate
on the limits of the developed formalisms and outline promising directions for future
research.

14



1. Preliminaries

“The Internet is the largest equivalence class in the reflexive, transitive, symmetric closure of the

relationship “can be reached by an IP packet from””

– Seth Breidbart

1.1. Notation

In this thesis, we denote quantification in a style commonly used for algebraic specifi-
cations:
∀x : N • p(x) and ∃x : N • p(x),

abbreviate finite, consecutive subsets of the natural numbers as
Nnm = {n, ...,m} ⊂ N, Nm = N0

m, and
use the notation 2M for the powerset of a set M .

Furthermore, we denote sequences as −→x = x1...xn, −→x1
−→x2 denotes the concatenation

of the sequences −→x1 and −→x2, and {−→x } is the set of all elements of the sequence −→x . The
set of all sequences of elements of a set M is denoted as M∗ if it includes the empty
sequence and as M+ otherwise.

1.2. Programming Languages

The main topic of this thesis is program verification, a method for establishing the
correctness of programs by means of formal reasoning. Hence, the objects we will
be studying are programs and their properties. Since programs are written in pro-
gramming languages, every formal study of their correctness will have to start with
a rigorous account of some programming language. In preparation for this, we will
shortly recall some basic notions of programming languages required to follow the
arguments in this thesis.

Programming Languages are (usually context-free) formal languages for describing
algorithms. The set of syntactically valid programs of a particular programming lan-
guage (= its syntax) can hence be specified using a context-free grammar. In this
thesis, the syntax of all formal languages will be given in Backus-Naur-Form, a com-
mon notation for context-free grammars. Such grammars consist of multiple rules like
the following

N ::= Nt | t

15



1. Preliminaries

where N stands for a non-terminal symbol and t stands for a terminal symbol. In
order to provide convenient syntax for the programmer, and at the same time simplify
the parse-trees for implementation of compilers/interpreters, it is customary to have
an additional layer of rewriting rules operate directly on the parse-tree after it was
produced from the program text by a parser. These rules are often called syntactic
sugar and usually remove certain redundant syntax elements by reducing them to
others. An example of this would be

if e then S end⇒ if e then S else null end

which offers the possibility to omit the else-branch in conditionals by automatically
adding one containing the null statement.

In this thesis, we will be exclusively discussing imperative, object-oriented program-
ming languages. Imperative means that the programming language provides read- and
write access to memory in the form of mutable variables and that its programs consist
of a sequence of commands, called “statements” that are executed one after the other,
each reading those variables and modifying them by assigning new values, overwriting
the old.

In order to formalize such imperative programs, we fix a value domain D, modeling
the values that variables of our program may contain / refer to. Also, we introduce
an infinite set of local variables VL that any finite program can draw its finitely many
variables from and formalize program states σ ∈ Σ = VL 7→ D as functions mapping
variables to values. Statements can then be interpreted as functions mapping states
to states.

However, our programs are also object-oriented . This means that there is a special
kind of value called “objects”. Objects can refer to other values (including objects)
through instance variables (sometimes called “fields”), hence forming arbitrary data-
structures like linked lists, trees or graphs. In fact, states of object-oriented programs
are best viewed as directed graphs whose nodes are the objects and whose edges are
the instance variables. To allow setting some of those edges to undefined values, there
is usually an object called null .

Object-oriented (OO) programming languages in which objects are the only values
are called purely object-oriented . Note that this is not a restriction as objects are
versatile enough to encode any other data-type like numbers, lists or strings.

But object-oriented programs are more than just “programs with objects”. They
organize the code around the object-structure by providing a notion of a “current
object” (often called self). The instance variables of self are the only ones a statement
is permitted to read and assign to, the instance variables of all other objects are hidden
(a concept called encapsulation).

Also, in object-oriented programs the statements of a program are organized into
methods, each belonging to a class. In a method call x.m(x1, ..., xn), x is passed as
an implicit argument called the receiver and the object it refers to is made the new
current object for the duration of the method call.

Furthermore, each object is assigned to a particular class and said to be its instance.
Since this relationship is permanent, note that only the methods of a class are per-
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1.2. Programming Languages

mitted to modify the instance variables of its instances. Now each class is given a
special method called its constructor for creating and initializing new instances of this
class. Hence classes manage the entire life-cycle (creation and modification) of their
instances.

To be precise, this model is called class-based object-orientation. Ruby and Python
are both class-based object-oriented languages. JavaScript uses a slightly different
model called prototype-based object-orientation. However, in this thesis we will con-
centrate on the more common class-based variant.

Note that unlike with procedure calls P (x1, ..., xn), where the procedure name P
must uniquely determine the procedure to be called, a method call x.m(x1, ..., xn)
is ambiguous as multiple classes C1, C2, ... might implement a method m of arity n.
In order to determine which of these is actually called, most languages use dynamic
dispatch, which means that for all i ∈ Nn, if the receiver x refers to an instance of
class Ci, then Ci’s implementation of m(x1, ..., xn) is called. Note that while being an
instance of a class C could be considered type information (see Section 1.3.1), it is the
runtime type that is used to disambiguate the call, not some static approximation of
it. In object-oriented programs control flow and data flow are therefore interdependent
and hence highly precise type information is required to statically reason about their
control flow.

To facilitate code reuse, object-oriented programming languages usually provide an
inheritance mechanisms. Inheritance means that classes may inherit methods (and
their implementation) from other classes. When a class A inherits all methods from a
class B, it is called a subclass of B. Since the canonical use case for this is specialization
(Square being a subclass of Rectangle), type systems for object-oriented languages are
designed to allow passing instances of subclasses (Square) wherever instances of the
parent class (Rectangle) are expected, which is called subtyping . A formalization of
this principle in the context of program verification is called the Liskov substitution
principle [53] and the subtyping relation it induces is called behavioral subtyping .

To formalize object-oriented programs, we extend above definitions by introducing
a set of classes C, a set of methods M =

⋃
C∈C MC , where MC denotes the methods

of class C, a set of variables as V = VL ] VI , where VL denotes the (infinite) set
of local variables and VI denotes the (also infinite) set of instance variables. Then,
program states σ ∈ Σ are tuples σ = (σl, σi), where σl is a function of type VL 7→ D
mappings local variables to values (which usually include objects O ⊆ D) and σi is a
function of type O×VI 7→ D mapping an object o and an instance variable @v to the
value referenced by o.@v (thus modeling the internal states of all objects). However,
we overload notation and provide shorthands σ(u) ≡ σl(u) and σ(o.@v) = σi(o,@v).

For a given program state σ, the state update σ[u := v] is a program state that is
identical to σ except that the value of u ∈ VL has been updated to v ∈ D. Similarly,
we denote by σ[o.@v := v] a program state that is identical to σ, except that the value
of o.@v for o ∈ O,@v ∈ VI has been updated to v ∈ D.
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1.2.1. Semantics

Before going into detail about different approaches for establishing the correctness of
programs, let me first introduce some basic notions and notations for formalizing the
meaning of programs.

While in practice the meaning of most programming languages and hence the be-
havior of their programs is given in the form of an executable compiler / interpreter for
the language, formal reasoning about programs in a particular programming language
requires modeling the language mathematically – such a model is called a semantics
of the programming language.

There are multiple different approaches for defining the semantics of programming
languages. We will only list those of relevance to this thesis.

• Operational Semantics formally defines a machine-model executing the programs
of the language. For instance, giving a Turing Machine executing the pro-
grams would constitute an operational semantics. The most popular variant
are structural operational semantics due to Hennesy and Plotkin [40, 66] that
define the behavior in terms of a label-transition system defined inductively over
the structure of the programs. Operational semantics are very popular as they
are very intuitive and are often even executable [49], which allows for testing
them (for instance against a previously implemented interpreter or on example
programs). Structural Operational Semantics will be introduced in more detail
in Section 1.2.2.

• Axiomatic Semantics uses a formal inference system to logically derive program
properties. This type of semantics is intended for use in program verification.
Unfortunately, it is perceived as unintuitive by many programming language de-
signers who are more familiar with the control-flow-centric view useful for imple-
menting compilers/interpreter than with logical inference systems. Also, lacking
direct executability, axiomatic semantics are often hard to debug. It is hence
customary in program verification to give both an operational and an axiomatic
semantics for a programming language and to establish a close relationship be-
tween the two by proving the axiomatic semantics sound and complete relative to
the operational semantics. Hoare logic is an example of an axiomatic semantics
(see Section 1.5.1).

• Denotational Semantics is given by functions mapping programs of the program-
ming language to mathematical objects representing their meaning (called deno-
tations). When choosing the right kind of objects as denotations, this style of
semantics can be very useful. A well-known example of a denotational semantics
is the predicate transformer semantics due to Dijkstra (see Section 1.5.2).

1.2.2. Structural Operational Semantics

Structural Operation Semantics, as introduced by Hennessy and Plotkin [40, 66], de-
scribes the behaviour of programs as a transition relation on configurations. Thus,
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in this formalism, every execution of a given program corresponds to a path through
a directed graph whose nodes are the configurations of a machine and whose edges
are the possible computation steps performed by said machine. The path itself hence
corresponds to the sequence of configurations and computation steps encountered by
the machine when executing the program. Since in this view a program corresponds
to a directed graph containing all its possible execution sequences, this modelling style
naturally extends to non-deterministic programs.

Often, the proper configurations 〈S, σ〉 consist of a program state σ ∈ Σ and a
subprogram S that is “left to execute”. Such configurations can be regarded as tuples
from Stmt × Σ. Additionally, we define a set of final configurations Conf final of the
form final〈σ〉 for some σ ∈ Σ as well as a set of error configurations Conf error of the
form fail〈S, σ〉 or typeerror〈S, σ〉 for some S ∈ Stmt and σ ∈ Σ. The reason why
we give error states the same information as proper states is that we want to include
programming languages featuring error recovery into our discussion (see Section 12.1).
Hence, the set of configurations Conf is defined as

Conf proper
∆
=Stmt × Σ,

Conf final
∆
={final〈σ〉 | σ ∈ Σ},

Conf error
∆
={fail〈S, σ〉, typeerror〈S, σ〉 | S ∈ Stmt , σ ∈ Σ},

Conf
∆
=Conf proper ] Conf final ] Conf error.

We also introduce the abbreviations

final〈σ〉 ≡ 〈r, σ〉
typeerror〈σ〉 ≡ typeerror〈r, σ〉

fail〈σ〉 ≡ fail〈r, σ〉

Proper configurations can occur everywhere in finite or infinite computations, while
final and error-configurations may only occur as the last configuration of finite compu-
tations. As the behaviour of programs is usually compositional, the transition relation
can be defined inductively over the structure of said programs.

A transition between configurations 〈S, σ〉 and 〈S′, σ′〉 is then denoted as

〈S, σ〉 → 〈S′, σ′〉.

While each of the styles for formalizing semantics focuses on different aspects of pro-
gram behaviour (for instance operational semantics retain every single program step,
while denotational semantics abstracts those away), in operational semantics it is cus-
tomary to define the Input/Output semantics of programs on top of the underlying
transition system as a function

MJSK : Σ 7→ 2Σ

with
MJSK(σ) = {τ | 〈S, σ〉 ∗→ final〈τ〉}.
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where final〈τ〉 denotes a configuration with state τ and no program left to execute.
Note that this definition is in essence a denotational semantics using functions be-

tween (sets of) states as denotations. Also note that this definition does not capture
the information whether a program terminates or not. A program S′, that does not
terminate from the given start state σ is simply mapped to a empty set of final states:
MJS′K(σ) = ∅. Hence, this definition is only useful when termination should not be
guaranteed (partial correctness) and must be accompanied by similar definitions for
other notions of correctness. The one including termination (total correctness) would
be

MtotJSK(σ) =MJSK(σ) ∪ {⊥ | S can diverge from σ}.

1.3. Types, Type Systems and Approaches to Typing

1.3.1. Types and Type Information

A “type” is a set of values sharing a common property. The idea of partitioning the
value space D into types τ1, ..., τn with Dτ1 ] ... ] Dτn = D is incredibly old. In
fact, its origins can be traced back as far as to the endeveours of the mathematicians
Bertrand Russell and Gottlob Frege to formalize all of mathematics. In order to avoid
Russell’s paradox, an inconsistency discovered in their formalization of set theory, they
introduced a type hierarchy and allowed sets of type A to only contain sets of preceding
types (lower than A in the hierachy), thus avoiding loops.

Since then, types and type systems have been used in various contexts and for various
purposes. In programming, they are mostly used for ruling out certain kinds of bugs
and for compile-time performance optimization. However, over time the terms “type”
and “type system” have taken on a broader meaning of “value-centic information that
can be statically derived using a program analysis and helps preventing bugs”.

Since in this thesis we concern ourselves mainly with correctness, the more restricted
context of type safety will suffice. More formally, we define:

A program π is called type-safe if no execution of π can result in a type error.
Type safety is the problem of deciding whether a given program is type-safe. Since
type errors can be regarded as a form of output, type safety is a nontrivial semantic
property and hence undecidable for Turing-complete languages by Rice’s theorem [71].

Our model language dyn (see Section 2.1) is a pure and class-based object-oriented
language. As usual in such languages, “type errors” are defined as calling a method
on a receiver that does not support it. We hence need to define our types in such
a way that they are useful for detecting such errors. Since the methods supported
by an object are those defined in its respective class, classnames are a natural choice
for types. Since in dynamically typed languages the inheritance relation is usually of
minor importance as subtyping does not neccessarily imply subclassing, we opt for
union types instead of including the inheritance relation into our types. Union Types
are naturally represented as sets of classnames. For a given program π we thus define:

T = 2Cπ∪{Cnull}

20



1.3. Types, Type Systems and Approaches to Typing

Cπ is the finite set of class names occuring in the program π and the class Cnull is
defined to be the class of the value null , which is the usual object-oriented null value.
Explicitly representing it in our union types allows for our types to serve the additional
purpose of keeping track of null values.

For a given program π, we regard a type T as an element of the set T . However,
since a type can be regarded as an abstraction of a single value, analysing a program
π will require to keep track of (the types of) all values in π.
Recall that concrete states

Σ = (VL 7→ D)× (O 7→ VI 7→ D)

map local variables (VL) to values = domain elements (D) = objects (in the case of
dyn) as well as objects (O) to their inner states (VI 7→ D) in turn mapping instance
variables (VI) to objects (D). When replacing the concrete value domainD by our type
domain T and explicitly adding the instance variables of the current object (in order
to allow our to-be-defined analysis to track them flow-sensitively, see Section 1.4.1) we
reach the following definition of abstract states:

Σ̊ = (VL 7→ T )× (VI 7→ T )× (C 7→ VI 7→ T ).

Note that the terminology “abstract state” is in-tune with abstract interpretation,
which will be used throughout this thesis to formalize type inference algorithms (see
Section 1.4.1).

A typing ty of a program π is a mapping from program locations Locπ to abstract
states (ty : Locπ 7→ Σ̊). Program locations will be formally defined for our program-
ming language in Section 2.1.3. They can be understood as parse-tree nodes of the
program π. It is important to stress that two syntactically equivalent statements of
π nevertheless have distinct program locations. We use the notation ◦S (resp. S•) to
denote the program locations before (resp. after) the evaluation of the statement S.

Definition 1. A typing ty for a program π is called sound iff in every execution of
π, whenever a statement S of π is evaluated to a value v, then

• v is of a type T v ty(S•)(r),

• all local variables u ∈ VL reference values of a type Tu v ty(S•)(u),

• all instance variables @v ∈ VI of the current object self reference values of a
type T@v v ty(S•)(self .@v), and

• all instance variables @v ∈ VI of all instances o ∈ O of class C ∈ C reference
values of type TC.@v v ty(S•)(C,@v).

Definition 2. A typing ty is at least as precise as another typing ty ′, written ty v ty ′,
iff for all program locations L ∈ Locπ it holds that ty(L) v ty ′(L).

Definition 3. For a program π, the least precise type-safe typing ty†π is a typing
where
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• for every method call e0.m(e1, ..., en),

ty†π(e0•)(r) = {C | C ∈ C supports method m of arity n},

• in the case of stat, for every operation1 e1 ⊕ e2 of type T1 × T2 7→ T,

ty†π(e1•)(r) = T1, ty
†
π(e2•)(r) = T2

• for every conditional or while loop with condition e,

ty†π(e•)(r) = {bool}, and

• for all other program locations L ∈ Locπ,

ty†π(L) = >.

By definition, a program π is type-safe iff it has a sound2 typing ty that is precise
enough to establish type safety (ty v ty†π).

Type safety verifiers (type inference algorithms) derive a typing for a given program
by over-approximating its behavior. A verifier is sound iff the typings it derives are.

Note that given a typing ty for a program π, it is straightforward to decide ty v ty†π.
However, deciding soundness usually requires more information. For this reason, sound
type safety verifiers usually a) assign non-> types to all program locations and b)
provide a set of inference rules (commonly called a “type system”) allowing to check
safety of their derived typings using this additional type information. A soundness
proof for these rules with respect to the semantics of the programming language is a
crucial part of proving such algorithms sound.

1.3.2. Static and Dynamic Typing

A statically typed programming language uses a program analysis to determine the
types of all values flowing through its programs. Often, the user is additionally required
to annotate his/her program with information supporting this analysis. Should this
analysis fail – which can be either because the annotations are inconsistent or because
the program is not typesafe or due to the inherent limits of program analyses – then
the program is rejected and cannot be compiled. In essence, static typing is the idea of
restricting the valid programs of a programming language to those whose type safety
can be guaranteed by a particular program analysis.

Dynamic typing , on the other hand, was introduced much later with the advent
of LISP and found its way into many contemporarily popular languages like Ruby,
Python and JavaScript. Contrary to static typing, dynamically typed languages do
not restrict the valid programs in any way, but rather check the validity of operands

1In this case, we consider e1 == e2 an operation of type O× O 7→ B.
2if a method call, conditional or while loop is unreachable, sound typings may assign the type ⊥ to

its receiver / condition.
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for each executed operation at runtime. This, of course, introduces a runtime overhead
and has the drawback that it is in general not possible to automatically derive type
information for such programs, as their typing problem is undecidable.

Controversy: The question which of these two approaches to typing is preferrable
is dividing programmers around the globe like few others. As part of the general
“which programming language is the best?”-debate, countless battles have been fought
between proponents of the two approaches and even reputed members of the scientific
community often seem inclined to fuel the heated debate rather than to perpetuate
their scientific objectivity. Interestingly, in this matter both sides have claimed their
approach to be the more general one and the respective other to be merely a special
case. While I can follow this argument for the dynamically typed side (Every statically
typed program can be trivially translated into a dynamically typed language, but not
vice versa due to the restrictions imposed by static typing), Harper [39] for instance
claims that dynamically typed languages would be statically typed languages whose
type-system has only one type (he thus calls them “unityped”). To substantiate this,
he employs one of the following arguments:

1. Using the over-simplified example of the λ-calculus, where a type-system with
recursive types allows to give every λ-term the type µX.X → X, which basi-
cally states “everything is a function”. This example is over-simplified as the
λ-calculus has only one type: function. And as function application is the only
operation, the λ-calculus can never produce a type error, even without a type
system – Obviously the distinction between static and dynamic typing does not
make much sense in this setting.

2. Stating that in dynamically typed languages everything is given one giant sum
type over all existing types. This in fact is pretty much equivalent to the way type
information is stored in dynamically typed languages, but there is a difference:
Would one do this in a statically typed language (having sum types), then the
type system would allow for using exactly one operation on each data value: a
(giant) case distinction. By contrast, in a dynamically typed language one can
apply any operation directly to any data value (of course, if the data value does
not support the operation, one will get a runtime type error). In my humble
opinion, there seems to be a conceptual difference as emulating the behaviour of
a dynamically typed language in a statically typed one this way would require
inserting a giant case distinction before each and every operation in which all
cases but the valid ones would yield a typeerror.

3. Formalizing a translation of dynamically typed programs into a “statically typed”
language with typecasts by inserting a typecast to a type that supports the oper-
ation before every operand of every operation. The problem here is that although
many statically typed languages (C, Java) support typecasts, typecasts actually
break static type systems by introducing a (small, controlled) amount of dynamic
typing by delaying type checking to runtime. In order to be clear with termi-
nology, it is hence much better to call such languages hybridly typed instead of
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“statically typed”3. Hence, keeping in mind that hybrid typing is a combination
of static- and dynamic typing it is much less surprising that dynamically typed
programs can be translated into such a language.

Note that in both translations of dynamically typed programs into a statically or
hybridly typed language, all benefits static typing might bring are lost. Both with
sum types and with typecasts, the static type system is neither able to establish type
safety of the resulting program, nor will it run any faster than in the dynamically typed
language, as all runtime typechecks are also performed in the translated version. In
contrast, the type information derived as described in Chapter 8 could be used to
translate dynamically typed programs into statically typed languages such that the
respective type system could actually work its magic.

History: In the first decades of computing, computers where incredibly slow com-
pared to today’s standards. Hence performance was considered crucial when writing
and compiling programs. Also, RAM memory was costly and hence scarce. Classifying
the value space into types of values whose binary representation was to be interpreted
in the same way and assigning these types to variables referencing them allowed for a)
programs to keep track of the various ways in which each chunk of bits could be inter-
preted without needing additional memory to store this information. b) compilers to
generate code optimized for the type of data it operated on. Furthermore, in low-level
languages like C, misinterpreting an integer as a string (whose end was marked by the
first \0-byte after its start address in memory) or even worse as a memory address
to jump to, could have serious consequences like memory corruption or segmentation
faults. As these type errors were often very hard to reproduce and debug, avoiding
them at the language-level was perceived as of utmost importance. For these reasons,
all major programming languages since then have been statically typed.

This is probably the reason why most prior research in program verification concen-
trated on statically typed languages.

Note that most of the issues that led to the creation of statically typed languages
are getting less and less serious as both computational power and memory are becom-
ing cheaper and cheaper. Also, modern high-level languages usually handle memory-
management automatically, thereby significantly reducing the impact of type errors.

1.3.3. Pluggable Type Systems, Soft and Gradual Typing

Since the advent of LISP and maybe motivated by the heated dabate in the program-
ming community, many researchers have explored ways to combine static- and dynamic
typing in beneficial ways. We already discussed typecasts in the last section. There are
also other forms of hybrid typing, for instance by using an explicit type Dynamic [1].

Another approach is Soft Typing [18], the idea of using a type inference algorithm
on a dynamically typed program to find as much type information as possible and then
insert run-time checks only where the type information was insufficient to guarantee
type safety.

3For this very reason there are advocates of static typing (esp. the Haskell community) that resent
the idea of typecasts altogether.
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Gradual Typing [75, 9] also starts from a dynamically typed program, but adds a
static type system and lets the user gradually add type information to it – those values
annotated are typed statically, the remaining values dynamically. Both approaches can
of course also be combined [69].

According to Bracha [16], the combination of a dynamically typed language with
(multiple) optional type systems (like in Soft or Gradual Typing) is conceptually
cleaner due to the clear distinction between programming language semantics and
program analyses. He calls this concept “Pluggable Type Systems” and argues that
it is preferrable to statically typed ones as it “can provide most of the advantages
without most of the drawbacks”.

Note, however, that static type systems provide a type-safety guarantee for the
entire program while both soft- and gradual typing exclude those regions of code that
are too hard to analyse. In contrast, consensual typing as explained in Section 8.11
allows for such guarantees to be provided for entire dynamically typed programs as
long as they are actually typesafe.

1.4. Program Analysis

The Theorem of Rice [71] states that all non-trivial semantic properties of programs
written in a Turing-complete programming language are undecidable. Since these days,
all approaches developed by the correctness research community can be categorized by
which of two paths were used to circumvent this problem: Those aproaches that chose
to accept approximate answers are nowadays known as program analysis and those
that chose to include the user into the process in order to still gain precise results are
today called program verification.

This section is concerned with the former. The latter, which is the main topic of
this thesis, will be given a detailed account in Section 1.5.

In this thesis, program analysis will be applied to establish type-safety. Type-
safety is a safety property and expresses the absence of a certain kind of unwanted
behaviour (type errors). This kind of property can be soundly approximated using
over-approximation, since the absence of the unwanted behaviour in a (safe) over-
approximation of the program behaviour implies its absence in the actual program
behaviour.

Traditionally, the theoretical background for program analysis can be either phrased
in terms of data-flow analysis, constraint-based analysis or abstract interpretation.
For a thorough introduction to all of these as well as their various similarities and
differences, we refer the interested reader to [61].

For the formal developments in this thesis, the notion of a Galois Connection from
Abstract Interpretation turned out to be particularily intuitive and hence this style
was chosen also for the remaining material related to program analysis.
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1.4.1. Abstract Interpretation

Abstract Interpretation is the theoretical basis underlying most semantics-based pro-
gram analyses. It was introduced by Cousot and Cousot [23] to provide a semantic
foundation for program analysis. Essentially, one replaces the concrete program by an
abstract model which can be feasibly analysed, a process which is called “abstraction”.
While the program semantics (see Section 1.2.2) describes the program statement S
as a transformer on (concrete) states σ1, σ2 ∈ Σ

〈S, σ1〉
∗→ final〈σ2〉,

abstract interpretation would model the same statement S in terms of abstract states
σ̊1, σ̊2 ∈ Σ̊:

S ` σ̊1 B σ̊2

In order to ensure soundness of the resulting analysis, care has to be taken that
the abstraction safely approximates the program. We hence introduce a correctness
relation R ⊆ Σ× Σ̊ such that

σ1Rσ̊1 ∧ 〈S, σ1〉
∗→ final〈σ2〉 ∧ S ` σ̊1 B σ̊2 ⇒ σ2Rσ̊2

holds for all statements S as well as all σ1, σ2 ∈ Σ, σ̊1, σ̊2 ∈ Σ̊.

1.4.2. Type Inference

Type Inference is a program analysis with the goal of deriving sound and precise type
information for a given program. We already defined a notion of types suitable for
such an analyses in Section 1.3.1.

To meet the requirements of abstract interpretation, we extend the previously de-

fined set T of types to a complete lattice LT
∆
= (T ,⊆,>,⊥,∪,∩) with

• T as our Abstract Domain of Union Types (represented as sets of class names),

• The usual subset relation ⊆ as lattice pre-order (v),

• T 3 > = C ∪ {Cnull} as largest lattice element,

• T 3 ⊥ = {} as smallest lattice element,

• t = ∪ (set-union) and u = ∩ (set-intersection) as join and meet operations
respectively.

As usual, we extend the lattice operations on our type domain pointwise for all
σ̊ ∈ Σ̊

• σ̊ v σ̊′ ⇔ ∀x ∈ VL• σ̊(x) ⊆ σ̊′(x)∧∀@v ∈ VI • σ̊(self .@v) ⊆ σ̊′(self .@v)∧∀C ∈
C,@v ∈ VI • σ̊(C,@v) ⊆ σ̊′(C,@v).
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• (̊σ t σ̊′)(X)
∆
= σ̊(X) ∪ σ̊′(X) for all X ∈ VL ∪ {self .@v | @v ∈ VI} ∪ {(C,@v) |

C ∈ C,@v ∈ VI}

• (̊σ u σ̊′)(X)
∆
= σ̊(X) ∩ σ̊′(X) for all X ∈ VL ∪ {self .@v | @v ∈ VI} ∪ {(C,@v) |

C ∈ C,@v ∈ VI}

1.4.3. Galois Connection

In Abstract Interpretation, the notion of a Galois Connection is used to connect dif-
ferent Abstract Domains and mathematically capture the notion of “abstraction”.

Definition 4. A (monotone) Galois Connection connecting two Abstract Domains
(A,vA) and (B,vB) is a quadruple (A,α, γ,B) that, in addition to the domains,
contains a monotone abstraction function α : A 7→ B and a monotone concretization
function γ : B 7→ A, such that

∀a ∈ A, b ∈ B • a vA γ(α(a)) ∧ α(γ(b)) vB b.

Definition 5. A Galois Insertion is a Galois Connection with ∀b ∈ B.b = α(γ(b)).

In Abstract Interpretation, Galois Insertions are used to connect Abstract Domains
with the Concrete Domain of program states (2Σ,⊆).

For our type inference above, we hence define a Galois Insertion (2Σ, αTI , γTI , Σ̊)
with

αTI : 2Σ 7→ Σ̊ defined by αTI(σ)(x)
∆
= {C} iff σ(x) is an instance of class C for all

x ∈ VL, C ∈ C and αTI(σ)(o.@v)
∆
= {C} iff σ(o.@v) is an instance of class C for all

o ∈ O,@v ∈ VI , C ∈ C.

αTI({σ1, ..., σn})
∆
= αTI(σ1) t ... t αTI(σn) and

γTI : Σ̊ 7→ 2Σ is (uniquely) defined by γTI (̊σ)
∆
= {σ | αTI(σ) v σ̊}

Lemma 1 (Galois Insertion for Type Abstraction). (2Σ, αTI , γTI , Σ̊) is a Galois In-
sertion between the concrete domain (2Σ,⊆) and the abstract domain (Σ̊,v).

Proof. 1. ∀S ⊆ Σ • S ⊆ γTI(αTI(S)). Let σ ∈ S, then there is some abstract
state σ̊ = αTI(σ) with σ̊ v αTI(S), since it is one of its components. Hence, since
αTI(σ) v αTI(S), we have σ ∈ γTI(αTI(S)) by definition of γTI .

2. ∀σ̊ ∈ Σ̊ • σ̊ = αTI(γTI (̊σ)). Since a concrete state may assign an object of arbi-
trary (singleton) type to each variable it is easy to construct a state σ exactly matching
an abstract state that only assigns singleton types to variables. Since furthermore σ̊
can be decomposed into a join of finitely many abstract states σ̊ = σ̊1 t ... t σ̊n such
that each σ̊i only assigns singleton types, there surely is a set of concrete states S such
that S = γTI (̊σ) and σ̊ = αTI(S).
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1.5. Program Verification

As stated before, program verification refers to all non-automatic approaches to es-
tablish program correctness (the fact that a program satisfies a specification). These
approaches are subsumed by the more general term formal methods as they require
the user to establish correctness in some formal system amenable to mechanized cor-
rectness checking. Formal methods hence acknowledge that the problem of program
correctness can only be solved by humans, but seek to mitigate the error rate inevitable
in human manual work by letting a computer check the solution. It is this checking
that necessitates establishing the correctness argument in a formal system amenable
to automatic proof-checking – hence the name “formal methods”.

While a large number of approaches to program verification have been proposed, we
will in this thesis concentrate on Hoare logic (Section 1.5.1), the predominant approach
for verifying imperative programs. Hoare logic has close ties with Weakest Precondition
Calculus (WPC) (Section 1.5.2), another well-known approach for imperative programs
initiated by Dijkstra. For instance, both for implementation purposes (see Chapter 10)
and in completeness arguments (see Section 5.2), it is customary to use a WPC derived
from it instead of the Hoare logic itself. As both approaches are parametric in their
assertion language – a logic used to express assertions about program states, we will
also introduce Weak Second-Order logic (Section 1.5.4) as well as its extension with
Arithmetic (Section 1.5.5), which our assertion language AL (see Section 3.1) is based
on.

1.5.1. Hoare Logic

Hoare logic was introduced by C.A.R. (Tony) Hoare [41] to logically reason about
partial correctness of sequential, non-recursive while programs. It is an example of an
axiomatic semantics and its basic statements are called Hoare Triples

{p}S{q}

for a program statement S and two assertions p and q called the precondition (p) and
the postcondition (q) of S. Validity of such Hoare Triples is defined as

|= {p}S{q} iff MJSK(JpK) ⊆ JqK,

whereMJSK denotes the input-output-semantics of the statement S (a function map-
ping (sets of) initial states σ ∈ Σ to sets of final states) and JpK ⊆ Σ denotes the
semantics of the assertion p, that is a set of states, such that σ |= p holds for each
σ ∈ JpK. Intuitively, {p}S{q} interpreted in the sense of partial correctness means that
if the statement S is executed in a state satisfying p and terminates, then the result
state will satisfy q.

Formally, a Hoare logic is a Tuple (H,A) with H being a proof system for reasoning
about program correctness by deriving the Hoare triples mentioned above and A being
a (complete) proof system for the assertion language used. An Assertion Language is
a logic interpreted over program states. Hence program states σ ∈ Σ are the models
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of its logical formulas and as explained above, the semantics of a formula (called an
assertion) p is a set of program states denoted as JpK.

Hoare logic is a well-studied formalism and was extended multiple times. Contempo-
rary Hoare logics exist for a much wider variety of program classes (recursive programs
[33], object-oriented programs [6], parallel programs [64], nondeterministic programs
[48], distributed programs [7], etc.) as well as for different notions of correctness (total
correctness, strong partial correctness, etc. [6]) given as separate proof systems.

Also, theoretical studies have shown Hoare logic to not only be sound, but also com-
plete relative to the assertion language used [22, 33, 14], a property that distinguishes
it from many other approaches to program verification.

1.5.2. Predicate Transformer Semantics

Another approach to program verification strongly related to Hoare logic is Dijk-
stra’s Predicate Transformer Semantics [26], with its concrete instantiations Weakest
Precondition- and Strongest Postcondition Calculus. Both can be seen as strategies
for applying the proof rules of Hoare logic that allow for reducing Hoare Triples for
non-cyclic statements to implications of the Assertion Language. Both variants can be
understood as mapping programs to functions between assertions that are interpreted
as state-sets, and hence as a form of denotational semantics.

The weakest precondition WP (S, q) of a statement S relative to the postcondition
q is an assertion p satisfying the Hoare Triple {p}S{q}, such that for all assertions
p′ having this property, p′ → p holds. WP (S, q) can hence be understood as the
minimal requirement for S to terminate in a state satisfying q. From this definition,
it immediately follows that {p}S{q} is valid iff p→WP (S, q) holds.

Similarly, the strongest postcondition is the maximal guarantee than can be given
about a final state after executing the statement and the Strongest Postcondition
Calculus exhibits a similar relationship with Hoare logic:

|= {p}S{q} iff SP (p, S)→ q.

As these relationships allow not only for switching between the formalisms, but
also to derive them from each other, we take the standpoint that they are merely
different ways to formalize the same idea and hence exchangeable for one another.
With this, we consider ourselves in good company, as it is for instance customary to
switch to a Predicate Transformer Semantics within completeness proofs for Hoare
logics [22, 33, 14].

In this sense, Predicate Transformer Semantics can be regarded as the operational4

side of Hoare logic. Hoare logic, on the other hand, stands in the tradition of logi-
cal inference systems and is focused on the derivation of properties, which for instance

4Here, “operational” does not refer to the operation of an abstract machine executing the program
like in operational semantics. Rather, it refers to the operation of a verification tool checking the
program. In this respect, WPC and SPC are preferable because they remove any nondeterminism
inherent in inference systems like Hoare logic and thus provide complete strategies for reducing
Hoare triples to formulas of the Assertion Language, which is very valuable for implementing
verification tools.
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allows its REC rule to handle recursive method calls elegantly. In a Weakest Precondi-
tion Calculus, it has long been a problem how to calculate the weakest precondition of
a method call in a way that is complete for recursive programs (which requires to take
applications of the adaptation-rules (CONS, INV, CONJ, DISJ, etc.) into account)
until Hoare proposed the Rule of Adaptation [42], which solves this problem:

Definition 6 (Rule of Adaptation for WPC). Given a specification

{p′}P (v1, ..., vn){q′}

for a procedure P of arity n, the Weakest Precondition of a call to the procedure
S ≡ P (v1, ..., vn) with respect to a postcondition q is given by

WP (P (v1, ..., vn), q)
∆
= ∃c • (p′ ∧ ∀v • q′ → q) where v = v1, ..., vn is a list of all

variables free in S (the formal parameters of the call) and c is a list of all variables
free in p′ or q′, but not in S.

In Section 10.2, we will translate our previously developed Hoare logic for dyn into
the Weakest Precondition Calculus (using the Rule of Adaptation) that we used as
a basis for implementing a verification tool for dyn. However, in Section 10.4 we
will elaborate on a number of practical issues with the Rule of Adaptation that we
experienced when using the calculus to verify our case studies.

1.5.3. Assertion Language and Decidability

Recall that the problem of program verification that Hoare logic and Predicate Trans-
former Semantics are attempting to solve is undecidable by the Theorem of Rice [71].
Since both formalisms are sound and complete, they obviously cannot be decidable.
Also, since both are parameterized with an Assertion Language, note that we are not
discussing a single formalism, but a class of formalisms in this respect.

1. With an Assertion Language whose satisfiablity is decidable (like propositional
logic), applying a Weakest Precondition Calculus would allow us to reduce Hoare
Triples for non-cyclic programs (i.e. without loops and without recursion) to im-
plications of this assertion language, which could in all cases be decided. How-
ever,

• non-cyclic programs are not Turing-complete as they all terminate for all
inputs,

• only propositional properties could be verified using this approach, and

• a propositional assertion language is not expressive (not able to express the
weakest preconditions of all statements relative to all postconditions) and
hence the Hoare logic would not be complete relative to such an assertion
language as there would be no guarantee that all intermediate assertions
as well as all loop invariants and method contracts necessary could be ex-
pressed in the assertion language.
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2. Applying above approach to cyclic programs (with loops or with recursion) will
encounter the problem that in Hoare logic the user has to supply the loop in-
variants (LOOP rule) and the method contracts (REC rule). Hence a Weakest
Precondition Calculus can only calculate a weakest precondition for a loop given
its loop invariant and can only calculate one for a method call given the method’s
contract. Automatically deriving loop invariants or method contracts is an unde-
cidable problem on its own as for instance a loop invariant that implies the loop
condition ensures that the loop will not terminate and hence solves the halting
problem for the respective program.

3. Using an expressive assertion language would guarantee that all intermediate
assertions and all loop invariants can be expressed in it and hence would allow
for the Hoare logic to be complete relative to the assertion language. However,
note that

• loop invariants and method contracts must still be supplied by the user (see
above), and

• an assertion language that is expressive for a Turing-complete programming
language must also be able to express all recursively enumerable sets (or all
µ-recursive functions) and hence is also able to express the Halting Problem.
For such a logic, satisfiablity is surely undecidable.

We follow [6] (and most of the verification community) in choosing expressiveness
over automation (the latter option). Similar to [14], our Assertion Language is hence
based on Weak Second-Order Logic with Arithmetic (Section 1.5.5).

1.5.4. Weak Second-Order Logic

First-Order predicate calculus (also called “First-Order logic” or FOL) extends propo-
sitional logic with quantification over elements of a (countable) domain of discourse D
(called individuals). Second-Order predicate calculus (also called “Second-Order logic”
or SOL) extends FOL by allowing quantification over elements of uncountable domains,
like (possibly infinite) sequences of (countable) individuals. Weak second-order pred-
icate calculus (also called “Weak second-order logic” or WSOL) lies between these
two: it allows quantification over finite sequences of (countable) individuals. Since it
excludes the case of infinite sequences, it is stricly less expressive than second-order
logic. Also, since it allows to quantify over sequences, it is strictly more expressive
than first-order logic. However, this relationship becomes more complicated when
Arithmetic comes into play, as will be discussed in the next section.

Weak Second-Order Logic is not a single formal system, but (just like FOL and
SOL) can be instantiated with different signatures and interpretations. A signature is

a triple S
∆
= (Pred ,Func, ari) with Pred being a set of predicate symbols, Func being

a set of function symbols and ari : Pred ∪ Func 7→ N being a function assigning an
arity to each predicate and each function symbol.
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Given such a signature, the syntax of Weak Second-Order Logic can be defined as

f ::=∃vi.f | f ∧ f | ¬f | t = t | P (t1, ..., tn)

t ::=f(t1, ..., tn) | vi

where vi ∈ VWSO denotes a variable from the (countably) infinite set VWSO =
{v1, v2, ...}, P ∈ Pred denotes a predicate of arity n and f ∈ Func denotes a function
of arity n.

There are numerous common abbreviations:

∀vi.f ≡ ¬∃vi.¬f, f1 ∨ f2 ≡ ¬(¬f1 ∧ ¬f2), f1 → f2 ≡ ¬f1 ∨ f2,

f1 ↔ f2 ≡ f1 → f2 ∧ f2 → f1, true ≡ vi = vi, false ≡ ¬true.

An interpretation of a Weak Second-Order Logic with signature S is a triple I
∆
=

(D, iPred , iFunc), where D is a (countable) domain of discourse, iPred is a function
mapping each predicate symbol P ∈ Pred to a function Dari(P ) 7→ B, and iFunc is a
function mapping each function symbol f ∈ Func to a function Dari(f) 7→ D.

Definition 7. A model m of a formula f is a mapping from V to D such that m |= f
holds. Terms are evaluated in a model as follows:

• m(vi) = d ∈ D

• m(f(t1, ..., tn)) = iFunc(f)(m(t1), ...,m(tn))

The satisfaction relation |= for formulas is then defined as follows:

• m |= t1 = t2 iff m(t1) = m(t2)

• m |= P (t1, ..., tn) iff iPred(P )(m(t1), ...,m(tn))

• m |= ¬f iff m 6|= f

• m |= f1 ∧ f2 iff m |= f1 ∧m |= f2

• m |= ∃vi.f iff ∃d ∈ D.m[vi := d] |= f

A variable vi occurs bound in a formula f iff ∃vi.f ′ for some f ′ is a subformula of f .
A variable vi occurs free in a formula f iff it occurs in f , but does not occur bound in
f . We define free(f) = {vi | vi occurs free in f}.

Definition 8. A formula f is called closed or a sentence iff free(f) = ∅.

Definition 9. The existential closure of a formula f with free(f) = {vi1 , ..., vin} is
the sentence ∃vi1 ...∃vin .f .

Definition 10. The universal closure of a formula f with free(f) = {vi1 , ..., vin} is
the sentence ∀vi1 ...∀vin .f .

Definition 11. We call a formula f satisfiable iff there is a model m such that m |= f .
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Definition 12. We call a formula f valid iff m |= f holds in all models m.

Observe the following:

• For sentences, satisfiability and validity are equivalent.

• A formula f is satisfiable iff its existential closure is.

• A formula f is valid iff its universal closure is.

• A formula f is valid iff ¬f is unsatisfiable.

1.5.5. Weak Second-Order Logic with Arithmetic

Our Assertion Language AL (see Section 3.1) is based on Weak Second-Order Logic
with Arithmetic (WSOLarith), that is Weak Second-Order Logic as described in the
last section with the signature ({<}, {0, 1,+,−, ∗, div,mod}, ari) in its standard in-
terpretation (with D = N). ari assigns the arity 0 to the function (constant) symbols
0, 1 and the arity 2 to all other function/predicate symbols. Note that WSOLarith
includes FOLarith, which is sometimes also refered to as “Number Theory”.

While being the minimal logic that is expressive enough for our programming lan-
guage and hence allows our Hoare logic to be (relative) complete, its expressiveness
already causes a number of drawbacks:

1. Gödels incompleteness theorem [32, Theorem VI] states that there cannot be a
complete and consistent proof system for Number Theory (or any formal system
including it), since a technique developed by him (“Gödelization” – explained in
the next section) can be used for expressing a sentence R (called the Gödel sen-
tence), stating “This sentence is unprovable in the proof system P”, in Number
Theory. Hence, for any sound and complete proof system P , if P could prove
R, then soundness of P implies that R must be true – which contradicts the
assumption. If, on the other hand, P can prove ¬R, then soundness of P implies
that ¬R is true, which states that R must be provable in P . Hence, both R and
¬R would be provable in P and P would hence be inconsistent.

2. Using Gödelization, it is also possible to express µ-recursive functions (Sec-
tion 1.5.5), which are extensively used in the (relative) completeness proof for
our Hoare logic. However, since µ-recursive functions are Turing-complete, they
allow for expressing the Halting problem in Number Theory. Hence, satisfiability
of Number Theory (and any logic containing it, like AL) must be undecidable.
Fortunately, there are nevertheless theorem provers (see Section 1.6) and even
automatic ones (see Section 1.6.2) able to decide satisfiability of large classes of
formulas by reducing them to decidable subsets of the logic.
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Gödelization

The technique called Gödelization consists of two basic ideas. First, the following
formula establishes a bijection between natural numbers and finite sequences of natural
numbers:

gödel(n1...nk, n) ≡ n = 2n1 ∗ 3n2 ∗ ... ∗ pnkk
where pk is the kth prime number. Also note that this formula is expressible in Number
Theory.

The second idea is that most object sets in discrete mathematics (Strings, Trees,
Graphs, Computable Functions, Programs, Formulas, Proofs, etc.) are countable and
can hence be mapped into the natural numbers using a bijection (derivable using the
above formula).

While this technique was developed by Gödel to encode formulas and formal proofs
into natural numbers and then express their derivability (= provability in a formal
proof system) as a formula (resulting in the Gödel sentence – see last section), it is
also useful for encoding programs and program states into natural numbers and thus
for simulating their execution using µ-recursive functions (next section).

In general, it is convenient to introduce the notation |n| to denote the length of the
sequence encoded in the natural number n as well as n[k] to denote the kth element
in the sequence encoded in the natural number n.

Encoding µ-Recursive Functions

Notation: In this section, we sometimes use p vt to denote the result of substituting
a term t for a variable v in a formula p. We will also be using the notation for
Gödelization introduced in the last section.
µ-recursive functions are the recursion-theoretical equivalent to Turing Machines.

Like primitive recursive functions, they are of type Nk 7→ N, but contrary to them,
they are partial and hence are not necessarily defined for all arguments.

Definition 13. The µ-recursive functions are the smallest class of partial functions
such that

• Constants: for every n, k ∈ N, f(x1, ..., xn) = k is a µ-recursive function.

• Successor: f(x) = x+ 1 is a µ-recursive function.

• Projections: for every i, k ∈ N with 1 ≤ i ≤ k, f(x1, ..., xk) = xi is a µ-
recursive function.

• Composition: for every m-ary µ-recursive function h(x1, ..., xm) and every m
k-ary µ-recursive functions g1(x1, ..., xk), ..., gm(x1, ..., xk),

f(x1, ..., xk) = h(g1(x1, ..., xk), ..., gm(x1, ..., xk))

is also a µ-recursive function.
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• Primitive Recursion: for every µ-recursive functions g(x1, ..., xn) and h(x, x′,
x1, ..., xn),

f(i, x1, ..., xn) =

{
g(xn, ...xn) if i = 0

h(i− 1, f(i− 1, x1, ..., xn), x1, ..., xn) otherwise

is also a µ-recursive function.

• Minimization: for every total µ-recursive function g(i, x1, ..., xn), the function
f such that f(x1, ..., xn) = z iff g(z, x1, ..., xn) = 0 and g(z′, x1, ..., xn) > 0 for
all z′ ∈ N0

z−1 is also a (partial) µ-recursive function.

.

Lemma 2. For every k-ary, µ-recursive function f , there exists a formula p in
WSOLarith with free variables r, x1, ..., xk, such that

f(a1, ..., ak) = z iff |= p
r, x1, ..., xk
z, a1, ..., ak

Proof. By induction over the structure of µ-recursive functions.

• If f is a constant function f(x1, ..., xk) = n, then the formula p ≡ r = n satisfies
the Lemma.

• If f is the successor function f(x1) = x1 + 1, then the formula p ≡ r = x1 + 1
satisfied the Lemma.

• If f is the projection f(x1, ..., xn) = xi, then the formula p ≡ r = xi satisfies the
Lemma.

• If f is a composition of a k-ary function h and k n-ary functions g1, ..., gk, then
by the induction hypothesis, there are formulas ph, pg1 , ..., pgk corresponding to
the functions h, g1, ..., gk as described in the Lemma. Then,

p ≡ ∃v1, ..., vk : N • ph
x1, ..., xk
v1, ..., vk

∧ pg1
r

v1
∧ ... ∧ pgk

r

vk

satisfies the Lemma.

• If f is a primitive recursion with a n-ary function g and a n+ 2-ary function h,
then by the induction hypothesis, there are formulas pg and ph corresponding to
the functions g and h as described in the Lemma. Then,

p ≡ ∃s : N•|s| = x1 ∧ r = s[x1] ∧ pg
r, x1, ..., xn

s[0], x2, ..., xn+1
) ∧

∀i : N • 0 ≤ i < x1 → ph
r, x1, ..., xn+2

s[i+ 1], i, s[i], x1, ..., xn

satisfies the Lemma.
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• If f is the minimization of a n+1-ary function g, then according to the induction
hypothesis, there is a formula pg corresponding to g as described in the Lemma.
Then,

p ≡ ∃v : N•pg
r, x1, ..., xn+1

0, v, x1, ...xn
∧∀v′ : N•v′ < v → ∃vr : N•pg

r, x1, ..., xn+1

vr, v′, x1, ..., xn
∧vr > 0

satisfies the Lemma.

Theorem 1. Every µ-recursive function is expressible in WSOLarith.

Proof. Direct consequence of Lemma 2.

Theorem 2. Every µ-recursive function is expressible in AL.

Proof. AL subsumes WSOLarith (see Section 3.1). Hence Theorem 2 follows directly
from Theorem 1.

1.6. Theorem Proving

Theorem proving is an area of theoretical computer science concerned with the con-
struction of algorithms for the automatic (or at least machine-checked) construction
of formal proofs for mathematical theorems (usually expressed using a logic like FOL,
WSOL or HOL). The underlying problem is closely related to program verification
(Predicate Transformer Semantics can be seen as a way to reduce program verifica-
tion to theorem proving) and is hence also undecidable (see Section 1.5.5) for many
expressive logics.

Just like with program verification, approaches developed by the theorem proving
community can be categorized into those that favor automation over completeness and
the converse flavor. Those approaches that accept incompleteness in favor of automa-
tion are called automatic theorem proving or proof searching and will be detailed in
Section 1.6.2. Those requiring manual effort are usually able to prove more theorems,
are refered to as interactive theorem proving or proof checking and will be detailed in
Section 1.6.1.

As our goal is to close the gap between static- and dynamically typed programming
languages in terms of verification technology, we follow the popular paradigm of auto-
active program verification [51, 80] in combining user-specified loop conditions/method
contracts with automatic theorem proving.

1.6.1. Interactive Theorem Proving

Interactive theorem provers or proof checkers like Isabelle [62] provide convenient en-
vironments for humans to conduct formal proofs in. All statements are automatically
scrutinized by a model checker in order to detect typos [12] and even some degree of
automation is provided using automated theorem provers [11]. The main objective of
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proof checkers however, is – as the name states – , to rule out the possibility of hu-
man error by mechanized proof checking. Such tools often start with a minimal core
of axioms and trust only what can be derived from them. Also, since the tool does
not need to find proofs itself, undecidability is not an issue in this setting and hence
extremely expressive logics like Higher-Order Logic (HOL) may be used and inductive
arguments may be derived, which is usually well beyond the capabilities of automated
theorem provers [58].

1.6.2. Automated Theorem Proving

Automated Theorem Provers, proof searchers or Satisfiability Modulo Theories(SMT)-
Solvers are tools that attempt to decide satisfiability of formulas given in an expressive
logic like WSOLarith by employing decision procedures for various fragments of said
logic, extending their reach with translations and reductions and combining them using
heuristics.

Usually based on a resolution-based solver for Propositional Logic [25], these tools
started by extending SAT-solvers with decision procedures for decidable theories like
Real Arithmetic, Linear Arithmetic, Presburger Arithmetic (Arithmetic without Mul-
tiplication), etc., but have matured to also solve first-order formulas as they often
support quantifier elimination procedures (even for quantification over Arrays, Bitvec-
tors, Regular Expressions, etc.).

A state-of-the-art example of such an SMT-solver is Z3 [10], developed by Microsoft
Research. It received the 2015 ACM SIGPLAN Software System award [3]. We follow
the verification tools for statically typed programming languages Boogie [8] and Dafny
[2] in using Z3 as our theorem-proving backend.

1.7. Algebraic Specifications

Algebraic Specifications were first introduced in the context of functional programming,
are related to algebraic data types and are useful for specifying program properties in
terms of relationships between different functions/methods rather than on the level of
the input-output behaviour of a single function/method [53].

Given an algebraic data type, that is

• a set of constructors, creating values of the data type and

• a set of operations, operating on values of the data type,

an algebraic specification is a set of (conditional) equations between expressions using
the constructors and operations as functions. An example of such a specification for
lists is the following:

sort list {

new(e:elem) -> list

cons(l:list ,e:elem) -> list

size(l:list) -> integer
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get(l:list ,index:integer) -> elem

}

spec(list) { forall e:elem ,l:list ,i:int

size(new(e)) = 1,

size(cons(l,e)) = size(l) + 1,

get(new(e),0) = e,

get(cons(l,e),size(l)) = e,

get(cons(l,e),i) = get(l,i) if i < size(a),

get(l,i) = null if i < 0

}

Guttag and Horowitz [36] extended algebraic specifications to side-effecting proce-
dures/methods by logically splitting the methods up into several side-effect-free func-
tions returning different aspects of the original side-effect, i.e, in our example, one could
illustrate this by adding a side-effecting operation add(l:list,e:elem) -> integer

that returns the index of the newly added element, but has the side-effect of adding it
to the end of the list.

spec(list) {

add(l,e)_ret = size(l),

add(l,e)_arg1 = cons(l,e)

get(add(a,e)_arg1 ,add(a,e)_ret) = e

}

As one can see, the side-effecting operation add(l,e) is logically split up into two
side-effect-free functions add(l,e)_ret, which returns the index of the added element
and add(l,e)_arg1, which returns the altered list.

Shuling Wang et al. [74] proposed an approach using this idea for applying Alge-
braic Specifications to Object-Oriented Programs and verifying them using Separation
Logic [70]. However, as their methodology crucially relies on the separating conjunc-
tion (∗), it is not directly applicable in the context of Hoare logic.
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“[Speaking about Algol 60] Here is a language so far ahead of its time, that it was not only an

improvement on its predecessors, but also on nearly all its successors.”

– C.A.R. Hoare

2.1. The Model Languages Dyn and Stat

To explain our methodology in a setting facilitating formal proof, we introduce a pair
of minimalistic model programming languages that differ only in the fact that one is
dynamically typed (dyn) while the other uses a static type system with type infer-
ence (stat). In order to make dyn resemble its real-world siblings Ruby, Python and
JavaScript, the two are imperative, class-based (purely) object-oriented languages in-
cluding inheritance, method renaming, dynamic dispatch and constructors. However,
to focus our inquiry on dynamic typing, we will for now not model other features
commonly found in these languages like method update, closures or eval(). See Sec-
tions 12.3 and 12.4 for information on how to extend our formalism with method
update and closures, respectively.

2.1.1. Syntax

The syntax of both dyn and stat is depicted in Figures 2.1 and 2.2. In dyn, method
bodies consist of statements (S) which in contrast to expressions (e) can contain se-
quential composition. Expressions are composed of the only constant null, local- and
instance variables (the latter prefixed by @), the self-reference self , operators for ob-
ject identity and dynamic type checks, method- and constructor calls, assignments,
conditionals and while loops.

As customary in dynamically typed languages, dyn desugars operations to method
calls. The only built-in operation in dyn is object identity (==), everything else is
defined in the language itself (see Figure 2.1). Note that this has the unfortunate
consequence that the convenient distinction between side-effect-free expressions and
side-effecting statements as used in statically typed Hoare logic does not uphold. Not
only can operations and method calls not be distinguished syntactically, but the type
information necessary to tell whether or not a method call is side-effecting is also not
available statically.

Of course, there are also side-effecting expressions in statically typed languages. C
and Java for instance support operations x++ and ++x, that are clearly side-effecting.
However, in the literature on statically typed Hoare logic, it is assumed that all ex-
pressions are side-effect-free. Note that this is not a limitation as it is always possible
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to transform an expression e containing side-effecting subexpressions e0, ..., en into a
sequence of statements u0 := e0; ...; un := en; e[e1, ..., en := u0, ...,un] where the ui are
fresh local variables for all i ∈ Nn, by “prepending” the side-effects. Applying this
prepending-transformation recursively and in a way that preserves the order of eval-
uation, it is possible to transform every program containing side-effecting expressions
into an equivalent one where all expressions are side-effect-free.

Of course, this prepending-transformation is also applicable to dynamically typed
programs. However, this would require syntactically defining a subset of side-effect-free
expressions. For dyn, the best one could do in this respect would be

eε ::= null | u | @x | self | eε == eε | eε is a? C

Since such extremely restricted expressions are hardly useful, this would have the
effect that in practice (nearly) all expressions occurring in a program would need to be
prepended. Noticing that this a) voids all benefits one could hope to gain from using
shortcut rules (see Chapter 4), and b) can instead also be built directly into the rules,
we opted to instead consider all expressions as side-effecting and do the prepending
logically, thus removing the necessity for this intermediate step in the verification
process.

For this reason, dyn expressions may contain method calls and assignments. For
example, a := b := 5 is a valid dyn expression with the side-effect of assigning 5 to
both a and b.

Note that equality (=) is desugared to a (class-specific) method call, while object
identity (==) is a build-in operation yielding true iff the two expressions refer to the
same object (We stipulate null == null yields true).

Furthermore, each class except the predefined class object must specify a parent
class whose methods are inherited. The inheritance relation must be acyclic. Every
class thus transitively inherits from object. Inherited methods may be overwritten or
renamed (using rename). Like in other dynamically typed languages, inheritance is
mere code reuse and can be removed using an automatic expansion step [65]. Further-
more, we will assume this step to be completed and not concern ourselves any further
with inheritance or renaming.

Since types in dyn are a property of values rather than variables, there is no need to
declare the latter. However, as all local variables are initialized to null at the beginning
of a method and all instance variables are initialized to null on object creation, no
uninitialized variable access can occur in dyn. For information on how to extend the
formalism to also prevent uninitialized variable access, see Section 12.2.

The only reasons for type errors are hence non-boolean conditions in conditionals or
while-loops and method call receivers whose class does not support a method matching
name and arity of the call (MethodNotFound).

2.1.2. Operational Semantics

Both dyn and stat programs consist of a main statement S and sets of classes C with
their respective methods MC for C ∈ C. VS = {self , r} ⊂ VL is a set of special
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2.1. The Model Languages Dyn and Stat

Syntax of dyn:

Progd 3 π ::=
−−−→
class S

Classd 3 class ::= class C < C {
−−−→
meth}

Methd 3 meth ::= method m(−→u ){S}
| rename m m

Stmtd 3 S ::= S;S | e
Exprd 3 e ::= null | u | @v | self | e == e

| e is a? C | e.m(−→e ) | new C(−→e )
| u := e | if e then S else S end
| @v := e | while e do S done

(u ∈ VL,@v ∈ VI ,C ∈ C,m ∈M)

Syntactic sugar:
e1 ⊕ e2 ≡ e1.m⊕(e2)
if e then S end ≡
if e then S else null end
false ≡ new bool(null) [ ] ≡ new list()
true ≡ false.not() [..., o] ≡ [...].add(o)
0 ≡ new num(null)
n ≡ (n− 1).succ() for n ∈ N
”” ≡ new string(null,null),
”...a” ≡ ”...”.addchar(na) where na ∈ N is
the ASCII-code of character a.

Figure 2.1.: Syntax of dyn

Syntax of stat:

Progs 3 π ::=
−−−→
class S

Classs 3 class ::= class C < C {
−−−→
meth}

Meths 3 meth ::= method m(−→u ){S}
| rename m m

Stmts 3 S ::= S;S | u := e | @v := e
| u := e.m(−→e ) | u := new C(−→e )
| if e then S else S end
| while e do S done

Exprs 3 e ::= null | u | @v | self | e == e
| op(−→e ) | cnst | e is a? C
| if e then e else e end

(u ∈ VL,@v ∈ VI ,C ∈ C,m ∈M)

Operations ∈ op:
+,−, ∗, div,mod : N× N 7→ N,
<,>,=: N× N 7→ B,
∧,∨ : B× B 7→ B,¬ : B 7→ B, and

J . K ∈ {
−→
C } : O 7→ B

Constants ∈ cnst:
1, 2, 3, ... : N,
true, false : B

Figure 2.2.: Syntax of stat
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{C1}{C2} {Cn}...

{num, bool}

⊥ = ∅

> = {num, ..., Cn}

{num}{bool}{list}
O

⊥

>

NB

Figure 2.3.: Type lattices of dyn (left) and stat/AL (right)

variables. While self references the current object and is not allowed to be assigned
to in programs, r holds the result of the last evaluated expression and cannot be used
in programs.

dyn’s value domain Dd is the set of all objects and for a given program π, its type
system is the lattice of union types represented as sets of class names {C1, ...,Cn} ∈
Td = 2Cπ∪{Cnull} with the subset-ordering ⊆ (see Figure 2.3). stat on the contrary
distinguishes basic data types Ts = {O,N,B, ...} and its value domain Ds ∼=

⊎
τ∈Ts
Dτ

includes objects, numbers and booleans. To keep track of instance-class relationships
we use class references and for every class C ∈ C introduce a distinct object θC as well
as a special instance variable @c such that o.@c = θC iff o is an instance of class C.
Using @c in programs is not permitted.
Comparing Dyn with Stat: Dyn is a pure object-oriented language (objects are the
only values) while stat has basic data types besides objects. However, both provide the
same constants and pure (i.e. side-effect-free) operations on them. Dyn desugars them
to constructor and method calls (see Figure 2.1), while stat (like usual in statically
typed languages) provides them build-in (cε and op(−→eε) in Figure 2.2).

Also, stat expressions are pure. Side-effects are only allowed in statements, which
must only have pure subexpressions. This is not a limitation, as explained in the last
section.

Every stat program is also a dyn program that evaluates to (an object-oriented
version of) the same result. The only reason that the opposite direction does not hold
is the language restriction imposed by stat’s static type system.

In Figure 2.4, we define a structural operational semantics of dyn. Usually, in a
structural operational semantics, expressions are assumed to be side-effect-free and
the effect of assignments can hence be expressed as an axiom

〈u := e, σ〉 → final〈σ[u := σ(e)]〉.

As explained in the last section, dyn expressions are side-effecting. We hence need
to evaluate the assignment u := e in two steps: first evaluating the expression e and
then assigning its resulting value to the variable u. Furthermore, we need an interface
between these two steps: A way by which the assignment can determine the result
of the previously evaluated expression e. For this purpose, we introduce a special
variable r of type O as well as the convention that every expression or statement will

42



2.1. The Model Languages Dyn and Stat

store its result in r. Note that this construction works only due to dynamic typing:
In a statically typed programming language, expressions would evaluate to values of
different types which could not well be assigned to a single variable. The choice of
object as the unifying supertype of all values is common in pure OO-languages: When
everything is an object, clearly every expression will evaluate to one. Furthermore,
as r is the only statement that does not change anything (not even r), we define the
empty program as r, stipulate (r;S) ≡ (S; r) ≡ S for all statements S and call the
configurations 〈r, σ〉 ≡ final〈σ〉 for some state σ final.

For dyn, we use class-based OO and model object creation as activation1. We
introduce a “representative” object θC for each class C as well as a special instance
variable @c not allowed to occur in programs for maintaining both the instance-class
relation and the activation state of each object.

We call an object o with o.@c = null inactive, meaning it is “not yet created”.
Initially, all objects (except null and the representatives θC for each class C) are
inactive. We suppose an infinite enumeration of objects o1, o2, ... containing every
object (both active and inactive) exactly once and introduce a function γ : Σ 7→ O
mapping every state σ ∈ Σ to the object ok with the least index k that is inactive in
σ.

Upon its creation, an object o is assigned a class C and is henceforth regarded an
instance of C. Technically, this is achieved by resetting the value of o.@c to θC (see
the rule for object creation). We use initC to denote the initial (internal) state of an
object of class C: initC .@c = θC and initC .@v = null for all @v ∈ VI \ {@c}.

We can then formally define the predicates bool(o) and bool(o, b) used in Figure 2.4
to check for boolean values as

bool(o) ≡ o.@c = θbool for all o ∈ O and
bool(o, b) ≡ bool(o) ∧ b↔ o.@to ref 6= null2 for all o ∈ O, b ∈ B .

1Assuming an infinite sequence of already existing, but deactivated objects, object creation boils
down to picking the next one and marking it as “activated”.

2Other methods to distinguish the values true and false are conceivable.
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1. 〈null, σ〉 → final〈σ[r := null ]〉

2. 〈v, σ〉 → final〈σ[r := σ(v)]〉 where v ∈ V

3.
〈e, σ〉 ∗→ final〈τ〉

〈v := e, σ〉 → final〈τ [v := τ(r)]〉
3b.

〈e, σ〉 ∗→ T 〈τ〉
〈v := e, σ〉 → T 〈τ〉

where v ∈ V, T ∈ {typeerror, fail}

4.
〈S1, σ〉 → 〈S2, τ〉

〈S1;S, σ〉 → 〈S2;S, τ〉
4b.

〈S1, σ〉
∗→ T 〈S2, τ〉

〈S1;S, σ〉 → T 〈S2;S, τ〉
where T ∈ {typeerror, fail}

5.
〈e, σ〉 ∗→ final〈τ〉, bool(τ(r), true)

〈S, σ〉 → 〈S1, τ〉
〈e, σ〉 ∗→ final〈τ〉, bool(τ(r), false)

〈S, σ〉 → 〈S2, τ〉
where S ≡ if e then S1 else S2 end

6.
〈e, σ〉 ∗→ final〈τ〉 τ(r) = null

〈if e then S1 else S2 end, σ〉 → fail〈if e then S1 else S2 end, τ〉

7.
〈e, σ〉 ∗→ final〈τ〉 ¬bool(τ(r))

〈if e then S1 else S2 end, σ〉 → typeerror〈if e then S1 else S2 end, τ〉

8.
〈e, σ〉 ∗→ T 〈τ〉

〈if e then S1 else S2 end, σ〉 → T 〈if e then S1 else S2 end, τ〉
where T ∈ {typeerror, fail}.

9. 〈S′, σ〉 → 〈if e then S;S′ else null end, σ〉 where S′ ≡ while e do S done

10. 〈−→u := −→v , σ〉 → final〈σ[−→u := σ(−→v )]〉 where −→u ,−→v ∈ V+
L

11.
〈S, σ[−→u−→u := −→v

−−→
null ]〉 ∗→ final〈τ〉

〈begin local −→u := −→v ;S end, σ〉 → final〈τ [−→u−→u := σ(−→u−→u )]〉

where {−→u } = ((var(S)∪ change(S))∩VL) \ ({−→u }∪VS) and
−−→
null is a sequence of null

values of fitting length.

12.
〈S, σ[−→u−→u := −→v

−−→
null ]〉 ∗→ T 〈τ〉

〈begin local −→u := −→v ;S end, σ〉 →
T 〈begin local −→u := −→v ;S end, τ [−→u−→u := σ(−→u−→u )]〉

with T ∈ {typeerror, fail},−→u and
−−→
null as in the previous rule.

13.
〈ei, σi〉

∗→ final〈σi+1〉 for all i ∈ Nn
〈e0.m(e1, ..., en), σ0〉 → 〈S′, σn+1〉

where σ1(r) 6= null , method m(u1, ..., un){S} ∈ MC and σ1(r.@c) = θC ,

S′ ≡ begin local self ,−→u := σ1(r), ..., σn+1(r);S end.

Figure 2.4.: dyn’s structural operational semantics (Continued on page 46).
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Note how the rule for assignment uses the two-step idea to handle side-effecting
expressions. The rules for conditionals and while loops also use it to first evaluate the
condition and then branch on its result. Since no type system guarantees this result to
be boolean, further distinguished behaviors for failures and type errors are necessary.
The same holds for receivers of method calls.

Following [5], method calls are handled using a block construct (begin local-blocks)
instead of introducing an explicit call-stack into the program states. Note how all local
variables are reset to their previous values when the block ends. This reset is also done
when a failure or typeerror occured within the block, as otherwise the state resulting
from such an failed method call would leak the values of method-internal local variables
to the caller3.

The rules for method call (or better: begin local-blocks) and object creation in-
stantiate all local- and instance variables to null .

Note also the handling of special variables in method calls: on entry, self is set to
the receiver of the method call while on exit r intentionally remains unmodified to
pass the return value back to the caller.

Constructors are normal methods conventionally named init that are called on newly
created instances directly after they were created. The instance creation (activation)
itself is called newC . Note that new C(...) returns the constructor’s return value
which is not necessarily the newly created instance. Also note that calling new C ′(...)
for a class C ′ that does not have a method init results in a typeerror.

2.1.3. Type Inference

Contrary to stat, which rejects programs deemed unsafe at compile time, dyn allows
every syntactically correct program to be executed and raises type errors at runtime
when

• a method call is not supported by its receiver (in this arity) or

• a condition of a conditional or while loop is not boolean.

While “message not understood”-errors are fundamentally linked to type-checking in
class-based OO-languages, dynamically typed languages often allow conditions to be
of arbitrary type. Nevertheless, the second error condition models a common error
class where a built-in operation supports a fixed set of types.

Many dynamically typed languages raise type errors when accessing variables prior
to assignment. See Section 12.2 for information on how our system can be extended
to handle this kind of type errors as well. For now we will consider all local (instance)
variables to be initialized to null prior to method executions (on instantiation). Also,
type errors are often treated as exceptions, allowing for interception and handling. For
simplicity, we will for now consider them as fatal and will discuss an extension with
non-fatal type errors later in Section 12.1.

3While this would not cause any problems in this version of the semantics, the extension discussed
in Section 12.1 would provide the means to exploit such an issue.
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14.
〈e0, σ0〉

∗→ final〈σ1〉 σ1(r) = null

〈e0.m(e1, ..., en), σ0〉 → fail〈e0.m(e1, ..., en), σ1〉

15.
〈e0, σ0〉

∗→ final〈σ1〉 σ1(r) 6= null
σ1(r.@c) = θC 6 ∃method m(u1, ..., un){S} ∈MC

〈e0.m(e1, ..., en), σ0〉 → typeerror〈e0.m(e1, ..., en), σ1〉

16. 〈new C(e1, ..., en), σ〉 → 〈newC .init(e1, ..., en), σ〉

17. 〈newC , σ〉 → final〈σ[o := initC ][r := o]〉 where o = γ(σ)

18.
〈ei, σi〉

∗→ final〈σi+1〉 for all i ∈ {0, 1}
∃b : B • b↔ σ1(r) = σ2(r) ∧B
〈e0 == e1, σ0〉 → 〈Sr, σ2〉

where B ≡ (Sr ≡ true ∧ b ∨ Sr ≡ false ∧ ¬b).

19.
〈e, σ〉 ∗→ final〈σ1〉, ∃b : B • b↔ σ1(r.@c) = θC ∧B

〈e is a? C, σ〉 → 〈Sr, σ1〉
where B is defined as in the previous rule.

20. fail〈S, σ〉 → fail〈σ〉 and typeerror〈S, σ〉 → typeerror〈σ〉 for all S, σ where
above rules do not imply otherwise.

Figure 2.4.: dyn’s structural operational semantics (Continuation from page 44).
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1. 〈u := eε, σ〉 → final〈σ[u := σ(eε)]〉, σ(op(−→eε))
∆
= fop(

−−−→
σ(eε)),

σ(eε0 == eε1)
∆
= σ(eε0) = σ(eε1), σ(eε is a? C)

∆
= σ(eε.@c) = θC

2.
σ(eε) = true

〈if eε then S1 else S2 end, σ〉 → 〈S1, τ〉

3.
σ(eε) = false

〈if eε then S1 else S2 end, σ〉 → 〈S2, τ〉

4. 〈−→u := −→eε , σ〉 → final〈σ[−→u := σ(−→eε)]〉 where −→u ∈ V+
L , −→eε ∈ Expr+s

5. 〈begin local −→u := −→eε ;S end, σ〉 → 〈−→u−→u := −→eε
−−→
null ;S;−→u−→u := σ(−→u−→u ), σ〉

where {−→u } = ((var(S)∪ change(S))∩VL) \ ({−→u }∪VS) and
−−→
null is a sequence of null

values of fitting length.

6. 〈eε0.m(eε1, ..., eεn), σ〉 → 〈begin local self ,−→u := eε0, ..., eεn;S end, σ〉
where method m(u1, ..., un){S} ∈MC and σ(eε0.@c) = θC .

Figure 2.5.: stat’s structural operational semantics coincides with dyn’s except for
those rules.

Recall that stat is statically typed. However, to be syntactically equivalent to its
dynamically typed twin dyn, its syntax does not contain any type information. It
follows that for static type checking of stat programs it is necessary to first derive
the type information using a program analysis (type inference). Note however, that
type checking additionally requires checking the type inference results for type safety,
which is accomplished by comparing them with the least precise typesafe typing ty†π,
i.e. when ty is the result for a program π, then π is typesafe iff ty v ty†π. It is important
to note that the analysis formalized in this section only deals with the derivation of
type information (type inference) while the restrictions (type checking) imposed by the
static type system were already formalized in definition 3. Among these restrictions
are for instance the fact that the receiver of a method call must support the respective
method and that the operands of operations like = or == need to be of compatible
types.

In this section, we will thus introduce a simple flow-sensitive type inference algorithm
for stat. Like many program analyses, our algorithm is based on the theory of Abstract
Interpretation [23]. Keep in mind that in static typing only well-typed programs are
considered valid and this algorithm hence represents an additional criterion that stat
programs have to meet as opposed to dyn programs. To see that this is indeed a
restriction, observe that despite their syntactic similarity, there are dyn programs
that cannot be translated into stat without significant alteration. The case study
given in Section 11.1 is an example of this.
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Instead of the type domain defined in Section 1.4.2 (which is for dyn), we use the lat-
tice depicted in Figure 2.3 for stat. Our abstract domain hence is T = {N,B,O,>,⊥}
with the depicted partial order. We also introduce abstract states Σ̊

∆
= VL 7→ T×VI 7→

T ×C 7→ VI 7→ T , which also form a complete lattice with the point-wise lifted lattice
operations.

In order to define our type inference as an Abstract Interpretation-based program
analysis, we introduce the following notation:

Definition 14. A directed, labeled, flow-graph over a set L is a 5-tuple G
∆
= (N,E,

s, e,M) consisting of

• a finite set N of nodes,

• a finite set E ⊆ N ×N of edges,

• a start node s ∈ N ,

• an exit node e ∈ N and

• an edge-labeling function M , mapping edges from E to L.

Since start- and exit-nodes are both unique in a flow-graph, we depict flow-graphs

like
1 2 3

l1 l2 where
1

is the start-node,
3

is the exit-node and l1, l2 ∈ L

are labels. We use dashed edges and G-labels to denote sub-flow-graphs like
1 2

G

where G stands for the entire flow-graph from
1

to
2

.

Then, for a given stat-program π, we define the set of program locations Locπ as
well as the control flow Fπ ⊆ Locπ × Locπ by inductively defining a function FG()
mapping statements and expressions to directed, labeled flow-graphs over the set of
functions from Σ̊ to Σ̊.

•
FG(S1) =

1 2

GS1 FG(S2) =
3 4

GS2

FG(S1;S2) =
1 2 + 3 4

GS1
GS2

• FG(null) =
1 2

f
with f

∆
= λσ̊.̊σ[r := O]

• FG(u) =
1 2

f
with f

∆
= λσ̊.̊σ[r := σ̊(u)]

• FG(@v) =
1 2

f
with f

∆
= λσ̊.̊σ[r := σ̊(self .@v)]
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• FG(self) =
1 2

f
with f

∆
= λσ̊.̊σ[r := σ̊(self)]

•
FG(e1) =

1 2

Ge1 FG(e2) =
3 4

Ge2

FG(e1==e2) =
1 2 + 3 4 5

fGe1 Ge2

with f
∆
= λσ̊.̊σ[r := B]

•
FG(e) =

1 2

Ge

FG(e is a? C) =
1 2 3

fGe

with f
∆
= λσ̊.̊σ[r := B]

•
FG(e) =

1 2

Ge

FG(u := e) =
1 2 3

fGe

with f
∆
= λσ̊.̊σ[u := σ̊(r)]

•
FG(e) =

1 2

Ge

FG(@v := e) =
1 2 3

fGe

with f
∆
= λσ̊.̊σ[self .@v := σ̊(r)]

•
FG(ei) =

1 2

Gei for i ∈ N0
n

FG(e0.m(e1, ..., en)) =
0 1 2 3

f0Ge0 ...
3n+ 1 3n+ 2 3n+ 3 3n+ 4 Cnm

fn fGen

with fi
∆
= λσ̊.̊σ[ai := σ̊(r)] for i ∈ N0

n, f
∆
= λσ̊.

⊔
C∈Cnm∩σ̊(a0)

RnC.m where Cnm =

{C | method m(p1, ..., pn) ∈ MC} and a1, ..., an are intermediate variables used
to store the arguments of the method call.

•
FG(ei) =

1 2

Gei for i ∈ N1
n

FG(new C(e1, ..., en)) = G

with G =
0 1 2 3

f1Ge1 ...
3n− 2 3n− 1 3n 3n+ 1 Cninit

fn fGen ,

fi
∆
= λσ̊.̊σ[ai := σ̊(r)] for i ∈ N0

n, f
∆
= λσ̊.RnC.init.
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•
FG(e) =

1 2

Ge FG(e1) =
3 4

Ge1 FG(e2) =
5 6

Ge2

FG(if e then e1 else e2 end) = G

with G =
1 2 3 4 5 6 7

Ge Ge1 Ge2

•
FG(e) =

1 2

Ge FG(S) =
3 4

GS

FG(while e do S done) =
1 2 3 4 5

Ge GS

•
FG(S) =

1 2

GS

FG(method C.m(p1, ..., pn){S}) =
Mn
C.m 1 2 RnC.m

f
GS

with f
∆
= λσ̊.

⊔
{f ′C(Cnm) | C ∈ Cnm(a0)} where f ′C (̊σ) = σ̊[self, p1, ..., pn,

−→v :=

O, σ̊(a1), ..., σ̊(an),
−→
O ], {−→v } = ((var(S) ∪ change(S)) ∩ VL) \ {−→p } and

−→
O is a

sequence of O-types of fitting length.

•
⊕ : T1 × T2 7→ T ∈ op FG(e1) =

3 4

Ge1 FG(e2) =
5 6

Ge2

FG(e1 ⊕ e2) =
1 2 3 4 5

f1 f2Ge1 Ge2

where f1(̊σ) = σ̊[a1 := σ̊(r)] and f2(̊σ) = σ̊[r := T]

For example, the following simple program π′:

x := 0;

while x < 5 do
x := x + 1;

done

is mapped to the following flow-graph FG(π′):
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

f0 fx:= fx fa1:= f5
f< fx fa1:= f1

f+ fx:=

where

fn(̊σ) = σ̊[r := N] for all n ∈ N,

fx(̊σ) = σ̊[r := σ̊(x)] for all x ∈ VL,

fx:=(̊σ) = σ̊[x := σ̊(r)] for all x ∈ VL, and

f⊕ is defined like the function f2 for the operation ⊕ in the rule for operations.

Note that given a stat-program π, FG() provides a way to extract both the set of
program locations Locπ and the control flow Fπ ⊆ Locπ ×Locπ from the parse tree.
Additionally, the edges in this directed flow-graph are labeled with so-called transfer
functions computing the respective steps in an abstract computation on abstract states
from Σ̊.

FG(π) = (Locπ,Fπ, tfπ)

We use the notations ◦S and S• to refer to the respective unique start and exit
locations of the flow-graph corresponding to the statement or expression S. It is
important to note that we think of program locations as identified with parse-tree
nodes and hence consider it possible that two syntactically identical statements S ≡ S′
within a program π differ in their program locations ◦S 6= ◦S′ and S• 6= S′•.

Note that all transfer functions above are monotone (x v y → f(x) v f(y)) with
respect to the partial order v of our type domain. Hence, they fulfill all requirements
for a Monotone Framework:

Definition 15 (Monotone Framework). A Monotone Framework is a 5-tuple

F = (L,F,E, ι, f)

with

• (L,v) being a complete lattice serving as an Abstract Domain,

• F ⊆ Loc× Loc is a finite flow,

• E ⊆ Loc a finite set of extremal labels,

• ι a mapping from E to extremal values,

• f a mapping from flow-edges ∈ F to montone transfer functions from L 7→ L.
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2. Setting: The Model Languages

Every instance F of the monotone framework implicitly defines the following set of
constraints Fw with solutions A ∈ Loc 7→ L:

A(l) w f(l′,l)(A(l′)) forall (l′, l) ∈ F

A(l) w ι(l) if l ∈ E

We can then define an associated function
−→
f as

−→
fF = λl.

⊔
{f(l′,l)(A(l′)) | (l′, l) ∈ F} t

{
ι(l) if l ∈ E
⊥ otherwise

Note that every solution A |= Fw must also be a fixpoint of
−→
fF. Since all our transfer

functions are monotone, so is
−→
fF and Tarski’s fixpoint theorem [78] hence guarantees

that a solution can be obtained using the usual least fixpoint algorithm.
Using the program locations, control flow, transfer functions and above abstract

domain of types, we can instantiate the monotone framework as follows

Fπ = (Σ̊,Fπ, {◦π, π•},⊥, tfπ)

and obtain the desired flow-sensitive type information about our program in the form
of a solution A |= Fwπ . To discuss soundness of our analysis, we introduce the following
correctness relation

R ⊆ Σ× Σ̊ such that

σRσ̊
∆
=∀u ∈ VL • σ(u) is of type σ̊(u) ∧
∀@v ∈ VI • σ(self .@v) is of type σ̊(self .@v) ∧
∀o ∈ O • σ(o.@c) = θC → ∀@v ∈ VI • σ(o.@v) is of type σ̊(C,@v)

along with the following notations to relate our program analysis to the operational
semantics:

S ` σ  σ′
∆
=〈S, σ〉 ∗→ final〈σ′〉

S, σ̊ I ty
∆
=FB = (Σ̊,FS , {◦S, S•}, {◦S 7→ σ̊, S• 7→ ⊥}, tfS) ∧ ty |= FwB

S ` σ̊ B σ̊′ ∆
=S, σ̊ I ty ∧ ty(S•) = σ̊′

Intuitively, σRσ̊ states that σ̊ is an abstraction of σ, S ` σ  σ′ means that the
statement S when executed in the state σ will terminate after finitely many steps in
the final state σ′, S, σ̊ I ty states that above type inference algorithm derives the
typing ty when applied to the statement S and the abstract start state σ̊ and finally,
S ` σ̊ B σ̊′ states that in the abstract model of our type inference, when the statement
S is (abstractly) executed in the (abstract) start state σ̊, it yields the (abstract) final
state σ̊′.
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2.1. The Model Languages Dyn and Stat

Theorem 3 (Soundness of Type Inference). For all S ∈ Stmt , σ ∈ Σ, σ̊ ∈ Σ̊,

σRσ̊ ∧ S ` σ  σ′ ∧ S ` σ̊ B σ̊′ ⇒ σ′Rσ̊′

Hence, we consider the analysis sound when executing the statement S and ab-
stracting its final state always yields the same result like abstracting its start state
and executing S abstractly from it.

Proof. The analysis can easily be checked for soundness by comparing above rules with
their respective counterparts from the operational semantics given in Section 2.1.2 and
checking that Theorem 3 holds in each case.

Naming the solution of FwB ty already indicated that our type inference algorithm is
deriving typings in the sense of Section 1.3.1. Its soundness furthermore implies that
these typings safely over-approximate all possible runtime behaviors (are sound in the
sense of Section 1.3.1). However, recall that to establish type-safety, ty must also be
of sufficient precision. Formally, we require ty v ty†π for when this is the case, we can
be sure that

• the receivers of all method calls will support the called method and

• the conditions of all conditionals and loops will be boolean

in all executions of S.

Definition 16. A stat-program π is called well-typed iff π,⊥ I ty and ty v ty†π.

Since stat is statically typed, we furthermore impose the restriction that all stat-
programs have to be well-typed.

Note that by using the type domain for dyn as defined in Section 1.4.2 instead of
T and some minor modifications in the rules above (for instance substituting {Cnull}
instead of O for the type of null and {bool} for B whereever appropriate), one can turn
this analysis into one for dyn. In the following we will hence regard it as applicable
to both languages.
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Part II.

Program Logic

“Logic will get you from A to B. Imagination will get you anywhere!”

– Albert Einstein
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3. Starting Point: Tagged Hoare Logic
for Statically Typed Programs

In this chapter, we will give a standard (statically typed) Hoare logic as a point of ref-
erence. Before introducing the program logic itself (Section 3.3), we will first define the
assertion language AL (Section 3.1) and introduce a notation we call “Tagged Hoare
Logic” allowing for the concise treatment of multiple notions of correctness in Hoare
logic-like proof rules without the need for duplicating our proof system (Section 3.2).

3.1. Assertion Language

Before going into details of the program logic, we introduce the assertion language AL.
Its syntax is depicted in Figure 3.1. Essentially, it is predicate logic with quantification
over finite sequences of basic types – weak second order logic. Note that AL is statically
typed, as usual. Its type system however is simplistic: The basic types T = {N,O,B}
form a flat lattice with > and ⊥ and a type constructor τ∗ for finite sequences of

elements of type τ .

Assertions (a) are constructed from equations between logical expressions of identical
type, boolean connectives, quantification over finite sequences, typechecks and tags
whose role will become clear in the next chapter. (Typed) logical expressions (l) in
turn consist of logical variables of some type t ∈ T, local program variables of type O,
conditionals with a condition of type B and branches of equal type, instance variables
l.@x where both l and the result are of type O, the representative objects (θC) of all
classes C ∈ C, the objects null and self as well as constants (cnst) and operations

(op(
−→
l )), which just like stat expressions include the usual operations on booleans and

natural numbers and thus allow integer arithmetic. Note that contrary to programming
expressions, logical expressions are able to access instance variables of objects other
than self .

Following [14], undefined operations like dereferencing a null value or accessing a
sequence with an index that is out of bounds (l[n] with n ≥ |l|) yield a null value
and equality is non-strict with respect to such values (null = null is true) in order
to keep assertions two-valued. Also, for logical expressions l ∈ LExp, we extend the
state-access to σ(l) in the canonical way.

Note that the syntax JlK ∈ {Cl} is redundant. It can be regarded as syntactic sugar

JlK ∈ {C1, ..., Cn}
∆
= l.@c = θC1 ∨ ... ∨ l.@c = θCn
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3. Starting Point: Tagged Hoare Logic for Statically Typed Programs

and also note that since null is the only instance of class Cnull , it holds that

l.@c = θCnull
⇔ l = null .

To link programming language-objects with assertion-values, we define

Definition 17 (Mapping Predicates). 1 2 For o : O, n : N, and b : B
N(o)

∆
= o 6= null ∧ o.@c = θnum,

N(o, n)
∆
= N(o) ∧ n = 0→ o.@pred = null ∧ n > 0→ N(o.@pred, n− 1),

B(o)
∆
= o 6= null ∧ o.@c = θbool, and

B(o, b)
∆
= B(o) ∧ b↔ o.@to ref 6= null .

To see that mapping predicates are necessary for completeness, consider the inter-
mediate assertion p in the following program

P ≡ if b then x := 5 else x := true end{p};
if x is a? bool then if x then x := 10 end else x := x ∗ 2 end

Since AL is statically typed, we must also give a type to the program variable x.
Now, giving it the type N would allow us to express x = 5, but not x = true while giving
it the type B raises the converse problem. However, using mapping predicates, it is pos-
sible to accurately describe the set of intermediate states as N(x, 5)∨B(x, true). From
this observation it is not hard to see that {true}P{x = 10} (or {true}P{N(x, 10)}) is
not derivable without mapping predicates.

In assertions, tags may appear, e.g., typesafe → v 6= null . We use the notation
σ, tags |= a to denote the fact that the assertion a is true in the state σ under the
tags tags. The definition of |= is standard except for the case

σ, tags |= tag iff tag ∈ tags.

Those tags will be explained in the next chapter. For now, it is sufficient to regard
them as an additional kind of variable.

3.2. Notation: Tagged Hoare Logic

Hoare Logic usually comes in a number of variants called the “notions of correctness”.
Hoare Triples

{p}S{q}

hence always need to be accompanied by a statement of the form “holds in the sense
of so-and-so correctness” to allow proper interpretation. For instance, in the sense
of partial correctness, above triple would express a safety property (from all start
states satisfying p, executing S will result in a state satisfying q) while in the sense

1The predicate N(o, n) is recursive. However, the technique discussed in Section 1.5.5 allows express-
ing it in AL.

2@pred and @to ref are instance variables of the classes num and bool, respectively.
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3.2. Notation: Tagged Hoare Logic

Asrt 3 a ::=

Weak Second−Order Logic︷ ︸︸ ︷
l = l | ¬a | a ∧ a | ∃v : t∗ • a |

Types︷ ︸︸ ︷
JlK ∈ {Cl} |

Tags︷︸︸︷
tag

LExp 3 l ::= v | u | if l then l else l fi︸ ︷︷ ︸
Program Logic

| l.@x | θC | null | self︸ ︷︷ ︸
Objects

| |l| | l[ln]︸ ︷︷ ︸
Sequences

| cnst | op(
−→
l )︸ ︷︷ ︸

Arithmetic

Cl ::= ε | CL, CL ::= C | C,CL

with t ∈ T, tag ∈ T ags, C ∈ C, op and cnst like defined in Figure 2.2. The abbrevia-
tions introduced in Section 1.5.4 also apply here. Brackets are used for disambiguation.
Additionally: Qv : t • a ≡ Qv : t∗ • |v| = 1 ∧ a[v[0]/v] for Q ∈ {∀,∃},

Figure 3.1.: Syntax of the assertion language AL

of total correctness it would additionally express the liveness property that S always
terminates from states satisfying p and hence a final state satisfying q will eventually
be reached. In scientific papers dealing with Hoare Logic it is customary to choose
one of these interpretations and furthermore stick to it to avoid confusing the reader.
However, since in the remainder of this thesis, we will be often be jumping back and
forth between typesafe- and type-unsafe notions of correctness, allow me to introduce
a notation I call Tagged Hoare Logic to address this issue and furthermore express
myself more clearly.

Further benefits of this notation are

• Fuses the abundance of proof sytems due to different “notions of correctness”
into one, which is beneficial from a tool design perspective as it moves the choice
of which properties the tool should verify from the tool designer to the user
writing the specification.

• Allows soundness and completeness arguments to be derived once for a single
proof system instead of a multitude of them thus reducing duplicated work.

• Saves valuable space in scientific papers ,.

The basic idea behind Tagged Hoare Logic is to disassemble Hoare Triples into their
semantic components and then introduce tags like terminates to clearly state in the
postcondition what property is expressed by each of them. Above Hoare Triple in the
sense of total correctness hence becomes two triples

{p}S{q} and {p}S{terminates}.

Since in Tagged Hoare Logic, there is only one proof system, those two triples are
statements in the same proof system and a trivial application of the conjunction rule
yields

{p}S{terminates ∧ q}
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3. Starting Point: Tagged Hoare Logic for Statically Typed Programs

which makes the total correctness interpretation explicit. Similarly we introduce the
tags typesafe for type-safe partial correctness (the absence of type errors) and failsafe
for strong partial correctness (the absence of faults). Since pre-and postconditions are
assertions and assertions are expressing sets of states, philosophically, one may think of
those tags as a state-centric way of expressing liveness properties. The tag terminates
hence means something like “this state is reachable eventually”.

A (big step) program semantics maps programs and initial states to sets of final
states. Traditionally, each notion of correctness needs its own program semantics as
they differ in what characteristics of a computation they guarantee. We define the
(infinite) set of (finite or infinite) computations as

Comp = Conf ∗properConf final ∪ Conf ∗properConf error ∪ Conf ωproper

and those of a program S starting in an initial state σ as

Comp(S, σ) = {C0, C1, ... | C0 = 〈S, σ〉 ∧ ∀i • Ci → Ci+1} ⊂ Comp .

Let the symbol ρ denote elements of Comp. We now formally introduce the following
tags along with their respective error states:

T ags = {terminates, typesafe, failsafe}.

Each tag stands for a notion of correctness that in addition to partial correctness avoids
one type of error: terminates avoids divergence (infinite computations), typesafe
avoids type errors (e.g., non-boolean expressions as loop conditions), and failsafe
avoids runtime failures (e.g., null as condition or method call receiver). The tagged
program semantics Mtags defined below will record any occurring error by a special
error state of the set Σ⊥ = {⊥, typeerror, fail}. Let Σ+ = Σ]Σ⊥, where Σ is the set
of program states. To define the tagged program semanticsMtags, we need appropriate
selectors:

S : T ags ∪ {∅} 7→ Comp 7→ 2Σ+

with

S∅(ρ) =

{
{τ} if ρ = C0, ..., Cn ∧ Cn = final〈τ〉1 ∧ τ ∈ Σ

{} otherwise

S terminates(ρ) =

{
{⊥} if ρ is infinite

{} otherwise

Stypesafe(ρ) =

{
{typeerror} if ρ = C0, ..., Cn ∧ Cn = typeerror〈τ〉1 for τ ∈ Σ

{} otherwise

Sfailsafe(ρ) =

{
{fail} if ρ = C0, ..., Cn ∧ Cn = fail〈τ〉1 for some τ ∈ Σ

{} otherwise

Finally, we are able to define tagged program semantics

M : 2T ags 7→ Prog 7→ Σ 7→ 2Σ+

1as defined in Section 1.2.2
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3.3. Statically Typed Hoare Logic

allowing arbitrary combinations of correctness notions. Let tags ⊆ T ags, then the
input-output semantics of S respecting tags is defined as follows:

MtagsJSK(σ)
∆
=
⋃
{S tag(ρ) | ρ ∈ Comp(S, σ), tag ∈ tags ∪ {∅}}.

However, we first need to extend the semantics of our assertions (see Figure 3.1) to
also include tags

JpKtags = {σ | σ ∈ Σ ∧ σ, tags |= p}
and extend the input-output semantics to sets of states

MtagsJSK({σ1, σ2, ...})
∆
=

⋃
σ∈{σ1,σ2,...}

MtagsJSK(σ)

before we can properly define the meaning of our Tagged Triples:

Definition 18 (Tagged Hoare Triples). For a Tagged Hoare Triple
|= {p}S{tags ∧ q} iff MtagsJSK(JpKtags) ⊆ JqKtags.

Note that the semantics MtagsJSK of a program S can produce error states, but the
semantics JpKtags and JqKtags of the assertions p and q do not tolerate any error states.
Thus |= {p}s{tags ∧ q} formalizes program correctness in the sense of the tags tags
as desired.

3.3. Statically Typed Hoare Logic

In this chapter, we will give a standard, (statically typed) Hoare logic Hs for stat. It
will serve as a starting point for our further developments as well as a point of reference
to compare our to-be-defined dynamically typed Hoare logic against. Although the
rules given are a tagged Hoare logic, all definitions and rules are taken more or less
directly from standard literature (mostly [5]) and can hence be safely skipped by
readers that are well-versed in Hoare logic or related formalisms. The proof rules of
Hs will use three substitutions on assertions. Proper definitions for all three can be
found in appendix A.

We emphasise that this is a statically typed Hoare logic. The rules and definitions
given in this chapter are suitable only when applied to well-typed stat programs and
NOT for dyn programs.

For a stat or dyn statement S, let var(S) (change(S)) denote the set of variables
accessed in S (appearing on the left of an assignment in S). For an assertion p let
free(p) denote the set of free variables of p and p[v := l] the result of substituting the
logical expression l for all free occurrences of the logical variable v in p.

Definition 19. The proof system Hs consists of the following rules:

AXIOM: ASGN (both normal and instance variables)

{q[u := e]}u := e{tags ∧ q}

Indeed, an assignment is terminating, typesafe and failsafe in this setting.
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3. Starting Point: Tagged Hoare Logic for Statically Typed Programs

RULE: SEQ

{p}S1{tags ∧ r} {r}S2{tags ∧ q}
{p}S1;S2{tags ∧ q}

RULE: COND

{p ∧ e}S1{tags ∧ q} {p ∧ ¬e}S2{tags ∧ q}
{p} if e then S1 else S2 end {tags ∧ q}

RULE: LOOP

{p ∧ e ∧ terminates→ t = z} S {tags ∧ p ∧ terminates→ t < z}
p→ t ≥ 0

{p} while e do S done {tags ∧ p ∧ ¬e}

where t is an integer expression and z is an integer variable that does not appear in p, e, t or

S.

When terminates ∈ tags, the implications ensure that S decreases the loop variant
t on each iteration. Consequently, there can only be finitely many iterations before
t ≥ 0 would be violated. The loop hence cannot diverge. Typesafety and Failsafety are
ensured as long as they hold for S, since e is a stat-expressions and thus by definition
non-diverging, failsafe and typesafe.

RULE: CONS

p→ p1, {p1}S{tags′ ∧ q1}, q1 → q, tags′ ⊇ tags

{p}S{tags ∧ q}

The well-known consequence rule from traditional Hoare logic has been extended with
the ability to omit tags. This is sound for terminates, typesafe and failsafe as all
of them restrict the program behaviour and hence {p}S{tag ∧ q} implies {p}S{q} in
each case (for all tag ∈ T ags).

RULE: BLCK

{p}−→u−→u := −→e
−−→
null ;S{tags ∧ q}

{p} begin local −→u := −→e ;S end{tags ∧ q}

where VL∩ free(q) = ∅, {−→u } ⊂ VL and {−→e } ⊆ Exprs, {−→u } = ((var(S)∪ change(S))∩VL)\
{−→u } and

−−→
null is a sequence of null constants of fitting length.

AXIOM: PASGN

{p[−→u := −→e ]}−→u := −→e {tags ∧ p}

Note that the parallel assignment assumes all expressions in −→e to not interact, which
trivially holds in stat as all expressions are side-effect-free.
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3.3. Statically Typed Hoare Logic

RULE: INST

{p}v0.m(v1, ..., vn){tags ∧ q}
{p[−→v := −→e ]}e0.m(e1, ..., en){tags ∧ q[−→v := −→e ]}

where {−→v } ∩ var(M) = var(−→e ) ∩ change(M) = ∅
Like PASGN, the INST rule also assumes the expressions in −→e to not interact, which
trivially holds in stat as all expressions are side-effect-free.

RULE: REC

A ` {p}S{tags ∧ q},
A′ ` {pi ∧ t = z}begin local self ,−→ui := li,

−→vi ;Si end{tagsi ∧ qi}, i ∈ N1
n

pi → (failsafe→ li 6= null ∧ typesafe→ li 6= null → li.@c = θCi), i ∈ N1
n

{p}S{tags ∧ q}

where method mi(
−→ui){Si} ∈MCi ,

A = {{pi}li.mi(
−→vi ){qi} | i ∈ N1

n} ∪ {{ptag,i}li.mi(
−→vi ){tag} | i ∈ N1

n, tag ∈ T ags},
A′ = {{pi ∧ (terminates→ t < z}li.mi(

−→vi ){qi} | i ∈ N1
n} ∪ {{ptag,i ∧ (terminates→ t <

z}li.mi(
−→vi ){tag} | i ∈ N1

n, tag ∈ T ags},
z is a logical variable of type N that does not occur in pi, qi, t and Si for i ∈ N1

n and is

treated in the proofs as a constant, and t is a logical expression of type N.

While very similar to the REC rule from traditional Hoare logic introduced by Gorelick
[33], adding distinguished tags tagsi to each method contract permits verifying a
program with a mixture of different notions of correctness. For an application scenario,
Section 12.1 introduces an extension that allows mixing for instance typesafe and
non-typesafe code. Note, however, that the sets A and A′ differ from those used
traditionally. This is due to a generalization of the concept of most general correctness
formulas neccessary for completeness in tagged Hoare Logic. For more information
about this, please refer to the discussion before Theorem 7 in Section 5.2. Also note
that the recursion bound t is only relevant for methods that actually need to terminate
(terminates ∈ tagsi).

RULE: CNST

{p}newC .init(
−→e ){tags ∧ q}

{p}new C(−→e ){tags ∧ q}

AXIOM: NEW

{p[r := newC ]}newC{tags ∧ p}
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3. Starting Point: Tagged Hoare Logic for Statically Typed Programs

3.4. Auxiliary Rules

RULE: DISJ

{p}S{tags ∧ q} {r}S{tags ∧ q}
{p ∨ r}S{tags ∧ q}

RULE: CONJ

{p1}S{tags ∧ q1} {p2}S{tags′ ∧ q2}
{p1 ∧ p2}S{tags ∧ tags′ ∧ q1 ∧ q2}

RULE: ∃-INT

{p}S{tags ∧ q}
{∃x : N • p}S{tags ∧ q}

where x 6∈ var(M) ∪ var(S) ∪ free(q).

RULE: INV

{r}S{tags ∧ q}
{p ∧ r}S{tags ∧ p ∧ q}

where free(p) ∩ (change(M) ∪ change(S)) = ∅ and p does not contain quantification
over objects. Note that change(M) ⊆ VI .

RULE: SUBST

{p}S{tags ∧ q}
{p[−→z :=

−→
t ]}S{tags ∧ q[−→z :=

−→
t ]}

where var(−→z ) ∩ (var(M) ∪ var(S)) = var(
−→
t ) ∩ (change(M) ∪ change(S)) = ∅.
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4. Tagged Hoare Logic for
Dynamically Typed Programs

“Premature optimization is the root of all evil!”

– C.A.R. (Tony) Hoare

Traditional Hoare logic, as developed by C.A.R. Hoare, contains implicit assump-
tions of well-typedness and hence type-safety. For instance, the axiom for assignment

{q[v := e]}v := e{q}

substitutes the program expression e for all occurrences of the variable v in the asser-
tion q, which will only yield a well-typed assertion q[v := e] when the types of v and e
are compatible, which is exactly what a static type system would enforce when encoun-
tering the assignment v := e. Hence, in the case of a dynamically typed language like
dyn, where no static type-checker ensures the assignment to be well-typed, applying
this axiom could yield assertions and verification conditions that are not well-typed
and whose verification would hence fail in the automated theorem prover.

Why C.A.R. Hoare cast his proof system in this way can only be speculated about.
Most probably he intended to make program verification as simple and convenient
as possible and either did not foresee the exclusion of dynamically typed languages
that this caused or considered them as of secondary importance. Surely, the fact that
the languages he was most familiar with (ALGOL 60) was statically typed will have
contributed to this.

In this chapter, we will generalize Hoare logic by removing these implicit assumptions
to what we call dynamically typed Hoare logic. In order to clearly distinguish these
two variants of Hoare logic, we will in this thesis refer to the traditional variant as
statically typed Hoare logic.

While dynamically typed Hoare logic offers the same proof-theoretic strength as
statically typed Hoare logic (see Chapter 5), a direct comparison (Chapter 6) reveals
that the implicit assumptions allowed for several optimizations, enabling statically
typed Hoare logic to offer a higher degree of convenience when verifying program
properties.

The role type information plays in program verification in general and in Hoare logic
in particular can be understood by studying a typical statically typed Hoare logic. The
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4. Tagged Hoare Logic for Dynamically Typed Programs

following sections will discuss different aspects of its usage.

4.1. Shared Type System

A first general observation common to all rules is that they are using a statically typed
assertion language to denote sets of program states. In fact, the type system used for
this assertion language is the same as the one used for the programming language. This
way, the types of program variables in the program states can be reused when they
appear in assertions. The assertion x < 5 is hence well-typed when the variable x is of
numeric type. Since in a statically typed language there can never be a program state
in which x would have a different type, types can be regarded as constant properties
of variables just like in the program.

4.2. Side-Effects

Consider the rule INST for instantiating the arguments of a method call:

{p}v0.m(v1, ..., vn){tags ∧ q}
{p[−→v := −→e ]}e0.m(e1, ..., en){tags ∧ q[−→v := −→e ]}

where {−→v }∩var(M) = var(−→e )∩change(M) = ∅. In this rule, −→v is a sequence of program
variables denoting the formal arguments of a call to the method m. On the other hand,
−→e is a sequence of (program) expressions that were used as actual parameters in the
call. The parallel substitution p[−→v := −→e ] denotes the simultaneous replacement of all
free occurrences of variables from −→v in p with the respective expression from −→e .

Noteworthy about this rule is that it does not consider any influences evaluated
argument expressions might have on each other. Hence, it is only sound when the
possibility of an actual parameter in {−→e } changing the state can be ruled out. In fact,
in statically typed Hoare logics, programs are comprised of side-effect-free expressions
and (potentially) side-effecting statements. This syntactic distinction allows for simple
and effective rules like the above. This plays well with the fact that statically typed
languages usually supply several basic data-types as well as a large number of build-
in side-effect-free operations on them which are compiled directly to machine-code
instructions. In dynamically typed languages, however, not only is it uncommon to
have basic data-types or supply many side-effect-free build-in operations, but also are
operations usually desugared to method calls in order to allow overriding. Hence, in the
presence of dynamic dispatch distinguishing between a side-effect-free operation and a
side-effecting one requires accurate type information, which is not available statically.
In this setting, it is thus not even possible to decide whether the expressions a + b
is side-effecting or not, since the variables a and b could refer to instances of user-
defined data-types implementing the method m+ in arbitrary ways. Therefore, in
order to make program logics for dynamically typed languages sound, they either have
to prepend all operations using a program transformation or have to consider them all
as side-effecting and thus work with more complex rules.
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4.3. Shortcut Rules

4.3. Shortcut Rules

Once again, consider the assignment axiom in statically typed languages:

{p[v := e]}v := e{p}.

Note that e is an expression of the programming language rather than a logical expres-
sion of the assertion language. The only reason that the substitution p[v := e] results
in a syntactically correct assertion is that the programming language expressions are a
subset of the logical expressions of the assertion language. Hence not only are variables
and their types shared between the two languages, but entire expressions with their
(side-effect-free) operations. This convenient construction is so prevalent in statically
typed Hoare logics that it was even used by Cook [22] in his seminal completeness
proof. It is hence not at all clear whether or not breaking this construction affects
Cook’s results. For this reason, we will in Chapter 5 carefully study the proof theory
of dynamically typed Hoare logic to exclude the possibility that allowing variables to
reference values of different types may have adverse effects on the completeness of our
Hoare logic.

We call rules like the above shortcut rules as reasoning about assignments like v := e
in our Hoare logic for dyn requires deconstructing the expression e and reasoning
about every operation in it as the method call it is desugared to (also considering
potential side effects) which takes significantly more effort. However, in Chapter 7 we
will introduce a technique allowing the use of shortcut rules also for reasoning about
dynamically typed programs.

4.4. The Transition To Dynamic Typing

We already saw that dynamic typing in the programming language will break not
only the construction that allowed sharing the type system / expressions between
programming- and assertion language, but also the convenient syntactic distinction
between side-effect-free expressions and side-effecting statements. Hence a Hoare logic
for a dynamically typed language like dyn must

• provide a way to map untyped programming language variables to typed values,

• consider all expressions as side-effecting, and

• refrain from using shortcut rules.

One could hence consider dynamic typing as an adverse condition trying to impede
the verification of dyn programs. Fortunately, it turns out that

• when considering untyped variables as of type object, an assertion language with
recursive predicates is able to map them to typed values,

• introducing a special variable r and making all expressions/statements conven-
tionally assign their result value to it, enables reformulating shortcut rules as
conventional ones, and
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4. Tagged Hoare Logic for Dynamically Typed Programs

• while side-effecting expressions make the rules more complex it is still possible
to obtain a sound and complete Hoare logic for dyn (see next section).

4.5. Dynamically Typed Hoare Logic

This section will list the rules of a dynamically typed Hoare logic Hd for dyn. Just
like the rules for Hs given in Section 3.3, our exposition of the proof rules of Hd will
use three substitutions on assertions. Proper definitions for all three can be found in
Appendix A.

The special variable r may appear in both pre- and postconditions. In preconditions
it references some initial value, in postconditions the result of the last executed ex-
pression. Note that it is important that r can appear in preconditions. Otherwise the
weakest precondition WP (r, r = null) would not be expressible which would induce
incompleteness.

Definition 20. The proof system Hd consists of the following rules:

AXIOM: VAR (includes the case of v ≡ self)

{p[r := v]}v{tags ∧ p}

AXIOM: IVAR

{p[r := self .@v]}@v{tags ∧ p}

RULE: ASGN (both normal and instance variables)

{p}e{tags ∧ q[v := r]}
where v ∈ V{p}v := e{tags ∧ q}

This rule splits the evaluation of an assignment into two parts: First, the expression
e is evaluated (premise) resulting in a state σ |= q[v := r] and then, the value of
σ(r) is assigned to the variable v, resulting in a state σ′ |= q. Since the latter part
is terminating, type-safe and fail-safe, establishing these properties for e implies that
they hold for the entire assignment.

AXIOM: CONST

{p[r := null ]}null{tags ∧ p}

Note that the axioms VAR, IVAR and CONST are not part of Hs. Instead of reason-
ing about variables and constants, statically typed Hoare logic uses the shortcut-rule
ASGN to reason about entire expressions.
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4.5. Dynamically Typed Hoare Logic

RULE: COND

{p}e{tags ∧ r ∧ failsafe→ r 6= null ∧ typesafe→ (r 6= null → B(r))}
{r ∧ B(r, true)}S1{tags ∧ q}
{r ∧ B(r, false)}S2{tags ∧ q}

{p} if e then S1 else S2 end {tags ∧ q}

Here, the intermediate assertion r describes the state σ reached after evaluating the
condition e. This state is important since the value of σ(r) decides which branch is
evaluated next.
RULE: LOOP

{p}e{tags ∧ p′ ∧ failsafe→ r 6= null ∧ typesafe→ (r 6= null → B(r))}
{p′ ∧ B(r, true)}S{tags ∧ p}

{p′ ∧ B(r, true) ∧ r(z)}S; e{p′ ∧ terminates→ ∀z′ : N • r(z′)→ z′ < z}
{p} while e do S done {tags ∧ ∃b : O • p′[r := b] ∧ B(b, false) ∧ r = null}

where b is a logical variable of type B, z is a logical variable of type N that does not appear

in p, p′, e or S, r(z) is a predicate with z among its free variables such that ∀σ • σ |= p′ →
∃z′ : N • r(z′) and r(z′) is the result of substituting z′ for z in r(z).

Note that, contrary to statically typed Hoare logic, this rule needs two loop invariants
(p and p′) to capture the state before and after evaluating the condition e, since e
could be side-effecting. Also note that the way termination is ensured using the loop
variant r(z) differs significantly from statically typed Hoare logic. The reasons for this
will become clear in Chapter 5.

RULE: INST

{pi}ei{tags ∧ pi+1[vi := r]} for i ∈ Nn
{pn+1}v0.m(v1, ..., vn){tags ∧ q}
{p0}e0.m(e1, ..., en){tags ∧ q}

where the vi are fresh local variables that do not occur in any ej for all i, j ∈ Nn.

RULE: REC

A ` {p}S{tags ∧ q},
A′ ` {pi ∧ ri(z)}begin local self ,−→ui := li,

−→vi ;Si end{tagsi ∧ qi}, i ∈ N1
n

pi → (failsafe→ li 6= null ∧ typesafe→ li 6= null → li.@c = θCi), i ∈ N1
n

{p}S{tags ∧ q}

where methodmi(
−→ui){Si} ∈MCi , A = {{pi}li.mi(

−→vi ){qi} | i ∈ N1
n}∪{{ptag,i}li.mi(

−→vi ){tag} |
i ∈ N1

n, tag ∈ T ags}, A′ = {{pi ∧ (terminates → ∀z′ : N • ri(z′) → z′ < z)}li.mi(
−→vi ){qi} |

i ∈ N1
n} ∪ {{ptag,i ∧ (terminates→ ∀z′ : N • ri(z′)→ z′ < z)}li.mi(

−→vi ){tag} | i ∈ N1
n, tag ∈

T ags}, z is a logical variable of type N that does not occur in pi, qi and Si for i ∈ N1
n and is

treated in the proofs as a constant, ri(z) for i ∈ N1
n are predicates with z among their free

variables such that ∀σ • σ |= pi → ∃z′ : N • ri(z′) for all i ∈ N1
n and ri(z

′) denotes the result

of substituting z′ for z in ri(z).
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RULE: EQUAL

{p}e1{tags ∧ r[v1 := r]}
{r}e2{tags ∧ q[v2 := r]}
{p}e1 == e2{tags ∧ q ∧ d}

where d ≡ (B(r, true) ∧ v1 = v2) ∨ (B(r, false) ∧ v1 6= v2).

RULE: TYPECHECK

{p}e{tags ∧ q[v := r]}
{p}e is a? {C}{tags ∧ q ∧ d}

where d ≡ (∃b : B • B(r, b) ∧ b↔ JvK ∈ {C})

The remaining rules are identical to those of the tagged, statically typed Hoare logic
Hs given in Section 3.3.

The fact that dyn-expressions have side effects is mirrored in several rules. Like their
corresponding rules in the operational semantics, the usual axiom for assignment is
turned into a rule and the COND and LOOP rules both evaluate the condition before
branching on its result in an intermediate state.

The rules PASGN, BLCK, INST and REC are needed to handle method calls.
After handling side effecting expressions in arguments beforehand (INST) and ensuring
that methods are only called on receivers supporting them (last premise of REC),
method calls are assumed to satisfy the same properties as a block executing the
body of the called method in an environment with local variables suitably initialized
(BLCK,PASGN).

The LOOP and REC rules feature a novel form of loop variants / recursion bound.
The basic idea is to use a predicate r(z) instead of the usual integer expression t in
order to allow quantification within loop variants / recursion bounds. While this was
primarily introduced to circumvent a common incompleteness issue in Hoare logics for
total correctness (see proof of Theorem 8 for details), note that it also allows using
mapping predicates directly in loop variants / recursion bounds, i.e., proving

{N(i)}while i > 0 do i := i− 1 done{terminates}

with r(z) ≡ N(i, z).
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5.1. Soundness

Soundness of the proof systemHd for dyn follows from a standard inductive argument.
We will only present the case for the LOOP rule as the idea of using a predicate r as
a loop variant for total correctness is novel.

Induction Hypothesis: `Hd {p}S{tags ∧ q} implies |= {p}S{tags ∧ q} for all
assertions p and q, all dyn statements S and all tags ⊆ T ags.

Induction Step:
We consider the case of a loop while e do S done and distinguish the following

cases according to the chosen notion of correctness.
Partial Correctness: Given `Hd {p}e{tags∧p′} and `Hd {p′∧B(r, true)}S{tags∧
p}, by the induction hypothesis |= {p}e{tags∧p′} and |= {p′∧B(r, true)}S{tags∧p}
follow. We have to show that the conclusion of the LOOP rule is valid, i.e.,

|= {p}while e do S done{tags ∧ ∃b : O • p′[r := b] ∧ B(b, false) ∧ r = null}.

Hence, when executing the program while e do S done in a state σ |= p, the
operational semantics will first apply rule 9 yielding the configuration

〈if e then S; while e do S done else null end, σ〉,

then apply whatever rules are neccessary to evaluate 〈e, σ〉 to a configuration final〈τ〉.
From |= {p}e{p′} we deduce τ |= p′. Furthermore, the operational semantics uses rules
5-7 to branch on the value of τ(r). Since for partial correctness we are only interested
in normal program termination, the cases yielding fail or typeerror will be handled
below. Hence we are left with two subcases:

1) τ |= B(r, true): In this case, rule 5a) is the only one applicable and 〈S, τ〉 will be
evaluated next. From {p′ ∧ B(r, true)}S{p} we can deduce that the resulting state σ′

will again satisfy p. We are hence again in a configuration 〈while e do S done, σ′〉 with
σ′ |= p. With σ′ taking the role of σ and with regard to the operational semantics,
this configuration offers exactly the same options as the one before applying rule 9.
Now this loop in the transition system raises the possibility of divergence. However,
for partial correctness we may disregard this possibility, as we only provide guarantees
for finite computations. The case of divergence will be discussed below.
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5. Proof Theory for Dynamically Typed Programs

2) τ |= B(r, false): In this case, rule 5b) is the only one applicable and 〈null, τ〉 is the
only statement left to evaluate. Applying rule 1 leaves us in a configuration final〈τ ′〉
with τ ′ |= ∃b : O • p′[r := b] ∧ B(b, false) ∧ r = null where b represents the result of e
on the last iteration while r represents the result of the entire loop. As this is the only
way for our program to terminate normally, |= {p}while e do S done{∃b : O • p′[r :=
b] ∧ B(b, false) ∧ r = null} holds.
Termination: For partial correctness, the premise {p′ ∧ B(r, true)}S; e{p′} can be
derived from the two other premises by an application of the SEQ rule. Since the
predicate r(z) can be chosen to be r(z) ≡ z = z and the part of the postcondition
implied by terminates can be omitted when terminates 6∈ tags, it follows that
the third premise does not strengthen the premises in any way. However, for total
correctness we have terminates ∈ tags and hence it is mandatory to provide the
additional predicate r(z) with z among its free variables, such that ∀σ • σ |= p′ →
∃z′ : N • r(z′) and |= {p′ ∧ B(r, true) ∧ r(z)}S; e{p′ ∧ ∀z′ : N • r(z′) → z′ < z}. r(z)
may be understood as mapping states to sets of natural number values for z. The
first requirement thus ensures that the “mapping” r(z) is total on all states in Jp′K,
while the second requires the loop body S together with the condition e to decrease its
supremum. Since the state τ reached after evaluating e the first time satisfied p′, by
the (conditional) totality of r(z) we deduce that there must be an “initial” non-empty
set Z of natural numbers such that for all zi ∈ Z, τ |= r(zi) holds. Let zmax be the
supremum of Z. Then, since zmax is a natural number and it is required to decrease
strictly on each loop iteration and all natural numbers are ≥ 0, there can only be a
finite number of iterations satisfying the second requirement. Consequently, the loop
has to terminate after finitely many iterations.

Failsafety: A failure might occur either in evaluating e or S or by rule 6 when e
evaluates to null . Requiring e and S to be both failsafe as well as {p}e{failsafe →
r 6= null} (implied by the first premise) hence covers all these cases.

Typesafety: The same argument as for failsafety applies here, only with rule 7 and
the requirement typesafe→ (r 6= null → B(r)) (implied by the first premise) instead
of failsafe → r 6= null . Note that the case for failure is intentionally left open as
typesafe partial correctness only needs to guarantee the absense of type errors and too
strong a premise would induce incompleteness.

5.2. Completeness

In this section, we will prove the axiomatic semantics Hd of dyn (relative) complete
[22] with respect to its operational semantics following the seminal completeness proof
of Cook and Gorelick [22, 33] as well as its extension to OO-programs due to de Boer
and Pierik [14]. That is, given a closed program π with a finite set of class definitions,
we prove that � {p}π{q} implies `Hd,T {p}π{q} assuming a complete proof system T
for the assertion language AL.

We will start by summarizing previous completeness proofs by the authors mentioned
above, along with a discussion of the problems encountered when applying those proofs
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directly to dynamically typed languages like dyn.

5.2.1. Non-Recursive Programs

(Relative) completeness of Hoare logic was first proven by Cook [22] for non-recursive
procedural programs. Due to him is the insight that a valid correctness formula �
{p}S{q} may fail to have a derivation in a Hoare logic (H,T ), where T is a proof
system for the assertion language used, either

• due to incompleteness of T or

• due to an intermediate assertion / loop invariant not expressible in the assertion
language or

• due to incompleteness of H.

While the first point is the reason one can only hope to prove the proof system
(H,T ) complete relative to T , the second is the reason completeness proofs have ever
since included an argument for the expressivity of the assertion language.

5.2.2. Recursive Programs

Gorelick [33] extended Cook’s work to recursive programs. The central idea behind
his proof was the notion of most general correctness formulas (MGF’s)

{x = z} Pi {SP (x = z, Si)}

for all procedures Pi with procedure bodies Si where x = x1, ..., xn denotes the se-
quence of all program variables, z = z1, ..., zn is a corresponding sequence of logical
variables that do NOT occur in ANY procedure body, thus “freezing” the entire initial
state and SP (p, S) is the strongest postcondition of a precondition p with respect to
the statement S. Gorelick also introduced the REC rule (in the form commonly used
in statically typed Hoare logic (see f.i. [5])) for reasoning about mutually recursive
procedures and was the first to notice that achieving completeness requires that the
assertion language is able to capture every aspect of a program state in logical vari-
ables, in order to “freeze” this information during program execution and allow the
postcondition to compare the initial- to the final state (which is the central idea behind
his MGFs).

5.2.3. Object-Oriented Programs

Later, de Boer and Pierik [14] generalized the results to programs with dynamically
created values (pointers or objects). To this purpose, they introduced the substitution
for object creation (see Appendix A). Also, they pointed out that in OO-contexts,
freezing a program state additionally requires freezing the internal states of all objects
existing in that state, thus necessitating a more sophisticated freezing-strategy.
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5. Proof Theory for Dynamically Typed Programs

5.2.4. Freezing the Initial State

While the approach from [14] stores objects and the values of their instance variables
class-wise, which is difficult in a dynamically typed language like dyn, the basic idea is
fortunately still applicable. We use a logical variable obj of type O∗ to store a (finite)
sequence of all existing objects:

all(obj) ≡ ∀o : O • ∃i : N • i < |obj| ∧ obj[i] = o

Since obj establishes a bijection from natural numbers to objects, it allows encoding
states as sequences of natural numbers.

For convenience, we introduce a polymorphic1 function pos that maps a sequence
and an element to the smallest index (= position) that element occupies within the
sequence. It thus satisfies
∀τ : T • ∀e : τ, s : τ∗ • s[pos(s, e)] = e
For a given program π, we introduce an enumeration ivar ∈ ((var(π)∪change(π))∩

VI)
∗ of all instance variables occurring in π and define the following predicate for

freezing states:

code(x, obj, ς) ≡ |ς| = |ivar|+ 1 ∧ |ς[0]| = |x| ∧
∀i : N • i < |x| → ς[0][i] = pos(obj, xi) ∧
∀i, j : N • (i < |ivar| ∧ j < |obj|)→ ivar[i] = @v ∧ obj[j] = o→

ς[i+ 1][j] = pos(obj, o.@v)

where x = x1, ..., xn is a sequence of all local variables. The predicate code(x, obj, ς)
uses the sequence obj to capture the state of all local variables in x as well as the
internal states of all objects existing in the current state in the frozen state ς of type
N (but encoding a sequence of sequences of natural numbers). The structure of such
a frozen state ς is depicted in Figure 5.1: The first number ς[0] encodes a sequence of
natural numbers representing the objects referenced by the variables in x, while the
remaining numbers ς[i] for i ∈ N1

|ivar|+1 encode sequences of natural numbers such that

ς[i][j] represents the object referenced by the instance variable ivar[i − 1] of the jth
object (the unique object o such that obj[j] = o ). Note that ς captures the internal
states of all existing objects without referencing any of them.

Also note that this is indeed satisfiable for all states as null ∈ O. Furthermore, for
a given program π, we say that ς encodes σ and write

σ ∼ ς iff σ |= all(obj) ∧ code(x, obj, ς)

with {x} = (var(π) ∪ change(π)) ∩ VL being a finite sequence of all local variables
occuring in π.

Lemma 3 (Left-Totality of ∼). ∀σ : Σ • ∃ς : N • σ ∼ ς.

Finally, we are ready to define a predicate transformer Θ (called the “freezing func-
tion” in [14]). However, while in their work, Θ also bounds all quantification and

1We use the polymorphic version for the sake of readability although the type system of AL does
not allow polymorphism. However, polymorphic functions can be emulated using one version for
each element type.
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Figure 5.1.: Example of a frozen state ς encoding a state σ (σ ∼ ς). Here, G denotes
Gödelization, an operation encoding a finite list of natural numbers into
a single one.

replaces instance variable dereferencing by lookups in sequences, we additionally trans-
late all object expressions into expressions of type N to allow simulating computations
directly on the frozen states.

We now define the predicate transformer Θx
obj(ς), which is a postfix-operator appli-

cable to assertions that depends on a sequence of local variables x and a frozen state
ς to transform a given assertion into a form that operates on ς instead of the actual
program variables (freezing). It is hence defined by induction over the structure of
assertions. We have the following main cases:

• (l.@v)Θx
obj(ς) ≡ ς[i@v + 1][lΘx

obj(ς)] where @v = ivi@v

• uΘx
obj(ς) ≡ ς[0][ix] where u = xix

• uΘx
obj(ς) ≡ u′ where u is a logical variable of type O and u′ is a fresh logical variable

of type N

• (l1 = l2)Θx
obj(ς) ≡ l1Θx

obj(ς) = l2Θx
obj(ς) where l1 and l2 are of type O.

• (∃o : O • p)Θx
obj(ς) ≡ (∃o′ : N • 0 ≤ o′ < |obj| → pΘx

obj(ς))

Like the Θ in [14], our Θx
obj(ς) hence satisfies the following property.

Theorem 4 (Invariance). ` {pΘx
obj(ς)}S{pΘx

obj(ς)} for all statements S, assertions
p and frozen states ς as long as x contains all program variables used in p (free(p) ⊆
{x}).
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It can hence replace Θ in the remaining argument. Note that the truth value of
pΘx

obj(ς) depends only on ς and is hence independent of any particular state. We

hence write |= pΘx
obj(ς) if its truth value is true. Also observe

Lemma 4 (Freezing). σ |= q iff σ ∼ ς∧ |= qΘx
obj(ς) for all σ ∈ Σ and q ∈ Asrt.

Proof. By induction over the structure of q.

It follows that a frozen state ς contains all information about σ when σ ∼ ς holds.

5.2.5. Expressivity

Cook [22] first discussed the importance of an expressive assertion language for the
completeness of a Hoare logic. In essence, the assertion language must be able to
express the strongest postcondition SP (p, S) for all statements S and preconditions p.

In the last section, we already established that it is possible to capture all information
about a state in a single natural number. Then, we consider a predicate compS of type
N × N 7→ N simulating dyn computations on such frozen states and note that, since
such computations are by definition computable, they can be defined as a µ-recursive
function.

By Theorem 2, it is hence expressible in our assertion language and we can use it
within our assertions without any loss of generality. To formalize the idea that compS
simulates dyn computations on frozen states, we stipulate

Definition 21. compS = {(ς, ς ′) | ∀σ, σ′ • (σ ∼ ς ∧ σ′ ∼ ς ′)→ σ′ ∈MJSK(σ)}

Using compS we can show the following:

Theorem 5 (Definability of Weakest Preconditions). For all postconditions q and
statements S, the precondition

p ≡ ∀ς, ς ′ • (all() ∧ code(x, ς ′) ∧ compS(ς ′, ς))→ qΘx
obj(ς)

satisfies JpK = {σ | MJSK(σ) ⊆ JqK}.

Proof. We have to prove the equality LHS = RHS where LHS ≡ JpK and RHS ≡
{σ | MJsK(σ) ⊆ JqK}. We will first prove the direction LHS ⊆ RHS and then turn to
the converse question.
1) LHS ⊆ RHS: Assuming a state σ ∈ LHS, then by left-totality of ∼, there is
a ς ′ such that σ ∼ ς ′. Furthermore, from σ |= ∀ς • compS(ς ′, ς) → qΘx

obj(ς) and
Definition 21 we deduce that every state σ′ ∈ MJsK(σ) has a ς satisfying σ′ ∼ ς as
well as compS(ς ′, ς). Since all premises of the implication on the left-hand side are
satisfied, |= qΘx

obj(ς) must hold as well. Note that the latter two are properties of ς
and ς ′ rather than any particular state. Using Lemma 4 we can then deduce σ′ |= q
and since our only assumption about σ′ is that it is a post-state of σ, it follows that
MJsK(σ) ⊆ JqK and hence that σ ∈ RHS.

2) RHS ⊆ LHS: Assume σ ∈ RHS. σ is hence an initial state and all its post-
states σ′ ∈ MJsK(σ) satisfy the assertion q. Then, by left-totality of ∼, there is a
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frozen state ς ′ such that σ ∼ ς ′ and for every post-state σ′ there is a frozen state ς
such that σ′ ∼ ς. Now, by Definition 21, every pair of (frozen) pre- and post-state
(ς ′, ς) ∈ compS . Also, since the post-states σ′ satisfy q and σ′ ∼ ς, by Lemma 4 we
know that |= qΘx

obj(ς) holds. Therefore, the entire assertion p is true in σ and hence
σ ∈ LHS.

Predicates terminatesS(ς), typesafeS(ς) and failsafeS(ς) can be defined in a simi-
lar manner as compS and allow for deriving above result for different notions of correct-
ness (tags). Since definability of weakest preconditions is equivalent to the definability
of strongest postconditions [63], we have

Theorem 6 (Expressiveness). The assertion language AL is expressive with respect
to its standard interpretation and the programming language dyn.

5.2.6. Completeness for Statements

As in the work of Cook [22] and Gorelick [33], the core of our completeness proof
consists of an induction over the structure of a statement S. Since several of our rules
deviate from our predecessors, we need to exchange these cases in the argument. We
will concentrate on the most interesting cases.

Induction Basis:

• S ≡ null : Assume |= {p}null{q}. Then, by the operational semantics, p→ q[r :=
null ] must also be true. It is hence derivable in T and the desired result follows
from the CONST axiom followed by applying the rule of consequence (CONS).
Typesafety, Failsafety & Termination: The CONST axiom allows deriving any
combination of tags desired.

• S ≡ u: Assume |= {p}u{q}. Then, by the operational semantics, p → q[r := u]
must also be true. It is hence derivable in T and the desired result follows from
the VAR axiom followed by applying the rule of consequence (CONS).

Typesafety, Failsafety & Termination: The VAR axiom allows deriving any com-
bination of tags desired.

• s ≡ @v: Just like the case for u, applying IVAR instead of VAR.

Induction Hypothesis: |= {p}S{q} → `Hd,T {p}S{q} for all assertions p, q and all
statements S of a program π containing no recursive method calls.

Induction Step:

• S ≡ u := e: Assume |= {p}S{tags ∧ q}. Then, according to the operational
semantics, also |= {p}e{tags ∧ q[u := r]}. By the induction hypothesis, it is
hence derivable. An application of the rule ASGN derives the desired result.

• S ≡ S1;S2: Assume |= {p}S1;S2{tags ∧ q}. Then by the expressibility of the
assertion language, there is an intermediate assertion r such that |= {p}S1{tags∧
r} and |= {r}S2{tags∧q}. Hence by the induction hypothesis, both are derivable
and an application of the rule SEQ derives the desired result.
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• S ≡ if e then S1 else S2 end: Assume |= {p}if e then S1 else S2 end{tags∧
q}. Then, by the expressiveness of the assertion language and the operational
semantics, there is an intermediate assertion r such that |= {p}e{tags ∧ r},
|= {r ∧ B(r, true)}S1{tags ∧ q} and |= {r ∧ B(r, false)}S2{tags ∧ q} hold and
are hence derivable by the induction hypothesis. Now an application of the rule
COND derives the desired result.

Failsafety: Since above argumentation already ensured that e, S1 and S2 are all
failsafe, the only additional requirement is {p}e{r 6= null}. However, since the
case r = null leads to failure in the operational semantics, this must hold for
any execution of S in order to be failsafe and hence must be derivable by the
induction hypothesis.

Typesafety: The same argumentation as for failsafety applies here, only the
additional requirement is {p}e{r 6= null → B(r)}. Note that the case of r = null
can be deliberately allowed, since it leads to a failure in the operational semantics
and thus does not affect typesafety.

• S ≡ while e do S1 done: Assume |= {p}while e do S1 done{tags∧q}. Then,
by the standard argument for while loops due to Cook [22] (and explained
particularly well by Apt [4]), the expressiveness of the assertion language and
the operational semantics, there are two assertions i and i′ such that p → i,
|= {i}e{tags ∧ i′}, |= {i′ ∧ B(r, true)}S1{tags ∧ i} and ∃b : O • i′[r := b] ∧
B(b, false) ∧ r = null → q hold and are hence derivable by the induction hy-
pothesis and the completeness of T . While i is the loop invariant of S, i′ is an
intermediate state neccessary because in dyn, e could have side-effects. Now,
an application of the LOOP rule followed by the rule of consequence derives the
desired result.

Termination: Assuming |= {p}while e do S1 done{terminates∧q}, then there
is a µ-recursive function v simulating the execution of S using compS from a
(frozen) initial state ς and determining the least number of iterations it takes
to reach a frozen state ς ′ from the ς, such that e evaluates to false in ς ′. Note
that by Theorem 2 v can be expressed in AL. Also, by our assumption that the
loop S terminates, the function v is well-defined on all (frozen versions of) states
in p′ and thus r(z) ≡ all() ∧ code(x, ς) ∧ z = v(ς) is a canonical loop variant
satisfying ∀σ • σ |= p′ → ∃z′ : N • r(z′). Since v(ς) determines the number of
iterations until reaching a target state, executing S; e clearly decreases it and
thus |= {p′ ∧ B(r, true) ∧ r(z)}S; e{p′ ∧ ∀z′ : N • r(z′) → z′ < z} holds. By
the induction hypothesis, it is thus derivable. An application of the LOOP rule
derives the desired result.

Failsafety & Typesafety: Exactly the same argument as for conditionals applies
here as well.

Remark regarding Termination: As usual for reasoning about termination,
the LOOP rule is equipped with a so-called loop-variant (activated (implied) by
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terminates). Usually2, this variant take the form of an integer expression t whose
value a) must be > 0 whenever the loop is entered (thus forcing termination when
reaching zero) and b) must decrease on every iteration. Note that this methodol-
ogy syntactically restricts the loop variant to be an integer expression of the asser-
tion language. Now, as observed by Apt, De Boer and Olderog in [5, page 86], this
method introduces incompleteness in the case of total correctness, for the integer ex-
pressions of the assertion language AL are insufficient for expressing all necessary
loop-variants since while-loops and recursive methods allow dyn programs to calcu-
late any µ-recursive function and hence obviously also to bound the number of loop
iterations by any µ-recursive function, while the set of integer operations available
in AL is quite limited (for instance lacking exponentiation). We circumvented this
problem by using a new form of loop-variants in Hd, which allows the use of quan-
tifiers. The old form (used f.i. in the LOOP rule from Hs) used a logical variable z
of type N to store the value of t before a loop iteration (t = z in the precondition)
and compare it to the new value in the postcondition (t < z). Our new form in Hd
uses a predicate r(z) with z among its free variables instead of t = z and the logical
expression ∀z′ : N • r(z′) → z′ < z where r(z′) denotes the result of substituting z′

for z in r instead of t < z. Firstly, observe that this is a conservative extension as one
may set r ≡ t = z for some integer expression t. Secondly, note that by Theorem 2, r
may compute any µ-recursive function and is thus contrary to integer expressions able
to express any function computable by dyn programs (including f.i. exponentiation).

5.2.7. Completeness for Recursive Methods

The methodology for proving a Hoare logic complete for recursive procedures by using
most general correctness formulas is due to Gorelick [33]. It was extended to OO-
programs by De Boer and Pierik [14].

A curious implication of dynamic dispatch under dynamic typing is that the lack of
type information prohibits pinpointing the exact target of a method call. For instance,
the weakest precondition of the call x.size() with respect to the postcondition N(r, 5)
must include all possibilities like the case of the variable x referring to a string of
length 5 as well as x referring to a list of size 5. In general, the weakest precondition
of a method call l.m(v1, ..., vn) is the disjunction of all weakest preconditions derivable
as described in the proof of Theorem 7 from the most general correctness formulas of
all methods C.m of arity n of all classes C ∈ C, each conjoined with the corresponding
type assumption JlK ∈ {C}. Note that this methodology introduces an implicit closed
world assumption as it might fail when combining the derived property with a different
set of classes. However, we regard this problem as one of modularity rather than
completeness and thus as out of scope.

As our tagged Hoare logic incorporates different notions of correctness, we gener-
alize Gorelick’s idea to a set of most general correctness formulas. The most general
correctness formulas for a statement S are

MGF (S) = {{WP (S, init(ς))}S{init(ς)}} ∪ {{WPtag(S, true)}S{tag} | tag ∈ T ags}
2see for instance Hs in Section 3.3
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with init(ς) ≡ all(obj) ∧ code(x, obj, ς). The reason for this is obvious: From MGF (S),
we can deduce {WPtags(S, q)}S{tags ∧ q} for all tags ⊆ T ags using the conjunction
rule. The converse is not in all cases possible.

The results from Section 5.2.6 imply that the above set can be derived for any
dyn statement S given that the formulas it contains are true. Should, e.g., S raise a
type error on all inputs then WPtypesafe(S, true) ≡ false and {false}S{typesafe} is
derivable.

Theorem 7 (MGFs). If |= {p}S{tags ∧ q}, then MGF (S) `Hd,T {p}S{tags ∧ q}.

Proof. Assume |= {p}S{tags ∧ q}. Then {p}S{q} and {p}S{tag} for all tag ∈ tags
are also all true.

1) ` {p}S{q}: For technical convenience only we assume that p and q do not contain
free occurrences of ς. If they do, these need to be renamed using the substitution
rule. By Theorem 4, we have {qΘx

obj(ς)}S{qΘx
obj(ς)} for some frozen state ς. By

the definition of WP , we have {WP (S, init(ς))}S{init(ς)}. An application of the
conjunction rule yields

{qΘx
obj(ς) ∧WP (S, init(ς))}S{qΘx

obj(ς) ∧ init(ς)}.

Next, we have to prove p → qΘx
obj(ς) ∧ WP (S, init(ς)). Assume σ |= p. Then by

|= {p}S{q}, for all σ′ ∈ MJSK(σ), we have σ′ |= q. By Lemma 4, we have σ′ |=
qΘx

obj(ς) ∧ init(ς).
From this, we will establish σ |= qΘx

obj(ς) by showing that σ 6|= qΘx
obj(ς) leads to a

contradiction. We are thus assuming σ 6|= qΘx
obj(ς). This implies σ |= ¬qΘx

obj(ς) and

since ` {¬qΘx
obj(ς)}S{¬qΘx

obj(ς)} by Theorem 4 and |= {¬qΘx
obj(ς)}S{¬qΘx

obj(ς)} by

the soundness of our Hoare logic, it follows that σ′ |= ¬qΘx
obj(ς), which contradicts

our earlier assumption.

Hence, σ |= qΘx
obj(ς) and by the definition of WP , σ |= WP (S, init(ς)). Therefore,

p→ qΘx
obj(ς) ∧WP (S, init(ς)) holds and since qΘx

obj(ς) ∧ init(ς)→ q follows directly
from Lemma 4, an application of the rule of consequence derives {p}S{q}.

2) ` {p}S{tag}: if this is true, then p → WPtag(S, true) must also be true by the
definition of weakest preconditions, and hence is derivable by the completeness of T .
Since {WPtag(S, true)}S{tag} ∈ MGF (S), an application of the consequence rule
derives the desired result.

3) ` {p}S{tags∧q}: One application of the conjunction rule per tag in tags completes
the proof.

Finally, since our recursion rule is in principle identical to the one devised by Gore-
lick [33] for this purpose, we are now able to apply the same inductive argument as in
[33] for proving our Hoare logic complete for recursive methods.
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Lemma 5. Let Mi ≡ li.mi(
−→vi ) denote the ith (possibly recursive) method call occurring

in a closed dyn program π and let A =
⋃n
i=1MGF (Mi) be the set of most general

correctness formulas about all method calls M1, ...,Mn in π. Then for all statements
S of π and all assertions p and q:

If |= {p}S{tags ∧ q}, then A `Hd,T {p}S{tags ∧ q}.

Proof. By induction over the structure of S. Most cases are as in the proof for the
non-recursive case. Most interesting is the new case for method calls: S ≡ li.mi(

−→vi ):
Assuming |= {p}S{tags ∧ q} and S is the ith method call Mi in our program, then
MGF (S) ⊆ A and hence A ` {p}S{tags∧ q} by Theorem 7. As Gorelick [33] pointed
out, this also holds for recursive method calls.

Theorem 8 (Completeness for Recursive Methods).

If |= {p}S{tags ∧ q} then `Hd,T {p}S{tags ∧ q},

for any statement S of a closed program π containing possibly recursive method calls
and all assertions p and q.

Proof. Expressiveness of AL guarantees the expressibility of WPtags(S, q) for any state-
ment S, postcondition q and tags ∈ T ags. Hence by setting q ≡ init(ς) and S ≡ Mi

for any i ∈ N1
n, we can see that the set A =

⋃n
i=1MGF (Mi) of most general correct-

ness formulas of all method calls M1, ...,Mn is expressible in our logic. Now, since by
definition of WPtags, these formulas are true, and according to the operational seman-
tics, a method call is equivalent to evaluating its body in a begin local-block using
appropriate variable substitutions, we have by Lemma 5

A `Hd,T {pi}begin local self,−→ui := li,
−→vi ;Si end{qi} for all i ∈ N1

n as well as

A `Hd,T {ptag,i}begin local self,−→ui := li,
−→vi ;Si end{tag} for all N1

n, tag ∈ T ags

with pi ≡ WP (Mi, init(ς)), qi ≡ init(ς), ptag,i ≡ WPtag(Mi, true) and Si denoting the
method body of the method called in Mi for all i ∈ N1

n. Note that in the case not
concerned with termination (i.e. terminates 6∈ tags) we may postulate r(z) ≡ z = z
and can then

• derive the set A′ (as used in the REC rule in Section 4.5) from A by applying the
rule of consequence to each Hoare Triple in A, in essence adding the conjunct
(terminates → ∀z′ : N • ri(z′) → z′ < z) to the precondition of each Hoare
triple (which is equivalent as terminates is false), and

• note that this derivation is reversible and hence A can also be derived from A′.

• Hence we can substitute A′ for A in above formulas, and

• apply the rule of consequence to each of them to obtain

81



5. Proof Theory for Dynamically Typed Programs

A `Hd,T {pi ∧ ri(z)}begin local self,−→ui := li,
−→vi ;Si end{tagsi ∧ qi}

for all i ∈ N1
n. Note that these are just the premises of the REC rule.

Furthermore, assuming |= {p}S{q}, by Lemma 5 we have

A ` {p}S{tags ∧ q}

which is the last missing premise of the REC rule. Hence, an application of said rule
derives the desired result and completes the proof.

Termination: Just like the LOOP rule, the REC rule in Hd also uses a predicate
r(z) as a recursion bound. Hence the very same argumentation as in the remark
regarding termination at the end of Section 5.2.6 applies here as well. Then, since
the predicate r(z) is able to express any µ-recursive function, µ-recursive functions
are able to simulate the execution of dyn programs and dyn programs are trivially
able to calculate the depth of any recursion in them by adding a parameter used as
a counter, we conclude that AL predicates suffice for expressing all recursion bounds
that can possibly occur in dyn programs and thus allow deriving {p}S{terminates}
whenever |= {p}S{terminates} also in the case with recursive methods.
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Part III.

Type Information

“Assumptions are a transparent grid, through which we observe the universe, and sometimes we

give in to the illusion that the grid would be the universe itself.”

– Kogitor Eklo - Butlers Djihad
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6. Comparison of Statically Typed-
with Dynamically Typed Verification

While theoretically the completeness result for our Hoare logic guarantees the deriv-
ablility of all true properties about dyn-programs1 just like it is the case for many
statically typed languages, there are still quite a few practical disadvantages in veri-
fying dynamically typed programs compared to statically typed ones.

Comparing the proof rules for dyn with those of stat is quite revealing regarding
those differences. At first sight it is already obvious that the dyn rules are more
complicated than their stat counterparts. Analyzing their differences in more detail,
it is possible to identify the core reasons why reasoning about dynamically typed
programs is more complex than reasoning about statically typed ones.

6.1. Type Safety

In dynamically typed languages, type errors are runtime events. Like divergence and
failures, they give rise to a notion of correctness excluding them that we call typesafe
partial correctness. In our tagged Hoare Logic, typesafe partial correctness corresponds
to the tag typesafe. Hence, in the rules given in Section 4.5, the parts responsible for
ensuring type safety can be identified as those parts of an assertion that is activated
(implied) by typesafe. Such type safety preconditions are not necessary in statically
typed languages.

6.2. Mapping Objects to Values

Hoare logic for dynamically typed languages must rely on predicates to connect (un-
typed) program objects and (typed) logical values. For instance, the COND rule uses
the predicate B() to establish a correspondence between the result of the program
expressions e and the boolean constants true and false. This additional layer of indi-
rection not only reduces readability, but also hinders substitutions for pure expressions
(see next paragraph). Additionally, like in the case of x < 5, which corresponds to
∃x′ : N.N(x, x′) ∧ x′ < 5, using mapping predicates often entails existentially quanti-
fying the resulting value, which reduces readability even more and makes verification
conditions harder to solve as quantifier elimination is usually a costly procedure.

1Assuming that the implications used in the rule of consequence are all derivable in the proof system
T for the assertion language, of course.
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6.3. Side-effecting Expressions

In the Hs-rules ASGN and COND, the pure program expression e is directly used in
logical assertions. Here, the design choice of a shared type system pays off. Unfortu-
nately, dynamic typing forces us to relinquish this benefit, as the inavailability of static
type information does not allow for distinguishing side-effecting from side-effect-free
method calls in a language featuring dynamic dispatch, and potentially impure ex-
pressions are ill-suited for logical reasoning [50]. Observe also how the INST rule from
Hd models the evaluation order using a sequence of intermediate predicates pi, which
would not be necessary for pure expressions. However, since dyn treats operations as
method calls, the INST rule needs to be applied even for pure operations like +, <,∧,
etc, making it tedious to derive even simple properties of assignments or conditionals.
Also recall that the LOOP rule from Hd requires a second loop invariant because the
loop condition might have side-effects.

6.4. Specialized Data Types

Another benefit of having a shared type system between the assertion language and the
programming language is that programs operating on complex data types like lists,
sets, records or trees are reasoned about in an assertion language supporting these
same primitives, which is very useful, for instance when values need to be stored in
logical variables (freezing).

Consider a sorting algorithm operating on lists of natural numbers. In order to
express the property that the resulting list is a permutation of the one initialy given,
we have to make the initial list available in the postcondition. In our assertion language
AL, the only data-types suitable for this task are N and O. Of course it would be
possible to store a reference to the initial list in an object variable. However, this
would not solve the problem since objects are accessible by the program and in this
case the list is in fact modified by the algorithm, so following the reference in the
postcondition would lead to the modified list instead of the initial one...

Natural numbers offer greater promise as (finite) lists of natural numbers can be
encoded as a single natural number using Gödelization (see Section 1.5.5). Hence, the
Hoare triple

{gödel list(l, n)}S{∃m : N.gödel list(l,m) ∧ permutation(n,m)}

expresses the desired property that the statement S permutes the list l by encoding
its contents into a natural number and “freezing” it in the logical variable n.

Unfortunately, Gödelization also permits the encoding of arbitrary µ-recursive func-
tions (see Section 1.5.5) and, since µ-recursive functions are able to simulate Turing-
Machines, allows for expressing the Halting Problem. Hence, satisfiability of any logic
that allows Gödelization must be undecidable – this includes our assertion language
AL as well as any other Logic subsuming first-order logic with integer arithmetic. The
only reason our SMT-solver Z3 is able to decide the satisfiability of many verification
conditions is that they often fall into some decidable subset of the logic supported by
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Z3. However, using Gödelization in a formula obviously precludes this possibility and
thus Z3 is forced to return “unknown” to this kind of query.

Of course, this would also be the case when verifying a statically typed program.
However, the shared type system and the shared expressions in statically typed Hoare
logics ensure that programs that operate on lists are verified with an assertion language
that also supports lists as a data-type. For instance, in Boogie [8] lists are represented
as arrays which directly correspond to those of Z3, which even features a specialized
decision procedure for arrays [17].

To sum up, in statically typed languages, the statically available type information
is passed into the theorem prover and used to guide the application of specialized
decision procedures. Hence, although our program logic is (relative) complete, apply-
ing it näıvely generates verification conditions that only use integer arithmetic and
a self-defined sort for objects, ignoring the rich assortment of more specialized data
types build into Z3 and similar solvers, hence forgoing the potential of their respective
specialized decision procedures.

As stated initially, all these issues do not prevent the successful verification of a
dynamically typed program, but are obstacles that exist only in dynamically typed
programs because the solutions provided by verification systems for statically typed
languages rely on the static availability of type information and can hence not be
directly applied. However, note that it is always possible that a verification condition
becomes too complicated for an SMT-solver to handle, especially when it is further
complicated by additional quantifiers (for instance, due to method calls) or phrased
in terms of less fitting data types. Also note that this usually has a severe practical
impact on the verification of the program in question.

In this part of the thesis, we will explore the idea of mitigating these issues under the
assumption that type information is available for our program. While this assumption
does not hold for dynamically typed programs in general, type inference algorithms are
often able to provide suitable type information for large parts of many such programs.
Also, in Chapter 8 we will provide the means necessary to extend the reach of our
technique to all dynamically typed programs, including those that lie beyond the
capabilities of type inference algorithms.
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In this chapter, we will introduce the Layer of Abstraction to mitigate the issues
discussed in the previous chapters under the assumption that type information is
available. Basically, it retrofits the optimizations used in statically typed Hoare logic
to the case of dynamically typed programs.

7.1. Type Safety Preconditions

Like already mentioned, the fact that type errors are runtime events in dynamically
typed languages gives rise to a notion of correctness that we call type-safe partial
correctness. In our tagged Hoare logic, we write Hoare triples that hold in the sense
of type-safe partial correctness as

{p}S{typesafe ∧ q}

In the proof rules given in Section 4.5, typesafety-preconditions are those parts of
assertion activated (implied) by typesafe.

In statically typed Hoare logic, type-safety preconditions are unnecessary. Regarding
such preconditions, correctness proofs in statically typed languages resemble those
in dynamically typed languages for type-unsafe correctness notions. Omitting these
preconditions hence is a first step in proving dynamically typed programs like statically
typed ones. This can be achieved by treating type safety issues separately from other
correctness issues. We can adapt the decomposition rule found in [5] to formalize such
a separation. However, contrary to our Tagged Hoare Logic, [5] uses different proof
systems for each notion of correctness. Hence the added subscripts (like τ and p for
“type-safe” and “partial correctness”, respectively) to the `-symbol to indicate which
proof system is referred to.

Definition 22 (Decomposition from [5]). The following rule is added to the proof
system for some type-safe notion of correctness (τX) where X stands for a type-unsafe
notion of correctness:

where `X refers to the corresponding type-unsafe variant of the`X {p}S{q}
`τp {p}S{true}
{p}S{q}

proof system while `τp always refers to a proof system for type-
safe partial correctness.

Within the framework of Tagged Hoare logic, this rule can be rephrased as

Definition 23 (Decomposition).

{p}S{tags ∧ q}
{p}S{typesafe ∧ true}
{p}S{typesafe ∧ tags ∧ q}
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which is just a special case of the CONJ rule. We conclude that the CONJ rule of
Tagged Hoare Logic already allows separating and combining the different aspects of
correctness and that – like in [5] – whenever a certain aspect (type-safety, termination,
fail-safety) has been established for a statement S, we can subsequently omit the
corresponding preconditions when reasoning about S.

7.2. Mapping Objects to Values

Although they often seem verbose, we have seen in Section 3.1 that mapping predicates
are necessary for the completeness of our Hoare logic. Fortunately, given the types
of all variables used, those predicates can be generated automatically. We will now
introduce a “virtual” logical variable û of the corresponding type for each program
variable u that may be safely mapped1.

First, a subset of “pure” (i.e. immutable) classes Cε ⊆ C along with a function Ψ
mapping classes from Cε to corresponding types τ ∈ T of the assertion language must
be defined. For dyn, this mapping is

Ψ(Cnull) = O, Ψ(num) = N, Ψ(bool) = B, ...

This mapping can be extended to union types T ∈ T by defining

Ψ({C}) = Ψ(C) for C ∈ Cε and Ψ(T ) = O otherwise.

For each type τ ∈ T, we assume a mapping predicate τ(o, v) : O × Dτ 7→ B for
mapping objects to values as well as a safety predicate safeτ (o) : O 7→ B defining
under what condition this mapping is safe. For the type N these are2

N(o, n)
∆
= safeN(o) ∧ (n = 0 ∧ o.@pred = null ∨

n > 0 ∧ o.@pred 6= null ∧ N(o.@pred, n− 1)) and

safeN(o)
∆
= o 6= null ∧ JoK ∈ {num} .

Concretely, the dyn-program on the left produces the object structure depicted in
the middle, which satisfies the assertions on the right.

n0 = new num(nul l );
n1 = new num(n0);

n2 = new num(n1);

num

num num

n0n1n2

@pred

@pred @pred

null
¬safeN(null)
N(n0, 0)
N(n1, 1)
N(n2, 2)

We then introduce a new assertion language ALΥ supporting the use of automat-
ically mapped virtual variables x̂. Its semantics is defined in terms of a mapping
Υ : AsrtΥ 7→ Asrt from the new to the old assertion language.

Definition 24 (Automatic Variable Mapping). Let x̂1, ..., x̂n be a sequence of all vir-
tual variables occuring free in p and x1, ..., xn a corresponding sequence of program

1safeT(u) holds for some type T
2Expressing them using quantification instead of recursion is possible, but less readable (see Sec-

tion 1.5.5).
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variables that can be safely mapped to types τ1, ..., τn. Also, let vx̂1
, ..., vx̂n be a corre-

sponding sequence of logical variables of types τ1, ..., τn. Then,

Υ(p)
∆
= ∃vx̂1 : τ1, ..., vx̂n : τn • ΥS(p) ∧ΥM (p)

ΥS(p)
∆
= p[x̂1, ..., x̂n := vx̂1

, ..., vx̂n ], ΥM (p)
∆
= τ1(x1, vx̂1

) ∧ ... ∧ τn(xn, vx̂n)

For instance, assuming that safeN(u) could be established, then the Υ-assertion
p ≡ û < 5 can be used instead of the equivalent Υ(p) ≡ ∃vû : N • vû < 5 ∧ N(u, vû).

The precise definition of which variables can be “safely mapped” depends on the
type information available. For the type inference algorithm discussed in Section 2.1.3,
the xi may be local variables u or instance variables of the current object self .@x.

However, given that an assertion p implies safeτ (l) for some type τ and some logical
expression l of type O, note that it is always possible to apply the same technique to
automatically map the object referenced by l to the value of type τ it encodes. We will
hence in the following take the freedom to apply the notation l̂ to denote the mapped
value of arbitrary logical expressions l of type O.

Also note that AsrtΥ conservatively extends Asrt , as any assertion p ∈ Asrt is
mapped to itself. We hence assume Υ to be implicitly applied to all assertions, enabling
the pervasive use of automatic object mapping.

To formally show that the automatic object mapping permits trivially mapping stat
assertions into dyn assertions, we need a mapping Θ between their states.

Translating States: Θ(σs)
∆
= σd where σd is derived from σs by introducing for every

base type τ ∈ T \ {O} a (possibly infinite) set of objects {ov | v ∈ Dτ ∧ τ(ov, v)} and
substituting every variable x of base type τ , holding the value v ∈ Dτ by a variable
x of type O, referencing the object ov. Furthermore, for each base type τ ∈ T \ {O},
we identify any two objects o1, o2 iff ∃v.τ(o1, v) ∧ τ(o2, v). We lift this equivalence to
dyn states in the natural way.

Translating Assertions: Θ(p)
∆
= p[x1, ..., xn := x̂1, ..., x̂n] where xi are all variables

that can be safely mapped and occur free in p.

Theorem 9. For all assertions p and stat states σ: σ |= p iff Θ(σ) |= Θ(p).

Proof. By definition of Θ(σ), for all variables x of a base type τ in σ, Θ(σ) |= safeτ (x)
holds and x can hence be safely mapped. Under the assumption that for all such
variables x it holds that Jx̂K(Θ(σ)) = JxK(σ), the following lemma can be established
by induction over the structure of the assertion language: JlK(σ) = JΘ(l)K(Θ(σ)) for
all logical expressions l and stat states σ. As the assumption is guaranteed by the
mapping predicates introduced by ΥM , the desired result can then be established by
induction over the structure of the assertion language.

The automatic mapping requires the safety predicates to be previously established,
which in turn requires type information and tracking of null values. Both is produced
by the type inference algorithm discussed in Section 2.1.3. We will in the following
refer to both simply as “type information”.
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7.3. Pure Expressions

Hoare logic for statically typed languages allows highly effective reasoning by including
(syntactically identified) pure program expressions into assertions. In this section,
we will show that assuming the availability of type information, this concept is also
applicable to dynamically typed languages.

To define a pure subset of dyn expressions, one complements the set of “pure”
classes Cε with a set of “pure” (i.e. side-effect-free) methods Mε ⊆ M and extends
the function Ψ to also map method and constructor calls to corresponding logical
expressions. Such an expression l ∈ LExp of type τ with free variables v0, ..., vn of
types τ0, ..., τn can be interpreted as a function fl : τ0× ...× τn 7→ τ . We hence denote
its type as LExp(τ0 × ... × τn 7→ τ). The extension of the mapping Ψ can then be
formalized as follows:

• For every pure operation m of arity n:

Ψ : (τ0.m(τ1, ..., τn)→ τ) 7→ LExp(τ0 × ...× τn 7→ τ)

• For every pure constructor new C of arity n:

Ψ : (Ψ(C).init(τ1, ..., τn)→ τ) 7→ LExp(τ1 × ...× τn 7→ τ)

For the type N these are:
Ψ(N.init(N)) = if v1 = null then 0 else v̂1 + 1 fi
Ψ(N.succ()) = v̂0 + 1.
Ψ(N.pred()) = v̂0 − 1.
Ψ(N.add(N)) = v̂0 + v̂1,
Ψ(N.subtract(N)) = v̂0 − v̂1,
...

It is then possible to define a predicate pure(e) automatically identifying pure ex-
pressions given type information for all variables free in e. Ψ can be extended to map
such pure program expressions to typed logical expressions. We denote the type of a
pure expression by τ(e).

For instance, Ψ(new num(new num(null)).add(x)) = 2 + x̂.
Then, after establishing that

{p[r̂ := Ψ(τ0.m(τ1, ..., τn)→ τ)]}
u0.m(u1, ...,un)

{terminates ∧ typesafe ∧ failsafe ∧ p}

with τi = τ(ui) for all i ∈ Nn holds for all methods in Mε, the following axiom can be
established by induction over the structure of e

AXIOM: PURE EXPR: {p[r̂ := Ψ(e)]}e{tags ∧ p} where pure(e)

Combining the axiom with dyn-specific proof rules yields simplified rules for pure
expressions that closely resemble those for stat. For instance:
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7.3. Pure Expressions

AXIOM: PURE ASGN

{p[x̂, r̂ := Ψ(e),Ψ(e)]}x := e{tags ∧ p}
where pure(e), τ(e) v τ(x).

RULE: PURE COND

{p ∧Ψ(e)}S1{tags ∧ q} {p ∧ ¬Ψ(e)}S2{tags ∧ q}
{p} if e then S1 else S2 fi {tags ∧ q}

where pure(e), r 6∈ free(p) and τ(e) = B.

RULE: PURE LOOP

{p ∧Ψ(e) ∧ terminates→ r(z)}S{tags ∧ p ∧ terminates→ ∀z′ : N • r(z′)→ z′ < z}
{p} while e do S od {tags ∧ p ∧ ¬Ψ(e) ∧ r = null}

where pure(e), τ(e) = B.

RULE: PURE INST

{p}u0.m(u1, ...,un){tags ∧ q}

{p[
−→
û :=

−−→
Ψ(e)]}e0.m(e1, ..., en){tags ∧ q[

−→
û :=

−−→
Ψ(e)]}

where ui ∈ VL fresh and pure(ei) for all i ∈ Nn.
Definitions for pure(e), Ψ : Exprd 7→ LExp and τ(e) as well as soundness proofs

can be found in Appendix C. Finally, we are able to state the main result of this
section: in combination with decomposition and automatic object mapping, above
rules allow verification just like in statically typed languages. In fact, dyn proofs
using these techniques resemble stat proofs so closely that it is possible to trivially
translate every proof for a stat program in Hs into one for the same program in Hd.
Translating Programs: Since stat ⊂ dyn, we simply have Θ(S)

∆
= S.

Translating Proofs: Θ(φ) = ϕ is defined inductively over the structure of the proof
φ in Hoare logic for stat. Applications of the rules ASGN,COND,LOOP and INST
need to be substituted for applications of PURE ASGN, PURE COND, PURE LOOP
and PURE INST + PURE ASGN respectively. Note that this is always possible as
stat expressions are pure and well-typed pure assignments preserve safety predicates.
Applications of all other rules can be preserved, as they are identical for dyn and
stat. The only other difference is the loop variant / recursion bound in the rules
LOOP and REC. However, note that using a predicate as loop variant / recursion
bound is a conservative extension since one can always set r(z) ≡ z = t for some
integer expression t.

Theorem 10. For every stat program S and every correctness proof φ of a property
{p}S{tags ∧ q} with typesafe 6∈ tags in tagged Hoare logic for stat programs, Θ(φ)
is a valid proof of the property {Θ(p)}S{tags ∧ Θ(q)} in tagged Hoare logic for dyn
programs.
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Proof. By induction over the structure of the proof φ, using Theorem 9 and the fact
that the application conditions for the pure expression rules are satisfied when S is a
statically typed program and all assertions where translated using Θ.

Furthermore, since types for stat programs can be inferred, their type-safety proofs
can be constructed automatically (see Section 8.6). Applying the CONJ rule then
yields a proof for {p}S{tags ∧ typesafe ∧ q}. It follows that for statically well-typed
programs, deriving a proof in Hd (using the layer of abstraction) does not require any
more effort than deriving it in Hs. The next chapter will discuss how the applicability
of the layer of abstraction can be extended to arbitrary dynamically typed programs
by deriving the necessary type information semi-automatically. In Section 11.4, we
will demonstrate both techniques by proving the evaluator example correct.

7.4. Extending the Assertion Language

The merit of the Layer of Abstraction described above is proportional to the number
of pure classes and pure methods. However, each pure class also needs a data type
in the assertion language that its instances can be mapped to. It is no use to have a
pure class string with several pure methods when there is no data type string in the
assertion language. Hence, the Layer of Abstraction calls not only for an additional
assortment of data types, but also for an extensible assertion language.

For this thesis it will be sufficient to augment AL with additional data types S,L,M
for strings, lists and finite maps

{S,L,M} ⊂ T.

There is no need for type constructors as our lists (L) always map natural numbers
(N) to objects (O) and our maps (M) always map objects (O) to objects (O).

However, for a practical implementation it would be advisable to provide a way for
the user to import data types and build-in predicates from the SMT-solver into the
assertion language. This would have the additional benefits that

• a wide range of data types is readily available in most SMT solvers,

• since the Layer of Abstraction essentially reduces verification conditions over
object-structures to statements over native data types of the solver, using more
specialized data types would enable the Solver to apply the same specialized
decision procedures like in statically typed languages.

Of course, the user should also be allowed to extend the sets Cε and Mε of pure
Classes and pure Methods in order to make use of those imported data types. In
order to declare a method m as pure and associate it with a function fm of type
T0 × ...× Tn 7→ T on a buildin (or imported) data type,

{
−→
û = −→v }u0.m(u1, ...,un){pure ∧ r̂ = fm(v0, ..., vn)}

needs to be established, where Ti = τ(ui) for all i ∈ Nn holds in the precondition
and τ(r) = T holds in the postcondition. pure is an abbreviation for terminates ∧
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7.4. Extending the Assertion Language

typesafe∧ failsafe∧ sideeffectfree, and sideeffectfree is automatically assigned to
any method fulfilling the following criteria

• does not assign to instance variables (except when the method is a constructor)
and

• calls only methods that are also sideeffectfree.

Note that such methods may create objects (whose constructor is sideeffectfree).
However, as the reference to the newly created object cannot be persisted, after the
method m returned, it is either detached (has no incoming references) and can hence
be ignored (or in some languages even garbage-collected) or it is returned from the
method and can hence be treated as a value completely independent of the remaining
state (no aliasing).

Note that this methodology is a safe over-approximation of side-effect-freedom. It is
sound since methods satisfying above criteria can obviously not cause any side-effects.
However, it is incomplete as there can be methods violating above criteria that are
still side-effect free (their final state always equals their start state except for the value
of r). Note that this over-approximation is sufficient for our purposes as the Layer of
Abstraction is only an optimization for convenience and our program logic is (relative)
complete without it.

In order to extend the set of pure classes Cε, the user has to supply a mapping
prediate T(o, v) for some buildin (or imported) type T, that maps objects of a class,
whose methods are all pure (including the constructor) and that is hence immutable,
to values of the respective data-type and vice versa. It is important to check that

• The mapping T(o, v) is a bijection between equivalence classes of objects and
values of type T. Thus,

– Injectivity: for any two instances o, o′ of class C, such that o.equals(o′) =
o′.equals(o) = false, for all values v, v′ ∈ T, it holds that T(o, v)∧T(o′, v′)
implies v 6= v′.

– Surjectivity: for every value v of type T, there is an instance o of class C,
such that T(o, v). Also: For every instance of class C, there is a value v
such that T(o, v).

• Homomorphism: For every n-ary method m of class C that is associated with a
function fm(x0, x1, ..., xn) of type T× T1 × ...× Tn 7→ TR, the following holds:

{T(v0, v
′
0)∧T1(v1, v

′
1)∧ ...∧Tn(vn, v

′
n)}v0.m(v1, ..., vn){TR(r, fm(v′0, v

′
1, ..., v

′
n))}

In our example (N), the first criterion ensures that every n ∈ N can be mapped to
an instance of class num, and vice versa. Note, however, that there can be 2 distinct
objects, say o1 and o2 representing the same natural number n, i.e. N(o1, n) and
N(o2, n) both hold. In this case, however, o1.equals(o2) must return true, which shows
that o1 and o2 are in the same equivalence class. The second criterion then ensure
that the methods of class num corresponsing to operations on N are behaviourally
equivalent to those operations, i.e. mapping the objects to natural numbers and then
adding them should yield the same result as doing it the other way around.
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“Paths to victory there are, other than crushing one’s enemy.”

– Yoda

8.1. Example: Evaluator

In this chapter, we will develop an approach to solving typing-problems even for dy-
namically typed programs. It has already been stated that the typing problems for
these programs can be especially difficult to solve. However, in discussions with col-
leagues I often found that many people have a difficult time imagining a typing problem
that is “hard”. We will hence start by presenting an example of such a hard typing
problem in order to provide our readers with a clear idea of which problem we are
attempting to solve. The example was chosen for clarifying the phrase “lies beyond
the capabilities of type inference algorithms” as it turns out to be rather ambiguous
due to the abundance of quite different type systems with quite different capabilities
in practical use. It does so by not only exeeding the capabilities of the simple type
inference algorithm introduced in Section 2.1.3, but also by being untypable for every
(decidable) type systems I encountered so far.

Figure 8.2 depicts a dynamically typed program evaluating arithmetic expressions.
While crafted to provide a hard typing problem, its use of ad-hoc data structures is
not uncommon in Ruby, Python or Javascript.

The class Evaluator has two methods parse() and calc(). The former parses a
string and returns the respective parse tree, while the latter evaluates a given parse
tree over a given environment (a mapping from variable names (strings) to integers).

OP ADD

OP MUL

VALUE  3 VAR "x" VALUE  2 VAR "y"

OP MUL

Figure 8.1.: Parse tree of the exemplary term 3 ∗ x+ 2 ∗ y encoded as nested hetero-
geneous lists
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c la s s Evaluator {

method parse(str) { ... }

method calc(env , tree) {

i f tree [0] == VALUE then tree [1]

e l se
i f tree [0] == VAR then env[tree [1]]

e l se
i f tree [0] == OP then

i f tree [1] == ADD then
calc(env , tree [2]) + calc(env , tree [3])

e l se
i f ...

e l se nul l end
end

e l se nul l end
end

end
}

}

new Evaluator (). parse(input ).calc(ENV)

Figure 8.2.: Relevant part of the evaluator example source code
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The hardness of its typing problem is partly due to the way the parse trees are repre-
sented as ad-hoc constructions of nested, heterogeneous lists (An example is depicted
in Figure 8.1). Numeric constants VALUE, VAR and OP in the first element distinguish
the three node kinds of the parse-tree (nodes representing values, variables and op-
erations). The types of the remaining list elements depend on these node kinds: the
second element is numeric (the value) for value-nodes, a string (the variable name to be
looked up in the environment) for variable-nodes and numeric (representing the opera-
tion to be performed) for operation-nodes. Only operation-nodes use nesting: further
list elements are sub-parse-trees that are to be recursively evaluated to operands.

Typing this example requires deducing precise types for heterogeneous lists from
propositions (like tree[0] = VALUE) about their first element. To the best of our
knowledge there is no procedure able to establish such implications automatically. Also
note that the typing problem can be made even harder: allowing an arbitrary number
of operands in operation-nodes, returning strings instead of null, etc. In Section 11.4,
this example will be used to demonstrate the Layer of Abstraction (Chapter 7) as well
as the Interactive Type Inference techniques (below).

8.2. Interactive Type Inference

Sufficient type information for dynamically typed programs is uncomputable in general
(see below). However, a number of good approximations exist [44, 30] that we will
refer to as automatic type-safety verifiers.

It is known that many dynamically typed programs only occasionally deviate from
what would also be possible in static typing disciplines1 and consequently, that the
output of type inference algorithms is usually sufficient for typing most of their subex-
pressions [44, Section 5][30, Section 6].

If the entire program can be typed by a sound automatic verifier, then statically
typed Hoare logic can be applied. However, as illustrated by the evaluator example in
Section 8.1, the whole point of dynamic typing is the possibility to go beyond the limits
of automatically inferrable type systems. Approaches to verifying these languages thus
must also be able to operate under less ideal circumstances.

The fact that type-safety is a non-trivial semantic property in the sense of the
Theorem of Rice [71] and hence undecidable for Turing-complete languages (like dyn)
also applies to the derivation of sound and precise type information for such programs
as both problems can be reduced to each other. However, this only means that a
computer is not able to solve the problem on its own – e.g., there is no type inference
algorithm solving it automatically. As common in program verification, humans (the
user) are still able to solve the problem by investing manual effort. Now, since we
are aiming to reduce the effort required from the user, the next obvious question is:
Is there a way to combine an (automatic) type inference algorithm and a (complete)
program logic into a semi-automatic procedure that

1Advanced dynamic features like mixins, traits, method update and dynamic class hierarchies in-
crease the complexity of type inference. However, in this thesis we aim to study the problem of
dynamic typing in isolation and leave them as future work.
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a)

Automatic
Type Safety
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Program-LogicGalois Connection
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Figure 8.3.: Overview of the concept

1. is complete if the program logic is,

2. is fully automatic whenever the type inference algorithm can solve the problem
on its own, and

3. minimizes the effort required from the user otherwise?

Figure 8.3 a) depicts a general concept for such a combination. The basic idea is to
interpret the Program Logic’s Assertion Language as an Abstract Domain (Asrt ,→ )
in the sense of Abstract Interpretation (see Section 1.4.1), connect the two Abstract
Domains using a Galois Connection (Section 8.4) and use it to exchange results bidi-
rectionally.

As depicted in Figure 8.3 b), after a first attempt of the type inference to solve
the problem automatically, one either has a solution or is able to refine the results
obtained using the progam logic. Manual effort is only required for those problems
that lie beyond the reach of the automatic analysis hence allowing the user to focus
on the hard parts of the problem.

In the concept depicted in Figure 8.3 b), the correctness proof is split into two
“layers”. While the user (supported by a theorem prover) derives his proof in the
higher layer, the lower layer contains type information created and modified solely
by the type inference. For this purpose, the typing ty inferred for the program π is
translated into a proof (Section 8.6). While the type information contained in this
lower layer proof is already useful for supporting the user’s higher-layer proof (see
Chapter 7), the user may at any time decide to refine it by deriving more precise type
information in the higher layer. This information is filtered to make it interpretable
for the analysis and then supplied as a trusted assumption to refine the lower-layer
typing (Sections 8.7 and 8.8).
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8.3. Typing Assertions

A type-safety proof for a statement S is a proof of the property {p}S{typesafe} for
some precondition p in tagged Hoare logic. When run from a state satisfying p, it
ensures type-safety of S by establishing all type-safety preconditions.

When interpreting our Assertion Language AL as an Abstract Domain (Asrt ,→ ),
we can use a Galois Connection to translate the assertions from Hoare-logic proofs
into flow-sensitive program analysis results.

Such proofs constitute a kind of typing as their assertions contain type information
that is by definition sufficient to establish type-safety. Soundness of these typings
follows from the soundness of the Hoare logic used and can be validated using its proof
rules. Before discussing how to extract type information from a Hoare logic proof, one
should state that this information needs to be compatible with the type-safety verifier
to be useful for our purpose. We hence define typing assertions TAsrt ⊂ Asrt as a
subset of the assertion language modeling the capabilities of this verifier.

For instance, the verifier discussed in Section 2.1.3 is based on a flow-sensitive, path-
sensitive data flow analysis. As usual, only local variables of the current method and
instance variables of the current object are tracked flow-sensitively. The remainder of
the heap is abstracted into a finite number of type variables JC.@xK – one for each
instance variable @x of each class C.

Logically, the analysis establishes a global typing invariant of the form

I (̊σ)
∆
= ∀o •

∧
C∈C

(
JoK ∈ {C} →

∧
@x∈VC

Jo.@xK ∈ σ̊(C,@x)

)
where σ̊ denotes the abstract state associated with the current program location in one
of its typings ty , thus stating the fact that the types assigned to the instance variables
@x in σ̊ are over-approximating the actual types of those instance variables.

Since the instance variables are not tracked flow-sensitively by our analyses, they
are independent of the program location and hence do not differ between the abstract
states contained in a typing ty . We hence write I(ty) to denote the global typing
invariant derived from any abstract state within the typing ty .

Also, the analysis provides for each program location the return type of the previ-
ously executed expression as well as the types of all variables tracked flow-sensitively.
Logically, those can be regarded as a conjunction of typing literals (see below). Ad-
ditionally, path sensitivity allows differentiating different paths leading to a program
location and hence requires expressing alternatives, leading us to a disjunctive normal
form of typing literals (TLit). Hence, only the literals allowed in typing assertions
are verifier-specific. For our analysis we define the set TAsrt of typing assertions as
follows:

TAsrt 3 τ ::= τ1 ∧ I | τ ∨ τ1
τ1 ::= µ | ¬µ | τ1 ∧ τ1

TLit 3 µ ::= JuK ∈ T | Jself .@xK ∈ T with T ∈ T
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8.4. Galois Connection

The first step towards interactive type inference is a Galois connection (2Σ̊, α, γ,Asrt)

between the two abstract domains (Asrt ,→ ) and (2Σ̊,v)2. We will establish it using
the abstract domain (TAsrt ,→ ) of typing assertions as an intermediate step.

These typing assertions correspond exactly to sets of abstract states as used in our

type inference TI and can hence be related using a Galois Connection (2Σ̊, α1, γ1,TAsrt)

where α1 : 2Σ̊ 7→ TAsrt is given by

α1(̊σ)
∆
=

 ∧
x∈dom(̊σ)∩VL

JxK ∈ σ̊(x)

 ∧
 ∧

@v∈dom(̊σ)∩VI

Jself .@vK ∈ σ̊(self .@v)

 ∧ I (̊σ),

α1({σ̊1, ..., σ̊n})
∆
= α1(̊σ1) ∨ ... ∨ α1(̊σn), and

γ1 : TAsrt 7→ 2Σ̊ is given by γ1(τ)
∆
= {αTI(σ) | σ ∈ JτK}

where αTI / γTI are the abstraction / concretization functions from the Galois insertion

between concrete states (2Σ,⊆) and abstract states (2Σ̊,v) as defined in Section 1.4.3.
Since TAsrt ⊆ Asrt , we can of course reuse the satisfaction relation from Asrt .

However, since typing assertions operate exclusively on the level of types, it makes
sense to extend it to abstract states.

σ̊ |= τ iff ∀σ ∈ γTI (̊σ) • σ |= τ.

Lemma 6 (Adequacy of abstraction). ∀σ̊ ∈ Σ̊ • γTI (̊σ) ⊆ Jα1(̊σ)K

Proof. Let σ̊ ∈ Σ̊, then σ̊(x) = {C} iff σ̊ |= JxK ∈ {C} for all x ∈ VL and some
C ∈ C. It follows that σ̊ |=

∧
x∈dom(̊σ)∩VL

JxK ∈ σ̊(x). The same argument also holds

for instance variables. It follows that σ̊ |=
∧

@v∈dom(̊σ)∩VI

Jself .@vK ∈ σ̊(self .@v) and

σ̊ |= I (̊σ). Consequently, σ̊ |= α1(̊σ) and by the definition of |= for abstract states,
also ∀σ ∈ γTI (̊σ) • σ |= α1(̊σ). It follows that γTI (̊σ) ⊆ Jα1(̊σ)K holds as desired and
since we only assumed σ̊ to be an abstract state, this holds for all σ̊ ∈ Σ̊.

Lemma 7 (First Galois Connection). (TAsrt , α1, γ1, 2
Σ̊) is a Galois Connection be-

tween the complete lattices (TAsrt ,→ ) and (2Σ̊,⊆).

Proof. 1. ∀S ⊆ Σ̊.S ⊆ γ1(α1(S)): Let σ ∈ S, then α1(σ) is a disjunct in α1(S).
2. ∀τ ∈ TAsrt .τ → α1(γ1(τ)): Let σ̊ ∈ γ1(τ), then σ̊ |= τ and hence τ → α1(̊σ).
Since this holds for all abstract states σ̊ ∈ γ1(τ), τ also implies their disjunction
α1(γ1(τ)).

We will now define how to extract type information from Hoare logic proofs. In
such a proof, each postcondition may contain flow-sensitive type information about

2The ordering relation v is lifted to sets of abstract states in the natural way by treating the sets
as disjunctions.
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variables as well as the return value r of the previous expression. Given such a post-
condition (or any other assertion) p, one extracts this information by first converting
p into disjunctive normal form, treating typing literals, equations and quantifiers as
literals (µ) and then applying a projection pr : Asrt 7→ TAsrt defined as follows:

pr(µ)
∆
=

{
µ if µ ∈ TLit

true otherwise

pr(¬µ)
∆
= ¬pr(µ)

pr(µ1 ∧ µ2)
∆
= pr(µ1) ∧ pr(µ2)

pr(τ1 ∨ τ2)
∆
= pr(TAsrt1) ∨ pr(τ2)

The projection pr thus preserves ∧,∨ and ¬ while mapping all literals 6∈ TLit to true

(
∆
= JselfK ∈ >). Every assertion p hence implies pr(p). Note that depending on the

structure of p, there might be a significant loss of precision. This is unproblematic,
however, as supplying type information is in the user’s interest. Furthermore, one can
define a projection prx : TAsrt 7→ T further projecting typing assertions to summary
types for the variable x such that for all assertions p and all variables x, we have
p→ JxK ∈ prx(p). In the case of our type inference TI, prx(p) is defined as follows:

• prx(JxK ∈ T )
∆
= T

• prx(Jx′K ∈ T )
∆
= > with x′ 6= x

• prx(¬µ)
∆
= > \ prx(µ)

• prx(τ ∧ τ ′) ∆
= prx(τ) u prx(τ ′)

• prx(τ ∨ τ ′) ∆
= prx(τ) t prx(τ ′)

We extend the domain of prx to assertions by defining prx
∆
= prx ◦ pr . Using it, every

proof ψ for a program π in tagged Hoare logic gives rise to a typing tyψ, such that

• tyψ(S•)(u) = pru(q1 ∧ ... ∧ qk) for all u ∈ VL ∪VS , and

• tyψ(S•)(self .@v) = pr self .@v(q1 ∧ ... ∧ qk) for all @v ∈ VI

hold for every sub-statement S of π where the qi are the postconditions of all Hoare
triples of the form {pi}S{qi} in ψ.

We can then define a Galois Connection (Asrt , α2, γ2,TAsrt) between Assertions
and Typing Assertions with

α2 : Asrt 7→ TAsrt defined as α2(p) = pr(p)
γ2 : TAsrt 7→ Asrt defined as γ2(τ) = τ (TAsrt ⊆ Asrt)

Lemma 8 (Second Galois Connection). (Asrt , α2, γ2,TAsrt) is a Galois Connection.
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Proof. 1. ∀p ∈ Asrt • p → γ2(α2(p)). By the definition of γ2 and α2, p → γ2(α2(p))
can be simplified to p → pr(p) which holds by definition of pr . 2. ∀τ ∈ TAsrt • τ →
α2(γ2(τ)). By the definition of γ2, this can be simplified to τ → α2(τ) which holds
since typing assertions contain only typing information, are therefore invariant under
pr and by reflexivity of implication.

Since Galois Connections can be composed using functional composition ◦, (Asrt , α =
α1 ◦α2, γ = γ2 ◦γ1, Σ̊) is also a Galois connection between the abstract domains (com-

plete lattices) (Asrt ,→ ) and (2Σ̊,⊆) and hence allows for translating proofs directly
into typings and vice versa.

8.5. Translating Abstract States into Assertions

The function Ξ maps the type information contained in a flow-sensitive, path-sensitive
typing ty for each program location L ∈ Locπ into a typing assertion using the Galois
Connection defined above. The typings produced by the type inference algorithm from
Section 2.1.3 are flow-sensitive, as ty(JxK, L, i), the type of the variable x at program
location L on path i, takes strong updates into account. They are also path-sensitive
as they can differentiate between multiple paths to the same location. Hence, for those
typings, the function Ξ is given by

Ξ(ty , L)
∆
= γ(ty(L)).

8.6. Translating Typings into Proofs

Definition 25 (Typing Proof). A typing proof ψ for a typing ty of a statement S is
a minimal3 proof of the property {p}S{true} for some precondition p in tagged Hoare
logic such that tyψ = ty.

Technically, ψ only establishes soundness of the typing ty (by being a Hoare logic

proof and tyψ = ty). However, when tyψ v ty†S , ψ can be turned into a type-safety
proof by adding the typesafe-tag to the postcondition and trivially establishing the
type-safety preconditions. Hence, typing proofs are well-suited as intermediate steps
towards type-safety proofs.

Recall that typings can be checked for soundness using a verifier-specific inference
system. It is hence possible to extend Ξ to mechanically derive a typing proof ψ =
Ξ(π, ty) for a sound typing ty of a program π by translating the rules of this inference
system into Hoare logic and establishing I(ty) as a global invariant. In such a proof,
each assertion p at program location L is exactly the typing assertion Ξ(ty , L). We

hence write Ξ(ψ,L)
∆
= Ξ(ty , L).

The interested reader may find such a translation formalized in [28, appendix D].
Note that Ξ allows using automatically derived type information in Hoare logic proofs

3All Hoare triples in ψ must contribute to establishing the conclusion.
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even in interactive theorem proving environments like Isabelle that trust only propo-
sitions that they verified a proof for.

8.7. Trusted Assumptions

We first extend dyn expressions by introducing a type filter operation e ::= T ue with
T ∈ T , having the following (monotone) typing rule (see Section 2.1.3 for information
on flow-graphs and typing rules):

em
1 2

Ge

T u em
1 2 3

fGe

with f
∆
= λσ̂.σ̂[r := T u σ̂(r)]

We require automatic type-safety verifiers to provide an interface for supplying

trusted assumptions. Abstractly, one defines a refinement relation ty
τ,L→ ty ′ between

typings. Here, ty ′ refines ty by taking the (additional) trusted assumption τ ∈ TAsrt
at program location L into account.

By inserting type filters, it is possible to refine a typing assertion τ ≡ Ξ(ty , L) for a
program location L to τ ∧ τ ′ for some assumption τ ′:

8.7.1. Conjunctive Refinement

Definition 26 (Refinement of Typings). Let ty be a typing derived for a program π
(π, ∅ I ty). Then a conjunctive refinement step of ty using the trusted assumption

τ ∈ TAsrt at program location L ∈ Locπ is a quadruple (ty , τ, L, ty ′), written ty
τ,L→ ty ′

with the typing ty ′ being derived for a program π′ (π′, ∅ I ty ′) resulting from π by
inserting the statement Rτ just before L with Rτ being defined inductively as

RJxK∈T
∆
= x := T u x

Rµ∧µ′
∆
= Rµ;Rµ′

Rν∨ν′
∆
= if ? then Rν else Rν′ end4

In order for a conjunctive refinement step to be useful (i.e. ty ′ < ty), we stipulate
Ξ(ty , L) 6→ τ . Hence, for the program location L, the trusted assumption τ must
contain more precise type information than the typing ty.

In essence, if τ has disjuncts ν1, ..., νn then all paths reaching the resulting con-
ditional are split into n paths and for each j ∈ N1

n, the types Jx1K, ..., JxmK of all
variables x1, ..., xm ∈ free(νj) are refined to JxiK u prxi(νj) for all i ∈ N1

m and all
program locations dominated by L.

The reason why this kind of refinement is called “conjunctive” becomes apparent in
the following Lemma and Theorem:

4The condition ? denotes non-deterministic choice and is also a flag signaling the type inference
algorithm to treat the conditional path-sensitive.
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Lemma 9. For every typing assertion τ , every statement S containing Rτ as a subex-
pression and having a non-cyclic flow-graph, every typing ty and every abstract start
state σ̊ such that Rτ , σ̊ I ty, it holds that Ξ(ty ,Rτ •)↔ Ξ(ty ,◦Rτ ) ∧ τ .

Proof. By induction over the structure of τ :
Induction Hypothesis:
Assuming that above lemma holds for all τ with structurally smaller abstract syntax
trees.
Induction Base:
Let τ ≡ JxK ∈ T and, consequently, Rτ ≡ x := T u x. Then, the flow-graph of

S contains an edge
1 2

fRτ with
1

=◦ Rτ and
2

= Rτ •. From the typing

rules for T u e above, assignment and variable access, we can deduce that fRτ ≡
λσ̂.σ̂[x := T u σ̂(x)]. Now, since every solution of the corresponding constraint system
will have to satisfy the constraint imposed by Rτ , and since the flow-graph is free of
cycles, we know that for every such solution ty , it holds that ty [Rτ •] = σ̂[x := Tuσ̂(x)]
where σ̂ = ty [◦Rτ ]. Therefore, since ty [Rτ •] and ty [◦Rτ ] differ only in the type of x
and ty [Rτ •](x) = ty [◦Rτ ](x) u T , the desired result follows from the definition of Ξ.
Induction Step:

1) τ ≡ µ ∧ µ′ and, consequently, Rτ ≡ Rµ;Rµ′ . By the typing rule for sequen-
tial composition we have that ty [Rτ •] = fµ′(fµ(ty [◦Rτ ])). Let L = TLitX• denote
the intermediate location after executing only Rµ. By the induction hypothesis we
have that Ξ(ty , L) ↔ Ξ(ty ,◦Rτ ) ∧ µ and Ξ(ty ,Rτ •) ↔ Ξ(ty , L) ∧ µ′. It follows that
Ξ(ty ,Rτ •)↔ Ξ(ty ,◦Rτ ) ∧ µ ∧ µ′ ↔ Ξ(ty ,◦Rτ ) ∧ τ .

2) τ ≡ ν ∨ ν′ and, consequently, Rτ ≡ if ? then Rν else Rν′ end. Since our
type inference algorithm treats the conditional with the ?-condition path-sensitively
and since there are two paths pν and pν′ through Rτ , there also need to be two
abstract states σ̊ν = ty [Rτ •, pν ] and σ̊ν′ = ty [Rτ •, pν′ ]. From the typing rule for
conditionals and the induction hypothesis, we can deduce that Ξ(̊σν)↔ Ξ(ty ,◦Rτ )∧ν
and Ξ(̊σν′) ↔ Ξ(ty ,◦Rτ ) ∧ ν′. Furthermore, from the definition of Ξ, we know that
in cases with multiple paths leading to a program location, their corresponding typing
assertions are disjoined. Hence, Ξ(ty ,Rτ •) ≡ Ξ(̊σν) ∨ Ξ(̊σν′) ↔ (Ξ(ty ,◦Rτ ) ∧ ν) ∨
(Ξ(ty ,◦Rτ ) ∧ ν′)↔ Ξ(ty ,◦Rτ ) ∧ (ν ∨ ν′)↔ Ξ(ty ,◦Rτ ) ∧ τ .

The effect caused in the abstract domain of types by inserting the refinement ex-
pression Rτ hence equals the effect of a conjunction with the typing assertion τ on the
logical level.

Observe that just like with its set-theoretic parallel intersection, conjoining a formula
with another one can only decrease the number of models, but never increase it.
Applied to our abstract domain of types, this means that conjunctive refinement can
only increase precision, but never decrease it.

Let us now generalize this observation to cases with cyclic flow-graphs.

Theorem 11. Let ty
τ,L→ ty ′ be conjunctive refinement step. Then it holds that

Ξ(ty ′, L)← Ξ(ty , L) ∧ τ.
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Verifier Assertions
Assertions

Asrt

⊆Ξ

prf

Typing
Automatic
Type Safety

Σ̊ TAsrt

Figure 8.4.: Overview of the abstract domains involved and the mappings between
them

Proof. Since in the conjunctive refinement step, ty ′ is derived for a program π′, that is
equivalent to π, except for the subexpression Rτ being inserted just before L, we can
assume L to be the output location Rτ • of Rτ in π′. Should π′’s flow-graph be free of
cycles, the theorem would follow directly by Lemma 9. In case of cycles, however, it is
possible for the increase in precision on the output location Rτ • to cause an increase
in precision at the input location ◦Rτ , thus creating a feedback loop. However, since
all functions along the flow-graph are monotone, it is ensured that the increase in
precision at location L due to the conjunctive refinement will only increase but never
decrease precision at any other location, including itself.

As already apparent in the last proof, another important property of conjunctive
refinements is their monotonicity .

Theorem 12 (Strict Monotonicity). For all conjunctive refinements ty
τ,L→ ty ′,

ty ′ < ty holds.

Proof. Monotonicity: Let ty
τ,L→ ty ′ be a conjunctive refinement step and x ∈ VL.

Then ty ′(L)(x) = ty(L)(x) u prx(τ) v ty(L)(x). This difference is induced by the
constraints generated from Rτ . Since all other constraints are identical between π and
π′ and all constraints are monotone, ty ′(L′) v ty(L′) holds for all programs locations
L′ of π and consequently ty ′ v ty follows by induction over the constraint system.

Strictness: Since Ξ(ty , L) 6→ τ holds, there is at least one variable y ∈ VL such
that ty ′(L)(y) = ty(L)(y) u pry(τ) < ty(L)(y). Consequently, ty ′ < ty .

8.8. Two-Layered Proofs

A two-layered proof is a proof in tagged Hoare logic for a dynamically typed program,
in which every assertion has the form τ ∧ p for a typing assertion τ and an assertion
p. While p is user-editable, the typing assertion τ is meant to be created and modified
solely by an automated type-safety verifier. We refer to τ as the “lower layer” and p
as the “higher layer” of the proof/assertion. Formally, we define:

Definition 27 (Fusion of Hoare logic Proofs). Let φ be a proof in tagged Hoare logic
for {p}S{tags∧ q} and ϕ be a typing proof for {τ}S{τ ′}. Then, the fusion φ+ϕ is a
two-layered proof for {p ∧ τ}S{tags ∧ q ∧ τ ′}.
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and then give the following theorem about proof fusion:

Theorem 13 (Two-Layered Proof Construction). Given a typing proof φl and a proof
φh for the same program π, it is always possible to construct a two-layered-proof φ with
φl as lower and φh as higher layer.

Proof. Without loss of generality, we assume φl and φh to be minimal (all Hoare triples
contribute to the proof’s conclusion). They hence have a tree-like structure. Their
fusion can then be constructed by recursion over this structure.

Induction basis: (Fusing axioms): All axioms in our tagged Hoare logic (Sec-
tion 4.5), are invariant under conjunction: if {p}S{q} and {τ}S{τ ′} can be derived
using this axiom, then {p ∧ τ}S{q ∧ τ ′} can also be.

Induction step: (Fusing rules): All rules in our tagged Hoare logic (Section 4.5)
have the following properties

• Invariant under fusion: If
{p1}S1{q1}, ..., {pn}Sn{qn}

(X)
{p}S{q}

and
{τ1}S1{τ ′1}, ..., {τn}Sn{τ ′n}

(X)
{τ}S{τ ′}

are valid rule applications, then

{p1 ∧ τ1}S1{q1 ∧ τ ′1}, ..., {pn ∧ τn}Sn{qn ∧ τ ′n}
(X)

{p ∧ τ}S{q ∧ τ ′}
is also.

• They are either syntax-directed (and hence must appear in both proofs) or have

a neutral application
{p}S{q}

(X)
{p}S{q}

that can be inserted into a proof to make

its structure match the other one (having an application of rule X).

For most rules, this is obvious. For applications of CONJ and DISJ, one needs to
fuse the proof with both premises. To see that the properties hold for the SUBST
rule, consider that all variables occurring in typing assertions are being read in some
method of the program (otherwise, typing them is useless). Hence, the side-condition
of the SUBST rule does not allow them to be substituted for and all applications of
this rule hence are neutral for all typing assertions.

Both proofs can hence be made structurally equivalent by inserting neutral rule
applications and then fused using the invariance property.

Starting from a typing proof Ξ(π, ty) in the lower layer and only true in the higher
layer, proofs in the higher layer are supported by type information from the lower layer
(Chapter 7). The type information may also be refined:

Definition 28 (Refinement of Typing Proofs). Let ψ = Ξ(π, ty) be a typing proof

generated by a typing ty of a program π. Then each conjunctive refinement step ty
τ,L→

ty ′ gives rise to a conjunctive proof refinement step ψ
τ,L→ ψ′ with ψ′ = Ξ(π, ty ′).
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Let ψl = Ξ(π, ty) be the lower layer of a two-layered proof ψ. Then whenever a new
typing literal appears within the higher layer p of an assertion at program location
L in ψ, the lower-layer proof ψl is substituted by the result ψ′l of the conjunctive

proof refinement step ψl
α2(p),L→ ψ′l. In such refinements Ξ(ψ′l, L

′) → Ξ(ψl, L
′) holds

for all L′ ∈ Loc due to theorem 12. Higher layer proof steps depending on lower layer
information hence remain valid.

8.9. Interactive Type Inference

From the components introduced, we can assemble the process of interactive type
inference for the semi-automatic verification of type-safety as follows:

Starting from a typing ty0 derived by the type inference algorithm for a program

π (π, ∅ I ty0), the user can initiate conjunctive refinement steps · · · ty i
τ,L→ ty i+1 by

deriving more precise type information in the higher layer using the program logic,
until finally for some typing tyn, it holds that tyn v ty†π and the program π is hence
proven type-safe.

Although cyclic, this process is well-founded as typings of finite programs assign only
finitely many types, each containing a combination of finitely many classnames. Since
conjunctive refinement steps strictly increase precision, each of them must remove at
least one such classname from at least one such type. Hence, it is only possible to do
this finitely many times before reaching a typing that is precise enough to establish
type safety.

Note that it is nevertheless possible to get stuck in this process when the user does
not find any way to derive more precise type information any more. In this case,
either the program is not type-safe or the user does not know why it should be. This,
however, is a pitfall common to all formal methods.

8.10. Properties

In this section, we will study whether the procedure detailed above indeed satisfies all
requirements mentioned at the beginning of this chapter.

8.10.1. Soundness

One may consider trusted assumptions as similar to typecasts. However, note that such
assumptions have to be established using a sound program logic before being accepted
by a sound type inference. Hence, while typecasts make a type system unsound, our
procedure does not allow proving a type-unsafe program type-safe as long as both the
type inference and the program logic are sound.
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8.10.2. Completeness Relative to the Program Logic

The following theorems show that despite the fact that the projection pr may cause
a drastic loss of precision, sufficiently precise type information can always be supplied
for type-safe programs.

Lemma 10. For every assertion p and every typing assertion τ such that p→ τ , there
exists an equivalent assertion p′ ↔ p such that pr(p′)↔ τ .

Proof. p′ ≡ p ∧ τ has the described properties.

Definition 29. A typing assertion τ is most precise for an assertion p iff p→ τ and
for all typing assertions τ ′, p→ τ ′ implies τ → τ ′.

Theorem 14. Every type-safety proof ψ has an equivalent proof ψ′ such that for every
assertion p′ in ψ′, pr(p′) is most precise for p′.

Proof. For a single assertion, this follows directly from Lemma 10 and the definition
of the most precise typing assertion. Applying this to every assertion in the proof ψ
derives ψ′ and hence proves above theorem.

Theorem 15 (Completeness relative to Hoare logic). Given completeness of the Hoare
logic, for every6 type-safe program π there exists a type-safety proof ψ such that tyψ
is sound and precise enough to establish type-safety: tyψ v ty†π

5.

Proof. Follows from completeness of the Hoare logic, Theorem 14, and the fact that
type-safety proofs must establish the absence of type errors and hence contain suffi-
ciently precise type information.

Since we established (relative) completeness of our Hoare logic for dyn in Chap-
ter 5.2, using it for interactive type inference allows us to derive precise type informa-
tion for every type-safe dyn program6 and hence to apply the Layer of Abstraction to
all of them.

Note that a type-unsafe program that raises a typeerror for a certain class of
inputs can still be proven conditionally type-safe by equipping it with a precondition
excluding this case. The Layer of Abstraction could hence still be applied. Hence,
only the verification of programs that raise type-errors on every input cannot benefit
from it. However, such programs are argueably not very useful.

6assuming that all necessary implications can be established. Using an automated theorem prover
to do so this admittedly is a rather unrealistic assumption. However, note that a) using an
interactive theorem prover already makes the assumption much more realistic and that b) it is
getting more and more realistic at least for the practically relevant cases as theorem proving
technology advances.
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8.10.3. Automation

Should the initial typing ty0 derived by the type inference already suffice to prove
type-safety (ty0 v ty†π

5), then no refinement steps are necessary and type-safety is
established fully automatically. This is the case whenever the type inference is able
to proof type-safety of a program (part) by itself. Also, when this is not the case, the
user can use the type information supplied to find the root of the problem and only
has to take care of those problems that the type inference cannot handle, while the
remaining program is checked automatically.

8.11. Consensual Typing: Reconciling Static and
Dynamic Typing via Verification

The fundamental difference between the mindsets of static and dynamic typing is a
question of priorities that can be summarized as “safety vs. freedom”. Advocates of
static typing perceive type errors (however they may be defined in their language of
choice) as threatening5 and thus consider a restriction of the programming language
a reasonable price for securing them from type errors once and for all. On the other
hand, advocates of dynamic typing usually value freedom over safety and feel that
in such a restricted programming language, they are “constantly working against the
type system” or at least “doing so much nonsense just to make the type system happy”
while considering type errors as just one out of the numerous kinds of exceptions also
occuring in statically typed languages.

While the traditionally heated debates between these two communities have become
part of programmer folklore over the last couple of decades, I’d like to take this oppor-
tunity to point out that what we learned in the previous chapter enables us to take a
third standpoint in this matter.

Recall that type safety is undecidable in general and hence the program analysis
used by static typing to safeguard its programs is inherently incomplete. Static typing
circumvents this problem by restricting the programming language to those programs
that can be safeguarded this way. Hence the root cause for the restriction is the
incompleteness of the analysis. Note that in the case of a verifiable programming
language (with a formal semantics, an assertion language and a program logic readily
available), using an interactive type inference instead would remove the incompleteness
and hence the need for a restriction.

So in essence our solution for making type inference complete (Chapter 8) naturally
leads to a non-restricted programming language (similar to a dynamically typed one)
that automatically safeguards all program parts with decidable type safety problems
and provides the user with the means necessary to derive the same guarantees also for

5as defined in Section 1.3.1
5this can be seen in statements like “without types, programs are meaningless nonsense” which

over-exaggerates the disambiguating function types play in statically typed languages to the point
of pretending that it would be the type system that assigns meaning to programs rather than the
semantics.
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the remaining parts.
We will call such a typing discipline for verifiable programming languages “Consen-

sual typing” as the interaction between user and computer resembles a controversal
debate that goes on until reaching a typing that is agreeable to both parties – a con-
sensus.

Furthermore, note that consensual typing generalizes both soft- and gradual typing
disciplines: It generalizes soft typing as it also applies a type inference algorithm
as far as possible, but instead of resorting to runtime type checks, it additionally
offers the possibility to proof type safety manually. Like gradual typing, removing
the typesafe-tags from the assertions in parts of the program permits mixing type-
safe and type-unsafe program parts. However, unlike gradual typing it is possible to
safeguard entire dynamically typed programs without rewriting them into statically
typed ones.
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We will first discuss prior work that is related to our program logic (see Section 4.5)
or its proof theory (Chapter 5) and then summarize work that is related to our Layer
of Abstraction (Chapter 7) or Interactive Type Inference (Chapter 8).

Semantics of Dynamically Typed Languages

Recently, with the advent of JavaScript establishing itself as ’the assembly language
of the web’, the interest in the verification of dynamically typed languages spiked. As
a first step, several operational semantics have been published for dynamically typed
languages, many of which have been validated by testing [67, 76, 29, 34]:

• Python [67, 76],

• PHP [29],

• JavaScript [55, 34].

However, in order to enable program verification, a second step of providing a pro-
gram logic is neccessary. Unfortunately, so far only JavaScript seems to have been
blessed with such logics [68, 31]. Also, these works focus on soundness as well as direct
applicability to real-world programming languages while the focus of our work was on
completeness (for closed programs) and on studying the proof-theoretic implications
of dynamic typing.

Tagged Hoare Logic

While the entire literature on Hoare logic is clearly related, we do not known of any
other formalism or notation with the aim of consolidating the multitude of separate
proof systems into one. However, Huisman and Jacobs [43] published work on dealing
with abnormal (or abrupt) program termination in the context of Hoare logic. Their
approach focuses on reasoning about programs with recoverable abnormal terminations
like exceptions or break statements in a style similar to our extension for non-fatal
type errors (see Section 12.1). However, its aims seem to only partially overlap with
Tagged Hoare logic as it requires the introduction of a multitude of additional proof
systems (two for each kind of abnormal termination) instead of consolidating them
into one. Also, while Tagged Hoare Logic aims at treating all forms of abnormal
program behavior (divergence, type errors, failures) alike, divergence clearly plays a
special role in the work of Huisman and Jacobs, since it is not regarded as a form
of “abrupt termination”. Instead, every kind of abrupt termination (in our case:
typeerrors and failures) is given an additional notion of correctness called “total” for
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excluding divergence. When adopting the notation from [43], a triple for “total type-
safe correctness”

[p]S[typeerror(q)]

is equivalent to our tagged triple

{p}S{¬typesafe ∧ terminates ∧ q}.

However, the same triple for their “partial type-safe correctness”

{p}S{typeerror(q)}

states that when S is executed from a state satisfying p and yields a typeerror, then
it does so in a state satisfying q. Note that this does not state anything about what
happens when S terminates normally and hence violates

{p}S{typeerror(q)} ⇒ {p}S{q}.

Thus, while it is theoretically possible to define selectors like this also for Tagged Hoare
Logic, this would break soundness of the CONS rule. Hence, while tagged Hoare Logic
was carefully designed to allow a uniform treatment of all notions of correctness, this
apparently precludes defining exotic notions like these. Since we did not yet find any
tangible benefits such notions might have over well-behaved ones, further investigation
is necessary to clarify the relationship of these two formalisms.

Predicates as Recursion Bounds and Loop Variants

While this technique is novel in the context of Hoare Logic, note that David Harel [38,
Rule C∗ on Page 32] also used predicates as loop variants to give a complete proof
system for his First-Order Dynamic Logic (which also allows reasoning about total
correctness of programs). Since our assertion language AL includes arithmetic, the
(relative) completeness proof for our logic can be regarded as related to Harel’s proof
of “arithmetical completeness”.

Type Safety

The relationship to Soft- and Gradual Typing has already been discussed in Sec-
tion 8.11. There has also been work on extending such abstraction-based verifiers to
handle many ideoms common in dynamically typed languages [35, 52].

Correctness

To the best of our knowlegdge, [31] currently is the only1 axiomatic semantics for
a type-safe notion of correctness of a dynamically typed language. As discussed in

1[68] only treat partial correctness. Also, they restrict the programming language to allow a form of
(type-unsafe) pure expressions
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Chapter 4 it uses type safety preconditions, considers all variables to be of object type
and does not use pure expressions and would thus benefit from our approach.

Nguyên et al. [60] proposed an automatic contract verifier for untyped higher-order
functional languages based on symbolic execution inserting run-time checks for con-
tracts it cannot statically guarantee. Since they use a mechanism similar to widening
to enforce termination, their approach also combines abstraction-based and symbolic
reasoning.

Drawing on their work on the verification of untyped higher-order functional pro-
grams [21], Chugh et al. [20, 19] provide a dependent-type system for an untyped
functional “core calculus” λJS into which JavaScript programs can be translated. Nei-
ther soundness nor completeness is demonstrated for their system.

Swamy et al. [77] semi-automatically reason about a wide range of JavaScript idioms
by translating them into the dependently-typed functional language F ∗ and using its
SMT-based reasoning engine. They also noticed that the type information generated
by an abstraction-based type safety verifier (GateKeeper in their case) are useful to
improve the effectiveness of automatic reasoning engines. However, they did not feed
the symbolically derived proof results back into GateKeeper and did not use the type
information to ease the annotation burden for their users. Since their main focus lies on
a novel encoding of Dijkstra’s predicate transformer semantics, using F ∗’s dependent
type inference to effectively reason about imperative programs in a style similar to
Hoare logic, we consider the approaches to be largely complementary.

In general, all fully automatic approaches [18, 60, 35, 21] are necessarily incomplete.
They can however be used as automatic type safety verifiers. Furthermore, all purely
symbolic approaches [21, 20, 77, 31, 68] require the type information to be manually
specified in method contracts and loop invariants.

Both the idea and the term “Layer of abstraction” are inspired by the work of
Gardner, Maffeis and Smith [31] on reasoning about JavaScript. However, their work
abstracts from the peculiarities of the JavaScript variable store, while ours abstracts
from the complexity of dynamic typing and is applicable to virtually any dynamically
typed language. The same holds for the JuS tool [59], which is based on their logic
and developed by the same group.

The decomposition rule used to establish the layer of abstraction is inspired by
similar constructions in [5].

Some tools for verification of statically typed imperative programs [24] allow using
a “pure” subset of the programming language (that is side-effect-free and guaranteed
to terminate) within assertions. The ability of our layer of abstraction to allow the use
of well-typed “pure” program expressions in assertions can be seen as an extension of
this idea to dynamically typed programs.

Combining Static Analysis with Program Logics:

There has been a considerable amount of work on integrating algorithmic decision
procedures (mostly model checking) and deductive methods for program verification
(see [81] for pointers). Due to the deep connection between data flow analysis and
model checking [72], many of these techniques can be considered as related.
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Note that our conjunctive refinement differs from abstraction refinement since it is
not the abstraction that is refined, but the analysis result.

Also, translations from typings (f.i. from type systems for information-flow proper-
ties) to program logics are commonly used in the Proof-Carrying Code (PCC) Com-
munity [37] to avoid the need for property-specific proof-checkers. Although PCC is
a completely different application area, their aim was also to integrate results derived
by different inference systems into one common representation – and incidently they
also chose a program logic as their “lingua franca”.

A closely related proposal also integrating symbolic with abstraction-based reasoning
is MIXY [45], a framework for mixing symbolic execution with type checking. In their
system, the user partitiones his/her program into s-blocks and t-blocks. While s-blocks
are analysed using symbolic execution, type analysis is applied to t-blocks. The results
of both analyses are bidirectionally exchanged using so-called MIX-rules: Type analysis
results are translated into a matching start environment for symbolic execution and
types ensured by (exhaustive!) symbolic execution can be used for type analysis. Also,
the aim is related: What Phang et. al called “balancing precision vs. efficiency” can
also be interpreted as “combining automation with completeness”, although Phang et
al. do not proof their system complete. Our approach could most likely be integrated
into their framework as “Hoare-Logic blocks” (in their notation probably {h e h})
with typing Γ ` {h e h} : τ for which a Hoare-triple {pe}e{qe} must be derived where

pe
∆
= Ξ(Γ ) and prr(qe) = τ .
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Part IV.

Applications

“In theory, there is no difference between theory and practice.

But, in practice, there is.”

– Jan L. A. van de Snepscheut
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In this part of the thesis we will demonstrate several applications of the theories
previously developed through the discussion of a number of case studies. In order
to reduce both manual effort and the probability of human error, a prerequisite of
conducting case studies of a certain size and complexity is automation. Thus several
artifacts have been implemented in the course of this PhD thesis that together enable
verifying dyn-programs in the way previously described.

Unfortunately, due to time constraints we were neither able to implement the tags
from our Tagged Hoare Logic (described in Section 3.2) nor the Layer of Abstraction
(described in Chapter 7). Thus the implementation does not yet allow a conclusive
evaluation of our approach.

However, in the following, we will demonstrate its merits on a selection of case
studies to convince our readers that

• it enables verifying dyn programs despite any adverse conditions (see Chapter 4),

• it supports deriving sound and precise type information for typesafe dyn pro-
grams, and

• the Layer of Abstraction makes the verification of dyn programs very similar to
that of stat programs.

In order to demonstrate the last point, we will verify the case study in Section 11.3
once without the Layer of Abstraction and once while manually emulating its effect.

The remainder of this part is organized as follows: Chapter 10 describes the artifacts
and their implementation. Chapter 11 demonstrates our approach by verifying a num-
ber of case studies, and Chapter 12 discusses a number of extensions to the developed
formalisms to prepare them for features and phenomena that might be encountered in
more realistic programming languages.
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An Interpreter, a Type Inference Algorithm and an auto-active Verification Tool based
on a Weakest Precondition Calculus for dyn were implemented during my time as a
PhD candidate. The Interpreter and type inference were written by myself in Ruby
[56] and the Verification Tool was implemented by Dennis Kregel as his Master Thesis
Project [47] in C# [57].

While the Interpreter was mainly used for experimentation with the language, the
Verification Tool supports reasoning about the correctness of annotated dyn programs
by generating a set of verification conditions and checking their validity using the SMT-
Solver Z3 [10]. Since the implementation of the type inference algorithm supports
trusted assumptions, in combination those tools are able to simulate the entire process
of interactive type inference as described in Chapter 8, even though the translation
between assertions and typing assertions has to be performed manually.

The remainder of this chapter is organized as follows: Section 10.1 introduces an-
notated dyn-programs. Section 10.2 gives the Weakest Precondition Calculus used in
the Verification Tool. Section 10.3 discusses how to solve verification conditions with
recursive predicates in an off-the-shelf SMT-solver like Z3. Section 10.4 discusses sev-
eral practical issues that revolve around the use of the Rule of Adaptation to handle
Method Calls in our Weakest Precondition Calculus.

10.1. Annotations

Introducing annotations requires modifying the syntax of dyn in the following way:

meth ::= method m(−→u ) requires p ensures p {S} | invariant p

S ::= assert p

e ::= while e inv p do S done with p ∈ Asrt

The modified syntax of method declarations serves to allow the usual method contracts
with pre- (requires) and postcondition (ensures), the invariant keyword allows
declaring class invariants that are automatically conjoined to the pre- and postcondi-
tions of all methods belonging to the class they are declared in (Note that this includes
inherited methods). The additional inv keyword in while loops allows specifying a loop
invariant and the assert statement allows the introduction of intermediate assertions
into the verification procedure. This is useful when the calculated preconditions get
too large or too complicated for the solver to handle. Introducing an intermediate
assertion effectively splits one big verification problem into two smaller ones. As will
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be discussed in the Sections 10.4 and 10.4.1, especially method calls are prone to cause
verification conditions to grow out of proportion.

In dyn, however, such method calls may occur not only as statements, but also as
part of expressions. Note that even innocent-looking loop conditions such as l.size() <
5 or i+ 1 < 2∗ j contain several method calls. Practice has shown that when verifying
dynamically typed programs, it is quite often necessary to split verification conditions
not only on statement boundaries, but also within expressions.

However, we refrain from introducing additional syntax for adding assertion annota-
tions also within expressions because it is always possible to extract the subexpression
containing the method call in question to a prepended assignment statement. It is
then possible to augment this assignment with assert statements before and/or after
it. Note that this is possible even in the case of the expression being a loop condition,
although the control flow in this case dictates the duplication of the assignment like in

b := e; while b do S; b := e done

Although this duplication is inconvenient, it still results in code that is more intu-
itively comprehensible than any syntax for assertions in expression we could come up
with.

10.2. Weakest Precondition Calculus

The Verification Tool utilizes the following Tagged Weakest Precondition Calculus for
dyn programs directly derived from our Hoare logic (see Section 4.5).
The (Tagged) Weakest Precondition Calculus

WPC : 2T ags 7→ Progd 7→ Asrt 7→ Asrt× 2Asrt

WPCtags(S, q)
∆
= (WPtags(S, q), V CGtags(S, q))

maps a set of tags, a dyn-statement S and a postcondition q to the weakest precondi-
tion of S with respect to the postcondition q and a set of verification conditions, both
in the sense of the notion of correctness indicated by the tags.
WPtags and V CGtags are defined inductively over the structure of S:

• WPtags(null, q)
∆
= q[r := null]

• WPtags(u, q)
∆
= q[r := u]

• WPtags(@v, q)
∆
= q[r := self .@v]

• WPtags(e1 == e2, q)
∆
= WP (v1 := e1; v2 := e2, q[r := v1 = v2]) where v1, v2 are

fresh variables.

• WPtags(e is a? C, q)
∆
= WP (e, q[r := JrK ∈ {C}]).
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• WPCtags(u := e, q)
∆
= WPCtags(e, q[u := r])

• WPCtags(@v := e, q)
∆
= WPCtags(e, q[self .@v := r])

• WPtags(S1;S2, q)
∆
= WPtags(S1, q

′), V CGtags(S1;S2, q)
∆
= V CGtags(S1, q

′) ∪
V CGtags(S2, q) with q′ = WPtags(S2, q)

• WPCtags(if e then S1 else S2 end, q)
∆
= (p, V C ∪ V C1 ∪ V C2) with

WPCtags(e,∃b : B • fs(tags) ∧ ts(tags) ∧ B(r, b) ∧ p′) = (p, V C),

p′ ≡ (b ∧ p1 ∨ ¬b ∧ p2),

WPCtags(S1, q) = (p1, V C1),

WPCtags(S2, q) = (p2, V C2),

fs(tags) ≡

{
r 6= null if failsafe ∈ tags

true otherwise
, and

ts(tags) ≡

{
r 6= null → B(r) if typesafe ∈ tags

true otherwise

• WPCtags(while e inv p var υ do S done, q)
∆
= (p′, V C ∪ V C ′ ∪ V C ′′) with

(p′, V C) = WPCtags(e, p∧fs(tags)∧ts(tags)), fs(tags) and ts(tags) as above,

V C ′ = {p → p′′, (∃b : O • p[r := b] ∧ B(b, false) ∧ r = null) → q, p → ∃z′ :
N • υ(z′), term(tags)},
(p′′, V C ′′) = WPCtags(S, p

′),

term(tags) ≡

{
p ∧ B(r, true) ∧ υ(z)→ p̂ if terminates ∈ tags

true otherwise

where p̂ ≡ WPtags(S; e,∀z′ : N • υ(z′) → z′ < z), z is a fresh logical variable
of type N only used to determine termination of this loop, υ(z) is a predicate
containing a free occurrence of z and υ(z′) denotes the result of substituting z′

for all free occurrences of z in the predicate υ(z).

• WPCtags(begin local u := t;S end, q)
∆
= WPCtags(u := t;S, q[u := v])[v := u]

where v is a list of fresh variables in 1 to 1 correspondence with the local variables
u.

• WPtags(e0.m(e1, ..., en), q)
∆
= WPtags(v0 := e0; ...; vn := en; v0.m(v1, ..., vn), q)

where v0, ..., vn are fresh variables.

• WPtags(v0.m(v1, ..., vn), q)
∆
=
∨
C∈Tnm

Jv0K ∈ {C}∧∃cC •(p′C∧∀v : On+1•q′C → q)

where v = v0, ..., vn is a list of all variables free in S ≡ v0.m(v1, ..., vn) (the
formal parameters of the call), cC is a list of all variables free in p′C or q′C ,
but not in S or {z}, Tnm = {C ′ | C ′ supports a method m of arity n} and

123



10. Implementation

{p′C}v0.m(v1, ..., vn) var rmC{tagsC ∧ q′C} is the method contract of method
m of arity n declared in class C, rmC (z) is the variant of the method to be called
(method m in class C), which is a predicate with a free occurrence of z and z is
a fresh logical variable of type N which is only used to establish termination of
recursive method calls.

• V CGtags({p}method m(u1, ..., un) var rm {S}{q}) = {vc1, vc2} ∪ V C1 with

vc1 ≡

{
p ∧ rm(z)→WPtags(S

′, q), if terminates ∈ tags

p→WPtags(S
′, q) otherwise

vc2 ≡

{
p→ ∃z′ : N • rm(z′), if terminates ∈ tags

true otherwise

V C1 = V CGtags(S, q).

where S′ ≡ begin local self , u := v;S end, v ≡ v0, ...vn are the same fresh
variables as used in the rule for method calls of the form e0.m(e1, ..., en) and
u1, ..., un are the formal arguments of method m.

• WPCtags(new C(e1, ..., en), q)
∆
= WPCtags(new C.init(e1, ..., en), q).

• WPtags(new C, q)
∆
= q[r := newC ].

with V CGtags(S, q)
∆
= {} for all S and q where above definitions do not imply other-

wise.

10.3. Solving Verification Conditions with Recursive
Predicates Using Off-the-Shelf SMT Solvers

Translating our Verification Conditions into SMTLIB2 is a rather straightforward pro-
cess. Since type information in SMTLIB2 is explicit, we of course need a simple type
inference algorithm for our Assertion Language, but afterwards it is a simple recursive
translation – apart from recursive predicates.

The attentive reader might have noticed that several of our mapping predicates
as well as several other predicates used in our case studies are recursive. SMTLIB2
syntactically prohibits the definition of recursive functions or predicates, so we have
to find a way to suitably encode recursion.

Linear Recursion

Let us start with the simplest possible case – linear primitive recursion. The general
form of a linear primitive recursive predicate definition is

P (x, a1, ..., an) ≡ (x = 0 ∧ p0) ∨ (x > 0 ∧ p1 ∧ P (x− 1, e1, ..., en))
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The attribute “linear” indicates that the predicate has exactly on recursive call (to
itself) and “primitive” means that it is syntactically restricted to ensure termination
(which is the reason for the variable x in the general form). For all predicate definitions
of this form, we can give an equivalent one using quantification over sequences instead
of recursion:

P (x, a1, ..., an) ≡ ∃s1,..., sn : L•
p0[x, a1, ..., an := 0, s1[0], ..., sn[0]] ∧
s1[x] = a1 ∧ ... ∧ sn[x] = an ∧
∀i : N • 0 < i ≤ x⇒ p1ω ∧

s1[i− 1] = e1ω ∧ ... ∧ sn[i− 1] = enω

where ω = [x, a1, ..., an := i, s1[i], ..., sn[i]].

Since quantification over sequences can be expressed as quantification over arrays,
which is supported by Z3 [17], this gives us a way to automatically reason about linear
primitive recursive predicates using Z3 and similar SMT-Solvers. Note that while this
technique is sufficient for all predicates used in this thesis, it is possible to extend the
technique to tree-recursion as follows.

Tree Recursion

The general form of a primitive tree recursive predicate of degree m is

P (x, a1, ..., an) ≡ (x = 0∧p0)∨(x > 0∧p1∧P (x−1, e1
1, ..., e

1
n)∧...∧P (x−1, em1 , ..., e

m
n ))

Note that m denotes the number of recursive calls of the predicate to itself, not the
number of its formal arguments. To encode it into SMTLIB2, we will be using the
following auxiliary predicates

sizelevelm(l) ≡ ml

slevelm(l) ≡ ml − 1

indexofm(l, i) ≡ slevelm(l) + i

childkm(lp, ip, lc, ic) ≡ lc = lp + 1 ∧ ic = m ∗ ip + (k − 1)

Now for all predicates of above form, we can again formulate an equivalent one using
quantification over arrays
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P (x, a1, ..., an) ≡ ∃s1, ..., sn : L•
(∀i : N • 0 ≤ i < sizelevel(x)⇒

p0[x, a1, ..., an := 0, s1[indexof(x, i)], ..., sn[indexof(x, i)]]) ∧
s1[indexof(0, 0)] = a1 ∧ ... ∧ sn[indexof(0, 0)] = an ∧
∀l, i : N•

0 ≤ l < x ∧ 0 ≤ i < sizelevel(l)⇒
∃l1, ..., lm, i1, ..., im : N•

child1
m(l, i, l1, i1) ∧ ... ∧ childmm(l, i, lm, im) ∧

p1ω ∧
s1[indexof(l1, i1)] = e1

1ω ∧ ... ∧ sn[indexof(l1, i1)] = e1
nω ∧

...

s1[indexof(lm, im)] = em1 ω ∧ ... ∧ sn[indexof(lm, im)] = emn ω

with ω = [x, a1, ..., an := l, s1[indexof(l, i)], ..., sn[indexof(l, i)]].

Mutual Recursion

Finally, primitive mutual recursion allows for multiple predicates to have arbitrary
cyclic dependencies. The general form for such primitive mutually recursive predicates
is

P1(x, a1, ..., an) ≡ ψ1, . . . , Pk(x, a1, ..., an) ≡ ψk

where

ψi ≡ (x = 0∧pi0)∨ (x > 0∧pi1∧Pj1(x−1, ei,11 , ..., ei,1n )∧ ...∧Pjmi (x−1, ei,mi1 , ..., ei,min ))

and ji ∈ N1
k for all i ∈ N1

k.

Note that it is always possible to construct a single, primitive tree-recursive predi-

cate P of degree
k∑
i

mi with an additional parameter y such that P (y, x, a1, ..., an) is

equivalent to Py(x, a1, ..., an) for all y ∈ N1
k as

P (y, x, a1, ..., an) ≡ y = 1⇒ ψ′1 ∧ . . . ∧ y = k ⇒ ψ′k

where ψ′i is equivalent to ψi with all calls to Pj(x, a1, ..., an) replaced by P (j, x, a1, ..., an).

Since the tree-recursive predicate P() can be processed further as outlined in the
previous section, our translation can thus be applied to arbitrary primitive recursive
predicates.
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Discussion

Although the above translation works for primitive recursive predicates only and is
hence limited to modelling primitive recursive functions, quantification easily allows
for also encoding the µ-operator since

µx.P (x,−→a )⇔ ∃x : N • P (x,−→a ) ∧ ∀x′ : N • 0 ≤ x′ < x⇒ ¬P (x′,−→a )

The combination of quantification and primitive recursive predicates hence allows en-
coding arbitrary µ-recursive functions. However, µ-recursive functions are known to
allow for simulating Turing-Machines and hence also allow for expressing the Halting-
Problem, which is the very reason why satisfiability of our Assertion Language AL is
undecidable. In practice, of course, we are not trying to simulate Turing Machines.
However, above observation is still relevant since the ability to do so significantly re-
duces the probability of our assertions falling into a decidable subset of our Assertion
Language and hence places a heavy burden on the theorem prover. In our experience,
Z3 was able to solve many simple problems despite their use of recursive predicates.
However, several larger verification conditions using them resulted in the answer ’un-
known’. We will show some of these cases when presenting the respective case studies.

10.4. Practical Issues with the Rule of Adaptation

Testing the Verification Tool on sample dyn programs revealed a number of practical
issues regarding the so-called Rule of Adaptation used for handling Method Calls in
our Weakest Precondition Calculus. This rule was originally introduced by Hoare [42]
and later enhanced by Olderog [63].

Before its introduction, Hoare logics used a number of so-called “Adaptation Rules”
to adapt a method’s contract {p′}a0.m(a1, ..., an){q′} to derive the statements neces-
sary to reason about any call {p}e0.m(e1, ..., en){q} to this method. As was shown by
Gorelick [33] in his seminal completeness proof, it is possible to use the most general
contract {WP (a0.m(a1, ..., an), x = v)}a0.m(a1, ..., an){x = v} and then derive any
true statement about the method from it using these Adaptation Rules. Unfortu-
nately, the proof is non-constructive and uses the Rule of Consequence which makes it
hard to automate the process of deriving a weakest precondition for a method call with
respect to a given postcondition as required for a Weakest Precondition Calculus. For
this reason, Hoare suggested the Rule of Adaptation which basically fuses all previous
Adaptation Rules into one. Its basic idea is to treat the method as the most general
finitely-based state transformer satisfying it’s contract and deriving a weakest precon-
dition ensuring that even this generalized state transformer satisfies the postcondition
(which implies the same property for every less general one) (see [63]).

10.4.1. Simplifying Intermediate Results

Dynamic dispatch in object-oriented programs lets the program’s control flow depend
on type information. In the absense of such type information due to dynamic typing,
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we hence have to take all options into consideration when reasoning about method
calls. The weakest precondition of a method call is thus a large disjunction over all
(n) classes supporting a method matching the call’s name and arity.

When the postcondition of such a method call is large, this can become problematic,
since its size is multiplied by the factor n in the processing of the WPC. Note that,
especially for constructor calls (init) n can be quite large. In order to cope with the
explosion in the size of verification conditions, postconditions of method calls are hence
ideal targets for automatic simplification procedures.

Also, all those cases are prefixed by a typecheck Jv0K ∈ {C}, which in the common
case of a constructor call is replaced by either true or false in the substitution for
object creation (see Appendix A) since v0 refers to just the object created by newC

as shown in the following:

WP

v0 := newCi ,

Jv0K ∈ {C1} ∧ p1 ∨
...

Jv0K ∈ {Ci} ∧ pi ∨
...

Jv0K ∈ {Cn} ∧ pn

 =

false ∧ p1 ∨
...

true ∧ pi ∨
...

false ∧ pn

⇔ pi

All disjuncts starting with false herein are obviously unsatisfiable and can hence be
pruned. We hence designed the simplification procedure to also be effective in pruning
these irrelevant disjuncts from the weakest preconditions of constructor calls.

The Simplifier implemented in our Verification Tool recursively applies several simple
rewrite rules listed in Appendix B.

10.4.2. Detecting Ill-Suited Method Specifications

The Rule of Adaptation allows for the fully automatic adaptation of a method’s spec-
ification to the circumstances of each of its calls. However, like for the Adaptation
Rules used in Hoare logic prior to its introduction, its completeness is only established
for the case of most general method specifications, i.e., the case where all method
specifications are of the form

{WP (S, x = v)}S{x = v}.

This is due to the fact that such a most general correctness formula captures the
entire graph of the method in question and hence is guaranteed to contain enough
information for all adaptations that might be required.

In practice, users of a Verification Tool like ours cannot be expected to be aware
of subtle proof-theoretic properties of the proof system used underneath. While most
theoreticians think of completeness as a guarantee that they never get stuck while
proving a valid property with a certain proof system, the following example demon-
strates that in this case, the assumption of most general method contracts not only
has the character of a “best practice”, but that deviating from it can cause rather
subtle problems.
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For this example, we will leave our dynamically typed setting, as dynamic typing is
not relevant for this issue and the mapping predicates for dyn distract unnecessarily.
We will hence suppose all variables to be of type N.

Consider a user annotating a method for the addition of two natural numbers with
the following contract

method add(a, b) requires true ensures r = a+ b

This contract is valid and hence accepted by the Verification Tool. However, when cal-
culating the weakest precondition of a call add(x, y) with respect to the postcondition
r < 5 using the Rule of Adaptation, we get

true ∧ ∀a, b, r • r = a+ b→ r < 5,

which is equivalent to false. This is astonishing as it clearly is possible to satisfy the
postcondition by choosing values for x and y that satisfy x + y < 5.

While the Rule of Adaptation must clearly be allowed to return “false”, and the
Hoare triple {false}add(x, y){r < 5} is clearly valid, in this case false is NOT the
weakest precondition as x + y < 5 is also a valid answer. We are hence dealing with
an issue of incompleteness rather than unsoundness.

At the heart of the matter lies the fact that the Rule of Adaptation abstracts the
actual method add() to the most general finitely-based state-transformer satisfying its
specification. Note that in this case, the specification

method add(a, b) requires true ensures r = a+ b

is also satisfied by the method

method add(a,b) {

a := 5;

b := 5;

10

}

as it fails to require that a and b remain invariant. Note that the latter method
does NOT offer any way to satisfy the postcondition r < 5 and hence leaves false as
the only valid option for the weakest precondition calculus.

Of course such subtle pitfalls should be safeguarded against. We hence would like
our tool to check method contracts not only for validity, but also for generality.

The easiest way to do so would be to enforce the postconditions to always be x = v.
However, note that x abbreviates a sequence containing all local variables, which can
be quite lengthy. Also, since methods are evaluated within begin-local blocks, the
only local variable that can actually be modified is r while all other local variables are
anyway guaranteed to be invariant. This strategy would hence force our users to add
a quite lengthy conjunction of x = v terms to the precondition in order to make it
imply the weakest precondition.
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From the standpoint of usability it would hence be advisable to automatically add
the terms x = v to both pre- and postcondition of each method contract where x
contains all local variables not occurring free in both. Note, however that this does
not solve the problem since the variables a and b occur free in the postcondition of
above example.

Our investigations culminated in the observation that the formula

∃
−→
v′ ,
−→
v′′ • ∀−→x • q[−→v /

−→
v′ ] ∧ ¬q[−→v /

−→
v′′]

where {−→v } = free(p) ∩ free(q) ∩VL, |
−→
v′ | = |

−→
v′′| = |−→v | and {−→x } = (free(q) ∩VL) \

{−→v } seems to be a good indicator for the generality of a method contract {p}S{q}.
Unfortunately, due to time constraints we were neither able to implement it nor to
properly evaluate its merits.

10.4.3. Invariance

Inspecting verification conditions for which the SMT-Solver returned “unknown” led
to the observation that every application of the Rule of Adaptation introduces sev-
eral quantifiers and hence makes solving the verification condition significantly harder.
However, often the method call itself was completely irrelevant to the remaining con-
dition. This problem is aggravated by the abundance of method calls introduced by
desugaring operations to method calls.

In order to reduce the burden on the solver, it seems like a promising strategy to
negate the default assumption that every method call is relevant for the property
being verified. In this mindset it makes sense to test method calls for relevance before
allowing them to “clutter” the weakest precondition with their Rule of Adaptation-
induced quantifiers.

Testing a method call v0.m(v1, ..., vn) for relevance with respect to a postcondition
q takes the form of a solver-query for

test ≡ q →WP (v0.m(v1, ..., vn), q)

If valid, then clearly, the postcondition q is invariant over the method call and can
hence also serve as its precondition. The Alternative Weakest Precondition Calculus
WPC ′ applying this strategy would hence replace the clause for method calls with

• WPC ′(v0.m(v1, ..., vn), q) =

{
q if test

WPC(v0.m(v1, ..., vn), q) otherwise

Again, although manually applying this strategy to verification conditions for which
Z3 returned “unknown” sometimes had positive effects, due to time constraints we
were not able to implement and properly evaluate this strategy.
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In this chapter, the concepts developed previously will be demonstrated on a number
of case studies. First, in order to demonstrate that the Hoare logic described in Chap-
ter 4.5 and in particular the verification tool implementing it enable the verification
of real dynamically typed programs, Section 11.1 will apply it to a small example that
was chosen to violate static typing rules and that could hence not be realized in a stat-
ically typed language without rewriting it significantly. Also, we will show that the
concept of Interactive Type Inference allows not only to verify the type safety of typ-
ical dynamically typed programs (Section 11.2), but also sufficies for rather involved
typing problems like in our Evaluator Example (Section 11.4). Functional Correctness
proofs will be given for a small example chosen to demonstrate the merits of our Layer
of Abstraction in Section 11.3 as well as the Evaluator Example (Section 11.4).

11.1. Dynamic Typing

In order to show how our logic and tool are able to verify the type-safety of programs
that would not be accepted by a static type checker, we chose the simple example
depicted in Figure 11.1. While its type safety problem boils down to path sensitivity
and could thus be solved also by advanced type inference algorithms, most statically
typed languages do not use a path sensitive algorithm for reasons of scalability. It
can hence be considered a typical dynamically typed program. Also, since the type
inference algorithm described in Section 2.1.3 is not able to establish type safety on
its own, it is well-suited to demonstrate the interaction between our Program Logic
and the Interactive Type Inference.

Although it does not look like it, there are plenty of method calls hidden in this
example. Remember that the operation + in line 11 is desugared to a call to a method
m+ on their first operand (x in this case) and that constants like 5 are desugared
to quite a few constructor- and method calls (see Figure 2.1). To make type safety
non-obvious, we give the following assumptions about these methods:

{N(v0, n0) ∧ N(v1, n1)}v0.m+(v1){typesafe ∧ N(r, n0 + n1)}
{S(v0, s0) ∧ S(v1, s1)}v0.m+(v1){typesafe ∧ S(r, s0s1)}

So + is a typesafe operation when applied to numerics (where is denotes addition)
and strings (where is denotes concatenation), but we do not know anything about
applications to mixed operands (adding a string to a numeric or the other way around).

Since a path-insensitive type inference (like the one described in Section 2.1.3 when
not using trusted assumptions) would merge the abstract states resulting from both
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1 method num_or_string(b)

2 requires JbK ∈ {boolean}
3 ensures typesafe
4 {

5 i f b then
6 x = y = 5

7 e l se
8 x = "foo"; y = "bar"

9 end;
10 assert (JxK ∈ {num} ∧ JyK ∈ {num}) ∨ (JxK ∈ {string} ∧ JyK ∈ {string});
11 x + y

12 }

Figure 11.1.: A simple dynamically typed program

branches at the end of the conditional, it would consider both variables x and y as
of type {num, string} and thus has to raise a type error as it could not exlude the
possibility of a mixed-type application of the operation + in line 11.

However, adding the assertion in line 10 resolves this problem, as it contains exactly
the information that the type inference algorithm needs to establish type safety of the
operation in line 11. At the same time, the assertion can be automatically established
by our verification tool that is based on the Tagged Weakest Precondition Calculus
given in Section 10.2. We have hence shown above program to be type-safe. The source
code of this case study as well as all files neccessary to reproduce the verification can be
found in the folder case studies/dynamic-typing in the supplementary material.

11.2. Coerce Protocol

The coerce protocol is a mechanism used throughout the Ruby standard library. It is
fundamentally linked to dynamic typing as it significantly complicates the application
of static typing even to the most trivial expressions of the programming language
such as a + b. We hence consider it an essential benchmark for our typing technique
since failing in this respect would entail failing to be applicable to dynamically typed
languages like Ruby.

The mechanism serves to allow the extension of infix operators (+, ∗,−, etc) to user-
defined data-types. Like many other pure object-oriented languages, Ruby desugars
infix operators to method calls. This allows for user-defined data types to also support
them by implementing these methods. However, note that this is only the case for
expressions of the form a + b where a is an instance of the user-defined data-type,
but does not work for expressions of the form b + a whenever b is an instance of
a type defined elsewhere (for instance in the standard library). Since especially for
commutative operations like addition, these two expressions should be equivalent, this
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limitation is often perceived as inconvenient and unintuitive.
The coerce protocol as used in the Ruby standard library offers a solution to this

problem. Instead of implementing the operation + as

method op+(other) {

B+ /* the actual addition */

}

it is implemented as

c la s s num {

method op+(other)

{

i f other is_a? num then
B+ /* the actual addition */

e l se
t = other.coerce(self);

t.first () + t.second ();

end
}

}

hence bringing a second method coerce() into play. This method is meant to convert
the operands into suitable data-types before applying the actual operation. It allows
for converting both operands as well as for reversing their order. Consider the following
user-defined data-type implementing elements of a Galois field. Such a Galois field
or Finite field GFp for some prime number p, contains p elements 0, ..., p − 1. With
the operations addition, subtraction, multiplication and division (all modulo p), GFp
satisfies all field axioms.

c la s s Galois {

method init(element , prime) {

@element = element.mod(prime );

@prime = prime;

self

}

method add(other) {

i f other is_a? numeric then
assert JotherK ∈ {numeric};
res = @element + other;

assert JresK ∈ {numeric};
new Galois(res , @prime)

e l se
i f other is_a? Galois then

assert JotherK ∈ {Galois};
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res = @element + other.element ();

assert JresK ∈ {numeric};
new Galois(res , @prime)

e l se
t = other.coerce(self ,new tuple(null , nul l ));
t.first ().add(t.second ())

end
end

}

method element () {

@element

}

method multiply(other) {

i f other is_a? numeric then
assert JotherK ∈ {numeric};
res = @element * other;

assert JresK ∈ {numeric};
new Galois(res , @prime)

e l se
i f other is_a? Galois then

assert JotherK ∈ {numeric};
res = @element * other.element ();

assert JresK ∈ {numeric};
new Galois(res , @prime)

e l se
l = other.coerce(self , new tuple(null , nul l ));
l.get (0). multiply(l.get (1))

end
end

}

method coerce(other , tuple) {

tuple.set_first(nul l );
i f other is_a? Galois then

tuple.set_first(other)

e l se
i f other is_a? numeric then

assert JotherK ∈ {numeric};
tuple.set_first(new Galois(other , @prime ))

e l se
typeerror

end
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end;
tuple.set_second(self);

tuple

}

method toString () {

@element.toString () + " mod " + @prime.toString ()

}

}

with a standard library implementing the coerce protocol, this implementation allows
not only for new Galois(2,3) + 5 and new Galois(2,3) + new Galois(1,3),
but also for 5 + new Galois(2,3).

While this flexibility and extensibility is clearly desirable, the downside is that a
static type system usually fails to determine the return type for operations imple-
mented this way. The reason for this is twofold: For one, most type systems fail to
handle the type-distinctions introduced by dynamic type checks (is_a?). However,
there are specialized type systems for dynamically typed languages like occurrence
typing [79] that are able to handle this. The second reason is that operations like +
are typically used quite often within a program and when extending their applicability
to multiple data-types like in the example, it is quite likely that these occurrences
differ in the data-types involved. Since in the presence of dynamic type checks it is
important to distinguish these calls in order to calculate precise results for each of
them, typing larger programs using the coerce protocol also requires context sensitiv-
ity. Additionally, since all operations call the same coerce-method, the coerce protocol
requires a context-depth of at least two, which is a requirement hardly met by type
inference algorithms in common use.

Verification

The blue assertions in above listing are sufficient to establish type safety by means
of the type inference algorithm outlined in Section 2.1.3 using them as trusted as-
sumptions. Note that these assertions can be trivially established using the following
information:

• The instance variable @element of class Galois is of type numeric,

• {Jv0K ∈ {numeric} ∧ Jv1K ∈ {numeric}}v0.op+(v1){JrK ∈ {numeric}}, and

• {Jv0K ∈ {numeric} ∧ Jv1K ∈ {numeric}}v0.op∗(v1){JrK ∈ {numeric}}

While the first can be established by the type inference algorithm itself, the latter
two are derivable from the method contracts of op+ and op∗. The source code and all
files neccessary to reproduce this verification can be found in the folder case studies/
coerce-protocol of the supplementary material.
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11.3. In-Place Value Switching

This case study was taken from the Master Thesis of Reinhard Kluge [46]. A Trans-
lation to dyn yields the following program:

assert x = x′ ∧ y = y′;
x = x + y;

y = x - y;

x = x - y;

assert x = y′ ∧ y = x′;

The rationale behind this short program is to swap the values of the variables x
and y without using a third (temporary) variable. Kluge [46] could show that this is
correct whenever the values referenced by x and y are of a data-type that adheres to
the axioms for abelian groups with respect to the operations + and −.

Axioms for abelian groups:

∀a, b, c : G

•a+ b = b+ a (Commutativity)

•(a+ b) + c = a+ (b+ c) (Associativity)

•a+ 0 = 0 + a = a (Neutral Element)

•∃(−a) : G • a+ (−a) = 0 (Inverse Elements)

The operation − is then defined as a− b ∆
= a+ (−b).

In the context of dyn, this means that above program should be correct as long
as the objects referenced by x and y support methods m+ and m− that satisfy above
axioms.

Verification (Using the Layer of Abstraction)

Under the assumption that x and y are of type integer (which implements elements
of Z, which form an abelian group), we can verify above program using the Layer of
Abstraction. Every program step can be handled by the rule PURE ASGN and its
weakest precondition can hence be calculated using backward substitution as shown
below:

assert x̂ = x′ ∧ ŷ = y′;
assert (x̂ + ŷ)− ((x̂ + ŷ)− ŷ) = y′ ∧ ((x̂ + ŷ)− ŷ) = x′;
x = x + y

assert x̂− (x̂− ŷ) = y′ ∧ (x̂− ŷ) = x′;
y = x - y

assert x̂− ŷ = y′ ∧ ŷ = x′;
x = x - y

assert x̂ = y′ ∧ ŷ = x′;
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The only interesting case in this proof is the rule of consequence at the very begin-
ning, just like in the statically typed variant considered by Kluge. Since the Layer of
Abstraction reduces this verification condition to a statement about integers, it can
easily be established using Z3, thus proving the program correct. Another interesting
case in this respect is the type-independent generalization of this verification as pro-
posed by Kluge: When replacing the operations + and − by uninterpreted functions
and axiomatizing them with above axioms for abelian groups, Z3 is still able to proof
the verification condition. However, in this case the correctness proof is much more
general: It not only applies for the case of x and y being of type integer, but for
all data-types supporting the operations + and − such that their instances form an
abelian group.

We feel that this generalization lends itself well to the polymorphic nature of dynam-
ically typed programs. Some ideas as to how it could contribute to a more modular
verification of such programs can be found in Section 13.2.

Verification (Without the Layer of Abstraction)

When attempting to verify this program without the Layer of Abstraction, not only
do we have to use the mapping predicate Z to map the variables x and y to integers
before attempting any arithmetic on them, but also must we refrain from using the
convenient rule PURE ASGN, thus handling + and − as ordinary method calls. Since
method calls are handled using the Rule of Adaptation, as a very first step we need to
establish

{x− y = y′ ∧ y = x′} x = x - y {x = y′ ∧ y = x′}

using the Rule of Adaptation. However, as it turns out, Z3 already returns “un-
known” for the resulting verification condition of this very first step (whose trans-
lation to SMT-LIB2 can be found in Appendix D). We conclude that verifying the
above program without the Layer of Abstraction is not possible due to incomplete-
ness of Z3. Hence using type information in the Layer of Abstraction seems to be a
good strategy to significantly reduce the burden our verification places on the SMT
solver when verifying dyn programs. The dyn source code as well as all other
files necessary for reproducing both types of verification can be found in the folder
case studies/in-place value switching of the supplementary material.

11.4. Nested Lists as Abstract Syntax Trees

To demonstrate how the techniques developed enable the convenient verification of dy-
namically typed programs despite hard typing problems, we will proof the evaluator
example from Section 8.1 both type-safe and correct. Figure 11.3 shows all annota-
tions1 necessary to prove that calc() derives a given term’s value. The data structure
used to model parse-trees is depicted in Figure 11.2.

1Again, all recursive predicates can instead be expressed using quantification over arrays, at the
expense of readability (see Section 10.3)
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OP ADD

VAR "x" VALUE 1

Figure 11.2.: Nested lists are used to model parse trees of arithmetic expressions. Ex-
emplary structure for the expression x+ 1.

Verification (using the Layer of Abstraction)

Type safety: One can focus on the verification of type safety by replacing the post-
condition of method calc() by JrK ∈ {numeric}. The given invariant then enables
deriving the assertions in lines 23, 26, 29, and hence a proper typing of the remaining
program. The invariant can be established directly from the definition of parsetree2().
With the types of env (M) and r (N) known, their mapping can be automated. The
complex ad-hoc data structure tree is given the (imprecise) type L (∼ N 7→ O) and its
elements hence need manual mapping. These mappings are encapsulated in predicates
(valuetree2 , vartree3 , optree5 ) and can furthermore be ignored.

The verification conditions for establishing the type safety assertions are then as
follows:

(TS1) line 23: Inv ∧ parsetree2 (t̂ree, ênv) ∧ t̂ree[0] = ̂V ALUE → valuetree1 (t̂ree),

(TS2) line 27: Inv ∧ parsetree2 (t̂ree, ênv) ∧ t̂ree[0] = V̂ AR→ vartree2 (t̂ree, ênv),

(TS3) line 31: Inv ∧ parsetree2 (t̂ree, ênv) ∧ t̂ree[0] = ÔP → optree2 (t̂ree, ênv).

Establishing the postcondition generates the following verification conditions:

(TS4) line 23: valuetree1 (t̂ree)→ Jt̂ree[1]K ∈ {numeric},

(TS5) line 27: vartree2 (t̂ree, ênv)→ Jênv[t̂ree[1]]K ∈ {numeric},

(TS6) line 31: optree2 (t̂ree, ênv)→ parsetree2(t̂ree[2], ênv),

(TS7) line 31: optree2 (t̂ree, ênv)→ parsetree2(t̂ree[3], ênv).

Note that since JnullK ∈ {numeric} holds, we do not have to take care about the
cases where calc() returns null and can hence remove the assertions in lines 35 and 39.
Given the postcondition and the assertions in lines 23, 26, 29 as trusted assumptions,
type safety can then be established using the type inference algorithm described in
Section 2.1.3.

The invariant Inv and all verification conditions could be verified using Z32. We
hence conclude that our Evaluator Example is type-safe.

2In order to verify (TS3) with Z3, we had to break the recursion by replacing the recursive calls to
parsetree2() in the definition of optree5() by true. However, since the very same call to optree5
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1 def valuetree2 (t : L, n : N)
∆
= N(t[0], V̂ALUE) ∧ N(t[1], n);

2 def valuetree1 (t : L)
∆
= ∃n : N • valuetree2 (t, n);

3 def vartree3 (t : L, e : M, x : S)
∆
= N(t[0], V̂AR) ∧ S(t[1], x) ∧ e[x] 6= null

4 def vartree2 (t : L, e : M)
∆
= ∃x : O • vartree3 (t, e, x);

5 def optree5 (t : L, e : M, op : N, l : L, r : L)
∆
= N(t[0], ÔP) ∧ N(t[1], op) ∧ L(t[2], l) ∧

6 parsetree2 (l, e) ∧ L(t[3], r) ∧ parsetree2 (r, e);

7 def optree2 (t : L, e : M)
∆
= ∃op : N, l : L, r : L • optree5 (t, e, op, l, r);

8 def parsetree2 (t : L, e : M)
∆
= valuetree1 (t) ∨ vartree2 (t, e) ∨ optree2 (t, e);

9 def treeval3 (tree : L, env : M, n : N)
∆
=

10 valuetree2 (tree, n) ∨
11 ∃x : S • vartree3 (tree, env , x) ∧ N(env [x], n) ∨
12 ∃op, nl, nr : N, l, r : L • optree5 (tree, env , op, l, r) ∧ treeval3 (l, env , nl) ∧ treeval3 (r, env , nr) ∧
13 op = ÂDD→ n = nl + nr ∧ ...;
14

15 invariant Inv ≡ ∀t : L, e : M • parsetree2 (t , e)→
16 t[0] = V̂ALUE→ valuetree1 (t) ∧ t[0] = V̂AR→ vartree2 (t , e) ∧ t[0] = ÔP→ optree2 (t , e);
17

18 method calc(env , tree)

19 requires parsetree2 (t̂ree, ênv)

20 ensures treeval3 (t̂ree, ênv, r̂)
21 {

22 i f tree [0] == VALUE then

23 assert valuetree1 (t̂ree); tree [1]

24 e l se
25 i f tree [0] == VAR then

26 assert vartree2 (t̂ree, ênv); env[tree [1]]

27 e l se
28 i f tree [0] == OP then

29 assert optree2 (t̂ree, ênv);
30 i f tree [1] == ADD then
31 calc(env , tree [2]) + calc(env , tree [3])

32 e l se
33 i f ...

34 e l se
35 assert false; nul l
36 end
37 end
38 e l se
39 assert false; nul l
40 end
41 end
42 end
43 }

Figure 11.3.: Correctness proof for the evaluator example using the Layer of Abstrac-
tion
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Functional Correctness: The type information from our type safety proof allows
for identifying numerous pure expressions (tree[1], env[tree[1]], tree[1] == ADD,
etc.). Establishing the specified property for the first two branches then only requires
applying PURE EXPR. The conditional in line 5 can be handled by PURE COND.
The verification conditions for functional correctness are as follows:

• (VC1 – 3) ≡ (TS1 – 3) from above.

• (VC4) line 23: valuetree1 (t̂ree)→ treeval3(t̂ree, ênv, ̂̂tree[1]),

• (VC5) line 27: vartree2 (t̂ree, ênv)→ treeval3(t̂ree, ênv,
̂

ênv[ ̂̂tree[1]]),

• (VC6 – 7) ≡ (TS6 – 7) from above.

• (VC8) treeval3( ̂̂tree[2], ênv, nl)∧treeval3( ̂̂tree[3], ênv, nr)∧̂̂tree[0] = ÔP∧̂̂tree[1] =

ÂDD → treeval3(t̂ree, ênv, nl + nr),

• (VC9) parsetree2(t̂ree, ênv) ∧ t̂ree[0] 6= ̂V ALUE ∧ t̂ree[0] 6= V̂ AR ∧ t̂ree[0] 6=
ÔP → false,

• (VC10) parsetree2(t̂ree, ênv) ∧ t̂ree[0] = ÔP ∧ t̂ree[1] 6= ÂDD → false.

Unfortunately, it turns out that Z3 is not able to handle the encoded version of the
recursive predicate treeval3() as it returns “unknown” even for the most trivial formu-
las containing it (the SMT-LIB translation for treeval3 can be found in Appendix D).
However, manually unfolding its recursive version and generalizing the verification
conditions by replacing all further occurrences by an uninterpreted function enabled
Z3 to solve them. Only (VC8) (of the form A → C) needed to be split into two
implications A → B and B → C for some assertion B. The original (VC8) then fol-
lows by transitivity of implication. We conclude that the method calc() satisfies its
specification.

The source code of this case study as well as all files neccessary to reproduce
the verification of type safety and functional correctness can be found in the folder
case studies/evaluator-example in the supplementary material.

is used both by parsetree2() on the left of the implication and by optree2() on the right of it,
reflexivity of implication ensures that this manipulation does not alter the result. To verify (TS6)
and (TS7), we had to replace the recursive definition of parsetree2 by an uninterpreted function.
However, as this proof shows that the implication holds regardless of the concrete definition of
parsetree2, it also holds for this particular definition.
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As stated initially, dyn and stat are simplified model languages tailored to provide
insight into the issue of dynamic typing in program verification. In order to bridge
the gap to real-world dynamically typed languages, we will in this chapter consider
a number of extensions to the developed formalisms that brings them closer to their
real-world counterparts.

12.1. Non-Fatal Typeerrors

Unlike dyn, real-world dynamically typed languages often have non-fatal type errors,
meaning they are implemented as exceptions and hence recoverable. To model this
kind of behaviour, we need to introduce a means of catching and handling such errors
into the programming language dyn. Consider the following syntax extension for
expressions:

e ::= try S catch typeerror S end | try S catch fail S end

with the following operational semantics for these expressions (so-called try-catch-
blocks):

• 〈S1, σ〉
∗→ final〈τ〉

(OP-TRY-TS-SAFE)
〈try S1 catch typeerror S2 end, σ〉 → final〈τ〉

• 〈S1, σ〉
∗→ fail〈τ〉

〈S′, σ〉 → fail〈S′, τ〉
where S′ ≡ try S1 catch typeerror S2 end

(OP-TRY-TS-FAIL)

• 〈S1, σ〉
∗→ typeerror〈σ′〉 〈S2, σ

′〉 ∗→ final〈τ〉
(OP-TRY-TS-CATCH)

〈try S1 catch typeerror S2 end, σ〉 → final〈τ〉

• 〈S1, σ〉
∗→ final〈τ〉

(OP-TRY-FS-SAFE)
〈try S1 catch fail S2 end, σ〉 → final〈τ〉

• 〈S1, σ〉
∗→ typeerror〈τ〉

〈try S1 catch fail S2 end, σ〉 → typeerror〈try S1 catch fail S2 end, τ〉
(OP-TRY-FS-TYPEERROR)

• 〈S1, σ〉
∗→ fail〈σ′〉 〈S2, σ

′〉 ∗→ final〈τ〉
(OP-TRY-FS-CATCH)

〈try S1 catch fail S2 end, σ〉 → final〈τ〉
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Hence, try-catch blocks allow recovery from typeerrors or failures raised by the
statement S1, in which case they execute S2. They thus enrich dyn by providing the
ability to construct typesafe/failsafe programs from non-typesafe/non-failsafe subpro-
grams.

It turns out that while our Tagged Hoare Logic provides a good framework to reason
about such constructs that cross the traditional border given by the notions of cor-
rectness, in its current form it is not able to express the neccessary rules as it misses
one crucial ingredient: tag-negation.

Negated tags allow expressing error-properties as opposed to safety-properties:

{p}S{¬typesafe}

Denotes the fact that the program S will surely yield a typeerror whenever executed
in a state satisfying p.

To allow this, we extend our set of tags by also adding negations:

BaseT ags = {terminates, typesafe, failsafe}

T ags = BaseT ags ∪ {¬tag | tag ∈ BaseT ags}

and define the corresponding selectors as

S¬terminates(ρ) =

{
{¬⊥} if ρ is finite

{} otherwise

S¬tag(ρ) =


{¬ t (tag)} if ρ = C0, ..., Cn ∧ Cn 6=t (tag)〈σ〉
{σ} if ρ = C0, ..., Cn ∧ Cn =t (tag)〈σ〉
{} otherwise

for all other tags. From these definitions, it immediately follows that the tagged
Hoare triple

{true}S{tag ∧ ¬tag}

is false for any program S and tag tag.
Within a Tagged Hoare Logic with negated tags, we are then able to give the fol-

lowing rules for reasoning about try-catch blocks:
RULE: TRY-TS-SAFE

{p}S1{typesafe ∧ tags ∧ q}
{p}try S1 catch typeerror S2 end{typesafe ∧ tags ∧ q}

RULE: TRY-TS-CATCH

{p}S1{¬typesafe ∧ tags ∧ r} {r}S2{typesafe ∧ tags ∧ q}
{p}try S1 catch typeerror S2 end{typesafe ∧ tags ∧ q}

RULE: TRY-FS-SAFE

{p}S1{failsafe ∧ tags ∧ q}
{p}try S1 catch fail S2 end{failsafe ∧ tags ∧ q}
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RULE: TRY-FS-CATCH

{p}S1{¬failsafe ∧ tags ∧ r} {r}S2{failsafe ∧ tags ∧ q}
{p}try S1 catch fail S2 end{failsafe ∧ tags ∧ q}

12.1.1. Soundness

We extend the inductive argument from Section 5.1 with the following cases in the
induction step:

• TRY-TS-SAFE:

Partial correctness: Assuming ` {p}S1{typesafe∧ q} for some statement S1

and assertions p and q, then by the induction hypothesis |= {p}S1{typesafe∧q}
also holds. Hence executing S1 from a state σ |= p will not yield a typeerror
and if it terminates, it will do so in a final state σ′ with σ′ |= q. Hence, the above
operational rule OP-TRY-TS-SAFE is the only one applicable and the statement
S ≡ try S1 catch typeerror S2 end thus satisfies the same specification.

Termination: According to OP-TRY-TS-SAFE, when S1 terminates, so will
S, which satisfies the conclusion of TRY-TS-SAFE.

Failsafety: In case S1 fails, the operational rule OP-TRY-TS-FAIL is applicable
and S will also fail, which satisfies the conclusion of TRY-TS-SAFE.

• TRY-TS-CATCH:

Partial correctness: Assuming ` {p}S1{¬typesafe∧r} and ` {r}S2{typesafe∧
q} for some statements S1 and S2 and some assertions p,r and q. Then by the
induction hypothesis, |= {p}S1{¬typesafe ∧ r} and |= {r}S2{typesafe ∧ q}
also hold. Hence, when executing S1 from a state σ |= p, it will surely yield
a typeerror in a state σ′ |= r. Thus the above operational rule OP-TRY-
TS-CATCH is the only one applicable and S2 will be executed from σ′. By
|= {r}S2{typesafe ∧ tags ∧ q} we know that when it terminates, it will do so
without raising typeerrors and in a state σ′′ |= q. Thus OP-TRY-TS-CATCH is
indeed applicable and – if S1 and S2 terminate – then executing the statement
S ≡ try S1 catch typeerror S2 end from σ will also terminate in the state
σ′′ |= q, which was the desired conclusion.

Termination: According to OP-TRY-TS-CATCH, if S1 typeerrors and S2

terminates, S will also terminate, which satisfies the conclusion of TRY-TS-
CATCH.

Failsafety: Same argumentation as for Termination.

• TRY-FS-SAFE: Same argument as for TRY-TS-SAFE, only with the roles of
fail and typeerror reversed.

• TRY-FS-CATCH: Same argument as for TRY-TS-CATCH, only with the roles
of fail and typeerror reversed.

We conclude that this extension preserves soundness of our Hoare logic.
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12.1.2. Completeness

We extend the inductive argument from Section 5.2.6 by adding the following cases to
the induction step:

• S ≡ try S1 catch typeerror S2 end:

Partial correctness: Assume |= {p}S{typesafe∧q}. Then by the expressivity
of the assertion language, there is an assertion p′ such that {p′}S1{typesafe}
and {¬p′}S1{¬typesafe} hold. Now, according to the operational semantics,
for {p}S{q} to be true, {p ∧ p′}S1{typesafe ∧ q} must hold. Also, by the
expressivity of the assertion language, there must be an intermediate assertion
r such that {p ∧ ¬p′}S1{¬typesafe ∧ r} and {r}S2{q} both hold. Now the last
two are just the premises of the TRY-TS-CATCH rule. An application of said
rule hence derives {p ∧ ¬p′}S{typesafe ∧ q}. Also, {p ∧ p′}S1{typesafe ∧ q}
is the premise of the rule TRY-TS-SAFE. An application of said rule hence
derives {p ∧ p′}S{typesafe ∧ q}. An application of the DISJ rule then derives
{(p∧p′)∨(p∧¬p′)}S{typesafe∧q} and an application of the CONS rule derives
the desired result.

Typesafety: Try-catch blocks are always typesafe. However, the typesafe-tag
could be omitted using an application of the CONS rule when desired.

Termination & Failsafety: TRY-TS-SAFE and TRY-TS-CATCH allow de-
riving other tags as long as they are derivable for S1 and S2 (which they are
when true according to the induction hypothesis).

• S ≡ try S1 catch fail S2 end: Just like the last case, only with failsafe instead
of typesafe.

We conclude that this extension preserves the proof-theoretic properties of our Hoare
logic.

12.2. Optional Variables

Since type information in dynamically typed languages is attached to values rather
than variables, there is no need to declare the latter. Instead, in these languages,
variables are created upon their first assignment and accessing a non-existing variable
yields a runtime type error.

In order to model this behaviour in dyn, we introduce the special value � of type
O for marking variables as “not yet created” and modify the operational semantics of
variable access to cause typeerror when accessing them:

• 〈v, σ〉 → final〈σ[r := σ(v)]〉 where v ∈ V and σ(v) 6= �

• 〈v, σ〉 → typeerror〈v, σ〉 where v ∈ V and σ(v) = �
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Additionally, the operational semantics of begin local-blocks and object creation
must be modified to instantiate all local- and instance variables to � instead of null .

Now that dyn in this respect behaves just like its real-world counterparts, we also
need to modify our axiomatic semantics to reason about it. First, we need to add the
special value � as a constant to the logical expressions of our assertion language AL.

l ::= �

Then, we replace the rules for variable access with the following:

AXIOM: VAR VAR-TAG

{p[r := v]}v{p} {typesafe→ v 6= �}v{tags}

Note: includes the case of v ≡ self .

AXIOM: IVAR IVAR-TAG

{p[r := self .@v]}@v{p} {typesafe→ self .@v 6= �}@v{tags}

and the rules for begin local-blocks by
RULE: BLCK

{p}−→u−→u :=
−→
t
−→
� ;S{tags ∧ q}

{p} begin local −→u :=
−→
t ;S end{tags ∧ q}

where VL ∩ free(q) = ∅, {−→u } ⊂ VL and {−→t } ⊆ VL ∪{null}, {−→u } = ((var(S)∪ change(S))∩
VL) \ {−→u } and

−→
� is a sequence of � constants of fitting length.

Finally, we redefine the initial value initC .@v for all instance variables @v ∈ VI \
{@c} of objects of all classes C ∈ C to be � instead of null , which is used in the
substitution for object creation.

Only minor modifications are required to apply our soundness and completeness
arguments to this modified Hoare logic and modified operational semantics (see [27]).
In order to also adapt the Layer of Abstraction and the Interactive Type Inference to
this modified setting, we introduce a new class C� ∈ C and stipulate �.@c = θC�

.
Tracking uninitialzed variables is possible by adopting the following rule for typing

method declarations:

•
FG(S) =

1 2

GS

FG(method C.m(p1, ..., pn){S}) =
Mn
C.m 1 2 RnC.m

f
GS

with f
∆
= λσ̂.

⊔
{f ′C(Cnm) | C ∈ Cnm(a0)} where f ′C(σ̂) = σ̂[self, p1, ..., pn,

−→v :=

{C}, σ̂(a1), ..., σ̂(an),
−→
C�], {−→v } = ((var(S)∪ change(S))∩VL) \ {−→p } and

−→
C� is

a sequence of C�-values of fitting length.
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And instead of ⊥ using the value �̂ (mapping all variables to {�}) as extremal value
when instantiating the monotone framework. Basically, this is the same modification
as in the operational semantics: when the modified BLCK rule and initC initialize all
local- and instance variables to �, the type inference algorithm has to consider them
as instances of C�. In order to ensure the additional constraint that variables must
be assigned before access, we furthermore need to redefine the least precise typesafe
typing ty†.

Definition 30. For a program π, the least precise type-safe typing ty†π is a typing
where

• for every method call e0.m(e1, ..., en)

ty†π(e0•)(r) = {C ∈ C | C supports method m of arity n},

• in the case of stat, for every operation e1 ⊕ e2 of type T1 × T2 7→ T,

ty†π(e1•)(r) = T1, ty
†
π(e2•)(r) = T2

• for every conditional or while loop with condition e

ty†π(e•)(r) = {bool},

• for all accesses to local variables u

ty†π(◦u)(u) = C \ {C�},

• for all accesses to instance variables @v

ty†π(◦@v)(self .@v) = C \ {C�}, and

• for all other program locations L ∈ Locπ

ty†π(L) = >.

By definition, a program π with optional variables is type-safe iff it has a sound1 typing
ty that is precise enough to establish type safety (ty v ty†π).

Using this definition, we have a type inference algorithm that statically prevents
this additional kind of type error. Like its predecessor, it is sound but incomplete.
We hence extend the typing assertions from Chapter 8 with literals of the form u = �
and self .@v = � and observe that the Galois Connection between typings and typing
assertions can also be trivially adapted to accomodate these additional values.

1if a method call, conditional or while loop is unreachable, sound typings may assign the type ⊥ to
its receiver / condition.
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In summary, the entire formal development in this thesis can be trivially adapted
to languages featuring optional variables and all results carry over to this case as well.

A related feature that is commonly found in dynamically typed languages2 are in-
trospective tests for variable existence. Since these are equivalent to

try x; true catch typeerror false end

they can be emulated in dyn by combining the extensions for Non-Fatal Type errors
and Optional Variables.

12.3. Method Update

Languages combining class-based object orientation with dynamic typing (like Ruby
and Python) often support a feature we call “method update” allowing for programs
to override methods at runtime – often it is not even required for the arity of the new
method to match the old version.

Transformation: As there can only be finitely many methods and only finitely many
method update statements in a finite program, it is possible to match them against
each other and regard each method update as an additional “version” of the method
to be updated. Then, for each method C.m in the original program having multiple
versions, the corresponding dyn program must have a global state gC.m for storing the
information which version is the current one. Since dyn programs usually do not have
any global state, we accomplish this by introducing a class Global encapsulating this
state information and passing a reference g to its only instance into each and every
method in the program. Second, let there be versions C.m1, ..., C.mk of a method
C.m with arities n1, ..., nk within the original program, then the function aC.m(n) =
{C.mi | ni = n} groups all versions having the same arity. For each arity n, such that
|aC.m(n)| > 0, the corresponding dyn program contains a method C.mn with arity n
whose body is structured as follows

i f g.version_C_m () == 1 then
# body of C.m1 here

e l se
i f g.version_C_m () == 2 then
# body of C.m2 here

e l se
...

e l se
typeerror

end
end

end

2Ruby: defined?(x), Python: x in locals(), JavaScript: typeof x !== ’undefined’
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where aC.m(n) = {C.m1, C.m2, ..., C.ml}.
Then, we only have to treat the updating of a method C.m as setting its global state

to a new value v by g.set_version_C_m(v).
Furthermore, when translating every method call to a method C.m of arity n in the

original program as a call to C.mn in the corresponding dyn program, the result is
behaviourally equivalent3.

12.4. The Connection to Higher-Order Programs

Another feature of functional languages that is often found in dynamically typed lan-
guages are closures (e.g. JavaScript functions or ruby blocks). Closures are charac-
terized by two properties: Firstly, they allow passing around (a reference to) code as
data and secondly, they capture the values of all free variables within their body upon
creation.

Transformation: In dyn, we can emulate both properties by introducing a new
class Cc for each closure c. This class defines a method do() of the same arity as the
closure and whose method body is just c’s body with all free variables replaced by
corresponding instance variables as well as a constructor init taking all variables as
arguments that occur free in c’s body and storing their value in corresponding instance
variables. Now, the closure definition c = λp1, ..., pn.S can be replaced by

c = new Cc(v1, ..., vk),

where v1, ..., vk are all variables occurring free in S and each call c(e1, ..., en) can be
replaced by the method call

c.do(e1, ..., en).

The resulting program is behaviorally equivalent4. Note that a finite program can only
contain a finite number of closures and this replacement hence will only introduce a
finite number of additional classes Cc.

12.4.1. Discussion

Note that above transformation for introducing closures into dyn is mere syntactic
sugaring. Since closures are a feature typically found in functional programming lan-
guages and intimately linked to so-called Higher-Order Programming, this observation
suggests that dynamically typed object-oriented languages like dyn are capable of
emulating higher-order behavior. In fact, passing references to code is quite common
in dynamically typed programs as the following example illustrates

c la s s list {

method sum(zero) {

3verifying this would of course require formalizing a version of dyn with method update
4verifying this would of course require formalizing a version of dyn with closures
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i f self.empty? then
zero

e l se
self.head() + self.tail (). sum(zero)

end
}

}

the method sum(zero) uses the operator + to sum up all elements of a list. In
functional languages one would say that the operator + is folded over the list. Just
like in functional languages, + does not have a predetermined meaning, but can be
thought of as an “argument”. Of course it is not an actual argument by itself, but
rather “attached” to the list elements, but the effect is the same: sum() is a higher-
order method that is useful both to sum up lists of integers and to concatenate lists
of strings.

Note that our program logic currently does not allow for higher-order reasoning.
For closed programs where we know all the closures and all possible meanings of the
operator +, we can reason about programs using closures or methods like sum(zero)
using a case distinction when calling the do()-method of a closure or the +-operator.
However, adopting an open-world assumption will require higher-order reasoning. We
will discuss this issue further in Chapter 13.

12.5. Reflection and Introspection

While in statically typed languages, reflection (similar to typecasts) provides a way
to circumvent the type system and to work around the restrictions it imposes, in a
dynamically typed language, calling any method on any receiver is the default modus
operandi. Reflection hence boils down to nothing more than normal dynamically typed
method calls.

Under the closed-world assumption, introspection also does not provide any addi-
tional benefits as any run-time test of the form “does the object x support a method
m of arity n?” is equivalent to x is a? I for some pre-computable set of class names
I ⊆ C and questions of the form “does the object x have an instance variable @v?”
can already be emulated in dyn as discussed at the end of Section 12.2.

In summary, the only way how the combination of reflection and introspection can
provide additional expressiveness for dynamically typed languages is in an open-world
setting where it allows for calling methods whose names were not known at the time
of verification (enabling for instance a test framework to call all methods whose names
begin with “test” in a certain class). Unfortunately, as will be discussed in detail
in Chapter 13, our current formal development is not yet applicable to open-world
settings as the issue of Modularity needs to be addressed before such questions may
be properly studied.
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Part V.

Further Avenues of Research

“We can only see a short distance ahead,

but we can see plenty there that needs to be done.”

– Alan Turing
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13. Modularity

It was stated already that the program logic as developed in Section 4.5 is only appli-
cable to closed programs – that is, programs whose classes and methods are all known
at the time of verification. It is hence not possible to prove a program in multiple
parts – the canonical use case for this being libraries – where one usually wishes to
verify each library only once and independent of any program using it and then use
the properties guaranteed by this proof in the verification of any program using the
library.

Being non-modular, our program logic unfortunately does not support this and hence
requires programs to be verified together with their libraries. Of course, it would still
be possible to provide method contracts, invariants and assertions in the source code
of a library for use in these proofs, however, in order to achieve completeness, these
would occasionally need to be modified to proof particular programs correct.

In the following sections, we will discuss two different kinds of modularity, one that is
common to all program logics (Section 13.1) and one that is particular to dynamically
typed programming languages (Section 13.2). In both cases, we will give examples as
to why verifying programs in multiple parts induces incompleteness and suggest some
strategies that might help in mitigating the problem.

13.1. Reasoning about Unknown Types

In this section, we will discuss a form of modularity that is independent of typing.
The canonical example are libraries which exist in both statically and dynamically
typed languages. The problem our program logic has in this respect is due to the way
it handles method calls. In order to calculate the weakest precondition of a method
call, it is necessary to know the set of all methods matching name and arity of the
call in order to construct a big disjunction over all these possibilities (see the rule
for method calls in Section 10.2). When using this methodology to verify a method
contract {p}v0.m(v1, ..., vn){q}, the set of known classes C and their methods M (the
environment of the call) are implicitly assumed to be identical to the ones present
in every call to the method. Should the method be called in a different environment
(which is the case when a program uses the library), it is possible that the set of
methods used in the proof is not appropriate any more, which can break the logic’s
completeness.

Consider the following example: Under the assumption that the class C1 is the
only one implementing a method ex() of arity 0, and this implementation satisfies the
specification

{Jv0K ∈ {C1}}v0.ex(){terminates},
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our program logic is able to derive the following contract:

method example(x)

requires JxK ∈ {C1}
ensures terminates

{

x.ex()

}

Given this contract, it is possible to derive

{true}self .example(new C1()){terminates}

However, in an environment with an additional class C2 also implementing the method
ex() of arity 0, but instead satisfying the specification

{Jv0K ∈ {C2}}v0.ex(){typesafe},

it is not possible to derive

{true}self .example(new C2()){typesafe}

without modifying the proof of the method example. For this reason, proving this
program in parts, where the method example is contained in one part and the call
self.example(new C2()) in another, would induce incompleteness.

The classical way to mitigate this problem is to introduce some way of stating as-
sumptions about classes and their methods that are unknown at the time of verification
and when composing multiple such parts, checking that the actual implementations
meet the stated assumptions. In statically typed, object-oriented languages, it is cus-
tomary (see f.i. [50]) to use the inheritance hierarchy for this purpose as type systems
for OO languages usually feature subtyping and hence allow only child classes to take
their parent’s place. Phrased differently, this means that whenever a variable / pa-
rameter is of a type C, then the type system ensures that all objects that the variable
will ever reference to will be instances of a class C ′ such that C ′ is a subclass of C.
Hence, in such a setting, ensuring that our correctness proof remains valid boils down
to a discipline called behavioral subtyping.

Definition 31 (Behavioral Subtyping). Whenever a class C ′ is a subclass of another
class C, then

• C ′ must support all methods of C in the same arity.

• for every method m(p1, ..., pn) with method contract {p}C.m(p1, ..., pn){q} in C
and method contract {p′}C ′.m(p1, ..., pn){q′} in C ′, p′ → p and q → q′ must
hold.

While the first requirement is called subclassing and enforces that no type errors
can be caused by substituting an instance of C ′ for an instance of C, the second is
much stronger and enforces that the method implementations in the child class C ′
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must satisfy the same contracts that were given in the parent class C. To see this,
observe that from every method contract in the child class {p′}· {q′} one can derive
the respective one in the the parent class {p}· {q} by an application of the CONS rule.
Behavioral subtyping thus enforces the Liskov Substitution Principle [54], stating that
a child class can strengthen the contracts of its parent, but may not weaken them.

Hence, in such a setting, it would be sufficient to give a class C whose method
contracts state the minimal requirements necessary for our code to be correct and
verify our code in terms of this type C using its method contracts. Due to subtyping,
we can then be sure that regardless of any unknown classes, whenever our method is
called, the parameter passed will be of type C or a subtype thereof and will hence
satisfy the requirements we based our verification on.

13.1.1. Interfaces

Unfortunately, in a dynamically typed language, such a construction would not be of
much use since

• There is no type system enforcing subtyping.

• Inheritance is usually used as mere code reuse and implies neither subclassing
nor behavioural subtyping – and hence the Liskov Substitution Principle does
not in general hold for such languages.

However, the Java type system offers a more flexible mechanism called Interfaces,
that can be repurposed to provide modularity also for dynamically typed languages.
In Java, an interface is a class whose methods do not have method bodies. Just like a
class, an interface constitutes a type. The inheritance relation for interfaces is called
“implements” and is established nominally by adding the names of all implemented
interfaces to a class’s declaration. For a class C to implement an interface I, subclassing
is required. However, contrary to inheritance between classes, a class may implement
multiple interfaces.

To adapt this idea for dyn, we also introduce classes that do not have method bodies
and call them interfaces. Contrary to Java, however, our interfaces contain method
contracts in addition to the method declaration (name and arity of the method). Also,
we do not extend the class declaration to list all implemented interfaces, but instead
introduce an additional top-level keyword

π ::= C implements I

stating the fact that class C implements interface I. Like in Java, a class may im-
plement any number of interfaces. However, in addition to subclassing, we require
behavioral subtyping.

Then, we are able to use the very same line of modular reasoning like in statically
typed languages, but without requiring inheritance along the way. Any program that
interacts with values of a type that is not known at verification time may introduce
an interface representing this type and capturing all assumptions about the behavior
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of its method calls. After verifying the program in terms of these assumptions (the
method contracts in the interface), one can compose it with an actual implementation
for this type and only has to verify behavioral subtyping between the implementation
and the interface.

Alternatively to the implements statements introduced above, it would be conceiv-
able to infer the mapping C implements I automatically by checking the result of an
(interactive) type inference for instances of a class C that were passed into methods
verified in terms of an interface I.

13.2. Algebraic Properties

Since contrary to statically typed ones, dynamically typed programming languages do
not restrict the types of method arguments by default, dynamically typed programs
often exhibit additional reuse patterns to those known under static typing. For exam-
ple, most methods in dyn could be called polymorphic independent of whether this
was intended by their author or not. For example, as the operation ≤ is desugared to
a method call, any sorting algorithm written in dyn for lists of numerics would auto-
matically also be applicable to lists of any type that supports this operation. Note,
however, that this would only be correct if the operation is indeed an order relation
(transitivity is exploited by most sorting algorithms).

However, when verifying a sorting algorithm operating on lists of numerics in our
program logic, we need to use the mapping predicate N in order to express that a list
element e is smaller or equal than another one e ≤ e′, which is necessary for instance
to express sortedness of the list. Now, recall that the definition of N() entails that
the argument of type object is an instance of class numeric, hence making our proof
only applicable when the algorithm is in fact used to sort lists of numerics. Should a
program use the algorithm polymorphically, we would be required to derive multiple
proofs for it – one for each type of list elements, even though the underlying argument
stays the same. For this reason it would not only be esthetically pleasing, but also
of practical significance to make our logic more modular in respect of allowing for its
proofs to be more type-independent.

One problem certainly encountered, however, will be that Hoare logic is not well-
suited to express properties like transitivity of an order relation. While the statement

∀a, b, c : N • a ≤ b ∧ b ≤ c→ a ≤ c

is a first-order sentence and hence expressible in our assertion language, it denotes the
transitivity of the order relation ≤ of the natural numbers. When trying to apply it
to objects of some type X, i.e.

∀a, b, c : O • JaK ∈ {X} ∧ JbK ∈ {X} ∧ JcK ∈ {X} → (a ≤ b ∧ b ≤ c→ a ≤ c)

the sentence is not well-typed any more since the type system of AL does not allow
applying ≤ to operands of type O. Also, we don’t want ≤ to have some fixed inter-
pretation, but to denote a call to the method op≤. Method calls, however only exist
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in dyn programs and not in AL assertions. The only appropriate place for them is
hence in the middle of Hoare Triple. Unfortunately, properties like Transitivity1 are
not properties of a single method call, but relate multiple (in this case 3) different calls
to the same method (each having different arguments) to each other.

While due to time constraints this problem will have to remain open in this thesis,
there are several ideas for approaching it that we document in this section as they
might be useful for future researchers in the area.

13.2.1. Algebraic Specifications

The problem outlined above has been noted before and – like often in academia –
there are other approaches for specifying program behavior that are better suited for
this kind of properties. Transitivity is just one example of a class of properties known
as algebraic properties, meaning they can be expressed as boolean combinations of
equations over terms using the functions to be specified. “Functions” here is inten-
tionally plural, as so-called algebraic specifications often specify one function is terms
of many others – a property that makes them ideally suited for data structures, which
is why they are foremost used for the specification of so-called “algebraic data-types”.
However, as the terminus “function” already indicates, algebraic specifications were
developed for functional programming languages and are hence not ideally suited for
dealing with side-effects. There is, however, work on applying them to imperative,
object-oriented languages [74].

Integrating Algebraic Specifications into our Hoare logic hence poses multiple chal-
lenges: Assuming that we can specify an Interface as an Algebraic Data-type, then

1. How do we verify a method against this Interface?

2. How do we verify that a class conforms to the Interface?

3. How are we dealing with side-effects?

The first challenge is the simplest one: First we introduce a new data-type in our
SMT-Solver for this Interface. For each method on this data-type, we declare a corre-
sponding uninterpreted function. Then we can translate the algebraic specification of
the data-type directly into assumptions about these uninterpreted functions. Further-
more, we add a mapping-predicate M for our Interface mapping it’s instances to values
of the new data-type. We can also let this mapping uninterpreted (the only guarantee
being that the same object is always mapped to the same value). Now every method
is given a specification of the following form

{M0(v0, v
′
0) ∧ ...Mn(vn, v

′
n) ∧ ∧ r′ = fm(v′0, ..., v

′
n)}v0.m(v1, ..., vn){Mn+1(r, r′)}

where Mi are appropriate mapping predicates (for the argument and return types) and
fm is the uninterpreted function corresponding to the method m. Now when a method

1This is the case for most algebraic properties (for instance Symmetry, Commutativity and Associa-
tivity also relate multiple calls to the same method with each other).
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to be verified calls methods on instances of the Interface type, then these method
specifications will ensure that the verification conditions of the method will contain
the corresponding uninterpreted functions. If the theorem prover is able to validate
the conditions using only the assumptions derived from the algebraic specification,
then the method is correct for all data types satisfying this specification – we hence
have a notion of correctness that is independent of concrete data types. Note that the
case study in Section 11.3 was verified in a similar way.

So the next question (corresponding to the second challenge) is: When does a con-
crete class satisfy an algebraic specification (and hence “implements” the Interface)?
Since algebraic specifications are sets of First-Order sentences containing equations,
the question boils down to “How can we verify an equational specification using Hoare
Logic?”.

This is best explained using an example: Let us suppose our Algebraic Specification
requires commutativity:

∀a, b : O • JaK ∈ {X} ∧ JbK ∈ {X} → a+ b = b+ a (Commutativity)

Since in dyn, the operation + is desugared to a method call, we have

∀a, b : O • JaK ∈ {X} ∧ JbK ∈ {X} → a.op+(b) = b.op+(a) (Commutativity)

13.2.2. Fusing Hoare Triples

First, we need to decide on an interpretation for the equality-sign (=). For simplicity,
let us suppose that the method op+ returns objects encoding numeric values. Then
the equation above can be expressed using two Hoare Triples

{p1}a.op+(b){N(r, x)} and {p2}b.op+(a){N(r, x)}

where x is a logical variable of type N supposed to denote the same numeric value
in both postconditions and p1 and p2 are appropriate preconditions. While it is not
possible in standard Hoare Logic to link the value of x between 2 Hoare Triples, the
Weakest Precondition Calculus gives us a way to turn Hoare Triples into First-Order
statements:

WP (a.op+(b),N(r, x)) ∧WP (b.ap+(a),N(r, x))

Note that the two weakest preconditions were conjoined. This way, they become
part of the same statement and the occurrences of the variable x on both sides refer to
the same variable – and hence the same value. Hence the resulting statement denotes
the set of states from which both calls to op+ yield the same numeric value. In the
case of addition of natural numbers the WP would usually yield something like this:

N(a, a′) ∧ N(b, b′) ∧ a′ + b′ = x ∧ N(b, b′′) ∧ N(a, a′′) ∧ b′′ + a′′ = x

which can be simplified to
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N(a, a′) ∧ N(b, b′) ∧ a′ + b′ = b′ + a′

and hence obviously holds for all a and b encoding natural numbers since the addition
of natural numbers is commutative. When substituting it for the equation a.op+(b) =
b.op+(a) in above First-Order statement we get

∀a, b : O • JaK ∈ {X} ∧ JbK ∈ {X} → N(a, a′) ∧ N(b, b′) ∧ a′ + b′ = b′ + a′

which is a valid first-order sentence. In general, interpreting equations as two Hoare
Triples with matching postconditions, using the Weakest Precondition Calculus to fuse
them like this and substituting the result for the respective equation yields a statement
that is valid iff the equations holds in every relevant start state (the set of start states
to consider may be restricted using an implication like in the example).

13.2.3. Quantification over computable functions

A second technique that may be used to encode algebraic properties into Hoare Triples
is quantification over computable functions. Note that quantification over functions is
only possible in second-order logic as the set of natural numbers N is countably infinite
and the set of functions from N to N is hence uncountably infinite. However, the set
of computable functions is smaller than the set of (arbitrary) functions. A well-known
fact from recursion theory is that there is a µ-recursive function (called the “universal
function” and denoted by u) such that for every µ-recursive function f ,

∃n : N • ∀x : N • u(n, x) = f(x)

holds. There, n is the Gödel-Number for f and the mapping from µ-recursive functions
to their Gödel-Numbers in effect gives a bijection between natural numbers and com-
putable functions, which are hence countable. Also, this can be extended to arbitrary
arities using Gödelization (see Section 1.5.5). Since u is a µ-recursive function and
we know from Theorem 2 that we can express all µ-recursive functions in AL, we can
assume u to be part of AL without loss of generality. Furthermore, we introduce the
following abbreviation for quantifying over computable functions using u:

Qf : F • a ≡ Qnf : N • a[u(nf , x)/f(x)]

for Q ∈ {∀,∃} where F should denote the set of computable functions. This way it
is possible to quantify over computable functions in Weak Second-Order Logic with
Arithmetic and hence in AL.

We can then equate µ-recursive functions and methods:

EQ ≡ ∃f≤ : F • {M0(v0, v
′
0) ∧M1(v1, v

′
1) ∧ r′ = f≤(v′0, v

′
1)}v0.op≤(v1){Mr(r, r

′)}

where Mi are appropriate mapping predicates for argument types and result type of
op≤ and the Hoare Triple should again be understood as the Weak Second-Order
sentence WP maps it into. Now expressing transitivity is trivial:

EQ ∧ ∀a, b, c : N • f≤(a, b) ∧ f≤(b, c)→ f≤(a, c)
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While in theory this is an extremely flexible technique and allows both to specify meth-
ods in terms of other methods and verifying methods against algebraic specifications,
in practice one can expect it to place a heavy burden on the theorem prover as the
ability to simulate µ-recursive function in logic is the main reason Weak Second-Order
Logic with Arithmetic is undecidable.

13.3. Higher-Order Behaviour

As outlined in Section 12.4, dynamically typed object-oriented programs are able to
emulate higher-order behavior. It might hence be necessary to extend our program
logic for higher-order reasoning in order to provide modularity also for these cases (see,
for instance, [73]). However, in all cases we considered so far, algebraic specifications
turned out to be sufficient. Consider again the example from Section 12.4:

c la s s list {

method sum(zero) {

i f self.empty? then
zero

e l se
self.head() + self.tail (). sum(zero)

end
}

}

An algebraic specification for the method sum would be

∀ x,a : O, l : L
• [].sum(x) = x

• cons(a,l).sum(x) = a + l.sum(x)

Note that algebraic specifications can a) be recursive and b) allow specifying a
method in terms of other methods (which includes those implicitly passed along with
its arguments – like the method + on the list elements), thus allowing higher-order
specifications like the above. Note also that this specification closely follows the struc-
ture of the recursive implementation and is hence trivial to verify. Furthermore, given
this specification and using the techniques discussed in the last section, establishing
both

{true} sum([1, 2, 3]) {N(r, 6)}, and

{true} sum([”foo”, ”bar”]) {S(r, “foobar′′)}

is straightforward, hence realizing both type-independence and verification of higher-
order behavior.
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“The concept of progress acts as a protective mechanism

to shield us from the terrors of the future.”

– From “Collected sayings of Muad’Dib” by the Princess Irulan - Dune

In this thesis we studied the problem of verifying dynamically typed programs.
Apart from the fact that these programming languages do not use a static type checker
to ensure type safety and hence require the verification to solve it, we could not find
any reason why this interesting type of programming language has been largely ignored
by the verification community during the last several decades. While the traditional
Hoare logic is not applicable to these programs, the reason for this lies solely in implicit
assumptions used to enable the optimizations discussed in Chapter 4. As could be
shown in Section 4.5, these assumptions can be readily removed at the price of losing
the respective optimizations and leading to a generalization of traditional (statically
typed) Hoare logic that we call dynamically typed Hoare logic, a proof system for
functional program correctness that is applicable to both statically and dynamically
typed programs. As Chapter 5 demonstrates, our dynamically typed Hoare logic offers
the same proof-theoretic strength as traditional (statically typed) Hoare logic although
proving its soundness and (relative) completeness requires some adaptations.

In Part III of this thesis, we studied the differences between statically and dynam-
ically typed Hoare logic from a more practical perspective to discover that the opti-
mizations were obviously added to the former as a means to offer a certain amount of
convenience as well as to allow for optimizations on the side of the automated theorem
prover checking the verification conditions. As both aspects are important for practi-
cal applications of program verification, we developed an approach for mitigating the
drawback dynamically typed languages incur in this respect by incorporating a type
inference algorithm into our program logic and using the derived type information to
also provide optimized proof rules for dynamically typed programs. As could be shown
in Chapters 7-8, not only does the combination of a type inference with our program
logic provide a way to significantly reduce the effort of proving type safety, but also
does the derived type information enable verifying dynamically typed programs with
all the convenience known from traditional Hoare logic (see Chapter 7).

The techniques developed were demonstrated on a number of case studies (see Chap-
ter 11).

We feel that our goal of closing the gap between statically typed and dynamically
typed programming languages with respect to verification has been fully met at least
from a theoretical perspective since sound and (relative) complete Hoare logics can
now be constructed for such languages by using the transformational approach (see
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below). Whether or not this goal has also been met from a practical perspective is
currently hard to say, since due to time constraints, the preliminary implementation
of our verification tool based on the concepts mentioned does not yet allow for a
conclusive evaluation. However, given

1. (relative) completeness of interactive type inference,

2. the ease in which type safety of the case study coerce protocol could be estab-
lished, and

3. the fact that the optimized proof rules in the Layer of Abstraction are basically
identical to their statically typed counterparts,

we would be very surprised to find a dynamically typed program causing verification
problems that do not arise when verifying a statically typed equivalent.

Unfortunately, the fact that they were largely ignored for decades has created further
impediments for applying verification techniques to dynamically typed programming
languages: First and foremost the lack of program logics for real-world examples of
such languages. To this end, the Transformational Approach was introduced by Apt,
De Boer, Olderog and De Gouw [6] as a way to ease the creation of sound and complete
program logics, which usually is quite an involved endeavor1. The basic idea is to reuse
the work invested in proving soundness and completeness of a similar program logic by
adapting these results by means of inter-language transformations. This works very
well between program logics for similar programming languages and in some cases even
between quite different languages. For instance, [6] describes such a transformation
from an object-oriented language to mere recursive procedures with arrays.

Unfortunately, prior to this thesis, the transformational approach was not applicable
to dynamically typed programming languages, as

1. no sound and complete program logic had been published for any dynamically
typed language, and

2. it is not possible to automatically transform dynamically typed programs (i.e.
dyn) into statically typed programs (i.e. stat) due to the additional requirement
of statically verifiable type-safety in the latter case.

Fortunately, the Tagged Hoare logic presented in Section 4.5 improves upon this situ-
ation and makes the transformational approach henceforth also applicable to dynam-
ically typed languages. Hopefully, this will contribute to the availability of program
logics also for real-world dynamically typed languages.

1In the case of dyn, it took several month to study all the relevant literature and devise the proof
in Section 5.2.
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14.1. Future Work

Several avenues for further research have already been described in Part V of this
thesis. However, there are also several immediate issues not related to Modularity and
Algebraic Datatypes:

• Implementation: Providing a full-fledged implementation for the verification of
dyn programs would allow for using dyn as an intermediate verification lan-
guage for dynamically typed languages that do not yet have their own sound
and complete axiomatic semantics.

• Evaluation: Such an implementation could also be used to verify a larger number
of programs and properties and hence provice insights into the extent to which
the practical issues arising in the verification of dynamically typed programs have
already been adequately addressed by introducing Interactive Type Inference and
the Layer of Abstraction.

• Improvements: Several small improvements mentioned in this thesis like the
Detection of Ill-Defined Method Specifications or the alternative strategy for
handling method calls in the WPC could then also be evaluated for assessing
their merrit.

• Generalization: The basic idea of Interactive Type Inference can quite likely
be generalized to arbitrary program analyses. Such an integration of program
analysis and program verification might be useful to provide a smooth transition
from the former push-button technique to the latter (relative) complete formal
method.

• Performance: It would be interesting to study to what extent the type informa-
tion provided by consensual typing can be used to fuel performance optimizations
in modern just-in-time-compilers/interpreters and whether it is sufficient to allow
full compilation.

• Alternative: The case studies (Chapter 11) revealed several incompleteness is-
sues in current state-of-the-art automated theorem proving technology (see Ap-
pendix D) that were astounding both in amount and extent. It might hence be
worthwhile to invest some time to explore the alternative of interactive theorem
proving further, be it only to reach a fair comparison of the two paradigms.

• Extension: It might be interesting to allow for the tags of Tagged Hoare Logic to
contain additional information. In this way it might be possible to incorporate
other Hoare logic extensions like footprints [13] as tags.

• Comparison: As mentioned in Chapter 9, the relationship between tagged Hoare
Logic and the approach from Huisman and Jacobs [43] is currently unclear. An
investigation in this direction might be worthwhile as it might not only provide
insights into the compositionality of correctness notions, but might also lead to
a consolidation of the two approaches.
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A. Substitutions

Analogous to the state update operation [u := e], the program logic uses 3 different
kinds of substitutions on assertions.

1. Substitution of local variables p[x := e]
The substitution for local variables (or multiple local variables in parallel) is straight-

forward.
It is defined by induction on the structure of p:

• y[x := e] ≡

{
e if x = y

y otherwise
(includes y ≡ self)

• v[x := e] ≡ v

• true, false, 1, 2, ... (constants - unaffected)

• l.@v[x := e] ≡ l[x := e].@v

• if l then l1 else l2 end[x := e] ≡ if l[x := e] then l1[x := e] else l2[x :=
e] end

• l1 = l2 ≡ l1[x := e] = l2[x := e]

• l1 < l2 ≡ l1[x := e] < l2[x := e]

• JlK ∈ {C1, ..., Cn} ≡ Jl[x := e]K ∈ {C1, ..., Cn}

• l1 ∧ l2 ≡ l1[x := e] ∧ l2[x := e]

• l1 ∨ l2 ≡ l1[x := e] ∨ l2[x := e]

• (¬l1)[x := e] ≡ ¬(l1[x := e])

• (∃y : T.l1)[x := e] ≡

{
∃y : T.l1 if x = y

∃y : T.l1[x := e] otherwise

• (∀y : T.l1)[x := e] ≡

{
∀y : T.l1 if x = y

∀y : T.l1[x := e] otherwise

2. Substitution of instance variables p[l.@v := e]
The substitution for instance variables needs to take aliasing into account. For this,

it is handy to have conditionals in the assertion language.
It is defined by induction on the structure of p:
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• l[l.@v := e] ≡ l for l ≡ x, v, self , n, true, false (constants - unaffected)

• l′.@v′[l.@v := e] ≡

{
if l′ = l then e else l′.@v′ end if @v = @v′

l′.@v′ otherwise

• if l′ then l1 else l2 end[l.@v := e] ≡

if l′[l.@v := e] then l1[l.@v := e] else l2[l.@v := e] end

• l1 = l2 ≡ l1[l.@v := e] = l2[l.@v := e]

• l1 < l2 ≡ l1[l.@v := e] < l2[l.@v := e]

• Jl′K ∈ {C1, ..., Cn} ≡ Jl′[l.@v := e]K ∈ {C1, ..., Cn}

• (l1 ∧ l2)[l.@v := e] ≡ l1[l.@v := e] ∧ l2[l.@v := e]

• (l1 ∨ l2)[l.@v := e] ≡ l1[l.@v := e] ∨ l2[l.@v := e]

• (¬l1)[l.@v := e] ≡ ¬l1[l.@v := e]

• (∃y : T.l1)[l.@v := e] ≡ ∃y : T.l1[l.@v := e]

• (∀y : T.l1)[l.@v := e] ≡ ∀y : T.l1[l.@v := e]

Lemma 11 (Substitution of instance variables). For all logical expressions s and t,
all assertions p, all instance variables @u and all proper states σ

σ(s[@u := t]) = σ[@u := t](s) (A.1)

σ |= p[@u := t] iff σ[@u := σ(t)] |= p. (A.2)

Proof. By induction on the structure of s and p. 2

3. Substitution for object creation p[x := newC ]
The substitution for object creation calculates the weakest precondition of an object

creation statement. For a slightly simpler case without classes, [5, page 221] defines
a substitution [x := new]. This substitution, however, is only applicable to so-called
“pure” assertions. Fortunately, except for conditionals, our logical expressions satisfy
all requirements and [5, page 223] gives a Lemma that allows eliminating conditionals
like ours by substituting them for logically equivalent expressions. We can thus use
the substitution and only need to modify it slightly to reflect the addition of classes.

The substitution is then defined by induction on the structure of p:

• l[x := newC ] = l for l ≡ self , null, v, x, n, true, false

• l.@v[x := newC ] ≡

{
initC .@v if l ≡ x
l.@v otherwise

• (JxK ∈ {C1, ..., Cn})[x := newC ] ≡ C ∈ {C1, ..., Cn}
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• (l1 = l2)[x := newC ] ≡ l1[x := newC ] = l2[x := newC ] if l1 6≡ x and l1 6≡
if...end and l2 6= x and l2 6≡ if...end

• (x = l2)[x := newC ] ≡ false if l2 6≡ x and l2 6≡ if...end (also the symmetric
case)

• (x = x)[x := newC ] ≡ true

• (if l0 then l1 else l2 fi = l′)[x := newC ] ≡ if l0[x := newC ] then (l1 = l′)[x :=
newC ] else (l2 = l′)[x := newC ] end

• if l′ then l1 else l2 fi[x := newC ] ≡ if l′[x := newC ] then l1[x := newC ] else l2[x :=
newC ] fi

Note: conditionals can always be moved outwards to be the outermost operation
in an assertion.

• l1 < l2 ≡ l1[x := newC ] < l2[x := newC ]

• (l1 ∧ l2)[x := newC ] ≡ l1[x := newC ] ∧ l2[x := newC ]

• (l1 ∨ l2)[x := newC ] ≡ l1[x := newC ] ∨ l2[x := newC ]

• (¬l1)[x := newC ] ≡ ¬l1[x := newC ]

• (∃y : T.l1)[x := newC ] ≡ ∃y : T.l1[x := newC ] ∨ l1[x/y][x := newC ]

• (∀y : T.l1)[x := newC ] ≡ ∀y : T.l1[x := newC ] ∧ l1[x/y][x := newC ]
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B. Simplification Rules

Definition 32. The Simplifier simp : Asrt 7→ Asrt recursively applies the following
rewrite rules

• simp(p ∧ false) ≡ false

• simp(false ∧ p) ≡ false

• simp(true ∧ p) ≡ p

• simp(p ∧ true) ≡ p

• simp(p ∨ true) ≡ true

• simp(true ∨ p) ≡ true

• simp(false ∨ p) ≡ p

• simp(p ∨ false) ≡ p

• simp(false→ p) ≡ true

• simp(p→ true) ≡ true

• simp(true→ p) ≡ p

• simp(p→ false) ≡ ¬p

• simp(∀x : τ • p) ≡ p if x 6∈ free(p)

• simp(∃x : τ • p) ≡ p if x 6∈ free(p)
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Identifying pure expressions (pure : Ts × Exprd 7→ B)

pure(e)
∆
= τ(e) defined, τ(e) = inf ({T | pure(T, e)})

pure(O,null)
∆
= true,

pure(T,u)
∆
= JuK ∈ T ∧Ψ(T ) = T ∧ safeT(u) (includes the case of self)

pure(T,@x)
∆
= Jself .@xK ∈ T ∧Ψ(T ) = T ∧ safeT(@x)

pure(B, e is a? C)
∆
= pure(O, e)

pure(B, e1 == e2)
∆
= ∃T ∈ Ts • pure(T, e1) ∧ pure(T, e2)

pure(T, e0.m(e1, ..., en))
∆
=

∃T0, ...,Tn • pure(Ti, ei) for i ∈ Nn ∧Ψ(T0.m(T1, ...,Tn)→ T) defined

pure(T,new C(e1, ..., en))
∆
=

∃T1, ...,Tn • pure(Ti, ei) for i ∈ N1
n∧Ψ(Ψ({C}).init(T1, ...,Tn)→ T) defined

pure(T,u := e)
∆
= false

pure(T,@v := e)
∆
= false

pure(T,while e do S od)
∆
= false

pure(T, if e then S1 else S2 fi)
∆
= pure(B, e) ∧ Si ≡ ei ∧ pure(T, ei) for i ∈ {1, 2}

Translation of pure expressions into logical expressions (Ψ : Ts × Exprd 7→ LExp)

Ψ(e)
∆
= Ψτ(e)(e), ΨT(x)

∆
= x̂

ΨO(null)
∆
= null,

ΨT(e0.m(e1, ..., en))
∆
= l[v0, ..., vn := ΨT0

(e0), ...,ΨTn(en)]

where pure(Ti, ei) for i ∈ Nn and Ψ(T0.m(T1, ...,Tn)→ T) = l.

ΨT(new C(e1, ..., en))
∆
= l[v1, ..., vn := ΨT1

(e1), ...,ΨTn(en)]

where pure(Ti, ei) for i ∈ N1
n and Ψ(Ψ({C}).init(T1, ...,Tn)→ T) = l.

ΨB(e1 == e2)
∆
= ΨT(e1) = ΨT(e2) where pure(T, ei) for i ∈ {1, 2}.

ΨB(e is a? C)
∆
= JΨO(e)K ∈ {C}

ΨT(if e then e1 else e2 fi)
∆
= if ΨB(e) then ΨT(e1) else ΨT(e2) fi

Soundness

Proof. The Axiom PURE EXPR can be established by induction over the structure
of the pure expression e, using the guarantees provided by pure(e). In the cases for
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variables, pure(x) implies safeT(x) for some type T. In the case for method calls, we
assume

{p[r̂ := Ψ(T0.m(T1, ...,Tn)→ T]}u0.m(u1, ...,un){p}

with Ti = τ(ui) for all i ∈ Nn to be established for all methods in Mε (which is precisely
the meaning of “correspondence between methods and operations with respect to the
mapping Ψ” in Chapter 7).

The rules PURE ASGN, PURE COND, PURE LOOP and PURE METH can then
be derived by combining the axiom PURE EXPR with the dyn rules for ASGN,
COND, LOOP and METH respectively. For instance

AXIOM: PURE ASGN
PURE EXPR

{p′[r̂ := Ψ(e)]}e{tags ∧ p′} with p′ ≡ p[x := r]
ASGN

{p[x̂, r̂ := Ψ(e),Ψ(e)]}x := e{tags ∧ p}
where pure(e), τ(e) v τ(x).

RULE: PURE COND

{p ∧Ψ(e)}S1{tags ∧ q}
CONS

{p ∧ r̂↔ Ψ(e) ∧ r̂}S1{tags ∧ q}
CONS

{r ∧ B(r, true)}S1{tags ∧ q}

{p ∧ ¬Ψ(e)}S2{tags ∧ q}
CONS

{p ∧ r̂↔ Ψ(e) ∧ ¬r̂}S2{tags ∧ q}
CONS

{r ∧ B(r, false)}S2{tags ∧ q}
PURE EXPR

{p ∧Ψ(e)↔ Ψ(e)}e{tags ∧ r}
{r ∧ B(r, true)}S1{tags ∧ q}
{r ∧ B(r, false)}S2{tags ∧ q}

CONS

{p}e{tags ∧ r}
{r ∧ B(r, true)}S1{tags ∧ q}
{r ∧ B(r, false)}S2{tags ∧ q}

COND (simplified)

{p} if e then S1 else S2 fi {tags ∧ q}
where r ≡ p ∧ r̂↔ Ψ(e), pure(e), r 6∈ free(p) and τ(e) = B.
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D. Unsovable Verification Conditions

We give here the SMTLIB2 code of several verification conditions that came up in our
experiments, but could not be solved using the SMT-Solver Z3. They are listed here
in the hope that they might be useful for the automatic theorem proving community.
With each verification condition we will point out the precise meaning of “could not
be solved”.

1. SMTLIB2 - translation of the predicate treeval3 from Section 11.4.
Even when simplifying the mapping predicates mapN and mapL using uninterpreted

functions, even trivial formulas containing the predicate treeval3() cause Z3 to return
“unknown”.

; tree recursion

(declare -const MAX_LEVEL Int)

( assert (= MAX_LEVEL 4))

(define -fun pow2 ((n Int)) Int

(ite (= n 0) 1

(ite (= n 1) 2

(ite (= n 2) 4

(ite (= n 3) 8

(ite (= n 4) 16

32

))))))

(define -fun s-level ((l Int)) Int

(- (pow2 l) 1)

)

(define -fun size -level ((l Int)) Int

(pow2 l)

)

(define -fun index -of ((level Int) (index Int)) Int

(+ (s-level level) index)

)

(define -fun child -a ((level Int) (index Int) (level -child Int)

(index -child Int)) Bool
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(and (= level -child (+ level 1))

(= index -child (* index 2))

))

(define -fun child -b ((level Int) (index Int) (level -child Int)

(index -child Int)) Bool

(and (= level -child (+ level 1))

(= index -child (+ (* index 2) 1))

))

(define -fun valuetree2 ((t MyList) (n Int)) Bool

(and

(exists ((o2 Obj))

(and

(select_list t 0 const_value)

(select_list t 1 o2)

(map_N o2 n)

)

)

)

)

(define -fun vartree3 ((t MyList) (e MyMap) (x Obj)) Bool

(and

(select_list t 0 const_var)

(select_list t 1 x)

(not (maps_to e x Null))

)

)

(define -fun optree ((t MyList) (l Obj) (r Obj) (op Obj)) Bool

(and

(select_list t 0 const_op)

(select_list t 1 op)

(select_list t 2 l)

(select_list t 3 r)

)

)

(define -fun treeval3 ((t MyList) (e MyMap) (n Int)) Bool

(exists ((a (Array Int MyList )) (res (Array Int Int)))

(and

(= (select a (index -of 0 0)) t)

(= (select res (index -of 0 0)) n)
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(forall ((i Int) (li Int))

(=>

(and (<= 0 li) (< li MAX_LEVEL) (<= 0 i)

(< i (size -level li)))

(exists ((lj Int) (ll Int) (rj Int) (rl Int))

(and

(child -a li i ll lj)

(child -b li i rl rj)

(or

(and

(= (select res (index -of li i)) -1)

(= (select res (index -of ll lj)) -1)

(= (select res (index -of rl rj)) -1)

)

(and

(valuetree2 (select a (index -of li i))

(select res (index -of li i)))

(= (select res (index -of ll lj)) -1)

(= (select res (index -of rl rj)) -1)

)

(and

(exists ((x Obj) (v Obj))

(and

(vartree3 (select a (index -of li i)) e x)

(maps_to e x v)

(map_N v (select res (index -of li i)))

)

)

(= (select res (index -of ll lj)) -1)

(= (select res (index -of rl rj)) -1)

)

(exists ((l Obj) (r Obj))

(and

(optree (select a (index -of li i)) l r const_add)

(map_L l (select a (index -of ll lj)))

(map_L r (select a (index -of rl rj)))

(= (select res (index -of li i))

(+ (select res (index -of ll lj))

(select res (index -of rl rj)))

)

)

)

)

)

)
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D. Unsovable Verification Conditions

)

)

)

)

)

an example for such a trivial formula is

(declare -const tree MyList)

(declare -const env MyMap)

(declare -const o Obj)

( assert (select_list tree 0 const_value ))

( assert (select_list tree 1 o))

( assert (map_N o 2))

( assert (treeval3 tree env 2))

The full SMTLIB2 example can be found in the file unsolvable/treeval3.smt in
the supplementary material.

2. First Verification Condition of Case Study “In-Place Value Switching” (Section 11.3)
when verified without the Layer of Abstraction.

The SMTLIB2 translation of the verification condition is as follows:

(declare -const pv_other Obj)

(declare -const pv_res Obj)

(declare -const pv_x Obj)

(declare -const lv_x Int)

(declare -const pv_y Obj)

(declare -const lv_y Int)

( assert (not

(=>

(exists ((lv_x2 Int) (lv_y2 Int))

(and

(map_N pv_x lv_x2)

(map_N pv_y lv_y2)

(= lv_y (- lv_x2 lv_y2))

(= lv_x lv_y2)

)

)

; Rule of Adaptation for x = x - y

(exists ((lv_s Int) (lv_o Int))

(and

(map_N pv_x lv_s)

(map_N pv_y lv_o)
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(> lv_s lv_o)

(forall (( pv_res Obj) (pv_s Obj) (pv_o Obj))

(=>

(map_N pv_res (- lv_s lv_o))

(and

(map_N pv_res lv_y)

(map_N pv_y lv_x)

)

)

)

)

)

)))

when passed to Z3, it returns “unknown”.
The full SMTLIB2 example with all predicate definitions can be found in the file

unsolvable/swap-noLoA.smt in the supplementary material.
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