
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Stochastic Satisfiability Modulo

Theories: A Symbolic Technique for the

Analysis of Probabilistic Hybrid Systems

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenschaften

von

Dipl.-Inf. Tino Teige

Gutachter:

Prof. Dr. Martin Fränzle

Prof. Dr.-Ing. Holger Hermanns

Tag der Disputation: 29. August 2012

Niemals ohne Dich!

Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisor Prof. Dr. Martin
Fränzle for his excellent words of advice and his extraordinary support during all the
steps finally leading to this thesis. He introduced me to the research area of formal
verification of complex systems and sparked my interest in symbolic techniques for the
analysis of probabilistic hybrid systems, the latter becoming the core topic of this thesis.
I particularly appreciate the freedom Martin gave me in organizing my work, and I want
to emphasize all the numerous and oftentimes spontaneous discussions with him about
various questions not only related to science but also to private matters.
I am furthermore very grateful to Prof. Dr.-Ing. Holger Hermanns for the valuable col-

laboration on the fundamentals of the approach of this thesis as well as for his willingness
of being my co-examiner, to Prof. Dr. Ernst-Rüdiger Olderog and Dr. Sibylle Fröschle
for attending my thesis defense as members of the committee, and to my colleagues from
the University of Oldenburg, from the OFFIS Institute for Information Technology, from
the Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (AVACS), and from the European Collaborative Project “Model-
ing, Verification and Control of Complex Systems: From Foundations to Power Network
Applications” (MoVeS) for many fruitful discussions and for the great atmosphere dur-
ing everyday work as well as during project meetings. Especially, I would like to thank
Andreas Eggers, Dr. Christian Herde, Natalia Kalinnik, Stefan Kupferschmid, Karsten
Scheibler, and Dr. Tobias Schubert for jointly developing the iSAT tool which establishes
one central building block of the SiSAT tool presented in this thesis.
My cordial thanks go to my dear colleagues Dr. Christian Herde and Andreas Eggers

for the close and outstanding cooperation during the last years and for the pleasant ac-
tivities outside job. I gratefully acknowledge Christian’s great help to me when I came
to Oldenburg and started my job at university. From him, I learned a lot about satisfia-
bility and constraint solving as well as about predicative encodings of hybrid systems. I
regard highly Andreas’ invaluable technical assistance in performing the experiments of
this thesis, which has saved me several hours of manual effort, namely by mechanizing
the execution of the experiments on the servers as well as the extraction of relevant data
obtained from these experiments.
Last but not least, I am indebted to my family and to my friends for all the good times

we spent together and for the support in bad moments.

Tino Teige
Oldenburg, September 2012

Abstract

In today’s high-tech world, embedded computer systems interacting with technical, phys-
ical, or even biological environments are our permanent companions. While several of
these applications are almost free of risk and just contribute to a better quality of life
such as the use of cellular phones, washing machines, and refrigerators, other embedded
systems operate in a safety-critical context where the health of people might be jeop-
ardized like, for instance, in airplanes, automobiles, and medical devices. It is thus of
utmost importance that embedded and, in particular, safety-critical systems never run
into unsafe situations causing disastrous consequences.

Such real-world safety-critical applications exhibit an intricate system behavior com-
prising discrete computations like of embedded digital controllers, continuous dynamics of
technical environments like the continuous evolution of the temperature, as well as their
interaction by means of sensors and actuators. These systems are commonly known under
the term of hybrid discrete-continuous systems.

When permitting a more realistic view on real-world embedded systems, it becomes
apparent that their dynamics are frequently influenced by randomness. For instance,
the landing maneuver of an airplane is, among others, subject to the wind speed and
wind direction. These physical entities however are controlled by nature and can be
forecast only with uncertainty. That is to say, statements about safe landing maneuvers
should also incorporate stochastic predictions of the evolution of wind. Other sources
of randomness can be found in the hardware itself like unpredictable failures of circuits,
noise in measurements affecting sensors, and actuators missing their setpoints. Such more
realistic systems are referred to as stochastic or probabilistic hybrid systems.

When safety-critical applications are subject to stochastic dynamics, preventing unsafe
situations by design usually is impossible or economically infeasible, such that a residual
risk has to be accepted. The notion of safety in this context is slightly relaxed, requiring
that the probability of reaching the unsafe system states always is below an acceptable
threshold like, for instance, 1h. In order to certify safety of real-world applications,
manual inspection becomes more and more impracticable due to their rapid-growing com-
plexity. This motivates the development of computer-aided certification methods. The
research area dealing with automatic analysis procedures for stochastic and probabilistic
hybrid systems has attracted wide interest in recent years and has yielded diverse analysis
approaches which are chiefly based on simulation or finite-state abstractions.

In this thesis, we pioneer a completely different approach, namely a symbolic tech-
nique for the safety analysis of probabilistic hybrid automata (PHAs) involving a simple
model of randomness, that is, probabilistic events from a finite sample space as is the case
with throwing dice. Our approach builds on bounded model checking (BMC), where the
step-bounded state reachability problem of non-probabilistic hybrid systems is reduced to
the satisfiability problem of logical formulae involving arithmetic constraints. For non-
probabilistic hybrid systems, the latter is a quantifier-free satisfiability modulo theories

VIII

(SMT) problem. To reflect the semantics of PHAs, we extend SMT by existential as
well as randomized quantifiers, the latter known from stochastic propositional satisfiabil-
ity (SSAT). This extension of SMT to stochastic satisfiability modulo theories (SSMT)
facilitates a reduction of probabilistic bounded state reachability of PHAs to the prob-
lem of solving SSMT formulae, being referred to as probabilistic bounded model checking
(PBMC). Completing the symbolic analysis procedure, algorithms for solving SSMT for-
mulae and, moreover, a number of algorithmic enhancements to improve performance in
practice are investigated. This symbolic approach establishes an automatic falsification
procedure for probabilistic safety properties of the shape “the probability of reaching the
unsafe states always is below 1h”.
Motivated by the fact that industrial applications often call for quantitative measures

distinct from classical state reachability probabilities, we further propose a symbolic
method for computing expected values of PHAs, being able to verify probabilistic safety
requirements like “the mean time to failure always is at least 20 minutes”.
We finally suggest approaches that go beyond probabilistic bounded state reachability

but are yet restricted to probabilistic finite-state models. Being based on a generalization
of the logical concept of Craig interpolation, these symbolic procedures aim at the verifi-
cation of probabilistic safety properties like “the probability of reaching the unsafe states
always is below 1h”, on the one hand, as well as of probabilistic stability properties like
“the probability that the system stabilizes within some region always is at least 99.9%”,
on the other hand.
A significant characteristic of the above symbolic approaches is the direct treatment

of concurrency, as well-known from the non-probabilistic case. That is to say, the state
explosion problem, arising from an explicit construction of the product automaton (with
respect to the discrete state space) as in several other analysis approaches, is alleviated,
thus contributing to a better scalability.

Zusammenfassung

In der heutigen hochtechnologisierten Welt sind eingebettete Computersysteme, welche
mit technischen, physikalischen oder sogar biologischen Umgebungen interagieren, unsere
ständigen Wegbegleiter. Während viele dieser Anwendungen nahezu risikofrei sind und
lediglich zu einer besseren Lebensqualität beitragen wie der Einsatz von Mobilfunkte-
lefonen, Waschmaschinen und Kühlschränken, operieren andere eingebettete Systeme in
einem sicherheitskritischen Kontext, in welchem die Gesundheit von Menschen gefährdet
sein könnte, zum Beispiel in Flugzeugen, Automobilen und medizinischen Geräten. Es ist
daher von äußerster Wichtigkeit, dass eingebettete und insbesondere sicherheitskritische
Systeme niemals zu unsicheren Situationen mit desaströsen Konsequenzen führen.

Sicherheitskritische Anwendungen in der realen Welt weisen ein kompliziertes System-
verhalten auf, welches diskrete Berechnungen wie in digitalen eingebetteten Steuerein-
heiten, kontinuierliche Dynamiken der technischen Umgebungen wie die kontinuierliche
Entwicklung der Temperatur sowie deren Zusammenspiel mit Hilfe von Sensoren und Ak-
tuatoren beinhaltet. Diese Systeme werden üblicherweise unter dem Begriff der hybrid
diskret-kontinuierlichen Systeme zusammengefasst.

Erlaubt man einen realistischeren Blick auf eingebettete Systeme der realen Welt, so
wird es augenscheinlich, dass ihre Dynamik häufig dem Zufall unterliegt. Beispielsweise
hängt das Landemanöver eines Flugzeugs unter anderem von der Windgeschwindigkeit
und Windrichting ab. Diese physikalischen Entitäten werden jedoch von der Natur kon-
trolliert und können nur mit Ungewissheit vorhergesagt werden. Aussagen über sichere
Landemanöver sollten daher auch stochastische Vorhersagen über die Entwicklung des
Windes mitberücksichtigen. Andere Quellen von Zufall können in der Hardware selbst ge-
funden werden wie unvorhersehbare Ausfälle von Schaltkreisen, Störungen in den Messun-
gen von Sensoren und Aktuatoren, die ihre Einstellwerte verfehlen. Solche realistischeren
Systeme werden als stochastische oder probabilistische hybride Systeme bezeichnet.

Wenn sicherheitskritische Anwendungen stochastisches Verhalten einschließen, ist das
Vermeiden unsicherer Situationen durch konstruktive Maßnahmen in der Regel unmög-
lich oder ökonomisch nicht realisierbar, so dass ein Restrisiko in Kauf genommen werden
muss. Der Sicherheitsbegriff ist demnach in diesem Kontext leicht abgeschwächt, und
zwar erfordert dieser, dass die Wahrscheinlichkeit des Erreichens unsicherer Zustände im-
mer unterhalb eines akzeptierbaren Schwellwertes liegt, zum Beispiel 1h. Um die Sicher-
heit solcher Anwendungen zu zertifizieren, wird eine manuelle Inspektion aufgrund der
schnell wachsenden Systemkomplexität immer unpraktikabler. Durch diesen Umstand ist
die Entwicklung computergestützter Zertifizierungsmethoden motiviert. Das Forschungs-
gebiet, das sich mit der automatischen Analyse stochastischer und probabilistischer hy-
brider Systeme beschäftigt, ist in den letzten Jahren auf reges Interesse gestoßen und hat
diverse Analyseverfahren hervorgebracht, die vor allem auf Simulation oder Abstraktion
basieren.

In der vorliegenden Arbeit stellen wir einen andersartigen Ansatz vor, nämlich eine sym-

X

bolische Technik zur Sicherheitsanalyse probabilistischer hybrider Automaten (PHAs), die
ein einfaches Modell von Zufall unterstützen, und zwar Zufallsexperimente mit endlich vie-
len Ausgängen, wie es der Fall beim Würfeln ist. Dieser Ansatz knüpft an eine Technik
an, die sich bounded model checking (BMC), also beschränkte Modellprüfung, nennt.
BMC reduziert das schrittbeschränkte Zustandserreichbarkeitsproblem für nichtprobabi-
listische hybride Systeme auf das Erfüllbarkeitsproblem quantorenfreier logischer Formeln,
die arithmetische Ausdrücke umfassen. Letztere Probleme bezeichnet man im Englischen
als satisfiability modulo theories (SMT). Um die Semantik von PHAs widerspiegeln zu
können, erweitert diese Arbeit den Begriff von SMT um existentielle sowie randomisierte
Quantoren, wobei die letztgenannten dem stochastischen propositionalen Erfüllbarkeits-
problem (SSAT) entstammen. Diese Erweiterung von SMT mündet in den neuartigen
Begriff von stochastic satisfiability modulo theories (SSMT) und ermöglicht die Redukti-
on des probabilistischen beschränkten Zustandserreichbarkeitsproblems für PHAs auf das
Problem des Lösens von SSMT-Formeln, was als probabilistic bounded model checking
(PBMC) bezeichnet wird. Um das symbolische Analyseverfahren zu vervollständigen, wer-
den Lösungsalgorithmen für SSMT-Formeln entwickelt und darüber hinaus eine Vielzahl
algorithmischer Optimierungen untersucht, um die Performanz in der Praxis zu verbes-
sern. Dieser symbolische Ansatz begründet ein automatisches Falsifizierungsverfahren für
probabilistische Sicherheitseigenschaften der Art

”
die Wahrscheinlichkeit des Erreichens

unsicherer Zustände liegt immer unterhalb der 1h-Grenze“.
Motiviert durch die Tatsache, dass industrielle Anwendungen häufig nach quantitati-

ven Maßen verlangen, die von klassischen Erreichbarkeitswahrscheinlichkeiten abweichen,
stellt die vorliegende Arbeit des Weiteren eine symbolische Methode zur Berechnung von
Erwartungswerten probabilistischer hybrider Automaten vor, die in der Lage ist, probabi-
listische Sicherheitsanforderungen der Gestalt

”
die mittlere Dauer bis zum Systemausfall

beträgt mindestens 20 Minuten“ zu verifizieren.
Der Schlussteil der Arbeit widmet sich dann einer Methodik, die über probabilisti-

sche beschränkte Zustandserreichbarkeit hinausragt, bislang jedoch auf probabilistische
zustandsendliche Systeme limitiert ist. Basierend auf einer Verallgemeinerung des logi-
schen Konzepts der Craigschen Interpolation zielen diese symbolischen Verfahren auf die
Verifikation von probabilistischen Sicherheitseigenschaften wie

”
die Wahrscheinlichkeit des

Erreichens unsicherer Zustände liegt immer unterhalb der 1h-Grenze“ zum einen sowie
von probabilistischen Stabilitätsanforderungen wie

”
die Wahrscheinlichkeit, dass das Sys-

tem innerhalb einer gewissen Region stabilisiert, beträgt mindestens 99, 9%“ zum anderen.
Eine signifikante Charakteristik der obigen Ansätze ist die direkte Handhabung von

Parallelität ähnlich dem nichtprobabilitischen Fall. Das Problem der Zustandsexplosion,
welches durch die explizite Konstruktion des Produktautomaten in vielen anderen Analy-
severfahren entsteht, kann dadurch gelindert werden, was zu einer besseren Skalierbarkeit
beiträgt.

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Contributions and structure of the thesis 3

2 Foundations and Notations 7

2.1 General notations . 7
2.2 Propositional logic . 8

2.3 Computational complexity theory . 10
2.4 Probability theory . 11

3 Probabilistic Hybrid Systems 13

3.1 Motivation: A networked automation system 13
3.2 Related work: Probabilistic hybrid models and model checking 16

3.3 Concurrent discrete-time probabilistic hybrid automata 27

4 Stochastic Satisfiability Modulo Theories 37
4.1 Boolean satisfiability . 37

4.2 Stochastic Boolean satisfiability . 37

4.3 Satisfiability modulo theories . 43
4.4 Stochastic satisfiability modulo theories . 45

5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid
Automata 53

5.1 Probabilistic bounded state reachability . 53
5.2 Introductory example of the reduction to SSMT 59

5.3 Reducing probabilistic bounded reachability to SSMT 62

6 Algorithms for SSMT Problems 73

6.1 Algorithms for SAT . 73
6.2 Algorithms for SSAT . 75

6.3 Algorithms for SMT . 113
6.4 Algorithms for SSMT . 128

6.5 Algorithmic enhancements . 149
6.6 SSMT-based probabilistic bounded model checker SiSAT 169

6.7 Experimental results . 189

7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid
Automata 227

7.1 Cost expectation for probabilistic hybrid automata with costs 227

XII Contents

7.2 Conditional expectation for SSMT . 231
7.3 Reducing step-bounded cost expectation to SSMT 233
7.4 SSMT algorithm for conditional expectation 239
7.5 Experimental results . 243

8 Case Study: A Networked Automation System 249
8.1 Formel model of the NAS . 249
8.2 Analysis of the NAS . 255

9 Beyond Probabilistic Bounded Reachability by Means of Generalized
Craig Interpolation 263
9.1 Generalized Craig interpolants . 264
9.2 Computing generalized Craig interpolants 268
9.3 Applications to symbolic analysis of probabilistic systems 275

10 Conclusion 293
10.1 Summary of achievements . 293
10.2 Future directions . 295
10.3 Closing words . 302

Bibliography 303

Index 321

List of Figures

1.1 General view of the main symbolic analysis procedure 4

3.1 A networked automation system (NAS) . 14
3.2 Parallel composition of probabilistic hybrid automata 30
3.3 Two concurrent probabilistic hybrid automata 33
3.4 Sample anchored run . 34

4.1 Semantics of an SSAT formula depicted as a tree 38
4.2 Computational complexity of SSAT and related problems 41
4.3 Semantics of an SSMT formula depicted as a tree 47
4.4 SSMT involving dependent probability distributions 49

5.1 Example of the SSMT encoding scheme . 60

6.1 DPLL-based backtracking algorithm for SSAT 76
6.2 Illustration of pruning the search space . 77
6.3 Example of S-resolution . 89
6.4 Interaction between the different layers of the overall SSMT algorithm . . . 118
6.5 Illustration of the SiSAT algorithm . 129
6.6 Interpretation of the probability result pr of the SSMT algorithm 144
6.7 Example of the SSMT layer . 146
6.8 Example of pruning the search tree based on accuracy 154
6.9 Example of solution-directed backjumping 155
6.10 Example of caching and reusing probability results of subtrees 160
6.11 Example of caching and reusing solutions 167
6.12 Input file format of SiSAT: single SSMT formula 170
6.13 Input file format of SiSAT: probabilistic transition system 172
6.14 Excerpt of the help menu of SiSAT . 174
6.15 Output of SiSAT: single SSMT formula . 175
6.16 Output of SiSAT: probabilistic transition system 176
6.17 Cooling system Scool . 177
6.18 Illustration of the behavior of Scool . 179
6.19 Analysis of Scool : maximum reachability probabilities 188
6.20 Analysis of Scool : accuracy-based pruning and thresholding 188
6.21 Evaluation of SiSAT: no enhancements . 191
6.22 Evaluation of SiSAT: thresholding I . 194
6.23 Evaluation of SiSAT: thresholding II . 195
6.24 Graphical representation of functions ub1(θl) and ub2(θl) 198
6.25 Evaluation of SiSAT: thresholding and branching heuristics I 200
6.26 Evaluation of SiSAT: thresholding and branching heuristics II 201

XIV List of Figures

6.27 Evaluation of SiSAT: thresholding and branching heuristics III 202
6.28 Evaluation of SiSAT: purification . 205
6.29 Evaluation of SiSAT: accuracy-based pruning 207
6.30 Evaluation of SiSAT: solution-directed backjumping 209
6.31 Evaluation of SiSAT: caching probability results 210
6.32 Evaluation of SiSAT: caching solutions . 213
6.33 Evaluation of SiSAT: combinations of algorithmic enhancements I 215
6.34 Evaluation of SiSAT: combinations of algorithmic enhancements II 216
6.35 Evaluation of SiSAT: basic versus alternative SiSAT encoding 218
6.36 Evaluation of SiSAT: algorithmic enhancements for alternative encoding I . 220
6.37 Evaluation of SiSAT: algorithmic enhancements for alternative encoding II 222
6.38 Evaluation of SiSAT: overall impact . 224

7.1 A single probabilistic hybrid automaton with cost function 229
7.2 Maximum conditional expectation for SSMT 232
7.3 Example of the SSMT encoding of step-bounded cost expectation 236
7.4 SSMT algorithm for computing the maximum conditional expectation . . . 240
7.5 Excerpt of the extended help menu of SiSAT 243
7.6 Analysis of (Scool , cost): k-step minimum MTTF 246
7.7 Impact of thresholding I . 247
7.8 Impact of thresholding II . 248

8.1 Formal model of the NAS I . 250
8.2 Formal model of the NAS II . 251
8.3 Formal model of the NAS III . 252
8.4 Sample system run of the NAS model. 256
8.5 Analysis of the NAS: distributions of the final object position for fixed

initial phase shifts . 259
8.6 Analysis of the NAS: actual distribution of the final object position 260
8.7 Analysis of the NAS: expected values . 261

9.1 Craig interpolant . 264
9.2 Generalized Craig interpolant . 267
9.3 Example of interpolating S-resolution . 276
9.4 A simple MDP M . 277
9.5 Probabilistic state reachability analysis of MDP M I 283
9.6 Probabilistic state reachability analysis of MDP M II 284
9.7 Invariance kernel . 286
9.8 Computation of an invariance kernel . 288
9.9 Probabilistic region stability analysis of MDP M I 290
9.10 Probabilistic region stability analysis of MDP M II 291

10.1 A continuous-time PHA involving ODEs 296
10.2 Trajectory defined by an ODE constraint 297
10.3 A PHA with state-dependent probability distributions 299

1 Introduction

“It is remarkable that this science, which originated in the consideration of games of
chance, should become the most important object of human knowledge. . . . The most
important questions in life are, for the most part, really only problems of probability.”

Pierre-Simon, marquis de Laplace, 1812 1

1.1 Motivation

200 years ago, Laplace already recognized the omnipresence and the important role of
probability in our life. The term of probability commonly denotes the degree of certainty
that some event will happen, where this degree is given by a numerical measure ranging
in between 0 to 1. For instance, if the probability is close to 1 or to 0 then we are
almost sure that the event will or will not occur, respectively. A simple example of a
probabilistic phenomenon is throwing a die: the unknown outcome of one throw is a
natural number between 1 and 6 where all results are equiprobable, i.e. each number
occurs with probability 1

6
. Throwing dice or other random experiments are an essential

ingredient of games of chance which can be traced back some thousands years ago.
Nowadays, randomness is observed and investigated in various scientific disciplines.

For instance, the stochastic process of radioactive decay is studied in physics, random
genetic mutations are considered in biology, and theories like the random walk hypothesis,
assuming a random evolution of stock market prices, are suggested in finance. Another
steadily growing area in which random phenomena have to be taken into account is the
development of embedded computer systems interacting with technical, physical, or even
biological environments. While several of these applications contribute to the quality
of life such as the use of cellular phones, washing machines, and refrigerators, other
embedded systems operate in a safety-critical context where the health of people might
be jeopardized. Safety-critical applications are developed, for instance, in the aviation,
automotive, and railroad industry but also in medical engineering. When considering
assistance systems in an automobile, malfunction of the navigation system will hardly
ever cause any disastrous consequences, while a failure of the precrash system, which
automatically applies partial or full braking among others, will most likely increase the
severity of an accident. It is thus of utmost importance that embedded and, in particular,
safety-critical systems work irreproachably.
Due to the growing complexity of embedded systems employed around the world, the

development of computer-aided approaches to the validation of their safety has evolved
to an active and significant research area. In order to describe the intricate behavior
of real-world safety-critical applications in a very precise manner, the expressive model

1The original quotation in French has appeared in the book Théorie Analytique des Probabilités by
Laplace in 1812. The English translation above was published in [Pic09].

2 1 Introduction

of hybrid discrete-continuous systems is frequently utilized. A hybrid system comprises
discrete as well as continuous behavior, thus being able to cope with the computations of
embedded digital controllers, with the continuous dynamics of technical environments like
the continuous evolution of the temperature, as well as with their interaction by means
of analog-to-digital and digital-to-analog converters. As mentioned above, randomness is
omnipresent in physical, biological, and chemical processes and thus should be covered
by a realistic system model. To this end, a wealth of ideas of augmenting hybrid systems
with probabilities has been suggested. The resulting models are known under the general
term stochastic hybrid systems and particularly vary in the degree to which they support
random phenomena.

With regard to automatic analysis procedures for stochastic hybrid systems, several
approaches rely on Monte Carlo simulation which is an inherently incomplete technique
and allows for approximate results only. Other approaches are based on the application
of established methods for probabilistic finite-states systems on finite-state abstractions
of the original system. These procedures also yield approximate results in general, while
most of them in fact compute upper estimates of the actual results. As a consequence,
the latter approaches establish verification procedures for probabilistic safety properties
of the shape “the worst-case probability of reaching an unsafe state is at most 0.9h”.
That is to say, if an upper estimate of at most 0.9h is computed then the latter property
is verified.

In this thesis, we propose a completely different approach to the (unsafe) state reacha-
bility analysis of stochastic hybrid systems. Motivated by the success of symbolic model
checking techniques for non-probabilistic hybrid systems, we aspire to a similar concept
for probabilistic hybrid systems. To be more exact, instead of abstracting the original
system, we aim at a precise description of the next-state relation of the stochastic system
by means of a stochastic logic. Though the symbolic encoding is precise, the resulting
stochastic constraint formulae just cover bounded system behavior akin to the bounded
model checking, or BMC for short, approach for the non-probabilistic case. With the
aid of an algorithm for solving such stochastic constraint formulae, lower estimates of the
actual reachability probability are determined. Due to the latter fact, we achieve an au-
tomatic and fully symbolic falsification procedure being able to refute above probabilistic
safety properties once a lower estimate exceeding 0.9h is computed. This approach thus
complements the verification procedures mentioned earlier.

In contrast to stochastic hybrid systems in full generality, the model investigated in the
thesis is very confined in its stochastic behavior as it only admits probabilistic events from
a finite sample space as is the case with throwing dice. Albeit being simple, interesting
random phenomena like component failures or message losses are characterizable.

Concerning the issue of concurrent systems, it is important to remark that above sym-
bolic approach does not flatten concurrent systems before model checking which has be-
come known as state explosion in the finite-state case. In fact, the symbolic encoding of
concurrent probabilistic hybrid systems accommodates concurrency directly such that the
size of the encoding is linear in the number of parallel components, as well-known from
the non-probabilistic case. That is to say, this treatment alleviates the state explosion,
arising from an explicit construction of the product automaton (with respect to the dis-
crete state space) as in several other analysis approaches, and thus contributes to a better

1.2 Contributions and structure of the thesis 3

scalability.

Motivated by the fact that industrial applications often call for quantitative measures
distinct from classical (unsafe) state reachability probabilities, we further propose a sym-
bolic method for computing expected values of probabilistic hybrid systems, being able
to verify probabilistic safety properties of the shape “the mean time to failure is always
at least 20 minutes”.

In order to go beyond probabilistic bounded state reachability, we moreover suggest
a symbolic technique that is able to compute upper estimates of the reachability proba-
bility but is yet restricted to probabilistic finite-state models. This symbolic verification
procedure can then be used to validate safety properties of the shape “the worst-case
probability of reaching an unsafe state is at most 0.9h”, namely if an upper estimate of
at most 0.9h is calculated. In addition to the latter, we finally investigate an approach
to probabilistic region stability of probabilistic finite-state systems.

1.2 Contributions and structure of the thesis

In this thesis, we make three contributions to symbolic model checking of probabilistic
hybrid and finite-state systems. These contributions are elaborated on in Chapters 3 to 9.
An overview of some relevant foundations and notations being used throughout this thesis
is given in Chapter 2. In Chapter 10, we conclude with a summary of the achievements
and discuss promising directions for future research.

We remark that essential parts of this thesis were already published in proceedings of
scientific conferences as well as in academic journals by the author of this thesis together
with his co-authors. The relevant publications are cited before the corresponding passages
in the thesis.

In the remainder of this section, we outline the three major contributions.

Symbolic falsification procedure for probabilistic safety properties of proba-
bilistic hybrid automata based on SSMT solving. The main analysis approach
of this thesis is illustrated in Figure 1.1. The starting point is a given problem from the
real world, i.e. a real-world system comprising random phenomena and a probabilistic
safety property of the shape “the probability of a fatal system error is at most 1h in
worst case”. In Chapter 3, we elaborate on such a real-world scenario from the networked
automation systems domain. In order to address above problems by means of mathemati-
cal methods, the frequently informal descriptions of real-world problems must be phrased
in a mathematically exact way. To this end, we introduce the formal model of concur-
rent discrete-time probabilistic hybrid automata in Chapter 3 as well as the notion of
probabilistic bounded state reachability in Chapter 5. As an example, we show how the
case study from the networked automation systems domain can be modeled as a system
of probabilistic hybrid automata in Chapter 8. In a next step, the formal probabilistic
system model and the unsafe states are encoded symbolically, which is described in Chap-
ter 5. This encoding scheme is similar to predicative descriptions of non-probabilistic
hybrid systems where the system behavior is mapped to a logical formula involving rich
arithmetic constraints, the latter being also known as a satisfiability modulo theories

4 1 Introduction

probabilistic BMC formulae

SSMT
formulaehybrid

probabilistic

automata

prob. safety
falsifying

property

formal problem description

real−world problem

translation

modeling

probabilistic BMC

real−world
system property

safety
probabilistic probabilistic

problem−solving algorithm

result

probability
on failure
bounds
lower

predicative problem description

states
unsafe

symbolic
encoding

;

Chapter 8Chapter 3

Chapter 8

Chapters 3 & 5

Chapter 5

Chapters 4 & 5

Chapter 5

Chapter 4

Chapter 6

Figure 1.1: General view of the main symbolic analysis procedure.

(SMT) formula. To further cope with the probabilistic dynamics present in probabilistic
hybrid automata, the notion of SMT is enhanced by randomized quantifiers as known
from stochastic propositional satisfiability (SSAT). Together with the classical existential
quantifiers needed for resolving the non-determinism in the system, this extension of SMT

1.2 Contributions and structure of the thesis 5

results in the novel concept of stochastic satisfiability modulo theories (SSMT), which
is introduced in Chapter 4. From the predicative problem description, concrete SSMT
formulae are then achieved using the idea of probabilistic bounded model checking, see
Chapter 5. These SSMT formulae reflect the original problem restricted to step-bounded
system behavior and, moreover, their quantitative interpretations yield lower bounds on
the worst-case probability of reaching the unsafe states. In order to complete the sym-
bolic analysis procedure, Chapter 6 investigates algorithms to solve SSMT formulae as
well as a number of algorithmic enhancements to improve performance in practice. As
indicated in Figure 1.1, the approach sketched above establishes a falsification procedure
for probabilistic safety properties of probabilistic hybrid automata. That is to say, once
a lower estimate of the worst-case probability of reaching the unsafe states is computed
which exceeds the acceptable threshold value, for instance, 1h as above, the probabilistic
safety property is falsified. In order to demonstrate practical applicability, the symbolic
analysis procedure proposed in this thesis is applied to the concrete case study from the
networked automation systems domain in Chapter 8.

Symbolic verification procedure for safety requirements on expected values of
probabilistic hybrid automata based on SSMT solving. Motivated by the fact
that industrial applications often call for quantitative measures distinct from classical
reachability probabilities, namely to gain a more precise insight into the system behavior,
Chapter 7 is devoted to a symbolic method for computing expected values of concur-
rent discrete-time probabilistic hybrid automata like, for instance, mean time to failure
(MTTF). This method builds upon SSMT-based probabilistic bounded model checking,
and its schematic view is roughly the same as depicted in Figure 1.1. Since the proposed
method addresses probabilistic safety properties of the shape “the MTTF is always at
least 20 minutes”, it however turns into a verification approach being able to validate that
a system of probabilistic hybrid automata meets such above safety requirement once a
lower bound on the worst-case MTTF is computed which is at least 20 minutes. This
SSMT-based expected-value analysis procedure is also applied to the case study from the
networked automation systems domain in Chapter 8.

Symbolic verification procedure for probabilistic safety properties of prob-
abilistic finite-state systems based on generalized Craig interpolation. Both
aforementioned analysis procedures are only able to cope with bounded system behav-
ior. In Chapter 9, we pioneer symbolic approaches that go beyond probabilistic bounded
state reachability but are yet restricted to probabilistic finite-state models. To this end,
we introduce and make use of the novel concept of generalized Craig interpolation for
SSAT formulae. Akin to symbolic methods for the non-probabilistic case, generalized
Craig interpolation provides an opportunity to compute a symbolic overapproximation of
the (backward) reachable state set of probabilistic finite-state systems. This computation
relies on a resolution calculus for SSAT formulae which is explained in Chapter 6. Craig
interpolation-based model checking for non-probabilistic systems is able to verify safety
properties of the shape “the unsafe states are unreachable” whenever the overapproxi-
mated set of all reachable states has an empty intersection with the set of unsafe states.
As reaching the unsafe states is frequently unavoidable in probabilistic scenarios, a sim-

6 1 Introduction

ple check for empty intersection does not suffice in general to verify probabilistic safety
properties like “the worst-case probability of reaching the unsafe states is at most 1h”.
To develop such a symbolic verification procedure, we exploit a predicative description of
the system as well as a symbolic overapproximation of the backward reachable state set in
order to construct SSAT formulae whose quantitative interpretations yield upper bounds
on the worst-case probability of reaching the unsafe states. Whenever an upper bound of
at most 1h is computed then above probabilistic safety property is verified. Chapter 9
furthermore investigates the application of generalized Craig interpolation to probabilistic
region stability of probabilistic finite-state systems.

2 Foundations and Notations

This chapter serves as a glossary of general foundations and notations used throughout
this thesis.

2.1 General notations

The sets of the real numbers, the integers, the natural numbers, and the Booleans are
denoted by R, Z, N, and B, respectively. An interval I over T ∈ {R,Z,N} is a subset
of T , i.e. I ⊆ T , that satisfies the following property: if x1, x2 ∈ I with x1 < x2 then
each x ∈ T with x1 < x < x2 is contained in I, i.e. x ∈ I. The infimum and supremum
of an interval I over T , denoted by inf(I) and sup(I), are the greatest number of T that
is less than or equal to each number in I and the smallest number of T that is greater
than or equal to each number in I, respectively. Within this thesis, we primarily refer to
bounded intervals I, i.e. the infimum inf(I) and the supremum sup(I) of I exist within R.
We distinguish four cases of bounded intervals. A bounded interval I over T ∈ {R,Z,N}
with l = inf(I) and u = sup(I) is called closed, denoted by [l, u], open, denoted by (l, u),
left-open, denoted by (l, u], and right-open, denoted by [l, u), if l ∈ I and u ∈ I, if l /∈ I

and u /∈ I, if l /∈ I and u ∈ I, and if l ∈ I and u /∈ I, respectively.
Given any formula (or term) ϕ, we define Var(ϕ) as the set of all variables that occur in

ϕ. The notation ϕ[v/x] denotes usual substitution of v for x in ϕ. For consecutive substi-
tutions ϕ[v1/x1][v2/x2] . . . [vk/xk], we occasionally write ϕ[v1, v2, . . . , vk/x1, x2, . . . , xk] if
the xi do not mutually occur in the vi. The domain of a variable x, i.e. the set of possible
values x can take, is occasionally denoted by dom(x).
We use the following common abbreviations:

∑k
i=1 ai := a1 + a2 + . . .+ ak,

∏k
i=1 ai := a1 · a2 · . . . · ak,

maxki=1 ai := max(a1, a2, . . . , ak),

�k
i=1 ai := a1 × a2 × . . .× ak,

∧k
i=1 ai := a1 ∧ a2 ∧ . . . ∧ ak, and

⊙k
i=1 ai := a1 ⊙ a2 ⊙ . . .⊙ ak,

where × and ⊙ denotes Cartesian product and concatenation, respectively. Whenever it
is clear from the context, we omit the symbol ⊙, i.e. for some a and b, we occasionally
write ab instead of a ⊙ b. For a set A = {a1, a2, . . . , ak}, we further define

∑
a∈A :=∑k

i=1 ai,
∏

a∈A :=
∏k

i=1 ai, maxa∈A := maxki=1 ai,
�

a∈A :=
�k

i=1 ai,
∧

a∈A :=
∧k

i=1 ai, and⊙
a∈A :=

⊙k
i=1 ai as usual.

8 2 Foundations and Notations

2.2 Propositional logic

Propositional logic is a branch of mathematical logic that investigates propositional formu-
lae and their interpretations. A propositional formula consists of atomic formulae (atoms
for short) and logical connectives (also known as logical operators). Atomic formulae are
of no deeper propositional structure and are also called propositional or Boolean variables
or, whenever it is clear from the context, just variables as from now. Logical connectives
are used to connect propositional formulae. In a formal definition of propositional formu-
lae, these connectives are usually restricted to the unary operator negation, denoted as ¬,
and to the binary operators conjunction, denoted as ∧, and disjunction, denoted as ∨.

Syntactically, propositional formulae are defined inductively: first, each propositional
variable is a propositional formula and, second, if ϕ and ψ are propositional formulae
then also ¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ are propositional formulae. Semantically, such formulae
are interpreted by means of truth assignments. A truth assignment of a propositional
formula ϕ is a mapping that assigns to each variable that occurs in ϕ a truth value from
the Boolean domain B, i.e. either true or false. A truth assignment τ then determines
the truth value of a propositional formula ϕ. Formally, we need to extend the concept of
a truth assignment to a mapping τ̂ from propositional formulae to truth values as follows:
if ϕ is a variable then τ̂ (ϕ) = τ(ϕ). Otherwise, τ̂(¬ϕ) = true if and only if τ̂(ϕ) = false,
τ̂(ϕ ∧ ψ) = true if and only if τ̂(ϕ) = true and τ̂ (ψ) = true, and τ̂ (ϕ ∨ ψ) = true if
and only if τ̂ (ϕ) = true or τ̂(ψ) = true. Slightly abusing notation, for a given formula
ϕ and a truth assignment τ we write τ(ϕ) to denote τ̂(ϕ). We call a truth assignment τ
of a formula ϕ satisfying assignment, solution, or model of ϕ if and only if τ(ϕ) = true,
and occasionally denote it by τ |= ϕ.

If a propositional formula ϕ has a model, then we call ϕ satisfiable and otherwise
unsatisfiable. In case that each truth assignment of ϕ is also a model of ϕ, the formula ϕ
is called a tautology or tautological denoted by |= ϕ. If ϕ is not a tautology then we call
ϕ non-tautological denoted by 6|= ϕ. It clearly holds that ϕ is tautological if and only if
¬ϕ is unsatisfiable. We sometimes write true for a tautological formula and false for
an unsatisfiable formula. If two formulae ϕ and ψ have the same models, i.e. τ |= ϕ if
and only if τ |= ψ, then ϕ and ψ are semantically equivalent or just equivalent and we
write ϕ ≡ ψ. In case that ϕ is satisfiable if and only if ψ is satisfiable, ϕ and ψ are called
equi-satisfiable. Please note that based on the logical connectives above, other connectives
can be defined. One common logical operation we use in this thesis is implication, denoted
as ⇒ , that is defined by ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ.

In addition to the notion of a truth assignment, we further define the concept of a
partial assignment τ to the variables Var(ϕ) of a formula ϕ. Such a partial assignment τ
is not forced to map each variable in Var(ϕ) to a truth value but just exactly those from
some subset V ⊆ Var(ϕ), i.e. τ : V → B is a (total) function. Whenever x ∈ V , we say
that τ(x) is defined, and otherwise, i.e. if x /∈ V , we say that τ(x) is not defined.

A central concept used in this thesis is a normalized syntactical representation of for-
mulae. A propositional literal ℓ (or literal for short) is a propositional variable x or its
negation ¬x. In the first case, i.e. ℓ = x, we call literal ℓ positive, and in the second case,
i.e. ℓ = ¬x, negative. The opposite literal of a literal ℓ ∈ {x,¬x}, denoted by neg(ℓ), is
defined as follows: if ℓ = x then neg(ℓ) = ¬x and if ℓ = ¬x then neg(ℓ) = x. A clause is

2.2 Propositional logic 9

then a (potentially empty) disjunction of literals. Throughout the thesis and without loss
of generality, we assume that a clause does not contain the same literal more than once as
ℓ ∨ ℓ ≡ ℓ. Consequently, we may also identify a clause with its set of literals. We remark
that the empty clause, denoted by ∅, is equivalent to false. A propositional formula ϕ
is in conjunctive normal form (CNF) if ϕ is a (potentially empty) conjunction of clauses.
As for clauses, we may represent a formula in CNF as a set of clauses. An empty formula
in CNF is equivalent to true. It is well-known that for each propositional formula ϕ there
is a semantically equivalent propositional formula ψ in CNF. However, the size of ψ may
be exponential in the size of ϕ. In many applications, for instance in symbolic model
checking, it is not necessary to obtain an equivalent formula but an equi-satisfiable one.
Computing an equi-satisfiable formula in CNF is always possible in linear time by the
so-called Tseitin transformation [Tse68] that introduces additional variables. We further
say that a propositional formula is in kCNF if and only if it is in CNF and each of its
clauses contains exactly k literals. For constant k ∈ N with k ≥ 3, there exist linear-time
algorithms to transform a propositional formula to an equi-satisfiable formula in kCNF
(for k = 3 confer [Kar72]), while an efficient procedure to achieve a 2CNF is not known.
For the sake of simplicity, we occasionally use a slightly more general definition of

propositional formulae that may additionally contain the constants true and false. Se-
mantically, we define that the constant true is a tautology, i.e. |= true, and that the
constant false is unsatisfiable. We thus have that ¬true ≡ false, ¬false ≡ true,
true ∧ ϕ ≡ ϕ, false ∧ ϕ ≡ false, true ∨ ϕ ≡ true, and false ∨ ϕ ≡ ϕ hold. By
using above equivalence rules, each propositional formula ϕ that potentially contains the
constants true and false can clearly be rewritten into a semantically equivalent formula
ϕ′, i.e. ϕ′ ≡ ϕ, such that a) ϕ′ does not comprise the constants true and false or b) ϕ′

coincides with true, i.e. ϕ′ = true, or c) ϕ′ coincides with false, i.e. ϕ′ = false. We
call such a formula ϕ′ a cleaning of ϕ. We primarily refer to a cleaning of a propositional
formula ϕ in CNF. Here, a cleaning ϕ′ of ϕ is simply achieved by removing from all clauses
in ϕ the constant literals false and ¬true, and by excluding all clauses in ϕ that contain
at least one of the constant literals true and ¬false. More formally,

ϕ′ = {c \ {false,¬true} : c ∈ ϕ, c ∩ {true,¬false} = ∅} .

Observe that the cleaning ϕ′ of a propositional formula ϕ in CNF obtained by above
construction does never contain the constants true or false. The rationale is that above
case b) ϕ′ = true is encoded by the empty formula, i.e. the empty conjunction, that is
equivalent to true, and above case c) ϕ′ = false is represented in such a way that ϕ′

includes the empty clause, i.e. the empty disjunction, that is equivalent to false. For
technical reasons, we identify a cleaning of a propositional formula in CNF by a cleaning
that is achieved by aforementioned construction.
Propositional logic can be generalized by using the idea of quantification where propo-

sitional variables are bound by some quantifiers . Most common are the existential quan-
tifier, denoted as ∃, and the universal quantifier, denoted as ∀. A quantified Boolean
formula (QBF) Q : ϕ then consists of a propositional formula ϕ and of a quantifier prefix
Q binding all variables in ϕ to quantifiers ∃ and ∀, i.e. Q : ϕ has no free variables. The
semantics of a quantified Boolean formula Q : ϕ is as follows. If the leftmost quantifier
is existential, i.e. Q = ∃x ⊙ Q′, then Q : ϕ is true if and only if one of the subformulae

10 2 Foundations and Notations

Q′ : ϕ[true/x] or Q′ : ϕ[false/x] is true. In case the leftmost quantifier is universal,
i.e. Q = ∀x ⊙ Q′, then Q : ϕ is true if and only if both substitutions are true. Since all
variables in ϕ are quantified by Q, the quantifier-free base cases, i.e. if Q is empty, yield
formulae which are equivalent either to true or to false. For more details on QBF, we
refer the reader to [BB09].

2.3 Computational complexity theory

This section recalls the basic concepts of computational complexity which are important
for this thesis. For a more detailed overview, we refer the reader to the foundational
textbooks [Pap94, GJ90]. Computational complexity investigates the difficulty to solve
computational problems on a general computing machine. Usually, Turing machines are
considered as a mathematical model of such machines. Though Turing machines are
simple to some extent and easy to analyze formally, it is believed that these machines
are as powerful as any other machine model. The latter conjecture is also known as
the Church-Turing thesis. In brief, a Turing machine can read and write symbols on a
memory with infinite capacity (encoded by so-called infinite tapes) by performing actions
from a pre-defined (finite) set. Turing machines are classified by how the next action
a is chosen. Among others, these are deterministic Turing machines, where action a is
unambiguously specified by the current state of the machine, non-deterministic machines,
where a can be freely chosen among some available actions, and probabilistic machines,
where a is selected randomly according to some probability distribution. When restricting
the amount of memory or running time of a Turing machine, this enables the definition
of complexity classes. We just briefly recall these classes of decision problems that are
important for this thesis.

A decision problem is a computational problem for which the answer is“yes”or“no”. An
instance of a decision problem with answer “yes” is called a true instance and an instance
with answer “no” is said to be a false instance. The complexity class P consists of all
decision problems that can be solved by a deterministic Turing machine in polynomial
time. NP contains all decision problems that are solvable by non-deterministic Turing
machines in polynomial time, where solvable means here that all true instances can be
decided. The class co-NP is defined by all problems which complements are members
of NP, where the complement of a decision problem results from reversing the “yes” and
“no” answers. All decision problems that are solved by probabilistic Turing machines in
polynomial time with an error probability less than a half establish the class PP. More
precisely, for true instances the machine outputs “yes” with probability strictly greater
than a half and for false instances the output is “yes” with probability at most a half.
More intuitively, PP is the class of all problems whose true instances have the property
that the majority, i.e. more than a half, of the computation paths are accepting on non-
deterministic Turing machines. Finally, PSPACE comprises all decision problems solvable
by deterministic Turing machines using only a polynomial amount of memory. While the
inclusion chain

P ⊆
co-NP

NP
⊆ PP ⊆ PSPACE

2.4 Probability theory 11

holds, it is still open whether these inclusions are strict or not. It is widely suspected that
all inclusions are strict.
All of the above complexity classes have so-called complete problems, i.e. problems that

are the “hardest” in the corresponding classes. A problem is complete for a complexity
class C if it is a member of C and it is hard for C. A problem is hard for C if every problem
in C can be reduced to that problem. The actual properties of such a reduction depends
on the particular complexity class. In Subsection 4.2.1, we prove PSPACE-hardness of a
decision problem. To show that a problem P is PSPACE-hard, polynomial-time many-
one reductions from a suitable PSPACE-complete problem P ′ to P are usually considered.
The latter reduction converts each instance I ′ of P ′ into an instance I of P in polynomial
time such that I ′ is true if and only if I is true.
In addition to examine the difficulty of solving computational problems, it is of essential

interest whether a given problem is solvable at all. A computational problem P is decidable
if and only if there exists a Turing machine (or simply an algorithm) that solves each
instance of P in finite time. Otherwise, i.e. there does not exist any algorithm to solve all
instances of P in finite time, we call P undecidable. Such undecidable problems actually
exist. One famous example is the halting problem, i.e. to decide whether a given program
eventually halts on a given input, which was proven to be undecidable by Turing [Tur37].
To show that a problem P is undecidable, we can again employ the idea of reduction,
namely from some undecidable problem to P .

2.4 Probability theory

The mathematical research field of probability theory investigates the analysis of random
phenomena, where first activities can be traced back some hundred years ago. While a
plethora of significant notions and results were achieved, we turn our attention to one basic
concept that is essential for this thesis, namely the idea of probability distributions. Such
distributions are commonly used to probabilistically characterize the unknown outcomes
of uncertain experiments. One of the simplest such experiments is coin tossing where the
outcome of one throw is either heads or tails. Though the resulting side of the coin cannot
be predicted with absolute certainty, it is however possible to specify the chance of yielding
heads or tails as an outcome. When assuming a “fair” coin then both potential results
are equiprobable, i.e. heads occurs with probability 0.5 and with the same probability the
outcome is tails. The set of all possible outcomes of an experiment is called the sample
space. Observe that the sample space for coin tossing consists of the two elements heads
and tails. A function X : S → R, mapping each element of the sample space S to a real
number, is typically introduced that is called random variable. If the image (or range)
of X , denoted by X [S], is countable then X is called discrete random variable. In the
following, we restrict ourselves to discrete random variables with finite images. For the
coin tossing experiment, we may define the discrete random variable as follows:

X(s) =

{
1 if s = heads,

0 if s = tails.

Given some discrete random variable X , a discrete probability distribution specifies the
probabilities of the values of X by means of a probability mass function pX : X [S] → [0, 1]

12 2 Foundations and Notations

such that all these probabilities add up to one, i.e.
∑

x∈X[S] pX(x) = 1. Throughout this
thesis, we identify a discrete probability distribution with its probability mass function.
Recalling that both outcomes of coin tossing are equiprobable, we are able to state the
corresponding discrete probability distribution:

pX(x) =

{
0.5 if x = 1,

0.5 if x = 0.

While the formalisms and methods presented in this thesis mainly deal with discrete prob-
ability distributions, we occasionally touch upon the more general concept of continuous
probability distributions. As opposed to the consideration above, the image of a random
variable X may also be uncountable. In such cases, X is called continuous random vari-
able. While each single outcome of a discrete random variable can be associated with
a probability, like for coin tossing, this is not possible for continuous random variables.
This convention also matches our intuition: assume that a continuous random variable X
talks about the length of a captured pike. Then, a length of exactly 100 cm is possible but
the probability is equivalent to zero. When however asking for the probability p that the
length of the captured pike lies in between 95 cm and 105 cm, then p is potentially greater
than zero. Formally, the probability Pr[x1 ≤ X ≤ x2] that a continuous random variable
X takes a value within the interval [x1, x2] is computed by means of a probability density
function gX . More precisely, the above probability is defined by the integral

∫ x2

x1
gX(x)dx.

3 Probabilistic Hybrid Systems

This chapter elaborates on the concept of probabilistic hybrid systems. We first present
a motivating and illustrative example from the networked automation systems domain
in Section 3.1. Thereafter, we give an overview on existing formal models of probabilis-
tic hybrid systems as well as on related approaches to probabilistic model checking in
Section 3.2. The formal model of probabilistic hybrid systems being investigated in this
thesis is finally introduced in Section 3.3.

3.1 Motivation: A networked automation system

In order to motivate our formal model of a probabilistic hybrid system as well as the
probabilistic model checking approaches proposed in this thesis, we start by introducing a
realistic industrial application, namely a case study of the networked automation system
(NAS) studied in [GF06]. We first give a detailed description of the NAS application,
as it was published in [TEF11], from which we then derive the motivation for the formal
automata model that is introduced in Section 3.3. Finally, we pose questions about the
system behavior that are relevant to the formal analysis of the NAS. These questions are
then addressable by the model checking procedures presented in Chapters 5 and 7, while
a detailed analysis of the NAS case study is given in Chapter 8.

Description of the NAS. A schematic overview of the networked automation system
(NAS) studied in [GF06] is depicted in Figure 3.1. As a typical NAS, it involves net-
worked control by programmable logic controllers (PLCs) connected to several sensors
and actuators via wired and wireless networks. Its objective is to transport a workpiece
from its initial position to the drilling position by means of a transportation unit which
controls the speed of the conveyor belt on which the object is transported. The PLC
can set the deceleration of the belt via network messages to the transportation unit, but
cannot determine the position of the object unless it hits two sensors SA and SB close
to the drilling position. The sensors are connected to the IO card of the PLC over the
network. When the object reaches sensor SA, the PLC reacts with sending a command
to the transportation unit that forces it to decelerate to slow speed. Likewise, the trans-
portation unit is asked to decelerate to standstill when the PLC notices that SB has been
reached. The goal is that the object halts close to the drilling position despite the uncon-
trollable latencies in the communication network. The parameters of the system are taken
from [GF06] as far as indicated. Thus, one length unit (lu) is 0.01mm, and one time step
(ts) is 1ms. The positions of SA and SB are 699 lu and 470 lu, respectively, while the
desired drilling position is at 0 lu. The initial speed of the object is 24 lu/ts and the slow
speed is 4 lu/ts; the decelerations for the two types of speed changes at SA and SB are 2
and 4 lu/ts2, respectively. The network routing time is determined stochastically, needing

14 3 Probabilistic Hybrid Systems

transport unit

inputs
ex

ec
ut

io
n

outputs

PLC

P
LC

−
IO

network

SA SB

workpiece

Figure 3.1: A networked automation system from [GF06]. (Source of figure: [TEF11])

1 ts for delivery with probability 0.9 and 2 ts with probability 0.1. The cycle time of the
PLC-IO card is 10 ts and of the PLC is 7 ts. The minimum sampling interval is 1 ts. Due
to the initial speed of 24 lu/ts, the initial position of the object is thus equally distributed
over 24 neighboring values. In our setting, the initial position ranges between 999 and
976 lu.

Motivation of formal model. Real-world dynamical systems, as the NAS above, char-
acteristically evolve over time that is a continuous quantity. Mathematical models of such
dynamical systems should therefore take account of an appropriate notion of time. Most
common notions are discrete time, where the system evolution is represented by means
of sampling at discrete points of time, and continuous time, where the system behavior
is described as a continuous evolution over time. The NAS application above relies on
discrete time as it specifies a constant sampling interval. To cope with this NAS and
similar systems, we concentrate on a

� discrete-time semantics

for the formal automata model. It is important to remark that discrete time is not
necessarily equivalent to equidistant time, where system sampling actually happens at
equidistant time points. Our model of discrete time permits sampling at arbitrary points
of time. Moreover, these sampling points may also be state-dependent. This allows for a
scheduled-event semantics, akin to [AL94], where the next sampling point is determined
by the current system state.
The continuous dynamics of the NAS workpiece underlies the laws of motion with

uniform (or constant) acceleration. That is, given the current position s, the current
speed v, the constant acceleration a, and a time step of duration ∆t, then the position s′

and the speed v′ after ∆t time units are given by the formulae

s′ = s+ v ·∆t+
1

2
· a ·∆t2 and v′ = v + a ·∆t .

In order to describe such dynamics within a formal automaton model, we demand that

3.1 Motivation: A networked automation system 15

� rich arithmetic theories over continuous domains

are supported.

We need to remark that more complex continuous dynamics in fields like nuclear physics
or biophysical chemistry are usually modeled by means of ordinary differential equations
(ODEs) or even by partial differential equations (PDEs). While some ODEs have so-called
closed-form solutions, that are expressible by common arithmetic functions, others have
not. It is however always possible to safely approximate ODEs by, for instance, Taylor
series. In Chapter 10, we elaborate on a much more expressive automata model that
incorporates ODEs and is interpreted over continuous time.

The NAS also includes components like the PLC that execute discrete programs. More-
over, the computed output of the PLC can change the continuous dynamics of the work-
piece by setting a new value for the deceleration. Therefore,

� discrete computations and a logic for switching the continuous behavior

should be comprised by the formal automata model.
The behavior of the network depends on random phenomena as its routing time is

determined probabilistically. Since all probabilistic events that may occur in the NAS
range in a finite sample space, it suffices to require

� discrete probabilistic choices

to be present in the automata model. The latter should furthermore support

� non-deterministic choices

in order to cope with, for instance, input data or open design questions. Though the NAS
above does not show any non-determinism, the model could be enhanced, for instance,
by a non-deterministic choice between several PLCs with different cycle times in order to
find out whether some safety requirements are fulfilled regardless of which PLC is actually
employed.
Finally, a formal automaton model should facilitate a convenient way of

� parallel composition

as many real-world systems like the NAS consist of several components. To meet this
requirement, we aim at a formalism that allows to model each subsystem itself, and thus
renders unnecessary the construction of one automaton for the overall system.

Analysis questions. As mentioned above, the goal of the NAS application is to trans-
port the workpiece close to the drilling position. The main analysis question thus is
whether this property actually holds. As usual in scenarios of probabilistic nature, it can-
not be assumed that desired properties are definitely satisfied. In such cases, engineers
are however interested in whether desired properties hold with very high probability. We
therefore investigate questions like

� “What is the probability that the workpiece stops close to the drilling position?”

16 3 Probabilistic Hybrid Systems

or, phrased as a decision problem,

� “Is the probability that the workpiece stops close to the drilling position high enough?”

In Chapter 5, we present a model checking procedure addressing such questions. To be
a bit more precise, our model checking approach deals with probabilistic bounded state
reachability problems, i.e. it computes the probability of reaching some target states within
a bounded number of system steps. In applications where the target states are considered
to be bad, i.e. they violate some safety property, this bounded model checking (BMC)
procedure is potentially able to falsify safety properties like “the probability of reaching
the bad states is at most 1h”. From the NAS description, it is not hard to see that the
workpiece finally stops. Thus, the dynamics of the workpiece is bounded and BMC is able
to respond to both questions above.

Industrial applications often call for quantitative measures distinct from classical reach-
ability probabilities to gain a more precise insight into the system behavior. Considering
the NAS case study, it would be very beneficial to answer questions like

� “What is the mean time to stop of the workpiece?”

and

� “What is the expected final position of the workpiece?”

Motivated by these questions, Chapter 7 enhances probabilistic BMC to compute expected
values. The enhanced probabilistic BMC procedure is then potentially able to verify safety
properties of the shape “the worst-case mean time to failure is at least 20 minutes”. With
the same argument as above, i.e. the workpiece finally stops, we are able to answer both
questions above.

A detailed analysis of the NAS case study, including the complete formal system model
and probabilistic model checking results, is given in Chapter 8.

3.2 Related work: Probabilistic hybrid models and

model checking

In this section, we give an overview on existing formal models of probabilistic hybrid
systems as well as on related approaches to probabilistic model checking.

3.2.1 Probabilistic hybrid systems

Hybrid discrete-continuous behavior arises when discrete and continuous dynamic pro-
cesses become connected, as in the case of embedded computers and their physical envi-
ronment. For an example, recall the NAS application from Section 3.1 where the PLC
influences the continuous dynamics of the workpiece. An increasing number of the tech-
nical artifacts shaping our ambience are such hybrid systems relying on, often invisible,
embedded computer systems. Their safety assessment amounts to showing that the joint
dynamics of the embedded system and its environment is well-behaved, for instance, that

3.2 Related work: Probabilistic hybrid models and model checking 17

it avoids undesirable states or that it converges to a desirable state, regardless of the
actual disturbance. Disturbances may originate from uncontrolled inputs in an open sys-
tem, like a car driver performing her driving task, as well as from internal sources of
the overall technical system, like failing system components, including sensors or even
actuators. Gradually advancing the capabilities of addressing such systems, research in
hybrid system verification has thus traditionally focused on different classes of system
structures and disturbances, ranging from a closed-system view over non-deterministic
to probabilistic or stochastic hybrid systems. While the closed-system view necessitates
a reasonably exact representation of the rather intricate yet deterministic feedback dy-
namics of coupled discrete and continuous systems, non-deterministic systems extend this
view by unknown inputs of an open system. Probabilistic hybrid systems, finally, allow
to capture unpredictable, yet statistically characterizable disturbances.

In the context of hybrid systems augmented with probabilities, a wealth of models
has been suggested by several authors. These models particularly vary in the degree
to which they support random phenomena. The cornerstones are formed by the fol-
lowing models. In probabilistic hybrid automata [Spr01], state changes forced by con-
tinuous dynamics may involve discrete random events, akin to Markov decision pro-
cesses [Bel57], determining both the discrete and the continuous successor state. Piece-
wise deterministic Markov processes [Dav84, Dav93] permit that state changes may hap-
pen spontaneously in a manner similar to continuous-time Markov chains, confer, for
instance, [Tij03, Chapter 4]. Stochastic differential equations [Arn74] are another model
where, like in Brownian motion, the random perturbation affects the dynamics contin-
uously. In full generality, stochastic hybrid system models can cover all such ingredi-
ents [HLS00, PBLB03, BL06, CL07], thereby having a wide range of applications, for
instance, air traffic control [PHLS00, GL04], manufacturing systems [CM03], and com-
munication networks [Hes04].

The model investigated in this thesis belongs to the class of probabilistic hybrid au-
tomata. In contrast to the other models mentioned above, this system class is very
confined in its stochastic behavior as it only admits discrete probabilistic choices within
state transitions. Albeit being simple, interesting random phenomena like component
failures or message losses are characterizable. Concerning the NAS case study, it is able
to express the uncertain latencies of the network as well as the distribution of the initial
position of the workpiece.

3.2.2 Probabilistic model checking

The fully automatic verification of whether a given system model meets some specification
is referred to as model checking. Typically, such specifications describe safety properties
like “a fatal system error may never occur” or, in the probabilistic setting, “a fatal system
error may only occur with very low probability”. Very expressive specification logics have
been developed, among them the very prominent probabilistic computation tree logic, or
PCTL for short, confer, for instance, [HJ94, BdA95]. While safety properties just talk
about (un)reachability of states, logics like PCTL permit the specification of more ex-
pressive temporal properties like “each message will be finally delivered with probability 1
and whenever a message is tried to be sent then this message will be delivered in five

18 3 Probabilistic Hybrid Systems

system steps with very high probability of at least 0.995”. Model checking of probabilistic
finite-state models like Markov decision processes and continuous-time Markov chains is
a well-studied and still very active research area, having originated efficient probabilistic
model checking tools like PRISM1 or MRMC2. For a nice survey on probabilistic finite-
state model checking we refer the reader to [BK08, Chapter 10].

When turning one’s attention to the automatic analysis of richer probabilistic systems
with infinite state space like probabilistic hybrid systems, lots of verification approaches
“only” aim at safety properties or, dually, unsafe state reachability. On the one hand, this
is motivated by the fact that most temporal properties can be reduced to reachability
problems due to the very expressive hybrid modeling framework. On the other hand,
probabilistic state reachability is a hard and challenging problem. Indeed, this problem is
undecidable in general, even for probabilistic hybrid automata. The latter fact immedi-
ately follows from general undecidability of the reachability problem for (non-probabilistic)
hybrid automata since probabilistic hybrid automata are a superclass of hybrid automata.
A very detailed account of the boundary between decidability and undecidability of the
reachability problem for hybrid automata is given in [HKPV95]. An important decidable
subclass are timed automata [AD94] where the continuous behavior is limited in the sense
that real-valued variables, so-called clocks, may only progress with rate 1. In [HKPV95],
this decidability result was generalized to initialized rectangular automata where the con-
tinuous evolution of each real-valued variable is governed by arbitrary constant rates from
some interval, for instance from [−3, 5], but whenever the continuous activity of a variable
changes then the value of that variable must be re-initialized. As observed in [HKPV95],
when slightly generalizing the latter automata class, for instance by imposing an order of
the derivatives of variables, then the reachability problem becomes undecidable. Another
way to obtain decidable subclasses was suggested by Fränzle: in [Frä99], he exploited the
notion of robustness to show that reachability for robust hybrid automata is decidable.

Though research concerning stochastic hybrid systems is rapidly increasing over the
last years, results related to their analysis and verification are still limited to some ex-
tent. While for the general class of stochastic hybrid systems such analysis approaches
are often based on Monte Carlo simulation [BB04, BKB06], several subclasses of piece-
wise deterministic Markov processes, of probabilistic hybrid automata, and of stochastic
hybrid systems are recently investigated for which reachability probabilities can be ap-
proximated [BL03, BC05, AAP+06b, KR06]. With regard to decidable subcases, Spros-
ton could establish a result similar to the non-probabilistic setting. In [Spr00, Spr01], he
showed that model checking is decidable for the subclass of probabilistic initialized rectan-
gular automata against specifications of a probabilistic temporal logic called probabilistic
branching time logic (PBTL) that is similar to PCTL. The dynamics of this restricted
subclass is confined in the same way as for its non-probabilistic counterpart mentioned
above. His model checking procedure relies, first, on a translation to a probabilistic ver-
sion of timed automata, second, on the construction of a finite state representation of the
latter system called the probabilistic region graph and, third, on using established PBTL
model checking techniques [BdA95, BK98]. Sproston argues that his approach suffers
from two significant drawbacks: 1) the assumption of re-initialization is too restrictive

1More information can be found on http://www.prismmodelchecker.org.
2More information can be found on http://www.mrmc-tool.org/trac.

http://www.prismmodelchecker.org
http://www.mrmc-tool.org/trac

3.2 Related work: Probabilistic hybrid models and model checking 19

and 2) the translation process introduces too many new variables and thus increases the
state space significantly. He therefore proposed a semi-decision procedure for reachability
analysis of the more general class of probabilistic rectangular automata, i.e. without the
restriction of re-initialization, by means of a forward search through the reachable state
space [Spr01].

In the remainder of the section, we first outline the model checking techniques for
probabilistic hybrid automata being introduced in this thesis. Thereafter, competitive
approaches for the same and closely related system classes are reviewed.

3.2.3 Approach of this thesis

The probabilistic hybrid automata model of this thesis is mainly restricted as follows:
first, it is interpreted over discrete time, second, it does not include ordinary differential
equations and, third, the non-determinism and stochasticity must be finite. In spite
of these limitations, interesting applications can be covered as shown by the NAS case
study of Section 3.1. We further remark that these restrictions are not essential for
our approach and that Chapter 10 elaborates on a continuous-time model incorporating
ordinary differential equations.

The model checking procedures introduced in this thesis belong to the class of depth-
bounded state-space exploration methods based on satisfiability solvers, which have orig-
inally been suggested for finite-state systems by Groote et al. in [GKvV95] and Biere
et al. in [BCCZ99]. Such methods have become popular under the term bounded model
checking (BMC) now accounting for a major fraction of the industrial applications of
formal verification. The idea of BMC is to encode the next-state relation of a system as a
propositional formula, to unroll this to some given finite depth k, and to augment it with
a corresponding finite unravelling of the tableaux of the negation of a temporal formula,
describing some desired system property, in order to obtain a propositional formula which
is satisfiable if and only if an error trace of length k exists. Enabled by the impressive gains
in performance of Boolean satisfiability (SAT) solvers in recent years, BMC can now be
applied to very large finite-state designs. Though originally formulated for discrete tran-
sition systems, the concept of BMC also applies to hybrid discrete-continuous systems.
The BMC formulae arising from such systems comprise complex Boolean combinations
of arithmetic constraints over real-valued variables, thus entailing the need for so-called
satisfiability modulo theories (SMT) solvers over arithmetic theories to solve them. Such
SMT procedures are thus currently in the focus of the SAT-solving community [BBC+05,
DdM06, BPT07, FHT+07, EFH08, GGI+10], as is their application to and tailoring for
BMC of hybrid systems [ABCS05, ÁBKS05, FH07, HEFT08, ÁSB+11, ERNF11].

In this thesis, we present a technology that saves the virtues of SMT-based BMC,
namely the fully symbolic treatment of hybrid state spaces, while advancing the reason-
ing power to probabilistic models and requirements. In Chapter 4, we therefore extend
SMT by alternating quantifiers of the classical existential form as well as of randomized
or, equivalently, stochastic type. This leads to the logical framework of stochastic satis-
fiability modulo theories (SSMT) facilitating a symbolic encoding of probabilistic hybrid
automata. Chapter 5 gives a detailed account of this symbolic encoding. The idea of the
latter is, in a nutshell, to encode the transition effects as an SMT formula, as usual, yet

20 3 Probabilistic Hybrid Systems

add the branching structure to the encoding by means of quantification, with existential
quantification reflecting non-deterministic choices and randomized quantification reflect-
ing probabilistic events. The step-bounded analysis of probabilistic hybrid automata can
then be reduced to solving SSMT formulae. Appropriate algorithms to solve SSMT prob-
lems as well as several algorithmic optimizations are presented in Chapter 6. This proba-
bilistic bounded model checking (PBMC) approach is then able to falsify safety properties
of the shape “the worst-case probability of reaching a fatal system error is at most 1h”
whenever a step depth was found for which this property could be refuted. Akin to the
non-probabilistic case, SSMT-based PBMC permits an encoding of concurrent probabilis-
tic hybrid automata that is of size linear in the number of parallel components, alleviating
the state explosion arising from an explicit construction of the product automaton with
respect to the discrete state space, and thus enhancing the scalability of the automated
analysis procedures.

Apart from such classical reachability probabilities, several industrial applications fre-
quently call for more expressive quantitative measures like expected values, confer the
latter two analysis questions of Section 3.1. Motivated by this fact, Chapter 7 is devoted
to a symbolic method for computing expected values of discrete-time probabilistic hybrid
systems like, for instance, mean time to failure (MTTF). Though the latter method builds
upon SSMT-based PBMC, it has fundamentally different properties: instead of targeting
at falsification, the resulting procedure turns into a verification approach being able to
verify safety requirements of the shape “the MTTF is always at least 20 minutes”.

3.2.4 Competitive approaches

Zhang et al. presented an approach to verification of safety properties concerning the
probability of reaching unsafe states in probabilistic hybrid automata [ZSR+10]. This
approach can thus be seen as complementary to PBMC that establishes a falsification
procedure for such safety properties. The automata class of [ZSR+10] is however not that
restrictive than the one of this thesis as continuous-time semantics and ordinary differ-
ential equations are supported. In a bit more detail, the verification procedure works as
follows. First, a non-probabilistic hybrid automaton is obtained from the given proba-
bilistic hybrid automaton by simply replacing probabilistic choices with non-deterministic
ones. The hybrid automaton is then abstracted into a finite-state system using classi-
cal methods, for instance [ADI06, RS07]. While the current implementation employs
the tool PHAVer [Fre05], any other tool that produces such abstractions is applicable.
In the next step, the abstracting finite-state system is decorated with probabilities via
techniques known for Markov decision processes [DJJL01, HWZ08], resulting in a proba-
bilistic finite-state automaton. This overall translation ensures the following property: if
the abstracting probabilistic finite-state system satisfies some probabilistic safety property
then the original probabilistic hybrid automaton does so. To compute the probability p
of reaching unsafe states in the probabilistic abstraction, standard methods, here value
iteration [Bel57], are used. By above property, p is a safe upper bound of the reachability
probability for the original infinite-state system. A safety property of the shape “in worst
case, unsafe states are reachable with probability at most θ” is then verified whenever
p ≤ θ holds. Otherwise, i.e. if p > θ, the abstraction is refined to obtain a potentially

3.2 Related work: Probabilistic hybrid models and model checking 21

more precise upper bound. We remark that how the refinement is realized depends on
the abstraction technique. While PHAVer computes polyhedra to cover the continuous
state-space per discrete location, the authors currently reduce the maximal widths of these
polyhedra to refine the abstraction.

More recently, the expressiveness of the above system model was enhanced consider-
ably in [FHH+11], namely by permitting continuous probability distributions in discrete
state changes.3 The resulting system class is called stochastic hybrid automata. With re-
gard to the probabilistic reachability analysis of such systems, the verification procedure
from [ZSR+10] was adapted to this more general case as follows. In a first step, a given
stochastic hybrid automaton is overapproximated by a probabilistic hybrid automaton,
as defined in [ZSR+10], by means of abstracting continuous probability distributions by
discrete distributions combined with additional uncountable non-determinism. The lat-
ter abstraction satisfies the property that if the resulting probabilistic automaton meets
some probabilistic safety requirement then the original stochastic automaton does so. In
a second step, the overapproximating probabilistic hybrid automaton is model checked
using the verification procedure from [ZSR+10].

The recent work described in [HNP+11] targets at the same problem as in [ZSR+10],
namely the probabilistic reachability analysis of probabilistic hybrid automata, with the
suggested analysis approach also relying on finite-state abstraction of the given infinite-
state system. More precisely, two abstraction techniques are elaborated on, with both
of them abstracting the given probabilistic hybrid automaton by an n-player stochastic
game. Within this stochastic game, the abstraction is represented by an own player. By
defining the strategy of the latter player to minimize or maximize the probability of reach-
ing the target states, lower and upper bounds, respectively, on the optimal reachability
probability for the original automaton can be obtained from the abstraction. That is
to say, the approach of [HNP+11] establishes a verification as well as falsification proce-
dure for probabilistic safety properties. For the sake of completeness, we remark that the
authors of [HNP+11] further considered the computation of lower and upper bounds on
optimal long-run average rewards for probabilistic hybrid automata as well as the problem
of synthesizing an optimal controller for such systems.

In control theory, a model similar to probabilistic hybrid automaton is currently in the
focus that is called discrete-time stochastic hybrid system (DTSHS) [AAP+06b, AAP+06a,
Aba07, APLS08]. Being sampled at discrete time points, this model comprises non-
deterministic as well as discrete probabilistic choices of state transitions. The non-
determinism is modeled via so-called control inputs. In comparison to probabilistic hybrid
automata, the above system class do not exhibit an explicit notion of symbolic transition
guards. Transition guards are an essential concept in hybrid system modeling as they
offer the possibility to describe computer programs controlling the system. For instance,
a heater should be switched off only if the temperature is above 35°. It is however possible
to define transition guards implicitly by picking properly the probabilistic transition func-
tions as the latter may also depend on the continuous state, see [APLS08, Section 2]. The

3In fact, another contribution of [FHH+11] is the introduction of uncountable non-determinism in dis-
crete assignments. In principle, the latter feature however was already present in probabilistic hybrid
automata [ZSR+10] and was neglected only for the sake of a simpler presentation, confer footnote 1
on page 199 of [ZSR+10].

22 3 Probabilistic Hybrid Systems

model of DTSHS supports a further and more general concept of randomness: at each
time step the continuous state may be determined according to a continuous probability
distribution. DTSHSs are thus able to describe discretized stochastic differential equa-
tions incorporating random phenomena like noise in temperature evolution, confer the
thermostat example in [AAP+06b] starting on page 54. With regard to system analysis,
the above articles concentrate on the control problem of “keeping a system within a safe
region for a given time horizon with sufficiently high probability”. The notion of safety
is thus understood as to find an optimal control policy that maximizes the probability of
staying safe or, in other words, that minimizes the probability of reaching unsafe states.
This point of view differs from most common model checking approaches, like the one
described above or the one of this thesis, where non-determinism typically arises from
open design questions or non-expert inputs and is thus considered as uncontrollable. As
a consequence, model checking aims at the worst case scenario while optimal control ap-
proaches address the best case. The maximum probability of remaining in the safe region
is expressed using optimal cost functions. These functions basically reflect the branching
structure of the DTSHS, while branching according to continuous probability distributions
is represented by integrals. These cost functions theoretically establish a backward recur-
sive procedure which is also called dynamic programming scheme. Intuitively, dynamic
programming determines how the optimal probability for some state at time point k−1 is
computed if the optimal probabilities for all states at time k are known. The reasoning is
thus backward in time and stops when time point 0 is reached. As a finite time horizon is
considered, i.e. the number n of discrete time steps is finite, the base cases are given at time
point n where the probabilities for all states are trivially known, i.e. probability 1 for safe
states and probability 0 for unsafe states. Finding analytical solutions to such dynamic
programming equations, i.e. closed-form expressions without integral parts, is however
hard in general, since such cost functions can be very general and of non-linear shape. In
order to tackle this issue, a numerical approximation approach was suggested in [Aba07,
Section 2.2.8]. The idea is to construct a finite discretization of the continuous state-space
that is called grid. Using this finite-state grid, the dynamic programming scheme can be
discretized and then solved approximatively. It was shown in [Aba07, Theorem 9] that
the approximation error depends on the grid size4, i.e. the maximal size of a cell of the
grid, from which follows that the quality of approximation enhances for smaller grid sizes.
It is well-known that finite-state gridding approaches suffer from the so-called “curse of
dimensionality”, confer, for instance, [Aba07, Section 2.3.4], i.e. the number of cells of
the grid is exponential in the number of continuous state components. In order to apply
dynamic programming, the grid must be constructed beforehand. This is an inherent
difference to SSMT-based PBMC where the state space is encoded fully symbolically as
an SSMT formula without an exponential overhead. Complexity issues potentially arise
when solving an SSMT problem: in worst case, the full state space must be traversed
while the latter fact is tried to mitigate by several algorithmic enhancements, confer Sec-
tion 6.5. We finally remark that in [Aba07, Section 2.2.4] also the infinite time horizon
case was investigated, addressing the question of convergence of the optimal control law
to a stationary policy.
Another approach to a very similar problem as above was suggested in [AKLP10,

4Note that this term does not denote the number of cells of the grid.

3.2 Related work: Probabilistic hybrid models and model checking 23

AKLP11], where the DTSHS model is autonomous, i.e. without non-deterministic control
inputs. Akin to the method above, the probability of remaining in the safe region is also
described as a dynamic programming scheme, and the continuous state space is again
discretized by a finite-state grid. The difference however lies in the computation of the
probability. As distinguished from using the grid to obtain and then numerically solve a
discretized dynamic programming scheme, the grid is exploited to derive a discrete-time
Markov chain, the latter being model checked using standard techniques. The result is
an approximation of the actual probability of staying safe, while the approximated result
converges to the exact probability as the maximal size of a cell of the grid tends to zero.

The above approach employs a uniform-partitioning algorithm for the grid construction
and thus frequently suffers from scalability issues. In a more recent work, the authors
of [SA11] proposed an adaptive procedure for the grid generation that exploits knowledge
about the system dynamics. It was shown that this adaptive procedure can lead to grids
with a much smaller number of cells, thus mitigating the “curse of dimensionality”.

The authors of [AKM11] proposed an approach to model checking autonomous DTSHSs
against linear time objectives like, for instance, liveness instead of mere safety proper-
ties. Such objectives are specified either as a deterministic finite-state automaton (DFA)
or as a generalized (non-deterministic) Büchi automaton, the latter covering properties
expressible in the linear temporal logic (LTL). The problem of computing the probabil-
ity that a given autonomous DTSHS satisfies a linear time property specified by a DFA
or Büchi automaton is then reduced to the problem of computing reachability probabil-
ities in the product of the DTSHS and of the automaton encoding the property. The
latter probabilistic reachability problem is then addressed by a procedure similar to one
of [AKLP10, AKLP11].

More recently, Platzer suggested a logic-based approach to safety analysis of stochastic
hybrid systems [Pla11]. As a formal model, stochastic hybrid programs (SHPs) were intro-
duced. This system class is very expressive on the stochastic side as it comprises stochastic
differential equations, discrete probabilistic branching, and random assignments to real-
valued variables, while it seems that non-deterministic branching and parallel composition
are not expressible. For the specification of system properties, a logic called stochastic
differential dynamic logic is considered. A proof calculus is then proposed to verify logical
properties of SHPs. The latter calculus was presented without an implementation, and the
issue of its automatability was not discussed. With regard to the approach of this thesis,
the model of probabilistic hybrid automata, on the one hand, is considerably more con-
fined than SHPs, in particular in its stochastic behavior. On the other hand, SSMT-based
PBMC establishes a fully automatic analysis procedure which is particularly suitable for
the analysis of concurrent systems, i.e. of systems consisting of several subsystems.

In [WZH07], model checking probabilistic programs against specifications of a fragment
of PCTL is examined. Probabilistic programs are very similar to discrete-time probabilis-
tic hybrid automata as they support non-deterministic and discrete probabilistic choices
as well as arithmetic expressions over unbounded integers and reals to describe the pro-
gram execution. Due to infinite data domains, the state space of this system class is also
infinite. Like the approaches above, the procedure of [WZH07] relies on finite-state ab-
straction but of a very different nature. Instead of partitioning the infinite state space by
geometric objects explicitly, for instance, by polyhedra or grids, the more general concept

24 3 Probabilistic Hybrid Systems

of predicates is used to obtain a symbolic abstraction. A predicate ϕ over the variables
of the given probabilistic program encodes a set of states, namely the states satisfying ϕ.
Such a predicate may describe a set of states that is of much more complex shape than,
for instance, a polyhedron as it may encode, for instance, a union of unconnected polyhe-
dra. Given n predicates, the infinite state space can then be discretized into 2n abstract
states by characterizing for each abstract state which of the n predicates are satisfied and
which are not. Such predicates are extracted from the probabilistic program as well as
from the PCTL property and may also be provided by the user. This predicate abstrac-
tion resulting in a probabilistic finite-state automaton works as follows. Given predicates
ϕ1, . . . , ϕn, an abstract state s♯ is represented by a bit vector (b1, . . . , bn), and s

♯ encodes
an original state s whenever for all 1 ≤ i ≤ n it holds that Boolean variable bi is true if
and only if s satisfies predicate ϕi. In order to construct the abstracted finite-state model,
the authors of [WZH07] proposed an SMT-based approach: to detect all initial abstract
states as well as all transitions between abstract states, SMT formulae are generated that
link the abstract states and original states to each other. Each solution of such an SMT
formula to the Boolean variables then gives an initial state or identifies transitions be-
tween abstract states. An appropriate SMT solver is used to enumerate all solutions,
i.e. all initial states and all transitions. Observe that in worst case, the number of gen-
erated states and transitions is exponential in the number n of predicates. To mitigate
this issue, optimization techniques to decrease the number of Boolean variables in these
SMT formulae and thus the number of SMT solutions were presented in [WZH07], and
it was shown empirically that these enhancements can improve performance. In a final
step, the resulting probabilistic finite-state automaton is analyzed using the probabilistic
finite-state model checker PRISM. Due to the fact that predicate abstraction preserves
safe PCTL properties, i.e. if the abstraction satisfies a PCTL property then the original
probabilistic program also does, the original system is verified whenever the abstracted
system satisfies the PCTL specification.

Though both, the approach of [WZH07] and SSMT-based PBMC presented in this the-
sis, target at very similar infinite-state system models and rely on SMT solving, they show
however inherent differences. As mentioned above, the technique of [WZH07] constructs a
finite-state abstraction of a given infinite-state system and thus aims at verification, while
SSMT-based PBMC precisely encodes the step-bounded behavior of the given infinite-
state system as an SSMT formula and is designated for falsification. Although both ap-
proaches use symbolic encodings of the system behavior, the application of SMT solving
is different. In PBMC, the overall probabilistic reachability problem is directly reduced
to solving the corresponding SSMT formula, while [WZH07] first extracts the abstracted
system from all solutions of the corresponding SMT formulae and then model checks the
abstraction by another method. As mentioned earlier, the approach of [WZH07] must
enumerate exponentially many SMT solutions in worst case. This issue is clearly also
present when solving an SSMT problem. The difference lies in how optimizations apply:
in [WZH07], each guarded command, i.e. each probabilistic choice, of the original system
is encoded as one SMT formula to detect abstract transitions. This implies that the op-
timizations mentioned above are only applicable for one probabilistic transition choice.
An SSMT formula in PBMC however comprises the whole system behavior (of bounded
step-depth), in particular all non-deterministic and probabilistic transition choices, and

3.2 Related work: Probabilistic hybrid models and model checking 25

thus talks about system runs and not only about single system steps. This gives rise to
more sophisticated optimizations that potentially exclude several system runs. Algorith-
mic optimizations of SSMT solving are investigated in Section 6.5. We finally remark two
other differences. The expressiveness of arithmetic expressions occurring in probabilistic
programs strongly depends on the employed SMT solver. The implementation in [WZH07]
is based on the SMT tool Yices [DdM06] and thus restricted to linear arithmetic. SSMT-
based PBMC builds on the non-linear arithmetic SMT solver iSAT, confer [FHT+07] and
Section 6.3, such that the probabilistic model of this thesis may contain richer arithmetic
expressions involving transcendental functions like sin or exp. With regard to parallel
composition, the approach of [WZH07] must also resort to flattening the overall system
structure leading to an in general exponentially-sized product automaton. As mentioned
above, SSMT permits a linearly-sized encoding of parallel systems and thus alleviates
the state explosion arising from an explicit construction of the product automaton with
respect to the discrete state space.

Aiming at probabilistic (unsafe) state reachability, the verification technique of [WZH07]
was enhanced in [HWZ08] as follows: the authors suggested a method to refine the pred-
icate abstraction based on counterexamples and furthermore extended the approach to
falsification. As in [WZH07], predicate abstraction is first used to achieve a finite-state sys-
tem from a given probabilistic program. Using a probabilistic finite-state model checker,
the probabilistic reachability problem of the shape “the maximum probability of reaching
unsafe states is at most θ” is then model checked on the abstraction. If the latter property
holds for the abstraction then the original probabilistic program is verified. The reverse
direction, however, does not hold in general. In order to close this gap, the approach
in [HWZ08] generates a counterexample for the abstracted system. As opposed to the
non-probabilistic case, a counterexample to a probabilistic reachability property is not a
single system run but comprises several such runs, and can even be a cyclic (discrete-time)
Markov chain. Exploiting a technique from [HK07], the Markov chain counterexample is
preprocessed thereby obtaining a finite set of finite system runs whose probability mass
exceeds safety threshold θ. The next step is to check whether the abstract counterexample
can be realized, i.e. whether there is a corresponding probabilistic counterexample in the
original program, or not. This requires to decide whether single runs of the abstract coun-
terexample are realizable in the concrete system or spurious. This problem can be solved
by checking satisfiability of a corresponding SMT formula. As an abstract state encodes
several (potentially infinitely many) concrete states, a further challenge is to identify one
concrete initial state from which the system reaches the target states with highest proba-
bility. The latter problem is reduced to a weighted MAX-SMT formula, i.e. to determine
an assignment of a formula that maximizes the value of a weighted expression. If the
counterexample is actually realizable, then the probabilistic reachability property is falsi-
fied. Otherwise, i.e. the property was neither verified nor falsified, the current abstraction
is refined by adding new predicates. This so-called probabilistic counterexample-guided
abstraction refinement is done by analyzing the non-realizable probabilistic counterex-
ample. With regard to the reasons of non-realizability mentioned above, new predicates
should prevent for the same or similar spurious abstract runs and should facilitate a finer
abstraction of the initial states. Such predicates are obtained by the logical concept of
Craig interpolation as, for instance, in [HJMM04]. We remark that Chapter 9 elaborates

26 3 Probabilistic Hybrid Systems

on the topic of Craig interpolation. The approach of [HWZ08] is implemented in the tool
PASS [HHWZ10].
The authors of [ZPC10] proposed a method for the analysis of discrete-time stochastic

hybrid systems with respect to bounded temporal properties that is called statistical model
checking. Their system model is very similar to the one of [Aba07] and also permits
continuous state changes according to continuous probability distributions. The statistical
model checking procedure, however, does not belong to the class of exhaustive state-space
exploration methods but is based on system simulation and on Bayesian statistics. As
a consequence, the results obtained from statistical model checking are not guaranteed
to be correct. Nevertheless, two reasons are presented to motivate this simulation-based
approach: first, results are usually obtained much faster compared to exhaustive search
and, second, the probability of returning a wrong result can be made arbitrarily small.
The work presented in [FHW10] discusses probabilistic reachability analysis of a rich

probabilistic model that is called first-order probabilistic timed automaton (FPTA). Com-
pared to probabilistic hybrid automata, the continuous dynamics of an FPTA is restricted
to timed behavior as in timed automata [AD94], i.e. to real-valued clocks with progress of
rate 1. While discrete actions in probabilistic hybrid automata are usually described by
(non-linear) arithmetic predicates and assignments like “if sin(t) < cos(t) ∧ t > 1

2
π then

execute x := x2 + y and t := 0”, transition guards and assignments in FPTAs comprise
first-order predicates. This permits to manipulate more sophisticated data structures like
lists. For instance, let the symbol cons denote a list constructor. Then, the transition
guard list = cons(elem, list ′) followed by the assignment list := list ′ characterizes the re-
moval of the first list element elem in the list list . The analysis approach of [FHW10] first
translates the given FPTA model into a labeled first-order formula over linear arithmetic,
where labels and linear arithmetic are used to preserve all probabilistic aspects and to
describe the advance of time, respectively. In the next step, the resulting formula is fed to
a first-order theorem prover that is employed to enumerate all proofs. These proofs then
facilitate the construction of a probabilistic timed automaton (PTA) that is reachability
equivalent to the original first-order model. By the latter reduction, the original proba-
bilistic reachability problem for FPTAs is then solved for the simpler PTA model using
the PTA model checking tool MCPTA [HH09].
We finally mention the work on probabilistic safety analysis of discrete-time Markov

chains (DTMCs) published in [WBB09]. The considered system model is much more re-
strictive than probabilistic hybrid automata: the state space is finite and the behavior
is fully probabilistic, i.e. without non-determinism. The analysis technique is however
closely related to the one presented in this thesis. More precisely, the authors of [WBB09]
suggested a BMC-based approach to the falsification of safety properties of the shape “the
probability of reaching the target states, while passing only states of some specified set,
is at most θ”.5 This approach works as follows. In a first step, the given safety property
of above form is reduced to state reachability by removing edges from the DTMC. By
mapping probabilistic transitions to non-deterministic ones, the step-bounded behavior of
the given DTMC as well as the reachability property are then described as a propositional
formula as common for BMC. Note that the original transition probability matrix of the
DTMC is maintained in order to keep track of the transition probabilities between states.

5These safety properties are actually PCTL formulae of the form Pr≤θ(a U b).

3.3 Concurrent discrete-time probabilistic hybrid automata 27

The idea then is to solve the BMC formulae for increasing step depths thereby collecting
all system runs that reach the target states until the probability measure of these runs
exceeds θ. In a bit more detail, the BMC formula of some initial step depth k is solved
by a SAT solver. If the formula is unsatisfiable then there does not exist a system run
of length k that reaches the target. Otherwise, the satisfying assignment provided by the
SAT solver is used to extract a run of the DTMC that reaches the target. The proba-
bility of this run is retrieved by means of the original probability matrix. After adding
an additional clause to the BMC formula which excludes the previous solution, the SAT
solver is called again to potentially find another run reaching the target states. Whenever
the (modified) BMC formula of depth k is decided to be unsatisfiable, the process contin-
ues with BMC formula of depth k + 1. The overall procedure terminates if all collected
system runs carry enough probability mass to falsify the safety property, thereby estab-
lishing a probabilistic counterexample. To reduce the number of SAT solver calls and thus
to improve efficiency, the authors of [WBB09] proposed some optimizations. The most
important one tries to detect loops in runs reaching the target states in order to achieve
infinitely many runs from one solver invocation. Besides the fact that SSMT-based PBMC
can deal with probabilistic infinite-state systems exhibiting non-determinism, the main
difference to the approach of [WBB09] is that a PBMC formula preserves full informa-
tion about the branching structure, in particular all probability information, by means
of existential and randomized quantifiers. This naturally allows for a distinction between
non-deterministic and probabilistic choices as well as for several algorithmic optimizations
including optimizations with respect to probabilistic behavior, confer Section 6.5.

More recently, the latter approach was enhanced in [BWB+11] to the more general
case of Markov reward models (MRMs), which are DTMCs extended by real-valued state
rewards. The corresponding safety properties are now of the shape “the probability of
reaching the target states with an accumulated reward of at least θl and of at most θu,
while passing only states of some specified set, is at most θ”. In order to cope with such
constraints on the accumulated reward, the step-bounded behavior of the given MRM
(together with the reformulated safety property) is now encoded as an SMT formula over
linear real arithmetic instead of a propositional formula. For the falsification of above
safety properties, principally the same procedure as in [WBB09] is feasible. The authors
of [BWB+11] actually prefer a slightly different approach: since the probability measure
of a run can be encoded in above SMT formula, binary search is used to generate runs of
higher probabilities first, as this leads to more compact probabilistic counterexamples in
general.

3.3 Concurrent discrete-time probabilistic hybrid

automata

After having motivated the probabilistic system model of this thesis by means of a prac-
tical NAS application in Section 3.1 and after having surveyed related system classes in
Section 3.2, we now present in detail the formal model of concurrent discrete-time proba-
bilistic hybrid automata as introduced in [TEF11]. We remark that essential parts of this
section were published in [TEF11] by the author of this thesis together with his co-authors.

28 3 Probabilistic Hybrid Systems

As exemplified by the NAS case study, hybrid systems occurring in practice generally
consist of multiple components evolving concurrently, both in the small, where controllers,
sensor, actuators form identifiable units being coupled by one or more communication
busses, or in the large, where a number of otherwise independent physical processes be-
comes connected via embedded control, as in a car platooning maneuver. Given the
ubiquity of concurrency in such embedded control applications, it makes sense to avoid
the detrimental effects of flattening concurrent systems before verification, which have
become known as state explosion in the finite-state case, and offer models directly accom-
modating concurrency instead. In the sequel, we therefore elaborate on such a model,
where probabilistic hybrid automata evolve concurrently subject to a synchronous seman-
tics involving global agreement on transitions as in CSP [Hoa85]. Within their evolution,
the individual automata

1. non-deterministically select local transitions and synchronously suggest them to the
environment,

2. establish consensus on a global transition comprising one selected local transition
from each concurrent component by checking mutual consistency between the in-
dividual activation conditions of the selected local transitions, releasing the syn-
chronous global transition if and only if the conditions are consistent,

3. after having committed to this global transition, do locally select one of the available
probabilistic variants of the corresponding local transition,

4. establish global consensus on execution of the locally selected probabilistic variants
by checking mutual consistency of their side effects,

5. in case of consensus, execute the transition concurrently by applying their associated
effects on the global state, or else deadlock due to inconsistent assignments in the
committed transitions.

The semantics has been defined with the goals of, first, permitting concise models by
not imposing overly restrictive rules on use of variables and, second, providing separation
between the possibly non-deterministic process of transition selection and the then purely
probabilistic process of selection of a transition variant, as in classical, monolithic proba-
bilistic hybrid automata [Spr01, BC05, FHT08]. To achieve the first, both the (then not
really) local conditions for transition selection and the side effects can refer to non-local
variables in both pre- and post-states, forcing parallel automata to agree on mutually
consistent local transitions. The second, which is a necessary prerequisite for avoiding
ill-formed probability measures due to interference between schedulers (or policies, adver-
saries) resolving non-determinism and the probabilistic choices, is accomplished by first
committing a non-deterministic transition selection and then pursuing the probabilistic
selection of a variant, yielding a deadlock if the latter experiment yields an outcome which
is inconsistent to the earlier selection.

Definition 3.1 (Syntax of a system of concurrent PHAs)
A system of concurrent discrete-time probabilistic hybrid automata S = {A1, . . . ,An}
is given by a set of discrete-time probabilistic hybrid automata (PHAs), where each
probabilistic hybrid automaton Ai for 1 ≤ i ≤ n consists of the following:

3.3 Concurrent discrete-time probabilistic hybrid automata 29

� A finite set Di = {di1, . . . , d
i
ki
} of discrete variables spanning the discrete state space

(sometimes called the locations) of the hybrid automaton by means of the Cartesian
product

�ki
j=1 dom(dij) of their finite domains dom(dij). Without loss of generality,

we assume that each dom(dij) is a bounded integer interval. In order to permit non-
local referencing of the state variables, we demand that Di ∩ Dj = ∅ if i 6= j, i.e.
that the variable names used in different concurrent automata are disjoint.

� A finite set Ri = {xi1, . . . , x
i
mi
} of continuous state components controlled by that

automaton (yet visible to all others). Each continuous component xij ranges over
a bounded interval dom(xij) = [lxi

j
, uxi

j
] within the reals R. Again, we demand that

Ri∩Rj = ∅ if i 6= j. Additionally, we require discrete variable names and continuous
variable names to be disjoint, i.e. Di ∩ Rj = ∅ for all i and j.

� A predicate init i in an arithmetic theory T with free variables in Di and Ri de-
scribing the initial state of the automaton. For technical reasons and without loss of
generality, we demand that there is exactly one valuation in the state set States i =�ki

j=1 dom(dij)×
�mi

j=1 dom(xij) of the automaton which satisfies init i. Note that due
to the disjointness of the local variable name spaces, this implies existence of exactly
one global initial state s ∈

�n
i=1 States i satisfying

∧n
i=1 init i.

� A finite family Tri = {tri1, . . . , tr
i
ℓi
} of symbolic transitions.

Each symbolic transition trij comprises the following.

� A generalized transition guard g(trij) expressing the conditions on local and global
variables required for establishing consensus on that transition. As for the descrip-
tion of initial states, g(trij) is a predicate in the arithmetic theory T over variables
in D1, . . . , Dn and R1, . . . , Rn as well as primed variants thereof, the latter repre-
senting the post-states. A transition guard states the conditions on the discrete as
well as the continuous state under which the transition may be taken. Note that
the guard predicate can refer to the current states and post-states of all concurrent
automata in S. It thus provides an expressive formalism supporting synchronization
through global consensus.

� A discrete probability distribution p(trij) ∈ D(PCtrij
), where PCtrij

is a finite and

non-empty set of symbolic transition alternatives and D(PCtrij
) denotes the set of

discrete probability distributions over PCtrij
. That is, p(trij) assigns to transition trij

a distribution over |PCtrij
| many transition alternatives. Without loss of generality,

we demand that each transition alternative is of positive probability, i.e. for each
pc ∈ PCtrij

it holds that p(trij)(pc) > 0.

� For each transition alternative pc ∈ PCtrij
of transition trij an assignment predicate

asgn(trij, pc) defining the successor state. As for transition guards, asgn(trij , pc)
is an arithmetic predicate in the arithmetic theory T over variables in D1, . . . , Dn

and R1, . . . , Rn as well as primed variants thereof, the latter again representing the
post-states.

30 3 Probabilistic Hybrid Systems

tr11 tr21

pc21,1

tr22

pc22,1

A2A1

pc21,2

y′ = x2

pc11,2pc11,1

x′ = 0

1

0.2 0.60.8 0.4

NChoice = {(tr11, tr
2
1), (tr

1
1, tr

2
2)}

PChoice((tr11, tr
2
1)) = {(pc11,1, pc

2
1,1), (pc

1
1,2, pc

2
1,1),

(pc11,1, pc
2
1,2), (pc

1
1,2, pc

2
1,2)}

PChoice((tr11, tr
2
2)) = {(pc11,1, pc

2
2,1), (pc

1
1,2, pc

2
2,1)}

PChoice = PChoice((tr11, tr
2
1))

∪ PChoice((tr11, tr
2
2))

Assign((tr11, tr
2
1), (pc

1
1,1, pc

2
1,2)) ≡ x′ = 0 ∧ y′ = x2

p((tr11, tr
2
1), (pc

1
1,1, pc

2
1,2)) = 0.2 · 0.6 = 0.12

Figure 3.2: A parallel composition of probabilistic hybrid automata. Guards are omitted for the

sake of clarity. (Source of figure: [TEF11])

Note that the assignment predicate may again refer to the global pre- and post-
state, i.e. the current states and the post-states of all concurrent automata in S.
This definition enables an automaton to read state variables of other automata, and
moreover offers the possibility of non-local writes, entailing agreement in case of
multiple concurrent updates to the same variables. Semantically, updates will only
be performed in case all concurrent automata agree on them, and the system will
become deadlocked in case of inconsistent updates. Furthermore, we require that the
concurrent execution of assignments are deterministic with respect to the primed
variables, i.e. the concurrent execution of the local transition alternatives of the
individual automata uniquely determines the global post-state of the overall system.

The above two requirements imply that each concurrently enabled combination of
local transitions may permit at most one successor state for each possible resolu-
tion of the local probabilistic choices. This condition necessitates a global view of
transitions and their related assignments, which motivates the following definitions,
as illustrated in Figure 3.2. To obtain such a global view, let NChoice =

�n
i=1 Tri

denote the Cartesian product of the local transition sets, thus representing the set of
all potentially possible global transitions. As each local transition may have multiple
probabilistic variants, the same applies for global transitions. With regard to a single
global transition (tr1, . . . , trn) ∈ NChoice, the set of associated probabilistic transi-
tion alternatives is PChoice((tr1, . . . , trn)) =

�n
i=1 PCtri, which is the Cartesian

product of the local probabilistic transition alternatives available for the individual
local transitions tr1, . . . , trn. Taking together all the global probabilistic alternatives
of all global transitions, PChoice =

⋃
nc∈NChoice PChoice(nc) denotes the set of all

global probabilistic choices. Given a global non-deterministic transition choice tr =
(tr1, . . . , trn) ∈ NChoice and a corresponding global probabilistic alternative choice
pc = (pc1, . . . , pcn) ∈ PChoice(tr), we denote by Assign(tr, pc) =

∧n
i=1 asgn(tr

i, pci)
the conjunction of the selected local assignment predicates. With these definitions, we
can formalize the requirements that each concurrent execution of local transition al-
ternatives be deterministic: We demand that for each global transition tr ∈ NChoice
and for each global probabilistic alternative pc ∈ PChoice(tr), the associated global
assignment Assign(tr, pc) is deterministic or, equivalently, a partial function, i.e. it

3.3 Concurrent discrete-time probabilistic hybrid automata 31

satisfies

Assign(tr, pc) ∧ Assign(tr, pc)[~e/~d′, ~y/~x′] ⇒ ~e = ~d′ ∧ ~y = ~x′

where ~d′ and ~x′ denote the vectors of all primed discrete and continuous variables
of all automata A1, . . . ,An, respectively. Intuitively, the current global state and a
global assignment uniquely determines the global post-state.

Observe that above definition left blank a concrete description of the arithmetic theory T .
In this thesis, we concentrate on the very general theory of non-linear arithmetic over the
reals and integers involving transcendental functions like exponential and trigonometric
functions. We remark that T -predicates may also comprise logical operators and can thus
be a complex-structured non-linear SMT formula as formally introduced in Section 4.3.
Let StatesS =

�n
i=1 States i be the global state space of system S. In the sequel,

we define the concurrent semantics of the system S. Here, all partners do propose a
local transition that is fixed as soon as the partners have reached consensus in the sense
of the guards of the involved local transitions being consistent. The latter amounts to
checking whether a global post-state exists which together with the current pre-state
satisfies the conjunction of the (generalized) local guards. Once the global transition has
been negotiated, all partners do randomly select a local transition alternative. Provided
that the assignments corresponding to the resulting global probabilistic alternative are
consistent, each system enters the unique post-state of S arising due to determinacy of
assignments. In case the selected global system step is impossible due to inconsistency
between the selected guards of all Ai or due to inconsistency of the randomly selected
assignments, the overall system S deadlocks in a distinguished state ⊥.
Given a selection of transitions and transition alternatives, it immediately follows from

Definition 3.1 (determinacy of global assignments) that at most one post-state exists:

Property 3.1 (Uniqueness of post-states)
Let S be a system of concurrent discrete-time probabilistic hybrid automata. Further, let
s ∈ StatesS be a state of S, tr = (tr1, . . . , trn) ∈ NChoice be a non-deterministic transi-
tion choice, and pc = (pc1, . . . , pcn) ∈ PChoice(tr) be a probabilistic choice of transition
alternatives. We define the predicate val(z) for z ∈ StatesS as a conjunction of equations∧

v∈
⋃n

i=1(Di∪Ri)
v = z(v), where z(v) is the value of variable v in state z. Then, if

val(s) ∧
n∧

i=1

(
g(tri) ∧ asgn(tri, pci)

)

is satisfiable then there exists exactly one state s′ such that

val(s) ∧ val(s′)′ ∧
n∧

i=1

(
g(tri) ∧ asgn(tri, pci)

)

is satisfiable, where val(.)′ is val(.) with all variable names decorated by primes.
In this case, we denote by Post(s, tr, pc) the unique post-state s′. Otherwise, the system

deadlocks and we define Post(s, tr, pc) = ⊥. For convenience, let be Post(⊥, tr, pc) = ⊥
for all tr, pc, and let ⊥ not satisfy any T -predicate.

32 3 Probabilistic Hybrid Systems

The next definition explains the executable system behavior:

Definition 3.2 (Semantics of a system of concurrent PHAs)
The semantics of a system S of concurrent PHAs is defined by runs of S that are finite6

alternating sequences of states and transitions, the latter involving both non-deterministic
and probabilistic choices. Each run r = 〈s0, (tr1, pc1), s1, . . . , (trk, pck), sk〉 ∈ (StatesS ∪
{⊥})× ((NChoice × PChoice)× (StatesS ∪ {⊥}))∗ of S meets the following properties:

1. pcj ∈ PChoice(trj) for all 1 ≤ j ≤ k.

2. sj+1 = Post(sj , trj, pcj) for all 0 ≤ j ≤ k − 1.

We define first(r) = s0 and last(r) = sk. We say that run r starts in state s0. For tech-
nical reasons, we do not demand that a run starts in the initial state. We call r anchored
run whenever s0 is the (unique) initial state, i.e. s0 satisfies the initial predicate

∧n
i=1 initi.

The length of run r, denoted by length(r), coincides with the number of transition steps
involved, i.e. length(r) = k. Each subsequence 〈si, (tri, pci), si+1〉 of r is referred to as
transition step or, synonymously, system step or step, for short.

Thus, each anchored run starts in the global initial state defined by the initial state pred-
icates of the concurrent components. Upon each transition step, all concurrent automata
first select non-deterministically among their transitions and then probabilistically under
their variants. The corresponding transition step leads to a unique post-state, if existent,
or to deadlock otherwise. The probability of a transition step 〈s, (tr, pc), s′〉 from s to s′ un-
der non-deterministic choice tr = (tr1, . . . , trn) and probabilistic choice pc = (pc1, . . . , pcn)
is given by p(tr, pc) =

∏n
i=1 p(tr

i)(pci), confer Figure 3.2. The probability p(r) of a (finite)
run r is the product of the probabilities of all transition steps of r, with the common
convention that the empty product is equal to 1. Hence, for each run r of length 0, i.e.
r = 〈s〉 with s ∈ StatesS ∪ {⊥}, we have p(r) = 1. Note that under a given scheduler
resolving non-determinism the accumulated probability of all runs that start in the same
state and are of the same length is always 1.

Example. Consider the system S = {sensor, controller} depicted in Figure 3.3. For the
sake of clarity, we omitted probabilistic transition alternatives whenever just one exists, for
instance, in the entire automaton controller. In order to be more intuitive and illustrative,
we talk about concrete location names like sns rise or ctr rise when explaining the model.
Note that the set of all locations, i.e. the discrete state space, is formally given by the
valuations of discrete variables, confer Definition 3.1. In our example, we may assume
that the discrete state space of each automaton is spanned by one discrete variable whose
domain consists of the corresponding locations encoded as integers.
The idea of this very simple model is that sensor shall perform discrete state changes

whenever the sine curve (evaluated over time) reaches its extremal values. That is, from
sns rise to sns fall when hitting the maximum, and vice versa when reaching the mini-
mum value. This switching behavior is synchronized with the controller, i.e. the controller
retrieves such state changes of sensor in its guards. The controller regulates the continuous

6Considering finite runs of PHAs suffices for the purpose of this thesis, since we investigate bounded
reachability.

3.3 Concurrent discrete-time probabilistic hybrid automata 33

sensor

controller

y = −π
2

trc4

sin(x) = 1 sin(x) = −10.9

trs1 trs2

x′ = π
2 ∧ t

′ = tx′ = −π
2 ∧ t

′ = t
∧ t′ = t + π

2
− x ∧ t′ = t + 3π

2
− x

0.1 0.1

pc1,1 pc2,1

pc2,2pc1,2

trs3 trs4

x ′
= π

2 ∧ t ′= tx
′ = −

π
2
∧ t

′ = t
trs6

trc1

ctr fall

trc2

−π
2 ≤ y ≤ 3π

2 ∧ sns rise ∧ sns fall′/y′ = y

−π
2
≤ y ≤ 3π

2
∧ sns fall ∧ sns rise′/y′ = y

x′ = x + (t′ − t)

sin(x) 6= 1/

x′ = x + (t′ − t)

sin(x) 6= −1/

y′ = y − (t′ − t)

∧ ¬(sns fall ∧ sns rise′)/

−π
2 ≤ y ≤ 3π

2

y′ = y + (t′ − t)

∧ ¬(sns rise ∧ sns fall′)/

−π
2 ≤ y ≤ 3π

2

y < −π
2 ∨ y >

3π
2 /

y′ = yy′ = y

y < −π
2 ∨ y >

3π
2 /trc6trc5

trs5

trc3

true/y′ = y

trc7

∧ t = −π
2

true/

x′ = x ∧ t′ = t

true/

x′ = x ∧ t′ = t

x = −π
2

ctr rise

ctr error

sns rise fail

sns fallsns rise

sns fall fail

0.9

Figure 3.3: Graphical representation of the two concurrent probabilistic hybrid automata sensor

and controller. (Source of figure: [TEF11])

variable y that is increasing over time in discrete state ctr rise and decreasing over time
in ctr fall. The global time of the system is modeled by variable t, and the time passage
is governed by automaton sensor. A safety requirement of the system, for instance, is
that the value of y may never leave the safe region [−π/2, 3π/2]. In case of violation,
the controller enters the discrete state ctr error and remains there forever. It is thus of
interest whether the overall system may violate the safety property, and, if so, to quantify
the system error.

The probabilistic behavior of S arises from the fact that the modeled sensor may over-

34 3 Probabilistic Hybrid Systems

(a) (b) (c) (d) (e) (f) (g) (h)

sns rise × × – – – × × –

sns fall – – – × × – – ×

sns fall fail – – – – – – – –

sns rise fail – – × – – – – –

x -π
2

π
2

π
2

π
2

3π
2

-π
2

π
2

π
2

(sin(x)) -1 1 1 1 -1 -1 1 1

t -π
2

π
2

π
2

π
2

3π
2

3π
2

5π
2

5π
2

ctr rise × × × × × × × –

ctr fall – – – – – – – –

ctr error – – – – – – – ×

y -π
2

π
2

π
2

π
2

3π
2

3π
2

5π
2

5π
2

Figure 3.4: Sample anchored run of S. (Source of figure: [TEF11])

look an optimum of the sine curve with some probability, say 0.1. In such cases, the
controller may not perform a state change from ctr rise to ctr fall or vice versa. As
depicted in Figure 3.3, this is modeled by the transition alternatives pc1,2 and pc2,2 of
transitions trs1 and trs2, respectively. Each such alternative occurs with probability 0.1
forcing the sensor to visit one of the fail states sns rise fail and sns fall fail. These fail
states are then left immediately, but the effect is that the controller does not detect the
discrete state change of sensor as desired.

Figure 3.4 depicts a possible anchored run of S. Initially, it starts in the (unique)
initial state (a) ((sns rise, x = −π/2, t = −π/2), (ctr rise, y = −π/2)). The choice
(trs3, tr

c
3), (−,−) (where the probabilistic alternatives are left free due to uniqueness) leads

to state (b) ((sns rise, x = π/2, t = π/2), (ctr rise, y = π/2)). Now, the guard sin(x) = 1
of trs1 is true. The only enabled transition of sensor thus is trs1. Assume that the sensor

fails now which is modeled by the probabilistic transition alternative pc1,2. The con-

troller consistently selects transition trc3 to remain in ctr rise. Under this choice the next
system state (c) is ((sns rise fail, x = π/2, t = π/2), (ctr rise, y = π/2)), and immedi-
ately thereafter (d) ((sns fall, x = π/2, t = π/2), (ctr rise, y = π/2)). The sensor now
takes transition trs4 and the controller trc3, and the system enters state (e) ((sns fall, x =
3π/2, t = 3π/2), (ctr rise, y = 3π/2)). By the next choice (trs2, tr

c
3), (pc2,1,−), a dis-

crete state change in sensor is performed while setting x to −π/2, and results in state
(f) ((sns rise, x = −π/2, t = 3π/2), (ctr rise, y = 3π/2)). Then, both automata per-
form a self loop in their current discrete states yielding (g) ((sns rise, x = π/2, t = 5π/2),
(ctr rise, y = 5π/2)). Now, the value of variable y has left the safety interval [−π/2, 3π/2],
and selecting transition trc5 of controller leads to location ctr error. The sensor selects tran-
sition trs1 and probabilistically the alternative pc1,1. So, the next state (h) is ((sns fall, x =
π/2, t = 5π/2), (ctr error, y = 5π/2)). The length of this run is 7, and its probability is
given by the probabilities of its transition steps. There are just three steps with a probabil-
ity lower than 1, namely these with transition alternatives pc1,2, pc2,1, and pc1,1. Therefore,
the probability of this run is 0.1 · 0.9 · 0.9 = 0.081.

This example shows existence of a single anchored system run violating the safety

3.3 Concurrent discrete-time probabilistic hybrid automata 35

property with probability 0.081. Assuming that some probabilistic requirement however
permits violation with probability at most 0.1, then from above information we cannot
conclude whether this requirement is satisfied by the system or not. To obtain a mean-
ingful figure, the full, non-deterministic and probabilistic, system behavior needs to be
taken into account. This issue is addressed in Chapter 5 which introduces the problem of
probabilistic bounded state reachability and furthermore suggests a symbolic method to
solve the problem. Since this symbolic analysis approach is based on a stochastic exten-
sion of satisfiability modulo theories called SSMT, we devote the following chapter to a
detailed picture of SSMT and its underlying notions.

4 Stochastic Satisfiability Modulo Theories

This chapter introduces the notion of stochastic satisfiability modulo theories, SSMT for
short, as the underlying formalism for the symbolic analysis of probabilistic hybrid systems
being explored in Chapter 5. The idea of SSMT is to combine two well-studied logical
concepts, namely first stochastic Boolean satisfiability (SSAT) and second satisfiability
modulo theories (SMT), while both SSAT and SMT are extensions of the well-known
Boolean satisfiability (SAT) problem. To reasonably approach the definition of SSMT
in Section 4.4, we first recall the SAT problem in Section 4.1 and we then devote our
attention to SSAT and SMT in Sections 4.2 and 4.3, respectively.

We remark that essential parts of Section 4.2 were published in [TF10] by the author
of this thesis together with his co-author.

4.1 Boolean satisfiability

Given an arbitrary propositional formula ϕ, the Boolean satisfiability problem, or SAT for
short, asks whether a satisfying assignment of ϕ exists. SAT is one of the most famous and
most important decision problems in computer science, in fact from a theoretical as well as
practical point of view. SAT was the first problem to be known as NP-complete, i.e. one
of the “hardest” problems in NP. This seminal result was proven by Cook in 1971 [Coo71]
and facilitated to discover more NP-complete problems by means of reductions from SAT
and then from those new NP-complete problems, confer, for instance, [Kar72, GJ90].
The Boolean satisfiability problem remains NP-complete even for formulae in CNF and
moreover for formulae in kCNF for k ≥ 3 [Coo71]. When restricting the formula to be in
2CNF then the resulting problem becomes solvable in linear time [APT79].
Though it is still open whether P = NP holds or not, most experts believe that P 6= NP

and thus a polynomial time algorithm for SAT is not expected. As a consequence, hitherto
existing SAT algorithms show exponential runtime in worst case. However, there is a lot
of work to improve performance of these so-called SAT solvers in practice. The need of
practically efficient SAT solvers is motivated by industrial applications of SAT like software
and hardware verification. Nowadays, SAT solvers are actually high-performance tools for
many real-world problems in formal verification, and are moreover accepted and used by
industry. Modern SAT solving techniques are also exploited in algorithms for extensions
of SAT, in particular for SSAT, SMT, and SSMT. In Chapter 6, we elaborate on solving
technologies for these different problems.

4.2 Stochastic Boolean satisfiability

Papadimitriou [Pap85] has proposed the idea of modeling uncertainty within propositional
logic by introducing randomized quantification in addition to existential quantification.

38 4 Stochastic Satisfiability Modulo Theories

y = true

p = 0.3
y = true

p = 0.3

x = true

Pr = 1 Pr = 0 Pr = 0 Pr = 1

Φ = ∃x

R0.3y :
(
(x ∨ ¬y) ∧ (¬x ∨ y)

)

Pr = 0.3 · 0 + 0.7 · 1 = 0.7Pr = 0.3 · 1 + 0.7 · 0 = 0.3
y y

x = false

y = false

p = 0.7p = 0.7

truetrue false false

y = false

x

Pr(Φ) = max(0.3, 0.7) = 0.7

Figure 4.1: Semantics of an SSAT formula Φ depicted as a tree. (Source of figure: [TF10])

The resultant stochastic Boolean satisfiability (SSAT) problems consist of a quantifier
prefix followed by a propositional formula. The quantifier prefix is an alternating sequence
of existentially quantified variables and variables bound by randomized quantifiers. The
meaning of a randomized variable x is that x takes value true with a certain probability p
and value false with the complementary probability 1−p, while the value of an existential
variable can be set arbitrarily. Due to the presence of such probabilistic assignments, the
semantics of an SSAT formula Φ no longer is qualitative in the sense that Φ is satisfiable
or unsatisfiable as it is for propositional formulae, but rather quantitative in the sense that
we are interested in the maximum probability of satisfaction of Φ. Intuitively, a solution
of Φ is a strategy for assigning the existential variables, i.e. a tree of assignments to the
existential variables depending on the probabilistically determined values of preceding
randomized variables, such that the assignments maximize the probability of satisfying
the propositional formula.

The formal definition of the syntax and semantics of SSAT is as follows.

Definition 4.1 (Syntax of SSAT)
A stochastic Boolean satisfiability (SSAT) formula Φ is of the form Q : ϕ where

1. Q = Q1x1 ⊙ . . . ⊙ Qnxn is a quantifier prefix of quantified propositional variables
xi with 1 ≤ i ≤ n, where Qi is either an existential quantifier ∃ or a randomized
quantifier

Rpi with a rational constant 0 < pi < 1, and

2. ϕ is a propositional formula such that Var(ϕ) ⊆ {x1, . . . , xn}.

The quantifier-free propositional formula ϕ is sometimes called the matrix of Φ.

Definition 4.2 (Semantics of SSAT)
The semantics of an SSAT formula Φ is defined by the maximum probability of satisfac-

4.2 Stochastic Boolean satisfiability 39

tion Pr(Φ) as follows:

Pr(ε : ϕ) =

{
0 if ϕ ≡ false ,

1 if ϕ ≡ true ,

P r(∃x⊙Q : ϕ) = max(Pr(Q : ϕ[true/x]), P r(Q : ϕ[false/x])) ,

P r(

Rpx⊙Q : ϕ) = p · Pr(Q : ϕ[true/x]) + (1− p) · Pr(Q : ϕ[false/x]) ,

where ε denotes the empty and Q an arbitrary quantifier prefix.

Note that the semantics is well-defined as Φ has no free variables such that all variables
have been substituted by the constants true and false when reaching the quantifier-free
base case. For an illustrating example of the SSAT semantics confer Figure 4.1.
Without loss of generality, we may assume that the matrix of an SSAT formula is in

CNF. The rationale is that each propositional formula ϕ can be efficiently translated into
an equi-satisfiable formula ϕ′ in CNF using the Tseitin transformation [Tse68], confer
Section 2.2. By this transformation, formula ϕ′ may contain fresh auxiliary variables
h1, . . . , hk /∈ Var(ϕ), which are interpreted as innermost existentially quantified. It then
holds that Pr(Q : ϕ) = Pr(Q⊙ ∃h1 ⊙ . . .⊙ ∃hk : ϕ′).
In order to simplify naming, we occasionally use the terms maximum satisfaction prob-

ability, probability of satisfaction, as well as satisfaction probability synonymously for
maximum probability of satisfaction whenever the latter is clear from the context.
For the sake of completeness, we remark that an extension of SSAT that additionally

allows universal quantifiers ∀ has also been considered in the literature. The resulting
notion is called extended SSAT, or XSSAT for short, confer [LMP01, Maj09]. Semantically,
a universal quantifier calls for minimizing the satisfaction probability. That is, to define
Pr(Φ) for XSSAT formulae Φ, Definition 4.2 must be extended by rule Pr(∀x⊙Q : ϕ) =
min(Pr(Q : ϕ[true/x]), P r(Q : ϕ[false/x])).

Applications and extensions. In recent years, the SSAT framework has attracted
interest within the Artificial Intelligence community, as many problems from that area
involving uncertainty have concise descriptions as SSAT problems, in particular proba-
bilistic planning problems [LMP01, ML98a, ML03, Maj07] and belief network inference
problems [Rot96]. Inspired by that work, other communities have started to exploit
SSAT and closely related formalisms within their domains. The Constraint Program-
ming community has developed the notion of stochastic constraint satisfaction problem
(SCSP) [Wal02, BS06] to address, among others, multi-objective decision making under
uncertainty [BS07]. A SCSP is defined by a set of constraints over existential and random-
ized variables, and extends SSAT in the following sense: first, variables need not range
over the Boolean domain but over arbitrary finite domains and, second, a constraint may
describe any relation between variables by specifying the allowed tuples of their values.
However, SCSP does not add expressive power to the concept of SSAT since each SCSP
can be encoded into SSAT. This observation relies on the encoding of (non-stochastic)
constraint satisfaction problems into SAT, confer, for instance, [Wal00], and on the fact
that an existential or randomized variable over any finite domain with n values can be
represented by a binary tree of depth at most n− 1 and thus by at most n− 1 existential

40 4 Stochastic Satisfiability Modulo Theories

or randomized propositional variables. In Section 4.4, we enhance the expressiveness of
SSAT substantially, namely by integrating the in general undecidable theory of non-linear
arithmetic over the reals and integers, while the quantified variables range over finite do-
mains as in SCSP. The resulting logical framework, called stochastic satisfiability modulo
theories, then opens a new application of stochastic satisfiability in symbolic probabilistic
model checking, the latter being exposed in Chapter 5.

4.2.1 Computational complexity of SSAT

Given any SSAT formula Φ and any rational constant 0 ≤ θ ≤ 1, the SSAT decision
problem (Φ, θ) asks for whether Pr(Φ) ≥ θ holds. In general, this problem is PSPACE-
complete [Pap85, Lit99]. The hardness can be easily shown by a reduction from the
quantified Boolean formula (QBF) problem: given a QBF instance Q : ϕ, i.e. Q may
contain existential and universal quantifiers, we construct the SSAT formula Q′ : ϕ such
that Q′ arises from Q by replacing all universal quantifiers by randomized ones

Rp with
some rational 0 < p < 1. Then, Q : ϕ is true if and only if Pr(Q′ : ϕ) ≥ 1. This reduction
shows that QBF can be seen as a special case of SSAT, while both general problems share
PSPACE-completeness.

There is some extensive work on the complexity of SSAT and QBF subcases that gives
a better insight into the relation of both problems. When restricting a QBF formula to
just existential or to just universal variables, this results in the well-known NP-complete
SAT problem or in the co-NP-complete tautology (TAUT) problem, respectively. The
subclass of SSAT that allows only randomized variables gives the PP-complete (“prob-
abilistic polynomial time”) MAJSAT problem. Recall that (co-)NP ⊆ PP ⊆ PSPACE
holds. Thus, randomized quantifiers are in some sense computationally harder than just
existential or just universal ones. In addition to restricting the quantifier prefix, it is of
interest to consider special shapes of the propositional formula. The special cases of SAT,
TAUT, QBF, MAJSAT, and SSAT for which the formulae are in 3CNF do not change
the complexity results mentioned above. Restricting however a QBF formula to be in
2CNF, the resulting QBF subproblem can be solved in linear time [APT79], and thus
also the corresponding subcases of SAT and TAUT. The same restriction of MAJSAT,
called MAJ2SAT, however remains PP-complete [GHM05]. This is an interesting result as
alternating existential and universal quantifiers seem to be computationally harder than
just randomized ones for formulae in kCNF with k ≥ 3, but computationally weaker for
formulae in 2CNF.

In the following, we investigate the complexity of the SSAT subclass for which the
propositional formula is in 2CNF. We call this problem S2SAT. As MAJ2SAT is PP-
complete, it immediately follows that S2SAT is PP-hard. The precise complexity of
S2SAT, however, was open to the best of our knowledge. In [TF10, Section 3], we have
shown that S2SAT is as hard as the general SSAT problem, i.e. PSPACE-complete. A
summary of the complexity results mentioned above is given in Figure 4.2.

In the rest of this subsection, we prove the new complexity result for SSAT. PSPACE-
membership of S2SAT immediately follows from the fact that S2SAT is a subcase of SSAT.
We prove PSPACE-hardness by a polynomial-time many-one reduction from the PSPACE-
complete decision problem 1-in-3Q3SAT. A 1-in-3Q3SAT formula Q : ϕ is simply a

4.2 Stochastic Boolean satisfiability 41

Formula SAT TAUT MAJSAT QBF SSAT

any NP co-NP PP PSPACE PSPACE

3CNF NP co-NP PP PSPACE PSPACE

2CNF P P PP P PSPACE

Figure 4.2: Overview of the computational complexity of SAT, TAUT, MAJSAT, QBF and SSAT

as well as of their subcases in which the propositional formulae are in 3CNF and in 2CNF.

Q3SAT formula, i.e. a QBF formula with ϕ being in 3CNF. While quantifier treatment
remains unchanged, satisfaction of ϕ however differs from the standard definition: ϕ
is 1-in-3 satisfied under truth assignment τ if and only if each clause c ∈ ϕ is 1-in-3
satisfied under τ , i.e. if and only if exactly one literal in each c is satisfied under τ .
PSPACE-hardness can be shown by reduction from Q3SAT that relies on the reduction
from 3SAT to 1-in-3 3SAT by Schaefer [Sch78]. For an arbitrary Q3SAT instance Q : ϕ
with ϕ = cl1∧. . .∧clm, we construct the 1-in-3Q3SAT instance Q′ : ϕ′ as follows. For each
clause cli = (ℓi1 ∨ ℓ

i
2 ∨ ℓ

i
3) ∈ ϕ, we introduce five 1-in-3Q3SAT clauses one-in-three(cli) :=

(ℓi1 ∨ ai ∨ di) ∧ (ℓi2 ∨ bi ∨ di) ∧ (ai ∨ bi ∨ ei)∧ (ci ∨ di ∨ fi)∧ (ℓi3 ∨ ci ∨ false) with six fresh
Boolean variables ai, bi, ci, di, ei, fi and the constant literal false that is never satisfied. It
holds that cli is satisfied under τ if and only if ∃ai, bi, ci, di, ei, fi : one-in-three(cli) is 1-in-3
satisfied under τ . By settingQ′ := Q⊙∃a1, b1, . . . , em, fm and ϕ′ :=

∧m
i=1 one-in-three(cli),

it follows that Q : ϕ is true if and only if Q′ : ϕ′ is 1-in-3 true, i.e. true under 1-in-3
satisfaction. Note that Q′ : ϕ′ is of size linear in Q : ϕ, as Q′ : ϕ′ contains 6m new
variables and 5m clauses.

Theorem 4.1
S2SAT is PSPACE-complete.

Proof. PSPACE-membership is obvious as SSAT lies in PSPACE. We prove PSPACE-
hardness by a polynomial-time, actually a linear-time, many-one reduction from 1-in-
3Q3SAT.
Let Q : ϕ be a 1-in-3Q3SAT instance. We construct an S2SAT instance (Φ, θ) such

that Q : ϕ is 1-in-3 true if and only if Pr(Φ) ≥ θ. First observe that Q : ϕ is 1-
in-3 true if and only if Pr(Q′ : ϕ) ≥ 1 under 1-in-3 satisfaction where Q′ arises from
Q by replacing all universal quantifiers by randomized ones

R0.5. Let be ϕ = {(ℓ11 ∨
ℓ12 ∨ ℓ13), . . . , (ℓ

m
1 ∨ ℓm2 ∨ ℓm3)}. Now, we introduce 3m fresh randomized variables (three

randomized variables per clause) all with the same probability p = 0.9 resulting in the
prefix Q′′ := Q′⊙

R0.9r11, r
1
2, r

1
3, . . . , r

m
1 , r

m
2 , r

m
3 of Φ. The following propositional formula ψ

of Φ ensures that at most one literal per clause in ϕ is true. To also enforce that at least
one literal per clause is true, the probability threshold θ is set correspondingly by taking
account of the probabilities of the randomized variables

R0.9rij to rule out non-solutions
of ϕ.

ψ :=
m∧

i=1

identify value of literal ℓij with variable rij︷ ︸︸ ︷(
3∧

j=1

(ℓij ∨ ¬rij) ∧ (neg(ℓij) ∨ r
i
j)

)
at most one true literal per clause︷ ︸︸ ︷

∧(¬ri1 ∨ ¬ri2)

∧(¬ri1 ∨ ¬ri3)

∧(¬ri2 ∨ ¬ri3)

42 4 Stochastic Satisfiability Modulo Theories

where neg(ℓ) returns the opposite literal of ℓ, i.e. it returns x if ℓ = ¬x, and ¬x otherwise.
Note that ψ is in 2CNF and Φ is of size linear in Q : ϕ, since Φ contains 3m new variables
and 9m clauses.

We now show that Pr(Q′ : ϕ) ≥ 1 under 1-in-3 satisfaction if and only if Pr(Φ) ≥
0.009m. Let be Q′ = Q1x1 . . . Qnxn. Note that under each assignment τ to the variables
in Q′ there exists a unique assignment τ ′ to the randomized variables ri1, r

i
2, r

i
3 such that

the combined assignment τ ′′ to all variables in Q′′ with τ ′′(xi) = τ(xi) and τ
′′(rij) = τ ′(rij)

satisfies
∧3

j=1(ℓ
i
j ∨ ¬rij) ∧ (neg(ℓij) ∨ r

i
j) in ψ for each 1 ≤ i ≤ m, i.e. at least one of

Pr(

R0.9rk+1, . . . , r3m : ψ[τ(x1)/x1] . . . [τ(xn)/xn][τ
′(r1)/r1] . . . [τ

′(rk−1)/rk−1][true/rk]) ,

P r(

R0.9rk+1, . . . , r3m : ψ[τ(x1)/x1] . . . [τ(xn)/xn][τ
′(r1)/r1] . . . [τ

′(rk−1)/rk−1][false/rk])

is 0 for each 1 ≤ k ≤ 3m. Due to (¬ri1 ∨¬ri2)∧ (¬ri1 ∨¬ri3)∧ (¬ri2 ∨¬ri3) ∈ ψ and because
of setting rij to true with probability 0.9 and to false with 0.1, for each assignment τ to
the variables in Q′ it holds that Pr(

R0.9r11, . . . , r
m
3 : ψ[τ(x1)/x1] . . . [τ(xn)/xn]) ≤ 0.009m.

Furthermore, for each assignment τ to the variables in Q′ that 1-in-3 satisfies ϕ,
i.e. Pr(ε : ϕ[τ(x1)/x1] . . . [τ(xn)/xn]) ≥ 1 under 1-in-3 satisfaction, the unique assign-
ment τ ′ also satisfies (¬ri1 ∨ ¬ri2) ∧ (¬ri1 ∨ ¬ri3) ∧ (¬ri2 ∨ ¬ri3) for each 1 ≤ i ≤ m,
since each clause in ϕ has exactly one true literal under τ , and thus τ ′′ satisfies ψ.
Therefore, for each 1 ≤ i ≤ m exactly one variable of ri1, r

i
2, r

i
3 is set to true by τ ′,

from which follows that Pr(

R0.9r11, . . . , r
m
3 : ψ[τ(x1)/x1] . . . [τ(xn)/xn]) = 0.009m. Vice

versa, if for some assignment τ to the variables in Q′ it holds that Pr(

R0.9r11, . . . , r
m
3 :

ψ[τ(x1)/x1] . . . [τ(xn)/xn]) = 0.009m then for each 1 ≤ i ≤ m exactly one variable of
ri1, r

i
2, r

i
3 is set to true by τ ′ due to (¬ri1 ∨ ¬ri2) ∧ (¬ri1 ∨ ¬ri3) ∧ (¬ri2 ∨ ¬ri3) and due to

R0.9rij. From
∧3

j=1(ℓ
i
j∨¬rij)∧ (¬ℓij ∨r

i
j), we conclude that each clause in ϕ has exactly one

true literal under τ . Thus, Pr(ε : ϕ[τ(x1)/x1] . . . [τ(xn)/xn]) ≥ 1 under 1-in-3 satisfaction.
Summarizing, Pr(ε : ϕ[τ(x1)/x1] . . . [τ(xn)/xn]) ≥ 1 under 1-in-3 satisfaction if and only
if Pr(

R0.9r11, . . . , r
m
3 : ψ[τ(x1)/x1] . . . [τ(xn)/xn]) = 0.009m. From this fact and due to

Pr(

R0.9r11, . . . , r
m
3 : ψ[τ(x1)/x1] . . . [τ(xn)/xn]) ≤ 0.009m for each τ , it immediately follows

by definition that Pr(Q′ : ϕ) ≥ 1 under 1-in-3 satisfaction if and only if Pr(Φ) = 0.009m

if and only if Pr(Φ) ≥ 0.009m. To complete the reduction, we choose the rational constant
θ := 0.009m.

The resulting S2SAT instance (Φ, θ) contains n+3m variables and 9m clauses where n
is the number of variables and m is the number of clauses in Q : ϕ. The rational constant
θ = 0.009m can be represented by a decimal fraction of size O(m). Thus, (Φ, θ) can be
constructed in linear time. 2

We remark that S2SAT with just homogeneous probabilities in randomized quantifiers,
i.e.

R0.5, is of the same complexity while the proof is slightly more complex. In brief, 3m
more randomized variables are appended to Q′′ (on the right) and ψ is extended by 3m
more clauses, i.e.

R0.5hi1, h
i
2, h

i
3 and (ri1∨¬hi1)∧ (ri2∨¬hi2)∧ (ri3∨¬hi3) per clause ci. Then,

if rij = true both assignments to hij satisfy (rij ∨¬hij), and otherwise, i.e. rij = false, just
hij = false does. Thus, for each i one of ri1, r

i
2, r

i
3 is true if and only if the corresponding

probability is 0.55, and all rij are false if and only if the probability is 0.56. It remains
to set θ := 0.55m.

4.3 Satisfiability modulo theories 43

4.3 Satisfiability modulo theories

As mentioned in Section 4.1, the Boolean satisfiability problem has many practical appli-
cations, particularly in formal verification of software and hardware systems. Although
modern SAT solvers are highly efficient tools to solve many industrial problems, system
designs and their corresponding verification tasks become more and more intricate and
often require logical frameworks that are more expressive than propositional logic. To
meet these requirements, the Boolean satisfiability problem was extended by integrating
background theories. The resulting notion is generally known as satisfiability modulo the-
ories, or SMT for short. Some theories of interest are equality logic with uninterpreted
functions, arithmetic like difference logic or linear arithmetic, the theories of arrays, bit
vectors, and inductive data types. Being expressive enough to encode the behavior of prob-
abilistic hybrid automata introduced in Section 3.3, we direct our attention in this section
to the theory of non-linear arithmetic over the reals and integers involving transcendental
functions like exponential and trigonometric functions. For more details on SMT for the
above mentioned theories, the interested reader is referred to the nice survey [BSST09].

4.3.1 SMT for non-linear arithmetic

An SMT formula with respect to the theory of non-linear arithmetic over the reals and
integers is an arbitrary quantifier-free Boolean combination of non-linear arithmetic con-
straints including transcendental functions. An example is given by the formula

ψ =
(
(sin(y2) ≤ 0.1) ⇒ (x ≤ 0 ∨ z > 3x+ exp(y))

)

where x ∈ Z, and y, z ∈ R. In order to obviate the issue with undefined values of
partial operations, we demand that all arithmetic operators in arithmetic constraints are
total. Practically, this need not be a huge restriction as most common partial arithmetic
operators can be expressed by their inverse operation. For instance, the constraint y = 1/x
in which the term 1/x is undefined for x = 0 can be rephrased as y · x = 1 ∧ x 6= 0. We
further remark that propositional literals b and ¬b with b being a propositional variable
can be encoded as b′ ≥ 1 and b′ ≤ 0, respectively, with b′ being an integer variable with
domain {0, 1}.
Semantically, non-linear arithmetic SMT formulae ϕ are interpreted over assignments

τ ∈ (VarZ(ϕ) → Z) × (VarR(ϕ) → R) to their variables Var(ϕ) = VarZ(ϕ) ∪ VarR(ϕ),
where VarZ(ϕ) and VarR(ϕ) denote the set of ϕ’s integer and real-valued variables, re-
spectively. Given such assignment τ = (τZ, τR), we slightly abuse notation and identify
τ(x) = τZ(x) if x ∈ VarZ(ϕ) and τ(x) = τR(x) if x ∈ VarR(ϕ). Satisfaction of arithmetic
constraints under some assignment is with respect to the standard interpretation of the
arithmetic operators and the ordering relations over the integers and reals. For instance,
both constraints sin(y2) ≤ 0.1 and z > 3x+ exp(y) are satisfied under assignment τ with
τ(x) = 1, τ(y) = 1.9, and τ(z) = 24.3 because sin(1.92) ≤ 0.1 and 24.3 > 3 + exp(1.9).
The constraint x ≤ 0 is clearly not satisfied under above τ . If a constraint c is satisfied
under some τ , we also say that c has truth value true under τ and otherwise, i.e. c is
not satisfied under τ , c has truth value false under τ . Please note that this semantics is
well-defined since all arithmetic operators in a constraint are total. That is, each arith-
metic term evaluates to a defined value in the reals or integers under each assignment

44 4 Stochastic Satisfiability Modulo Theories

and, thus, each arithmetic constraint has a definite truth value under each assignment.
Satisfaction of a non-linear arithmetic SMT formula under some assignment is then based
on the standard interpretation of the logical operators, confer Section 2.2. For instance,
the disjunction (x ≤ 0 ∨ z > 3x+ exp(y)) is satisfied under above assignment τ because
one constraint, namely z > 3x+exp(y), is satisfied under τ . As a consequence, the whole
formula ψ above is satisfied under τ . If an SMT formula ϕ is satisfied under an assignment
τ , denoted by τ |= ϕ, then τ is called satisfying assignment (or solution or model) of ϕ.
An SMT formula ϕ is satisfiable if and only if there is a satisfying assignment of ϕ. If no
solution of ϕ exists, ϕ is unsatisfiable.

Undecidability. The satisfiability problem for SMT formulae with respect to the theory
of non-linear arithmetic, i.e. the problem of deciding whether a given non-linear arithmetic
SMT formula is satisfiable or not, is undecidable in general. This is due to the fact that
non-linear Diophantine equations , i.e. equations between polynomials in several integer
variables, can be encoded in non-linear SMT since the latter supports addition and multi-
plication over integer variables. The problem of deciding whether a Diophantine equation
has an integer solution or not, also known as Hilbert’s Tenth Problem, was proven to be
undecidable by Matiyasevich [Mat70]. We remark that non-linear SMT that allows just
real-valued variables is also undecidable since a model of the integer numbers can be fil-
tered out from the reals by exploiting the periodicity of trigonometric functions. Despite
the fact of general undecidability, necessarily incomplete algorithms addressing non-linear
arithmetic SMT problems were developed. In Section 6.3, we describe such an SMT al-
gorithm, more precisely the so-called iSAT algorithm [FHT+07, Her10], that constitutes
the algorithmic basis of the SSMT solver introduced in Section 6.4.

Conjunctive form. With regard to the development of such SMT solving algorithms, it
is common to deal with formulae of syntactically restricted shape. Similar to propositional
formulae in conjunctive normal form, we rewrite an arbitrary SMT formula as above into a
conjunction of clauses where clauses are disjunctions of primitive constraints. A primitive
constraint is either a simple bound consisting of one variable, one relational operator, and
one rational constant like x = 3.1 or z < −12.8, or it is an arithmetic equation containing
up to three variables and one arithmetic operation like x = y + z or x = sin(y). SMT
formulae of the above shape are called to be in conjunctive form or CF for short.

In [Her10, Chapter 5], Herde presented a linear-time procedure to convert an arbitrary
non-linear arithmetic SMT formula into an equi-satisfiable formula in CF. This procedure
is a generalized version of the Tseitin transformation [Tse68], the latter being applied to
obtain propositional formulae in CNF. In brief, the generalized Tseitin transformation for
non-linear arithmetic SMT formulae is based on introducing fresh auxiliary variables for
the values of arithmetic subexpressions and of logical subformulae. It furthermore sup-
ports optimizations like the elimination of common subexpressions and common subfor-
mulae through reuse of the auxiliary variables. An important property of this generalized
Tseitin transformation is the following: given any SMT formula ϕ, it computes an SMT
formula ϕ′ in CF such that ϕ ≡ ∃h1, . . . , hn : ϕ′ where h1, . . . , hn are the introduced aux-
iliary variables. Considering the SMT formula ψ above, an equi-satisfiable SMT formula

4.4 Stochastic satisfiability modulo theories 45

in CF, for instance, is

(hsin(y2) > 0.1 ∨ x ≤ 0 ∨ hz−3x−exp(y) > 0)

∧ (hsin(y2) = sin(hy2)) ∧ (hy2 = y2) ∧ (hz−3x−exp(y) = z − h3x−exp(y))

∧ (h3x−exp(y) = h3x − hexp(y)) ∧ (h3x = 3x) ∧ (hexp(y) = exp(y))

with the auxiliary variables hsin(y2), hy2 , hz−3x−exp(y), h3x−exp(y), hexp(y) ∈ R, and h3x ∈ Z.
The formal syntax of an SMT formula in CF with respect to the theory of non-linear

arithmetic is specified in the following definition.

Definition 4.3 (Syntax of non-linear arithmetic SMT formulae in CF)
SMT formulae in conjunctive form (CF) with respect to the theory of non-linear arithmetic
over the reals and integers are formed according to the following grammar:

smt formula ::= {clause ∧}∗clause

clause ::= ({constraint ∨}∗constraint)

constraint ::= bound | equation

bound ::= var relop const

equation ::= var = term

term ::= uop var | var bop var

relop ::= < | ≤ |= | ≥ |>

uop ::= − | sin | cos | exp | abs | . . .

bop ::= + | − | · | . . .

where var denotes a real-valued or integer variable, and const ranges over the rational
constants.

From the general semantics it follows that an SMT formula ϕ in CF is satisfied under an
assignment τ if and only if at least one constraint is satisfied under τ in each clause of ϕ.

4.4 Stochastic satisfiability modulo theories

This section presents the logical framework of stochastic satisfiability modulo theories, or
SSMT for short, that we have first introduced in [FHT08]. Roughly speaking, SSMT com-
bines the concepts of SSAT, described in Section 4.2, and SMT, dealt with in Section 4.3,
and thus enhances the reasoning power of SMT to probabilistic logics. In several publica-
tions, we have investigated different definitions of SSMT. In very general terms, an SSMT
formula Φ can be viewed as an SMT formula ϕ over some theory T , while ϕ is preceded
by a quantifier prefix Q comprising some of the variables in Var(ϕ), i.e. Φ = Q : ϕ.
In the original paper [FHT08], we required that theory T is decidable and that prefix Q

includes only existential and randomized variables over finite domains. The requirement
of decidability of T was relaxed in [TF08] where we considered non-linear arithmetic over
the reals and integers. The latter definition of SSMT establishes the fundamental basis of
the symbolic analysis procedure for discrete-time probabilistic hybrid systems being inves-
tigated in Chapter 5. In addition to existential and randomized quantification, the SSMT

46 4 Stochastic Satisfiability Modulo Theories

version of [TF09, TEF11] also permits universal quantifiers in Q akin to XSSAT. Expres-
siveness of SSMT has been enhanced considerably in [FTE10a] by two major extensions:
first, by reasoning over ordinary differential equations (ODEs) as an additional theory
and, second, by existential quantification over continuous-domain variables. The latter
version of SSMT then allows for the symbolic analysis of continuous-time probabilistic
hybrid systems. We elaborate on this issue in Chapter 10. While all of the above papers
define the semantics of SSMT by the maximum probability of satisfaction as for SSAT,
we have generalized the interpretation of SSMT to maximum conditional expectation of a
designated variable in [FTE10b]. Being able to deal with such expectations in SSMT, the
scope of the probabilistic reachability analysis approach of Chapter 5 has been extended
to the computation of expected values of probabilistic hybrid systems like, for instance,
mean time to failure. A comprehensive elaboration on this topic is given in Chapter 7.

In Subsection 4.4.1, we characterize the notion of SSMT as described in [TF08], i.e.
SSMT for the theory of non-linear arithmetic over the reals and integers involving tran-
scendental functions. As mentioned above, this definition of SSMT serves as the funda-
mental basis of the symbolic approach to bounded reachability analysis of probabilistic
hybrid systems being introduced in Chapter 5. In Subsection 4.4.2, we then suggest an
extension of SSMT which provides stronger capabilities in problem modeling with a view
to improving performance of SSMT algorithms.

4.4.1 Syntax and semantics

In contrast to SSAT, quantified variables in SSMT need not range over the Boolean
domain but over arbitrary finite domains as in SCSP. We thus write Qx ∈ Dx to denote
that variable x over finite domain Dx is bound by quantifier Q. Without loss of generality,
we demand that Dx is given by a set of integers, since each finite domain can be encoded
using the integers. We may moreover assume–again without loss of generality–that Dx

can be represented by an integer interval. The latter can be achieved, for instance, by
taking successive integers for the encoding of the finite domain Dx. A quantifier Q,
associated with variable x, is either existential, denoted as ∃, or randomized, denoted
as

R

dx where dx is a discrete probability distribution over Dx. A variable x is called
existential or randomized variable if x is bound by an existential quantifier, i.e. ∃x ∈
Dx, or by a randomized quantifier, i.e.

R

dxx ∈ Dx, respectively. Similar to SSAT, the
value of a randomized variable is determined stochastically according to the corresponding
distribution, while the value of an existential variable can be set arbitrarily. We denote a
probability distribution dx by a function [v1 → p1, . . . , vm → pm] with Dx = {v1, . . . , vm}
associating probability 0 < pi ≤ 1 to value vi. The mapping vi → pi is understood as
pi is the probability of setting variable x to value vi. The distribution satisfies vi 6= vj
for i 6= j and

∑m
i=1 pi = 1. For instance,

R

[−1→0.2,0→0.5,1→0.3]x ∈ {−1, 0, 1} expresses that
the variable x is assigned the values −1, 0, and 1 with probabilities 0.2, 0.5, and 0.3,
respectively.

The formal definition of the syntax and semantics of SSMT is as follows.

Definition 4.4 (Syntax of SSMT)
A stochastic satisfiability modulo theories (SSMT) formula Φ is of the form Q : ϕ where

4.4 Stochastic satisfiability modulo theories 47

unsatisfiable unsatisfiable satisfiable unsatisfiable satisfiable satisfiable

∧
2a · sin(4b) ≥ 3

2a · sin(4b) < 1

2a · sin(4b) ≥ 32a · sin(4b) ≥ 3
∧

2a · sin(4b) < 1 2a · sin(4b) < 1
∧

1 ≤ 0

2a · sin(4b) < 1

y = 2
p = 0.1

y = 1
p = 0.6

y = 0
p = 0.3

x = 0

(
(x ≥ 1 ∨ 2a · sin(4b) ≥ 3) ∧ (y ≥ 2 ∨ 2a · sin(4b) < 1) ∧ (x ≤ y)

)Φ = ∃x ∈ {0, 1}

R

[0→0.3,1→0.6,2→0.1]y ∈ {0, 1, 2} :

x

y

y = 0
p = 0.3

y = 1

x = 1

p = 0.1
y = 2

p = 0.6

y Pr = 0.3 · 0 + 0.6 · 1 + 0.1 · 1Pr = 0.3 · 0 + 0.6 · 0 + 0.1 · 1

= 0.7= 0.1

Pr(Φ) = max(0.1, 0.7) = 0.7

Pr = 0 Pr = 0 Pr = 1 Pr = 0 Pr = 1 Pr = 1

Figure 4.3: Semantics of an SSMT formula Φ depicted as a tree illustrating the recursive descent

through the quantifier prefix.

1. ϕ is an arbitrary SMT formula with respect to the theory of non-linear arithmetic
over the reals and integers, and

2. Q = Q1x1 ∈ Dx1
⊙ . . . ⊙ Qnxn ∈ Dxn

is a quantifier prefix binding some variables
xi ∈ Var(ϕ) over finite domains Dxi

by existential and randomized quantifiers Qi.

The quantifier-free SMT formula ϕ is sometimes called the matrix of Φ.

Observe that not all variables of matrix ϕ need to be quantified by prefix Q and that non-
quantified variables may range over continuous domains. These non-quantified variables
are interpreted as innermost existentially quantified by Definition 4.5.

Definition 4.5 (Semantics of SSMT)
The semantics of an SSMT formula Φ is given by its maximum probability of satisfaction
Pr(Φ) defined as follows:

Pr(ε : ϕ) =

{
0 if ϕ is unsatisfiable ,

1 if ϕ is satisfiable ,

P r(∃x ∈ Dx ⊙Q : ϕ) = maxv∈Dx
Pr(Q : ϕ[v/x]) ,

P r(

R

dxx ∈ Dx ⊙Q : ϕ) =
∑

v∈Dx
dx(v) · Pr(Q : ϕ[v/x]) ,

where ε denotes the empty and Q an arbitrary quantifier prefix.

48 4 Stochastic Satisfiability Modulo Theories

Definition 4.5 is an extension of the semantics of SSAT, confer Definition 4.2. While the
interpretation of quantifiers remains the same as for SSAT, their treatment is adapted
to handle domains with more than two values. That is, the maximum probability of
satisfaction Pr(Φ) of an SSMT formula Φ with a leftmost existential quantifier in the
prefix, i.e. Φ = ∃x ∈ Dx⊙Q : ϕ, is defined as themaximum of the satisfaction probabilities
of all subformulae Q : ϕ[v/x] that arise by removing the leftmost quantified variable from
the prefix and by substituting values v ∈ Dx for variable x in the matrix ϕ. If the leftmost
variable is randomized, i.e. Φ =

R

dxx ∈ Dx ⊙Q : ϕ, then Pr(Φ) demands to compute the
weighted sum of the satisfaction probabilities of all subformulaeQ : ϕ[v/x]. The base cases
of this recursion, that are reached whenever the quantifier prefix becomes empty, yield
SMT formulae over the non-quantified variables. This fact differs from SSAT where all
variables are quantified and each base case thus gives a formula equivalent to either true
or false. Being conform with the intuition of the maximum probability of satisfaction,
we assign satisfaction probability 1 to the remaining quantifier-free SMT formula ϕ in
case ϕ is satisfiable, and probability 0 otherwise, i.e. if ϕ is unsatisfiable. Therefore,
the non-quantified variables of an SSMT formula can be seen as innermost existentially
quantified.
Intuitively, the above recursive process spans a tree in which the inner nodes represent

quantified variables, the edges encode assignments to the quantified variables, and the
leaves identify quantifier-free SMT formulae. For an example see Figure 4.3.
Without loss of generality, we may assume that the matrix of an SSMT formula is in

conjunctive form. The rationale is as follows. Let Φ = Q : ϕ be any SSMT formula.
Then, we can apply the generalized Tseitin transformation for SMT formulae, confer
Subsection 4.3.1, to rewrite matrix ϕ into an equi-satisfiable SMT formula ϕ′ in CF such
that ϕ ≡ ∃h1, . . . , hm : ϕ′ with h1, . . . , hm being the introduced auxiliary variables. From
Definition 4.5 it then follows that Pr(Q : ϕ) = Pr(Q : ϕ′).

4.4.2 Extension of SSMT involving dependent probability

distributions

With regard to SSMT solving algorithms, which are dealt with in Chapter 6, it is beneficial
to reduce the potential search space of SSMT problems in order to improve performance.
One direction to attain this objective is to devise powerful algorithmic enhancements and
heuristics. Such latter optimizations are investigated in Section 6.5. Another approach
being as important is to provide SSMT encodings of the problems to be solved that are
eminently suitable for the SSMT procedure employed. As the SSMT solving approach of
this thesis, confer Chapter 6, is based on an explicit traversal through the tree spanned
by the quantifier prefix, as indicated by Figure 4.3, it seems reasonable to favor SSMT
encodings inducing smaller quantifier trees.
In what follows, we suggest an extended notion of the SSMT framework that supports

such problem encodings reducing the potential search space. For a motivating example,
let us assume that we have modeled some problem as an SSMT formula

Φ = Qx ∈ Dx

R

dy1
y1 ∈ Dy1

R

dy2
y2 ∈ Dy2 : ((x > 0 ⇒ ϕ1) ∧ (x ≤ 0 ⇒ ϕ2))

where the randomized variables y1 and y2 occur only in ϕ1 and in ϕ2, respectively, i.e.

4.4 Stochastic satisfiability modulo theories 49

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
���������������������������������� ������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

corresponds tocorresponds to

x > 0 x ≤ 0

Qx ∈ Dx

R

dy1
y1 ∈ Dy1

R

dy2
y2 ∈ Dy2

x ≤ 0x > 0

R

dy1
y1 ∈ Dy1

R

dy2
y2 ∈ Dy2

Qx ∈ Dx

R

[(x>0)→dy1,(x≤0)→dy2]
y ∈ Dy1 ∪ Dy2

Φ′Φ

Figure 4.4: Reduction of the potential search space by means of SSMT involving dependent

probability distributions: illustration of the tree spanned by the quantifier prefix of the“classical”

SSMT formula Φ (left) and the reduced tree for Φ′ using a randomized quantifier with dependent

probability distributions (right).

y1 ∈ Var(ϕ1), y2 /∈ Var(ϕ1) and y1 /∈ Var(ϕ2), y2 ∈ Var(ϕ2). That is, if variable x takes
a value greater 0 then randomized variable y2 becomes unnecessary since, first, y2 does
not occur in predicate (x > 0 ⇒ ϕ1) and, second, predicate (x ≤ 0 ⇒ ϕ2) is trivially
satisfied under each value of y2. The same holds for randomized variable y1 whenever x
carries a value at most 0. Such circumstances may often arise in practice, for instance,
in applications where random phenomena are triggered only in certain system states or
where the probability distributions vary in different system states.

Taking the above observation into account, we aim at the possibility of “disabling”
certain quantified variables. Observe that the latter can be simply achieved for existential
variables x, namely by adding a corresponding predicate to the formula that fixes a
value for x whenever the truth value of the remaining formula does not depend on x.
This treatment is sound since existential variables call for maximizing the satisfaction
probability. The same approach however is infeasible for randomized variables in general
as this would lead to incorrect probability results, more precisely, to results that are too
small. Our solution to this issue is as follows: we enable randomized quantifiers to carry
several probability distributions such that exactly one of them will be activated once all
preceding quantified variables are assigned. The selection of the distribution then depends
on predicates over the preceding quantified variables with the semantic condition that
exactly one of these predicates holds under each assignment to the preceding variables.

Before formally introducing the extended notion of SSMT, we exemplify this con-
cept using the example above. In order to “disable” randomized variable y2 and y1 if
x > 0 and x ≤ 0 holds, respectively, we first merge the quantifiers

R

dy1
y1 ∈ Dy1 and

R

dy2
y2 ∈ Dy2 to a single one using the idea of dependent probability distributions, namely

to

R

[(x>0)→dy1 ,(x≤0)→dy2]
y ∈ Dy1 ∪Dy2 . The latter expresses that distribution dy1 is selected

if x > 0 and dy2 otherwise. Second, we replace each occurrence of y1 in ϕ1 and of y2 in

50 4 Stochastic Satisfiability Modulo Theories

ϕ2 by y resulting in ϕ′
1 and ϕ′

2, respectively. Then, the SSMT formula

Φ′ = Qx ∈ Dx

R

[(x>0)→dy1 ,(x≤0)→dy2]
y ∈ Dy1 ∪ Dy2 : ((x > 0 ⇒ ϕ′

1) ∧ (x ≤ 0 ⇒ ϕ′
2))

characterizes the same problem as Φ does but reduces the potential search space, as
illustrated in Figure 4.4.

The formal definition of the syntax and semantics of SSMT involving randomized quan-
tifiers with dependent probability distributions is as follows.

Definition 4.6 (Syntax of SSMT involving dependent distributions)
An SSMT formula involving dependent probability distributions is an SSMT formula
Q : ϕ where each randomized quantifier in Q however is of the form

R

[c1→d1,...,cm→dm] such
that for each (

R

[c1→d1,...,cm→dm]x ∈ Dx) ∈ Q where

Q = Q1x1 ∈ Dx1
⊙ . . .⊙Qixi ∈ Dxi

⊙

R

[c1→d1,...,cm→dm]x ∈ Dx ⊙Q′ : ϕ

the following conditions are satisfied:

1. each cj with j ∈ {1, . . . , m} is a predicate over variables x1, . . . , xi,

2. for each assignment τ to variables x1, . . . , xi, exactly one of the predicates c1, . . . , cm
is satisfied, i.e. ∃j ∈ {1, . . . , m} : τ |= cj and ∀k 6= j : τ 6|= ck, and

3. each dj with j ∈ {1, . . . , m} is a probability distribution, denoted by a function
[v1 → p1, . . . , vt → pt], with {v1, . . . , vt} ⊆ Dx associating probability 0 < pk ≤ 1 to
value vk and satisfying vk 6= vk′ for k 6= k′ and

∑t
k=1 pk = 1.

Observe that a distribution dj in

R

[c1→d1,...,cm→dm]x ∈ Dx may be a partial function, i.e.
dj(v) is not necessarily defined for all values v ∈ Dx. This is just of technical nature,
namely to avoid probabilities 0 in distributions dj. An alternative definition may enforce
that each dj is total, i.e. defined for all values v ∈ Dx, but should then permit that dj(v)
can be 0 for some v ∈ Dx.

We remark that a “classical” randomized quantifier

R

dxx ∈ Dx can be simply repre-
sented by a randomized quantifier involving dependent probability distributions, namely
by

R

[true→dx]x ∈ Dx. The latter fact becomes clear from the semantics which follows next.

Definition 4.7 (Semantics of SSMT involving dependent distributions)
The semantics of an SSMT formula Φ involving dependent probability distributions is
given by its maximum probability of satisfaction Pr(Φ) defined as follows:

Pr(ε : ϕ) =

{
0 if ϕ is unsatisfiable ,

1 if ϕ is satisfiable ,

P r(∃x ∈ Dx ⊙Q : ϕ) = maxv∈Dx
Pr(Q[v/x] : ϕ[v/x]) ,

P r(

R

[c1→d1,...,cm→dm]x ∈ Dx ⊙Q : ϕ) =
∑

(v→p)∈dj with cj≡true p · Pr(Q[v/x] : ϕ[v/x]) ,

where ε denotes the empty and Q an arbitrary quantifier prefix.

4.4 Stochastic satisfiability modulo theories 51

Note that Q[v/x] substitutes value v for variable x in prefix Q such that all variables
in the predicates c1, . . . , cm have been substituted in a leftmost randomized quantifier

R

[c1→d1,...,cm→dm].
It is important to remark that SSMT involving dependent probability distributions,

as formalized in Definition 4.6, does not establish the basic concept of this thesis. The
following chapters essentially build upon the notion of SSMT from Definition 4.4. A
pragmatic use case of SSMT involving dependent probability distributions however is
investigated in Sections 6.6 and 6.7 and furthermore exploited in Chapter 8, the latter
dealing with the analysis of the NAS case study introduced in Section 3.1 and depicted
in Figure 3.1.

5 SSMT-Based Bounded Reachability
Analysis of Probabilistic Hybrid
Automata

After having introduced the formal model of concurrent discrete-time probabilistic hybrid
automata in Chapter 3 and after having explained the logical framework of SSMT in
Chapter 4, this chapter is devoted to the analysis of concurrent PHAs and is mainly
based on the work described in [TEF11]. We remark that parts of this chapter were
published in [TEF11] by the author of this thesis together with his co-authors.
We start our presentation with the formal definition of the analysis problem, namely

probabilistic bounded state reachability, in Section 5.1. As already sketched in Section 3.2,
our symbolic analysis approach to probabilistic reachability is based on a translation of the
original problem to an SSMT formula. The latter is then solved by an appropriate SSMT
algorithm being introduced in Chapter 6. The reduction to SSMT is first illustrated by
an introductory example in Section 5.2 and thereafter formally introduced in Section 5.3.

5.1 Probabilistic bounded state reachability

In what follows, let S = {A1, . . . ,An} be a system of concurrent discrete-time probabilistic
hybrid automata as in Definition 3.1, and Target be a predicate, defining the set of
target states by means of all its models, in the arithmetic theory T over the discrete and
continuous variables in D1, . . . , Dn and R1, . . . , Rn of all the automata. With respect to
system analysis, we are interested in the probability of reaching the target states within
a bounded number of transition steps. As usual in models blending non-deterministic
and probabilistic choices, like Markov decision processes [Bel57], we assume that the
dynamics is controlled by a decision maker or scheduler (policy, adversary) resolving
the non-determinism based on (complete) observation of the current state and history.
Based on the system behavior exhibited so far, such a scheduler can decide which global
transition should be executed next by system S. We allow a rather general notion and
assume that these decisions depend deterministically on the current run prefix, i.e. that
the permissible schedulers are history-dependent and deterministic, confer, for instance,
[BHKH05].

Definition 5.1 (History-dependent, deterministic scheduler)
Let RS denote the set of all (finite) runs of S. Then, a history-dependent, deterministic
scheduler σ : RS → NChoice for S maps a run to a global transition choice.

We call a run 〈s0, (tr1, pc1), s1, . . . , (trk, pck), sk〉 ∈ RS of S consistent with scheduler σ
if σ(〈s0〉) = tr1 and for each 1 ≤ i < k it holds that σ(〈s0, . . . , (tri, pci), si〉) = tri+1. A
run 〈s0, (tr1, pc1), s1, . . . , (trk, pck), sk〉 ∈ RS hits the target states if there is at least one

54 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

state in the run that satisfies predicate Target , i.e. ∃i ∈ {0, . . . , k} : si |= Target . We are
now able to define the probabilistic bounded reachability problem with respect to some
scheduler:

Definition 5.2 (Scheduler-dependent probabilistic bounded reachability)
Let k ∈ N be a step bound and σ be a history-dependent, deterministic scheduler for S.
For each state s ∈ StatesS ∪ {⊥}, let Rk

S,σ,Target(s) denote the set of all runs r ∈ RS such
that

� r starts in s, i.e. first(r) = s,

� r is of length k, i.e. length(r) = k,

� r is consistent with σ, and

� r hits the target states.

Then, the probability of reaching the target states within k steps under scheduler σ is given
by Pk

S,σ,Target(ı) with ı |=
∧n

i=1 initi being the (unique) initial state of S and Pk
S,σ,Target(s)

for s ∈ StatesS ∪ {⊥} being defined as follows:

Pk
S,σ,Target(s) =

∑
r∈Rk

S,σ,Target
(s)
p(r)

where p(r) denotes the probability of run r.

The above definition can be characterized recursively as follows:

Lemma 5.1 (Recursive characterization)
Let k ∈ N be a step bound, σ be a history-dependent, deterministic scheduler for S, and ı
be the (unique) initial state of S, i.e. ı |=

∧n
i=1 initi. Then, it holds that

Pk
S,σ,Target(ı) = P k

S,σ,Target(〈ı〉)

where P k
S,σ,Target(r) with r ∈ RS is defined as follows:

P k
S,σ,Target(r) =

1 if last(r) |= Target ,

0 if last(r) 6|= Target and k = 0 ,
∑

pc∈PChoice(tr) p(tr, pc) · P
k−1
S,σ,Target(r ⊙ 〈(tr, pc), s′〉)

if last(r) 6|= Target and k > 0 ,

with tr = σ(r) being the transition scheduled by σ and s′ = Post(last(r), tr, pc) being the
corresponding successor state. Recall that ⊥ does not satisfy any T -predicate, in particular
⊥ 6|= Target.

Proof. By induction over k, we show that for all runs r ∈ RS the following holds:

Pk
S,ρr,Target(last(r)) = P k

S,σ,Target(r)

where the history-dependent, deterministic scheduler ρr is defined as follows. Let be
r = 〈s0, (tr1, pc1), s1, . . . , (tri, pci), si〉. For each run r′ ∈ RS with first(r′) = last(r) = si,

5.1 Probabilistic bounded state reachability 55

we define ρr(r
′) := σ(〈s0, (tr1, pc1), s1, . . . , (tri, pci)〉⊙r

′). The lemma then follows directly
from the special case r = 〈ı〉, since here ρr(r

′) = σ(r′) for all runs r′ ∈ RS starting in the
initial state ı.

Observe that the result obviously holds whenever last(r) |= Target. In this case,
Rk

S,ρr ,Target(last(r)) contains all runs of length k that start in last(r) and are consistent
with ρr. The accumulated probability Pk

S,ρr,Target(last(r)) is therefore 1. Immediately by
definition, P k

S,σ,Target(r) = 1. We thus assume in the remaining proof that last(r) 6|= Target .

For the base case, let be k = 0. As last(r) 6|= Target, it follows thatR0
S,ρr ,Target(last(r)) =

∅ and thus P0
S,ρr,Target(last(r)) = 0, and, immediately by definition, P 0

S,σ,Target(r) = 0.

For the induction step, let be k ≥ 0. We need to conclude that

Pk+1
S,ρr,Target

(last(r)) = P k+1
S,σ,Target(r)

for all runs r ∈ RS follows from induction hypothesis, i.e. from

Pk
S,ρr′ ,Target

(last(r′)) = P k
S,σ,Target(r

′)

for all runs r′ ∈ RS .

In what follows, let be r ∈ RS , σ(r) = tr and thus ρr(〈last(r)〉) = tr, and further

r′ = 〈s′0, (tr
′
1, pc

′
1), s

′
1, . . . , (tr

′
k+1, pc

′
k+1), s

′
k+1〉 ∈ Rk+1

S,ρr ,Target
(last(r)) .

We denote by pc1(r
′) the first probabilistic choice in r′, i.e. pc1(r

′) = pc′1. For each such
r′ above, it holds that s′0 = last(r), tr′1 = tr, and pc1(r

′) ∈ PChoice(tr). Using these
properties, we conclude

Pk+1
S,ρr,Target

(last(r)) =
∑

r′∈Rk+1
S,ρr,Target

(s′0)

p(r′)

=
∑

pc∈PChoice(tr)

∑
r′∈Rk+1

S,ρr,Target
(s′0) with pc1(r′)=pc

p(r′)

=
∑

pc∈PChoice(tr)

p(tr, pc) · ∑

r′∈Rk
S,ρ′,Target

(Post(s′0,tr,pc))

p(r′)

with ρ′ = ρr⊙〈(tr,pc),Post(s′0,tr,pc)〉
being given by ρ′(r′′) := σ(r⊙〈(tr, pc)〉⊙r′′) for all r′′ ∈ RS

with first(r′′) = Post(s′0, tr, pc). By definition and induction hypothesis:

Pk+1
S,ρ,Target(last(r)) =

∑
pc∈PChoice(tr)

p(tr, pc) · Pk
S,ρ′,Target(Post(s

′
0, tr, pc))

=
∑

pc∈PChoice(tr)

p(tr, pc) · P k
S,σ,Target(r ⊙ 〈(tr, pc),Post(s′0, tr, pc)〉)

= P k+1
S,σ,Target(r)

For the last step, which applies the definition of P k+1
S,σ,Target(r), recall that last(r) 6|= Target

and k + 1 > 0. This completes the proof. 2

56 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

In the sequel, we are interested in the maximum probability of reaching a given set of
target states under an arbitrary scheduler within a given number k ∈ N of transition steps.
Semantically, this is adequate for modeling and analyzing situations where the target
states are considered undesirable and a demonic perspective to non-determinism is taken
(rendering the scheduler adversarial), or symmetrically to cases where the target states
are considered desirable and an angelic perspective (rendering the scheduler cooperative)
is taken. In particular, depth-bounded probabilistic reachability in probabilistic hybrid
systems is representative for a number of verification problems for embedded systems, for
instance

� performing quantitative safety analysis (in the sense of estimating failure proba-
bility) of a conflict resolution scheme which is expected to terminate after a finite
number of actions whenever triggered, like collision avoidance maneuvers in road
traffic,

� performing quantitative safety analysis (in the sense of estimating failure probabil-
ity) of a finite critical mission, like the descent of an airplane,

� assessing the reliability of a system subject to regular maintenance, where the num-
ber of system actions between maintenance is bounded by a constant k, or

� step-bounded region stability1 of hybrid systems subject to probabilistic distur-
bances, i.e. determining whether a system will with sufficient probability converge
into a target region, which is assumed to be stable, within a given step (and thus,
time) bound.

The following definition formalizes this maximum bounded reachability probability as the
maximum over arbitrary schedulers of the scheduler-dependent reachability probability.

Definition 5.3 (Probabilistic bounded reachability)
Let k ∈ N be a step bound, ı |=

∧n
i=1 initi be the (unique) initial state of S, and Υ be the set

of all history-dependent, deterministic schedulers for S. Then, the maximum probability
of reaching the target states within k steps is defined by

Pk
S,Target(ı) = max

σ∈Υ
Pk

S,σ,Target(ı).

Similar to Lemma 5.1, we may characterize above notion in a recursive manner.

Lemma 5.2 (Recursive characterization of probabilistic bounded reachability)
Let k ∈ N be a step bound and ı |=

∧n
i=1 initi be the (unique) initial state of S. Then, it

holds that

Pk
S,Target(ı) = P k

S,Target(ı)

1Note that eventual stability, while frequently considered due to its simpler mathematics, is hardly
ever a convincing notion in practice. In most practical applications, bounds on stabilization time are
desirable.

5.1 Probabilistic bounded state reachability 57

where P k
S,Target(s) with s ∈ StatesS ∪ {⊥} is defined as follows:

P k
S,Target(s) =

1 if s |= Target ,

0 if s 6|= Target and k = 0 ,

max
tr∈NChoice

∑
pc∈PChoice(tr)

p(tr, pc) · P k−1
S,Target(Post(s, tr, pc))

if s 6|= Target and k > 0 .

Proof. By Definition 5.3 and due to Lemma 5.1, it holds that

Pk
S,Target(ı) = max

σ∈Υ
Pk

S,σ,Target(ı) = max
σ∈Υ

P k
S,σ,Target(〈ı〉).

It therefore suffices to show that

max
σ∈Υ

P k
S,σ,Target(r) = P k

S,Target(last(r))

is true for each run r ∈ RS . The lemma then follows directly from the special case r = 〈ı〉.
First observe that the result obviously holds whenever last(r) |= Target. In this case,

it follows immediately by definitions that P k
S,σ,Target(r) = 1 for each scheduler σ and

P k
S,Target(last(r)) = 1. We thus assume in the remaining proof that last(r) 6|= Target .
The proof is done via induction over step depth k ∈ N. The base case is given by

k = 0. As last(r) 6|= Target , clearly by definition: P 0
S,σ,Target(r) = 0 for each scheduler σ

and P 0
S,Target(last(r)) = 0.

For the induction step, we assume that above statement holds for k ≥ 0. We need to
show that

max
σ∈Υ

P k+1
S,σ,Target(r) = P k+1

S,Target(last(r))

follows from induction hypothesis for each but fixed run r ∈ RS . Since last(r) 6|= Target
and k + 1 > 0, application of definition yields

max
σ∈Υ

P k+1
S,σ,Target(r) = max

σ∈Υ

 ∑

pc∈PChoice(σ(r))

p(σ(r), pc) · P k
S,σ,Target(r ⊙ 〈(σ(r), pc), s′〉)

with s′ = Post(last(r), σ(r), pc) being the corresponding successor state. We now prove
that

max
σ∈Υ

P k+1
S,σ,Target(r) = max

σ∈Υ

 ∑

pc∈PChoice(σ(r))

p(σ(r), pc) ·max
σ′∈Υ

(
P k
S,σ′,Target(r ⊙ 〈(σ(r), pc), s′〉)

)

is true. It is not hard to see that the right-hand side is always greater than or equal
to the left-hand side. The proof that the right-hand side is also less than or equal to
maxσ∈Υ P

k+1
S,σ,Target(r) is by contradiction: we first fix two schedulers ρ and ρ′ such that

max
σ∈Υ

P k+1
S,σ,Target(r) = P k+1

S,ρ,Target(r) , and

max
σ′∈Υ

(
P k
S,σ′,Target(r ⊙ 〈(ρ(r), pc), s′′〉)

)
= P k

S,ρ′,Target(r ⊙ 〈(ρ(r), pc), s′′〉)

58 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

with s′′ = Post(last(r), ρ(r), pc). Then,

max
σ∈Υ

P k+1
S,σ,Target(r) =

∑

pc∈PChoice(ρ(r))

p(ρ(r), pc) · P k
S,ρ,Target(r ⊙ 〈(ρ(r), pc), s′′〉) .

Observe that it suffices to show that

P k
S,ρ′,Target(r ⊙ 〈(ρ(r), pc), s′′〉) ≤ P k

S,ρ,Target(r ⊙ 〈(ρ(r), pc), s′′〉) .

Now assume the converse, i.e. P k
S,ρ′,Target(r⊙〈(ρ(r), pc), s′′〉) > P k

S,ρ,Target(r⊙〈(ρ(r), pc), s′′〉).
Then, we can construct the scheduler ρ′′ that works as ρ for the (fixed) run r, i.e. ρ′′(r) =
ρ(r), and as ρ′ for all extensions r′ = r⊙w ∈ RS of r, i.e. ρ′′(r′) = ρ′(r′). As a consequence,
P k+1
S,ρ′′,Target(r) > P k+1

S,ρ,Target(r). From the fact that maxσ∈Υ P
k+1
S,σ,Target(r) ≥ P k+1

S,ρ′′,Target(r) the

contradiction follows, namely maxσ∈Υ P
k+1
S,σ,Target(r) > P k+1

S,ρ,Target(r).
Since σ(r) ∈ NChoice for each scheduler σ, we trivially have

max
σ∈Υ

P k+1
S,σ,Target(r) ≤ max

tr∈NChoice

 ∑

pc∈PChoice(tr)

p(tr, pc) ·max
σ′∈Υ

(
P k
S,σ′,Target(r ⊙ 〈(tr, pc), s′′〉)

)

with s′′ = Post(last(r), tr, pc). The inequality

max
σ∈Υ

P k+1
S,σ,Target(r) ≥ max

tr∈NChoice

 ∑

pc∈PChoice(tr)

p(tr, pc) ·max
σ′∈Υ

(
P k
S,σ′,Target(r ⊙ 〈(tr, pc), s′′〉)

)

also holds, which is again proven by contradiction: as above, we first fix scheduler ρ
with maxσ∈Υ P

k+1
S,σ,Target(r) = P k+1

S,ρ,Target(r). Now assume that there exists a tr ∈ NChoice

for which the value of the right-hand side is strictly greater than P k+1
S,ρ,Target(r). Clearly,

ρ(r) 6= tr. We can construct a scheduler ρ′ which is defined as ρ except for ρ′(r) = tr. As
a consequence, P k+1

S,ρ′,Target(r) > P k+1
S,ρ,Target(r). From maxσ∈Υ P

k+1
S,σ,Target(r) ≥ P k+1

S,ρ′,Target(r)

the contradiction follows, namely maxσ∈Υ P
k+1
S,σ,Target(r) > P k+1

S,ρ,Target(r).
Summarizing, we have shown that

max
σ∈Υ

P k+1
S,σ,Target(r) = max

tr∈NChoice

 ∑

pc∈PChoice(tr)

p(tr, pc) ·max
σ′∈Υ

(
P k
S,σ′,Target(r ⊙ 〈(tr, pc), s′′〉)

)

 .

Application of induction hypothesis yields

max
σ∈Υ

P k+1
S,σ,Target(r) = max

tr∈NChoice

 ∑

pc∈PChoice(tr)

p(tr, pc) · P k
S,Target(s

′′)

 .

Recall that s′′ = Post(last(r), tr, pc). Directly by definition, we finally conclude

max
σ∈Υ

P k+1
S,σ,Target(r) = P k+1

S,Target(last(r))

which establishes the lemma. 2

5.2 Introductory example of the reduction to SSMT 59

Lemma 5.2 actually shows that when considering maximum step-bounded reachability
probabilities in concurrent PHAs then history-dependent schedulers are not more expres-
sive than schedulers that depend only on the current state and step-depth. A similar result
was shown in [BHKH05, Theorem 2] for maximum time-bounded reachability probabilities
in continuous-time Markov decision processes.
We finally state the decision problem called probabilistic bounded model checking that

is defined to be the problem of deciding whether the maximum probability of reaching
the target states within a given number of steps is below a given threshold:

Definition 5.4 (Probabilistic bounded model checking)
Given a system S of n concurrent PHAs, a predicate Target defining the target states of
S, a step bound k ∈ N, and a probability threshold θ ∈ [0, 1], the probabilistic bounded
model checking problem (PBMC) with respect to target states Target, step bound k, and
threshold θ is to decide whether Pk

S,Target(ı) ≤ θ or, equivalently,

P k
S,Target(ı) ≤ θ

hold with ı |=
∧n

i=1 initi being the (unique) initial state of S.

After having formally introduced the notion of probabilistic bounded reachability for sys-
tems of concurrent PHAs, the remainder of this chapter is devoted to a symbolic procedure
for solving probabilistic bounded model checking problems. In contrast to explicit-state
approaches, which many approaches in the realm of hybrid systems belong to with respect
to the discrete state space, confer Section 3.2, the predicative nature of the translation
scheme to SSMT avoids the explicit construction of the product automaton that grows
exponentially in the number of parallel components. This translation to SSMT proceeds
in two phases. First, we generate the matrix of the SSMT formula, i.e. the quantifier-free
SMT part. This matrix encodes all non-deadlocked, anchored runs of system S that reach
the target states and are of the given length k ∈ N. The exclusion of deadlocked runs
simplifies the matrix and is justified by the fact that such runs have no contribution to
the probability of reaching the target states due to ⊥ 6|= Target . Second, we add the
quantifier prefix which encodes the non-deterministic and the probabilistic choices of the
concurrent automata, whereby non-deterministic choices yield existential quantifiers and
probabilistic choices reduce to randomized quantifiers.
Before formally presenting the details of this encoding scheme in Section 5.3, we first

introduce the intuition by means of an example in Section 5.2.

5.2 Introductory example of the reduction to SSMT

We illustrate the SSMT encoding of concurrent PHAs by the simple example shown in
Figure 5.1. For the sake of simplicity, we just consider a single probabilistic automaton
consisting of only one location being described by the discrete variable d ∈ [1, 1], and of
one continuous variable x. The initial state of this automaton is given by the predicate

Init(d, x) = (d = 1 ∧ x = 0).

Thus, the (unique) satisfying assignment of Init(d, x) represents the (unique) initial state
of the automaton. To perform a transition step, the automaton may non-deterministically

60 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

transition relation:non−deterministic choices:

initial state:

probabilistic choices:

0.50.5

0.8 0.2

(
(tr = t1 ∧ pc1 = p12)

(
(tr = t2 ∧ pc2 = p21)

(
(tr = t2 ∧ pc2 = p22)

∃tr ∈ {t1, t2}

R

[p1
1
→0.5,p1

2
→0.5]pc1

R

[p21→0.2,p22→0.8]pc2 t
r
u
et2

t1

t
r
u
e

p22 p21

x
′
=

x2
x
′
=

2x

p11

x
′
=

0

d = 1

(
(tr = t1 ∧ pc1 = p11)

⇒ (d = 1 ∧ d′ = 1 ∧ x′ = x+ 1)
)

⇒ (d = 1 ∧ d′ = 1 ∧ x′ = x
2
)
)
∧

⇒ (d = 1 ∧ d′ = 1 ∧ x′ = 2x)
)
∧

⇒ (d = 1 ∧ d′ = 1 ∧ x′ = 0)
)
∧

x
′=

x
+
1

d = 1 ∧ x = 0

x = 0

p12

Figure 5.1: Example of the SSMT encoding scheme. Note that the domains of the randomized

variables pc1 and pc2 are omitted for the sake of clarity. (This figure is a slight modification of

Figure 5 from [TEF11].)

select either transition t1 or t2 since both transition guards true are trivially satisfied. As
the definition of probabilistic bounded reachability (Definition 5.3) calls for maximizing
the probability of reaching the target states, we need to select a transition for each step
that maximizes the reachability probability according to Lemma 5.2. To do so, we encode
the non-deterministic selection of transitions by existential quantification. In the example,
we introduce an existentially quantified variable tr with a domain that consists of both
transitions t1 and t2, i.e.

∃tr ∈ {t1, t2}.

Transition selection is then followed by a probabilistic choice of transition alternatives.
When taking transition t1, one of alternatives p

1
1 and p

1
2 are executed with equal probability

0.5. In case t2 was selected, alternative p21 is performed with probability 0.2 and p22
with probability 0.8. This probabilistic selection of transition alternatives is mapped to
randomized quantification. In the example, we introduce two randomized variables pc1
for the probabilistic choice after transition t1, and pc2 for t2, i.e.

R

[p11→0.5,p12→0.5]pc1 ∈ {p11, p
1
2} and

R

[p21→0.2,p22→0.8]pc2 ∈ {p21, p
2
2} .

By these quantified variables, we have described the non-deterministic choice of a transi-
tion and the probabilistic choice of a transition alternative for one step in the automaton.
In order to symbolically encode all anchored systems runs, we have to symbolically

describe all possible transition steps in the automaton, i.e. the relation between the pre-
and post-state for all transitions and their transition alternatives. If transition t1 is
selected non-deterministically and transition alternative p12 probabilistically, then the au-
tomaton must currently be in location that is described by d = 1, re-enters this location,

5.2 Introductory example of the reduction to SSMT 61

and doubles the value of variable x. This transition step is encoded by the predicate
(tr = t1 ∧ pc1 = p12) ⇒ (d = 1 ∧ d′ = 1 ∧ x′ = 2x). The primed variables d′ and x′ repre-
sent the values of variables d and x after the system step, respectively. The encodings for
the remaining transition steps are shown in Figure 5.1. By conjoining all these encodings
by logical conjunction, we obtain the transition relation predicate

Trans(d, x, tr, pc1, pc2, d
′, x′)

that describes all possible system steps from some state (d, x) under some non-deterministic
choice tr and some probabilistic choices pc1, pc2 to state (d′, x′). Due to Property 3.1, for
fixed (d, x), tr, pc1, and pc2 the post-state (d′, x′) is unique if existent. Otherwise, i.e.
(d′, x′) does not exist, the system deadlocks in the distinguished state ⊥. In our encoding,
we deal with deadlocking as follows: whenever the post-state (d′, x′) does not exist then
the predicate Trans(d, x, tr, pc1, pc2, d

′, x′) becomes unsatisfiable, which actually means
that all steps leading to ⊥ are excluded. This treatment is sound since a target state will
never be reached once the system has deadlocked.
As the analysis goal is probabilistic bounded state reachability, we furthermore need

to take account of the predicate that specifies the target states. Let us be interested
in reaching states in which the value of variable x exceeds 100. Then, the target states
predicate is given by

Target(d, x) = (x > 100).

We now construct an SMT formula that encodes all anchored system runs of length k that
reach the target states. Whenever a run r visits the target states in less than k steps, our
encoding ensures that r remains in its current (target) state until step depth k is reached,
i.e. target states are sinks of the transition relation. Formally, the SMT formula ϕ(k) is
given by

Init(d0, x0)

∧
k∧

j=1

(
(¬Target(dj−1, xj−1) ⇒ Trans(dj−1, xj−1, trj, pc1,j, pc2,j , dj, xj))

∧(Target(dj−1, xj−1) ⇒ (dj = dj−1 ∧ xj = xj−1))

)

∧ Target(dk, xk)

where dj, xj are copies of the variables d, x encoding the system state after transition
step j, and trj, pc1,j, pc2,j are copies of tr, pc1, pc2 representing the non-deterministic and
probabilistic choices of step j.
Taking into account the alternation of non-deterministic selections of transitions and

probabilistic choices of transition alternatives for all k transition steps, we add the quan-
tifier prefix

∃tr1 ∈ {t1, t2}

R

[p11→0.5,p12→0.5]pc1,1 ∈ {p11, p
1
2}

R

[p21→0.2,p22→0.8]pc2,1 ∈ {p21, p
2
2}

. . .

∃trk ∈ {t1, t2}

R

[p11→0.5,p12→0.5]pc1,k ∈ {p11, p
1
2}

R

[p21→0.2,p22→0.8]pc2,k ∈ {p21, p
2
2}

to the SMT formula ϕ(k) yielding an SSMT formula Φ(k). Note that the prefix contains
k copies of the quantified variables to represent all possible combinations of transitions
and transition alternatives for k steps.

62 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

By the construction of the overall SSMT formula Φ(k), it follows an important observa-
tion that is formalized in Theorem 5.1 in the next Section 5.3: the maximum probability
of satisfaction of Φ(k) coincides with the maximum probability of reaching the target
states within k transition steps, i.e.

Pr(Φ(k)) = P k
S,Target(ı)

where ı is the initial state of the given system S.
To clarify the basic idea of the symbolic SSMT encoding, we have just illustrated the

translation scheme for a single probabilistic hybrid automaton. Based on this translation
scheme, we can now provide a compact intuition for the SSMT encoding of a system of
concurrent PHAs before presenting the formalized approach in the next section. When
considering a system of concurrently running probabilistic hybrid automata, we separately
construct the transition relation predicate Transi(·) for each automaton Ai. The conjunc-
tion of all these Transi(·) then gives the transition relation of the overall system. The
latter is then used to obtain SMT formula ϕ(k) as above. For the construction of the quan-
tifier prefix, we need to pay attention to the order of the quantified variables. Before each
transition step, all automata non-deterministically select local transitions synchronously.
After having established consensus on a global transition, each automaton probabilisti-
cally selects one of the available alternatives. In the quantifier prefix, for each unwinding
depth, we thus first compile the existential variables of all automata and thereafter the
randomized ones. The quantifier prefix for k unwindings of the transition system is then
composed by concatenating these quantifier prefixes in the same manner as was presented
above for the single automaton.

5.3 Reducing probabilistic bounded reachability to

SSMT

After having explained the intuition of encoding probabilistic bounded reachability for
concurrent PHAs into the SSMT framework in the previous section, we now introduce
the formalized reduction scheme. In what follows, let S = {A1, . . . ,An} be a system of
concurrent discrete-time probabilistic hybrid automata as in Definition 3.1, and Target be
a predicate, defining the set of target states by means of all its models, in the arithmetic
theory T over the discrete and continuous variables in D1, . . . , Dn and R1, . . . , Rn of all
the automata. Furthermore, let k ∈ N be the bound on the length of the system runs.
The reduction to SSMT proceeds in two phases: we first generate the matrix of the

SSMT formula encoding all non-deadlocked, anchored runs of system S of length k that
reach the target states, and we second add the quantifier prefix representing the non-
deterministic and the probabilistic choices of the concurrent automata by means of exis-
tential and randomized quantifiers.

Phase 1: Constructing the matrix. We start by constructing the matrix, that is
denoted by BMC S,Target(k), of the resulting SSMT formula. As said above, each model of
BMC S,Target(k) characterizes a non-deadlocked, anchored run of S of length k that reaches
the target states. First of all, we need to declare the variables occurring in BMC S,Target(k)

5.3 Reducing probabilistic bounded reachability to SSMT 63

as well as their domains (reduction steps 1–4). We continue by symbolically encoding the
global initial state, the transition relation, and the target states of S (reduction steps 5–9),
while reduction step 10 finally states the matrix BMC S,Target(k).

Reduction step 1. For each discrete variable d ∈ Di of automaton Ai for 1 ≤ i ≤ n, we
take k+1 integer variables dj for 0 ≤ j ≤ k, each with the integer interval domain dom(d).
An assignment to the variables di1,j, . . . , d

i
ki,j

represents the discrete state of automaton
Ai at depth j.

Reduction step 2. For each continuous state component x ∈ Ri of Ai for 1 ≤ i ≤ n, we
take k + 1 real-valued variables xj for 0 ≤ j ≤ k, each with real-valued interval domain
dom(x). The value of xj encodes the value of x at depth j.

Reduction step 3. For representing the symbolic transitions tr ∈ Tri of Ai, for 1 ≤ i ≤ n,
we take k variables trij with domain Tri, for 1 ≤ j ≤ k. We demand here that domain
Tri is encoded by a set of integers, for instance by the set of the indices 1, . . . , ℓi of
the symbolic transitions, confer Definition 3.1. The value of trij encodes the transition
selection of Ai at step j.

Reduction step 4. For representing the symbolic probabilistic transition alternatives in
PCtr for each transition tr ∈ Tri of Ai, for 1 ≤ i ≤ n, we take k variables pctrj with
domain PCtr, for 1 ≤ j ≤ k. As for Tri, we again assume that PCtr is given as a set
of integers. The value of pctrj encodes the transition alternative for transition tr of Ai at
step j. It is important to note that the value of such a variable pctrj will be irrelevant
whenever the associated transition tr is not selected in step j, i.e. in case trij 6= tr.

Reduction step 5. The initial state of system S is encoded by the predicate

INIT S(0) :=

n∧

i=0

init i[d
i
1,0, . . . , d

i
ki,0
, xi1,0, . . . , x

i
mi,0

/di1, . . . , d
i
ki
, xi1, . . . , x

i
mi
]

where in init i each variable v is substituted by its representative v0 at depth 0.

Reduction step 6. The synchronization conditions of local transitions tr, i.e. validity of
the generalized transition guards g(tr), for all automata Ai at step 1 ≤ j ≤ k are enforced
through the constraint system

n∧

i=1

∧

tr∈Tri

(trij = tr) ⇒

g(tr)[d11,j−1, d
1
1,j, . . . , d

n
kn,j−1, d

n
kn,j

, x11,j−1, x
1
1,j, . . . , x

n
mn,j−1, x

n
mn,j/

d11, d
′1
1 , . . . , d

n
kn
, d′nkn, x

1
1, x

′1
1 , . . . , x

n
mn
, x′nmn

]

where in transition guard g(tr) each undecorated variable v is substituted by its repre-
sentative vj−1 at depth j − 1, and each primed variable v′ is replaced by vj for depth j.

Reduction step 7. Likewise, assignments asgn(tr, pc) at step 1 ≤ j ≤ k triggered by
transitions tr and probabilistic transition alternatives pc are dealt with by

n∧

i=1

∧

tr∈Tri

∧

pc∈PCtr

(trij = tr ∧ pctrj = pc) ⇒

asgn(tr, pc)[d11,j−1, d
1
1,j , . . . , d

n
kn,j−1, d

n
kn,j

, x11,j−1, x
1
1,j , . . . , x

n
mn,j−1, x

n
mn,j/

d11, d
′1
1 , . . . , d

n
kn
, d′nkn , x

1
1, x

′1
1 , . . . , x

n
mn
, x′nmn

]

64 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

where, as in previous reduction step 6, each undecorated variable v occurring in asgn(tr, pc)
is substituted by its representative vj−1 at depth j − 1, and each primed variable v′ of
asgn(tr, pc) is replaced by vj for depth j.

Reduction step 8. The conjunction of the formulae of reduction steps 6 and 7 yields the
transition relation predicate

TRANSS(j − 1, j)

encoding a transition step from depth j − 1 to j. Observe that with this predicative
encoding, an infeasible choice of transitions and transition alternatives (for instance due
to inconsistent assignment predicates) that would lead to the distinguished state ⊥ in the
semantics immediately causes unsatisfiability of the formula TRANS S(j − 1, j). That is,
system runs reaching the deadlock state ⊥ do not satisfy the matrix generated by our
translation scheme and are thus excluded. Considering reachability of states satisfying
Target , this handling is correct as runs entering ⊥ will never reach any target state and,
vice versa, runs reaching Target will never become deadlocked since both ⊥ and target
states being sinks. The latter fact, i.e. target states are sinks, is indicated by definition of
P k
S,Target in Lemma 5.2 and enforced by formula BMC S,Target(k) in reduction step 10.

Reduction step 9. The next predicate denotes the target states for step depth 0 ≤ j ≤ k.

TARGET (j) := Target [d11,j, . . . , d
n
kn,j , x

1
1,j, . . . , x

n
mn,j/d

1
1, . . . , d

n
kn, x

1
1, . . . , x

n
mn

]

Predicate TARGET (j) is thus satisfied under an assignment τ if and only if the system
state at depth j encoded by τ is a target state.

Reduction step 10. It remains to compile the matrix BMC S,Target(k) of the SSMT formula
as follows:

BMC S,Target(k) := INIT S(0)

∧
k∧

j=1

(
(¬TARGET (j − 1) ⇒ TRANS S(j − 1, j))

∧(TARGET (j − 1) ⇒ SELF LOOPS(j − 1, j))

)

∧ TARGET (k)

where the predicate

SELF LOOPS(j − 1, j) :=
n∧

i=1

(
di1,j = di1,j−1 ∧ . . . ∧ d

i
ki,j

= diki,j−1

∧ xi1,j = xi1,j−1 ∧ . . . ∧ x
i
mi,j

= ximi,j−1

)

identifies the values of all variables of S at depth j with the values of the corresponding
variables at depth j−1. The latter predicate thus encodes a stuttering system step which
is independent of the non-deterministic and probabilistic selections of transitions and tran-
sition alternatives. Satisfying assignments of the quantifier-free formula BMC S,Target(k)
are in one-to-one correspondence to the anchored and non-deadlocked runs of system S
of length k that reach states satisfying the Target predicate. Whenever a target state is
visited in less than k steps, the system remains in this target state until step depth k is
reached due to SELF LOOPS(j − 1, j). This treatment ensures that all target states are
sinks.

5.3 Reducing probabilistic bounded reachability to SSMT 65

Phase 2: Constructing the prefix. To construct the prefix of the SSMT formula
denoted by PBMC S,Target(k), we need to encode the non-deterministic selection of tran-
sitions by all concurrent automata followed by the probabilistic choice of transition al-
ternatives. Since we aim at maximizing the probability of reaching the target states, the
non-determinism is described by existential quantification in reduction step 11, while the
probabilistic choices are mapped to randomized quantifiers in reduction step 12. Combin-
ing these quantifiers (reduction step 13) then leads to the final PBMC S,Target(k) formula
in reduction step 14.

Reduction step 11. Before step j, 1 ≤ j ≤ k, can be executed, each automaton Ai non-
deterministically selects a transition. This is encoded by existential quantification of the
transition variables trij introduced in reduction step 3.

NCHOICES(j) :=
n⊙

i=1

∃trij ∈ Tri

where
⊙

denotes concatenation, confer Section 2.1.

Reduction step 12. Non-deterministic choice is followed by a probabilistic choice of a tran-
sition alternative for each automaton Ai before step j, 1 ≤ j ≤ k. This is reflected by
randomized quantification of the variables introduced by reduction step 4.

PCHOICES(j) :=
n⊙

i=1

⊙

tr∈Tri

R
dtrpc

tr
j ∈ PCtr

where dtr encodes the discrete probability distribution p(tr) and is syntactically repre-
sented as [v1 → p(tr)(v1), . . . , vm → p(tr)(vm)] with PCtr = {v1, . . . , vm}.

Reduction step 13. The combined quantifier sequence for a single computation step j,
1 ≤ j ≤ k, is given by the existential quantifiers followed by the randomized ones.

CHOICES(j) := NCHOICES(j)⊙ PCHOICES(j)

Reduction step 14. Finally, we construct the SSMT formula PBMC S,Target(k) by concate-
nating the quantifier prefixes of the different computation steps in their natural sequence,
representing the fact that the scheduler may draw decisions for later computation steps
based on the outcomes of earlier ones, and by then adding the matrix representing an-
chored, non-deadlocked runs of the system reaching target states.

PBMC S,Target(k) :=

(
k⊙

j=1

CHOICES(j)

)
: BMC S,Target(k)

Given the structural similarity between probabilistic bounded reachability and quantifi-
cation in SSMT, the above reduction is correct in the following sense.

66 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

Theorem 5.1 (Correctness of reduction)
Let be given a system S of n concurrent PHAs, a predicate Target defining the target
states of S, and a step bound k ∈ N. Then, the maximum probability of reaching states
satisfying Target within k steps coincides with the maximum probability of satisfaction of
the symbolic encoding PBMC S,Target(k), i.e.

P k
S,Target(ı) = Pr(PBMC S,Target(k))

holds with ı |=
∧n

i=1 initi being the (unique) initial state of S.

Proof. Within this proof, let the predicate

val(z) :=
∧

v∈
⋃n

i=1(Di∪Ri)

v = z(v),

be a symbolic encoding of a system state z ∈ StatesS , where z(v) is the value of variable
v in state z. The substitution of all variables in val(z) by their representatives at depth
j is abbreviated by

val(z, j) := val(z)[d11,j , . . . , d
n
kn,j, x

1
1,j, . . . , x

n
mn,j/d

1
1, . . . , d

n
kn, x

1
1, . . . , x

n
mn

].

To prove the theorem, we show that

(5.1) P k
S,Target(z) = Pr(PBMC ′

S,Target(z, u, u+ k))

holds for each k ∈ N, for each state z ∈ StatesS , and for each u ∈ N where

PBMC ′
S,Target(z, u, u+ k) :=

(
u+k⊙

j=u+1

CHOICES(j)

)
: BMC ′

S,Target(z, u, u+ k)

and

BMC ′
S,Target(z, u, u+ k) := val(z, u)

∧
u+k∧

j=u+1

(
(¬TARGET (j − 1) ⇒ TRANSS(j − 1, j))

∧(TARGET (j − 1) ⇒ SELF LOOPS(j − 1, j))

)

∧ TARGET (u+ k).

We remark that the introduction of PBMC ′
S,Target(z, u, u+ k) in this very technical man-

ner is necessary for a sound proof. The intuitive meaning, however, is rather simple:
PBMC ′

S,Target(z, u, u + k) is similar to PBMC S,Target(k) but system runs encoded by
PBMC ′

S,Target(z, u, u + k) start in state z and the representatives of the variables are
indexed from u to u + k instead of from 0 to k. This “starting index” u is actually re-
dundant (but eases the proof) in the sense that for each u, u′ ∈ N it obviously holds
that

Pr(PBMC ′
S,Target(z, u, u+ k)) = Pr(PBMC ′

S,Target(z, u
′, u′ + k)) .

By construction and since initial state ı is unique, in special case z = ı and u = 0,
the SMT formulae BMC ′

S,Target(ı, 0, k) and BMC S,Target(k) are semantically equivalent,

5.3 Reducing probabilistic bounded reachability to SSMT 67

i.e. BMC ′
S,Target(ı, 0, k) ≡ BMC S,Target(k). As the prefixes of PBMC ′

S,Target(ı, 0, k) and
PBMC S,Target(k) are equal, we thus have

Pr(PBMC ′
S,Target(ı, 0, k)) = Pr(PBMC S,Target(k)) .

In case equation 5.1 holds, we may conclude that P k
S,Target(ı) = Pr(PBMC S,Target(k)) is

true from which the theorem follows.
It thus remains to prove equation 5.1 which we do by induction over step depth k. For

the base case, let be k = 0. By Lemma 5.2,

P 0
S,Target(z) =

{
1 if z |= Target ,

0 if z 6|= Target

for each state z ∈ StatesS . Furthermore, PBMC ′
S,Target(z, u, u) = BMC ′

S,Target(z, u, u)
and BMC ′

S,Target(z, u, u) = val(z, u) ∧ TARGET (u). Observe that BMC ′
S,Target(z, u, u)

is satisfiable if and only if z is a target state, i.e. if and only if z |= Target. Since
Pr(PBMC ′

S,Target(z, u, u)) = Pr(BMC ′
S,Target(z, u, u)), it immediately follows from Defi-

nition 4.5 that

Pr(PBMC ′
S,Target(z, u, u)) =

{
1 if z |= Target ,

0 if z 6|= Target

holds for each state z ∈ StatesS and for each u ∈ N which establishes the base case, i.e.

P 0
S,Target(z) = Pr(PBMC ′

S,Target(z, u, u)) .

For the induction step, let be k ≥ 0. As induction hypothesis, we assume that equa-
tion 5.1 holds for k, i.e. for all z′ ∈ StatesS and for all u′ ∈ N

P k
S,Target(z

′) = Pr(PBMC ′
S,Target(z

′, u′, u′ + k))

is true. We now show that induction hypothesis implies that equation 5.1 also holds for
k + 1, i.e. for all z ∈ StatesS and for all u ∈ N

P k+1
S,Target(z) = Pr(PBMC ′

S,Target(z, u, u+ k + 1))

is also true.
We first consider the case in which z is a target state, i.e. z |= Target . By construc-

tion of BMC ′
S,Target(z, u, u + k + 1), for each assignment to the quantified variables in⊙u+k+1

j=u+1 CHOICES(j) the remaining SMT formula is then satisfiable. A satisfying assign-
ment is achieved by identifying the values of all state variables at all depths with the value
at depth u as given by state z, i.e. for each variable v ∈

⋃n
i=1(Di ∪ Ri) we set vu+k+1 :=

z(v), . . . , vu := z(v). This assignment clearly satisfies val(z, u), each TARGET (i) for
u ≤ i ≤ u+k+1, each SELF LOOPS(j−1, j) for u+1 ≤ j ≤ u+k+1, and thus the whole
formula. The rationale is that quantified variables only occur in TRANS S(j − 1, j) and
all implications (¬TARGET (j−1) ⇒ TRANSS(j−1, j)) are therefore trivially satisfied.
Hence, if z |= Target then we have Pr(PBMC ′

S,Target(z, u, u+ k + 1)) = 1 and, moreover,

P k+1
S,Target(z) = 1 according to Lemma 5.2, i.e. P k+1

S,Target(z) = Pr(PBMC ′
S,Target(z, u, u+ k+

1)).

68 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

In the remainder of this proof, assume that z 6|= Target . Let be Tri = {ti1, . . . , t
i
ℓi
}

for 1 ≤ i ≤ n be the set of symbolic transitions of automaton Ai. Then, according to
reduction steps 11 and 12:

NCHOICES(u+ 1) = ∃tr1u+1 ∈ Tr1 ⊙ . . .⊙ ∃trnu+1 ∈ Trn ,

PCHOICES(u+ 1) =

R

d
t1
1

pc
t11
u+1 ∈ PCt11

⊙ . . .⊙

R

d
t1
ℓ1

pc
t1
ℓ1

u+1 ∈ PCt1
ℓ1

⊙

. . .

R

dtn
1

pc
tn1
u+1 ∈ PCtn1

⊙ . . .⊙

R

dtn
ℓn

pc
tn
ℓn

u+1 ∈ PCtn
ℓn

.

By Definition 4.5, it then follows:

(5.2)

Pr(PBMC ′
S,Target(z, u, u + k + 1))

= maxt1∈Tr1 . . .maxtn∈Trn

∑
p11∈PC

t1
1

dt11(p
1
1) ·
(
. . .
(∑

p1
ℓ1
∈PC

t1
ℓ1

dt1
ℓ1

(p1ℓ1) ·
(
. . .

(∑
pn1∈PCtn

1

dtn1 (p
n
1) ·

(
. . .
(∑

pn
ℓn

∈PCtn
ℓn

dtn
ℓn
(pnℓn) ·

Pr
(
CHC u+k+1

u+2 : BMC ′
S,Target(z, u, u + k + 1)[~t, ~p/~tr, ~pc]

))
. . .
))

. . .
))

. . .
)

where

CHC u+k+1
u+2 :=

u+k+1⊙

j=u+2

CHOICES(j)

and A[~t, ~p/~tr, ~pc] abbreviates the substitution of all non-deterministic choices ti and all

probabilistic choices pij for the corresponding variables tiu+1 and pc
tij
u+1 in a predicate A,

respectively, i.e.

A[~t, ~p/~tr, ~pc] := A[t1, . . . , tn, p
1
1, . . . , p

n
ℓn/tr

1
u+1, . . . , tr

n
u+1, pc

t11
u+1, . . . , pc

tn
ℓn

u+1] .

Due to reduction step 7, for all assignments to the existential variables triu+1 := tij with t
i
j ∈

Tri and 1 ≤ i ≤ n the values of all randomized variables pc
tiq
u+1 with q 6= j are irrelevant,

i.e. all implication predicates introduced in reduction step 7 involving variables pc
tiq
u+1

with q 6= j are trivially satisfied since triu+1 6= tiq. Since predicates containing randomized
variables are only introduced in reduction step 7 as well as due to

∑
v∈PC

tiq

dtiq(v) = 1

and due to common arithmetic laws, above observation gives us the possibility to simplify

equation 5.2 by turning all randomized variables pc
tiq
u+1 with q 6= j into non-quantified

ones:

(5.3)

Pr(PBMC ′
S,Target(z, u, u+ k + 1))

= maxt1∈Tr1 . . .maxtn∈Trn

∑
p1∈PCt1

dt1(p1) ·
(
. . .
(∑

pn∈PCtn
dtn(pn) ·

Pr
(
CHC u+k+1

u+2 : BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′]

))
. . .
)

5.3 Reducing probabilistic bounded reachability to SSMT 69

with

A[~t′, ~p′/ ~tr′, ~pc′] := A[t1, . . . , tn, p1, . . . pn/tr
1
u+1, . . . , tr

n
u+1, pc

t1
u+1, . . . pc

tn
u+1] .

The intuition of concluding equation 5.3 is as follows: for each step j the quantifier prefix
of SSMT formula PBMC ′

S,Target(z, u, u+ k + 1) contains randomized variables pctrj for all
possible transitions tr ∈ Tri of all automata Ai to encode the probabilistic transition
alternatives when taking transition tr, confer reduction step 12. These variables are
always present, even so in all cases where transition tr is not selected in step j. Though
in such cases the value of randomized variable pctrj is irrelevant (as ensured by reduction
step 7), the semantics given in Definition 4.5 needs to consider such variables pctrj . This
is reflected in equation 5.2. Exploiting the information about irrelevance of variables pctrj
and hence ignoring all such pctrj for step j = u+1, we derived the simplified equation 5.3.
Now observe that for each assignment τ to the quantified variables q1, . . . , qw in prefix

CHC u+k+1
u+2 it holds that

BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′][τ(q1), . . . , τ(qw)/q1, . . . , qw]

is satisfiable if and only if

BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′][τ(q1), . . . , τ(qw)/q1, . . . , qw][z(~v)/~vu]

is satisfiable. A[z(~v)/~vu] means that each representative vu of the discrete and continuous
state variables v ∈

⋃n
i=1(Di ∪Ri) at depth u in predicate A is replaced by the value z(v)

of variable v in state z. Above observation relies on the fact that BMC ′
S,Target(z, u, u +

k + 1) comprises the predicate val(z, u) and, by construction, val(z, u) permits exactly
one satisfying assignment, namely this given by state z. As z is the same for each τ , we
may move substitution in time and obtain:

BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′][τ(q1), . . . , τ(qw)/q1, . . . , qw][z(~v)/~vu]

is satisfiable if and only if

BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′][z(~v)/~vu][τ(q1), . . . , τ(qw)/q1, . . . , qw]

is satisfiable. Since representatives vu of state variables v ∈
⋃n

i=1(Di ∪ Ri) are non-
quantified, i.e. they do not occur in CHC u+k+1

u+2 , we may conclude using above facts that:

(5.4)
Pr
(
CHC u+k+1

u+2 : BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′]

)

= Pr
(
CHC u+k+1

u+2 : BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′][z(~v)/~vu]

)

Recall that z 6|= Target . Then, TARGET (u)[z(~v)/~vu] is equivalent to false and pred-
icate TRANS S(u, u + 1)[~t′, ~p′/ ~tr′, ~pc′][z(~v)/~vu] needs to be satisfied in order to satisfy
BMC ′

S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′][z(~v)/~vu]. Due to construction, confer reduction
steps 6 and 7, and due to Property 3.1 (uniqueness of post-states), TRANS S(u, u +
1)[~t′, ~p′/ ~tr′, ~pc′][z(~v)/~vu] is satisfied by at most one assignment to the representatives vu+1

of state variables v ∈
⋃n

i=1(Di ∪ Ri) for depth u + 1. Let tr = (t1, . . . , tn) ∈ NChoice be
the combined non-deterministic transition choice and pc = (p1, . . . , pn) ∈ PChoice(tr) be

70 5 SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata

the combined probabilistic choice with ti, pi, 1 ≤ i ≤ n, as in equation 5.3. Again due
to reduction steps 6 and 7 and due to Property 3.1, we can conclude the following two
relations: first, if the (unique) post-state z′ = Post(z, tr, pc) of S exists, i.e. z′ 6= ⊥, then

val(z′, u+ 1) ≡ TRANS S(u, u+ 1)[~t′, ~p′/ ~tr′, ~pc′][z(~v)/~vu]

and, second, if z′ = ⊥ then TRANSS(u, u+1)[~t′, ~p′/ ~tr′, ~pc′][z(~v)/~vu] is unsatisfiable. Thus,
if z′ 6= ⊥ then we have

BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′][z(~v)/~vu]

≡ val(z′, u+ 1)

∧
u+k+1∧
j=u+2

(
(¬TARGET (j − 1) ⇒ TRANSS(j − 1, j))

∧(TARGET (j − 1) ⇒ SELF LOOPS(j − 1, j))

)

∧ TARGET (u+ k + 1)

= BMC ′
S,Target(z

′, u+ 1, u+ k + 1)

and, using equation 5.4, definition of PBMC ′
S,Target(z

′, u+ 1, (u+ 1) + k), and induction
hypothesis,

(5.5)

Pr
(
CHC u+k+1

u+2 : BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′]

)

= Pr
(
CHC u+k+1

u+2 : BMC ′
S,Target(z

′, u+ 1, u+ k + 1)
)

= Pr
(
PBMC ′

S,Target(z
′, u+ 1, (u+ 1) + k)

)

= Pr
(
PBMC ′

S,Target(z
′, u′, u′ + k)

)

= P k
S,Target(z

′)

with u′ = u+1. If z′ = ⊥ then unsatisfiability of TRANS S(u, u+1)[~t′, ~p′/ ~tr′, ~pc′][z(~v)/~vu]
entails unsatisfiability of BMC ′

S,Target(z, u, u + k + 1)[~t′, ~p′/ ~tr′, ~pc′][z(~v)/~vu]. By equa-
tion 5.4, we thus conclude

Pr
(
CHC u+k+1

u+2 : BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′]

)
= 0 .

Recall that Post(⊥, tr′, pc′) = ⊥ for all tr′ ∈ NChoice and pc′ ∈ PChoice(tr) and that
⊥ 6|= Target. As a consequence, P k′

S,Target(⊥) = 0 for each k′ ∈ N, confer the definition in
Lemma 5.2. By observation above and by equation 5.5, we therefore obtain

(5.6) Pr
(
CHC u+k+1

u+2 : BMC ′
S,Target(z, u, u+ k + 1)[~t′, ~p′/ ~tr′, ~pc′]

)
= P k

S,Target(z
′)

equally whether z′ 6= ⊥ or z′ = ⊥. Application of equation 5.6 in equation 5.3 leads to

Pr(PBMC ′
S,Target(z, u, u+ k + 1))

= max
t1∈Tr1

. . . max
tn∈Trn

∑
p1∈PCt1

dt1(p1) ·
(
. . .
(∑

pn∈PCtn

dtn(pn) · P
k
S,Target(z

′)
)
. . .
)
.

5.3 Reducing probabilistic bounded reachability to SSMT 71

Using definitions, namely tr = (t1, . . . , tn) ∈ NChoice, pc = (p1, . . . , pn) ∈ PChoice(tr),
z′ = Post(z, tr, pc), p(tr, pc) =

∏n
i=1 p(ti)(pi), and dt(v) = p(t)(v) for all t ∈

⋃n
i=1 Tri and

for all v ∈ PCt, as well as common arithmetic laws, we can rewrite statement above to

Pr(PBMC ′
S,Target(z, u, u+ k + 1))

= max
tr∈NChoice

∑
pc∈PChoice(tr)

p(tr, pc) · P k
S,Target(Post(z, tr, pc)) .

Since z 6|= Target and k + 1 > 0, application of definition of P k+1
S,Target(z) gives the desired

result, i.e.
Pr(PBMC ′

S,Target(z, u, u+ k + 1)) = P k+1
S,Target(z) .

This completes the induction step and the theorem follows. 2

From Theorem 5.1, it trivially follows that the decision version of probabilistic bounded
reachability with respect to probability threshold θ, namely the PBMC problem from Def-
inition 5.4, can be solved by deciding whether the satisfaction probability of the symbolic
encoding PBMC S,Target(k) is below θ:

Corollary 5.1 (SSMT-based probabilistic bounded model checking)
Let be given a system S of n concurrent PHAs, a target states predicate Target, a step
bound k ∈ N, and a probability threshold θ ∈ [0, 1]. Then,

P k
S,Target(ı) ≤ θ if and only if Pr(PBMC S,Target(k)) ≤ θ

with ı |=
∧n

i=1 initi being the (unique) initial state of S.

To complete the symbolic approach to probabilistic bounded reachability, Chapter 6 in-
troduces algorithms to solve SSMT formulae. In addition to a detailed description of
underlying concepts and a thorough theoretical investigation, an essential part of Chap-
ter 6 is devoted to algorithmic optimizations with the objective of saving computational
effort in practice. One such optimization called thresholding is motivated by Corollary 5.1:
to solve the PBMC problem with respect to threshold θ, we need not compute the ex-
act satisfaction probability Pr(PBMC S,Target(k)) but it is sufficient to decide whether
Pr(PBMC S,Target(k)) is below or strictly above θ. The latter fact can be exploited in the
development of SSMT algorithms. While such SSMT algorithms implement a traversal
through the tree given by the quantifier prefix as indicated in Figure 4.3, thresholding
enables aggressive pruning rules that save visits to potentially major parts of the search
space whenever a threshold for some subtree is already exceeded by processed branches
or can no longer be reached by all remaining branches.

6 Algorithms for SSMT Problems

After having introduced the formal model of concurrent probabilistic hybrid automata
in Chapter 3 and the logical framework of SSMT in Chapter 4 as well as the reduction
from probabilistic bounded reachability problems for PHAs to SSMT in Chapter 5, this
chapter finally completes the symbolic reachability analysis approach for concurrent PHAs
by elaborating on algorithms to solve SSMT formulae.

The SSMT algorithm presented in this thesis is based on algorithmic concepts to solve
SSAT as well as SMT formulae, while algorithms for the latter both build on a decision
procedure for the SAT problem. Therefore, we first refer to a procedure for the SAT
problem in Section 6.1 which is then followed by explaining its extensions to cope with
the more general SSAT and SMT problems in Sections 6.2 and 6.3, respectively. The
basic SSMT algorithm finally is elaborated on in Section 6.4, while Section 6.5 proposes
algorithmic enhancements in order to improve performance in practice. The theoretical
considerations of Sections 6.4 and 6.5 are implemented in the tool SiSAT, described in
Section 6.6, and empirically evaluated in Section 6.7.

6.1 Algorithms for SAT

As introduced in Section 4.1, given a propositional formula ϕ in CNF, the Boolean satisfia-
bility problem (SAT) asks whether a satisfying assignment of ϕ exists. Though all existing
SAT algorithms show exponential runtime in worst case, modern approaches to solve SAT
exhibit remarkable performance on practically relevant problems stemming from indus-
trial applications like software and hardware verification. These so-called SAT solvers
are in the majority of cases based on the Davis-Putnam-Logemann-Loveland (DPLL)
procedure [DP60, DLL62] enhanced with various algorithmic optimizations.

The DPLL procedure mainly implements a backtracking algorithm that searches for
a satisfying assignment of ϕ by means of manipulating a partial assignment τ to the
variables of ϕ. This process stops either if τ could be extended to a satisfying assignment
or if all assignments were probed without finding a satisfying one, the latter proving that ϕ
is unsatisfiable. At the beginning of the search process, the partial assignment τ is empty,
i.e. no variable is assigned a truth value. Then, τ is incrementally extended by decisions
and accompanied deductions. In a decision step, an unassigned variable x ∈ Var(ϕ), i.e.
τ(x) is not defined, is selected and then assigned a truth value t ∈ B, i.e. τ(x) := t. Each
decision step is followed by the deduction phase involving the search for unit clauses, i.e.
clauses c ∈ ϕ that have only one unassigned literal ℓ left while all other literals ℓ′ 6= ℓ in c
are false under current (partial) assignment τ , i.e. τ(ℓ′) = false. The unassigned literal
ℓ in a unit clause is called unit literal. In order to satisfy a unit clause c (and thus prevent
the whole formula ϕ from becoming violated) under an extension of the partial assignment
τ , it is clear that we need to satisfy the unit literal ℓ ∈ c, i.e. we need to extend τ in such

74 6 Algorithms for SSMT Problems

a way that τ(ℓ) = true. For instance, let c = (x∨¬y ∨¬z) be a clause that is unit under
partial assignment τ with τ(x) = false and τ(y) = true. To satisfy c, we extend τ by
setting τ(z) := false. Then, τ(¬z) = true and thus τ(c) = true. Such an extension
of τ is called a deduction, while the mechanism of deducing unit literals is referred to as
unit propagation. Please observe that not only decisions but also deductions can trigger
further deductions. Whenever no new deduction can be performed and no clause became
definitely false under τ , i.e. there is no clause c ∈ ϕ such that ∀ℓ ∈ c : τ(ℓ) = false,
the procedure continues with a new decision step. A decision step and its accompanied
deductions are called decision level.

However, deduction may also yield a conflicting clause c′ ∈ ϕ which has all its literals
assigned false under current τ , i.e. ∀ℓ ∈ c′ : τ(ℓ) = false and thus τ 6|= c′. Such a
situation is called conflict. For instance, consider the small example above and assume
that there is another clause c′ = (x ∨ ¬y ∨ z). After deducing τ(z) := false, clause
c′ becomes conflicting as τ(x) = false, τ(¬y) = false, and τ(z) = false. Since ϕ
is in CNF and c′ ∈ ϕ, each (complete) assignment τ ′ that extends partial assignment
τ , i.e. if τ(x) is defined then τ ′(x) = τ(x) for each x ∈ Var(ϕ), does not satisfy ϕ,
i.e. τ ′ 6|= ϕ. This fact indicates the need for backtracking, i.e. to take back some of
the latter decision levels. This process then retrieves some previous partial assignment
from which the search will be continued. To avoid repeated conflicts due to the same
reason, modern SAT algorithms incorporate conflict-driven clause learning [MSLM09] to
derive a sufficiently general explanation (a combination of variable assignments) for the
actual conflict. In our running example, assume that first assignment τ(x) = false and
then τ(y) = true were made by decision steps. Then, both variable assignments are an
explanation for the current conflict. Based on that (ideally minimal) set of assignments
that triggered the particular conflict, a conflict clause cc is generated and added to the
clause set to guide the subsequent search. Such a conflict clause cc encodes the negation of
the variable assignment leading to the conflict, and ensures to not visit the same conflicting
assignment again. In the example, we get cc = (x ∨ ¬y) meaning that x must be set to
true or y to false in order to avoid the previous conflicting situtation. Additionally,
the conflict clause is also used to compute the backtrack level, i.e. the decision level on
which the search will be continued. Most modern SAT solvers implement the first unique
implication point technique from [ZMMM01]. In the latter, the backtrack level is the oldest
decision level on which the current conflict clause cc becomes unit. This approach leads to
a non-chronological backtracking operation, often jumping back more than just one level,
thus making conflict-driven clause learning combined with non-chronological backtracking
a powerful mechanism to prune large parts of the search space. In our example, we can
go back only one level, namely to decision level starting with τ(x) = false, as conflict
clause cc = (x∨¬y) is unit there but cc will be no longer unit when also undoing decision
τ(x) = false.

The overall DPLL procedure always terminates, namely if an assignment τ was found
that satisfies formula ϕ or if a conflict cannot be resolved, i.e. there are no decision levels
to be taken back. In the latter case, there does not exist any solution of ϕ, i.e. ϕ is
unsatisfiable.

We finally mention that state-of-the-art SAT solvers exploit a vast number of further
algorithmic optimizations that have led to impressive performance gains during the last

6.2 Algorithms for SSAT 75

years. Among others, these are very sophisticated data structures that permit efficient
detection of unit clauses based on so-called two watched literals as well as powerful vari-
able and value decision heuristics [MMZ+01]. For a very detailed account of modern
SAT solving techniques as well as applications of SAT, we refer the interested reader
to [BHvMW09].

6.2 Algorithms for SSAT

As mentioned in Section 4.2, the general SSAT problem is PSPACE-complete. The
plethora of real-world applications like probabilistic planning however calls for practi-
cally efficient algorithms. We therefore explain state-of-the-art SSAT algorithms, being
based on the DPLL procedure, in Subsection 6.2.1. In contrast to the aforementioned
DPLL-style backtracking algorithms, a novel approach to solve SSAT problems following
the idea of the resolution principle is suggested in Subsection 6.2.2. Completing this
section, a theoretical comparison between this novel SSAT resolution calculus and the
classical DPLL-SSAT procedure as well as potential applications of SSAT resolution are
finally presented in Subsection 6.2.3.

6.2.1 DPLL-based SSAT procedure

As pioneered by Littman [Lit99], state-of-the-art SSAT algorithms implement a DPLL-
style backtracking search that mimics the semantics of SSAT, thereby explicitly traversing
the tree given by the quantifier prefix and recursively computing the individual satisfac-
tion probabilities for each subtree by the scheme illustrated in Figure 4.1. To improve
performance in practice, DPLL-SSAT procedures moreover incorporate several algorith-
mic optimizations where the most prominent ones are unit propagation, purification, and
thresholding. Figure 6.1 shows the standard DPLL-SSAT procedure as presented similarly
in the recent overview article [Maj09] (in a version without universal quantifiers).
In the following, we explain the DPLL-SSAT algorithm from Figure 6.1. In addition to

an SSAT formula Φ = Q : ϕ with propositional formula ϕ being in CNF, the algorithm
DPLL-SSAT(Φ, θl, θu) requires as further inputs two rational values θl and θu with θl ≤
θu that are called lower threshold and upper threshold, respectively. The idea of these
additional parameters is to alleviate workload of the algorithm, and thus to improve
performance, whenever precise information about the probability result is not or only
partially necessary. More precisely, in case the probability of satisfaction Pr(Φ) lies in
the interval [θl, θu] then the algorithm must return the exact satisfaction probability, i.e.
DPLL-SSAT(Φ, θl, θu) = Pr(Φ). Otherwise, i.e. Pr(Φ) /∈ [θl, θu], the exact result is not
of interest but only some witness value pr = DPLL-SSAT(Φ, θl, θu) with pr < θl if and
only if Pr(Φ) < θl and with pr > θu if and only if Pr(Φ) > θu. These thresholds
are exploited during proof search to boost efficiency by skipping some recursive calls of
DPLL-SSAT which is called thresholding and described later on. Providing the possibility
of thresholding is actually motivated by several industrial applications like the verification
of probabilistic safety properties where the problem is to decide whether the probability of
reaching unsafe states is below or above some acceptable threshold θ, as in Definition 5.4.
In the latter case, the lower threshold and the upper threshold coincide, i.e. θl = θu = θ.

76 6 Algorithms for SSMT Problems

DPLL-SSAT(Q : ϕ, θl, θu)

input: SSAT formula Q : ϕ with ϕ in CNF, rational constants θl, θu with θl ≤ θu.

// Base cases

if ϕ contains a clause equivalent to false then return 0.

if all clauses in ϕ equivalent to true then return 1.

// Unit propagation

if ϕ contains a unit literal ℓ with Var(ℓ) = {x} then

if Q = Q1∃xQ2 then return DPLL-SSAT(Q1Q2 : ϕ[v(ℓ)/x], θl, θu).

if Q = Q1

RpxQ2 then

return p(ℓ) · DPLL-SSAT(Q1Q2 : ϕ[v(ℓ)/x], θl/p(ℓ), θu/p(ℓ)).

// Purification

if ϕ contains a pure literal ℓ with Var(ℓ) = {x} then

if Q = Q1∃xQ2 then return DPLL-SSAT(Q1Q2 : ϕ[v(ℓ)/x], θl, θu).

// Branching and thresholding

if Q = ∃xQ′ then

pr1 := DPLL-SSAT(Q′ : ϕ[true/x], θl, θu).

if pr1 > θu then return pr1.

pr2 := DPLL-SSAT(Q′ : ϕ[false/x], max(θl, pr1), θu).

return max(pr1, pr2).

if Q =

RpxQ′ then

pr1 := DPLL-SSAT(Q′ : ϕ[true/x], (θl − (1− p))/p, θu/p).

if p · pr1 + (1− p) < θl then return p · pr1.

if p · pr1 > θu then return p · pr1.

pr2 := DPLL-SSAT(Q′ : ϕ[false/x], (θl − p · pr1)/(1− p), (θu − p · pr1)/(1− p)).

return p · pr1 + (1− p) · pr2.

Figure 6.1: DPLL-based backtracking algorithm for SSAT as presented similarly in [Maj09]. If

literal ℓ is positive then v(ℓ) = true and p(ℓ) = p, and otherwise v(ℓ) = false and p(ℓ) = 1− p.

(This figure is a slight modification of Figure 2 from [TF10].)

The same holds when considering the SSAT decision problem, i.e. to decide whether
Pr(Φ) ≥ θ is true: due to above facts, we conclude that Pr(Φ) ≥ θ if and only if
DPLL-SSAT(Φ, θ, θ) ≥ θ. We furthermore remark that the presence of the threshold
parameters does not restrict the scope of the SSAT procedure. That is, whenever the
exact probability of satisfaction needs to be computed then the lower threshold θl should
be set to value 0 and the upper threshold θu to value 1.

Base cases. Algorithm DPLL-SSAT(Q : ϕ, θl, θu) first checks whether matrix ϕ con-
tains a clause c ∈ ϕ with c ≡ false. Such clause c, which corresponds to a conflicting
clause in the DPLL procedure for SAT, occurs if substitution has replaced the variables of
all positive literals in c by false and the variables of all negative literals in c by true such
that all literals in c are equivalent to false. In this conflicting situation, DPLL-SSAT
correctly returns result 0 since ϕ is unsatisfiable (as ϕ is in CNF) and thus Pr(Q : ϕ) = 0

6.2 Algorithms for SSAT 77

x

x = neg(v)x = v

Figure 6.2: Illustration of pruning the search space: whenever DPLL-SSAT detects that branch

“x = neg(v)” for variable x may be skipped due to some algorithmic optimization like unit

propagation, a potentially huge subtree can be cut off. We denote by neg(v) ∈ B the opposite

of truth value v, i.e. neg(v) = true if and only if v = false.

according to Definition 4.2.

The next step is to check whether each clause c ∈ ϕ is equivalent to true, i.e. at least
one literal ℓ in each clause c is equivalent to true, i.e. the variable of ℓ was replaced by
true if ℓ is positive or by false if ℓ is negative. If so, ϕ is a tautology, i.e. |= ϕ, and
consequently Pr(Q : ϕ) = 1 according to Definition 4.2. DPLL-SSAT then returns 1.

If both of the above tests have failed then the algorithm tries to prune the search space
in the sense of skipping some recursive calls by means of three algorithmic optimizations.

Unit propagation. The first such optimization is called unit propagation: as in the
deduction phase of the DPLL algorithm for SAT, this enhancement detects unit clauses c
and immediately propagates their unit literals ℓ by substituting the corresponding values
v(ℓ) for variables x with Var(ℓ) = {x} such that unit clauses c become true, i.e. v(ℓ) =
true for positive literals ℓ and v(ℓ) = false for negative literals ℓ. Recall that a unit
literal ℓ in a unit clause c is the only unassigned literal while all other literals in c are
assigned false. Observe that unit propagation moves a quantifier in the prefix to the left,
i.e. Q1QxQ2 ; QxQ1Q2. This is of course not a valid operation in general. However, this
is correct for unit literals ℓ ∈ {x,¬x}, i.e. Pr(Q1QxQ2 : ϕ∧ ℓ) = Pr(QxQ1Q2 : ϕ∧ ℓ), as
the value of x satisfying ℓ does not depend on Q1. This fact is evinced by Lemma 6.2 later
on. Each application of unit propagation clearly saves one recursive call of DPLL-SSAT,
namely this one for the branch where x is set to the opposite of value v(ℓ). Intuitively,
this optimization cuts off a potentially huge subtree of the overall search tree given by the
quantifier prefix, confer Figure 6.2.

Purification. The next algorithmic enhancement, called purification, is in some sense
similar to unit propagation but it propagates pure literals. A literal ℓ occurring in some

78 6 Algorithms for SSMT Problems

clause of ϕ is called pure if and only if each clause c ∈ ϕ that is not equivalent to true,
i.e. c 6≡ true, does not contain the opposite literal neg(ℓ), i.e. neg(ℓ) /∈ c. For an example
consider formula (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x4 ∨ true). Literals x1 and ¬x1
are clearly not pure, while literals ¬x2, x3, and ¬x4 however are. We remark that literal
¬x2 is pure as clause (x2 ∨ ¬x4 ∨ true), containing the opposite literal x2 = neg(¬x2),
is equivalent to true. With regard to soundness of purification, we argue as follows. Let
ϕ be a propositional formula in CNF and ℓ ∈ {x,¬x} be a pure literal. Let us further
denote the set of all clauses in ϕ that are not equivalent to true by U(ϕ) := {c ∈ ϕ :
ϕ 6≡ true}. We define v(ℓ) = true and v̄(ℓ) = false if ℓ is positive, and v(ℓ) = false

and v̄(ℓ) = true otherwise. It is not hard to see that U(ϕ[v̄(ℓ)/x]) ⊇ U(ϕ[v(ℓ)/x]) and
thus ϕ[v̄(ℓ)/x] ⇒ ϕ[v(ℓ)/x] and finally Pr(Q : ϕ[v̄(ℓ)/x]) ≤ Pr(Q : ϕ[v(ℓ)/x]). Above
fact justifies the application of purification for existential variables. Moving the quantifier
within the prefix, i.e. Q1∃xQ2 ; ∃xQ1Q2, again relies on the observation that the value
of x does not depend on Q1, i.e. for each assignment to the variables in Q1, x is set to
value v(ℓ). This fact is also evinced by Lemma 6.2 later on. Purification seems however
not possible for randomized variables as the other branch where x is set to v̄(ℓ) may yield
some contribution, i.e. potentially, Pr(Q1Q2 : ϕ[v̄(ℓ)/x]) > 0.

A slightly more general definition of pure literals ℓ does not demand that ℓ need be
present in a clause of ϕ. Applying the latter definition, literal x4 would also be pure
in above example and clearly each literal ℓ such that neither ℓ nor neg(ℓ) occurs in the
formula. This more general concept of pure literals does not destroy soundness of pu-
rification and is of practical benefit whenever there are some variables x that occur in
quantifier prefix Q but not in matrix ϕ, i.e. Qx ∈ Q but x /∈ Var(ϕ). Such cases are ac-
tually permitted by Definition 4.1 and potentially occur during solving an SSAT formula,
namely when considering all satisfied clauses as “removed” from matrix ϕ. Observe that
DPLL-SSAT prevents an infinite application of purification since variable x must occur
in the current quantifier prefix.

Branching and thresholding. In case none of the above checks was successful, the
procedure applies branching thereby trying to exploit another optimization called thresh-
olding. A branching step is similar in nature to a decision step in the DPLL algorithm
for SAT. The difference however lies in the selection of the variable to be assigned a
value. While in the quantifier-free SAT case the decision variable can be freely cho-
sen, variable selection in DPLL-SSAT is more restrictive and depends on the quanti-
fier prefix. According to the semantics of SSAT formalized in Definition 4.2, the algo-
rithm presented in Figure 6.1 actually selects the leftmost variable in the prefix. We
remark that this selection method can be relaxed to some extent: for an SSAT for-
mula Q1x1 . . . QkxkQ : ϕ where the quantifiers Qi for 1 ≤ i ≤ k are the same, i.e.
Q1 = . . . = Qk, one of variables x1, . . . , xk can be freely selected for branching. The
rationale is that quantifiers within a block of same quantifiers may be moved arbitrarily.
Formally, Pr(Q1QxQQyQ2 : ϕ) = Pr(Q1QyQQxQ2 : ϕ) whenever all variables in
Q are bound by the same quantifier Q ∈ {∃,

Rp}.1 The latter proposition follows from
Definition 4.2 and common arithmetic laws.

1We remark that the probabilities p of randomized quantifiers

Rp need not be homogeneous.

6.2 Algorithms for SSAT 79

After selection of a variable x for branching, the procedure takes an arbitrary truth value
t ∈ B and then solves the corresponding subformula Q′ : ϕ[t/x]. For presentation reasons
only, the algorithm in Figure 6.1 first selects truth value true. This restriction could
however be simply relaxed to the selection of arbitrary truth values with the consequence
of a more technical presentation of the algorithm. Let the result of the first subproblem,
i.e. where x is replaced by true, be satisfaction probability pr1. We first assume that the
conditions in the subsequent if-statements are not satisfied. Then, the other subproblem,
i.e. where false is substituted for x, is solved by recursive call of DPLL-SSAT yielding
satisfaction probability pr2. In a final step, DPLL-SSAT returns the corresponding prob-
ability of satisfaction pr according to Definition 4.2, i.e. pr = max(pr1, pr2) if Q = ∃xQ′

and pr = p · pr1 + (1− p) · pr2 if Q =

RpxQ′.

We now explain the idea of thresholding, which is another optimization technique to
prune the search space using the threshold parameters θl and θu. Recall that DPLL-SSAT
must return the exact satisfaction probability if the latter lies within the interval [θl, θu].
Otherwise, just a witness value pr is required such that pr < θl or pr > θu if and only
if the actual satisfaction probability is strictly less than θl or strictly greater than θu,
respectively. As a consequence, the algorithm may skip to solve the second subformula
Q′ : ϕ[false/x] whenever the result pr1 of DPLL-SSAT for the first subproblem Q′ :
ϕ[true/x] is large enough in the sense that the final probability result will exceed the
upper threshold in any case, i.e. whenever pr1 > θu in case Q = ∃xQ′ and p · pr1 > θu
in case Q =

RpxQ′. This pruning technique is justified by a monotonicity argument, i.e.
pr1 > θu implies max(pr1, pr2) > θu and p · pr1 > θu implies p · pr1 + (1 − p) · pr2 > θu
due to p, pr1, pr2 ∈ [0, 1]. A similar thresholding rule is applicable if probability result
pr1 for the first branch is too small in the sense that the final probability result will
never reach the lower threshold θl independent of the actual value of pr2 for the second
branch. The latter rule is clearly infeasible for existential variables since if pr2 > θl then
max(pr1, pr2) > θl, i.e. for unknown pr2 there is no way to conclude that max(pr1, pr2) < θl
only from information about pr1 (even if pr1 = 0). For the randomized case, however, we
can reason as follows: given probability pr1 for the first branch, then the greatest possible
overall probability is obtained if pr2 = 1, i.e. p · pr1 + (1 − p) · pr2 ≤ p · pr1 + (1 − p) · 1
for each pr2 ∈ [0, 1]. Therefore, if the greatest possible value p · pr1 + (1 − p) is already
strictly less than the lower threshold θl then there is no chance that the final probability
will reach θl. This argument justifies to skip the second branch.

It remains to describe how the lower threshold θ′l and the upper threshold θ′u are deter-
mined for recursive calls of the algorithm, and to show that the use of these thresholds is
sound as well as that θ′l ≤ θ′u holds.

Let us first consider the existential case, i.e. Q = ∃xQ′. In the first recursion, we
simply transfer the given thresholds θl and θu. To recognize soundness of the latter,
let pr′ = Pr(Q′ : ϕ[v(ℓ)/x]) be the actual satisfaction probability of the first branch,
and pr′′ = Pr(Q′ : ϕ[neg(v(ℓ))/x]) be the actual probability of the potential second
branch where neg(v(ℓ)) is the opposite of truth value v(ℓ). The actual final probability of
satisfaction then is pr = max(pr′, pr′′). For the lower threshold, we first consider the case
where pr′ ≥ pr′′. Here, pr = pr′ and thus pr < θl if and only if pr′ < θl. We now deal with
case pr′ < pr′′ in which we obtain pr = pr′′. This fact implies that the actual value of pr′

is not of interest in order to compute the final result, allowing any lower threshold. Both

80 6 Algorithms for SSMT Problems

observations above justify the use of θl as lower threshold of first recursion. With regard
to upper threshold θu, observe that if pr′ > θu then pr > θu. The latter fact permits the
use of upper threshold θu for first recursive call of DPLL-SSAT. Clearly by assumption,
θl ≤ θu.

For the second recursion, we potentially strengthen the lower threshold by taking the
maximum max(θl, pr1) of the current lower threshold θl and the probability result pr1 of
the first branch. This potentially enables more aggressive thresholding within the recursive
call. The upper threshold is as above, namely θu. Observe that second branch is executed
only if thresholding has failed before, i.e. we assume pr1 ≤ θu in the following. Let
pr′ = Pr(Q′ : ϕ[false/x]) be the actual satisfaction probability of the second branch and
pr = max(pr1, pr

′) be the actual final probability result. With regard to lower threshold,
consider the case pr1 ≥ pr′ first. Then, pr = pr1 and thus pr < θl if and only if pr1 < θl,
which means that the result pr is independent of the value pr′ of second branch. The
latter fact allows any lower threshold for second recursion. If pr1 < pr′ then pr = pr′, and
thus pr < θl if and only if pr′ < θl if and only if pr′ < max(θl, pr1). This establishes the
argument for setting the new lower threshold to max(θl, pr1). For the upper threshold, we
have that pr > θu if and only if pr′ > θu as pr1 ≤ θu. Note that max(θl, pr1) ≤ θu since
θl ≤ θu and pr1 ≤ θu.

In the randomized case, i.e. Q =

RpxQ′, modifications of the thresholds are a bit more
sophisticated. We first examine the case in which unit propagation applies: here, we
definitely know that the branch where x is replaced by value neg(v(ℓ)) yields probability
0 since unit literal ℓ is then violated, i.e. Pr(Q1Q2 : ϕ[neg(v(ℓ))/x]) = 0. Let be pr′ =
Pr(Q1Q2 : ϕ[v(ℓ)/x]). The result returned by DPLL-SSAT then is p(ℓ) ·pr′ with p(ℓ) = p
if unit literal ℓ is positive and p(ℓ) = 1−p if ℓ is negative. Recall that 0 < p < 1 and thus
p(ℓ) > 0. We then obtain that p(ℓ) · pr′ < θl if and only if pr′ < θl/p(ℓ) and p(ℓ) · pr

′ > θu
if and only if pr′ > θu/p(ℓ). This gives us the argument to use θl/p(ℓ) as the new lower
threshold and θu/p(ℓ) as the new upper one. Since θl ≤ θu and p(ℓ) > 0, it follows that
θl/p(ℓ) ≤ θu/p(ℓ).

We next consider the first recursive call of DPLL-SSAT in case of branching. The new
thresholds are achieved with a similar argument as above. The difference, however, is that
we are unaware of the probability of the second branch. Let us denote by pr′ = Pr(Q′ :
ϕ[true/x]) and by pr′′ = Pr(Q′ : ϕ[false/x]) the actual satisfaction probabilities of the
first and second branches, respectively. The actual final probability of satisfaction then is
pr = p·pr′+(1−p)·pr′′. Simply by definition, pr < θl if and only if p·pr′+(1−p)·pr′′ < θl.
Due to arithmetic laws and due to p > 0, we further conclude that pr < θl if and only
if p · pr′ < θl − (1 − p) · pr′′ if and only if pr′ < (θl − (1 − p) · pr′′)/p. As pr′′ ≤ 1, we
finally obtain the rationale for the new lower threshold, namely from pr′ < (θl−(1−p))/p
it follows that pr′ < (θl − (1 − p) · pr′′)/p. That is, we may use (θl − (1 − p))/p as the
new lower threshold for the first recursion. For the new upper threshold, we reason that
pr > θu if and only if p · pr′ + (1− p) · pr′′ > θu if and only if pr′ > (θu − (1− p) · pr′′)/p.
As pr′′ ≥ 0, we clearly have that if pr′ > θu/p then pr′ > (θu − (1 − p) · pr′′)/p which
justifies new upper threshold θu/p for the first recursion of DPLL-SSAT. Since θl ≤ θu,
(1− p) > 0, and p > 0, we deduce that (θl − (1− p))/p ≤ θu/p.

We now explain the new thresholds for the second recursion. Observe that the second
recursion is executed only if thresholding has failed, confer Figure 6.1. As a consequence,

6.2 Algorithms for SSAT 81

we know that p ·pr1+(1−p) ≥ θl as well as p ·pr1 ≤ θu, and thus that the result pr1 of the
first recursion lies within the corresponding thresholds, i.e. pr1 ∈ [(θl − (1 − p))/p, θu/p].
From the latter observation, we can conclude that pr1 is the actual satisfaction probability
of the first branch, i.e. pr1 = Pr(Q′ : ϕ[true/x]). Let pr′ = Pr(Q′ : ϕ[false/x]) be
the actual satisfaction probability of the second branch. The actual final probability of
satisfaction then is pr = p · pr1 + (1 − p) · pr′. Using the result pr1 of the first branch,
we have to weaken the lower threshold for the second branch on the one hand, but we
can strengthen the corresponding upper threshold on the other hand. For this purpose,
recall that (1 − p) > 0 and consider the following line of reasoning: pr < θl if and only
if p · pr1 + (1 − p) · pr′ < θl if and only if (1 − p) · pr′ < θl − p · pr1 if and only if
pr′ < (θl − p · pr1)/(1− p), as well as pr > θu if and only if p · pr1+(1− p) · pr′ > θu if and
only if (1− p) · pr′ > θu − p · pr1 if and only if pr′ > (θu − p · pr1)/(1− p). This establishes
the lower threshold (θl−p ·pr1)/(1−p) as well as the upper threshold (θu−p ·pr1)/(1−p)
for the second recursive call of DPLL-SSAT. From θl ≤ θu and (1− p) > 0 it follows that
(θl − p · pr1)/(1− p) ≤ (θu − p · pr1)/(1− p).

We finally remark that lower thresholds θl may become negative, i.e. θl < 0, and that
upper thresholds θu may exceed 1, i.e. θu > 1. This fact, however, does not destroy
soundness of thresholding as we have never stated any assumption on the range of θl and
θu. The only condition is that θl ≤ θu holds in each invocation of DPLL-SSAT(Φ, θl, θu).
The latter property is actually preserved for each recursive call DPLL-SSAT(Φ′, θ′l, θ

′
u),

i.e. θ′l ≤ θ′u, as shown above.

Concluding this subsection about DPLL-based SSAT algorithms, we mention that fur-
ther algorithmic enhancements of DPLL-SSAT were investigated in the literature, con-
fer [Maj09]. One of them is called non-chronological backtracking [Maj04] that works as
follows: whenever DPLL-SSAT has reached a base case, then a minimal partial variable
assignment is created that serves as an explanation for the current conflict or solution.
Based on this explanation, the second branch in DPLL-SSAT can be skipped whenever
the value of the current variable x has no impact on the current conflict or solution, which
is the case if the explanation does not talk about variable x. In [ML98a], a dynamic pro-
gramming technique called memoization was investigated in order to potentially improve
performance of DPLL-SSAT by caching the satisfaction probabilities of already solved
subformulae. Whenever an already processed subformula Φ needs to be solved again,
the corresponding cached satisfaction probability can be retrieved immediately without
recomputing Pr(Φ). Another issue that may lead to enormous performance gains is the
development of suitable branching heuristics . As mentioned above, the selection of a
variable for branching in the SSAT case is more restrictive than in the quantifier-free
SAT case, i.e. a decision variable needs to be selected from the leftmost block of same
quantifiers in the prefix. Several sophisticated branching heuristics for DPLL-SSAT were
investigated in [LMP01, ML03]. In Section 6.5, we elaborate on above-mentioned and
further algorithmic optimizations for the more general SSMT case.

6.2.2 Resolution-based SSAT procedure

As reviewed in Subsection 6.2.1, classical SSAT algorithms implement a DPLL-based
backtracking procedure thereby explicitly traversing the tree given by the quantifier pre-

82 6 Algorithms for SSMT Problems

fix and recursively computing the individual satisfaction probabilities for each subtree. In
this subsection, we propose a novel approach to solve SSAT that is based on the reso-
lution principle. Following the idea of resolution for propositional and first-order formu-
lae [Rob65] and for QBF formulae [BKF95], we develop a sound and complete resolution
calculus for SSAT and theoretically compare it with the classical DPLL-SSAT approach.
The results of this subsection are mainly based on [TF10, TF11, TF12].

We first recall in brief the well-known resolution calculus for propositional formulae
ϕ in CNF, confer [Rob65]. Let (c1 ∨ x) and (c2 ∨ ¬x) be two clauses where c1 and c2
are disjunctions of literals and x is a propositional variable. Observe that x and ¬x are
complementary literals. The resolution rule then derives from above clauses the new clause
(c1∨c2) which is logically implied by the given clauses, i.e. (c1∨x)∧(c2∨¬x) ⇒ (c1∨c2) is
valid. The derived clause (c1∨c2) is also called resolvent of (c1∨x) and (c2∨¬x). Starting
with clauses in ϕ, resolution successively applies above rule to derive implied clauses. An
essential property of resolution for SAT is that the empty clause ∅ is derivable from the
given formula ϕ if and only if ϕ is unsatisfiable.

Similar to above scheme for the non-stochastic case, resolution for SSAT formulae Q : ϕ
also derives new clauses c(pl,pu) which are however annotated with a pair of probabilities
(pl, pu) where 0 ≤ pl ≤ pu ≤ 1. More precisely, the resolution calculus derives pairs
c(pl,pu)|Q : ϕ of annotated clauses c(pl,pu) and SSAT formulae Q : ϕ. In contrast to
classical resolution, such derived clauses c(pl,pu) need not be implications of the given
(or rather derived) formula Q : ϕ, but are just entailed with some probability. Loosely
speaking, the derivation of a pair c(pl,pu)|Q : ϕ means that under SSAT formula Q :
ϕ, the clause c is violated with a maximum probability at most pu, i.e. the maximum
satisfaction probability of Q : (ϕ ∧ ¬c) is at most pu. More intuitively, the minimum
probability that clause c is implied by ϕ is at least 1 − pu. The latter fact follows from
the observation that Pr(Q : ψ) = 1 − Pr(Q′ : ¬ψ), where Q′ arises from Q by replacing
existential quantifiers by universal ones, where universal quantifiers call for minimizing
the satisfaction probability, confer the definition of XSSAT in Section 4.2. We thus have
that Pr(Q′ : (ϕ ⇒ c)) = 1 − Pr(Q : (ϕ ∧ ¬c)) ≥ 1 − pu holds. Serving the sole
purpose of getting an intuition of derived pairs c(pl,pu)|Q : ϕ, the above interpretation is
however too imprecise to facilitate a similar estimation for pl. Though the exact meaning
of c(pl,pu)|Q : ϕ is presented in Lemma 6.1, we are a bit more precise at this point. Let x
be the rightmost variable in prefix Q that occurs in clause c. Further, let τ be any partial
assignment that falsifies c, i.e. τ(c) = false, and that is defined for x and all the variables
to the left of x in Q. Finally, let Q′ be the prefix that arises when removing all variables
y from Q for which τ(y) is defined, and ϕ′ be the resulting matrix when substituting the
values τ(y) for variables y in ϕ. Then, the maximum probability of satisfaction of Q′ : ϕ′

is at least pl and at most pu. Once a pair ∅(pl,pu)|Q : ϕ comprising the empty clause is
derived, it follows that the maximum satisfaction probability of the derived SSAT formula
lies in the interval [pl, pu], i.e. pl ≤ Pr(Q : ϕ) ≤ pu.

Before we formally introduce the resolution calculus for SSAT, we mention the following
theoretical observation that sheds some light on the nature of a potential SSAT resolution
scheme. Recall that resolution for both SAT and QBF shows polynomial-time solvability
on their restrictions to 2CNF as each resolution step yields clauses of size at most two,
of which just quadratically many exist. Note that the same property cannot be expected

6.2 Algorithms for SSAT 83

for SSAT resolution due to PSPACE-completeness of S2SAT (Theorem 4.1). Therefore,
a sound and complete resolution calculus for SSAT must involve some rule that destroys
above property (unless P = PSPACE).

Resolution for SSAT. For presentation reasons, we first introduce some notation.

Definition 6.1
For each quantifier prefix Q = Q1x1 . . . Qnxn, each propositional formula ϕ with Var(ϕ) ⊆
{x1, . . . , xn}, and each non-tautological clause c, i.e. 6|= c, we define

1. the quantifier prefix Q(ϕ) to be shortest prefix of Q that contains all variables from
ϕ, i.e. Q(ϕ) := Q1x1 . . . Qixi where xi ∈ Var(ϕ) and for each j > i : xj /∈ Var(ϕ),

2. the set Var(Q) := {x1, . . . , xn} of variables quantified by Q, and

3. the partial assignment ff c that falsifies c as the mapping ff c : Var(c) → B such that
for all variables x ∈ Var(c) :

ff c(x) :=

{
true if ¬x ∈ c ,

false if x ∈ c .

Observe that above assignment ff c exists and is unique since clause c is non-tautological,
and that c evaluates to false under assignment ff c.

In what follows, let Q : ϕ be an SSAT formula with matrix ϕ being in CNF. Without
loss of generality, ϕ contains only non-tautological clauses, i.e. ∀c ∈ ϕ : 6|= c. With regard
to the latter, note that tautological clauses c′, i.e. |= c′, are redundant in the sense that
Pr(Q : (ϕ ∧ c′)) = Pr(Q : ϕ). We furthermore demand that ϕ does not comprise the
constants true and false. The latter requirement is also without loss of generality since
for each propositional formula ψ in CNF a semantically equivalent formula ψ′ in CNF can
simply be achieved such that ψ′ does not contain true and false, confer the notion of a
cleaning as defined in Section 2.2.

The resolution calculus for SSAT, which we call S-resolution, is defined by the consec-
utive application of below rules R.1, R.2, R.2s, and R.3 to derive pairs c(pl,pu)|Q : ϕ where
c(pl,pu) with 0 ≤ pl ≤ pu ≤ 1 is an annotated clause and Q : ϕ an SSAT formula. An
initial pair is given by ε|Q : ϕ where ε denotes absence of a clause and Q : ϕ is any
SSAT formula that meets the aforementioned conditions. We explicitly point out that ε
must not be confused with the empty clause ∅. We further remark that each of the above
rules preserves the given SSAT formula in its derived pair, which in turn means that the
information about Q : ϕ is redundant to some extent. We however opt for the involve-
ment of Q : ϕ since we enhance S-resolution by some additional rules in Subsection 6.2.3,
with some of these rules actually being able to modify the quantifier prefix Q of the given
SSAT formula Q : ϕ.

In case we forbid rule R.2 and thus allow only rules R.1, R.2s, and R.3, we obtain a
stronger version that we refer to as strong S-resolution. The rationale of the stronger
version is that derived clauses c(pl,pu) are then forced to have tight bounds pl and pu, i.e.
pl = pu, which give the exact satisfaction probabilities of the corresponding subformulae,

84 6 Algorithms for SSMT Problems

confer Lemma 6.1. Strong S-resolution furthermore establishes the basis of the procedure
to compute generalized Craig interpolants for SSAT being introduced in Chapter 9.

Given ε|Q : ϕ, rule R.1 derives a pair c(0,0)|Q : ϕ where clause c(0,0) is annotated with
the smallest possible probability pair (0, 0) and c itself is an original clause in ϕ. Referring
to the semantics of SSAT given in Definition 4.2, R.1 corresponds to the quantifier-free
base case where ϕ is equivalent to false under any assignment that falsifies c.

(R.1)

ε|Q : ϕ,

c ∈ ϕ

c(0,0)|Q : ϕ

Next rule R.2 simply takes any non-tautological disjunction c of literals that talk about
variables occurring in prefix Q, and then derives c(0,1)|Q : ϕ, where clause c(0,1) is anno-
tated with the pair consisting of the smallest and highest possible probabilities 0 and 1.
Soundness of R.2 follows from the trivial fact that 0 ≤ Pr(Φ) ≤ 1 is always true for each
SSAT formula Φ.

(R.2)

ε|Q : ϕ,

c ⊆ {x,¬x|x ∈ Var(Q)}, 6|= c

c(0,1)|Q : ϕ

By strengthening the premise of R.2, we obtain rule R.2s. More precisely, R.2s does not
take an arbitrary disjunction c of literals, but c here encodes the opposite of a satisfying
(partial) assignment τ of ϕ. That is, substitution of the values given by τ for the corre-
sponding variables in ϕ yields a tautology, i.e. |= ϕ[τ(x1)/x1] . . . [τ(xi)/xi]. Similar to R.1

and according to Definition 4.2, rule R.2s reflects the quantifier-free base case in which ϕ
is equivalent to true under any (complete) assignment τ ′ that is conform to the partial as-
signment τ since ϕ[τ(x1)/x1] . . . [τ(xi)/xi] ≡ true. This justifies derivation of c(1,1)|Q : ϕ,
where clause c(1,1) is annotated with the pair (1, 1) of highest possible probabilities.

(R.2s)

ε|Q : ϕ,

c ⊆ {x,¬x|x ∈ Var(Q)}, 6|= c,

for each τ : Var(Q(c)) → B with ∀x ∈ Var(c) : τ(x) = ff c(x) :

|= ϕ[τ(x1)/x1] . . . [τ(xi)/xi] where Q(c) = Q1x1 . . . Qixi

c(1,1)|Q : ϕ

We remark that finding such a clause c in the premise of R.2s is NP-hard as it is equivalent
to finding a satisfying (partial) assignment of a propositional formula in CNF. This strong
application condition of R.2s is however justified with regard to a potential integration of S-
resolution into DPLL-SSAT solvers, since DPLL-SSAT strongly relies on finding satisfying
assignments, confer the base case of DPLL-SSAT in Figure 6.1 where all clauses in ϕ are
equivalent to true. Observe that whenever a satisfying (partial) assignment τ ′ of ϕ is
found by a DPLL-SSAT solver then |= ϕ[τ ′(y1)/y1] . . . [τ

′(yk)/yk] with y1, . . . , yk ∈ Var(ϕ)
being all variables for which τ ′(y1), . . . , τ

′(yk) are defined. It is then straightforward
to construct from τ ′ a clause c which meets the requirements of R.2s, namely for each
x ∈ Var(Q) : x ∈ c if and only if τ ′(x) = false, and ¬x ∈ c if and only if τ ′(x) = true.

6.2 Algorithms for SSAT 85

As discussed later on, we actually aim at an integration of S-resolution into DPLL-SSAT
in order to enhance performance as well as applicability of DPLL-SSAT solvers.
Note that such above rules R.2 as well as R.2s are not present in classical resolution

schemes for SAT and QBF. In the stochastic case, we need one of these rules for achieving
completeness of S-resolution being evinced by Theorem 6.1. Note that each of both rules
impedes a potential polynomial-time solvability for SSAT formulae in 2CNF as sizes of
derived clauses are no longer guaranteed to be at most two. Though completeness might
be obtained in another way, the choice of rule R.2 or of rule R.2s seems to be justified by
Theorem 4.1 which states PSPACE-completeness of S2SAT, indicating that a polynomial
time algorithm for S2SAT cannot be expected.
Rule R.3 finally constitutes the actual resolution rule as known from the non-stochastic

case. Depending on whether an existential or a randomized variable is resolved upon,
both probabilities pl and pu of the probability pair (pl, pu) of the resolvent clause are
computed according to the semantics Pr(Q : ϕ) as given in Definition 4.2.

(R.3)

(c1 ∨ ¬x)(pl1,pu1)|Q : ϕ, (c2 ∨ x)
(pl2,pu2)|Q : ϕ,

Qx ∈ Q, x /∈ Var(Q(c1 ∨ c2)), 6|= (c1 ∨ c2),

(pl, pu) =

{
(max(pl1, pl2),max(pu1, pu2)) ; Q = ∃,

(p · pl1 + (1− p) · pl2, p · pu1 + (1− p) · pu2) ; Q =

Rp

(c1 ∨ c2)(pl,pu)|Q : ϕ

Note that the SSAT formulae in both input pairs (c1 ∨ ¬x)(pl1,pu1)|Q : ϕ and (c2 ∨
x)(pl2,pu2)|Q : ϕ need to be the same and that Q : ϕ is preserved in the derived pair
(c1 ∨ c2)

(pl,pu)|Q : ϕ. Moreover, observe that variable x which is resolved upon does not
precede within prefix Q any of the variables in c1 and c2, i.e. x is the rightmost variable
in both prefixes Q(c1 ∨¬x) and Q(c2∨x). Though this application condition might seem
too restrictive, it is actually not the case with respect to soundness and completeness of
S-resolution as subsequently shown by Corollary 6.1 and Theorem 6.1.
For the purpose of comparing the proof complexity of S-resolution and DPLL-SSAT,

we actually relax above restriction to some extent in Subsection 6.2.3: in special cases,
namely whenever literal ¬x or x is unit or pure under each assignment that falsifies some
subset c of c1 or c2, respectively, it is allowed to delay resolution upon variable x and to
resolve upon variables y ∈ c1 \ c or y ∈ c2 \ c first. The latter fact is formalized implicitly
by the additional rules R.3u and R.3p later on, namely by means of moving Qx to the
right within prefix Q, i.e. the quantifier prefix actually changes in the derived pair.
We abbreviate the derivation of a pair c(pl,pu)|Q : ϕ

� from ε|Q : ϕ by rule R.1 as ε|Q : ϕ ⊢R.1 c
(pl,pu)|Q : ϕ,

� from ε|Q : ϕ by rule R.2 as ε|Q : ϕ ⊢R.2 c
(pl,pu)|Q : ϕ,

� from ε|Q : ϕ by rule R.2s as ε|Q : ϕ ⊢R.2s c
(pl,pu)|Q : ϕ, and

� from c
(pl1,pu1)
1 |Q : ϕ and c

(pl2,pu2)
2 |Q : ϕ by R.3 as (c

(pl1,pu1)
1 |Q : ϕ, c

(pl2,pu2)
2 |Q : ϕ) ⊢R.3

c(pl,pu)|Q : ϕ.

To show soundness of S-resolution as well as of strong S-resolution, we first state the
following lemma that permits a precise interpretation of derived pairs c(pl,pu)|Q : ϕ.

86 6 Algorithms for SSMT Problems

Lemma 6.1 (Interpretation of derived pairs c(pl,pu)|Q : ϕ)
Let pair c(pl,pu)|Q : ϕ with Q = Q1x1 . . . Qnxn and Q(c) = Q1x1 . . . Qixi be derivable by
S-resolution. Then, for each truth assignment τ : Var(Q(c)) → B with ∀x ∈ Var(c) :
τ(x) = ff c(x) it holds that

pl ≤ Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) ≤ pu ,

and, moreover, if c(pl,pu)|Q : ϕ is derivable by strong S-resolution then pl = pu, i.e.

pl = Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) = pu .

Proof. First of all, observe that clause c in each pair c(pl,pu)|Q : ϕ derivable by S-resolution
is non-tautological, i.e. 6|= c. The rationale is that each clause in ϕ is non-tautological by
global assumption and, therefore, each rule can only produce non-tautological clauses. As
a consequence, each above truth assignment τ is well-defined.
We show the lemma by induction over the application of rules R.1, R.2, R.2s, and R.3.

The base cases are given by rules R.1, R.2, and R.2s. For rule R.1, i.e. ε|Q : ϕ ⊢R.1

c(0,0)|Q : ϕ, the formula ϕ[τ(x1)/x1] . . . [τ(xi)/xi] is unsatisfiable due to construction of τ
that falsifies clause c ∈ ϕ. Thus,

0 = Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 .

For rule R.2, i.e. ε|Q : ϕ ⊢R.2 c
(0,1)|Q : ϕ, we trivially obtain that

0 ≤ Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) ≤ 1

holds according to Definition 4.2. For rule R.2s, i.e. ε|Q : ϕ ⊢R.2s c
(1,1)|Q : ϕ, we immedi-

ately have that formula ϕ[τ(x1)/x1] . . . [τ(xi)/xi] is a tautology and therefore that

1 = Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) = 1 .

The fact that rule R.2 is not applicable within strong S-resolution establishes the result
for the base cases.
Now assume that the respective assumptions hold for the pairs in the premise of R.3.

That is, if ((c1 ∨ ¬xj)
(pl1,pu1)|Q : ϕ, (c2 ∨ xj)

(pl2,pu2)|Q : ϕ) ⊢R.3 c
(pl,pu)|Q : ϕ then for each

truth assignment τ1 : Var(Q(c1∨¬xj)) → B with ∀x ∈ Var(c1∨¬xj) : τ1(x) = ff (c1∨¬xj)
(x)

and for each truth assignment τ2 : Var(Q(c2 ∨ xj)) → B with ∀x ∈ Var(c2 ∨ xj) : τ2(x) =
ff (c2∨xj)(x) it holds that

pl1 ∼ Pr(Qj+1xj+1 . . . Qnxn : ϕ[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][τ1(xj)/xj]) ∼ pu1 ,

pl2 ∼ Pr(Qj+1xj+1 . . . Qnxn : ϕ[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][τ2(xj)/xj]) ∼ pu2 ,

where ∼ is ≤ for S-resolution and ∼ is = for strong S-resolution. Observe that j ≥ i+ 1
since xj /∈ Var(Q(c1 ∨ c2)) and c = (c1 ∨ c2), and that each truth assignment τ with
τ(x) = τ1(x) if x ∈ Var(c1) and τ(x) = τ2(x) if x ∈ Var(c2) is well-defined. The latter
holds due to the fact that if x ∈ Var(c1)∩Var(c2) then τ1(x) = τ2(x) since 6|= (c1∨c2). We
furthermore conclude that τ1(xj) = true and τ2(xj) = false since τ1(xj) = ff (c1∨¬xj)(xj)

6.2 Algorithms for SSAT 87

and τ2(xj) = ff (c2∨xj)
(xj) by construction. From Definition 4.2, we may then infer that

for each assignment τ as defined above it holds that

pl ∼ Pr(Qjxj Qj+1xj+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) ∼ pu .

The lemma directly follows in case j = i+1. For j > i+1, note that variables xi+1, . . . , xj−1

do not occur in clause c = (c1 ∨ c2). Hence, for k = j − 1 down to i + 1 we successively
conclude that

pl ∼ Pr(Qk+1xk+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xk−1)/xk−1][true/xk]) ∼ pu ,

pl ∼ Pr(Qk+1xk+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xk−1)/xk−1][false/xk]) ∼ pu .

From case k = i+ 1, we finally achieve

pl ∼ Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) ∼ pu

and the lemma follows. 2

As a direct consequence of Lemma 6.1, namely for special case c(pl,pu)|Q : ϕ = ∅(pl,pu)|Q : ϕ
(where τ is the well-defined empty function), we obtain that S-resolution and strong S-
resolution are sound in the following sense.

Corollary 6.1 (Soundness of S-resolution)
If the pair ∅(pl,pu)|Q : ϕ is derivable by S-resolution or by strong S-resolution then pl ≤
Pr(Q : ϕ) ≤ pu or pl = Pr(Q : ϕ) = pu, respectively.

In case we explicitly refer to strong S-resolution then the clauses in all derived pairs
c(pl,pu)|Q : ϕ carry tight bounds, i.e. pl = pu, according to Lemma 6.1. For the sake of
simplicity, we then write

� ε|Q : ϕ ⊢R.1 c
p|Q : ϕ for ε|Q : ϕ ⊢R.1 c

(pl,pu)|Q : ϕ,

� ε|Q : ϕ ⊢R.2s c
p|Q : ϕ for ε|Q : ϕ ⊢R.2s c

(pl,pu)|Q : ϕ, and

� (cp11 |Q : ϕ, cp22 |Q : ϕ) ⊢R.3 c
p|Q : ϕ for (c

(pl1,pu1)
1 |Q : ϕ, c

(pl2,pu2)
2 |Q : ϕ) ⊢R.3 c

(pl,pu)|Q :
ϕ

where p = pl = pu, p1 = pl1 = pu1, and p2 = pl2 = pu2. To further simplify notation,
whenever SSAT formula Q : ϕ is clear from the context we omit Q : ϕ, i.e. S-resolution
rules are then denoted by

� ⊢R.1 c
(pl,pu),

� ⊢R.2 c
(pl,pu),

� ⊢R.2s c
(pl,pu), and

� (c
(pl1,pu1)
1 , c

(pl2,pu2)
2) ⊢R.3 c

(pl,pu).

We use above simplifications in the remainder of this subsection as well as in Chapter 9.
Theorem 6.1 shows completeness of strong S-resolution from which completeness of

S-resolution immediately follows as the latter allows one more rule.

88 6 Algorithms for SSMT Problems

Theorem 6.1 (Completeness of (strong) S-resolution)
If Pr(Q : ϕ) = p for some SSAT formula Q : ϕ with ϕ being in CNF then the pair
∅p|Q : ϕ, is derivable by strong S-resolution.

Proof. We prove the theorem by induction over the number of quantifiers in the quantifier
prefix Q. For the base case Q = ε, we distinguish two cases. First, ϕ ≡ false. Then, ϕ
must contain the empty clause, i.e. ∅ ∈ ϕ. As a consequence, p = 0 and the empty clause
∅0 is derivable by rule R.1, i.e. ε|Q : ϕ ⊢R.1 ∅0|Q : ϕ. Second, ϕ ≡ true. Then, ϕ does
not contain any clause. Clearly, p = 1 and the empty clause ∅1 is derivable by rule R.2s,
i.e. ε|Q : ϕ ⊢R.2s ∅

1|Q : ϕ. For the latter step, note that 6|= ∅.
In the induction step, we show that ∅p|QxQ : ϕ is derivable such that p = Pr(QxQ : ϕ)

by means of induction hypothesis that ∅p1|Q : ϕ[true/x] and ∅p2|Q : ϕ[false/x] are
derivable with p1 = Pr(Q : ϕ[true/x]) and p2 = Pr(Q : ϕ[false/x]). Without loss
of generality, we demand that the formulae ϕ[true/x] and ϕ[false/x] are syntactically
represented by their cleanings as defined in Section 2.2, i.e. by the formulae that arise
when removing the constants true and false. Applying the same strong S-resolution
sequence deriving ∅p1|Q : ϕ[true/x] on QxQ : ϕ yields

∅p1|QxQ : ϕ or (¬x)p1 |QxQ : ϕ .

With regard to the latter observation, we remark that all clauses c ∈ ϕ containing positive
literal x “disappeared” in the cleaning of ϕ[true/x] as true ∈ c[true/x]. Analogously,

∅p2|QxQ : ϕ or (x)p2 |QxQ : ϕ

is derivable. If ∅p1|QxQ : ϕ or ∅p2|QxQ : ϕ is derivable then p = p1 or p = p2, respectively,
by Corollary 6.1. Note that if both ∅p1|QxQ : ϕ and ∅p2|QxQ : ϕ are derivable then
p1 = p2. Otherwise, i.e. only (¬x)p1 |QxQ : ϕ and (x)p2|QxQ : ϕ are derivable, we apply

((¬x)p1 |QxQ : ϕ, (x)p2|QxQ : ϕ) ⊢R.3 ∅
p|QxQ : ϕ

to obtain the desired result. 2

We remark that, first, S-resolution as defined above is a generalization of the SSAT reso-
lution calculus presented in [TF10] where derived clauses only provide upper probability
bounds, and that, second, strong S-resolution coincides with the resolution scheme pro-
posed in [TF11, TF12].

Termination. With regard to termination, we remark that, given any SSAT formula
Q : ϕ with ϕ being in CNF, it is easy to devise a strategy of rule applications such
that (strong) S-resolution derives the pair ∅(pl,pu)|Q : ϕ comprising the empty clause and
satisfying pl = pu = Pr(Q : ϕ) after finitely many steps. The rationale is as follows.
Recall that Var(Q) is finite and therefore the number of clauses in ϕ as well as the
number of literals in each clause are finite. Then, the application conditions of each rule
are decidable. Furthermore, rules R.1, R.2, and R.2s are only able to derive finitely many
different pairs c(pl,pu)|Q : ϕ for the same initial pair ε|Q : ϕ. Finally, rule R.3 can produce
from finitely many pairs c(pl,pu)|Q : ϕ only finitely many different pairs as well. To obtain
a termination strategy for S-resolution, it hence suffices to fix the initial pair ε|Q : ϕ and
to ensure that each pair c(pl,pu)|Q : ϕ is derived at most once.

6.2 Algorithms for SSAT 89

(¬x2 ∨ x3) (¬x1 ∨ x2 ∨ ¬x3)

(¬x2 ∨ ¬x3)
(1,1) (¬x1 ∨ x2 ∨ x3)

(1,1)

(x1 ∨ x2)

Φ =

R0.8x1 ∃x2

R0.3x3 : ((x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3))

(¬x1 ∨ x2)
(0.7,0.7)

(¬x1)
(0,1)(¬x1)

(0.7,0.7)

(¬x2 ∨ x3)
(0,0)

R.1 R.1 R.2 R.2 R.2s R.2s

(¬x2)
(0.3,0.3)(x1 ∨ x2)

(0,0) (¬x2)
(0,0.3)

(¬x1)
(0,0.7)(x1)

(0.3,0.3)(x1)
(0.3,1)(x1)

(0,0.3)(x1)
(0,1) (¬x1)

(0.7,1)

R.3 R.3 R.3R.3 R.3 R.3

∅(0,1) ∅(0.62,0.62) ∅(0.06,0.62) ∅(0.62,1) ∅(0.56,0.76) ∅(0,0.86)∅(0.06,0.76)∅(0.56,0.86)
R.3

R.1 R.3

R.2 R.3 R.3 R.2

R.3 R.3 R.3 R.3 R.3

R.3 R.3
R.3R.3

R.3

(¬x3)
(0,1) (x3)

(0,1)(¬x1 ∨ x2 ∨ ¬x3)
(0,0)

(¬x2)
(0.3,1)(¬x1 ∨ x2)

(0,0.7) (¬x1 ∨ x2)
(0.7,1)

Figure 6.3: Different derivations of pairs ∅(pl,pu)|Φ comprising the empty clause by S-resolution.

Arrows denote applications of the specified resolution rules.

Example of S-resolution. Consider the SSAT formula

Φ =

R0.8x1 ∃x2

R0.3x3 : ((x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)) .

Figure 6.3 shows different derivations of pairs ∅(pl,pu)|Φ comprising the empty clause by S-
resolution. Due to Corollary 6.1, each ∅(pl,pu)|Φ proves a lower as well as an upper bound on
the satisfaction probability of Φ, i.e. pl ≤ Pr(Φ) ≤ pu. As the empty clause in ∅(0.62,0.62)|Φ
carries tight bounds, we deduce that Pr(Φ) = 0.62. Observe that generation of ∅(0.62,0.62)|Φ
involves rules R.1, R.2s, and R.3 only, confer bold arrows in Figure 6.3. Concerning steps
⊢R.2s (¬x2∨¬x3)

(1,1) and ⊢R.2s (¬x1∨x2∨x3)
(1,1), note that for (partial) assignments τ1 with

τ1(x2) = true, τ1(x3) = true, and τ2 with τ2(x1) = true, τ2(x2) = false, τ2(x3) = false

it holds that |= ϕ[τ1(x2)/x2][τ1(x3)/x3] and |= ϕ[τ2(x1)/x1][τ2(x2)/x2][τ2(x3)/x3], respec-
tively. That is, pair ∅(0.62,0.62)|Φ is derivable by strong S-resolution. Such a derivation of
∅(p,p)|Φ with p = Pr(Φ) by (strong) S-resolution always exists due to Theorem 6.1.

6.2.3 Theoretical comparison between S-resolution and

DPLL-SSAT

To shed a bit more light on the computational behavior of S-resolution and its relation to
classical SSAT methods, we theoretically compare S-resolution with the standard SSAT

90 6 Algorithms for SSMT Problems

procedure DPLL-SSAT from Figure 6.1. As both approaches are sound and complete, we
are interested in their proof complexity , i.e. the size of their proofs. For this purpose, we
consider the following generalized version of the SSAT decision problem: for a given SSAT
formula Φ with its matrix being in CNF, a lower threshold θl, and an upper threshold
θu with θl ≤ θu, compute Pr(Φ) if Pr(Φ) ∈ [θl, θu] or decide whether Pr(Φ) < θl or
Pr(Φ) > θu holds otherwise, i.e. if Pr(Φ) /∈ [θl, θu]. We abbreviate an instance of above
problem as (Φ, θl, θu). Observe that the original SSAT decision problem (Φ, θ), i.e. to
decide whether Pr(Φ) ≥ θ, as introduced in Subsection 4.2.1 is a special case of (Φ, θl, θu)
in the sense that (Φ, θ) is true if and only if the result of (Φ, θ, θ) is θ if Pr(Φ) ∈ [θ, θ] or
that Pr(Φ) > θ holds if Pr(Φ) /∈ [θ, θ].

A proof for an instance (Φ, θl, θu) is given by a terminating execution of a sound and
complete method for the generalized SSAT decision problem. Observe that invocation of
DPLL-SSAT(Φ, θl, θu) precisely solves above problem. As a consequence, each execution
of DPLL-SSAT(Φ, θl, θu) is a proof for (Φ, θl, θu). With regard to S-resolution, a proof
for (Φ, θl, θu) is a sequence of rule applications that derives a pair ∅(pl,pu)|Φ comprising
the empty clause with pl = pu = Pr(Φ) if Pr(Φ) ∈ [θl, θu], pu < θl if Pr(Φ) < θl, and
pl > θu if Pr(Φ) > θu. By soundness of S-resolution, the reverse directions are also given
in the following sense: if pl = pu ∈ [θl, θu] then pl = pu = Pr(Φ) ∈ [θl, θu], if pu < θl then
Pr(Φ) ≤ pu < θl, and if pl > θu then Pr(Φ) ≥ pl > θu. We define the size of a proof as
the number of “essential” proof steps, i.e. the number of recursions for DPLL-SSAT and
the number of rule applications for S-resolution.

We remark that both DPLL-SSAT as well as S-resolution may produce proofs of ex-
ponential size in worst case: for the DPLL-SSAT case, we point to the family of SSAT
formulae given in Proposition 6.1. For S-resolution, consider the very simple family of
SSAT instances (Φn∈N>0

, θl, θu) with

Φn∈N>0
=

R0.5x1 . . .

R0.5xn : ((x1) ∧ . . . ∧ (xn))

and some θl ≤ θu where N>0 := N \ {0}. It is not hard to see that Pr(Φn∈N>0
) = 0.5n.

The shortest S-resolution proof clearly is of linear size and involves

ε|Φn∈N>0
⊢R.2s (¬x1 ∨ . . . ∨ ¬xn)

(1,1)|Φn∈N>0

followed by n applications of rule R.3, namely for i = n down to 1:

(
(¬x1 ∨ . . . ∨ ¬xi)

(0.5n−i,0.5n−i)|Φn∈N>0
,

(xi)
(0,0)|Φn∈N>0

)
⊢R.3 (¬x1 ∨ . . .∨¬xi−1)

(0.5n−i+1,0.5n−i+1)|Φn∈N>0

which finally yields ∅(0.5
n,0.5n)|Φn∈N>0

. Note that each pair (xi)
(0,0)|Φn∈N>0

is derivable by
one application of rule R.1. Some S-resolution proofs for (Φn∈N>0

, θl, θu), however, may
also comprise “needless” resolution steps like

ε|Φn∈N>0
⊢R.2 (¬xk1 ∨ . . . ∨ ¬xkj)

(0,1)|Φn∈N>0

with 1 ≤ k1 < . . . < kj ≤ n. The number of different pairs derived by such latter steps
is given by the number of all combinations of i (different) literals chosen from the set

6.2 Algorithms for SSAT 91

{¬x1, . . . ,¬xn} for all i ∈ {1, . . . , n}, which is
∑n

i=1

(
n
i

)
= 2n − 1. This shows that S-

resolution proofs may be of exponential size in worst case. Our particular interest thus is
to investigate shortest proofs.
In what follows, we show that S-resolution is capable of producing proofs for above

SSAT problem that are never longer and sometimes even significantly shorter than the
shortest proofs generated by DPLL-SSAT. More precisely, we establish the following
results.

1. For any, in particular the shortest, DPLL-SSAT(Φ, θl, θu) proof of length k it is
possible to devise a strategy of rule applications such that the resulting S-resolution
proof is also of size k.

2. There are infinitely many SSAT formulae Φ such that all and particularly the short-
est DPLL-SSAT(Φ, θl, θu) proofs (with θu ≥ 0) are of exponential size while the
shortest S-resolution proofs for the same instances (Φ, θl, θu) are of constant size.

Concerning item 1, we devise a strategy of rule applications that is based on the cor-
responding DPLL-SSAT proof in order to produce an S-resolution proof of the desired
size. A bit more precisely, such a strategy is determined by an integration of S-resolution
into the DPLL-SSAT algorithm. For that purpose and to improve clarity of the technical
presentation, we introduce an enhanced version of S-resolution which directly permits to
describe all algorithmic optimizations of DPLL-SSAT. Item 1 is finally demonstrated by
Corollary 6.2. With regard to item 2, Proposition 6.1 states explicitly an infinite family
of SSAT instances for which the shortest S-resolution proofs are of constant size while
DPLL-SSAT needs exponentially many computation steps even in best case.
We first show that item 1 holds. Before addressing the underlying integration of S-

resolution into DPLL-SSAT, we present the enhanced version of S-resolution: enhanced
S-resolution extends S-resolution, given by rules R.1, R.2, R.2s, and R.3, by four additional
rules R.1g, R.3t, R.3u, and R.3p.

Enhanced S-resolution. Rule R.1g is a generalization of rule R.1 in the sense that
clause c′ in the derived pair (c′)(0,0)|Q : ϕ does not necessarily coincide with an original
clause c ∈ ϕ but c′ is a potentially proper superset of c. Obviously, whenever ε|Q : ϕ ⊢R.1

c(pl,pu)|Q : ϕ then also ε|Q : ϕ ⊢R.1g c
(pl,pu)|Q : ϕ. One may also think of R.1g as a special

case of R.2 where clause c in the derived pair c(pl,pu)|Q : ϕ must be a superset of some
original clause in ϕ. Clearly, ε|Q : ϕ ⊢R.1g c

(0,0)|Q : ϕ implies ε|Q : ϕ ⊢R.2 c
(0,1)|Q : ϕ. To

some extent, it is unreasonable to derive a clause (c′)(0,0) by R.1g although it is possible
to derive a shorter clause c(0,0) with c ⊂ c′ by R.1, which gives a clear argument against
R.1g. The only reason of providing R.1g is to simplify some technicalities in the proof of
Lemma 6.4 that states correctness of the integration of S-resolution into DPLL-SSAT.

(R.1g)

ε|Q : ϕ,

c ∈ ϕ, c ⊆ c′ ⊆ {x,¬x|x ∈ Var(Q)}, 6|= c′

(c′)(0,0)|Q : ϕ

The three rules R.3t, R.3u, and R.3p can be considered as special cases of rule R.3 in
the sense that only one input pair (c ∨ ℓ)(pl,pu)|Q : ϕ needs to be explicitly derived by

92 6 Algorithms for SSMT Problems

S-resolution. Derivability of the second input pair (c′ ∨ neg(ℓ))(pl
′,pu′)|Q : ϕ is then en-

sured by the application conditions of the rules. Recall that neg(ℓ) returns the opposite
literal of ℓ. Rules R.3t, R.3u, and R.3p are devised to instantaneously reflect the algorith-
mic optimizations thresholding, unit propagation, and purification, respectively, which are
implemented in DPLL-SSAT.

The next rule R.3t characterizes thresholding within S-resolution. Let (c∨ℓ)(pl,pu)|Q : ϕ
be the input pair and let us assume that the probability pair (pl, pu) is “good” enough to
obtain a sufficient probability result (pl′, pu′) for the derived pair c(pl

′,pu′)|Q : ϕ indepen-
dent of any other input pair. Concerning the integration of S-resolution into DPLL-SSAT,
the latter assessment is performed by means of the application conditions of thresholding,
confer Figure 6.1. Due to rule R.2, we may produce the pair (neg(ℓ))(0,1)|Q : ϕ where
clause (neg(ℓ))(0,1) carries the most conservative lower and upper probability bounds 0
and 1. By step ((c ∨ ℓ)(pl,pu)|Q : ϕ, (neg(ℓ))(0,1))|Q : ϕ ⊢R.3 c

(pl′,pu′)|Q : ϕ, we achieve the
derived pair involving a conservative but –as assumed above– sufficient probability pair
(pl′, pu′).

(R.3t)

(c ∨ ℓ)(pl,pu)|Q : ϕ

ℓ ∈ {x,¬x}, Qx ∈ Q, x /∈ Var(Q(c)),

(pl′, pu′) =

(pl, 1) ; Q = ∃,

(p · pl, p · pu+ (1− p)) ; Q =

Rp, ℓ = ¬x,

((1− p) · pl, (1− p) · pu+ p) ; Q =
Rp, ℓ = x

c(pl′,pu′)|Q : ϕ

To be prepared for the integration of enhanced S-resolution into DPLL-SSAT, we ad-
ditionally need to cope with the operation of moving quantifiers within the quantifier
prefix as it is done within DPLL-SSAT for unit propagation and purification, confer Fig-
ure 6.1 and the associated explanations in Subsection 6.2.1. The remaining two rules R.3u
and R.3p describing unit propagation and purification, respectively, therefore take care of
abovementioned issue.

To cope with unit propagation, rule R.3u takes some derived pair (c ∨ ℓ)(pl,pu)|Q : ϕ
with Q = Q′QxQ1 Q2 and ℓ ∈ {x,¬x} as an input and then checks whether some clause
(c′ ∨ neg(ℓ)) is present in ϕ that is unit under partial assignment ff c, i.e. c

′ ⊆ c. Then,
neg(ℓ) must be the unit literal in unit clause (c′ ∨ neg(ℓ)) since ff c(x) is not defined due
to x /∈ Var(c). In terms of DPLL-SSAT, unit literal neg(ℓ) is deduced in order to satisfy
the formula. The probability result of the corresponding SSAT subformula is taken into
account by the input pair (c∨ℓ)(pl,pu)|Q : ϕ. Due to presence of unit clause (c′∨neg(ℓ)) ∈ ϕ,
application of rule R.1 gives (c′ ∨ neg(ℓ))(0,0)|Q : ϕ, and thus the result of the opposite
branch, i.e. where ℓ holds, is clearly zero. Application of R.3 then yields c(pl

′,pu′)|Q : ϕ.
We finally give an intuition why also pair c(pl

′,pu′)|Q′ Q1QxQ2 : ϕ is derivable. Let ϕ′ be
the cleaning of the formula that arises from ϕ by substituting the values τ(y) for variables
y in ϕ, where τ is any partial assignment that falsifies c, i.e. τ(c) = false. Consequently,
clause (neg(ℓ)) occurs in ϕ′, and hence Pr(QxQ1Q2 : ϕ′) = Pr(Q1QxQ2 : ϕ′). The

6.2 Algorithms for SSAT 93

latter is formally shown by Lemma 6.2.

(R.3u)

(c ∨ ℓ)(pl,pu)|Q : ϕ,

ℓ ∈ {x,¬x}, Q = Q′QxQ1Q2, x /∈ Var(Q(c)),

∃(c′ ∨ neg(ℓ)) ∈ ϕ : c′ ⊆ c,

(pl′, pu′) =

(pl, pu) ; Q = ∃,

(p · pl, p · pu) ; Q =

Rp, ℓ = ¬x,

((1− p) · pl, (1− p) · pu) ; Q =

Rp, ℓ = x

c(pl′,pu′)|Q′ Q1QxQ2 : ϕ

Purification is described by rule R.3p. This rule is similar in nature to R.3u but instead of
searching for unit literals, it checks whether literal neg(ℓ) is pure under partial assignment
ff c. We remark that we use the slightly more general definition of pure literals here, i.e.
where pure literals need not be present in ϕ, confer Subsection 6.2.1. It is therefore checked
whether each clause c′ ∈ ϕ which is not equivalent to true under ff c, i.e. 6|= (c ∨ c′), does
not comprise the opposite literal ℓ, i.e. ℓ /∈ c′. In terms of DPLL-SSAT, literal neg(ℓ) is
propagated while the opposite branch, i.e. where ℓ holds, is skipped as the probability of
the latter cannot be greater. This justifies application of rule R.3p in order to derive pair
c(pl,pu)|Q : ϕ from input pair (c∨ℓ)(pl,pu)|Q : ϕ. The operation of moving the corresponding
existential quantifier within the prefix in order to also derive c(pl,pu)|Q′ Q1 ∃xQ2 : ϕ again
relies on the observation that Pr(∃xQ1Q2 : ϕ

′) = Pr(Q1 ∃xQ2 : ϕ
′) as already considered

above for R.3u. The latter is also evinced by Lemma 6.2.

(R.3p)

(c ∨ ℓ)(pl,pu)|Q : ϕ,

ℓ ∈ {x,¬x}, Q = Q′ ∃xQ1 Q2, x /∈ Var(Q(c)),

∀c′ ∈ ϕ with 6|= (c ∨ c′) : ℓ /∈ c′

c(pl,pu)|Q′ Q1 ∃xQ2 : ϕ

As for S-resolution, ε|Q : ϕ ⊢R.1g c
(pl,pu)|Q : ϕ abbreviates the derivation of c(pl,pu)|Q : ϕ

from ε|Q : ϕ by rule R.1g. Likewise, c(pl,pu)|Q : ϕ ⊢R.3t (c
′)(pl

′,pu′)|Q : ϕ denotes derivation
of (c′)(pl

′,pu′)|Q : ϕ from c(pl,pu)|Q : ϕ by R.3t. The same meaning applies to c(pl,pu)|Q :
ϕ ⊢R.3u (c′)(pl

′,pu′)|Q′ : ϕ and c(pl,pu)|Q : ϕ ⊢R.3p (c′)(pl
′,pu′)|Q′ : ϕ. Note that the latter

rules R.3u and R.3p potentially modify the given quantifier prefix Q to Q′.
Observe that enhanced S-resolution remains complete in the sense of Theorem 6.1 since

(strong) S-resolution is a special case of enhanced S-resolution. With regard to termi-
nation, a strategy of rule applications such that enhanced S-resolution derives the pair
∅(pl,pu)|Q : ϕ with pl = pu = Pr(Q : ϕ) after finitely many steps can be formulated
by simply taking an appropriate strategy for S-resolution. The latter exists and can be
devised as shown in Subsection 6.2.2. To prove soundness of enhanced S-resolution in the
sense of Corollary 6.1, Lemma 6.3 interprets pairs c(pl,pu)|Q : ϕ derivable by enhanced S-
resolution in the same way as Lemma 6.1 does for S-resolution. Directly from special case
c(pl,pu)|Q : ϕ = ∅(pl,pu)|Q : ϕ, soundness of enhanced S-resolution then follows. Since the
proof of Lemma 6.3 deals with the issue of moving quantifiers (stemming from rules R.3u
and R.3p) that itself provokes a rather technical proof, we constitute the latter in an own
lemma before.

Lemma 6.2 (Moving quantifiers within quantifier prefix)
Let QxQ1 Q2 : ϕ be an SSAT formula with matrix ϕ in CNF. If

94 6 Algorithms for SSMT Problems

1. one of the clauses (x) and (¬x) occurs in ϕ, or

2. Q = ∃ and

a) each non-tautological clause c ∈ ϕ does not contain literal x, i.e. x /∈ c, or

b) each non-tautological clause c ∈ ϕ does not contain literal ¬x, i.e. ¬x /∈ c

then

Pr(QxQ1Q2 : ϕ) = Pr(Q1QxQ2 : ϕ) .

Proof. We prove the lemma by induction over the number of quantifiers in Q1. The result
for both items is obvious in the base case, i.e. if Q1 = ε. Now assume that the statement
is true for arbitrary Q1. We show that Pr(QxQ′yQ1Q2 : ϕ) = Pr(Q′yQ1QxQ2 : ϕ)
then follows.
With regard to item 1, we assume that (x) ∈ ϕ. The proof for (¬x) ∈ ϕ works

analogously. Then, ϕ[false/x] is unsatisfiable. We need to distinguish four cases.
First, Q =

Rp and Q′ =

Rp′:

Pr(

Rpx

Rp′yQ1 Q2 : ϕ) = p · Pr(

Rp′yQ1 Q2 : ϕ[true/x])(6.6)

= p · (p′ · Pr(Q1Q2 : ϕ[true/x][true/y])

+ (1− p′) · Pr(Q1Q2 : ϕ[true/x][false/y]))

= p′ · p · Pr(Q1Q2 : ϕ[true/x][true/y])

+ (1− p′) · p · Pr(Q1Q2 : ϕ[true/x][false/y])

= p′ · Pr(
RpxQ1Q2 : ϕ[true/y])(6.7)

+ (1− p′) · Pr(

RpxQ1 Q2 : ϕ[false/y])

= p′ · Pr(Q1

RpxQ2 : ϕ[true/y])(6.8)

+ (1− p′) · Pr(Q1

RpxQ2 : ϕ[false/y])

= Pr(

Rp′y Q1

RpxQ2 : ϕ) .

Concerning equations 6.6 and 6.7, recall that formula ϕ[false/x] is unsatisfiable and
therefore both ϕ[false/x][true/y] and ϕ[false/x][false/y] are unsatisfiable. Conse-
quently, Pr(

Rp′yQ1Q2 : ϕ[false/x]) = 0, Pr(Q1Q2 : ϕ[false/x][true/y]) = 0, and
Pr(Q1Q2 : ϕ[false/x][false/y]) = 0 by Definition 4.2. We further remark that equa-
tion 6.8 exploits induction hypothesis which is applicable since (x) ∈ ϕ[true/y] and
(x) ∈ ϕ[false/y].
Second, Q =

Rp and Q′ = ∃:

Pr(

Rpx ∃yQ1 Q2 : ϕ) = p · Pr(∃yQ1Q2 : ϕ[true/x])

= p ·max(Pr(Q1Q2 : ϕ[true/x][true/y]),

P r(Q1Q2 : ϕ[true/x][false/y]))

= max(p · Pr(Q1Q2 : ϕ[true/x][true/y]),(6.9)

p · Pr(Q1Q2 : ϕ[true/x][false/y]))

= max(Pr(

RpxQ1Q2 : ϕ[true/y]),

P r(

RpxQ1 Q2 : ϕ[false/y]))

6.2 Algorithms for SSAT 95

= max(Pr(Q1

RpxQ2 : ϕ[true/y]),

P r(Q1

RpxQ2 : ϕ[false/y]))

= Pr(∃yQ1

RpxQ2 : ϕ) .

Equation 6.9 is true as p > 0.
Third, Q = ∃ and Q′ =

Rp′:

Pr(∃x

Rp′yQ1 Q2 : ϕ) = Pr(

Rp′yQ1Q2 : ϕ[true/x])

= p′ · Pr(Q1Q2 : ϕ[true/x][true/y])

+ (1− p′) · Pr(Q1Q2 : ϕ[true/x][false/y])

= p′ · Pr(∃xQ1Q2 : ϕ[true/y])

+ (1− p′) · Pr(∃xQ1Q2 : ϕ[false/y])

= p′ · Pr(Q1 ∃xQ2 : ϕ[true/y])

+ (1− p′) · Pr(Q1 ∃xQ2 : ϕ[false/y])

= Pr(

Rp′y Q1 ∃xQ2 : ϕ) .

Fourth, Q = ∃ and Q′ = ∃:

Pr(∃x ∃yQ1Q2 : ϕ) = Pr(∃yQ1 Q2 : ϕ[true/x])

= max(Pr(Q1Q2 : ϕ[true/x][true/y]),

P r(Q1Q2 : ϕ[true/x][false/y]))

= max(Pr(∃xQ1Q2 : ϕ[true/y]),

P r(∃xQ1Q2 : ϕ[false/y]))

= max(Pr(Q1 ∃xQ2 : ϕ[true/y]),

P r(Q1 ∃xQ2 : ϕ[false/y]))

= Pr(∃y Q1 ∃xQ2 : ϕ) .

With regard to item 2, we prove the statement for subitem 2a. The proof for subitem 2b
works analogously. From the fact that ∀c ∈ ϕ : x /∈ c, we deduce that ϕ[true/x] ⇒
ϕ[false/x]. Hence, Pr(Q′yQ1Q2 : ϕ[true/x]) ≤ Pr(Q′yQ1 Q2 : ϕ[false/x]) and

(6.10) Pr(∃xQ′yQ1 Q2 : ϕ) = Pr(Q′yQ1 Q2 : ϕ[false/x]) .

Due to ϕ[true/x] ⇒ ϕ[false/x], we conclude that both

ϕ[true/x][true/y] ⇒ ϕ[false/x][true/y] and

ϕ[true/x][false/y] ⇒ ϕ[false/x][false/y]

hold which in turn gives

(6.11)
Pr(∃xQ1Q2 : ϕ[true/y]) = Pr(Q1Q2 : ϕ[false/x][true/y]) ,

P r(∃xQ1Q2 : ϕ[false/y]) = Pr(Q1Q2 : ϕ[false/x][false/y]) .

We distinguish two cases.

96 6 Algorithms for SSMT Problems

First, Q′ =

Rp:

Pr(∃x

RpyQ1 Q2 : ϕ) = Pr(

RpyQ1 Q2 : ϕ[false/x])(6.12)

= p · Pr(Q1Q2 : ϕ[false/x][true/y])

+ (1− p) · Pr(Q1Q2 : ϕ[false/x][false/y])

= p · Pr(∃xQ1Q2 : ϕ[true/y])(6.13)

+ (1− p) · Pr(∃xQ1Q2 : ϕ[false/y])

= p · Pr(Q1 ∃xQ2 : ϕ[true/y])(6.14)

+ (1− p) · Pr(Q1 ∃xQ2 : ϕ[false/y])

= Pr(

Rpy Q1 ∃xQ2 : ϕ) .

Correctness of equations 6.12 and 6.13 follows from equations 6.10 and 6.11, respectively.
Equation 6.14 exploits induction hypothesis. Regarding the latter, observe that whenever
∀c ∈ ϕ : x /∈ c then also ∀c ∈ ϕ[true/y] : x /∈ c and ∀c ∈ ϕ[false/y] : x /∈ c.
Second, Q′ = ∃:

Pr(∃x ∃yQ1Q2 : ϕ) = Pr(∃yQ1 Q2 : ϕ[false/x])

= max(Pr(Q1Q2 : ϕ[false/x][true/y]),

P r(Q1Q2 : ϕ[false/x][false/y]))

= max(Pr(∃xQ1Q2 : ϕ[true/y]),

P r(∃xQ1Q2 : ϕ[false/y]))

= max(Pr(Q1 ∃xQ2 : ϕ[true/y]),

P r(Q1 ∃xQ2 : ϕ[false/y]))

= Pr(∃y Q1 ∃xQ2 : ϕ) .

Hence, the result follows. 2

Having proven Lemma 6.2 tackling the issue of moving quantifiers, which arises when ap-
plying unit propagation and purification, we are now prepared to interpret pairs c(pl,pu)|Q :
ϕ derivable by enhanced S-resolution. This interpretation is formalized in the following
Lemma 6.3, namely in the same way as for the case of S-resolution in Lemma 6.1.

Lemma 6.3 (Pairs c(pl,pu)|Q : ϕ derivable by enhanced S-resolution)
Let pair c(pl,pu)|Q : ϕ with Q = Q1x1 . . . Qnxn and Q(c) = Q1x1 . . . Qixi be derivable
by enhanced S-resolution. Then, for each truth assignment τ : Var(Q(c)) → B with
∀x ∈ Var(c) : τ(x) = ff c(x) it holds that

pl ≤ Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) ≤ pu .

Proof. First of all, observe that clause c in each pair c(pl,pu)|Q : ϕ derivable by en-
hanced S-resolution is non-tautological, i.e. 6|= c. The rationale is that each clause in
ϕ is non-tautological by global assumption and, therefore, each rule can only produce
non-tautological clauses. As a consequence, each above truth assignment τ is well-defined.
We show the lemma by induction over the application of rules R.1, R.1g, R.2, R.2s, R.3,

R.3t, R.3u, and R.3p. The induction proof of this lemma works in the very same way as
the induction proof of Lemma 6.1.

6.2 Algorithms for SSAT 97

The base cases are given by rules R.1, R.1g, R.2, and R.2s. As shown in the proof of
Lemma 6.1, the statement holds for R.1, R.2, and R.2s. For rule R.1g, i.e.

ε|Q : ϕ ⊢R.1g c
(0,0)|Q : ϕ ,

observe that there exists some clause c′ ∈ ϕ such that c′ ⊆ c. By construction of τ
that falsifies clause c′ ∈ ϕ, it then follows that the formula ϕ[τ(x1)/x1] . . . [τ(xi)/xi] is
unsatisfiable. Thus,

0 = Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 .

For the induction step, assume that the respective assumptions hold for the clauses in
the premise of rules R.3, R.3t, R.3u, and R.3p. The proof of Lemma 6.1 already shows the
statement for R.3. In the remainder of this proof, we use the following definition: for a
truth value v ∈ B, let neg(v) be denote the opposite truth value of v, i.e. neg(v) = true

if and only if v = false.
With regard to rule R.3t, i.e.

(c ∨ ℓ)(pl
′,pu′)|Q : ϕ ⊢R.3t c

(pl,pu)|Q : ϕ ,

induction hypothesis gives the following: for each truth assignment τ : Var(Q(c∨ℓ)) → B

with ∀x ∈ Var(c ∨ ℓ) : τ(x) = ff (c∨ℓ)(x) it holds that

pl′ ≤ Pr(Qj+1xj+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xj−1)/xj−1][τ(xj)/xj]) ≤ pu′ .

where ℓ ∈ {xj ,¬xj}. Clearly, j ≥ i + 1 as x /∈ Var(Q(c)). Using the trivial observation
that

0 ≤ Pr(Qj+1xj+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xj−1)/xj−1][neg(τ(xj))/xj]) ≤ 1 ,

we obtain

pl ≤ Pr(Qjxj Qj+1xj+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) ≤ pu .

The statement for R.3t directly follows in case j = i+1. For j > i+1, note that variables
xi+1, . . . , xj−1 do not occur in clause c. Hence, for k = j− 1 down to i+1 we successively
conclude that

pl ≤ Pr(Qk+1xk+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xk−1)/xk−1][true/xk]) ≤ pu ,

pl ≤ Pr(Qk+1xk+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xk−1)/xk−1][false/xk]) ≤ pu .

From case k = i+ 1, we finally achieve the statement for R.3t, i.e.

pl ≤ Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) ≤ pu .

We now consider rule R.3u, i.e.

(c ∨ ℓ)(pl
′,pu′)|Q′ : ϕ ⊢R.3u c

(pl,pu)|Q : ϕ

98 6 Algorithms for SSMT Problems

with Q′ = Q′′Qx Q1Q2 and Q = Q′′ Q1QxQ2. By induction hypothesis, for each truth
assignment τ : Var(Q′(c ∨ ℓ)) → B with ∀y ∈ Var(c ∨ ℓ) : τ(y) = ff (c∨ℓ)(y) it holds that

pl′ ≤ Pr(Q1Q2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj][τ(x)/x]) ≤ pu′

where ℓ ∈ {x,¬x} and Q′′ = Q1x1 . . . Qjxj . Observe that j ≥ i as x /∈ Var(Q(c))
and thus Var(Q(c)) ⊆ Var(Q′′). Due to application condition of R.3u, there is some
clause (c′ ∨ neg(ℓ)) ∈ ϕ such that c′ ⊆ c. As a consequence, for each truth assignment
τ ′ : Var(Q′(c′ ∨ neg(ℓ))) → B with ∀y ∈ Var(c′ ∨ neg(ℓ)) : τ ′(y) = ff (c′∨neg(ℓ))(y) it holds
that

0 = Pr(Q1Q2 : ϕ[τ
′(x1)/x1] . . . [τ

′(xj)/xj][τ
′(x)/x]) = 0 .

Note that τ(y) = τ ′(y) for all y ∈ Var(c′) as c′ ⊆ c, and that τ(x) = neg(τ ′(x)). Thus,

pl ≤ Pr(QxQ1Q2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj]) ≤ pu .

Let ϕ′ be the semantically equivalent cleaning of ϕ[τ(x1)/x1] . . . [τ(xj)/xj] as defined in
Section 2.2, i.e. the formula that arises when removing the constants true and false.
Obviously,

Pr(QxQ1Q2 : ϕ
′) = Pr(QxQ1Q2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj]) .

Observe that (neg(ℓ)) ∈ ϕ′ since (c′∨neg(ℓ)) ∈ ϕ and (c′∨neg(ℓ))[τ(x1)/x1] . . . [τ(xj)/xj] ≡
(neg(ℓ)). Instantaneously by Lemma 6.2, item 1,

Pr(QxQ1Q2 : ϕ
′) = Pr(Q1QxQ2 : ϕ

′) .

It clearly follows that

Pr(QxQ1Q2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj]) = Pr(Q1QxQ2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj])

and, therefore,

pl ≤ Pr(Q1QxQ2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj]) ≤ pu

hold. We have that Q1QxQ2 = Qj+1xj+1 . . . Qnxn due to Q = Q′′ Q1QxQ2, Q =
Q1x1 . . . Qnxn, and Q′′ = Q1x1 . . . Qjxj . Recall that j ≥ i. Whenever j = i then the
statement for rule R.3u follows immediately. In case j > i, note that variables xi+1, . . . , xj
do not occur in clause c. Hence, for k = j down to i+ 1 we successively conclude that

pl ≤ Pr(Qk+1xk+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xk−1)/xk−1][true/xk]) ≤ pu ,

pl ≤ Pr(Qk+1xk+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xk−1)/xk−1][false/xk]) ≤ pu .

From case k = i+ 1, we finally achieve the statement for R.3u, i.e.

pl ≤ Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) ≤ pu .

We finally consider rule R.3p, i.e.

(c ∨ ℓ)(pl,pu)|Q′ : ϕ ⊢R.3p c
(pl,pu)|Q : ϕ

6.2 Algorithms for SSAT 99

with Q′ = Q′′ ∃x Q1Q2 and Q = Q′′ Q1 ∃xQ2. By induction hypothesis, for each truth
assignment τ : Var(Q′(c ∨ ℓ)) → B with ∀y ∈ Var(c ∨ ℓ) : τ(y) = ff (c∨ℓ)(y) it holds that

(6.15) pl ≤ Pr(Q1Q2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj][τ(x)/x]) ≤ pu

where ℓ ∈ {x,¬x} and Q′′ = Q1x1 . . . Qjxj . Observe that j ≥ i as x /∈ Var(Q(c))
and thus Var(Q(c)) ⊆ Var(Q′′). Due to application condition of R.3p, each clause c′ ∈
ϕ with 6|= (c ∨ c′) does not contain literal ℓ, i.e. ℓ /∈ c′. Observe that 6|= (c ∨ c′) is
equivalent to 6|= c′[ff c(y1)/y1] . . . [ff c(ym)/ym] with Var(c) = {y1, . . . , ym} since 6|= c, and
that τ(neg(ℓ)) = true as τ(ℓ) = ff (c∨ℓ)(ℓ) = false. As a consequence,

ϕ[τ(x1)/x1] . . . [τ(xj)/xj][neg(τ(x))/x] ⇒ ϕ[τ(x1)/x1] . . . [τ(xj)/xj][τ(x)/x]

is true which in turn entails

(6.16)
Pr(Q1Q2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj][neg(τ(x))/x])

≤ Pr(Q1Q2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj][τ(x)/x]) .

Inequalities 6.15 and 6.16 give

pl ≤ Pr(∃xQ1Q2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj]) ≤ pu .

Let ϕ′ be the semantically equivalent cleaning of ϕ[τ(x1)/x1] . . . [τ(xj)/xj] as defined in
Section 2.2, i.e. the formula that arises when removing the constants true and false.
Obviously,

Pr(∃xQ1Q2 : ϕ
′) = Pr(∃xQ1Q2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj]) .

As observed above, all clauses c′ ∈ ϕ with 6|= c′[ff c(y1)/y1] . . . [ff c(ym)/ym] where Var(c) =
{y1, . . . , ym} do not contain literal ℓ. Then, the same holds for all clauses c′ ∈ ϕ with
6|= c′[τ(x1)/x1] . . . [τ(xj)/xj]. Consequently, each non-tautological clause c′ ∈ ϕ′ does not
contain literal ℓ, i.e. ℓ /∈ c′. Instantaneously by Lemma 6.2, item 2,

Pr(∃xQ1Q2 : ϕ
′) = Pr(Q1 ∃xQ2 : ϕ

′) .

We may thus conclude that

pl ≤ Pr(Q1 ∃xQ2 : ϕ[τ(x1)/x1] . . . [τ(xj)/xj]) ≤ pu

hold. With the same reasoning as for rule R.3u, we finally achieve the statement for R.3p,
i.e.

pl ≤ Pr(Qi+1xi+1 . . . Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) ≤ pu .

This completes the proof and the lemma follows. 2

100 6 Algorithms for SSMT Problems

Integration of enhanced S-resolution into DPLL-SSAT. After having introduced
enhanced S-resolution as well as proven its soundness, we now present the integration
of enhanced S-resolution into the classical DPLL-SSAT algorithm from Figure 6.1. For
that purpose, we extend the DPLL-SSAT procedure and thereby develop the algorithm
DPLL-SSAT-R being introduced below. In addition to the inputs of

DPLL-SSAT(Q : ϕ, θl, θu) ,

the algorithm
DPLL-SSAT-R(Q : ϕ, θl, θu, Q

′, τ, ψ)

takes a quantifier prefix Q′, an assignment τ : Var(Q′) :→ B, and a propositional formula
ψ as three further inputs where

� prefixQ′ reflects in chronological order the sequence of all quantified variables having
been substituted already,

� partial assignment τ keeps track of all those substitutions, and

� propositional formula ψ simply preserves the original matrix, i.e. when substituting
the values τ(y) for variables y in ψ we achieve the current matrix ϕ.

Observe that above specifications imply that Q′Q : ψ is the original SSAT formula. The
result of a call DPLL-SSAT-R(Q : ϕ, θl, θu, Q

′, τ, ψ) now is a pair

(pr, c(pl,pu) | Q′Q : ψ)

consisting of

� a probability pr and

� another pair c(pl,pu) | Q′Q : ψ comprising

– an annotated clause c(pl,pu) and

– the original SSAT formula Q′Q : ψ.

Apart from the additional inputs and the extended output, DPLL-SSAT-R works as
DPLL-SSAT, i.e. the modifications do not have an impact on the computation of the
probability pr. More precisely,

pr = DPLL-SSAT(Q : ϕ, θl, θu) .

We prove later on that

� the pair c(pl,pu) | Q′Q : ψ is derivable by enhanced S-resolution and satisfies the
following:

– pl = pu = pr if pr ∈ [θl, θu],

– pu < θl if pr < θl, and

– pl > θu if pr > θu.

6.2 Algorithms for SSAT 101

Before presenting DPLL-SSAT-R in full detail, we need to introduce some notation. For
a partial assignment τ that is not defined on variable x, i.e. τ(x) is not defined, we denote
by τ ⊕ [x → v] with v ∈ B the extended partial assignment τ ′ with τ ′(x) = v and for all
y 6= x : τ ′(y) = τ(y) if τ(y) is defined and τ ′(y) is not defined if τ(y) is not defined. Recall
that neg(ℓ) returns the opposite literal of ℓ. As in Figure 6.1, v(ℓ) = true for positive
literals ℓ, and v(ℓ) = false for negative ℓ. For

Rpx, we further have p(ℓ) = p if ℓ = x, and
p(ℓ) = 1− p if ℓ = ¬x. For each propositional formula ψ and for each partial assignment
τ to the variables Var(ψ), we define ψτ as the formula that arises from ψ by substituting
the values τ(y) for variables y in ψ, i.e.

ψτ := ψ[τ(y1)/y1] . . . [τ(ym)/ym]

where τ(yi) is defined if and only if 1 ≤ i ≤ m.
In what follows, we give a detailed account of algorithm DPLL-SSAT-R. For the sake

of a convenient and reasonable presentation, we intersperse the formal description with
explanatory comments on the corresponding parts of the algorithm.
The inputs of DPLL-SSAT-R were already specified above.

1 DPLL-SSAT-R(Q : ϕ, θl, θu, Q
′, τ, ψ)

2 input: SSAT formula Q : ϕ with ϕ in CNF, rational constants θl, θu with θl ≤ θu,
3 quantifier prefix Q′, assignment τ : Var(Q′) → B, propositional formula ψ
4 in CNF with ψτ = ϕ.

In the base cases, the partial assignment τ is used to construct a clause c that encodes
the negation of τ , i.e. τ(c) = false. In case ϕ contains a clause equivalent to false, the
original matrix ψ comprises some clause c′ that is falsified under τ , i.e. τ(c′) = false,
since ψτ = ϕ. Moreover c′ ⊆ c, as c contains all variables y for which τ(y) is defined. This
justifies to apply

ε|Q′Q : ψ ⊢R.1g c(0,0)|Q′Q : ψ .

In the other base case, where all clauses in ϕ are equivalent to true, we know that |= ϕ
and |= ψτ . We may therefore perform

ε|Q′Q : ψ ⊢R.2s c(1,1)|Q′Q : ψ .

5 // Base cases
6 if ϕ contains a clause equivalent to false then
7 c := {¬x : τ(x) = true} ∪ {x : τ(x) = false}.
8 return (0, c(0,0)|Q′Q : ψ).
9 if all clauses in ϕ equivalent to true then

10 c := {¬x : τ(x) = true} ∪ {x : τ(x) = false}.
11 return (1, c(1,1)|Q′Q : ψ).

In case unit propagation applies, DPLL-SSAT just needs to explore the SSAT subproblem
where unit literal ℓ is equivalent to true after substitution, confer Subsection 6.2.1. The
corresponding recursion of DPLL-SSAT-R then returns the probability pr as well as the
pair c(pl,pu)|Φ. We show later on, namely in Lemma 6.4, that the pair c(pl,pu)|Φ, where

102 6 Algorithms for SSMT Problems

Φ = Q′QxQ1Q2 : ψ with Q ∈ {∃,

Rp}, is derivable by S-resolution and that clause c
contains the opposite of unit literal ℓ, i.e. neg(ℓ) ∈ c. We may thus apply

c(pl,pu)|Q′QxQ1 Q2 : ψ ⊢R.3u (c \ {neg(ℓ)})(pl
′,pu′)|Q′ Q1QxQ2 : ψ .

Let (pr′, (c′)(pl
′,pu′)|Q′Q : ψ) be the pair to be returned. Lemma 6.4 further shows that

pl′ = pu′ = pr′ if pr′ ∈ [θl, θu], pu
′ < θl if pr

′ < θl, and pl
′ > θu if pr′ > θu.

12 // Unit propagation
13 if ϕ contains a unit literal ℓ with Var(ℓ) = {x} then
14 τ ′ := τ ⊕ [x→ v(ℓ)].
15 if Q = Q1∃xQ2 then
16 (pr, c(pl,pu)|Φ) :=
17 DPLL-SSAT-R(Q1Q2 : ϕ[v(ℓ)/x], θl, θu, Q

′ ∃x, τ ′, ψ).
18 c′ := c \ {neg(ℓ)}.
19 return (pr, (c′)(pl,pu)|Q′Q : ψ).
20 if Q = Q1

RpxQ2 then
21 θ′l := θl/p(ℓ).
22 θ′u := θu/p(ℓ).
23 (pr, c(pl,pu)|Φ) :=
24 DPLL-SSAT-R(Q1Q2 : ϕ[v(ℓ)/x], θ

′
l, θ

′
u, Q

′ Rpx, τ ′, ψ).
25 pr′ := p(ℓ) · pr.
26 pl′ := p(ℓ) · pl.
27 pu′ := p(ℓ) · pu.
28 c′ := c \ {neg(ℓ)}.
29 return (pr′, (c′)(pl

′,pu′)|Q′Q : ψ).

The case of purification is similar to unit propagation. Here, we apply

c(pl,pu)|Q′ ∃xQ1 Q2 : ψ ⊢R.3p (c \ {neg(ℓ)})(pl,pu)|Q′ Q1 ∃xQ2 : ψ

where neg(ℓ) ∈ c is the opposite of pure literal ℓ.

30 // Purification
31 if ϕ contains a pure literal ℓ withVar(ℓ) = {x} then
32 τ ′ := τ ⊕ [x→ v(ℓ)].
33 if Q = Q1∃xQ2 then
34 (pr, c(pl,pu)|Φ) :=
35 DPLL-SSAT-R(Q1Q2 : ϕ[v(ℓ)/x], θl, θu,Q

′ ∃x, τ ′, ψ).
36 c′ := c \ {neg(ℓ)}.
37 return (pr, (c′)(pl,pu)|Q′Q : ψ).

We now consider the optimization of thresholding. The result of the first branch, where
true is substituted for x, is (pr1, c

(pl1,pu1)
1 |Q′Q : ψ). Concerning the existential case, i.e.

Q = ∃xQ′′, if the probability result pr1 already exceeds the upper threshold, i.e. pr1 > θu,
then also pl1 does, i.e. pl1 > θu, and application of

c
(pl1,pu1)
1 |Q′Q : ψ ⊢R.3t (c1 \ {¬x})

(pl1,1)|Q′Q : ψ

6.2 Algorithms for SSAT 103

is justified.

In the randomized case, i.e. Q =

RpxQ′′, pr′1 = p · pr1 is the weighted probability of the
first branch, and pl′1 = p · pl1 and pu

′
1 = p · pu1 + (1− p) are the updated probabilities for

the derived pair. If value pr′1 is too small in order to reach the lower threshold even if the
probability of the second branch is 1, i.e. if pr′1 + (1− p) < θl, or if pr

′
1 already exceeds θu

then also pu′1 < θl or pl
′
1 > θu, respectively. Thus,

c
(pl1,pu1)
1 |Q′Q : ψ ⊢R.3t (c1 \ {¬x})

(pl′1,pu
′
1)|Q′Q : ψ

is feasible.

Whenever thresholding is not possible, we clearly utilize resolution rule R.3, i.e.

(c
(pl1,pu1)
1 |Q′Q : ψ, c

(pl2,pu2)
2 |Q′Q : ψ) ⊢R.3 ((c1 \ {¬x}) ∪ (c2 \ {x}))

(pl′,pu′)|Q′Q : ψ .

38 // Branching and thresholding
39 if Q = ∃xQ′′ then
40 τ1 := τ ⊕ [x → true].

41 (pr1, c
(pl1,pu1)
1 |Φ) :=

42 DPLL-SSAT-R(Q′′ : ϕ[true/x], θl, θu, Q
′ ∃x, τ1, ψ).

43 c′1 := c1 \ {¬x}.
44 if pr1 > θu then return (pr1, (c

′
1)

(pl1,1)|Q′Q : ψ).
45 τ2 := τ ⊕ [x → false].
46 θ′l := max(θl, pr1).

47 (pr2, c
(pl2,pu2)
2 |Φ) :=

48 DPLL-SSAT-R(Q′′ : ϕ[false/x], θ′l, θu, Q
′ ∃x, τ2, ψ).

49 pr′ := max(pr1, pr2).
50 pl′ := max(pl1, pl2).
51 pu′ := max(pu1, pu2).
52 c′2 := c2 \ {x}.
53 return (pr′, (c′1 ∪ c

′
2)

(pl′,pu′)|Q′Q : ψ).
54 if Q =

RpxQ′′ then
55 τ1 := τ ⊕ [x → true].
56 θ′l := (θl − (1− p))/p.
57 θ′u := θu/p.

58 (pr1, c
(pl1,pu1)
1 |Φ) :=

59 DPLL-SSAT-R(Q′′ : ϕ[true/x], θ′l, θ
′
u, Q

′ Rpx, τ1, ψ).
60 pr′1 := p · pr1.
61 pl′1 := p · pl1.
62 pu′1 := p · pu1 + (1− p).
63 c′1 := c1 \ {¬x}.
64 if pr′1 + (1− p) < θl then return (pr′1, (c

′
1)

(pl′1,pu
′
1)|Q′Q : ψ).

65 if pr′1 > θu then return (pr′1, (c
′
1)

(pl′1,pu
′
1)|Q′Q : ψ).

66 τ2 := τ ⊕ [x → false].
67 θ′′l := (θl − pr′1)/(1− p).
68 θ′′u := (θu − pr′1)/(1− p).

104 6 Algorithms for SSMT Problems

69 (pr2, c
(pl2,pu2)
2 |Φ) :=

70 DPLL-SSAT-R(Q′′ : ϕ[false/x], θ′′l , θ
′′
u, Q

′ Rpx, τ2, ψ).
71 pr′ := p · pr1 + (1− p) · pr2.
72 pl′ := p · pl1 + (1− p) · pl2.
73 pu′ := p · pu1 + (1− p) · pu2.
74 c′2 := c2 \ {x}.
75 return (pr′, (c′1 ∪ c

′
2)

(pl′,pu′)|Q′Q : ψ).

The next lemma formalizes above observations, thereby establishing the fact that the
algorithm DPLL-SSAT-R produces an enhanced S-resolution proof for each instance (Q :
ϕ, θl, θu) of the generalized SSAT decision problem as defined at the beginning of this
subsection.

Lemma 6.4 (Correctness of integration)
Let be given an SSAT formula Q′Q : ψ, two rational constants θl and θu with θl ≤ θu,
and an assignment τ : Var(Q′) :→ B. Let further be ϕ = ψτ and

(pr, c(pl,pu) | Φ) = DPLL-SSAT-R(Q : ϕ, θl, θu, Q′, τ, ψ) .

It then holds that

1. Φ = Q′Q : ψ,

2. τ(c) = false and Var(c) = Var(Q′),

3. the pair c(pl,pu) | Φ is derivable by enhanced S-resolution, and

4. pl = pu = pr if pr ∈ [θl, θu], pu < θl if pr < θl, and pl > θu if pr > θu.

Proof. We prove the lemma by induction over recursive calls of DPLL-SSAT-R. First of
all, observe that item 1 is trivially true as Φ = Q′Q : ψ in each returned result.
There are two base cases. First, there is a clause c′ ∈ ϕ = ψτ such that c′ ≡ false.

Then, there is a corresponding clause c′′ ∈ ψ such that c′′[τ(y1)/y1] . . . [τ(ym)/ym] = c′

where τ(yi) is defined if and only if 1 ≤ i ≤ m. Clearly, τ(c′′) = false. By construction
of clause c, τ(c) = false and Var(c) = Var(Q′). Thus, item 2 holds. From the latter
facts, it follows that c′′ ⊆ c. Items 3 and 4 are true since

ε|Q′Q : ψ ⊢R.1g c(0,0)|Q′Q : ψ

is applicable and pl = pu = pr = 0, respectively. In the second base case, all clauses in
ϕ are equivalent to true. With regard to item 2, we again conclude by construction that
τ(c) = false and Var(c) = Var(Q′). Item 3 holds since |= ψτ and therefore

ε|Q′Q : ψ ⊢R.2s c(1,1)|Q′Q : ψ

is feasible. The fact that pl = pu = pr = 1 shows item 4.
In the induction step, we show that the statement of the lemma for

(pr′, (c′)(pl
′,pu′) | Q′Q : ψ) = DPLL-SSAT-R(Q : ϕ, θl, θu, Q

′, τ, ψ)

6.2 Algorithms for SSAT 105

follows from induction hypothesis. The latter assumes that the lemma holds for each call

(pr, c(pl,pu) | Q′QxQ1Q2 : ψ) = DPLL-SSAT-R(Q1Q2 : ϕ
′, θ′l, θ

′
u, Q

′Qx, τ ′, ψ)

such that Q = Q1QxQ2 with Q ∈ {∃,

Rp} and potentially empty Q1, ϕ
′ = ϕ[v/x] with

v ∈ B, θ′l ≤ θ′u, and τ
′ = τ ⊕ [x → v]. Clearly, ψτ ′ = ϕ′. Observe that each recursive call

within DPLL-SSAT-R(Q : ϕ, θl, θu, Q
′, τ, ψ) satisfies above conditions on the inputs.

We consider unit propagation first. As ϕ = ψτ contains a unit clause with unit literal
ℓ ∈ {x,¬x}, we conclude that there is a clause (c′′ ∨ ℓ) ∈ ψ with τ(c′′) = false. Since
τ ′(ℓ) = true, we deduce that neg(ℓ) ∈ c according to induction hypothesis, item 2.
Thus, c = (c′ ∨ neg(ℓ)) and item 2 holds for c′ since Var(c′) = Var(c \ {neg(ℓ)}) =
Var(Q′Qx) \ {x} = Var(Q′) and τ(c′) = τ ′(c \ {neg(ℓ)}) = false. It clearly follows that
c′′ ⊆ c′ as τ(c′′) = false, τ(c′) = false and Var(c′) = Var(Q′). The latter allows us to
perform

c(pl,pu)|Q′QxQ1 Q2 : ψ ⊢R.3u (c′)(pl
′,pu′)|Q′ Q : ψ

that proves item 3. With regard to item 4, we conclude from definitions of pr′, pl′, pu′,
θ′l and θ′u by using common arithmetic laws the following: pr′ ∈ [θl, θu] if and only if
pr ∈ [θ′l, θ

′
u], pr

′ < θl if and only if pr < θ′l, and pr
′ > θu if and only if pr > θ′u. In case

Q = ∃, the latter is clear since θ′l = θl, θ
′
u = θu, pr

′ = pr, pl′ = pl, and pu′ = pu. If Q =

Rp

then θ′l = θl/p(ℓ), θ
′
u = θu/p(ℓ), pr

′ = p(ℓ) · pr, pl′ = p(ℓ) · pl, and pu′ = p(ℓ) · pu which
also justifies above observation. Therefore, if pr′ ∈ [θl, θu] then pr ∈ [θ′l, θ

′
u] and thus

pl = pu = pr due to induction hypothesis. By construction, pl′ = pu′ = pr′. Likewise, if
pr′ < θl then pu

′ < θl since pu < θ′l, and if pr′ > θu then pl′ > θu since pl > θ′u.
Let us consider purification next, i.e. ϕ = ψτ contains a pure literal ℓ ∈ {x,¬x}.

Since τ ′(ℓ) = true, we know that neg(ℓ) ∈ c according to induction hypothesis, item 2.
Thus, c = (c′ ∨ neg(ℓ)) and item 2 holds for c′ since Var(c′) = Var(c \ {neg(ℓ)}) =
Var(Q′Qx) \ {x} = Var(Q′) and τ(c′) = τ ′(c \ {neg(ℓ)}) = false. As ℓ is pure, each
clause c′′[τ(y1)/y1] . . . [τ(ym)/ym] ∈ ψτ with 6|= c′′[τ(y1)/y1] . . . [τ(ym)/ym] where τ(yi) is
defined if and only if 1 ≤ i ≤ m does not contain literal neg(ℓ). As a consequence, for
each clause c′′ ∈ ψ with 6|= (c′ ∨ c′′) it holds that neg(ℓ) /∈ c′′. Note that 6|= (c′ ∨ c′′) is
equivalent to 6|= c′′[τ(y1)/y1] . . . [τ(ym)/ym] since c

′[τ(y1)/y1] . . . [τ(ym)/ym] ≡ false. This
gives us the argument to apply

c(pl,pu)|Q′ ∃xQ1 Q2 : ψ ⊢R.3p (c′)(pl
′,pu′)|Q′Q : ψ

that proves item 3. As pr′ = pr, pl′ = pl, pu′ = pu, θ′l = θl, and θ
′
u = θu, item 4 follows

instantaneously from induction hypothesis.
We finally elaborate on branching and thresholding. For the sake of clarity, we state

explicitly the induction hypothesis, i.e. the statement of the lemma holds for

(pr1, c
(pl1,pu1)
1 | Q′QxQ′′ : ψ) = DPLL-SSAT-R(Q′′ : ϕ[true/x], θ′l, θ

′
u, Q

′Qx, τ1, ψ)

as well as for

(pr2, c
(pl2,pu2)
2 | Q′QxQ′′ : ψ) = DPLL-SSAT-R(Q′′ : ϕ[false/x], θ′′l , θ

′′
u, Q

′Qx, τ2, ψ)

where

106 6 Algorithms for SSMT Problems

� Q = QxQ′′ with Q ∈ {∃,

Rp},

� τ1 = τ ⊕ [x→ true], τ2 = τ ⊕ [x → false],

� if Q = ∃ then θ′l = θl, θ
′
u = θu, θ

′′
l = max(θl, pr1), θ

′′
u = θu, and

� if Q =

Rp then θ′l = (θl − (1 − p))/p, θ′u = θu/p, θ
′′
l = (θl − p · pr1)/(1 − p),

θ′′u = (θu − p · pr1)/(1− p).

Since τ1(x) = true and τ2(x) = false, we know that ¬x ∈ c1 and x ∈ c2, respectively,
according to induction hypothesis, item 2. Let us define c′1 := c1 \{¬x} and c′2 := c2 \{x}.
Due to above facts, it is clear that c1 = (c′1∨¬x) and c2 = (c′2∨x). Observe that τ1(c

′
1) =

τ(c′1) = false and τ2(c
′
2) = τ(c′2) = false as well as that Var(c′1) = Var(c1 \ {¬x}) =

Var(Q′Qx) \ {x} = Var(Q′) and Var(c′2) = Var(c2 \ {x}) = Var(Q′Qx) \ {x} = Var(Q′).
This implies that c′1 = c′2. Above reasoning shows that item 2 holds for c′1 and for c′1 ∪ c

′
2.

Let be

� pr′1 := pr1, pl
′
1 := pl1, pu

′
1 := 1 if Q = ∃, and

� pr′1 := p · pr1, pl
′
1 := p · pl1, pu

′
1 := p · pu1 + (1− p) if Q =

Rp.

We first consider the case where thresholding applies, i.e. if pr′1 > θu or if pr
′
1+(1−p) < θl

and Q =

Rp, then DPLL-SSAT-R returns (pr′1, (c
′
1)

(pl′1,pu
′
1)|Q′Q : ψ). The valid execution

of
c
(pl1,pu1)
1 |Q′QxQ′′ : ψ ⊢R.3t (c1 \ {¬x})

(pl′1,pu
′
1)|Q′Q : ψ

proves item 3. With respect to item 4, observe that pr′1 /∈ [θl, θu] by assumption. This
trivially implies that if pr′1 ∈ [θl, θu] then pl

′
1 = pu′1 = pr′1. By above definitions and by

using common arithmetic laws, we have that pr′1 > θu if and only if pr1 > θ′u. If pr
′
1 < θl

then pr′1 + (1 − p) < θl and Q =

Rp by assumption above and due to θl ≤ θu. Thus,
pr′1 + (1 − p) < θl if and only if pr1 < θ′l as Q =

Rp. By induction hypothesis, item 4, if
pr1 > θ′u then pl1 > θ′u and if pr1 < θ′l then pu1 < θ′l. To show item 4, we finally reason as
follows: pl1 > θ′u if and only if pl′1 > θu, and pu1 < θ′l if and only if pu′1 < θl since Q =

Rp.
Otherwise, i.e. if, let be

� pr′ := max(pr1, pr2), pl
′ := max(pl1, pl2), pu

′ := max(pu1, pu2) if Q = ∃, and

� pr′ := p · pr1 + (1− p) · pr2, pl
′ := p · pl1 + (1− p) · pl2, pu

′ := p · pu1 + (1− p) · pu2
if Q =

Rp.

DPLL-SSAT-R then returns (pr′, (c′1∪ c
′
2)

(pl′,pu′)|Q′Q : ψ). Recall that c1 = (c′1∨¬x) and
c2 = (c′2 ∨ x) as well as that c

′
1 = c′2. The latter ensures applicability of

(c
(pl1,pu1)
1 |Q′Q : ψ, c

(pl2,pu2)
2 |Q′Q : ψ) ⊢R.3 (c

′
1 ∪ c

′
2)

(pl′,pu′)|Q′Q : ψ .

which proves item 3. We finally need to show item 4. Let first be Q = ∃. Then,
pr′ = max(pr1, pr2). Let be pr′ ∈ [θl, θu]. If pr′ = pr1 then pr1 ∈ [θ′l, θ

′
u]. By induction

hypothesis, pl1 = pu1 = pr1. Since pr2 ≤ pr1, we have that pl2 ≤ pu2 ≤ pl1 = pu1.
The latter clearly holds if pr2 ∈ [θ′′l , θ

′′
u] since then pl2 = pu2 = pr2 ≤ pr1 by induction

hypothesis. If pr2 < θ′′l then pu2 < θ′′l by induction hypothesis and therefore pl2 ≤

6.2 Algorithms for SSAT 107

pu2 < θ′′l = max(θl, pr1) = max(θ′l, pr1) ≤ pr1. By application condition of R.3, pl′ = pl1
and pu′ = pu1, and thus pl′ = pu′ = pr′. Otherwise, i.e. if pr′ = pr2, we have that
pr2 ∈ [θ′′l , θ

′′
u]. Induction hypothesis gives pl2 = pu2 = pr2. Due to the fact that pr1 ≤ pr2,

we infer that pl1 ≤ pu1 ≤ pl2 = pu2. As above, if pr1 ∈ [θ′l, θ
′
u] then pl1 = pu1 = pr1 ≤ pr2

by induction hypothesis, and if pr1 < θ′l then pu1 < θ′l by induction hypothesis and
therefore pl1 ≤ pu1 < θ′l = θl ≤ pr2. Rule R.3 ensures pl′ = pl2 and pu′ = pu2, and thus
pl′ = pu′ = pr′. We next consider case pr′ < θl. Obviously, pr1 < θ′l and pr2 < θ′′l . By
induction hypothesis, pu1 < θ′l and pu2 < θ′′l . Note that θ′l = θl by definition and that
θ′′l = max(θl, pr1) = θl as pr1 < θ′l = θl. Therefore, pu1 < θl and pu2 < θl and thus pu′ < θl
according to R.3. If pr′ > θu then pr2 > θ′′u = θu since thresholding has failed, i.e. pr1 ≤ θu.
It follows that pl2 > θu by induction hypothesis, and that pl′ = max(pl1, pl2) > θu due to
R.3.
Let second be Q =

Rp. Then, pr′ = p · pr1+(1− p) · pr2. As thresholding has failed, we
know that p ·pr1+(1−p) ≥ θl and that p ·pr1 ≤ θu, i.e. pr1 ∈ [θ′l, θ

′
u]. Induction hypothesis

thus yields pl1 = pu1 = pr1. If pr′ ∈ [θl, θu] then pr2 ≥ (θl − p · pr1)/(1 − p) = θ′′l and
pr2 ≤ (θu−p ·pr1)/(1−p) = θ′′u. By induction hypothesis, pl2 = pu2 = pr2. It follows that
pl′ = pu′ = pr′ according to R.3. If pr′ < θl then pr2 < (θl−p·pr1)/(1−p) = θ′′l . Induction
hypothesis states that pu2 < θ′′l = (θl−p·pr1)/(1−p), and thus p·pr1+(1−p)·pu2 = pu′ < θl
as pr1 = pu1. If pr′ > θu then pr2 > (θu − p · pr1)/(1 − p) = θ′′u. Then, pl2 > θ′′u =
(θu − p · pr1)/(1− p) by induction hypothesis. Finally, p · pr1 + (1− p) · pl2 = pl′ > θu as
pr1 = pl1.
This completes the proof and the lemma follows. 2

The next result finally shows that item 1 from the beginning of this subsection holds.
Loosely speaking, enhanced S-resolution is capable of producing proofs for the general-
ized SSAT decision problem that are never longer than the shortest proofs generated by
DPLL-SSAT.

Corollary 6.2 (Shortest S-resolution proofs never longer than DPLL-SSAT proofs)

Let (Φ, θl, θu) be an instance of the generalized SSAT decision problem and let some cor-
responding DPLL-SSAT(Φ, θl, θu) proof be of length k. Then, it is always feasible to con-
struct an enhanced S-resolution proof for (Φ, θl, θu) that is of the same size k.

Proof. Let be Φ = Q : ϕ. We denote the empty function by τ∅ and the empty quantifier
prefix by ε. Let further be

(pr, c(pl,pu) | Φ) := DPLL-SSAT-R(Φ, θl, θu, ε, τ∅, ϕ) .

First of all, it is not hard to see that

pr = DPLL-SSAT(Φ, θl, θu)

and that the number of recursions of DPLL-SSAT-R(Φ, θl, θu, ε, τ∅, ϕ) is the same as of
DPLL-SSAT(Φ, θl, θu), namely k. The latter is true since the additional inputs and the
extended output of DPLL-SSAT-R do not have an effect on the computation of the
probabilities pr and on the common inputs Φ, θl, and θu.
By Lemma 6.4, we have that pair c(pl,pu)|Φ is derivable by enhanced S-resolution and

that c = ∅ as Var(c) = Var(ε) = ∅. From soundness of DPLL-SSAT, it follows that

108 6 Algorithms for SSMT Problems

pr = Pr(Φ) if Pr(Φ) ∈ [θl, θu], pr < θl if Pr(Φ) < θl, and pr > θu if Pr(Φ) > θu. Using
above facts as well as Lemma 6.4, we furthermore conclude that

� if Pr(Φ) ∈ [θl, θu] then pr = Pr(Φ) ∈ [θl, θu] and then pl = pu = pr = Pr(Φ),

� if Pr(Φ) < θl then pr < θl and then pu < θl, and

� if Pr(Φ) > θu then pr > θu and then pl > θu.

Summarizing, DPLL-SSAT-R(Φ, θl, θu, ε, τ∅, ϕ) produces an enhanced S-resolution proof
for (Φ, θl, θu). We finally observe that in each recursive call of DPLL-SSAT-R exactly one
new pair (c′)(pl

′,pu′)|Φ′, namely the one returned in the result of the call, is derived by some
rule of enhanced S-resolution. Thus, the enhanced S-resolution proof mentioned above is
of size k. This proves the claim. 2

We remark that Corollary 6.2 improves a previous result on the proof complexity of S-
resolution and DPLL-SSAT that was published in [TF10]. The latter article has shown
that if Pr(Φ) < θl then from each DPLL-SSAT(Φ, θl, θu) proof of size k, it is feasible
to construct an S-resolution proof with a quadratic overhead, i.e. of size O(k2), confer
[TF10, Proposition 2]. This restriction, i.e. Pr(Φ) < θl, was imposed as [TF10] considers
a version of S-resolution where derived clauses cpu provide upper probability bounds pu
only. By extending S-resolution such that derived clauses c(pl,pu) carry lower probability
bounds pl in addition to upper ones pu as it was done in this section, Corollary 6.2 can
state a more general result by not imposing Pr(Φ) < θl and by improving the S-resolution
proof size to k.
Proposition 6.1 now deals with item 2 from the beginning of this subsection, claim-

ing that S-resolution proofs are sometimes significantly shorter than the shortest proofs
generated by DPLL-SSAT. For that purpose, Proposition 6.1 states explicitly an infinite
family of SSAT instances for which the shortest S-resolution proofs are of constant size
while DPLL-SSAT needs exponentially many computation steps even in best case.

Proposition 6.1 (S-resolution proofs can be much shorter than DPLL-SSAT proofs)

Let
Φn = Qn Q′

n Q′′
n : ϕn

with n ∈ N>0 be an infinite family of SSAT formulae such that

Qn = ∃x1,1 ∃x1,2 . . . ∃x1,n−1 ∃x1,n ,

Q′
n = Q2,1x2,1 Q2,2x2,2 . . . Q2,n−1x2,n−1 Q2,nx2,n ,

Q′′
n = Q3,1x3,1 Q3,2x3,2 . . . Q3,n−1x3,n−1 Q3,nx3,n

where Qj,i ∈ {∃,

Rpj,i} with 0 < pj,i < 1 for 2 ≤ j ≤ 3 and for 1 ≤ i ≤ n, as well as

ϕn =

n∧

i=1

all comb(x1,i, x2,i, x3,i)

where

all comb(x, y, z) =

(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ z)

∧ (x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ ¬z)

∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬y ∨ z)

∧ (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z)

6.2 Algorithms for SSAT 109

is a propositional formula in 3CNF that consists of all non-tautological clauses with the
three variables x, y, z. Then, for each instance (Φn, θl, θu) which is non-trivial in the sense
that θu ≥ 0,

1. there is an enhanced S-resolution proof for (Φn, θl, θu) of size (at most) 15, i.e. of
constant size, and

2. each DPLL-SSAT(Φn, θl, θu) proof is of size at least 2n, i.e. of size exponential in n.

Proof. First of all, observe that all comb(x1,i, x2,i, x3,i) is unsatisfiable for each i. Since
n > 0, it follows that ϕn is unsatisfiable and thus Pr(Φn) = 0.
To show item 1, we present an S-resolution proof with 15 rule applications. As n > 0,

all comb(x1,1, x2,1, x3,1) ∈ ϕn. This allows the following rule applications:

1) ε|Φn ⊢R.1 (x1,1 ∨ x2,1 ∨ x3,1)
(0,0)|Φn ,

2) ε|Φn ⊢R.1 (x1,1 ∨ x2,1 ∨ ¬x3,1)
(0,0)|Φn ,

. . .

8) ε|Φn ⊢R.1 (¬x1,1 ∨ ¬x2,1 ∨ ¬x3,1)
(0,0)|Φn .

We proceed with

9) ((x1,1 ∨ x2,1 ∨ x3,1)
(0,0), (x1,1 ∨ x2,1 ∨ ¬x3,1)

(0,0))|Φn ⊢R.3 (x1,1 ∨ x2,1)
(0,0)|Φn ,

10) ((x1,1 ∨ ¬x2,1 ∨ x3,1)
(0,0), (x1,1 ∨ ¬x2,1 ∨ ¬x3,1)

(0,0))|Φn ⊢R.3 (x1,1 ∨ ¬x2,1)
(0,0)|Φn ,

11) ((¬x1,1 ∨ x2,1 ∨ x3,1)
(0,0), (¬x1,1 ∨ x2,1 ∨ ¬x3,1)

(0,0))|Φn ⊢R.3 (¬x1,1 ∨ x2,1)
(0,0)|Φn ,

12) ((¬x1,1 ∨ ¬x2,1 ∨ x3,1)
(0,0), (¬x1,1 ∨ ¬x2,1 ∨ ¬x3,1)

(0,0))|Φn ⊢R.3 (¬x1,1 ∨ ¬x2,1)
(0,0)|Φn .

Then,

13) ((x1,1 ∨ x2,1)
(0,0), (x1,1 ∨ ¬x2,1)

(0,0))|Φn ⊢R.3 (x1,1)
(0,0)|Φn ,

14) ((¬x1,1 ∨ x2,1)
(0,0), (¬x1,1 ∨ ¬x2,1)

(0,0))|Φn ⊢R.3 (¬x1,1)
(0,0)|Φn ,

and finally

15) ((x1,1)
(0,0), (¬x1,1)

(0,0))|Φn ⊢R.3 ∅
(0,0)|Φn .

For item 2, observe that DPLL-SSAT first assigns successively truth values to all vari-
ables x1,1, x1,2, . . . , x1,n−1, x1,n. During this process, construction of ϕn ensures that, first,
the base cases (where ϕn becomes true or false) are not reached and that, second, no
literal in ϕn becomes unit or pure. Therafter, branching for variable x2,1 is executed, i.e.
some truth value v is subsituted for x2,1. (Actually, v = true but this does not make
any difference.) As n > 0, the current formula contains exactly two unit clauses, namely
(x3,1) and (¬x3,1) which arise from the corresponding clauses in all comb(x1,1, x2,1, x3,1)
depending on which values are assigned to x1,1 and x2,1. With regard to the latter, note
that for each of the four possible assignments to x1,1 and x2,1, the unit clauses (x3,1)
and (¬x3,1) exist due to construction of all comb(x1,1, x2,1, x3,1). Then, unit propaga-
tion is performed for one of the unit literals x3,1 and ¬x3,1. Irrespective of which unit

110 6 Algorithms for SSMT Problems

literal was chosen, one of the clauses (x3,1) and (¬x3,1) becomes equivalent to false af-
ter substitution. As a consequence, DPLL-SSAT has reached the base case where ϕn

evaluates to false under current partial assignment. Therefore, the branch where x2,1
is set to v yields probability pr1 = 0. As θu ≥ 0, thresholding is only applicable if
Q2,1 =

Rp2,1 and 1− p2,1 < θl. In the latter case the returned probability is 0. Otherwise,
i.e. thresholding fails, DPLL-SSAT also investigates the other branch for x2,1, i.e. where
the opposite value neg(v) is substituted for x2,1. After substitution, unit clauses (x3,1) and
(¬x3,1) recur, again leading to base case “false”. In this case, the returned probability
result is also 0. Thus, DPLL-SSAT needs to try the other branch for x1,n in any case
since x1,n is an existential variable and θu ≥ 0. Then, branching is performed for x2,1
again. We now state two simple but important facts. First, base case “false” is revisited
if and only if all variables x1,1, x1,2, . . . , x1,n−1, x1,n as well as variable x2,1 are assigned
truth values by means of substitution. Second, thresholding will never apply for variables
x1,1, x1,2, . . . , x1,n−1, x1,n since these variables are existentially quantified, the probability
results are always 0, and θu ≥ 0. The latter implies that each of the opposite branches
for variables x1,1, x1,2, . . . , x1,n−1, x1,n is actually explored. We therefore conclude that
DPLL-SSAT needs to traverse all 2n assignments to the variables x1,1, x1,2, . . . , x1,n−1, x1,n
in order to solve (Φn, θl, θu). That is, the number of recursive calls and thus the size of
the DPLL-SSAT(Φn, θl, θu) proof is at least 2

n. 2

We would like to clarify that Proposition 6.1 along with Corollary 6.2 should not be mis-
conceived in the sense that enhanced S-resolution implements a stand-alone algorithm that
always outperforms DPLL-SSAT. Proposition 6.1 gives only evidence about the shortest
S-resolution proofs for a particular (yet infinite) family of SSAT formulae. Moreover, it
is not specified how a strategy to produce shortest proofs can be devised. Both Propo-
sition 6.1 and Corollary 6.2 should serve the sole purpose of indicating the potential of
S-resolution. It is furthermore important to remark that Proposition 6.1 refers to the clas-
sical DPLL-SSAT procedure which does not take into account the additional algorithmic
enhancements mentioned at the end of Subsection 6.2.1. Without going into detail, the
size of the DPLL-SSAT proof for instance (Φn, θl, θu) from Proposition 6.1 can be signifi-
cantly reduced to O(n) by exploiting the idea of non-chronological backtracking [Maj04].
We briefly remark that explanations for conflicts and solutions that are used for non-

chronological backtracking, confer Subsection 6.2.1, are closely related to clauses derived
by S-resolution. It is moreover feasible to enhance DPLL-SSAT-R such that a non-
chronological backtracking operation can be realized by means of derived clauses. To
this end, clauses c in the base cases of DPLL-SSAT-R, i.e. in lines 7 and 10, should
be minimized by removing “unnecessary” literals as long as the resulting clauses c′ are
still derivable by rules R.1g (or rather R.1) and R.2s, respectively. Then, a further tech-
nique to skip solving the second subproblems within branching, i.e. to skip recursive calls
in lines 48 and 70, becomes available that corresponds to non-chronological backtracking:
due to clause minimization in the base cases, literal ¬x need not be present in clause c1, i.e.
it potentially holds that c′1 = c1 \ {¬x} = c1, confer lines 41, 43, 58, and 63. We now sup-
pose that ¬x /∈ c1 is actually true. Let be Q′ = Q1x1 . . . Qjxj and Q′(c1) = Q1x1 . . . Qixi.
Obviously, i ≤ j. According to Lemma 6.3,

pl1 ≤ Pr(Qi+1xi+1 . . . Qjxj QxQ
′′ : ψ[τ(x1)/x1] . . . [τ(xi)/xi]) ≤ pu1

6.2 Algorithms for SSAT 111

with τ : Var(Q′(c1)) → B such that ∀y ∈ Var(c1) : τ(y) = ff c(y). That is, exactly the
same probability bounds pl1 and pu1 are valid for the second branch of x. This allows to
skip the second branch and to immediately return (pr1, c

(pl1,pu1)
1 |Q′Q : ψ). Moreover, the

same applies successively for all variables xj down to xi+1, establishing a non-chronological
backtracking operation.
The quintessence of this subsection is that S-resolution should not be considered as

a competitive approach to solve SSAT problems in practice but as complementary to
DPLL-SSAT as both, S-resolution and DPLL-SSAT, are capable of “cross-fertilizing” each
other:

� on the one hand, DPLL-SSAT or rather DPLL-SSAT-R is most likely the best
choice to achieve a general and, at the same time, practically reasonable strategy
for S-resolution and,

� on the other hand, S-resolution opens a variety of new ideas to enhance performance
as well as applicability of DPLL-SSAT solvers, some of them are touched upon
hereafter.

Applications of S-resolution. One promising application of S-resolution is to de-
velop a generalized clause learning scheme for DPLL-SSAT that is motivated by the
success of conflict-driven clause learning for DPLL, confer Section 6.1 and [MSLM09].
The DPLL-SSAT-R procedure indicates the construction of clauses c(pl,pu) derivable by
(enhanced) S-resolution. As mentioned before, these clauses can be exploited for non-
chronological backtracking. Recall that unit propagation within the DPLL procedure also
works for conflict clauses as these clauses are implications of the given formula. On the
contrary, clauses c(pl,pu) derived by S-resolution are not necessarily semantic consequences
but just entailed with some probability. That is, unit propagation is in general not appli-
cable for derived clauses c(pl,pu). Notwithstanding, it would be worthwhile and promising
to conceive of a similar scheme for the probabilistic case, i.e. some kind of generalized unit
propagation. We illustrate our idea to the latter issue by means of an example: suppose
that we have derived the clause (¬x3∨x21∨¬x85)

(0.5,0.6) at some point of the DPLL-SSAT-R
search. Let us further assume that the current subproblem is Q22x22 . . . Q85x85Q : ϕ and
that true was substituted for x3 and false for x21 such that above clause becomes “unit”.
Due to derived clause (¬x3∨x21∨¬x85)

(0.5,0.6) and according to Lemma 6.3, we know that
whenever we assign arbitrary values to variables x22, . . . , x84 and true to x85 then the
satisfaction probability of the resulting SSAT formula lies within [0.5, 0.6]. It is therefore
unreasonable to assign true to x85 later on as the corresponding satisfaction probability
is already known. That is, we set x85 to false in any case. Though we are already
sure of which value we assign to x85, we cannot do this, in general, before the variables
x22, . . . , x84 are assigned. The rationale is that such a latter operation would involve
modification of the quantifier prefix from Q22x22 . . . Q85x85Q to Q85x85Q22x22 . . . Q84x84Q
which is not correct in general. This dilemma is dissatisfactory in a sense. However, a
simple observation may be helpful in several cases. Suppose that there is some variable
xi in between Q22x22 and Q85x85, i.e. 22 ≤ i ≤ 85, such that all variables xi, . . . , x85 are
bound by the same quantifier Q, i.e. Q = Qi = Qi+1 = . . . = Q85. Since quantifiers within
a block of same quantifiers may be moved arbitrarily, we are allowed to modify the current

112 6 Algorithms for SSMT Problems

formula

Q22x22 . . . Qi−1xi−1 Qxi . . . Qx84 Qx85 Q : ϕ

to

Q22x22 . . . Qi−1xi−1 Qx85 Qxi . . . Qx84 Q : ϕ

while preserving the semantics, i.e.

Pr(Q22x22 . . . Qi−1xi−1 Qxi . . . Qx84 Qx85 Q : ϕ)

= Pr(Q22x22 . . . Qi−1xi−1 Qx85 Qxi . . . Qx84 Q : ϕ) .

This facilitates to assign true to x85 potentially much earlier, namely immediately after
x22, . . . , xi−1 are assigned. Observe that such variable xi always exists as in “worst case”
xi = x85 may be taken, and that i should be chosen as small as possible for efficiency
reasons. We further remark that this generalized unit propagation actually generalizes unit
propagation employed in the DPLL procedure as the variables of propositional formulae
can be considered as existentially quantified, i.e. xi = x22 would hold.
While a realization of generalized unit propagation as sketched above potentially im-

proves performance of DPLL-SSAT solvers in practice, the following ideas enhance their
applicability:

� Akin to proofs of unsatisfiability produced by resolution for propositional formulae,
confer Subsection 6.2.2, S-resolution provides a theoretical framework to generate
proofs of satisfiability with insufficient probability. In the propositional case, such
unsatisfiability proofs are exploited to validate SAT solvers [ZM03b, GN03]. The
rationale is that modern SAT solvers are very complex pieces of software and thus
prone to errors, as they incorporate several sophisticated algorithmic optimizations
based on very complex data structures, confer Section 6.1 and, for a very detailed
account, [BHvMW09]. On the contrary, resolution establishes a much simpler cal-
culus that consists of only one resultion rule in the propositional case. That is,
cross-checking the result of a SAT solver by means of validating a resolution proof
increases the confidence of the result significantly. We remark that reliability of com-
putational results is vitally important and, moreover, compulsory in the verification
of safety-critical systems.

Above motivation clearly carries over to the DPLL-SSAT case. Though enhanced
S-resolution comprises some more rules than “common” resolution, it provides a yet
simple enough calculus such that cross-checking the results of DPLL-SSAT solvers
still leads to more confidence.

� In addition to checking the validity of unsatisfiability results of SAT solvers, the ex-
traction of small or even minimal unsatisfiable subformulae is another application
of unsatisfiability proofs [ZM03b, GN03, ZM03a, LMS04]. Such small unsatisfiable
cores can potentially help to analyze why some system does not satisfy a desired
property, for instance, when considering some planning or scheduling problems.
Given an unsatisfiable propositional formula ϕ in CNF, a small unsatisfiable sub-
formula ϕ′ ⊆ ϕ is obtained from a resolution proof for ϕ by collecting all original
clauses c ∈ ϕ that actually occur in the resolution proof. To potentially achieve

6.3 Algorithms for SMT 113

smaller unsatisfiable subformulae, this process is iterated on the correspondingly
previous subformula until a fixed point is reached as, for instance, in [ZM03b].

In the SSAT case, S-resolution offers the possibility to generate small or even min-
imal SSAT subformulae Q : ϕ′ having the same satisfaction probabilities as the
original SSAT formula Q : ϕ, i.e. Pr(Q : ϕ′) = Pr(Q : ϕ) with ϕ′ ⊆ ϕ. Moreover,
S-resolution can be exploited for a more general setting by taking the idea of thresh-
olds into account, confer the generalized SSAT decision problem given by instances
(Q : ϕ, θl, θu): whenever Pr(Q : ϕ) < θl or Pr(Q : ϕ) > θu then we do not demand
that the small SSAT subformula Q : ϕ′ must have the same satisfaction probability
as Q : ϕ but rather Pr(Q : ϕ′) < θl or Pr(Q : ϕ′) > θu, respectively. The latter
relaxation may lead to much smaller subformulae ϕ′ ⊆ ϕ.

� One of the most interesting and, to some extent, most challenging topics is the po-
tential application of S-resolution for computing stochastic variants of Craig inter-
polants. In Chapter 9, we elaborate on such a technique and illustrate the potential
use of “stochastic” Craig interpolation in SSAT-based bounded model checking of
probabilistic (finite-state) systems like Markov decision processes, turning the falsi-
fication procedure of Chapter 5 into a verification approach for probabilistic safety
properties.

6.3 Algorithms for SMT

This section elaborates on solving procedures for SMT formulae. As explained in Sec-
tion 4.3, the concept of SMT extends Boolean satisfiability with respect to background
theories like equality logic with uninterpreted functions, arithmetic like difference logic
or linear arithmetic, the theories of arrays, bit vectors, and inductive data types. In re-
cent years, the development of highly efficient SMT solvers, supporting above and several
other theories as well as combinations of different theories, has evolved to a very active
research area. With regard to the analysis of discrete-time probabilistic hybrid automata,
being the main target of this thesis, we direct our attention to the theory of non-linear
arithmetic over the reals and integers involving transcendental functions like exponential
and trigonometric functions. For an overview of SMT algorithms for above mentioned
theories, we refer to the survey [BSST09].

Efficient algorithms addressing quantifier-free Boolean combinations of non-linear arith-
metic constraints including transcendental functions are rather scarce. In [FHR+06,
FHT+07], we have presented an algorithmic approach to above problem that is called
the iSAT algorithm. To cope with the Boolean structure of the problem as well as with
the non-linear arithmetic part, iSAT basically integrates the DPLL procedure, confer
Section 6.1, with techniques from interval analysis [Moo66, Moo79, Moo80], the latter
establishing a very general method to deal with non-linearities, in particular transcen-
dental functions. There are two implementations of the iSAT algorithm, namely the
HySAT-II2 tool and its successor iSAT3, the latter sharing the same name with the un-

2More information can be found on http://hysat.informatik.uni-oldenburg.de.
3More information can be found on http://isat.gforge.avacs.org.

http://hysat.informatik.uni-oldenburg.de
http://isat.gforge.avacs.org

114 6 Algorithms for SSMT Problems

derlying algorithm. Both tools are especially designed for bounded model checking of
hybrid systems [HEFT08].
Another approach to the same problem has been proposed by Bauer, Pister, and

Tautschnig [BPT07]. The latter authors developed the tool ABsolver4, which permits
the integration of various subordinate solvers for the Boolean, linear, and non-linear parts
of the input formula. ABsolver itself coordinates the overall solving process and delegates
the currently active constraint sets to the corresponding subordinate solvers. To address
non-linear constraints, ABsolver uses the numerical optimization tool Ipopt5. Conse-
quently, it may produce incorrect results due to the local nature of the solver and due
to rounding errors. In [FHT+07, Subsection 5.3], we have shown that iSAT consistently
outperforms ABsolver, usually by orders of magnitude when formulae with non-trivial
Boolean structure are involved.
More recently, a further approach to solve non-linear arithmetic SMT formulae has

been proposed by the authors of [GGI+10]. Their algorithm pursues the idea of com-
bining DPLL and interval analysis by means of additionally integrating a special and
more efficient subordinate solver for linear arithmetic. The experimental results given
in [GGI+10] show that this more sophisticated approach can lead to significant perfor-
mance gains, in particular on non-linear SMT problems involving huge linear parts. We
remark that the authors of [ABDK11] enhanced the iSAT tool with equivalent reasoning
capability by also integrating a subordinate solver for linear arithmetic.

The SSMT algorithm that is introduced in Section 6.4 extends the iSAT procedure by
adding an additional layer for quantifier treatment. For this reason, we examine the iSAT
approach in more detail. Subsection 6.3.1 first gives an intuitive insight into iSAT, which is
then followed by a more formal presentation of the algorithmic details in Subsection 6.3.2.

6.3.1 Intuitive description of iSAT

The iSAT algorithm [FHR+06, FHT+07] has been designed to address the satisfiability
problem of SMT formulae with respect to the theory of non-linear arithmetic over the
reals and integers. As an input, iSAT requires an SMT formula ϕ such that

1. ϕ is in conjunctive form (CF), confer Definition 4.3, and

2. the domains dom(x) of all variables x ∈ Var(ϕ) are given by bounded intervals .

As already explained in Subsection 4.3.1 and as observed in [Her10, Chapter 5], above
requirement 1 is without loss of generality since it is always possible to efficiently rewrite
an arbitrary non-linear arithmetic SMT formula into an equi-satisfiable SMT formula in
CF by means of a generalized version of the Tseitin transformation [Tse68]. We further
remark that the aforementioned tools HySAT-II and iSAT accept arbitrary SMT formulae
and convert the inputs into CF automatically.
Above requirement 2, however, actually poses a restriction as each variable of the input

formula has to range in a bounded interval. Note that the latter is also required for each
auxiliary variable introduced by the Tseitin transformation process. From a practical

4More information can be found on http://absolver.sourceforge.net.
5More information can be found on https://projects.coin-or.org/Ipopt.

http://absolver.sourceforge.net
https://projects.coin-or.org/Ipopt

6.3 Algorithms for SMT 115

perspective, this prerequisite seems not to be too restrictive as variables encoding physical
quantities like temperature, velocity, or volume are naturally bounded in their values. In
cases where such an estimation should not be feasible for any reason, the lower and upper
interval borders can be chosen arbitrarily small and arbitrarily large, respectively.

The iSAT algorithm is a generalization of the DPLL procedure [DP60, DLL62], confer
Section 6.1, that further incorporates interval constraint propagation (ICP), confer [BG06]
for a nice survey, to reason about the non-linear arithmetic part in addition to unit
propagation handling the Boolean structure. Algorithmically, iSAT works very similar
to DPLL: to solve the problem, the algorithm manipulates assignments to the variables
by alternating deduction and decision phases, interspersed with backtracking whenever a
conflict was detected. Due to the internal use of ICP, iSAT deals with interval assignments
σ, i.e. σ maps variables to intervals, instead of real-valued and integer assignments.

During the deduction phase, iSAT searches for unit clauses in which all but one con-
straint are inconsistent under the current interval assignment σ. A constraint c is in-
consistent under an interval assignment σ if and only if each (real-valued and integer)
assignment τ that is contained in σ does not satisfy c. Using interval arithmetic, checking
inconsistency of a constraint c can be done efficiently. However, it is important to remark
that due to numerical issues when dealing with non-rational functions like sin or exp,
only soundness of the inconsistency check can be guaranteed, i.e. whenever a constraint
c is said to be inconsistent then c is actually inconsistent. In other words, the check may
overlook some inconsistencies. The remaining constraint c in a unit clause cl, i.e. c was
not detected to be inconsistent, is called unit. In order to retain a chance for satisfaction
of cl and thus of the whole formula, unit constraints need to be satisfied. This process
is akin to unit propagation in DPLL SAT solving, and we occasionally also refer to this
term in the iSAT context. The difference to the DPLL SAT case lies in how new values or
rather new intervals are deduced for the involved variables. While a unit literal x or ¬x in
the propositional case immediately entails a value for variable x, namely true or false,
respectively, this is not necessarily feasible for a constraint c, unless c is already a simple
(interval) bound, i.e. c is, for instance, x ≥ −2.01 or x < 8.3. In order to derive new
intervals, ICP is employed on unit constraints c within the deduction phase. For instance,
from constraint y = 2 · x and from the interval assignment σ given by σ(x) = [−1, 4] and
σ(y) = [−100, 100], we may conclude that y can only be in the interval [−2, 8], leading
to a narrowing of the interval assignment σ. ICP is then repeatedly applied on all unit
constraints until no new intervals can be obtained. Observe that ICP can also trigger
unit propagation yielding new unit constraints. We remark that ICP can cause very long
and, at least theoretically, infinite deduction chains. With regard to the latter, consider
the constraint x = 1

2
· x and the initial interval [0, 1] for x. Application of ICP then

yields the infinite interval contraction [0, 1] ; [0, 1
2
] ; [0, 1

4
] ; [0, 1

8
] ; To mitigate

this problem and to achieve termination, ICP is stopped whenever the progress of newly
deduced interval bounds becomes negligible. More precisely, each new interval bound is
rejected if the difference to the old bound is below some progress parameter δ. For in-
stance, let x ≥ 0.999 be the new bound and x ≥ 1 be the old one. The difference clearly
is |1− 0.999| = 0.001. Whenever 0.001 < δ, for instance if δ = 0.05, then the new bound
x ≥ 0.999 is dismissed. For implementation details concerning the deduction phase and
in particular for insights into the internal data structures, the interested reader is referred

116 6 Algorithms for SSMT Problems

to [THF+07].

In case the deduction phase leads to a conflict, i.e. all constraints of some clause of the
SMT formula are inconsistent under the current interval assignment, a conflict resolution
procedure is called which analyzes the reason for the conflict in a very similar manner as
in the DPLL algorithm. If the conflict can be resolved then a conflict clause is built from
the reason of the conflict and added to the formula in order to prevent the solver from
revisiting the same or a similar conflict again. To retrieve a consistent solver state from
which the proof search will be continued, conflict resolution involves non-chronological
backtracking that is undoing some of the decisions and their accompanying deductions
that have been performed so far. If the conflict cannot be resolved then it follows that the
given formula is unsatisfiable and the algorithm stops. More details about this conflict
analysis can be found in [FHT+07, THFA08, Her10].

In case the deduction phase yields a solution, i.e. at least one constraint in each clause
is satisfied by every point in the current interval assignment, the given formula is satis-
fiable and the algorithm stops. It is important to remark that equations like x = y · z
can only be satisfied by point intervals in general. However, reaching such point intervals
by ICP cannot be guaranteed for continuous domains and thus is usually infeasible. One
option to mitigate this problem is to stop the search whenever all intervals have a width
smaller than a certain threshold ε, the so-called minimum splitting width. Then, the cur-
rent interval assignment is referred to as an approximate solution. Though there is no
mathematical certainty about such latter result in general, i.e. the problem may be never-
theless unsatisfiable, such approximate solutions are often sufficient from an engineering
perspective, in particular, if ε is chosen “small” enough.

Having completed the deduction phase and neither found a conflict nor an (approxi-
mate) solution, iSAT performs a decision step by splitting the current interval of some
variable. That is, some variable x whose interval width is still greater than or equal to the
minimum splitting width ε is selected arbitrarily or according to some decision heuristics.
The current interval σ(x) = [lx, ux] of x is then split into two parts [lx, s] and (s, ux] using,
for instance, the midpoint s of the interval. It is furthermore decided which of the two
parts is to be investigated first. The search is then resumed by selecting and asserting
one of the interval bounds x ≤ s or x > s, which potentially triggers new deductions as
described above.

Though iSAT is not a complete algorithm, i.e. it cannot decide satisfiability of all non-
linear arithmetic SMT formulae, it always terminates and meets the following notion of
soundness, confer [FHT+07]: if iSAT claims that the given SMT formula ϕ is satisfiable
or unsatisfiable then ϕ is actually satisfiable or unsatisfiable, respectively. In all other
cases, i.e. in which iSAT is not able to decide the SMT problem, an approximate solution
of user-defined volume is returned. Although the latter represents an inconclusive result,
such approximate solutions are expected to be sufficient and helpful in most practical
applications.

To mitigate the issue of approximate solutions, iSAT is capable of performing a sub-
sequent satisfiability check that is called strong satisfaction check, confer [FHT+07, Sub-
section 4.5] as well as [Ked08, EKK+11]. The idea is to exploit the internal structure of
the SMT formula ϕ as well as the approximate solution σ in order to prove satisfiabil-
ity of ϕ. A bit more precisely, from each clause in ϕ one constraint is selected that is

6.3 Algorithms for SMT 117

still consistent under the approximate solution σ. It is then tried to construct a variable
dependency graph involving all equations among above constraints such that each vari-
able is defined by at most one equation. An interval assignment ρ is then computed as
follows. The intervals ρ(x) for all variables x that are not defined by any equation in
the dependency graph are given by the corresponding intervals σ(x) of the approximate
solution σ. The variable dependency graph is then exploited to safely propagate these
intervals through the graph such that intervals ρ(y) for all variables y are finally com-
puted. The construction of ρ certifies that ρ contains a (real-valued) solution τ of the
conjunction of the above equations. Moreover, if all inequalities among the constraints
selected above are definitely satisfied under ρ, i.e. each point in ρ satisfies the inequalities,
and if the intervals ρ(y) for all variables y ∈ Var(ϕ) are subsets of the corresponding
initial domains, i.e. ρ(y) ⊆ dom(y), then the interval assignment ρ comprises a solution τ
of the SMT formula ϕ that lies within the domains of the variables in Var(ϕ).
For instance, let

ϕ = (x > 4.1 ∨ y ≤ −3.78 ∨ b ≥ 1) ∧ (b ≤ 0 ∨ x = y + z) ∧ (b ≤ 0 ∨ x = sin(z))

be an SMT formula over real-valued variables x, y, z ∈ [−100, 100] and integer variable
b ∈ [−100, 100]. Assume that iSAT returns the approximate solution σ with σ(x) =
[−0.05, 0.05], σ(y) = [−3.2,−3.1], σ(z) = [3.1, 3.2], and σ(b) = [1, 1]. According to σ,
we select from each clause of ϕ one constraint, namely b ≥ 1 from the first, x = y + z
from the second, and x = sin(z) from the third clause. As variable x is defined by two
equations, we need to redirect one of the corresponding constraints such that some other
variable occurs on the left-hand side. We choose equation x = y + z and redirect it to
y = x − z. In the resulting variable dependency graph, each variable is defined by at
most one equation. The next step is to compute the interval assignment ρ. As variables
z and b are not defined by any equation in the graph, we set ρ(z) = σ(z) = [3.1, 3.2]
and ρ(b) = σ(b) = [1, 1]. Taking equation x = sin(z), we safely compute the interval
ρ(x) = [−0.06, 0.05] for variable x. The latter step ensures that for each value vz ∈ ρ(z)
there is some value vx ∈ ρ(x) such that vx = sin(vz). Using equation y = x − z as
well as the intervals for x and z, we can now determine ρ(y) = [−3.26,−3.05] which
guarantees that for all vx ∈ ρ(x) and for all vz ∈ ρ(z) there exists some vy ∈ ρ(y) such
that vy = vx − vz. By the construction of ρ, it immediately follows that ρ contains a
real-valued assignment that satisfies both equations x = y + z and x = sin(z). It also
holds that each value vb ∈ ρ(b) satisfies inequality vb ≥ 1. Furthermore, the intervals ρ(x),
ρ(y), ρ(z), and ρ(b) are subsets of the initial domains of x, y, z, and b, respectively. As a
consequence, the interval assignment ρ comprises a solution of ϕ which certifies that ϕ is
satisfiable.
A successful strong satisfaction check thus generates a graph-based proof of satisfiability

for the given SMT formula. We remark that iSAT is also capable of providing proofs of
unsatisfiability [KTBF09, KBTF11] which are based on resolution and which are similar
in nature to resolution proofs for propositional formulae, confer Subsection 6.2.2.
We finally mention that the iSAT algorithm has been extended in several directions,

confer [EKKT08, EKKT09] for an overview. To improve the solver’s performance, some
parallelization schemes were considered in [KSÁ+09, KÁS+10]. Expressiveness of input
formulae has been enhanced considerably in [EFH08, EFH09] by incorporating ordinary

118 6 Algorithms for SSMT Problems

Topmost Layer

Lowermost Layer

Middle Layer

SMT solver for quantifier−free non−linear arithmetic formulae in CF

SSMT solver for quantified non−linear arithmetic formulae in CF

Theory solver for conjunctive non−linear arithmetic constraint systems

reports deduced facts by ICP

reports inconsistency
or satisfiability of M

and unit propagation
reports deduced facts by ICP

reports unsatisfiability
or satisfiability of ϕ

conjunctive system M

SMT formula ϕ in CF

Figure 6.4: Interaction between the different layers of the overall SSMT algorithm. Please note

that the theory solver is based on interval arithmetic and thus is incomplete. That is, reporting

inconsistency/unsatisfiability or satisfiability of M as well as of ϕ cannot be ensured in general.

differential equations (ODEs) as an additional theory. Employing the version of iSAT
supporting ODEs as the underlying core engine within the SSMT algorithm of Section 6.4
would then allow for the symbolic analysis of continuous-time probabilistic hybrid sys-
tems. We elaborate on this issue in Chapter 10. Another direction extends the scope
of iSAT within model checking. While the primary use of iSAT lies in bounded model
checking, the work described in [KB11a, KB11b] proposes an approach to unbounded or
full model checking. The latter is based on overapproximating the reachable state set
by means of Craig interpolants which are constructed from the aforementioned resolution
proofs of unsatisfiability [KTBF09, KBTF11]. The notion of Craig interpolation as well
as a generalization of this concept suitable for the SSAT framework and its potential
applications to probabilistic full model checking are considered in Chapter 9.

6.3.2 Formal description of iSAT

After having explained the intuition of the iSAT procedure in the previous subsection, we
now present the algorithm in a formal way. The content of this subsection is mainly based
on Section 5 of the article [FTE10a] by Fränzle, Teige, and Eggers, but occasionally differs
in detail, for instance, the theory of ODEs is not taken into account. The algorithmic
ingredients of iSAT are presented in a rule-based fashion and are grouped into two layers.

6.3 Algorithms for SMT 119

� The first layer constitutes the theory solver TS responsible for reasoning about con-
junctive systems of non-linear arithmetic constraints over bounded reals and integers,
while

� the second layer describes the SMT solver iSAT for non-linear arithmetic SMT
problems employing the theory solver TS .

The theory solver TS is interval-based, i.e. TS uses interval calculations and interval
constraint propagation [BG06] as safe, yet incomplete reasoning mechanisms.

We anticipate that the SSMT algorithm of Section 6.4 is built upon above layers and
actually establishes an own layer. That is, the lowermost layer represents the theory
solver, the middle layer the SMT solver, and the topmost layer the SSMT solver. The
interaction between these layers is sketched in Figure 6.4.

Theory layer for non-linear arithmetic constraints. We start our exposition with
a description of the lowermost layer, the theory layer, which deals with conjunctive arith-
metic constraint systems. As reasoning mechanisms for such non-linear arithmetic con-
straint systems over the reals and integers, we employ safe interval analysis for approxi-
mating real-valued satisfaction and augment it with interval constraint propagation (ICP)
as a powerful deduction method. Due to the use of interval-based reasoning, we formally
define the concept of an interval assignment σ as a pair of two functions (σR, σZ) such
that σR : VR → IR and σZ : VZ → IZ with VR and VZ being some sets of real-valued and
integer variables, respectively, and IR and IZ being the sets of all intervals over the real
numbers R and the integers Z, respectively. Intuitively, σR maps real-valued variables to
real-valued intervals and σZ maps integer variables to integer intervals. To ease notation,
we simply write σ(x) for σR(x) if x ∈ VR and for σZ(x) if x ∈ VZ.

Interval analysis [Moo66] enables to evaluate the interval consistency of a setM of non-
linear arithmetic constraints involving functions like sin and exp. Interval consistency is a
necessary yet not sufficient condition for real-valued satisfiability of M . Thus, refutation
by interval consistency is always correct. There are several definitions of interval consis-
tency in the literature, confer [BG06] for an overview. They mainly differ in the strength
of their consistency notions and in the computational effort to decide consistency. Our
consistency concept is hull consistency, confer [BMH94, BG06] for details, which is easy
to decide and which gives good results in practice. Let be given an equation x = y ◦ z
according to Definition 4.3, where x, y, z are variables and ◦ is a binary arithmetic op-
erator, and an interval assignment σ that maps above variables to non-empty intervals,
i.e. σ(x) 6= ∅, σ(y) 6= ∅, σ(z) 6= ∅. Then, the equation x = y ◦ z is hull consistent under
σ [BMH94] if and only if

� σ(x) = hull(σ(x) ∩ {vx : ∃vy ∈ σ(y)∃vz ∈ σ(z) : vx = vy ◦ vz}),

� σ(y) = hull(σ(y) ∩ {vy : ∃vx ∈ σ(x)∃vz ∈ σ(z) : vx = vy ◦ vz}), and

� σ(z) = hull(σ(z) ∩ {vz : ∃vx ∈ σ(x)∃vy ∈ σ(y) : vx = vy ◦ vz}),

where hull(A) for some set A ⊆ R (or A ⊆ Z), called the interval hull of A, is the
smallest interval containing the set A. With regard to implementation using machine

120 6 Algorithms for SSMT Problems

data types like floating-point numbers, hull(A) for some set A ⊆ R is usually defined as
the smallest interval containing A such that the interval borders are representable in the
corresponding data type [BMH94]. Hull consistency is analogously defined for equations
x = ◦y involving unary arithmetic operators. As an example, consider the equation
x = y+z and the interval assignment σ with σ(x) = [0, 3], σ(y) = [0, 1], and σ(z) = [0, 1].
Then, x = y + z is not hull consistent under σ since

σ(x) = [0, 3] 6= hull(σ(x) ∩ {vx : ∃vy ∈ σ(y)∃vz ∈ σ(z) : vx = vy + vz})

= hull([0, 3] ∩ [0, 2]) = [0, 2] .

Equation x = y + z is however hull consistent under σ′ with σ′(x) = [0, 2], σ′(y) = [0, 1],
and σ′(z) = [0, 1] since

σ′(x) = hull([0, 2] ∩ [0, 2]) = [0, 2],

σ′(y) = hull([0, 1] ∩ [−1, 2]) = [0, 1], and

σ′(z) = hull([0, 1] ∩ [−1, 2]) = [0, 1] .

We also define hull consistency for simple bounds. Let x ∼ r be a bound according to
Definition 4.3, where x is a variable, ∼∈ {<,≤,=,≥, >}, and r is a rational constant, and
let σ be an interval assignment with σ(x) 6= ∅. Then, the bound x ∼ r is hull consistent
under σ if and only if σ(x) ⊆ {v ∈ R : v ∼ r}. For instance, x < 3 is hull consistent
under σ with σ(x) = [−1.1, 2.4] as well as under σ′ with σ′(x) = [−1.1, 3) but not hull
consistent under σ′′ with σ′′(x) = [−1.1, 3].
The notion of hull consistency can be lifted to conjunctive systems of constraints M

requiring that each constraint c ∈ M is hull consistent under σ. We denote the fact that
M is hull consistent under σ by σ |=hc M . For instance, M = 〈x = y, x = y2, y >
0, y < 1〉 is hull consistent under σ with σ(x) = σ(y) = (0, 1) as all constraints in M
are hull consistent under σ. This example further shows that hull consistency is not a
sufficient condition for real-valued satisfiability since the conjunctive constraint system M
is unsatisfiable. To achieve hull consistency of a conjunctive constraint system, interval
constraint propagation (ICP) is exploited. As already shown on a simple example in
Subsection 6.3.1, ICP can cause very long and, at least theoretically, infinite deduction
chains. We remark that practical implementations of ICP commonly employ floating-point
data types such that infinite deductions are not possible due to finiteness of floating-point
numbers. Nevertheless, to avoid very long and time-consuming deduction sequences,
ICP is usually stopped whenever the progress of newly deduced interval bounds becomes
negligible, confer progress parameter δ explained in Subsection 6.3.1. Due to the latter
fact, hull consistency is generally not achieved with full rigor in practice but just up to
some desired, potentially high accuracy.
As shown by the examples above, if some constraint c is not hull consistent under

some interval assignment σ then there potentially exists some refinement σ′ of σ, i.e.
σ′(x) ⊆ σ(x) for each variable x, such that c is hull consistent under σ′. That is, the
property of not being hull consistent under σ does not entail inconsistency of a constraint
under σ in general. We therefore define the notion of interval inconsistency of a constraint.
We say that an equation x = y ◦ z, where x, y, z are variables and ◦ is a binary arithmetic
operator, is inconsistent under an interval assignment σ if and only if

6.3 Algorithms for SMT 121

� hull(σ(x) ∩ {vx : ∃vy ∈ σ(y)∃vz ∈ σ(z) : vx = vy ◦ vz}) = ∅.

Inconsistency is analogously defined for equations x = ◦y involving unary arithmetic
operators. A simple bound x ∼ r, where x is a variable, ∼∈ {<,≤,=,≥, >}, and r is a
rational constant, is inconsistent under an interval assignment σ if and only if σ(x)∩{v ∈
R : v ∼ r} = ∅. Observe that above definition implies the following: whenever the
interval σ(x) of any variable x of a constraint c is empty, i.e. σ(x) = ∅, then c is trivially
inconsistent under σ. We denote the fact that some constraint c is inconsistent under σ
by σ ♯ c as well as that a conjunctive system of constraints M contains some constraint
c ∈ M with σ ♯ c by σ ♯M . Observe that if some constraint c is inconsistent under some
σ then the interval assignment σ does not contain any (real-valued) solution of c. For
instance, x = 2 · y is inconsistent under σ with σ(x) = [−2,−1] and σ(y) = [1, 2] since all
values of 2 · y for y ∈ [1, 2] lie within the interval [2, 4].
Interval constraint propagation (ICP) [BMH94, Ben96, BG06] complements interval

analysis as a deduction mechanism pruning off non-solutions by narrowing the intervals
while trying to achieve hull consistency. Given a constraint c and an interval assignment
σ, ICP potentially computes a refinement σ′ of σ, i.e. σ′(x) ⊆ σ(x) for each variable
x, such that σ′ contains all solutions of c in σ. Implementations of interval arithmetic
support common functions like +,−, · as well as transcendental functions like sin and
cos [Neu90, HJvE01]. It is important to remark that interval calculations are guaranteed
to be safe: for instance, if using floating-point data types then intervals are always rounded
outwards such that the results remain correct also under rounding errors.

As an example, assume the arithmetic constraint z = x + y over real-valued variables
x, y, z and the interval assignment σ with σ(x) = [1, 4], σ(y) = [2, 3], and σ(z) = [0, 4.5]
are given. Each solved form of the constraint, i.e. x = z − y, y = z − x, and z = x + y,
allows contraction of the interval for the variable on the left-hand side. For x = z− y, we
subtract the interval [2, 3] for y from the interval [0, 4.5] for z, concluding that x can only
be in [−3, 2.5]. Intersecting this interval with the original interval [1, 4], we know that x
can only be in [1, 2.5]. Proceeding in a similar way for y = z − x does not change the
interval for y. Finally, from z = x+ y we conclude that z can only be in [3, 4.5]. Observe
that constraint z = x+y is hull consistent under the narrowed interval assignment σ′ with
σ′(x) = [1, 2.5], σ′(y) = [2, 3], and σ′(z) = [3, 4.5]. The treatment of integer variables is as
above but followed by clipping the integer intervals accordingly. For instance, if variables
x, y, and z are integer variables then the narrowed interval assignment σ′ is given by
σ′(x) = [1, 2], σ′(y) = [2, 3], and σ′(z) = [3, 4].

We formally denote the deduction of a new interval border ib from a constraint c and
from an interval assignment σ with σ(y) 6= ∅ for each variable y ∈ Var(c) by

(c, σ) −→ICP ib

where ib = (x ∼ r) with x ∈ Var(c) being a variable, ∼∈ {<,≤,≥, >}, and r being
a rational constant. Semantically, above ICP step ensures that for each (real-valued)
assignment τ ∈ σ, i.e. τ(y) ∈ σ(y) for each variable y for which σ(y) is defined, it holds
that τ |= c ⇒ ib.

In what follows, we formalize above observations. For a given set of real-valued and
integer variables V , let M be a conjunctive system of non-linear arithmetic constraints

122 6 Algorithms for SSMT Problems

over variables V representing the system state of the theory solver TS . We require that
each constraint c ∈M is in accordance with Definition 4.3, i.e. c is a bound or an equation.
In order to avoid redundancies and to ease the technical presentation, the system state
does not comprise the current interval assignment explicitly. In fact, the current interval
assignment σ is encoded in M itself. We therefore demand that M contains at least one
lower and at least one upper interval bound for each variable x ∈ V , i.e. (x ∼1 lx) ∈ M
with ∼1∈ {≥, >} and (x ∼2 ux) ∈ M with ∼2∈ {≤, <}. It is then straightforward to
retrieve from M the current interval assignment σM : let Mb be the set of all bounds
(x ∼ r) ∈ M where x is a variable, ∼∈ {<,≤,=,≥, >}, and r is a rational constant.
Then, σM is defined as the largest (with respect to interval size) interval assignment that
satisfies all bounds in Mb , i.e. for each (real-valued) assignment τ ∈ σM : τ |= Mb . For
instance, let be M = 〈x ≥ 2.1, x < 7, x ≤ 333.4, y > −499.3, y ≤ 0.9, x = y2, y > −4.06〉.
Then, Mb = 〈x ≥ 2.1, x < 7, x ≤ 333.4, y > −499.3, y ≤ 0.9, y > −4.06〉 and, thus,
σM(x) = [2.1, 7) and σM (y) = (−4.06, 0.9]. As we see later on, M is extended and
reduced by the SMT and SSMT layers during the proof search, which in turn means
that also σM frequently changes. With regard to implementation, we remark that it is
not necessary to re-extract σM each such time. In fact, data structures like stacks are
exploited to update σM efficiently.
The first rule TS.1 checks inconsistency of the current solver state M . In case M is

inconsistent under the current interval assignment σM , i.e. there is some c ∈ M with
σM ♯ c, then TS enters the distinguished state incons exhibiting inconsistency of M .

(TS.1)
σM ♯M

M −→TS incons

Deduction of a tighter interval border ib from some constraint in M and from the current
interval assignment σM by means of ICP is addressed by rule TS.2. Such a step yields
a narrowing of the interval assignment from σM to σM⊙〈ib〉. We require that the current
interval assignment σM maps each variable occurring in M to a non-empty interval.

(TS.2)
∀x ∈ Var(M) : σM (x) 6= ∅, c ∈M, (c, σM) −→ICP ib

M −→TS M ⊙ 〈ib〉

Given some conjunctive constraint system M , multiple application of above rule TS.2

either leads to an inconsistent solver state M , i.e. σM ♯M , or converges6 against a hull
consistent constraint system M , i.e. σM |=hc M .
As mentioned earlier, hull consistency of M is a necessary yet not sufficient condition

for real-valued satisfiability of M . Pragmatically, a hull consistent interval assignment of
sufficiently small volume, confer minimum splitting width ε explained in Subsection 6.3.1,
can be considered as an approximate solution which is an acceptable approach from an
engineering perspective. In some cases, however, we are able to mitigate the issue of
approximate solutions, namely by the subsequent strong satisfaction check , confer Sub-
section 6.3.1 and [FHT+07, Ked08, EKK+11].
Recall that the strong satisfaction check for an SMT formula ϕ and an approximate so-

lution σ works as follows. In the first step, from each clause of ϕ at least one constraint is

6Recall that reaching hull consistency within finitely many ICP steps cannot be ensured in general.

6.3 Algorithms for SMT 123

selected that is not inconsistent under σ. In the second step, it is tried to determine an in-
terval assignment ρ that contains a solution of the conjunction of above constraints within
the initial domains of the variables. The computation of ρ relies on constructing a variable
dependency graph as well as on the approximate solution σ. While responsibility for the
first step of the strong satisfaction check is with the SMT layer, the second step is han-
dled by the theory solver TS . For this purpose, we formally denote the call of the second
step of the strong satisfaction check on some conjunctive non-linear arithmetic constraint
system M and on some interval assignment σ by strong sat check(M,σ). The latter call
returns success only if M is satisfiable, i.e. if strong sat check(M,σ) = success thenM
is satisfiable. We assume here that system M already comprises the initial domains of the
involved variables such that each solution of M lies within the domains of the variables.
The incorporation of the strong satisfaction check into the theory solver TS is formalized
by the following rule TS.3 where the distinguished state sat exhibits satisfiability of M .
We remark that the system state of TS was slightly extended to (M,σ) since (the second

step of) the strong satisfaction check has to be aware of the approximate solution σ which
is provided by the SMT layer. It is of course possible to also use the extended state (M,σ)
in rules TS.1 and TS.2, namely by just ignoring σ. However, the latter treatment would
be meaningless and is thus not realized.

(TS.3)
strong sat check(M,σ) = success

(M,σ) −→TS sat

SMT layer for non-linear arithmetic SMT formulae. In what follows, we present
the rule-based description of the SMT layer that formalizes the iSAT algorithm. In addi-
tion to the conjunctive constraint system M that establishes the solver state of the theory
solver TS , the state of the SMT solver further incorporates a non-linear arithmetic SMT
formula ϕ. That is, the solver state of the SMT layer SMT is given by a pair (M,ϕ).
As already mentioned in Subsection 6.3.1, we require that ϕ is in conjunctive form (CF,
confer Definition 4.3) and that the domains dom(x) of all variables x ∈ Var(ϕ) are given
by bounded intervals . As motivated within the description of the theory solver TS , the
system state does not comprise the current interval assignment σ explicitly but σ is en-
coded by M and can be simply retrieved from M , namely by constructing the interval
assignment σM . We therefore need to ensure that σM maps each variable x ∈ Var(ϕ) to
a bounded interval for each solver state (M,ϕ), i.e. M contains at least one lower and
at least one upper interval bound for each x ∈ Var(ϕ). The latter is achieved by enforc-
ing that M comprises at least all the interval bounds specified by the domains dom(x)
of the variables x ∈ Var(ϕ). Formally, these domains are encoded symbolically by the
conjunctive system

(6.17)

Mdom := {x > inf(dom(x)) : x ∈ Var(ϕ), inf(dom(x)) /∈ dom(x)}

∪ {x ≥ inf(dom(x)) : x ∈ Var(ϕ), inf(dom(x)) ∈ dom(x)}

∪ {x < sup(dom(x)) : x ∈ Var(ϕ), sup(dom(x)) /∈ dom(x)}

∪ {x ≤ sup(dom(x)) : x ∈ Var(ϕ), sup(dom(x)) ∈ dom(x)} .

The SMT layer ensures that systemMdom is part ofM for each state (M,ϕ). This property
holds, in particular, for the initial SMT solver state given by (Mdom, ϕ) with ϕ being the
given SMT formula to be solved.

124 6 Algorithms for SSMT Problems

The application of the SMT layer rules below characterizes a backtracking procedure by
means of manipulating the solver state (M,ϕ), where the conjunctive system M consists
of constraints which are asserted during the proof search. The goal is to find someM such
that the corresponding interval assignment σM is a solution or an approximate solution of
ϕ, or to prove the absence of such a σM showing unsatisfiability of ϕ. During this process,
M is enlarged by adding unit constraints from ϕ as well as tighter interval bounds obtained
by ICP or interval splitting. If it turns out at some point thatM is inconsistent under the
current interval assignment σM then some of the constraints in M are removed in reverse
chronological order in order to regain a consistent solver state. The latter realizes the
operation of backtracking. To keep track of the chronological order of added constraints,
the conjunctive systemM is represented as a sequence of constraints rather than just a set.
To simply detect backtrack points in this data structure, the sequence M is interspersed
with a special marker symbol |. Though the formula part ϕ also is manipulated, namely
by means of adding implied conflict clauses, a special data structure for ϕ is not required.
As usual, we assume ϕ to be a set of clauses.
Rules SMT.1 and SMT.2 reflect the deduction phase of the iSAT algorithm. The first

rule SMT.1 applies unit propagation, i.e. it detects unit clauses cl and adds unit constraints
c to the conjunctive constraint systemM . Recall that unit constraints need to be satisfied
in order to retain a chance for satisfaction of SMT formula ϕ under some refinement σ′

M

of the current interval assignment σM , i.e. σ′
M(x) ⊆ σM (x) for each x ∈ Var(ϕ). We

remark that rule SMT.1 is slightly more general than just unit propagation: in addition
to unit constraints c, this rule potentially adds already inconsistent constraints c to M ,
namely if all constraints of clause cl are inconsistent under σM . This treatment is of
technical nature, namely to detect inconsistent states (M,ϕ) by means of M only. The
latter situation, i.e. inconsistency of M , is covered by rules SMT.4 and SMT.5. With
regard to termination, observe that at most one inconsistent constraint per inconsistent
clause can be added to M .

(SMT.1)

cl ∈ ϕ, c ∈ cl, ∀c′ ∈ cl : c′ /∈M,

∀c′ ∈ cl such that c′ 6= c :M ⊙ 〈c′〉 −→TS incons

(M,ϕ) −→SMT (M ⊙ 〈c〉, ϕ)

Deduction of tighter interval borders ib by means of ICP is done by rule SMT.2. For
termination reasons, we enforce that deduced interval borders yield a certain progress
which is specified by the progress parameter δ > 0. Further observe that whenever ICP
yields an inconsistent state (M ⊙ 〈ib〉, ϕ) then the interval σM⊙〈ib〉(x) of variable x has
become empty and rule SMT.2 is no longer applicable on (M ⊙ 〈ib〉, ϕ) due to rule TS.2.
Inconsistency of M is then treated by rules SMT.4 and SMT.5.

(SMT.2)

M −→TS M ⊙ 〈ib〉, ib = (x ∼ r),

sup(σM(x))− r ≥ δ if ∼∈ {<,≤}, r − inf(σM (x)) ≥ δ if ∼∈ {≥, >}

(M,ϕ) −→SMT (M ⊙ 〈ib〉, ϕ)

where x ∈ Var(ϕ), ∼∈ {<,≤,≥, >}, and r is a rational constant (representable by the
applied machine data type).
The next rule SMT.3 formalizes a decision step in the iSAT procedure, namely by

splitting the current interval σM (x) of some variable x at some value r ∈ σM(x). A

6.3 Algorithms for SMT 125

common splitting strategy is bisection, i.e. r is the midpoint of σM (x). The resulting
interval bound x ∼ r is then added to M together with a preceding special marker
symbol | indicating this decision step. The relation ∼∈ {<,≤,≥, >} specifies which of
the both subintervals is investigated first. To avoid an infinite sequence of splitting steps,
we introduce the parameter ε > 0, called minimum splitting width, to ensure that only
intervals of width at most ε are split. With regard to termination, we furthermore have
to make sure that the decided bound x ∼ r yields enough progress according to progress
parameter δ. As rule SMT.4 potentially deduces the negation of the decided bound x ∼ r,
enough progress is also required for ¬(x ∼ r). For a reasonable setting, we assume that
ε ≥ 2δ as this allows to perform a splitting step whenever the width of σM(x) is greater
than or equal to ε.

(SMT.3)

x ∈ Var(ϕ), ∼∈ {<,≤,≥, >}, r ∈ σM (x) 6= ∅,

sup(σM(x))− inf(σM(x)) ≥ ε, sup(σM(x))− r ≥ δ, r − inf(σM (x)) ≥ δ

(M,ϕ) −→SMT (M ⊙ 〈|, x ∼ r〉, ϕ)

If the current solver state (M,ϕ) is inconsistent, i.e. M −→TS incons, then the SMT
layer has detected a so-called conflict meaning that the current interval assignment σM
cannot contain any solution of ϕ. In such a situation, the conflict is analyzed. If M
comprises at least one special marker symbol |, i.e. some decisions are involved in M ,
then the conflict can be resolved as follows. At first, a small (or even minimal) subsystem
of interval bounds b1, . . . , bk from M is determined, building the reason for the current
conflict, such that the conjunction of these bounds together with the SMT formula ϕ is
unsatisfiable, i.e. ϕ∧b1∧ . . .∧bk ≡ false. Observe that such a reason encodes an interval
assignment ρ that is potentially more general than σM , i.e. ∀x ∈ Var(ϕ) : ρ(x) ⊇ σM(x).
In order to prevent the SMT layer from unnecessarily probing ρ or a refinement of ρ in
future search, ρ is excluded by adding a so-called conflict clause to the formula. Such a
conflict clause can be easily constructed by means of the disjunction of the negated interval
bounds (¬b1 ∨ . . .∨¬bk). This new clause forbids any refinement of ρ in which a solution
cannot exist by forcing that at least one of the bounds b1, . . . , bk may not hold. This is
referred to as conflict-driven clause learning. Note that a conflict clause is always implied
by the SMT formula ϕ, i.e. |= ϕ ⇒ (¬b1∨ . . .∨¬bk), since ϕ∧ b1∧ . . .∧ bk is unsatisfiable.
Hence, ϕ ≡ ϕ ∧ (¬b1 ∨ . . . ∨ ¬bk). We remark that there are very efficient techniques for
the generation of such conflict clauses for the propositional SAT case, confer [MSLM09],
like the first unique implication point (1UIP) technique from [ZMMM01]. Both tools
HySAT-II and iSAT employ a conflict resolution strategy very similar to the 1UIP scheme.
For more details, the interested reader is referred to [FHT+07, THFA08, Her10]. Conflict-
driven clause learning usually appears in combination with non-chronological backtracking
where the conflict clause cc is additionally used for backtracking. Due to construction of
cc by the 1UIP technique, it is ensured that there is some decision level on which cc
becomes unit. From this decision level the search will be continued by applying unit
propagation for cc, i.e. by deduction of the interval bound ¬bk. This approach leads to a
non-chronological backtracking operation, often jumping back more than just one level.
It is important to mention that the bounds bi for 1 ≤ i ≤ k−1 can be of the form x = r.

The negation ¬bi is then encoded by the disjunction of two bounds, i.e. ¬(x = r) ; (x <
r ∨ x > r). The bound bk must however be of the form x ∼ r with ∼∈ {<,≤,≥, >}, so

126 6 Algorithms for SSMT Problems

that its negation ¬bk, which will be added toM , represents an interval border. We remark
that such a bound bk can always be found in M ′′: at least the leftmost bound in M ′′, i.e.
the decided bound added by rule SMT.3, is of the desired shape. To achieve termination,
we again need to ensure that the deduced bound ¬bk yields enough progress according
to progress parameter δ. At least the decided bound added by rule SMT.3 satisfies this
condition. The above facts are formalized by the following rule SMT.4.

(SMT.4)

M −→TS incons, M =M ′ ⊙ 〈|〉 ⊙M ′′, b1, . . . , bk−1 ∈M ′, bk ∈M ′′,

b1, . . . , bk are bounds, ϕ ∧ b1 ∧ . . . ∧ bk ≡ false, bk = (x ∼ r),

sup(σM ′(x))− r ≥ δ if 6∼∈ {<,≤}, r − inf(σM ′(x)) ≥ δ if 6∼∈ {≥, >}

(M,ϕ) −→SMT (M ′ ⊙ 〈¬bk〉, ϕ ∧ (¬b1 ∨ . . . ∨ ¬bk))

where x ∈ Var(ϕ), ∼∈ {<,≤,≥, >}, r is a rational constant, and 6∼ gives the opposite
relation of ∼, i.e. 6∼ is < if and only if ∼ is ≥ and so forth.

If the current solver state (M,ϕ) is inconsistent, meaning that the current interval
assignment σM cannot contain any solution of ϕ, and if the conjunctive systemM does not
comprise the special marker symbol | then the SMT formula ϕ is unsatisfiable within the
domains of its variables, i.e. ϕ∧Mdom is unsatisfiable where Mdom encodes the domains of
the variables symbolically as defined in equation 6.17. The rationale is that all constraints
in M , and thus σM itself, are implied by ϕ and Mdom, i.e. |= ϕ ∧Mdom ⇒ M , and that
M is inconsistent under σM entailing that M is unsatisfiable. Let ψ be the original SMT
formula. As only implied clauses were added to ψ, namely by rule SMT.4, it clearly holds
that ψ ⇒ ϕ and, thus, also ψ is unsatisfiable within the domains dom(x) of its variables
x ∈ Var(ψ). This situation is reflected by the next rule SMT.5 where the distinguished
SMT layer state unsat exhibits unsatisfiability of the given SMT problem.

(SMT.5)
M −→TS incons, |/∈M

(M,ϕ) −→SMT unsat

In order to potentially prove satisfiability of the given SMT formula, the next rule SMT.6

integrates the strong satisfaction check into the SMT layer. That is, from each clause of
ϕ at least one constraint is selected which is not inconsistent under the current interval
assignment σM . The latter process results in M3. Note that such M3 must exist when-
ever none of the rules SMT.1 to SMT.5 is applicable. The subsystem M1, containing all
constraints from M which were added before the first decision step by SMT.3, includes
the symbolic encoding of the initial domains of the variables given by Mdom. Therefore,
if the strong satisfaction check, as realized by theory layer rule TS.3, succeeds on the
conjunctive system M1 ⊙M3 and on interval assignment σM then the SMT formula ϕ is
satisfiable within the domains of its variables, i.e. ϕ ∧Mdom is satisfiable. Note that ϕ
may contain implied conflict clauses cc. Since ϕ ≡ ϕ ∧ cc with ϕ ⇒ cc, also the original
SMT formula is satisfiable within the domains of its variables. Above observations are
formally described by rule SMT.6 where the distinguished SMT layer state sat displays
satisfiability of the given SMT problem. Observe that rule SMT.6 is not restricted to
the case in which σM is an approximate solution but can be applied for arbitrary but

6.3 Algorithms for SMT 127

consistent SMT solver states.

(SMT.6)

M =

{
M1 ⊙ 〈|〉 ⊙M2 ; |∈M,

M1 ; |/∈M
, |/∈M1,

∃M3 ∀cl ∈ ϕ ∃c ∈ cl with c ∈M3,¬(σM ♯ c) : (M1 ⊙M3, σM) −→TS sat

(M,ϕ) −→SMT sat

Proposition 6.2 states facts about soundness and termination of the iSAT algorithm for-
malized by the SMT layer above, i.e. by rules SMT.1 to SMT.6. For the corresponding
proofs, we refer the reader to [FHT+07, Her10]. As usual, we denote by −→∗

SMT the
reflexive transitive closure of the relation −→SMT .

Proposition 6.2 (Soundness and termination of the SMT layer)
Let be given a non-linear arithmetic SMT formula ϕ over the reals and integers in CF
as in Definition 4.3 and let the domains dom(x) of all variables x ∈ Var(ϕ) be given by
bounded intervals. Let further Mdom be a conjunctive system that encodes above domains
as defined in equation 6.17 and let (Mdom, ϕ) be the initial state of the SMT layer. We
require that the minimum splitting width ε and the progress parameter δ are both strictly
greater than zero and that ε ≥ 2δ. Then,

1. the SMT layer always terminates, i.e. there does not exist an infinite sequence
(Mdom, ϕ) −→SMT . . . −→SMT S −→SMT . . . of SMT rule applications, and

2. for each final state F , i.e. (Mdom, ϕ) −→
∗
SMT F and there does not exist a state F ′

such that F −→SMT F ′, it holds that

a) if F = unsat then ϕ ∧Mdom is unsatisfiable,

b) if F = sat then ϕ ∧Mdom is satisfiable, and

c) otherwise, i.e. F = (M,ϕ′), each clause in ϕ contains at least one constraint
that is not inconsistent under interval assignment σM , and the interval of each
variable x ∈ Var(ϕ) has a width below ε, i.e. sup(σM(x))− inf(σM(x)) < ε.

In order that Proposition 6.2 holds for an implementation of the SMT layer using ma-
chine data types, we need to ensure that constant r in rule SMT.3 is actually computer-
representable. This can be achieved, for instance, by choosing the progress parameter δ
at least as large as the maximal quantization step of the applied numerical data type as
well as by setting the minimum splitting width ε at least three times larger than δ.
Observe that above case 2c reflects the result of an approximate solution where the

concept of not being inconsistent is used rather than the stronger notion of being hull
consistent.7 This is due to two reasons. First, hull consistency cannot be achieved with
full rigor in general, as already mentioned, but just up to some desired, potentially high
accuracy specified by the progress parameter δ. Second, it cannot be guaranteed that M
actually comprises constraints from all clauses, i.e. it might be the case that there is some
clause cl ∈ ϕ such that all constraints c ∈ cl do not occur in M . The latter situation
happens if cl contains at least two constraints c1, c2 /∈M that are not inconsistent under
σM , which means that rule SMT.1 was not allowed to add c1 or c2 to M . Assume that

7Note that hull consistency implies the property of being not inconsistent.

128 6 Algorithms for SSMT Problems

clause cl consists of equations only, then no other rule is able to insert constraints from cl
to M . To avoid the latter issue, one could enhance the decision rule SMT.3 by allowing
to decide constraints from clauses in addition to split intervals. Another option might be
to simply restrict the syntactical shape of clauses without loss of generality as in [Her10],
where a clause consists of either several simple interval bounds or exactly one arithmetic
constraint.

Concluding this section, we finally mention a simple but important fact with regard
to the integration of iSAT into the SSMT algorithm being introduced in Section 6.4.
During the SSMT proof search, several SMT problems need to be solved, as indicated in
Figure 4.3. Due to the rather tight integration, these problems are encoded by means of
(initial) SMT solver states (Mdom⊙M

′, ϕ) withM ′ being conjunctive systems of arithmetic
constraints. Such systems M ′ arise during the SSMT proof search when instantiating
quantified variables with values and when deducing new facts using unit propagation and
ICP. The following remark adapts Proposition 6.2 to the latter case.

Remark 6.1
Let ϕ be a non-linear arithmetic SMT formula in CF and Mdom be a conjunctive system
encoding the domains of all variables in Var(ϕ) as in equation 6.17. Let further M ′

be a conjunctive system of primitive constraints, i.e. of bounds and equations, confer
Definition 4.3, not containing the special marker symbol |, i.e. |/∈M ′, such that

� each equation e ∈ M ′ can be deduced from Mdom ⊙M ′
b and ϕ by means of the unit

propagation rule SMT.1, i.e.

(Mdom ⊙M ′
b, ϕ) −→SMT (Mdom ⊙M ′

b ⊙ 〈e〉, ϕ)

where the conjunctive system M ′
b consists of all bounds from M ′.

Then, Proposition 6.2 also holds when taking (Mdom ⊙ M ′, ϕ) as the initial state, and
when slightly changing the statements of items 2a and 2b to the facts that ϕ∧Mdom ⊙M ′

is unsatisfiable and ϕ ∧Mdom ⊙M ′ is satisfiable, respectively.

The condition on M ′ in Remark 6.1 is necessary in order to ensure that conflict-driven
clause learning (rule SMT.4) is applicable, namely that conflict clauses consist of bounds
only. We see in the next section that aforementioned condition is satisfied whenever the
subordinate SMT solver is invoked by the SSMT algorithm.

6.4 Algorithms for SSMT

This section finally presents an algorithm to solve SSMT problems which we call the
SiSAT algorithm. Basically, the proposed procedure adds an additional layer to the SMT
solver iSAT in order to cope with existential and randomized quantifiers. More precisely,
this topmost layer traverses the Cartesian product of the domains of the quantified vari-
ables and thereby computes the satisfaction probabilities for the individual quantifiers in
accordance with Definition 4.5 and as indicated in Figure 4.3. Upon each complete assign-
ment to the quantified variables, iSAT is called to solve the corresponding quantifier-free

6.4 Algorithms for SSMT 129

iSAT iSAT ...b)...iSAT iSAT

quantifier tree traversal

a) iSATiSAT iSATiSAT

Figure 6.5: Illustration of the SiSAT algorithm: a) brute-force approach where the whole

exponentially-sized quantifier tree is traversed and b) enhanced approach that employs several

algorithmic optimizations to prune the quantifier tree.

subproblem, as shown in Figure 6.5 a. However, such naive approach is far from scal-
able as it has to solve one SMT problem per element of the Cartesian product of the
quantifier ranges, which is exponential in the number of quantified variables. To over-
come this problem, SiSAT employs aggressive pruning rules that save visits to major
parts of the quantifier ranges based on semantic inferences, as illustrated in Figure 6.5 b.
Such pruning exploits, on the one hand, deduction mechanisms inherited from iSAT like
unit propagation (rule SMT.1) and ICP (rule SMT.2) in combination with conflict-driven
clause learning (rule SMT.4), as conflict clauses record inconsistent value assignments
which need not be probed again when traversing the set of possible assignments to quan-
tified variables. On the other hand, the algorithmic optimizations used in SSAT solvers
like thresholding and purification, confer Subsection 6.2.1, can be adapted to the more
general SSMT case.

For the sake of clarity, the basic SiSAT algorithm as introduced next only incorporates
the deduction techniques from iSAT as well as the concept of thresholding. Several other
algorithmic enhancements are investigated in Section 6.5.

6.4.1 SSMT layer for non-linear arithmetic SSMT formulae

The SSMT solver is defined by the layer SSMT which rests upon the SMT layer, while
the latter in turn is based on the theory layer TS . The solver state of this topmost layer
is given by a tuple (M,Q : ϕ, θl, θu) where M is a conjunctive constraint system, Q : ϕ
is an SSMT formula, and θl, θu with θl ≤ θu are rational constants that are called lower
threshold and upper threshold, respectively, and are used for the algorithmic optimization
of thresholding. With regard to the underlying iSAT algorithm, we demand that ϕ is in
conjunctive form8 and that the domains dom(x) of all variables x ∈ Var(ϕ) are given by
bounded intervals. Note that the domains Dx of quantified variables x ∈ Var(Q), where
Var(Q) gives the set of all quantified variables occurring in prefix Q as in Definition 6.1
for SSAT formulae, can be represented by integer intervals, confer Subsection 4.4.1. As
for the SMT layer and the theory layer, the current interval assignment is not explicitly
given by the system state but encoded within M , and can be simply retrieved from M

8As observed at the end of Subsection 4.4.1, this restriction is without loss of generality.

130 6 Algorithms for SSMT Problems

by constructing the interval assignment σM . The SSMT layer therefore ensures that the
conjunctive system Mdom, encoding the domains of all variables symbolically as defined
in equation 6.17, is part of M for each solver state (M,Q : ϕ, θl, θu). This property holds,
in particular, for the initial SSMT solver state given by (Mdom,Q : ϕ, θl, θu) with Q : ϕ
being the given SSMT formula to be solved and with θl, θu being the given lower and
upper thresholds.

The SSMT layer is specified by the SSMT rules below that define the relation −→SSMT .
Starting with the initial state (Mdom,Q : ϕ, θl, θu), the SSMT layer applies these rules and
terminates in a final state F , i.e. (Mdom,Q : ϕ, θl, θu) −→

∗
SSMT F where −→∗

SSMT denotes
the reflexive transitive closure of −→SSMT as usual. A final state F is a distinguished
state of the shape (pr, ϕ′) where pr ∈ [0, 1] is the probability result and ϕ′ ⊇ ϕ is an SMT
formula in CF. The rationale of returning an SMT formula ϕ′ is on account of conflict-
driven clause learning, i.e. learnt conflict clauses are contained in ϕ′. As the premises of
the SSMT rules involve recursive calls, conflict clauses will thus be available by means of
the results returned by the recursions. Recall that conflict clauses are always implied by
the original SMT formula ϕ. Hence, ϕ ≡ ϕ′.

Before explaining the meaning of the probability result pr, we first have to address the
incompleteness issue of iSAT, more precisely, how SiSAT deals with approximate solutions
obtained by iSAT. Recall that there is no mathematical certainty about such latter results,
i.e. the SMT formula may be unsatisfiable or satisfiable, though such approximate solu-
tions σ are often reasonable and helpful in many practical applications, in particular if the
intervals σ(x) for all variables x are sufficiently small. With regard to the inconclusive na-
ture of approximate solutions, we devise two possible strategies in order to cope with such
undecided cases within the SSMT layer: first, we assume that an approximate solution
means that the corresponding SMT subproblem is unsatisfiable, or, second, an approxi-
mate solution is considered as a definite solution, i.e. the corresponding SMT subproblem
is regarded as satisfiable. To distinguish both strategies, we introduce the parameter
p̃ ∈ {0, 1} which is set to 0 or to 1 in order to enable the first strategy (assuming unsat-
isfiability) or the second strategy (assuming satisfiability), respectively. This parameter
p̃ serves as the return value if an approximate solution was found (rule SSMT.9), and is
furthermore used to compute the probability result if thresholding applies (rules SSMT.3

and SSMT.4).

The probability result pr is interpreted with respect to the thresholds θl and θu, where
the overall idea is the same as in the DPLL-SSAT case, confer Subsection 6.2.1. Namely,
if the probability of satisfaction Pr(Q : ϕ) lies in the interval [θl, θu] then we aim at
computing the exact satisfaction probability, i.e. pr = Pr(Q : ϕ). Otherwise, i.e. Pr(Q :
ϕ) /∈ [θl, θu], the exact probability of satisfaction is not of interest but only some witness
value pr is desired such that pr < θl if and only if Pr(Q : ϕ) < θl and pr > θu if and
only if Pr(Q : ϕ) > θu. In contrast to the DPLL-SSAT case, where above interpretation
is fully applicable, we have to deal with undecided subcases stemming from approximate
solutions in the SiSAT case. That is, SiSAT is in general not capable of computing the
exact satisfaction probability of every non-linear arithmetic SSMT formula Q : ϕ.

However, using above strategies indicated by parameter p̃, it turns out that we can deal
with safe under - as well as overapproximations of the exact satisfaction probability Pr(Q :
ϕ), namely if p̃ = 0 and p̃ = 1, respectively. As being demonstrated by Theorem 6.2 later

6.4 Algorithms for SSMT 131

on, we can establish the following interpretation of result pr:

� If p̃ = 0, i.e. undecided SMT subproblems are assumed to be unsatisfiable, then pr
is an underapproximation of the actual satisfaction probability, i.e. Pr(Q : ϕ) ≥ pr.
Consequently, whenever pr > θu then Pr(Q : ϕ) > θu.

� If p̃ = 1, i.e. undecided SMT subproblems are assumed to be satisfiable, then pr
is an overapproximation of the actual satisfaction probability, i.e. Pr(Q : ϕ) ≤ pr.
Consequently, whenever pr < θl then Pr(Q : ϕ) < θl.

The presence of the thresholds θl and θu is motivated, for instance, in the verification of
probabilistic safety properties where the problem is to decide whether the probability of
exhibiting unsafe system behavior is below or above some acceptable threshold, confer
Definition 5.4. Akin to the DPLL-SSAT procedure from Figure 6.1, the thresholds θl and
θu are exploited for reducing the computational effort of SSMT algorithms in practice,
namely by potentially pruning the search tree, as indicated in Figure 6.5 b, using the idea
of thresholding. It is important to remark that thresholding can be “disabled” by setting
θl := 0 and θu := 1.

The SSMT layer is defined by the following rules SSMT.1 to SSMT.10. The treatment
of the quantifier prefix incorporating the algorithmic concept of thresholding is described
by rules SSMT.1 to SSMT.5, while rules SSMT.6 to SSMT.10 integrate the SMT layer
into the SSMT proof search.

Branching and thresholding for quantified variables within the SSMT layer slightly
generalize the corresponding approach applied in the DPLL-SSAT procedure, confer Fig-
ure 6.1. Recall that, as opposed to the SSAT case, quantified variables in SSMT are
not restricted to the Boolean domain but may range over arbitrary (but finite) domains.
Rules SSMT.1 and SSMT.2 characterize branching for existential and randomized vari-
ables, respectively, that is in accordance with the formal semantics of SSMT from Defi-
nition 4.5. That is, using the leftmost variable x from the quantifier prefix, the current
SSMT problem Φ is split into smaller subproblems as follows. First, some value v from
domain Dx is selected and the corresponding subproblem for branch “x = v” is solved. All
remaining branches “x = v′” with v′ ∈ Dx \ {v} are then addressed by a recursive call in
which value v is removed from domain Dx. Finally, both partial results are combined to
obtain the probability result for Φ.

Observe that SSMT.1 and SSMT.2 are only applicable if the domains of all quantified
variables are non-empty. The contrary is treated by rule SSMT.5 later on. Furthermore
note that SSMT.1 and SSMT.2 require that thresholding fails. More precisely, if x is
existential then the probability result pr of the first branch need be smaller than or
equal to the upper threshold θu. We furthermore require that pr may not be the highest
possible probability 1 since otherwise no other branch could yield a higher probability.
If x is randomized then the weighted probability pv · pr may be at most θu as well as
the maximum possible satisfaction probability in consideration of all remaining branches,
i.e. pv · pr + premain , must be greater than or equal to the lower threshold θl. We remark
that a similar requirement like in the existential case, namely pv · pr < 1, does not make
much sense since pv · pr = 1 can only be true if pv = 1. The latter implies that domain
Dx = {v} is a singleton and thus the second recursion immediately reaches a base case

132 6 Algorithms for SSMT Problems

as D′
x = ∅, which is handled by rule SSMT.5. The issue of determining the lower and

upper thresholds for the recursive calls is examined later on, namely after introduction of
rule SSMT.4.

(SSMT.1)

v ∈ Dx, ∀(Qy ∈ Dy) ∈ Q : Dy 6= ∅,

(M ⊙ 〈x = v〉,Q : ϕ, θl, θu) −→
∗
SSMT (pr, ϕ′), pr ≤ θu, pr < 1

D′
x = Dx \ {v}, θ

′
l = max(pr, θl),

(M, ∃x ∈ D′
x ⊙Q : ϕ′, θ′l, θu) −→

∗
SSMT (pr′, ϕ′′)

(M, ∃x ∈ Dx ⊙Q : ϕ, θl, θu) −→SSMT (max(pr, pr′), ϕ′′)

(SSMT.2)

v ∈ Dx, ∀(Qy ∈ Dy) ∈ Q : Dy 6= ∅,

pv = dx(v), premain =
∑

v′∈Dx,v′ 6=v dx(v
′),

θ′l = (θl − premain)/pv, θ
′
u = θu/pv,

(M ⊙ 〈x = v〉,Q : ϕ, θ′l, θ
′
u) −→

∗
SSMT (pr, ϕ′),

pv · pr + premain ≥ θl, pv · pr ≤ θu,

D′
x = Dx \ {v}, θ

′′
l = θl − pv · pr, θ

′′
u = θu − pv · pr,

(M,

R

dxx ∈ D′
x ⊙Q : ϕ′, θ′′l , θ

′′
u) −→

∗
SSMT (pr′, ϕ′′)

(M,

R

dxx ∈ Dx ⊙Q : ϕ, θl, θu) −→SSMT (pv · pr + pr′, ϕ′′)

Recall that the exact probability result is not of interest whenever the satisfaction prob-
ability lies outside the interval [θl, θu]. This fact motivates the concept of thresholding
which is now taken into account by rules SSMT.3 and SSMT.4. More precisely, if it turns
out that the (weighted) probability of the first branch already exceeds the upper thresh-
old, i.e. pr > θu in the existential case and pv · pr > θu in the randomized case, then
we skip investigation of all remaining branches “x = v′” with v′ ∈ Dx \ {v}, as we have
already found out that the satisfaction probability of the corresponding subproblem is
greater than θu. We furthermore discard all remaining branches in the existential case
if pr is the highest possible probability, i.e. if pr = 1, since then no result of any other
branch can be greater than pr. Thresholding is also applicable whenever it turns out that
the maximum possible probability mass of all remaining branches is not large enough
to reach the lower threshold. The latter rule can be realized for randomized variables,
namely by checking whether pv · pr+ premain < θl is true. A similar rule for the existential
case is however infeasible since we cannot derive in general any non-trivial upper bound
on the maximum of the unknown probability results of the remaining branches. When-
ever thresholding succeeds, a potentially very large part of the search space is skipped as
indicated in Figure 6.5 b, which often leads to enormous performance gains in practice. In
Section 6.7, we present empirical results showing the benefit of thresholding and several
other algorithmic optimizations, the latter being introduced in Section 6.5.
Particular attention must be devoted to the returned probability result. Recall that

if p̃ = 0 or p̃ = 1 then SiSAT aims at approximating the satisfaction probability safely
from below or from above, respectively. We consider rule SSMT.3 first. If p̃ = 0 then
pr ≥ 0 is a lower bound of the satisfaction probability of branch “x = v”. Since variable
x is existential, the return value max(pr, p̃) = max(pr, 0) = pr is a safe lower probability
bound of the whole SSMT subproblem. Similarly, if p̃ = 1 then pr ≤ 1 is an upper
bound of the satisfaction probability of branch “x = v”. Since variable x is existential,

6.4 Algorithms for SSMT 133

the return value max(pr, p̃) = max(pr, 1) = 1 is a safe upper probability bound of the
whole SSMT subproblem. One might wonder why the trivial upper bound 1 is used here.
The rationale is that the satisfaction probability of some of the remaining branches could
be strictly greater than pr. In such cases, pr is no upper probability bound of the whole
SSMT subformula. It is however clear that the upper bound for the whole subproblem,
i.e. when considering all of the remaining branches, must be greater than θu and, thus,
cannot be strictly smaller than θl ≤ θu. This gives us the motivation to apply SSMT.3

even if p̃ = 1. We now investigate the probability result returned by rule SSMT.4. If
p̃ = 0 then pr is a lower bound of the satisfaction probability of branch “x = v”. Since
variable x is randomized, the return value pv ·pr+premain · p̃ = pv ·pr+premain ·0 = pv ·pr,
i.e. the weighted result for branch “x = v”, is a safe lower probability bound of the whole
SSMT subproblem. If p̃ = 1 then pr is an upper bound of the satisfaction probability of
branch “x = v”. Since variable x is randomized, the return value pv · pr + premain · p̃ =
pv · pr + premain · 1 = pv · pr + premain , i.e. the sum of the weighted result for branch
“x = v” and the maximum possible probability of all remaining branches, is a safe upper
probability bound of the whole SSMT subproblem.
As for SSMT.1 and SSMT.2 above, rules SSMT.3 and SSMT.4 are only applicable if the

domains of all quantified variables are non-empty.

(SSMT.3)

v ∈ Dx, ∀(Qy ∈ Dy) ∈ Q : Dy 6= ∅,

(M ⊙ 〈x = v〉,Q : ϕ, θl, θu) −→
∗
SSMT (pr, ϕ′), pr > θu or pr = 1

(M, ∃x ∈ Dx ⊙Q : ϕ, θl, θu) −→SSMT (max(pr, p̃), ϕ′)

(SSMT.4)

v ∈ Dx, ∀(Qy ∈ Dy) ∈ Q : Dy 6= ∅,

pv = dx(v), premain =
∑

v′∈Dx,v′ 6=v dx(v
′),

θ′l = (θl − premain)/pv, θ
′
u = θu/pv,

(M ⊙ 〈x = v〉,Q : ϕ, θ′l, θ
′
u) −→

∗
SSMT (pr, ϕ′),

pv · pr + premain < θl or pv · pr > θu

(M,

R

dxx ∈ Dx ⊙Q : ϕ, θl, θu) −→SSMT (pv · pr + premain · p̃, ϕ′)

With respect to soundness of thresholding, the lower threshold θ′l and the upper threshold
θ′u for the first recursive call (M ⊙ 〈x = v〉,Q : ϕ, θ′l, θ

′
u) need to be set correctly. For this

purpose, we require the following. Above call returns a value pr < θ′l if and only if pr < θl
whenever variable x is existential and pv · pr + premain < θl whenever x is randomized. A
value pr > θ′u is given back if and only if pr > θu whenever x is existential and pv ·pr > θu
whenever x is randomized. As pv > 0, this justifies the use of thresholds θ′l and θ

′
u with

θ′l =

{
θl if x is existential,

(θl − premain)/pv if x is randomized,

θ′u =

{
θu if x is existential,

θu/pv if x is randomized

for the first recursion within the premises of above rules SSMT.1 to SSMT.4. Observe
that the new thresholds θ′l and θ

′
u satisfy θ′l ≤ θ′u, i.e. θl ≤ θu for the existential case, and

(θl − premain)/pv ≤ θu/pv since premain ≥ 0 for the randomized case.

134 6 Algorithms for SSMT Problems

The thresholds for the second recursion in rules SSMT.1 and SSMT.2, covering all
remaining branches “x = v′” for v′ ∈ Dx\{v}, are determined as follows. In the existential
case, the upper threshold remains untouched while the lower threshold can be increased to
the probability result pr of the first branch whenever pr is greater than the current lower
threshold θl. Otherwise, i.e. pr ≤ θl, lower threshold θl must be used. Since pr ≤ θu, it
holds that max(pr, θl) ≤ θu. The rationale is due to the semantics of existential quantifiers
that aim at maximizing the probability of satisfaction. That is, all results pr′ of the
remaining subproblems that are smaller than pr do not have any impact on the actual
probability result. In the randomized case, we subtract from both thresholds θl and θu
the probability result pv · pr obtained from the first branch. The rationale is that the
problem of deciding whether θl ≤ pv · pr + pr′ ≤ θu is equivalent to checking whether
θl − pv · pr ≤ pr′ ≤ θu − pv · pr, where pr

′ is the satisfaction probability of the remaining
subproblem

R

dxx ∈ D′
x ⊙Q : (ϕ′ ∧M). Clearly, θl − pv · pr ≤ θu − pv · pr.

As in the DPLL-SSAT case, lower thresholds θl may become negative, i.e. θl < 0, and
upper thresholds θu may exceed 1, i.e. θu > 1. This fact, however, does not destroy
soundness of thresholding as we have never stated any assumption on the range of θl and
θu. The only condition is that θl ≤ θu holds in each SSMT solver state (M,Q : ϕ, θl, θu),
which is actually preserved for the recursive calls as shown above.
The next rule SSMT.5 establishes the stopping criterion for the second recursion within

above rules SSMT.1 and SSMT.2, namely in case the domain of the leftmost quantified
variable x in the prefix is empty. The probability result then is 0, which is correct as
0 is the neutral element of the maximum operation for non-negative reals (applied if x
is existential) and of addition (applied if x is randomized). One might wonder why an
own rule is introduced to stop the recursion and why the latter is not integrated, for
instance, into rules SSMT.3 and SSMT.4. Moreover, rule SSMT.5 is not restricted to the
leftmost element in prefix Q but is applicable if any domain Dx within Q is empty. The
presence of this, allegedly too general, rule is motivated by the subsequent rule SSMT.6,
which employs reasoning mechanisms to prune the search space including the domains of
quantified variables. If application of SSMT.6 yields an empty domain for some quantified
variable x ∈ Var(Q) then this indicates that formula ϕ∧M cannot be satisfied, i.e. ϕ∧M
is unsatisfiable, which in turn means that Pr(Q : (ϕ ∧M)) = 0. The latter fact follows
from Definition 4.5.

(SSMT.5)
∃(Qx ∈ Dx) ∈ Q : Dx = ∅

(M,Q : ϕ, θl, θu) −→SSMT (0, ϕ)

All of the aforementioned SSMT rules are designed to deal with the quantifier prefix.
In the following, we now embed the SMT layer into the SSMT algorithm. The next
rule SSMT.6 exploits the deduction mechanisms employed in iSAT, more precisely unit
propagation and ICP, in order to cut off potentially huge parts of the quantifier tree as
depicted in Figure 6.5 b. That is, if the SMT solver is able to deduce new factsM ′ fromM
and ϕ by rules SMT.1 (unit propagation) and SMT.2 (ICP) then we lift these deductions
to the SSMT layer by means of rule SSMT.6 and thereby try to prune the domains of
quantified variables.

(SSMT.6)
(M,ϕ) −→∗

SMT (M ⊙M ′, ϕ), |/∈M ′, M ′ 6= ε, Q′ = prune(Q, σM⊙M ′)

(M,Q : ϕ, θl, θu) −→SSMT (M ⊙M ′,Q′ : ϕ, θl, θu)

6.4 Algorithms for SSMT 135

where prune(Q, σM⊙M ′) potentially excludes values from the domains Dx of quantified
variables x ∈ Var(Q) that do not lie within the current intervals σM⊙M ′(x) and thus
cannot be part of a solution. More formally, for prefixQ = Q1x1 ∈ Dx1

⊙. . .⊙Qnxn ∈ Dxn
,

we define

prune(Q, σM⊙M ′) := Q1x1 ∈ (Dx1
∩ σM⊙M ′(x1))⊙ . . .⊙Qnxn ∈ (Dxn

∩ σM⊙M ′(xn)) .

Observe that M ′ within above rule SSMT.6 may contain equations, confer Definition 4.3.
Such equations e ∈M ′ must have been added by the unit propagation rule SMT.1, i.e. by
(M⊙M ′′, ϕ) −→SMT (M⊙M ′′⊙〈e〉, ϕ) for some subsystem M ′′ ⊂M ′. As application of
SMT.1 does not rely on equations fromM⊙M ′′ directly but just on bounds fromM⊙M ′′

(realized by interval assignment σM⊙M ′′ in rule TS.1), the condition in Remark 6.1 is
preserved by rule SSMT.6, i.e. Remark 6.1 applies for SMT solver state (M ⊙M ′, ϕ).

Whenever the quantifier prefix is empty, the SMT solver iSAT is called to solve the
remaining (quantifier-free) SMT problem ϕ ∧M . As explained above, the condition in
Remark 6.1 holds for the SMT solver state (M,ϕ). On account of Proposition 6.2 or
rather of Remark 6.1, iSAT therefore terminates in one of the distinguished states unsat
and sat or in some state (M ′, ϕ′) such that σM ′ is an approximate solution.

The base cases unsat and sat are treated by rules SSMT.7 and SSMT.8, respectively,
returning the probability results 0 and 1 according to Definition 4.5. In addition, the
SMT formula ϕ′ of the immediate predecessor state (M ′, ϕ′) is given back. Recall that
ϕ′ ⊇ ϕ includes all implied conflict clauses that were learnt during SMT proof search.
These conflict clauses, recording inconsistent value assignments, thus are available within
the SSMT layer. Then, unit propagation via SSMT.6 is also applicable to conflict clauses
potentially pruning the quantifier tree.

(SSMT.7)
(M,ϕ) −→∗

SMT (M ′, ϕ′) −→SMT unsat

(M, ε : ϕ, θl, θu) −→SSMT (0, ϕ′)

(SSMT.8)
(M,ϕ) −→∗

SMT (M ′, ϕ′) −→SMT sat

(M, ε : ϕ, θl, θu) −→SSMT (1, ϕ′)

The result of an approximate solution is handled by rule SSMT.9. While the return values
for cases unsat and sat, namely 0 and 1, respectively, are determined by Definition 4.5,
it is not clear which probability should be given back in case an approximate solution was
found. As already mentioned, we can choose between two possible strategies to cope with
such undecided cases: undecided SMT subproblems are assumed either to be unsatisfiable
leading to an underapproximation of the actual satisfaction probability, which is indicated
by p̃ = 0, or to be satisfiable resulting in an overapproximation, which is employed if p̃ = 1.
According to the latter, the probability result for this base case is directly given by the
value of p̃. As for above rules SSMT.7 and SSMT.8, SMT formula ϕ′, containing all
conflict clauses learnt, is also returned.

(SSMT.9)
(M,ϕ) −→∗

SMT (M ′, ϕ′), 6 ∃S : (M ′, ϕ′) −→SMT S

(M, ε : ϕ, θl, θu) −→SSMT (p̃, ϕ′)

136 6 Algorithms for SSMT Problems

For the sake of efficiency, we introduce a further rule SSMT.10 that is similar to SSMT.7.
However, SSMT.10 does not demand that the quantifier prefix Q is empty such that the
probability result is potentially returned much earlier, thus improving performance of the
SSMT procedure. More precisely, whenever the current SMT problem ϕ ∧M becomes
unsatisfiable then it immediately follows from Definition 4.5 that Pr(Q : (ϕ ∧M)) = 0
even though the quantifier prefix Q is non-empty. This fact thus justifies return value 0.

(SSMT.10)
(M,ϕ) −→SMT unsat

(M,Q : ϕ, θl, θu) −→SSMT (0, ϕ)

A similar rule for result sat is not feasible in general as satisfiability of ϕ ∧ M does
not imply that Pr(Q : (ϕ ∧ M)) = 1 holds for non-empty Q. We remark that an
algorithmic optimization loosely referring to this issue is investigated in Section 6.5. This
technique called solution-directed backjumping is based on detecting quantified variables
which have no impact on the current (approximate) solution, and on computing the
satisfaction probabilities for these variables immediately without probing their alternative
values.

6.4.2 Soundness and termination of the SSMT layer

In what follows, we prove soundness and termination of the SSMT layer. For this purpose,
let (M,Q : ϕ, θl, θu) be a (valid) state of the SSMT layer, i.e.M is a conjunctive constraint
system, Q : ϕ is an SSMT formula where matrix ϕ is in CF as in Definition 4.3, and θl
and θu with θl ≤ θu are two rational constants (the lower threshold and upper threshold,
respectively). Observe that the special marker symbol | is never added to M by any rule
of the SSMT layer, i.e. for each above state it holds that |/∈ M . We further assume that
the embedded SMT layer state (M,ϕ) satisfies the condition in Remark 6.1. We mention
that an initial state of the SSMT layer, i.e. where M = Mdom, confer equation 6.17, is
compliant with the above requirements.

Lemma 6.5 first shows that modification of the SSMT formula by rule SSMT.6 preserves
the maximum probability of satisfaction.

Lemma 6.5 (Modification of SSMT formula)
For each sequence

(M,Q : ϕ, θl, θu) −→∗
SSMT (M ′,Q′ : ϕ′, θ′l, θ

′
u)

of SSMT rule applications, it holds that ϕ = ϕ′, θl = θ′l, θu = θ′u, and

Pr(Q : (ϕ ∧M)) = Pr(Q′ : (ϕ′ ∧M ′)) .

Proof. We show the lemma by induction over the number k of rule applications. For base
case where k = 0, i.e. no rule was applied, the result follows obviously since M = M ′,
Q = Q′, ϕ = ϕ′, θl = θ′l, and θu = θ′u. For the induction step, we assume that the lemma
holds for k ≥ 0, i.e. for

(M,Q : ϕ, θl, θu) −→∗
SSMT (M ′′,Q′′ : ϕ, θl, θu)

6.4 Algorithms for SSMT 137

such that
(M ′′,Q′′ : ϕ, θl, θu) −→SSMT (M ′,Q′ : ϕ′, θ′l, θ

′
u) .

It then remains to show the statement for the latter step where, obviously, rule SSMT.6

was applied. Consequently, ϕ = ϕ′, θl = θ′l, and θu = θ′u. Due to rules SMT.1 and SMT.2

applied within the premise of SSMT.6, i.e. within (M ′′, ϕ) −→∗
SMT (M ′, ϕ), it holds that

ϕ ∧M ′′ ≡ ϕ ∧M ′. Let be (Qx ∈ Dx) ∈ Q′′ and (Qx ∈ D′
x) ∈ Q′ for some quantified

variable x. Then, for each v ∈ Dx \ D
′
x the SMT formula (ϕ ∧M ′)[v/x] is unsatisfiable.

As a consequence,

Pr(Q : (ϕ ∧M)) = Pr(Q′′ : (ϕ ∧M ′′)) = Pr(Q′ : (ϕ′ ∧M ′))

which proves the lemma. 2

The following proofs of soundness and termination of the SSMT algorithm involve the
principle of Noetherian induction. This proof method is based on well-founded strict
partial orders. A strict partial order on some set A is a transitive and irreflexive binary
relation ≻, i.e. for all a1, a2, a3 ∈ A it holds that if a1 ≻ a2 and a2 ≻ a3 then a1 ≻ a3, and
for all a ∈ A it does not hold that a ≻ a, i.e. a 6≻ a. A strict partial order ≻ on A is called
well-founded if and only if there is no infinite descending chain a1 ≻ a2 ≻ . . . ≻ an ≻
An element m ∈ A is called minimal element with respect to some strict partial order
≻ if and only if there does not exist an element m′ ∈ A such that m ≻ m′. The idea of
Noetherian induction is as follows. Let A be some set and ≻ be some well-founded strict
partial order on A. Assume that we would like to prove that some property P holds for all
elements of A. By the principle of Noetherian induction, it suffices to show the following
implication for all a ∈ A:

� if property P holds for all a′ ∈ A with a ≻ a′ then property P holds for a.

In case above implication is satisfied, it follows that property P is true for all a ∈ A.
In practical applications of this induction scheme, it is common to distinguish two

special cases of above implication which are proven separately. First, all minimal elements
a ∈ A are considered. In this base case, we need to show that P holds for each minimal
element of A. Second, all non-minimal elements a ∈ A are examined. Here, we take
an arbitrary non-minimal element a ∈ A and assume that P is true for all “smaller”
elements, i.e. for all a′ ∈ A such that a ≻ a′. The latter gives us the induction hypothesis.
In the induction step, we then conclude that property P holds for a using the induction
hypothesis.
To prove soundness and termination of the SSMT algorithm by means of Noetherian

induction, we define the following well-founded strict partial order on the set of SSMT
layer states.

Definition 6.2 (Well-founded strict partial order ≻SSMT)
Let SSSMT be the set of all possible, non-distinguished states of the SSMT layer. The
binary relation ≻SSMT on SSSMT is defined as follows. Let S, S ′ ∈ SSSMT with S = (M,Q :
ϕ, θl, θu) and S

′ = (M ′,Q′ : ϕ′, θ′l, θ
′
u) be two states of the SSMT layer. Then, S ≻SSMT S

′

if and only if

1. for each (Qx ∈ Dx) ∈ Q it holds that Dx 6= ∅, and

138 6 Algorithms for SSMT Problems

2. Q = Q′′ ⊙ Qx1 ∈ Dx1
⊙ . . .⊙ Qxn ∈ Dxn

and Q′ = Qx1 ∈ D′
x1

⊙ . . . ⊙ Qxn ∈ D′
xn

such that for all i ∈ {1, . . . , n} : Dxi
⊇ D′

xi
and if Q′′ = ε then there exists some

j ∈ {1, . . . , n} : Dxj
⊃ D′

xj
.

Intuitively, state S ′ is “smaller” than state S if and only if all domains within quantifier
prefix Q are non-empty, and prefix Q′ arises from Q by removing some quantifiers from
the left or by removing values from the domains of some quantified variables. Observe
that Q need be non-empty of necessity, i.e. Q 6= ε, as, otherwise, if Q = ε then Q′′ = ε
which immediately entails by definition the contradiction that Q 6= ε. It is not hard to
see that relation ≻SSMT is transitive and irreflexive as well as well-founded. The latter
is due to the fact that the number of quantifiers in a prefix as well as the domains of
quantified variables are both finite. Minimal elements with respect to ≻SSMT are states
(M,Q : ϕ, θl, θu) where the quantifier prefix is empty, i.e. Q = ε, or where Q contains an
empty domain, i.e. Dx = ∅ for some (Qx ∈ Dx) ∈ Q.
The next theorem now establishes soundness of the SSMT layer.

Theorem 6.2 (Soundness of the SSMT algorithm)
For each sequence

(M,Q : ϕ, θl, θu) −→∗
SSMT (pr, ϕ′)

of SSMT rule applications with fixed p̃ ∈ {0, 1}, it holds that

1. if p̃ = 0 then Pr(Q : (ϕ ∧M)) ≥ pr and

2. if p̃ = 1 then Pr(Q : (ϕ ∧M)) ≤ pr.

Proof. We prove the theorem by Noetherian induction using the well-founded strict partial
order ≻SSMT from Definition 6.2.
First of all, note that there must be a state (M ′,Q′ : ϕ′′, θ′l, θ

′
u) such that

(M,Q : ϕ, θl, θu) −→∗
SSMT (M ′,Q′ : ϕ′′, θ′l, θ

′
u) −→SSMT (pr, ϕ′) .

Observe that if states (M,Q : ϕ, θl, θu) and (M ′,Q′ : ϕ′′, θ′l, θ
′
u) are different then the latter

state is reachable by applications of rule SSMT.6 only. As explained after introduction
of SSMT.6, each application of the latter rule preserves the condition in Remark 6.1, in
particular for the SMT solver state (M ′, ϕ′′).

By Lemma 6.5, we know that ϕ = ϕ′′, θl = θ′l, θu = θ′u, and Pr(Q : (ϕ∧M)) = Pr(Q′ :
(ϕ′′ ∧M ′)). It therefore suffices to consider the latter step in the base case as well as in
the induction step, while the induction hypothesis holds for the whole sequence of SSMT
rule applications. That is, we show the statement of the theorem for

(M ′,Q′ : ϕ, θl, θu) −→SSMT (pr, ϕ′) .

In the base case, we assume that state (M ′,Q′ : ϕ, θl, θu) is minimal with respect to
≻SSMT, i.e. Q

′ = ε or Dx = ∅ for some (Qx ∈ Dx) ∈ Q′. Then, only rules SSMT.5,
SSMT.7, SSMT.8, SSMT.9, and SSMT.10 could be applied.

For SSMT.5, the domain Dx of some quantified variable x ∈ Var(Q′) is empty, i.e.
Dx = ∅, meaning that ϕ ∧M ′ is unsatisfiable within the domains of the variables and

6.4 Algorithms for SSMT 139

thus Pr(Q′ : (ϕ ∧M ′)) = 0. We have that pr = 0 = Pr(Q′ : (ϕ ∧M ′)) from which above
items 1 and 2 follow immediately.
For rules SSMT.7 and SSMT.10, the SMT formula ϕ ∧M ′ is unsatisfiable according to

item 2a of Proposition 6.2 or rather of Remark 6.1. As a consequence of Definition 4.5,
Pr(Q′ : (ϕ ∧M ′)) = 0. As above, from pr = 0 = Pr(Q′ : (ϕ ∧M ′)) we conclude that
items 1 and 2 hold.
The reasoning for SSMT.8 is very similar: ϕ ∧M ′ is satisfiable according to item 2b of

Proposition 6.2 or rather of Remark 6.1. As Q′ = ε, Pr(Q′ : (ϕ ∧M ′)) = 1 according
to Definition 4.5. Items 1 and 2 immediately follow from the fact that pr = 1 = Pr(Q′ :
(ϕ ∧M ′)).
We now consider rule SSMT.9. Concerning item 1, i.e. p̃ = 0, we have that pr = p̃ = 0

and thus Pr(Q′ : (ϕ ∧M ′)) ≥ 0 = pr. With regard to item 2, i.e. p̃ = 1, from pr = p̃ = 1
it clearly follows that Pr(Q′ : (ϕ ∧M ′)) ≤ 1 = pr.
For the induction step, let (M ′,Q′ : ϕ, θl, θu) be an arbitrary state which is non-minimal

with respect to ≻SSMT, i.e. Q
′ 6= ε and Dx 6= ∅ for all (Qx ∈ Dx) ∈ Q′. Then, only

rules SSMT.1, SSMT.2, SSMT.3, SSMT.4, and SSMT.10 could be applied. As induction
hypothesis, we assume that the statement of the theorem holds for all “smaller” states S,
i.e. for all S ∈ SSSMT such that (M ′,Q′ : ϕ, θl, θu) ≻SSMT S.
Observe that ϕ ⇔ ϕ′ holds in the premises of SSMT.1, SSMT.2, SSMT.3, and SSMT.4,

as well as ϕ′ ⇔ ϕ′′ and thus ϕ ⇔ ϕ′′ for SSMT.1 and SSMT.2. This can be proven by
simple induction with base cases SSMT.7, SSMT.8, and SSMT.9. The statement for the
base cases is established by two facts. First, ϕ ⇐ ϕ′ holds since no SMT rule removes
clauses from the SMT formula ϕ. Second, ϕ ⇒ ϕ′ follows immediately from application
condition of rule SMT.4: each learnt conflict clause c ∈ ϕ′ \ ϕ that was added to SMT
formula ϕ is implied by ϕ, i.e. ϕ ⇒ c. No other SMT rule adds clauses to ϕ.
Moreover, observe that the condition in Remark 6.1 is preserved for the SMT solver

states (M⊙〈x = v〉, ϕ) and (M,ϕ′) which are embedded in the corresponding SSMT layer
states used within the premises of rules SSMT.1, SSMT.2, SSMT.3, and SSMT.4. That
is, potential application of rules SSMT.7, SSMT.8, SSMT.9, and SSMT.10 is valid.
For rule SSMT.1, let be Q′ = ∃x ∈ Dx ⊙Q′′ and

(M ′ ⊙ 〈x = v〉,Q′′ : ϕ, θl, θu) −→SSMT (pr1, ϕ1) ,

(M ′, ∃x ∈ D′
x ⊙Q′′ : ϕ1, θ

′
l, θu) −→SSMT (pr2, ϕ2) .

Then, pr = max(pr1, pr2). Due to Definition 6.2,

(M ′, ∃x ∈ Dx ⊙Q′′ : ϕ, θl, θu) ≻SSMT (M ′ ⊙ 〈x = v〉,Q′′ : ϕ, θl, θu) ,

(M ′, ∃x ∈ Dx ⊙Q′′ : ϕ, θl, θu) ≻SSMT (M ′, ∃x ∈ D′
x ⊙Q′′ : ϕ1, θ

′
l, θu) .

From induction hypothesis and since ϕ ⇔ ϕ1, we then conclude the following. If p̃ = 0
then

Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) ≥ pr1 ,

P r(∃x ∈ D′
x ⊙Q′′ : (ϕ ∧M ′)) ≥ pr2 ,

and if p̃ = 1 then
Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) ≤ pr1 ,

P r(∃x ∈ D′
x ⊙Q′′ : (ϕ ∧M ′)) ≤ pr2 .

140 6 Algorithms for SSMT Problems

In conformity with Definition 4.5,

Pr(∃x ∈ Dx ⊙Q′′ : (ϕ ∧M ′))

= max (Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)), P r(∃x ∈ D′
x ⊙Q′′ : (ϕ ∧M ′)))

where Pr(Qy ∈ Dy ⊙Q : ψ) := 0 whenever Dy = ∅. For item 1, i.e. p̃ = 0, it immediately
follows that Pr(∃x ∈ Dx ⊙Q′′ : (ϕ∧M ′)) ≥ max(pr1, pr2) = pr. Similarly for item 2, i.e.
p̃ = 1, Pr(∃x ∈ Dx ⊙Q′′ : (ϕ ∧M ′)) ≤ max(pr1, pr2) = pr.
For rule SSMT.3, we use the same assumptions as for SSMT.1 above whenever ap-

plicable. We have that pr = max(pr1, p̃). Concerning item 1, i.e. p̃ = 0, we con-
clude that Pr(∃x ∈ Dx ⊙ Q′′ : (ϕ ∧ M ′)) ≥ pr1. As Pr(Φ) ≥ 0 for each SSMT
formula Φ, Pr(∃x ∈ Dx ⊙ Q′′ : (ϕ ∧ M ′)) ≥ max(pr1, 0) = pr. We now consider
item 2, i.e. p̃ = 1. As Pr(Φ) ≤ 1 is true for each SSMT formula Φ, we conclude that
Pr(∃x ∈ Dx ⊙Q′′ : (ϕ ∧M ′)) ≤ max(pr1, 1) = pr.
For rule SSMT.2, let be Q′ =

R

dxx ∈ Dx ⊙Q′′ and

(M ′ ⊙ 〈x = v〉,Q′′ : ϕ, θ′l, θ
′
u) −→SSMT (pr1, ϕ1) ,

(M ′,

R

dxx ∈ D′
x ⊙Q′′ : ϕ1, θ

′′
l , θ

′′
u) −→SSMT (pr2, ϕ2) .

Then, pr = pv · pr1 + pr2. Due to Definition 6.2,

(M ′,

R

dxx ∈ Dx ⊙Q′′ : ϕ, θl, θu) ≻SSMT (M ′ ⊙ 〈x = v〉,Q′′ : ϕ, θ′l, θ
′
u) ,

(M ′,

R

dxx ∈ Dx ⊙Q′′ : ϕ, θl, θu) ≻SSMT (M ′,

R

dxx ∈ D′
x ⊙Q′′ : ϕ1, θ

′′
l , θ

′′
u) .

From induction hypothesis and since ϕ ⇔ ϕ1, we then conclude the following. If p̃ = 0
then

Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) ≥ pr1 ,

P r(

R

dxx ∈ D′
x ⊙Q′′ : (ϕ ∧M ′)) ≥ pr2 ,

and if p̃ = 1 then
Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) ≤ pr1 ,

P r(

R

dxx ∈ D′
x ⊙Q′′ : (ϕ ∧M ′)) ≤ pr2 .

In conformity with Definition 4.5,

Pr(

R

dxx ∈ Dx ⊙Q′′ : (ϕ ∧M ′))

= pv · Pr(Q
′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) + Pr(

R

dxx ∈ D′
x ⊙Q′′ : (ϕ ∧M ′))

where Pr(Qy ∈ Dy ⊙Q : ψ) := 0 whenever Dy = ∅. For item 1, i.e. p̃ = 0, it immediately
follows that Pr(

R

dxx ∈ Dx ⊙Q′′ : (ϕ∧M ′)) ≥ pv · pr1 + pr2 = pr as pv > 0. Similarly for
item 2, i.e. p̃ = 1, Pr(

R

dxx ∈ Dx ⊙Q′′ : (ϕ ∧M ′)) ≤ pv · pr1 + pr2 = pr as pv > 0.
For rule SSMT.4, we use the same assumptions as for SSMT.2 above whenever ap-

plicable. We have that pr = pv · pr1 + premain · p̃. Concerning item 1, i.e. p̃ = 0, we
conclude that Pr(

R

dxx ∈ Dx ⊙Q′′ : (ϕ ∧M ′)) ≥ pv · pr1 = pv · pr1 + premain · 0 = pr. For
item 2, i.e. p̃ = 1, observe that Pr(

R

dxx ∈ D′
x ⊙ Q′′ : (ϕ ∧M ′)) ≤ premain . Therefore,

Pr(

R

dxx ∈ Dx ⊙Q′′ : (ϕ ∧M ′)) ≤ pv · pr1 + premain · 1 = pr.
For rule SSMT.10, the same argument as in the base case applies. That is, ϕ ∧M ′ is

unsatisfiable due to Remark 6.1. Hence, Pr(Q′ : (ϕ ∧M ′)) = 0 = pr which immediately
shows items 1 and 2. Hence, the theorem follows. 2

6.4 Algorithms for SSMT 141

One might wonder why above Theorem 6.2 as well as its proof do not take the thresh-
olds θl and θu into account. In particular, the issue of determining the thresholds for the
recursive calls within the premises of the corresponding rules remained untouched. In
fact, the returned probability results are always either underapproximations (if p̃ = 0) or
overapproximations (if p̃ = 1), independently of the actual thresholds. That is, thresh-
olding is “only” exploited as a heuristic approach to skip investigation of subproblems
whenever their solutions cannot lead to “better” probability results with respect to θl and
θu. More precisely, if the intermediate lower probability bound has already exceeded the
upper threshold then skipping all remaining branches is reasonable and corresponds to
the DPLL-SSAT case in this respect. However, if the current upper probability bound
is greater than the upper threshold then it is not clear why omitting the remaining sub-
problem and thereby increasing the upper probability bound in the greatest possible way
makes any sense at all. The motivation for the latter treatment complies with the actual
idea of thresholding, namely as the intermediate upper probability bound already ex-
ceeds the upper threshold, so does the upper probability bound when additionally solving
the remaining subproblem. With regard to the pragmatic perspective that approximate
solutions are considered as “good enough” solutions, the above thresholding rule turns
into a reasonable approach. A similar argument can be given if the intermediate lower
probability bound is too small in the sense that the maximum possible probability of all
remaining branches does not suffice to reach the lower threshold. Though the lower prob-
ability bound could be made tighter, i.e. greater, when solving the remaining subproblem,
the lower threshold will be never reached. As we see in Section 6.7, thresholding is a very
powerful pruning technique that may lead to tremendous performance gains, most often
by multiple orders of magnitude.
Though being an obvious consequence of Theorem 6.2, Corollary 6.3 relates the prob-

ability result of the SSMT layer to the lower and the upper threshold.

Corollary 6.3
For each sequence

(M,Q : ϕ, θl, θu) −→∗
SSMT (pr, ϕ′)

of SSMT rule applications with fixed p̃ ∈ {0, 1}, it holds that

1. if p̃ = 0 and pr > θu then Pr(Q : (ϕ ∧M)) > θu and

2. if p̃ = 1 and pr < θl then Pr(Q : (ϕ ∧M)) < θl.

Due to the approximative nature of the SiSAT algorithm stemming from the internal use
of the incomplete SMT solver iSAT, the reverse directions of Corollary 6.3 do not hold
in general. The approximation feature of the SSMT layer was introduced on account of
approximate solutions considered by rule SSMT.9. Whenever SSMT.9 was not applied
to solve some SSMT problem, i.e. each SMT subformula could be classified as satisfi-
able or unsatisfiable, then we can state a much stronger result that corresponds to the
DPLL-SSAT case, confer Subsection 6.2.1. We have to admit that above assumption is
rarely satisfied for very complex non-linear arithmetic problems involving transcenden-
tal functions. Recall that such problems are undecidable in general. However, avoiding
rule SSMT.9 is always feasible when considering decidable theories T like linear arithmetic
and when using an appropriate decision procedure for T as the underlying SMT solver

142 6 Algorithms for SSMT Problems

instead of iSAT. The next Theorem 6.3 now strengthens the statement of Theorem 6.2
under the assumption that rule SSMT.9 is never executed.

Theorem 6.3 (Soundness of the SSMT algorithm avoiding SSMT.9)
For each sequence

(M,Q : ϕ, θl, θu) −→∗
SSMT (pr, ϕ′)

of SSMT rule applications avoiding rule SSMT.9 with (potentially variable) p̃ ∈ {0, 1}, it
holds that

1. if pr > θu then Pr(Q : (ϕ ∧M)) > θu,

2. if pr < θl then Pr(Q : (ϕ ∧M)) < θl, and

3. if θl ≤ pr ≤ θu then Pr(Q : (ϕ ∧M)) = pr.

Proof. The proof is very similar to the one of Theorem 6.2. We again employ Noethe-
rian induction using the well-founded strict partial order ≻SSMT, and restrict the proof
obligation to step

(M ′,Q′ : ϕ, θl, θu) −→SSMT (pr, ϕ′) .

In the base case, i.e. state (M ′,Q′ : ϕ, θl, θu) is minimal with respect to ≻SSMT and,
thus, only rules SSMT.5, SSMT.7, SSMT.8, and SSMT.10 could be applied, we observe
that

Pr(Q′ : (ϕ ∧M ′)) = pr

which immediately shows above items 1, 2, and 3.
In the induction step, state (M ′,Q′ : ϕ, θl, θu) is non-minimal with respect to ≻SSMT,

and we assume that the statement of the theorem is true for all “smaller” states S, i.e.
for which (M ′,Q′ : ϕ, θl, θu) ≻SSMT S holds. Then, only rules SSMT.1, SSMT.2, SSMT.3,
SSMT.4, and SSMT.10 could be applied. We may again conclude that for above rules, it
holds that ϕ ⇔ ϕ′ and ϕ ⇔ ϕ′′, and that the condition in Remark 6.1 is satisfied for the
SMT solver states (M ⊙ 〈x = v〉, ϕ) and (M,ϕ′).
For rule SSMT.1, let be Q′ = ∃x ∈ Dx ⊙Q′′ and

(M ′ ⊙ 〈x = v〉,Q′′ : ϕ, θl, θu) −→SSMT (pr1, ϕ1) ,

(M ′, ∃x ∈ D′
x ⊙Q′′ : ϕ1, θ

′
l, θu) −→SSMT (pr2, ϕ2) .

Then, pr = max(pr1, pr2). Due to Definition 6.2,

(M ′, ∃x ∈ Dx ⊙Q′′ : ϕ, θl, θu) ≻SSMT (M ′ ⊙ 〈x = v〉,Q′′ : ϕ, θl, θu) ,

(M ′, ∃x ∈ Dx ⊙Q′′ : ϕ, θl, θu) ≻SSMT (M ′, ∃x ∈ D′
x ⊙Q′′ : ϕ1, θ

′
l, θu) .

Thus, induction hypothesis applies to both states above. Since pr1 ≤ θu, it follows from
induction hypothesis that Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) ≤ θu. If pr > θu then pr2 > θu.
Then, Pr(∃x ∈ D′

x ⊙ Q′′ : (ϕ ∧M ′)) > θu by induction hypothesis and due to ϕ ⇔ ϕ1,
and thus Pr(Q′ : (ϕ∧M ′)) > θu that shows item 1. If pr < θl then pr1 < θl and pr2 < θl.
Immediately by induction hypothesis, Pr(Q′ : (ϕ ∧M ′)) < θl that proves item 2. Let
now be θl ≤ pr ≤ θu. Then, pr1 ≤ θu and pr2 ≤ θu. If pr1 ≥ pr2 then pr = pr1 and
pr1 ≥ θl. Thus, pr2 ≤ θ′l = max(pr1, θl) = pr1. By induction hypothesis and due to

6.4 Algorithms for SSMT 143

ϕ ⇔ ϕ1, Pr(Q
′′ : (ϕ∧M ′⊙〈x = v〉)) = pr1 and Pr(∃x ∈ D′

x⊙Q′′ : (ϕ∧M ′)) ≤ θ′l = pr1.
As a consequence, Pr(Q′ : (ϕ ∧ M ′)) = pr1 = pr. If pr1 < pr2 then pr = pr2 and
pr2 ≥ θl. Consequently, pr2 ≥ θ′l = max(pr1, θl). Induction hypothesis as well as the
fact that ϕ ⇔ ϕ1 then give Pr(∃x ∈ D′

x ⊙ Q′′ : (ϕ ∧ M ′)) = pr2. As pr1 ≤ θ′l ≤ θu
and θl ≤ θ′l, we have that Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) ≤ θ′l ≤ pr2. Instantaneously,
Pr(Q′ : (ϕ ∧M ′)) = pr2 = pr. Hence, item 3 follows.
For rule SSMT.3, we use the same assumptions as for SSMT.1 above whenever appli-

cable. We have that pr = max(pr1, p̃). Observe that pr1 > θu or pr1 = 1 holds. First,
if pr1 > θu then pr > θu. By induction hypothesis, Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) > θu
from which Pr(Q′ : (ϕ ∧M ′)) > θu follows. The latter shows items 1, 2, and 3. Second,
if pr1 = 1 then pr = pr1 = 1 since p̃ ∈ {0, 1}. If pr > θu then Pr(Q′ : (ϕ ∧M ′)) > θu
since pr1 > θu and, thus, Pr(Q′′ : (ϕ ∧ M ′ ⊙ 〈x = v〉)) > θu by induction hypothe-
sis. The latter proves item 1. If pr < θl then θl > 1 and item 2 holds trivially. If
θl ≤ pr ≤ θu then Pr(Q′ : (ϕ ∧M ′)) = pr1 = 1 = pr since θl ≤ pr1 ≤ θu and, thus,
Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) = pr1 = 1 by induction hypothesis. This establishes item 3.
For rule SSMT.2, let be Q′ =

R

dxx ∈ Dx ⊙Q′′ and

(M ′ ⊙ 〈x = v〉,Q′′ : ϕ, θ′l, θ
′
u) −→SSMT (pr1, ϕ1) ,

(M ′,

R

dxx ∈ D′
x ⊙Q′′ : ϕ1, θ

′′
l , θ

′′
u) −→SSMT (pr2, ϕ2) .

Then, pr = pv · pr1 + pr2. Due to Definition 6.2,

(M ′,

R

dxx ∈ Dx ⊙Q′′ : ϕ, θl, θu) ≻SSMT (M ′ ⊙ 〈x = v〉,Q′′ : ϕ, θ′l, θ
′
u) ,

(M ′,
R

dxx ∈ Dx ⊙Q′′ : ϕ, θl, θu) ≻SSMT (M ′,
R

dxx ∈ D′
x ⊙Q′′ : ϕ1, θ

′′
l , θ

′′
u) .

Thus, induction hypothesis applies to both states above. Due to application condition
and the fact that pv > 0, we conclude that pr1 ≥ (θl − premain)/pv = θ′l and pr1 ≤
θu/pv = θ′u. By induction hypothesis, Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) = pr1. If pr > θu
then pr2 > θu − pv · pr1 = θ′′u. From induction hypothesis and from ϕ ⇔ ϕ1, it follows
that Pr(

R

dxx ∈ D′
x ⊙ Q′′ : (ϕ ∧M ′)) > θ′′u. In conformity with Definition 4.5, Pr(Q′ :

(ϕ∧M ′)) > pv · pr1+ θ′′u = θu which shows item 1. If pr < θl then pr2 < θl − pv · pr1 = θ′′l .
Due to induction hypothesis and ϕ ⇔ ϕ1, Pr(

R

dxx ∈ D′
x⊙Q′′ : (ϕ∧M ′)) < θ′′l . It follows

that Pr(Q′ : (ϕ ∧M ′)) < pv · pr1 + θ′′l = θl which establishes item 2. If θl ≤ pr ≤ θu then
θ′′l = θl − pv · pr1 ≤ pr2 ≤ θu − pv · pr1 = θ′′u. Then, Pr(

R

dxx ∈ D′
x ⊙Q′′ : (ϕ ∧M ′)) = pr2

by induction hypothesis and due to ϕ ⇔ ϕ1. Item 3 immediately follows from the fact
that Pr(Q′ : (ϕ ∧M ′)) = pv · pr1 + pr2 = pr.
For rule SSMT.4, we use the same assumptions as for SSMT.2 above whenever applica-

ble. We have that pr = pv ·pr1+premain ·p̃. Observe that pv ·pr1+premain < θl or pv ·pr1 > θu
is true. In case pv · pr1 + premain < θl holds, we know that pr1 < (θl − premain)/pv = θ′l.
Thus, Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) < θ′l by induction hypothesis. Due to ϕ ⇔ ϕ1, we
obtain the conservative estimate Pr(

R

dxx ∈ D′
x ⊙ Q′′ : (ϕ ∧M ′)) ≤ premain . It follows

that Pr(Q′ : (ϕ ∧M ′)) < pv · θ
′
l + premain = θl. As p̃ ∈ {0, 1} and premain ≥ 0, we further

have that pr ≤ pv · pr1 + premain < θl. The above facts show items 1, 2, and 3. In case
pv · pr1 > θu is true, we have that pr1 > θu/pv = θ′u. Induction hypothesis thus yields
Pr(Q′′ : (ϕ ∧M ′ ⊙ 〈x = v〉)) > θ′u. Instantaneously, Pr(Q′ : (ϕ ∧M ′)) > pv · θ

′
u = θu.

As p̃ ∈ {0, 1} and premain ≥ 0, it holds that pr ≥ pv · pr1 > θu. The latter facts establish
items 1, 2, and 3.

144 6 Algorithms for SSMT Problems

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������

a) b)

pr

p̃ = 0

p̃ = 1

pr

pr

p̃ = 0,

pr > θu
θl θu

pr
pr < θl

p̃ = 1,

θuθl

0 Pr(Φ) 1 Pr(Φ)

pr > θu

θl ≤ pr ≤ θu

pr < θl

θl θu

θl θu

θl θu

0 1

pr

pr

pr

Figure 6.6: Interpretation of the probability result pr of the SSMT algorithm: a) under- and

overapproximations according to Theorem 6.2 and Corollary 6.3, and b) strengthened statement

when avoiding rule SSMT.9 according to Theorem 6.3.

With regard to rule SSMT.10, we observe that Pr(Q′ : (ϕ ∧M ′)) = pr holds which
immediately shows items 1, 2, and 3. This completes the proof. 2

Observe that Theorem 6.3 does not demand a fixed value p̃ ∈ {0, 1}. That is, Theorem 6.3
is valid for both possible values of p̃ and, moreover, in all cases the value of p̃ changes
during the SSMT proof search. By fixing p̃, we may further apply Theorem 6.2 in order
to obtain safe under- or overapproximations of the satisfaction probability. An illustrative
summary of Theorem 6.2, Corollary 6.3, and Theorem 6.3 is given by Figure 6.6.
After having proven soundness of the SSMT layer, namely by interpreting each sequence

of SSMT rule applications that terminates in a distinguished state (pr, ϕ′), we now consider
termination of the SSMT algorithm. For this purpose, Theorem 6.4 shows the following:
starting with some (valid) SSMT layer state (M,Q : ϕ, θl, θu), each sequence of SSMT
rule applications eventually leads to a final, i.e. distinguished, state (pr, ϕ′).

Theorem 6.4 (Termination of the SSMT algorithm)
Let (M,Q : ϕ, θl, θu) be a state of the SSMT layer as specified at the beginning of this
subsection. To achieve termination of the underlying SMT solver, we require that the
minimum splitting width ε and the progress parameter δ are both strictly greater than zero
and that ε ≥ 2δ. Then, each sequence of SSMT rule applications that starts in above state
finally reaches a distinguished state (pr, ϕ′). More formally,

1. there does not exist an infinite sequence (M,Q : ϕ, θl, θu) −→SSMT . . . −→SSMT

S −→SSMT . . . of SSMT rule applications, and

2. each final state F , i.e. (M,Q : ϕ, θl, θu) −→
∗
SSMT F and there does not exist a state

F ′ such that F −→SSMT F ′, is a distinguished state of the shape (pr, ϕ′).

Proof. The proof of item 1 is by contradiction. To this end, we assume the contrary,
namely that an infinite sequence IS of SSMT rule applications exists. We first observe
that any application of one of the rules SSMT.1 to SSMT.5 and SSMT.7 to SSMT.10

immediately leads to a distinguished state of the shape (pr, ϕ′), which in turn means that
no rule is then applicable to this state (pr, ϕ′). We thus conclude that each such infinite

6.4 Algorithms for SSMT 145

sequence IS must consist of applications of SSMT.6 only. Within the premise of SSMT.6

the SMT layer is employed, actually rules SMT.1 (unit propagation) and SMT.2 (ICP)
only. That is, existence of an infinite sequence IS implies an infinite sequence IS ′ of SMT
rule applications. However, such an IS ′ cannot exist due to termination of the SMT layer
which is ensured by ε > 0, δ > 0, and ε ≥ 2δ, confer Proposition 6.2 and Remark 6.1.
This reveals the contradiction and, hence, item 1 holds.
The proof of item 2 is also by contradiction. That is, we assume the contrary, namely

that state F is not of the shape (pr, ϕ′). Then, F must be of the shape (M ′,Q′ : ϕ′, θ′l, θ
′
u).

To achieve a contradiction, namely that F is not a final state, we now show that there
always exists some distinguished state F ′ of the shape (pr, ψ) such that F −→SSMT F ′.
The proof of the latter is by Noetherian induction using the well-founded strict partial
order ≻SSMT from Definition 6.2.
In the base case, we assume that state F is minimal with respect to ≻SSMT, i.e. Q

′ = ε
or Dx = ∅ for some (Qx ∈ Dx) ∈ Q′. If Q′ = ε then one of SSMT.7, SSMT.8, and
SSMT.9 can always be applied due to Proposition 6.2 or rather Remark 6.1. That is,
F −→SSMT F ′ where F ′ is of the shape (pr, ψ). If Dx = ∅ for some (Qx ∈ Dx) ∈ Q′ then
SSMT.5 can be clearly executed, leading to state F ′ = (0, ϕ′).
In the induction step, state F is non-minimal with respect to ≻SSMT, i.e. Q

′ 6= ε and
Dx 6= ∅ for all (Qx ∈ Dx) ∈ Q′. As induction hypothesis, we assume that for all states S
with F ≻SSMT S there is some distinguished state (pr′, ψ′) such that S −→SSMT (pr′, ψ′).
Let be Q′ = Qx ∈ Dx ⊙Q′′ with Q ∈ {∃,

R

dx} as well as

F1 = (M ′ ⊙ 〈x = v〉,Q′′ : ϕ′, θl,1, θu,1) ,

F2 = (M ′, Qx ∈ D′
x ⊙Q′′ : ϕ′′, θl,2, θu,2) .

Due to Definition 6.2, F ≻SSMT F1 and F ≻SSMT F2. Thus, induction hypothesis applies
to states F1 and F2. Owing to induction hypothesis, if Q = ∃ then one of rules SSMT.1

and SSMT.3 is applicable, and if Q =

R

dx then one of rules SSMT.2 and SSMT.4 can be
executed. In any case, F −→SSMT F ′ where F ′ is of the shape (pr, ψ). This completes
the proof of item 2 and the theorem follows. 2

With regard to an implementation of the SSMT layer using machine data types, it must
be ensured that Proposition 6.2 or rather Remark 6.1 hold for the underlying SMT layer.
Concerning this matter, the reader is referred to the explanatory note following Proposi-
tion 6.2.

6.4.3 Example of the SSMT algorithm

To conclude this section, we finally present a small example of the SSMT layer. To this
end, consider the SSMT formula Q : ϕ with

Q =

R

[−1→0.4,0→0.5,1→0.1]x1 ∈ {−1, 0, 1}

R

[8→0.7,9→0.3]x2 ∈ {8, 9} ∃x3 ∈ {−2,−1, 0, 1, 2, 3}

and

ϕ = (x1 ≤ −1 ∨ x3 ≥ 1) ∧ (x1 ≥ 0 ∨ y2 ≤ −10) ∧ (x2 ≤ 8 ∨ x3 ≤ 1)

∧ (x3 ≥ 2 ∨ y2 ≥ 5) ∧ (x3 ≥ 2 ∨ y3 ≥ −3) ∧ (y2 = y31) ∧ (y3 = −y2)

146 6 Algorithms for SSMT Problems

S4 −→SSMT (0, ϕ) ,
S6 −→SSMT (1, ϕ)

S5 −→SSMT (1, ϕ)

S3 −→SSMT (1, ϕ)
,
S8 −→SSMT S9 −→SSMT (0, ϕ)

S7 −→SSMT (0, ϕ)

S2 −→SSMT (0.7, ϕ)

S0 −→SSMT S1 −→SSMT (0.45, ϕ)

Figure 6.7: Example of the SSMT layer: structure of SSMT rule applications.

where y1 ∈ [−2, 10], y2 ∈ [−15, 33], and y3 ∈ [−50, 50] are (non-quantified) real-valued
variables. Let be given the thresholds θl = 0.48 and θu = 0.72, and let us aim at
approximating the satisfaction probability safely from above, i.e. we fix p̃ = 1. According
to equation 6.17, the conjunctive system Mdom, encoding the domains of all variables
x ∈ Var(ϕ) symbolically, is given by the sequence 〈x1 ≥ −1, x1 ≤ 1, x2 ≥ 8, x2 ≤ 9, x3 ≥
−2, x3 ≤ 3, y1 ≥ −2, y1 ≤ 10, y2 ≥ −15, y2 ≤ 33, y3 ≥ −50, y3 ≤ 50〉. Then, the initial
state of the SSMT layer is

S0 = (Mdom,Q : ϕ, 0.48, 0.72) .

In what follows, we apply the SSMT layer rules to solve the above SSMT problem. The
overall structure of rule applications is depicted in Figure 6.7.
Before we process the quantifier prefix Q by means of rules SSMT.1, SSMT.2, SSMT.3,

and SSMT.4, we can exploit the deduction mechanisms of the underlying SMT solver
iSAT using rule SSMT.6. For this purpose, first observe that clauses (y2 = y31) and
(y3 = −y2) are initially unit. From bound y1 ≥ −2 and equation y2 = y31, we then
infer by ICP that y2 ≥ −8 must hold. As a consequence, clause (x1 ≥ 0 ∨ y2 ≤ −10)
becomes unit due to inconsistent constraint y2 ≤ −10. The latter allows for propagating
unit constraint x1 ≥ 0. This implies that clause (x1 ≤ −1 ∨ x3 ≥ 1) also becomes unit
and that x3 ≥ 1 must be satisfied. Observe that more ICP steps are feasible which
we neglect, however, for the sake of simplicity. For instance, y2 ≥ −8 and y3 = −y2
entail that y3 ≤ 8. Above facts can be summarized by (Mdom, ϕ) −→

∗
SMT (M1, ϕ) with

M1 = Mdom ⊙ 〈y2 = y31, y3 = −y2, y2 ≥ −8, x1 ≥ 0, x3 ≥ 1〉. Above pruning steps permit
to reduce the domain of randomized variable x1 from {−1, 0, 1} to {0, 1} and the domain
of existential variable x3 from {−2,−1, 0, 1, 2, 3} to {1, 2, 3}. That is,

Q1 = prune(Q, σM1
)

=

R

[−1→0.4,0→0.5,1→0.1]x1 ∈ {0, 1}

R

[8→0.7,9→0.3]x2 ∈ {8, 9} ∃x3 ∈ {1, 2, 3} .

The observations above thus justify to perform step

S0 −→SSMT S1

with
S1 = (M1,Q1 : ϕ, 0.48, 0.72)

6.4 Algorithms for SSMT 147

using rule SSMT.6.
We now perform branching for the leftmost quantified variable in prefix Q1, i.e. forR

[−1→0.4,0→0.5,1→0.1]x1 ∈ {0, 1}. As we are currently unaware of whether rule SSMT.2 or
SSMT.4 applies, we first need to choose a value v ∈ {0, 1} for variable x1 and to solve the
corresponding SSMT subproblem in order to find out whether thresholding is feasible or
not. Let us decide that v = 0. The resulting SSMT layer state thus is

S2 = (M2,Q2 : ϕ, θl,2, θu,2)

with M2 = M1 ⊙ 〈x1 = 0〉, Q2 =

R

[8→0.7,9→0.3]x2 ∈ {8, 9} ∃x3 ∈ {1, 2, 3}, θl,2 = (0.48 −
0.1)/0.5 = 0.76, and θu,2 = 0.72/0.5 = 1.44. With regard to the thresholds θl,2 and θu,2,
note that pv = 0.5 and premain = 0.1.
We now select value 8 for randomized variable x2 and consider the SSMT layer state

S3 = (M3, ∃x3 ∈ {1, 2, 3} : ϕ, θl,3, θu,3)

with M3 = M2 ⊙ 〈x2 = 8〉, θl,3 = (0.76 − 0.3)/0.7 = 23/35 ≈ 0.657, and θu,3 = 1.44/0.7 =
72/35 ≈ 2.057.
Next, existential variable x3 is branched for by choosing value 1 which leads to state

S4 = (M4, ε : ϕ, 23/35, 72/35)

with M4 = M3 ⊙ 〈x3 = 1〉. As the quantifier prefix is empty, one of the rules SSMT.7,
SSMT.8, and SSMT.9 can be executed. From that fact x3 = 1, it follows that clauses
(x3 ≥ 2 ∨ y2 ≥ 5) and (x3 ≥ 2 ∨ y3 ≥ −3) are unit, propagating bounds y2 ≥ 5 and
y3 ≥ −3, respectively. As a consequence, the constraint (y3 = −y2) ∈ M4 becomes
inconsistent. This conflict occurred without any decision step in the SMT layer, i.e.
rule SMT.3 was not applied and, thus, the special marker symbol | was not added to M4.
Hence,

(M4, ϕ) −→∗
SMT (M4 ⊙ 〈y2 ≥ 5, y3 ≥ −3〉, ϕ) −→SMT unsat

is feasible and application of rule SSMT.7 gives

S4 −→SSMT (0, ϕ) .

As thresholding fails, we have to apply rule SSMT.1 to handle state S3. The SSMT
layer state for the second recursion thus is

S5 = (M5, ∃x3 ∈ {2, 3} : ϕ, 23/35, 72/35)

with M5 =M4.
We now select value 2 for x3 yielding state

S6 = (M6, ε : ϕ, 23/35, 72/35)

with M6 =M5 ⊙ 〈x3 = 2〉. Observe that, first, satisfiability of M6 implies satisfiability of
ϕ and, second, thatM6 and, thus, ϕ are actually satisfiable within the interval assignment
σM6

with σM6
(x1) = [0, 0], σM6

(x2) = [8, 8], σM6
(x3) = [2, 2], σM6

(y1) = [−2, 10], σM6
(y2) =

[−8, 33], σM6
(y3) = [−50, 50]. A solution of ϕ, for instance, is the assignment τ with

148 6 Algorithms for SSMT Problems

τ(x1) = 0, τ(x2) = 8, τ(x3) = 2, τ(y1) = 0, τ(y2) = 0, τ(y3) = 0. If the SMT solver iSAT
is able to detect satisfiability of the quantifier-free subproblem, namely by means of the
strong satisfaction check as formalized by theory layer rule TS.3, then rule SSMT.8 is
applicable, i.e.

S6 −→SSMT (1, ϕ) .

Otherwise, rule SSMT.9 must be feasible which also gives

S6 −→SSMT (1, ϕ)

as p̃ = 1. Concerning the returned SMT formula ϕ, we assume for simplicity that the
SMT layer has not detected any conflict and, thus, has not learnt any conflict clause.
Since the recursive call on S6 yielded the maximum possible probability 1, rule SSMT.3

is performed for state S5, i.e.
S5 −→SSMT (1, ϕ)

as p̃ = 1.
Consequently, namely by application of SSMT.1,

S3 −→SSMT (1, ϕ) .

Due to above fact, thresholding fails for state S2, i.e. 0.7 · 1 + 0.3 = 1 ≥ θl,2 = 0.76 and
0.7 · 1 ≤ θu,2 = 1.44. Hence, rule SSMT.2 needs to be executed to handle S2. The SSMT
layer state for the second recursion is

S7 = (M7,Q7 : ϕ, θl,7, θu,7)

with M7 = M2, Q7 =

R

[8→0.7,9→0.3]x2 ∈ {9} ∃x3 ∈ {1, 2, 3}, θl,7 = 0.76 − 0.7 · 1 = 0.06,
and θu,7 = 1.44 − 0.7 · 1 = 0.74. With regard to the thresholds θl,7 and θu,7, note that
pv · pr = 0.7 · 1.
It just remains one possible value for x2, namely 9. The corresponding state is

S8 = (M8, ∃x3 ∈ {1, 2, 3} : ϕ, θl,8, θu,8)

with M8 = M7 ⊙ 〈x2 = 9〉, θl,8 = (0.06 − 0)/0.3 = 0.2, and θu,8 = 0.74/0.3 = 27/15. Due
to x2 = 9, clause (x2 ≤ 8 ∨ x3 ≤ 1) is unit propagating bound x3 ≤ 1. Instantaneously,
clauses (x3 ≥ 2 ∨ y2 ≥ 5) and (x3 ≥ 2 ∨ y3 ≥ −3) become unit. Their unit constraints
y2 ≥ 5 and y3 ≥ −3 then cause inconsistency of equation (y3 = −y2) ∈ M8. That is, we
can first perform rule SSMT.6:

S8 −→SSMT S9

with
S9 = (M8 ⊙ 〈y2 ≥ 5, y3 ≥ −3〉, ∃x3 ∈ {1, 2, 3} : ϕ, θl,8, θu,8) .

Then, application of rule SSMT.10 gives

S9 −→SSMT (0, ϕ)

since
(M8 ⊙ 〈y2 ≥ 5, y3 ≥ −3〉, ϕ) −→SMT unsat .

6.5 Algorithmic enhancements 149

Observe that thresholding is feasible for S7 since 0.3 · 0 + 0 < θl,7 = 0.06. As a
consequence, rule SSMT.4 need be performed for S7, i.e.

S7 −→SSMT (0, ϕ) .

Having completed the recursions on S3 and on S7, we can deduce

S2 −→SSMT (0.7, ϕ)

by rule SSMT.2.
We have thus found out that the recursion on S2 gives probability result 0.7. As pv = 0.5

and premain = 0.1, thresholding succeeds for S1, i.e. 0.5 · 0.7 + 0.1 = 0.45 < θl = 0.48,
meaning that rule SSMT.4 must be applied to handle S1:

S1 −→SSMT (0.45, ϕ) .

The latter step completes the SSMT proof search. Since p̃ = 1, the SSMT layer has
determined an upper bound, namely 0.45, on the maximum satisfaction probability of the
given SSMT formula Q : ϕ within the given domains according to Theorem 6.2, i.e.

Pr(Q : (ϕ ∧Mdom)) ≤ 0.45 .

As a consequence and as stated in Corollary 6.3, the satisfaction probability is strictly
less than the given lower threshold, i.e.

Pr(Q : (ϕ ∧Mdom)) < θl = 0.48 .

6.5 Algorithmic enhancements

In the previous section, we have presented the basic SiSAT algorithm addressing non-
linear arithmetic SSMT problems. Recall that SiSAT adds an additional layer to the
SMT solver iSAT in order to deal with the quantifier prefix, confer Figure 6.4, namely
by traversing the Cartesian product of the domains of the quantified variables and by
computing the satisfaction probabilities for the individual quantifiers. As indicated by
Figure 6.5 a, each complete assignment to the quantified variables induces a quantifier-
free SMT subproblem which is solved using the SMT solver iSAT. Due to the fact that the
number of such complete assignments is exponential in the number of quantified variables,
a naive SSMT algorithm traversing the whole quantifier tree is far from scalable. In order
to mitigate this issue and to improve performance of SSMT solvers in practice, it is thus
of utmost importance to devise powerful algorithmic optimizations that are able to prune
the quantifier tree considerably, as illustrated in Figure 6.5 b.
The SSMT algorithm of Section 6.4 already incorporates some such optimization tech-

niques, namely unit propagation, interval constraint propagation, and conflict-driven clause
learning, all of them inherited from iSAT, as well as thresholding as known from SSAT
solvers. In what follows, we elaborate on further algorithmic features to cut off potentially
huge parts of the quantifier tree. Most of these features were published in [TF08, TF09,
TEF11] by the author of this thesis and his co-authors. We remark that empirical results
demonstrating the benefit of the proposed pruning rules are presented in Section 6.7.

150 6 Algorithms for SSMT Problems

6.5.1 Activity-based value branching heuristics

It is well-known that variable and value decision heuristics, i.e. the order in which possible
assignments are probed, can improve the performance of SAT as well as of SMT solvers
significantly. In the stochastic setting, i.e. in the SSAT and SSMT case, however, the
selection of variables for branching is mainly dictated by the quantifier prefix: in general,
the leftmost variable must be taken which is in accordance with the semantics of SSAT
and of SSMT, confer Definitions 4.2 and 4.5, respectively. As already mentioned in Sub-
section 6.2.1, this restriction can be relaxed to some extent: instead of taking the leftmost
variable, it is admissible to select one variable from the leftmost block of variables bound
by the same quantifier. The rationale is that Pr(Q ⊙ Qx ∈ Dx ⊙ Q′ : ϕ) = Pr(Qx ∈
Dx ⊙Q ⊙Q′ : ϕ) whenever all quantifiers in subprefix Q are the same as quantifier Q.9

With regard to SSAT solvers, several sophisticated heuristics to select the next variable
for branching were investigated in [LMP01].

In the SSMT case, the domains of quantified variables may be much larger than in the
SSAT framework where only propositional variables are present. This fact motivates to
devise powerful value branching heuristics. To improve runtime of the SSMT algorithm,
we are interested in detecting values for branching such that other pruning rules will apply
earlier. With regard to thresholding, it seems reasonable to prefer values for branching
which lead to

� high satisfaction probabilities aiming at exceeding the upper threshold or

� low satisfaction probabilities aiming at missing the lower threshold.

Being targeted at such value selection methods, our idea is to devise a heuristic measure
for estimating the satisfaction probabilities of SSMT subproblems. For that purpose, we
introduce an activity actv,x as well as a counter cntv,x for each value v ∈ Dx of each
quantified variable x, where both actv,x and cntv,x are initialized with 0. Whenever a new
probability result pr for a branch “x = v”, i.e. for the corresponding SSMT subproblem
induced by substituting value v for variable x, is determined then probability pr is added
to activity actv,x and counter cntv,x is incremented by 1. That is, activity actv,x is the sum
of the already computed satisfaction probabilities for branch “x = v” while counter cntv,x
keeps track of their number. The heuristic measure hm(v, x) for estimating the satisfaction
probability of branch “x = v” is then defined as the arithmetic mean of the already

computed satisfaction probabilities, i.e. hm(v, x) =

{
0 if cntv,x = 0,

actv,x/cntv,x if cntv,x 6= 0
.

It remains to discuss how values are detected with the aid of above heuristic measure
such that thresholding is more likely to succeed. For existential variables x, the thresh-
olding rule applies if the probability result pr of branch “x = v” has exceeded the upper
threshold θu (or has reached value 1), confer rule SSMT.3. Thus, it is reasonable to select
values v with highest measure hm(v, x). For randomized variables x, thresholding is per-
formed if the weighted probability result pv · pr is greater than the upper threshold θu or
if the probability mass premain of the remaining branches is too small to reach the lower
threshold θl, more precisely if pv · pr + premain < θl, confer rule SSMT.4. Thus, we may

9We remark that the probability distributions of randomized quantifiers need not be the same.

6.5 Algorithmic enhancements 151

pursue two strategies for selecting values of randomized variables. The first strategy aims
at exceeding upper thresholds and thus takes values v for which the weighted measure
pv · hm(v, x) is maximal. Aiming at missing lower thresholds, the second strategy selects
values v for which the term pv · hm(v, x) + premain is minimal.

We finally remark that a very similar version of the activity-based value branching
heuristics aiming at exceeding upper thresholds was published in [TF09, TEF11] by the
author of this thesis together with his co-authors.

6.5.2 Purification

The idea of purification as a mechanism to prune the quantifier tree known from the
DPLL-SSAT algorithm, confer Subsection 6.2.1, is adapted to the SSMT setting as de-
scribed in [TF09, TEF11]. Let be given some SSMT formula Q : ϕ with matrix ϕ being
in CF as well as some interval assignment σ to the variables in Var(ϕ). We say that
formula ϕ is monotonic or antitonic in a (quantified) variable x ∈ ϕ with respect to σ if
and only if it holds that whenever some point τ ∈ σ satisfies ϕ, i.e. τ satisfies all clauses
cl ∈ ϕ, then so does each point τ ′ ∈ σ with τ ′(y) = τ(y) for y 6= x and τ ′(x) > τ(x) or
τ ′(x) < τ(x), respectively. Intuitively, each solution τ ∈ σ of formula ϕ does not depend
on the value of x in the following sense: the assignment τ ′ that arises from τ by replacing
value τ(x) by any greater or any smaller value v ∈ σ(x) if ϕ is monotonic or antitonic in
x, respectively, is also a solution of ϕ.

The above observation can be exploited to prune the quantifier tree. If x is an existential
variable and if ϕ is monotonic or antitonic in x then we may reduce the current (finite)
domain Dx of x to the singleton {max(Dx)} or {min(Dx)}, respectively. Akin to the
DPLL-SSAT case, purification is in general impossible for randomized variables, since all
branches give some contribution.

Detecting monotonicity or antitonicity is hard as soon as arithmetic constraints are
involved. The current routine to recognize whether some formula ϕ is monotonic or
antitonic in some variable x works as follows. First of all, we can clearly neglect all
clauses cl ∈ ϕ which could be detected to be satisfied by each point in σ, i.e. for each
τ ∈ σ : τ |= cl, since all these satisfied clauses cl are trivially monotonic and antitonic
in x with respect to σ. If in all remaining clauses cl ∈ ϕ all constraints c ∈ cl which
contain x and which are not inconsistent under σ are simple inequality bounds sharing
the same polarity then ϕ is monotonic or antitonic. More precisely, if ∀cl ∈ ϕ ∀c ∈ cl
with x ∈ Var(c) and ¬(σ ♯ c) it holds that c is of the shape x ∼ k with k being a rational
constant and with ∼∈ {>,≥} or with ∼∈ {<,≤} then ϕ is monotonic or antitonic in x
with respect to σ, respectively.

We remark that this approach is well-motivated in the context of SSMT-based proba-
bilistic bounded reachability analysis of (concurrent) probabilistic hybrid automata. Em-
ploying the reduction scheme to SSMT introduced in Section 5.3, quantified variables
occur only in simple bounds in the matrix of the SSMT formula PBMC S,Target(k). More
precisely, reduction steps 6 and 7 introduce predicates of the shape (trij = tr) ⇒ g(tr)
and (trij = tr ∧ pctrj = pc) ⇒ asgn(tr, pc), respectively, with trij , pc

tr
j being quan-

tified variables and tr, pc being values. The latter predicates are then rewritten to
(trij < tr ∨ trij > tr ∨ g(tr)) and (trij < tr ∨ trij > tr ∨ pctrj < pc ∨ pctrj > pc ∨ asgn(tr, pc))

152 6 Algorithms for SSMT Problems

by means of the generalized Tseitin transformation, confer Subsection 4.3.1, to obtain
a matrix in CF. As a consequence, quantified variables occur only in simple inequality
bounds in the matrix of the SSMT formula to be solved.
For an example of purification, consider the formula

ϕ = (x ≤ 5 ∨ z = sin(y)) ∧ (x = −y ∨ x ≥ 3 ∨ b ≤ 0)

∧ (b ≥ 1 ∨ z ≤ −31) ∧ (x = z2 ∨ x ≥ −17 ∨ z ≤ 54)

and the interval assignment σ with σ(x) = [−30,−4], σ(y) = [6, 20], σ(z) = [−50, 100],
and σ(b) = [0, 1]. The first clause can be neglected since it is satisfied by each point in σ
as constraint x ≤ 5 is satisfied by each value x ∈ σ(x) = [−30,−4]. Our current routine
is not able to detect whether formula ϕ is monotonic or antitonic in one of the variables x
and y since constraint x = −y is not inconsistent under σ and is not a simple inequality
bound. The same holds for variable b as the remaining clauses contain the bounds b ≤ 0
and b ≥ 1 of different polarity. However, ϕ is antitonic in variable z with respect to
σ: constraint x = z2 is inconsistent under σ as z2 ranges in [0, 1002] and the remaining
constraints z ≤ −31 and z ≤ 54 are simple inequality bounds sharing the same polarity.
The purification rule is thus able to prune the domain of z from [−50, 100] to [−50,−50]
provided that z is an existential (or non-quantified) variable.

6.5.3 Exploiting desired accuracy of probability result

Akin to the idea of thresholding, an engineer might not always be interested in the exact
probability of satisfaction but just in a result of some accuracy. Recall that thresholding
(in the strong sense of Theorem 6.3) aims at computing the exact satisfaction probability
pr whenever pr lies within the interval specified by the lower and the upper threshold. In
all other cases, i.e. if pr is outside this interval, only a witness value is required to decide
whether pr is below the lower or above the upper threshold, confer Figure 6.6 b.
Though sharing the same motivation, the algorithmic enhancement of exploiting some

desired accuracy α ≥ 0 of the probability result is different to thresholding. As a result of
the SSMT algorithm, an interval [lb, ub] is returned which

� encloses the exact satisfaction probability pr, i.e. pr ∈ [lb, ub], and

� is of width at most α, i.e. ub− lb ≤ α.

It is important to remark that due to the approximative nature of SiSAT, which is caused
by the incompleteness of the underlying SMT tool iSAT, it is in general not possible to
enclose the exact satisfaction probability by an interval of some given maximum width α.
The latter can only be guaranteed if Theorem 6.3 applies (or in the context of SSAT).
Instead of that, such returned intervals [lb, ub] enclose under- or overapproximated results
as being specified by Theorem 6.2.
Algorithmically, we make use of the following simple observations. Let Φ = Qx ∈

DxQ : ϕ be an SSMT formula. Moreover, let be Φ1 = Q : ϕ[v/x] with v ∈ Dx as well
as Φ2 = Qx ∈ D′

xQ : ϕ with D′
x = Dx \ {v}. Intuitively, Φ1 is the resulting SSMT

subformula for branch “x = v” and Φ2 is the SSMT problem for all remaining branches.
For each α, it then holds that

Pr(Φ) ∈ [lb, ub] with ub− lb ≤ α

6.5 Algorithmic enhancements 153

if and only if there exist some lb1, lb2, ub1, and ub2 such that

Pr(Φ1) ∈ [lb1, ub1] and Pr(Φ2) ∈ [lb2, ub2]

with

� lb = max(lb1, lb2), ub = max(ub1, ub2), ub1 − lb1 ≤ α, and ub2 − lb2 ≤ α if Q = ∃,
and

� lb = dx(v) · lb1 + lb2, ub = dx(v) · ub1 + ub2, ub1− lb1 ≤ α1/dx(v), and ub2 − lb2 ≤ α2

for some α1, α2 with α = α1 + α2 if Q =

R

dx .

We now elaborate on how these facts can be exploited during SSMT proof search. For
some SSMT formula Φ as above and some accuracy α, the accuracies for the subproblems
Φ1 and Φ2 are determined recursively as follows. If x is an existential variable, i.e. if
Q = ∃, then the accuracies for Φ1 and Φ2 simply coincide with α, as suggested above.
In the randomized case, i.e. if Q =

R

dx , determination of these accuracies is not that
obvious. In conformity with above facts, we need to decompose accuracy α into α1 and
α2 to obtain valid accuracies for the subproblems Φ1 and Φ2. This clearly gives rise to
several heuristics ranging from the one extreme where the full accuracy α is occupied by α1,
i.e. α1 = α, α2 = 0, to the other extreme where α2 takes full accuracy, i.e. α1 = 0, α2 = α.
In the experiments that are presented in Section 6.7, we employ a “fair” distribution of
accuracy α. More precisely, α1 = α/|Dx| and α2 = α − α1. As indicated above, α1

cannot be used directly as the accuracy for subproblem Φ1 but must be “normalized”
by means of dividing α1 by the probability dx(v) associated with value v. That is, the
resulting accuracy is given by α1/dx(v). A small optimization in distributing the accuracy
can be devised for the randomized case, i.e. if Q =

R

dx , by making use of the “saved”
accuracy after having solved the first subproblem Φ1. More precisely, if ub1 − lb1 is
strictly less than α1/dx(v) then accuracy α1/dx(v) was not fully utilized and some accuracy
αs = α1 − dx(v) · (ub1 − lb1) is left over. This saved accuracy αs can thus be added to
accuracy α2 for subproblem Φ2, i.e. α

′
2 = α2 + αs may be used as the accuracy for Φ2.

The latter optimization is also employed in the experiments of Section 6.7.

After having described the recursive computation of the accuracies for the SSMT sub-
problems, it remains to explain when accuracy-based pruning applies: if accuracy α for
some SSMT problem Φ is at least 1 then we may skip solving of Φ and return the interval
[lb, ub] with lb = 0 and ub = 1 immediately. Note that the latter is in compliance with the
problem specification above, i.e. if α ≥ 1 then Pr(Φ) ∈ [lb, ub] = [0, 1] and ub−lb = 1 ≤ α.

By the algorithmic enhancement of accuracy-based pruning, the SSMT algorithm must
now be able to deal with probability intervals instead of probability values. This fact
necessitates to slightly modify the calculation of the probabilities for the individual quan-
tifiers. Obtaining probability intervals in the base cases has been described above. Note
that whenever the exact probability pr is returned then the corresponding interval is the
point interval [pr, pr]. Otherwise, i.e. if two probability intervals [lb1, ub1] and [lb2, ub2]
for subproblems Φ1 and Φ2 are given, respectively, we apply usual interval arithmetic,
confer [Moo66, Moo79, Moo80] as well as Subsections 6.3.1 and 6.3.2, to compute the
probability interval [lb, ub] for Φ, as already indicated above. More precisely, if Q = ∃

154 6 Algorithms for SSMT Problems

unsatisfiable satisfiable satisfiable unsatisfiable

y = 1y = 0

x = 0, dx(0) = 0.85

y = 0 y = 1

x

y y

Φ =

R

[0→0.85,1→0.15]x ∈ {0, 1} ∃y ∈ {0, 1} :
(
(x = 0 ∨ y = 0) ∧ (x = 1 ∨ y = 1)

)

α3,2 = 2/17α3,1 = 2/17

x = 1, dx(1) = 0.15

[0.85, 0.85] + [0, 0.15] = [0.85, 1]

[0, 0] [1, 1]

[1, 1] [0, 1]

α = 0.2

αs = α1 − 0 = 0.1

α4 = α′
2/dx(1) = 4/3 ≥ 1α3 = α1/dx(0) = 2/17

α2 = 0.1α1 = 0.1

α′
2 = α2 + αs = 0.2

Figure 6.8: Example of pruning the search tree based on accuracy α = 0.2 when solving SSMT

formula Φ.

then [lb, ub] = [max(lb1, lb2),max(ub1, ub2)] and if Q =

R

dx then [lb, ub] = [dx(v) · lb1 +
lb2, dx(v) · ub1 + ub2].

A simple example of accuracy-based pruning is presented in Figure 6.8. The given
accuracy α = 0.2 is fairly distributed among both branches for randomized variable x, i.e.
α1 = 0.1 for branch “x = 0” as well as α2 = 0.1 for branch “x = 1”. The accuracy for the
left subproblem then is α3 = α1/dx(0) = 2/17. As α3 < 1, accuracy-based pruning does
not apply. The accuracies for the branches of existential variable y then coincide with
α3. Branch “y = 0” yields probability interval [0, 0] while branch “y = 1” gives [1, 1] such
that the result for branch “x = 0” is the interval [1, 1] of width 0. That is, the result for
branch “x = 0” is exact meaning that no accuracy was utilized at all. As a consequence,
we have saved full accuracy α1, i.e. αs = α1. The latter allows to increase the accuracy
for branch “x = 1” from α2 = 0.1 to α′

2 = α2+αs = 0.2. As the “normalized” accuracy for
branch“x = 1” is at least 1, i.e. α4 = α′

2/dx(1) = 4/3 ≥ 1, accuracy-based pruning succeeds
permitting to skip investigation of the whole subproblem. The corresponding probability
interval is [0, 1]. Taking into account the probabilities 0.85 and 0.15 of setting x to 0 and
to 1, respectively, we achieve the weighted intervals [0.85, 0.85] and [0, 0.15]. The sum of
these intervals then yields the final probability interval [0.85, 1] which contains the exact
probability of satisfaction Pr(Φ) = 1 and which is of width 0.15 ≤ α = 0.2.

We finally elaborate on the combination of thresholding and accuracy-based pruning.
Let [lb, ub] be the (intermediate) probability interval of some subproblem. Then, thresh-
olding may only be applied if the lower bound lb has exceeded the upper threshold θu or
if the upper bound ub is too small in the sense that the maximum possible probability of
all remaining branches does not suffice to reach the lower threshold θl.

6.5 Algorithmic enhancements 155

satisfiable satisfiable

y

x

zz

Φ = ∃x ∈ {0, 1, 2}

R

[0→0.1,1→0.05,2→0.7,3→0.15]y ∈ {0, 1, 2, 3}

R

[0→0.25,1→0.25,2→0.25,3→0.25]z ∈ {0, 1, 2, 3} :
(
(x ≥ 0 ∨ y ≤ 0 ∨ z ≤ 2) ∧ (x ≤ 1 ∨ z ≥ 1) ∧ (y ≥ 1 ∨ h ≥ 0) ∧ (z ≥ 3 ∨ h < 0) ∧ (h = sin(a))

)

y = 2

dy(2) = 0.7dy(0) = 0.1 dy(1) = 0.05

y = 1y = 0

z = 1

dz(1) = 0.25

z = 3

dz(3) = 0.25

Pr = 0.75 Pr = 0.75 Pr = 0.75Pr = 0.25

Pr = 0.7

Pr = 1 Pr = 1

Pr = 1 Pr = 1

x = 2

y = 3

dy(3) = 0.15

z = 3

dz(3) = 0.25dz(2) = 0.25

z = 2

Figure 6.9: Example of solution-directed backjumping when solving SSMT formula Φ.

6.5.4 Solution-directed backjumping

The concept of solution-directed backjumping (SDB) has been originally introduced in
the context of solving quantified Boolean formulae (QBFs) in order to improve perfor-
mance of QBF solvers [GNT03], and then has been adapted to the SSAT framework by
Majercik [Maj04]. In this subsection, we elaborate on how SDB can be integrated into
the SiSAT algorithm addressing SSMT problems. We remark that the content of this
subsection has appeared in slightly different form in the conference paper [TF08].

Intuitively, the overall idea of solution-directed backjumping is the following. Upon
having found an (approximate) solution, SiSAT analyzes which quantified variables have
no impact on the (approximate) solution and saves probing their alternative values by
directly assigning the satisfaction probability of the current subproblem to all remaining
subproblems.

In order to motivate this technique, we start the presentation of SDB with a simple
example that is illustrated in Figure 6.9. Let be given the SSMT formula Φ = Q : ϕ with

Q = ∃x ∈ {0, 1, 2}

R

[0→0.1,1→0.05,2→0.7,3→0.15]y ∈ {0, 1, 2, 3}

R

[0→0.25,1→0.25,2→0.25,3→0.25]z ∈ {0, 1, 2, 3}

and

ϕ = (x ≥ 0 ∨ y ≤ 0 ∨ z ≤ 2) ∧ (x ≤ 1 ∨ z ≥ 1) ∧ (y ≥ 1 ∨ h ≥ 0)

∧ (z ≥ 3 ∨ h < 0) ∧ (h = sin(a))

156 6 Algorithms for SSMT Problems

where h ∈ [−1, 1] and a ∈ [−100, 100] are real-valued variables. Assume that we first
investigate value 2 for existential variable x. Due to clause (x ≤ 1 ∨ z ≥ 1), we may
then prune the domain of randomized variable z from {0, 1, 2, 3} to {1, 2, 3} by unit
propagation. For randomized variable y, branch “y = 0” is solved first. Due to clause
(y ≥ 1∨h ≥ 0) it follows that h ≥ 0. Then, z ≥ 3 can be deduced due to (z ≥ 3∨h < 0).
That is, it remains only one possible value for randomized variable y, namely 3. The
corresponding quantifier-free SMT subproblem is satisfiable as the conjunction of h ≥ 0
and h = sin(a) can be satisfied, for instance by h := sin(2) ≈ 0.9093 and a := 2.
Next, we explore branch “y = 1” and then “z = 1”. The corresponding quantifier-free

SMT subproblem is satisfiable under the current assignment σ to the quantified variables
with σ(x) = 2, σ(y) = 1, and σ(z) = 1, thus yielding satisfaction probability 1 for this
base case. In order to apply SDB, we first search for an explanation of satisfiability of ϕ
under σ. To this end, we select from each clause (at least) one constraint, namely

1. x ≥ 0 from the first clause,

2. z ≥ 1 from the second,

3. y ≥ 1 from the third,

4. h < 0 from the fourth, and

5. h = sin(a) from the fifth.

Observe that the conjunction of above constraints is satisfiable under σ since constraints
of items 1, 2, and 3 are immediately satisfied under σ and constraints of items 4 and 5 are
satisfied, for instance, by assignments h := sin(4) ≈ −0.7568 and a := 4. The latter fact
entails satisfiability of ϕ under σ and, therefore, the above selection of constraints serves
as an explanation that ϕ is satisfiable under σ.
Now observe that the conjunction of above constraints remains satisfiable when replac-

ing value σ(z) = 1 by any other value from the current domain {1, 2, 3} of randomized
variable z, since the only constraint talking about z, namely z ≥ 1 of item 2, is satisfied by
any value for z that is at least 1. In other words, the current value σ(z) = 1 has no impact
on satisfiability of ϕ under σ with respect to the current domain of z. As a consequence,
ϕ is satisfiable under each σ′ with σ′(x) = σ(x), σ′(y) = σ(y), and σ′(z) ∈ {1, 2, 3}. That
is, each of the remaining branches for z leads to a satisfiable SMT subproblem and thus
to satisfaction probability 1. This allows us to skip these branches and to compute the
satisfaction probability for z immediately, namely 0.75.
A similar argument can now be applied for randomized variable y. However, as y

is followed by z within quantifier prefix Q, satisfiability of ϕ under the corresponding
assignment to the quantified variables must be ensured for all remaining values of y and
of z. That is, to apply SDB also for y, the conjunction of above constraints must be
satisfiable under each σ′′ with σ′′(x) = σ′(x), σ′′(y) ∈ {1, 2, 3}, and σ′′(z) ∈ {1, 2, 3},
which actually is the case. All remaining branches for y hence yield the same satisfaction
probability as the current one, namely 0.75. We again skip investigation of these branches
and determine the probability of satisfaction for y directly, namely 0.7.
SDB is however not applicable for variable x. Though all remaining values for x, namely

0 and 1, satisfy constraint x ≥ 0 of item 1, the domains of variables y and z have been

6.5 Algorithmic enhancements 157

increased during backtracking to their initial domains, i.e. to {0, 1, 2, 3}. This implies
that constraints y ≥ 1 (item 3) and z ≥ 1 (item 2) are no longer satisfied by each of the
remaining values of y and z. Indeed, both branches “x = 0” and “x = 1” yield a higher
probability of satisfaction, namely 0.925.

In what follows, we formally introduce the algorithmic enhancement of SDB. To this
end, we first define a reason for an (approximate) solution akin to a reason for a conflict,
confer Subsection 6.3.2 and in particular rule SMT.4. More precisely, let ϕ be some SMT
formula in CF and M be some conjunctive constraint system, the latter representing,
among others, the initial variable domains as well as the current instantiation of the
quantified variables. Then, a conjunctive system r of constraints from ϕ, i.e. r ⊆ {c ∈ cl :
cl ∈ ϕ} using set notation, is called a reason for an (approximate) solution of ϕ ∧M if
and only if

� r contains from each clause at least one constraint, i.e. ∀cl ∈ ϕ : cl ∩ r 6= ∅, and

� there exists an (approximate) solution of r ∧M .

From the above definition, it immediately follows that existence of such a reason r actually
implies existence of an (approximate) solution of ϕ∧M . We denote the set of all reasons
for an (approximate) solution of ϕ ∧M by sat reasons(ϕ,M).

We formalize solution-directed backjumping by the following rule SSMT.11. Instantia-
tion of quantified variable x with value v ∈ Dx yields probability pr and SMT formula ϕ′

potentially containing learnt conflict clauses. Note that thresholding has been “disabled”
for the latter call by taking 0 as the lower and 1 as the upper threshold. This approach was
devised to avoid any interference with thresholding. It is important to remark that thresh-
olding is still possible, namely by selecting rule SSMT.3 or SSMT.4 instead of SSMT.11 if
applicable.

The idea of SDB is now formalized as follows. Let us assume that there exists a reason r
for an (approximate) solution of ϕ∧M ⊙M ′ for allM ′, i.e. for all possible assignments to
the quantified variables in prefix Qx ∈ Dx⊙Q. That is, for each such assignment there is
an (approximate) solution of ϕ∧M ⊙M ′ which in turn means that the probability result
for each of the remaining branches “x = v′” is the same as for branch “x = v”, namely pr.
This gives us an argument for skipping investigation of the remaining subproblems and
immediately returning the combined probability result pr′. One might wonder whether
pr can be less than 1. This can actually be the case, namely, first, if r witnesses an
approximate solution and if parameter p̃ was fixed to 0 (aiming at underapproximated
probability results) and, second, if some domains in prefix Q were already pruned by
rule SSMT.6 as in the motivating example.

(SSMT.11)

v ∈ Dx, (M ⊙ 〈x = v〉,Q : ϕ, 0, 1) −→∗
SSMT (pr, ϕ′),

Q = Qx1 ∈ Dx1
⊙ . . .⊙Qxm ∈ Dxm

,

∃r ⊆ {c ∈ cl : cl ∈ ϕ} : ∀v′ ∈ Dx∀v1 ∈ Dx1
. . .∀vm ∈ Dxm

:

r ∈ sat reasons(ϕ,M ⊙M ′) with M ′ = 〈x = v′, x1 = v1, . . . , xm = vm〉,

pr′ =

{
pr ; Q = ∃,∑

v′∈Dx
dx(v

′) · pr ; Q =

R

dx

(M,Qx ∈ Dx ⊙Q : ϕ, θl, θu) −→SSMT (pr′, ϕ′)

158 6 Algorithms for SSMT Problems

While soundness of rule SSMT.11 was explained above, it is however not clear how its
application condition can be checked in an efficient way. We employ the following routine
to check applicability of rule SSMT.11.

In the base case, i.e. Q = ε and existence of a solution or of an approximate solution was
certified by rule SSMT.8 or by rule SSMT.9, respectively, a reason r for this (approximate)
solution of ϕ ∧M ⊙ 〈x = v〉 is determined by selecting from each clause of ϕ (at least)
one constraint. In case of SSMT.8, we simply take as the reason r the constraint system
M3 used in the premise of the underlying satisfiability checking rule SMT.6. Recall that
the strong satisfaction check has succeeded on M1 ⊙M3 where M1 comprises the initial
interval domains of all variables and the current instantiations of the quantified variables
(as well as some deductions obtained from the latter), and M3 contains from each clause
at least one constraint. In case of SSMT.9, we take from each clause one constraint that
is not inconsistent under interval assignment σM ′ . Success of the latter process is ensured
by item 2c of Proposition 6.2 or rather Remark 6.1.

We then check the application condition of SSMT.11 successively for increasing Q until
some check fails. To this end, we use reason r which has been determined above. That
is, we have to prove whether r is actually a reason for an (approximate) solution of
ϕ ∧M ⊙M ′ for all M ′, i.e. for all assignments to the quantified variables x, x1, . . . , xm
of which exponentially many exist in general. A brute-force approach, probing all these
assignments, would clearly neutralize any benefit of SDB. To achieve an efficient check,
we proceed as follows. By construction of r in the base case above, there is at least one
M ′′ = 〈x = w, x1 = w1, . . . , xm = wm〉 such that r is a reason for an (approximate)
solution τ of ϕ ∧M ⊙M ′′. By definition, τ is an (approximate) solution of r ∧M ⊙M ′′.
Though we are unaware of this (approximate) solution τ (only existence of τ is ensured),
we know however that τ(x) = w, τ(x1) = w1, . . . , τ(xm) = wm due to the shape of M ′′.
Let

rVar(M ′′) = {c ∈ r : Var(c) ∩Var(M ′′) 6= ∅} and

MVar(M ′′) = {c ∈M : Var(c) ∩Var(M ′′) 6= ∅}

be the subsystems of r and ofM , respectively, that consist of all constraints involving some
variables from Var(M ′′) = {x, x1, . . . , xm}. Obviously, each assignment τ ′ with τ ′(y) =
τ(y) for all y /∈ Var(M ′′) is an (approximate) solution of all constraints not containing
variables in Var(M ′′), i.e. of rremain ∧Mremain with rremain = r \ rVar(M ′′) and Mremain =
M \MVar(M ′′). If we can now show that each such τ ′ above with τ ′(x) ∈ Dx, τ

′(x1) ∈
Dx1

, . . . , τ ′(xm) ∈ Dxm
is also an (approximate) solution of rVar(M ′′) ∧ MVar(M ′′) then

rule SSMT.11 may be executed, since then for each M ′ an (approximate) solution of
r ∧ M ⊙ M ′ exists. Observe that each τ ′ trivially satisfies the corresponding M ′ by
construction.

The latter check is hard as soon as arithmetic constraints are involved. For the sake of
efficiency, our routine tests for a stronger condition, namely whether each constraint c in
rVar(M ′′) and in MVar(M ′′) is

1. a simple bound of the shape z ∼ q with ∼∈ {<,≤,=,≥, >} and with q being a
rational constant, and

2. satisfied by each value wz ∈ Dz, i.e. whether wz ∼ q holds for each wz ∈ Dz.

6.5 Algorithmic enhancements 159

Observe that verification of condition 1 is straightforward. Checking condition 2 just calls
for comparing the minimum or maximum value of Dz with constant q if ∼∈ {<,≤,≥, >}
and for investigating whether Dz = {q} if ∼∈ {=}.

With regard to soundness, if both of the above conditions are satisfied for all these
constraints c then the application condition of rule SSMT.11 is satisfied permitting to
apply solution-directed backjumping by means of execution of SSMT.11.

We remark that the above approach, which only succeeds if all these constraints c are
simple bounds, is well-motivated in the context of SSMT-based probabilistic bounded
reachability analysis of (concurrent) probabilistic hybrid automata. As already explained
in Subsection 6.5.2, quantified variables occur only in simple bounds in the matrix of the
SSMT formula PBMC S,Target(k), confer Section 5.3. This property is maintained after
having transformed above formula into CF.

Any interference with thresholding was excluded on account of setting θl to 0 and θu
to 1, confer rule SSMT.11. With regard to accuracy-based pruning, our routine performing
SDB applies only after having found an (approximate) solution by means of rule SSMT.8

or rule SSMT.9 as explained above. That is, the corresponding probability results are
always of accuracy 0 such that accuracy-based pruning is not feasible during solution-
directed backjumping. In principle, SSMT.11 could permit that the recursive call returns
a probability interval (instead of value pr). In order to guarantee that the combined
probability interval then meets the desired accuracy, the accuracies for all branches of a
randomized variable must be distributed uniformly.

6.5.5 Caching probability results of subproblems

During SSMT proof search, it may happen that the same SSMT subformula has to be
solved several times. In order to avoid such recomputations, it is a natural approach to
store and reuse probability results of subproblems. This technique also known as mem-
oization was already investigated in the context of SSAT by Majercik and Littman: as
shown in [ML98b, ML98a], memoization can lead to tremendous performance gains but
is also very memory intensive due to the huge number of subproblems to be memoized.

The main issue with respect to this optimization is to detect when subproblems are
actually the same. Note that SiSAT as well as DPLL-SSAT visit each partial assignment to
the quantified variables at most once. That is, memoization which would be implemented
by means of a mapping from such partial assignments to probability results is pointless as
these probability results cannot be used in future search. We therefore need to consider
a more sophisticated mapping that takes account of the whole quantified formula Q : ϕ
and the current domains of the variables.

In the SSAT case, where each variable can only take one of the truth values true or
false, such a mapping can be simply realized by means of the cleaning of the propositional
formula ϕ[τ(x1)/x1] . . . [τ(xi)/xi] in CNF, as defined in Section 2.2, with τ being a partial
assignment to the quantified variables, i.e. by means of the formula that arises when
removing the constants true and false. An illustrative example of memoization for
SSAT is depicted in Figure 6.10.

In [TF09, TEF11], we have adapted the concept of memoization to the SSMT frame-
work, where arithmetic constraints as well as variables with continuous domains are in-

160 6 Algorithms for SSMT Problems

a = true

b = true b = true

d = trued = true

c = true

Pr = 0.44 Pr = 0.44 Pr = 0.44

a = false

b = false

R0.8c

R0.3d :
(
(¬c ∨ d)

) R0.8c

R0.3d :
(
(¬c ∨ d)

)

b = false

b b

a

∃a

R0.1b

R0.8c

R0.3d :
(
(a ∨ ¬b ∨ c) ∧ (¬c ∨ d)

)

R0.8c

R0.3d :
(
(¬c ∨ d)

)R0.8c

R0.3d :
(
(c) ∧ (¬c ∨ d)

)

c

d d

d = false d = false

c = false

Pr = 1Pr = 0.3

Pr = 1Pr = 1Pr = 0Pr = 1

Figure 6.10: Example of caching and reusing probability results of subtrees: once subproblem

R0.8c

R0.3d : (¬c ∨ d) has been solved, its satisfaction probability is cached and then reused

whenever encountering the same subproblem again.

volved. The main idea remains the same as in the SSAT case. Intuitively, for some SSMT
formula Q : ϕ and some partial assignment τ to the quantified variables, we determine the
remaining SSMT formula Q′ : ϕ′ by removing the variables from Q for which τ is defined
and by substituting the values τ(x) for the corresponding variables x in ϕ. Then, some
constraints in ϕ′ involving variables x have a definite truth value. For instance, x ≥ 3 is
false for τ(x) = −2, and x = y + z is true for τ(x) = −2, τ(y) = 2, and τ(z) = −4.
Observe that equations like x = y + z need not be true or false for some τ in general
since τ is partial. For instance, the truth value of x = y + z is generally undefined if τ is
not defined for some of the variables x, y, and z. If we adapt the notion of a cleaning to
SMT formulae, then the cleaning of ϕ′ arises by removing all clauses that contain some
constraints that are true and by removing from all clauses all constraints that are false.
Note that ϕ′ and its cleaning are semantically equivalent. Assume that we have already
determined the probability result pr of an SSMT formula Q′ : ϕ′ and we encounter some
SSMT formula Q′′ : ϕ′′ such that Q′′ = Q′ and the cleanings of the substitutions ϕ′′ and
ϕ′ of ϕ coincide. Then, Pr(Q′′ : ϕ′′) = Pr(Q′ : ϕ′) which gives rise to reuse probability
result pr.

Being a bit more formal, let (M,Q : ϕ, θl, θu) be some state of the SSMT layer with Q =
Qixi ∈ Dxi

⊙ . . .⊙Qnxn ∈ Dxn
. That is to say, the quantified variables x1, . . . , xi−1 were

already instantiated with some values inM , i.e. (xj = vj) ∈ M for each j ∈ {1, . . . , i−1}.
Let

ϕM ,iqv = {cl ∈ ϕ : Var(cl) ∩ {x1, . . . , xi−1} 6= ∅}

be the set of all clauses from ϕ that contain already instantiated quantified variables, and

6.5 Algorithmic enhancements 161

let ϕM ,r = ϕ \ ϕM ,iqv be the set of all other clauses. Furthermore, let

ϕM ,siqv ⊆ {cl ∈ ϕM ,iqv : ∃c ∈ cl : ∀τ ∈ σM : τ |= c}

be a subset of ϕM ,iqv comprising (not necessarily all) clauses cl which involve constraints
that are satisfied by each point τ ∈ σM , and let be ϕM ,riqv = ϕM ,iqv \ ϕM ,siqv . It follows
that M ⇒ ϕM ,siqv is valid and thus

(6.18) ϕM ,iqv ∧M ≡ ϕM ,siqv ∧ ϕM ,riqv ∧M ≡ ϕM ,riqv ∧M .

Since interval arithmetic is in general not able to decide whether ∀τ ∈ σM : τ |= c holds, we
only ensure soundness, i.e. each clause in ϕM ,siqv is indeed satisfied, but not completeness
in the sense that ϕM ,siqv contains all satisfied clauses. From all remaining clauses, i.e.
clauses which were not proven to be satisfied, we remove all inconsistent constraints and
obtain

(6.19) ϕ′
M ,riqv = {cl \ cl′ : cl ∈ ϕM ,riqv , cl

′ = {c ∈ cl : σM ♯ c}} .

It holds that (ϕM ,riqv ∧M) ⇒ ϕ′
M ,riqv and that ϕ′

M ,riqv ⇒ ϕM ,riqv . As a consequence,

(6.20) ϕM ,riqv ∧M ≡ ϕ′
M ,riqv ∧ ϕM ,riqv ∧M ≡ ϕ′

M ,riqv ∧M .

Equivalences 6.18 and 6.20 give

ϕM ,iqv ∧M ≡ ϕ′
M ,riqv ∧M

from which we deduce that

(6.21) ϕ ∧M ≡ ϕM ,r ∧ ϕM ,iqv ∧M ≡ ϕM ,r ∧ ϕ
′
M ,riqv ∧M

is true. Let Miqv = {c ∈ M : Var(c) ∩ {x1, . . . , xi−1} 6= ∅} be the conjunctive system
containing all constraints fromM which involve already instantiated quantified variables.
Analogously, Mr = {c ∈M : Var(c) ∩ {x1, . . . , xi−1} = ∅} consists of all constraints from
M not containing already instantiated quantified variables. Obviously, if the conjunctive
system Miqv is satisfied by each point in σM , i.e.

(6.22) ∀τ ∈ σM : τ |=Miqv ,

then

M [v1, . . . , vi−1/x1, . . . , xi−1], ≡ Mr

where σM (xj) = [vj , vj] with j ∈ {1, . . . , i−1}. If moreover the SMT formula ϕ′
M ,riqv does

not talk about already instantiated variables, i.e.

(6.23) Var(ϕ′
M ,riqv) ∩ {x1, . . . , xi−1} = ∅ ,

then it follows that

(6.24)
(
ϕ′
M ,riqv ∧M

)
[v1, . . . , vi−1/x1, . . . , xi−1] ≡ ϕ′

M ,riqv ∧Mr

162 6 Algorithms for SSMT Problems

is true. Let us summarize the findings above: if conditions 6.22 and 6.23 are satisfied then

(ϕ ∧M) [v1, . . . , vi−1/x1, . . . , xi−1] ≡ ϕM ,r ∧ ϕ
′
M ,riqv ∧Mr

according to equivalences 6.21 and 6.24 and due to Var(ϕM ,r) ∩ {x1, . . . , xi−1} = ∅. In-
stantaneously,

Pr (Q : (ϕ ∧M)) = Pr (Q : (ϕ ∧M) [v1, . . . , vi−1/x1, . . . , xi−1])

= Pr
(
Q :

(
ϕM ,r ∧ ϕ

′
M ,riqv ∧Mr

))
.

With regard to the first equation, observe that variables x1, . . . , xi−1 do not occur in Q
and are thus interpreted as innermost existentially quantified. Due to the shape of M ,
for each solution τ of ϕ ∧M it holds that τ(xj) = vj for all j ∈ {1, . . . , i− 1}. Thus, the
satisfaction probability remains the same after substituting values vj for xj .
In order to utilize the idea of caching and reusing probability results, we proceed as

follows. Let (M ′,Q′ : ψ′, θ′l, θ
′
u) and (M ′′,Q′′ : ψ′′, θ′′l , θ

′′
u) be two states of the SSMT layer

that occur when solving some given SSMT formula Q : ϕ (with respect to some thresholds
θl, θu) by means of applying the SSMT layer rules. Recall that ϕ ≡ ψ′ ≡ ψ′′ as only implied
conflict clauses were added to ϕ by the SSMT layer rules. That is, Pr(Q′ : (ψ′ ∧M ′)) =
Pr(Q′ : (ϕ ∧M ′)) and Pr(Q′′ : (ψ′′ ∧M ′′)) = Pr(Q′′ : (ϕ ∧M ′′)). As a consequence, if
Pr(Q′ : (ϕ ∧M ′)) = Pr(Q′′ : (ϕ ∧M ′′)) then Pr(Q′ : (ψ′ ∧M ′)) = Pr(Q′′ : (ψ′′ ∧M ′′)).
A sufficient condition that Pr(Q′ : (ϕ∧M ′)) = Pr(Q′′ : (ϕ∧M ′′)) holds is established

by the following list of items:

1. condition 6.22 holds for M ′ and M ′′, i.e. ∀τ ∈ σM ′ : τ |= M ′
iqv and ∀τ ∈ σM ′′ : τ |=

M ′′
iqv ,

2. condition 6.23 holds for ϕ′
M ′,riqv and ϕ

′
M ′′,riqv , confer equation 6.19, i.e. Var(ϕ′

M ′,riqv)∩
QVM ′ = ∅ and Var(ϕ′

M ′′,riqv) ∩ QVM ′′ = ∅ where QVM ′ and QVM ′′ are the sets of
all quantified variable which are instantiated by M ′ and M ′′, respectively,

3. the prefixes coincide, i.e. Q′ = Q′′,

4. the SMT formulae ϕ′
M ′,riqv and ϕ′

M ′′,riqv , confer equation 6.19, are equal with respect
to their set representations, i.e. they contain the same clauses while two clauses are
the same if and only if they share the same constraints,

5. the conjunctive systems M ′
r and M ′′

r (comprising all constraints from M ′ and M ′′,
respectively, without already instantiated variables) contain the same equations10,
i.e. {e ∈M ′

r : e is an equation} = {e ∈ M ′′
r : e is an equation}, and

6. the interval assignments σM ′
r
and σM ′′

r
are the same, i.e. for each variable x ∈

Var(M ′
r) ∪ Var(M ′′

r) : σM ′
r
(x) = σM ′′

r
(x).

Above items 1 and 2 ensure that

Pr (Q′ : (ϕ ∧M ′)) = Pr
(
Q′ :

(
ϕM ′,r ∧ ϕ

′
M ′,riqv ∧M

′
r

))
and

Pr (Q′′ : (ϕ ∧M ′′)) = Pr
(
Q′′ :

(
ϕM ′′,r ∧ ϕ

′
M ′′,riqv ∧M

′′
r

))
.

10Recall that the term equation refers to a constraint involving an arithmetic operator, confer Defini-
tion 4.3.

6.5 Algorithmic enhancements 163

Item 3 entails that ϕM ′,r and ϕM ′′,r are equal with respect to their set representations
since ϕM ′,iqv and ϕM ′′,iqv are. Thus,

ϕM ′,r ≡ ϕM ′′,r .

An obvious consequence of item 4 is that

ϕ′
M ′,riqv ≡ ϕ′

M ′′,riqv

holds. From items 5 and 6 we deduce that

M ′
r ≡ M ′′

r

as each solution τ of M ′
r satisfies all equations as well as all bounds in M ′′

r due to item 5
as well as item 6, respectively. Since no other constraints occur inM ′′

r , τ is also a solution
of M ′′

r . Analogously, the reverse direction holds.
We may thus conclude that

Pr
(
Q′ :

(
ϕM ′,r ∧ ϕ

′
M ′,riqv ∧M

′
r

))
= Pr

(
Q′′ :

(
ϕM ′′,r ∧ ϕ

′
M ′′,riqv ∧M

′′
r

))

is true from which

Pr (Q′ : (ϕ ∧M ′)) = Pr (Q′′ : (ϕ ∧M ′′))

follows.
Let pr be the probability result for state (M ′,Q′ : ψ′, θ′l, θ

′
u), i.e.

(M ′,Q′ : ψ′, θ′l, θ
′
u) −→∗

SSMT (pr, ψ) .

In order to cache result pr for above SSMT layer state, we first check whether condi-
tions 6.22 and 6.23 are satisfied according to above items 1 and 2. If so, we store a
mapping from the prefix Q′, the SMT formula ϕ′

M ′,riqv , and the conjunctive system M ′
r

(as per items 3, 4, 5, and 6) as well as the current thresholds θ′l and θ′u to probability
result pr, i.e. we cache the entry

(
Q′, ϕ′

M ′,riqv ,M
′
r , θ

′
l, θ

′
u

)
→ pr .

In case we visit some state (M ′′,Q′′ : ψ′′, θ′′l , θ
′′
u) for which conditions 6.22 and 6.23 hold

and for which a cached entry (Q′, ϕ′
M ′,riqv ,M

′
r , θ

′
l, θ

′
u) → pr exists such that items 3, 4,

5, and 6 are fulfilled, we may reuse probability result pr if it is in conformity with the
thresholds. More precisely, we may directly assign pr to (M ′′,Q′′ : ψ′′, θ′′l , θ

′′
u), i.e. without

solving the same subproblem again, whenever

1. pr ∈ [θ′l, θ
′
u],

2. [θ′′l , θ
′′
u] ⊆ [θ′l, θ

′
u],

3. pr < θ′l ≤ θ′′l , or

4. pr > θ′u ≥ θ′′u.

164 6 Algorithms for SSMT Problems

In case of item 1, pr is the exact (or rather under- or overapproximated) probability result.
Thus, pr can be reused regardless of thresholds θ′′l and θ′′u. Item 2 specifies the fact that
the cached result is “more precise than required”. That is to say, if pr ∈ [θ′l, θ

′
u] then it is

“exact” and if pr < θ′l or pr > θ′u then clearly pr < θ′′l or pr > θ′′u, respectively. Items 3 and
4 finally reflect the situations where pr misses and exceeds the cached lower and upper
thresholds which are at most and at least as large the current lower and upper thresholds,
respectively.
If accuracy-based pruning, as presented in Subsection 6.5.3, is applied then we may only

reuse the cached probability interval [lb, ub] if its width meets the accuracy α required for
the current subproblem, i.e. ub− lb ≤ α.
For a simple example of memoization for the SSMT case, consider the SSMT formula

Q : ϕ where

Q = ∃x1 ∈ {−10, . . . , 10} ⊙

R

dx2
x2 ∈ {−10, . . . , 10} ⊙ Q′

and
ϕ = (x1 ≥ 2 ∨ x2 ≤ 1) ∧ (x1 = −x2 ∨ c1 ∨ c2) ∧ ψ

with Q′ being a quantifier prefix, c1 and c2 being constraints not involving variables x1
and x2, and ψ being an SMT formula in CF also not comprising x1 and x2. Let further
be given the SSMT layer state (M,Q′ : ϕ, 0.1, 0.9) with

M = Mdom ⊙ 〈x1 = 4, x2 = 3〉

where the conjunctive system Mdom encodes the initial domains of all variables symbol-
ically as defined in equation 6.17. We assume that SSMT proof search for above state
yields probability result 0.6, i.e.

(M,Q′ : ϕ, 0.1, 0.9) −→∗
SSMT (0.6, ψ′) .

Let constraints c1 and c2 be neither inconsistent under σM nor satisfied by each point
in σM . Then, we obtain

ϕM ,iqv = (x1 ≥ 2 ∨ x2 ≤ 1) ∧ (x1 = −x2 ∨ c1 ∨ c2) ,

ϕM ,siqv = (x1 ≥ 2 ∨ x2 ≤ 1) ,

ϕM ,riqv = (x1 = −x2 ∨ c1 ∨ c2) ,

ϕ′
M ,riqv = (c1 ∨ c2)

as well as

Miqv = 〈x1 ≥ −10, x1 ≤ 10, x2 ≥ −10, x2 ≤ 10, x1 = 4, x2 = 3〉 ,

Mr = M ′
dom

where the bounds x1 ≥ −10, x1 ≤ 10, x2 ≥ −10, x2 ≤ 10 ∈ Mdom encode the initial
domains of x1 and x2, and where the conjunctive system M ′

dom arises from Mdom by
removing bounds x1 ≥ −10, x1 ≤ 10, x2 ≥ −10, x2 ≤ 10. It is not hard to see that
conditions 6.22 and 6.23 are satisfied. We may thus cache the entry

(M,Q′ : ϕ, 0.1, 0.9) → 0.6 .

6.5 Algorithmic enhancements 165

If we visit, for instance, the SSMT layer state (M ′,Q′ : ϕ, θ′l, θ
′
u) with

M ′ = Mdom ⊙ 〈x1 = −9, x2 = −1〉

in future search then we need not solve the corresponding SSMT problem but we may
reuse probability result 0.6 since the sufficient condition for Pr(Q′ : (ϕ ∧M)) = Pr(Q′ :
(ϕ ∧M ′)) is satisfied, i.e. above items 1 to 6 hold. However, for state (M ′′,Q′ : ϕ, θ′l, θ

′
u)

with

M ′′ = Mdom ⊙ 〈x1 = 1, x2 = −1〉

the cached probability result must not be reused since constraint x1 = −x2 is satisfied by
each point in σM ′′ . That is, ϕ′

M ′′,riqv = ∅ 6= ϕ′
M ,riqv which violates item 4.

With regard to implementation, it is worth mentioning that a cached entry

(
Q′, ϕ′

M ′,riqv ,M
′
r , θ

′
l, θ

′
u

)
→ pr

can be represented in a more concise way. For this purpose, we assume that the original
matrix ϕ is known in each SSMT solver state. Note that this requires no extra memory
if ϕ is stored in a global data structure.

At first, we aim at storing only a sufficient subsystem of M ′
r . To this end, observe that

all equations in M ′
r that are satisfied by each point in σM ′

r
can be neglected since they are

redundant. That is, M ′
r ≡ M̂ ′

r where M̂ ′
r arises from M ′

r by removing all such redundant
equations. We now show that each “non-redundant”equation e ∈M ′

r , i.e. e is not satisfied
by each point in σM ′

r
, can be deduced from the SMT formula ϕM ′,r , the SMT formula

ϕ′
M ′,riqv , and the interval assignment σM ′

r
. The rationale is as follows.

� If some e ∈ M ′
r was deduced from some clause cl ∈ ϕM ′,r and from some subsystem

ofM ′ then e can also be deduced using the strongest bounds ofM ′
r , which are taken

into account by σM ′
r
, since all clause in ϕM ′,r do not contain already instantiated

variables.

� If some e ∈M ′
r was deduced from some clause cl ∈ ϕM ′,riqv and from some subsystem

ofM ′ then e can also be deduced from clause cl′ ∈ ϕ′
M ′,riqv which arises from cl when

removing all constraints that are inconsistent under σM ′ . It must be true that such
clauses cl′ are singletons and thus unit.

� If some e ∈M ′
r was deduced from some clause cl ∈ ϕM ′,siqv and from some subsystem

ofM ′ then e is satisfied by each point in σM ′ . This is due to the facts that all clauses
in ϕM ′,siqv are satisfied by each point σM ′ and that e is the unit constraint of cl, i.e.
all other constraints in cl are false. As e does not comprise any already instantiated
quantified variable, e is also satisfied by each point in σM ′

r
.

We remark that each equation inM ′
r must be deduced according to one of the above items

since ϕ = ϕM ′,r ∧ϕM ′,riqv ∧ϕM ′,siqv . Provided that ϕ′
M ′,riqv is given, it thus suffices to store

σM ′
r
(taking account of the strongest bounds ofM ′

r) only instead of the whole system M ′
r .

That is, from ϕM ′,r , ϕ
′
M ′,riqv , and σM ′

r
we can deduce each equation in M̂ ′

r , while ϕM ′,r

can be constructed from Q′ and the original matrix ϕ.

166 6 Algorithms for SSMT Problems

A second optimization is devised as follows. Due to condition 6.23, all clauses of ϕ′
M ′,riqv

can be constructed from ϕM ′,riqv and σM ′
r
, namely by removing all constraints involving

already instantiated quantified variables as well as all constraints being inconsistent under
σM ′

r
. As ϕM ′,riqv ⊆ ϕ consists of original clauses only, it suffices to cache unique identifiers,

like pointers or indices, to all clauses in ϕM ′,riqv .

6.5.6 Caching solutions

The algorithmic enhancement of caching solutions, as published in [TEF11] by the au-
thor of this thesis together with his co-authors, is motivated by the application of SSMT
to probabilistic bounded model checking of probabilistic hybrid automata. In order to
solve the probabilistic bounded reachability problem for some system S of concurrent
probabilistic hybrid automata, i.e. to compute Pk

S,Target(ı) from Definition 5.3 or rather
P k
S,Target(ı) from Lemma 5.2, we need to take account of anchored system runs r of length

at most k reaching the target states. Of course, such runs r may be of much smaller
length k′ < k. This circumstance is considered in the definition of P k

S,Target(s) by simply
skipping all suffixes of r, i.e. by returning probability 1 instantaneously, whenever s is
a target state, confer Lemma 5.2. However, this handling is not preserved directly after
reduction from probabilistic bounded reachability to SSMT, i.e. after having transformed
the problem of computing P k

S,Target(ı) into the problem of computing the maximum satis-
faction probability of the SSMT formula PBMC S,Target(k), confer Section 5.3. Recall that
P k
S,Target(ı) = Pr(PBMC S,Target(k)) according to Theorem 5.1. As enforced by reduction

step 10 in Section 5.3, whenever a target state t is visited in less than k steps then the
system remains in t until step depth k is reached by performing self loops. That is, all
target states are sinks as illustrated in Figure 6.11 a. The above observation motivates to
cache and reuse solutions, which is formalized in the following proposition.

Proposition 6.3 (Soundness of reusing cached assignments)
Let us abbreviate by CHOICES(k1, k2) the quantifier prefix

⊙k2
j=k1

CHOICES(j). For
some SSMT formula PBMC S,Target(k) = CHOICES(1, k) : BMC S,Target(k) as constructed
in Section 5.3, let τ be an assignment to the quantified variables x ∈ Var(CHOICES(1, k

′))
with k′ ≤ k and τ(x) ∈ Dx such that

Pr (CHOICES(k
′ + 1, k) : BMC S,Target(k)[τ(~x)/~x]) = 1

where BMC S,Target(k)[τ(~x)/~x] arises from BMC S,Target(k) by substituting values τ(x) for
all variables x ∈ Var(CHOICES(1, k

′)). Then, for each k′′ ≥ k it holds that

Pr (CHOICES(k
′ + 1, k′′) : BMC S,Target(k

′′)[τ(~x)/~x]) = 1 .

Proof. In order to prove the proposition, it suffices to show that for each assignment τ ′

to the quantified variables y ∈ Var(CHOICES(k
′ + 1, k)) which yields a satisfiable SMT

formula, i.e.
Pr (ε : BMC S,Target(k)[τ(~x)/~x][τ

′(~y)/~y]) = 1 ,

it holds that each assignment τ ′′ to the quantified variables z ∈ Var(CHOICES(k+1, k′′))
also leads to a satisfiable SMT formula, i.e.

Pr (ε : BMC S,Target(k
′′)[τ(~x)/~x][τ ′(~y)/~y][τ ′′(~z)/~z]) = 1 .

6.5 Algorithmic enhancements 167

a)

c)

b)

0.2

0.8

pc3

pc1

p2p1

pc2

pc3 pc3 pc3 pc3

p1 p2

pc1

pc2 pc2

p2p1

pc1

p2p1

Pr = 1 Pr = 0

p2p1

pc2

p1 p2

p2p1

Pr = 1 Pr = 0

pck

step depth 1 step depth 2 step depth k

p2p1

p2p1

pc1

p2p1

pc1

pc2Pr = 1 Pr = 1

Pr = 1

true

p2

p1

t

pc1

p2p1

Pr = 0

p2p1

pc2

p1 p2p2p2 p1p1p1 p2

p1 p2 p2p1

Pr = 1 Pr = 1 Pr = 1 Pr = 1

p1 p2 p2p1

Pr = 1 Pr = 1 Pr = 1 Pr = 0

pck pck pckpck

step depth 1 step depth 2 step depth k

Pr = 1

p1 p2 p2p1

Pr = 1 Pr = 1 Pr = 0Pr = 1

Pr = 0Pr = 1

Figure 6.11: Example of caching and reusing solutions: a) a simple probabilistic automaton

with t being the target state to be reached, b) illustration of the quantifier prefixes of the

corresponding SSMT encodings for step depths 1 to k, and c) exploiting cached assignments

leading to subproblems of satisfaction probability 1 when solving SSMT encodings of larger step

depths. Note that each randomized variable pci encodes the probabilistic choice at step i.

Due to construction of BMC S,Target(k
′′), confer reduction step 10, the above sufficient

condition actually holds since quantified variables are not involved in the predicates
TARGET (j − 1) and SELF LOOPS(j − 1, j). 2

Though considering target states as sinks within the SSMT encoding PBMC S,Target(k) is
sound due to Proposition 6.3, this fact potentially causes unnecessary effort when solving

168 6 Algorithms for SSMT Problems

SSMT formulae PBMC S,Target(k
′′) of larger depth k′′ ≥ k. The rationale is that even

though an assignment τ to the quantified variables x ∈ Var(CHOICES(1, k
′)) with k′ ≤ k

already leads to satisfaction probability 1, as in Proposition 6.3, each assignment τ ∗ to
the quantified variables x∗ ∈ Var(CHOICES(k

′ + 1, k′′)) must be explored in worst case,
as depicted in Figure 6.11 b. The number of these assignments τ ∗ clearly is exponential in
the number of variables in Var(CHOICES(k

′ + 1, k′′)). With the aid of Proposition 6.3,
we may avoid this pointless overhead by caching and reusing assignments τ that yield
satisfaction probability 1 after substitution, as indicated in Figure 6.11 c.

Such assignments τ are stored when solving some SSMT formula PBMC S,Target(k),
namely whenever a satisfiable (quantifier-free) SMT subproblem was found. Observe that
in such cases, k′ = k in Proposition 6.3. With regard to implementation, we use a tree-like
data structure to store and access assignments τ efficiently. When solving SSMT problems
PBMC S,Target(k

′′) of larger depth k′′ ≥ k, we directly assign satisfaction probability 1 to
the current subproblem if the current assignment to the quantified variables was cached
beforehand, which is in accordance with Proposition 6.3.

An optimization of the caching-solutions technique allows to compress stored assign-
ments in size. Assume that we have cached assignments τ1, . . . , τn to the quantified vari-
ables x1, . . . , xm. Whenever

1. τ1(xi) = . . . = τn(xi) for all i ∈ {1, . . . , m− 1} and

2. a) xm is an existential variable or

b) xm is a randomized variable and {τ1(xm), . . . , τn(xm)} = Dxm

then we may replace the assignments τ1, . . . , τn by the assignment τ to the quantified
variables x1, . . . , xm−1 with τ(xi) = τ1(xi) for all i ∈ {1, . . . , m− 1}.11 That is to say, the
assignment τ already induces an SSMT subproblem of satisfaction probability 1. Sound-
ness of the latter operation follows directly from the semantics of SSMT, confer Defini-
tion 4.5. With regard to the latter, recall that existential quantifiers aim at maximizing
the satisfaction probability and randomized quantifiers at computing the weighted sum,
and observe that one value in the domain of xm leads to probability 1 if xm is existential
and that all values do if xm is randomized. Multiple applications of this optimization lead
to very compact representations of the set of assignments found so far, facilitating earlier
pruning of the quantifier tree.

Concerning the issue of approximate solutions, confer rule SSMT.9, the algorithmic en-
hancement of caching solutions is in conformity with Theorem 6.2. Finally, it is important
to remark that caching and reusing solutions is only valid for families of SSMT formu-
lae Q1x1 ∈ Dx1

. . . Qkxk ∈ Dxk
: ϕ(k) for which Pr(Qi+1xi+1 ∈ Dxi+1

. . . Qkxk ∈ Dxk
:

ϕ(k)[τ(x1)/x1] . . . [τ(xi)/xi]) = 1 implies that Pr(Qi+1xi+1 ∈ Dxi+1
. . . Qk′xk′ ∈ Dxk′

:
ϕ(k′)[τ(x1)/x1] . . . [τ(xi)/xi]) = 1 for all k′ ≥ k. For the family PBMC S,Target(k), this has
been shown by Proposition 6.3.

11Employing a tree-like data structure, such replacements are realized efficiently by removing all vertices
representing τ1(xm), . . . , τn(xm).

6.6 SSMT-based probabilistic bounded model checker SiSAT 169

6.6 SSMT-based probabilistic bounded model

checker SiSAT

In this section, we present the SSMT solver SiSAT which is built upon the SMT tool
iSAT12. The SiSAT tool was first described in [TF08] while its current version was basically
explained in [TEF11]. As the development of SiSAT is an ongoing project, this section
reflects the current state of affairs. For potentially later stages of development, we refer
the reader to the website

http://sisat.gforge.avacs.org

on which the SiSAT tool, a user manual, as well as some input files are available.

In Subsection 6.6.1, we first elaborate on the input language of SiSAT, while then
Subsection 6.6.2 briefly explains the tool usage and algorithmic core. Finally, an example
of modeling a probabilistic hybrid automaton using the SiSAT language is presented in
Subsection 6.6.3.

6.6.1 Input language

The command-line tool SiSAT provides two different modes of operation: On the one
hand, it can be used as a solver for single SSMT formulae and, on the other hand, as a
probabilistic bounded model checker for probabilistic transition systems. The distinction
between both modes is made by two different input file formats which are described below.

Single SSMT formula. A valid input of SiSAT is a single SSMT formula given in the
input file format consisting of the following three parts:

1. DECL: This part contains declarations of all non-quantified variables which are inter-
preted as innermost existentially quantified. Supported variable types are integer,
floating-point, and Boolean13 encoded by int, float, and boole, respectively. Note
that the domain of each integer and floating-point variable has to be bounded by an
interval. For instance, int [-100, 100] a;, float [-100, 100] b;, and boole

c; declare the integer variable a with interval domain [−100, 100], the floating-point
variable b with interval domain [−100, 100], and the Boolean variable c, respectively.
Furthermore, you can define symbolic constants in this section, for instance, define
v = 5.2;.

2. PREFIX: This part specifies the prefix of quantified variables. Note that the order of
variables in this part is the same as the order in the resulting prefix. For instance,
∃x ∈ {1, 2, 3} is encoded as E. x {1,2,3}: and

R

[1→0.6,2→0.1,3→0.3]y ∈ {1, 2, 3} as

12Confer http://isat.gforge.avacs.org.
13Recall that the formal definition of SSMT does not allow Boolean variables explicitly, confer Defini-

tion 4.4. For the sake of convenience, Boolean variables are however supported by the SiSAT input
language. Internally, a Boolean variable b is represented by an integer variable b′ with interval domain
[0, 1], and propositional literals b and ¬b are encoded by b′ ≥ 1 and b′ ≤ 0, respectively, as pointed
out in Subsection 4.3.1.

http://sisat.gforge.avacs.org
http://isat.gforge.avacs.org

170 6 Algorithms for SSMT Problems

1 DECL

2 -- Declaration of non -quantified variables.

3 int [-100, 100] a;

4 float [-100, 100] b;

5 boole c;

6 -- Definition of symbolic constant v.

7 define v = 5.2;

8

9 PREFIX

10 -- Declaration of quantified variables.

11 E. x {1, 2, 3}:

12 R. y p = [1 -> 0.6, 2 -> 0.1, 3 -> 0.3]:

13

14 EXPR

15 -- Quantifier -free SMT formula.

16 (x * y <= 4);

17 (x = 1) -> (y <= 2 and c);

18 (x = 2) -> (y = 1 and !c);

19 (x = 3) -> (y = 3 and v*(a - b^2) <= 4.5);

20 c <-> ((0.2*a + sin(b))^3 >= -0.5);

21 (y = 1 or max(a,b) < -5.31);

22 (y >= 2 or min(a,b) > 6.7);

Figure 6.12: Input file format of SiSAT: example of a single SSMT formula. Note that a line

comment starts with the comment delimiter --. We further remark that symbols ; and ! stand

for conjunction with lowest precedence and for negation, respectively.

R. y p = [1 -> 0.6, 2 -> 0.1, 3 -> 0.3]:.14 We remark that the quantified
variables are implicitly declared by PREFIX and thus must not appear within DECL.

3. EXPR: This section contains the matrix, i.e. the quantifier-free SMT formula, which is
an arbitrary Boolean combination of non-linear arithmetic constraints. The syntax
is the same as for the iSAT tool. To not stress the reader with a plethora of techni-
calities, we refer to the iSAT manual15 comprising a complete list of the supported
Boolean and arithmetic operators.

An example of a single SSMT formula in SiSAT’s concrete syntax is shown in Figure 6.12.

Probabilistic transition system. Another valid input of SiSAT is a predicative en-
coding of a probabilistic transition system. The corresponding input file format includes
a section for the declaration of variables to be used in the predicates as well as a section
for the definition of the sequence of quantified variables to encode non-deterministic and
probabilistic choices of a system step. Finally, three formula sections are provided to
describe the initial states, the transition relation, and the target states. More precisely,

14We remark that SiSAT also supports universal quantifiers which are, however, neglected within this
thesis as they are not needed when addressing the problem of computing maximum reachability
probabilities.

15http://isat.gforge.avacs.org/documentation/quickstartguide.pdf

http://isat.gforge.avacs.org/documentation/quickstartguide.pdf

6.6 SSMT-based probabilistic bounded model checker SiSAT 171

a SiSAT input file encoding a probabilistic transition system consists of the following five
sections:

1. DECL: This section contains the declarations of all discrete and continuous system
variables to be used in the individual predicates. As in the single SSMT formula
mode, supported variable types are integer, floating-point, and Boolean encoded by
int, float, and boole, respectively, where the domain of each floating-point and
integer variable has to be bounded by an interval. For instance, float [0, 1000]

x; declares the floating-point variable x with interval domain [0, 1000], and boole

b; the Boolean variable b. This section again permits the definition of symbolic
constants, like define f = 2.7.

2. INIT: In this section, the set of possible initial states is encoded by an arbitrary
Boolean combination of arithmetic and propositional constraints over the system
variables from section DECL, as in x = 0.6; !b;.

3. DISTR: This part consists of a sequence of quantified variables to specify the pattern
of non-deterministic and probabilistic choices for each system step. Existential and
randomized variables are encoded as in the single SSMT formula mode. For instance,
the existential variable ∃tr ∈ {1, 2} is encoded as E. tr {1,2}: and the randomized
variable

R

[1→0.6,2→0.4]pc ∈ {1, 2} as R. pc p = [1 -> 0.6, 2 -> 0.4]:.

4. TRANS: This section contains the transition relation predicate in which system vari-
ables from section DECLmay occur in both primed and unprimed form. An unprimed
variable name denotes the value of the variable in the current state while a primed
variable represents the value of that variable in the post-state, i.e. after the tran-
sition step has taken place. For instance, (tr = 1 and pc = 1) -> (x’ = x + f

and (b’ <-> !b)); expresses that whenever both tr and pc carry value 1 then the
value of x is incremented by constant f and Boolean variable b is toggled.

5. TARGET: Finally, the formula of this part characterizes the set of target states to be
reached, for instance x > 3.5;.

An example of a predicative encoding of a probabilistic transition system in the concrete
syntax is shown in Figure 6.13.
Given some step depth k ∈ N, the semantics of a probabilistic transition system encoded

in the SiSAT input language is defined by the maximum probability of satisfaction of the
following SSMT formula:

(6.25)

(
k⊙

j=1

DISTR(j)

)
:

(
INIT(0) ∧

(
k∧

j=1

TRANS(j − 1, j)

)
∧ TARGET(k)

)

where
⊙

denotes concatenation, confer Section 2.1, and

� DISTR(j) gives the sequence of quantified variables within the DISTR part where
each variable v is substituted by its representative vj at depth j,

� INIT(0) gives the formula within the INIT section where each variable v is substi-
tuted by its representative v0 at depth 0,

172 6 Algorithms for SSMT Problems

1 DECL

2 -- Declaration of discrete and continuous system variables.

3 boole b;

4 float [0, 1000] x;

5 -- Definition of symbolic constant f.

6 define f = 2.7;

7

8 INIT

9 -- Initial states predicate.

10 !b and x = 0.6;

11

12 DISTR

13 -- Declaration of quantified variables to encode

14 -- non -deterministic and probabilistic choices.

15 E. tr {1, 2}:

16 R. pc p = [1 -> 0.6, 2 -> 0.4]:

17

18 TRANS

19 -- Transition relation predicate.

20 (tr = 1 and pc = 1) -> ((b’ <-> !b) and x’ = x + f);

21 (tr = 1 and pc = 2) -> ((b’ <-> b) and x’ = x);

22 (tr = 2 and pc = 1) -> (b’ and x’ = x + 0.5*f);

23 (tr = 2 and pc = 2) -> (!b’ and x’ = x);

24

25 TARGET

26 -- Target states predicate.

27 x > 3.5;

Figure 6.13: Input file format of SiSAT: example of a probabilistic transition system.

� TRANS(j − 1, j) gives the formula within the TRANS section where each undecorated
variable v is substituted by its representative vj−1 at depth j − 1 and each primed
variable v′ is replaced by vj for depth j, and

� TARGET(k) gives the formula within the TARGET section where each variable v is
substituted by its representative vk at depth k.

Observe that a probabilistic transition system is more general than a system of concurrent
discrete-time probabilistic hybrid automata from Definition 3.1 since, first, the formula
of the INIT part potentially characterizes several initial states and not a unique one and,
second, the transition relation predicate of the TRANS section potentially connects some
system state to several post-states for the same assignment to the quantified variables,
violating Property 3.1. As a consequence, the results of Chapter 5 do not apply in general
to these richer systems. The rationale for this more general framework, on the one hand,
is that enforcing such essentially semantic conditions is hard or even impossible with-
out imposing deep syntactic restrictions. On the other hand, providing more generality
might be useful when considering other application scenarios or when extending the scope
of quantified variables to continuous domains as it was done theoretically for existential
variables in [FTE10a]. The latter extension of SSMT would allow for the symbolic reach-
ability analysis of continuous-time probabilistic hybrid systems which is touched upon in

6.6 SSMT-based probabilistic bounded model checker SiSAT 173

Chapter 10.

As opposed to the SSMT formula PBMC S,Target(k), being the result of the reduction
from probabilistic bounded reachability for PHAs to SSMT from Section 5.3, the SSMT
formula 6.25, defining the semantics of a probabilistic transition system, does not ensure in
general that target states are sinks. This design choice is due to providing the possibility of
other analysis problems different to probabilistic bounded reachability from Definition 5.3,
like, for instance, computing the maximum probability of reaching the target states in
exactly k steps instead of within k steps.

In order to address the probabilistic bounded state reachability problem for a system S
of concurrent discrete-time probabilistic hybrid automata by means of the SiSAT tool, we
can use the predicates introduced by the reductions steps of Section 5.3 but we need to
regain the original variable names. For that purpose, we denote

� by CHOICES the sequence of quantified variables which arises from CHOICES(1)
from reduction step 13 by omitting the indices 1 from the variable names,

� by INITS and TARGET the formulae which arise from the initial state predicate
INIT S(0) from reduction step 5 and from the target states predicate TARGET (0)
from reduction step 9, respectively, by substituting the original names of the system
variables for the indexed names of their representatives at depth 0, and

� by TRANS S and SELF LOOPS the formulae which arise from the transition rela-
tion predicate TRANSS(0, 1) from reduction step 8 and from the self loop predicate
SELF LOOPS(0, 1) from reduction step 10, respectively, by substituting the orig-
inal as well as the primed names of the system variables for the indexed names of
their representatives at depth 0 as well as at depth 1, respectively, and by omitting
the indices 1 from the names of quantified variables.

It then remains to create a SiSAT input file such that

1. the DECL section declares all discrete and continuous variables of system S, i.e. all
variables in D1, . . . , Dn and R1, . . . , Rn,

2. the INIT section consists of INIT S ,

3. the DISTR section consists of CHOICES ,

4. the TRANS section consists of the predicate

(¬TARGET ⇒ TRANSS) ∧ (TARGET ⇒ SELF LOOPS) ,

and

5. the TARGET section consists of TARGET .

Employing the above encoding scheme, it then holds that both SSMT formula 6.25 and
SSMT formula PBMC S,Target(k) coincide for each k ∈ N. As an immediate consequence,
Theorem 5.1 as well as Corollary 5.1 can be applied to SSMT formula 6.25.

174 6 Algorithms for SSMT Problems

This is SiSAT 1.0.

Usage: sisat --i <inputfile .hys > [options]

General iSAT options :

...

--msw =[real] : Minimum splitting width of an interval

(must be > 2*prabs , default : 0.01)

--prabs =[real] : Neglect deductions with absolute progress

less than prabs (default : 0.001)

...

--strongsat : Enables check for strong satisfaction

...

BMC -related options :

--start -depth : BMC starting depth (default : 0)

--max -depth : BMC maximal number of unwindings

(default : 2147483647)

SiSAT options :

--lt=[real] : Lower threshold for satisfaction probability

(values : 0..1; default : 0)

--ut=[real] : Upper threshold for satisfaction probability

(values : 0..1; default : 1)

--no-appr -sol : Enables that approximate solutions yield

probability interval [0,1] (default : [1 ,1])

--heu -quant=

exceed -ut : Aims at exceeding upper threshold (default)

miss -lt : Aims at missing lower threshold

natural : Natural order

random : Random choice

--no-pur -quant : Disables purification rule for quantified

variables (default : enabled)

--no-sdb : Disables solution -directed backjumping

(default : enabled)

--pr-cach : Enables caching of probability results

of subproblems (default : disabled)

--sol -cach : Enables caching solutions (PBMC)

(default : disabled)

--accur =[real] : Accuracy of probability result

(values : 0..1; default : 0)

--dont -stop : Search will be continued even if a

counter -example was found

Figure 6.14: Excerpt of the help menu of SiSAT, which is printed when calling the tool without

specifying an input file.

6.6.2 Tool usage and algorithmic core

Tool usage. SiSAT is a command-line tool handling input files of the formats described
in Subsection 6.6.1. For an overview of the tool options available, confer the excerpt of
the help menu of SiSAT shown in Figure 6.14.

Front end. After having read the specified input file and thereby having detected the
desired mode of operation, i.e. addressing a single SSMT formula or a probabilistic transi-
tion system, SiSAT first rewrites the quantifier-free formula part(s) into conjunctive form
by means of the generalized Tseitin transformation mentioned in Subsection 4.3.1.

In case the input is a probabilistic transition system, SiSAT automatically constructs
the SSMT formulae 6.25 defining the semantics of the probabilistic transition system.

6.6 SSMT-based probabilistic bounded model checker SiSAT 175

This is SiSAT 1.0.

Settings .

Minimum splitting width : 0.01

Absolute bound progress : 0.001

Relative bound progress : 0

Variable decision order : natural

Strong satisfaction check : enabled

Target thresholds : 0 / 1

Quant value decision order : exceeding upper threshold

Purification (quant vars) : enabled

Solution -dir. backjumping : enabled

Caching probabilities : disabled

Caching solutions (PBMC) : disabled

Required accuracy : 0

Probability 1 for approximate solutions is enabled .

SOLVING :

k = 0

RESULT :

Probability of satisfaction lies in [0.69999999 ,0.70000001]

Statistics .

Number of variables : 32

Existential variables : 1

Universal variables : 0

Random variables : 1

Boolean variables : 12

Integer variables : 2

Real variables : 16

Number of complex bounds : 12

Number of problem clauses : 52

Number of decisions (current / total) : 105 / 105

(of these :) Number of decisions on

quantified variables : 4 / 4

(of these :) Number of decisions on

non - singleton domains : 3 / 3

...

SAT / UNKNOWN : 100% (2 / 0)

Probability of satisfaction in : [0.69999999 ,0.70000001]

Accuracy of result : 0

Time solver : 0.02 / 0.02 sec

Figure 6.15: Abridged output of SiSAT after having solved the single SSMT formula from Fig-

ure 6.12 using the default settings and option --strongsat.

This procedure works iteratively, i.e. it successively builds the formulae of depths s, s +
1, s + 2, . . ., where the start depth s and, if desired, the final depth can be specified by
input parameters, confer the help menu of SiSAT shown in Figure 6.14.

The SSMT problems constructed above are then handed over to the back end of the
tool, i.e. to the actual SSMT solving engine. When addressing probabilistic transition
systems, the SSMT formulae of increasing step depths are processed one after another.

Back end. The SSMT solving engine of the SiSAT tool implements the SSMT algorithm
described in Section 6.4. It furthermore makes use of the algorithmic enhancements intro-
duced in Section 6.5. The latter features can be enabled or disabled by input parameters,
confer the help menu of SiSAT shown in Figure 6.14.

One worth mentioning implementation detail is the calculation of probability results,

176 6 Algorithms for SSMT Problems

...

SOLVING :

k = 0

RESULT :

Probability of satisfaction lies in [0,0]

...

SOLVING :

k = 1

RESULT :

Probability of satisfaction lies in [0,0]

...

SOLVING :

k = 2

RESULT :

Probability of satisfaction lies in [0.35999999 ,0.36000001]

...

SOLVING :

k = 3

RESULT :

Probability of satisfaction lies in [0.64799999 ,0.64800001]

...

SOLVING :

k = 4

RESULT :

Probability of satisfaction lies in [0.82079999 ,0.82080001]

...

SOLVING :

k = 5

RESULT :

Probability of satisfaction lies in [0.91295999 ,0.91296001]

Statistics .

Number of variables : 117

Existential variables : 5

Universal variables : 0

Random variables : 5

Boolean variables : 82

Integer variables : 0

Real variables : 25

Number of complex bounds : 16

Number of problem clauses : 292

...

SAT / UNKNOWN : 100% (692 / 0)

Probability of satisfaction in : [0.91295999 ,0.91296001]

Accuracy of result : 0

Time solver : 1.59 / 1.91 sec

Figure 6.16: Abridged output of SiSAT when called on the probabilistic transition system from

Figure 6.13 up to step depth 5 using the default settings and option --strongsat.

circumventing the problem of numerical instabilities, as described in [TF09]. Internally,
SiSAT employs floating-point numbers to represent probabilities, both probabilities of ran-
domized quantifiers and intermediate probability results. In order to cope with numerical
problems, like converting decimal numbers to floating-point representation while parsing
the input file as well as rounding errors, each probability value is safely enclosed by a,
as small as possible, floating-point interval. To calculate with such enclosing probability
intervals, we apply usual interval arithmetic, confer [Moo66, Moo79, Moo80] as well as
Subsections 6.3.1 and 6.3.2. In principle, aforementioned numerical issues can be avoided
by using exact number types like rationals but at the price of potentially high computa-

6.6 SSMT-based probabilistic bounded model checker SiSAT 177

2

4

1 3

1 1

2

2

1

2

1 3

2

4

0.12

0.88

time progresssensor

controller

cooling unit

t = 0

sw/t′ = t

¬sw/t′ = t + dt

M = T ¬sw

sw/M ′ =M
M ′ =M

M ′ = T ′

cool on

M < T up
must/¬sw M > T low

must/¬sw

cool off

M ≥ T up
may/sw

M ≤ T low
may/sw

T = Tinit
cooling

¬sw/T ′ = Tmax + exp(−dt/rrise) · (−Tmax + T) ¬sw/T ′ = Tmin + exp(−dt/rdrop) · (−Tmin + T)

no cooling

sw/T ′ = T

sw/T ′ = T

Figure 6.17: Cooling system Scool consisting of four concurrent automata. The encircled numbers

enumerate the (non-deterministic) transitions and, if applicable, the probabilistic transition

alternatives of the individual automata.

tional cost. In addition to the fact of efficient treatment of floating-point data types, the
introduction of probability intervals immediately allows for the algorithmic enhancement
of accuracy-based pruning, confer Subsection 6.5.3.

As a side note, probability intervals are also offered in the input language of SiSAT
permitting to model systems with uncertain probabilities. However, we do not elaborate
further on the latter fact as it is outside the scope of this thesis.

Examples of the output of SiSAT when called on the single SSMT formula from Fig-
ure 6.12 and on the probabilistic transition system from Figure 6.13 are presented in
Figures 6.15 and 6.16, respectively.

6.6.3 Example of modeling a system of probabilistic hybrid

automata within the SiSAT input language

In this subsection, we exemplify the encoding of a system of concurrent PHAs into the
SiSAT input language by means of the cooling system Scool from Figure 6.17.

178 6 Algorithms for SSMT Problems

Explanation of cooling system Scool . The overall idea of the cooling system Scool ,
consisting of the four concurrent automata cooling unit, sensor, time progress, and controller,
is as follows.
The automaton cooling unit describes a simple cooling unit where cooling can be switched

off or on. In case cooling is disabled or enabled, the continuous evolution of the temper-
ature T approaches the maximum temperature Tmax or the minimum temperature Tmin ,
respectively, according to the ordinary differential equations (ODEs)

(6.26)
dT (t)

dt
=

−T (t) + Tmax

rrise

or

(6.27)
dT (t)

dt
=

−T (t) + Tmin

rdrop

with constant rrise > 0 and rdrop > 0. As the discrete-time probabilistic hybrid system
model from Definition 3.1 does not support ODEs directly, we deal with the solution
functions of above ODEs.16 That is, the value T (t0 + dt) of temperature T after dt time
units when starting with some initial temperature T (t0) and when following ODE 6.26 or
ODE 6.27 is given by

T (t0 + dt) = Tmax + e(−dt/rrise) · (−Tmax + T (t0))

or by
T (t0 + dt) = Tmin + e(−dt/rdrop) · (−Tmin + T (t0)) ,

respectively. To distinguish the two different modes of operation, the automaton cooling

unit consists of the two locations no cooling and cooling meaning that cooling is disabled
and enabled, respectively. Continuous transition steps of duration dt are then encoded
by transitions 1 and 3 with the associated guard conditions that flag sw is false, confer
Figure 6.17. Mode switches, keeping the value of T , are feasible by taking transitions 2 and
4 provided that flag sw is true. Initially, the automaton resides in location no cooling
and the temperature T takes the initial temperature value Tinit . We see later on that
cooling unit is controlled by the automaton controller by means of setting the flag sw . Due
to the latter fact, the behavior of cooling unit is fully deterministic.
The next automaton sensor is responsible for measuring the temperature T of cooling

unit each dt time units. The measured value is made available by variable M . Due to the
behavior of cooling unit, time advances by dt if flag sw is false, and time remains constant
if sw is true. Thus, the temperature is sensed each time sw is false, and is kept constant
otherwise. For technical reasons, the sensor works correctly only with probability 0.88 and
thus fails with probability 0.12. In case the measurement is successful, variable M carries
the value of T after the step, i.e. M ′ = T ′. Otherwise, i.e. measurement fails, the most
recently sampled value remains available after the transition, i.e. M ′ = M . Initially, the
value of M is equal to the value of T , i.e. to the initial temperature Tinit . Since the flag
sw is set by automaton controller, the behavior of sensor is purely probabilistic.

16We remark that Chapter 10 elaborates on an extension of the system model to continuous-time involving
ODEs.

6.6 SSMT-based probabilistic bounded model checker SiSAT 179

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

Tmax

T up
safe

T up
may

T low
safe

T low
may

T low
must

T up
must

Tmin

time t

te
m
p
er
at
u
re
T

Figure 6.18: Illustration of the behavior of cooling system Scool : potential evolution of temper-

ature T over time t leaving the safe region.

The automaton time progress keeps track of the time t elapsed so far. Initially, t is zero.
If cooling unit performs a continuous transition step, i.e. sw is false, then t is incremented
by the duration dt of the step and otherwise, i.e. sw is true, t keeps its old value.
Finally, the automaton controller is in charge of controlling the cooling unit, namely by

setting flag sw , such that the temperature remains within the safe region [T low
safe , T

up
safe] ⊆

[Tmin , Tmax]. The locations of controller are designed for indicating the mode of automaton
cooling unit. More precisely, controller resides in cool off or cool on if and only if cooling
unit resides in no cooling or cooling, respectively. The control loop of controller relies on
the measured temperature M as well as on four parameters T up

must , T
up
may , T

low
must , and T

low
may

with
T low
safe ≤ T low

must ≤ T low
may ≤ T up

may ≤ T up
must ≤ T up

safe .

Whenever the current location is cool off and the current value ofM is at least T up
may then

the controller may switch on cooling in the cooling unit by performing transition 2 and
thus by setting flag sw to true. As long as M is strictly below T up

must , controller may also
decide to let cooling be disabled by executing transition 1. Only if M ≥ T up

must , controller
must enforce a mode switch in cooling unit. An analogous behavior applies for location
cool on. As the initial location of cooling unit is no cooling, controller initially resides in
cool off. Since the value of variable M is determined by automaton sensor, the behavior
of controller is purely non-deterministic.
The reader might expect the presence of location invariants within the system model.

Recall that the semantics of a system of concurrent PHAs, as formalized in Definition 3.2,
is defined by runs connecting system states by (discrete) transitions steps. It is however
feasible to simulate violation of classical invariants and thus necessitation of leaving a
location by blocking a potential self loop for that location through violation of the tran-
sition guard of that self loop. For instance, an invariant M ≤ T up

must of location cool off in
automaton controller is simulated in a way that cool off cannot be entered by any transi-

180 6 Algorithms for SSMT Problems

tion if M > T up
must . This is obvious for transition 1. With regard to transition 4, observe

that T low
may ≤ T up

must .

Note that there is a circular dependency between automata cooling unit, sensor, and
controller. That is, cooling unit depends on controller by means of flag sw , sensor reads
variable T from cooling unit, and controller needs the measurement M from sensor. Illus-
trating the behavior of the cooling system Scool , a potential evolution of temperature T
leaving the safe region [T low

safe , T
up
safe] is shown in Figure 6.18, where the parameters are as

follows: Tinit = 30, Tmax = 60, Tmin = 0, T up
must = 40, T up

may = 35, T low
may = 25, T low

must = 20,
T up
safe = 50, T low

safe = 10, rrise = 2, rdrop = 1, and dt = 0.5.

SiSAT encoding of Scool . Figure 6.18 indicates that there are actually system runs
violating the safety requirement of keeping the temperature within [T low

safe , T
up
safe]. To ad-

dress analysis questions like “What is the worst-case probability of reaching an unsafe
state within a bounded number of system steps?” or “Can the worst-case probability of
reaching an unsafe state ever exceed some acceptable threshold value?”, we may employ
the probabilistic bounded model checker SiSAT. To this end, we now demonstrate how
the cooling system Scool can be encoded into the SiSAT input language, where the target
states predicate is given by T > T up

safe ∨ T < T low
safe .

We first define the symbolic constants and declare the system variables in the DECL

section, where the values of the system parameters are as above:

1 DECL

2 -- Definition of symbolic constants .

3 define T_init = 30;

4 define T_max = 60;

5 define T_min = 0;

6 define T_up_must = 40;

7 define T_up_may = 35;

8 define T_low_may = 25;

9 define T_low_must = 20;

10 define T_up_safe = 50;

11 define T_low_safe = 10;

12 define r_rise = 2;

13 define r_drop = 1;

14 define dt = 0.5;

15 -- Declaration of system variables .

16 -- Cooling unit:

17 define NO_COOLING = 0;

18 define COOLING = 1;

19 int [NO_COOLING , COOLING] loc_cu;

20 float [T_min , T_max] T;

21 -- Reciprocals of r_rise and r_drop.

22 float [0, 1] reci_r_rise , reci_r_drop ;

23 -- Sensor:

24 float [T_min , T_max] M;

6.6 SSMT-based probabilistic bounded model checker SiSAT 181

25 -- Controller :

26 define COOL_OFF = 0;

27 define COOL_ON = 1;

28 int [COOL_OFF , COOL_ON] loc_cntr ;

29 boole sw;

30 -- Time progress :

31 define time_max = 10000;

32 float [0, time_max] t;

33 -- Encoding of target states.

34 boole target;

In order to encode the locations of the automata cooling unit and controller, we introduce
the integer variables loc_cu and loc_cntr, respectively. Note that the symbolically
encoded values NO_COOLING and COOLING as well as COOL_OFF and COOL_ON of the latter
variables reflect the corresponding locations immediately. As SiSAT, or rather iSAT,
does not support the arithmetic operation division17 directly, we express the reciprocals
of r_rise and r_drop by multiplication in the TRANS section later on. The latter fact
requires the introduction of the auxiliary variables reci_r_rise and reci_r_drop. Recall
that the domain of each integer and floating-point variable in a SiSAT input file has to
be bounded by an interval. The domains of variables T and M can be simply derived from
parameters T_min and T_max. As both r_rise and r_drop are at least 1 in our setting,
a safe interval domain for their reciprocals is [0, 1]. Due to the facts that time variable
t is initialized with 0 and that the values of t are monotonically increasing, a valid lower
bound of t is 0. As the duration dt of a time step is fixed to 0.5, a valid lower bound of
t is subject to the step depth k, namely 0.5 · k. In our encoding, we use the parameter
time_max as the upper bound of t and set time_max to value 10000 which is valid up
to step depth 20000. For the sake of readability, the Boolean variable target is used
to encode the target states predicate. That is, target is true if and only if the current
system state is a target state.

The initial state predicate is specified within the INIT section:

35 INIT

36 -- Global initial system state.

37 loc_cu = NO_COOLING ;

38 T = T_init;

39 M = T;

40 loc_cntr = COOL_OFF ;

41 t = 0;

42 -- Encoding target states.

43 target <-> (T > T_up_safe or T < T_low_safe);

The DISTR section characterizes the pattern of non-deterministic and probabilistic choices
of transitions and transition alternatives for a system step. For this purpose, we take one

17Recall that all arithmetic operators need to be total in order to obviate the issue with undefined values
of partial operations, confer Subsection 4.3.1.

182 6 Algorithms for SSMT Problems

existential variable for each automaton encoding the non-deterministic transition selec-
tion, and one randomized variable for each probabilistic choice in each automaton encoding
the probabilistic selection of transition alternatives, as it is indicated by reduction steps 3,
4, and 13 in Section 5.3:

44 DISTR

45 -- Non -deterministic choices of transitions.

46 E. tr_cu {1, 2, 3, 4}:

47 E. tr_snsr {1, 2}:

48 E. tr_cntr {1, 2, 3, 4}:

49 E. tr_tp {1, 2}:

50 -- Probabilistic choice of transition alternatives.

51 R. pc_snsr p = [1 -> 0.12, 2 -> 0.88]:

The domains of above quantified variables arise from the enumeration of the transitions
and transition alternatives, as shown in Figure 6.17. By Definition 3.1, each transition
is formally associated with a non-empty set of probabilistic transition alternatives, even
though this set is a singleton. The latter implies that reduction step 4 actually intro-
duces one randomized variable per transition. For the sake of simplicity and without loss
of generality, we omit the introduction of such redundant randomized variables of the
shape

R

[v→1]x ∈ {v}. We moreover remark that the automata cooling unit, sensor, and
time progress do not exhibit non-deterministic behavior as the guard predicates of the
outgoing transitions from each location are mutually exclusive. This fact would enable
a potentially more efficient encoding scheme omitting the introduction of unnecessary
existential variables. However, checking mutual exclusion of guard predicates is a hard
problem in general. We thus blindly apply the encoding scheme of Section 5.3 also for
automata without non-determinism.
The transition relation predicate is specified in the TRANS section. For each automaton,

the guard conditions and assignments of the transitions and transition alternatives are
encoded as shown by reduction steps 6 and 7. The Boolean variable target is used to
enable self loops whenever the system has already reached a target state, confer reduction
step 10.

52 TRANS

53 -- Defining reciprocals of r_rise and r_drop.

54 r_rise * reci_r_rise = 1;

55 r_drop * reci_r_drop = 1;

56

57 -- Transition relation of cooling unit.

58 (! target and tr_cu = 1) -> (

59 loc_cu = NO_COOLING and !sw and

60 loc_cu ’ = NO_COOLING and

61 T’ = T_max + exp(-dt*reci_r_rise)*(- T_max + T));

62 (! target and tr_cu = 2) -> (

63 loc_cu = NO_COOLING and sw and

64 loc_cu ’ = COOLING and T’ = T);

6.6 SSMT-based probabilistic bounded model checker SiSAT 183

65 (! target and tr_cu = 3) -> (

66 loc_cu = COOLING and !sw and

67 loc_cu ’ = COOLING and

68 T’ = T_min + exp(-dt*reci_r_drop)*(- T_min + T));

69 (! target and tr_cu = 4) -> (

70 loc_cu = COOLING and sw and

71 loc_cu ’ = NO_COOLING and T’ = T);

72 -- Transition relation of sensor.

73 (! target and tr_snsr = 1) -> (sw and M’ = M);

74 (! target and tr_snsr = 2) -> (!sw);

75 (! target and tr_snsr = 2 and pc_snsr = 1) -> (M’ = M);

76 (! target and tr_snsr = 2 and pc_snsr = 2) -> (M’ = T’);

77 -- Transition relation of controller .

78 (! target and tr_cntr = 1) -> (

79 loc_cntr = COOL_OFF and M < T_up_must and

80 loc_cntr ’ = COOL_OFF and !sw);

81 (! target and tr_cntr = 2) -> (

82 loc_cntr = COOL_OFF and M >= T_up_may and

83 loc_cntr ’ = COOL_ON and sw);

84 (! target and tr_cntr = 3) -> (

85 loc_cntr = COOL_ON and M > T_low_must and

86 loc_cntr ’ = COOL_ON and !sw);

87 (! target and tr_cntr = 4) -> (

88 loc_cntr = COOL_ON and M <= T_low_may and

89 loc_cntr ’ = COOL_OFF and sw);

90 -- Transition relation of time progress .

91 (! target and tr_tp = 1) -> (sw and t’ = t);

92 (! target and tr_tp = 2) -> (!sw and t’ = t + dt);

93

94 target -> (loc_cu ’ = loc_cu and T’ = T and M’ = M and

95 loc_cntr ’ = loc_cntr and !sw and t’ = t);

96

97 -- Encoding target states.

98 target ’ <-> (T’ > T_up_safe or T’ < T_low_safe);

Observe that constraints r_rise * reci_r_rise = 1; and r_drop * reci_r_drop =

1; express the reciprocals of r_rise and r_drop by multiplication.

The TARGET section finally consists of the target states predicate. We may reuse the
Boolean variable target here as target is true if and only if the corresponding system
state is a target state, as ensured by the INIT and TRANS sections.

99 TARGET

100 target;

184 6 Algorithms for SSMT Problems

Alternative SiSAT encoding of Scool . Recall that the basic SiSAT approach as being
presented in Section 6.4 implements an explicit traversal through the tree spanned by the
quantifier prefix of the given SSMT formula, confer Figure 6.5 a. As the size of such trees
is exponential in the number of quantified variables, the naive SiSAT algorithm traversing
the whole quantifier tree is far from scalable. In order to improve performance of SiSAT,
Section 6.5 has elaborated on several algorithmic enhancements to prune the quantifier
tree, as indicated by Figure 6.5 b.
As already mentioned in Subsection 4.4.2, an additional way to improve solving time of

SSMT tools is to provide “better” SSMT problem encodings in the sense of reducing the
potential search space. In what follows, we discuss how the basic SiSAT encoding of the
cooling system Scool can modified with the objective of speeding up SiSAT’s proof search.
The main idea we have in mind is to “disable” quantifiers whenever they are “not

needed”. A bit more precisely, whenever some partial assignment to the variables implies
that the truth value of the remaining formula does not depend on some quantified variables
x1, . . . , xi then we aim at fixing the values for x1, . . . , xi such that SiSAT need not probe
all the assignments to x1, . . . , xi but just one of them.
With regard to the basic SiSAT encoding of Scool , observe that the quantified variables

does not play any role if the Boolean variable target is true. In other words, in case a
target state is reached then the variables representing the post-state are frozen by means
of a self loop, in fact, independent of the actual values of the quantified variables. We may
exploit this observation for each existential variable tr, namely by adding some fresh value
v to its domain and then by enforcing that tr carries value v if and only if the Boolean
literal target holds.
A randomized variable pct encoding the probabilistic choice after selection of transition t

may be “disabled” whenever transition t is not executed, i.e. whenever a value different
to t was assigned to the corresponding existential variable tr, the latter encoding the
non-deterministic choice of transitions in the corresponding automaton. Adapting this
to the cooling system Scool , we aim at “disabling” randomized variable pc_snsr if and
only if existential variable tr_snsr takes a value which is not equal to 2. As pointed
out in Subsection 4.4.2, the same approach as for existential variables mentioned above
is not directly feasible for randomized variables since this would lead to incorrect prob-
ability results. However, a solution to this issue was suggested in Subsection 4.4.2 by
means of randomized quantification involving dependent probability distributions. That
is, “disabling” variable pc_snsr if and only if tr_snsr is not equal to 2 can be realized by

R

[(tr snsr 6=2)→doff ,(tr snsr=2)→don]pc snsr ∈ {0, 1, 2}

where doff gives the distribution [0 → 1], and don represents the distribution [1 →
0.12, 2 → 0.88] as derived from the system model Scool . From the semantics of SSMT
involving such dependent distributions, being formalized in Definition 4.7, it follows that
if tr snsr 6= 2 holds, i.e. if transition 2 is not selected in automaton sensor, then distri-
bution doff is “activated”, the latter forcing variable pc snsr to take value 0 with proba-
bility 1. If tr snsr = 2 is true, i.e. transition 2 is actually selected, then distribution don
is “activated”, the latter dealing with the probabilistic transition alternatives. We remark
that no extra treatment is necessary for randomized variable pc snsr in case the target
states are reached. The rationale is as follows: if variable target is true then tr snsr is

6.6 SSMT-based probabilistic bounded model checker SiSAT 185

set to some value v 6= 2 and thus distribution doff is selected for pc snsr.
Due to the fact that the SSMT algorithm described in Sections 6.4 and 6.5 as well as

the SiSAT tool do not yet support the extension of SSMT involving dependent probability
distributions, as introduced in Subsection 4.4.2, we aim at a pragmatic approach to some
similar concept.
For that purpose, we relax the requirement that the probabilities in a randomized

quantifier must add up to 1, i.e. for

R

dxx ∈ Dx we do not demand that
∑

v∈Dx
dx(v) = 1

holds but rather
∑

v∈Dx
dx(v) ≥ 1. With regard to this relaxed definition of SSMT, it is

important to remark that dx is no longer a probability distribution, and that the maximum
probability of satisfaction as formalized by Definition 4.5 is no longer bounded from above
by value 1 but can be a value strictly greater than 1. Though this relaxation seems
to be unreasonable, it becomes beneficial when ensuring valid probability distributions
in randomized quantifiers by means of predicates in the matrix of the SSMT formula.
Intuitively, whenever a randomized variable x becomes leftmost in the prefix then the
assignment to its preceding variables has triggered some constraints in the matrix which
exclude values of the domain of x from potential solutions such that all the remaining
values have a probability mass at most 1. Definition 6.3 formally introduces this property
of well-definedness:

Definition 6.3 (Well-definedness of relaxed SSMT formulae)
An SSMT formula Q : ϕ, potentially being relaxed as mentioned before, is called well-
defined if and only if for each (

R

dxx ∈ Dx) ∈ Q with Q = Q′ ⊙

R

dxx ∈ Dx ⊙Q′′ and for
each assignment τ to the quantified variables in Var(Q′) = {x1, . . . , xi}, it holds that

∑

v∈V

dx(v) ≤ 1

where V = {τ ′(x) ∈ Dx : τ ′ |= ϕ[τ(x1)/x1] . . . [τ(xi)/xi]} denotes the set of all values τ ′(x)
in the domain Dx of x which are part of a model τ ′ of SMT formula ϕ[τ(x1)/x1] . . . [τ(xi)/xi].

Clearly, each “classical” SSMT formula conforming to Definition 4.4 is well-defined. It
is moreover not hard to see that application of the classical SSMT semantics of Defini-
tion 4.5 to well-defined relaxed SSMT formulae Φ always gives maximum probabilities of
satisfaction that range within the interval [0, 1], i.e. 0 ≤ Pr(Φ) ≤ 1.
Without going into detail, we remark that Theorem 6.2, stating soundness of the SSMT

algorithm, and thus Corollary 6.3, as well as Theorem 6.3, strengthening soundness when
avoiding rule SSMT.9, and Theorem 6.4, evincing termination of the SSMT algorithm,
also apply to well-defined relaxed SSMT formulae. The only difference to the “classical”
case is that an overapproximated probability result, i.e. if parameter p̃ is fixed to 1, might
exceed value 1, while the latter still establishes a correct result according to Theorem 6.2.
Such results exceeding value 1 are caused by incompleteness of the underlying SMT solver
iSAT, more precisely, by approximate solutions obtained by rule SSMT.9. That is, for some
randomized variable it might happen during SSMT proof search that the probability mass
of values yielding positive (overapproximated) probability results is strictly greater than 1.
With regard to the SSMT tool SiSAT, this issue is avoided by bounding each intermediate
probability result from above by 1. We finally mention that all algorithmic enhancements
of Section 6.5 can also be employed on well-defined relaxed SSMT formulae.

186 6 Algorithms for SSMT Problems

Let us return to our goal of “disabling” randomized variable pc_snsr if and only if
existential variable tr_snsr is not equal to 2. Instead of using the randomized quantifier

R

[(tr snsr 6=2)→doff ,(tr snsr=2)→don]pc snsr ∈ {0, 1, 2}

involving dependent probability distributions, we may deploy the “relaxed” randomized
quantifier

R

[0→1,1→0.12,2→0.88]pc snsr ∈ {0, 1, 2}

whenever we ensure that if tr snsr 6= 2 then randomized variable pc_snsr may only
carry value 0 and otherwise, i.e. if tr snsr = 2, possible values for pc_snsr are only 1
and 2. The latter can be simply enforced by adding corresponding predicates to the TRANS
section, as we see later on.
We are now prepared to modify the basic SiSAT encoding of the cooling system Scool

in such a way that a quantifier becomes “disabled” whenever the concrete value of its
corresponding quantified variable becomes irrelevant.
At first, we define the symbolic constant OFF within the DECL section which is used to

“disable” quantified variables. It is important to note that the concrete value represented
by OFF may not be present already in the domains of the quantified variables. In our
case, we define OFF to be 0. That is, the DECL part of the SiSAT input file is extended as
follows:

DECL

...

-- Symbolic constant for "disabling " quantifiers.

define OFF = 0;

While the initial system state remains the same, i.e. the INIT section does not change, we
need to add the fresh value OFF to the domains of all quantified variables, as described
above. This is done within the DISTR part of the SiSAT input file:

DISTR

-- Non -deterministic choices of transitions.

E. tr_cu {OFF , 1, 2, 3, 4}:

E. tr_snsr {OFF , 1, 2}:

E. tr_cntr {OFF , 1, 2, 3, 4}:

E. tr_tp {OFF , 1, 2}:

-- Probabilistic choice of alternatives.

R. pc_snsr p = [OFF -> 1, 1 -> 0.12, 2 -> 0.88]:

In order to “disable” quantified variables correctly such that the resulting relaxed SSMT
formulae are well-defined according to Definition 6.3, we add corresponding predicates to
the TRANS section, as it was explained above:

TRANS

...

-- "Disable" existential quantifiers

6.6 SSMT-based probabilistic bounded model checker SiSAT 187

-- iff target states are reached.

target <-> tr_cu = OFF;

target <-> tr_snsr = OFF;

target <-> tr_cntr = OFF;

target <-> tr_tp = OFF;

-- "Disable" randomized quantifier

-- if corresponding transition is not taken.

tr_snsr != 2 -> pc_snsr = OFF;

-- "Enable" randomized quantifier

-- if corresponding transition is taken.

tr_snsr = 2 -> pc_snsr != OFF;

With respect to“disabling”randomized variable pc_snsr, observe that the aforementioned
issue concerning overapproximated probability results strictly greater than 1 is of no rele-
vance for the SiSAT encoding above. The rationale is that satisfaction of both predicates
tr_snsr != 2 -> pc_snsr = OFF; and tr_snsr = 2 -> pc_snsr != OFF; under each
assignment to variables tr_snsr and pc_snsr can always be decided by SiSAT since
both tr_snsr and pc_snsr range over finite domains. In fact, SiSAT is potentially able
to appropriately prune the domain of randomized variable pc_snsr immediately after
existential variable tr_snsr was assigned a value, namely by means of the deduction
rule SSMT.6.

Finally, the TARGET section is left unchanged, and thus we have completed the alterna-
tive SiSAT encoding of the cooling system Scool .

Analysis results. After having encoded the cooling system Scool into the SiSAT input
language, we are now capable of employing the SSMT-based probabilistic bounded model
checker SiSAT in order to address analysis questions like

1. “What is the maximum probability of reaching the unsafe states, i.e. states where
temperature T has left the safe region [T low

safe , T
up
safe], within k system steps?” or

2. “Can this maximum probability ever exceed some acceptable threshold value θ?”.

To this end, SiSAT was called on the alternative SiSAT encoding of Scool , while all ex-
periments were performed on a 2.4 GHz AMD Opteron machine with 128 GByte physical
memory running Linux. Concerning the issue of approximate solutions, the pragmatic per-
spective of considering such results as “good enough” solutions in practice was realized,
i.e. parameter p̃ was fixed to 1 in each application of rule SSMT.9, where the minimum
splitting width ε was set to 0.01. Recall that the minimum splitting width ε specifies the
accuracy of an approximate solution σ to some extent, more precisely, each interval in σ
has a width below ε, confer item 2c of Proposition 6.2.

Giving attention to analysis question 1, SiSAT was able to compute the maximum
probability of reaching the target (i.e. unsafe) states from step depth 0 up to depth 31
within a time limit of 25 hours. Concerning the solver settings of the latter run, we made
use of some algorithmic enhancements described in Section 6.5, namely activity-based
value branching heuristics preferring values with highest (weighted) measure, purification,

188 6 Algorithms for SSMT Problems

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35

m
ax

im
um

 p
ro

ba
bi

lit
y

of
 r

ea
ch

in
g

ta
rg

et
 s

ta
te

s

step depth k

Figure 6.19: Analysis of cooling system Scool : evolution of the maximum probability of reaching

the unsafe states over step depth k.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35

m
ax

im
um

 p
ro

ba
bi

lit
y

of
 r

ea
ch

in
g

ta
rg

et
 s

ta
te

s

step depth k

exact
accuracy 0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35

m
ax

im
um

 p
ro

ba
bi

lit
y

of
 r

ea
ch

in
g

ta
rg

et
 s

ta
te

s

step depth k

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35

m
ax

im
um

 p
ro

ba
bi

lit
y

of
 r

ea
ch

in
g

ta
rg

et
 s

ta
te

s

step depth k

exact
thresholds 0.35

Figure 6.20: Analysis of cooling system Scool : probability results when having used accuracy-

based pruning with accuracy α = 0.1 (left) and thresholding with thresholds θl = θu = 0.35

(right).

solution-directed backjumping, as well as caching solutions. The evolution of the maximum
reachability probability over step depth k is plotted in Figure 6.19.

From an engineering perspective, sometimes it might be reasonable to relax analysis
question 1 a bit, namely in a way of not targeting at the exact reachability probability but
just at a result of some sufficient accuracy. In such cases, we may exploit the optimization
of accuracy-based pruning with some desired accuracy α. When having used the latter
feature with α = 0.1 in addition to the algorithmic enhancements listed above, SiSAT
solved the probabilistic reachability problem up to step depth 35 within the same time
limit of 25 hours. The corresponding results are depicted on the left of Figure 6.20.

6.7 Experimental results 189

Similar to the relaxed version of analysis question 1, the exact probability result is not
called for by analysis question 2, but rather whether this probability can ever exceed some
threshold value θ. Taking this into account, the idea of thresholding becomes applica-
ble, potentially improving performance of SSMT proof search. Concerning the cooling
system Scool , SiSAT in the above setting without accuracy-based pruning needed about
49 minutes to find out that the maximum probability of reaching the unsafe states ex-
ceeds threshold value θ = 0.35, the latter being the case at step depth 26. Having called
SiSAT with the same solver options but furthermore having activated thresholding with
θl = θu = θ = 0.35, solving time has been reduced by roughly 30% to about 34 minutes.
The corresponding witness values are plotted on the right of Figure 6.20. With regard to
the computation of these witness values, parameter p̃ was fixed to 0 in all applications of
rules SSMT.3 and SSMT.4. This setting reflects the computational effort to some extent,
namely by exhibiting how much of the actual probability result had to be computed in
order to reveal that threshold θ = 0.35 cannot be reached or is exceeded, confer the right
of Figure 6.20.
A very detailed study of the runtime and solving behavior of the SSMT solver SiSAT by

taking into consideration the various algorithmic enhancements follows next in Section 6.7.

6.7 Experimental results

This section gives a detailed account of the runtime and solving behavior of the SSMT-
based probabilistic bounded model checker SiSAT, being described in Section 6.6, with
a special focus on an experimental evaluation of the algorithmic enhancements presented
in Section 6.5. As a benchmark, we use the SiSAT encodings of the cooling system Scool ,
confer Subsection 6.6.3, being representative for a vast number of similar case studies.
We remark that a more sophisticated case study, namely the analysis of the networked
automation system (NAS) introduced in Section 3.1, is investigated in Chapter 8.
All experiments of this section were performed on a 2.4 GHz AMD Opteron machine

with 128 GByte physical memory running Linux. As in Subsection 6.6.3, we considered
approximate solutions as “good enough” solutions in practice and thus used p̃ = 1 in each
application of rule SSMT.9 with the minimum splitting width ε = 0.01. For the following
experiments, we performed several SiSAT runs with different solver settings. In each such
run, the tool was called to solve the corresponding probabilistic bounded reachability
problem for step depths 0 to 40 within a time limit of 25 hours and with a memory limit
of 16 GByte. In case the memory-intensive enhancement of caching probability results of
subproblems, explained in Subsection 6.5.5, was employed, the memory limit was raised
to 64 GByte.
To evaluate the proof search of SiSAT with respect to different solver settings, the

corresponding solving times are of paramount importance. However, it is also of interest
to take account of other statistics of the proof search. As motivated in Section 6.5, the
main goal of the algorithmic enhancements is to prune the quantifier tree considerably,
confer Figure 6.5 b. To assess the latter fact, the number of (actual) branching steps,
i.e. number of applications of rules SSMT.1 to SSMT.4 with |Dx| ≥ 2, as well as the
number of detected (approximate) solutions are meaningful figures. For reasons of clarity
and comprehensibility and due to the large range of the measured values, we make use

190 6 Algorithms for SSMT Problems

of a logarithmic scale with respect to base 10 when presenting the experimental data
graphically. In order to avoid the issue with value 0 on a logarithmic scale arising from
the fact that the logarithm of 0 is not defined, solving times less than 0.01 seconds are
mapped to value 0.01, and value 0 is represented by 0.5 when considering the number of
branching steps and detected (approximate) solutions.

We first investigate the impact of each of the various algorithmic enhancements com-
pared to the naive SSMT algorithm in Subsections 6.7.1 to 6.7.8. Thereafter, we also
take account of combinations of these optimizations in Subsection 6.7.9. For the latter
experiments, the basic SiSAT encoding of the cooling system Scool was used, i.e. the ver-
sion without “relaxed” randomized quantifiers. In Subsection 6.7.10, we then examine the
tool behavior on the alternative SiSAT encoding of Scool supporting the idea of “relaxed”
randomized quantifiers. Subsection 6.7.11 finally draws conclusions from the experimental
results.

6.7.1 Naive algorithm

The naive SiSAT algorithm, implementing a brute-force approach without any of the
algorithmic enhancements being deployed, was only able to solve the probabilistic bounded
reachability problem for the first 8 step depths. The corresponding experimental results
are plotted in Figure 6.21. These data reveal a strong exponential growth in the solving
time as well as in the number of branching steps and of detected (approximate) solutions
over the step depth. For instance, the solving time has increased from depth 6 to depth 7
by a factor of about 144, and from depth 7 to 8 by a factor of about 147. Assuming a
growth factor of at least 140, we may extrapolate the solving times for larger step depths k:
the solver would need more than 40 days for k = 9, more than 15 years for k = 10, and
even more than 2100 years for k = 11.

Inspecting Figure 6.21 a bit more precisely, the solving behavior gets particularly worse
from step depth 5 on. A plausible explanation of this is as follows. Observe that cooling
system Scool can reach the target states only after 5 system steps, as proven by Figure 6.19,
exhibiting positive reachability probabilities only from depth 5 on, and by Figure 6.21,
where the bottom graph shows a positive number of detected (approximate) solutions
only from depth 5 on. Regarding the basic SiSAT encoding of Scool , whenever a target
state is reached then a self loop is executed meaning that the remaining non-quantified
system variables keep their values independent of the actual values of the non-instantiated
quantified variables. That is, in such cases all these latter quantified variables become
“unconstrained” and thus iSAT’s deduction mechanisms, being lifted to SiSAT by means
of rule SSMT.6, never apply to these variables. This implies that the SSMT algorithm
must explore all the values of these “unconstrained” variables in worst case. For the basic
SiSAT encoding of Scool , these are 4 ·2 ·4 ·2 ·2 = 128 possible assignments to the quantified
variables for the system step immediately after the target states have been reached, and
thus 128n assignments for n successive iterations of this self loop.

Concerning the latter issue, note that whenever a target state is reached then each of
the assignments to the remaining quantified variables leads to a solution of the formula
and thus to satisfaction probability 1. As a consequence, each value of an existential
variable among the remaining quantified variables yields satisfaction probability 1. The

6.7 Experimental results 191

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5 6 7 8 9 10

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5 6 7 8 9 10

so
lv

in
g

tim
e

[s
]

step depth k

time out

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

Figure 6.21: Evaluation of the SiSAT tool: naive algorithm. Solving times (top), numbers of

branching steps (middle), and numbers of detected (approximate) solutions (bottom) for the

corresponding step depths when no algorithmic enhancements were applied.

192 6 Algorithms for SSMT Problems

latter fact in turn means that above issue may not be present for existential variables since
rule SSMT.3 skips investigation of all the remaining branches whenever an intermediate
probability result pr = 1 was computed. However, this situation does not arise in our ex-
periments due to the following reason. As mentioned at the end of Subsection 6.6.2, SiSAT
internally represents probability values, i.e. both probabilities of randomized quantifiers
and intermediate probability results, as safely enclosing, as small as possible floating-point
intervals in order to avoid numerical instabilities. The probability values 0.12 and 0.88
occurring in the SiSAT encoding of Scool are not representable as floating-point numbers
and thus are enclosed by non-point intervals [l0.12, u0.12] and [l0.88, u0.88], respectively, with
l0.12 < 0.12 < u0.12 and l0.88 < 0.88 < u0.88. Therefore, the sum of values 0.12 and 0.88,
which clearly is 1, is also represented as a non-point interval [l0.12+0.88, u0.12+0.88] with
l0.12+0.88 ≤ l0.12 + l0.88 < 1 < u0.12 + u0.88 ≤ u0.12+0.88. We remark that in this special
case where an upper bound u of a probability interval is strictly greater than 1, u is ac-
tually reduced to the safe upper bound 1. That is, each value of the existential variables
among the remaining quantified variables yields a probability interval [l, 1] with l < 1
instead of [1, 1]. Hence, rule SSMT.3 may not be applied as suggested above. This issue
obviously can be avoided by using exact number types like rationals but at the price of
potentially high computational cost. Since some algorithmic optimizations as well as the
alternative SiSAT encoding supporting “relaxed” randomized quantifiers can cope with
the above situation, as we see later on, it renders unnecessary the introduction of exact
number types.

6.7.2 Impact of thresholding

The first algorithmic enhancement we investigate is thresholding which is based on two
input parameters, namely on a lower threshold θl and on an upper threshold θu. As
explained in Section 6.4, the idea of thresholding when solving some SSMT formula Φ is
as follows. If the maximum probability of satisfaction Pr(Φ) lies in the interval [θl, θu]
then we aim at computing the actual satisfaction probability. In all other cases, i.e.
Pr(Φ) /∈ [θl, θu], the actual probability of satisfaction is not of interest but only some
witness value pr is desired such that pr < θl if and only if Pr(Q : ϕ) < θl and pr > θu
if and only if Pr(Q : ϕ) > θu. This relaxation is exploited during SSMT proof search by
means of skipping investigation of the remaining branches whenever the upper or lower
threshold for some subtree is already exceeded by processed branches or can no longer be
reached by all remaining branches, respectively.

The presence of such thresholds is motivated, for instance, in (bounded) model checking
of probabilistic systems where the problem is to decide whether the probability of reaching
the target states is below some acceptable threshold value θ, like in Definition 5.4. Regard-
ing this, several SiSAT runs were performed where both the lower and upper thresholds
were set to the same threshold value θ ∈ {0, 0.1, 0.2, . . . , 0.9, 1}, i.e. θl = θu = θ.

As mentioned in Subsection 6.5.1, the order in which possible assignments to the quan-
tified variables are probed may influence the performance of the proof search, as some
values trigger earlier applications of thresholding. We therefore used two different static
value orderings for the quantified variables, namely a descending and an ascending or-
der. We remark that Subsection 6.7.3 investigates more sophisticated and dynamic value

6.7 Experimental results 193

ordering heuristics. For technical reasons, SiSAT reads the values of the domains of quan-
tified variables from right to left such that the domains are sorted in descending order
after having parsed the SiSAT input file from Subsection 6.6.3. To achieve an ascending
order, we may simply rearrange the domains of the quantified variable in the input file.
That is, we have changed the DISTR section to:

DISTR

-- Non -deterministic choices of transitions.

E. tr_cu {4, 3, 2, 1}:

E. tr_snsr {2, 1}:

E. tr_cntr {4, 3, 2, 1}:

E. tr_tp {2, 1}:

-- Probabilistic choice of alternatives.

R. pc_snsr p = [2 -> 0.88, 1 -> 0.12]:

The corresponding experimental results for both value orderings and for the different
threshold values θ are plotted in Figure 6.22, where “naive” denotes the naive SSMT
algorithm from Subsection 6.7.1 with thresholding being disabled.18

The graphs of Figure 6.22 give two diverse impressions. While the benefit of threshold-
ing seems to be negligible for the ascending order (except for θ = 0), the results for the
descending order indicate that thresholding can lead to tremendous performance gains.
In the extreme case where θ is 0, both value orderings show a very impressive behavior:
for step depth 8, speed-ups of six orders of magnitude were obtained compared to the
naive algorithm. Moreover, SiSAT was able to solve the problem for step depths 0 up
to 40 in less than 2 seconds. The rationale for these speed-ups is as follows: instead
of enumerating all solutions as in the naive approach, the algorithm needs to find only
one solution to decide that the satisfaction probability is strictly greater than threshold
value 0. Concerning the descending order, thresholding for θ = 1 was also very power-
ful: the speed-up at step depth 8 again amounts to six orders of magnitude compared
to the naive approach, while all SSMT problems, i.e. for all depths 0 to 40, were solved
within 27 seconds. An explanation for the latter behavior is that after refuting some
assignments to the quantified variables, SiSAT was able to recognize that the probability
mass of the remaining assignments is too small to reach threshold value 1.

In addition to the value ordering, the power of thresholding clearly depends on the
given threshold values as well as on the actual probability of satisfaction. Because of
that, a more elaborated and more appropriate view is given by Figure 6.23 which plots
the solving time over the threshold value θ for step depths 6, 7, and 8. We remark that
the latter step depths were chosen since SiSAT solved the corresponding SSMT problems
for all of the different threshold values.

With respect to the descending order, the speed-ups obtained for threshold value 0
and for all thresholds greater than or equal to 0.5 are of two orders of magnitude at step
depth 6, of (at least) three orders at depth 7, and even of six orders at depth 8, while the
tool is just about 6 times faster compared to the naive algorithm for both thresholds 0.1
and 0.4 at all depths 6, 7, and 8. Concerning threshold value 0.3, the speed-up further

18Recall that thresholding can be “disabled” by setting θl = 0 and θu = 1.

194 6 Algorithms for SSMT Problems

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

values of domains in descending order

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

values of domains in descending order

time out
naive
θ=0.0
θ=0.1
θ=0.2
θ=0.3
θ=0.4
θ=0.5
θ=0.6
θ=0.7
θ=0.8
θ=0.9
θ=1.0

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

values of domains in ascending order

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

values of domains in ascending order

time out
naive
θ=0.0
θ=0.1
θ=0.2
θ=0.3
θ=0.4
θ=0.5
θ=0.6
θ=0.7
θ=0.8
θ=0.9
θ=1.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

values of domains in descending order

naive
θ=0.0
θ=0.1
θ=0.2
θ=0.3
θ=0.4
θ=0.5
θ=0.6
θ=0.7
θ=0.8
θ=0.9
θ=1.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

values of domains in ascending order

naive
θ=0.0
θ=0.1
θ=0.2
θ=0.3
θ=0.4
θ=0.5
θ=0.6
θ=0.7
θ=0.8
θ=0.9
θ=1.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

values of domains in descending order

naive
θ=0.0
θ=0.1
θ=0.2
θ=0.3
θ=0.4
θ=0.5
θ=0.6
θ=0.7
θ=0.8
θ=0.9
θ=1.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

values of domains in ascending order

naive
θ=0.0
θ=0.1
θ=0.2
θ=0.3
θ=0.4
θ=0.5
θ=0.6
θ=0.7
θ=0.8
θ=0.9
θ=1.0

Figure 6.22: Evaluation of the SiSAT tool: thresholding. Solving times (top), numbers of branch-

ing steps (middle), and numbers of detected (approximate) solutions (bottom) for the corre-

sponding step depths when thresholding with different threshold values θ was applied, where

the values of the domains of the quantified variables were sorted in descending (left) and in

ascending (right) order.

reduces to a factor of about 3 (at all these depths), while the benefit of thresholding for
threshold 0.2 is almost vanished, namely to a speed-up factor of about 1.2. Considering
the ascending order, the same speed-ups as for the descending order were obtained for
threshold value 0, while SiSAT is about 3 times faster than the naive SSMT approach
for threshold 0.1. The performance for all thresholds 0.2 to 0.8 is notably poor, where a
speed-up factor of roughly 1.2 was observed. Only for thresholds 0.9 and 1, solving times

6.7 Experimental results 195

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 6

ac
tu

al
 p

ro
ba

bi
lit

y
 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 6

ac
tu

al
 p

ro
ba

bi
lit

y

solving time w/o thresholding

descending order
ascending order

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 7

ac
tu

al
 p

ro
ba

bi
lit

y

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 7

ac
tu

al
 p

ro
ba

bi
lit

y

solving time w/o thresholding

descending order
ascending order

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 8

ac
tu

al
 p

ro
ba

bi
lit

y

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 8

ac
tu

al
 p

ro
ba

bi
lit

y

solving time w/o thresholding

descending order
ascending order

Figure 6.23: Evaluation of the SiSAT tool: thresholding. Solving times for the corresponding

threshold values θ at step depths 6 (top), 7 (middle), and 8 (bottom) when thresholding with

different threshold values and with two different static value orderings was applied.

196 6 Algorithms for SSMT Problems

improve to a speed-up factor of about 6.

Though the solving times for both value orderings differ strongly, in particular for
threshold values θ ≥ 0.3, Figure 6.23 suggests the assumption that thresholding is becom-
ing more powerful when the threshold value is moving away from the actual satisfaction
probability, while its impact is becoming negligible if the threshold value is approaching
the actual satisfaction probability. It moreover seems that thresholding is not as effective
if the threshold is greater than the actual probability of satisfaction as it is in the reverse
case. Considering the descending order, though the distance between threshold 0.2 and
the actual satisfaction probability, which lies in the interval [0.11847935, 0.11866184] for
all depths 6, 7, and 8, is more than 4 times greater than the distance between threshold 0.1
and the actual probability, the solving time is about 5 times slower.

The latter circumstance can be attributed to the presence of existential quantifiers.
Recall that thresholding is feasible for existential as well as randomized variables when-
ever the intermediate (weighted) probability result has exceeded the upper threshold,
confer rules SSMT.3 and SSMT.4, which we refer to as “positive” thresholding in the se-
quel. That is, if the probability result of some branch of an existential variable is greater
than the upper threshold then investigation of all the remaining branches is skipped by
rule SSMT.3. Most likely, such latter situations were discovered when solving the SSMT
problem for threshold value 0.1 since the actual satisfaction probability is greater than
0.1. However, a similar rule being able to recognize that the probability results of all the
remaining branches cannot be large enough to reach the lower threshold, as being realized
for randomized variables by rule SSMT.4 and being referred to as “negative” thresholding,
is infeasible for existential variables due to computing the maximum of the probability
results over all branches. Consequently, all of the remaining branches of an existential
variable must be explored to decide that a lower threshold cannot be reached, as it is the
case when solving the SSMT problem for threshold value 0.2.

The above fact clearly holds for all thresholds greater than the actual satisfaction prob-
ability. The reason why the SSMT problems where the domains of the quantified variables
are sorted in descending order were solved much faster for threshold values θ ≥ 0.5 is as
follows: if the lower threshold is sufficiently far away from the actual probability then
“negative” thresholding for randomized variables potentially applies much earlier, i.e. on
a much lower level in the search tree, such that processing the existential variables are of
no significant consequence with respect to solving time.

As already observed above, the effectiveness of thresholding is very sensitive to the value
ordering. In the remainder of this subsection, we try to analyze the diverse performance
of thresholding for the two different static value orderings.

First of all, we need to clarify that sorting the domains of the quantified variables
in descending order cannot lead to a powerful branching heuristics in general, and in
particular not in the context of SSMT-based probabilistic bounded model checking, though
the experimental results might suggest such an approach. The rationale is that the values
of the quantified variables enumerate transitions and transition alternatives in the basic
SiSAT encoding of the cooling system Scool , confer Figure 6.17, and this enumeration may
be completely arbitrary. That is, if enumerating the transitions and transition alternatives
in the reverse order then a descending order would be equivalent to the current ascending
order, the latter exhibiting a poor performance as illustrated by Figures 6.22 and 6.23.

6.7 Experimental results 197

As a consequence, the reason why the one value ordering outperforms the other one
on the SiSAT encoding of Scool cannot be on the syntactic level but must be related to
the effects of the selected transitions and transition alternatives on the system behavior.
Observe that the descending and ascending orders prefer values 2 and 1, respectively, for
randomized variable pc snsr for each transition step, i.e. for each of the k copies of this
variable with k being the step depth.

Concerning the tool behavior for threshold value 0.1 at step depths 6, 7, and 8, the
descending order performs slightly better than the ascending one, confer Figure 6.23.
This can be explained as follows.

We first consider the ascending order preferring value 1, which is associated with prob-
ability 0.12. Though selecting transition alternative 1 in automaton sensor increases the
chance of reaching the target states in the short run, since transition alternative 1 models
a failure of measuring the temperature T , the resulting satisfaction probability pr when
selecting value 1 for the first copy of randomized variable pc snsr is not large enough to
exceed threshold 0.1. The latter would be the case if and only if pr > 0.1/0.12 = 0.83,
since value 1 is associated with probability 0.12. Though the probability results are in-
creasing for the following copies of pc snsr when taking value 1, the corresponding upper
thresholds are also growing simultaneously. However, once the other value 2 for pc snsr

is investigated at some lower levels in the search tree, the upper thresholds are potentially
reduced, confer rule SSMT.2, and thus thresholding becomes more likely after selection of
value 1 at some deeper level. The latter fact explains why thresholding with threshold 0.1
for the ascending order is nevertheless more efficient than the naive approach.

We next examine the descending order preferring value 2, which is associated with
probability 0.88. Though taking transition alternative 2 does not increase the chance of
reaching the target states in the short run, the resulting satisfaction probability pr carries
more weight due to the higher probability of 0.88. That is, “positive” thresholding applies
for the first copy of pc snsr when selecting value 2 if and only if pr > 0.1/0.88 = 0.1136.
Moreover, the upper thresholds are not growing at deeper levels of the search tree as much
as they are doing when preferring value 1, which is due to the higher probability of 0.88,
such that thresholding is more likely at deeper levels.

The above consideration sheds a bit more light on the observation that the descending
order performs slightly better than the ascending one for threshold value 0.1.

We finally analyze the divergent solving times for both static value orderings with
respect to threshold values 0.2 to 1 at step depths 6, 7, and 8. The descending order again
performs better than the ascending one, in particular for all threshold values θ ≥ 0.5 with
the highest speed-ups of six orders of magnitude being observed for thresholds 0.5, 0.6,
and 0.7 at step depth 8.

The reason for this behavior again is due to preferring a particular value when branch-
ing for randomized variable pc snsr. If selecting value 1 or 2 first then “negative”
thresholding, confer rule SSMT.4, is applicable if and only if the thresholding conditions
0.12 · pr + 0.88 < θl or 0.88 · pr + 0.12 < θl, respectively, are satisfied with pr being the
probability result of branch “pc snsr = 1” or “pc snsr = 2”. Obviously, the latter condi-
tions hold if and only if pr < (θl−0.88)/0.12 =: ub1(θl) or pr < (θl−0.12)/0.88 =: ub2(θl),
respectively. The functions ub1(θl) and ub2(θl), mapping lower thresholds θl to strict up-
per bounds which must not be violated by pr in order that “negative” thresholding be

198 6 Algorithms for SSMT Problems

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ob

ab
ili

ty
 r

es
ul

t p
r

lower threshold θl

ub1(θl) = (θl - 0.88)/0.12
ub2(θl) = (θl - 0.12)/0.88

Figure 6.24: Graphical representation of functions ub1(θl) and ub2(θl) mapping lower thresh-

olds θl to strict upper bounds which must not be violated by the probability result pr of the

first branch in order that “negative” thresholding be feasible for θl.

feasible for θl, are plotted in Figure 6.24.

The graphs of Figure 6.24 illustrate well why the descending order outperforms the
ascending one with respect to threshold values 0.2 to 1. If preferring value 1, as done
by the ascending order, then “negative” thresholding is never applicable for each lower
threshold θl ≤ 0.88 whatever the probability result pr for branch “pc snsr = 1” actually
amounts to, i.e. 0.12 · pr + 0.88 < θl is never satisfied for θl ≤ 0.88. With regard to the
latter fact, confer the dashed line in Figure 6.24 representing the corresponding upper
bounds ub1(θl) for pr. If however preferring value 2, as done by the descending order,
then “negative” thresholding is more likely to succeed. For instance, if θl = 0.7 then pr
may be relatively large, namely less than pr = 0, 6590, confer the solid line in Figure 6.24
representing the corresponding upper bounds ub2(θl) for pr.

As shown by Figure 6.23, thresholding with thresholds θ ≥ 0.2 for the ascending order is
nevertheless more efficient than the naive approach, in particular for larger thresholds 0.9
and 1. This can be attributed to the following: once the other value 2 is investigated
at some lower levels in the search tree, the lower thresholds are potentially increased at
some deeper levels such that “negative” thresholding becomes more likely after selection
of value 1. Let us briefly elaborate on how lower thresholds can grow during SSMT proof
search: first, the lower threshold θ′l = max(pr, θl) for the second branch of rule SSMT.1

is increased if and only if pr > θl and, second, the lower threshold θ′l = (θl − premain)/pv
for the first branch of rule SSMT.2 as well as of rule SSMT.4 is increased if and only if
premain < (1− pv) · θl, for instance, in case premain = 0, pv < 1, and θl > 0.

Concluding this subsection, we have shown that thresholding can lead to tremendous
performance gains, sometimes by orders of magnitude, while its effectiveness is very sen-
sitive to the value ordering.

6.7 Experimental results 199

6.7.3 Impact of thresholding and activity-based value branching

heuristics

In the previous subsection, we have seen that the effectiveness of thresholding strongly
depends on the order in which possible assignments to the quantified variables are probed,
as some values trigger earlier applications of thresholding. We have investigated two
different static value orderings for the quantified variables, namely a descending and an
ascending order. While thresholding for the descending order has led to tremendous
performance gains on the considered example, the benefit of thresholding for the ascending
order was negligible in many cases. We furthermore have discussed that such static value
orderings cannot result in powerful branching heuristics in general. That is to say, the
performance of thresholding using the descending order on the basic SiSAT encoding of
the cooling system Scool cannot be attributed to the static value ordering alone but rather
to the semantic effects of the selected values.
Since it is hard to extract such semantic effects of values from the given SSMT for-

mula prior to actually solving the SSMT formula, we have devised an activity-based value
branching heuristics in Subsection 6.5.1 with the objective of monitoring the semantic
effects of values during the SSMT proof search. That is, for each value v in the domain of
each quantified variable x, a heuristic measure hm(v, x) is maintained for the purpose of
estimating the satisfaction probabilities of the corresponding SSMT subproblems. More
precisely, hm(v, x) keeps track of the arithmetic mean of the already computed probability
results for branch “x = v”. Using this heuristic measure, the algorithm is potentially able
to detect promising values for branching such that thresholding is more likely to succeed.
While for existential variables it is only reasonable to select values with highest measure

as only “positive” thresholding is available, we may pursue two strategies for randomized
variables x:

1. If aiming at exceeding upper thresholds then values v with highest weighted measure
pv · hm(v, x) are preferred.

2. If aiming at missing lower thresholds then values v are selected for which the term
pv · hm(v, x) + premain is minimal, where pv is the probability of setting x to v and
premain is the probability mass of the remaining values for x.

In order to evaluate the activity-based value branching heuristics, we have rerun the
experiments of Subsection 6.7.2 for both of above strategies. In particular, we performed
the experiments on both static value orderings since the heuristic measure hm(v, x) is
initially 0 for all values v and for all quantified variables x. That is to say, for both of
the strategies 1 and 2, it may happen that the maximum or minimum, respectively, is
associated with several values. In such cases, the first value is taken which in turn means
that the initial value ordering potentially produces an effect on the performance of the
SSMT proof search. The corresponding solving times of SiSAT are plotted in Figure 6.25.
With regard to the SiSAT input file where the domains are initially sorted in descending

order, we observe that application of the activity-based value branching heuristics for both
of above strategies yields roughly the same solving times as in the solver setting without
this dynamic branching heuristics. When running SiSAT on the input file where the
domains are in ascending order initially, the performance of the tool is not enhanced

200 6 Algorithms for SSMT Problems

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

aiming at exceeding upper thresholds (initially descending)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

aiming at exceeding upper thresholds (initially descending)

time out
naive
θ=0.0
θ=0.1
θ=0.2
θ=0.3
θ=0.4
θ=0.5
θ=0.6
θ=0.7
θ=0.8
θ=0.9
θ=1.0

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

aiming at exceeding upper thresholds (initially ascending)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

aiming at exceeding upper thresholds (initially ascending)

time out
naive
θ=0.0
θ=0.1
θ=0.2
θ=0.3
θ=0.4
θ=0.5
θ=0.6
θ=0.7
θ=0.8
θ=0.9
θ=1.0

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

aiming at missing lower thresholds (initially descending)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

aiming at missing lower thresholds (initially descending)

time out
naive
θ=0.0
θ=0.1
θ=0.2
θ=0.3
θ=0.4
θ=0.5
θ=0.6
θ=0.7
θ=0.8
θ=0.9
θ=1.0

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

aiming at missing lower thresholds (initially ascending)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60

so
lv

in
g

tim
e

[s
]

step depth k

aiming at missing lower thresholds (initially ascending)

time out
naive
θ=0.0
θ=0.1
θ=0.2
θ=0.3
θ=0.4
θ=0.5
θ=0.6
θ=0.7
θ=0.8
θ=0.9
θ=1.0

Figure 6.25: Evaluation of the SiSAT tool: thresholding together with activity-based value

branching heuristics. Solving times for the corresponding step depths when thresholding with

different threshold values θ and activity-based value branching heuristics with strategies of ex-

ceeding upper thresholds (top) and of missing lower thresholds (bottom) were applied, where

the values of the domains of the quantified variables were initially sorted in descending (left)

and in ascending (right) order.

considerably for above strategy 1. However, if employing above strategy 2 then similar
speed-ups as for the descending order could be achieved.

These results confirm the intended purpose of the activity-based value branching heuris-
tics, at least on the considered example: on the one hand, the heuristics does not worsen
the tool behavior on the well-performing descending value ordering and, on the other hand,
tremendous speed-ups are obtained for the poorly performing ascending order when aim-
ing at missing lower thresholds. With regard to the diverse performance of strategies 1
and 2 in case the domains are in ascending order initially, we remark that the maximum
probabilities of reaching the target states are less than 0.4 for all step depths up to 30,
while the reachability probability at depth 31 lies in the interval [0.40115867, 0.40115868]
and thus slightly exceeds value 0.4, confer Figure 6.19. This explains why strategy 2,
which aims at missing lower thresholds, outperforms strategy 1, which is designed to
perform well when upper thresholds are exceeded.

To analyze the behavior of both strategies in more detail, the solving time is plotted
over the threshold value θ for step depths 6, 7, and 8 in Figures 6.26 and 6.27, where
the domains of the quantified variables are initially sorted in descending and in ascending

6.7 Experimental results 201

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 6

ac
tu

al
 p

ro
ba

bi
lit

y
 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 6

ac
tu

al
 p

ro
ba

bi
lit

y

solving time w/o thresholding

descending order
exceed-ut (initially descending)

miss-lt (initially descending)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 7

ac
tu

al
 p

ro
ba

bi
lit

y

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 7

ac
tu

al
 p

ro
ba

bi
lit

y

solving time w/o thresholding

descending order
exceed-ut (initially descending)

miss-lt (initially descending)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 8

ac
tu

al
 p

ro
ba

bi
lit

y

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 8

ac
tu

al
 p

ro
ba

bi
lit

y

solving time w/o thresholding

descending order
exceed-ut (initially descending)

miss-lt (initially descending)

Figure 6.26: Evaluation of the SiSAT tool: thresholding together with activity-based value

branching heuristics. Solving times for the corresponding threshold values θ at step depths 6

(top), 7 (middle), and 8 (bottom) when thresholding and activity-based branching heuristics with

strategies of exceeding upper thresholds (exceed-ut) and of missing lower thresholds (miss-lt) were

applied, where the domains of the quantified variables were initially sorted in descending order.

202 6 Algorithms for SSMT Problems

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 6

ac
tu

al
 p

ro
ba

bi
lit

y
 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 6

ac
tu

al
 p

ro
ba

bi
lit

y

solving time w/o thresholding

ascending order
exceed-ut (initially ascending)

miss-lt (initially ascending)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 7

ac
tu

al
 p

ro
ba

bi
lit

y

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 7

ac
tu

al
 p

ro
ba

bi
lit

y

solving time w/o thresholding

ascending order
exceed-ut (initially ascending)

miss-lt (initially ascending)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 8

ac
tu

al
 p

ro
ba

bi
lit

y

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 8

ac
tu

al
 p

ro
ba

bi
lit

y

solving time w/o thresholding

ascending order
exceed-ut (initially ascending)

miss-lt (initially ascending)

Figure 6.27: Evaluation of the SiSAT tool: thresholding together with activity-based value

branching heuristics. Solving times for the corresponding threshold values θ at step depths 6

(top), 7 (middle), and 8 (bottom) when thresholding and activity-based branching heuristics with

strategies of exceeding upper thresholds (exceed-ut) and of missing lower thresholds (miss-lt) were

applied, where the domains of the quantified variables were initially sorted in ascending order.

6.7 Experimental results 203

order, respectively.

In case the domains of the quantified variables are initially sorted in descending or-
der, the performance of SiSAT employing the activity-based value branching heuristics
could not be increased considerably for all thresholds, confer Figure 6.26. For threshold
value 0.1, however, both strategies yield speed-ups of a factor of 10 as well as of more
than 30 at step depth 6 as well as at depths 7 and 8, respectively, compared to the static
value ordering and even of a factor of 59 as well as of about 190 compared to the naive
algorithm. It is remarkable that strategy 2, though being designed to prefer values such
that lower thresholds will be missed, works well for θ = 0.1 on this example. Another
notable observation is that strategy 1 is also competitive for all threshold values θ ≥ 0.2,
except for θ = 0.4 at step depths 7 and 8 where the solving time is twice as large as in
both other settings.

Let us now consider the case in which the domains of the quantified variables are initially
sorted in ascending order, confer Figure 6.27. With regard to threshold value θ = 0.1,
though strategy 1 yields a speed-up factor of about 2 compared to the static value ordering
at all step depths 6 to 8, a speed-up factor of about 20 was achieved for strategy 2 at
depth 6 and of more than 60 at depths 7 and 8, again compared to the static ordering. The
latter circumstance can be attributed to the fact that the heuristic measures hm(v, x) are
defined to be 0 initially. As mentioned above, whenever strategy 1 or 2 cannot determine
a unique value then the first value is taken. As a consequence, the initial value ordering
has an impact on the dynamic branching heuristics. In our example, when branching for
randomized variable pc snsr on condition that hm(1, pc snsr) = 0 and hm(2, pc snsr) =
0 then strategy 1 prefers value 1 since a unique value cannot be determined and the
domains are in ascending order initially. On the same assumption, strategy 2 however
selects value 2 since 0.88 · 0 + 0.12 < 0.12 · 0 + 0.88.

As discussed in the latter part of Subsection 6.7.2, due to selection of value 2 when
branching for randomized variable pc snsr, in particular on earlier levels of the search
tree, “positive” thresholding becomes more likely. It thus seems that the disadvantage
of taking the “worse” value 1 at lower levels of the search tree cannot be compensated
for by strategy 1 during the remaining proof search. One might argue that strategy 1
thus should take more into account the probabilities pv of the values v for randomized
variable x whenever the corresponding heuristic measures hm(v, x) still carry their initial
value 0, i.e. if their counters cntv,x are still 0. For instance, the latter could be realized
by defining hm(v, x) = 1 if cntv,x = 0. Such a modification would clearly help in the
considered example of the cooling system Scool but is as arbitrary as the current initializa-
tion of hm(v, x). Moreover, there obviously are examples of SSMT problems where this
modified initialization does not enhance proof search, namely if values associated with
high probabilities lead to very small satisfaction probabilities but values associated with
low probabilities to very high probability results. For instance, let us assume that value 2
associated with high probability 0.88 just yields satisfaction probability 0.07 but value 1
associated with rather low probability 0.12 gives the high probability result 0.95. Let
furthermore be given an upper threshold θu = 0.1. Then, “positive” thresholding becomes
applicable after investigating value 1 first since 0.12 · 0.95 = 0.114 > θu = 0.1, while the
same is not true when taking value 2 first since 0.88 · 0.07 = 0.0616 < θu = 0.1.

That is to say, an arbitrary choice for the initial value of the heuristic measure hm(v, x)

204 6 Algorithms for SSMT Problems

never performs well in general. Concerning the latter issue, a promising direction for
future research is to devise powerful heuristics for determining “good” initial values of
hm(v, x) for all v and x. One idea here might be the following. First, some, preferably
relevant assignments to the quantified variables are selected such that each value v of
each quantified variable x should be covered by at least one of the assignments. Then, all
these assignments are traversed in a depth first search manner according to the quantifier
prefix, thereby computing the resulting probabilities at all visited nodes of the search tree
spanned by the selected assignments. These latter probabilities can then be exploited to
determine potentially good choices for the initial values of the heuristic measure hm(v, x),
for instance by taking the arithmetic mean of all the probabilities for branch “x = v”.
Note that the runtime of the above approach as well as the significance of the initial
values of the heuristic measures obtained most likely depend on the number of selected
assignments. More precisely, it can be expected that the fewer assignments considered the
shorter runtime achieved but the more assignments considered the more significant initial
values of the heuristic measures obtained. It thus will be important to find a suitable
number of assignments such that the runtime is acceptable and the determined initial
values are still helpful.

It remains to consider the performance of the activity-based value branching heuristics
for threshold values θ ≥ 0.2 in case the domains of the quantified variables are initially
sorted in ascending order, confer Figure 6.27. Here the behavior is as expected: strategy 2,
aiming at missing lower thresholds, outperforms strategy 1 in almost all cases, the latter
aiming at exceeding upper thresholds. An outlier is observed for threshold value 0.3,
where strategy 1 solved the problem in half the time of strategy 2 at all depths 6, 7, and
8. Compared to the static value ordering, strategy 2 yields tremendous speed-ups, for
instance, of six orders of magnitude for threshold θ = 0.6 and of five orders for θ = 1 both
observed at step depth 8. Also strategy 1 is rather powerful with respect to the static
ordering for thresholds 0.3 up to 0.8, for instance, with a speed-up factor of about 5 for
threshold θ = 0.6 at all depths 6 to 8.

To summarize this subsection, we conclude that the suggested activity-based value
branching heuristics can further improve thresholding, in some cases by orders of magni-
tude.

6.7.4 Impact of purification

The next algorithmic enhancement we consider is purification, as introduced in Subsec-
tion 6.5.2. Recall that the naive SiSAT approach shows a particularly bad performance
from step depth 5 on. This behavior has been attributed to the following: after 5 sys-
tem steps, the cooling system Scool reaches the target states, and whenever a target state
is reached then a self loop is executed meaning that the remaining non-quantified sys-
tem variables keep their values independent of the actual values of the non-instantiated
quantified variables. This implies that the naive SSMT algorithm must explore all as-
signments to these “unconstrained” quantified variables in worst case, while the number
of such assignments is exponential in the number of iterations of this self loop, confer
Subsection 6.7.1.

The idea of purification can now be exploited in above situations since the matrix

6.7 Experimental results 205

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

so
lv

in
g

tim
e

[s
]

step depth k

time out
naive

purification

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

naive
purification

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

naive
purification

Figure 6.28: Evaluation of the SiSAT tool: purification. Solving times (top), numbers of branch-

ing steps (middle), and numbers of detected (approximate) solutions (bottom) for the corre-

sponding step depths when purification was applied.

206 6 Algorithms for SSMT Problems

of the SSMT formula is monotonic and, simultaneously, antitonic in each such above
“unconstrained” quantified variable with respect to the current interval assignment. The
rationale is as follows. Consider the TRANS section of the basic SiSAT encoding of Scool

from Subsection 6.6.3: effects of transitions and transition alternatives are encoded by
predicates of the shape

(¬target ∧ x1 = v1 ∧ . . . ∧ xn = vn) ⇒ ψ

where the Boolean variable target is true if and only if the target states are reached, the
variables x1, . . . , xn are quantified variables, and ψ is a transition guard or assignment
predicate. In our case, the number n of quantified variables is actually at most 2. Above
predicates are rewritten into conjunctive form by the front end of SiSAT yielding clauses
of the shape

(target ∨ x1 < v1 ∨ x1 > v1 ∨ . . . ∨ xn < vn ∨ xn > vn ∨ ψ′)

where ψ′ is some disjunction of constraints, introduced by the generalized Tseitin trans-
formation, confer Subsection 4.3.1, encoding predicate ψ.
It is not hard to see that the matrix of the SSMT formula is monotonic as well as

antitonic in all quantified variables encoding the current system step with respect to
each interval assignment σ that satisfies target , i.e. ∀τ ∈ σ : τ |= target . Exploiting
the optimization of purification, it thus is feasible to prune the current domain Dx of
each existential variable x among the above variables to a singleton {v}, where either
v = max(Dx) or v = min(Dx) subject to whether checking for monotonicity or antitonicity,
respectively, is executed first.
Recall that purification is in general impossible for randomized variables. In Subsec-

tion 6.7.6, we however see that another algorithmic enhancement, namely solution-directed
backjumping, can additionally cope with randomized variables in above situations.
The corresponding experimental results, being presented in Figure 6.28, confirm our

theoretical considerations above: up to step depth 5, both the naive SSMT approach and
the algorithm exploiting purification exhibit identical solving behavior, while the solving
time at depth 5 when using purification is slightly larger due to the additional overhead
of checking for monotonicity and antitonicity. From step depth 6 on, the number of both
branching steps and detected (approximate) solutions is decreasing extremely if purifica-
tion is enabled, namely by one order of magnitude at depth 6, by three orders at depth 7,
and by at least four orders at depth 8.19 This heavy pruning of the quantifier tree clearly is
reflected in a significant improvement of the corresponding solving times, yielding speed-
ups compared to the naive algorithm by the same orders of magnitude as mentioned
before. We finally emphasize that SiSAT with purification solved the probabilistic reach-
ability problem up to step depth 22 within 25 hours, while the naive algorithm was just
able to cope with the problem up to depth 8 within the same time limit.

6.7.5 Impact of exploiting desired accuracy of probability result

We next investigate the impact of accuracy-based pruning which was described in Sub-
section 6.5.3. The idea of this algorithmic enhancement, being similar to the one of

19The number of detected (approximate) solutions has actually been decreased by five orders of magnitude
at step depth 8.

6.7 Experimental results 207

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

time out
naive (α=0.0)

α=0.001
α=0.01

α=0.1
α=0.5
α=1.0

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

0.001 0.01 0.1 0.5 1

so
lv

in
g

tim
e

[s
]

accuracy α

step depth 8

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

0.001 0.01 0.1 0.5 1

so
lv

in
g

tim
e

[s
]

accuracy α

step depth 8

solving time of naive algorithm, i.e. with α=0.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

naive (α=0.0)
α=0.001

α=0.01
α=0.1
α=0.5
α=1.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

naive (α=0.0)
α=0.001

α=0.01
α=0.1
α=0.5
α=1.0

Figure 6.29: Evaluation of the SiSAT tool: accuracy-based pruning. Solving times (top left),

numbers of branching steps (bottom left), and numbers of detected (approximate) solutions

(bottom right) for the corresponding step depths as well as solving times for the corresponding

accuracies α at step depth 8 (top right) when accuracy-based pruning with different values for

accuracy α was applied.

thresholding to some extent, is to exploit situations in which the exact maximum proba-
bility of satisfaction is not requested for but just for a result of some predefined accuracy.
More precisely, for a given accuracy α ≥ 0, the SSMT algorithm should return an inter-
val [lb, ub] of width at most α, i.e. ub−lb ≤ α, containing the exact satisfaction probability
pr, i.e. pr ∈ [lb, ub].

Figure 6.29 depicts the experimental results when utilizing accuracy-based pruning with
different accuracies α ∈ {0, 0.001, 0.01, 0.1, 0.5, 1}. Observe that accuracy-based pruning
can be “disabled” by setting α = 0, thus resulting in the naive SSMT approach from
Subsection 6.7.1.

When looking at the results, attention might be attracted to the remarkable perfor-
mance if α = 1. However, this behavior is not a surprise at all: accuracy-based pruning
immediately applies for the first quantified variable as α ≥ 1 such that no branching step
must be performed to return the trivial result, namely the interval [0, 1].

As it was to be expected, the experiments reveal that accuracy-based pruning becomes
less beneficial when α approaches value 0: while a speed-up of six orders of magnitude
compared to the naive algorithm was achieved for the meaningless case α = 1 at step
depth 8, the performance of accuracy-based pruning is getting worse for accuracies 0.5,

208 6 Algorithms for SSMT Problems

0.1, 0.01, and 0.001, observing speed-up factors of about 48, 18, 4, and 2, respectively,
confer the top-right subfigure of Figure 6.29.

That is to say, in order to attain a major advantage in solving time, the accuracy has to
be rather large which in turn causes the disadvantage of less precise results. Nevertheless,
the optimization of accuracy-based pruning may help whenever just a rough insight into
the evolution of the reachability probabilities over the step depth is asked for, as illustrated
on the left of Figure 6.20.

6.7.6 Impact of solution-directed backjumping

We next evaluate the idea of solution-directed backjumping (SDB) which was introduced in
Subsection 6.5.4 and formalized by rule SSMT.11. Recall the intuition behind SDB: upon
having detected an (approximate) solution, quantified variables are determined which
have no impact on the (approximate) solution. For such variables, investigation of their
alternative values is skipped by means of assigning the probability result of the current
subproblem directly to all remaining subproblems, confer Figure 6.9.

As explained in Subsections 6.7.1 and 6.7.4, whenever a target state is reached in the
cooling system Scool after k system steps, i.e. if the Boolean variable target at depth k
is true, then all quantified variables encoding the selection of transitions and transition
alternatives for all the remaining k′ system steps become “unconstrained”. Moreover,
each assignment to these “unconstrained” quantified variables leads to an (approximate)
solution of the formula, while the number of such assignments is exponential in k′.

We have seen that the optimization of purification is beneficial in above situations but
is limited to existential variables, confer Subsection 6.7.4. SDB is furthermore able to
cope with randomized variables in aforementioned cases. As explained above, quantified
variables becoming “unconstrained” have no impact on the resulting (approximate) solu-
tion, and thus SDB can be applied for all these variables, thereby skipping investigation
of exponentially many assignments.

The experimental results of Figure 6.30 reflect the theoretical considerations above.
Compared to the naive SSMT algorithm, the number of detected (approximate) solutions
could be reduced by one order of magnitude at step depth 6, by three orders at depth 7,
and even by five orders at depth 8. The speed-ups are also considerable: one order of
magnitude at depth 6, two orders at depth 7, and four orders at depth 8. Furthermore,
SiSAT with SDB was able to solve the probabilistic reachability problem up to step
depth 22 within the time limit of 25 hours, while the naive approach could only cope with
the problem up to depth 8 within the same time. For a convenient comparison with the
related optimization of purification, Figure 6.30 also shows the results for purification.

We have seen that solution-directed backjumping is a powerful mechanism to improve
performance of the SSMT proof search significantly if quantified variables occur in the
given SSMT formula which have no impact on detected (approximate) solutions.

6.7.7 Impact of caching probability results of subproblems

The next algorithmic enhancement to be evaluated is caching probability results of subprob-
lems, as introduced in Subsection 6.5.5. The overall idea here is to avoid recomputations

6.7 Experimental results 209

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

so
lv

in
g

tim
e

[s
]

step depth k

time out
naive
SDB

purification

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

naive
SDB

purification

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

naive
SDB

purification

Figure 6.30: Evaluation of the SiSAT tool: solution-directed backjumping. Solving times (top),

numbers of branching steps (middle), and numbers of detected (approximate) solutions (bot-

tom) for the corresponding step depths when solution-directed backjumping was applied. For

convenience, the results for purification are also shown.

210 6 Algorithms for SSMT Problems

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

so
lv

in
g

tim
e

[s
]

step depth k

time out
naive

caching probabilities

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

naive
caching probabilities

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

naive
caching probabilities

Figure 6.31: Evaluation of the SiSAT tool: caching probability results of subproblems. Solving

times (top), numbers of branching steps (middle), and numbers of detected (approximate) solu-

tions (bottom) for the corresponding step depths when caching probability results was applied.

6.7 Experimental results 211

of the same SSMT subformulae by means of storing and reusing probability results of
subproblems. Intuitively, assume that we have already computed and cached the proba-
bility result pr of an SSMT subformula Φ and we encounter some SSMT subformula Ψ
such that Φ and Ψ are the same in the sense of items 1 to 6 of Subsection 6.5.5. We may
then conclude that Pr(Φ) = Pr(Ψ) which gives rise to reuse pr as the probability result
of subproblem Ψ, in fact without solving Ψ.

The rationale why the optimization of caching and reusing probability results is ex-
pected to work for the basic SiSAT encoding of the cooling system Scool is again due
to reaching the target states at some step depth k and thereafter performing self loops
for the remaining k′ system steps, the latter being discussed for purification in Subsec-
tion 6.7.4 and for solution-directed backjumping in Subsection 6.7.6. More precisely, let
us assume that we encounter an SSMT subproblem Φ which encodes k′ iterations of a self
loop as mentioned before. That is, the current partial assignment to the quantified vari-
ables corresponds to an anchored run of Scool that reaches the target states after k system
steps. As observed earlier, all non-instantiated quantified variables x1, . . . , xn occurring
in Φ are “unconstrained” as they are contained in satisfied clauses only. That is, for each
i ∈ {1, . . . , n}, if taking any values v1, . . . , vi for quantified variables x1, . . . , xi then the
resulting SSMT subproblems Φi which arise after substituting values v1, . . . , vi for vari-
ables x1, . . . , xi, respectively, are the same in the above sense and thus have the same
probabilities of satisfaction. The latter fact is potentially exploited by the algorithmic
enhancement of caching and reusing probability results such that only one subproblem Φi

is actually solved for each i ∈ {1, . . . , n} in best case. Observe that the number of all
subproblems Φi for some i is exponential in i.

The latter theoretical investigation is substantiated by the experimental results pre-
sented by Figure 6.31. The SSMT proof search could be enhanced considerably if the
optimization of caching and reusing probability results was utilized: compared to the
naive SSMT algorithm, the number of branchings steps as well as of detected (approxi-
mate) solutions could be reduced by two as well as by three orders of magnitude at step
depth 7 and by four as well as by five orders at depth 8. This clearly has led to positive
effects on the solving time such that speed-ups of two and of four orders of magnitude
were obtained at step depths 7 and 8, respectively. Moreover, SiSAT employing above
enhancement was able to solve the probabilistic reachability problem up to step depth 20
within the time limit of 25 hours, while the naive approach could only cope with the
problem up to depth 8 within the same time.

It is finally worth to mention that the algorithmic enhancement of caching probability
results of subproblems is actually very memory intensive. As stated at the beginning of
Section 6.7, whenever the feature of caching probabilities was activated then the corre-
sponding experiments were conducted with the higher memory limit of 64 GByte. Though
the memory limit was not exceeded in the experiments of this subsection, the amount of
required memory was strongly increasing for higher step depths and has almost reached
the memory limit. This high memory consumption is clearly caused by the number of
subproblems which is exponential in the number of quantifiers and thus in the step depth.
Runtime can also be an issue, namely the more entries are cached the more time is needed
to find matching entries.

One idea for future work alleviating the above disadvantages is to maintain a storage

212 6 Algorithms for SSMT Problems

for cached entries of a predefined, fixed amount of memory. This clearly implies that the
number of cached entries is limited. In order to avoid situations where “promising” entries
are detected “too late”, i.e. if the storage is exhausted, it makes sense to define some
heuristics for evaluating the benefit of cached entries such that more beneficial entries are
kept in the storage, while less beneficial ones can be removed when necessary.

6.7.8 Impact of caching solutions

We next examine the impact of caching solutions, the latter being introduced in Subsec-
tion 6.5.6. The idea of this algorithmic enhancement is to cache (approximate) solutions
when solving the SSMT encoding PBMC S,Target(k) of a probabilistic reachability problem
for step depth k. Intuitively, all anchored systems runs reaching the target states within
k system steps are stored. When solving SSMT problems PBMC S,Target(k

′) of larger step
depths k′ > k, the cached (approximate) solutions are reused by means of directly as-
signing satisfaction probability 1 to the current SSMT subproblem whenever the current
partial assignment to the quantified variables coincides with a solution cached beforehand.
This treatment is sound due to the following reason: whenever a target state t is visited
within k system steps, the system remains in t until step depth k′ is reached by performing
self loops, confer Proposition 6.3.

As already discussed in the previous Subsections 6.7.1, 6.7.4, 6.7.6, and 6.7.7, all non-
instantiated quantified variables occurring in SSMT formula PBMC S,Target(k

′) become
“unconstrained” in each such self loop after having reached the target states within k sys-
tem steps. Let τ be a cached (approximate) solution of PBMC S,Target(k). Then, each
extension τ ′ of τ , i.e. if τ(x) is defined then τ ′(x) = τ(x), yields satisfaction probability 1
when solving PBMC S,Target(k

′) for k′ > k. If the cached solution τ is not reused when
solving PBMC S,Target(k

′) then the SSMT algorithm must traverse all such extensions τ ′.
Observe that the number of these (partial) assignments τ ′ is in general exponential in the
number of the remaining system steps, i.e. exponential in k′ − k. If the optimization of
caching and reusing solutions is applied then this pointless overhead can be avoided.

As shown by Figure 6.32, the algorithmic enhancement of caching and reusing solutions
improves the SSMT proof search significantly. While the naive approach has detected
about 2 · 105 (approximate) solutions at step depth 7, no new (approximate) solution was
detected when caching solutions. At step depth 8, the number of detected (approximate)
solutions could be reduced by six orders of magnitude. With respect to solving time,
speed-ups of one order, of three orders, and of five orders of magnitude were obtained at
step depths 6, 7, and 8, respectively, compared to the naive SSMT algorithm. Moreover,
SiSAT employing the optimization of caching solutions was able to solve the probabilistic
reachability problem up to step depth 16 in less than 76 seconds.

Owing to this rather large efficiency gains up to step depth 16, one might wonder why
the SSMT problem for depth 17 could not be solved within the remaining time limit of
more than a day. Compared to the enhancements of purification, solution-directed back-
jumping, and caching probability results of subproblems, SiSAT with caching solutions
being enabled was more than 9 times, more than 7 times, and more than 19 times faster,
respectively, at step depth 16 but was incapable of solving the problem for depth 17. This
circumstance might be attributed to the fact that the optimization of caching solutions

6.7 Experimental results 213

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

so
lv

in
g

tim
e

[s
]

step depth k

time out
naive

caching solutions

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

naive
caching solutions

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

naive
caching solutions

Figure 6.32: Evaluation of the SiSAT tool: caching solutions. Solving times (top), numbers of

branching steps (middle), and numbers of detected (approximate) solutions (bottom) for the

corresponding step depths when caching solutions was applied.

214 6 Algorithms for SSMT Problems

is more restricted in its application than the other enhancements above. More precisely,
the probability result directly assigned to some subtree by means of a reused solution is
always 1 while the other enhancements can cope with arbitrary probability results.

6.7.9 Impact of combinations of algorithmic enhancements

After having evaluated the impact of each single algorithmic enhancement on the basic
SiSAT encoding of the cooling system Scool in the previous subsections, we now investigate
whether combinations thereof can lead to further performance gains.

Let us first consider the experimental results shown by Figure 6.33. As already observed
in Subsection 6.7.4, purification has improved solving time by four orders of magnitude
at step depth 8 compared to the naive SSMT algorithm, and was able to solve the proba-
bilistic reachability problem up to step depth 22 within the time limit of 25 hours, while
the naive approach could just cope with the problem up to depth 8 within the same time,
confer the graph labeled with “+purification”. Roughly the same behavior was obtained
when employing solution-directed backjumping (SDB) alone, confer Subsection 6.7.6.

When having used purification and SDB together, solving time could be improved even
further to a speed-up of five orders of magnitude with respect to the naive procedure at
step depth 8, confer the graph labeled with “+SDB”. Moreover, the probabilistic reach-
ability problem could be solved up to step depth 23 now. Concerning step depth 22,
the combined approach exhibits speed-up factors of about 3 and of about 2 compared to
SiSAT that applies purification alone and SDB alone, respectively.

When having activated the optimization of caching solutions in addition to purification
and SDB, solving time could be improved further by a factor of 2 at step depth 23, and
the reachability problem could be solved for one more step depth within the time limit,
confer the graph labeled with “+caching solutions”.

Performance gains were also achieved when accuracy-based pruning with accuracy α =
0.1 was activated in above solver setting. For instance, a speed-up factor of more than 15
was observed at step depth 24 compared to the previous setting, while the probabilistic
reachability problem could be coped with up to step depth 28 within the time limit, confer
the graph labeled with “+accuracy α = 0.1”.

When having enhanced the latter solver setting by thresholding with θl = θu = 0.1,
solving time was reduced significantly, for instance, by a factor of more than 49 at step
depth 28 and thus by more than an order of magnitude, confer the graph labeled with
“+thresholding θ = 0.1”. Moreover, the probabilistic reachability problem was solved up
to step depth 37 within the time limit. Moderate speed-ups were furthermore observed
when having enabled the activity-based value branching heuristics aiming at exceeding
upper thresholds, for instance, by factors of almost 2 at step depth 32 and of about 1.25
at depth 37, confer the graph labeled with “+heuristics exceed-ut”.

Finally, we investigate the impact of caching probability results of subproblems in com-
bination with other algorithmic enhancements. As shown in Subsection 6.7.7, the op-
timization of caching probabilities alone has improved the naive SSMT proof search by
orders of magnitude, confer Figure 6.31. While consecutive activation of the above algo-
rithmic enhancements has led to performance gains in our experiments, as illustrated in
Figure 6.33, the same was not true for the feature of caching probabilities. Some of the

6.7 Experimental results 215

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

time out

naive
+purification

+SDB
+caching solutions

+accuracy α=0.1
+thresholding θ=0.1

+heuristics exceed-ut

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

naive
+purification

+SDB
+caching solutions

+accuracy α=0.1
+thresholding θ=0.1

+heuristics exceed-ut

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

naive
+purification

+SDB
+caching solutions

+accuracy α=0.1
+thresholding θ=0.1

+heuristics exceed-ut

Figure 6.33: Evaluation of the SiSAT tool: combinations of algorithmic enhancements. Solv-

ing times (top), numbers of branching steps (middle), and numbers of detected (approximate)

solutions (bottom) for the corresponding step depths when different combinations of the en-

hancements were applied. The naive SSMT algorithm is denoted by naive while +feature means

the use of enhancement feature in addition to the solver setting stated in the preceding line.

216 6 Algorithms for SSMT Problems

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40 45

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40 45

so
lv

in
g

tim
e

[s
]

step depth k

time out

naive
S1

S1 + caching probabilities
S2

S2 + caching probabilities

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40 45

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

naive
S1

S1 + caching probabilities
S2

S2 + caching probabilities

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40 45

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

naive
S1

S1 + caching probabilities
S2

S2 + caching probabilities

Figure 6.34: Evaluation of the SiSAT tool: combinations of algorithmic enhancements. Solv-

ing times (top), numbers of branching steps (middle), and numbers of detected (approximate)

solutions (bottom) for the corresponding step depths when two combinations of algorithmic en-

hancements with and without caching probability results were applied. The solver setting S1

involves purification and SDB, while setting S2 extends S1 by caching solutions, accuracy-based

pruning with α = 0.1, thresholding with θl = θu = 0.1, and activity-based branching heuristics

aiming at exceeding upper thresholds.

6.7 Experimental results 217

corresponding experimental results are presented in Figure 6.34.

With regard to solver setting S1, where purification and SDB were enabled, SiSAT
was just able to solve the reachability problem up to step depth 21 instead of 23 within
the time limit when caching probability results was used additionally. Considering step
depth 21, solving time has increased by a factor of more than 5 but, at the same time, the
numbers of branching steps and of detected (approximate) solutions could be reduced by
factors greater than 16 and 21, respectively. The same noteworthy behavior was observed
for solver setting S2, which extends S1 by caching solutions, accuracy-based pruning with
α = 0.1, thresholding with θl = θu = 0.1, and activity-based branching heuristics aiming
at exceeding upper thresholds: when having employed the feature of caching probabilities
additionally, the reachability problem could be solved up to step depth 34 only instead of
37. At step depth 34, solving time has increased by a factor of about 4, while the numbers
of branching steps and of detected (approximate) solutions could be reduced by factors
greater than 25 and 35, respectively.

That is, the algorithmic feature of caching probability results of subproblems has actu-
ally pruned the quantifier tree considerably, even in combination with other enhancements.
However, the latter fact did not reflect in a positive effect on the solving time but yields a
noticeable slow-down. This striking behavior was clearly caused by the immense number
of cached probability results which is in general exponential in the number of quantifiers
and thus in the step depth. Though the memory limit of 64 GByte was not exceeded in
the experiments reported above, the amount of required memory was strongly increasing
for higher step depths and has almost reached the memory limit. Indeed, we have also
observed cases in which the memory limit became exhausted, for instance, when purifi-
cation, SDB, caching solutions, and caching probabilities were enabled simultaneously.
In the latter solver setting, the memory limit of 64 GByte was exceeded after about
16.8 hours when solving the probabilistic reachability problem at step depth 23.

As indicated by the experimental results, such a high memory consumption can worsen
solving time since the more probability entries are cached the more time is needed to find
matching entries. At the end of Subsection 6.7.7, we have suggested an idea for future
work in order to alleviate the above disadvantages.

6.7.10 Impact of alternative SiSAT encoding exploiting

relaxation of SSMT

While we have investigated the impact of the algorithmic enhancements on the basic SiSAT
encoding of the cooling system Scool in the previous subsections, we now consider the
alternative SiSAT encoding of Scool which has been introduced in Subsection 6.6.3. Recall
that the main idea of the latter was to “disable” each existential or randomized quantifier
whenever the concrete value of its corresponding quantified variable becomes irrelevant.
To this end, we have introduced a relaxation of the SSMT framework that supports the
concept of “relaxed” randomized quantifiers. In brief, the sum of the probabilities in a
“relaxed”randomized quantifier may exceed value 1. When addressing well-defined relaxed
SSMT formulae, valid probability distributions in randomized quantifiers however can be
ensured, confer Definition 6.3. The latter property of well-definedness holds for each

218 6 Algorithms for SSMT Problems

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

so
lv

in
g

tim
e

[s
]

step depth k

time out
basic encoding

alternative encoding

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

basic encoding
alternative encoding

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

basic encoding
alternative encoding

Figure 6.35: Evaluation of the SiSAT tool: basic versus alternative SiSAT encoding. Solving

times (top), numbers of branching steps (middle), and numbers of detected (approximate) so-

lutions (bottom) for the corresponding step depths and for the corresponding SiSAT encodings

when no algorithmic enhancements were applied in the SiSAT runs.

6.7 Experimental results 219

SSMT formula 6.25 constructed from the alternative SiSAT encoding of Scool ,
20 confer

Subsection 6.6.3.

The overall goal of “disabling” quantifiers as realized by the alternative SiSAT encoding
of Scool is to reduce the potential search space and thus to speed up the SSMT proof search.
As explained in Subsection 6.7.1, the main drawback of the basic SiSAT encoding of Scool

is that whenever Scool has reached a target state then a self loop is executed such that
the remaining non-quantified system variables keep their values independent of the actual
values of the non-instantiated quantified variables. As a consequence, iSAT’s deduction
mechanisms, being lifted to SiSAT by means of rule SSMT.6, are not applicable to these
“unconstrained” quantified variables during SSMT proof search. This implies that the
naive SSMT algorithm must explore all assignments to these “unconstrained” quantified
variables in worst case, while the number of such assignments is exponential in the number
of iterations of this self loop.

If being called on the alternative SiSAT encoding of Scool then the naive SSMT ap-
proach might however be able to avoid the pointless overhead mentioned before: since
the TRANS section of the alternative encoding contains additional predicates which are
responsible for “disabling” quantifiers, confer Subsection 6.6.3, all non-instantiated quan-
tified variables are forced to carry value OFF whenever the target states are reached. Due
to the latter predicates, iSAT’s deduction mechanisms, as lifted to SSMT by means of
rule SSMT.6, apply to the non-instantiated quantified variables once the target states are
visited, thereby reducing their domains to singletons.

The above theoretical argument is confirmed by the experimental results illustrated in
Figure 6.35. The naive SSMT algorithm exhibits an impressive behavior on the alter-
native SiSAT encoding compared to the basic one: the numbers of branching steps and
of detected (approximate) solutions as well as the solving time could be reduced by five
orders of magnitude at step depth 8. Moreover, the probabilistic reachability problem
constructed from the alternative SiSAT encoding could be solved up to step depth 29
within the time limit of 25 hours instead of just up to depth 8 when using the basic
encoding.

In what follows, we investigate the impact of the algorithmic enhancements on the
alternative SiSAT encoding of Scool . As shown by Figure 6.36, none of the features purifi-
cation, solution-directed backjumping, and caching probability results of subproblems has
improved the performance of SiSAT when called on the alternative encoding. On the con-
trary, slow-downs were observed: while solving times with purification and SDB enabled
have just slightly grown by factors of about 1.2 and 1.5 at step depth 29, respectively, the
feature of caching probability results has revealed a slow-down of two orders of magnitude
compared to the naive algorithm at step depth 21. In addition to that, the probabilistic
reachability problem could only be solved up to step depth 21 when having employed the
latter feature. Furthermore note that the naive SSMT procedure called on the alternative
SiSAT encoding has performed better than SiSAT enhanced by any combination of pu-
rification, SDB, and caching probability results and called on the basic encoding, confer
Figures 6.28, 6.30, 6.31, 6.33, and 6.34.

20Recall that the semantics of a probabilistic transition system encoded in the SiSAT input language for
a given step depth k is defined by the maximum probability of satisfaction of the SSMT formula 6.25,
confer Subsection 6.6.1.

220 6 Algorithms for SSMT Problems

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

so
lv

in
g

tim
e

[s
]

step depth k

time out

naive
purification

SDB
caching probabilities

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

naive
purification

SDB
caching probabilities

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

naive
purification

SDB
caching probabilities

Figure 6.36: Evaluation of the SiSAT tool: purification, solution-directed backjumping, and

caching probability results of subproblems for the alternative SiSAT encoding. Solving times

(top), numbers of branching steps (middle), and numbers of detected (approximate) solutions

(bottom) for the corresponding step depths and for the corresponding enhancements.

6.7 Experimental results 221

A plausible explanation of the latter behavior might be that the idea of “disabling”
quantifiers as well as iSAT’s deduction mechanisms, lifted to SiSAT by rule SSMT.6,
together are strong enough to cope with the issue of “unconstrained” quantified variables
as described above. This conjecture is substantiated by the fact that the numbers of
branching steps and of detected (approximate) solutions have remained constant when
having applied any of the above algorithmic enhancements, confer Figure 6.36. The
latter observation thus suggests that each of the features purification, SDB, and caching
probability results of subproblems has failed in pruning the search tree when applied
to the alternative SiSAT encoding. The additional overhead of checking the application
conditions of these features has then caused the observed penalties in solving time. As
purification just works for existential variables, its slow-down factors are a bit smaller than
these of SDB, the latter being additionally applicable to randomized variables. The rather
bad performance of caching probability results can be attributed to the immense number
of cached probability results which is in general exponential in the number of quantifiers,
as mentioned in Subsections 6.7.7 and 6.7.9. That is, even though no cached probability
entry was ever reused in the experiments reported above, as indicated by Figure 6.36, the
application condition had to be checked which particularly involves the time-consuming
search for matching entries in the cache.

We finally examine the impact of the remaining algorithmic enhancements on the al-
ternative SiSAT encoding of Scool . The corresponding experimental results are depicted
in Figure 6.37. When having enhanced the naive SSMT procedure by caching solutions,
solving time has improved by a factor of about 2 at step depth 29, and the probabilistic
reachability problem could be solved for two more step depths within the time limit, con-
fer the graph labeled with “+caching solutions”. When having further used accuracy-based
pruning with accuracy α = 0.1, a speed-up of an order of magnitude was achieved at
step depth 31, confer the graph labeled with “+accuracy α = 0.1”. Moreover, the proba-
bilistic reachability problem could be tackled up to step depth 34 within the time limit of
25 hours. Further performance gains were observed when having enabled the optimization
of thresholding with θl = θu = 0.1 additionally: solving time was reduced significantly, for
instance, by two orders of magnitude at step depth 34 compared to the previous solver
setting and even by three orders at depth 29 compared to the naive algorithm, confer
the graph labeled with “+thresholding θ = 0.1”. Furthermore, the probabilistic reachabil-
ity problem could be solved for all step depths 0 to 40 with a total solving time of less
than 53 minutes. Moderate speed-ups were obtained when having additionally applied
the activity-based value branching heuristics aiming at exceeding upper thresholds, for
instance, by factors of 4 at step depth 12 and of about 1.2 at depth 40 compared to the
previous solver setting, confer the graph labeled with “+heuristics exceed-ut”. We remark
that the overall solving time for the probabilistic reachability problem up to step depth 40
was improved to slightly less than 45 minutes.

6.7.11 Summary

In the previous subsections, it was shown that the algorithmic enhancements presented in
Section 6.5 are able to improve the performance of the naive SSMT algorithm described
in Section 6.4 significantly, sometimes by several orders of magnitude. As a benchmark,

222 6 Algorithms for SSMT Problems

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

time out

naive
+caching solutions

+accuracy α=0.1
+thresholding θ=0.1

+heuristics exceed-ut

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

naive
+caching solutions

+accuracy α=0.1
+thresholding θ=0.1

+heuristics exceed-ut

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

naive
+caching solutions

+accuracy α=0.1
+thresholding θ=0.1

+heuristics exceed-ut

Figure 6.37: Evaluation of the SiSAT tool: combinations of algorithmic enhancements for the

alternative SiSAT encoding. Solving times (top), numbers of branching steps (middle), and

numbers of detected (approximate) solutions (bottom) for the corresponding step depths when

different combinations of the algorithmic enhancements were applied. The naive SSMT algo-

rithm is denoted by naive while +feature means the use of enhancement feature in addition to

the solver setting stated in the preceding line.

6.7 Experimental results 223

we have used the SiSAT encodings of the cooling system Scool which were introduced in
Subsection 6.6.3. This example of a system of concurrent probabilistic hybrid automata
can be seen as being representative for a vast number of similar case studies. We remark
that a more sophisticated case study, namely the analysis of the networked automation
system (NAS) introduced in Section 3.1, is investigated in Chapter 8.

The algorithmic enhancements as well as combinations thereof were evaluated on two
SiSAT encodings, namely on the basic one, as formally introduced in Section 5.3, and on
an alternative encoding, the latter realizing the idea of “disabling” quantifiers whenever
they are “not needed”, i.e. whenever the concrete values of their corresponding quantified
variables become irrelevant, in order to aid the SSMT solver in pruning the search tree.

On the basic SiSAT encoding of Scool , isolated application of each of the algorithmic
enhancements has yielded performance gains, except for very few, negligible outliers.
The same is true for combined activation of these enhancements with the exception of
caching probability results of subproblems. Though the latter feature was actually capable
of pruning the quantifier tree considerably, noticeable slow-downs in solving time were
observed. We have argued that this rather curious behavior was caused by the immense
number of cached probability results which is in general exponential in the number of
quantifiers and thus in the step depth. That is, the more probability entries are cached,
the more time is consumed finding matching entries. At the end of Subsection 6.7.7, we
have suggested an idea for future work in order to alleviate the above disadvantages.

Though the experiments were conducted on a concrete example of a system of concur-
rent probabilistic hybrid automata, namely the cooling system Scool from Figure 6.17, we
have explained in detail why similar performance gains can be expected for basic SiSAT
encodings of other systems of probabilistic hybrid automata, for instance, due to the issue
that non-instantiated quantified variables become “unconstrained” whenever the target
states are reached, the latter being outlined first in Subsection 6.7.1.

The main goal of the alternative SiSAT encoding of Scool was to “disable” quantifiers
whenever they are “not needed” and thus to address the above issue with such “uncon-
strained”quantified variables. It turned out that this alternative encoding has a significant
advantage over the basic encoding: even the naive SSMT procedure called on the alter-
native SiSAT encoding has performed better than SiSAT being enhanced by any com-
bination of purification, solution-directed backjumping (SDB), and caching probability
results when being called on the basic encoding. We have moreover observed that each of
the features purification, SDB, and caching probability results has worsened solving time
when called on the alternative encoding, while the other optimizations however were able
to improve further the performance of SiSAT.

When aiming at the exact maximum probability of reaching the target states, SiSAT
in its best setting for the basic encoding of Scool , i.e. with purification, solution-directed
backjumping, and caching solutions being enabled, could solve the probabilistic reacha-
bility problem up to step depth 24 within the time limit of 25 hours, while the tool in its
best setting for the alternative encoding, i.e. having applied caching solutions only, was
able to address the problem up to depth 31 in the same time. The speed-up obtained for
the alternative encoding compared to the basic one at step depth 24 amounts to a factor
of more than 52 and thus to more than one order of magnitude.

When having employed accuracy-based pruning with accuracy α = 0.1, thresholding

224 6 Algorithms for SSMT Problems

 1

 1e+20

 1e+40

 1e+60

 1e+80

 1e+100

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

 1

 1e+20

 1e+40

 1e+60

 1e+80

 1e+100

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

45 minutes

 1

 1e+20

 1e+40

 1e+60

 1e+80

 1e+100

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

45 minutes

age of universe

 1

 1e+20

 1e+40

 1e+60

 1e+80

 1e+100

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

45 minutes

age of universe

time a brown garden snail needs to
cross current size of universe

 1

 1e+20

 1e+40

 1e+60

 1e+80

 1e+100

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

45 minutes

age of universe

time a brown garden snail needs to
cross current size of universe

45! (factorial of 45) minutes

 1

 1e+20

 1e+40

 1e+60

 1e+80

 1e+100

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

45 minutes

age of universe

time a brown garden snail needs to
cross current size of universe

45! (factorial of 45) minutes

3.8e+65 years

SiSAT naive (basic encoding)
SiSAT naive (basic encoding) extrapolated

SiSAT best (alternative encoding)

Figure 6.38: Evaluation of the SiSAT tool: overall impact. Accumulated solving times up to

the corresponding step depths for the naive SSMT algorithm called on the basic encoding (solid

line) and for SiSAT called on the alternative encoding when having enabled caching solutions,

accuracy-based pruning with α = 0.1, thresholding with θl = θu = 0.1, and activity-based

branching heuristics aiming at exceeding upper thresholds (dashed-dotted line) as well as ex-

trapolated accumulated solving times for the naive approach and for the basic encoding using a

growth factor of 140 (dashed line).

with θl = θu = 0.1, and activity-based value branching heuristics aiming at exceeding
upper thresholds in addition to above solver settings, SiSAT could solve the problem up
to step depths 37 and 40 within the time limit when called on the basic and alternative
encodings, respectively. The speed-up obtained for the alternative encoding compared to
the basic one at step depth 37 amounts to a factor of more than 101 and thus to two
orders of magnitude.

With respect to efficiency, the above observations suggest the use of the alternative
encoding scheme for the SSMT-based probabilistic bounded reachability analysis of prob-
abilistic hybrid automata, while the features purification, SDB, and caching probability
results should not be employed during SSMT proof search.

It is important to point out that the advice of avoiding the latter algorithmic enhance-
ments should not be taken as a general rule, but just be followed in above scenarios. Due
to the expressive power of the SSMT framework, problems from application areas other
than the analysis of probabilistic systems can be described as SSMT formulae. When
solving such SSMT problems, the features of purification, SDB, and caching probability
results might be able to prune the search space owing to some structural properties which
cannot be covered by the concept of “disabling” quantifiers. In such cases, noticeable
performance gains may be expected from other optimizations, as obtained for the basic
SiSAT encoding of Scool .

We conclude this section and thereby the whole Chapter 6 by demonstrating the overall

6.7 Experimental results 225

impact of the algorithmic enhancements as well as of the alternative SiSAT encoding on
solving time.
In Subsection 6.7.1, we have observed a strong exponential growth in the solving time of

the naive SSMT algorithm when called on the basic SiSAT encoding of Scool . This behavior
has been attributed to the fact that whenever a target state is reached in Scool then all
non-instantiated quantified variables encoding the selection of transitions and transition
alternatives for all the remaining n system steps become “unconstrained”. This means
that the naive SSMT algorithm must explore all assignments to these “unconstrained”
quantified variables, while the number of such assignments is exponential in n. We have
furthermore observed that the solving time has increased from step depth 6 to 7 by a factor
of about 144, and from depth 7 to 8 by a factor of about 147. Due to the above argument
concerning the formula structure, it cannot be expected that this growth in solving time
will decrease at some higher step depth. It is thus reasonable to assume a growth factor
of at least 140 in order to extrapolate the solving times for larger step depths. When
extrapolating the solving time in such a way, we obtain an accumulated solving time for
the probabilistic reachability problem from step depth 0 up to 40 of about 3.8 · 1065 years
(assuming a sufficiently large and long-lived computer).
As mentioned at the end of Subsection 6.7.10, SiSAT in its best setting called on the

alternative encoding was able to solve the reachability problem for all step depths 0 to 40
in slightly less than 45 minutes, equivalent to about 8.6 · 10−5 years. Compared to the
extrapolated overall solving time of the naive SSMT approach called on the basic SiSAT
encoding, SiSAT in its best setting for the alternative encoding thus has improved the
overall solving time by a factor of about 4.4 · 1069 and therefore by sixty nine orders of
magnitude. An illustrative presentation of this rather large difference in time is given by
Figure 6.38.

7 SSMT-Based Expected-Value Analysis of
Probabilistic Hybrid Automata

In the previous chapters, we have presented a symbolic approach to probabilistic bounded
reachability analysis of probabilistic hybrid automata. The latter procedure, being based
on the logical framework of stochastic satisfiability modulo theories (SSMT), is potentially
able to falsify safety properties of the shape “the worst-case probability of reaching the
bad system states is at most 1h”.

However, industrial applications often call for quantitative measures distinct from reach-
ability probabilities since these and related figures frequently tend to 1 in the long run
and thus are not sufficiently discriminative in practice when applied to systems with un-
bounded lifetime, as it is the case for the cooling system Scool described in Subsection 6.6.3
and depicted in Figure 6.17. Motivated by the latter fact, this chapter is devoted to a
symbolic, state-exploratory method for computing expected values of discrete-time prob-
abilistic hybrid systems like, for instance, mean time to failure (MTTF). The suggested
method builds upon SSMT-based probabilistic bounded model checking but has funda-
mentally different properties: instead of targeting at falsification, the resulting procedure
turns into a verification approach being able to verify that a probabilistic hybrid system
meets safety requirements of the shape “the MTTF is always at least 20 minutes”.

In Section 7.1, we first establish the formal system model by slightly extending the
concept of concurrent discrete-time probabilistic hybrid automata from Section 3.3 with
a notion of costs, and then define the cost expectation for such systems as well as the cor-
responding cost-expectation model-checking problem. In order to address a step-bounded
variant of the latter problem symbolically, Section 7.2 extends the semantics of an SSMT
formula Φ with respect to the conditional expectation of a designated free variable in
Φ. Thereafter, we show how the step-bounded cost-expectation problem can be reduced
to the extended version of the SSMT problem in Section 7.3. In order to complete the
symbolic verification procedure, Section 7.4 elaborates on an algorithm to cope with the
extended semantics of SSMT. Demonstrating applicability of the suggested approach,
experimental results finally are presented in Section 7.5.

We remark that major parts of this chapter are based on the conference paper [FTE10b]
by Fränzle, Teige, and Eggers.

7.1 Cost expectation for probabilistic hybrid

automata with costs

In order to facilitate the expected-value analysis of probabilistic hybrid systems, we
slightly extend the concept of a system of concurrent discrete-time probabilistic hybrid
automata from Section 3.3 by a notion of step costs.

228 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

Definition 7.1 (System of concurrent PHAs with cost function)
A system of concurrent discrete-time probabilistic hybrid automata (PHAs) with cost
function is given by a pair (S, cost) of a system S of n concurrent discrete-time proba-
bilistic hybrid automata as in Definition 3.1 and of a function

cost : NChoice × PChoice × StatesS → R≥0

that associates to each non-deterministic choice tr ∈ NChoice of a global transition and
each probabilistic selection pc ∈ PChoice(tr) of a global transition alternative a non-
negative cost value cost(tr, pc, s) that depends on the current state s ∈ StatesS . For tech-
nical reasons, we demand that whenever the first two arguments of function cost are fixed
then the resulting function cost(tr, pc) : StatesS → R≥0 with cost(tr, pc)(s) = cost(tr, pc, s)
for each s ∈ StatesS is syntactically represented by a term in arithmetic theory T over
the discrete variables in D1, . . . , Dn and the continuous variables in R1, . . . , Rn.

For the sake of simplicity, namely to avoid technicalities in the definition of a scheduler,
we demand that the following two semantic conditions are satisfied:

1. System S is non-blocking in the sense that for each state s ∈ StatesS there exists
a global transition tr = (tr1, . . . , trn) ∈ NChoice such that the guards of all local
transitions are mutually consistent, i.e.

val(s) ∧ g(tr1) ∧ . . . ∧ g(trn)

is satisfiable1 where predicate val(s) represents state s symbolically, i.e.

val(s) =
∧

v∈
⋃n

i=1(Di∪Ri)

v = s(v)

with s(v) being the value of variable v in state s. Such global transition tr is called
enabled in state s.

2. System S is executable in the sense that for each state s ∈ StatesS , for each
global transition tr ∈ NChoice which is enabled in state s, and for each proba-
bilistic transition alternative pc ∈ PChoice(tr), system S does not deadlock, i.e.
Post(s, tr, pc) 6= ⊥.

Note that checking above semantic conditions 1 and 2 is undecidable in general due to the
potentially infinite state space of a system of PHAs and due to potential undecidability
of arithmetic theory T . Recall that we consider the undecidable theory of non-linear
arithmetic over the reals and integers involving transcendental functions within this thesis,
confer Section 4.3. In several cases, it however is reasonable to expect that a system
designer is able to ensure above semantic conditions.
The executable behavior of a system (S, cost) of concurrent PHAs with cost func-

tion is defined by the runs r = 〈s0, (tr1, pc1), s1, . . . , si−1, (tri, pci), si, . . . , (trk, pck), sk〉 ∈
(StatesS ∪ {⊥})× ((NChoice × PChoice)× (StatesS ∪ {⊥}))∗ of system S, as formalized
in Definition 3.2. The cost of step i in r is given by cost(ti, pi, si−1).

1Recall that transition guards may contain primed variables referring to the post-state.

7.1 Cost expectation for probabilistic hybrid automata with costs 229

true

x = 2.5
sin(x) <

0

¬z
cost = 0
x′ = x
true/

0.9

0.3

0.1

0.7

p12

p11

p22

p21

x′ = x/2
cost = x2

x′ = x
cost = 0

x′ = x− 2
cost = 1.8

x′ = x2

cost = |x|

z t3

t2

t1

Figure 7.1: A single probabilistic hybrid automaton (A, cost) with cost function. The arithmetic

terms representing the functions cost(tr, pc) after having fixed the first two arguments are asso-

ciated to the corresponding transitions tr and, if existent, transition alternatives pc, for instance,

cost(t1, p
1
2) = x2. (This figure is a slight modification of Figure 2 from [FTE10b].)

For an example, consider the single, i.e. non-concurrent, probabilistic hybrid automa-
ton (A, cost) with cost function from Figure 7.1. The unique initial state of A is s0 =
(z, x = 2.5). Transition t1 cannot be taken since the guard is not satisfied due to sin(2.5) >
0.59. Automaton A is thus forced to take transition t2. If the subsequent probabilistic
choice triggers transition alternative p22 with associated probability 0.7 then A enters suc-
cessor state s1 = (z, x = 6.25). The cost of the latter step is cost(t2, p

2
2, s0) = |x| = 2.5.

The guard of t1 is now satisfied since sin(6.25) < 0. Let A now execute t1 followed by
probabilistic choice of alternative p11 with associated probability 0.9. The cost of the latter
step is given by cost(t1, p

1
1, s1) = 1.8, and the post-state is s2 = (z, x = 4.25). If there-

after selecting t2 non-deterministically and p21 probabilistically then A performs a step to
s3 = (¬z, x = 4.25) at zero cost, i.e. cost(t2, p

2
1, s2) = 0. Altogether, the latter anchored

system run of length 3 yields an accumulated step cost of 2.5 + 1.8 + 0 = 4.3.
In this chapter, we are interested in the expected value of the accumulated cost when a

system (S, cost) of concurrent PHAs with cost function reaches a target state. Due to the
presence of non-deterministic selection between several transitions, we assume that the
dynamics of S is controlled by a scheduler resolving this non-determinism. As opposed
to the case of probabilistic bounded state reachability, where we have allowed the rather
general notion of history-dependent, deterministic schedulers, confer Definition 5.1, we do
here restrict ourselves to stationary Markovian deterministic schedulers that depend on
the current system state only, confer, for instance, [BHKH05].

Definition 7.2 (stationary Markovian deterministic scheduler)
Let (S, cost) be a system of concurrent PHAs with cost function, as in Definition 7.1.
Then, a stationary Markovian deterministic scheduler, or simple scheduler, σ : StatesS →
NChoice for (S, cost) maps a state s ∈ StatesS to a global transition σ(s) ∈ NChoice which
is enabled in state s.

Note that above simple schedulers σ for (S, cost) are always well-defined, i.e. for each state
s ∈ StatesS there is at least one global transition which is enabled in state s according to
semantic condition 1 from Definition 7.1.

230 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

After having elaborated on the issue of schedulers, we are now prepared to introduce
the cost expectation for systems of concurrent PHAs with costs.

Definition 7.3 (Cost expectation)
Let (S, cost) be a system of n concurrent PHAs with cost function, Target be a T -predicate
over variables in D1, . . . , Dn and R1, . . . , Rn defining the target states, and σ be a sta-
tionary Markovian deterministic scheduler for (S, cost). Then, the cost expectation for
(S, cost) under scheduler σ is the least (with respect to the product order) solution of the
equation system

CE (S,cost),σ,Target (z) =

0 if z |= Target

∑
pc∈PChoice(tr)

p(tr, pc) ·

(
cost(tr, pc, z)

+ CE (S,cost),σ,Target (z
′)

)

if z 6|= Target

z∈StatesS

with tr = σ(z) being the global transition selected by σ and z′ = Post(z, tr, pc) be-
ing the corresponding unique post-state. We demand that for each state z ∈ StatesS ,
CE (S,cost),σ,Target(z) ranges within the set of all non-negative real numbers extended by ∞
representing infinity, i.e. CE (S,cost),σ,Target(z) ∈ R≥0 ∪ {∞}. In order to calculate with ∞,
we assume the smallest monotone extension of addition and multiplication, i.e. we define
a +∞ = ∞ + a = ∞ for all a ∈ R≥0 ∪ {∞}, a · ∞ = ∞ · a = ∞ for all a ∈ R≥0 ∪ {∞}
with a 6= 0, and 0 · ∞ = ∞ · 0 = 0.

For a particular state s ∈ StatesS , the cost expectation for reaching the target states
from state s under scheduler σ is CE (S,cost),σ,Target(s), while the infimal cost expectation
for reaching the target states from state s is given by

CE (S,cost),Target(s) = inf
σ′∈Υ

CE (S,cost),σ′,Target(s)

with Υ being the set of all stationary Markovian deterministic schedulers for (S, cost).

Observe that global transition tr = σ(z) ∈ NChoice always exists due to semantic con-
dition 1 from Definition 7.1. It furthermore holds that z′ = Post(z, tr, pc) 6= ⊥ for each
probabilistic transition alternative pc ∈ PChoice(tr) due to semantic condition 2 from
Definition 7.1.

We remark that existence of the least solution of the equation system above is guar-
anteed due to the following. First, note that the Cartesian product (R≥0 ∪ {∞})|StatesS |

together with product order is a complete partially ordered set. Second, let function

f : (R≥0 ∪ {∞})|StatesS | → (R≥0 ∪ {∞})|StatesS |

7.2 Conditional expectation for SSMT 231

be defined by

f(C) =

0 if z1 |= Target

∑
pc1∈PChoice(tr1)

p(tr1, pc1) ·

(
cost(tr1, pc1, z1)

+ Cj1

)

if z1 6|= Target

...

0 if zi |= Target

∑
pci∈PChoice(tri)

p(tri, pci) ·

(
cost(tri, pci, zi)

+ Cji

)

if zi 6|= Target

...

such that tri = σ(zi), zji = Post(zi, tri, pci), and Ci gives the i-th element of vector C for
all i ≥ 1. Note that C may contain uncountably many elements as the state space StatesS
of S is potentially uncountable.
It then holds that function f is monotone and continuous with respect to product order,

i.e. application of f preserves product order and the suprema of all ascending chains. From
Kleene’s fixed point theorem [Kle52], existence of a least fixed point of f then follows,
with the latter corresponding to the least solution of above equation system.
We finally state the corresponding decision problem, which we call cost-expectation

model checking and which is defined to be the problem of deciding whether the cost
expectation for a system (S, cost) of concurrent PHAs with cost function is acceptable,
where acceptability is defined by a threshold value θ to be exceeded irrespective of the
actual scheduler. An example is a setting where costs of steps correspond to their durations
and the target states denote system failures. The expected cost then is the mean time
to failure (MTTF) of (S, cost), and the threshold θ can be interpreted as a requirement
on the MTTF of the design under inspection. Adopting a demonic interpretation of
non-determinism, the latter has to be guaranteed irrespective of the actual scheduler.

Definition 7.4 (Cost-expectation model checking)
Let be given a system (S, cost) of n concurrent PHAs with cost function, a T -predicate
Target over variables in D1, . . . , Dn and R1, . . . , Rn defining the target states, and a target
threshold θ ≥ 0. Then, the cost-expectation model-checking problem (CEMC) is to decide
whether

CE (S,cost),Target(ı) ≥ θ

holds with ı |=
∧n

i=1 initi being the (unique) global initial state of S.

7.2 Conditional expectation for SSMT

In order to address a step-bounded variant of the cost-expectation model-checking prob-
lem from Section 7.1 symbolically, we propose a conservative extension of the semantics of
SSMT formulae which adds considerably to the expressiveness of SSMT. The new seman-
tics is based on the maximum conditional expectation of a designated free variable y in an

232 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

maximum conditional expectation of

sat satunsat satsat unsat sat sat

0.8 0.8 0.8 0.80.2 0.2 0.2

sat satunsat satsat unsat sat sat

0.20.8 0.8 0.8 0.80.2 0.2 0.2

0.50.5 0.50.5

0.2

maximum probability of satisfaction

x2

x3x3

x1

x2

x3 x3

x2

x3x3

x1

x2

x3 x3

y ∈ [0, 8]

Pr=1 Pr=0 Pr=0 Pr=1 Pr=1 Pr=1 Pr=1

Pr=0.8 Pr=1

Pr=1Pr=1Pr=0.8

Pr=0.9

Ey=0.8 Ey=5.6

Ey=5.6Ey=4.2Ey=0

Ey=3.2

Ey=0.8Pr=0.2

Pr=1 Ey=0 Ey=0 Ey=4 Ey=4 Ey=5 Ey=5 Ey=8Ey=0

(
(x1 = 1 ∨ x2 = 1 ∨ x3 = 0) ∧ (x1 = 1 ∨ x2 = 0 ∨ x3 = 1) ∧ (y = 4 · x1 + (x2 + x3)

2)
)Φ =

R

[0→0.5,1→0.5]x1 ∈ {0, 1} ∃x2 ∈ {0, 1}

R

[0→0.8,1→0.2]x3 ∈ {0, 1} :

Figure 7.2: The two different semantics of SSMT: maximum probability of satisfaction of SSMT

formula Φ (left) and maximum conditional expectation of y given Φ (right). Dashed and solid

lines denote variable assignments 0 and 1, respectively, while the probabilities of these variable

assignments are associated to the corresponding lines whenever applicable. (This figure is a

slight modification of Figure 1 from [FTE10b].)

SSMT formula. Intuitively, instead of assigning a probability 0 or 1 to a quantifier-free
formula ϕ as in the “classical” SSMT semantics constituting the maximum probability of
satisfaction, the extended semantics calls for the maximum value τ(y) of the designated
variable y over all solutions τ |= ϕ of the quantifier-free formula ϕ. The semantic rules for
existential and randomized quantifiers then remain the same as in the “classical” setting.
With regard to syntax, the only difference to SSMT formulae Φ from Definition 4.4 is

that we require a designated free variable y in Φ with its domain given by a bounded
interval. Then, the semantics is formalized as follows:

Definition 7.5 (Maximum conditional expectation for SSMT)
Let Φ = Q1x1 ∈ Dx1

⊙ . . . ⊙ Qnxn ∈ Dxn
: ϕ be an SSMT formula as in Definition 4.4,

and let y be a free variable in Φ with its domain dom(y) being given by a bounded inter-
val [ly, uy] ⊂ R, i.e. y /∈ {x1, . . . , xn} and y ∈ Var(ϕ). Then, the maximum conditional
expectation of y given Φ, denoted as Ey(Φ), is recursively defined as follows:

Ey(ε : ϕ) = maxτ |=ϕ τ(y) ,

Ey(∃x ∈ Dx ⊙Q : ϕ) = maxv∈Dx
Ey(Q : ϕ[v/x]) ,

Ey(

R

dxx ∈ Dx ⊙Q : ϕ) =
∑

v∈Dx
dx(v) · Ey(Q : ϕ[v/x]) ,

where ε denotes the empty and Q an arbitrary quantifier prefix.

Observe that the semantic rules for the cases in which the quantifier prefix is non-empty
are identical to the corresponding rules of the “classical” semantics of SSMT, i.e. of the
maximum probability of satisfaction, confer Definition 4.5. If the quantifier prefix is empty,
the classical scheme is generalized by determining the maximum value τ(y) ∈ [ly, uy] of
the random variable y over all satisfying assignments τ of ϕ, instead of just checking for

7.3 Reducing step-bounded cost expectation to SSMT 233

satisfiability of ϕ. Whenever no such satisfying assignment exists, we follow the order-
theoretic convention that the maximum over the empty subset of the ordered set [ly, uy]
is the minimum domain value ly. For an example, confer Figure 7.2.

Observe that the maximum conditional expectation is a conservative extension of the
classical semantics based on maximum probability of satisfaction in the sense that

Pr(Q : ϕ) = Ey(Q : (ϕ ∧ (y = 1)))

holds for each SSMT formula Q : ϕ with y being a fresh variable ranging over the real-
valued interval [0, 1], i.e. y /∈ Var(ϕ) and dom(y) = [0, 1].

7.3 Reducing step-bounded cost expectation to

SSMT

In order to facilitate the automatic verification of cost-expectation model-checking prob-
lems (CEMC) from Definition 7.4, we aim at solving corresponding SSMT formulae, the
latter being interpreted by the extended semantics from Definition 7.5. Akin to prob-
abilistic state reachability, confer Chapter 5, our verification procedure is based on an
SSMT encoding of the step-bounded behavior of a system of concurrent PHAs with cost
function. Therefore, we first introduce the notion of step-bounded cost expectation in
Subsection 7.3.1, which provides a lower bound on the infimal cost expectation for reach-
ing the target states from the initial state. In order to cope with the problem of computing
the step-bounded cost expectation symbolically, we then suggest a reduction from step-
bounded cost expectation to SSMT in Subsection 7.3.2.

Together with an SSMT algorithm for computing the maximum conditional expecta-
tion, which is presented in Section 7.4, the proposed approach constitutes a symbolic
verification procedure for the general CEMC problem with target threshold θ in the sense
that once a lower expectation bound lb ≥ θ is computed for the SSMT formula encod-
ing the corresponding step-bounded cost expectation then the general CEMC problem is
decided to be true.

7.3.1 Step-bounded cost expectation

The following definition of the step-bounded cost expectation does not rely on a mutually
recursive equation defining the cost expectation for each state as in Definition 7.3 but on
a well-founded recursion over the remaining step depth.

Definition 7.6 (k-step minimum cost expectation)
Let (S, cost) be a system of n concurrent PHAs with cost function, Target be a T -predicate
over variables in D1, . . . , Dn and R1, . . . , Rn defining the target states, and k ∈ N be a step
bound. Then, the k-step minimum cost expectation for reaching the target states from
a state s ∈ StatesS and for cost seeds c ∈ R≥0 ∪ {∞} and d : StatesS → (R≥0 ∪ {∞}),
denoted CE k

(S,cost),Target(s, c, d), is defined as follows:

CE k
(S,cost),Target (s, c, d)

234 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

=

c if s |= Target ,

c+ d(s) if s 6|= Target and k = 0 ,

min
tr∈En(s)

∑
pc∈PChoice(tr)

p(tr, pc) · CE k−1
(S,cost),Target (s

′, c+ cost(tr, pc, s), d)

if s 6|= Target and k > 0 ,

with En(s) = {tr ∈ NChoice : tr is enabled in s} and s′ = Post(s, tr, pc).

The k-step minimum cost expectation can be used for obtaining safe estimates of the
infimal cost expectation, as the following lemma shows.

Lemma 7.1 (Estimates of infimal cost expectation)
Let (S, cost) be a system of concurrent PHAs with cost function, Target be a T -predicate
defining the target states, and k ∈ N be a step bound. It then holds that

CE (S,cost),Target (s) ≥ CE k
(S,cost),Target(s, 0, 0)

where 0 is the constant function assigning 0 to all states. Furthermore, the sequence
CE k

(S,cost),Target(s, 0, 0) is (not necessarily strictly) monotonically increasing.
Likewise, if some function C : StatesS → (R≥0 ∪ {∞}) satisfies C ≥ CE (S,cost),Target ,

i.e. C(z) ≥ CE (S,cost),Target(z) for all z ∈ StatesS , then

CE (S,cost),Target(s) ≤ CE k
(S,cost),Target(s, 0, C) .

Proof. We show by induction on k that

(7.1) CE k
(S,cost),Target(s, c,CE (S,cost),Target) = c+ CE (S,cost),Target (s)

is true for arbitrary c ∈ R≥0 ∪ {∞}. It is not hard to see that CE k
(S,cost),Target (s, c, d)

is monotonic in d. Due to the latter fact and since C ≥ CE (S,cost),Target ≥ 0, both
inequalities CE (S,cost),Target(s) ≥ CE k

(S,cost),Target(s, 0, 0) as well as CE (S,cost),Target(s) ≤

CE k
(S,cost),Target(s, 0, C) follow from equation 7.1 by taking c = 0.

For the base case of the induction, i.e. for k = 0, it is immediate from definition of
CE k

(S,cost),Target that CE
0
(S,cost),Target(s, c,CE (S,cost),Target) = c+ CE (S,cost),Target(s) holds.

For k > 0, we first obtain from Definition 7.6 that

CE k
(S,cost),Target(s, c,CE (S,cost),Target)

=

c if s |= Target ,

min
tr∈En(s)

∑
pc∈PChoice(tr)

p(tr, pc) · CE k−1
(S,cost),Target(s

′, c+ cost(tr, pc, s),CE (S,cost),Target)

if s 6|= Target ,

while application of induction hypothesis yields

CE k
(S,cost),Target(s, c,CE (S,cost),Target)

=

c if s |= Target ,

min
tr∈En(s)

∑
pc∈PChoice(tr)

p(tr, pc) · (c+ cost(tr, pc, s) + CE (S,cost),Target(s
′))

if s 6|= Target .

7.3 Reducing step-bounded cost expectation to SSMT 235

Using Definition 7.3, we have that

CE k
(S,cost),Target(s, c,CE (S,cost),Target)

=

c if s |= Target ,

min
tr∈En(s)

∑
pc∈PChoice(tr)

p(tr, pc) ·

(
c+ cost(tr, pc, s) + inf

σ′∈Υ
CE (S,cost),σ′,Target(s

′)

)

if s 6|= Target

with Υ being the set of all stationary Markovian deterministic schedulers for (S, cost).
Observe that the set of all global transitions that are enabled in state s coincides with the
set of all transitions that are selected by stationary Markovian deterministic schedulers in
state s, i.e. En(s) = {σ(s) ∈ NChoice : σ ∈ Υ}. Due to the latter fact, we conclude that

CE k
(S,cost),Target(s, c,CE (S,cost),Target)

=

c if s |= Target ,

inf
σ∈Υ

∑
pc∈PChoice(tr′)

p(tr′, pc) ·

(
c+ cost(tr′, pc, s) + inf

σ′∈Υ
CE (S,cost),σ′,Target(s

′′)

)

if s 6|= Target

=

c if s |= Target ,

inf
σ∈Υ

inf
σ′∈Υ

∑
pc∈PChoice(tr′)

p(tr′, pc) ·
(
c+ cost(tr′, pc, s) + CE (S,cost),σ′,Target(s

′′)
)

if s 6|= Target

=

c if s |= Target ,

inf
σ∈Υ

∑
pc∈PChoice(tr′)

p(tr′, pc) ·
(
c + cost(tr′, pc, s) + CE (S,cost),σ,Target(s

′′)
)

if s 6|= Target

where tr′ = σ(s) and s′′ = Post(s, tr′, pc). Again using Definition 7.3, we finally achieve

CE k
(S,cost),Target(s, c,CE (S,cost),Target) = inf

σ∈Υ
(c+ CE (S,cost),σ,Target(s))

= c+ CE (S,cost),Target(s) .

The monotonic increase of the sequence CE k
(S,cost),Target(s, 0, 0) can be shown by a straight-

forward induction. 2

Consequently, a verification procedure for the CEMC problem from Definition 7.4 can be
derived from Lemma 7.1. More precisely, the step-bounded cost-expectation model-checking
problem (step-bounded CEMC), which is to decide whether

CE k
(S,cost),Target(ı, 0, 0) ≥ θ

holds for some given step depth k ∈ N and some given threshold θ ≥ 0, with ı being the
unique initial state, is addressed for increasing k until some depth k′ is found for which
the step-bounded CEMC problem is decided to be true, i.e. CEk′

(S,cost),Target(ı, 0, 0) ≥ θ
holds. It then follows that also the general CEMC problem is decided to be true since

CE (S,cost),Target(ı) ≥ CE k′

(S,cost),Target(ı, 0, 0) ≥ θ .

236 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

0.50.5

0.8 0.2

transition relation:non−deterministic choices:

initial state:

probabilistic choices:

t
r
u
et2

t1

t
r
u
e

p22 p21

p11 p12

x
′
=
x
+
1

x = 0
d = 1

co
st

=
|x

+
1|

x
′=

x2

co
st

=
x
4

x
′=

0

co
st

=
|3x

|
co
st

=
2.6

x
′
=

2x

∃tr ∈ {t1, t2}

R

[p11→0.5,p12→0.5]pc1

R

[p21→0.2,p22→0.8]pc2

d = 1 ∧ x = 0 ∧ c = 0

(
(tr = t2 ∧ pc2 = p22)

(
(tr = t2 ∧ pc2 = p21)

(
(tr = t1 ∧ pc1 = p11)

(
(tr = t1 ∧ pc1 = p12)

⇒ (d = 1 ∧ d′ = 1 ∧ x′ = 0 ∧ c′ = c+ x4)
)
∧

⇒ (d = 1 ∧ d′ = 1 ∧ x′ = 2x ∧ c′ = c+ 2.6)
)
∧

⇒ (d = 1 ∧ d′ = 1 ∧ x′ = x
2
∧ c′ = c+ |3x|)

)
∧

⇒ (d = 1 ∧ d′ = 1 ∧ x′ = x+ 1 ∧ c′ = c+ |x+ 1|)
)

Figure 7.3: Example of the SSMT encoding of step-bounded cost expectation. The real-valued

variable c is used to accumulate the costs of the individual transition steps within the SSMT

encoding. Note that the domains of the randomized variables pc1 and pc2 are omitted for the

sake of clarity. (This figure is a slight modification of Figure 3 from [FTE10b].)

Moreover, Lemma 7.1 in principle provides the opportunity to additionally compute upper
bounds on the infimal cost expectation. To realize the latter, guessing some function C
is required such that C ≥ CE (S,cost),Target . It seems that determining a non-trivial such
function C is not straightforward in general. Though the constant function assigning ∞ to
all states can always be used, it cannot be expected that this choice leads to meaningful
results in general. The issue of determining some “good” function C ≥ CE (S,cost),Target

might be an interesting direction for future research. In the remainder of this chapter,
we devote our attention to an SSMT-based verification approach to the CEMC problem
from Definition 7.4.

7.3.2 SSMT encoding of step-bounded cost expectation

In order to establish a symbolic verification procedure for the CEMC problem from Def-
inition 7.4, we now explain how the k-step minimum cost expectation for reaching the
target states from the initial state, i.e. CE k

(S,cost),Target(ı, 0, 0), can be encoded as an SSMT
formula. For this purpose, let (S, cost) be a system of n concurrent PHAs with cost func-
tion, ı |=

∧n
i=1 initi be the unique initial state of S, Target be a T -predicate over variables

in D1, . . . , Dn and R1, . . . , Rn defining the target states, and k ∈ N be a step bound.

The overall idea of the SSMT encoding scheme basically is the same as the reduc-
tion from probabilistic bounded reachability to SSMT, the latter being formalized in
Section 5.3. The intuition is illustrated by Figure 7.3. As in the case of probabilistic
bounded reachability, the non-deterministic selection of transitions as well as the proba-
bilistic choices of transition alternatives are encoded by existential and randomized quan-
tification, respectively. In order to accumulate the costs of the individual transition steps,
we introduce a fresh real-valued variable c ∈ [0, uc]. The initial state predicate forces that
c = 0 holds initially, while the transition relation predicate is responsible for incrementing

7.3 Reducing step-bounded cost expectation to SSMT 237

the accumulated cost by the cost of the current transition step, i.e. c′ = c + cost(tr, pc)
whenever tr ∈ NChoice and pc ∈ PChoice(tr) were selected. Once the target states are
reached, the SSMT encoding must ensure that the accumulated cost remains unchanged
in the subsequent system steps, i.e. c′ = c, which is in conformity with Definition 7.6. A
more fundamental difference to the SSMT encoding of probabilistic bounded reachability
is that all system runs need to be considered and not only those which reach the target
states within k transition steps. That is, the SSMT encoding Φ(k) of the k-step minimum
cost expectation must not enforce reachability of the target states within k steps. This is
due to the fact that CE 0

(S,cost),Target(s, c, 0) = c regardless of whether s is a target state or
not, confer Definition 7.6.
Assuming such SSMT encoding Φ(k) of step depth k, we are able to determine the k-

step minimum cost expectation as follows. Observe that we are interested in minimizing
the expected value of the accumulated cost at depth k, the latter being encoded by copy ck
of variable c. However, the maximum conditional expectation Eck(Φ(k)) of ck does not
correspond to the k-step minimum cost expectation. We thus aim at the maximum
conditional expectation Eic(Φ(k)) of the additive inverse ic ∈ [−uc, 0] of ck, i.e. ic = −ck.
Finally, the additive inverse of this result, i.e. −Eic(Φ(k)), then obviously gives the k-step
minimum cost expectation. The latter statement relies on the simple observation that
min(a1, . . . , am) = −max(−a1, . . . ,−am).
It is important to remark that variable cmust range over an interval domain [0, uc] which

calls for an upper bound uc. This is required by Definition 7.5 as variable ic ∈ [−uc, 0] is
the designated variable in the SSMT formula Φ(k). In practice, this need not be a huge
restriction as, first, uc can be chosen arbitrarily large and, second, in cases where the
maximum value costmax of the individual transition costs exists and is known, which is
most often the case in industrial applications when considering entities like time, position,
or velocity, the value of uc can be safely set to k · costmax with k being the step bound
from Definition 7.6.
We now introduce the formalized reduction scheme thereby reusing essential parts of

the reduction scheme from Section 5.3.
At first, all variables according to reduction steps 1 to 4 are introduced. In order to

accumulate the costs of the individual transition steps, we further take k + 1 fresh real-
valued variables cj for 0 ≤ j ≤ k, each with real-valued interval domain [0, uc]. The value
of cj encodes the accumulated cost at depth j. For the additive inverse of variable ck, we
introduce variable ic with real-valued interval domain [−uc, 0]. The initial state predicate
is given by

INIT (S,cost)(0) := INITS(0) ∧ c0 = 0

where INITS(0) is the predicate introduced by reduction step 5. With regard to the
transition relation predicate encoding a transition step from depth j−1 to j, we conjoin the
predicate TRANS S(j−1, j) of reduction step 8 with a constraint system for incrementing
the accumulated cost by the cost of the current transition step, i.e.

TRANS (S,cost)(j − 1, j) := TRANSS(j − 1, j)

∧
n∧

i=1

∧
tr∈Tri

∧
pc∈PCtr

(trij = tr ∧ pctrj = pc) ⇒

cj = cj−1 + cost(tr, pc)[d11,j−1, d
1
1,j , . . . , x

n
mn,j−1, x

n
mn,j/

d11, d
′1
1 , . . . , x

n
mn
, x′nmn

]

238 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

where in term cost(tr, pc), confer Definition 7.1, each undecorated variable v is substituted
by its representative vj−1 at depth j− 1, and each primed variable v′ is replaced by vj for
depth j. The self loop predicate SELF LOOPS(j − 1, j) of reduction step 10 is slightly
extended such that the value of the accumulated cost is preserved:

SELF LOOP (S,cost)(j − 1, j) := SELF LOOPS(j − 1, j) ∧ cj = cj−1

We are now prepared to compile the matrix BMC (S,cost),Target(k) of the overall SSMT
formula:

BMC (S,cost),Target(k) := INIT (S,cost)(0)

∧
k∧

j=1

(
(¬TARGET (j − 1) ⇒ TRANS (S,cost)(j − 1, j))

∧(TARGET (j − 1) ⇒ SELF LOOP (S,cost)(j − 1, j))

)

∧ ic = −ck

with TARGET (j − 1) being the target states predicate from reduction step 9. The
predicate ic = −ck ensures that variable ic actually represents the additive inverse of
variable ck. Observe that above SMT formula BMC (S,cost),Target(k) has as its models both
runs reaching the target states, in which case the accumulated cost is kept constant after
having reached the target states, and runs not reaching the target within k transition
steps. The rationale is that the accumulated costs of the latter runs still provide safe
lower bounds on the accumulated costs of their extensions.
Finally, we construct the SSMT formula CEMC (S,cost),Target(k) from the correspond-

ing quantifier prefixes CHOICES(j) of reduction step 13, encoding the non-deterministic
and probabilistic selection of transitions and transition alternatives by existential and
randomized quantification, respectively, and from the SMT formula BMC (S,cost),Target(k):

CEMC (S,cost),Target (k) :=

(
k⊙

j=1

CHOICES(j)

)
: BMC (S,cost),Target(k)

Given the structural similarity between step-bounded minimum cost expectation for PHAs
and maximum conditional expectation for SSMT, the above reduction is correct in the
following sense.

Proposition 7.1 (Correctness of reduction)
Let be given a system (S, cost) of n concurrent PHAs with cost function, a T -predicate
Target over variables in D1, . . . , Dn and R1, . . . , Rn defining the target states, and a step
bound k ∈ N. Then,

CE k
(S,cost),Target(ı, 0, 0) = −Eic(CEMC (S,cost),Target(k))

holds with ı |=
∧n

i=1 initi being the (unique) global initial state of S.

Above Proposition 7.1 is presented without a formal proof. We remark that such a
proof is very similar to the one of Theorem 5.1, the latter establishing correctness of
the reduction from probabilistic bounded reachability to SSMT. That is to say, a po-
tential proof of Proposition 7.1 is based on a rather technical induction over the step

7.4 SSMT algorithm for conditional expectation 239

bound k ∈ N. Some particular attention must be devoted to the duality between min-
imization of the costs in CE k

(S,cost),Target(ı, 0, 0) and maximization of the expectation
in −Eic(CEMC (S,cost),Target(k)). As already mentioned above, this issue is handled by
considering the additive inverse of the maximum expectation of the negative accumu-
lated cost. Soundness of the latter treatment can be simply derived from the fact that
min(a1, . . . , am) = −max(−a1, . . . ,−am).
Note that the maximum conditional expectation Eic(CEMC (S,cost),Target (k)) of vari-

able ic given SSMT formula CEMC (S,cost),Target(k) can be determined by a procedure
for computing maximum conditional expectations for SSMT formulae. Such an SSMT
algorithm is investigated in the next section.

7.4 SSMT algorithm for conditional expectation

In order to complete the symbolic verification procedure for the CEMC problem from
Definition 7.4, it remains to describe how the SSMT encoding CEMC (S,cost),Target(k) of
the k-step minimum cost expectation can be solved algorithmically. For this purpose, we
elaborate on an SSMT algorithm for computing the maximum conditional expectation of
a designated free variable in a given SSMT formula.
The key idea of this algorithm is mainly the same as the one of the SSMT procedure

for determining the maximum probability of satisfaction, the latter being explained in
Section 6.4. The algorithm implements a backtracking search that mimics the extended
semantics of SSMT, confer Definition 7.5, thereby explicitly traversing the tree spanned
by the assignments to the quantified variables and recursively computing the individual
conditional expectations for all subtrees, as indicated on the right of Figure 7.2. Upon each
complete assignment to the quantified variables, intuitively, in each leaf of the quantifier
tree, the algorithm has to maximize the value τ(y) of the designated variable y over all
solutions τ of the induced quantifier-free SMT subformula.
Recall that the number of such complete assignments is exponential in the number of

quantified variables and that a naive SSMT approach traversing the whole quantifier tree
is far from scalable. With regard to the SSMT procedure for determining the maximum
probability of satisfaction, we have proposed a range of algorithmic enhancements in order
to prune the quantifier tree considerably, as illustrated in Figure 6.5 b, and thus to improve
performance of SSMT solvers in practice, confer Sections 6.4, 6.5, and 6.7. Concerning
the SSMT algorithm addressing the maximum conditional expectation, we remark that
the majority of the algorithmic enhancements from Sections 6.4 and 6.5 can be adapted
to this more general case. Since this adaptation calls for a plethora of technical issues, we
just consider the feature of thresholding for the sake of convenience.
In what follows, we explain the SSMT algorithm addressing the maximum conditional

expectation which is presented in Figure 7.4. In addition to an SSMT formula Q : ϕ
and a non-quantified variable y ∈ Var(ϕ) with interval domain [ly, uy], the algorithm
MaxExp(Q : ϕ, y, θl, θu) further requires as inputs two rational constants θl and θu with
θl ≤ θu which are called lower threshold and upper threshold, respectively. Akin to the
case of computing the maximum probability of satisfaction, the idea of the additional
parameters θl and θu is as follows. If the maximum conditional expectation Ey(Q : ϕ) lies
in the interval [θl, θu] then we aim at computing the exact expectation, i.e. the result of

240 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

MaxExp(Q : ϕ, y, θl, θu)

input: SSMT formula Q : ϕ, variable y with interval domain [ly, uy] such that

y /∈ Var(Q) and y ∈ Var(ϕ), rational constants θl, θu with θl ≤ θu.

if Q = ε then return MaxSol(ϕ, y).

ey := ly.

if Q = ∃x ∈ D Q′ then

while D 6= ∅ do

if ey > θu or ey = uy then return ey.

select v ∈ D, D := D − {v}.

θ′l := max(θl, ey).

e′y := MaxExp(Q′ : ϕ[v/x], y, θ′l, θu).

ey := max(ey, e
′
y).

return ey.

if Q =

R

dx ∈ D Q′ then

while D 6= ∅ do

if ey > θu or ey = uy then return ey.

premain :=
∑

w∈D d(w).

if ey + premain · (uy − ly) < θl then return ey.

select v ∈ D, D := D − {v}.

θ′l := ly + (θl − ey − (premain − d(v)) · (uy − ly))/d(v).

θ′u := ly + (θu − ey)/d(v).

e′y := MaxExp(Q′ : ϕ[v/x], y, θ′l, θ
′
u).

ey := ey + d(v) · (e′y − ly).

return ey.

Figure 7.4: SSMT algorithm for computing the maximum conditional expectation of variable y

given SSMT formula Q : ϕ, thereby exploiting the algorithmic enhancement of threshold-

ing. (This figure is substantially based on Algorithm 1 from [FTE10b] but slightly differs in

presentation.)

MaxExp(Q : ϕ, y, θl, θu) should be equal to Ey(Q : ϕ). Otherwise, i.e. Ey(Q : ϕ) /∈ [θl, θu],
the exact expectation is not called for but only some witness value pr = MaxExp(Q :
ϕ, y, θl, θu) suffices such that pr < θl if and only if Ey(Q : ϕ) < θl and pr > θu if and only
if Ey(Q : ϕ) > θu.

It is important to remark that the above requirement can only be guaranteed if arith-
metic theories are considered for which the optimization problem is decidable like, for
instance, linear arithmetic. Recall that we address the undecidable theory of non-linear
arithmetic over the reals and integers involving transcendental functions within this the-
sis, confer Section 4.3. We therefore relax the above conditions and only demand that,
first, if Ey(Q : ϕ) ∈ [θl, θu] then the result must be a safe upper estimate, i.e. Ey(Q :
ϕ) ≤ MaxExp(Q : ϕ, y, θl, θu) and, second, if Ey(Q : ϕ) > θu then also MaxExp(Q :
ϕ, y, θl, θu) > θu. From the above, it then follows that if MaxExp(Q : ϕ, y, θl, θu) ≤ θl
then Ey(Q : ϕ) ≤ θl.

7.4 SSMT algorithm for conditional expectation 241

The thresholds θl and θu are exploited during proof search in order to improve efficiency
by skipping some recursive calls of MaxExp(Q : ϕ, y, θl, θu). This algorithmic enhance-
ment is called thresholding and is motivated, for instance, by the CEMC problem from
Definition 7.4, where the question is whether the infimal cost expectation is below or above
some acceptable threshold value θ. To address the step-bounded CEMC problem, it thus
suffices to set both the lower and upper threshold to θ, i.e. θl = θu = θ. Conversely, the
algorithm can still be used for targeting at the exact expectation, namely by setting the
lower and upper threshold to the respective domain limits of the designated variable y,
i.e. θl = ly and θu = uy.

In detail, the algorithm MaxExp(Q : ϕ, y, θl, θu) from Figure 7.4 works as follows.
Whenever the quantifier prefix Q is empty, i.e. if Q = ε, then the subroutine MaxSol(ϕ, y)
is called. The latter routine seeks for a solution τ of the quantifier-free SMT problem ϕ
which maximizes the value of variable y, and then returns the value τ(y) according to the
extended semantics of SSMT from Definition 7.5. If ϕ is unsatisfiable, i.e. if no solution
exists, then the minimum domain value ly is given back. For maximizing the value of
y in quantifier-free SMT problems, we employ bifurcation search in interval-based SMT
solving, confer Section 6.3, which yields safe upper estimates on the actual maximum
due to the conservative approximation provided by interval arithmetic. Observe that this
approach is in conformity with the relaxed requirement on the output of the algorithm.

In case the quantifier prefix Q is non-empty, the algorithm MaxExp(Q : ϕ, y, θl, θu)
descends recursively through the quantifiers in Q, yet prunes branches by thresholding,
which skips subproblems when detecting that an upper threshold already is exceeded
or that a lower threshold can no longer be reached. This optimization builds on the
monotonicity argument that the intermediate values eiy, i.e. the value of ey after the i-
th iteration of the corresponding while loop, confer Figure 7.4, of the final expectation
result ey are never decreasing, i.e. ei+1

y ≥ eiy, and do all establish lower bounds on ey, i.e.
ey ≥ eiy. Such monotonicity cannot be expected from a straightforward implementation
of the semantics from Definition 7.5 as, for a randomized quantifier

R

dxx ∈ Dx, the terms
of the sum

∑
v∈Dx

dx(v) ·Ey(Q : ϕ[v/x]) may be both positive and negative.

To achieve the above monotonicity argument, the return value ey is initialized with the
minimum domain value ly of the designated variable y. For an existential quantifier, i.e.
if Q = ∃x ∈ D Q′, we replace the provisional return value by the actual value e′y of the
current subproblem whenever the latter is larger, which is a monotonic process. In the
randomized case, i.e. if Q =

R

dx ∈ D Q′, we accumulate the non-negative increases d(v) ·
(e′y − ly) ≥ 0 with respect to the minimum domain value ly of the individual expectations
e′y ≥ ly. The increasing partial sums for ey finally yield the desired expectation since
ly +

∑
v∈D d(v) · (e

v
y − ly) = ly +

∑
v∈D d(v) · e

v
y −

∑
v∈D d(v) · ly =

∑
v∈D d(v) · e

v
y due to∑

v∈D d(v) = 1.

With such monotonic estimates, we are able to safely conclude that an upper thresh-
old θu is exceeded or that the maximum possible domain value uy is reached, namely
by checking whether the intermediate expectation ey is greater than θu or equal to uy,
respectively, i.e. whether ey > tu or ey = uy holds. In case of success, we skip investigation
of all remaining subproblems and return the witness value ey. For randomized variables,
we can also safely determine that the lower threshold θl can no longer be reached. This
detection depends on the probability mass premain of all values w ∈ D not yet explored.

242 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

Note that the maximum possible expectation result of a subproblem is the maximum
domain value uy. As a consequence, the maximum possible increase of a subproblem is
d(v) · (uy − ly) and thus of all remaining branches is premain · (uy − ly). From the latter, we
can derive a safe upper bound of the final expectation result, namely ey+premain ·(uy− ly).
If this upper bound is strictly less than the lower threshold θl then θl is unreachable and
the witness value ey can be returned without exploring any remaining branch.
We finally explain how the thresholds are determined for analyzing the subordinate

quantifiers. In the existential case, we use the lower threshold θ′l = max(θl, ey) for solving
the induced subproblem, where ey is the current intermediate expectation, since subprob-
lems with expectation less than ey do not lead to a modification of the current inter-
mediate expectation. The upper threshold θu remains unchanged, since if the result e′y
of the subproblem is above θu then the same holds for the updated expectation result
ey := max(ey, e

′
y) > θu.

In the randomized case, the lower threshold θ′l = ly + (θl − ey − (premain − d(v)) ·
(uy − ly))/d(v) is used for the induced subproblem. The rationale is as follows: e′y <
θ′l if and only if e′y < ly + (θl − ey − (premain − d(v)) · (uy − ly))/d(v) if and only if
ey+d(v) · (e

′
y− ly)+(premain −d(v)) · (uy− ly)) < θl with e

′
y being the result of the induced

subproblem. That is to say, the result e′y of the subproblem is below the lower threshold θ′l
if and only if the intermediate expectation result after the current iteration of the while
loop, i.e. ey + d(v) · (e′y − ly), suffices to prove that the lower threshold θl is unreachable.
The corresponding upper threshold is θ′u = ly+(θu−ey)/d(v) with the reason that e′y > θ′u
if and only if e′y > ly + (θu − ey)/d(v) if and only if ey + d(v) · (e′y − ly) > θu. That is, the
result e′y of the subproblem is above the upper threshold θ′u if and only if the intermediate
expectation result after the current iteration of the while loop, i.e. ey + d(v) · (e′y − ly),
exceeds the upper threshold θu.
With regard to a symbolic verification procedure for the CEMC problem from Defi-

nition 7.4, we finally remark that the above SSMT algorithm MaxExp is able to safely
verify that CE (S,cost),Target(ı) ≥ θ holds. This is due to the following. Let us assume that
the result of the SSMT algorithm satisfies

MaxExp(CEMC (S,cost),Target(k), ic,−θ,−θ) ≤ −θ .

The relaxed requirement on the result of the algorithm then ensures that inequality

Eic(CEMC (S,cost),Target(k)) ≤ −θ

holds. The latter is true if and only if

−Eic(CEMC (S,cost),Target(k)) ≥ θ .

From Lemma 7.1, i.e. from CE (S,cost),Target(ı) ≥ CE k
(S,cost),Target(ı, 0, 0), and from Propo-

sition 7.1, i.e. from CE k
(S,cost),Target (ı, 0, 0) = −Eic(CEMC (S,cost),Target(k)), we finally con-

clude that

CE (S,cost),Target (ı) ≥ CE k
(S,cost),Target(ı, 0, 0) = −Eic(CEMC (S,cost),Target(k)) ≥ θ

holds which decides the general CEMC problem to be true.

7.5 Experimental results 243

This is SiSAT 1.0.

Usage: sisat --i <inputfile.hys > [options]

General iSAT options:

...

BMC -related options:

...

SiSAT options:

...

--cond -exp=var : Specifies the variable for which the conditional

expectation should be computed. For transition

systems , the variable instance of the last step

depth is taken.

--lt -exp=[real]: Lower threshold for conditional expectation

(default: minimum value of domain of ’var ’)

--ut -exp=[real]: Upper threshold for conditional expectation

(default: maximum value of domain of ’var ’)

Figure 7.5: Excerpt of the extended help menu of SiSAT, which is printed when calling the tool

without specifying an input file.

It is moreover possible to compute safe lower bounds of the infimal cost expectation
CE (S,cost),Target (ı) for reaching the target states from the initial state. To this end, we
need to set the lower and upper thresholds to the minimum and maximum domain values
of variable ic ∈ [−uc, 0], respectively, i.e. θl = −uc and θu = 0. It then holds that

Eic(CEMC (S,cost),Target(k)) ≤ MaxExp(CEMC (S,cost),Target (k), ic,−uc, 0)

and thus

−Eic(CEMC (S,cost),Target(k)) ≥ −MaxExp(CEMC (S,cost),Target(k), ic,−uc, 0) .

Using the same arguments as above, we infer that

CE (S,cost),Target(ı) ≥ −MaxExp(CEMC (S,cost),Target(k), ic,−uc, 0) .

7.5 Experimental results

In the previous sections of this chapter, we have introduced a symbolic verification pro-
cedure for the CEMC problem from Definition 7.4 based on extended SSMT solving. In
this section, we finally demonstrate practical applicability of the suggested approach on
a small case study. In order to achieve an automatic verification procedure, the SSMT
algorithm for computing the maximum conditional expectation of a designated free vari-
able in a given SSMT formula, as presented in Section 7.4, has been integrated into the
SSMT-based probabilistic bounded model checker SiSAT, the latter tool being described

244 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

in Section 6.6. While the input language of SiSAT remains unchanged, further tool op-
tions have been added, which are listed in the excerpt of the extended help menu of SiSAT
shown in Figure 7.5.

With regard to the case study used in the experiments, we were interested in the mean
time to failure (MTTF) analysis of the cooling system Scool , the latter being described
in Subsection 6.6.3 and depicted in Figure 6.17. To this end, observe that the cost of an
individual transition step corresponds to its duration, which is 0 for a discrete transition
step and dt > 0 for a step modeling continuous evolution, and that a system failure
occurs whenever temperature T has left the safe region [T low

safe , T
up
safe]. Let cost be the

corresponding cost function indicated above, Target be a T -predicate describing above
system failures, and ı be the unique initial state of Scool . Then, the k-step minimum cost
expectation CE k

(Scool ,cost),Target
(ı, 0, 0) gives the worst-case, i.e. minimum, MTTF of Scool

for k system steps, which we also call k-step minimum MTTF, and thus a lower estimate
of the worst-case, i.e. infimal, MTTF. This enables us to potentially verify that the cooling
system Scool meets, for instance, the safety requirement that its MTTF is always at least
8 time units.

We remark that Chapter 8 deals with a more sophisticated case study involving the
computation of expected values for the networked automation system (NAS) introduced
in Section 3.1.

SiSAT encoding of (Scool , cost). The SSMT encoding of the k-step minimum cost
expectation for (Scool , cost) is based on the alternative SiSAT encoding of Scool from
Subsection 6.6.3. Recall that the usage of the alternative encoding of Scool , supporting the
idea of “disabling”quantifiers, has led to tremendous performance gains of multiple orders
of magnitude compared to the basic encoding, confer Section 6.7. In order to describe
the step-bounded minimum cost expectation as in Proposition 7.1, the alternative SiSAT
encoding of Scool has to be adapted according to the reduction scheme of Subsection 7.3.2.

Observe that we do not need to introduce a fresh variable for accumulating the costs or
rather the durations of the individual transition steps since variable t encodes the time
elapsed so far, i.e. t accumulates the durations 0 and dt of the discrete and continuous
steps, respectively. To represent the additive inverse of t, we add the fresh variable it to
the DECL part:

DECL

...

define dt = 0.5;

...

-- Time progress :

define time_max = 20;

float [0, time_max] t;

-- Additive inverse of t.

define time_min = -20;

float [time_min , 0] it;

...

7.5 Experimental results 245

Observe that the interval domain of variable t is bounded from above by value 20 and
thus the domain of the additive inverse it is bounded from below by −20. Since the cost
of a transition step is at most dt which is fixed to 0.5 time units, the domains of t and
it are valid up to step depth k = 20/0.5 = 40.
To ensure that variable it actually represents the additive inverse of variable t at each

step depth, corresponding predicates are added to the INIT and TRANS parts:

INIT

...

-- Additive inverse of t.

it = -t;

TRANS

...

-- Additive inverse of t’.

it ’ = -t’;

Observe that the SSMT encoding scheme of Subsection 7.3.2 defines the additive inverse
of the accumulated cost at step depth k only, while the additive inverse in above SiSAT
encoding is available at each step depth. This treatment obviously does not destroy
correctness in the sense of Proposition 7.1 and is just for the sake of simplicity. That
is to say, the input language as well as the front end of SiSAT can be reused without
any modifications. Specification of the designated (cost) variable is done via a command-
line option. The instance of this variable at step depth k is taken when considering
probabilistic transition systems, confer Figure 7.5.
While the DISTR section remains unchanged, the predicate of the TARGET part is finally

modified to be true (and, obviously, no self-loop is added to target states). Recall that
the SSMT encoding of the k-step minimum cost expectation considers both runs reaching
and runs not reaching the target states within k transition steps since such latter runs
still yield safe lower bounds on the accumulated costs of their extensions.

TARGET

true;

Analysis results. After having encoded the cooling system (Scool , cost) with cost func-
tion into the SiSAT input language, we can now employ the SSMT-based probabilistic
bounded model checker SiSAT, enhanced by the feature of computing the maximum con-
ditional expectation of a designated variable, for the MTTF analysis of (Scool , cost).
All experiments of this section were conducted on a 2.4 GHz AMD Opteron machine

with 128 GByte physical memory running Linux. In order to compute lower estimates of
the worst-case MTTF and to evaluate the impact of thresholding, we performed several
SiSAT runs with different solver settings. In each run, the tool was called upon to solve
the corresponding problem for step depths k = 0 to 40 with the instance of variable it

at step depth k being the designated variable, i.e. for which the maximum conditional
expectation was computed. The time limit of each SiSAT run was set to 25 hours.

246 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

k-
st

ep
 m

in
im

um
 M

T
T

F

step depth k

Figure 7.6: Analysis of cooling system (Scool , cost) with cost function: evolution of the k-step

minimum MTTF over step depth k.

With regard to the computation of lower estimates of the worst-case MTTF, SiSAT was
able to determine the k-step minimum cost expectation, i.e. the k-step minimum MTTF,
up to step depth 28 within the time limit. Recall that SiSAT returns the additive inverse
of the actual result at each depth k, confer Proposition 7.1. The evolution of the k-step
minimum MTTF over step depth k is plotted in Figure 7.6. Since the 28-step minimum
MTTF is at least 8.02239325 time units, the safety requirement mentioned above, namely
that the MTTF of (Scool , cost) is always at least 8 time units, is actually verified.

Whenever it suffices to decide whether the k-step minimum MTTF is above some ac-
ceptable threshold value θ, we may exploit the algorithmic enhancement of thresholding.
As explained in Section 7.4, the idea of thresholding is to skip investigation of subproblems
if an upper threshold already is exceeded by the processed branches or if a lower thresh-
old can no longer be reached by the remaining branches. With regard to above decision
problem, we performed several SiSAT runs where the lower threshold θl and the upper
threshold θu were set to the same value θ, i.e θl = θu = θ. The corresponding experimental
results for thresholding with different threshold values θ ∈ {−20,−18, . . . ,−2, 0} are de-
picted in Figure 7.7, where “naive”denotes the naive SSMT algorithm from Subsection 7.4
with thresholding being “disabled”, i.e. with θl = −20 and θu = 0.

These experiments show that thresholding can be a very powerful pruning technique.
For instance, the naive SiSAT algorithm has detected more than 6 million (approximate)
solutions during proof search for the problem at step depth 28. When having enabled
thresholding with one of the extreme threshold values θ = −20 and θ = 0, the number of
detected (approximate) solutions decreased to 1 and to 0, respectively, while solving time
could be improved by five and by four orders of magnitude. Moreover, when thresholding
with θ = −20 or θ = 0 was applied, all SSMT problems, i.e. for step depths 0 to 40, were
solved within the time limit, more precisely, even in less than 2 or 28 seconds, respectively.

7.5 Experimental results 247

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

so
lv

in
g

tim
e

[s
]

step depth k

time out
naive
θ=-20
θ=-18
θ=-16
θ=-14
θ=-12
θ=-10

θ=-8
θ=-6
θ=-4
θ=-2
θ=0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 b

ra
nc

hi
ng

 s
te

ps

step depth k

naive
θ=-20
θ=-18
θ=-16
θ=-14
θ=-12
θ=-10

θ=-8
θ=-6
θ=-4
θ=-2
θ=0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 d

et
ec

te
d

(a
pp

ro
xi

m
at

e)
 s

ol
ut

io
ns

step depth k

naive
θ=-20
θ=-18
θ=-16
θ=-14
θ=-12
θ=-10

θ=-8
θ=-6
θ=-4
θ=-2
θ=0

Figure 7.7: Impact of thresholding : solving times (top), numbers of branching steps (middle),

and numbers of detected (approximate) solutions (bottom) for the corresponding step depths k

when thresholding with different threshold values θ was applied.

248 7 SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 6

ac
tu

al
 M

T
T

F

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 6

ac
tu

al
 M

T
T

F

solving time w/o thresholding

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 13

ac
tu

al
 M

T
T

F

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 13

ac
tu

al
 M

T
T

F

solving time w/o thresholding

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 13

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 13

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

2 orders

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 20

ac
tu

al
 M

T
T

F

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 20

ac
tu

al
 M

T
T

F

solving time w/o thresholding

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 20

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 20

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

2 orders

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 20

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

2 orders

3 orders

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 20

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

2 orders

3 orders

4 orders

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 28

ac
tu

al
 M

T
T

F

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 28

ac
tu

al
 M

T
T

F

solving time w/o thresholding

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 28

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 28

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

2 orders

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 28

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

2 orders

3 orders

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 28

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

2 orders

3 orders

4 orders

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 28

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

2 orders

3 orders

4 orders

5 orders

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

so
lv

in
g

tim
e

[s
]

threshold value θ

step depth 28

ac
tu

al
 M

T
T

F

solving time w/o thresholding

1 order of magnitude

2 orders

3 orders

4 orders

5 orders

6 orders

Figure 7.8: Impact of thresholding : solving times for the corresponding threshold values θ at step

depths 6 (top left), 13 (top right), 20 (bottom left), and 28 (bottom right) when thresholding

with different threshold values was applied. If applicable, the corresponding speed-ups in orders

of magnitude with respect to the naive algorithm without thresholding are illustrated by dashed

lines.

In order to reveal a potential correlation between the effectiveness of thresholding and
the distance between the threshold value θ and the actual conditional expectation, Fig-
ure 7.8 plots the solving times for threshold values θ ∈ {−20,−19,−18, . . . ,−2,−1, 0} at
step depths 6, 13, 20, and 28. Such correlation was observed when dealing with the maxi-
mum probability of satisfaction of SSMT formulae, confer Subsections 6.7.2 and 6.7.3. The
graphs of Figure 7.8 suggest the same circumstance when addressing the maximum condi-
tional expectation. More precisely, it seems that the larger distance between threshold θ
and the actual expectation the more powerful thresholding. The feature of thresholding
can be an effective algorithmic optimization in practice, being able to reduce solving time
significantly, sometimes by multiple orders of magnitude.

8 Case Study: A Networked Automation
System

In this chapter, we apply the symbolic analysis procedures for probabilistic hybrid sys-
tems, as introduced in the previous chapters, to a realistic case study from the domain
of networked automation systems (NAS) described in Section 3.1 and illustrated in Fig-
ure 3.1. For this purpose, we first present a formal model of the NAS in Section 8.1 which
is in conformity with the notion of a system of concurrent discrete-time probabilistic hy-
brid automata from Section 3.3. Thereafter, we devote our attention to the SSMT-based
probabilistic reachability as well as expected-value analysis of the NAS in Section 8.2.
We remark that essential parts of this chapter were published in [TEF11] and in

[FTE10b] by the author of this thesis together with his co-authors.

8.1 Formel model of the NAS

The NAS case study was modeled as a system of 10 concurrent probabilistic hybrid au-
tomata. A graphical representation of this formal NAS model is given in Figures 8.1, 8.2,
and 8.3. In order to get an intuition of this rather large model as well as of the interaction
between the single automata, we first explain intuitively the basic ideas of each automaton
and then exemplify the interconnections in the model by means of a sample system run.

Explanation of the model. The global time variable t and the step duration vari-
able dt are governed by the automaton time progress scheduler from Figure 8.1. The
duration of a transition step of the overall system is given by the minimum of the max-
imum possible step durations of all automata. These latter durations are encoded by
variables si with corresponding indices i, while each variable si is local to some automa-
ton. For instance, the value of variable sobj specifies the maximum possible step duration
of automaton object from Figure 8.1.
The automaton object models the workpiece to be transported on the conveyer belt to

the drilling position at 0 lu. The automaton updates the position of the object, represented
by variable x, depending on the step duration dt, the current speed ẋ, and the current
deceleration ẍ. The variables ẋ and ẍ are just read by object as their values are computed
by automaton transportation unit. Furthermore, object locally determines its maximum
possible step duration sobj as well as the time point nobj of its next event. Initially, the next
event of object is reaching sensor SA. In this case, nobj is the non-negative value satisfying
the equationXsA = x−(nobj−t)·ẋ+

1
2
·(nobj−t)

2·ẍ, whereXsA is the fixed position of sensor
SA and all other variables are assigned their initial values. The automaton consists of the
three locations obj preA, obj betwAB, and obj postB meaning that the workpiece has
not yet reached sensor SA, is in between both sensors SA and SB, and passed sensor SB,
respectively. Reaching sensors SA and SB are indicated by setting the Boolean variables

250 8 Case Study: A Networked Automation System

obj preA obj betwAB obj postB

true/
dt = min(⌈sobj⌉, ⌈stu⌉, snetsA , snetsB , snetDECA

,
snetDECB

, sio in, sio out, splc)
∧ t′ = t + dt

t = 0

tu decA

tu slowspeedtu decB

tu stop

netDECB compl/
∧ẋ′ = ẋ
∧ẍ′ = 4

∧0 = ẋ− (n′
tu − t) · 4
∧stu = 0

t ≥ ntu/
∧ẋ′ = 0
∧ẍ′ = 0

∧n′
tu = Tmax

∧stu = 0

true/
ẋ′ = 0

∧ẍ′ = 0
∧n′

tu = Tmax

∧stu = 0

t < ntu/
ẋ′ = max(ẋ− dt · ẍ, 0)

∧ẍ′ = ẍ
∧n′

tu = ntu

∧stu = ntu − t

¬netDECA compl
∧¬netDECB compl/

ẋ′ = ẋ
∧ẍ′ = ẍ

∧n′
tu = ntu

∧stu = Smax

¬netDECB compl
∧t ≥ ntu/
ẋ′ = ẋ
∧ẍ′ = 0
∧n′

tu = Tmax

∧stu = 0

∧¬netDECB compl/
ẋ′ = ẋ
∧ẍ′ = ẍ
∧n′

tu = Tmax

∧stu = Smax

netDECA compl ∧¬netDECB compl/
ẋ′ = ẋ ∧ẍ′ = 2 ∧4 = ẋ− (n′

tu − t) · 2 ∧stu = 0

ẋ = 24 ∧ ẍ = 0 ∧ ntu = Tmax

netDECB compl/
∧ẋ′ = ẋ ∧ẍ′ = 4

∧0 = ẋ− (n′
tu − t) · 4 ∧stu = 0

¬netDECB compl
∧t < ntu/
ẋ′ = max(ẋ− dt · ẍ, 4)
∧ẍ′ = ẍ
∧n′

tu = ntu

∧stu = ntu − t

netDECB compl/
∧ẋ′ = ẋ
∧ẍ′ = 4
∧0 = ẋ− (n′

tu − t) · 4
∧stu = 0

tu init

1
24

1
24

x = 1000− 24 ∧ ⋆

⋆ ≡XsA = x− (nobj − t) · ẋ+ 1
2
· (nobj − t)2 · ẍ

t < nobj/
x′ = x− dt · ẋ+ 1

2
· dt2 · ẍ

∧n′
obj = nobj ∧ sobj = nobj − t ∧ ¬rsA ∧ ¬rsB

t ≥ nobj/
x′ = x ∧XsB = x− (n′

obj − t) · ẋ+ 1
2
· (n′

obj − t)2 · ẍ
∧sobj = 0 ∧ rsA ∧ ¬rsB

true/
x′ = x
∧n′

obj = Tmax

∧sobj = 0
∧rsA
∧rsB

t ≥ nobj/
x′ = x ∧ n′

obj = Tmax ∧ sobj = 0 ∧ rsA ∧ rsB

t < nobj/
x′ = x− dt · ẋ+ 1

2
· dt2 · ẍ

∧n′
obj = nobj ∧ sobj = nobj − t ∧ rsA ∧ ¬rsB

transportation unit

time progress scheduler

object

x = 1000− 1 ∧ ⋆

Figure 8.1: First part of the formal model of the NAS. The upper two automata represent the

behavior of the object that is transported and of the transportation unit which controls the

speed of the conveyer belt. The lower automaton selects the duration of the current time step dt

and performs time progress. (This figure is a slight modification of Figure 7 from [TEF11].)

8.1 Formel model of the NAS 251

nnetsB = Tmax

¬rsB/
n′
netsB

= Tmax

∧snetsB = Smax

∧stablenetsB

netsB init netsB send

t ≥ nnetsB/
n′
netsB

= Tmax

∧snetsB = 0 ∧¬stablenetsB

t < nnetsB/
n′
netsB

= nnetsB

∧snetsB = nnetsB − t
∧stablenetsB

netsB compl

true/
n′
netsB

= Tmax

∧snetsB = Smax

∧stablenetsB

n′
netsB

= t+ 1
∧snetsB = 0

∧¬stablenetsB

n′
netsB

= t+ 2
∧snetsB = 0

∧¬stablenetsB

rsB

0.1

0.9

netsA init netsA send netsA compl

t ≥ nnetsA/
n′
netsA

= Tmax

∧snetsA = 0 ∧¬stablenetsAnnetsA = Tmax

true/
n′
netsA

= Tmax

∧snetsA = Smax

∧stablenetsA

t < nnetsA/
n′
netsA

= nnetsA

∧snetsA = nnetsA − t
∧stablenetsA

¬rsA/
n′
netsA

= Tmax

∧snetsA = Smax

∧stablenetsA n′
netsA

= t+ 1
∧snetsA = 0

∧¬stablenetsA

n′
netsA

= t+ 2
∧snetsA = 0

∧¬stablenetsA

rsA 0.9

0.1

nnetDECB
= Tmax

¬ios ′DECB/
n′
netDECB

= Tmax

∧snetDECB
= Smax

n′
netDECB

= t + 1
∧snetDECB

= 0

n′
netDECB

= t+ 2
∧snetDECB

= 0

netDECB init netDECB send

t ≥ nnetDECB
/

n′
netDEC

= Tmax

∧snetDECB
= 0

netDECB compl

t < nnetDECB
/

n′
netDECB

= nnetDECB

∧snetDECB
= nnetDECB

− t

true/
n′
netDECB

= Tmax

∧snetDECB
= Smax

nnetDECA
= Tmax

netDECA init

n′
netDECA

= t + 1
∧snetDECA

= 0

n′
netDECA

= t+ 2
∧snetDECA

= 0

netDECA send

t ≥ nnetDECA
/

n′
netDEC

= Tmax

∧snetDECA
= 0

t < nnetDECA
/

n′
netDECA

= nnetDECA

∧snetDECA
= nnetDECA

− t

netDECA compl

true/
n′
netDECA

= Tmax

∧snetDECA
= Smax

¬ios ′DECA/
n′
netDECA

= Tmax

∧snetDECA
= Smax

network transmission of sensor SB

network transmission of deceleration signal SA

network transmission of deceleration signal SB

ios ′DECA

ios ′DECB
0.9

0.1

0.1

0.9

network transmission of sensor SA

Figure 8.2: Second part of the formal model of the NAS. The automata represent the network

transmissions of sensors SA and SB as well as of the corresponding deceleration signals from

the PLC-IO card to the transportation unit. (This figure is a slight modification of Figure 8

from [TEF11].)

252 8 Case Study: A Networked Automation System

plcDECB comp

t < nplc/
n′
plc = nplc

∧splc = nplc − t
∧(plc ′DECA ⇔ plcDECA)
∧(plc ′DECB ⇔ plcDECB)
∧(stableplc ⇔ splc > 0)

plc init

plcDECA finished

plcDECB finished

plcDECA comp

t ≥ nplc

∧stable io in

∧io insB ready ′/
n′
plc = t+ 7
∧splc = 0

∧(plc ′DECA ⇔ plcDECA)
∧(plc ′DECB ⇔ plcDECB)

∧¬stableplc

∧t ≥ nplc

∧stable io in

∧io insB ready ′/
n′
plc = t+ 7
∧splc = 0

∧(plc ′DECA ⇔ plcDECA)
∧(plc ′DECB ⇔ plcDECB)

∧¬stableplc

t ≥ nplc/
n′
plc = Tmax

∧splc = 0
∧(plc′DECA ⇔ plcDECA)

∧plc′DECB

∧¬stableplc

true/
n′
plc = Tmax

∧splc = Smax

∧(plc′DECA ⇔ plcDECA)
∧(plc ′DECB ⇔ plcDECB)

∧stableplc

(t < nplc

∨¬stable io in)/
n′
plc = nplc

∧splc = nplc − t
∧(plc ′DECA ⇔ plcDECA)
∧(plc ′DECB ⇔ plcDECB)
∧(stableplc ⇔ splc > 0)

t ≥ nplc

∧stable io in

∧¬io insA ready ′

∧¬io insB ready ′/
n′
plc = t + 7
∧splc = 0

∧(plc ′DECA ⇔ plcDECA)
∧(plc ′DECB ⇔ plcDECB)

∧¬stableplc

t ≥ nplc

∧stable io in

∧io insA ready ′

∧¬io insB ready ′/
n′
plc = t + 7
∧splc = 0

∧(plc′DECA ⇔ plcDECA)
∧(plc′DECB ⇔ plcDECB)

∧¬stableplc

t ≥ nplc

∧stable io in

∧¬io insB ready ′/
n′
plc = t + 7

∧splc = 0
∧(plc ′DECA ⇔ plcDECA)
∧(plc ′DECB ⇔ plcDECB)
∧¬stableplc

(t < nplc

∨¬stable io in)/
n′
plc = nplc

∧splc = nplc − t
∧(plc ′DECA ⇔ plcDECA)
∧(plc ′DECB ⇔ plcDECB)
∧(stableplc ⇔ splc > 0)

t ≥ nplc

∧stable io in

∧¬io insB ready ′/
n′
plc = t+ 7

∧splc = 0
∧plc′DECA

∧(plc′DECB ⇔ plcDECB)
∧¬stableplc

(t < nplc

∨¬stable io in)/
n′
plc = nplc

∧splc = nplc − t
∧(plc′DECA ⇔ plcDECA)
∧(plc′DECB ⇔ plcDECB)
∧(stableplc ⇔ splc > 0)

(t < nio in

∨¬stablenetsA ∨¬stablenetsB)/
n′
io in = nio in

∧sio in = nio in − t
∧(io insA ready ′ ⇔ io insA ready)
∧(io insB ready ′ ⇔ io insB ready)
∧(stable io in ⇔ (sio in > 0))

t ≥ nio in

∧stablenetsA ∧stablenetsB/
n′
io in = t + 10

∧sio in = 0
∧(io insA ready ′ ⇔ netsA compl)
∧(io insB ready ′ ⇔ netsB compl)
∧(stable io in ⇔ (sio in > 0))

(t < nio out

∨¬stableplc)/
n′
io out = nio out

∧sio out = nio out − t
∧(ios ′DECA ⇔ iosDECA)
∧(ios ′DECB ⇔ iosDECB)

(t ≥ nio out

∧stableplc)/
n′
io out = t + 10

∧sio out = 0
∧(ios ′DECA ⇔ plc ′DECA)
∧(ios ′DECB ⇔ plc ′DECB)

PLC

1
10

1
10

PLC-IO input PLC-IO output

nio in = t+ 9
∧¬io insA ready
∧¬io insB ready

¬io insA ready
∧¬io insB ready
∧nio in = t+ 0

nio out = nio in

∧¬iosDECA

∧¬iosDECB

nplc = t+ 0
∧¬plcDECA

∧¬plcDECB

nplc = t + 6
∧¬plcDECA

∧¬plcDECB

1
7

1
7

t ≥ nplc

∧stable io in

∧io insB ready ′/
n′
plc = t+ 7
∧splc = 0
∧plc ′DECA

∧(plc ′DECB ⇔ plcDECB)
∧¬stableplc

Figure 8.3: Third part of the formal model of the NAS. The upper two automata represent the

input and output parts of the PLC-IO card. The lower automaton models the behavior of the

PLC which decides when to send deceleration signals depending on the received messages from

the sensors. (This figure is a slight modification of Figure 9 from [TEF11].)

rsA and rsB to true, respectively. These variables are used for the communication with the
automata that model the network. The initial location of automaton object is obj preA

8.1 Formel model of the NAS 253

and the initial position x is distributed uniformly over values 999 to 976, the latter fact
is modeled by 24 incoming probabilistic transition alternatives. It is important to remark
that the concept of a system of concurrent PHAs, as formalized in Definition 3.1, does
not support such distribution of the initial state. In fact, there must be a unique initial
system state. However, this feature does not enhance expressiveness and is covered by the
standard model as follows: an additional location, say obj init, is added to object which
serves as the new initial location, while variables x and nobj are fixed to some initial values.
The actual probabilistic choice of the initial object position is then modeled by means
of connecting locations obj init and obj preA with the corresponding 24 probabilistic
transition alternatives, while the transition guard must be always satisfied, i.e. the guard
predicate is true. To ensure that the latter action is performed instantaneously, the
maximum possible step duration sobj must be set to 0 in each of the above transition
alternatives. That is to say, the feature of initial probabilistic transition alternatives
is just for the sake of brevity. We remark that this feature is furthermore used in the
automata PLC-IO input and PLC from Figure 8.3. The automaton object switches to
location obj betwAB in case the global time t becomes greater than or equal to the time
of the next event nobj, i.e. sensor SA was reached. A similar transition to the final location
obj postB is taken if sensor SB was passed.

The automaton transportation unit from Figure 8.1 is responsible for computing the
speed ẋ. It furthermore sets the deceleration ẍ by scanning the current locations of
automata network transmission of deceleration signal SA and network transmission of decel-

eration signal SB. If the first of the latter automata has reached its location netDECA compl
and if the second automaton has not yet entered netDECB compl then transportation unit

switches to location tu decA thereby setting the deceleration to 2 lu/ts2, i.e. the primed
variable ẍ′ is set to 2. Whenever network transmission of deceleration signal SB has reached
its locations netDECB compl, automaton transportation unit performs a transition step to
tu decB and updates the deceleration to 4 lu/ts2. In case the signal to decelerate with
4 lu/ts2 has not yet been transmitted by the network but the slow speed of 4 lu/ts is
reached then the automaton enters location tu slowspeed and stops braking temporarily
by setting the deceleration to zero. When switching to location tu decB, in which braking
is performed with 4 lu/ts2, the next event n′

tu is determined as the time point where the
speed will become zero, i.e. the workpiece will be stopped. This can be computed by the
equation 0 = ẋ− (n′

tu− t) · 4 for a fixed speed ẋ at time point t. Once the object comes to
a standstill, which is detected if the global time t is greater than or equal to the time ntu

of the standstill, the automaton transportation unit enters its final location tu stop.

The network of the system is modeled by the four automata of Figure 8.2. The com-
ponents network transmission of sensor SA and network transmission of sensor SB are re-
sponsible for the transmission of the sensor signals to the IO card of the programmable
logic controller. To this end, they first sample the signals rsA and rsB that indicate reach-
ing sensors SA and SB, respectively, by rising edges. If a rising edge occurs then the
corresponding automaton switches to its sending location netsA send or netsB send. As
mentioned in Section 3.1, the network routing time is determined stochastically, needing
1 ts for delivery with probability 0.9 and 2 ts with probability 0.1. This fact is modeled by
two probabilistic transition alternatives which set the time of the next event, i.e. n′

netsA
or

n′
netsB

, to the current time t incremented by the corresponding transmission time 1 or 2.

254 8 Case Study: A Networked Automation System

If these next events nnetsA and nnetsB are reached then automata network transmission of

sensor SA and network transmission of sensor SB go to their final locations netsA compl and
netsB compl, respectively. We remark that the Boolean variables stablenetsA and stablenetsB
encode location switches whenever they are set to false. Such transitions do not con-
sume any time, being indicated by setting the maximum possible step duration snetsA or
snetsB to 0. Several location switches may occur at the same physical time t. In order
to not overlook any transmitted signal of the network, the model of the PLC-IO card
samples its inputs at time t not before both above network automata have performed po-
tential location switches at time t, i.e. not before both stablenetsA and stablenetsB are true.
The automata network transmission of deceleration signal SA and network transmission of

deceleration signal SB are responsible for forwarding the new decelerations to transporta-

tion unit, and work very similar to the previous automata. Reaching a final location
netDECA compl or netDECB compl immediately triggers a location switch in transportation

unit as mentioned above.

The model of the IO card of the PLC is divided into two components, where component
PLC-IO input transmits the signals from the network to the PLC and component PLC-IO
output delivers the signals for the new deceleration values from the PLC to the network,
confer Figure 8.3. Each of both automata consists of only one location and two transitions,
one of which is taken every 10 time steps when the corresponding signals are sampled.
Sampling points are detected by comparing the current time t with the time of the next
event, i.e. with nio in or nio out. The meaning of the Boolean variables stablenetsA and
stablenetsB was already discussed above, while the same idea holds for variable stableplc.

Finally, the automaton PLC from Figure 8.3 computes the signals for the decelerations
of the object depending on the signals from sensors SA and SB. Initially, PLC resides in
location plc init and polls every 7 time steps for new inputs. A new input is detected by
accessing the primed Boolean variables io insA ready ′ and io insB ready ′ that are set to
true by PLC-IO input if signals from SA and SB were sampled, respectively. In case only
io insA ready ′ is true, the automaton PLC enters location plcDECA comp for computing
the deceleration with respect to sensor SA. Completion of this computational process
after 7 time steps is indicated by leaving the location and by setting the primed Boolean
variable plc′DECA to true. If the primed variable io insB ready ′ is not yet true then
location plcDECA finished is visited in order to wait for this signal. Whenever automaton
PLC is in one of the three locations plc init, plcDECA comp, and plcDECA finished and if the
primed variable io insB ready ′ is true then PLC goes directly to location plcDECB comp
in order to compute the deceleration concerning sensor SB. That is, in case both signals
from SA and SB arrive at the same time then the signal from SB is prioritized. After
having calculated the deceleration corresponding to sensor SB, the automaton PLC enters
its final location plcDECB finished.

Two important parameters of the overall system are the initial phase shifts of the cycles
of the PLC-IO card and of the PLC. A pragmatic, yet idealized, way to handle these phase
shifts, for instance, is to synchronize the initial cycles of both the PLC-IO and PLC. These
phase shifts however have a fundamental impact on the overall system behavior, as we
see in Section 8.2. To cover each possible situation of the initial phase shifts with respect
to a minimum sampling interval of 1 time step, the time points of the first cycles of the
PLC-IO card and of the PLC are uniformly distributed over values 0 to 9 and over 0 to 6,

8.2 Analysis of the NAS 255

respectively. That is, there are 10 possible initial cycle times for the PLC-IO card and 7
for the PLC, which is modeled by 10 and by 7 initial probabilistic transition alternatives
in automata PLC-IO input and PLC, respectively, confer Figure 8.3.

Sample system run of the model. Exemplifying the executable behavior of the for-
mal NAS model, a sample system run is illustrated in Figure 8.4. We remark that this
system run was generated by the iSAT tool which was called on an SMT encoding of a
non-probabilistic version of the NAS model, i.e. where probabilistic choices were replaced
by non-deterministic ones.

At first, all automata reside in their initial locations while the initial object position x
is determined stochastically to be 976. The probabilistic choices of the time points of
the first cycles yield 9 for the PLC-IO card and 6 for the PLC. After 12 time steps,
the object reaches sensor SA causing automaton object to enter location obj betwAB.
During this discrete state change, the Boolean variable rsA is set to true which triggers
a synchronization with automaton network transmission of sensor SA. As a consequence,
the latter automaton proceeds to location netsA send where the probabilistic selection of
the network routing time yields 1 ts. That is, network transmission of sensor SA leaves the
sending location netsA send after 1 ts and enters location netsA compl indicating that the
signal was successfully transmitted to the PLC-IO card at time point 13.

The next cycle time of PLC-IO input is at time point 19 at which the signal from
sensor SA is provided for automaton PLC, the latter processing this signal in its cycle
from time point 20 to 27 when residing in location plcDECA comp. Automaton PLC-IO

output then starts to send the request for the new deceleration of 2 lu/ts2 at time point 29
over the network. The network routing time for sending this packet, i.e. the duration
automaton network transmission of deceleration signal SA stays in location netDECA send,
is determined probabilistically to be 2 ts. This implies that the latter automaton reaches
its final location netDECA compl at time point 31. At the same time, transportation unit

enters location tu decA and sets the value of the deceleration ẍ to 2 lu/ts2.

The speed ẋ of the object is then decreasing accordingly until the slow speed of 4 lu/ts
is reached at time t = 41. In order to keep the speed constant, transportation unit enters
location tu slowspeed and updates the deceleration to 0. The automaton remains in this
location until the signal triggered by sensor SB is processed and results in setting the
deceleration ẍ to the respective value of 4 lu/ts2, which happens at time point 51. As a
result, the object comes to a standstill at time point 52 with a final position of 50 lu.

8.2 Analysis of the NAS

As mentioned in Section 3.1, the goal of the NAS application is to deliver the workpiece
close to the drilling position. The main analysis task thus is to assess quantitatively
whether the above goal can be considered as satisfied. More precisely, we are interested
in answering questions like

� “What is the probability that the workpiece stops close to the drilling position?”

or, phrased as a decision problem,

256 8 Case Study: A Networked Automation System

obj betwAB

rsA

t ≥ nobj

t

t

t

t

t

t

t

t

t

t

t

t

obj preA

obj postB

rsB

0 10 20 30 40 50

1000
800
600
400
200
0

0 10 20 30 40 50

tu decA

tu decB
tu stop

tu slowspeed

0 10 20 30 40 50

t ≥ ntu

(slow speed) 4

24

0 10 20 30 40 50

4

2

0

0 10 20 30 40 50

50403020100

netsA init

netsA compl

stablenetsA
t ≥ nnetsA

netsA send

stablenetsB

netsB compl

netsB init

0 10 20 30 40 50

netDECA init

netDECA compl

0 10 20 30 40 50

50

50

5040

40

403020100

0 10 3020

20 30100

netDECB init

netDECB compl

io insA ready

t ≥ nio in

t ≥ nio out

plc init

plcDECB comp

plcDECB finished

plcDECB

stableplc

0 10 20 30 40 50

netsB send

t ≥ nnetsB

netDECA send

t ≥ nnetDECA

netDECB send

t ≥ nnetDECB

io insB ready

stable io in

iosDECA
iosDECB

plcDECA comp

plcDECA finished

plcDECA

t ≥ nplc

tu init

x

ẋ

ẍ

Figure 8.4: Sample system run of the NAS model. (This figure is a slight modification of Fig-

ure 10 from [TEF11].)

8.2 Analysis of the NAS 257

� “Is the probability that the workpiece stops close to the drilling position high enough?”

Apart from such classical reachability probabilities, it frequently is worthwhile to provide
information on more expressive quantitative measures like expected values. An additional
focus thus is on questions like

� “What is the mean time to stop of the workpiece?”

and

� “What is the expected final position of the workpiece?”

In the remainder of this section, we present results from the analysis of the NAS case study
using the symbolic approaches described in this thesis. The corresponding experiments
were conducted on a 2.4 GHz AMD Opteron machine with 128 GByte physical memory
running Linux.

SiSAT encoding of the NAS model. In order to enable the automatic and symbolic
analysis of the NAS application with the aid of the SSMT-based probabilistic bounded
model checker SiSAT, confer Sections 6.6 and 7.5, we encoded the formal model of the
NAS from Section 8.1 into the input language of SiSAT. A way of encoding a system of
concurrent PHAs into SiSAT according to the SSMT reduction scheme from Section 5.3
is shown in Subsection 6.6.1, while concrete examples are presented in Sections 6.6.3 and
7.5. It is important to remark that our SiSAT encoding of the NAS exploits the idea of
“disabling” quantifiers whenever they become irrelevant, as explained in Subsection 6.6.3.

We would like to emphasize that the symbolic SiSAT encoding facilitates a system
description of size linear in the size of the NAS model, in particular, linear in the size
of concurrent components. When unwinding this symbolic system description, i.e. when
constructing the SSMT formulae 6.25 for increasing step depths k ∈ N, confer Subsec-
tion 6.6.1, the size of these SSMT formulae grows linearly in the number k of transition
steps. Due to above facts, the state explosion problem is alleviated, the latter arising
from an explicit construction of the product automaton (with respect to the discrete state
space) which in general is of size exponential in the number of concurrent subsystems.
Several analysis approaches rely on such an explicit construction, confer Section 3.2.
Observe that the product automaton of the formal NAS model consists of more than

24 million discrete states since the discrete state space is spanned by 6075 locations
and 12 Boolean variables, resulting in 212 = 4096 possible truth assignments, used for
synchronization, while the continuous state space is given by all possible assignments to
the 23 continuous variables present in the model.

Probabilistic reachability analysis of the NAS. We first consider the former two
questions above concerning the probability of stopping close to the drilling position. Recall
that SSMT-based probabilistic bounded reachability analysis is just able to address step-
bounded system behavior, confer Chapter 5. That is, only lower bounds on the probability
of stopping close to the drilling position can be provided in general. From the description
of the NAS, confer Section 3.1, it is not hard to see that the workpiece finally stops under
all possible probabilistic dynamics, which means that the behavior of the NAS is bounded

258 8 Case Study: A Networked Automation System

in a way. This gives rise to a technique coping with the full system behavior and answering
both probabilistic reachability questions above.
To achieve such complete analysis, we are first interested in the number k of transition

steps of the formal NAS model such that the workpiece stops in all anchored system
runs of length k. Observe that the workpiece stops in a run r if and only if r reaches
location tu stop in automaton transportation unit from Figure 8.1. Since the NAS does
not comprise any non-determinism, it holds that the workpiece stops in all anchored runs
of length k if and only if the (maximum) probability of reaching location tu stop within k
transition steps is 1. Let PBMCNAS,Target(k) be the SSMT encoding of the NAS for step
depth k, confer Section 5.3. It then follows that Pr(PBMCNAS,tu stop(k)) = 1 if and only
if the workpiece stops in all anchored runs of length k.
In order to determine the desired step depth k, the SiSAT tool was called to successively

solve the SSMT formulae PBMCNAS,tu stop(k) for increasing step depths k ∈ N until
Pr(PBMCNAS,tu stop(k)) = 1 holds. The latter is true for step depth k = 44. SiSAT used
about 10.41 hours to solve all these 45 SSMT formulae when the algorithmic enhancement
of caching solutions, as described in Subsection 6.5.6, was enabled.
We remark that SiSAT actually returned the interval [0.99999982, 1] as the probability

result for step depth 44. Recall that SiSAT employs floating-point intervals for rep-
resenting probabilities, both probabilities of randomized quantifiers and (intermediate)
probability results, in order to cope with numerical issues, confer Subsection 6.6.2. It
thus is not ensured in general that the exact probability result pr is represented by a
point interval [pr, pr] but rather by a small interval [pr, pr] with pr ≤ pr ≤ pr.
When having exploited the optimization of thresholding additionally, confer Section 6.4,

the overall solving time for all the above 45 SSMT formulae could be reduced by a fac-
tor of about 4.6 to about 2.23 hours. With regard to this tool feature, one would ex-
pect to set both the lower and upper thresholds to value 1 in order to decide whether
Pr(PBMCNAS,tu stop(k)) = 1 holds. As mentioned above, SiSAT returns small intervals
enclosing the actual probability result. Taking this into account and being a bit prag-
matic, we used a value slightly less than 1, namely 1 − 10−5 = 0.99999, as the lower and
the upper threshold value, i.e. θl = θu = 0.99999.
After having discovered that the workpiece always stops within 44 transition steps,

we now focus on the former two questions by means of computing the probability of
stopping within some target region. For this purpose, the Target predicate is given by
(L ≥ x) ∧ (x ≥ R) with rational constants L and R defining the region. For instance,
for the target region of interest being specified by L = 100 and R = 0, i.e. the workpiece
should halt left to and at most 1mm away from the drilling position,1 SiSAT solved the
corresponding SSMT formula of step depth 44, i.e. PBMCNAS,Target(44), within about
71 minutes returning the hit probability interval [0.39734516, 0.39734529].
Whenever the exact probability is not of interest but the problem is to decide whether

the exact probability is below or above some given threshold value θ, as indicated by
the second analysis question above, the algorithmic enhancement of thresholding becomes
applicable, the latter frequently improving performance of the SSMT proof search. For
instance, when having enabled thresholding with θl = θu = θ for threshold values θ = 0.05,
θ = 0.1, θ = 0.9, and θ = 0.95, solving time for the above problem, i.e. for the target region

1As defined in Section 3.1, one length unit corresponds to 0.01mm.

8.2 Analysis of the NAS 259

PLC-IO: 2 ts

PLC: 2 ts

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-300-200-1000100200300

final position x of the object

p
ro
b
ab
ili
ty

PLC-IO: 3 ts

PLC: 2 ts

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-300-200-1000100200300

final position x of the object

p
ro
b
ab
ili
ty

PLC-IO: 1 ts

PLC: 5 ts

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-300-200-1000100200300

final position x of the object

p
ro
b
ab
ili
ty

PLC-IO: 3 ts

PLC: 6 ts

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-300-200-1000100200300

final position x of the object

p
ro
b
ab
ili
ty

Figure 8.5: Analysis of the NAS: different distributions of the final object position x for fixed

initial phase shifts of the cycles of the PLC-IO card and of the PLC. The corresponding time

points of the first cycles are given in the top-right corner of each subfigure. The final object

position is given on the x-axis, while the probabilities of stopping within regions [v − 1, v) for

the integers v = 300 down to −299 are given on the y-axis. (Source of figure: [TEF11])

given by L = 100 and R = 0, could be reduced to about 11 minutes, about 20 minutes,
about 13 minutes, and about 11 minutes, respectively.

As anticipated in Section 8.1, the initial phase shifts of the cycles of the PLC-IO card and
of the PLC play an important role for the distribution of the final object position. Though
this is not the intended use case of SiSAT, we were able to calculate the distribution of
the final position x by solving a set of SSMT formulae PBMCNAS,Target(44) where the
Target predicates are given by (v > x) ∧ (x ≥ v − 1) for the integers v = 300 down to
−299. For each of these SSMT formulae, we obtained the probability of stopping within
a target region of length 1. Recall that the NAS does not involve any non-determinism.
Consequently, the distribution of the final object position could be simply derived from
the latter probability results as all these regions are pairwise disjoint and together cover
the regionR with 300 > R ≥ −300 in which the object always halts. The latter statement
is true since Pr(PBMCNAS,(x≥300∨x<−300)(44)) = 0, which was proven by SiSAT within
about 3.22 hours.

Four possible scenarios for fixed initial phase shifts of the cycles of the PLC-IO card
and of the PLC are depicted in Figure 8.5. To achieve valid distributions, the SSMT en-
codings of the latter scenarios were modified such that the randomized variables encoding
the initial phase shifts take the corresponding fixed time points of the first cycles with
probability 1. From the case where the first cycles of the PLC-IO card and of the PLC are

260 8 Case Study: A Networked Automation System

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

-300-200-1000100200300

p
ro
b
ab
ili
ty

final position x of the object

Figure 8.6: Analysis of the NAS: actual distribution of the final object position x, i.e. the initial

phase shifts of the cycles of the PLC-IO card and of the PLC are distributed uniformly. The final

object position is given on the x-axis, while the probabilities of stopping within regions [v−1, v)

for the integers v = 300 down to −299 are given on the y-axis. (Source of figure: [TEF11])

both at time point 2, one may wrongly conclude that the model works as desired since the
workpiece always stops in a very small region around the drilling position. If the PLC-IO
and the PLC phase shifts however are 3 and 6, respectively, there is a large region around
position 0 in which the object does never halt.
To get an authentic picture about the distribution of the final object position, one

has to incorporate the initial phase shifts in a realistic way. Since there are no semantic
conditions on the PLC and its IO card, like periodic resets or other synchronizations, we
realistically assume that any combination of the phase shifts may arise when the object
enters. In the formal NAS model, the possible initial phase shifts of the PLC-IO card and
of the PLC are therefore distributed uniformly, as explained in Section 8.1. For this more
authentic NAS model, we obtained the distribution of the final object position presented
in Figure 8.6.
The CPU times for computing the distributions are about 5.7 hours for the initial

phase shifts 2 (PLC-IO) and 2 (PLC), about 7.5 hours for 3 (PLC-IO) and 2 (PLC),
about 5 hours for 1 (PLC-IO) and 5 (PLC), and about 6.9 hours for 3 (PLC-IO) and 6
(PLC). For the distribution where the initial phase shifts are distributed uniformly, the
CPU time is much higher, namely almost 32 days, due to the enormous growth of the
probabilistic system behavior. However, due to the possibility of running multiple SiSAT
calls in parallel, the distribution was actually calculated in roughly a day on two 16-core
machines.

Expected-value analysis of the NAS. We finally respond to the latter two questions
from the beginning of this section concerning the expected values of the time to stop and
of the final object position, namely by means of the symbolic approach from Chapter 7.

8.2 Analysis of the NAS 261

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30 35 40 45 50

 0

 200

 400

 600

 800

 1000

 5 10 15 20 25 30 35 40 45 50

step depth k

p
os
it
io
n
x

ti
m
e
t

Figure 8.7: Analysis of the NAS: evolution of the expected values of the time to stop t and of

the object position x over step depth k. (This figure is based on Figure 5 from [FTE10b].)

To this end, we slightly modified the SiSAT encoding of the NAS as explained in Sub-
section 7.3.2, where the cost of a transition step is the time step dt ≥ 0 or the decrease
of the position x′ − x when aiming at the mean time to stop or at the expected final
object position, respectively. Observe that x′ can be represented by non-primed variables
and that the decrease x′ − x is at most 0, i.e. the object never moves backwards. Thus,
the position is monotonically decreasing, while the time clearly is monotonically increas-
ing. Furthermore note that time t is stopped whenever location tu stop is reached since
then stu = 0 which implies that dt = 0 and thus t′ = t. Recall that negative costs are
not permissible in the notion of a system of concurrent PHAs with cost function, confer
Definition 7.1. The latter restriction is due to the computation of lower estimates of the
infimal cost expectation for the full system behavior by means of a step-bounded variant
thereof, confer Lemma 7.1, giving rise to a verification procedure for the CEMC problem
from Definition 7.4.
Within the analysis of the NAS, we are just interested in the evolution of the expected

object position over a bounded number of transition steps. In such scenarios, we do not
need to restrict ourselves to non-negative cost but we may permit arbitrary cost functions
which values can be both non-negative and negative. Observe that the SSMT algorithm
from Section 7.4 is able to compute the conditional expectation of each free variable in an
SSMT formula. As a consequence, the SiSAT tool can be employed to compute expected
values of the object position.
The evolution of the expectations of the time to stop t and of the object position x

over step depth k is depicted in Figure 8.7. Recall that the workpiece always stops within
44 transition steps. These expected values thus stabilize at step depth 44, yielding a mean
time to stop of about 46.32 ts and an expected final object position of about 57.8 lu. Each
of the latter expected values could be computed within about 1.45 hours by solving the
corresponding SSMT formula for step depth 44.

9 Beyond Probabilistic Bounded
Reachability by Means of Generalized
Craig Interpolation

In the previous chapters, we presented SSMT-based approaches to probabilistic bounded
state reachability as well as to expected-value analysis of concurrent discrete-time proba-
bilistic hybrid automata. Both approaches are inherently confined to analysis of bounded
system behavior. In this chapter, we pioneer symbolic procedures that go beyond proba-
bilistic bounded state reachability. They are currently based on SSAT and thus restricted
to probabilistic finite-state models like Markov decision processes. We remark that essen-
tial parts of this chapter were published in [TF11] and in [TF12] by the author of this
thesis together with his co-author.

The development of these procedures is motivated by symbolic model checking tech-
niques for non-probabilistic systems based on Craig interpolation. Given two formulae
ϕ and ψ for which ϕ ⇒ ψ is true, a Craig interpolant I for ϕ and ψ is a formula over
variables common to ϕ and ψ that “lies in between” ϕ and ψ in the sense that ϕ ⇒ I
and I ⇒ ψ [Cra57], confer Figure 9.1. In the automatic hardware and software ver-
ification communities, Craig interpolation has found widespread use in model checking
algorithms, both as a means of extracting reasons for non-concretizability of a counterex-
ample obtained on an abstraction as well as for computing a symbolic description of
the reachable state set. In McMillan’s approach [McM03, McM05a, McM05b] targeting
at the verification of safety properties of the shape “the unsafe states are never reach-
able”, Craig interpolants are used for describing symbolically an overapproximation of the
step-bounded reachable state set. If the sequence of interpolants thus obtained stabilizes
eventually, i.e. no additional state is found to be reachable, then the corresponding state-
set predicate Reach has all reachable system states as models. Let Unsafe be a predicate
that encodes the unsafe states. Then, the above safety property is verified whenever the
formula Reach ∧ Unsafe is unsatisfiable which means that the set of all reachable states
and the set of unsafe states are disjoint. From this fact it clearly follows that the unsafe
states are never reachable.

Given McMillan’s symbolic approach to state reachability analysis of non-probabilistic
finite-state systems based on Craig interpolation for SAT [McM03], it is natural to ask
whether a corresponding probabilistic counterpart could be developed, i.e. a symbolic ap-
proach to probabilistic state reachability analysis of probabilistic finite-state systems based
on Craig interpolation for SSAT. In this chapter, we suggest such an approach being
able to verify probabilistic safety properties of the shape “the worst-case probability of
reaching the unsafe states is at most 1h” and thus complementing the symbolic falsifica-
tion procedure from Chapter 5, though the latter being applicable to probabilistic hybrid
systems.

264 9 Beyond Probabilistic Bounded Reachability

ϕ I ψ ¬ψ

Figure 9.1: Graphical representation of a Craig interpolant I for formulae ϕ and ψ.

In addition to probabilistic state reachability, we further address the problem of proba-
bilistic region stability. The latter problem is motivated by the notion of region stability
for non-probabilistic hybrid systems [PW07a, PW07b], where a system is called stable
with respect to some region Region if and only if all system runs eventually reach Region
and finally stay in Region forever. We suggest an adaptation of region stability to the
probabilistic case along with a symbolic, Craig interpolation-based procedure for the veri-
fication of probabilistic stability properties like “the probability that the system stabilizes
within Region always is at least 99.9%”.
This chapter is organized as follows. In Section 9.1, we introduce a generalization

of the notion of Craig interpolants suitable for SSAT, while Section 9.2 deals with an
algorithm for computing such generalized Craig interpolants based on a resolution cal-
culus for SSAT, more precisely, on strong S-resolution. The application of generalized
Craig interpolation to the symbolic analysis of probabilistic finite-state systems, namely
to probabilistic state reachability and to probabilistic region stability, is then addressed
in Section 9.3. The latter section also provides proofs of concept of these novel techniques
using small examples.

9.1 Generalized Craig interpolants

Craig interpolation [Cra57] is a well-studied notion in formal logics which has several appli-
cations in Computer Science, among them model checking [McM03, McM05a, McM05b].
Given two formulae ϕ and ψ such that ϕ ⇒ ψ is valid, a Craig interpolant for ϕ and ψ
is a formula I which refers only to common variables of ϕ and ψ, and I is “intermediate”
in the sense that ϕ ⇒ I and I ⇒ ψ, confer Figure 9.1. Such interpolants do trivially
exist in all logics permitting quantifier elimination, for instance, in propositional logic.
The observation that ϕ ⇒ ψ holds if and only if ¬(ϕ ⇒ ψ), or rather ϕ ∧ ¬ψ, is

unsatisfiable gives rise to an equivalent definition: for an unsatisfiable formula A ∧ B, a
formula I is a Craig interpolant for A and ¬B if and only if both A ∧ ¬I and I ∧ B
are unsatisfiable and I mentions only common variables. In order to avoid confusion in

9.1 Generalized Craig interpolants 265

the latter case concerning the negation of B, we slightly abuse notation and simply say
that I is a Craig interpolant for (A,B). For technical reasons, we refer to this alternative
definition in the rest of the chapter. Recall that SSAT formulae are interpreted by the
maximum probability of satisfaction, confer Definition 4.2. As the maximum probability
that an implication ϕ ⇒ ψ holds is inappropriate for our purpose, we reason about the
maximum satisfaction probability p of the negated implication, i.e. of ϕ ∧ ¬ψ, instead.
The latter relates to the minimum probability 1 − p that ϕ ⇒ ψ holds, which is the
desired notion.
In the remainder of this section, we investigate the issue of Craig interpolation for

the SSAT framework. When approaching a reasonable definition of a Craig interpolant
for SSAT, the semantics of the non-classical quantifier prefix poses problems. Let Q :
(A ∧ B) be an SSAT formula. Each variable in A ∧ B is bound by prefix Q, providing
the probabilistic interpretation of the variables which is lacking without the quantifier
prefix. This issue can be addressed by considering the quantifier prefix Q as the global
setting that serves to interpret the quantifier-free part, and consequently by interpreting
the interpolant also within the scope of Q, thus reasoning about the SSAT formulae
Q : (A ∧ ¬I) and Q : (I ∧ B).
A more fundamental problem is that a classical Craig interpolant for (A,B) only exists

if Pr(Q : (A ∧ B)) = 0, since A ∧ B has to be unsatisfiable by definition of a Craig
interpolant which applies if and only if Pr(Q : (A∧B)) = 0. The precondition that Pr(Q :
(A∧B)) = 0 would be far too restrictive for application of interpolation in the stochastic
setting, as the notion of unsatisfiability of A ∧ B is naturally generalized to satisfiability
with insufficient probability, i.e. Pr(Q : (A ∧ B)) being “sufficiently small”. Such relaxed
requirements actually appear in practice, for instance, in probabilistic verification where
safety properties like “a fatal system error is never reachable” are frequently replaced
by probabilistic ones like “a fatal system error is reachable only with sufficiently small
probability of at most 0.1h”. Motivated by above facts, interpolants for SSAT should
also exist if A ∧B is satisfiable with reasonably low probability.
The resulting notion of interpolation, being made precise in Definition 9.1, matches the

following intuition. In classical Craig interpolation, when performed in logics permitting
quantifier elimination, the Craig interpolants for (A,B) with A ∧ B being unsatisfiable
form a lattice with implication as its ordering and with

A∃ = ∃a1, . . . , aα : A

as its bottom element and
B

∀
= ¬∃b1, . . . , bβ : B

as its top element, where the ai ∈ Var(A) \ Var(B) and bi ∈ Var(B) \ Var(A) are the
local variables of A and of B, respectively. In the generalized setting required for SSAT,

A ⇒ ¬B and thus A∃ ⇒ B
∀
may no longer hold such that the above lattice can collapse

to the empty set. To preserve the overall structure, it is however natural to use the lattice
of propositional formulae over common variables of A and B “in between”

A∃ ∧B
∀

as bottom element and
A∃ ∨B

∀

266 9 Beyond Probabilistic Bounded Reachability

as top element instead. This lattice is non-empty and coincides with the classical one
whenever A ∧B is unsatisfiable.

Definition 9.1 (Generalized Craig interpolant)
Let A and B be propositional formulae and VA := Var(A)\Var(B) = {a1, . . . , aα}, VB :=
Var(B) \ Var(A) = {b1, . . . , bβ}, VA,B := Var(A) ∩ Var(B), A∃ = ∃a1, . . . , aα : A, and

B
∀
= ¬∃b1, . . . , bβ : B. A propositional formula I is called generalized Craig interpolant

for (A,B) if and only if the following properties are satisfied.

1. Var(I) ⊆ VA,B

2.
(
A∃ ∧B

∀
)

⇒ I

3. I ⇒
(
A∃ ∨B

∀
)

For two propositional formulae A and B, the four quantifier-free propositional formulae

equivalent to A∃∧B
∀
, to A∃, to B

∀
, and to A∃∨B

∀
are generalized Craig interpolants for

(A,B). These generalized interpolants always exist since propositional logic has quantifier
elimination.
While Definition 9.1 motivates the generalized notion of Craig interpolant from a model-

theoretic perspective, we state an equivalent definition of generalized Craig interpolants
in Lemma 9.1 that substantiates the intuition of generalized interpolants and allows for
an illustration of their geometric shape. Given two formulae A and B, the idea of a
generalized Craig interpolant is depicted in Figure 9.2. The set of solutions of A is defined
by the rectangle on the VA, VA,B-plane with a cylindrical extension in VB-direction as A
does not contain variables in VB. Similarly, the solution set of B is given by the triangle
on the VB, VA,B-plane and its cylinder in VA-direction. The solution set of A ∧ B is then
determined by the intersection of both cylinders. Since A∧B ∧¬(A∧B) is unsatisfiable,
the sets A ∧ ¬(A ∧B) and B ∧ ¬(A ∧B) are disjoint. This gives the opportunity to talk
about interpolants with respect to these sets. However, a formula I over only common
variables in VA,B need not exist when demanding unsatisfiability of A∧¬(A∧B)∧¬I and
of I ∧ B ∧ ¬(A ∧ B). This is indicated by Figure 9.2 and proven by the simple example
where A = a and B = b. As VA,B = ∅, formula I is either true or false. In the first
case,

I ∧ B ∧ ¬(A ∧ B) = true ∧ b ∧ ¬(a ∧ b)

is satisfiable, while

A ∧ ¬(A ∧ B) ∧ ¬I = a ∧ ¬(a ∧ b) ∧ ¬false

is in the second case. If we however project the solution set of A ∧ B onto the VA,B-axis
and subtract the resulting hyperplane SA,B from the solution sets of A and of B then
such a formula I over VA,B-variables exists, as illustrated in Figure 9.2. In the simple
example above, this hyperplane SA,B covers all possible assignments since VA,B = ∅. As a
consequence, subtraction of SA,B from the solution sets of A and of B leads to the empty
set in both cases, which trivially allows for the greatest and smallest possible generalized
interpolants true and false, respectively.
The next lemma formalizes such generalized Craig interpolants I and shows their equiv-

alence to the ones from Definition 9.1.

9.1 Generalized Craig interpolants 267

B

SA,B

A

I

VB

VA

VA,B

B

A ∧ B

A

SA,B

I

Figure 9.2: Geometric interpretation of a generalized Craig interpolant I for (A,B). VA-, VB-,

and VA,B-axes denote assignments to variables occurring only in A, only in B, and in both A

and B, respectively. (Source of figure: [TF11])

Lemma 9.1 (Generalized Craig interpolant for SSAT)
Let Φ = Q : (A ∧ B) be some SSAT formula, VA, VB, and VA,B be defined as in
Definition 9.1, and SA,B be a propositional formula with Var(SA,B) ⊆ VA,B such that
SA,B ≡ ∃a1, . . . , aα, b1, . . . , bβ : (A ∧ B). Then, a propositional formula I is a generalized
Craig interpolant for (A,B) if and only if the following properties are satisfied.

1. Var(I) ⊆ VA,B

2. Pr(Q : (A ∧ ¬SA,B ∧ ¬I)) = 0

3. Pr(Q : (I ∧B ∧ ¬SA,B)) = 0

Proof. We prove the lemma by showing that above items hold if and only if the items of
Definition 9.1 hold. Trivially, above item 1 is true if and only if item 1 of Definition 9.1
is true.
To prove that above item 2 is satisfied if and only if item 2 of Definition 9.1 is satisfied,

we conclude the following: |= (A∃∧B
∀
) ⇒ I if and only if |= (∃a1, . . . , aα : A∧B

∀
) ⇒ I

268 9 Beyond Probabilistic Bounded Reachability

if and only if |= ∀a1, . . . , aα : ((A∧B
∀
) ⇒ I) if and only if |= (A∧B

∀
) ⇒ I if and only if

|= (A∧(¬A∃∨B
∀
)) ⇒ I if and only if |= (A∧(¬∃a1, . . . , aα : A∨¬∃b1, . . . , bβ : B)) ⇒ I

if and only if |= (A ∧ (∀a1, . . . , aα : ¬A ∨ ∀b1, . . . , bβ : ¬B)) ⇒ I if and only if |=
(A∧∀a1, . . . , aα, b1, . . . , bβ : (¬A∨¬B)) ⇒ I if and only if |= (A∧¬∃a1, . . . , aα, b1, . . . , bβ :
(A∧B)) ⇒ I if and only if |= (A∧¬SA,B) ⇒ I if and only if A∧¬SA,B∧¬I is unsatisfiable
if and only if Pr(Q : (A ∧ ¬SA,B ∧ ¬I)) = 0.

An analogous reasoning is applied for above item 3 and item 3 of Definition 9.1: |=

I ⇒ (A∃ ∨ B
∀
) if and only if |= I ⇒ (A∃ ∨ ¬∃b1, . . . , bβ : B) if and only if |= I ⇒

(A∃∨∀b1, . . . , bβ : ¬B) if and only if |= ∀b1, . . . , bβ : (I ⇒ (A∃∨¬B)) if and only if |= I ⇒

(A∃ ∨¬B) if and only if |= I ⇒ ((A∃ ∧¬B
∀
)∨¬B) if and only if |= I ⇒ ((∃a1, . . . , aα :

A∧¬¬∃b1, . . . , bβ : B)∨¬B) if and only if |= I ⇒ ((∃a1, . . . , aα, b1, . . . , bβ : (A∧B))∨¬B)
if and only if |= I ⇒ (SA,B ∨¬B) if and only if I ∧¬SA,B ∧B is unsatisfiable if and only
if Pr(Q : (I ∧B ∧ ¬SA,B)) = 0. 2

Observe that the concept of generalized Craig interpolants is a generalization of Craig
interpolants in the sense that whenever A∧B is unsatisfiable, i.e. if Pr(Q : (A∧B)) = 0,
then each generalized Craig interpolant I for (A,B) actually is a Craig interpolant for
(A,B) since SA,B ≡ false.

9.2 Computing generalized Craig interpolants

In this section, we proceed to the efficient computation of generalized Craig interpolants.
The remark following Definition 9.1 indicates that generalized Craig interpolants for SSAT
can in principle be computed by explicit quantifier elimination methods, like Shannon’s
expansion [Sha49] or binary decision diagrams (BDDs) [Lee59, Bry86]. We however aim
at a more efficient method based on strong S-resolution introduced in Subsection 6.2.2,
akin to resolution-based Craig interpolation for propositional SAT by Pudlák [Pud97].
The latter approach has been integrated into DPLL-based SAT solvers featuring conflict
analysis and successfully applied to symbolic model checking [McM03, McM05a, McM05b].

We remark that on SSAT formulae Q : (A ∧ B), Pudlák’s algorithm, which has unsat-
isfiability of A ∧ B as precondition, does not work in general. When instead considering
the unsatisfiable formula A ∧ B ∧ ¬SA,B, being in CNF, then Pudlák’s method is appli-
cable and actually produces a generalized Craig interpolant. The main drawback of this
approach however is the explicit construction of the quantifier-free formula ¬SA,B, again
calling for explicit quantifier elimination.

We instead propose an algorithm based on strong S-resolution for computing generalized
Craig interpolants, which operates directly on SSAT formulae Q : (A∧B) without adding
¬SA,B, and thus does not comprise any preprocessing involving quantifier elimination. In
what follows, we assume that the matrix ϕ of an SSAT formula Q : ϕ is in CNF. Recall
that strong S-resolution, consisting of rules R.1, R.2s, and R.3, is a sound and complete
procedure for solving SSAT formulae in CNF, confer Corollary 6.1 and Theorem 6.1.
Moreover, the clauses in all pairs c(pl,pu)|Q : ϕ derived by strong S-resolution carry tight
bounds, i.e. pl = pu, according to Lemma 6.1, and the SSAT formula Q : ϕ remains
unchanged after execution of any rule of strong S-resolution. Due to the latter facts, we

9.2 Computing generalized Craig interpolants 269

denote by ⊢R.1 c
p, ⊢R.2s c

p, and (c
(p1
1 , cp22) ⊢R.3 c

p the application of rules R.1, R.2s, and
R.3, respectively.
For the purpose of computing generalized Craig interpolants by means of strong S-

resolution, the above rules are enhanced to deal with pairs (cp, I) of annotated clauses cp

and propositional formulae I. Such formulae I are in a certain sense intermediate gen-
eralized Craig interpolants, i.e. generalized interpolants for subformulae arising from in-
stantiating some variables by partial assignments that falsify clauses c. The precise in-
terpretation is formalized by Lemma 9.2 later on. Once a pair (∅p, I) comprising the
empty clause is derived, I thus is a generalized Craig interpolant for the given SSAT
formula. This augmented S-resolution, which we call interpolating strong S-resolution or
simply interpolating S-resolution, is defined by the rules RI.1, RI.2, and RI.3 introduced
below. The construction of intermediate interpolants I in RI.1 and RI.3 coincides with
the classical rules by Pudlák [Pud97], while RI.2 misses a corresponding counterpart. The
rationale is that RI.2, or rather R.2s, refers to satisfying assignments τ of A ∧ B, which
do not exist in classical Craig interpolation. As formula A∧B becomes a tautology after
substituting the partial assignment τ into it, confer rule R.2s, its quantified variant SA,B =
∃a1, . . . , b1, . . . : (A ∧ B) also becomes tautological under the same substitution, i.e. |=
SA,B[τ(x1)/x1, . . . , τ(xi)/xi]. As a consequence, ¬SA,B[τ(x1)/x1, . . . , τ(xi)/xi] is unsatisfi-
able, and so are (A∧¬SA,B)[τ(x1)/x1, . . . , τ(xi)/xi] and (B∧¬SA,B)[τ(x1)/x1, . . . , τ(xi)/xi].
This immediately implies that the actual intermediate interpolant in rule RI.2 can be cho-
sen arbitrarily over common variables in VA,B. This freedom allows us to control the
geometric extent of generalized Craig interpolants within the “don’t care”-region provided
by the models of SA,B, as formalized by Corollary 9.2 later on.
Let Q : (A∧B) be an SSAT formula where A∧B is in CNF. The rules of interpolating

S-resolution are then as follows.

(RI.1)

c ⊢R.1 c
p,

I =

{
false ; c ∈ A

true ; c ∈ B

(cp, I)

(RI.2)

⊢R.2s c
p,

I is any formula over VA,B

(cp, I)

(RI.3)

((c1 ∨ ¬x)p1 , I1), ((c2 ∨ x)
p2, I2),

((c1 ∨ ¬x)p1 , (c2 ∨ x)
p2) ⊢R.3 (c1 ∨ c2)

p,

I =

I1 ∨ I2 if x ∈ VA
I1 ∧ I2 if x ∈ VB

(¬x ∨ I1) ∧ (x ∨ I2) if x ∈ VA,B

((c1 ∨ c2)p, I)

The following lemma establishes the theoretical foundation of computing generalized Craig
interpolants by interpreting the derived pairs (cp, I).

270 9 Beyond Probabilistic Bounded Reachability

Lemma 9.2 (Interpretation of derived pairs (cp, I))
Let Φ = Q : (A ∧ B) be some SSAT formula with Q = Q1x1 . . . Qnxn and with A ∧ B
being in CNF, and let the pair (cp, I) be derivable from Φ by interpolating S-resolution
with Q(c) = Q1x1 . . . Qixi. Then, for each truth assignment τ : Var(Q(c)) → B with
∀x ∈ Var(c) : τ(x) = ff c(x) it holds that

1. Var(I) ⊆ VA,B,

2. Pr(Qi+1xi+1 . . . Qnxn : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0, and

3. Pr(Qi+1xi+1 . . . Qnxn : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0.

Proof. We prove the lemma by induction over application of the interpolating S-resolution
rules RI.1, RI.2, and RI.3.
In the base case, we can just apply RI.1 and RI.2. Item 1 clearly holds for both rules since

I contains only variables in VA,B. Let us consider RI.1 first. If c ∈ A then I = false. By
construction of τ , i.e. c evaluates to false under τ , it follows that A[τ(x1)/x1] . . . [τ(xi)/xi]
is unsatisfiable and thus

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 .

As I = false, immediately

Pr(Q′ : (I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 .

If c ∈ B then I = true. Obviously,

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0

and by construction of τ ,

Pr(Q′ : (I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 .

For rule RI.2, we have |= (A∧B)[τ(x1)/x1] . . . [τ(xi)/xi] which immediately implies that |=
(∃a1, . . . , aα, b1, . . . , bβ : (A∧B))[τ(x1)/x1] . . . [τ(xi)/xi], i.e. |= SA,B[τ(x1)/x1] . . . [τ(xi)/xi]
by definition of SA,B. Rephrasing the latter, ¬SA,B[τ(x1)/x1] . . . [τ(xi)/xi] is unsatisfiable.
Consequently, for any propositional formula I

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 ,

P r(Q′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 .

This proves items 2 and 3 for the base case.
In the induction step, we now assume that the lemma holds for all clauses in the premises

of rule RI.3. Then, by construction of I, item 1 clearly holds for I, i.e. Var(I) ⊆ VA,B.
Induction hypothesis assumes that

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj]) = 0 ,

P r(Q′ : (I1 ∧B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj]) = 0

9.2 Computing generalized Craig interpolants 271

holds for ((c1 ∨ ¬xj)
p1, I1) and for each τ1 : {x1, . . . , xj−1} → B with ∀x ∈ Var(c1) :

τ1(x) = ff c1(x), and that

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I2)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj]) = 0 ,

P r(Q′ : (I2 ∧ B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj]) = 0

holds for ((c2∨xj)
p2, I2) and for each τ2 : {x1, . . . , xj−1} → B with ∀x ∈ Var(c2) : τ2(x) =

ff c2(x), where j ≥ i + 1 and Q′ = Qj+1xj+1 . . . Qnxn. Let τ : {x1, . . . , xj−1} → B be any
assignment with τ(x) = τ1(x) if x ∈ Var(c1) and τ(x) = τ2(x) if x ∈ Var(c2). Note that
τ is well-defined as 6|= (c1 ∨ c2), i.e. for each x ∈ Var(c1) ∩ Var(c2) : τ1(x) = τ2(x). We
now show that

PrA := Pr(QjxjQ
′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0 ,

P rB := Pr(QjxjQ
′ : (I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0

by proving that

PrA,x := Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xj−1)/xj−1][true/xj]) = 0 ,

P rA,¬x := Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xj−1)/xj−1][false/xj]) = 0 ,

P rB,x := Pr(Q′ : (I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1][true/xj]) = 0 ,

P rB,¬x := Pr(Q′ : (I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1][false/xj]) = 0 .

We therefore distinguish the three cases xj ∈ VA, xj ∈ VB, and xj ∈ VA,B.
First, let be xj ∈ VA. Then, I = I1 ∨ I2. By induction hypothesis and by construction

of I,

0 = Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

≥ Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1 ∧ ¬I2)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj]) .

Due to construction of τ , it holds in particular that

0 = PrA,x .

Analogously,

0 = Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I2)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

≥ Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1 ∧ ¬I2)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

and thus

0 = PrA,¬x .

As xj /∈ Var(I) ∪ Var(B) ∪Var(¬SA,B), for each v ∈ B it holds that

Pr(Q′ : (I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1][v/xj])

272 9 Beyond Probabilistic Bounded Reachability

= Pr(Q′ : (I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1])

which implies PrB,x = PrB,¬x. We conclude from induction hypothesis that

Pr(Q′ : (I1 ∧ B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1]) = 0 ,

P r(Q′ : (I2 ∧ B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1]) = 0

again by virtue of xj /∈ Var(I) ∪ Var(B) ∪ Var(¬SA,B). Moreover,

Pr(Q′ : (I1 ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0 ,

P r(Q′ : (I2 ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0

due to construction of τ . Note that if Pr(Q : ϕ1) = 0 and Pr(Q : ϕ2) = 0 then
Pr(Q : (ϕ1 ∨ ϕ2)) = 0 since Pr(Q : ϕ) = 0 if and only if ϕ is unsatisfiable.1 As a
consequence,

0 = Pr

(
Q′ :

(
(I1 ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]

∨ (I2 ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]

))

= Pr(Q′ : ((I1 ∨ I2) ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1])

= Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1])

= PrB,x = PrB,¬x .

Second, let be xj ∈ VB. Then, I = I1 ∧ I2. As xj /∈ Var(A) ∪ Var(¬SA,B) ∪ Var(¬I),
with the same argument as above,

0 = Pr

(
Q′ :

(
(A ∧ ¬SA,B ∧ ¬I1)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]

∨ (A ∧ ¬SA,B ∧ ¬I2)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]

))

= Pr(Q′ : (A ∧ ¬SA,B ∧ (¬I1 ∨ ¬I2))[τ(x1)/x1] . . . [τ(xj−1)/xj−1])

= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xj−1)/xj−1])

= PrA,x = PrA,¬x .

Again following the reasoning above, we have

0 = Pr(Q′ : (I1 ∧ B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

≥ Pr(Q′ : (I1 ∧ I2 ∧ B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : (I ∧B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

and thus

0 = PrB,x

as well as

0 = Pr(Q′ : (I2 ∧ B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

1This statement is not true in general if Q also contains universal quantifiers, which however is not the
case in this thesis.

9.2 Computing generalized Craig interpolants 273

≥ Pr(Q′ : (I1 ∧ I2 ∧ B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : (I ∧ B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj]) ,

and thus

0 = PrB,¬x .

Third, let be xj ∈ VA,B. Then, I = (¬xj ∨ I1) ∧ (xj ∨ I2), and we deduce

0 = Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : (A ∧ ¬SA,B

∧ ((xj ∧ ¬I1) ∨ (¬xj ∧ ¬I2)))[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

and, in particular,

0 = PrA,x .

Analogously,

0 = Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I2)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : (A ∧ ¬SA,B

∧ ((xj ∧ ¬I1) ∨ (¬xj ∧ ¬I2)))[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

and, in particular,

0 = PrA,¬x .

Furthermore,

0 = Pr(Q′ : (I1 ∧B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : ((¬xj ∨ I1) ∧ (xj ∨ I2) ∧ B

∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

= Pr(Q′ : (I ∧ B ∧ ¬SA,B)[τ1(x1)/x1] . . . [τ1(xj−1)/xj−1][true/xj])

and, in particular,

0 = PrB,x .

Finally,

0 = Pr(Q′ : (I2 ∧B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : ((¬xj ∨ I1) ∧ (xj ∨ I2) ∧ B

274 9 Beyond Probabilistic Bounded Reachability

∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

= Pr(Q′ : (I ∧ B ∧ ¬SA,B)[τ2(x1)/x1] . . . [τ2(xj−1)/xj−1][false/xj])

and, in particular,

0 = PrB,¬x .

Having shown that PrA,x = PrA,¬x = PrB,x = PrB,¬x = 0, we can now prove the interme-
diate result above, i.e. PrA = PrB = 0. IfQj = ∃ then PrA = max(PrA,x, P rA,¬x) = 0 and
PrB = max(PrB,x, P rB,¬x) = 0, and ifQj =

Rpx then PrA = px·PrA,x+(1−px)·PrA,¬x = 0
and PrB = px · PrB,x + (1− px) · PrB,¬x = 0.
To finish the proof, we finally need to show that items 2 and 3, i.e.

Pr(Qi+1xi+1 . . . Qnxn : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 ,

P r(Qi+1xi+1 . . . Qnxn : (I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0 ,

follow from PrA = PrB = 0, i.e. from

Pr(Qjxj . . . Qnxn : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0 ,

P r(Qjxj . . . Qnxn : (I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xj−1)/xj−1]) = 0 .

If j = i+1 then the result is obvious. Otherwise, i.e. if j > i+1, the variables xi+1, . . . , xj−1

do not occur in the derived clause (c1∨ c2) since Q(c1 ∨ c2) = Q1x1 . . . Qixi. By definition
of assignment τ , for k = j − 1 down to i+ 1 we may therefore successively conclude that

Pr(Qk+1xk+1 . . . Qnxn :

(A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xk−1)/xk−1][true/xk]) = 0 ,

P r(Qk+1xk+1 . . . Qnxn :

(A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1] . . . [τ(xk−1)/xk−1][false/xk]) = 0 ,

P r(Qk+1xk+1 . . . Qnxn :

(I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xk−1)/xk−1][true/xk]) = 0 ,

P r(Qk+1xk+1 . . . Qnxn :

(I ∧ B ∧ ¬SA,B)[τ(x1)/x1] . . . [τ(xk−1)/xk−1][false/xk]) = 0 .

From case k = i+ 1 the result immediately follows. 2

Completeness of (strong) S-resolution, as stated in Theorem 6.1, together with above
Lemma 9.2, applied to the derived pair (∅p, I), yields

Corollary 9.1 (Generalized Craig interpolants computation)
If Q : (A ∧ B) is an SSAT formula with A ∧ B being in CNF then a generalized Craig
interpolant for (A,B) can be computed by interpolating S-resolution.

Note that computation of generalized interpolants does not depend on the actual truth
state of A∧B. The next observation facilitates to effectively control the geometric extent
of generalized Craig interpolants within the “don’t care”-region provided by the models
of SA,B. This result is useful within applications of generalized Craig interpolation to the
symbolic analysis of probabilistic (finite-state) systems being investigated in Section 9.3.

9.3 Applications to symbolic analysis of probabilistic systems 275

Corollary 9.2 (Controlling generalized Craig interpolants computation)
If I = true is used within each application of rule RI.2 then Pr(Q : (A ∧ ¬I)) = 0.
Likewise, if I = false is used in rule RI.2 then Pr(Q : (I ∧B)) = 0.

Proof. The proof works analogously to the one of Lemma 9.2. For the base case, it is
clear that the desired property for RI.1 is independent of ¬SA,B. For RI.2, if I = true

then clearly Pr(Q′ : (A∧¬I)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0, and if I = false then Pr(Q′ :
(I ∧ B)[τ(x1)/x1] . . . [τ(xi)/xi]) = 0. Then, we can modify the induction hypothesis: for
case “I = true in RI.2”, we assume that Pr(Q′ : (A ∧ ¬I1)[τ1(x1)/x1] . . . [true/xj]) = 0,
Pr(Q′ : (A∧¬I2)[τ2(x1)/x1] . . . [false/xj]) = 0, and for “I = false in RI.2” that Pr(Q′ :
(I1∧B)[τ1(x1)/x1] . . . [true/xj]) = 0, Pr(Q′ : (I2∧B)[τ2(x1)/x1] . . . [false/xj]) = 0. The
induction step then follows the same reasoning as in the remaining proof of Lemma 9.2.2

Observe that the special interpolants I from Corollary 9.2 relate to the classical strongest

and weakest Craig interpolants A∃ and B
∀
, respectively, in the following sense: Pr(Q :

(A∧¬I)) = 0 if and only if |= A ⇒ I if and only if |= ∀a1, . . . , aα : (A ⇒ I) if and only
if |= (A∃ ⇒ I), as a1, . . . , aα do not occur in I. Analogously, Pr(Q : (I ∧B)) = 0 if and

only if |= I ⇒ ¬B if and only if |= ∀b1, . . . , bβ : (I ⇒ ¬B) if and only if |= I ⇒ B
∀
.

Example of interpolating S-resolution. Consider the SSAT formula

Φ =
R0.8a ∃x

R0.5y
R0.3b : (A ∧B)

with A = ((y)∧(a∨¬x)) and B = ((x)∧(¬y∨b)). Then, VA = {a}, VB = {b}, and VA,B =
{x, y}. It is not hard to see that the only satisfying assignment τ of the propositional
formula A ∧ B is given by τ(a) = true, τ(x) = true, τ(y) = true, and τ(b) = true.
Hence, Pr(Φ) = 0.12. A derivation of the empty clause ∅0.12 together with its associated
generalized Craig interpolant ¬x∨(y∧DC) is shown in Figure 9.3, where DC stands for any
formula over variables in VA,B as in rule RI.2. Note that the pair ((¬a∨¬x∨¬y∨¬b)1,DC)
is derivable by rule RI.2 since |= (A∧B)[τ(a)/a][τ(x)/x][τ(y)/y][τ(b)/b]. Applying DC =
true or DC = false, we obtain the generalized Craig interpolants I1 = ¬x∨y or I2 = ¬x,
respectively, such that Pr(Q : (A ∧ ¬I1)) = 0 or Pr(Q : (I2 ∧ B)) = 0 by Corollary 9.2.
In other words, A ⇒ I1 and I2 ⇒ ¬B, as illustrated by the Karnaugh-Veitch diagrams
in Figure 9.3.

9.3 Applications to symbolic analysis of probabilistic

systems

In this section, we investigate the application of generalized Craig interpolation to the
symbolic analysis of probabilistic systems. We direct our attention to two analysis goals,
namely to probabilistic state reachability in Subsection 9.3.1 as well as to probabilistic
region stability in Subection 9.3.2. All experiments of this section were performed on a
1.83 GHz Intel Core 2 Duo machine with 1 GByte physical memory running Linux.

276 9 Beyond Probabilistic Bounded Reachability

(
∅0.12,¬x ∨ (y ∧DC)

)

(
(¬a)0.15,¬x ∨ (y ∧DC)

)

(
(¬a ∨ ¬x ∨ ¬y)0.3,DC

)

(
(¬a ∨ ¬x)0.15, y ∧DC

)

(
(a)0,¬x

)

1) DC = true ; I1 = ¬x ∨ y 2) DC = false ; I2 = ¬x

(
(¬a ∨ ¬x ∨ ¬y ∨ ¬b)1,DC

)(
(¬y ∨ b)0, true

)(
(y)0, false

)(
(a ∨ ¬x)0, false

) (
(x)0, true

)

Φ =

R0.8a ∃x

R0.5y

R0.3b : (

A︷ ︸︸ ︷
(y) ∧ (a ∨ ¬x) ∧

B︷ ︸︸ ︷
(x) ∧ (¬y ∨ b))

y

a

b

x

y

a

b

x

B

A

B

A

SA,B SA,B

RI.3 RI.3

RI.3

RI.3

RI.3

RI.2RI.1RI.1RI.1RI.1

Figure 9.3: Example of interpolating S-resolution and illustration of the resulting generalized

Craig interpolants by means of Karnaugh-Veitch diagrams. Arrows denote applications of the

specified interpolating S-resolution rules, while DC stands for any formula over VA,B as in

rule RI.2. (Source of figure: [TF12])

Markov decision processes. As a system model, we consider finite-state Markov deci-
sion processes (MDPs) [Bel57]. An MDP M = (ı, S,Act , ps(·, ·, ·)) is a finite-state system
in which state changes are subject to non-deterministic selection among available actions
followed by a probabilistic choice among potential successor states, with the probability
distribution of the latter choice depending on the selected action. More precisely, S is a
finite set of states, ı ∈ S is the initial state, Act is a finite set of actions, and ps(s, a, s′)
gives the probability that M performs a transition step from s ∈ S to s′ ∈ S under action
a ∈ Act . For an example, consider the simple MDP M from Figure 9.4 where ı = i,
S = {i, f, e, s}, and Act = {a, b}. A transition ps(z, act , z′) = p > 0 is indicated by an

9.3 Applications to symbolic analysis of probabilistic systems 277

0.1

0.9 0.4
0.6

1

1

0.5 0.5

i

f

s

e

b

a

Figure 9.4: A simple MDP M. (Source of figure: [TF12])

arrow from z to z′ accompanied by action act and by the corresponding transition prob-
ability p. If two states are not connected by an arrow then the corresponding transition
probability is 0, and if no action is specified then that transition is feasible for all actions.

A probability measure of an MDP is well-defined only if considering a particular sched-
uler σ resolving the non-determinism. That is, σ schedules the action for the current state.
Different such schedulers σ have been investigated in the literature, confer, for instance,
[BHKH05]: σ may select the next action either in a deterministic or randomized fashion.
In both cases, σ may have access to and thus base its selection on either the current state
only or the full system history.

In the scenarios of this section, we do not manipulate schedulers explicitly but define the
probability measures obtained by worst-case deterministic schedulers achieving maximum
or minimum, depending on how the worst case is understood, probability of reaching target
states directly as the limit of a recursive function over N. For each k ∈ N, the recursive
function determines the maximum or minimum probability of reaching the target states
within k steps, as achieved by a worst-case history-dependent scheduler. As such a latter
scheduler will always maximize or minimize the probability of reaching the target within
the remaining number of steps, its performance coincides with the probabilities computed
by a backward induction resolving non-deterministic choices by taking the maximum or
minimum, respectively, of the probability values obtained from the next-lower recursion
depth.

SSAT encoding scheme for MDPs. The generalized Craig interpolation-based anal-
ysis approaches rest upon an SSAT encoding of the MDP to be analyzed, which is similar
in nature to the SSMT encoding of a probabilistic hybrid system from Section 5.3. More
precisely, the initial state and the transition relation of the given MDP M are described
by propositional formulae in CNF, namely by INITM(s) and TRANSM(s,nc,pc, s′),
respectively, where the propositional variable vector s represents the system state before
and s′ after a transition step, and the propositional variable vectors nc and pc encode
non-deterministic selection among available actions and probabilistic choice of the suc-
cessor state, respectively. Assignments to these variables determine which of possibly
multiple available transitions departing from s is taken. Akin to the SSMT encoding

278 9 Beyond Probabilistic Bounded Reachability

scheme for probabilistic hybrid systems from Section 5.3, the variables nc and pc, encod-
ing non-deterministic and probabilistic choices, are bound by existential and randomized
quantifiers in the prefixes Qnc and Qpc, respectively, while the state variables s and s′ are
existentially quantified by prefixes Qs and Qs′, respectively. Note that the state variables
s and s′ are quantified explicitly. This is in contrast to the hybrid-state case where the
continuous-domain state variables in the SSMT encoding are interpreted as innermost ex-
istentially quantified due to the lack of existential quantification over continuous variables.
As a consequence, the explicit (existential) quantification of state variables renders unnec-
essary the restriction of post-states being uniquely determined by the non-deterministic
and probabilistic choices, as in Definition 3.1 for probabilistic hybrid automata. This par-
ticularly shows an advantage for probabilistic finite-state models featuring (finite-domain)
data variables. For the sake of clarity, let be t := nc∪pc and Qt := QncQpc. The branch-
ing structure of the MDP M for k transition steps is then reflected by the quantifier prefix

CHOICEM(k) := Qs0Qt1Qs1 . . .Qsk−1
QtkQsk

where the variable vectors si and ti encode the system state at step depth i and transition
selection of step i, respectively.
A technicality worth mentioning is the representation of branching over n alternatives by

quantified propositional variables. For non-deterministic branching, the n alternatives can
be encoded by a binary tree of depth ⌈log2 n⌉ and thus by ⌈log2 n⌉ existential quantifiers.
For instance, the choice between the six actions act1, . . . , act6 can be represented by three
existential variables nc1, nc2, and nc3, the latter permitting to distinguish between even
eight different cases. For probabilistic branching, a sequence of at most n − 1 binary
branches is necessary, which results in at most n−1 randomized quantifiers. For instance,
the probabilistic choice between the three alternatives pa1, pa2, and pa3 associated with
probabilities 0.2, 0.6, and 0.2, respectively, can be described by two randomized variables

R0.2pc1 and

R0.75pc2. Then, probabilistic alternative pa1 is encoded by the assignments τ1
to the variables pc1 and pc2 such that τ1(pc1) = true. The probability of such assignments
clearly is 0.2. The alternatives pa2 and pa3 are represented by the assignments τ2 and τ3,
respectively, such that τ2(pc1) = τ3(pc1) = false, τ2(pc2) = true, and τ3(pc2) = false.
The probabilities of τ2 and τ3 are 0.8 · 0.75 = 0.6 and 0.8 · 0.25 = 0.2, respectively.

Example of the symbolic encoding. We illustrate the SSAT encoding scheme by
means of the simple MDP M from Figure 9.4. The state space of M, consisting of the
four states i, f , e, and s, is encoded by four Boolean variables i, f , e, and s, sharing their
names with the systems states, as follows: if variable i carries truth value true then M
is in state i and otherwise, i.e. if variable i is assigned value false, M is not in state i.
The same holds analogously for the other states. In order to encode valid system states,
note that we have to ensure that exactly one of the variables i, f , e, and s is true at each
instant of time. The encoding of this constraint is explained later on. We remark that
the assignments of truth values true and false to a propositional variable x are encoded
symbolically by the positive literal x and the negative literal ¬x, respectively.
The non-deterministic choice between actions a and b is encoded by a Boolean variable

act while action a is represented by the positive literal act and action b by the negative
literal ¬act . For the three probabilistic choices present in M, we introduce three Boolean

9.3 Applications to symbolic analysis of probabilistic systems 279

variables, namely pi for the choice from state i, pea for the choice from state e under
action a, and peb for the choice from state e under action b. The positive literal pi
stands for successor state e, while the negative literal ¬pi means a state change to f .
Furthermore, literals pea, ¬pea, peb, and ¬peb encode the transitions to states s, f , i,
and s, respectively. We thus obtain the following quantifier prefixes

Qs = ∃i ∃f ∃e ∃s ,

Qt = ∃act

R0.9pi

R0.6pea

R0.5peb ,

Qs′ = ∃i′ ∃f ′ ∃e′ ∃s′ .

The formula in CNF representing the initial state i of M is specified by

INITM(s) = (i) ∧ (¬f) ∧ (¬e) ∧ (¬s) .

To obtain the transition relation predicate, we encode each single transition step. For
instance, a step from state e to state f under action a can be encoded by the implication
(e ∧ act ∧ ¬pea) ⇒ f ′, which is equivalent to the clause (¬e ∨ ¬act ∨ pea ∨ f ′). The
conjunction of all these clauses then reflects the full system behavior in a symbolic manner.
Since we represent each system state by an own Boolean variable, as mentioned above,
we need to enforce that exactly one of the primed state variables, constituting the system
state after the transition step has taken place, carries value true. This is simply achieved
by the formula exactly one(i′, f ′, e′, s′) = (i′∨f ′∨ e′∨s′)∧ (¬i′∨¬f ′)∧ (¬i′∨¬e′)∧ (¬i′∨
¬s′)∧ (¬f ′ ∨¬e′)∧ (¬f ′ ∨¬s′) ∧ (¬e′ ∨¬s′) in CNF. The transition relation predicate in
CNF then is

TRANSM(s, t, s′) = (¬i ∨ pi ∨ f ′) ∧ (¬i ∨ ¬pi ∨ e′)

∧ (¬e ∨ ¬act ∨ pea ∨ f ′) ∧ (¬e ∨ ¬act ∨ ¬pea ∨ s′)

∧ (¬e ∨ act ∨ peb ∨ s′) ∧ (¬e ∨ act ∨ ¬peb ∨ i′)

∧ (¬f ∨ f ′) ∧ (¬s ∨ s′) ∧ exactly one(i′, f ′, e′, s′) .

9.3.1 Interpolation-based probabilistic state reachability

As an application of generalized Craig interpolation, we first devote our attention to
probabilistic state reachability. Let be given an MDPM and a set of target states Target ⊆
S in M. The goal then is to compute the probability of reaching the target states Target
from the initial state ı under some explicitly or implicitly (for instance, by an optimality
condition) given scheduler σ. In most scenarios, the target states are considered to be bad,
for instance, to be fatal system errors, such that one has to deal with computing the worst-
case probability of reaching the bad states, i.e. maximizing the reachability probability
under each possible scheduler. This maximum probability MaxReach(M,Target) can be
defined directly as the limit of the maximum step-bounded probability of reaching the
target states from the initial state ı, as similarly shown in [FHH+11, Lemma 1], i.e.

MaxReach(M,Target) := lim
k→∞

MaxReachk
M,Target(ı)

280 9 Beyond Probabilistic Bounded Reachability

where

MaxReachk
M,Target(s) :=

1 if s ∈ Target ,

0 if s /∈ Target and k = 0 ,

max
a∈Act

∑
s′∈S

ps(s, a, s′) ·MaxReachk−1
M,Target(s

′)

if s /∈ Target and k > 0

gives the maximum probability of reaching the target states from state s ∈ S within
k ∈ N steps under each possible scheduler. For some threshold value θ ∈ [0, 1], the safety
verification problem is to decide whether the worst-case probability of reaching the bad
states is at most θ, i.e. to decide whether

(9.1) MaxReach(M,Target) ≤ θ

holds.
The approach of Chapter 5 establishes a symbolic falsification procedure for above

problem 9.1. Though this approach is based on SSMT, i.e. the arithmetic extension of
SSAT, and works for the more general class of discrete-time probabilistic hybrid systems,
which roughly are MDPs with arithmetic-logical transition guards and assignments, the
same procedure restricted to SSAT is applicable to finite-state MDPs. More precisely,
the values lbk = MaxReachk

M,Target(ı) can be determined, first, by exploiting the above
SSAT encoding scheme for MDPs to obtain SSAT formulae akin to the SSMT formulae
from reduction step 14 of Section 5.3 and, second, by solving these SSAT formulae using
an SSAT algorithm. Observe that each value lbk constitutes a lower bound of the max-
imum reachability probability MaxReach(M,Target) due to monotonicity of the chain(
MaxReachk

M,Target(ı)
)
k∈N

. This probabilistic bounded model checking (PBMC) approach
is then able to falsify safety properties of shape 9.1 once a value lbk > θ is computed for
some step depth k.
In the remainder of this subsection, we develop a corresponding counterpart based on

generalized Craig interpolation for SSAT that is able to compute upper bounds ubk of the
maximum reachability probability MaxReach(M,Target). This symbolic verification pro-
cedure, permitting to verify safety properties of shape 9.1 once an upper bound ubk ≤ θ
is computed for some k, proceeds in two phases. Phase 1 determines a symbolic repre-
sentation of an overapproximation of the backward reachable state set, where a state is
backward reachable if it is the origin of a transition sequence leading to the target states
Target . Phase 1 can be integrated into PBMC, as used to falsify the probabilistic safety
property. Whenever such falsification fails for a given step depth k starting at depth 0,
we apply generalized Craig interpolation to the just failed PBMC proof in order to com-
pute a symbolic overapproximation of the backward reachable state set at depth k and
then proceed to PBMC at depth k + 1. As an alternative to the integration into PBMC,
interpolants describing the backward reachable state sets can be successively extended
by means of “stepping” them by prepending another transition, as explained below. In
either case, phase 1 ends when the backward reachable state set becomes stable, i.e. no
new backward reachable state is found, in which case we have computed a symbolic over-
approximation of the whole backward reachable state set. In phase 2, we then construct

9.3 Applications to symbolic analysis of probabilistic systems 281

a family of SSAT formulae with parameter k that forces the system to stay within the
backward reachable state set for k steps. The maximum probabilities of satisfaction of
these SSAT formulae then give upper bounds on the maximum probability of reaching
the target states. The rationale is that system runs leaving the backward reachable state
set will never reach the target states.

Phase 1 (Symbolic overapproximation of backward reachable states). Let be
given an SSAT encoding of the MDP M as above and let Target(s) be a predicate in
CNF that encodes the target states Target . Then, the state-set predicate Bk(s) for k ∈ N

over state variables s is inductively defined as

� B0(s) := Target(s) , and

� Bk+1(s) := Bk(s) ∨ Ik+1(s)

where Ik+1(sj−1) is a generalized Craig interpolant for

=A︷ ︸︸ ︷

TRANSM(sj−1, tj, sj) ∧ Bk(sj),

=B︷ ︸︸ ︷

INITM(s0) ∧

j−1∧

i=1

TRANSM(si−1, ti, si)

with j ≥ 1 with respect to SSAT formula

(9.2) CHOICEM(j) :

j − 1 steps “forward” (=B)︷ ︸︸ ︷

INITM(s0) ∧

j−1∧

i=1

TRANSM(si−1, ti, si)

∧TRANSM(sj−1, tj, sj) ∧ Bk(sj)︸ ︷︷ ︸
one step “backward” (=A)

.

Observe that each generalized Craig interpolant Ik+1(sj−1) can be computed by inter-
polating S-resolution if we rewrite Bk(sj) into CNF, the latter being always possible in
linear time using the Tseitin transformation [Tse68], which potentially adds auxiliary VA-
variables. During computation of Ik+1(sj−1), we take I = true in every application of
rule RI.2 such that Bk(s) overapproximates all system states which are backward reachable
from the target states within k steps as per Corollary 9.2. Whenever the computation of
Bk(s) has reached a fixed point, i.e. if

Bk+1(s) ⇒ Bk(s)

holds for some k, it follows that B(s) := Bk(s) overapproximates all backward reachable
states. It is obvious that such a fixed point is finally reached in the finite-state case.
Note that parameter j ≥ 1 can be chosen arbitrarily, i.e. the system may execute

any number of transitions until state sj−1 is reached since this does not destroy the
“backward-overapproximating” property of Bk+1(s). The rationale of having parameter j
is the additional freedom in constructing generalized interpolants since j may influence
the shape of Ik+1(s), as we see in the proof of concept below.

282 9 Beyond Probabilistic Bounded Reachability

Phase 2 (Upper bounds on maximum reachability probability). After hav-
ing described symbolically all backward reachable states by the predicate B(s), upper
bounds ubk on the maximum probability MaxReach(M,Target) of reaching the target
states Target can now be determined by SSAT solving, more precisely, by computing

(9.3) ubk := Pr

CHOICEM(k) :

states reachable within k steps︷ ︸︸ ︷

INITM(s0) ∧
k∧

i=1

TRANSM(si−1, ti, si)

∧
k∧

i=0

B(si)

︸ ︷︷ ︸
stay within backward reachable state set

.

First observe that the formula above excludes all system runs that leave the set of back-
ward reachable states. This is sound since leaving B(s) means to never reach the target
states. Second, the system behavior becomes more and more constrained for increasing k,
i.e. the ubk’s are monotonically decreasing. With regard to solving the safety verification
problem 9.1, the safety property MaxReach(M,Target) ≤ θ is verified by the procedure
above once an upper bound ubk ≤ θ is computed for some k.

Proof of concept. To demonstrate feasibility of the symbolic approach to probabilistic
safety verification based on generalized Craig interpolation, consider the simple MDP M
from Figure 9.4 and let state s be the only target state, i.e. Target(s) = (¬i) ∧ (¬f) ∧
(¬e) ∧ (s). In the following, we refer to the symbolic SSAT encoding of M as explained
above.
Application of probabilistic bounded model checking, as introduced in Chapter 5, yields

lower bounds lbk on the maximum probability of reaching target state s, for instance,
lb0 = lb1 = 0, lb2 = lb3 = 0.54, lb4 = lb5 = 0.693, . . ., lb20 = 0.817971, . . ., and
lb100 = 0.81818181818181803208. These results were achieved by employing the SSMT
solver SiSAT, confer Section 6.6. Concerning solving time, all 100 SSAT formulae were
solved within 37.05 seconds, while computation of the first 20 lower bounds lb0 to lb20
just needed 370 milliseconds. The highest computation time for a single SSAT problem
was obtained for lb100, namely 1.14 seconds. The evolution of the lbk’s up to step depth
k = 20 is presented graphically on the right of Figure 9.6. Given these results, one might
suppose that the lower bounds converge to and never exceed value 9/11 = 0.81.
In order to substantiate the above guess, we apply the generalized Craig interpolation-

based approach suggested in this subsection. We therefore first compute an overapprox-
imation of the backward reachable state set using the generalized Craig interpolation
scheme 9.2. Thereafter, upper bounds ubk on the maximum reachability probability are
determined by means of scheme 9.3. In order to compute the generalized Craig inter-
polants Ik+1(sj−1) automatically during solving the SSAT formulae 9.2, we implemented
a simple DPLL-based SSAT solver that integrates interpolating S-resolution. As men-
tioned earlier, scheme 9.2 leaves freedom in choosing parameter j ≥ 1. This parameter
permits to specify the number j − 1 of transition steps until system state sj−1 is reached,
which is the common state of formula parts A and B. The experimental results of ap-
plying the generalized Craig interpolation scheme 9.2 on the MDP M for different values

9.3 Applications to symbolic analysis of probabilistic systems 283

j I1 B1 I2 B2 I3 B3 B

1 ¬i ¬i ∨ s true true true true true

{f, e, s} {f, e, s} {i, f, e, s} {i, f, e, s} {i, f, e, s} {i, f, e, s} {i, f, e, s}

2 ¬f ¬f ∨ s ¬f ¬f ∨ s — — ¬f ∨ s

{i, e, s} {i, e, s} {i, e, s} {i, e, s} — — {i, e, s}

3 ¬i ∧ ¬f ¬i ∧ ¬f ∨ s ¬f ¬f ∨ s ¬f ¬f ∨ s ¬f ∨ s

{e, s} {e, s} {i, e, s} {i, e, s} {i, e, s} {i, e, s} {i, e, s}

Figure 9.5: Probabilistic state reachability analysis of MDP M: experimental results of applying

the generalized Craig interpolation scheme 9.2 for M from Figure 9.4 for different values of

parameter j. In addition to the formal presentation of the predicates, the concrete state sets are

given explicitly. (Source of figure: [TF12])

of j are shown in Figure 9.5. With regard to the obtained state-set predicates P , it is
important to remark that a state z lies in the state set encoded by P if and only if there
exists a solution τ of P such that τ(z) = true and τ(z′) = false for all z′ 6= z.

From the results of Figure 9.5, we observe that the value of j actually has an impact
on the shape of the resulting interpolants. Let us consider the first interpolants I1 which
overapproximate all states backward reachable in one step. Clearly, the exact set of
states backward reachable in one step is {e, s}. For j = 1, the overapproximated set
{f, e, s} computed by the procedure is too coarse and actually contains a state which
is not backward reachable at all, namely f . Though the set {i, e, s} for j = 2 actually
consists of backward reachable states only, it is not tight enough as the initial state i
is backward reachable only after two steps. For j = 3, we achieved the precise set
{e, s}. Continuing the scheme for j = 1, I2 and then I3 became true meaning that
the overapproximated set B of backward reachable states covers the whole state space.
Using this inconclusive result in scheme 9.3 would only yield trivial upper bounds ubk = 1
for all k. With regard to j = 2, the interpolation process reached a fixed point after
computation of I2. The resulting state set {i, e, s} encoded by B actually is the precise
set of all backward reachable states. Though I1 was too coarse, this could be compensated
in the computation of I2. For j = 3, we observe that all generalized Craig interpolants I1,
I2, and I3 describe the corresponding backward reachable states accurately, thus leading
to the precise set of all backward reachable states. The computed state sets for j = 3 are
illustrated on the left of Figure 9.6. After having examined the results above, it seems
that the greater value of j, i.e. the more transition steps performed, the more accurate
the overapproximation of the backward reachable state set.

Concerning runtime, each generalized Craig interpolant was computed by the interpo-
lating DPLL-based SSAT solver within fractions of a second, where the highest runtime
of 36 milliseconds was observed when computing I3 for j = 3.

After having determined a symbolic representation B(s) of an overapproximation of all
backward reachable states, we computed upper bounds ubk on the maximum reachability
probability by means of scheme 9.3 for B(s) = ¬f ∨ s, as obtained for j = 3 as well as
for j = 2, again having employed the SSMT tool SiSAT. Some of the results are ub0 = 1,
ub1 = ub2 = 0.9, ub3 = ub4 = 0.855, ub5 = ub6 = 0.83475, . . ., ub20 = 0.818243, . . .,

284 9 Beyond Probabilistic Bounded Reachability

1

1

0.1

0.9 0.4
0.6

0.5 0.5

i

f

s

e

b

a

B0

I1,B1

I2,B2, I3,B3,B 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

re
ac

ha
bi

lit
y

pr
ob

ab
ili

ty

step depth k

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

re
ac

ha
bi

lit
y

pr
ob

ab
ili

ty

step depth k

upper bounds ubk
lower bounds lbk

Figure 9.6: Probabilistic state reachability analysis of MDP M: illustration of the computed

state sets for M by the generalized Craig interpolation scheme 9.2 with j = 3 (left), and lower

bounds lbk and upper bounds ubk on the maximum probability of reaching target state s over step

depth k computed by PBMC and by scheme 9.3, respectively (right). (Source of figure: [TF12])

and ub100 = 0.81818181818181821948. Concerning runtime, all 100 SSAT formulae were
solved within 54.76 seconds, while computation of the first 20 upper bounds ub0 to ub20
just needed 400 milliseconds. The highest computation time for a single SSAT problem
was obtained for ub100, namely 1.77 seconds. The evolution of the ubk’s up to depth k = 20
is presented graphically on the right of Figure 9.6.

In addition to estimating the maximum reachability probability from below using
PBMC, generalized Craig interpolation-based probabilistic reachability analysis facilitates
to estimate the probability also from above. In our example, we can safely conclude that

0.81818181818181803208 = lb100
≤ MaxReach(M, {s})

≤ ub100 = 0.81818181818181821948

holds where the difference ub100 − lb100 is below 10−15. The total computational effort for
obtaining this precise result is about 92 seconds. If reduced accuracy suffices then runtime
obviously improves. For instance, the fact that

0.817971 = lb20 ≤ MaxReach(M, {s}) ≤ ub20 = 0.818243

is satisfied where ub20 − lb20 < 10−3 was deduced within one second. With regard to the
safety verification problem 9.1, system safety for each threshold value θ with θ < 0.817971
or θ ≥ 0.818243 is falsified or verified, respectively, within a second.

With respect to competitive and more established methods based on value or policy
iteration, we observed that the runtime of our prototypic tool chain does not compare
favorably on the simple probabilistic reachability problem above. For instance, the ver-
sion 4.0.1 of the PRISM model checker2 [KNP11] solved the problem in about 600 mil-
liseconds with a precision of 10−15, returning the result 0.8181818181818175.

2More information can be found on http://www.prismmodelchecker.org.

http://www.prismmodelchecker.org

9.3 Applications to symbolic analysis of probabilistic systems 285

In spite of the above fact, we have identified two promising directions for future research
where probabilistic reachability analysis based on generalized Craig interpolation may pay
off:

1. Embedding the same interpolation process into SSMT, i.e. the arithmetic extension
of SSAT, renders the generalized Craig interpolation scheme 9.2 directly applicable
to probabilistic hybrid automata, as introduced in Section 3.3, yielding a symbolic
overapproximation of the backward reachable state set. As for the finite-state case,
scheme 9.3 then facilitates computing upper bounds on the maximum reachability
probability for probabilistic hybrid systems by means of SSMT solving. This would
establish a symbolic verification procedure for probabilistic hybrid systems.

It is important to remark that classical value or policy iteration procedures are not
directly applicable in the hybrid state case, but require a finite-state abstraction,
confer, for instance, [ZSR+10, FHH+11].

The concept of a generalized Craig interpolant is smoothly adaptable to the more
general, non-linear arithmetic SSMT case, while such generalized interpolants then
need not exist in general. One approach to such an extension to SSMT might
build upon the work by Kupferschmid et al. [KB11a, KB11b], which has enhanced
a resolution calculus for non-linear arithmetic SMT formulae over the reals and
integers [KTBF09, KBTF11] by construction rules to compute (classical) Craig in-
terpolants for such SMT formulae.

2. Due to its symbolic nature, the analysis procedures based on SSAT and SSMT
support compact representations of concurrent probabilistic (finite-state and hybrid)
systems without an explicit construction of the product automaton, the latter being
of size exponential in the number of parallel components. This fact constitutes a
strong argument that these symbolic procedures may be able to alleviate the state
explosion problem, which arises necessarily when applying explicit-state algorithms
or methods based on finite-state abstraction refinement, and thus provide a better
scalability.

9.3.2 Interpolation-based probabilistic region stability

In addition to probabilistic state reachability being investigated in the previous subsection,
we now address the problem of probabilistic region stability. For that purpose, we take into
account the notion of region stability, as introduced for non-probabilistic hybrid systems
by Podelski and Wagner in [PW07a, PW07b]. According to their definition, given some
set R of states called region, a (non-probabilistic) system is stable with respect to region R
if and only if for every infinite run 〈s0, s1, . . . , si, . . .〉 of the system, i.e. for every infinite
sequence of states that follows the transition relation, there is some point in time i ≥ 0
such that from i on the system remains in R forever, i.e. ∃i ≥ 0 ∀j ≥ i : sj ∈ R.

Concerning the probabilistic case, several adaptations of region stability seem feasible,
some of which pose measurability problems. Our main concern in this section is to identify
potential application areas of generalized Craig interpolation rather than to discuss se-
mantic issues of probabilistic stability. We therefore study a simple notion of probabilistic

286 9 Beyond Probabilistic Bounded Reachability

Region

K

Figure 9.7: Illustration of the maximal invariance kernelK within the stabilization region Region .

region stability in the sequel which circumvents measure-theoretic issues. As for proba-
bilistic state reachability, we aim at defining a reasonable probability measure as the limit
of the value of a recursive function defining the corresponding step-bounded measures.
Intuitively, we consider finite run prefixes 〈s0, s1, . . . , si〉 such that from time point i on
the probabilistic system remains in the given region forever under each possible future
behavior, i.e. independent of the non-deterministic and probabilistic choices the system
will take. The latter fact is guaranteed whenever the system has reached an invariance
kernel of the given region that can never be left. The probability measure is then defined
by the minimum probability of reaching the maximal invariance kernel.
Formally, given an MDP M and a set of states Region ⊆ S called the stabilization

region or the region for short, an invariance kernel K ⊆ Region with respect to M is
a set of states from Region such that there is no transition from a state in K to a state
outside K, i.e. there does not exist a tuple (z, act , z′) ∈ K × Act × (S \ K) such that
ps(z, act , z′) > 0. An invariance kernel K is called maximal if adding any new states to
K does not lead to an invariance kernel, i.e. each K ∪ Z with Z ⊆ Region \ K and Z 6= ∅
is not an invariance kernel. An example of a maximal invariance kernel is illustrated in
Figure 9.7. Note that the maximal invariance kernel is unique. The latter fact can be
simply shown using the observation that the set of all invariance kernels K ⊆ Region with
respect to M is closed under union. Let K∗ ⊆ Region be the (unique) maximal invariance
kernel with respect to M. Then, the minimum probability MinStable(M,Region) that
M is stable with respect to Region is defined as the limit of the minimum step-bounded
probability of reaching the maximal invariance kernel K∗ from the initial state ı, i.e.

MinStable(M,Region) := lim
k→∞

MinReachk
M,K∗(ı)

where

MinReachk
M,K∗(s) :=

1 if s ∈ K∗ ,

0 if s /∈ K∗ and k = 0 ,

min
a∈Act

∑
s′∈S

ps(s, a, s′) ·MinReachk−1
M,K∗(s′)

if s /∈ K∗ and k > 0

gives the minimum probability of reaching K∗ from state s ∈ S within k ∈ N steps under

9.3 Applications to symbolic analysis of probabilistic systems 287

each possible scheduler.
When considering stabilization within Region as the desired property then the value of

MinStable(M,Region) establishes the probability of stabilizing in worst case, i.e. under an
optimal adversarial scheduler. For some threshold value θ ∈ [0, 1], the stability verification
problem then is to decide whether this worst-case probability is at least θ, i.e. to decide
whether

(9.4) MinStable(M,Region) ≥ θ

holds.
In what follows, we propose a symbolic verification procedure for above problem 9.4

which also proceeds in two phases. In phase 1, we compute a symbolic representation of
an invariance kernel by means of generalized Craig interpolation. The main idea here is
to iteratively eliminate states z not belonging to an invariance kernel from Region until a
fixed point is reached. Due to the use of interpolation, the set of such states z is overap-
proximated in each iteration, meaning that potentially too many states are removed. This
implies that the resulting invariance kernel is not necessarily maximal. However, each in-
variance kernel can be exploited for computing lower bounds lb of MinStable(M,Region).
The latter computation then is performed in phase 2 by means of SSAT-based bounded
reachability analysis. Once a lower bound lb ≥ θ is computed, property 9.4 is verified.

Phase 1 (Symbolic representation of an invariance kernel). Let be given an SSAT
encoding of an MDP M as above and a propositional formula Region(s) encoding the
stabilization region Region. The state-set predicate Rk(s) for k ∈ N over state variables s
is inductively defined as

� R0(s) := Region(s), and

� Rk+1(s) := Rk(s) ∧ ¬Ik+1(s)

where Ik+1(sj−1) is a generalized Craig interpolant for

=A︷ ︸︸ ︷

TRANSM(sj−1, tj, sj) ∧ ¬Rk(sj),

=B︷ ︸︸ ︷

INITM(s0) ∧

j−1∧

i=1

TRANSM(si−1, ti, si)

with j ≥ 1 with respect to SSAT formula

(9.5) CHOICEM(j) :

j − 1 steps “forward” (=B)︷ ︸︸ ︷

INITM(s0) ∧

j−1∧

i=1

TRANSM(si−1, ti, si)

∧TRANSM(sj−1, tj, sj) ∧ ¬Rk(sj)︸ ︷︷ ︸
one step “backward” from ¬Rk (=A)

.

Observe that each Ik+1(sj−1) can be computed by interpolating S-resolution if we rewrite
¬Rk(sj) into CNF, the latter being always possible in linear time using the Tseitin trans-
formation [Tse68], which potentially adds auxiliary VA-variables. During computation of

288 9 Beyond Probabilistic Bounded Reachability

Rk¬Rk

Ik+1

Figure 9.8: Illustration of the generalized Craig interpolation scheme 9.5: in this example, each

generalized Craig interpolant Ik+1(s) describes at least all red states as these directly lead to

the state set ¬Rk(s), but Ik+1(s) may also comprise some of the other states. Observe that the

maximal invariance kernel consists of the both green states.

each Ik+1(sj−1), we take I = true in every application of rule RI.2 such that Ik+1(s)
overapproximates all system states directly leading to the state set ¬Rk(s) due to Corol-
lary 9.2. As a consequence, from each state in Rk+1(s) = Rk(s)∧¬Ik+1(s) it is infeasible
to leave the set Rk(s) in one step. For an illustration of the generalized Craig interpola-
tion scheme 9.5, confer Figure 9.8. Whenever the chain Rk(s) has reached a fixed point,
i.e. if

Rk(s) ⇒ Rk+1(s)

holds for some k, it follows that K(s) := Rk(s) is a not necessarily maximal invariance
kernel of Region with respect to M, i.e. once entered, the system cannot leave the set
K(s). Obviously, the chain Rk(s) eventually reaches a fixed point in the finite-state case
(which, however, may be trivial).

Similar to scheme 9.2, parameter j ≥ 1 can be chosen arbitrarily, i.e. the system may
execute any number of transitions until state sj−1 is reached since this does not destroy the
overapproximation property of Ik+1(s). The presence of parameter j gives us additional
freedom in constructing generalized Craig interpolants, as j may influence the shape of
Ik+1(s) like in the proof of concept below.

Phase 2 (Lower bounds on minimum probability of reaching the kernel). After
having determined a symbolic representation K(s) of a not necessarily maximal invariance
kernel K with respect to MDP M, we now compute lower bounds on the minimum
probability MinStable(M,Region) of stabilizing within Region by means of SSAT solving.
To this end, first observe that MinReachk

M,K∗(ı) is monotonically increasing in k which
implies that

MinReachk
M,K∗(ı) ≤ MinStable(M,Region)

for each k ∈ N. Let K∗ be the unique maximal invariance kernel with respect to M.
Then, K ⊆ K∗ since K is an invariance kernel and the maximal invariance kernel K∗ is

9.3 Applications to symbolic analysis of probabilistic systems 289

unique. As a consequence,

MinReachk
M,K(ı) ≤ MinReachk

M,K∗(ı)

for each k ∈ N. Summing up, each value of MinReachk
M,K(ı) establishes a lower bound of

MinStable(M,Region).
In principle, MinReachk

M,K(ı) can be reduced to an SSAT formula similar to the SSMT
encoding scheme of Section 5.3. The difference however is that we need to minimize the
satisfaction probability. The latter can be achieved by an SSAT reduction scheme that
exploits universal quantifiers to resolve non-deterministic choices of actions. Universal
quantifiers then aim at minimizing the satisfaction probability, confer Section 4.2. Though
the SSMT solver SiSAT actually supports universal quantification, we instead stay within
the scope of the logic exposed in this thesis and rephrase minimum probabilistic state
reachability as a maximum probabilistic state avoidance problem as follows:

MaxAvoidk
M,K(s) :=

0 if s ∈ K ,

1 if s /∈ K and k = 0 ,

max
a∈Act

∑
s′∈S

ps(s, a, s′) ·MaxAvoidk−1
M,K(s

′)

if s /∈ K and k > 0 .

It then holds that
MinReachk

M,K(ı) = 1−MaxAvoidk
M,K(ı)

which can be proven by straightforward induction on the step bound k. In the base cases,
i.e. if k = 0 and s ∈ K or s /∈ K, the statement is obvious. Within the induction step, we
exploit the property that

mini

∑
j
pi,j · Pi,j = 1−maxi

∑
j
pi,j · (1− Pi,j)

is true for 0 ≤ Pi,j ≤ 1 and
∑

j pi,j = 1.

The problem of computing the value of MaxAvoidk
M,K(ı) can be reduced to computing

the maximum probability of satisfaction of the SSAT formula

Φk
M,K := CHOICEM(k) :

states reachable within k steps︷ ︸︸ ︷

INITM(s0) ∧
k∧

i=1

TRANSM(si−1, ti, si)

∧
k∧

i=0

¬K(si)

︸ ︷︷ ︸
avoid invariance kernel K

.

According to the definition of MaxAvoidk
M,K(ı), the propositional formula of Φk

M,K de-
scribes all system runs avoiding the invariance kernel K for at least k transition steps.
That is, all assignments encoding such latter runs yield satisfaction probability 1, while
assignments encoding runs that visit K within the first k steps do not satisfy the propo-
sitional formula, thus leading to satisfaction probability 0. As a consequence,

MaxAvoidk
M,K(ı) = Pr

(
Φk

M,K

)
.

290 9 Beyond Probabilistic Bounded Reachability

j I1 R1 I2 R2 K

1 true false true false false

{i, f, e, s} ∅ {i, f, e, s} ∅ ∅

2 true false true false false

{i, f, e, s} ∅ {i, f, e, s} ∅ ∅

3 ¬s ¬f ∧ s ¬s ¬f ∧ s ¬f ∧ s

{i, f, e} {s} {i, f, e} {s} {s}

4 ¬s ¬f ∧ s ¬s ¬f ∧ s ¬f ∧ s

{i, f, e} {s} {i, f, e} {s} {s}

Figure 9.9: Probabilistic region stability analysis of MDP M: experimental results of applying

the generalized Craig interpolation scheme 9.5 for M from Figure 9.4 for different values of

parameter j, with the stabilization region consisting of the states i, e, and s. In addition to

the symbolic representations computed by interpolation, the concrete state sets represented by

these predicates are stated explicitly. (Source of figure: [TF12])

Using above facts, we deduce the following relation

1− Pr
(
Φk

M,K

)
= 1−MaxAvoidk

M,K(ı)

= MinReachk
M,K(ı)

≤ MinReachk
M,K∗(ı)

≤ MinStable(M,Region) .

This finally enables us to compute lower bounds lbk of MinStable(M,Region) using the
scheme

(9.6) lbk := 1− Pr
(
Φk

M,K

)
,

where Pr(Φk
M,K) is determined by SSAT solving. Note that the system behavior encoded

by Φk
M,K becomes more and more constrained for increasing k such that the satisfaction

probabilities Pr
(
Φk

M,K

)
are monotonically decreasing. This in turn means that the lbk’s

are monotonically increasing. With regard to solving the stability verification problem 9.4,
the desired property MinStable(M,Region) ≥ θ is verified by the procedure above once
a lower bound lbk ≥ θ is computed for some k.

Proof of concept. To demonstrate feasibility of the symbolic approach to probabilis-
tic region stability based on generalized Craig interpolation, again consider the simple
MDP M from Figure 9.4 and let the symbolic representation of the stabilization region
be given by Region(s) = ¬f . Accordingly, the region in which M should stabilize consists
of the states i, e, and s. We again use the symbolic SSAT encoding of M as introduced
before.
We are first interested in computing an invariance kernel K ⊆ Region(s) with respect

to M by means of the generalized Craig interpolation scheme 9.5. To cope with the latter
scheme automatically, we again employ the simple interpolating DPLL-based SSAT solver

9.3 Applications to symbolic analysis of probabilistic systems 291

1

1
0.1

0.9 0.4
0.6

0.5 0.5

i

f

s

e

b

a

R0 = Region

R1,R2,K

I1, I2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

re
ac

ha
bi

lit
y

pr
ob

ab
ili

ty

step depth k

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

re
ac

ha
bi

lit
y

pr
ob

ab
ili

ty

step depth k

lower bounds lbk

Figure 9.10: Probabilistic region stability analysis of MDP M: illustration of the computed state

sets for M by the generalized Craig interpolation scheme 9.5 with j ∈ {3, 4} (left), and lower

bounds lbk on the minimum probability of reaching the invariance kernel K = {s} over step

depth k computed by scheme 9.6 (right). (Source of figure: [TF12])

mentioned in the previous subsection. The results of these experiments for different values
of j are shown in Figure 9.9. It is not hard to see that the unique maximal invariance
kernel K∗ consists of the state s only. Recall that each interpolant Ik+1 overapproximates
all system states directly leading to the state set ¬Rk. When setting parameter j to
value 1 or 2, we observe that interpolant I1 = true is too coarse since it includes the
whole state space. This causes the trivial invariance kernel K = false to be computed
representing the empty set. For choices j = 3 and j = 4, however, I1 = ¬s describes
the exact set of states which lead to ¬R0 = ¬Region . Finally, the non-trivial invariance
kernel K = ¬f ∧ s consisting of state s only is computed. Note that K actually is the
maximal invariance kernel. The computed state sets for j ∈ {3, 4} are illustrated on the
left of Figure 9.10.

These results confirm the observation obtained from the experiments of Subsection 9.3.1,
namely that the greater value of j, i.e. the more transition steps are performed, the more
accurate the overapproximation. Concerning runtime, each generalized Craig interpolant
was computed by the interpolating DPLL-based SSAT solver within fractions of a second,
where the highest runtime of 88 milliseconds was observed when computing I2 for j = 4.

After having determined a symbolic representation of an invariance kernel K ⊆ Region
with respect to M, we computed lower bounds lbk on the minimum probability that M
is stable with respect to Region by means of scheme 9.6 for K(s) = ¬f ∧ s, as obtained
for j ∈ {3, 4}, again having employed the SSMT tool SiSAT. Some of the results are
lb0 = lb1 = 0, lb2 = lb3 = 0.45, lb4 = lb5 = 0.54, . . ., and lb100 = 0.54. Concerning
runtime, all 100 SSAT formulae were solved within 88.16 seconds, while computation
of the first 20 lower bounds lb0 to lb20 consumed just 600 milliseconds. The highest
computation time for a single SSAT problem was obtained on lb100, namely 2.91 seconds.
The evolution of the lbk’s up to depth k = 10 is presented graphically on the right of
Figure 9.10. With regard to the stability verification problem 9.4, the desired property
MinStable(M,Region) ≥ θ is verified for each threshold value θ ≤ 0.54 within a second.

Concerning competitive approaches, we remark that the probabilistic model checking

292 9 Beyond Probabilistic Bounded Reachability

tool PRISM 4.0.1 [KNP11] is also able to deal with probabilistic region stability of MDPs
by means of path operators.3 To determine the value of MinStable(M,Region) for the
example above, we used the specification Pmin=? [F P>=1 [G (!f)]] meaning that we are
interested in the minimum probability (Pmin=?) that finally (F) the system satisfies almost
surely (P>=1) the property that globally (G) state f is never visited (!f). PRISM solved
the problem in 644 milliseconds returning the result 0.54.
As discussed for the case of probabilistic state reachability in Subsection 9.3.1, we

are also confident that the presented approach to probabilistic region stability based on
generalized Craig interpolation becomes beneficial when adapted to probabilistic hybrid
systems, where the classical procedures are not directly applicable. Furthermore, a par-
ticular pay-off is expected when dealing with concurrent probabilistic systems owing to
the symbolic nature of the interpolation-based technique.

3Confer http://www.prismmodelchecker.org/manual/PropertySpecification/ThePOperator for
more detailed information.

http://www.prismmodelchecker.org/manual/PropertySpecification/ThePOperator

10 Conclusion

In this chapter, we first summarize the achievements in Section 10.1, then elaborate on
potential ideas for future research in Section 10.2, and give closing words in Section 10.3.

10.1 Summary of achievements

In this thesis, we made three contributions to symbolic model checking of probabilistic
hybrid and finite-state systems.

At first, we elaborated on the main contribution, namely a symbolic falsification proce-
dure for probabilistic safety properties of probabilistic hybrid automata based on SSMT
solving. As a formal model, we considered probabilistic hybrid automata (PHAs), which
are, on the one hand, restricted to discrete time, to finite non-determinism, and to finite
probabilistic choices but, on the other hand, allow for a very general concept of con-
currency. Recall that the system class of PHAs does not support ordinary differential
equations (ODEs) directly. It is however always possible to safely approximate ODEs
by, for instance, Taylor series. In spite of these limitations, interesting applications can
be covered as shown by the realistic case study from the networked automation systems
(NAS) domain, confer Section 3.1 and Chapter 8. We again remark that these restrictions
are not essential for the approach and that we discuss a much more expressive automata
model which incorporates ODEs and is interpreted over continuous time in Section 10.2.

With regard to the analysis of PHAs, we were interested in probabilistic bounded state
reachability, more precisely, in the worst-case probability of reaching a set of (unsafe)
target states within a bounded number of system steps. In order to address the latter
analysis goal fully symbolically, probabilistic bounded reachability for concurrent PHAs
is encoded as a stochastic satisfiability modulo theories (SSMT) formula involving rich
arithmetic constraints. The logical framework of SSMT extends the notion of satisfiability
modulo theories (SMT) with alternating existential and randomized quantifiers, leading
to a quantitative semantics of SSMT formulae, namely to the maximum probability of
satisfaction. These existential and randomized quantifiers are utilized to describe the
non-deterministic and probabilistic choices of PHAs, respectively. The satisfaction proba-
bilities of the SSMT formulae reflecting the probabilistic reachability problem up to some
specified step depths yield lower bounds on the worst-case probability of reaching the
target states. Recall that the symbolic encoding of a system of concurrent PHAs is of size
linear in the number of concurrent components. The state explosion problem, arising in
several other analysis approaches from an explicit construction of the product automaton
with respect to the discrete state space, is thus mitigated which contributes to a better
scalability.

In order to complete the symbolic analysis procedure, we explained a DPLL-style back-
tracking algorithm for solving SSMT formulae. Basically, this algorithm traverses the

294 10 Conclusion

tree spanned by the domains of the existential and randomized variables. Whenever a
leaf of this tree, representing a quantifier-free SMT subproblem, is visited, the SMT solver
iSAT is called to address this subproblem. We discussed that such naive approach is far
from scalable as it has to explore the entire quantifier tree which is of size exponential
in the number of quantified variables. To overcome this problem, we proposed a number
of algorithmic enhancements based on semantic inferences pruning major parts of the
quantifier tree. By means of experimental results, it was shown that these optimizations
can lead to tremendous performance gains, sometimes by multiple orders of magnitude.
Concerning probabilistic safety properties of the shape “the probability of reaching the
unsafe states is at most 1h in worst case”, this probabilistic bounded model checking
approach establishes a falsification procedure being able to refute such requirements on
PHAs whenever a lower bound on the worst-case probability of reaching the unsafe states
is computed which exceeds the acceptable threshold value 1h. Practical applicability
of this symbolic analysis procedure was demonstrated on a realistic case study from the
networked automation systems (NAS) domain.

Motivated by the fact that industrial applications often call for quantitative measures
distinct from classical reachability probabilities, a second achievement of this thesis is a
symbolic verification procedure for safety requirements on expected values of probabilis-
tic hybrid automata. To this end, we suggested an SSMT-based method for computing
expected values of concurrent discrete-time PHAs like, for instance, mean time to fail-
ure (MTTF). We extended the concept of concurrent discrete-time PHAs by a notion of
costs and then defined the cost expectation for such systems as well as the corresponding
cost-expectation model-checking problem. In order to address a step-bounded variant of
the latter problem symbolically, we extended the semantics of SSMT to deal with the
maximum conditional expectation of a designated free variable in an SSMT formula, and
presented a reduction from the step-bounded cost-expectation problem to the enhanced
version of SSMT. The extended semantics of the resulting SSMT formulae, i.e. the maxi-
mum conditional expectation of the designated variable, yields lower bounds on the cost
expectation for the given system. The presentation of an algorithm dealing with the
extended semantics of SSMT completed the symbolic verification procedure being able
to validate probabilistic safety requirements of the shape “the MTTF is always at least
20 minutes” whenever a lower bound on the worst-case MTTF is computed which is at
least 20 minutes. Applicability of this SSMT-based expected-value analysis approach was
also demonstrated on the NAS case study.

A third contribution dealt with approaches that go beyond probabilistic bounded state
reachability but are at the moment restricted to probabilistic finite-state models like
Markov decision processes. For this purpose, the novel concept of generalized Craig in-
terpolation for SSAT formulae was suggested. In order to determine generalized Craig
interpolants algorithmically, we devised a resolution calculus for SSAT formulae called S-
resolution and then augmented it with a Pudlák-style interpolant generation. We further
showed how S-resolution can be integrated into a DPLL-based SSAT procedure, which
is the core algorithm of state-of-the-art SSAT solvers, with the objective of computing
generalized interpolants more efficiently in practice, as known from the non-probabilistic
case.

As an application of generalized Craig interpolation, we first identified probabilistic

10.2 Future directions 295

state reachability and developed a symbolic verification procedure for probabilistic safety
properties of probabilistic finite-state systems. Though currently being confined to the
finite-state case, this approach can be considered as complementary to the symbolic fal-
sification procedure mentioned above. Akin to symbolic methods for non-probabilistic
systems, generalized Craig interpolation provides a technique for computing a symbolic
overapproximation of the (backward) reachable state set of probabilistic systems. While
Craig interpolation-based model checking for non-probabilistic systems is able to verify
safety properties of the shape “the unsafe states are unreachable”, namely if the overap-
proximated set of all reachable states has an empty intersection with the set of unsafe
states, reaching the unsafe states is frequently unavoidable in probabilistic scenarios. A
simple check for empty intersection thus does not suffice in general to verify probabilis-
tic safety properties like “the probability of reaching the unsafe states is at most 1h
in worst case”. The verification procedure proposed in this thesis exploits the symbolic
overapproximation of the backward reachable state set, being the fixed point of an itera-
tive computation of generalized Craig interpolants, as well as a predicative description of
the system in order to construct SSAT formulae whose quantitative interpretations yield
upper bounds on the worst-case probability of reaching the unsafe states. Whenever an
upper bound of at most 1h is computed using an SSAT solver then above probabilistic
safety property is verified.

As another application area of generalized Craig interpolation, we gave attention to
probabilistic region stability of probabilistic finite-state systems. We devised a symbolic
procedure for the verification of probabilistic stability properties of the shape “the prob-
ability that the system stabilizes within a given region is always at least 99.9%”. More
precisely, we were interested in the minimum probability of reaching the maximal invari-
ance kernel of the given region which can never be left. The proposed approach first
computes a symbolic representation of a not necessarily maximal invariance kernel by
means of generalized Craig interpolation. The main idea here is to iteratively eliminate
states from the given region not belonging to an invariance kernel until a fixed point is
reached. Recall that the set of such states is overapproximated due to the use of interpo-
lation which implies that potentially too many states are removed. However, the resulting
invariance kernel always is a subset of the maximal invariance kernel and thus can be used
for computing lower bounds on the minimum probability of reaching the maximal invari-
ance kernel, namely by means of SSAT-based probabilistic bounded reachability analysis.
In case a lower bound of at least 99.9% is computed, the above probabilistic stability
property is verified.

10.2 Future directions

In this section, we elaborate on interesting directions for future research.

SSMT-based analysis of continuous-time PHAs involving ODEs. One of the
central points of future work is to generalize the symbolic methods presented in this the-
sis to a more expressive model of probabilistic hybrid automata which is interpreted over
continuous time and which supports uncountable non-determinism in transition assign-

296 10 Conclusion

x′ = x ∧ y′ = y

0.1

0.3

0.9

0.7

∧y′ = 2 · x
x′ < 3.1

x′ > sin(y) ∧ y′ ≤ 4 · y

true/
x′ = x
∧y′ = y

∧y′ = y
x′ = x

|y| · x2 < x/2

cos(x) < 0

∧y = −1.1
x ∈ [0.1, 1.4]

s2s1

dx
dt

= x
dy
dt = 3x− y2

−2.2 ≤ x ≤ 200
2 ≤ y ≤ 85.1

dx
dt

= x · y
dy
dt = 3x− y

0 ≤ x ≤ 2
−3 ≤ y ≤ 7.7

Figure 10.1: Graphical representation of a continuous-time probabilistic hybrid automaton in-

volving ODEs. (This figure is a slight modification of Figure 1 from [FTE10a].)

ments as well as ordinary differential equations (ODEs) to describe continuous evolutions.
In recent work [FTE10a], the author of this thesis and his co-authors proposed an SSMT-
based approach to probabilistic bounded state reachability analysis of such continuous-
time PHAs. An example of the more general system class is illustrated in Figure 10.1.
While the conceptual idea of the generalized approach remains the same, the expressive-
ness of SSMT is enhanced considerably in order to cope with the richer semantics of
continuous-time PHAs.

One extension is the direct integration of the theory of ODEs into SSMT in addition
to the theory of non-linear arithmetic over the reals and integers, as pursued in the non-
probabilistic setting by Eggers et al. [EFH08, EFH09]. That is, the extended SSMT
framework can handle constraints involving ODEs. More precisely, an ODE constraint is
represented by a tuple (ODE(x), Inv(x), s, e, τ), where

� ODE(x) is an ODE of the shape

dx(t)

dt
= f(x(t), y1(t), . . . , yn(t))

describing the trajectory of variable x defined by this ODE constraint with y1, . . . , yn
being the variables defined by other ODE constraints,

� Inv(x) is an invariant l ≤ x(t) ≤ u describing the interval that must not be left
during continuous evolution,

� a variable s called the start point of the trajectory in dimension x,

� a variable e called the end point of the trajectory in dimension x, and

� a variable τ called the length of the trajectory.

That is to say, an ODE constraint encodes a trajectory of variable x which starts in s,
evolves according to ODE (x), ends in e, and is of length τ , thereby never violating the
invariant Inv(x), as depicted in Figure 10.2.

10.2 Future directions 297

l

s

e

u

x(t)

τ0 t

f(x(t), y1(t), . . . , yn(t))

Figure 10.2: Graphical representation of a trajectory defined by an ODE constraint. (This figure

is a slight modification of Figure 2 from [FTE10a].)

Another extension is to permit existential quantification over real-valued variables in
SSMT in order to cope with uncountable non-determinism. Sources of such uncount-
able non-determinism are, on the one hand, non-deterministic assignments like x′ >
x · (1 + x2 · y3) in discrete transitions and, on the other hand, the lengths τ of the ODE
trajectories. When encoding the maximum probability of reaching the target states within
a bounded number of system steps, where a system step is either a continuous flow or a
discrete transition, as an SSMT formula, one is faced with maximizing the step-bounded
reachability probability over uncountably many values of the continuous state components
like x′ above and of the lengths τ of the ODE trajectories. These latter non-deterministic
choices in continuous-time PHAs are mapped to existential quantification in SSMT as in
the discrete-time case, but the domains of these existential variables are now given by
real-valued intervals instead of finite sets.

Algorithmically, computing the maximum probability of satisfaction for the extended
notion of SSMT is not straightforward in general. This is due to maximizing over un-
countably many alternatives and due to dealing with the undecidable theory of ODEs in
addition to non-linear arithmetic. To nevertheless find safe solutions to this important
and challenging problem, we presented an algorithmic approach to effectively compute
safe upper bounds of satisfaction probabilities in [FTE10a]. The main idea of this al-
gorithm is as follows. To cope with ODE constraints, we exploited overapproximation
techniques based on safe interval calculations which permit safe reasoning by “enclosing”
ODE solutions in interval-valued functions. This integration of ODE enclosure methods
into SSMT solving is based on the work described in [EFH08, EFH09], but more sophisti-
cated approaches as in [ERNF11, ERNF12] are conceivable. To exhaustively explore the

298 10 Conclusion

uncountable domains of existential variables, they are partitioned into small and finitely
many subintervals. Instead of values, these small intervals are assigned to existential
variables during SSMT proof search. This leads to finite branching for each existential
continuous-domain variable. The resulting algorithm always terminates and is sound in
the sense that it delivers safe upper bounds of the maximum probability of satisfaction.
In [FTE10a], we applied a prototypical implementation of the procedure sketched above
to the quantitative analysis of a networked control system. This prototype already incor-
porates ODE enclosure methods but still lacks existential quantification over continuous
domains.

The above approach establishes a fully symbolic analysis procedure for the very expres-
sive system model of continuous-time PHAs involving ODEs. Extending the implementa-
tion to support existential quantification over continuous domains as well as improving the
practical applicability and performance of the resulting tool are thus important and chal-
lenging aspects of future work. Moreover, generalizing the SSMT-based expected-value
analysis procedure to the continuous-time case is another well-motivated future direc-
tion. A further issue is to adapt the generalized Craig interpolation-based approaches to
probabilistic state reachability and probabilistic region stability to continuous-time PHAs
involving ODEs. The latter idea however is a major challenge even for the discrete-time
model considered in this thesis, as mentioned next.

Generalized Craig interpolation for SSMT. The novel concept of a generalized
Craig interpolant can be smoothly adapted to the more general SSMT case, while then
such generalized Craig interpolants need not exist in general. The computation of these
interpolants however is not straightforward. Recall that the procedure for determining
generalized interpolants is based on a resolution calculus for SSAT called S-resolution.
Since SSMT formulae involve quantified variables with arbitrary finite domains as well as
non-quantified variables with continuous domains, S-resolution is not directly applicable to
SSMT. A potential generalization of S-resolution to cope with SSMT formulae comprising
non-linear real arithmetic constraints might incorporate the work on a resolution calculus
for SMT with respect to the undecidable theory of non-linear arithmetic over the reals and
integers [KTBF09, KBTF11]. The latter resolution calculus was enhanced by construction
rules to compute Craig interpolants for such SMT formulae in [KB11a, KB11b].

An interesting as well as challenging point for future research thus is, first, to develop
a resolution calculus for SSMT and, second, to augment this by rules for the construction
of generalized Craig interpolants. Such an interpolating SSMT resolution calculus would
render the generalized Craig interpolation-based approaches to probabilistic state reach-
ability and probabilistic region stability directly applicable to concurrent discrete-time
probabilistic hybrid automata.

More expressive specification logics. The main approach of this thesis aims at
probabilistic safety properties of the shape “an unsafe state is reachable only with very
low probability”. Such properties just consider (un)reachability of states. It however is
oftentimes necessary to specify more expressive requirements like “each message will be
finally delivered with probability 1 and whenever a message is tried to be sent then this
message will be delivered in five system steps with very high probability of at least 0.995”.

10.2 Future directions 299

2

1

3

x = 1 true 0.2(1− 1/x)

1/x

0.8(1− 1/x) x′ = x

x′ = x

x′ = 2x

R

[1→0.8(1−1/x), 2→0.2(1−1/x), 3→1/x]pc

s1 s3

s2

t

Figure 10.3: A probabilistic hybrid automaton that incorporates state-dependent probability

distributions within state transitions, and a potential generalization of randomized quantification

to cope with such distributions. The encircled numbers enumerate the probabilistic transition

alternatives.

For this purpose, several temporal logics like probabilistic versions of CTL and LTL have
been proposed in the literature.

It thus is well-motivated to enhance SSMT-based probabilistic bounded model checking
of PHAs with respect to more expressive system requirements in future work. Some
preliminary work on SSMT-based PBMC of PHAs for LTL specifications can be found
in [Sch08]. In this approach, which is similar to the one described in [AKM11], confer
Section 3.2, the LTL formula is translated into a generalized Büchi automaton which
in turn can be encoded as an SSMT formula. This reduces the original problem to
probabilistic bounded state reachability.

More expressive stochastic dynamics. The current model of PHAs is confined in
its stochastic behavior as it only admits probabilistic events from a finite sample space
within state transitions. One idea to achieve a more expressive model of randomness is
to permit continuous probability distributions in discrete state changes as in [FHH+11].

A slightly different but not less interesting enhancement is to support distributions
that are still discrete but depend on the current discrete-continuous system state. For an
example, consider Figure 10.3. If transition t is executed then the probabilities of the three
probabilistic transition alternatives are not given by constant values, as in the current
model, but by the values of arithmetic terms over the continuous state component x.
For instance, immediately after discrete state s1 is entered for the first time, variable x
carries value 1. The probability of selecting one of the transition alternatives 1 and 2
is 0, while the probability of alternative 3 is 1. The automaton thus performs a self
loop, thereby doubling the value of x to 2. That is, the probability of a second self loop
decreases to 1/2 = 0.5. Switching to discrete states s2 and s3 therefore is of probability

300 10 Conclusion

0.8(1 − 1/2) = 0.4 and 0.2(1 − 1/2) = 0.1, respectively. Let us assume that the system
revisits s1 again. Then, the value of variable x was updated to 4. This implies that the
probability of a third self loop in a row drops to 1/4 = 0.25 where the probabilities of
transition alternatives 1 and 2 are 0.8(1−1/4) = 0.6 and 0.2(1−1/4) = 0.15, respectively.
It is easy to see that the probability of leaving discrete state s1 is quickly increasing, namely
according to 1 − 2−n with n being the number of consecutive self loops. The above idea
allows to describe properties like “the higher temperature the higher risk of fire” in a very
precise way. In the current model, such facts can only be approximated by means of
finitely many transitions and corresponding transition alternatives.

With regard to SSMT-based model checking of such enhanced PHAs, randomized quan-
tifiers in SSMT must be extended for the purpose of supporting above state-dependent
distributions, as indicated in Figure 10.3.

Generation of probabilistic counterexamples. An essential feature of model check-
ing is the generation of counterexamples, which are system executions that violate certain
system requirements. Counterexamples provide valuable information on how the system
has to be redesigned with the objective of satisfying the system requirements. While
a counterexample in the non-probabilistic case is simply one system run in the case of
linear-time properties, a counterexample for probabilistic safety properties of the shape
“the probability of reaching unsafe system states is at most θ” is rather a tree of runs with
a probability mass exceeding the acceptable threshold value θ. More recently, several ap-
proaches to the generation of probabilistic counterexamples, in particular for finite-state
Markov models were proposed in the literature [ADvR09, HKD09, AL10, ÁJW+10].

Braitling, Wimmer et al. [WBB09, BWB+11] presented SAT-based and SMT-based
BMC approaches to the generation of probabilistic counterexamples for discrete-time
Markov chains and Markov reward models, confer Section 3.2. Though the system mod-
els considered have finite state space and are fully probabilistic, these approaches are
technically related to SSMT-based PBMC of PHAs. The technique for the generation
of probabilistic counterexamples relies on collecting satisfying assignments of the corre-
sponding BMC formulae provided by a SAT or SMT solver until their probability mass
exceeds the safety threshold θ.

A similar idea can be applied to SSMT-based PBMC of PHAs. The SSMT encoding
scheme ensures that satisfying assignments (of the matrix) of the PBMC formula are
in one-to-one correspondence to system runs reaching the unsafe target states. Recall
that the presented SSMT algorithm actually searches for such satisfying assignments
during proof search which implies that the algorithm is able to generate probabilistic
counterexamples. This observation was already exploited in the algorithmic enhancement
of caching solutions, confer Subsection 6.5.6. That is to say, the mere construction of
probabilistic counterexamples for PHAs by means of SSMT-based PBMC is a rather
straightforward extension.

More challenging tasks for future work deal with the development of methods for effi-
ciently representing and moreover compactifying probabilistic counterexamples produced
by SSMT solving. From an engineering perspective, it furthermore is advantageous to
devise techniques for an adequate visualization of probabilistic counterexamples within
PHAs in a user-friendly way. Probabilistic counterexamples of real-world, large-scale

10.2 Future directions 301

systems can be expected to be rather large and thus not comprehensible to a human.
Comprehensibility however is a crucial issue for the system engineer in order to eliminate
the faulty behavior from the system under development. An important question thus is
how debugging information based on the potentially large counterexample can be properly
visualized within a human-readable automaton model. One idea could be a simulation-
based presentation of such counterexamples. That is, the PHA is executed while non-
deterministic choices are resolved by the counterexample but probabilistic choices need to
be handled by the user. Another idea is to identify a rather minimal subsystem by means
of removing non-deterministic and probabilistic transitions as well as locations from the
original system such that this subsystem itself violates the probabilistic safety property.

Parallelization of SSMT solving algorithms. In order to improve performance of
SSMT solvers in practice, another idea for future work is motivated by recent trends in
hardware design towards multicore and multiprocessor systems, namely the development
of parallelized SSMT algorithms. In recent work in the related area of parallel solving
of quantified Boolean formulae, sometimes super-linear speed-ups were obtained due to
knowledge sharing between the parallel solving processes [LMS+09, LSB+11]. In parallel
SSMT solving, various forms of knowledge sharing based on the algorithmic enhancements
from Section 6.5 are conceivable, suggesting similar performance gains as mentioned above.

Integration of statistical methods into SSMT solving. As an alternative to ex-
haustive probabilistic model checking, analysis approaches commonly referred to as sta-
tistical model checking (SMC) have been developed [You05a, You05b, YS06, LDB10,
ZPC10, DLL+11, MPL11]. SMC primarily addresses the problem of deciding whether a
given probabilistic (hybrid) system meets a time-bounded property specified in a prob-
abilistic temporal logic. SMC however is not a state-exploratory method but relies on
statistical techniques like hypothesis testing. That is, a finite number of time-bounded
sample runs are drawn according to the probabilistic system dynamics. For each of these
runs, it can simply be checked whether or not the time-bounded property holds. It is
then possible to obtain statistical estimates of the probability of satisfying the property.
A simple estimate, for instance, is the empirical mean, i.e. the number of runs fulfilling
the property divided by the number of all sample runs. Due to the obvious fact that the
results obtained by SMC are not guaranteed to be correct, approaches were developed
that allow to bound the probability of error of the statistical estimate, for instance as by
Hoeffding’s inequality [Hoe63]. Though SMC results are only true up to some reasonable
statistical uncertainty, the main advantage of SMC is that instead of exploring the entire
time-bounded system behavior, a potentially much smaller set of simulated time-bounded
system runs needs to be considered. Moreover, the number of such sample runs is inde-
pendent of the state space of the system and just determined by the specified bound on
the probability of error.

A promising direction for future work thus is to integrate statistical methods into a
systematic search-based SSMT algorithm with the objective of exploiting the benefits
of both approaches. On the one hand, SSMT solving would be enhanced by utilizing
statistical testing as an additional pruning mechanism potentially improving performance.
On the other hand, statistical testing might benefit from SSMT solving, for instance, by

302 10 Conclusion

reducing the number of sample runs during systematic search, namely in cases where
all possible completions of a prefix of a sample run satisfy or violate the property. A
particular advantage of this integration may be expected in SSMT-based PBMC. Recall
that the size of PBMC formulae grows linearly for increasing step depths, while the
corresponding search space, i.e. the number of variable assignments, grows exponentially.
This effect clearly has a negative impact on the solving times of the SSMT algorithm. As
the number of sample runs for statistical testing is completely independent of the state
space, as mentioned above, the algorithmic combination of statistical testing and SSMT
solving will potentially allow for PBMC problems of much larger step depths.

10.3 Closing words

The work of this thesis is chiefly motivated by industrial needs for computer-aided certi-
fication methods for safety-critical applications. Due to their rapid-growing complexity, a
manual inspection of these applications would be tantamount to a Sisyphean task, causing
automatic approaches to be the means of choice.
With the same certainty, the methods presented in the thesis however are far away

from living up to industrial standards as, for instance, deficits in expressiveness of the
supported system model and in performance for large-scale industrial applications are not
concealable.
Nevertheless, we firmly believe that this thesis contributes to the state of the art of

research on computer-aided formal analysis methods, namely by pioneering fully symbolic
techniques for the analysis of probabilistic hybrid systems, thereby complementing existing
approaches based on simulation or finite-state abstractions.

Bibliography

[AAP+06a] Alessandro Abate, Saurabh Amin, Maria Prandini, John Lygeros, and
Shankar Sastry. Probabilistic reachability and safe sets computation for
discrete time stochastic hybrid systems. In 45th IEEE Conference on Deci-
sion and Control, pages 258–263. IEEE, 2006.

[AAP+06b] Saurabh Amin, Alessandro Abate, Maria Prandini, John Lygeros, and
Shankar Sastry. Reachability analysis of controlled discrete time stochastic
hybrid systems. In João P. Hespanha and Ashish Tiwari, editors, Hybrid
Systems: Computation and Control, volume 3927 of Lecture Notes in Com-
puter Science, pages 49–63. Springer, 2006.

[Aba07] Alessandro Abate. Probabilistic Reachability for Stochastic Hybrid Systems:
Theory, Computations, and Applications. PhD thesis, EECS Department,
University of California, Berkeley, 2007.

[ABCS05] Gilles Audemard, Marco Bozzano, Alessandro Cimatti, and Roberto Sebas-
tiani. Verifying industrial hybrid systems with MathSAT. Electr. Notes
Theor. Comput. Sci., 119(2):17–32, 2005.

[ABDK11] Ernst Althaus, Bernd Becker, Daniel Dumitriu, and Stefan Kupferschmid.
Integration of an LP solver into interval constraint propagation. In Weifan
Wang, Xuding Zhu, and Ding-Zhu Du, editors, Proceedings of the 5th Inter-
national Conference on Combinatorial Optimization and Applications (CO-
COA 2011), volume 6831 of Lecture Notes in Computer Science, pages 343–
356. Springer, 2011.

[ÁBKS05] Erika Ábrahám, Bernd Becker, Felix Klaedtke, and Martin Steffen. Op-
timizing bounded model checking for linear hybrid systems. In Radhia
Cousot, editor, Proceedings of the 6th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI 2005), volume
3385 of Lecture Notes in Computer Science, pages 396–412. Springer, 2005.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, 1994.

[ADI06] Rajeev Alur, Thao Dang, and Franjo Ivancic. Predicate abstraction for
reachability analysis of hybrid systems. ACM Trans. Embedded Comput.
Syst., 5(1):152–199, 2006.

[ADvR09] Miguel E. Andrés, Pedro R. D’Argenio, and Peter van Rossum. Signifi-
cant diagnostic counterexamples in probabilistic model checking. In Hana
Chockler and Alan J. Hu, editors, Proceedings of the 4th International Haifa

304 Bibliography

Verification Conference on Hardware and Software: Verification and Test-
ing (HVC 2008), volume 5394 of Lecture Notes in Computer Science, pages
129–148. Springer, 2009.

[ÁJW+10] Erika Ábrahám, Nils Jansen, Ralf Wimmer, Joost-Pieter Katoen, and Bernd
Becker. DTMC model checking by SCC reduction. In Proceedings of the
Seventh International Conference on the Quantitative Evaluation of Systems
(QEST 2010), pages 37–46. IEEE Computer Society, 2010.

[AKLP10] Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Prandini.
Approximate model checking of stochastic hybrid systems. European Jour-
nal of Control, 16(6):624–641, 2010.

[AKLP11] Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Prandini.
A two-step scheme for approximate model checking of stochastic hybrid
systems. In Proceedings of the 18th IFAC World Congress. IFAC, 2011.

[AKM11] Alessandro Abate, Joost-Pieter Katoen, and Alexandru Mereacre. Quanti-
tative automata model checking of autonomous stochastic hybrid systems.
In Marco Caccamo, Emilio Frazzoli, and Radu Grosu, editors, Proceedings of
the 14th ACM International Conference on Hybrid Systems: Computation
and Control (HSCC 2011), pages 83–92. ACM, 2011.

[AL94] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time.
ACM Trans. Program. Lang. Syst., 16(5):1543–1571, 1994.

[AL10] Husain Aljazzar and Stefan Leue. Directed explicit state-space search in the
generation of counterexamples for stochastic model checking. IEEE Trans.
Software Eng., 36(1):37–60, 2010.

[APLS08] Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Prob-
abilistic reachability and safety for controlled discrete time stochastic hybrid
systems. Automatica, 44(11):2724–2734, 2008.

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time
algorithm for testing the truth of certain quantified Boolean formulas. Inf.
Process. Lett., 8(3):121–123, 1979.

[Arn74] Ludwig Arnold. Stochastic Differential Equations: Theory and Applications.
Wiley - Interscience, 1974.

[ÁSB+11] Erika Ábrahám, Tobias Schubert, Bernd Becker, Martin Fränzle, and Chris-
tian Herde. Parallel SAT solving in bounded model checking. Journal of
Logic and Computation, 21(1):5–21, 2011.

[BB04] Henk A. P. Blom and Edwin A. Bloem. Particle filtering for stochastic hybrid
systems. In 43rd IEEE Conference on Decision and Control, volume 3, pages
3221–3226, 2004.

Bibliography 305

[BB09] Hans Kleine Büning and Uwe Bubeck. Theory of quantified Boolean formu-
las. In Biere et al. [BHvMW09], pages 735–760.

[BBC+05] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi A. Junt-
tila, Peter van Rossum, Stephan Schulz, and Roberto Sebastiani. The Math-
SAT 3 system. In Conf. on Automated Deduction, volume 3632 of Lecture
Notes in Computer Science, pages 315–321. Springer, 2005.

[BC05] Alberto Bemporad and Stefano Di Cairano. Optimal control of discrete
hybrid stochastic automata. In Manfred Morari and Lothar Thiele, editors,
Hybrid Systems: Computation and Control, volume 3414 of Lecture Notes
in Computer Science, pages 151–167. Springer, 2005.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Rance Cleaveland, editor, Pro-
ceedings of the 5th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS 1999), volume 1579 of Lec-
ture Notes in Computer Science, pages 193–207. Springer, 1999.

[BdA95] Andrea Bianco and Luca de Alfaro. Model checking of probabalistic and
nondeterministic systems. In P. S. Thiagarajan, editor, Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS), volume 1026
of Lecture Notes in Computer Science, pages 499–513. Springer, 1995.

[Bel57] Richard Bellman. A Markovian decision process. Journal of Mathematics
and Mechanics, 6(5):679–684, 1957.

[Ben96] Frédéric Benhamou. Heterogeneous constraint solving. In Michael Hanus
and Mario Rodŕıguez-Artalejo, editors, Proceedings of the 5th International
Conference on Algebraic and Logic Programming (ALP 1996), volume 1139
of Lecture Notes in Computer Science, pages 62–76. Springer, 1996.

[BG06] Frédéric Benhamou and Laurent Granvilliers. Continuous and interval con-
straints. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors,
Handbook of Constraint Programming, Foundations of Artificial Intelligence,
chapter 16, pages 571–603. Elsevier, 2006.

[BHKH05] Christel Baier, Holger Hermanns, Joost-Pieter Katoen, and Boudewijn R.
Haverkort. Efficient computation of time-bounded reachability probabilities
in uniform continuous-time Markov decision processes. Theor. Comput. Sci.,
345(1):2–26, 2005.

[BHvMW09] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, edi-
tors. Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intel-
ligence and Applications. IOS Press, 2009.

[BK98] Christel Baier and Marta Z. Kwiatkowska. Model checking for a probabilistic
branching time logic with fairness. Distributed Computing, 11(3):125–155,
1998.

306 Bibliography

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, 2008.

[BKB06] Henk A. P. Blom, Jaroslav Krystul, and Bert G. J. Bakker. A particle
system for safety verification of free flight in air traffic. In Decision and
Control, pages 1574–1579. IEEE, 2006.

[BKF95] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for
quantified Boolean formulas. Inf. Comput., 117(1):12–18, 1995.

[BL03] Manuela L. Bujorianu and John Lygeros. Reachability questions in piece-
wise deterministic Markov processes. In Hybrid Systems: Computation and
Control, volume 2623 of Lecture Notes in Computer Science, pages 126–140.
Springer, 2003.

[BL06] Manuela L. Bujorianu and John Lygeros. Toward a general theory of
stochastic hybrid systems. In Henk A.P. Blom and John Lygeros, editors,
Stochastic Hybrid Systems: Theory and Safety Critical Applications, vol-
ume 337 of Lecture Notes in Control and Information Sciences, pages 3–30.
Springer, 2006.

[BMH94] Frédéric Benhamou, David A. McAllester, and Pascal Van Hentenryck.
CLP(Intervals) revisited. In Maurice Bruynooghe, editor, Proceedings of
the 1994 International Symposium on Logic Programming, pages 124–138.
MIT Press, 1994.

[BPT07] Andreas Bauer, Markus Pister, and Michael Tautschnig. Tool-support for
the analysis of hybrid systems and models. In Proceedings of the Conference
on Design, Automation and Test in Europe (DATE 2007), pages 924–929.
EDA Consortium, 2007.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Trans. Computers, 35(8):677–691, 1986.

[BS06] Thanasis Balafoutis and Kostas Stergiou. Algorithms for stochastic CSPs. In
Frédéric Benhamou, editor, Proceedings of the 12th International Conference
on Principles and Practice of Constraint Programming (CP 2006), volume
4204 of Lecture Notes in Computer Science, pages 44–58. Springer, 2006.

[BS07] Lucas Bordeaux and Horst Samulowitz. On the stochastic constraint satis-
faction framework. In Proceedings of the 2007 ACM Symposium on Applied
Computing (SAC), pages 316–320. ACM, 2007.

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability modulo theories. In Biere et al. [BHvMW09], chapter 26, pages
825–885.

[BWB+11] Bettina Braitling, Ralf Wimmer, Bernd Becker, Nils Jansen, and Erika
Ábrahám. Counterexample generation for Markov chains using SMT-based

Bibliography 307

bounded model checking. In Roberto Bruni and Jürgen Dingel, editors, Pro-
ceedings of the IFIP International Conference on Formal Techniques for Dis-
tributed Systems (Joint Conference 13th FMOODS & 31st FORTE 2011),
volume 6722 of Lecture Notes in Computer Science, pages 75–89. Springer,
2011.

[CL07] Christos G. Cassandras and John Lygeros, editors. Stochastic Hybrid Sys-
tems. CRC/Taylor & Francis, 2007.

[CM03] Christos G. Cassandras and Reetabrata Mookherjee. Receding horizon op-
timal control for some stochastic hybrid systems. In Proceedings of the 42nd
IEEE Conference on Decision and Control, volume 3, pages 2162–2167,
2003.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Con-
ference Record of Third Annual ACM Symposium on Theory of Computing,
pages 151–158. ACM, 1971.

[Cra57] William Craig. Linear reasoning. a new form of the Herbrand-Gentzen the-
orem. J. Symb. Log., 22(3):250–268, 1957.

[Dav84] Mark H. A. Davis. Piecewise-deterministic Markov processes: A general
class of non-diffusion stochastic models. Journal of the Royal Statistical
Society, 46(3):353–384, 1984.

[Dav93] Mark H. A. Davis. Markov Models and Optimization. Chapman & Hall,
London, 1993.

[DdM06] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Thomas Ball and Robert B. Jones, editors, Proceedings of
the 18th Computer-Aided Verification Conference, volume 4144 of Lecture
Notes in Computer Science, pages 81–94. Springer, 2006.

[DJJL01] Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen, and
Kim Guldstrand Larsen. Reachability analysis of probabilistic systems by
successive refinements. In Luca de Alfaro and Stephen Gilmore, editors,
Process Algebra and Probabilistic Methods, Performance Modeling and Ver-
ification: Joint International Workshop, PAPM-PROBMIV, volume 2165
of Lecture Notes in Computer Science, pages 39–56. Springer, 2001.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DLL+11] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and
Zheng Wang. Time for statistical model checking of real-time systems. In
Ganesh Gopalakrishnan and Shaz Qadeer, editors, Proceedings of the 23rd
International Conference on Computer Aided Verification (CAV 2011), vol-
ume 6806 of Lecture Notes in Computer Science, pages 349–355. Springer,
2011.

308 Bibliography

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, 1960.

[EFH08] Andreas Eggers, Martin Fränzle, and Christian Herde. SAT modulo ODE: A
direct SAT approach to hybrid systems. In Sung Deok Cha, Jin-Young Choi,
Moonzoo Kim, Insup Lee, and Mahesh Viswanathan, editors, Proceedings of
the 6th International Symposium on Automated Technology for Verification
and Analysis (ATVA 2008), volume 5311 of Lecture Notes in Computer
Science, pages 171–185. Springer, 2008.

[EFH09] Andreas Eggers, Martin Fränzle, and Christian Herde. Application of con-
straint solving and ODE-enclosure methods to the analysis of hybrid sys-
tems. In Theodore E. Simos, George Psihoyios, and Ch. Tsitouras, edi-
tors, NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: Inter-
national Conference on Numerical Analysis and Applied Mathematics 2009,
volume 1168 of AIP Conference Proceedings, pages 1326–1330. American
Institue of Physics, 2009.

[EKK+11] Andreas Eggers, Evgeny Kruglov, Stefan Kupferschmid, Karsten Scheibler,
Tino Teige, and Christoph Weidenbach. Superposition modulo non-linear
arithmetic. In Cesare Tinelli and Viorica Sofronie-Stokkermans, editors,
Proceedings of the 8th International Symposium on Frontiers of Combining
Systems (FroCoS 2011), volume 6989 of Lecture Notes in Artificial Intelli-
gence, pages 119–134. Springer, 2011.

[EKKT08] Andreas Eggers, Natalia Kalinnik, Stefan Kupferschmid, and Tino Teige.
Challenges in constraint-based analysis of hybrid systems. In Proceedings of
the Annual ERCIM Workshop on Constraint Solving and Constraint Logic
Programming (CSCLP 2008), 2008.

[EKKT09] Andreas Eggers, Natalia Kalinnik, Stefan Kupferschmid, and Tino Teige.
Challenges in constraint-based analysis of hybrid systems. In Angelo Oddi,
François Fages, and Francesca Rossi, editors, Recent Advances in Con-
straints, volume 5655 of Lecture Notes in Artificial Intelligence, pages 51–65.
Springer, 2009.

[ERNF11] Andreas Eggers, Nacim Ramdani, Nedialko S. Nedialkov, and Martin Frän-
zle. Improving SAT modulo ODE for hybrid systems analysis by combining
different enclosure methods. In Gilles Barthe, Alberto Pardo, and Ger-
ardo Schneider, editors, Proceedings of the 9th International Conference on
Software Engineering and Formal Methods (SEFM 2011), volume 7041 of
Lecture Notes in Computer Science, pages 172–187. Springer, 2011.

[ERNF12] Andreas Eggers, Nacim Ramdani, Nedialko S. Nedialkov, and Martin Frän-
zle. Set-membership estimation of hybrid systems via SAT modulo ODE.
In Michel Kinnaert, editor, Proceedings of the 16th IFAC Symposium on
System Identification, pages 440–445. IFAC, 2012.

Bibliography 309

[FH07] Martin Fränzle and Christian Herde. HySAT: An efficient proof engine for
bounded model checking of hybrid systems. Formal Methods in System
Design, 30(3):179–198, 2007.

[FHH+11] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás Wolovick,
and Lijun Zhang. Measurability and safety verification for stochastic hybrid
systems. In Marco Caccamo, Emilio Frazzoli, and Radu Grosu, editors,
Proceedings of the 14th ACM International Conference on Hybrid Systems:
Computation and Control (HSCC 2011), pages 43–52. ACM, 2011.

[FHR+06] Martin Fränzle, Christian Herde, Stefan Ratschan, Tobias Schubert, and
Tino Teige. Interval constraint solving using propositional SAT solving tech-
niques. In Youssef Hamadi and Lucas Bordeaux, editors, Proceedings of the
CP 2006 First International Workshop on the Integration of SAT and CP
Techniques, pages 81–95, 2006.

[FHT+07] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias
Schubert. Efficient solving of large non-linear arithmetic constraint systems
with complex Boolean structure. Journal on Satisfiability, Boolean Modeling
and Computation – Special Issue on SAT/CP Integration, 1(3–4):209–236,
2007.

[FHT08] Martin Fränzle, Holger Hermanns, and Tino Teige. Stochastic satisfiability
modulo theory: A novel technique for the analysis of probabilistic hybrid
systems. In Magnus Egerstedt and Bud Mishra, editors, Proceedings of
the 11th International Conference on Hybrid Systems: Computation and
Control (HSCC 2008), volume 4981 of Lecture Notes in Computer Science,
pages 172–186. Springer, 2008.

[FHW10] Arnaud Fietzke, Holger Hermanns, and Christoph Weidenbach.
Superposition-based analysis of first-order probabilistic timed automata.
In Christian G. Fermüller and Andrei Voronkov, editors, Proceedings of
the 17th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-17), volume 6397 of Lecture Notes in
Computer Science, pages 302–316. Springer, 2010.

[Frä99] Martin Fränzle. Analysis of hybrid systems: An ounce of realism can save
an infinity of states. In Jörg Flum and Mario Rodŕıguez-Artalejo, editors,
Computer Science Logic (CSL 1999), volume 1683 of Lecture Notes in Com-
puter Science, pages 126–140. Springer, 1999.

[Fre05] Goran Frehse. Phaver: Algorithmic verification of hybrid systems past
hytech. In Manfred Morari and Lothar Thiele, editors, Hybrid Systems:
Computation and Control, volume 3414 of Lecture Notes in Computer Sci-
ence, pages 258–273. Springer, 2005.

[FTE10a] Martin Fränzle, Tino Teige, and Andreas Eggers. Engineering constraint
solvers for automatic analysis of probabilistic hybrid automata. Journal of
Logic and Algebraic Programming, 79(7):436–466, 2010.

310 Bibliography

[FTE10b] Martin Fränzle, Tino Teige, and Andreas Eggers. Satisfaction meets expec-
tations: Computing expected values of probabilistic hybrid systems with
SMT. In Dominique Méry and Stephan Merz, editors, Proceedings of the 8th
International Conference on Integrated Formal Methods (iFM 2010), volume
6396 of Lecture Notes in Computer Science, pages 168–182. Springer, 2010.

[GF06] Jürgen Greifeneder and Georg Frey. Probabilistic hybrid automata with
variable step width applied to the analysis of networked automation systems.
In Proceedings of the 3rd IFAC Workshop on Discrete Event System Design
(DESDes 2006), pages 283–288. IFAC, 2006.

[GGI+10] Sicun Gao, Malay K. Ganai, Franjo Ivancic, Aarti Gupta, Sriram Sankara-
narayanan, and Edmund M. Clarke. Integrating ICP and LRA solvers for
deciding nonlinear real arithmetic problems. In Proceedings of the 10th
International Conference on Formal Methods in Computer-Aided Design
(FMCAD 2010), pages 81–89. IEEE, 2010.

[GHM05] Judy Goldsmith, Matthias Hagen, and Martin Mundhenk. Complexity of
DNF and isomorphism of monotone formulas. In Joanna Jedrzejowicz and
Andrzej Szepietowski, editors, Proceedings of the 30th International Sympo-
sium on Mathematical Foundations of Computer Science, MFCS 2005, vol-
ume 3618 of Lecture Notes in Computer Science, pages 410–421. Springer,
2005.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[GKvV95] Jan Frisco Groote, Wilco Koorn, and Sebastiaan van Vlijmen. The safety
guaranteeing system at station Hoorn-Kersenboogerd. In Conference on
Computer Assurance, pages 57–68. IEEE, 1995.

[GL04] William Glover and John Lygeros. A stochastic hybrid model for air traffic
control simulation. In Rajeev Alur and George J. Pappas, editors, Hybrid
Systems: Computation and Control, volume 2993 of Lecture Notes in Com-
puter Science, pages 372–386. Springer, 2004.

[GN03] Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfia-
bility for CNF formulas. In Proceedings of the Design, Automation and Test
in Europe Conference and Exposition (DATE 2003), pages 10886–10891.
IEEE Computer Society, 2003.

[GNT03] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Back-
jumping for quantified Boolean logic satisfiability. Artif. Intell., 145(1–
2):99–120, 2003.

[HEFT08] Christian Herde, Andreas Eggers, Martin Fränzle, and Tino Teige. Analysis
of hybrid systems using HySAT. In The Third International Conference on
Systems (ICONS 2008), pages 196–201. IEEE Computer Society, 2008.

Bibliography 311

[Her10] Christian Herde. Efficient Solving of Large Arithmetic Constraint Systems
with Complex Boolean Structure: Proof Engines for the Analysis of Hy-
brid Discrete–Continuous Systems. Doctoral dissertation, Carl von Ossietz-
ky Universität Oldenburg, Germany, 2010. Published by Vieweg+Teubner
Verlag, 2011.

[Hes04] João P. Hespanha. Stochastic hybrid systems: Application to communi-
cation networks. In Rajeev Alur and George J. Pappas, editors, Hybrid
Systems: Computation and Control, volume 2993 of Lecture Notes in Com-
puter Science, pages 387–401. Springer, 2004.

[HH09] Arnd Hartmanns and Holger Hermanns. A Modest approach to checking
probabilistic timed automata. In Sixth International Conference on the
Quantitative Evaluation of Systems (QEST 2009), pages 187–196. IEEE
Computer Society, 2009.

[HHWZ10] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang.
PASS: Abstraction refinement for infinite probabilistic models. In Javier
Esparza and Rupak Majumdar, editors, 16th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2010), volume 6015 of Lecture Notes in Computer Science, pages 353–357.
Springer, 2010.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal Asp. Comput., 6(5):512–535, 1994.

[HJMM04] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.
McMillan. Abstractions from proofs. In Neil D. Jones and Xavier Leroy,
editors, Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 232–244. ACM, 2004.

[HJvE01] Timothy J. Hickey, Qun Ju, and Maarten H. van Emden. Interval arithmetic:
From principles to implementation. Journal of the ACM, 48(5):1038–1068,
2001.

[HK07] Tingting Han and Joost-Pieter Katoen. Counterexamples in probabilistic
model checking. In Orna Grumberg and Michael Huth, editors, 13th In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 4424 of Lecture Notes in Computer Science,
pages 72–86. Springer, 2007.

[HKD09] Tingting Han, Joost-Pieter Katoen, and Berteun Damman. Counterexample
generation in probabilistic model checking. IEEE Trans. Software Eng.,
35(2):241–257, 2009.

[HKPV95] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? In Proceedings of the Twenty-
Seventh Annual ACM Symposium on Theory of Computing, pages 373–382.
ACM, 1995.

312 Bibliography

[HLS00] Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of
stochastic hybrid systems. In Hybrid Systems: Computation and Control,
volume 1790 of Lecture Notes in Computer Science, pages 160–173. Springer,
2000.

[HNP+11] Ernst Moritz Hahn, Gethin Norman, David Parker, Björn Wachter, and Li-
jun Zhang. Game-based abstraction and controller synthesis for probabilis-
tic hybrid systems. In Proceedings of the Eighth International Conference
on Quantitative Evaluation of Systems (QEST 2011), pages 69–78. IEEE
Computer Society, 2011.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer
Science. Prentice Hall, 1985.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–30,
1963.

[HWZ08] Holger Hermanns, Björn Wachter, and Lijun Zhang. Probabilistic CEGAR.
In Aarti Gupta and Sharad Malik, editors, 20th International Conference
on Computer Aided Verification (CAV 2008), volume 5123 of Lecture Notes
in Computer Science, pages 162–175. Springer, 2008.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Ray-
mond E. Miller and James W. Thatcher, editors, Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972.

[KÁS+10] Natalia Kalinnik, Erika Ábrahám, Tobias Schubert, Ralf Wimmer, and
Bernd Becker. Exploiting different strategies for the parallelization of
an SMT solver. In Manfred Dietrich, editor, GI/ITG/GMM Workshop
“Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen”, pages 97–106. Fraunhofer Verlag, 2010.

[KB11a] Stefan Kupferschmid and Bernd Becker. Craig interpolation in the presence
of non-linear constraints. In Uli Fahrenberg and Stavros Tripakis, editors,
Proceedings of the 9th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS 2011), volume 6919 of Lecture Notes
in Computer Science, pages 240–255. Springer, 2011.

[KB11b] Stefan Kupferschmid and Bernd Becker. Craigsche Interpolation für Boo-
lesche Kombinationen linearer und nichtlinearer Ungleichungen. In Frank
Oppenheimer, editor, Proceedings of the 14th Workshop “Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen” (MBMV 2011), pages 279–288. OFFIS, 2011.

[KBTF11] Stefan Kupferschmid, Bernd Becker, Tino Teige, and Martin Fränzle. Proof
certificates and non-linear arithmetic constraints. In Proceedings of the 14th
IEEE International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS 2011), pages 429–434. IEEE, 2011.

Bibliography 313

[Ked08] Nadine Keddis. Strong satisfaction. BSc thesis, Albert-Ludwigs-Universität
Freiburg, Germany, 2008.

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. D. Van Nostrand
Co./North Holland Co., New York, 1952.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0:
Verification of probabilistic real-time systems. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, Proceedings of the 23rd International Conference
on Computer Aided Verification (CAV 2011), volume 6806 of Lecture Notes
in Computer Science, pages 585–591. Springer, 2011.

[KR06] Xenofon D. Koutsoukos and Derek Riley. Computational methods for reach-
ability analysis of stochastic hybrid systems. In João P. Hespanha and
Ashish Tiwari, editors, Hybrid Systems: Computation and Control, volume
3927 of Lecture Notes in Computer Science, pages 377–391. Springer, 2006.

[KSÁ+09] Natalia Kalinnik, Tobias Schubert, Erika Ábrahám, Ralf Wimmer, and
Bernd Becker. Picoso – a parallel interval constraint solver. In Hamid R.
Arabnia, editor, Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, pages 473–479. CSREA
Press, 2009.

[KTBF09] Stefan Kupferschmid, Tino Teige, Bernd Becker, and Martin Fränzle. Proofs
of unsatisfiability for mixed Boolean and non-linear arithmetic constraint
formulae. In Carsten Gremzow and Nico Moser, editors, Proceedings of the
12th Workshop“Methoden und Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen” (MBMV 2009), pages 27–36.
Technische Universität Berlin, 2009.

[LDB10] Axel Legay, Benôıt Delahaye, and Saddek Bensalem. Statistical model
checking: An overview. In Howard Barringer, Yliès Falcone, Bernd
Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg
Sokolsky, and Nikolai Tillmann, editors, Proceedings of the First Interna-
tional Conference Runtime Verification (RV 2010), volume 6418 of Lecture
Notes in Computer Science, pages 122–135. Springer, 2010.

[Lee59] C. Y. Lee. Representation of switching circuits by binary-decision programs.
Bell System Technical Journal, 38:985–999, 1959.

[Lit99] Michael L. Littman. Initial experiments in stochastic satisfiability. In Pro-
ceedings of the 16th National Conference on Artificial Intelligence, pages
667–672, 1999.

[LMP01] Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. Stochas-
tic Boolean satisfiability. Journal of Automated Reasoning, 27(3):251–296,
2001.

314 Bibliography

[LMS04] Inês Lynce and João P. Marques-Silva. On computing minimum unsatisfiable
cores. In Online Proceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT 2004), 2004.

[LMS+09] Matthew D. T. Lewis, Paolo Marin, Tobias Schubert, Massimo Narizzano,
Bernd Becker, and Enrico Giunchiglia. PaQuBE: Distributed QBF solving
with advanced knowledge sharing. In Oliver Kullmann, editor, Proceedings
of the 12th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2009), volume 5584 of Lecture Notes in Computer
Science, pages 509–523. Springer, 2009.

[LSB+11] Matthew D. T. Lewis, Tobias Schubert, Bernd Becker, Paolo Marin, Mas-
simo Narizzano, and Enrico Giunchiglia. Parallel QBF solving with ad-
vanced knowledge sharing. Fundam. Inform., 107(2–3):139–166, 2011.

[Maj04] Stephen M. Majercik. Nonchronological backtracking in stochastic Boolean
satisfiability. In 16th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2004), pages 498–507. IEEE Computer Society, 2004.

[Maj07] Stephen M. Majercik. APPSSAT: Approximate probabilistic planning using
stochastic satisfiability. Int. J. Approx. Reasoning, 45(2):402–419, 2007.

[Maj09] Stephen M. Majercik. Stochastic Boolean satisfiability. In Biere et al.
[BHvMW09], chapter 27, pages 887–925.

[Mat70] Yuri V. Matiyasevich. Enumerable sets are Diophantine. Soviet Math. Dokl.,
11(2):354–357, 1970.

[McM03] Kenneth L. McMillan. Interpolation and SAT-based model checking. In
Warren A. Hunt Jr. and Fabio Somenzi, editors, Proceedings of the 15th
International Conference on Computer Aided Verification (CAV 2003), vol-
ume 2725 of Lecture Notes in Computer Science, pages 1–13. Springer, 2003.

[McM05a] Kenneth L. McMillan. Applications of Craig interpolants in model check-
ing. In Nicolas Halbwachs and Lenore D. Zuck, editors, Proceedings of the
11th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2005), volume 3440 of Lecture Notes in
Computer Science, pages 1–12. Springer, 2005.

[McM05b] Kenneth L. McMillan. An interpolating theorem prover. Theor. Comput.
Sci., 345(1):101–121, 2005.

[ML98a] Stephen M. Majercik and Michael L. Littman. MAXPLAN: A new ap-
proach to probabilistic planning. In Proceedings of the Fourth International
Conference on Artificial Intelligence Planning Systems, pages 86–93. AAAI,
1998.

[ML98b] Stephen M. Majercik and Michael L. Littman. Using caching to solve larger
probabilistic planning problems. In Proceedings of the Fifteenth National

Bibliography 315

Conference on Artificial Intelligence (AAAI 1998), pages 954–959. AAAI,
1998.

[ML03] Stephen M. Majercik and Michael L. Littman. Contingent planning under
uncertainty via stochastic satisfiability. Artificial Intelligence Special Issue
on Planning with Uncertainty and Incomplete Information, 147(1-2):119–
162, 2003.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of
the 38th Design Automation Conference, pages 530–535. ACM, 2001.

[Moo66] Ramon E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ,
1966.

[Moo79] Ramon E. Moore. Methods and Applications of Interval Analysis. SIAM,
Philadelphia, 1979.

[Moo80] Ramon E. Moore. Interval methods for nonlinear systems. Computing,
Suppl. 2:113–120, 1980.

[MPL11] João Martins, André Platzer, and João Leite. Statistical model checking for
distributed probabilistic-control hybrid automata with smart grid applica-
tions. In Shengchao Qin and Zongyan Qiu, editors, Proceedings of the 13th
International Conference on Formal Engineering Methods (ICFEM 2011),
volume 6991 of Lecture Notes in Computer Science, pages 131–146. Springer,
2011.

[MSLM09] João P. Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause
learning SAT solvers. In Biere et al. [BHvMW09], chapter 4, pages 131–153.

[Neu90] Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge
University Press, Cambridge, 1990.

[Pap85] Christos H. Papadimitriou. Games against nature. J. Comput. Syst. Sci.,
31(2):288–301, 1985.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[PBLB03] Giordano Pola, Manuela L. Bujorianu, John Lygeros, and Maria Di
Benedetto. Stochastic hybrid models: An overview with application to air
traffic management. In Proceedings of the 1st IFAC Conference on Analysis
and Design of Hybrid Systems (ADHS 2003), pages 45–50. IFAC, 2003.

[PHLS00] Maria Prandini, Jianghai Hu, John Lygeros, and Shankar Sastry. A proba-
bilistic approach to aircraft conflict detection. IEEE Transactions on Intel-
ligent Transportation Systems, 1(4):199–220, 2000.

316 Bibliography

[Pic09] Clifford A. Pickover. The Math Book: From Pythagoras to the 57th Di-
mension, 250 Milestones in the History of Mathematics. Sterling, 1 edition,
2009.

[Pla11] André Platzer. Stochastic differential dynamic logic for stochastic hybrid
programs. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors,
Proceedings of the 23rd International Conference on Automated Deduction
(CADE-23), volume 6803 of Lecture Notes in Computer Science, pages 446–
460. Springer, 2011.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and
monotone computations. Journal of Symbolic Logic, 62(3):981–998, 1997.

[PW07a] Andreas Podelski and Silke Wagner. Region stability proofs for hybrid sys-
tems. In Jean-François Raskin and P. S. Thiagarajan, editors, Proceedings
of the 5th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS 2007), volume 4763 of Lecture Notes in Com-
puter Science, pages 320–335. Springer, 2007.

[PW07b] Andreas Podelski and Silke Wagner. A sound and complete proof rule for re-
gion stability of hybrid systems. In Alberto Bemporad, Antonio Bicchi, and
Giorgio C. Buttazzo, editors, Proceedings of the 10th International Work-
shop on Hybrid Systems: Computation and Control (HSCC 2007), volume
4416 of Lecture Notes in Computer Science, pages 750–753. Springer, 2007.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, 1965.

[Rot96] Dan Roth. On the hardness of approximate reasoning. Artif. Intell., 82(1–
2):273–302, 1996.

[RS07] Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by
constraint propagation-based abstraction refinement. ACM Trans. Embed-
ded Comput. Syst., 6(1), 2007.

[SA11] Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate. Adaptive gridding
for abstraction and verification of stochastic hybrid systems. In Proceed-
ings of the Eighth International Conference on Quantitative Evaluation of
Systems (QEST 2011), pages 59–68. IEEE Computer Society, 2011.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceed-
ings of the Tenth Annual ACM Symposium on Theory of Computing, pages
216–226. ACM, 1978.

[Sch08] Christian Schmitt. Bounded model checking of probabilistic hybrid au-
tomata. Diplomarbeit (Diploma thesis), Carl von Ossietzky Universität
Oldenburg, Germany, 2008.

Bibliography 317

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell
System Technical Journal, 28:59–98, 1949.

[Spr00] Jeremy Sproston. Decidable model checking of probabilistic hybrid au-
tomata. In Mathai Joseph, editor, Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT), volume 1926 of Lecture Notes in Com-
puter Science, pages 31–45. Springer, 2000.

[Spr01] Jeremy Sproston. Model Checking for Probabilistic Timed and Hybrid Sys-
tems. PhD thesis, School of Computer Science, University of Birmingham,
2001.

[TEF11] Tino Teige, Andreas Eggers, and Martin Fränzle. Constraint-based analysis
of concurrent probabilistic hybrid systems: An application to networked
automation systems. Nonlinear Analysis: Hybrid Systems, 5(2):343–366,
2011.

[TF08] Tino Teige and Martin Fränzle. Stochastic satisfiability modulo theories
for non-linear arithmetic. In Laurent Perron and Michael A. Trick, editors,
Proceedings of the 5th International Conference on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems (CPAIOR 2008), volume 5015 of Lecture Notes in Computer
Science, pages 248–262. Springer, 2008.

[TF09] Tino Teige and Martin Fränzle. Constraint-based analysis of probabilistic
hybrid systems. In Alessandro Giua, Cristian Mahulea, Manuel Silva, and
Janan Zaytoon, editors, Proceedings of the 3rd IFAC Conference on Analysis
and Design of Hybrid Systems, pages 162–167. IFAC, 2009.

[TF10] Tino Teige and Martin Fränzle. Resolution for stochastic Boolean satisfia-
bility. In Christian G. Fermüller and Andrei Voronkov, editors, Proceedings
of the 17th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-17), volume 6397 of Lecture Notes in
Computer Science, pages 625–639. Springer, 2010.

[TF11] Tino Teige and Martin Fränzle. Generalized Craig interpolation for stochas-
tic Boolean satisfiability problems. In Parosh Aziz Abdulla and K. Rus-
tan M. Leino, editors, Proceedings of the Seventeenth International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2011), volume 6605 of Lecture Notes in Computer Science, pages
158–172. Springer, 2011.

[TF12] Tino Teige and Martin Fränzle. Generalized Craig interpolation for stochas-
tic Boolean satisfiability problems with applications to probabilistic state
reachability and region stability. Logical Methods in Computer Science,
8(2:16):1–32, 2012.

318 Bibliography

[THF+07] Tino Teige, Christian Herde, Martin Fränzle, Natalia Kalinnik, and Andreas
Eggers. A generalized two-watched-literal scheme in a mixed Boolean and
non-linear arithmetic constraint solver. In José Neves, Manuel Filipe San-
tos, and José Manuel Machado, editors, Proceedings of the 13th Portuguese
Conference on Artificial Intelligence (EPIA 2007), New Trends in Artificial
Intelligence, pages 729–741. APPIA, 2007.

[THFA08] Tino Teige, Christian Herde, Martin Fränzle, and Erika Ábrahám. Conflict
analysis and restarts in a mixed Boolean and non-linear arithmetic con-
straint solver. Reports of SFB/TR 14 AVACS 34, SFB/TR 14 AVACS,
2008. ISSN: 1860-9821, http://www.avacs.org.

[Tij03] Henk C. Tijms. A First Course on Stochastic Models. John Wiley & Sons,
2003.

[Tse68] Gregory S. Tseitin. On the complexity of derivations in the propositional
calculus. Studies in Constructive Mathematics and Mathematical Logics,
Part II:115–125, 1968.

[Tur37] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1):230–265, 1937.

[Wal00] Toby Walsh. SAT v CSP. In Rina Dechter, editor, Proceedings of the 6th
International Conference on Principles and Practice of Constraint Program-
ming (CP 2000), volume 1894 of Lecture Notes in Computer Science, pages
441–456. Springer, 2000.

[Wal02] Toby Walsh. Stochastic constraint programming. In Frank van Harmelen,
editor, Proceedings of the 15th European Conference on Artificial Intelli-
gence (ECAI 2002), pages 111–115. IOS Press, 2002.

[WBB09] Ralf Wimmer, Bettina Braitling, and Bernd Becker. Counterexample gen-
eration for discrete-time Markov chains using bounded model checking. In
Neil D. Jones and Markus Müller-Olm, editors, 10th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation (VMCAI
2009), volume 5403 of Lecture Notes in Computer Science, pages 366–380.
Springer, 2009.

[WZH07] Björn Wachter, Lijun Zhang, and Holger Hermanns. Probabilistic model
checking modulo theories. In Fourth International Conference on the Quan-
titative Evaluation of Systems (QEST 2007), pages 129–140. IEEE Com-
puter Society, 2007.

[You05a] H̊akan Lorens Samir Younes. Verification and planning for stochastic pro-
cesses with asynchronous events. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 2005.

http://www.avacs.org

Bibliography 319

[You05b] H̊akan Lorens Samir Younes. Ymer: A statistical model checker. In Kousha
Etessami and Sriram K. Rajamani, editors, Proceedings of the 17th Inter-
national Conference on Computer Aided Verification (CAV 2005), volume
3576 of Lecture Notes in Computer Science, pages 429–433. Springer, 2005.

[YS06] H̊akan Lorens Samir Younes and Reid G. Simmons. Statistical probabilistic
model checking with a focus on time-bounded properties. Inf. Comput.,
204(9):1368–1409, 2006.

[ZM03a] Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores from
unsatisfiable Boolean formulas. In Sixth International Conference on Theory
and Applications of Satisfiability Testing (SAT 2003), 2003.

[ZM03b] Lintao Zhang and Sharad Malik. Validating SAT solvers using an inde-
pendent resolution-based checker: Practical implementations and other ap-
plications. In Proceedings of the Design, Automation and Test in Europe
Conference and Exposition (DATE 2003), pages 10880–10885. IEEE Com-
puter Society, 2003.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad
Malik. Efficient conflict driven learning in a Boolean satisfiability solver. In
Proceedings of the 2001 IEEE/ACM International Conference on Computer-
Aided Design, pages 279–285. IEEE Press, 2001.

[ZPC10] Paolo Zuliani, André Platzer, and Edmund M. Clarke. Bayesian statisti-
cal model checking with application to Simulink/Stateflow verification. In
Karl Henrik Johansson and Wang Yi, editors, Hybrid Systems: Computation
and Control, pages 243–252. ACM, 2010.

[ZSR+10] Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns, and
Ernst Moritz Hahn. Safety verification for probabilistic hybrid systems.
In Tayssir Touili, Byron Cook, and Paul Jackson, editors, Proceedings of
the 22nd International Conference on Computer Aided Verification, CAV
2010, volume 6174 of Lecture Notes in Computer Science, pages 196–211.
Springer, 2010.

Index

ABsolver, 114

BMC, see bounded model checking

Boolean satisfiability, 19, 37

Boolean tautology problem, 40

bounded model checking, 16, 19, 114, 118

Büchi automaton, 23, 299

CEMC, see cost-expectation model check-
ing

CF, see conjunctive form

Church-Turing thesis, 10

clause, 8

cleaning, 9, 83, 88, 92, 98, 99, 159

CNF, see conjunctive normal form

kCNF, 9

co-NP, 10, 40

co-NP-completeness, 40

complete partial order, 230

complexity class, 10

conjunctive form, 45, 48, 114, 123, 129,
174, 206

conjunctive normal form, 9, 44

continuous-time probabilistic hybrid au-
tomaton involving ODEs, 296

cost expectation, 230

infimal, 230

k-step minimum, 233, 244

reduction to SSMT, 236, 244

scheduler-dependent, 230

cost-expectation model checking, 231

step-bounded, 235

counterexample, 25, 300

probabilistic, 25, 27, 300

Craig interpolant, 263

generalized, 266, 267

Craig interpolation, 25, 118, 263

generalized, 84, 113, 266

Davis-Putnam-Logemann-Loveland algo-
rithm, see DPLL algorithm

deadlock, 31

decidability, 11

deterministic finite-state automaton, 23

DFA, see deterministic finite-state au-
tomaton

Diophantine equation, 44

discrete-time probabilistic hybrid automa-
ton, 28, 228

discrete-time stochastic hybrid system, 21

DPLL algorithm, 73

backtracking, 74

conflict, 74

conflict clause, 74

conflict-driven clause learning, 74, 111

conflicting clause, 74

decision, 73

decision level, 74

deduction, 73

first unique implication point, 74

non-chronological backtracking, 74

unit propagation, 74

DPLL-SSAT algorithm, 75

branching, 78

branching heuristics, 81

generalized clause learning, 111

generalized unit propagation, 111

memoization, 81, 159

non-chronological backtracking, 81,
110

purification, 77

thresholding, 79

unit propagation, 77

DTMC, see Markov chain, discrete-time

DTSHS, see discrete-time stochastic hy-
brid system

dynamic programming, 22, 81

322 Index

expected value, 16, 20, 227
extended SSAT, 39, 46, 82

falsification, 16, 20, 227, 263, 280
finite-state abstraction, 20
first-order logic, 26
first-order probabilistic timed automaton,

26
first-order theorem proving, 26
FPTA, see first-order probabilistic timed

automaton

grid, 22

halting problem, 11
hull consistency, 119
hybrid system, 16, 114
HySAT-II, 113

ICP, see interval constraint propagation
infimum, 7
interval, 7, 114, 123, 129, 232

bounded, 7
closed, 7
left-open, 7
open, 7
right-open, 7

interval analysis, 113, 119
interval assignment, 115, 119

refinement, 120, 121, 124
interval consistency, 119
interval constraint propagation, 115
interval hull, 119
interval inconsistency, 120
invariance kernel, 286

maximal, 286
iSAT, 44, 113, 114

algorithm, 114
soundness, 127
termination, 127

approximate solution, 116, 122
conflict, 116, 125
conflict analysis, 116, 125
conflict clause, 116, 125
decision, 116, 124
deduction, 115, 124
input, 114

interval constraint propagation, 115,
124

interval splitting, 116, 124
minimum splitting width, 116, 122,

125
non-chronological backtracking, 125
progress parameter, 115, 120, 124
strong satisfaction check, 116, 122,

126, 148
tool, 113, 169, 255
unit clause, 115, 124
unit constraint, 115, 124
unit propagation, 115, 124

Kleene’s fixed point theorem, 231

least fixed point, 231
linear temporal logic, 23, 299
literal, 8

negative, 8
opposite, 8
positive, 8

LTL, see linear temporal logic

MAJSAT, 40
MAJ2SAT, 40

Markov chain
continuous-time, 17
discrete-time, 23

Markov decision process, 17, 53, 113, 263,
276

continuous-time, 59
Markov reward model, 27
maximum conditional expectation, 232

algorithm, 239
maximum probability of satisfaction, 39,

47
maximum satisfaction probability, see

maximum probability of satisfac-
tion

mean time to failure, 16, 20, 227, 244
k-step minimum, 244

model checking, 17
Monte Carlo simulation, 18
MRM, see Markov reward model
MRMC, 18

Index 323

MTTF, see mean time to failure

NAS, see networked automation system
neg(ℓ), see literal, opposite
networked automation system, 13

analysis, 255
description, 13
formal model, 249

Noetherian induction, 137, 138, 142, 145
NP, 10, 37

NP-completeness, 37

ODE, see ordinary differential equation
ODE constraint, 296
ordinary differential equation, 15, 20, 46,

118, 178, 296

P, 10
partial assignment, 8, 73
PASS, 26
PBMC, see probabilistic bounded model

checking
PBTL, see probabilistic branching time

logic
PCTL, see probabilistic computation tree

logic
PHA, see discrete-time probabilistic hy-

brid automaton
PHAVer, 20
piecewise deterministic Markov process, 17
PP, 10, 40

PP-completeness, 40
predicate abstraction, 24
primitive constraint, 44
PRISM, 18, 24, 284
probabilistic bounded model checking, 20,

59
probabilistic bounded reachability, 53

maximum, 56
reduction to SSMT, 62
scheduler-dependent, 54

probabilistic branching time logic, 18
probabilistic computation tree logic, 17,

299
probabilistic counterexample-guided ab-

straction refinement, 25

probabilistic hybrid automaton, 17
probabilistic hybrid system, 16
probabilistic model checking, 17
probabilistic program, 23
probabilistic rectangular automaton, 18
probabilistic timed automaton, 26
probability density function, 12
probability distribution, 11

continuous, 12, 22
discrete, 11, 29, 46

probability mass function, 11
probability of satisfaction, see maximum

probability of satisfaction
product order, 230
proof complexity, 85, 90, 108

proof, 90
size of a proof, 90

propositional formula, 8
propositional literal, see literal
propositional logic, 8
PSPACE, 10, 40

PSPACE-completeness, 11, 40, 83
PTA, see probabilistic timed automaton
pure literal, 77, 93
purification, 77, 93, 151, 204

QBF, see quantified Boolean formula
Q3SAT, 41
1-in-3Q3SAT, 40

quantified Boolean formula, 9, 40, 82, 155
quantifier, 9

existential, 9, 19, 38, 46, 60
randomized, 19, 37, 46, 60
relaxed, 185, 217
with dependent distributions, 50,
184

with state-dependent distributions,
300

universal, 9, 39, 46

random variable, 11
continuous, 12
discrete, 11

rectangular automaton, 18
reduction, 11

many-one, 11, 40

324 Index

region stability, 56, 264, 285

probabilistic, 264, 286

resolution

resolvent, 82

SAT, 82

SSAT, see S-resolution

run, 32

anchored, 32

length, 32

probability, 32

S-resolution, 83

completeness, 88

enhanced, 91

interpolating, 269

soundness, 87

strong, 83, 264, 268

safety property, 16, 17, 227

sample space, 11

SAT, see Boolean satisfiability

3SAT, 41

1-in-3 3SAT, 41

SAT solver, 19, 37, 73

SAT algorithms, 73

satisfaction probability, see maximum
probability of satisfaction

satisfiability modulo theories, 19, 37, 43,
113

conjunctive form, 45

scheduler, 53, 229

history-dependent, deterministic, 53,
229

stationary Markovian deterministic
(simple), 229

SCSP, see stochastic constraint satisfac-
tion problem

SHP, see stochastic hybrid program

SiSAT, 73, 128

accuracy-based pruning, 152, 177, 206

activity-based branching heuristics,
150, 199

algorithm, 129

maximum conditional expectation,
239

soundness, 138

termination, 144

approximate solution, 130, 135

branching, 131

caching probability results (memoiza-
tion), 159, 208

caching solutions, 166, 212, 258

conflict-driven clause learning, 135

deduction, 134

experimental results, 189, 245

input, 130, 169, 239, 244

interval constraint propagation, 134

output/result, 130, 177, 239

purification, 151, 204
solution-directed backjumping, 155,

208

thresholding, 131, 192, 241, 258

tool, 169, 243, 257
unit propagation, 134

SMC, see statistical model checking

SMT, see satisfiability modulo theories

SMT algorithms, 113

SSAT, see stochastic Boolean satisfiability

S2SAT, 40, 83

SSAT algorithms

DPLL-based, 75

resolution-based, 81

SSMT, see stochastic satisfiability modulo
theories

SSMT algorithms

maximum conditional expectation, 239

maximum probability of satisfaction,
128

statistical model checking, 26, 301

stochastic Boolean satisfiability, 37, 38,
265

matrix, 38

maximum probability of satisfaction,
39

quantifier prefix, 38

semantics, 38

syntax, 38

stochastic constraint satisfaction problem,
39

stochastic differential dynamic logic, 23

stochastic differential equation, 17, 22, 23

325

stochastic game, 21
stochastic hybrid program, 23
stochastic hybrid system, 17
stochastic satisfiability modulo theories,

19, 37, 45, 46, 59
conjunctive form, 48
dependent probability distributions,

50, 184
existential quantification over real-

valued variables, 297
matrix, 47, 59, 62
maximum conditional expectation, 232
maximum probability of satisfaction,

47
ODE constraint, 296
quantifier prefix, 47, 59, 65
relaxation, 185, 217
semantics, 47
syntax, 46
well-definedness of relaxed SSMT for-

mulae, 185
strict partial order, 137

minimal element, 137
supremum, 7
system of concurrent PHAs, 28, 53, 62,

173, 249
semantics (run), 32
syntax, 28

with cost function, 228, 236, 261
system step, see transition step

TAUT, see Boolean tautology problem
thresholding, 79, 92, 131, 192, 241, 258
time, 14

continuous, 14, 20, 295
discrete, 14, 19
equidistant, 14

timed automaton, 18
transition step, 32

probability, 32
truth assignment, 8
Tseitin transformation, 9, 39, 44, 114, 281,

287
Turing machine, 10

undecidability, 11, 18, 44
unit clause, 73, 77, 92
unit literal, 73, 77, 92
unit propagation, 74, 77, 92, 115

value iteration, 20
verification, 16, 20, 227, 244, 263, 280

well-founded strict partial order, 137

XSSAT, see extended SSAT

Yices, 25

	Introduction
	Motivation
	Contributions and structure of the thesis

	Foundations and Notations
	General notations
	Propositional logic
	Computational complexity theory
	Probability theory

	Probabilistic Hybrid Systems
	Motivation: A networked automation system
	Related work: Probabilistic hybrid models and model checking
	Concurrent discrete-time probabilistic hybrid automata

	Stochastic Satisfiability Modulo Theories
	Boolean satisfiability
	Stochastic Boolean satisfiability
	Satisfiability modulo theories
	Stochastic satisfiability modulo theories

	SSMT-Based Bounded Reachability Analysis of Probabilistic Hybrid Automata
	Probabilistic bounded state reachability
	Introductory example of the reduction to SSMT
	Reducing probabilistic bounded reachability to SSMT

	Algorithms for SSMT Problems
	Algorithms for SAT
	Algorithms for SSAT
	Algorithms for SMT
	Algorithms for SSMT
	Algorithmic enhancements
	SSMT-based probabilistic bounded model checker SiSAT
	Experimental results

	SSMT-Based Expected-Value Analysis of Probabilistic Hybrid Automata
	Cost expectation for probabilistic hybrid automata with costs
	Conditional expectation for SSMT
	Reducing step-bounded cost expectation to SSMT
	SSMT algorithm for conditional expectation
	Experimental results

	Case Study: A Networked Automation System
	Formel model of the NAS
	Analysis of the NAS

	Beyond Probabilistic Bounded Reachability by Means of Generalized Craig Interpolation
	Generalized Craig interpolants
	Computing generalized Craig interpolants
	Applications to symbolic analysis of probabilistic systems

	Conclusion
	Summary of achievements
	Future directions
	Closing words

	Bibliography
	Index

