
BERICHTE
AUS DEM DEPARTMENT FÜR INFORMATIK

der Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Herausgeber: Die Professorinnen und Professoren
des Departments für Informatik

Dissertation

Nummer 03-13 – Juli 2013

ISSN 1867-9218

Similarity, Logic, and Games
Bridging Modeling Layers

of Hybrid Systems

Jan-David Quesel

BERICHTE
AUS DEM DEPARTMENT FÜR INFORMATIK

der Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Herausgeber: Die Professorinnen und Professoren
des Departments für Informatik

Dissertation

Nummer 03-13 – Juli 2013

ISSN 1867-9218

Similarity, Logic, and Games
Bridging Modeling Layers

of Hybrid Systems

Jan-David Quesel

Prof. Dr. E.-R. Olderog
Prof. Dr.-Ing. J. Raisch (TU Berlin)

Gutachter:

Datum der Einreichung: 03.04.2013
Datum der Verteidigung: 05.07.2013

c© 2013 by the author

Author’s address:
Jan-David Quesel
Fakultät II, Department für Informatik
Abteilung ”Entwicklung korrekter Systeme“
26111 Oldenburg
Germany

E-mail: Quesel@Informatik.Uni-Oldenburg.DE

Carl von Ossietzky Universität Oldenburg
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Similarity, Logic, and Games

Bridging Modeling Layers of Hybrid Systems

Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften

vorgelegt von

Jan-David Quesel

Oldenburg, April 3, 2013

Similarity, Logic, and Games

Abstract

Specifications and implementations of complex physical systems tend to
differ as low-level effects such as sampling are often ignored when high-
level models are created. Thus, the low-level models are often not exact
refinements of the high-level specification. However, intuitively we would
consider them as similar. To bridge the gap between these models, we
study notions of similarity and robust refinement relations for hybrid sys-
tems. We identify a family of such relations which permit certain bounded
deviations in the behavior of a system specification and its implementa-
tion in both values of the system variables and timings. We show that for
this relaxed version of refinement a broad class of properties is preserved.
This includes stability, safety, as well as bounded response properties. The
question whether two systems are in refinement relation can be reduced to
a reachability problem for hybrid games.

For the study of parametric hybrid games, we propose a new logic, called
differential dynamic game logic (dDGL), and develop a theorem prover for
it. We give an operational and a modal semantics of dDGL and prove
their equivalence. To allow for deductive reasoning, we exploit the fact
that dDGL is a conservative extension of differential dynamic logic (dL).
Subsequently, we provide rules for extending the dL sequent proof calculus
to handle the dDGL specifics. Furthermore, we have implemented dDGL in
our theorem prover KeYmaera. We demonstrate the strength of dDGL by
applying KeYmaera to a case study in which a robot plays a game against
other agents in a factory automation scenario.

KeYmaera is a theorem prover for hybrid system verification. It reduces
the verification task to smaller subtasks that can be decided by quantifier
elimination. Unfortunately, quantifier elimination over the reals is doubly
exponential in the number of quantifier alternations already in theory and
even in the number of variables in many implementations. Therefore, we
compare different implementations of procedures for quantifier elimination
and alternative methods for dealing with these subtasks.

We show that our dDGL-based approach for proving that two hybrid sys-
tems are in robust refinement relation can be effectively used. For this, we
present a case study from the domain of train control with a safe specifica-
tion using instantaneous and imperfect implementations which suffer from
communication delays.

Jan-David Quesel i Oldenburg, April 3, 2013

Similarity, Logic, and Games

Zusammenfassung

Bei der Entwicklung diskret-kontinuierlicher Systeme gibt es häufig Ab-
weichungen zwischen der Spezifikation und der tatsächlichen Implementie-
rung. Diese entstehen zum Beispiel durch maximale Abtastraten, die in
der Spezifikation zu hoch angesetzt waren. Dadurch gibt es keine Verfeine-
rungsbeziehung im klassischen Sinne einer Mengeninklusion von Trajekto-
rien zwischen den beiden Systemen (Spezifikation und Implementierung),
allerdings kann man sie intuitiv durchaus als ähnlich bezeichnen.

In dieser Arbeit stellen wir einen Ähnlichkeitsbegriff vor, der es er-
möglicht Eigenschaften, die für die Spezifikation gezeigt wurden, in ab-
geschwächter Form auf die Implementierung zu übertragen. Um zu zei-
gen, dass zwei Systeme in diesem Sinne ähnlich sind, konstruieren wir ein
diskret-kontinuierliches Spiel, wobei die Existenz einer Gewinnstrategie für
einen bestimmten Spieler die Ähnlichkeit der Systeme bezeugt. Zur Un-
tersuchung dieser Spiele führen wir die Logik Differential Dynamic Game
Logic (dDGL) als konservative Erweiterung von Differential Dynamic Lo-
gic (dL) ein. Darüber hinaus erweitern wir den Beweiskalkül für dL so, dass
mit seiner Hilfe sich die semantische Eigenschaft der Ähnlichkeit auf syn-
taktische Umformungen von dDGL-Formeln zurückführen lässt. Die Regeln
des Kalküls zerlegen Beweisverpflichtungen in kleinere Teilziele. Hierbei be-
schreiben die Beweisregeln für die Modalitäten der Logik eine symbolische
Ausführung der in den Modalitäten enthaltenen Programme. Das Ziel des
Kalküls ist es, Beweisverpflichtungen in Prädikatenlogik über den reellen
Zahlen zu erzeugen. Diese Logik ist entscheidbar, jedoch ist die Komple-
xität der Entscheidungsprozedur doppelt exponentiell in der Anzahl der
Quantorenwechsel. Schlimmer noch, viele Implementierungen sind bereits
doppelt exponentiell in der Anzahl der Variablen. Daher betrachten wir Al-
ternativen für Teilfragmente dieser Logik, um die Beweisziele im Einzelfall
schneller schließen zu können.

Den Beweiskalkül für dDGL haben wir in KeYmaera implementiert. Der
Theorem-Beweiser KeYmaera dient zur Verifikation diskret-kontinuierlicher
Systeme. Um die Anwendbarkeit unserer Logik dDGL zu demonstrieren,
betrachten wir eine Fallstudie, in der sich ein Roboter durch eine Fabrik
bewegen muss, ohne die Kooperation anderer Maschinen vorraussetzen zu
können.

Des Weiteren betrachten wir das European Train Control System als
Fallstudie um zu zeigen, dass unser dDGL-basierter Ansatz zum Nachweis

Jan-David Quesel ii Oldenburg, April 3, 2013

Similarity, Logic, and Games

von Ähnlichkeit diskret-kontinuierlicher Systeme effektiv durchführbar ist.
In dieser Fallstudie zeigen wir, dass Implementierungen mit Kommunika-
tionsverzögerungen ähnlich zu einer Spezifikation sind, die von instantaner
Kommunikation ausgeht.

Jan-David Quesel iii Oldenburg, April 3, 2013

Similarity, Logic, and Games

Acknowledgements

First of all I would like to thank my advisor Ernst-Rüdiger Olderog for
providing a great working environment, numerous discussions on differ-
ent topics, and teaching me valuable lessons about academia in general.
Speaking of a great working environment I am grateful to my (former)
colleagues (in alphabetical order): André Platzer, Björn Engelmann, Ingo
Brückner, Johannes Faber, Mani Swaminathan, Martin Hilscher, Roland
Meyer, Sibylle Fröschle, Stephanie Kemper, Sören Jeserich, Sven Linker,
and Tim Strazny. Not part of our working group but also an important
part of my environment was Hendrik Radke. For discussions on the topic
of hybrid systems I would like to thank Andreas Eggers. Especially the
discussions we had in the office of Sven and Martin will be something I am
going to miss in the future.

While working on this thesis I had the chance to collaborate with several
other researchers. Without the numerous discussions on notions of simi-
larity with Ernst-Rüdiger Olderog, Martin Fränzle, and Werner Damm in
our so called “Sonnenzimmer“, the results in thesis would not have been
possible. Furthermore, I would like to thank André Platzer for his interest
in my work and his constant encouragement. I also enjoyed working with
Philipp Rümmer on algebra related topics. The results of this collaboration
can also be found in this thesis.

Furthermore, I would like to thank Jörg Raisch for inviting me to give
a talk in his working group, reviewing this thesis, and introducing me to
Anne-Kathrin Hess. This meeting led to an extremely fruitful discussion
on the relation of approximations and notions of similarity for which I am
grateful to Anne-Kathrin as well.

For pointing out the similarities of control engineering and game theory
I am really grateful to Anders Ravn. For the help on algebra I would like
to thank Wiland Schmale and Florian Heß.

Parts of the theories in this thesis have been implemented in our theo-
rem prover KeYmaera, which is based on KeY. As everyone should know
there is one person who knows every little detail on KeY and helped me
out so many times. For this I am grateful to Richard Bubel. Furthermore,
I would like to thank all of the KeY team for showing interest in our ad-
venture of extending KeY to the hybrid domain. Meanwhile, KeYmaera
has grown into a major tool itself. This also led to many interesting dis-
cussions with what I like to call the KeYmaera team. Especially, I would

Jan-David Quesel iv Oldenburg, April 3, 2013

Similarity, Logic, and Games

like to mention here: André Platzer, Sarah Loos, Nikos Arechiga, Stefan
Mitch, and Khalil Ghorbal. In addition, several students assisted me with
programming KeYmaera over the years, and thus I would like to thank
Timo Michelsen, Zacharias Mokom, Jianyu Bao, Sören Dierkes, and Miro
El Seidi for their contributions.

For reading preliminary versions of this thesis I would like to thank: Sven
Linker, Ernst-Rüdiger Olderog, Carsten Quesel, André Platzer, Hendrik
Radke, Christin Quesel, Tim Strazny, Martin Hilscher, and Andrea Quesel-
Bedrich. I would like to point out that Sven Linker read almost every single
line of this thesis for which I am in debt to him.

During the years while I was working on this thesis my parents, Carsten
Quesel and Iris Heyen, constantly encouraged me to keep on going for which
I am really grateful now.

Last but not least I would like to express my gratitude to my wife Christin
Quesel for her constant support. Without her this thesis would not have
been possible. Thank you.

Jan-David Quesel v Oldenburg, April 3, 2013

Similarity, Logic, and Games

From all the things I’ve lost, I miss my mind the most.
— Mark Twain

Jan-David Quesel vi Oldenburg, April 3, 2013

Similarity, Logic, and Games Contents

Contents

Abstract i

Zusammenfassung ii

Acknowledgements iv

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Real-Time and Hybrid Systems 3
1.3 Real Arithmetic . 4
1.4 Modal and Dynamic Logics 5
1.5 Contributions . 6
1.6 Structure of this Thesis . 7
1.7 Sources . 8
1.8 How to Read this Thesis . 8

2 Preliminaries 9
2.1 Notations and Abbreviations 10
2.2 Models for Hybrid Systems 11

2.2.1 Hybrid Systems by Example 11

Jan-David Quesel vii Oldenburg, April 3, 2013

Similarity, Logic, and Games Contents

2.2.2 Hybrid Programs . 14
2.2.3 Differential-algebraic Constraints 18
2.2.4 Hybrid Automata 19

2.3 Logics . 21
2.3.1 Propositional Logic 21
2.3.2 First-Order Logic . 22
2.3.3 First-Order Logic over the Reals 25
2.3.4 Differential Dynamic Logic dL 27

2.4 Metrics, Norms, and Distances 29

3 Similarity 35
3.1 Notions of Robust Refinement 36
3.2 Property Preservation . 47

3.2.1 Stability and Region Stability 47
3.2.2 Linear Time Real-Time Temporal Logic 60

3.3 Related Work . 75
3.4 Conclusion . 80

4 Differential Dynamic Game Logic 81
4.1 Syntax . 83
4.2 Semantics . 85

4.2.1 Classical Modal Semantics 85
4.2.2 Game Semantics . 86
4.2.3 Semantics Relation 94

4.3 Proof Rules for dDGL . 99
4.4 Case Study: Robotic Factory Automation 110
4.5 Related Work . 116
4.6 Conclusion . 121

5 Similarity and Games 123
5.1 Hybrid Game Automata . 124

5.1.1 Automata and Games 124
5.1.2 Encoding our Robust Refinement Relation 126

5.2 dDGL and Similarity . 132
5.2.1 Trace Equivalence 133
5.2.2 Standard Form . 135
5.2.3 Encoding Similarity in dDGL 138
5.2.4 Example . 149
5.2.5 Using Existing Properties 152

Jan-David Quesel viii Oldenburg, April 3, 2013

Similarity, Logic, and Games Contents

5.3 Related Work . 152
5.4 Conclusion . 153

6 Implementation 155
6.1 KeYmaera Verification Tool for Hybrid Systems 156
6.2 Alternative Approaches . 158
6.3 Handling of Differential Equation Systems 160
6.4 Dealing with Arithmetic . 160

6.4.1 Methods for Handling Real Arithmetic 162
6.4.2 Gröbner Bases for the Real Nullstellensatz (GRN) . 174
6.4.3 Experimental Results 180
6.4.4 Related Work . 183
6.4.5 Discussion and Conclusions 184

7 Case Study 187
7.1 Overview . 189
7.2 Specification . 191
7.3 Robust Refinements . 192
7.4 Conclusion . 197

8 Conclusion 199
8.1 Summary . 200
8.2 Concluding Remarks . 201
8.3 Future Work . 201

8.3.1 Exploiting Conjunctions 202
8.3.2 Dynamic Bounds . 202
8.3.3 Compositional Reasoning 203
8.3.4 Differential Dynamic Game Logic with Disturbances

and Control . 206

Bibliography 211

Index 231

Jan-David Quesel ix Oldenburg, April 3, 2013

Similarity, Logic, and Games Contents

Jan-David Quesel x Oldenburg, April 3, 2013

Similarity, Logic, and Games List of Figures

List of Figures

2.1 One example trace of a hybrid system for train dynamics
(2.1) with the acceleration signal changing as indicated over
time . 12

2.2 Cruise Control . 20

3.1 Plot of two simple systems with almost identical behavior
(cf. Example 5). Note that the axes do not scale. 38

3.2 A left-total, surjective relation on a finite domain 39
3.3 Example for a retiming relation r 40
3.4 Example trajectory . 42
3.5 Plot of the constant trajectories x, y, z of Example 6. 46
3.6 Example of a stable trajectory (x-y-plane) 49
3.7 Example of a stable trajectory (t-x-plane) 50
3.8 Weak similarity and stability 51
3.9 Weak robust refinement and stability 53
3.10 Similarity and stability . 54
3.11 Robust refinement and stability 55
3.12 Example of a stable and a region stable trajectory 56
3.13 Weak 0-similarity and stability 57
3.14 0-Similarity and stability . 57
3.15 Weak 0-robust refinement and stability 59
3.16 0-robust refinement and stability 60
3.17 Enlarging a set by adding neighborhoods 65

Jan-David Quesel xi Oldenburg, April 3, 2013

Similarity, Logic, and Games List of Figures

3.18 Contracting a set by subtracting neighborhoods 66
3.19 Plot of two exponential functions (ẋ = x) with initial values

x = 1 and x = 1
2 . 76

4.1 Structural operational semantics of hybrid games (Verifier
can only control V and S rules and Falsifier can only control
F and S rules). 89

4.2 Explicit branching . 90
4.3 Explicit branching with states 91
4.4 Repetition with advance notice semantics (only successfully

terminating runs are depicted here) 91
4.5 Example for the effect of the strategies 94
4.6 Propositional rules . 101
4.7 Rules for first-order and dL-operators 104
4.8 Proof Rules for dDGL-operators 105
4.9 Derived proof rules for dDGL-operators 109
4.10 Derived proof rules for dL-operators 109
4.11 Proof that Rule G9 is a derived rule 110
4.12 Sketch of the robotic factory automation site 110
4.13 Description of game for robotic factory automation scenario

(RF) . 113
4.14 Projection of robotic factory automation scenario (RF |x) . 114

5.1 Abstract examples for hybrid automata 128
5.2 Relaxed refinement game sketch 128
5.3 Equivalent traces over a unified time axis t 135
5.4 Program p(A) encoding some hybrid automaton A 137
5.5 Construction of Gε,δ(α, β) 140
5.6 Sketch of the proof of Theorem 9 142
5.8 Hybrid system α . 150
5.10 Hybrid system β . 150
5.11 Example trajectories with j = 8 151

6.1 Architecture and plug-in structure of the KeYmaera Prover 157
6.2 Screenshot of the KeYmaera user interface 159
6.3 Rules for normalizing equalities and inequalities 162
6.4 Rule schemata of Gröbner calculus rules 166
6.5 Example proof using the real Nullstellensatz 169
6.6 Rule schemata of Positivstellensatz calculus rules 173

Jan-David Quesel xii Oldenburg, April 3, 2013

Similarity, Logic, and Games List of Figures

6.7 Example proof using the Positivstellensatz 174
6.8 Examples solved per time 181

7.1 ETCS train cooperation protocol (Dynamic assignment of
movement authorities) . 190

7.2 ETCS train cooperation protocol (Cooperation pattern) . . 190
7.3 ETCS model . 192
7.4 ETCS model in standard form 193
7.5 Position of a train with and without message delay 193
7.6 Velocity of a train with and without message delay 194
7.7 Robust refinement game for the ETCS model 196

Jan-David Quesel xiii Oldenburg, April 3, 2013

Similarity, Logic, and Games List of Figures

Jan-David Quesel xiv Oldenburg, April 3, 2013

Similarity, Logic, and Games List of Tables

List of Tables

2.1 Statements of hybrid programs (F is a first-order formula,
α, β are hybrid programs) 15

6.1 Individual examples solved within x seconds 182

Jan-David Quesel xv Oldenburg, April 3, 2013

C H A P T E R O N E

Introduction

In the beginning there was noth-
ing, which exploded.

— Terry Pratchett

Contents

1.1 Motivation . 1
1.2 Real-Time and Hybrid Systems 3
1.3 Real Arithmetic . 4
1.4 Modal and Dynamic Logics 5
1.5 Contributions . 6
1.6 Structure of this Thesis 7
1.7 Sources . 8
1.8 How to Read this Thesis 8

1.1 Motivation

Computers play an important role in our modern society. Office PCs,
notebooks, tablets, and smartphones are the most prominent examples.
However, computers are also used in many medical devices like cardiac

1

Similarity, Logic, and Games CHAPTER 1. Introduction

stimulators or infusion pumps, means of transportation like trains, cars, or
airplanes, and power plants to control critical parts of the system.

Hence verification of complex physical systems is becoming more and
more important. The development of those systems, however, follows a
paradigm where, if formal specifications are used, relations to the actual
implementations are often not formally proven.

In this work, we bridge this gap by providing a mathematical notion that
connects specifications and their implementations. We therefore study di-
rected quantitative notions of similarity and refinement. This is, we define
a distance measure on the trajectories of the systems. These distances can
then be used to compute how much the behavior of an implementation
deviates from its specification. We then use these bounds in order to infer
what properties are shared between the two systems.

“Safe by design” is a principle that among other notions inspired that
of refinement. The idea of refinement is to start with a broad nondeter-
ministic specification and add details one by one. Finally, one arrives at a
deterministic implementation that covers all details including properties of
the target hardware like sampling. The steps from specification to imple-
mentation are called refinement steps if they preserve the “behavior” of the
system. That is, a specification A is a refinement of another specification B
if, and only if, all the “behavior” we can observe of A could also be seen
while observing B. This process guarantees that if B only shows “good
behavior” then so does A.

Even though refinement is a classical engineering method, it often is not
suitable in practice. What happens if some details only come up late in the
design process? In order to stick to the paradigm just discussed it would
be necessary to propagate these from a level closer to the implementation
upwards to the specification (possibly by adding more nondeterminism).
Afterwards, one needs to prove once more that the system behaves in a
safe way. However, it could be the case that the methods used for proving
specifications safe cannot deal with the level of detail or the amount of
nondeterminism necessary. Thus in practice, often specifications do not
take into account details like sampling. It might even be the case that
the actual sampling rate is determined based on costs by some client. In
order to allow for delaying such choices we study notions of relaxed or
robust refinement that permit some deviations in the valuations of system
variables as well as timings of events. That way, if our initial specification
satisfies a strong property then a weaker version of this property can be
transferred to its robust refinements.

Jan-David Quesel 2 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 1. Introduction

Notions of similarity have been studied by physicists for over a hundred
years. However, in physics the idea is to capture similar processes within
a uniform mathematical model. This is important in order to extrapolate
mathematical laws from a series of experiments [Web40]. If every exper-
iment that deviates slightly in the inputs would result in totally different
observed behavior of the system, then no such mathematical law could be
formulated.

In the design process of ships, cars, and airplanes experiments on models
are preformed frequently [Web40]. Engineers usually consider models that
are geometrically similar in the sense that the model is a scaled version of
the original system. In addition, the ratios of forces applied to the model
and to the original system have to be constant. If that is the case then
results obtained from the model experiment can be assumed to hold for
the real system. This idea was generalized in the setting of fluid dynamics.
Here, formalisms exist that allow for small deviations in the system values.
Reynolds [Rey83] observed that as long as the quotient of kinetic energy
of a fluid and energy loss due to friction of the object under observation in
this liquid is approximately equal then the fluid flow along these objects
will be almost the same.

Instead of conducting experiments, we study mathematical notions of
similarity on models of systems and what this means for their observable
behavior on a semantic level. In order to formalize observable behavior we
consider logical formulas featuring modalities that allow for expressing tem-
poral and real-time behavior. We thus generalize the ideas of Reynolds in
the sense that we do not restrict ourselves to a specific application domain
but instead cover arbitrary physical systems with computerized controllers.
In the early 1990s, Anil Nerode suggested a name for this type of systems
that would stick [Rav13]. He called them hybrid systems.

1.2 Real-Time and Hybrid Systems

A famous result of landmark importance for the study of computerized
systems which control processes in the physical world was the introduction
of timed automata by Alur and Dill [AD91] in 1991. Timed automata are
finite automata extended with so called clocks. These are variables that
evolve with a constant slope of 1 while the automaton is in some location.
Transitions between these locations happen instantaneously. They might
be guarded by some conjunction of restricted linear expressions over clocks.

Jan-David Quesel 3 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 1. Introduction

In addition, they may reset a subset of the clocks to 0. Up until that point
most formalisms were used only to express qualitative relations between
events. To the best of our knowledge timed automata were the first model
that allowed to express the time taken on a complete path of the automa-
ton. In previous formalisms it was only possible to express that individual
transitions happen within certain time bounds. Alur and Dill [AD91] fur-
ther presented a PSPACE algorithm for deciding reachability of locations
in timed automata. This rather simple model already allows for proving a
variety of properties of different system specifications, and tools like UP-
PAAL [BLL+95], based on these results, are successfully applied in the
industrial practice.

In 1992, on the Hybrid Systems workshop Alur, Courcoubetis, Henzinger,
and Ho [ACHH92] and independently Nicollin, Olivero, Sifakis, and Yo-
vine [NOSY92] proposed hybrid automata as an extension to timed au-
tomata. The most well-known reference on hybrid automata was written
a few years later in 1996 by Henzinger [Hen96].

Unlike timed automata, hybrid automata are not restricted to variables
acting as clocks. Instead, they allow for evolutions of the variables along
solutions of differential equations. Furthermore, they relax the restrictions
on transitions guards and resets. That is, they allow for arbitrary arith-
metic expressions over system variables as transition guards and resets to
arbitrary values also described by arithmetic expressions over the system
variables. Unfortunately, this extension does not preserve the decidability
result regarding reachability of locations. Already, for very restricted sub-
sets of hybrid automata, so called stopwatch automata, i.e., timed automata
that are allowed to stop the evolution of a single clock, reachability is un-
decidable [HKPV95]. Still algorithms where developed and implemented
in various tools in order to check properties of these systems. One of the
first such tools was HyTech [HHWT97], a model checker for linear hybrid
automata.

1.3 Real Arithmetic

When checking properties of hybrid systems it is important to represent
the reachable state space, i.e., the set of variable valuations that can be
reached during an evolution of the system. As the variables are evaluated
to real numbers the theory of real arithmetic is important. When dealing
with a linear hybrid automaton the reachable state space can usually be

Jan-David Quesel 4 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 1. Introduction

described sufficiently well by linear constraints for which fast computation
algorithms exist. When it comes to more complex dynamics however, linear
constraints only provide very coarse over-approximations of what is actu-
ally happening. Thus, Tarski’s famous result [Tar51] that first-order logic
over polynomial expressions with rational coefficients and real valuations
of the variables is decidable comes in handy. However, the non-elementary
complexity of his procedure makes it impractical. Fortunately, Collins dis-
covered a faster method for this task [Col75]. Still, Collin’s method is
doubly exponential in the number of variables. Even worse, Davenport
and Heintz [DH88] showed that any procedure for this problem is at least
doubly exponential in the number of quantifier alternations. Still, many
implementations of quantifier elimination procedures perform quite well
and for the universal fragment even faster methods are available.

1.4 Modal and Dynamic Logics

For many applications, first-order logic provides a powerful tool for de-
scribing properties of systems. The bases of first-order logic is formed by
Boolean connectives. These are motivated by the connectives used in our
natural language. Therefore, the connectives are “and”, “or”, “if. . . then”,
and “if and only if”. In addition the logic allows to express properties by
stating the opposite, i.e., the use of negation. First-order logic further
features quantification over objects.

In the beginning of the 20th century a discussion started about propo-
sitional logic and especially the implication operator. The implication op-
erator seamed to suggest a connection between its premise and conclusion.
However, if the conclusion is valid then any premise—related or not—will
result in a valid formula. This bothered philosophers and resulted in an ex-
tension to propositional logic, the so called modal logics [Lew18]. A promi-
nent example of a modal logic is intuitionistic logic [Bro07]. In intuitionistic
logic only those statements hold, that can be constructively proven. This
demands to determine the truth value of a statement either one has to con-
structively prove that it is true or constructively prove that its negation is
true. If neither proof is known the truth value of the statement itself is un-
known. Orlov [Orl28] and Gödel [Göd33] interpreted this logic as a modal
logic with a modality that expresses “it can be constructively proven that”.
Other examples include multiple modalities like “it is possible that” and “it
is necessary that”. Prior [Pri55] studied temporal interpretation of these

Jan-David Quesel 5 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 1. Introduction

modalities, i.e., modalities that express that something is “always” the case
and its dual, i.e., something is “eventually” the case. He also introduced
a binary temporal modality “until” and studied its relation to the unary
modalities “always” and “eventually” [Pri67]. Pnueli [Pnu77] applied the
idea of temporal logic to computer science problems thereby pioneering an
important field of research. Temporal logic provides a qualitative notion of
time in the sense that the order of events is expressible. However, it is not
possible to express quantitative relations. Koymans’ Metric temporal logic
(MTL) [Koy90, OW08] is tailored to bridge this gap. MTL features for
annotated modalities with intervals to qualify properties by modalities like
“eventually with 2 time units”. Of course combinations of first-order and
modal logic have been considered. For an overview on first-order modal
logic see [FM99].

Pratt [Pra76] studied how operational models of programs and modal
logics could be connected. The resulting logic was dynamic logic in which
statements like “for every execution of the program A it holds that” or
“there is a execution of program A such that” can be made. Later Harel
[HKT00] combined dynamic logic and first-order logic into a first-order
dynamic logic.

Platzer [Pla10b] lifted Harel’s ideas to the verification of hybrid systems
and created a logic called differential dynamic logic dL in which modalities
of the form “for every run of the hybrid system A it holds that” and “there
is a run of the hybrid system A such that” exist.

In this thesis, we will use metric versions of temporal logic as well as
dynamic logics to formulate properties of hybrid systems.

1.5 Contributions

We present a family of robust refinement relations for hybrid systems. We
show that stability properties can be transferred from a system to its ro-
bust refinements in a relaxed form. Furthermore, we present a variant of
metric temporal logic (MTL), natural logic (L\), together with a syntactic
transformation function to compute for a given property how it is preserved
under robust refinement.

We present a novel conservative extension to differential dynamic logic
that can be used to express properties of hybrid games. The resulting
logic is called differential dynamic game logic (dDGL). In order to clarify
the relation to hybrid games, we present two semantics—a classical modal

Jan-David Quesel 6 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 1. Introduction

semantics and a game semantics—and show that they are equivalent. Then
we present a sequent proof calculus for dDGL and perform a case study.

We present two related approaches to show that a system is robustly
refined by another one. The first one is based on a construction on hybrid
automaton. The second approach is based on our new logic dDGL.

The proof calculus for dDGL relies on a methods for dealing with real
the resulting proof obligations in first-order logic over the reals. There-
fore, we survey different methods for dealing with these tasks and present
a novel method combining semidefinite programming for the Real Null-
stellensatz and Gröbner bases that is complete for the universal fragment
of real closed-fields and provides checkable certificates. Subsequently, we
perform an experimental evaluation of the different methods on a large set
of benchmarks which shows that our new methods outperforms many of
the other approaches.

The European Train Control System (ETCS) serves as a case study to
demonstrate the interplay of our methods. We show that safety properties
of a specification modeling a train controller and radio block controller with
instantaneous communications can be transferred to implementations with
communication delays.

1.6 Structure of this Thesis

In Chapter 2 we recapitulate some basic definitions. We discuss notions
of similarity and robust refinement in Chapter 3. Chapter 4 considers hy-
brid games as extensions to hybrid systems and presents an extension of
differential dynamic logic [Pla08]. We call the resulting logic differential
dynamic game logic (dDGL). Chapter 5 relates robust refinement of hybrid
systems and hybrid games. Subsequently, we discuss an implementation
of the proof calculus and ways of dealing with the resulting arithmetical
verification tasks in Chapter 6. As a showcase for the methods developed
in the Chapters 3–5 we present a case study in Chapter 7 from the domain
of train control. We summarize our results in Chapter 8 and sketch various
directions for future work.

Jan-David Quesel 7 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 1. Introduction

1.7 Sources

This thesis contains parts that were joint work with other authors and
have been partially published before. Chapter 3 is a substantially extended
version of joint work with Martin Fränzle and Werner Damm [QFD11].
Results from the same publication form the basis of Section 5.1. Chapter 4
contains results that were obtained as joint work with André Platzer and
have been previously published in [QP12a]. The results in Chapter 6 were
joint work with André Platzer and Philipp Rümmer [PQ08a,PQR09a]. We
base our case study in Chapter 7 on joint work with André Platzer [PQ08b,
PQ09a,PQ09b].

1.8 How to Read this Thesis

There are different dependencies between the chapters in this thesis. Every
reader should have a look at Section 2.1 to get an overview of notions
and abbreviations used throughout this thesis. Readers that are familiar
with hybrid systems can skip Section 2.2 and refer back to the detailed
definitions of syntax and semantics of hybrid programs (Section 2.2.2) and
hybrid automata (Section 2.2.4) when needed.

For readers interested in our notions of robust refinement and our ap-
proach on proving that two systems are in refinement relation we suggest
reading Chapter 3 and Section 5.1. Readers that want to go into more de-
tail on that topic could then read up on differential dynamic game logic in
Section 4.1 and Section 4.2 and our more general way of proving refinement
relations using dDGL in Section 5.2.

For readers interested in our theorem prover KeYmaera, we suggest read-
ing Section 2.2.2 about hybrid programs, Chapter 4 about differential dy-
namic game logic and especially our sequent proof calculus in Section 4.3,
and Chapter 6 about implementation details with a special focus on deal-
ing with the resulting verification conditions formulated in first-order logic
over the reals.

Jan-David Quesel 8 Oldenburg, April 3, 2013

C H A P T E R T WO

Preliminaries

“There’s a door”
“Where does it go?”
“It stays where it is, I think.”

— Terry Pratchett

Contents

2.1 Notations and Abbreviations 10
2.2 Models for Hybrid Systems 11

2.2.1 Hybrid Systems by Example 11
2.2.2 Hybrid Programs 14
2.2.3 Differential-algebraic Constraints 18
2.2.4 Hybrid Automata 19

2.3 Logics . 21
2.3.1 Propositional Logic 21
2.3.2 First-Order Logic 22
2.3.3 First-Order Logic over the Reals 25
2.3.4 Differential Dynamic Logic dL 27

2.4 Metrics, Norms, and Distances 29

9

Similarity, Logic, and Games CHAPTER 2. Preliminaries

In this chapter we define basic terms and notions which will provide the
formal basis for the next chapters. After fixing some notions and abbre-
viations in Section 2.1, Section 2.2 gives a brief introduction into hybrid
systems and hybrid system modeling. For this purpose we will cover hy-
brid automata [ACHH92, NOSY92, Hen96] and hybrid programs [Pla10b]
as operational models for hybrid systems. Subsequently, in Section 2.3 we
discuss different logics to get a mathematical grip on formulating properties
of such systems. The logics covered in this section range from propositional
logic over first-order logic to differential dynamic logic (dL) [Pla10b]. The
logic dL is specifically tailored for hybrid system verification. In addition,
we present an overview on metrics and norms in order to later measure
distances between system trajectories in Section 2.4.

2.1 Notations and Abbreviations

First, let us fix some notations. This small section should serve as a ref-
erence for the notations. Most of these are repeated again where they are
first needed.

We denote the set of natural numbers {0, 1, 2, . . . } by N, the set of ra-
tional numbers by Q, and the set of real numbers by R. The non-negative
real numbers are denoted by R≥0. For a number r, we use |r| to denote
its absolute value whereas for a set X we use |X| to denote its cardinality.
For two sets X and Y we denote by X ∪̇ Y their disjoint union. Functions
denoted by || · || are assumed to be arbitrary norms if not mentioned oth-
erwise. We denote by dom f the domain of a function f . Furthermore, we
denote by Br =̂{x | x ∈ Rn ∧ ||x|| < r} the open n-dimensional ball with
radius r centered at the origin.

We assume that hybrid programs are built using a finite, ordered set of
variables V . States are mappings between these variables and real numbers.
For ease of presentation we convert between states ν : Sta(V) → R and
vectors ν ∈ Rn where n = |V | is implicitly assumed. This transformation
is assumed to be uniquely defined by the order of the variables.

Throughout this thesis we use ẋ to denote the time derivative of some
variable x.

Jan-David Quesel 10 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

2.2 Models for Hybrid Systems

As this work focuses on mathematical models for physical systems, so called
hybrid systems [Pla10b, ACHH92, NOSY92, Hen96], we will, in this chap-
ter, present different representation of these models. First, we will give an
introduction to what hybrid systems are. Then, we define a program nota-
tion for hybrid systems, so called hybrid programs [Pla10b]. Subsequently,
we define a notion of hybrid automata [ACHH92, NOSY92, Hen96], which
could be seen as the standard model for hybrid systems.

2.2.1 Hybrid Systems by Example

Hybrid systems occur in many places in our day to day life. Examples
include trains [PQ08b, PQ09a], cars [ALPK12], planes [Pla10b] but also
drug infusion pumps [SHL11], electric heaters [HHWT97], and many more.
To pick an example we focus on trains in this section. The movement of
trains can be described by differential equations. Kinematic models based
on Newton’s laws of mechanics are sufficient for train interactions where p
is the position of the train, v its velocity and a its acceleration. All these
state variables are functions in time t.

dp

dt
= v,

dv

dt
= a (2.1)

As time domain we use the non-negative real numbers, denoted by R≥0,

and instead of dp
dt we write ṗ for the time-derivative of p. Equation (2.1)

specifies that the position p changes over time according to the value of
the velocity. The velocity itself changes according to the acceleration a.
However, the equation does not specify how the acceleration a evolves.
To make the model of the dynamics more realistic we could add another
differential equation ȧ = j where j is the jerk, but then the question just
shifts over to j as it is not described how j evolves. We follow the explicit
change principle. That is, no variable changes unless the model explicitly
specifies how it changes. In particular, the absence of a differential equation
for a in (2.1) indicates a is constant during the continuous evolution.

If we want to model an analog controller for a, we can replace a in (2.1)
by a term that describes how the analog controller sets the acceleration a,
depending on the current position p and velocity v. For example, if d is
the set-value for the velocity, we describe a simple proportional controller
with gain Kp by the differential equation ṗ = v, v̇ = Kp(v − d).

Jan-David Quesel 11 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

7

8

9

t

Acceleration
Velocity
Position

Figure 2.1: One example trace of a hybrid system for train dynamics (2.1)
with the acceleration signal changing as indicated over time

A common alternative is to use a digital controller, which turns the
purely continuous dynamical systems into a hybrid system that exhibits
both discrete and continuous dynamics. An example trajectory of the train
dynamics of (2.1), controlled by a discrete controller for the acceleration a
that changes its values at various instants in time is shown in Figure 2.1.

The figure traces the values of the system state variables p, v, and a
over time t ∈ R≥0. The acceleration a changes its value instantaneously
according to some discrete controller (not specified in (2.1)) and this effect
propagates to the velocity and position according to the relations given by
the differential equation (2.1).

Given a target speed r we may want to build a digital controller that
chooses a constant positive acceleration of A if the current speed is too low
and a constant deceleration of −b if it is too high. We specify the controller
by the following program:

(if v ≤ r then a := A else a := −b fi; (ṗ = v, v̇ = a))∗ (2.2)

The if-fi statement is a case distinction. It first checks whether v ≤ r holds.
If that is the case then a := A is executed. This means that the value of

Jan-David Quesel 12 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

a gets updated to the value of A, which we could think of as the maximal
acceleration. Otherwise, i.e., if v > r then the assignment a := −b gets
executed, assigning the maximal deceleration of −b to a. The operator ; is
for sequential composition. That is, after the first statement finishes (here,
the if statement) the next statement is executed (ṗ = v, v̇ = a). Hence,
after the controller chooses an acceleration, the variables evolve according
to the solution of this differential equation system for some time t ∈ R≥0.
This evolution time is chosen nondeterministically. During this evolution
the acceleration a is constant. However, the position and velocity change
continuously in parallel. Operator ∗ denotes nondeterministic repetition
like in regular expressions. That is, operator ∗ repeats arbitrarily often.
The loop enables the discrete controller to update the acceleration.

A common and useful assumption when working with hybrid systems
is that discrete actions do not consume time (whenever they do consume
time, it is easy to transform the model to reflect this just by adding explicit
extra delays). Because discrete actions are assumed not to consume time,
multiple discrete actions can occur at the same real point in time. To reflect
this, we model the time as a sequence of real-valued functions. Hence the
time model for hybrid systems, called hybrid time, is given by N× R≥0.

The program (2.2) does not specify when the continuous evolution stops
to give the discrete controller another chance to react. Thus, we add a
clock variable c to model a time-triggered architecture.

(if v ≤ r then a := A else a := −b fi; c := 0; (ṗ = v, v̇ = a, ċ = 1 & c ≤ ε))∗
(2.3)

The clock c is reset to zero by the discrete assignment c := 0 before every
continuous evolution and then evolves with a constant slope of ċ = 1. Its
value is bounded by a constant symbol ε. Therefore, the variables of the
system in (2.3) evolve for at most ε time units, i.e., the discrete controller
is invoked at least every ε time units. For hybrid systems it is often im-
portant that the set of reachable states is restricted. This restriction is
usually called a safety property. For example, a safety property for our
train could be that it should not considerably exceed the speed r. The
model paradigm, used in the last example, where we invoke the controller
not at exact sampling times but at least every ε time units, ensures that
if the controller is implemented on faster hardware, then it will still have
the same safety properties. In Figure 2.1 the acceleration is changed for ex-
ample almost every 1 time unit. Still, there are, in total, more changes to
the acceleration. The formula c ≤ ε that is separated from the differential

Jan-David Quesel 13 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

equation by the symbol & is an evolution domain constraint. Evolution
domain constraints are formulas that restrict the continuous evolution of
the system to stay within that domain. This is, the continuous evolution
starts within the specified domain and must stop before it leaves this re-
gion. Note that the model (2.3) only puts an upper bound on the duration
of a continuous evolution, not a lower bound. The discrete controller can
react faster than ε and, in fact, in Figure 2.1, it does react more often.

The next extension to our model adds nondeterminism to the choice of
the acceleration. If we replace the assignment a := A by a := A ∪ a := 0
(read “a becomes A or a becomes 0), then the controller can always choose
to keep its current velocity instead of accelerating further. We use ∪ to be
a nondeterministic choice. Hence the program can unconditionally follow
either way.

(if v ≤ r then a := A ∪ a := 0 else a := −b fi;

c := 0; (ṗ = v, v̇ = a, ċ = 1&c ≤ ε))∗ (2.4)

2.2.2 Hybrid Programs

The program model for hybrid systems that we have illustrated by example
is called hybrid programs (HP) [Pla08,Pla10a,Pla10b]. The syntax of hybrid
programs is shown together with an informal semantics in Tabular 2.1. The
basic terms (called θ in the table) are either rational number constants,
real-valued variables or polynomial arithmetic expressions built from those.
That is, they are generated from the grammar

θ ::= q | v | θ + θ | θ · θ

where q ∈ Q are rational numbers and v ∈ V are variables. Observe
that, these terms can be nonlinear as they are closed under multiplication.
Further, we allow fractions of rational polynomials if it is clear from the
context that they are defined.

The effect of x := θ is an instantaneous discrete jump assigning the
value of θ to the variable x. For example in Figure 2.1, the acceleration
a changes instantaneously at time 1.8 from 0 to 5, by the discrete jump
a := A for A having value 5. For a train with current velocity v the
deceleration necessary to come to a stop within distance m is given by

− v2

2m . The controller could assign this value to the acceleration by the

Jan-David Quesel 14 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

Table 2.1: Statements of hybrid programs (F is a first-order formula, α, β
are hybrid programs)

Statement Effect

α; β sequential composition where β starts after α finishes
α ∪ β nondeterministic choice, following either alternative α or β
α∗ nondeterministic repetition, repeating α n times for any n ∈ N
x1 := θ1, . . . , xn := θn parallel discrete assignment of the values of terms θi to

the variables xi (parallel jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x(
ẋ1 ∼1 θ1, . . . , continuous evolution of xi along differential (in)equation system

ẋn ∼n θn&F
)

ẋi ∼i θi, with ∼i ∈ {≤,=}, restricted to evolution domain F
?F test if formula F holds at current state, abort otherwise
if(F) then α perform α if F is true at current state, do nothing otherwise
if(F) then α else β perform α if F is true at current state, perform β otherwise

assignment a := v2

2m . In addition, we allow parallel assignments to multiple
variables. For example, x := y, y := x switches the values of x and y.

The effect of ẋ = θ&F is an ongoing continuous evolution controlled
by the differential equation ẋ = θ that is restricted to remain within the
evolution domain F , which is a formula of arithmetic. The evolution is
allowed to stop at any point in F but it must not leave F . Systems of
differential equations are defined accordingly: ṗ = v, v̇ = −b& v ≥ 0, for
instance, characterizes the braking mode of a train with braking force b
that holds within v ≥ 0 and stops any time before v < 0. The extension
to systems of differential equations is straight forward, see [Pla08, Pla10a,
Pla10b]. The language supports higher-order derivatives by using auxiliary
variables. That is, in the previous example the second derivative of the
position is the acceleration, i.e., p̈ = −b.

For discrete control, the test action ?F is used to define conditions.
It succeeds without changing the state if F is true in the current state,
otherwise it aborts all further evolution. For example, a train controller
can check whether the chosen acceleration is within physical limits by

?− b ≤ a ≤ A .

If a computation branch does not satisfy this condition, the branch is dis-
continued and aborts.

From these basic constructs, more complex hybrid programs can be built
similar to regular expressions. The sequential composition α;β expresses

Jan-David Quesel 15 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

that hybrid program β starts after hybrid program α finishes, as in Expres-
sion (2.2). The nondeterministic choice α∪β expresses alternatives in the
behavior of the hybrid system. Nondeterministic repetition α∗ says that
the hybrid program α repeats an arbitrary number of times, including zero.
These operations can be combined to form any other control structure.

For instance, (?v ≥ r; a :=A) ∪ (?v ≤ r; a :=−b) says that, depending on
the relation of the current speed v of some train and a given target speed r,
a is chosen to be the maximum acceleration A if v ≤ r or maximum decel-
eration −b if v ≥ r. If both conditions are true (hence, v = r) the system
chooses either way. Note that the choice between the two branches is made
nondeterministically. However, the test statements abort the program ex-
ecution if the left branch was chosen in a state where v ≥ r does not hold,
or the right branch was chosen in a state where v ≥ r was not satisfied. As
abbreviations, we add if-statements to our program syntax with the usual
meanings from programming languages. The if-statement can be expressed
using the test action, sequential composition and the choice operator.

if F then α fi ≡ (?F ;α) ∪ (?¬F)

if F then α else β fi ≡ (?F ;α) ∪ (?¬F ;β)

The semantics of the first variant is as follows: If condition F is true, the
then-part α is executed otherwise the statement has no effect. For the
second statement the semantics is that if condition F is true, the then-
part α is executed otherwise the else-part β is performed. Note that, even
though we use nondeterministic choice in the encoding, the choice becomes
deterministic as the conditions in the test actions are complementary, so
exactly one of the two tests ?F and ?¬F fails in any state.

When combining choices and test it is important to make sure that the
model does not get blocked in an unnatural way. For example, the program

(?v < 3; v̇ = A) ∪ (?v > 5; v̇ = −b)

cannot evolve if v is between 3 and 5. Therefore, it is good modeling prac-
tice to have at least one branch for each case. Evolution domain constraints
also need to be designed with care. For example, the hybrid program

((v̇ = −b&v ≥ 0) ∪ (v̇ = −b&v < 0))∗

has disjoint evolution domain constraints. When v = 0, the system cannot
switch to the second choice, because its evolution constraint v < 0 is not

Jan-David Quesel 16 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

satisfied for the initial state. Therefore, the evolution domains have to
be overlapping if switching between the differential equations is desired
behavior.

The nondeterministic assignment x := ∗ assigns any real value to x,
thereby expressing unbounded nondeterminism, e.g., in choices for con-
troller reactions. For instance, the idiom a := ∗; ?a > 0 nondeterministi-
cally assigns any positive value to the acceleration a, because only positive
choices for the value of a will pass the subsequent test ?a > 0.

We now define the semantics of hybrid programs formally in terms of
hybrid traces like in [Pla07c]. Let V be a finite set of variable names. A
state is a map ν : V → R. Additionally, Λ is a failure state that is reached
iff a test during a program execution failed. The set of all states over V is
denoted as Sta(V). Let ν(θ) denote the value of a term θ in a state ν and
ν[x 7→ d] denote the state that coincides with ν up to the valuation of x
which is changed to the value of d.

Definition 1 (Hybrid Trace [Pla07c]). A hybrid trace is a (nonempty)
finite or infinite sequence σ = (σ0, σ1, σ2, . . .) of flows with their respective
durations ri ∈ R (for i ∈ N), i.e., functions σi : [0, ri] → Sta(V). For a
state ν ∈ Sta(V), ν̂ : 0 7→ ν is the point flow at ν with duration 0. A trace
terminates if it is a finite sequence σ = (σ0, σ1, . . . , σn) and σn(rn) 6= Λ. In
that case, the last state σn(rn) is denoted by last(σ). The first state σ0(0)
is denoted by first(σ). The composition of two traces σ = (σ0, σ1, σ2, . . .),
ς = (ς0, ς1, ς2, . . .) is defined by

σ ◦ ς =


(σ0, . . . , σn, ς0, ς1, . . .) if σ terminates and last(σ) = first(ς)

σ if σ does not terminate

not defined otherwise .

Further, we denote the set of all traces by T.

Note that the tuple (ν̂, ω̂) denotes a hybrid trace with length 0 consisting
of two point flows. These flows occur in the order first ν̂ and then ω̂ at the
same real-valued point in time.

Definition 2 (Trace semantics of hybrid programs [Pla07c]). The trace
semantics τ(α) of a hybrid program α, is the set of all its possible hybrid
traces and is defined inductively as follows:

Jan-David Quesel 17 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

1. τ(x1 := θ1, . . . , xn := θn) =

{(ν̂, ω̂) | ω = ν[x1 7→ ν(θ1)] . . . [xn 7→ ν(θn)], ν ∈ Sta(V)}

2. τ(x := ∗) = {(ν̂, ω̂) | ω = ν[x 7→ ν(r)], r ∈ R, ν ∈ Sta(V)}

3. τ(ẋ = θ&χ) = {(f) | 0 ≤ r ∈ R and f : [0, r] → Sta(V) is such that
the function f(ζ)(x) is continuous in ζ on [0, r] and has a derivative
of value f(ζ)(θ) at each ζ ∈ (0, r), while f(ζ)(y) is constant for each
variable y without a differential equation. Also each intermediate
value satisfies the invariant χ.}

4. τ(?χ) = {(ν̂) | ν |= χ} ∪ {(ν̂, Λ̂) | ν 6|= χ}

5. τ(α ∪ β) = τ(α) ∪ τ(β)

6. τ(α;β) = {σ ◦ ς | σ ∈ τ(α), ς ∈ τ(β) if σ ◦ ς is defined}

7. τ(α∗) =
⋃
n∈N τ(αn), where αn+1 = αn;α for n ≥ 1, α0 =?true.

Here, |= denotes the consequence relation for first-order formulas over
the reals. We will formally define this relation in the following sections.
Later, we will allow formulas from more complex logics in places where this
definition is restricted to first-order. Observe that, in the definition of the
semantics of continuous evolutions, the function f projected to the compo-
nent x describes the solution to the differential equation. The restriction
that each intermediate value has to satisfy χ ensures that the evolution
does not leave its evolution domain region described by χ.

Let ρ(α) denote the relation between all states that are connected by a
terminating trace of α, i.e.,

ρ(α) = {(ν, ω) | ∃(σ0, . . . , σn) ∈ τ(α) : σ0(0) = ν ∧ σn(rn) = ω 6= Λ}

where rn = max(dom σn).

2.2.3 Differential-algebraic Constraints

For modeling more complex dynamics, we use so called differential-algebraic
constraints [Pla10a, Pla10b], i.e., first-order arithmetic constraints whose
free variables are a subset of the system state variables and their deriva-
tives. For example, let the position of a train with longitudinal and lateral

Jan-David Quesel 18 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

dynamics be denoted by (x, y). Then the differential-algebraic constraint
ẋ + ẏ ≤ 1 gives a constraint that limits the speed of the train to a maxi-
mum of 1. For our one dimensional train example, the differential-algebraic
constraint ∃d ṗ = v ∧ v̇ = a + d ∧ dmin ≤ d ≤ dmax models a continuous
disturbance to the choice of the acceleration in the interval [dmin, dmax].
For these differential-algebraic constraints, the system follows a trajectory
satisfying the constraint locally, see [Pla10a,Pla10b] for details. If there is
no such trajectory, the execution of the program fails.

2.2.4 Hybrid Automata

Of course hybrid programs are not the only formalism to model hybrid
systems. The most common formalism to specify hybrid systems are hybrid
automata [ACHH92,NOSY92,Hen96].

Definition 3. A hybrid automaton is a tuple H = (U,X,L,E, F, Inv, Init)
where

• V := U ∪̇ X is a set of real-valued variables where U is the set of
external variables and X contains the internal ones.

• L is the set of locations or modes.

– Invariants are provided by a mapping Inv of locations to formu-
las over variables in V .

– Flows are given by F , which is a mapping of locations to for-
mulas of the form

∧
x∈Ẋ ẋ = ex where ex are expressions over

V .

• E ⊆ L × G × L are discrete transitions, where G denotes the set of
all formulas with free variables in V ∪X ′. The variables in X ′ refer
to the values of the variables in V in the post-state.

• Init is a mapping of locations to formulas with free variables V , which
characterizes the initial condition to start in the specific location.

The intuitive semantics of these automaton is as follows: Like in hybrid
programs, discrete actions are assumed to be instantaneous. During con-
tinuous evolutions, the variables change according to the dynamics of the
current locations.

Jan-David Quesel 19 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

ẋ = v
v̇ = −0.001x − 0.052v
−15 ≤ v ≤ 15

v̇ = 1.5
−30 ≤ v ≤ −15

v̇ = −2
15 ≤ v ≤ 30

v ≥ −15
x := 0

v ≤ −15
x := 0

v ≥ 15
x := 0

v ≤ 15
x := 0

Figure 2.2: Cruise Control

Example 1. An example for a hybrid automaton is given in Figure 2.2.
The automaton models a simple cruise controller. The system has two vari-
ables. The variable v is the speed difference to the target speed. Another
variable x is used to keep track of the integral error made by the controller.
While v > 15 the controller chooses maximal deceleration of −2. In case
v < −15 it chooses maximal acceleration 1.5. In between a proportional-
integral (PI) controller is used to steer the system smoothly towards a ve-
locity difference of zero. The variable x is reset on each transition in order
to avoid preconditioning of the PI controller.

We give the semantics of hybrid automata in terms of hybrid traces. We
assume that a distinct variable ` is used to store the current location. Let
π denote the projection to specific components of our hybrid automaton.
For example πV (s) gives us the valuation of the variables in state s whereas
πL(s) returns the location.

Definition 4 (Semantics of Hybrid Automaton). The semantics of a hy-
brid automaton A is the set τ(A) of hybrid traces such that, for every
hybrid trace σ = (σ0, σ1, . . .) ∈ τ(A) holds:

Jan-David Quesel 20 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

1. σ0(0) |= Init

2. For all i > 0 there is an edge from location l = πL(σi) to location
l′ = πL(σi+1) and πV (σi) satisfies the invariant of location l and
πV (σi+1) satisfies the invariant of location l′. Additionally, the guard
on this edge is satisfied by using the values of σi for V and πX(σi+1)
for X ′.

3. During continuous evolutions from some real-valued time point t to
some t′ the location stays constant and no discrete computations
change any values. That is for all i > 0, σi : [0, ri] → Rn, if
ri > 0 then σi is the solution to the initial value problem defined by
σi(0) = σi−1(max(dom σi−1)) of the flow formula F (πL(σi)) where
the variables in U follow some Lebesgue-measurable function u(·).

2.3 Logics

After presenting different models to describe the operational behavior of
hybrid systems, an important issue is how to formally capture properties of
those. Mathematical descriptions of system properties have been studied
in algebra and mathematical logic. We pursue the latter approach in this
work though we borrow ideas and results from algebra.

2.3.1 Propositional Logic

Propositional logic [Fit96] is a classic logic introduced by philosophers to
formalize propositions made in natural language. It is thus used to give a
mathematical meaning to day-to-day discussions.

Syntax. Let Ξ be a set of atomic formulas.

• true and false are propositional formulas.

• If p is in Ξ, then p is a propositional formula.

• If ϕ and ψ are propositional formulas, then ϕ ∧ ψ is a propositional
formula.

• If ϕ is a propositional formula then ¬ϕ is a propositional formula.

Jan-David Quesel 21 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

With these definitions we can add abbreviations for the other classical
Boolean combinations.

• ϕ ∨ ψ can be defined as ¬(¬ϕ ∧ ¬ψ)

• ϕ→ ψ can be defined as ¬ϕ ∨ ψ

• ϕ↔ ψ can be defined as (ϕ→ ψ) ∧ (ψ → ϕ)

Semantics. For an interpretation of the atomic formulas I the semantics
of propositional formulas is given by the consequence relation |= inductively
defined as:

• I |= true

• I 6|= false

• I |= p iff I(p) = true where p ∈ Ξ

• I |= ϕ ∧ ψ iff I(ϕ) and I(ψ)

• I |= ¬ϕ iff I 6|= ϕ

2.3.2 First-Order Logic

Even though propositional logic enables us to formalize many sentences,
some relations are beyond its expressiveness. A well known example is
said to be given by the famous Greek philosopher Aristoteles. He con-
cluded from “All humans are mortal.” and that “Sokrates is human.” that
“Sokrates is mortal.”. However, this conclusion cannot be made with pure
propositional reasoning, as there is no connection between the first two
statements. Mathematically it is necessary to introduce quantifiers and an
object domain in order to provide a connection between universal state-
ments (“For all/All. . . ”) and constants (“Sokrates”). First-Order Logic
(FOL) [Fit96] is an extension of propositional logic introducing functions,
predicates, and quantifiers, and enables us to capture the above example
formally.

Jan-David Quesel 22 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

The syntax of FOL consists of a countably infinite set of variables V ar,
the common logic junctors (¬,∧,∨,→,↔) as well as quantifiers (∀,∃). Ad-
ditionally, there are non-logic symbols supplied by the signature. That is,
FOL formulas are built from the following grammar

θ ::= x | f(θ1, . . . , θn)

φ ::= p(θ1, . . . , θn) | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀x φ | ∃x φ

where x, xi are variables, f is a function symbol, θ, θi are terms, p is a
predicate symbol, and φ and ψ are first-order formulas. We now define the
semantics of first-order logic.

A structure M for the signature is a pair of two sets (DM, M). The first
is non-empty and is called the universe. The latter is the interpretation. An
interpretation  is a function that maps every function symbol f ∈ Func
to a function with arity n:

M(f) : Dn
M → DM

The same holds for predicate symbols, but the range of those is Boolean.

M(p) : Dn
M → B

A valuation ν is a function that maps every variable to an element in the
universe. That is,

ν : V ar → DM .

A semantic modification of a valuation ν is written as ν[x 7→ d] which is a
valuation identical to ν except for the valuation of x, which is d ∈ DM.

Definition 5 (Semantics of terms). The semantics of a term θ depending
on an interpretation  and a valuation of variables ν is given by a valuation
function val,ν(θ). This function is inductively defined by

val,ν(x) = ν(x) iff x is a variable

val,ν(f(θ1, . . . , θn)) = (f)(val,ν(θ1), . . . , val,ν(θn))

Definition 6 (Semantics of formulas). The semantics of a formula φ de-
pending on an interpretation  and a valuation of variables ν is inductively

Jan-David Quesel 23 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

defined as follows:

, ν |= p(θ1, . . . , θn) iff (p)(val,ν(θ1), . . . , val,ν(θn)) = true

, ν |= ¬φ iff , ν 6|= φ

, ν |= φ ∧ ψ iff , ν |= φ and , ν |= ψ

, ν |= φ ∨ ψ iff , ν |= φ or , ν |= ψ

, ν |= φ→ ψ iff , ν 6|= φ or , ν |= ψ

, ν |= φ↔ ψ iff , ν |= φ if, and only if , ν |= ψ

, ν |= ∀x φ iff for all d ∈ DM it holds that , ν[x 7→ d] |= φ

, ν |= ∃x φ iff for one d ∈ DM it holds that , ν[x 7→ d] |= φ

We now define substitutions [Fit96].

Definition 7 (Substitution). A substitution is a finite relation between
variables and terms, written as Θ = {x1 7→ θ1, . . . , xn 7→ θn}, with n ∈ N
and

• x1, . . . , xn are pairwise disjoint variables

• θ1, . . . , θn are terms

• for all i ∈ {1, . . . , n} xi 6= θi holds

Definition 8 (Application of a substitution). Let θ be a term, φ be a
formula, and Θ = {x1 7→ θ1, . . . , xn 7→ θn} a substitution.

1. The application of Θ to a term θ results in a new term θΘ, that results
from θ by simultaneously replacing all occurrences of the variables
x1, . . . , xn by the corresponding terms θ1, . . . , θn.

2. The application of Θ to a formula φ results in a new formula φΘ,
that is created by:

a) renaming all occurrences of a variable x in a part of the formula
with the form ∃x ψ or ∀x ψ where ψ is a formula with x is one
of the xi or occurs in some θi to a name that does not occur
either in φ nor in the substitution

b) and then replacing all remaining occurrences of the variables
x1, . . . , xn by the corresponding terms θ1, . . . , θn.

Jan-David Quesel 24 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

2.3.3 First-Order Logic over the Reals

Since the halting problem for a Turing machine can be reduced to the
satisfaction problem of first-order logic [Coo71], we cannot hope to decide
whether a first-order formula is valid. Even though the reachability prob-
lem for hybrid systems is undecidable [ACHH92] as well, we like to have a
decidable base logic for our formalisms. In the following, we will base most
of our formalisms on a fixed interpretation of a set of predicates and func-
tions symbols. We denote by FOLR the version of first-order logic where
the predicate symbols >,≥,=,≤, <, 6= are interpreted in their usual way
on terms build from rational constants, variables, and function symbols
+,−, · with their usual interpretation. This interpretation here is fixed.
So in contrast to classical first-order logic the validity of a formula solely
depends on the valuation of the variables.

That is, first-order formulas over the reals are produced by the following
grammar:

θ ::=q | x | (−θ) | (θ1 + θ2) | (θ1 − θ2) | (θ1 · θ2)

p ::=θ1 > θ2 | θ1 ≥ θ2 | θ1 = θ2 | θ1 6= θ2 | θ1 ≤ θ2 | θ1 < θ2

F ::=p | ¬F | F ∧G | F ∨G | F → G | F ↔ G | ∀x F | ∃x F

where q is a rational number, x is a variable, θ, θi are terms, p is a predicate
expression, and F and G are formulas.

The semantics is defined like for first-order logic with a fixed domain and
fixed interpretations. Therefore, the valuations of terms is just a lifting of
the function symbols and rational numbers to the semantics domain. The
only thing that is replaced by the valuation function are the variables that
are replaced by their real value. “Real” here refers to both the fact that
is the actual value that is represented by the variable and the domain the
value is drawn from which are the real numbers.

Definition 9 (Semantics of terms). The semantics of a term θ depend-
ing on a valuation of variables ν : V → R is given by a valuation func-

Jan-David Quesel 25 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

tion valν(θ). This function is inductively defined by

valν(q) = q iff q is a rational number

valν(x) = ν(x) iff x is a variable

valν(−θ1) = −valν(θ1)

valν(θ1 + θ2) = valν(θ1) + valν(θ2)

valν(θ1 − θ2) = valν(θ1)− valν(θ2)

valν(θ1 · θ2) = valν(θ1) · valν(θ2) .

Observe that, while the constants appearing in the formulas have to be
rationals, the variable values are real numbers. Therefore, we can also
express algebraic numbers using this logic. For example x2− 2 = 0∧x > 0
expresses that x =

√
2. However, the logic provides no means to express

numbers like e or π. Because the interpretation of function and predicate
symbols is fixed anyway we will from now on use a less verbose notation.
That is, by abuse of notation we just write ν(θ) for the valuation of a term
θ.

Further, we should note that this logic does only consider total func-
tions and therefore there is no division operator here. This is, we consider
fractions as abbreviations for multiplications with additional constraints
ensuring that the denominators are non-zero.

Example 2. For instance, the formula

∀x (
a

x
= b) (2.5)

will be interpreted as

∀x (x 6= 0→ a = xb) . (2.6)

For existential quantifiers we use conjunctions instead of implications in
order to make sure that the denominators are non-zero. That is, the for-
mula

∃x (
a

x
= b) (2.7)

will be interpreted as

∃x (x 6= 0 ∧ a = xb) . (2.8)

Jan-David Quesel 26 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

Note that, for mixed quantifier prefixes this gets quite intricate. Consider
the following formula:

∀x ∃y (
a

x+ y
=

b

x+ 1
+

c

xy
) (2.9)

In this case, we have to add constraints that ensure that neither x+y, x+1,
nor xy are 0. The following formula governs all these cases:

∀x (x 6= 0 ∧ x+ 1 6= 0)→
∃y (x+ y 6= 0 ∧ xy 6= 0 ∧ a(x+ 1)xy = b(x+ y)xy + c(x+ y)(x+ 1))

(2.10)

Observe that, it is necessary to exclude the case x = 0 in order to ensure
that we can find some y such that xy 6= 0 for all x.

Like for the terms, the semantics of formulas is straightforward. The
interpretations of the predicate and function symbols are fixed and as
expected. The logical connectives and quantifiers are interpreted like in
general first-order logic with the sole difference that the domain of the
quantifiers is always the real numbers.

Definition 10 (Semantics of formulas). The semantics of a formula φ
depending on a valuation of variables ν is inductively defined as follows.

ν |= θ1 ∼ θ2 iff ν(θ1) ∼ ν(θ2) for ∼∈ {>,≥,=, 6=,≤, <}
ν |= ¬φ iff ν 6|= φ

ν |= φ ∧ ψ iff ν |= φ and ν |= ψ

ν |= φ ∨ ψ iff ν |= φ or ν |= ψ

ν |= φ→ ψ iff ν 6|= φ or ν |= ψ

ν |= φ↔ ψ iff ν |= φ if, and only if ν |= ψ

ν |= ∀x φ iff for all values r ∈ R it holds that ν[x 7→ r] |= φ

ν |= ∃x φ iff for one r ∈ R it holds that ν[x 7→ r] |= φ

2.3.4 Differential Dynamic Logic dL
In order to link the operational behavior of hybrid systems and their prop-
erties, Platzer [Pla10b] proposed a logic called differential dynamic logic dL.

Jan-David Quesel 27 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

The logic is based on the formalism of hybrid programs and strongly in-
spired by Harel’s first-order dynamic logic [HKT00].

Terms and predicate expressions in differential dynamic logic are built
the same like in FOLR. That is, they are defined by the following grammar:

θ ::= q | x | (−θ) | (θ1 + θ2) | (θ1 − θ2) | (θ1 · θ2)

p ::= θ1 > θ2 | θ1 ≥ θ2 | θ1 = θ2 | θ1 6= θ2 | θ1 ≤ θ2 | θ1 < θ2

As before, q is a rational number and x is a variable. Now, the dL-
formulas are defined by the following grammar (φ and ψ are formulas, α
is a hybrid program):

φ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

The formulas are designed as an extension of first-order logic over the reals
with built-in correctness statements about hybrid programs. They can con-
tain propositional connectives ∧,∨,→,↔,¬ and real-valued quantifiers ∀,∃
for quantifying over parameters and evolution times. For a hybrid pro-
gram α, dL provides correctness statements like [α]φ and 〈α〉φ, where [α]φ
expresses that all traces of system α lead to states in which condition φ
holds. Likewise, 〈α〉φ expresses that there is at least one trace of α to a state
satisfying φ. Note that dL is closed under logical connectives and quantifi-
cation. Thus, it provides conditional correctness statements like φ→ [α]ψ,
saying that α satisfies ψ if condition φ holds at the initial state, or even
nested statements like the reactivity statement [α]〈β〉φ, saying that what-
ever hybrid program α is doing, hybrid program β can react in some way
to ensure φ. In addition, dL can also express mixed quantified statements
like ∃m [α]φ saying that there is a choice of parameter m such that system α
always satisfies φ, which is useful for determining parameter constraints.

For a term θ let ν(θ) provide the value of θ in the state ν. The seman-
tics of dL-formulas is almost identical to that of FOLR. In addition, the
semantics features reachability expressions over hybrid programs.

Definition 11 (Semantics of dL formulas). The semantics |= of a dL for-
mula with respect to state ν uses the standard meaning of first-order logic:

1. ν |= θ1 ∼ θ2 iff ν(θ1) ∼ ν(θ2) for ∼ ∈ {<,≤,=,≥, >}

2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ, and accordingly for ¬,∨,→,↔

Jan-David Quesel 28 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

3. ν |= ∀xφ iff ω |= φ for all ω that agree with ν except for the value
of x

4. ν |= ∃xφ iff ω |= φ for some ω that agrees with ν except for the value
of x

It extends to correctness statements about a hybrid program α as follows

5. ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α)

6. ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α)

Observe that the semantics is defined based on the reachable states of
the program and not based on the trace that led to that state. For a variant
of the logic that talks about temporal properties of programs in addition
to reachability we like to refer the reader to literature about differential
temporal dynamic logic (dTL) [Pla07c, Pla10b]. The logic dTL allows for
the combination of the box and diamond operators of dynamic logic with
those of temporal logic. That it can express statements like “for all runs of
system α it is always the case that φ holds”.

2.4 Metrics, Norms, and Distances

As we aim at comparing hybrid system behaviors, we need notions of dis-
tances between values occurring during the execution of these systems.
Therefore, we recapitulate mathematical notions of distances, norms, and
metrics. To measure distances in an n-dimensional space, different metrics
are available.

Definition 12 (Metric [For08]). A metric is a function

d : X ×X → R

that satisfies the following conditions:

1. d(x, y) = 0 iff x = y

2. Symmetric: d(x, y) = d(y, x)

3. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)

Jan-David Quesel 29 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

Definition 13 (Norm [For08]). For a vector space V , a norm is a function

|| · || : V → R

with the following properties:

1. ||x|| = 0 iff x = 0

2. Linear scalability: ||λx|| = |λ| · ||x|| for all λ ∈ R, x ∈ V

3. Triangle inequality: ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ V

Note that given a normed vector space (V, ||·||) we can construct a metric
on V as ||x− y|| for all x, y ∈ V .

In the following, we will discuss some properties of norms. Like the
absolute value function, norms are symmetric w.r.t. subtraction in the
vector space.

Lemma 1. Every norm
|| · || : V → R

satisfies the following property:

||x− y|| = ||y − x||

Proof. From Property 2 we can derive that

||y − x||
= || − 1(x− y)||
= | − 1| ||x− y||
= ||x− y|| .

Further, we can get an alternative form of the triangle inequality that
we will later need for some of our proofs.

Lemma 2. Every norm
|| · || : V → R

satisfies the following property:

| ||x|| − ||y|| | ≤ ||x− y|| for all x, y ∈ V

Jan-David Quesel 30 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

Proof. We apply Property 3 (the triangle inequality) twice.

||x|| = ||(x− y) + y|| ≤ ||x− y||+ ||y||
⇔ ||x|| − ||y|| ≤ ||x− y|| . (2.11)

Further using Lemma 1,

||y|| = ||x+ (y − x)|| ≤ ||x||+ ||y − x|| = ||x||+ ||x− y||
⇔ ||y|| − ||x|| ≤ ||x− y|| . (2.12)

Combining lines (2.11) and (2.12) we get that

max{||x|| − ||y||, ||y|| − ||x||} ≤ ||x− y|| .

To conclude the proof, we use that

max{||x|| − ||y||, ||y|| − ||x||} = | ||x|| − ||y|| | .

Which gives us the result

| ||x|| − ||y|| | ≤ ||x− y|| .

The two most well-known norms are the Euclidean and the maximum
norm. We now give their formal definitions.

Definition 14. For a vector x = (x1, . . . , xn) ∈ V , we denote by || · ||e the
Euclidean norm, where

||x||e =

√√√√ n∑
i=1

x2i .

Definition 15. For a vector x = (x1, . . . , xn) ∈ V , we denote by || · ||∞
the maximum norm by

||x||∞ = max{|xi| | i ∈ [1, n]} .

Jan-David Quesel 31 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

Later, we will need an additional property that some norms possess.
That is the property of monotonicity. We use the Kronecker delta to con-
struct vectors that have exactly one component being 1 and all others being
0. The Kronecker delta is defined as

δij :=

{
1 if i = j

0 otherwise
.

Further, we use (δij)n to denote the n-dimensional vector with component
indexed by j, i.e., (δij)n := (δi1, . . . , δin). For instance, the vector (0, 0, 1, 0)
can thus be concisely expressed as (δ3j)4.

Definition 16 (Properties of Norms).

1. We say a norm is absolute iff ||x|| ≤ || |x| || f.a. x ∈ V where | · | is
applied componentwise.

2. We say a norm is monotone in the classical sense iff |x| ≤ |y| implies
that ||x|| ≤ ||y|| f.a. x, y ∈ V where ≤ is interpreted componentwise
on vectors.

3. We say a norm is monotone

if ||(x1, . . . , xn)|| ≤ δ then |xi| ≤
δ

||(δij)n||
f.a. i ∈ {1, . . . , n} .

(2.13)

Johnson and Nylen [JN91] showed that all these properties are equiva-
lent.

Example 3. As one can easily see, the property (2.13) is satisfied for the
Euclidean and the maximum norm.

Let (x1, . . . , xn) be a vector such that ||(x1, . . . , xn)||∞ ≤ δ. Further,
assume that for some xi it holds that |xi| > δ

||(δij)n||∞ . Observe that,

||(δij)n||∞ = 1. Thus, we can simplify this expression to |xi| > δ. This,
however, is a contradiction to the assumption that

max{|xi| | i ∈ [1, n]} ≤ δ .

Therefore, the maximum norm satisfies property (2.13).

Jan-David Quesel 32 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

Consider the Euclidean norm. First, observe that again ||(δij)n||e = 1.
We assume that (x1, . . . , xn) is a vector with ||(x1, . . . , xn)||e ≤ δ. Further,
we assume that for some xi it holds that |xi| > δ. Thus, we get

||(x1, . . . , xn)||e =

√√√√i−1∑
j=1

x2j + x2i +

n∑
j=i+1

x2j ≤ δ .

As the square root is monotonic, i.e. for x ≥ y ≥ 0 it holds that
√
x ≥ √y,

and for all x2j we know that x2j ≥ 0 we consider the case where all xj = 0.

Now we can simplify the expression to
√
x2i ≤ δ. However this is equivalent

to |xi| ≤ δ which is a contradiction to our assumption. Thus, the Euclidean
norm satisfies property (2.13).

A non-monotone norm can be easily constructed as well.

Example 4. We construct a non-monotone norm on R2. Let c > 0.

||(x, y)|| = max{c|x+ y|, |x− y|}

This norm is not monotone as ||(1, 1)|| = 2c whereas ||(1,−2)|| = 3 al-
though obviously |1| < | − 2|. We now show that this function is indeed a
norm.

1. ||(0, 0)|| = max{c|(0 + 0)|, |(0− 0)|} = 0. Assume ||(x, y)|| = 0. This
means 0 = max{c|(x + y)|, |(x − y)|}. However, the sum and the
difference of two numbers can only be 0 if both numbers are 0.

2. Linear scalability:

||(λx, λy)|| = max{c|λx+ λy|, |λx− λy|}
= max{c|λ(x+ y)|, |λ(x− y)|}
= max{c|λ| · |x+ y|, |λ| · |x− y|}
= |λ|max{c|x+ y|, |x− y|}

3. Triangle inequality:

||(x1 + x2, y1 + y2)|| =
max{c|(x1 + x2) + (y1 + y2)|, |(x1 + x2)− (y1 + y2)|}

Jan-David Quesel 33 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 2. Preliminaries

• Assume c|(x1 + x2) + (y1 + y2)| ≥ |(x1 + x2)− (y1 + y2)|, then

c|(x1 + x2) + (y1 + y2)| = c|(x1 + y1) + (x2 + y2)|
≤ c|(x1 + y1)|+ c|(x2 + y2)|
≤ max{c|x1 + y1|, |x1 − y1|}

+ max{c|x2 + y2|, |x2 − y2|}
= ||(x1, y1)||+ ||(x2, y2)|| .

• Assume c|(x1 + x2) + (y1 + y2)| < |(x1 + x2)− (y1 + y2)|, then

|(x1 + x2)− (y1 + y2)| = |(x1 − y1) + (x2 − y2)|
≤ |x1 − y1|+ |x2 − y2|
≤ max{c|x1 + y1|, |x1 − y1|}

+ max{c|x2 + y2|, |x2 − y2|}
= ||(x1, y1)||+ ||(x2, y2)|| .

In the following lemma, we formulate a well known result from func-
tional analysis. That is, on a finite dimensional vector space all norms are
equivalent.

Lemma 3. On a finite dimensional vector space any two norms || · ||a and
|| · ||b are equivalent, i.e., there is λ > 1 such that for all x ∈ V

1

λ
||x||a ≤ ||x||b ≤ λ||x||a .

Proof. See for example [Con90].

Using this result, we can later give transformations such that we can use
the monotonicity property given in Definition 16 even though the original
norm might not possess this property.

Jan-David Quesel 34 Oldenburg, April 3, 2013

C H A P T E R T H R E E

Similarity

Any man, in the right situation,
is capable of murder. But not any
man is capable of being a good
camper. So, murder and camping
are not as similar as you might
think.

— Jack Handy

Contents

3.1 Notions of Robust Refinement 36
3.2 Property Preservation 47

3.2.1 Stability and Region Stability 47
3.2.2 Linear Time Real-Time Temporal Logic 60

3.3 Related Work . 75
3.4 Conclusion . 80

“Those are similar.” is easily stated but seldom meant in a formal way. In
this chapter we try to formalize what similarity means for complex physical
systems modeled mathematically as hybrid systems. We define families of

35

Similarity, Logic, and Games CHAPTER 3. Similarity

quantitative refinement notions. These notions can be considered as ro-
bust refinement relations as they allow for bounded perturbations w.r.t. to
variable values (in the following called spatial deviations) or timings (in
the following referred to as temporal deviations). However, in contrast to
classical refinement this means that not all metric temporal logic proper-
ties are preserved. Therefore, we study which properties can actually be
transferred from a system to its robust refinements.

Contributions. We define two families of robust refinement relations that
provide quantitative notions of robust refinement of hybrid systems. We
prove that stability properties are preserved in a relaxed sense by our notion
of robust refinement. Subsequently, we define a logic suitable to express
properties of hybrid systems and present a syntactic transformation to
compute which formulas are satisfied by all robust refinements of a given
system.

Structure of the Chapter. In Section 3.1 we provide two families of robust
refinement relations. Section 3.2 covers our study of what properties are
preserved under refinement. Related work is discussed in Section 3.3. We
conclude the chapter in Section 3.4.

3.1 Notions of Robust Refinement

In day to day life, we consider two things similar if they look almost the
same, or behave almost the same. In our mathematical model, we are
interested in similar behavior as that is what we use to measure whether
our system is acting correctly in some sense.

The behavior of hybrid systems is defined in terms of variable valuations
changing over time. In the previous chapter, we defined the semantics of
hybrid systems with regard to a two-dimensional time model. However, in
the physical world at a single instant in time at most one valuation of the
variables will be observable. We consider the other steps internal.

Therefore, we have to define what it means for piecewise continuous
trajectories to have similar behavior. We can get a first measure on how
similar the systems are by computing the distance of these variable valua-
tions at each point in time. Furthermore, we could compute the maximum
over these measurements and get a value characterizing the similarity of

Jan-David Quesel 36 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

the two systems. However, for real-time systems and, thus, for hybrid sys-
tems the instantaneous changes to the variable valuations on transitions
can make this distance rather huge.

Example 5. The following program starts with some arbitrary value for x.
The value of x then evolves with constant slope of one until it reaches 100
upon which it is reset to 0.

ẋ = 1 &x ≤ 100; ?x = 100;x := 0; ẋ = 0

Now let us see what happens if we start this system with initial value
x = 0. That means it takes exactly 100 time units to reach the guard
?x = 100. Started at value x = 1, we get a different trajectory. The system
will now only need 99 time units to reach this guard and the distance to the
other trajectory will be 1 up until that point. However, at the moment the
system jumps to 0 the distance suddenly becomes 99 and will grow to 100
within one time unit. At that point, the distance will, due to the reset in
the trajectory started at x = 0, become zero again.

Intuitively, we only did a slight variation in the initial value and would ex-
pect the results to be similar. Looking at the trajectory plots (cf. Figure 3.1)
the two also look similar but our informally defined notion measures a huge
distance between them.

To account for this effect, we allow for some bounded deviation regard-
ing the time of the points we are comparing. This means given a valuation
of the variables of one system at some point in time, there is within close
distance in time a point where the valuation of the variables of the other
system is close. We restrict the temporal distance by a function ε and the
spatial distance by another function δ. If these functions are constant, we
denote, by abuse of notion, their value just by ε and δ. For the tempo-
ral deviations, we use ε-retimings to relate the time axes of the program
semantics. These retimings allow stretching and compressing of the time
axes we want to compare.

First, we recapitulate two notions. We say a relation R : X ×X is left-
total iff for all x ∈ X there is y ∈ X such that (x, y) ∈ R. Further, it is
surjective iff for all y ∈ X there is x ∈ X such that (x, y) ∈ R. Relations
with both of these properties are shown for a finite domain in Figure 3.2.
The relations are left-total as an edge starts at every node on the left.
They are surjective as the same holds for the nodes on the right. If we,
further, assume the existence of an order on X then we can see that not

Jan-David Quesel 37 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

t

x

100

1
0

x

x+ 1

Figure 3.1: Plot of two simple systems with almost identical behavior (cf.
Example 5). Note that the axes do not scale.

every bijection (cf. Figure 3.2a) is order-preserving. However, there exists
a relation between the two sets that is (cf. Figure 3.2b). Obviously, the
canonical bijection would be order-preserving too.

For our retimings we want to exclude the situation depicted in Figure 3.2a
as we want to preserve the order of events.

Definition 17 (Retiming). A left-total, surjective relation r ⊆ R≥0×R≥0
is called retiming iff

∀(t, t̃) ∈ r ∀(t′, t̃′) ∈ r : ((t < t′ → t̃ ≤ t̃′) ∧ (t̃ < t̃′ → t ≤ t′)) .

That is, a retiming is a relation between two time axes such that if we
have increasing time stamps on the one axes then the time stamps we relate
them to are non-decreasing. The definition enforces this property in both
directions. Still it allows for relating a single point on either of the axes to
a whole interval on the other.

Lemma 4. If r is a retiming then (0, 0) ∈ r.

Proof. As r is left-total we know that for some y ∈ R≥0 we have that
(0, y) ∈ r. As it is surjective, we further know that (x, 0) ∈ r for some

Jan-David Quesel 38 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

<

<

<

<

<

<

(a) Bijection

<

<

<

<

<

<

(b) Order preserving relation

Figure 3.2: A left-total, surjective relation on a finite domain

x ∈ R≥0. If we assume x > 0, then we can conclude from the retiming
property that y ≤ 0. This however means that y = 0 and thus (0, 0) ∈ r.
Assume on the contrary that x ≤ 0. Hence as x ∈ R≥0 it holds that x = 0,
and therefore (0, 0) ∈ r.

We now add a bound on the distance of time points to compare by
defining ε-retimings on top of retimings.

Definition 18 (ε-Retiming). Let ε be a non-negative real number. A re-
timing r ⊆ R≥0 × R≥0 is called ε-retiming iff

∀(t, t̃) ∈ r : |t− t̃| ≤ ε .

Note that we use a non-strict inequality here in order to have the identity
relation defined as 0-retiming. An example for a retiming/ε-retiming is
depicted in Figure 3.3. In order to receive the retiming from the picture we
assume that all points connected by the dashed lines are in relation and
there are monotone functions connecting the intervals inbetween. This is
we could use the canonical bijection to relate for example the interval [0, 1]
on the t-axis and [0, 12] on the t̃-axis.

Jan-David Quesel 39 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

0 1 2 3 4 5 6 7 8 9
t

0 1 2 3 4 5 6 7 8 9
t̃

Figure 3.3: Example for a retiming relation r

Definition 19. Let ε1, ε2 be non-negative real numbers. Let r1 be an ε1-
retiming and r2 be an ε2-retiming. We define the classical relation compo-
sition on retimings as

r1 ⊕ r2 := {(t, t′) | ∃s • (t, s) ∈ r1 ∧ (s, t′) ∈ r2} . (3.1)

Further, we define the set of possible combinations as

r1 ◦ r2 := {r | r is an (ε1 + ε2)-retiming ∧ r ⊆ r1 ⊕ r2} . (3.2)

Observe that the classical relation composition, denoted by ⊕ here, does
not yield a retiming. This is, because the resulting relation might not re-
spect the order. Therefore, we define an additional composition operator ◦
that contains all subsets that are indeed retimings. Furthermore, note that
unlike function composition our notion of retiming composition denotes a
set of possible compositions as the composition is not uniquely determined.

In order to be sure that this composition of retimings is well-defined we
have to show that the composition is non-empty. For this, we first show
that given an ε1-retiming r1, and an ε2-retiming r2, the distance of related
points in r1 ⊕ r2 is always bounded by ε1 + ε2.

Lemma 5. Let r1 be an ε1-retiming, and r2 be an ε2-retiming. Then for
all pairs (t, t′) ∈ r1 ⊕ r2 it holds that |t− t′| ≤ ε1 + ε2.

Proof. By definition, for all (t, t′) ∈ r1 ⊕ r2 it holds that there is some s
such that (t, s) ∈ r1 and (s, t′) ∈ r2. As r1 is an ε1-retiming we get that
|t− s| ≤ ε1. Further, as r2 is an ε2-retiming it holds that |s− t′| ≤ ε2. We
now combine these two inequalities which gives

|t− s|+ |s− t′| ≤ ε1 + ε2 .

Jan-David Quesel 40 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Using the triangle inequality we get that

|t− t′| = |(t− s) + (s− t′)| ≤ |t− s|+ |s− t′| ≤ ε1 + ε2 .

This concludes the proof.

Lemma 6. Let r1 be an ε1-retiming and r2 be an ε2-retiming. The set of
possible compositions of r1 and r2 is non-empty, i.e., r1 ◦ r2 6= ∅.

Proof. Let r1 be an ε1-retiming and r2 be an ε2-retiming. We now have to
show that r1 ⊕ r2 contains an (ε1 + ε2)-retiming.

For a point t let r−1(t) denote the pre-image of the relation r1, i.e.,

r−1(t) = {t′ | (t′, t) ∈ r1} .

Further, let r(t) be the image of r2, i.e.,

r(t) = {t′ | (t, t′) ∈ r2} .

We now construct a subset R :=
⋃
t∈R≥0

R(t) of r1⊕r2. For a given t ∈ R≥0,

we construct R(t) according to the following algorithm.

• If r−1(t) is a singleton set then (r−1(t), a) ∈ R(t) for all a ∈ r(t).

• Otherwise, r−1(t) is countably infinite.

– If r(t) = {a} is a singleton set then we map all points in r−1(t)
to this point. That is (a, b) ∈ R(t) for b ∈ r−1(t).

– Otherwise, we construct an order preserving relation the follow-
ing way:

1. If the topology of r−1(t) is the same as the topology of r(t)
we add the canonical order preserving bijection between the
two sets.

2. If one interval [a, b[is left closed and the other interval]c, d[
is left open, then (a, y) ∈ R(t) for all y ∈]c, d−c2 [and all pairs
(x, y) ∈ R(t) from the canonical order preserving bijection
between]a, b[and]d−c2 , d[.

3. The other cases follow by symmetry. Using the same con-
struction as in case 2.

Jan-David Quesel 41 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

t

x

Figure 3.4: Example trajectory

Applying this construction for all t′ ∈ R≥0, we can conclude from the
fact that r1 is surjective and r2 is left-total and surjective that the resulting
relation R is left-total and surjective as well. Further, it is indeed a retiming
as all construction steps are order preserving, i.e., ensure the retiming
property.

In order to show that R is indeed an (ε1 + ε2)-retiming, we need to show
that for each pair (a, b) ∈ R the distance between a and b is bounded by
(ε1+ε2). By construction, R ⊆ r1⊕r2. From Lemma 5 we know that for all
pairs in r1⊕ r2 the distance is bounded by ε1 +ε2. Therefore, this property
also holds for all of its subsets, and, thus, for the relation R. Therefore,
we can conclude that R ∈ r1 ◦ r2 and, finally, that thus the set of possible
compositions r1 ◦ r2 is non-empty which concludes the proof.

As we allow for multiple discrete actions at a single point in time in our
models, systems could differ just because they execute these actions in a
different order. However, these transient intermediate variable values occur
during calculations that we consider instantaneous and, thus, internal. We
therefore do not consider them as observable. That is, we consider variable
values to be observable, iff they are the starting or intermediate value of
a continuous evolution. In Figure 3.4 such a trace is depicted. Hence for
this trace the values marked with boxes are omitted. The values marked
with crosses remain and denote the valuation of the trace at that instant of
time. Of course we keep all valuations unchanged where these are uniquely
determined anyway.

Jan-David Quesel 42 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Definition 20 (Valuation of Traces). For a finite trace σ = (σ0, . . . , σn)
or an infinite trace σ = (σ0, σ1, σ2, . . .) we define the value of σ at a point
t denoted σ(t), as follows

σ(t) =̂

{
σ`(shift(t, `)) if ` is defined

undefined otherwise

where shift(t, i) = t−∑i−1
j=0 max(dom σj) and ` = max{i | shift(t, i) ≥ 0}.

Observe that, in the previous definition, ` is the index of the element of
the trace such that either it is the last element or σ`+1 to denote a valuation
at time t. Furthermore, we like to point out that these valuations can be
seen as the output function of our hybrid systems over a real-valued time
axis.

Based on these observable traces, we recall the similarity notion we pre-
viously defined in [QFD11]. This notion allows for bounded deviations in
timing behavior as well as valuations of the system variables.

Definition 21 (Similarity of Traces [QFD11]). For two traces σ1 and σ2,
given two non-negative real numbers ε, δ, we say that σ1 is ε-δ-similar to
σ2 (denoted by σ1 ε←−−oo δ−−→σ2) iff there is an ε-retiming r such that

∀(t, t̃) ∈ r : ||σ1(t)− σ2(t̃)|| ≤ δ .

We call r the retiming witnessing σ1 ε←−−oo δ−−→σ2.

From the fact that the constants provide upper bounds on the temporal
and spatial distance we can deduce that for larger values of these constants
the traces will also be in that relation.

Lemma 7 (Monotonicity). Let σ1, σ2 be hybrid traces. If σ1 ε1←−−−oo δ1−−→σ2
then σ1 ε2←−−−oo δ2−−→σ2 for all ε2 ≥ ε1 and δ2 ≥ δ1.

Remark 1. For fixed ε, δ, the relation ε←−−oo δ−−→ for hybrid traces is re-
flexive and symmetric, but not transitive.

We illustrate this remark in Example 6. While the relation does not
possess the classical transitivity property, we can still obtain a weak form
of transitivity. For this, like in Lemma 5, we have to add up the spatial
and temporal bounds respectively. Still, this might give rise to an iterative
approach in proving similarity.

Jan-David Quesel 43 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Lemma 8 (Weak Transitivity). If σ1, σ2, and σ3 are hybrid traces such
that σ1 ε1←−−−oo δ1−−→σ2 and σ2 ε2←−−−oo δ2−−→σ3 then σ1 ε1+ε2←−−−−−oo δ1+δ2−−−−−→σ3.

Proof. Let r1 (respectively r2) be a retiming that witnesses σ1 ε1←−−oo δ1−−→σ2
(respectively σ2 ε2←−−oo δ2−−→σ3). Let r ∈ r1 ◦ r2. From Lemma 6 we know
that such an r exists.

Let (t, t′) ∈ r be arbitrary. From Definition 19 we know that there is s
such that (t, s) ∈ r1 and (s, t′) ∈ r2.

This gives that

||σ1(t)− σ2(s)|| ≤ δ1
and

||σ2(s)− σ3(t′)|| ≤ δ2 .

Adding these inequalities, we get

||σ1(t)− σ2(s)||+ ||σ2(s)− σ3(t′)|| ≤ δ1 + δ2 . (3.3)

Using the triangle inequality we get that

||σ1(t)− σ3(t′)|| = ||σ1(t)− σ2(s) + σ2(s)− σ3(t′)||
(3.4)

||σ1(t)− σ2(s) + σ2(s)− σ3(t′)|| ≤ ||σ1(t)− σ2(s)||+ ||σ2(s)− σ3(t′)|| .
(3.5)

Therefore, by combining (3.3), (3.4), and (3.5) we get

||σ1(t)− σ3(t′)|| ≤ δ1 + δ2 .

Using Lemma 5, r is an (ε1 + ε2)-retiming. Thus, we conclude that σ1 and
σ3 are (ε1 + ε2)-(δ1 + δ2)-similar, i.e., σ1 ε1+ε2←−−−−−oo δ1+δ2−−−−−→σ3.

This notion for similarity of hybrid traces can now be lifted to a notion
of robust refinement for hybrid systems in a straightforward way.

Definition 22 (Refinement of Hybrid Systems [QFD11]). A hybrid system
α is an ε-δ-refinement of another hybrid system β (denoted by α o ε,δ−−−→β)
iff for all traces of σα ∈ τ(α), there is a trace σβ ∈ τ(β) such that
σα ε←−−oo δ−−→σβ holds.

Jan-David Quesel 44 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Note that we the following idea underlies our choice of symbols for robust
refinement and similarity: We use an arrow that is similar to the mapping
arrow in order to indicate that there is a mapping between the traces of α
and those of β. For hybrid traces, we use a symmetric version of this arrow
because the relation is symmetric on traces.

In [QFD11] we used the term simulation for this notion of robust re-
finement. However, it is a notion of trace inclusion and does not fit with
the notion used in Milners work [Mil99] on bisimulation notions for process
algebras. Therefore, we decided to called it refinement here, rather than
simulation.

We now turn to studying properties of our notion of robust refinement
for hybrid systems. The results from Lemma 7 carry over from traces to
systems and we can, thus, deduce the following proposition.

Proposition 1. Let α, β by hybrid systems. If α o ε1,δ1−−−−→β then α o ε2,δ2−−−−→β
for all ε2 ≥ ε1 and δ2 ≥ δ1.

Remark 2. The relation o ε,δ−−−→ for hybrid systems is reflexive but neither
symmetric nor antisymmetric nor transitive.

We illustrate the Remarks 1 and 2 in a common example.

Example 6. Let x(t) = 1, y(t) = 2, z(t) = 3 for t ∈ R≥0 be constant
functions. The traces are plotted in Figure 3.5. It is easy to see that
x 0←−−oo δ1−−→ y and y 0←−−oo δ1−−→ z for δ1 =̂ ||1||. Further, y ε←−−oo δ1−−→x holds
for any ε ≥ 0. However, the distance between x and z is

δ2 =̂ ||x− z|| = ||2|| > δ1

and, thus, it does not hold that x 0←−−oo δ1−−→ z. Therefore, the relation is not
transitive. Instead x 0←−−oo δ2−−→ z holds.

If we move from traces to systems, we can see that the missing transitivity
just carries over.

Let αx, αy, αz, αxy be hybrid systems that produce the sets τ(αx) = {x(t)},
τ(αy) = {y(t)}, τ(αz) = {z(t)}, and τ(αxy) = {x(t), y(t)}. As x o 0,δ1−−−−→ y
we get that αx o 0,δ1−−−−→αy. Because the relation is symmetric for traces it
also holds that αy o 0,δ1−−−−→αx. However, even though αz o 0,δ1−−−−→αxy it does
not hold that αxy o 0,δ1−−−−→αz. This follows from the fact that x o 0,δ1−−−−→ z does
not hold.

Jan-David Quesel 45 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

t

3

2

1 x

y

z

δ1

δ1

δ2

Figure 3.5: Plot of the constant trajectories x, y, z of Example 6.

Like Lemma 7 we can also lift the results from Lemma 8 from traces
to programs and arrive at the following proposition. That is the additive
transitivity carries over from traces to hybrid systems.

Proposition 2. Let α, β be hybrid systems. If α o ε1,δ1−−−−→β and β o ε2,δ2−−−−→ γ
then α o ε1+ε2,δ1+δ2−−−−−−−−−→ γ.

In some cases it is sufficient to use a slightly weaker notion of similarity.
This can be obtained by dropping the bound on the temporal distance. If
we do not impose an upper bound on the temporal distance, we can still
get useful insights. Consider the case where our goal is prove that a system
works within certain spatial bounds. In that case the timing behavior is of
no interest at all and it is sufficient to show that some retiming exists such
that the systems are similar as opposed to an ε-retiming. We now define a
notion of similarity based on this observation.

Definition 23. For two traces σ1 and σ2, given a non-negative real number
δ, we say that σ1 is weakly δ-similar to σ2 (denoted by σ1 ∞←−−oo δ−−→σ2) iff
there is a retiming r such that

∀(t, t̃) ∈ r : ||σ1(t)− σ2(t̃)|| ≤ δ .

Again, we call r the retiming witnessing σ1 ∞←−−−oo δ−−→σ2.

Like before, we lift the definition of similarity from traces to a refinement
relation on hybrid systems.

Jan-David Quesel 46 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Definition 24. A hybrid system α is a weak δ-refinement of another hybrid
system β (denoted by α o ∞,δ−−−−→β) iff for all traces of σα ∈ τ(α), there is a
trace σβ ∈ τ(β) such that σα ∞←−−−oo δ−−→σβ holds.

Note that the notion of weak δ-refinement is strictly weaker than the
notion of ε-δ-refinement. As direct consequences of the definitions of ε-δ-
similarity (respectively ε-δ-refinement) and weak δ-similarity (respectively
weak δ-refinement) we get the following lemmas.

Lemma 9. Let σ1 and σ2 be hybrid traces. If for some ε, δ it holds that
σ1 ε←−−oo δ−−→σ2 then it also holds that σ1 ∞←−−−oo δ−−→σ2.

Lemma 10. Let α, β be hybrid systems. If for some ε, δ it holds that
α o ε,δ−−−→β then it also holds that α o ∞,δ−−−−→β.

In the following we use the term similar sometimes on systems instead
of traces to denote the fact that for two systems α and β either α o ε,δ−−−→β
or β o ε,δ−−−→α for some ε and δ or sometimes just refer to weak δ refinement
in one of these directions. Further, we refer to both notions of refinement
as robust refinement.

3.2 Property Preservation

In this section, we discuss what properties can be transferred between
systems that are in refinement relation with respect to the notions defined
in Section 3.1. First, we consider different notions of stability and in which
form they are preserved. Then we move to a more general setting by
defining a logic to formulate properties of systems and present a syntactic
transformation to compute which properties are satisfied by all its robust
refinements.

3.2.1 Stability and Region Stability

In control engineering, an important property of analog and hybrid systems
is stability. There are different notions of stability. The most widely used
is that of Lyapunov stability. As this notion only makes sense in the setting
of infinite traces, we restrict ourselves to those in this section.

A system is considered stable w.r.t. to a point x0 if for all of its traces it
holds that if we fix a ball of diameter e > 0 around x0 then we can find a

Jan-David Quesel 47 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

possibly smaller ball with diameter d > 0 such that every trajectory that
starts within this second ball will never leave the first one.

Definition 25 (Stable [Kha96]). A hybrid trace σ is called stable w.r.t.
a point x0 if for any e > 0 there is d > 0 such that for all t > 0 if
||σ(0)− x0|| < d then ||σ(t)− x0|| < e.

A hybrid system α is called stable w.r.t. a point x0 if all its traces
σ ∈ τ(α) are stable w.r.t. x0.

Usually stability is combined with a notion of attraction. We say that
a point x0 is attractive for some system if all the trajectories converge
towards that point when time goes to infinity.

Definition 26 (Attractive [Kha96]). A hybrid trace σ is attracted to the
point x0 if

lim
t→∞

||σ(t)− x0|| = 0 .

A hybrid system α is attracted to the point x0 if all traces σ ∈ τ(α) are
attracted to x0.

Combining these two properties, we get the notion of asymptotic stabil-
ity.

Definition 27 (Asymptotically Stable [Kha96]). If a hybrid trace is both
stable with respect to a point x0 and attracted to it, it is called asymptoti-
cally stable with respect to x0.

A hybrid system α is asymptotically stable with respect to a point x0 if
all traces σ ∈ τ(α) are asymptotically stable w.r.t. x0.

In the following we assume w.l.o.g. that x0 = 0.

Example 7. Consider the following example of a dynamical system.

ẋ = y

ẏ = −1

2
x− 1

10
y

As the system is given by linear differential equations we can analyze its
behavior by looking at the eigenvalues of its defining matrix(

0 1
− 1

2 − 1
10

)
.

Jan-David Quesel 48 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

The system is asymptotically stable w.r.t. x = y = 0 as these eigenvalues
are 1

20 (−1+i
√

199) and 1
20 (−1+i

√
199) which both have negative real parts

(see e.g. [Kha96] for details on the behavior of linear systems). A plot of
this system for initial values x = 10, y = 10 is given in Figure 3.6 for the
x-y-plane and in Figure 3.7 for the t-x-plane. The system moves in a spiral
motion towards the equilibrium x = y = 0.

−15 −10 −5 5 10 15

−10

−5

5

10

y

x

Figure 3.6: Example of a stable trajectory (x-y-plane)

Asymptotic stability is a property regarding the system behavior when
time approaches infinity. It does not provide any guarantees about the
convergence rate of the system towards its equilibrium. Therefore, we now
recall the definition of exponential stability, a notion that is stronger than
asymptotic stability in the sense that it guarantees exponential convergence
towards the equilibrium.

Definition 28 (Exponential Stability [Kha96]). If there exists two positive
real numbers, k1 > 0 and k2 > 0 such that

||σ(t)|| ≤ k1e−k2t||σ(0)||

for all t ≥ 0 then the hybrid trace σ is exponentially stable w.r.t. the point
x0 = 0.

Jan-David Quesel 49 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

20 40 60 80 100

−10

10

x

t

Figure 3.7: Example of a stable trajectory (t-x-plane)

A hybrid system α is exponentially stable iff all traces σ ∈ τ(α) are
exponentially stable w.r.t. x0 = 0.

Observe that, exponential stability is a special case of asymptotic stabil-
ity [Kha96].

Lemma 11. If a trace σ is exponentially stable w.r.t. x0 = 0 then it is
also asymptotically stable w.r.t. x0 = 0.

Proof. See for example [Kha96].

From this lemma we can immediately draw the following corollary.

Corollary 1. If a hybrid system α is exponentially stable, then it is asymp-
totically stable as well.

The stability notions discussed so far share the fact that they define
stability w.r.t. a single equilibrium point. Often, however, it is sufficient
to know that the system will eventually stay within some region. Such a
notion was introduced by Podelski and Wagner in 2006.

Jan-David Quesel 50 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Definition 29 (Region Stability [PW06]). A trajectory x is region stable
w.r.t. a region R if there exists a point in time t0 such that from then on,
the trajectory stays within the region R, i.e.,

∃t0∀t ≥ t0 • x(t) ∈ R .

A hybrid system α is called region stable iff all traces σ ∈ τ(α) are region
stable.

Our similarity notion allows us to transfer stability properties between
similar systems. A system that is a robust refinement of an asymptoti-
cally stable has to eventually stay in some region around the equilibrium.
Therefore, we can consider this region stable in the sense of Podelski and
Wagner.

In the following we are going to prove the relations sketched in Figure 3.8.
Let Br =̂{x | x ∈ Rn ∧ ||x|| < r} denote the open n-dimensional ball with
radius r centered at the origin.

σ2
∞←−−oo δ−→ σ1

asymptotically stable

exponentially stable

region stable

asymptotically stable

exponentially stable

region stable

Propositio
n 3

Proposition 3

Proposition 3

Figure 3.8: Weak similarity and stability

Proposition 3. Let σ1 : R → Rn and σ2 : R → Rn be ε-δ-similar traces,
i.e., σ1 ∞←−−−oo δ−−→σ2.

1. If the trace σ1 is asymptotically stable then for each γ > 0 the trace
σ2 is region stable w.r.t. the region Bδ+γ .

2. If the trace σ1 is exponentially stable then for every γ > 0 the trace
σ2 is region stable w.r.t. the region Bδ+γ .

Jan-David Quesel 51 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

3. If the trace σ1 is region stable w.r.t. some region R then the trace σ2
is region stable w.r.t. the region S with

S =̂{x|x ∈ Rn ∧ ∃y ∈ R : ||x− y|| ≤ δ} .

Proof. We start by proving the first statement. Let γ > 0 be arbitrary.
Let δγ be such that if ||σ1(0)|| < δγ then for all times t > 0 we have that
||σ1(t)|| < γ.
As σ1 ∞←−−oo δ−−→σ2 implies σ2 ∞←−−oo δ−−→σ1 we know that there is an retim-
ing r such that

∀(t, t̃) ∈ r : ||σ2(t)− σ1(t̃)|| ≤ δ . (3.6)

Let t0 be such that (t0, 0) ∈ r. We know that, for all t1 ≥ 0

||σ1(t1)|| < γ . (3.7)

From (3.6) we get that for all t2 with (t2, t1) ∈ r

||σ2(t2)− σ1(t1)|| ≤ δ . (3.8)

Now we make a case distinction.

Case ||σ2(t2)|| ≥ ||σ1(t1)||: Using this assumption we know that

||σ2(t2)|| − ||σ1(t1)|| = | ||σ2(t2)|| − ||σ1(t1)|| | .

From Lemma 2, we know that

| ||σ2(t2)|| − ||σ1(t1)|| | ≤ ||σ2(t2)− σ1(t1)|| .

Putting this together, using (3.8) and (3.7), we get that

||σ2(t2)|| ≤ ||σ2(t2)− σ1(t1)||+ ||σ1(t1)|| < δ + γ .

Case ||σ2(t2)|| < ||σ1(t1)||: Using this assumption we know that

||σ2(t2)|| − ||σ1(t1)|| = | ||σ1(t1)|| − ||σ2(t2)|| | .

From Lemma 2, we know that

| ||σ1(t1)|| − ||σ2(t2)|| | ≤ ||σ1(t1)− σ2(t2)|| .

Jan-David Quesel 52 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

However, using Lemma 1 we get that

||σ1(t1)− σ2(t2)|| = ||σ2(t2)− σ1(t1)|| .

Putting this together, using (3.8) and (3.7), we get that

||σ2(t2)|| ≤ ||σ2(t2)− σ1(t1)||+ ||σ1(t1)|| < δ + γ .

Overall, we get that ||σ2(t2)|| < δ+ γ, and as r is a retiming we know that
this holds for all t2 ≥ t0 which concludes the proof.

The second statement follows from Lemma 11. The proof for the third
statement is analog.

We can lift these results from hybrid traces to hybrid systems. This
gives the following important theorem. We sketch the resulting relations
in Figure 3.9.

α o ∞,δ−−−→ β

asymptotically stable

exponentially stable

region stable

asymptotically stable

exponentially stable

region stable

Theorem 1

Theorem 1

Theorem 1

Figure 3.9: Weak robust refinement and stability

Theorem 1. Let α and β be hybrid systems such that α o ∞,δ−−−−→β.

1. If the system β is asymptotically stable then for every γ > 0 the
system α is region stable w.r.t. the region Bδ+γ .

2. If the system β is exponentially stable then for every γ > 0 the system
α is region stable w.r.t. the region Bδ+γ .

Jan-David Quesel 53 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

3. If the system β is region stable w.r.t. some region R then the system
α is region stable w.r.t. the region S with

S =̂{x|x ∈ Rn ∧ ∃y ∈ R : ||x− y|| ≤ δ} .

Observe that the contraposition of Theorem 1 provides a method for
refuting a proposition that a system α is a weak robust refinement of an-
other system β in the sense that α o ∞,δ−−−−→β. Since this is an important
observation, we state it explicitly as an remark.

Remark 3. If system β is asymptotically stable or exponentially stable and
there is a trace σ ∈ τ(α) and γ > 0 such that that σ is not region stable
w.r.t. the region Bδ+γ , then α cannot be a robust refinement of β.

We are able to get an important corollary using Lemma 10 as we have
proven the previous statements using our notion of weak δ-similarity (resp.
weak δ-refinement) but they hold for ε-δ-similarity (resp. ε-δ-refinement)
as well by Lemma 9 (resp. Lemma 10). This leads to the following corollary
concerning traces. Again we sketch the resulting relations in Figure 3.10.

σ2
ε←−oo δ−→ σ1

asymptotically stable

exponentially stable

region stable

asymptotically stable

exponentially stable

region stable

Corollary 2

Corollary 2

Corollary 2

Figure 3.10: Similarity and stability

Corollary 2. Let σ1 : R→ Rn and σ2 : R→ Rn be a trajectory such that
σ1 ε←−−oo δ−−→σ2.

1. If the trace σ1 is asymptotically stable then for every γ > 0 the trace
σ2 is region stable w.r.t. the region Bδ+γ .

Jan-David Quesel 54 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

2. If the trace σ1 is exponentially stable then for every γ > 0 the trace
σ2 is region stable w.r.t. the region Bδ+γ .

3. If the trace σ1 is region stable w.r.t. some region R then the trace σ2
is region stable w.r.t. the region S with

S =̂{x|x ∈ Rn ∧ ∃y ∈ R : ||x− y|| ≤ δ} .

In addition, we get the following corollary about hybrid systems (see
Figure 3.11) by lifting the results from the previous corollary about hybrid
traces.

α o ε,δ−−→ β

asymptotically stable

exponentially stable

region stable

asymptotically stable

exponentially stable

region stable

Corollary 3

Corollary 3

Corollary 3

Figure 3.11: Robust refinement and stability

Corollary 3. Let α, β by hybrid systems such that α o ε,δ−−−→β

1. If the system β is asymptotically stable then for every γ > 0 the
system α is region stable w.r.t. the region Bδ+γ .

2. If the system β is exponentially stable then for every γ > 0 the system
α is region stable w.r.t. the region Bδ+γ .

3. If the system β is region stable w.r.t. some region R then the system
α is region stable w.r.t. the region S with

S =̂{x|x ∈ Rn ∧ ∃y ∈ R : ||x− y|| ≤ δ} .

Jan-David Quesel 55 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Note that our notion of similarity does not guarantee that if a system
is asymptotically stable that all its robust refinements are so as well. To
illustrate this, consider the following example.

Example 8. Let x(t) = 0 and y(t) = sin(t) for t ∈ R≥0 (see Figure 3.12).
Obviously, x ∞←−−−oo δ−−→ y for δ = ||1||. Thus, x ε←−−oo δ−−→ y for all ε ≥ 0
and δ ≥ 1. However, although x obviously satisfies the requirements for
all our notions of stability the similar function y is neither exponentially
nor asymptotically stable. Still, the function y will never leave any region
{z | |z| ≤ δ + γ} for γ > 0 and is, thus, region stable w.r.t. to those.

0 2 4 6 8

−1

0

1

x, y

t

Figure 3.12: Example of a stable and a region stable trajectory

An interesting special case is if there are no spatial deviations. That
is the case where for two traces σ1 and σ2 we either have σ1 ∞←−−oo 0−−→σ2
or σ1 ε←−−oo 0−−→σ2 for some fixed ε. An overview of the following results
is provided in Figure 3.13 and Figure 3.14. For region stability we can
derive two corollaries from our previous results. For asymptotic stability
and exponential stability it gets even more interesting. We are now able
to transfer properties of asymptotic stability as we are not allowing any

Jan-David Quesel 56 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

σ2
∞←−−oo 0−→ σ1

asymptotically stable

exponentially stable

region stable

asymptotically stable

exponentially stable

region stable

Proposition 4

Proposition 4

Proposition 4

Figure 3.13: Weak 0-similarity and stability

σ2
ε←−oo 0−→ σ1

asymptotically stable

exponentially stable

region stable

asymptotically stable

exponentially stable

region stable

Proposition 5

Proposition 5

Proposition 5

Figure 3.14: 0-Similarity and stability

Jan-David Quesel 57 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

spatial deviations and thus any similar trajectory is converging towards
the origin as well.

Proposition 4. Let σ1 : R → Rn, σ2 : R → Rn be traces such that
σ2 ∞←−−−oo 0−−→σ1.

1. If σ1 is asymptotically stable then σ2 is asymptotically stable as well.

2. If σ1 is exponentially stable then σ2 is asymptotically stable.

3. If σ1 is region stable with respect to some region R then σ2 is region
stable with respect to the same region R.

Proof. Assume σ1 is asymptotically stable. In that case σ2 is stable w.r.t.
x0 as well because the spatial distance to σ1 is bounded by 0. In order
to show that σ2 is attracted to the point x0 we use the property of the
retiming r witnessing σ2 ∞←−−oo 0−−→σ1. This is, r is surjective and therefore,

for every t̃ ∈ R≥0 we have that there is t such that (t, t̃) ∈ r. It is left-total
and therefore for every t ∈ R≥0 there is t̃ such that (t, t̃) ∈ r. Furthermore,
r is order preserving, and thus σ2 also converges towards x0.

In case σ1 is exponentially stable, we can derive from the first statement
and Lemma 11 that σ2 is asymptotically stable.

In case σ1 is region stable to some region R we get from Theorem 1 and
δ = 0 that σ2 is region stable w.r.t. the same region R.

If in addition the temporal distance is bounded as well we can even
transfer the property of exponential stability.

Proposition 5. Let σ1 : R → Rn, σ2 : R → Rn be traces such that
σ2 ε←−−oo 0−−→σ1 for some non-negative number ε ∈ R≥0.

1. If σ1 is asymptotically stable then σ2 is asymptotically stable as well.

2. If σ1 is exponentially stable then σ2 is asymptotically stable.

3. If σ1 is exponentially stable then σ2 is exponentially stable as well.

4. If σ1 is region stable with respect to some region R then σ2 is region
stable with respect to the same region R.

Jan-David Quesel 58 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Proof. The first two and the fourth statement follow from Lemma 9 and
Proposition 4.

In order to show that the third statement is valid we assume that σ1
is exponentially stable. From the second statement we know that σ2 is
asymptotically stable. Therefore, we only have to show that there is an
exponential function that provides bounds on the convergence rate. Let
k1, k2 be such that ||σ1(t)|| ≤ k1e

−k2t||σ1(0)||. The worst case now is that
the evolution of σ2 is delayed by at most ε w.r.t. the evolution of σ1. It
is therefore sufficient to move the initial value of the exponential function
up by eε. That way the value k1 is reached ε time units later than before.
Therefore, we get ||σ2(t)|| ≤ (k1+eε)e−k2t||σ1(0)|| = (k1+eε)e−k2t||σ2(0)||.
The latter equality holds by Lemma 4 and the fact that the spatial distance
is at most 0. Hence σ2 is exponentially stable.

These results can be lifted from hybrid traces to hybrid systems again
(see Figure 3.15 and Figure 3.16).

α o ∞,0−−−→ β

asymptotically stable

exponentially stable

region stable

asymptotically stable

exponentially stable

region stable

Corollary 4

Corollary 4

Corollary 4

Figure 3.15: Weak 0-robust refinement and stability

Corollary 4. Let α and β by hybrid systems such that α o ∞,0−−−−→β.

1. If β is asymptotically stable then α is asymptotically stable as well.

2. If β is exponentially stable then α is asymptotically stable.

3. If β is region stable with respect to some region R then α is region
stable with respect to the same region R.

Jan-David Quesel 59 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

α o ε,0−−→ β

asymptotically stable

exponentially stable

region stable

asymptotically stable

exponentially stable

region stable

Corollary 5

Corollary 5

Corollary 5

Figure 3.16: 0-robust refinement and stability

Corollary 5. Let α and β by hybrid systems such that α o ε,0−−−→β for some
non-negative number ε ∈ R≥0.

1. If β is asymptotically stable then α is asymptotically stable as well.

2. If β is exponentially stable then α is asymptotically stable.

3. If β is exponentially stable then α is exponentially stable as well.

4. If β is region stable with respect to some region R then α is region
stable with respect to the same region R.

Observe that, for the cases where the spatial distance is 0, i.e., δ = 0,
the results from Proposition 3, Theorem 1, Corollary 2, and Corollary 3 of
course are still valid. Hence for any type of stability we can conclude that
the other object (trace or system) is region stable.

3.2.2 Linear Time Real-Time Temporal Logic

In addition to stability properties our notion of similarity can be used to
transfer more complex properties between similar systems in a formal way.
The quantitative nature of our similarity notion was chosen in order to use
the bounds on the deviations between the system behaviors to syntactically
calculate what properties are preserved. We thus give a syntactic trans-
formation of formulas that are known to hold for one system into formulas
that we know have to hold for all systems that are “close” w.r.t. certain

Jan-David Quesel 60 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

bounds. The idea is to use the upper bounds on the deviations to weaken
the formulas to be sure that they still hold in all of robust refinements of
a system satisfying the original formulas.

To express properties of real-time as well as hybrid systems a variety
of different logics have been proposed in the literature (see [AH92] for a
survey). We choose a variant of the future fragment of metric temporal
logic (MTL) [Koy90] to specify properties of our systems. As basic propo-
sitions we use expressions that are evaluated on the system variables. This
gives us a nice partitioning between temporal and spatial propositions on
a syntactical level which we exploit when proving that certain properties
are preserved by our refinement relation.

We call our real-valued real-time linear time temporal logic that we study
in this section natural logic (L\).

First, let us define what a Lipschitz continuous function is.

Definition 30 (Lipschitz continuity). We say that a function f : Rn → R
is Lipschitz continuous, iff there is some constant M such that for all points
(x1, . . . , xn) ∈ Rn, and all points (y1, . . . , yn) ∈ Rn the following inequality
holds:

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤M · ||(x1, . . . , xn), (y1, . . . , yn)|| .

We call the smallest M that has this property the Lipschitz constant of f .

We use this definition to restrict the basic terms in the syntax of our
logic L\.

Definition 31 (Syntax of L\). The syntax of natural logic formulas is
defined by the following grammar:

φ ::= (x1, . . . , xn) ∈ I | f(x1, . . . , xn) ≤ 0 | g(x1, . . . , xn) ≤ 0

| ¬φ | φ1 ∧ φ2 | φ1 UJ φ2

where I ⊆ Rn,J ⊆ R≥0, f is a Lipschitz continuous function, g is a
function that is componentwise either monotonically increasing or mono-
tonically decreasing, and xi are variables.

Note that we distinguish between the cases of Lipschitz continuous func-
tions f and monotone functions g on a syntactically level solely in order to
make the proofs later on more readable.

Jan-David Quesel 61 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

We now turn our focus to the semantics of the logical formulas. The
semantics of the basic terms imposes bounds on the valuations of the system
variables. This can either be done by restricting the values of the variables
to be within some n-dimensional real-valued set or by imposing a Lipschitz
continuous or monotone constraint on multiple variables. Note that it is
also fine to use only k ≤ n variables and a set I ⊆ Rk. The variables
are connected to the system state using the valuation function given in
Definition 20. Boolean connectives are interpreted as usual, and the“until”-
operator provides us with the possibility to express both the temporal
order of states as well as postulate time bounds on these orders. The set
annotation forces the postcondition to hold at some point in time that lies
within this set. However, as we consider finite in addition to infinite traces,
we use a weak interpretation of the “until”. That is, we consider such an
“until”-formula satisfied if there is an extension to the current trace that
satisfies the formula.

Definition 32 (Semantics). We define for a trace σ and some t ∈ R≥0
the semantics of a formula φ inductively as follows:

If σ is defined at t in the sense of Definition 20 then:

σ, t |= (x1, . . . , xn) ∈ I iff (σ(t)(x1), . . . , σ(t)(xn)) ∈ I (3.9)

σ, t |= f(x1, . . . , xn) ≤ 0 iff f(σ(t)(x1), . . . , σ(t)(xn)) ≤ 0 (3.10)

σ, t |= g(x1, . . . , xn) ≤ 0 iff g(σ(t)(x1), . . . , σ(t)(xn)) ≤ 0 (3.11)

σ, t |= ¬φ iff not σ, t |= φ (3.12)

σ, t |= φ ∧ ψ iff σ, t |= φ and σ, t |= ψ (3.13)

σ, t |= φUJ ψ iff ∃t′ ∈ J : σ, t′ + t |= ψ

and ∀t ≤ t′′ < t′ + t : σ, t′′ |= φ (3.14)

Otherwise, if σ is not defined at t in the sense of Definition 20 then all
formulas are true.

Additionally, we define for a set of traces Σ:

Σ, t |= φ iff for all traces σ ∈ Σ holds σ, t |= φ (3.15)

A hybrid system α satisfies a formula φ denoted by α |= φ, iff τ(α), 0 |= φ.

Jan-David Quesel 62 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

We define some abbreviations:

true =̂ 0 ≤ 0

false =̂¬true
φ ∨ ψ =̂¬(¬φ ∧ ¬ψ)

φ→ ψ =̂¬φ ∨ ψ
φ↔ ψ =̂ (φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)

Furthermore, we define the eventually modality by

♦J φ =̂ trueUJ φ

and the always modality as the abbreviation

�J φ =̂ ¬♦J¬φ .

Also, we denote for a constant a ∈ R by x ≤ a =̂x ∈] − ∞, a], and by
x = a =̂x−a ≤ 0∧a−x ≤ 0. Based on this, we can define x > a =̂¬x ≤ a
and x ≥ a =̂¬x ≤ a ∨ x = a. Using the same notion we can allow ≥,=, <
for comparisons with Lipschitz continuous or monotone functions as well.

Our notion of similarity can be seen as a decrease of the resolution of
the image we have of the system behavior thus blurring the borders. If
we originally knew that at some time between t and t′ some event would
happen, we now have to account for the timing deviations that might occur.
Thus, if the event originally happened at time t it might now occur in the
worst case already at t−ε. If it originally occurred at time t′, the worst case
we have to consider is that it now might occur as late as t′+ε. This widens
the set of possible time points for the event, thus reducing our knowledge
about exact timings. A similar effect happens on the variable valuations.

We define two syntactic transformation functions on formulas. The func-
tion reε,δ(·) is applied if the current subformula is in a context of an even
number of negations, whereas the function roε,δ(·) is applied to subformu-
las under an odd number of negations. Note that if the set indexing an
until operator becomes empty, the formula is trivially false.

Definition 33 (Transformation Functions). Let I ⊆ Rn,J ⊆ R≥0, λ ≥ 1,
and || · ||b be a monotone norm such that for all x ∈ Rn it holds that
1
λ ||x|| ≤ ||x||b ≤ λ||x||. We define reε,δ(·) inductively as the following
function:

Jan-David Quesel 63 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

• reε,δ((x1, . . . , xn) ∈ I) := (x1, . . . , xn) ∈ I ′, where

I ′ = {a | ∃b ∈ I : ||b− a|| ≤ δ} .

• reε,δ(f(x1, . . . , xn) ≤ 0) := f(x1, . . . , xn)− δ ·M ≤ 0 where M is the
Lipschitz constant for f .

• reε,δ(g(x1, . . . , xn) ≤ 0) := g(e(x1), . . . , e(xn)) ≤ 0 where

e(xi) :=


xi − λ δ

||(δij)n||b iff g is monotonically increasing in

component i

xi + λ δ
||(δij)n||b otherwise

.

• reε,δ(¬φ) := ¬roε,δ(φ).

• reε,δ(φ ∧ ψ) := reε,δ(φ) ∧ reε,δ(ψ).

• reε,δ(φUJ ψ) := reε,δ(φ)UJ ′∩[0,∞[reε,δ(ψ), where

J ′ = {a | ∃b ∈ J : |b− a| ≤ δ} .

The transformation function roε,δ(·) is inductively defined by:

• roε,δ((x1, . . . , xn) ∈ I) := (x1, . . . , xn) ∈ I ′, where

I ′ = {a | ∀b 6∈ I : ||b− a|| > δ} .

• roε,δ(f(x1, . . . , xn) ≤ 0) := f(x1, . . . , xn) + δ ·M ≤ 0 where M is the
Lipschitz constant for f .

• roε,δ(g(x1, . . . , xn) ≤ 0) := g(o(x1), . . . , o(xn)) ≤ 0 where

o(xi) :=


xi + λ δ

||(δij)n||b iff g is monotonically increasing in

component i

xi − λ δ
||(δij)n||b otherwise

.

• roε,δ(¬φ) := ¬reε,δ(φ).

• roε,δ(φ ∧ ψ) := roε,δ(φ) ∧ roε,δ(ψ).

Jan-David Quesel 64 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

• roε,δ(φUJ ψ) := roε,δ(φ)UJ ′ roε,δ(ψ), where

J ′ = {a | ∀b 6∈ J : |b− a| > ε} .

Under an even number of negations the transformation function reε,δ(·)
widens all occurring sets. That is, if we have an expression of the form x ∈ I
we enlarge the set I by adding the union of the δ-neighborhoods of all points
within I. For the “until”-operator we use the same construction using the
ε-neighborhoods. See Figure 3.17 for an illustration. In the picture the
balls around the points labeled with a have radius of δ. Note that only
the balls on the border of the set I are necessary to consider. Observe
that, the set I is not necessarily convex and therefore each point might be
part of the boarder of I. Even though the illustration is 2-dimensional the
sets themselves are n-dimensional for the spatial and 1-dimensional for the
temporal case. In the temporal case, we further intersect with the interval
[0,∞[using the retiming property, i.e., the fact that a retiming is an order
preserving relation. That way, the until operator still refers to events at
this moment or in the future, rather than talking about events that might
have happened in the past.

I ′

I

a

aa
δ

Figure 3.17: Enlarging a set by adding neighborhoods

Lipschitz continuous functions are moved towards negative values by
subtracting δ times its Lipschitz constant. For component-wise monotone
functions, we modify each component occurrence by moving it by a distance
of δ w.r.t. to some monotone norm.

Under an odd number of negations, the transformations are basically do-
ing the exact opposite. That is, the sets are contracted towards some core

Jan-David Quesel 65 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

by intersecting the set with all δ-neighborhoods (respectively ε-neighbor-
hoods) of points that are not in the set. See Figure 3.18 for an illustration.
In the picture the balls around the points labeled with a again have diam-
eter δ. Like before, only the balls right outside the border of the set I are
necessary to consider. Again, even though the illustration is 2-dimensional
the sets themselves are n-dimensional for the spatial and 1-dimensional for
the temporal case.

I

I ′

b

bb

b
b

δ

Figure 3.18: Contracting a set by subtracting neighborhoods

Observe that, the function e(·) and o(·) used in the monotone function
case are doing basically the same just switching the cases. They are used
to transform values of vector components w.r.t. a monotone norm || · ||b.
Recall that, (δij)n denotes the vector that with component i being 1 and
all others being 0. Further, observe that the existence of such a norm || · ||b
and λ is guaranteed by Lemma 3 (see page 34). Additionally, if || · || is
monotone then we can choose λ = 1 and || · ||b = || · ||. In case of the
Euclidean or the maximum norm we further get that ||(δij)n||b = 1.

Remark 4. As a side note, observe that if the sets used as annotations for
the until operator are compact subsets of R, i.e., intervals, we can calculate
the transformation functions more easily:

• reε,δ(φU[a,b] ψ) := reε,δ(φ)U[a−ε,b+ε] reε,δ(ψ),

• roε,δ(φU[a,b] ψ) := roε,δ(φ)U[a+ε,b−ε] roε,δ(ψ)

where [x, y] := ∅ if x > y.

Jan-David Quesel 66 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Based on these definitions we can state an important theorem regarding
our robust refinement notion.

Theorem 2. If for two hybrid systems α and β it holds that α o ε,δ−−−→β and
β |= φ then α |= reε,δ(φ).

In order to prove this theorem we prove a slightly stronger lemma at the
level of hybrid traces.

Lemma 12. For two traces σA and σB if σA ε←−−oo δ−−→σB then for all times
t ∈ R≥0 if σB , t |= φ then σA, t

′ |= reε,δ(φ) for all t′ with (t′, t) ∈ r where r
is a retiming witnessing σA ε←−−oo δ−−→σB.

We apply structural induction to prove this lemma. The fact that the
spatial distance is bounded can be used to discharge the base cases of the
induction. The idea is that if the formula restricts the valuations to a set
of points in Rn then the union of all δ-balls around each of these points
contains all possible values for all systems that robustly refine it. A similar
idea is applied for negations. There we have to shrink the region where we
are sure that our values are not such that all δ-balls are contained within
this region.

For the until-operator we can use the fact that the temporal distance is
bounded by ε. Therefore, similar points can be found with ε-environments
around the original times of the event.

Proof of Lemma 12. We prove Lemma 12 by structural induction. Let
t ∈ R≥0 be arbitrary, σA ε←−−oo δ−−→σB , and σB , t |= φ. Further, let r be
a retiming witnessing σA ε←−−oo δ−−→σB .

Base cases.

1. Case φ ≡ (x1, . . . , xn) ∈ I
Using Definition 33 we get that

reε,δ((x1, . . . , xn) ∈ I) = (x1, . . . , xn) ∈ I ′

with I ′ = {a | ∃b ∈ I : ||b− a|| ≤ δ}. From σA ε←−−oo δ−−→σB we know
that

∀(t, t′) ∈ r • ||σA(t)− σB(t′)|| ≤ δ . (3.16)

Jan-David Quesel 67 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Let b = (σA(t)(x1), . . . , σB(t)(xn)). From (3.16) we know that for all
t′ with (t′, t) ∈ r it holds that ||σA(t′)− b|| ≤ δ. Thus,

σA, t
′ |= (x1, . . . , xn) ∈ I ′ .

2. Case φ ≡ f(x1, . . . , xn) ≤ 0

On the same line as for the first case:

In this case reδ,εφ ≡ f(x1, . . . , xn)−δ ·M ≤ 0. σA ε←−−oo δ−−→σB means
that

∀(t, t̃) ∈ r • ||σA(t)− σB(t̃)|| ≤ δ .

As σB , t |= φ we know that

f(σB(t)(x1), . . . , σB(t)(xn)) ≤ 0

As f is Lipschitz continuous we can conclude that for all points y
with

||y − σB(t)|| ≤ d
it holds that f(y) − d ·M ≤ 0 where M is the Lipschitz constant of
f .

Therefore, for all t′ with (t′, t) ∈ r we know that

f(σA(t′)(x1), . . . , σA(t′)(xn))− δ ·M ≤ 0 .

And, thus, σA, t
′ |= reε,δ(φ).

3. Case φ ≡ g(x1, . . . , xn) ≤ 0

In this case reε,δ(φ) ≡ g(e(x1), . . . , e(xn)) ≤ 0 where

e(xi) :=


xi − λ δ

||(δij)n||b iff g is monotonically increasing in

component i

xi + λ δ
||(δij)n||b otherwise

.

We know that

∀(t, t̃) ∈ r • ||σA(t)− σB(t̃)|| ≤ δ .

As σB , t |= φ we further know that

g(σB(t)(x1), . . . , σB(t)(xn)) ≤ 0

Jan-David Quesel 68 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

For components i where g is monotonically increasing we know that
for all d ≤ xi it holds that g(x1, . . . , d, . . . , xn) ≤ g(x1, . . . , xi, . . . , xn).
For components i where g is monotonically decreasing we know that
for all d ≥ xi it holds that g(x1, . . . , d, . . . , xn) ≤ g(x1, . . . , xi, . . . , xn).

The distance with respect to the norm || · || between the points

(σB(t)(x1), . . . , σB(t)(xi))

and
(σA(t′)(x1), . . . , σA(t′)(xi))

is bounded by δ. Therefore, λδ is a bound on the distance w.r.t.
|| · ||b. As the norm || · ||b is monotone, we can conclude from (2.13)
(see page 32) that for i ∈ {1, . . . , n} it holds that

|σA(t′)(xi)− σB(t)(xi)| ≤ λ
δ

(δij)n
.

That means, however, that σA(t′)(xi)− λ δ
(δij)n

≤ σB(t)(xi). Also

σA(t′)(xi) + λ
δ

(δij)n
≥ σB(t)(xi) .

Using the componentwise monotonicity of g, we can conclude that
for all t′ with (t′, t) ∈ r it holds that

g(e(σA(t′)(x1)), . . . , e(σA(t′)(xn))) ≤ 0 .

And, thus, σA, t
′ |= reε,δ(φ).

Induction hypothesis (IH). The property already holds for all formulas
that are structurally simpler. That is if σB , t |= φ then σA, t

′ |= reε,δ(φ)
for all t′ with (t′, t) ∈ r.

Induction step.

1. Case φ ≡ ¬φ1
We prove this case by induction over the structure of φ1.

• Base steps:

Jan-David Quesel 69 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

a) Case φ ≡ ¬(x1, . . . , xn) ∈ I
In this case

reε,δ(φ) ≡ ¬roε,δ((x1, . . . , xn) ∈ I)

≡ ¬(x1, . . . , xn) ∈ {a | ∀b 6∈ I||b− a|| ≤ δ} .
As we know that σB , t |= φ we can conclude that

σB , t 6|= (x1, . . . , xn) ∈ I .

From σA ε←−−oo δ−−→σB we know that for all t′ with (t′, t) ∈ r
it holds that

||(σA(t′)(x1), . . . , σA(t′)(xn))−
(σB(t)(x1), . . . , σB(t)(xn))|| ≤ δ .

That means that

(σA(t′)(x1), . . . , σA(t′)(xn)) 6∈ I\{a | ∃b 6∈ I : ||b−a|| ≤ δ} .
This is

(σA(t′)(x1), . . . , σA(t′)(xn)) 6∈ {a | ∀b 6∈ I : ||b− a|| > δ} .
Thus, σA, t

′ |= φ for all t′ with (t′, t) ∈ r.

b) Case φ ≡ ¬f(x1, . . . , xn) ≤ 0

In this case

reε,δ(φ) ≡ ¬roε,δ(f(x1, . . . , xn) ≤ 0)

≡ ¬f(x1, . . . , xn) + δ ·M ≤ 0 .

As σB , t |= φ, we know that σB , t 6|= f(x1, . . . , xn) ≤ 0.
Thus, we have that f(σB(t)(x1), . . . , σB(t)(xn)) > δ. Fur-
ther, from σA ε←−−oo δ−−→σB we can conclude that for all t′

with (t′, t) ∈ r it holds that

||σA(t′)− σB(t)|| ≤ δ .

As f is Lipschitz continuous with Lipschitz constant M we
know that for all points y with ||y−σB(t)|| ≤ δ it holds that
f(y) + δ ·M > 0. Thus, σA, t

′ 6|= f(x1, . . . , xn) + δ ·M ≤ 0
and, therefore, for all t′ with (t′, t) ∈ r we can conclude that
σA, t

′ |= φ.

Jan-David Quesel 70 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

c) Case φ ≡ ¬g(x1, . . . , xn) ≤ 0

This means g(σB(t)(x1), . . . , σB(t)(xn)) > 0.

In this case roε,δ(φ) ≡ g(o(x1), . . . , o(xn)) ≤ 0 where

o(xi) :=


xi + λ δ

||(δij)n||b iff g is monotonically

increasing in component i

xi − λ δ
||(δij)n||b otherwise

.

σA ε←−−oo δ−−→σB means that

∀(t, t̃) ∈ r • ||σA(t)− σB(t̃)|| ≤ δ .

As σB , t |= φ we know that

g(σB(t)(x1), . . . , σB(t)(xn)) ≤ 0

For components i where g is monotonically increasing we
know that for all d ≥ xi it holds that

g(x1, . . . , d, . . . , xn) ≥ g(x1, . . . , xi, . . . , xn) .

For components i where g is monotonically decreasing we
know that for all d ≤ xi again we have that

g(x1, . . . , d, . . . , xn) ≥ g(x1, . . . , xi, . . . , xn) .

The distance between the points (σB(t)(x1), . . . , σB(t)(xi))
and (σA(t′)(x1), . . . , σA(t′)(xi)) w.r.t. the norm || · || is
bounded by δ. Therefore, λδ is a bound on the distance
w.r.t. || · ||b. As the norm || · ||b is monotone, we can con-
clude from (2.13) (see page 32) that for i ∈ {1, . . . , n} it
holds that

|σA(t′)(xi)− σB(t)(xi)| ≤ λ
δ

(δij)n
.

That means, however, that σA(t′)(xi)+λ δ
(δij)n

≥ σB(t)(xi).

Also σA(t′)(xi)− λ δ
(δij)n

≤ σB(t)(xi).

Jan-David Quesel 71 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Using the componentwise monotonicity of g, we can con-
clude that for all t′ with (t′, t) ∈ r it holds that

g(o(σA(t′)(x1)), . . . , o(σA(t′)(xn))) > 0 .

Therefore, it does not hold that

g(o(σA(t′)(x1)), . . . , o(σA(t′)(xn))) ≤ 0 .

And, thus, σA, t
′ |= roε,δ(φ).

• Induction hypothesis (IH2): The property already holds for all
formulas that are structurally simpler. That is, if σB , t 6|= φ1
then σA, t

′ 6|= roε,δ(φ1) for all t′ with (t′, t) ∈ r.

• Induction step:

a) Case φ ≡ ¬¬φ1
Resolving the double negation leads to φ ≡ φ1 and for φ1
we know by the outer induction hypothesis (IH) that the
property is satisfied.

b) Case φ ≡ ¬ (φ1 ∧ φ2)

As σB , t |= φ, we know that σB , t 6|= φ1 ∧ φ2. This is the
case if σB , t 6|= φ1 or if σB , t 6|= φ2. Now we make a case
distinction:

Case 1 Assume σB , t |= ¬φ1. In this case we know by
induction hypothesis (IH2) that σA, t

′ 6|= roε,δ(φ1) for all
t′ with (t′, t) ∈ r and therefore

σA, t
′ 6|= roε,δ(φ1) ∧ roε,δ(φ2) .

Case 2 Assume σB , t |= ¬φ2. In this case we know by
induction hypothesis (IH2) that σA, t

′ 6|= roε,δ(φ2) for all
t′ with (t′, t) ∈ r and therefore

σA, t
′ 6|= roε,δ(φ1) ∧ roε,δ(φ2) .

However, this, by definition of roε,δ(·), is equivalent to

σA, t
′ 6|= roε,δ(φ1 ∧ φ2) .

And, thus, we can conclude that

σA, t
′ |= ¬roε,δ(φ1 ∧ φ2) .

Jan-David Quesel 72 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

c) Case φ ≡ ¬ (φ1 UJ ′ φ2)

Let t′ be such that (t′, t) ∈ r. Further, let t̃ ≥ t′ be such
that t̃ − t′ ∈ J ′ = {a | ∀b 6∈ J : |b − a| > ε}. It is obvious
that s − t ∈ J for each s with (t̃, s) ∈ r. Therefore, we
know that for all s̃ with (t̃, s̃) ∈ r it holds that there is
t ≤ t′′ < s̃ with σB , t

′′ 6|= φ1 or σB , s̃ 6|= φ2. By IH2 this
gives that for all s′′ with (s′′, t′′) ∈ r: σA, s

′′ 6|= roε,δ(φ1)
or σA, t̃ 6|= roε,δ(φ2). Thus, σA, t

′ 6|= roε,δ(φ1)UJ ′ roε,δ(φ2).
This, however is equivalent to the statement

σA, t
′ |= ¬roε,δ(φ1 UJ φ2) .

2. Case φ ≡ φ1 ∧ φ2:

If σB , t |= φ1 ∧ φ2 then σB , t |= φ1 and σB , t |= φ2. By induction
hypothesis that means that for all t′ with (t′, t) ∈ r σA, t

′ |= reε,δ(φ1)
and σA, t

′ |= reε,δ(φ2), and thus σA, t
′ |= reε,δ(φ1)∧reε,δ(φ2). There-

fore, σA, t
′ |= reε,δ(φ).

3. Case φ ≡ φ1 UJ φ2
Therefore σB , t |= φ1 UJ φ2, which means that there is t̃ ∈ J such
that for all t ≤ t′′ < t̃+ t it holds that σB , t

′′ |= φ1 and σB , t̃+ t |= φ2.
By induction hypothesis IH we can conclude that for all s′′ with
(s′′, t′′) ∈ r it holds that σA, s

′′ |= reε,δ(φ1). Further, for all s̃ with
(s̃, t̃) ∈ r we get that σA, s̃ |= reε,δ(φ2). As the distance between s′′

and t′′ is bounded by ε and the distance between s̃ and t̃ is so as well,
we can conclude that they are contained in

J ′ := {a | ∃b ∈ J : |b− a| ≤ ε} .
Further, we have that r is a retiming. Hence it is an order preserving
relation. Assume that s̃ < t′. We know that (s̃, t̃ + t) ∈ r and
(t′, t) ∈ r. From t′ > s̃ and the fact that r is order preserving we
can conclude that t ≥ t̃ + t. Therefore, t̃ = 0. In that case, we
know that σB , t |= φ2 and get using our induction hypothesis IH that
σA, t

′ |= reε,δ(φ2). Therefore, we can assume that s̃ ≥ t′ for the until
operator, as otherwise the post condition is already satisfied. Hence
we can intersect J ′ with [0,∞[.

Overall, for t′ with (t′, t) ∈ r we get

σA, t
′ |= reε,δ(φ1)UJ ′∩[0,∞[reε,δ(φ2) .

Jan-David Quesel 73 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Using this lemma we can now prove Theorem 2.

Proof of Theorem 2. Assume α o ε,δ−−−→β, and β |= φ.

Let σA ∈ τ(α) be arbitrary. As α o ε,δ−−−→β we know that there is some
σB ∈ τ(β) such that σA ε←−−oo δ−−→σB . Further, let r be a retiming witnessing
σA ε←−−oo δ−−→σB . As β |= φ we know that σB , 0 |= φ. From Lemma 12 we
can thus conclude that for all (t, 0) ∈ r it holds that σA, t |= reε,δ(φ). From
Lemma 4 we know that (0, 0) ∈ r. Therefore, σA, 0 |= reε,δ(φ). As σA
was arbitrary this holds for all σA ∈ τ(α). Thus τ(α), 0 |= reε,δ(φ) which
means that α |= reε,δ(φ).

To establish Theorem 2, we decided to restrict our logic to Lipschitz con-
tinuous and monotone functions. We now illustrate the effect of functions h
that have neither of these properties.

Example 9. Consider two trajectories x1(t) = δ
2 and x2(t) = 0. Then it

is obvious that x1 0←−−oo ||δ||−−−−→x2 holds. Now we examine what happens to

the property described by h(x2) ≤ 0 where h(z) := z2. The only value for
which this holds is x2 = 0. However, we cannot determine this from the
spatial bounds of our similarity notion, that is (x1 − ||δ||)2 ≤ 0 as well as
(x1 + ||δ||)2 ≤ 0 are false. The only thing we could preserve is the property
that there is δ′ ∈ [−||δ||, ||δ||] such that (x1 + δ′)2 ≤ 0. However, adding
quantifiers would make non-local transformations necessary and, therefore,
not serve our goal of providing a simple transformation function that can
be applied on the resulting properties again if necessary

Using the weaker versions of similarity and refinement we can also trans-
fer some properties as already discussed in details for stability properties.
The version is weaker with respect to knowledge about timing. Those tim-
ings are only present in the intervals indexing the until-operators in the
formulas. Thus weakening these operators by replacing those intervals by
[0,+∞[removes all exact timing informations. Only temporal properties
are preserved in that case, i.e., we still retain knowledge about event orders.

Theorem 3. If for hybrid systems α and β both α o ∞,δ−−−−→β and β |= φ
hold, where φ does not contain any until-operations in a negative context,
then α |= φ+δ∼ where φ+δ∼ b = w(re0,δ(φ)) and w replaces the index of every
until operator by R≥0.

Jan-David Quesel 74 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

The proof follows easily from the proof for Theorem 2 by altering the
induction steps for the until operator. Unfortunately, we lose too much
information about the timings to keep knowledge about until operations
in a negative context, i.e., under an odd number of negations. Hence the
restriction to positive contexts in this theorem is necessary.

Note that we can use the functions reε,δ(·) and roε,δ(·) to compute which
properties a specification should have, in order to ensure that all its robust
refinements satisfy a certain property φ.

Remark 5. Let β be a hybrid system. If β |= roε,δ(φ) then for all hybrid
systems α with α o ε,δ−−−→β we know that α |= φ.

Furthermore, observe that in case of ε-0-refinement we can allow for
arbitrary functions instead of restricting the syntax to Lipschitz-continuous
and componenetwise-monotone functions. This follows from the fact that
we have an identity relation connecting on states in the special case where
δ = 0 holds.

3.3 Related Work

The idea to study similarity is not new and has been done in the past for
several classes of systems.

Weighted or priced timed automata can be used to specify limited classes
of hybrid systems. These systems feature two distinct sets of variables.
There are clocks that can only be reset to 0 and evolve with a constant
rate of 1 in each mode. These clocks can be used to formulate guards on
the system transitions. Furthermore, there are weights. Weights evolve
along constant differential equations and can be increased or decreased at
transition by some constant. Thrane et al. [TFL10] studied different types
of simulations that allow for some deviations of the costs in weighted timed
automata. That is, they introduced a notion of similarity that allows to
consider systems as similar even though there is a bounded deviation in
the values of the prices.

Tabuada [Tab09] surveys equivalence and exact refinement notions for
hybrid systems. He presents a game based approach to showing that two
systems are in refinement relation and for the more general control prob-
lem, i.e., for showing that there is a controller restricting one system in
such a way that it is a refinement of the other. The notions of approxi-
mate simulation presented in his book are taken from the work of Girard

Jan-David Quesel 75 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

et al. [GJP08]. They present a notion of approximate simulation that al-
lows us to consider hybrid systems with identical control graphs as similar if
there is only a bounded deviation between the variable values at each point
in time. Thus, this notion strongly relates to the case of 0-δ-refinement
relations. However, they consider simulation instead of refinement. There-
fore, they demand a strong coupling of states of the implementation and
the specification, whereas our notion is based on the complete runs of the
systems. In case of deterministic systems their notion coincides with the
special case of 0-δ-refinement.

The most important difference to our notion of similarity is that the
notion of ε-δ-refinement allows us to consider systems as similar, where the
actual distance is increasing unboundedly as Example 10 illustrates.

Example 10. Consider two instances of the continuous system described
by the differential equation system ẋ = x. The initial valuation of the vari-
able x determines the initial slope. However, every positive initial valuation
will result in a qualitative similar trajectory. Consider two instances with
initial values a and b, where a < b. Then the initial distance is bounded by
||b− a|| and we can find ε such that the two systems are ε-||b− a||-similar.
Still, there is no δ such that the systems are in 0-δ-refinement relation.
The issue with increasing spatial distance is illustrated on an example in
Figure 3.19.

t

x

1

0.5

Figure 3.19: Plot of two exponential functions (ẋ = x) with initial values
x = 1 and x = 1

2 .

Jan-David Quesel 76 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

Note that the same effect already occurs for polynomial functions with
a degree of at least 2. This is, the effect is not limited to the case of
exponential functions.

Other effects that are not covered by 0-δ-refinement are effects like sam-
pling that often occur in implementations influence the timing behavior
similarity notions have been studied that allow for some deviation in the
timing behavior as well. Davoren [Dav09] presented an approach general-
izing Skorokhod-metrics on hybrid traces and provided conditions under
which these initially pseudo-metrics induce topologies which are Hausdorff
and are thus indeed metrics. However, she does not present a constructive
method for determining the values assigned to two concrete traces by the
metric nor does she study the implications for sets of traces, i.e., hybrid
systems.

Our notion of similarity is strongly inspired by that of Girard, Julius,
and Pappas [GJP08] and the more general similarity notion in Davoren’s
work [Dav09]. That is, we study a refinement relation that allows one
system to simulate another in a robust way, where deviations in continuous
variable valuations, and in timing behavior are subject to constant bounds.
However, we drop the requirement inherent to the work in [GJP08] that
the discrete behavior must have the same control graph w.r.t. the locations
of the automata.

Henzinger et al. [HMP05] study similarities between timed systems. As
timed systems do not have variables other than clocks, they define their
notion of similarity based on event orders. That is, two systems are similar
if for every trace of one system there is a trace of the other that contains the
same number and order of events but may differ in the event timings. Now
they take the maximum timing difference in order to get a quantitative
notion of similarity. Furthermore, they link their notion of similarity to
the satisfaction of variants of CTL (computation tree logic) formulas in a
similar way as we do with L\. That is, they define a notion of δ-weakening of
timed CTL formulas. Here, like in our approach they weaken the properties
w.r.t. to timing behavior on the until operators. However, as they are only
considering timed systems, no transformations to the state formulas are
performed.

Alfaro et al. [dAFS09] study linear and branching time distances on met-
ric transition systems. For the linear distance they show that quantitative
LTL formulas are preserved and they propose a variant of LTL that can be
used for a logical characterization of this notion of trace distance. Similar
results for branching time distances and quantitative CTL are presented.

Jan-David Quesel 77 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

In contrast to our approach the metric transition systems do not feature
any real-time behavior. Therefore, the notions studied by Alfaro et al.
do not consider deviations in timing behavior. Consequently, quantita-
tive LTL is different from our logic L\ as they do not consider annotated
temporal operators.

Fainekos and Pappas [FP09] and Donzé and Maler [DM10] studied robust
satisfaction of linear-time metric temporal logic formulas. That is Fainekos
and Pappas allow for bounded spatial deviations and Donzé and Maler
allow, like in our work for deviations in space and time. Both compute,
given a trajectory and a formula a “degree” of satisfaction of the formula.
That way trajectories that are close w.r.t. to their measure still satisfy the
formula, but not necessarily as robustly as before. Thus, their goal is to
rate single trajectories of a running (or simulated) system in the sense that
they compute a distance to a set of requirements. In contrast to that, our
approach is meant to give a refinement relation on systems, such that we
can construct properties and formulas syntactically that are preserved by
all robust refinements.

Banach et al. [BZSH12] study so called retrenchments. Retrenchments
weaken the guarantees of refinement in the sense that they allow for some
deviations in the system outputs. However, in contrast to our approach, in
the continuous world they allow for some arbitrary deviations w.r.t. vari-
able valuations for a limited amount of time. Furthermore, they do not
allow for temporal deviations in the system behaviors. Overall, their re-
trenchment gives less guarantees w.r.t. what properties that are preserved
than refinement and robust refinement.

Note that abstractions also induce a notion of similarity. That is, all
systems that have the same abstraction are considered similar. Consider
for example the work of Moor et al. [MRO02] on discrete abstractions of
hybrid systems. They consider an abstraction of the output trajectories of
systems that partitions the state space into finitely many distinguishable
valuations. The behavior of the system is then viewed as the sequence
of regions the system passes through while it is evolving. This approach
induces a similarity notion where all systems are considered similar that
produce traces that feature the same order of events, i.e., regions visited.
In contrast to their work we build our “abstractions” along the continuous
trajectories instead of applying a fixed grid to discretize the observable be-
havior. The advantage is that we can provide a syntactic transformation on
real-time temporal logic that characterizes which properties are preserved.
Further, we retain more information about the temporal order of events

Jan-David Quesel 78 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

within the static regions used by Moor et al.. On the other hand, using our
notion of similarity if the specification has trajectories that move closely
to the border of state set that should be avoided, we have to choose the
bound on the spatial deviation δ sufficiently small in order to be sure that
trajectories of similar systems do not reach into that state set. With a
pre-defined grid we could create a sharp line in the approximation in or-
der to distinguish trajectories that reach the bad states and those which
do not reach the bad states. However, our approach seems to be more
natural in the sense that we want specifications to be robust w.r.t. small
perturbations. Any hard borders would make us “blind” against whether
we are close to the border of the region or far away. Thus, the grid would
eventually accumulate more small regions around the borders of the bad
states anyway in order to get stronger statements about how closely tra-
jectories get to the bad states. Overall, the goals of the two approaches
are different. Moor et al. want to synthesize a controller such that a given
system is well-behaved whereas our goal is to show that some system is
well-behaved as it is a robust refinement of a well-behaved specification.

Stauner [Sta02] defines a refinement relation on hybrid systems that we
call 0-δ-refinement in this thesis. We refer to Example 5 (see page 37) for
an example of two systems that are not similar w.r.t. this notion. Stauner
further presents an approach based on specifications where guards and evo-
lution domain constraints are overlapping in a single point. Starting from
such a specification, he constructs a relaxed model where there is some
slackness with respect to the variable valuations while switching modes.
He then establishes a refinement between this relaxed model and an imple-
mentation that only changes its variables discretely according to numerical
approximation of the original differential equations. The relaxed version
of the model is basically an overapproximation of the possible behaviors
on a syntactic level. Stauner’s approach has the advantage that he can
synthesize implementations syntactically. However, this comes at the price
that there are certain restrictions necessary w.r.t. the specifications that
can be refined. Our approach, does not need such artificial restrictions,
and is able to deal with nondeterminism w.r.t. the actual switching points.
Instead of synthesizing discrete time implementations, we will cover the
topic of showing similarity for two given systems in Chapter 5.

Jan-David Quesel 79 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 3. Similarity

3.4 Conclusion

In this chapter we presented a family of quantitative notions of similarity
and robust refinement that allow us to consider systems as similar that
differ in timing behavior as well as variable values. Although the idea
to cover both aspects is not new [Dav09, DM10], we presented a slightly
different version of this notion than what can be found in the literature. We
decided to keep the bounds of the temporal deviation and of the spatial
deviation separate in order to later use these parameters to modify the
properties preserved. This led to an intuitive syntactic transformation
on a rich class of logical properties. Further, we were able to identify
cases, where no upper bound on the temporal deviation is necessary in
order to transfer properties of interest. Overall, the notion presented in
this chapter seems worthwhile as it is able to transfer a large number of
properties formulated in our variant of metric temporal logic L\. Still it is
general in the sense that other notions can be seen as special cases of this
framework. Observe that in the case where ε = 0 and δ = 0 our robust
refinement relation coincides with classical refinement. Thus, we designed
the transformation functions a to be the identity transformation for that
case in order to yield the strongest possible results.

Jan-David Quesel 80 Oldenburg, April 3, 2013

C H A P T E R F O U R

Differential Dynamic Game
Logic

By playing games you can ar-
tificially speed up your learning
curve to develop the right kind of
thought processes.

— Nate Silver

Contents

4.1 Syntax . 83
4.2 Semantics . 85

4.2.1 Classical Modal Semantics 85
4.2.2 Game Semantics 86
4.2.3 Semantics Relation 94

4.3 Proof Rules for dDGL 99
4.4 Case Study: Robotic Factory Automation 110
4.5 Related Work . 116
4.6 Conclusion . 121

81

Similarity, Logic, and Games CHAPTER 4. dDGL

An important question when analyzing complex physical systems is whether
one component is able to meet a given safety requirement. However, in
many cases the component is not able to control the whole system but
additional influences from the environment occur. Therefore, we want to
answer this question in a way that we are sure that the component oper-
ates safely no matter what its environment does. Consider an autonomous
robot moving around in a robotic factory environment. Global decision
planning is infeasible, so the robot has limited knowledge about what the
other elements of the factory will decide to do. If there is any probabilistic
information about the decisions of agents, stochastic system models can be
used for verification [Pla11]. Otherwise, the question can be considered as
a game between the component and its environment. This game theoretic
extension of hybrid systems is called hybrid games.

Hybrid games [QFD11,TLS00,HHM99,BBC09,VPVD11] have two types
of actions: discrete jumps, which update the value of a variable instanta-
neously, and continuous evolutions along solutions of differential equations.
Time only passes for the latter action. Hence hybrid games are a natural
extension of timed games [MPS95] which only support clocks with differ-
ential equation ẋ = 1 and only allow variables to be reset to 0 and not
assigned arbitrarily.

Using differential dynamic logic dL, we can express simple games. For
example, when F is a hybrid system describing a factory and R a hybrid
system describing a robot, then a formula of the form [F]〈R〉safe can be
used to express that, for all behaviors of a factory F , the robot R can choose
at least one behavior ensuring safety (represented by some dL formula
safe). This is a simple game expressible in dL, but it stops after one round
of interactions by the factory player and the robot player. In order to
say that the robot is still safe if it reacts appropriately after the factory
changed its mind in response to the robot’s first choice, we can use the
formula [F]〈R〉(safe ∧ [F]〈R〉safe). We can do so for any given number of
rounds of interactions of F and R, but we typically want to say that the
system will be safe for any number of interactions of F and R, not just for
two.

Contributions. In this chapter, we propose an extension to dL, differential
dynamic game logic (dDGL), that can state those properties using several
game constructs, including repetition operators (G)[∗] and (G)〈∗〉 to say
that gameG repeats. The difference between both operators is which player

Jan-David Quesel 82 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

decides how often to repeat the game. They decide how often to repeat
before the game starts. For example, the dDGL formula ([F]〈R〉)[∗]safe
expresses that, no matter how often the player responsible for (·)[∗] decides
to repeat the game [F]〈R〉, the state resulting from those alternating choices
by F and R is safe.

In order to prove such properties, we lift the induction principles of dL
to dDGL. A dDGL formula (G)[∗]φ behaves in some ways like the dL or
dDGL formula [α∗]φ (where α∗ is the hybrid system that repeats α). In
both cases, we consider all possible numbers of iterations, because we do
not know how often it will be repeated. The dDGL formula (G)〈∗〉φ has
similarities to the dL formula 〈α∗〉φ, since in both cases, we can choose
some number of repetitions. Yet, G is a hybrid game, whereas α is a hybrid
system. Nevertheless, we show that the induction principles of invariants
and variants lift from dL to dDGL.

We prove that dDGL is a conservative extension of dL and, thus, our
theorem prover KeYmaera [PQ08a] for dL can be extended such that it
can be used to prove hybrid games expressible in dDGL. We develop a
proof calculus for the specifics of dDGL and implement it in KeYmaera.
We develop and verify a case study in which a mobile robot satisfies a joint
safety and liveness objective in a factory automation scenario, in which the
factory may perform interfering actions.

Structure of the Chapter. This chapter follows the presentation from
our previous work published in [QP12a,QP12b]. We first define the syntax
of dDGL in Section 4.1 and semantics in Section 4.2. Then, we present a
sequent proof calculus for dDGL in Section 4.3. In Section 4.4 we show
the results of our factory automation case study. Related approaches are
discussed in Section 4.5 and we conclude this chapter in Section 4.6.

4.1 Syntax

Based on hybrid programs we define hybrid games. The idea behind our no-
tion of hybrid games is to use operators similar to those of hybrid programs,
but for games on top of hybrid systems. The particular hybrid games that
we consider here are two-player games produced by the following grammar
(α is a hybrid program):

G ::= [α] | 〈α〉 | (G1 ∩G2) | (G1 ∪G2) | (G1G2) | (G)[∗] | (G)〈∗〉

Jan-David Quesel 83 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

By G, we denote the set of all such hybrid games. The intuition behind
these games is as follows. The game is played by two players, which we
call Verifier and Falsifier who play by the following rules: In the game
[α] Falsifier resolves the nondeterminism within α whereas in the game 〈α〉
Verifier is allowed to do so. Observe that our notion of hybrid games is
built on top of hybrid systems, that is, every hybrid program α is, by way
of [α] or 〈α〉, directly a hybrid game. The game (G1G2) is the sequential
composition of games, where game G2 is played right after game G1 has
finished. In a game (G1 ∩G2) Falsifier may decide whether the game pro-
ceeds with G1 or with G2. In the game (G1 ∪ G2) this choice is made by
Verifier. Repetitive game playing is possible using the iteration constructs
(G)[∗] and (G)〈∗〉, where, for the first one, Falsifier decides how many it-
erations are played and, for the latter one, Verifier makes the choice. We
request that the choice on the number of iterations has to be made by
advance notice. That is, the player responsible for controlling the iteration
decides how often G is repeated when the game starts and announces it to
the other player.

Winning conditions for the games are formulated in dDGL as postcon-
ditions of games. A strategy for a player determines how to resolve the
nondeterminism under his control based on the state reached by the game
played so far. The nondeterminisms inside a hybrid system are resolved
by Falsifier or Verifier depending whose turn it is by choosing which real
values to assign to x when executing x := ∗ statements, which branch to
follow for choices ∪, which number of loop iterations to choose, and how
long to follow continuous flows.

The dDGL-formulas are first-order formulas over the reals extended by
hybrid games. They are defined by the following grammar (θi are terms,
x is a variable, ∼ ∈ {<,≤,=,≥, >, 6=}, φ and ψ are formulas, and G is a
hybrid game):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ | G φ

A dDGL formula Gφ is valid if Verifier has a strategy to ensure that φ holds
after playing the game G. Therefore, the goal of Verifier is to make φ true
while that of Falsifier is complementary, i.e., to make φ false. Note that
the formula φ itself might contain another game.

Consider the dDGL formula ([α])〈∗〉φ, which expresses that Verifier can
choose a number of repetitions n, such that the formula φ holds after these n
repetitions of α in which Falsifier resolves the nondeterminism. Note that

Jan-David Quesel 84 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

this dDGL formula is not equivalent to [α∗]φ, which would demand that it
holds for all possible numbers of executions of α. It is also not equivalent to
〈α∗〉φ as this would give control to Verifier over the (possibly unbounded)
nondeterminism during the executions of α. A similar observation can be
made for (〈α〉)[∗]φ, which that for any number of iterations chosen by Fal-
sifier, Verifier is always able to ensure that after this number of iterations
of α the formula φ holds by making appropriate choices of the nondeter-
minisms in α. Combining the repetition operator and the choice operators
we can express properties like (〈β〉 [α] ∪ [α] 〈β〉)[∗]φ. This formula means
that φ holds after any number of iterations (as Falsifier has control over
the number of iterations) while Verifier can control (by ∪) for each itera-
tion if he wants to move first according to β or Falsifier has to move first
according to α.

4.2 Semantics

Next, we define the semantics of dDGL. Actually, we define two different
semantics. A classical modal semantics in Section 4.2.1 that does consider
games just as sequences of modalities and a game semantics in Section 4.2.2
that formalizes notions of strategy, play, and winning. In Section 4.2.3 we
show that both these semantics are equivalent in the sense that if for a
state ν a formula is satisfied in the modal semantics then Verifier has a
strategy to win the game from this state no matter what Falsifier does.

4.2.1 Classical Modal Semantics

Recall from Chapter 2 that for a set of variables V , we denote by Sta(V)
the set of states, i.e., all mappings of type V → R. Let ν(θ) denote the
valuation of a term θ in a state ν.

Definition 34 (Semantics of dDGL formulas). The semantics |= of a dDGL
formula w.r.t. state ν uses the standard meaning of first-order logic:

1. ν |= θ1 ∼ θ2 iff ν(θ1) ∼ ν(θ2) for ∼ ∈ {<,≤,=,≥, >}

2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ, accordingly for ¬,∨,→,↔

3. ν |= ∀xφ iff ω |= φ for all ω that agree with ν except for the value
of x

Jan-David Quesel 85 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

4. ν |= ∃xφ iff ω |= φ for some ω that agrees with ν except for the value
of x

Statements about hybrid games G and programs α have the following se-
mantics

5. ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α),

6. ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α),

7. ν |= (G1 ∪G2)φ iff ν |= G1φ or ν |= G2φ,

8. ν |= (G1 ∩G2)φ iff ν |= G1φ and ν |= G2φ,

9. ν |= (G1G2)φ iff ν |= G1(G2φ),

10. ν |= (G)[∗]φ iff ν |= (Gn)φ holds for all n ∈ N,

11. ν |= (G)〈∗〉φ iff ν |= (Gn)φ holds for some n ∈ N,

where Gn denotes the n-times sequential composition of G and G0φ ≡ φ.
A formula φ is valid (denoted by |= φ) iff ν |= φ for all states ν ∈ Sta(V).

Observe that the semantics for quantifiers and the box and diamond
modalities is identical to that of dL. For choices of Verifier it is sufficient
that one of the choices satisfies the postcondition whereas for choices of
Falsifier it is important that both do so. Sequential composition can be
handled inductively by moving the second part into the postcondition. For
the repetition operators we have that if Verifier is in control of the number
of loops, there has to be at least one unwinding such that the postcondition
holds. On the other hand, for Falsifier this has to be the case for every
possible unwinding.

4.2.2 Game Semantics

The previous definitions are abstract in the sense that they do not refer
to how games are actually played. Therefore, we now provide a structural
operational semantics for games, formally define the notions of play and
strategy, and then prove that the existence of a winning strategy for Verifier
coincides with the notion of validity in Definition 34. This is, we provide a
game semantics for dDGL.

Jan-David Quesel 86 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

Definition 35 (Game Position). For a game G and a state ν, we use G@ν
to denote that the game is in the position where starting from state ν the
game will follow the transitions of G. We denote by PG := G ×Sta(V) the
set of all game positions.

We add special games
√

, >, and ⊥ to denote the possible outcomes of
a game. In the latter two cases either of the players was unable to make
another move. That is, we denote by > the case where Falsifier failed to
make a move and by ⊥ the case where this happened to Verifier. This can
happen in cases where the program specifying the current action contains
a test that is not satisfiable. For example, the game [?false] will terminate
in > to indicate that it is always won by Verifier whereas the game 〈?false〉
will terminate in ⊥ to indicate that it is always won by Falsifier. Otherwise,
the game terminates in

√
after the players played all their actions.

Definition 36 (Extended Game Position). We denote the set of all ex-
tended game positions by

PE := (G ∪ {√,>,⊥})× Sta(V) .

First, as we want to base our semantics on hybrid traces, we define the
set of all traces possible for a program starting in the state ν.

Definition 37 (Initialized Traces). For a hybrid program α the set of all
traces that start in the initial state ν is given by

τ(α, ν) = {σ | σ(0) = ν ∧ σ(max(dom σ)) 6= Λ ∧ σ ∈ τ(α)} .

Recall from Definition 1 (see page 17) that Λ denotes the failure state
reached in case of failed tests. Furthermore, we denote the empty trace
by ().

The operational semantics for the games is structured into three types of
actions: those controllable by Falsifier (prefixed with F), those controllable
by Verifier (prefixed with V), and those for modeling sequential composition
(prefixed with S).

Definition 38 (Structural Operational Semantics of Games). For a game
G its operational semantics [[G]] is given by the rules defined in Figure 4.1.
The semantics provides a relation between game positions and traces, i.e.,

[[G]] ⊆ PG × T× PE .

Jan-David Quesel 87 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

Furthermore, we define two subsets of this semantics. We denote by [[G]]F
the relation between all states defined only by the F and S rules. By [[G]]V
we denote the relation defined by the V and S rules.

Note that in Figure 4.1, Gn refers to following definition.

Definition 39. The n-times sequential composition of a game G denoted
by Gn is defined as follows:

G0 =̂
√

G1 =̂G

Gn =̂(G Gn−1)

The rules of the structural operational semantics define a transition sys-
tem that is possibly uncountably branching, due to the nondeterminism
in hybrid programs, for instance, in choosing evolution times. This is ac-
counted for in rule F1. Rule F1 says that if there is a trace σ of α starting
in initial state ν then Falsifier can make a step from position [α]@ν playing
trace σ ending in the special position

√
@last(σ). Here

√
is the game that

denotes termination. Rule F2, on the other hand, covers the case where
there is no run of α at all that originates in ν. In those cases Falsifier
automatically looses, i.e., his only move is towards the state >. If there
is a choice between games G and H to be made by Falsifier, he can use
rules V3 or V4 to choose either G or H. For repetitions, Falsifier chooses
a number n of iterations and uses rule F5 to proceed to position Gn@ν
where the position indicates that the game G has been unwinded n-times.

Verifier uses the V instead of the F rules. Still, those work the same but
on the operators under his control. For sequential composition we further
provide the S rules. The rules S2-S4 cover the terminating cases. In the
case where the first component of the sequential composition terminates the
game moves to a position where the second component is played using rules
S2. If one of the players fail to make a move then the second component is
skipped and the game stays in the position indicating that the other player
has won. That is, if Falsifier is not able to make a move then the game
will eventually end in >and if Verifier is not able to make a move then it
will end in ⊥. In case the first component of the sequential composition
has a more complex structure the rule S1 can be used. For instance, if
G = (G1 G2) is itself a sequential composition then (G H) might progress

Jan-David Quesel 88 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

(F1)
σ ∈ τ(α, ν)

[α]@ν
σ−→ √@last(σ)

(F2)
τ(α, ν) = ∅

[α]@ν
()−→ >@ν

(F3)
G ∩H@ν

()−→ G@ν

(F4)
G ∩H@ν

()−→ H@ν
(F5)

n ∈ N

(G)[∗]@ν
()−→ Gn@ν

(V1)
σ ∈ τ(α, ν)

〈α〉@ν σ−→ √@last(σ)
(V2)

τ(α, ν) = ∅
〈α〉@ν ()−→ ⊥@ν

(V3)
G ∪H@ν

()−→ G@ν

(V4)
G ∪H@ν

()−→ H@ν
(V5)

n ∈ N

(G)〈∗〉@ν
()−→ Gn@ν

(S1)
G@ν

σ−→ G′@ω

(G H)@ν
σ−→ (G′ H)@ω

where G′ 6∈ {√,⊥,>}

(S2)
G@ν

σ−→ √@ω

(G H)@ν
σ−→ H@ω

(S3)
G@ν

σ−→ ⊥@ν

(G H)@ν
σ−→ ⊥@ν

(S4)
G@ν

σ−→ >@ν

(G H)@ν
σ−→ >@ν

Figure 4.1: Structural operational semantics of hybrid games (Verifier can
only control V and S rules and Falsifier can only control F and
S rules).

to a position (G2 H) via some trace produced by G1. That way, rule S1
ensures associativity of the sequential composition operator.

Observe that each path is of finite length, because the number of itera-
tions is chosen nondeterministically but a priori. Note that, this semantics
does not yet define who decides which options to follow. In particular,
the structural operational semantics of ∩ and ∪ is still the same and that
of (·)[∗] and (·)〈∗〉 is still the same, but they will differ as soon as we de-
fine which player gets to choose. The Verifier can choose V rules and the
Falsifier can choose F rules. The S rules are determined anyway.

Jan-David Quesel 89 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

Example 11 (Branching). In Figure 4.2 the operational semantics for a
simple game is sketched. Dashed lines illustrate choices to be determined
by Verifier, straight lines are used in cases where the nondeterminism is re-
solved by Falsifier. Note that the reachability of the states

√
, >, ⊥ depends

on the actual game and the current state.

[α] 〈β〉 ∪ 〈β〉 [α]

[α] 〈β〉 〈β〉 [α]

〈β〉 [α]

√ √
> ⊥

Figure 4.2: Explicit branching

In Figure 4.3 the same game is sketched adding the state component to the
picture. Note that uncountably many structures of the same form exist in
the semantics depending on the initial state that might or might not reach
states depicted in the image. Let us consider how this connects to our
structural operational semantics. When the game is in a position described
by ([α] 〈β〉 ∪ 〈β〉 [α])@ν, by rule V3 Verifier can make a move to position
[α] 〈β〉@ν. Alternatively, Verifier could use rule V4 to move to a position
〈β〉 [α]@ν. In the first case it is Falsifier’s turn. If we assume that there is

a transition [α]@ν
σ−→ √@ν′ then Falsifier can use the rules F1 and S2 to

move to a position 〈β〉@ν′. This can be done for each ν′ creating possibly
uncountably infinite branching depending on the structure of α.

In a position 〈β〉 [α]@ν Verifier is to determine the followup position.

If we assume 〈β〉@ν σ−→ √@ν′ then Verifier can use the rules V1 and S2
to move to a position [α]@ν′. Again, this can cause uncountably infinite
branching in this case depending on the structure of β.

Example 12 (Repetition with advance notice semantics). In Figure 4.4 the
operational semantics for the repetition operator is shown. Again, dashed
lines illustrate choices to be determined by Verifier, straight lines are used
in cases where the nondeterminism is resolved by Falsifier. Here, all the
dashed lines are possible by rule V5. For the straight lines we assume

Jan-David Quesel 90 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

([α] 〈β〉 ∪ 〈β〉 [α])@ν

[α] 〈β〉@ν 〈β〉 [α]@ν

〈β〉@ν0 . . .

∀(ν, νi) ∈ τ(α, ν)

〈β〉@νr [α]@ν0 . . .

∀(ν, νi) ∈ τ(β, ν)

[α]@νr

Figure 4.3: Explicit branching with states

that rule F1 is applicable and apply it together with S2 in order to get
a terminating execution. Observe that, the loop causes countably infinite
branching. However, every path only has finite depth.

([α])〈∗〉

√
[α]

√
[α][α]

[α]

√

[α][α][α]

[α][α]

[α]

√

. . .

Figure 4.4: Repetition with advance notice semantics (only successfully ter-
minating runs are depicted here)

Thus far we have formalized the possible moves. In order to formally
capture the choices made by the players, we introduce the notion of strat-
egy.

Definition 40 (Strategy). A strategy s : PG part−−→ PE×T is a partial map-
ping between game positions and traces. A strategy s is called compatible
with a game G if its actions are allowed, i.e., if s(g@ν) = (g′, ω, σ) then

Jan-David Quesel 91 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

((g@ν)
σ−→ g′@ω) ∈ [[G]] .

Observe that either ν = ω ∧ σ = () or ω = last(σ). This follows directly
from Definition 38. We now define how strategies specifically for Falsifier
and Verifier look like.

Definition 41 (Specific strategies). We call f : PG part−−→ PE×T a Falsifier
strategy for the game G iff the following conditions are satisfied:

1. If f(g@ν) = (g′@ω, σ) then ((g@ν)
σ−→ g′@ω) ∈ [[G]]F .

2. If ((g@ν)
σ−→ h@ω) ∈ [[G]]F then there are h′, ω′, σ′ such that

f(g@ν) = (h′@ω′, σ′) .

We call v : PG part−−→ PE × T a Verifier strategy for the game G iff the
following conditions are satisfied:

1. If v(g@ν) = (g′@ω, σ) then ((g@ν)
σ−→ g′@ω) ∈ [[G]]V .

2. If ((g@ν)
σ−→ h@ω) ∈ [[G]]V then there are h′, ω′, σ′ such that

v(g@ν) = (h′@ω′, σ′) .

The first condition ensures that the strategy is compatible w.r.t. the
transition system described by the F (resp. V) and S rules. That is, it only
chooses follow-up positions that are reachable in that transition system.
The second condition ensures that the strategy is total in the sense that
whenever there is a follow-up position defined by F (resp. V) and S rules
then it chooses one.

Example 13. Consider the following example of a hybrid program α:

α =̂(x := 1 ∪ x := 0)

The traces of α are given by

τ(α) =
⋃

ν∈Sta(V)

({ν̂ ◦ ({(0, ν[x 7→ 1])})} ∪ {ν̂ ◦ ({(0, ν[x 7→ 0])})})

Jan-David Quesel 92 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

Therefore, the possible strategies for Falsifier in the game [α] are limited
by this choice of traces. For a position [α] @ν the choice consists of exactly
two possible traces. A possible Falsifier strategy can now be defined as
follows:

f([α] @ν) = (
√

@ν[x 7→ 0], ν̂ ◦ ({(0, ν[x 7→ 0])})) f.a. ν ∈ Sta(V)

Using this notion of strategy, we now formalize the rules of the game by
determining which player gets to choose from the actions of the operational
semantics.

Definition 42 (Play). Assume that the empty trace () is the neutral ele-
ment w.r.t. trace composition. Given a Falsifier strategy f , and a Verifier
strategy v, a play pf,v(·) : PG → (G ∪ {√,>,⊥})×T is defined by applying
s := f ∪ v exhaustively. That is

pf,v(G@ν) =


(G, ()) if s(G@ν) = undef(

(
√
, s|3(G@ν))

◦(pf,v(s|1(G@ν)@s|2(G@ν)))
)

otherwise

where s|i denotes the projection of the result of s to its i-th component, and
the composition ◦ : G × T× G × T is defined by

(G, σ) ◦ (G′, σ′) := (G′, σ ◦ σ′) .

Here, s|1 denotes the current game, s|2 denotes the state of the current
position, and s|3 denotes the trace component.

Observe that in case the play successfully terminates then it produces a
non-empty trace. Further, note that for handling sequential composition
it is crucial to pass the continuation to the strategies in order to allow for
different choices depending on the future game positions. This also enables
the strategies to react on the chosen number of loop iterations.

Example 14. Continuing Example 11, in Figure 4.5 the effect of the strat-
egy choices in combination with our notion of play is sketched. For each
of the positions, the strategy determines the follow-up position. Here the
arrows marked by f denote the directions chosen by Falsifier and those
marked by v denote those chosen by Verifier.

Now that we have a mathematical notion of a play, we define who is the
winner of such a play.

Jan-David Quesel 93 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

[α] 〈β〉 ∪ 〈β〉 [α]@ν

[α] 〈β〉@ν 〈β〉 [α]@ν

〈β〉@ν0 . . .

∀(ν, νi) ∈ ρ(α)

〈β〉@νr [α]@ν0 . . .

∀(ν, νi) ∈ ρ(β)

[α]@νr

v

f v

v v f f

Figure 4.5: Example for the effect of the strategies

Definition 43 (Winning). Consider a game G and a dDGL formula φ as
winning condition. For an initial state ν, two strategies v and f , the game
G is won by Verifier iff G ends in a position pf,v(G@ν) = (H,σ) where
either H =

√
and last(σ) |= φ, or H = >. Otherwise, Falsifier wins

(i.e., the game is zero-sum). For a dDGL-formula φ a strategy s is called
winning for a game G if, by applying this strategy, Falsifier (resp. Verifier)
wins every play of G regardless of which strategy Verifier (resp. Falsifier)
follows.

Now the choice of the symbols > and ⊥ should become apparent. In the
case where the game ends in the state > the Falsifier was unable to make
a move. This equivalent with a test failing in a subformula of the form
[?F]φ. Thus, this subformula is trivially satisfied. In the case where we
end in a state ⊥ the same happened to Verifier, that is he failed to make a
move due to the fact in a subformula of the form 〈?F 〉φ the test condition
could not be satisfied.

Note that we just oversimplified the fact a bit. It could also be the case
that the failing test was written in form of an evolution domain constraint
in a differential equation system. Still, the intuition behind these cases
remains the same.

Example 15. Continuing Example 13, we can now see that the strategy
provided is a winning strategy if the winning condition is for instance x = 0.

4.2.3 Semantics Relation

As promised, we now link the semantics of formulas given in Definition 34
with the operational semantics of games. This is an important result as we

Jan-David Quesel 94 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

will prove the soundness of our proof calculus w.r.t. to the classical modal
semantics but want to be sure that this semantics matches our intuition
behind how the games should be played.

Theorem 4. For a state ν, ν |= Gφ iff Verifier has a strategy in the game
G with winning condition φ starting in position G@ν such that he wins the
game.

Proof. Our proof is by structural induction.

• Base case:

1. G ≡ [α]: If τ(α, ν) = ∅ then the game ends in >, by rule F2
and Verifier wins. Otherwise, if there is a strategy v that wins
the game from position G@ν and ends in position

√
@ω, due to

rule F1 σ ∈ τ(α, ν) with last(σ) = ω. By Definition 43 we know
that ω |= φ. Therefore, by Definition 34, ν |= [α]φ.

Assume ν |= Gφ. From Definition 34 we know that, since we
have ν |= [α]φ, ω |= φ for all ω with (ν, ω) ∈ ρ(α). By defini-
tion of ρ(α) we know, that there is no trace σ ∈ τ(α, ν) with
last(σω) = ω′ and (ν, ω′) 6∈ ρ(α). Therefore every compatible
strategy for Verifier wins.

2. G ≡ 〈α〉: If there is a strategy v that wins the game from
position G@ν and ends in position

√
@ω, then by Definition 43

ω |= φ, and due to rule F1 σ ∈ τ(α, ν), and thus (ν, ω) ∈ ρ(α).
Therefore by Definition 34 ν |= 〈α〉φ.

Assume ν |= Gφ. From Definition 34 we know that, since we
have ν |= 〈α〉φ, ω |= φ for some ω with (ν, ω) ∈ ρ(α). Therefore,
let the strategy of Verifier be defined by

v(〈α〉@ν) = (
√

@ω, σ)

for σ ∈ τ(α, ν) with last(σ) = ω. This strategy is compatible
by rule V1.

• IH: Let the property be satisfied for all structurally simpler games.

• Induction Step

Jan-David Quesel 95 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

1. G ≡ (G1 ∪ G2): Assume that ν |= (G1 ∪G2)φ. Consider the
case where ν |= G1φ, then we set v((G1 ∪G2)@ν) = (G1@ν, ()),
which is compatible according to rule V3. By Definition 34, we
otherwise know ν |= G2φ and set v((G1 ∪G2)@ν) = (G2@ν, ()),
which is compatible by rule V4. By IH, these strategies can be
extended, thus that they win the game for Verifier.

Conversely, assume there is a Verifier strategy v that wins the
game G1 ∪G2 with winning condition φ for Verifier from G@ν.
Case distinction: If v(G@ν) = (G1@ν, ()) then, by IH, ν |= G1φ.
Otherwise, if v(G@ν) = (G2@ν, ()), then, by IH, ν |= G2φ.
These are the only choices that yield a compatible strategy
(by Definition 38). Therefore, ν |= G1φ or ν |= G2φ. Which
is equivalent to ν |= (G1 ∪G2)φ by Definition 34.

2. G ≡ (G1 ∩ G2): Assume that ν |= G1 ∩G2φ. In this case
ν |= G1φ and ν |= G2φ by Definition 34. By IH, there is a strat-
egy for Verifier for both cases.

Conversely, assume the existence of a strategy for Verifier. In the
game (G1∩G2), this strategy has no influence on the first choice
made, because Falsifier decides the first move. Therefore, both
branches (defined by rules F3 and F4) have to be evaluated. This
means that, by IH, ν |= G1φ and ν |= G2φ, which is equivalent
to ν |= (G1 ∩G2)φ by Definition 34.

3. G ≡ (G1G2): There are three possible cases how the game could
progress defined by the rules S1, S2, S3, and S4. Assume that
ν |= Gφ. From Definition 34 we know that ν |= G1(G2φ). Let
ψ ≡ G2φ. By IH, there is a strategy v1 such that Verifier wins
G1@ν with winning condition ψ. This also means, again by IH,
if
√

@ω = ps�,v1(G1@ν) there is a strategy v2,ω such that for ev-
ery compatible strategy s� of Falsifier,Verifier wins G2@ω with
winning condition φ. In particular, Verifier wins Gφ by following
strategy v1 first and then following v2,ω whenever the outcome
of G1 was ω. If >@ω = pf,v1(G1@ν), Verifier wins immediately
by rule S4 and we do not need to play G2. It is never the case
that ⊥@ω = pf,v1(G1@ν) because that would contradict the as-
sumption that v1 wins the game G1 with winning condition ψ
from position G1@ν.

Jan-David Quesel 96 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

Conversely, assume that there is a strategy for Verifier such that
for every strategy of Falsifier he wins the game G with winning
condition φ if it is started in position G@ν. This means either
the strategy can force the game G1 started in position G1@ν to
terminate in a position >@ω. If this is the case then, by IH,
G1ψ is valid for every ψ. Therefore, it is valid for ψ ≡ G2φ. If
the game G1 ends in a position

√
@ω, then we know that the

strategy wins the game G2 with winning condition φ started in
a position G2@ω. By IH, this means that ω |= G2φ. As the
strategy led to the position from G1@ν we know, by IH, that
ν |= G1(G2φ). This, by Definition 34, gives that ν |= (G1G2)φ.

4. G ≡ (G1)[∗]: Assume ν |= (G1)[∗]φ, then by Definition 34, we
know that ν |= Gn1 for every n ∈ N. By IH, this means that
for every n ∈ N there is a strategy for Verifier sn that wins the
game started in position Gn@ν.

Construct a strategy for G the following way:

For a game G its closure under subgame, cl(G), is defined in-
ductively as:

– cl([α]) = {[α]} and cl(〈α〉) = {〈α〉}
– cl(G1G2) = {G1G2} ∪ cl(G1) ∪ cl(G2)

– cl(G1 ∪G2) = {G1 ∪G2} ∪ cl(G1) ∪ cl(G2)

– cl(G1 ∩G2) = {G1 ∩G2} ∪ cl(G1) ∪ cl(G2)

– cl((G)[∗]) = {(G)[∗]} ∪⋃n∈N cl(Gn)

– cl((G)〈∗〉) = {(G)〈∗〉} ∪⋃n∈N cl(Gn)

Let s̃n denote sn∩((cl(Gn)\cl(Gn−1))×Sta(V)×PE×T where

cl(G0) = cl(G−1) = ∅ .
The subtraction restricts the domain of the strategy to the parts
that are used to handle the first iteration of the loop, and ends in
a state where the next game to play is Gn−1. At that position we
apply its respective strategy. Therefore, the strategy defined by
s =̂
⋃
n∈N s̃n wins the game for Verifier when started in position

G@ν.

Conversely assume the existence of a strategy that wins the
game started in position G@ν with winning condition φ for Ver-
ifier. For the operator (·)[∗], Falsifier decides how often to repeat

Jan-David Quesel 97 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

G, so we have to explore all possible numbers of repetitions pro-
duced by rule F5. This is, for all n ∈ N, the strategy wins
the game Gn started from position Gn1@ν. By IH, this means
ν |= Gn1φ for all n ∈ N. This implies ν |= (G1)[∗]φ by Defini-
tion 34.

5. G ≡ (G1)〈∗〉: Assume ν |= (G1)〈∗〉φ, then by Definition 34, we
know that ν |= Gn1 for some n ∈ N. Then we choose as strat-
egy for Verifier v((G1)〈∗〉@ν) = (Gn1@ν, ()) which by IH can be
extended to a strategy that wins the game.

Conversely, assume the existence of a strategy v that wins the
game started in position G@ν with winning condition φ for Ver-
ifier. Let v(G@ν) = Gn1@ν for some n ∈ N (according to Defini-
tion 38 and V5, these are the only compatible moves). By IH,
this implies that ν |= Gn1φ for that n ∈ N, which, further implies
ν |= (G1)〈∗〉φ by Definition 34.

Corollary 6. The formula Gφ is valid iff Verifier has a winning strategy
in the game G for the winning condition φ.

A crucial point for the design of dDGL is that we want it to be conser-
vative with respect to differential dynamic logic in the sense that all dL
formulas are dDGL formulas and that any dL formula is valid in the se-
mantics of dDGL if and only if it was valid in the original semantics for dL.
This allows us to transfer soundness results for proof calculus rules from dL
to dDGL and extend our theorem prover KeYmaera with additional proof
rules for handling the extra dDGL constructs in addition to dL operators.

Definition 44. A logic A is a conservative extension of logic B if all
formulas of B are formulas of A and valid w.r.t. the semantics of A if,
and only if, they are valid w.r.t. the semantics of B.

Theorem 5 (Conservative Extension). Differential dynamic game logic is
a conservative extension of differential dynamic logic.

Proof. The semantics for dDGL-formulas that only contain games of the
form [α] and 〈α〉, which are exactly the modalities originally occurring in
dL, coincides with the dL semantics of these formulas.

Jan-David Quesel 98 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

4.3 Proof Rules for dDGL
In this section, we present a sound but incomplete sequent proof calculus
for dDGL. It is incomplete, because reachability in hybrid systems is not
even semidecidable [Pla10b]. The calculus symbolically executes the hybrid
games and hybrid programs. Thereby the dDGL calculus reduces properties
of hybrid games to dL properties of hybrid programs, which it, in turn,
reduces to validity questions of formulas in first-order logic over the reals
like the dL proof calculus does [Pla08].

The first sequent calculus was developed in 1935 by Gerhard Gentzen
and is a calculus for first-order logic [Gen35]. The central idea of a sequent
calculus is to split the existing formulas into atomic ones and separate those
atomic formulas which are true from those which are false. The calculus
constructs a direct proof for the validity of a formula.

A sequent is an implication between the conjunction of the formulas on
the left side and the disjunction of the formulas from the right side.

Definition 45 (Sequent). Γ ` ∆ is a sequent with sets of formulas Γ and
∆.

It is satisfiable if for some state ν it holds ν 6|= ϕ for some formula ϕ ∈ Γ
or ν |= ψ for some formula ψ ∈ ∆.

The sequent is valid, if for all states ν it holds ν 6|= ϕ for some ϕ ∈ Γ or
ν |= ψ for some formula ψ ∈ ∆.

Proof rules are applied from the desired conclusion (goal below bar) to
the resulting premises (above bar) that need to be proved instead.

Definition 46 (Rules [Pla10b]). Calculus rules are defined from the rule
schemata presented in Figure 4.6, Figure 4.7, and Figure 4.8 using the fol-
lowing definitions:

1. If
φ1 ` ψ1 . . . φn ` ψn

φ0 ` ψ0

is an instance of a rule schema in Figure 4.6, Figure 4.7, or Fig-
ure 4.8, then

Γ, 〈[J]〉φ1 ` 〈[J]〉ψ1,∆ . . . Γ, 〈[J]〉φn ` 〈[J]〉ψn,∆
Γ, 〈[J]〉φ0 ` 〈[J]〉ψ0,∆

Jan-David Quesel 99 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

can be applied as a proof rule, where Γ, ∆ are arbitrary (possible
empty) finite sets of context formulas and J is a (possibly empty)
discrete assignment in either a box or a diamond modality. We write
〈[J]〉to denote either [J] or 〈J 〉.

2. Symmetric schemata

φ

ψ

can be applied on either side of the sequent as

Γ, 〈[J]〉φ ` ∆

Γ, 〈[J]〉ψ ` ∆
or as

Γ ` 〈[J]〉φ,∆
Γ ` 〈[J]〉ψ,∆

Again they do not alter the context. Additionally, we use the abbre-
viation 〈[α]〉 if the rule is independent of the player controlling the
action α.

3. The existential quantifier elimination rule applies to all goals con-
taining variable X at once: If φ1 ` ψ1, . . . , φn ` ψn is the list of all
open goals (i.e., goals that have not been proved yet) of the proof that
contain the free variable X, then the following instance can be applied
as a proof rule:

` QE(∃X∧i(φi ` ψi))
φ1 ` ψ1 . . . φn ` ψn

As this definition of proof rules that we inherited from the work of Platzer
on dL [Pla10b] contains rules that produce multiple conclusions we also
repeat the definition of provability from [Pla10b].

Definition 47 (Provability [Pla10b]). A derivation is a finite acyclic graph
labeled with sequents such that, for every node, the (set of) labels of its
children must be the (set of) premises of an instance of one of the calculus
rules and the (set of) labels of the parents of these children must be the
(set of) conclusions of that rule instance. A formula ψ is provable from a
set Φ of formulas iff there is a finite subset Φ0 ⊆ Φ for which the sequent
Φ0 ` ψ is derivable, i.e., there is a derivation with a single root (i.e., node
without parents) labeled Φ0 ` ψ.

Jan-David Quesel 100 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

(P1)
` A
¬A `

(P2)
A `
` ¬A

(P3)
A ` B
` A→ B

(P4)
A ` B `
A ∨B `

(P5)
` A,B
` A ∨B

(P6)
A,B `
A ∧B `

(P7)
` A ` B
` A ∧B

(P8)
` A B `
A→ B `

(P9)
A,B ` ` A,B

A↔ B `

(P10)
A ` B B ` A
` A↔ B

(P11)
∗

A ` A

(P12)
A ` ` A

`

• A and B are schemata of arbitrary dDGL formulas

Figure 4.6: Propositional rules

Propositional Rules. The rules for handling the propositional part of the
formulas are illustrated in figure 4.6. In sequent calculus, the idea is to
sort the formulas into a proof tree in a specific way.

The branches of the proof tree are connected by conjunctions. Thus,
the rule P7 splits the proof along conjunctions on the right side of the
sequent. This follows from the fact that the expression ` A ∧B refers to
the fact that we have to show that A and B hold in the current context.
Similarly, the rule P4 splits the proof along disjunctions in the antecedent
of the sequent as A ∨B ` refers to the fact that we have to show that our
conclusion follows from A and from B independently. On the same line is
the rule P8 as an implication again basically is the same as an disjunction
A→ B ≡ ¬A ∨B.

The equivalence is handled by the rules P9 and P10. Both rules split
the proof into two branches. For the case, that the equivalence occurs
on the left side, it is necessary to show that the proof can be closed if the
equivalence is valid, i.e., either both sides are true or both sides are false. If

Jan-David Quesel 101 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

the equivalence would be false the sequent would trivially be valid. For the
other case, we have to show that the formulas connected by the equivalence
are complementary. This causes a branch as well, as again there are two
cases to consider.

Having understood the case where the proof is split into multiple branches,
we now turn our focus to rules that work on a single branch.

The rules P1 and P2 eliminate negations. A negation in a sequent can
be eliminated by moving the formula from one side to the other. To show
that a sequent is satisfied, we have to show that there is a formula on the
left side that is false or a formula on the right side that is true. If e.g. ¬A
occurs on the right side of the sequent, it is obvious that we can add A on
the left side of the sequent, because if we can show that A is false, we have
also shown that ¬A is true.

The rules P6, P5 and P3 eliminate conjunctions, disjunctions and impli-
cation in the cases where no branch is necessary. A sequent is by definition
an implication between the conjunction of the formulas on the left side and
the disjunction of the formulas from the right side. As formulas on the left
side are connected implicitly by a conjunction, we can remove conjunctions
here. The same holds for the implicit disjunction and disjunctions on the
right side. In total the sequent represents an implication. So if an implica-
tion occurs on the right side, we can move its premise to the left side and
just keep its conclusion on the right side of the sequent.

For closure of the proof the rule P11 is used. It can be applied if there is
the same formula occurring on both sides of the sequent. A rule for closure
is a rule without premises, thus it leads to a leaf of the proof graph.

Additionally, the calculus features a cut rule P12. This rule allows us
to make a case distinction based on a formula A. That is the proof splits
into two branches. On the one branch we show that A holds in the current
context. On the other branch we show that our conclusion holds under the
assumption that A is satisfied.

First-order and modality rules. The calculus performs a symbolic execu-
tion. In order to keep track of the symbolic state of the program we use
a simultaneous assignment (also called discrete jump set) J of the form
〈[x1 := θ1, . . . , xn := θn]〉. During our symbolic execution, whenever we ex-
ecute a discrete assignment, we merge it with this jump set. Finally, once
all modalities have been dealt with, we use rule D8 to get rid of this as-
signment by substitution. That way, we have to define substitutions only

Jan-David Quesel 102 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

on first-order formulas (see Definition 7 on page 24). See [Pla08, Pla10b]
for more details on this matter. We refer to the variables that might by
altered during playing a game G as bound variables. We denote by ∀Gφ
the universal closure of the formula φ w.r.t. the variables bound in G.

Figures 4.6–4.8 show a proof calculus for dDGL. Together with rules for
dealing with propositional logic shown in Figure 4.6, the calculus rules D1-
D20 form the original proof calculus for dL [Pla08,Pla10b]. The rules D1-
D12 are equivalences for transforming and decomposing hybrid programs.
Rules D1 and D2 are used to handle tests within programs. In the diamond
case, we have to check that the test condition is satisfied. Otherwise, no
execution of the program is possible. Hence the rule results in a conjunction
of the test condition and the post condition of the modality. For the box
case the situation is different. Here, the box talks about all execution of
the program. Thus, if the test condition is not satisfied we do not have to
show anything. Therefore, the formula is transformed into an implication
where we have to show that whenever the test condition is satisfied then the
post condition of the modality also holds. Rule D3 deals with sequential
compositions. Here, we can just split the modality along the sequential
operator as the modalities talk about reachability in the same way as this
operator does. For choices we have to distinguish between the different
modalities again. For the diamond case rule D4 is used. It expresses that
there is a some execution of the program α ∪ β that satisfies φ if, and
only if, there is an execution of α or an execution of β that does so. For
the box case, we have to ensure that both such cases lead into states that
satisfy φ. This is expressed in rule D5. Nondeterministic assignments
correspond to existential quantification in the diamond case (rule D10)
and to universal quantification in the box case (rule D9). For handling
continuous evolutions, we add rules that are based on the solution of the
differential equations. That is, a formula φ is satisfied after some execution
of a continuous evolution if there is some evolution time t such that for
all intermediate states the evolution domain constraint is satisfied and at
time t the formula φ holds where we replace all occurrences of the variables
that are evolving by their solutions at time t. This is expressed by rule D11.
For the box the only difference is that this property has to hold for all
possible evolution times t instead of just some t (see rule D12).

For handling loops within programs we add two different rule types. On
the one hand, the rules D6 and D7 allow for unwinding of loops. On the
other hand, the rules D13 (resp. D14) allow reasoning about loops using
induction (resp. proving convergence).

Jan-David Quesel 103 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

(D1)
φ ∧ ψ
〈?φ〉ψ

(D2)
φ→ ψ

[?φ]ψ

(D3)
〈[α]〉 〈[β]〉φ
〈[α;β]〉φ

(D4)
〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

(D5)
[α]φ ∧ [β]φ

[α ∪ β]φ

(D6)
φ ∨ 〈α;α∗〉φ
〈α∗〉φ

(D7)
φ ∧ [α;α∗]φ

[α∗]φ

(D8)
φ{x1 7→ θ1, . . . , xn 7→ θn}
〈[x1 := θ1, . . . , xn := θn]〉φ

(D9)
∀t[x := t]φ

[x := ∗]φ

(D10)
∃t[x := t]φ

〈x := ∗〉φ

(D11)
∃ t ≥ 0 ∀ 0 ≤ t̃ ≤ t

〈
x := yv(t̃)

〉
χ→ 〈x := yv(t)〉φ

〈ẋ = θ&χ〉φ

(D12)
∀ t ≥ 0 ∀ 0 ≤ t̃ ≤ t

[
x := yv(t̃)

]
χ→ [x := yv(t)]φ

[ẋ = θ&χ]φ

(D13)
` ∀[α](φ→ [α]φ)

φ ` [α∗]φ
(D14)

` ∀〈α〉∀n > 0 (ϕ(n)→ 〈α〉ϕ(n− 1))

∃nϕ(n) ` 〈α∗〉 ∃n (n ≤ 0 ∧ ϕ(n))

(D15)
` φ(s(X1, . . . , Xn))

` ∀x φ(x)

(D16)
φ(s(X1, . . . , Xn)) `

∃x φ(x) `

(D17)
` φ(X)

` ∃x φ(x)

(D18)
φ(X) `
∀x φ(x) `

(D19)
` QE(∃X

∧
i(φi ` ψi))

φ1 ` ψ1 . . . φn ` ψn

(D20)
` QE(∀Xφ(X) ` ψ(X))

φ(s(X1, . . . , Xn)) ` ψ(s(X1, . . . , Xn))

• t and t̃ are fresh logical variables, yv is the solution of the symbolic initial
value problem (ẋ = θ, x(0) = v).

• Logical variable n does not occur in α.

• φ{x1 7→ θ1, . . . , xn 7→ θn} denotes the formula where each xi is substi-
tuted by θi simultaneously. The assignment in rule D8 must be admissi-
ble [Pla10b], otherwise it is added to the jump context 〈[J]〉.

• X is a new logical variable.

• QE: quantifier elimination procedure (can only be applied to first-order
formulas).

• For D19 φi ` ψi are the only branches where X occurs as a free logical
variable.

Figure 4.7: Rules for first-order and dL-operators

Jan-David Quesel 104 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

(G1)
G1φ ∨G2φ

(G1 ∪G2)φ

(G2)
G1φ ∧G2φ

(G1 ∩G2)φ

(G3)
G1(G2φ)

(G1G2)φ

(G4)
φ ∧G (G)[∗]φ

(G)[∗]φ

(G5)
φ ∨G (G)〈∗〉φ

(G)〈∗〉φ

(G6)
` ∀G(φ→ ψ)

Gφ ` Gψ

(G7)
` ∀G(φ→ Gφ)

φ ` (G)[∗]φ
(G8)

` ∀G∀n > 0 (ϕ(n)→ G (ϕ(n− 1)))

∃n ϕ(n) ` (G)〈∗〉∃n (n ≤ 0 ∧ ϕ(n))

Logical variable n does not occur G.

Figure 4.8: Proof Rules for dDGL-operators

For handling first-order quantifiers, we use rules D15-D20 from dL [Pla08].
They perform Skolemization [Pla10b] to allow for removing the modalities
within the formulas using other rules. After the modalities are dealt with,
the quantifiers are reintroduced and quantifier elimination (QE) is per-
formed. Let us focus on quantifiers on the right side of the sequent. In
that case, for existentially quantified variables we use free variables instead.
This step itself would be sound as the resulting formula is actually strong
than the original one. However, we store the information that the variable
was existentially quantified in order to later en reintroduce the existential
quantifier with rule D19 once all modalities below the quantifier are dealt
with. We replace universally quantified variables by fresh free function
symbols. As parameters to this function symbol, we add all variables that
where existentially quantified before. This is sound, as the formula is only
valid, if it is satisfied for all interpretation of the free function symbols.
Later in the proof, we use the arguments of the Skolem symbols (i.e., those
variables that are arguments of free functions) to reconstruct the quantifier
order before performing quantifier elimination. The cases for quantifiers on
the left side of the sequent are dual. Observe that, the leafs of our proof
graph, are connected by conjunctions. Hence for the reintroduction of the
existential quantifier, we have to collect all branches on which the free vari-
able occurs because we need a common valuation for this variable. This
is crucial as introducing an existential quantifier on each branch locally
would yield unsound results. This can be easily seen if we recall that
(∃x φ(x) ∧ ∃x ψ(x)) does not imply that there is some common x satisfy-
ing the formulas φ and ψ, i.e., ∃x (φ(x) ∧ ψ(x)). This becomes obvious
when considering two contradictory formulas, for instance, φ ≡ x = 0 and
ψ ≡ x = 1. The rules for the reintroduction of the universal quantifier,

Jan-David Quesel 105 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

however, work locally on a single branch.

Game rules. We have extended this proof calculus with additional rules
for handling the game specific constructs appearing in dDGL formulas (rules
G1-G8 in Figure 4.8).

The rules G1 and G2 are equivalences to reason about the choice oper-
ations on games. They are the game-equivalents of D5 and D4. Rule G3
transforms sequential compositions such that they can be handled the other
rules. Observe that G1(G2φ) is structurally simples than (G1G2)φ as it
does contain one operator less (the sequential composition of games). The
rules G4-G5 allow for unwinding of the game loops. Rule G7 follows the
pattern of D13, but allows induction over game loops that are under Falsi-
fier’s control. If Verifier can establish that a formula φ holds after any run
of game G that started in an arbitrary state satisfying φ, then, by induc-
tion, φ holds for an arbitrary number of plays. Rule G8 follows the pattern
of D14 and can be used to show properties of game loops that are under
Verifier’s control. We can be sure that there is a number of iterations after
which the postcondition ϕ(n) holds for some n ≤ 0 if G can be controlled
by Verifier such that the state converges w.r.t. ϕ(n). Here, the existence
of some n such that ϕ(n) holds serves as an induction anchor. As for each
play started in an arbitrary state where n > 0 and ϕ(n) holds, Verifier can
assure that after playing the game G the formula ϕ(n− 1) holds, thus the
game can be forced to eventually reach a state where n ≤ 0 and ϕ(n) holds.
Note that n must not occur in the game G as otherwise it would be bound
by the game instead of the quantifier prefix in the postcondition and thus
falsify our induction. Additionally, the generalization rule G6 can be used
to strengthen postconditions. This rule can, for example, be used to add
induction anchors and use cases to the rules G7 and G8.

The purpose of the calculus is to provide a framework for deriving valid
dDGL formulas syntactically. A calculus is sound iff all formulas derived
by applying the calculus rules are indeed valid.

Definition 48 (Soundness). A calculus rule φ1,...,φn
ψ1,...,ψn

is sound iff validity of
the premises φ1∧· · ·∧φn implies the validity of the conclusions ψ1∧· · ·∧ψn.

Theorem 6. The dDGL calculus rules presented in Figures 4.6–4.8 are
sound.

Jan-David Quesel 106 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

The soundness proofs for the rules P1-P12 and D1-D20 in [Pla10b] are
valid for dDGL as well, because dDGL is a conservative extension of dL (see
Theorem 5).

The soundness of the rules G1 and G2 is obvious from the semantics of
the operators ∪ and ∩ on games. For the rule G3 the soundness follows
directly from the definition of the sequential composition. The soundness of
the unwinding rules G4 (resp. G5) is a direct consequence of the semantics
of (G)[∗] (resp. (G)〈∗〉). For proving soundness of rule G6 a similar pattern
to that in [Pla10b] can be applied. The game G can only change the
variables that occur in G. Therefore, if φ→ ψ and Gφ holds independent
of how the variables occurring in G are evaluated, ψ also holds after playing
G.

Soundness of the induction rule G7 and the convergence rule G8 can be
shown by induction over the number of executions of the loop, in analogy
to the soundness proofs for D13 and D14 [Pla10b].

Proof of Theorem 6. We prove the soundness of each rule separately.

G1 Let ν be a state such that ν |= G1φ ∨G2φ. This means ν |= G1φ or
ν |= G2φ. This is, by Definition 34, equivalent to ν |= (G1 ∪G2)φ.

G2 Let ν be a state such that ν |= G1φ ∧G2φ. This means ν |= G1φ
and ν |= G2φ. This is, by Definition 34, equivalent to ν |= (G1 ∩G2)φ.

G3 Let ν be a state, ν |= (G1 G2)φ iff ν |= G1(G2φ), by Definition 34.

G4 Let ν be a state such that ν |= φ ∧G((G)[∗]φ). This means, ν |= φ
and ν |= G((G)[∗]φ). The latter means that for all m ∈ N we have
ν |= G(Gmφ). Therefore, ν |= Gnφ for all n ∈ N: It holds for n = 0 as
ν |= φ, and for n > 0 as ν |= G((G)[∗]φ). This concludes the proof as
this is equivalent to ν |= (G)[∗]φ by Definition 34.

G5 Let ν be a state such that ν |= φ ∨G((G)〈∗〉φ). This means, ν |= φ
or ν |= G((G)〈∗〉φ). Now we make a case distinction. If ν |= φ then also,
by definition of G0, ν |= G0φ. Therefore, there is an n ∈ N such that
ν |= Gnφ and, thus, ν |= (G)〈∗〉φ, by Definition 34. If ν |= G((G)〈∗〉φ),
then there is m ∈ N such that ν |= G(Gmφ). Therefore, ν |= Gm+1φ
for some m ∈ N. This also means that ν |= Gnφ for some n ∈ N. This
concludes the proof as this is equivalent to ν |= (G)〈∗〉φ by Definition 34.

Jan-David Quesel 107 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

G6 Let ν be a state such that ν |= ∀G(φ→ ψ) and ν |= Gφ. The only
variables that can change during game G are those that are bound vari-
ables in G. Since the universal closure ∀G quantifies all those variables
universally, we know that, no matter what values they take, the impli-
cation φ→ ψ holds, so we can conclude that ν |= Gψ.

G7 Let ν be a state such that ν |= ∀G(φ→ Gφ) and ν |= φ. Consider
any state ω that we reach by playing G. Then ω and ν only differ
with respect to the bound variables in G. No matter what value these
bound variables have (universally quantified by ∀G), playing G preserves
φ. Thus, we can conclude that ω |= φ. By induction, this gives that
ν |= Gnφ for all n ∈ N which implies ν |= (G)[∗]φ by Definition 34.

G8 Let ν be a state. Assume ν |= ∀G∀n > 0 (ϕ(n)→ G (ϕ(n− 1))) and
that ν |= ∃n ϕ(n). The latter gives us that there is a number r such that
ω |= ϕ holds where ω coincides with ν upto the valuation of n which is r.
By induction on r, we show that ν |= (G)〈∗〉∃n (n ≤ 0 ∧ ϕ(n)). If r ≤ 0
that post condition already holds and iterating G zero times is sufficient.
Otherwise, if r > 0, we know from ν |= ∀G∀n > 0 (ϕ(n)→ G (ϕ(n− 1)))
that independent of the initial valuations of the variables altered while
playing G the formula ϕ holds after one iteration with the altered valua-
tion n 7→ r−1. As this yields a strictly monotonically decreasing function
with progress≥ 1, the induction is well founded and we can conclude that
there is a number of iteration of G after which we reach a state such that
∃n (n ≤ 0 ∧ ϕ(n)) holds. Therefore, ν |= (G)〈∗〉∃n (n ≤ 0 ∧ ϕ(n)).

Derived rules. In practice we consider it is useful to have some derived
rules for handling loops [Pla10b]. For hybrid games two such rules can be
obtained by obtained by combining rules G6 with G7 as well as rules G6
with G8. We depicted the resulting rules in Figure 4.9. Rule G9 allows
to prove that in the current context after arbitrary iterations of the loop
the formula ψ holds. For this, we need to find an inductive invariant φ
that holds in the current state, is preserved by the loop and implies ψ in
every state that might be reachable by executing the loop. For this, we use
universal quantification ∀G that binds all variables that might be changed
in the game G and, thus, only keeps information about variables that are
constant w.r.t. to G from the current context. Thus, whatever state is
reached by playing G the implication φ→ ψ holds. In order to prove that
a formula ψ holds after some number of iterations of a game G we can use

Jan-David Quesel 108 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

rule G10. Here, we have to find a variant ϕ(n) that serves as a termination
function. We first have to prove that it holds for some n in the current
state. Subsequently, we have to show that by playing G we make progress
that can be measured by ϕ. That is started in some state with an arbitrary
valuation of the variables that are bound by G and some n > 0, if ϕ(n)
holds, then Verifier has a strategy such that by playing G once we reach
a state where ϕ(n − 1) holds. This gives a descending chain and the only
thing left to show is that whenever there is some n ≤ 0 such that ϕ(n)
holds then ψ holds as well. The same pattern can be used to get useful

(G9)
` φ ` ∀G(φ→ Gφ) ` ∀G(φ→ ψ)

` (G)[∗]ψ

(G10)

` ∃n ϕ(n)
` ∀G∀n > 0 (ϕ(n)→ G (ϕ(n− 1)))
` ∀G(∃n(n ≤ 0 ∧ ϕ(n))→ ψ)

` (G)〈∗〉ψ

Logical variable n does not occur G.

Figure 4.9: Derived proof rules for dDGL-operators

derived rules for hybrid programs (see Figure 4.10). The proofs that these

(D11)
` φ ` ∀[α](φ→ [α]φ) ` ∀[α](φ→ ψ)

` [α∗]ψ

(D12)

` ∃nϕ(n)
` ∀〈α〉∀n > 0(ϕ(n)→ 〈α〉(ϕ(n− 1)))
` ∀〈α〉(∃n(n ≤ 0 ∧ ϕ(n))→ ψ)

` 〈α∗〉ψ
Logical variable n does not occur α.

Figure 4.10: Derived proof rules for dL-operators

rules are derived are all similar and we thus decided to just show the proof
for G9 as an example in Figure 4.11.

Jan-David Quesel 109 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

` ∀G(φ→ (G)[∗]φ)
G7φ ` (G)[∗]φ
P3 ` φ→ (G)[∗]φ

` φ
` ∀G(φ→ ψ)

G6(G)[∗]φ ` (G)[∗]ψ
P8φ→ (G)[∗]φ ` (G)[∗]ψ

P12 ` (G)[∗]ψ

Figure 4.11: Proof that Rule G9 is a derived rule

4.4 Case Study: Robotic Factory Automation

To demonstrate the applicability of our approach we model a factory au-
tomation scenario in which an autonomous robot moves in an automatic
factory. For scalability reasons, central coordination and planning become
infeasible, so the factory is set up as a collection of autonomous agents pur-
suing goals that may not be known globally. The robot has a secondary
objective of reaching certain target positions, but its primary objective is to
stay safe, i.e., neither leave the factory site nor bump into its surrounding
wall, which could damage the robot.

ey

fy

xb
(lx, ly)

ex fx

(rx, ry)

(vx, vy)

Figure 4.12: Sketch of the robotic factory automation site

Model. We model a robot with position (x, y), velocity ~v = (vx, vy), and
acceleration ~a = (ax, ay) on a 2 dimensional rectangular factory ground
(Figure 4.12). There are two conveyor belts. One pointing in x-direction
and one pointing in y-direction. The factory may independently decide to
activate the conveyor belts, in which case they increase the velocity of the
robot. The robot may decide to move in any direction. Therefore, it can

Jan-David Quesel 110 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

decelerate to try to compensate for this increased speed. The goal of the
robot is to avoid crashing into any wall and avoid other machines using the
belt.

A sketch of the factory site is provided in Figure 4.12. One conveyor
belt is of y-width ey between positions lx and ex and moves in x-direction
if activated. Between ex and fx there is a belt of y-width fy moving in
y-direction. The shaded region in Figure 4.12 indicates a region that has to
be cleared within ε time units after the system was started, because other
robotic elements of the factory may occupy this space then and not watch
out for our robot. For simplicity, the robot is initially located at the lower
left end (lx, ly) of the factory site. The conveyor belt in x-direction has a
maximal velocity of cx and that in y-direction of cy. The conveyor belts
accelerate very quickly, so we simply consider them to accelerate instanta-
neously. Thus, upon activation, their effect is to increase the velocity of
the robot by a discrete assignment instantaneously if the robot is currently
located on the conveyor belt that got activated. The robot itself can ac-
celerate with any acceleration of absolute value at most A = 2 and that
acceleration can be applied in x-direction (acceleration ax) or y-direction
(acceleration ay) or both. The robot can activate a brake that will slow it
down. The difference between braking and just accelerating in the opposite
direction is that braking does not allow changes of the sign of the velocity
but instead stops at velocity 0.

Specification. As the robot is a moving object and cannot come to a
standstill instantaneously, certain conditions have to be satisfied to allow
safe operation. Therefore, we assume the following conditions on the sce-
nario. We require that the point xb can be reached by accelerating for at
most time ε, the x-belt moves to the right (if activated), and after passing
the belts there is enough space to brake from the velocity we reach by ac-
celerating for four cycles (each of duration ≤ ε) and possible extra velocity
gained when a conveyor belt activates:

xb <
1

2
Aε2 ∧ cx > 0 ∧ (cx + 4Aε)2 ≤ 2A(rx − fx) (4.1)

For the y-direction we assume

cy > 0 ∧ c2y ≤ 2A(ry − ly) , (4.2)

Jan-David Quesel 111 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

i.e., the y-belt moves upwards (if activated) and there is enough space for
the robot to compensate for the effects of the conveyor belt by braking long
enough without having to leave the factory ground.

Even though these constraints limit the possible scenarios, we haven
proven that a strategy for the robot exists such that it meets its objectives.
Figure 4.13 shows the hybrid game describing the robotic factory scenario.
The game is structured as follows. First the environment, i.e., Falsifier,
chooses a number of iterations for the loop shown in lines 1-10. In each
iteration, the environment may choose to activate one of the conveyor belts
if the robot is on it. This is modeled with the modality in lines 1-2. Here,
the variable eff1 (resp. eff2) is used in order to ensure that the conveyor
belts are activated at most once. These variables is initialized with the
value 1 and set to 0 once the action is executed. As the branch first tests
whether the robot is on the conveyor belt and the variable value is 1,
the action can only be execute once. Afterwards, the robot (i.e., Verifier)
chooses his accelerations in x and y-direction (line 3). The clock ts is reset
(also line 3) to measure the cycle time (i.e., ts ≤ ε), then the robot chooses
(line 6) if it wants to brake (line 7-8) or possibly to drive backwards w.r.t. to
its current direction (line 5). The time for the continuous evolutions in lines
5 and 8 is then chosen by the environment within the cycle time constraint
(for both line 5 and 8) and the zero crossing of one of the velocities (only
line 8). Thus, accelerating for ε time units can take many iterations of
the loop as ε only provides an upper bound on the cycle time. Further,
note that for the braking case if the velocity in a direction is 0 then that
acceleration is set to 0 as well to avoid time deadlocks. This is checked in
line 7. Also the robot has to ensure that its choices for the acceleration are
compatible with the current velocities: for a velocity v and an acceleration
a, if the robot wants to brake, i.e., reduce the velocity to 0, then the product
va has to be non-positive.

The winning condition for the robot is to stay safe, i.e.,

lx ≤ x ≤ rx ∧ ly ≤ y ≤ ry ∧ (t ≥ ε→ (x ≥ xb ∨ y ≥ ey)) .

The robot must stay within the rectangle of the points (lx, ly) and (rx, ry)
but has to leave the rectangle (lx, ly) and (xb, ey) after ε time units. The
latter requirement models that uncooperative robotic elements might enter
that region. Note that the number of iterations is chosen when the game
starts not when specifying the system. Sensor and communication delays
are not modeled explicitly here. Since they are beyond control for the

Jan-David Quesel 112 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

robot, the number of iterations and the evolution durations are chosen by
the factory environment. How long the robot needs to work in the factory
is also decided by the factory, so the robot needs to guarantee safety for
all times. However, whether the robot actually has a strategy is quite
subtle. Simple strategies like always accelerating, or always braking are
bound to fail and accelerating for exactly ε time units is not possible as the
environment determines the actual cycle time and might not allow changing
the acceleration at that exact point in time. The robot has to navigate the
factory very carefully, react to changes in the conveyor belt activation as
needed, and robustly adapt to the number of control loop repetitions and
(possibly erratic) cycle durations chosen by the factory environment.

1

((
[?true] ∩ [(?(x < ex ∧ y < ey ∧ eff1 = 1); vx := vx + cx; eff1 := 0)]

2 ∩ [(?(ex ≤ x ∧ y ≤ fy ∧ eff2 = 1); vy := vy + cy; eff2 := 0)]
)

3 〈 ax := ∗; ?(−A ≤ ax ≤ A); ay := ∗; ?(−A ≤ ay ≤ A); ts := 0 〉
4

(
5

[
ẋ = vx, ẏ = vy, v̇x = ax, v̇y = ay, ṫ = 1, ṫs = 1&ts ≤ ε

]
6 ∪
7 (〈?axvx ≤ 0 ∧ ayvy ≤ 0;

if vx = 0 then ax := 0 fi; if vy = 0 then ay := 0 fi〉
8

[
ẋ = vx, ẏ = vy, v̇x = ax, v̇y = ay, ṫ = 1, ṫs = 1

&ts ≤ ε ∧ axvx ≤ 0 ∧ ayvy ≤ 0])
9

)
10

)[∗]
Figure 4.13: Description of game for robotic factory automation scenario

(RF)

Verification. We consider an instance of the case study that is parametric
w.r.t. ε, cx, cy, and xb, but we fix lx = ly = 0, rx = ry = 10, ex = 2,
ey = 1, fx = 3, fy = 10. We have verified the following propositions using
KeYmaera [PQ08a], to which we added dDGL proof rules. To establish the
desired property, we first show that the robot can stay within the factory
site whatever the factory does.

Jan-David Quesel 113 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

Proposition 6. The following dDGL formula is valid, i.e., there is a strat-
egy for Verifier in the game depicted in Figure 4.13 that achieves the post-
condition:

(x = y = 0 ∧ (4.1) ∧ (4.2))→ (RF)(lx ≤ x ≤ rx ∧ ly ≤ y ≤ ry)

When proving this property, we focus on the case where the robot is not
driving towards the lower left corner, i.e., negative accelerations for both
the x- and y-component; see Figure 4.12.

Again allowing for arbitrary movement in x-direction, we analyze, for a
projection to the x-axis (cf. Figure 4.14), a more complex postcondition,
where the robot has to leave the shaded region but stay inside the fac-
tory site. Observe, that the model in Figure 4.14 is identical to that in
Figure 4.13 except that actions that only influence the y-position or the
velocity in y-direction have been removed.

1

((
[?true] ∩ [(?(x < ex ∧ y < ey ∧ eff1 = 1); vx := vx + cx; eff1 := 0)]

)
2 〈 ax := ∗; ?(−A ≤ ax ≤ A); ts := 0 〉
3

(
4

[
ẋ = vx, v̇x = ax, ṫ = 1, ṫs = 1&ts ≤ ε

]
5 ∪
6 (〈?axvx ≤ 0; if vx = 0 then ax := 0 fi〉
7

[
ẋ = vx, v̇x = ax, ṫ = 1, ṫs = 1&ts ≤ ε ∧ axvx ≤ 0

]
)

8

)
9

)[∗]
Figure 4.14: Projection of robotic factory automation scenario (RF |x)

Proposition 7. The following dDGL formula is valid, i.e., there is a strat-
egy for Verifier in the game in Figure 4.13 projected to the x-axis (denoted
RF |x) that achieves the postcondition:

(x = y = 0 ∧ (4.1))→ (RF |x)(lx ≤ x ≤ rx ∧ (t ≥ ε→ (x ≥ xb)))

Jan-David Quesel 114 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

In the proof of Proposition 7 we show that the following invariant is an
inductive invariant:

eff1 ∈ {0, 1} ∧ x ≥ lx ∧ vx ≥ 0 ∧ (t ≥ ε→ x ≥ xb)
∧ (vx + cxeff1)2 ≤ 2A(rx − x)

∧
(
x < xb → t ≤ ε ∧

(
xb − x ≤

1

2
Aε2 − 1

2
At2

∧ (eff1 = 1→ vx = At) ∧ (eff1 = 0→ vx = At+ cx)

∧ rx − x ≥
(vx + eff1cx)2

2A
+A(2ε− t)2 + 2(2ε− t)(vx + eff1cx)

))
(4.3)

The invariant says that enough space remains to brake before reaching
the right end of the factory ground. Additionally, if the point xb has not
yet been passed then the time is not up and the distance to the right wall
is bounded by the space the robot can cover by accelerating ε time units
and the distance it could already have covered within the current runtime.
Further, the distance to the far right side is large enough to accelerate for
another 2ε − t time units and brake afterwards without hitting the wall.
The 2ε time units are necessary as Falsifier chooses how long to evolve
and the robot may accelerate for ε time units before it can react again.
Therefore, the robot may have to accelerate when clock t is almost ε and
then may not react again within the next ε time units.

The KeYmaera proof for Proposition 6 has 2471 proof steps on 742
branches; 159 steps were performed interactively. The proof for Propo-
sition 7 has 375079 proof steps on 10641 branches (1673 interactive steps).
The interactive steps provide the invariant and simplify the resulting arith-
metic. Note that Proposition 6 is significantly simpler than Proposition 7,
because there is a simpler strategy that ensures safety (Proposition 6),
whereas the dDGL formula in Proposition 7 is only valid when the robot
follows a subtle strategy to leave the shaded region quickly enough without
picking up too much speed to get itself into trouble when conveyor belts
decide to activate. Specifically, Proposition 7 needs the much more com-
plicated invariant (4.3). Also, the a priori restriction (and thus strategy
choice) to the case where the robot is driving in the direction towards larger
x and larger y values reduces the proof for Proposition 6 significantly.

As every strategy witnessing Proposition 7 is compatible with some strat-
egy witnessing Proposition 6, we claim that the robot meets its require-
ments.

Jan-David Quesel 115 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

Automation. The base theory of real arithmetic is decidable and, there-
fore, supplying an invariant is in principle sufficient to verify the safety
property. However, the computational complexity poses an issue in prac-
tice. To compensate for this effect we suggest a heuristic for instantiating
the existential quantifiers resulting from choices of Verifier. The heuristic
is based on finding maximal and minimal instantiations of the tests occur-
ring in the game after the existential quantifier. Additionally, we run into
issues with lots of unrelated formulas for the current branch. Due to the
large number of interactions between the players there are a lot of formu-
las lurking around providing information about the system behavior that
is not necessary on the current branch. To reduce the complexity for the
decision procedure we try to identify these formulas and restrict the appli-
cation of the quantifier elimination procedure to those formulas necessary
to prove validity of the current goal. For this, we analyze the formulas on
the right side of the sequent and remove constraints that do not involve
these variables. Then we test for counter-examples. If there are counter-
examples, we add the formulas again one by one until we end up with a
counter-example free set of formulas or the complete set of formulas.

4.5 Related Work

Fairly restricted classes of hybrid games have been shown to be decidable
(see e.g. [HHM99,BBC09,VPVD11]), but the general case is undecidable.
Bouyer et al. [BBC09] showed that optimal reachability in o-minimal hybrid
games is decidable. In their model, strategies have costs and the goal is
to compute a cost optimal strategy. O-minimal hybrid systems and games
require strong resets. That is, on every transition every variable is reset
independent on the system state when the transition was taken. Therefore,
at every jump the system “forgets” about the details of the evolution in
the last mode. This either restricts the guards to equalities or makes it
impossible to model continuous trajectories over several modes, i.e., to
keep track of the position of the robot in our example. Hence they do not
suit our needs.

Vladimerou et al. [VPVD11] extended o-minimal hybrid games to so
called STORMED hybrid games and proved decidability of optimal reacha-
bility. These hybrid games are based on STORMED hybrid systems, which
require that all system actions point towards a common direction (some
vector φ ∈Mn). The M here is the set of the underlying o-minimal theory.

Jan-David Quesel 116 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

The O in STORMED denotes that guards, resets, and flows are o-minimal
definable. The S denotes that guards are time separable. That is whenever
any guard in the system is satisfied at a point x ∈Mn then no other guard
is satisfied for any y ∈ {z | ||x − z|| < d} for some d. This means that at
any point in time at most one transition is enabled. The T denotes that the
flows are time-independent which is no real restricting as every flow that
is described by a differential equations has this property. The resets R are
monotonic along some vector φ and so are the flows (M). The last property
(ED) restricts the possible guards w.r.t. the common direction φ. That
is, for each guard there has to be numbers a, b ∈ M such that the guard
is only satisfied within the set {φ · x | x ∈ [a, b]}. Unfortunately, neither
STORMED hybrid games nor their special case of o-minimal hybrid games
are expressive enough for our needs. Our factory automation scenario is
not STORMED, for example. The issue is that we cannot find a vector φ
such that the above requirements are satisfied. When a conveyor belt is
activated there is a mode switch. Therefore, the velocity component has to
be non-zero in the vector φ. As choices for the acceleration can lead to flows
where the velocity is decreasing and some where the velocity is increasing,
there is no vector φ with a non-zero value at the v-component satisfying
the monotonicity condition on flows. See [VPVD11] for the details on the
definition of STORMED hybrid games.

In these automata-based approaches, a precedence for player actions is
often encoded into the semantics of hybrid game automata, e.g., controller
actions have precedence over environment actions in [VPVD11]. In contrast
to that dDGL offers more flexibility in modeling these syntactically for the
particular needs of the application.

Tomlin et al. [TLS00] present an algorithm to compute maximal con-
trolled invariants for hybrid games with continuous inputs. The class of
games they consider is more general than ours as they allow inputs to
differential equations to be controlled by both players, thereby added a
differential game component. However, the general class of games they
consider is so large that the algorithm presented is semi-decidable only for
certain classes of systems, e.g., systems specified as timed or linear hybrid
automata, or o-minimal hybrid systems. They further present numerical
techniques to compute approximations of their reach set computation op-
erators. However, these sometimes give unsound results. Additionally, it
only works for differentiable value functions. Extending these ideas, Gao
et al. [GLQ07] present a different technique for the same approach. The

Jan-David Quesel 117 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

drawback is that the players can neither force discrete transitions to happen
nor influence which location is reached by a discrete transition.

Our approach to hybrid games has some resemblance to Parikh’s propo-
sitional game logic (GL) [Par85] for propositional games. In GL in addition
to the usual program constructs there is a specific construct that denotes
the dual of a program. Thus, the “programs” actually become games. We
call the players Angel and Demon. Usually all choices are made by Angel,
only in the dual of a game the choice falls to Demon. Let W be a set
of worlds. For a set of states X ⊆ W the semantics denotes the set of
prestates from which Angel has a strategy to ensure that the game will
end in X. Thus, for a game α Angel has a strategy in the dual game αd

to ensure X from all states where it does not have strategy in α to ensure
W \ X. Otherwise, Demon could use exactly this strategy to drive the
game to a state outside of X. Furthermore, as the number of loop iter-
ations is not determined a priori the semantics of loops corresponds to a
fixed point computation. As an extension of propositional dynamic logic
(PDL) [FL79, Pra76] the states are identified by the propositions that are
satisfied in these states. In contrast to that in dDGL the states are valua-
tions of real variables. Pauly and Parikh [PP03] showed that GL is strictly
more expressive than PDL. Our logic dDGL is as a conservative extension
at least as expressive as dL. However, it is left for future work if they
coincide w.r.t. expressiveness. We refer to [Pla12b] for an identification of
the fundamental commonalities and differences of GL versus dL. The dis-
tribution axiom (K) and Gödel’s generalization rule generally stop to hold,
for example. The classical modal axiom K is given by the follow formula:

[α](φ→ ψ)→ ([α]φ→ [α]ψ) (K)

As this axiom holds for dL it is also valid by Theorem 5 for dDGL as we
have carefully designed the logic in order to preserve this axiom. Observe
that, this means that φ and ψ can be dDGL formulas. Note however that
the following more general axiom is not valid in dDGL:

G(φ→ ψ)→ (Gφ→ Gψ) (KG)

This can be easily seen by the following example.

Jan-David Quesel 118 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

Example 16. Let

G =̂〈x := 0 ∪ x := 1〉 ,
φ =̂x = 0 , and

ψ =̂x = 2 .

In this example there is a play such that x = 0 → x = 2 is satisfied. Such
a state can be reached by choosing the alternative where x is set to 1, thus
invalidating the premise of the implication. However, still, we can reach a
state where x = 0 by choosing the first alternative in the program. None
of these alternatives, however, leads to a state where x = 2 holds and thus
the formula KG cannot be valid in dDGL.

Gödel’s generalization rule (often also referred to as necessitation rule or
simply N) is the following:

φ

[α]φ
(N)

Again it is sound for dDGL because it is so for dL and thus allows for the
use of dDGL formulas for φ. However, note that this does not hold when we
would use games instead of box modalities here. As obviously for the game
〈?false〉 the formula 〈?false〉true is, unsurprisingly, a counter example to
the assumption that the rule would be sound for arbitrary games.

An axiom related to K is the induction axiom. Valid for dL and thus
dDGL is the following version

[α∗](φ→ [α]φ)→ (φ→ [α∗]φ) (I)

This axiom however does again not generalize to games as can be seen by
the following example.

Example 17. Let

G =̂〈(x := 1 ∪ (?a = 1;x := 0)); a := 0〉 ,
φ =̂x = 0 .

The induction axiom for games would be the following formula

(G)[∗](φ→ Gφ)→ (φ→ (G)[∗]φ) . (IG)

Jan-David Quesel 119 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

However in our example, we can easily see that for a state where a = 1 and
x = 0 hold initially we can satisfy the premise (G)[∗](x = 0→ G(x = 0))
by choosing the branch that sets x := 1 if there is at least one iteration
of the loop and otherwise the other branch to satisfy the conclusion of this
implication. For the conclusion (x = 0 → (G)[∗](x = 0)) we know that
x = 0 holds and thus (G)[∗](x = 0) would have to hold. However, for
unwindings of the loop of length at least two we get that afterwards the
x = 1 and thus x = 0 does not hold. Hence, the induction axiom IG does
not hold for dDGL.

Platzer [Pla12b] recently lifted Parikh’s game logic (GL) [Par85] to hy-
brid systems creating differential game logic dGL. Like for GL and in con-
trast to dDGL the loop semantics in dGL does not follow the advance notice
semantics. Platzer [Pla13] showed that his axiomatization of dGL is rela-
tively complete w.r.t. the modal µ-calculus of differential equations [Pla13].
However, the logic dGL is not a conservative extension to dL and for ex-
ample the classical distribution axiom K does not hold in dGL. This is a
major drawback w.r.t. using our theorem prover KeYmaera as a lot of the
existing rules would have to be changed. The logic presented here, dDGL,
on the other hand can be directly implemented in KeYmaera by adding the
rules presented in Figure 4.8. Furthermore, Platzer’s game logic dGL does
not feature a variant rule like we have established for dDGL with rule G8.
Still, it is yet to be determined if the two logics actually differ in expres-
siveness. As the advance notice semantics of loops can be encoded in dGL
we conjecture that every dDGL formula can be expressed in dGL. However,
there is no obvious encoding in the other direction. Therefore, we assume
that it would be necessary to consider the models, i.e., sets of states, that
are distinguishable via dGL formulas and those that are distinguishable via
dDGL formulas in order to settle this issue.

We like to note that for dGL it would be possible to retain the distribution
axiom under additional side conditions like dual-freeness. Thus, it would
be interesting to study whether a logic semantically equivalent to dGL but
syntactically closer to dDGL can be conveniently defined. That is, a logic
that syntactically distinguishes games and dual-free games, i.e., programs
that features fixed point semantics for loops in games would be certainly
worthwhile to look for.

Jan-David Quesel 120 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 4. dDGL

4.6 Conclusion

In this section, we presented a game extension to differential dynamic
logic (dL), called differential dynamic game logic (dDGL) in order to rea-
son about hybrid games. dDGL is a conservative extension to dL. We
proposed an extension to the sequent proof calculus for dL to handle the
dDGL specifics. Subsequently, we applied dDGL as specification language
for a robot factory case study.

The presented calculus is sound and inherently incomplete. Relative
completeness w.r.t. to dL is an open question. GL [PP03] is strictly more
expressive than propositional dynamic logic (PDL) [FL79, Pra76]. Wit-
ness to this is a formula that expresses the absence of an infinite branch.
However, dDGL is able to talk about arbitrarily long computations but not
about infinite ones. Therefore, this property is not expressible in dDGL
and can thus not serve as a distinguishing example between dL and dDGL.
Furthermore, unlike in PDL the computations are not part of the model
anyway.

Observe that the extension from dL to dDGL was not specific to the
choice of the underlying dynamic logic. That is we can perform the same
construction to construct a game logic based on differential algebraic logic
(DAL) [Pla10a], quantified differential dynamic logic (QdL) [Pla10c] or
even temporal differential dynamic logic (dTL) [Pla07c]. The first two
extensions are straight forward but provide useful additional tools. DAL
features more complex continuous evolutions whereas QdL extends dL in
order to reason about dynamically reconfigurable systems with arbitrary
many agents. Further, it is possible to take any dynamic logic and “gam-
ify” it using the approach presented in this chapter. This is an important
strength of our approach as we leave the underlying modal logic intact
and add the game operators, rules, and axioms on top of an existing the-
ory. This, especially made it possible to easily extend our theorem prover
KeYmaera in order to handle dDGL.

Jan-David Quesel 121 Oldenburg, April 3, 2013

C H A P T E R F I V E

Similarity and Games

Cat: Where are you going?
Alice: Which way should I go?
Cat: That depends on where you
are going.
Alice: I don’t know.
Cat: Then it doesn’t matter
which way you go.

— Lewis Carroll

Contents

5.1 Hybrid Game Automata 124
5.1.1 Automata and Games 124
5.1.2 Encoding our Robust Refinement Relation . . . 126

5.2 dDGL and Similarity 132
5.2.1 Trace Equivalence 133
5.2.2 Standard Form 135
5.2.3 Encoding Similarity in dDGL 138
5.2.4 Example . 149
5.2.5 Using Existing Properties 152

5.3 Related Work . 152
5.4 Conclusion . 153

123

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

In the previous chapters we introduced notions of robust refinement and
a logic together with a proof calculus to prove properties of hybrid games.
In this chapter, we link those two results by presenting a construction that
reduces the question of refinement to the existence of a winning strategy in
a hybrid game. We start by defining an alternative notion of hybrid games
based on hybrid automata. Subsequently, we present a special product
construction for hybrid automata and show that those can—under some
restrictions—be used to serve as a witness for the fact that two systems
are in refinement relation. Next, we do a similar construction on hybrid
programs and propose an approach using dDGL, our logic defined in the
previous chapter, to show ε-δ-refinement of parametric hybrid systems.

Contributions. In this chapter we present two approaches to show robust
refinement between system specifications. The first approach is based on
hybrid automata product and model checking. The second approach builds
upon our new logic dDGL. This approach takes advantage of the special
design of that language in order to allow for proving parametric robust
refinement relations between hybrid programs.

Structure of the Chapter. In Section 5.1 we present a special product
of automata in order to show that systems are in refinement relation. In
Section 5.2 we present an approach using dDGL to prove refinement. We
present a small example of similar systems in Section 5.2.4. We conclude
this chapter in Section 5.4.

5.1 Hybrid Game Automata

The question we like to solve is how to prove that a system A robustly
refines another system B. In [QFD11] we have shown that under certain
restrictions it is possible to construct a hybrid game automaton such that
the existence of a winning strategy for the player controlling B ensures
that A robustly refines B. In this section we review these results.

5.1.1 Automata and Games

Based on hybrid automata [ACHH92,NOSY92] (see Chapter 2 for a formal
semantics of hybrid automata) we define a notion of two-player hybrid game
automata. For easier reference we assign names to the players: Demon and

Jan-David Quesel 124 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

Angel. The goal of Demon will be to drive the system into a distinctive
“bad” state, whereas Angel has the goal to avoid this state. Observe, that
we do not use Falsifier and Verifier here in order to make a clear distinction
to dDGL. In contrast to dDGL the goals of Demon and Angel will be stated
in terms of reachability of a location not satisfiability of a formula. Also the
possible actions of the players are different from dDGL. That is, we allow for
continuous inputs under control of Angel. Additionally, choices of Demon
always have precedence over those of Angel, whereas in dDGL there cannot
be conflicting choices. Note that, the game will deviate from the games
used in the semantics of dDGL as our notion of hybrid automata allows
for infinite traces, whereas hybrid programs only consider finite prefixes of
these.

In order to turn an automaton into a game, we make some parts of the
automaton controllable. That is, we partition the discrete transitions into
two sets and give each player control over one of these.

Definition 49 (Hybrid Game Automaton). A hybrid game automaton is
a structure HG = (S,Ec, Uc, l) that consists of a hybrid automaton

S = (U,X,L,E, F, Inv, Init) ,

a set of controllable transitions Ec ⊆ E, a set of controllable input vari-
ables Uc ⊆ U , and a distinct location l ∈ L.

Play. A game is played on a hybrid game automaton according to the
following rules on the states of the hybrid automaton denoted by S. The
possible moves of Demon are determined by the uncontrollable transitions
E \ Ec and the corresponding invariants and guards. Angel plays on the
controllable transitions Ec. In addition, Angel always proposes a Lebesgue-
measurable function that gives the future valuations of the variables in Uc
until the next move is determined. Demon does so for the variables in
U \ Uc. At every state of the game each player chooses an action that
is either a finite number of discrete transitions (uncontrollable transitions
for Demon and controllable ones for Angel) or a time period they want to
let pass. The players are only allowed to let time pass if this is possible
within the current evolution domain. Demon may also choose to take no
action. In that case the action chosen by Angel is executed. If both players
choose discrete transitions then Demon gets precedence and all transitions
of Demon are executed. Subsequently, the transitions proposed by Angel

Jan-David Quesel 125 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

are executed, if they are still enabled. If both players choose to let time
pass, the smaller amount of time is taken. In case one player chooses a
discrete transition and the other one chooses to let time pass, the discrete
transition gets precedence.

Winning. Demon wins, if he can force the game to enter the location l or
if Angel does not have any more moves. Angel wins, if he can assert that
the location l is avoided.

Observe that, the case where Angel has no more moves can happen if
for example the system is on the edge of an invariant region and thus a
discrete transition has to happen, but no transition is enabled.

Strategy. As strategies the players are allowed to use feedback control.
That is, the decisions which actions to perform are based on the current
state (x, l) ∈ X×L. For a given game, a strategy is non-Zeno if there is no
time t such that the runs of the automaton trigger the strategy to propose
an infinite amount of actions within a time interval of length t.

Winning Strategy. We call a strategy a winning strategy for Demon (resp.
Angel) if it is non-Zeno and for all non-Zeno strategies of Angel (resp.
Demon) it is winning for Demon (resp. Angel).

5.1.2 Encoding our Robust Refinement Relation

To translate the question whether a system robustly refines another into
such a hybrid game automaton, we encode the restrictions of the refinement
relation into a hybrid automaton that is able to check whether either the
distance between the system states is too large, or whether we are not able
to find a suitable retiming at a certain point.

The locations of this automaton result from building the Cartesian prod-
uct of the two systems we like to compare. We add additional copies of each
location (named l̂ ∈ L̂) that are used as targets of the transitions controlled
by Demon in order to allow Angel to react to those actions. Furthermore,
a distinct location bad is used to mark situations where either the spatial
or the temporal distance are exceeding their bounds.

The retiming is modeled by speeding up/slowing down the system dy-
namics. This is done by a fresh variable s with values restricted to some
bounded interval. We choose s ∈ [0, 2]. We now multiply the dynamics of

Jan-David Quesel 126 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

the first system with s and those of the second system with 2−s. As s can
be altered arbitrarily we can emulate all possible retiming relations. For
example s = 1 means that both systems run with the same speed. Whereas
s = 0 means only the second system is evolving and for the case s = 2 only
the first one is. We keep track of the temporal distance of the systems
in the variable r that represents the integral over 2s − 2. That r indeed
models the temporal distance can be seen if one considers the evolution of
local clocks. A clock in the first system evolves with rate s while a clock in
a second system evolves with 2− s. In case s = 1 both clocks evolve with
the same speed of 1. Otherwise, we have a clock drift of s−(2−s) = 2s−2.

The spatial distance can be checked directly. We add invariants that
force the automaton to go to the bad location if the distance is too large.
Most of the controllable transitions are only enabled as long as the system
variables and timings are close. This is not directly enforced in cases where
Angel reacts on some discrete action chosen by Demon, i.e., an uncontrol-
lable transition. Therefore, all uncontrollable transitions lead to a location
(second component is in L̂) where Angel might react. However, in these
locations no time must pass which is enforced using the fresh clock c. We
call these locations committed. The clock c is reset on all transitions that
lead toward a committed location and the invariant of the location states
the constraint c ≤ 0. Hence it ensures that no positive evolution time
is possible there that does not violate this evolution domain constraint.
Recall that this means that neither player may choose to let time pass.

Example 18. Let us sketch this idea in a picture. Consider the two ab-
stract automata given in Figure 5.1. The specification has three locations
and four transitions. The implementation consists of a single location with
three transitions. In Figure 5.2 we sketch the refinement product of a these
two systems. The unlabeled locations are the Cartesian product of the two
automata. The locations labeled with C are copies used to allow Angel to
react on the actions of Demon. Thus, all the transitions of the implemen-
tation (drawn with straight lines) lead to one of these locations. There
are three of those transitions matching the three transition in the origi-
nal implementation automaton. The outgoing transitions are those of the
specification (drawn with dashed lines) and an additional one that mod-
els a no-op choice for Angel. Only in the original locations exist outgoing
transitions towards the “bad” state.

We now formalize this idea. First, let us define how to speed up or slow
down a continuous evolution.

Jan-David Quesel 127 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

(a) Specification

(b) Implementation

Figure 5.1: Abstract examples for hybrid automata

C

C

C

bad

Controlled

Uncontrolled

C Committed

Figure 5.2: Relaxed refinement game sketch

Jan-David Quesel 128 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

Definition 50. Let S be a system of differential equations

ẋ1 = f1(x1, . . . , xn), . . . , ẋn = fn(x1, . . . , xn) .

We denote by t×S the system where the slope of each variable is multiplied
with an expression t that does not contain the variables x1, . . . , xn, i.e., the
system

ẋ1 = t · f1(x1, . . . , xn), . . . , ẋn = t · fn(x1, . . . , xn) .

Let ν(t) denote the value of the expression t in the state ν. For the case
where 0 ≤ ν(t) < 1 the evolution is slowed down because the slope of each
variable is closer to 0. For 1 < ν(t) the systems evolves faster than it would
be without this additional factor. Obviously, ν(t) = 1 does not change the
system speed in any way as it is the neutral element w.r.t. multiplication.

Definition 51 (Robust Refinement Product). Given two real numbers ε, δ,
a hybrid automaton A = (UA, XA, LA, EA, FA, InvA, InitA), and another
hybrid automaton B = (UB , XB , LB , EB , FB , InvB , InitB), we define the
robust refinement product, w.l.o.g. assuming (XA ∩XB) ∪ (UA ∩ UB) = ∅
as the following hybrid game automaton SG = (AlB,Ec, {s}, bad), where

• AlB = (Ul, Xl, Ll, El, Fl, Invl, Initl)

• The variables of the resulting system are given by Ul = UA∪UB∪{s}
and Xl = XA ∪XB ∪ {r, c} where w.l.o.g. (VA ∪ VB) ∩ {s, r, c} = ∅.

• The locations are given by Ll = (LA × (LB ∪ L̂B)) ∪̇ {bad}, where
L̂B are duplicates of the original locations in LB.

• Let χ be the following formula: ||xA − xB || < δ ∧ |r| < ε, where xA
and xB are the state vectors of the systems A and B respectively.
Furthermore, let χs be the formula ||xA − xB || ≤ δ ∧ |r| ≤ ε.

• The set of discrete transitions El is the smallest set such that:

– If (lA, φ, l
′
A) ∈ EA then for all lB ∈ LB,

((lA, lB), φ ∧ χ ∧ c′ = 0, (l′A, l̂B)) ∈ El .

– If (lB , φ, l
′
B) ∈ EB then for all lA ∈ LA,

((lA, lB), φ ∧ χ, (lA, l′B)) ∈ (El ∩ Ec)
and

((lA, l̂B)), φ, (lA, l
′
B)) ∈ (El ∩ Ec) .

Jan-David Quesel 129 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

– For all lA ∈ LA and all lB ∈ LB, ((lA, lB),¬χ, bad) ∈ El.

– For all lA ∈ LA and all lB ∈ LB,

((lA, l̂B), true, (lA, lB)) ∈ (El ∩ Ec) .

• For all l = (lA, lB) ∈ Ll or l = (lA, l̂B) ∈ Ll we construct Fl(l) as

ṙ = 2s− 2 ∧ ċ = 1 ∧ s× FA(lA) ∧ (2− s)× FB(lB) .

• The invariants of the locations are given by Invl which assigns each
location (lA, lB) or (lA, l̂B) an invariant of the form

InvA(lA) ∧ InvB(lB) ∧ χs ∧ 0 ≤ s ≤ 2 .

If l = (lA, l̂B) we further add c ≤ 0.

• Initl = {((lA, lB), InitA(lA) ∧ InitB(lB)) | lA ∈ LA ∧ lB ∈ LB}
Using this game, we can determine whether two systems stand in refine-

ment relation as defined in Definition 22 (see page 44).

Theorem 7. Given two hybrid automata A and B. If there is a win-
ning strategy for Angel in the game played on the hybrid game automaton
(AlB,Ec, {s}, bad) then A o ε,δ−−−→B holds.

Proof. Assume that there is a winning strategy for Angel but A o ε,δ−−−→B
does not hold. From the latter, we know that there is a run of system A
such that, no matter which retiming is applied, system B cannot stay close
enough. Let this run be σ. We now construct a winning strategy for
Demon using σ. Demon chooses his actions in a way that the valuations
of the variables of the first system at time t coincide with σ(t− r). Angel
is not able to influence the valuations of the variables at those points, as
the discrete transitions that it can choose from are those of B. He is also
not able to restrict the movement of Demon, as the intermediate locations
only allow him to react on actions performed by Demon and as he looses if
there is a time deadlock, he can also not avoid time going to infinity. This,
as there was no run of B that stays close enough to σ, eventually leads to
a state where the condition ||xA − xB || < δ ∧ |r| < ε is violated. In this
state Demon can choose to enter the location bad. This contradicts the
assumption that there is a winning strategy for Angel and thus concludes
the proof.

Jan-David Quesel 130 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

Note that the reverse implication does not hold, as the game demands
a tighter coupling of the system behaviors with regard to branching than
our notion of ε-δ-refinement. If the systems have continuous inputs, this
becomes even more clear as all those inputs are controlled by Demon and
can therefore be used to drive the system towards bad instead of being
identical for both systems at the same points in time.

Corollary 7. If we restrict the possible moves of Angel by adding differ-
ential equations describing the evolution of s and she is still able to win the
game, then the systems are in refinement relation.

This follows directly from the fact that Theorem 7 demands the existence
of a winning strategy. Now, if we can find a winning strategy for a system
where the control of s is further restricted, we still can assert that there is
a winning strategy in the original game.

A good candidate for a strategy for controlling s is optimal control (see
e.g. [PBGM62]) with the goal of minimizing the value of ||xA−xB ||. Here,
optimal control refers to the idea of synthesizing a continuous controller
that minimizes the distances between the two trajectories.

Example 19. For example, let us consider the case of || · || = || · ||e being
the Euclidean norm. As the Euclidean norm contains a square root we
w.l.o.g. take the square of the distance as minimization target. This yields
equivalent results as the square root is a monotone transformation. For
xA = (xA,1, . . . , xA,n) and xB = (xB,1, . . . , xB,n), the square of the distance
evolves as follows:

d(||xA − xB ||e)2
dt

=
d(
√

((xA,1 − xB,1)2 + · · ·+ (xA,n − xB,n)2)
2
)

dt

=
d((xA,1 − xB,1)2 + · · ·+ (xA,n − xB,n)2)

dt

= Σni=1(2(xA,i − xB,i) · (s
dxA,i
dt
− (2− s)dxB,i

dt
))

Let smin be the s that minimizes this term. Now choose the input s in the
following way: If r < ε ∧ smin > 1 or r > −ε ∧ smin < 1 choose s = smin.
Otherwise choose s = 1. The resulting strategy for controlling s can then be
encoded into a hybrid automaton and included into the original automaton.

Jan-David Quesel 131 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

The choice of the strategy is motivated by the fact that the location
bad can only be entered if the distances between the two systems become
too large. As we might be able to trade spatial distance against temporal
distance we choose to minimize the spatial distance. However, this strategy
is only an heuristic as there are systems, where it is necessary to let the
spatial distance increase a bit to for example unify switching timings, as
the guard effects might otherwise lead to a violation of the bounds on the
spatial distance (see Example 5 on page 37).

Definition 52. A hybrid automaton is considered deterministic if (1) all
of its transitions are urgent, i.e., all the guards of the transitions are over-
lapping in a singular point with the border of its sources invariant and all
trajectories of the mode are pointing outwards of the invariant region at that
point, and (2) for each point in time, at most one transition is enabled.

Remark 6. Let A be a hybrid automaton and B be a deterministic hybrid
automaton. If we modify A l B in a way that the assumptions of Corol-
lary 7 are satisfied, assume that the system values are identical at the initial
locations, and are able to show that on all runs of this modified version of
A l B the location bad is avoided, then, by Corollary 7, A o ε,δ−−−→B holds.
The assumptions of Corollary 7 could, e.g., be satisfied by using the optimal
control strategy. Thus, we can use a model checker (e.g. FOMC [DDD+12],
PHAVer [Fre08], SpaceEx [FGD+11], or HSolver [RS07], depending on the
system class and complexity) to search for a certificate for the fact that the
location bad is unreachable.

Remark 7. On a similar line of thought, if one can prove that both systems
stabilize within a certain time it also possible to use bounded model checking
up until a stable state has been reached. This could be performed, e.g., using
iSAT [FHT+07].

5.2 dDGL and Similarity

As the approach in the previous section was limited by the assumption that
specifications are deterministic and the available tools relying on concrete
numbers instead of abstract parameters as free function symbols, we now
present an approach for similarity of parametric hybrid systems based on
our game logic dDGL. That is, in this section we discuss how to show that

Jan-David Quesel 132 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

a hybrid system α modeled as a hybrid program ε-δ-refines by another
hybrid system β also modeled as a hybrid program.

The idea is, like in the previous section, to run α and β in parallel and
give Falsifier control over the actions of α and thus constructing some trace
of that system. Verifier on the other hand gets control over the decisions
that are possible for system β. The winning condition for Verifier is that
the distance between the variables α and those of β is at most δ. If there is
a trace σα ∈ τ(α) of α for which there is no trace σβ ∈ τ(β) of β such that
σα ε←−−oo δ−−→σβ then Falsifier can take the actions to produce this trace and
Verifier will have no way of ensuring that the variables of β will stay within
limits and thus lose the play. Therefore, if there is a winning strategy for
Verifier then there is no such trace of α and α is an ε-δ-refinement of β.

Again, like in the previous section, we add a speedup factor s that is
controlled by Verifier to model the retiming and measure the temporal
distance by a variable r. Verifier is responsible of ensuring that |r| never
exceeds ε.

5.2.1 Trace Equivalence

To relate traces of hybrid programs as well as plays of hybrid games, we
define an equivalence relation with respect to their common variables.

Let V ar(σ) denote all variables occurring in the hybrid trace σ. Fur-
thermore, let πX(σ) be the projection of a trace σ to the variables in the
set X.

As the semantics keeps track of every discrete action, even if it has
no effect on the variable valuations we define a compression function that
enables us to consider traces as equivalent even though they perform actions
that do not change the variable valuations in between.

Definition 53 (Trace Compression). For a trace σ = (σ0, σ1, σ2, . . .), we
denote by compress(σ) the exhaustive application of the following opera-
tion: If there is an i such that σi(max(dom σi)) = σi+1(0) then replace
σi, σi+1 by

σ′(t) =

{
σi(t) if t < max(dom σi)

σi+1(t−max(dom σi)) otherwise
.

Using this function we can now define when we consider traces equivalent.
That is if they are identical after first projecting them to the common
variables and then applying the compression function.

Jan-David Quesel 133 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

Definition 54 (Trace Equivalence). We say that two traces σ1 and σ2 are
equivalent with respect to their common variables, denoted by σ1 ≡ σ2 iff

compress(πV ar(σ1)∩V ar(σ2)(σ1)) = compress(πV ar(σ1)∩V ar(σ2)(σ2)) .

Let us illustrate this equivalence relation.

Example 20. Consider the following traces for a system with a single
variable v that are all equivalent under compression:

• σ1 = ({(t, {v 7→ x}) | x = 2t ∧ 0 ≤ t ≤ 10})

• σ2 = (σ2,1, σ2,2) where σ2,1 = {(t, {v 7→ x}) | x = 2t∧ 0 ≤ t ≤ 4} and
σ2,2 = {(t, {v 7→ x}) | x = 2t+ 4 ∧ 0 ≤ t ≤ 6})

• σ3 = (σ3,1, σ3,2, σ3,3) where

σ3,1 = {(t, {v 7→ x}) | x = 2t ∧ 0 ≤ t ≤ 4},
σ3,2 = {(0, {v 7→ 8})}, and

σ3,3 = {(t, {v 7→ x}) | x = 2t+ 4 ∧ 0 ≤ t ≤ 6}) .

All these traces look the same as illustrated in Figure 5.3. Here, the time
axis reflects the axis after composition. Otherwise, the dashed line would
mark the begin of a new axis labeling. The first two traces could for example
be produced by the following simple system

(v̇ = 2)∗ .

A system that can only produce the first trace is v̇ = 2. The third system
could also be produced by a system that features an additional discrete action
that does not change the variable valuations, for instance a test. Thus, the
system

(v̇ = 2; ?true)∗

is able to produce the third, but not the first two traces. Observe that, under
compression all these traces collapse to the first one and are thus considered
equivalent.

Jan-David Quesel 134 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

t

v

1

1

σ1

(a) Sketch of σ1

t

v

1

1

σ2,1 σ2,2

(b) Sketch of σ2

t

v

1

1 σ3,2

σ3,1 σ3,3

(c) Sketch of σ3

Figure 5.3: Equivalent traces over a unified time axis t

5.2.2 Standard Form

In order to get a good handle on hybrid programs for this constructions we
define a standard form.

Definition 55 (Standard Form). A hybrid program α is in standard form
if it has the following structure:

α =̂

(
vα := ∗; ?init;

(⋃
i∈I

(Di; (Ci ∧Hi))

)∗)

where I ⊂ N is finite, Di are discrete hybrid programs, Ci are continuous
evolutions, Hi is the evolution domain constraint, and init describes the
initial region. The variables occurring in α are denoted by vα and vα := ∗
assigns values to all of these. In the following we will write Di(α) to denote
Di for a program α that is in standard form. Likewise, we will use Ci(α),
Hi(α), and init(α).

Observe that the Di are regular programs over real valued variables.
They might contain loops, however they must not contain any continuous

Jan-David Quesel 135 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

evolutions. Contrary to that the Ci are continuous evolutions that must
not contain any discrete assignments.

Not every hybrid program can be transformed into this standard form
and still produce the same traces. One such example is the following:

y := 0; ẏ = 1; ?y > 5

However, this program mixes system properties and system behavior. The
traces produced by this system have a minimum length of 5. However,
for every system in the physical world we can continuously observe its
behavior. Therefore, arbitrary short runs should exist. Of course, there
are cases where the property we want to investigate only makes sense for
runs that have a certain minimum length. In those cases the property
descriptions should be adapted accordingly instead of altering the system
description. Therefore, we restrict ourselves to those programs that can be
formulated as hybrid automata. In order to show that our standard form
is not too restrictive, we show that it covers all hybrid automata.

Theorem 8. Every hybrid automaton can be transformed into a hybrid
program in standard form such that their finite traces are equivalent w.r.t.
to the variables occurring in the original automaton.

We can prove this similarly to the relation of hybrid automata and hybrid
programs proven in [Pla10b] w.r.t. the reachable states.

Proof of Theorem 8. For a hybrid automatonA = (U,X,L,E, F, Inv, Init)
we construct a hybrid program the following way. First, we fix a distinct
variable ` to keep track of the location. Assume w.l.o.g. that the same
variable was used in the automaton semantics to store the location. Now
we build a program p(A) as sketched in Figure 5.4 where we use vecto-
rial assignments for x = (x1, . . . , xn) the variables in X and existential
quantification over all variables in U expressed by the quantifier ∃u. The
x′ = (x′1, . . . , x

′
n) is used to denote the post values while taking a discrete

transition, like in the semantics of the hybrid automaton.
It is easy to see that the constructed program is in standard form. We

now show that the traces produced by this program coincide w.r.t. to the
variables in X with the finite ones of the original automaton.

We start with the direction that all traces of the hybrid automaton can
be simulated by the hybrid program. We do this by induction over the
number n of transitions (discrete or continuous) taken.

Jan-David Quesel 136 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

x := ∗; ` := ∗;

?

(∧
`i∈L

(` = `i → Init(`))

)
;(

?` = `i;∃u F (`i) ∧ Inv(`i)

∪
⋃

(`i,g,`j)∈E

(?` = `i;x
′ := ∗; ?g;x := x′; ` := `j ;∃u F (`j) ∧ Inv(`j))

∪ . . .)∗

Figure 5.4: Program p(A) encoding some hybrid automaton A

IA If n = 0 then the trace produced by the hybrid automaton is just
σ0. The program started in first(σ0) produces the trace σ0, σ1, σ2 using
zero iterations of the loop. However, the compression reduces this to σ0
as no state changes happen.

IH Assume that for all 0 ≤ i ≤ n for all traces of length i of A there is
a trace of p(A) that is equivalent.

IS We consider the trace σ0, . . . , σn+1. By induction hypothesis, we have
that for the prefix σ0, . . . , σn there already is an equivalent trace of the
hybrid program p(A).

• Consider the case where the last step of the automaton was a dis-
crete transition e. We then choose the branch created from e during
an additional execution of the loop. Then we choose an evolution
time of 0 for the continuous evolution. Thus, under compression we
get a trace that is equivalent to σ0, . . . , σn+1.

• In case the last step was a continuous evolution, then we choose
to stay in the same location, therefore choosing the branch with
the correct location that was not created by some edge. Using the
same evolution time, we can create a run that under compression
is equivalent to the original one.

Jan-David Quesel 137 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

Now we turn our focus to the opposite direction. That is, we prove
that every run of the hybrid program is equivalent to one of the original
automaton. We do so by induction over the number of loop iterations n.

IA For n = 0 the produced run is of the form σ0, σ1, σ2. However under
compression it becomes just σ0 and is thus equivalent to the run taking
no transition of the automaton.

IH For all 0 ≤ i ≤ n for the traces produced within i loop iterations,
there is a trace produced by the automaton that is equivalent.

IS Consider a run of length n+ 1. In case the branch taken during the
n+ 1-st execution of the loop was constructed from an edge, then this
edge is enabled after matching the trace up until that point. Thus by
taking this edge during the execution of the automaton and then letting
time pass for the same amount of time as in the execution of the program
it produces a run that is equivalent to that of the program. In case the
branch taken was not constructed from an edge then the automaton just
needs to let the same amount of time pass in the current location.

5.2.3 Encoding Similarity in dDGL
We have provided a suitable standard form and proved that it is not too
restrictive. Given two hybrid programs in standard form, we now construct
a game (see Figure 5.5) such that if Verifier has a winning strategy then
one system is a ε-δ-refinement of the other. First, we add some auxiliary
variables s, r for controlling and measuring the retiming, t, tβ as clocks for
measuring cycle and minimal dwell times, and pα, pβ as program counters.
Furthermore, we add cβ to denote the minimal dwell time of β, and ts to
denote the sampling time of the retiming function. This sampling time
is also used to ensure that Verifier is able to execute discrete actions and
change modes at least every ts time units.

To ensure that the distance between the valuations of the system vari-
ables stays small enough, we run the systems in parallel. Using the standard
form, we can construct the Cartesian product easily, by first evaluating the
mode choice of α (lines 5 and 6) and subsequently of β (lines 7 and 8).
As we have to make sure that Verifier chooses branches that allow actual
progress in the system evolution, we test that time can pass in the current
mode (line 11). Then, we run the continuous evolutions of the two sys-
tems concurrently (lines 12-14). Like in the previous section, to allow for

Jan-David Quesel 138 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

retiming, the dynamics of α are multiplied by s and those of β by 2 − s.
For s ∈ [0, 2] this allows for arbitrary evolution speed differences. Here,
s can be updated at least every ts time units. We use r to measure the
retiming. Its derivative is 2s−2 which is exactly the rate with which clocks
of the two systems diverge/converge. The notion of ε-δ-refinement forces
an upper bound on this retiming. This is ensured by running the two sys-
tems at the original speed, once the distance, i.e., |r| becomes too large
(line 13). After every continuous evolution Verifier has to show that the
spatial distance between the variable values of the two systems is within
the specified bounds (line 15).

To ensure that a strategy exists to mirror the original behavior of the
system α, it is necessary to allow “no operation” actions at two points.
First, the continuous evolution might be stopped due to hitting an evolution
domain constraint of β or because the sampling time is elapsed. It might
be the case that at these time points no discrete action of the original
system α was performed. To simulate this behavior, no discrete action is
necessary, if no mode change is done and the continuous evolution can still
continue for some positive amount of time without being restricted by the
evolution domain constraint (line 5). The same holds for the discrete part
of β (line 7). In addition Falsifier might choose to not take any action at all
during the loop execution (line 18). This might become necessary, as we
construct overapproximations of the necessary loop iterations. However,
this number has to be provided to Verifier in advance and, thus, he might
force faster progress in terms of the number of loop iterations than what
is necessary if he does not cooperate. To avoid issues here, we allow for
stuttering off these additional loop iterations using the [?true] choice.

Definition 56 (Robust Refinement Game). For two hybrid programs α,
β in standard form with disjoint variable sets, i.e., V (α) ∩ V (β) = ∅, and
index sets such that 0 6∈ (Iα ∪ Iβ), and

{r, s, t, tβ , pα, pβ , cβ , ts} ∩ (V (α) ∪ V (β)) = ∅ ,

we define a game Gε,δ(α, β) as shown in Figure 5.5 where

Ψ(s, r) =̂(r = −ε ∧ s > 1) ∨ (r = ε ∧ s < 1) ,

and a× C is defined like in Definition 50 (see page 129).

The branch variables pα and pβ are necessary in order to avoid chang-
ing the mode without executing the discrete controller part for this mode.

Jan-David Quesel 139 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

1 [s := 1; r := 0; t := 0; tβ := 0; pα := 0; pβ := 0]

2 [vα := ∗; ?init(α)]

3 〈cβ := ∗; ?cβ > 0; ts := ∗; ?ts > 0〉

4 〈vβ := ∗; ?init(β)〉

5

((⋂
i∈Iα

(([
?|pα| = j ∧ 〈t := 0; (Ci(α) ∧Hi(α), ṫ = 1)〉t > 0; pα := −i

]
6 ∩ [pα := i;Di(α)]

)
7

⋃
j∈Iβ

((〈
?|pβ | = j ∧ 〈t := 0; (Cj(β) ∧Hj(β), ṫ = 1)〉t > 0; pβ := −j

〉
8 ∪ 〈pβ := j;Dj(β); tβ := 0〉

)
9 〈s := ∗; ?0 ≤ s ≤ 2〉

10 〈?t < ts ∪ t := 0〉

11 〈?tβ < cβ → 〈Cj(β) ∧Hj(β), ṫβ = 1〉tβ ≥ cβ〉

12 [
(

(¬Ψ(s, r) ∧ s× Ci(α) ∧ (2− s)× Cj(β) ∧ ṙ = 2s− 2)

13 ∨(Ψ(s, r) ∧ Ci(α) ∧ Cj(β))

14

)
, ṫβ = 1, ṫ = 1, Hi(α) ∧Hj(β) ∧ t ≤ ts

]
15 〈?||vα − vβ || ≤ δ ∧ |r| ≤ ε〉

16

)
17

))
18 ∩[?true]

19

)[∗]

Figure 5.5: Construction of Gε,δ(α, β)

Jan-David Quesel 140 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

Note that it is initially 0. As 0 6∈ (Iα ∪ Iβ) we are sure that during the
first execution of the loop, a discrete action is executed. Observe that,
the continuous evolution in lines 12-14 is not in the strict sense part of
our syntax. However it can be interpreted as a differential algebraic con-
straint [Pla10b] and dealt with accordingly. That is, we need to create a
disjunction normal form and split along the disjunctions. We then replace
the differential equation system by a loop with a nondeterministic choice
over the resulting alternatives.

Furthermore, this encoding includes programs in which tests occur that
feature dL formulas instead of first-order formulas over the reals. This is a
straight forward extension to the syntax and semantics of hybrid programs
called rich tests [Pla10b]. We keep the semantics of instantaneous tests and
use the semantics of dL formulas to test whether the formula is satisfied
in the current state instead of that of first-order logic over the reals. This
gives a well-defined semantics for dDGL formulas. Note that the test still
does not change the state. For example the following formula:

t = 0→
[
?〈ṫ = 1〉t > 0

]
t = 0 (5.1)

For an initial state where t = 0 holds the program ?〈ṫ = 1〉t > 0 terminates
without changing the state. The test condition is satisfied as from this
state there is a state reachable along the differential equation ṫ = 1 such
that t > 0. However, the program does not move to this state. In case
t 6= 0, the implication is trivially satisfied. Thus, the formula (5.1) is valid
in dDGL.

As some specifications of hybrid systems lack real-world realizability and
we want to bridge the gap between specifications and implementations, we
do neither consider traces of a system that are Zeno, i.e., an infinite number
of transitions is taken within a finite amount of time, nor behaviors that
are time blocking. Time-blocking means that at a certain point in time,
no future evolution of the system is possible due to an invariant preventing
any continuous evolution and no action is possible to change this situation.
For the system β we exclude these traces by adding the minimum dwell
time requirement in line 11. Zeno runs of system α do not pose any issue
for the approach presented here as they are not useful choices for Falsifier
anyway.

Example 21. The following example illustrates why we need the no-op
choice in line 18. If β would have the following structure

e := 0; ((?e = 0; e := 1; f := 1) ∪ f := 0); t := 0; ṫ = 1 ∧ t · f ≤ 0)∗

Jan-David Quesel 141 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

it could stop the time exactly once. This is, if the program chooses the path
where f := 1 is executed then the evolution domain constraint restricts the
evolution to 0 time units. However, it is not forced to do so. Alternatively,
it can always choose to execute the branch where f := 0 and, thus, the
evolution domain constraint is a tautology, i.e. t · f = t · 0 ≤ 0. Whenever,
such effects are possible but not necessary, Falsifier cannot a priori exactly
determine how many iterations it will take to simulate a given run of sys-
tem α. In order to allow for overapproximation of this number, we have
to allow for no-op executions of the loop. This way, in case Verifier does
decide not to take such a blocking run, Falsifier can just stutter off the rest
of the loop iterations.

We add the winning condition

||vα − vβ || ≤ δ ∧ |r| ≤ ε

for Verifier in order to ensure that in every winning state our ε-δ-refinement
relation between α and β holds. Further, we now show that if there is a
winning strategy for Verifier, i.e., Gε,δ(α, β)(δ∧ |r| ≤ ε) is valid, the hybrid
system α ε-δ-refines the hybrid system β, i.e., α o ε,δ−−−→β holds.

We now have to show that Gε,δ(α, β) indeed witnesses that α o ε,δ−−−→β
holds. For this, we proceed along the following path. We first show that
for every trace σα of α there is a strategy for Falsifier that no matter what
Verifier does the trace σp produced by Gε,δ(α, β) is equivalent to that σα,
i.e., σα ≡ σp. Then we show that for all strategies of Falsifier and Verifier
the trace σp produced by Gε,δ(α, β) is equivalent to some trace σβ of β,
i.e. σp ≡ σβ . Together with the fact that there can only be a winning
strategy for Verifier if the spatial and temporal bounds are respected we
can conclude that α o ε,δ−−−→β holds. This agenda is sketched in Figure 5.6.

α Gε,δ(α, β) β
σα ≡ σp

Lemma 13
σp ≡ σβ

Lemma 14

α o ε,δ−−−→β

Theorem 9

Figure 5.6: Sketch of the proof of Theorem 9

To relate traces of the original systems α, β, and the constructed game
Gε,δ(α, β) we have to account for the effect of the retiming to the underlying

Jan-David Quesel 142 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

semantics. Observe that, therefore the illustration in Figure 5.6 was over-
simplifying the process as the traces are not equivalent but only equivalent
after reverting the effect of the retiming. Therefore, we define a relation
that reverts its effect. The idea behind the reverse retiming is as follows:
The variable s was used in our game construction to speed up or slow down
the evolution of a specific system part. As it was changed in a discrete way,
we get separate trace parts for each of those. In each of these parts, we can
reconstruct the original speed by multiplying the time axis by the multi-
plicative inverse of what it was stretched with. In case the evolution was
stopped completely, no change to the variables happened. We can thus
compress this to a point trace. However, once the distance between the
two system grew too large they run with the original speed. Therefore, no
transformation with respect to s is necessary then. Still, we have to shift
the time points in order to reconstruct the original time axis labels.

Definition 57 (Reverse Retiming). For a trace σ = (σ0, σ1, σ2, . . .), a
term θ, and a formula φ, we define the reverse retiming ret−1(σ, V, θ, φ) as
the sequence of relations

(ret−1(σ0, V, θ, φ), ret−1(σ1, V, θ, φ), ret−1(σ2, V, θ, φ), . . .)

where

ret−1(σi, V, θ, φ) =
({(t

ν(θ)
, πV (ν)

)
| (t, ν) ∈ σi ∧ ν(θ) 6= 0 ∧ ν 6|= φ

}
∪ {(0, πV (ν)) | (t, ν) ∈ σi ∧ ν(θ) = 0 ∧ ν 6|= φ}

)
◦ {(t−min(dom ςi), πV (ν)) | (t, ν) ∈ ςi}

where
ςi = {(t, ν) ∈ σi | ν |= φ}

and V is a set of variables such that the trace composition is defined.

Note that the reverse retiming yields a function if for all states ν it holds
that ν(θ) 6= 0. Further note that for the traces generated by Gε,δ(·, ·) the
value of s is constant for each σi as it is only updated discretely. Therefore,
if we choose θ only dependent on s, its value is also constant for each σi.
This means that either [0, 0] maps to all values or the domain is transformed
in an order-preserving way. The formula φ, provided as a parameter to the
reverse retiming, is used to determine whether the control choice for the

Jan-David Quesel 143 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

θ had an effect or not. In our construction of Gε,δ(α, β) the continuous
evolutions evolve with normal speed implying the ignorance of the choice
of s in case the maximal value of r is reached and the system is about to
violate its temporal bounds.

Now we come to the first important step in order to prove a refinement
relation between α and β. The following lemma links the traces of α to
those of our robust refinement game Gε,δ(α, β). We choose an arbitrary
trace σα of system α and show that if there is winning strategy for Verifier
then there is a strategy for Falsifier such that, whatever Verifier does that
is allowing him to win, the variables of system α follow a trace σp in the
execution of the game that is equivalent up to retiming to σα.

Lemma 13. If there is a winning strategy for Verifier in Gε,δ(α, β), then
for every trace σα ∈ τ(α) with last(σ) 6= Λ there is a Falsifier strategy f
such that for every Verifier strategy v that is winning from first(σα) in
the game Gε,δ(α, β) the resulting trace σp where

(
√
, σp) = pf,v(Gε,δ(α, β)@first(σα))

is equivalent with respect to the common variables up to retiming, i.e.,

σα ≡ ret−1(σp, V (α), s, s < 1 ∧ r = ε)

where s arises in the construction of Gε,δ(α, β) as given in Definition 56.

To make the proof easier, we add the program counters pα and pβ to the
programs to keep track of the decisions made by the players in the discrete
part of the programs.

Definition 58 (Annotated Standard Form). We amend the definition of
our standard form with branch labels. This gives the following modified
standard form:

A(α) =̂

(
vα := ∗; ?init;

(⋃
i∈I

(pα := i;Di; (Ci ∧Hi))

)∗)
where I ⊂ N is finite, Di are discrete hybrid programs, Ci are continuous
evolutions, Hi is the evolution domain constraint, and init describes the
initial region. The variables occurring in α are denoted by vα and vα := ∗
assigns values to all of these. In the following we will write Di(α) to denote
Di for a program α that is in annotated standard form. Likewise, we will
use Ci(α), Hi(α), and init(α).

Jan-David Quesel 144 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

In the proof of Lemma 13 we need to first show that for a given trace σα
of α we can find a number of loop iterations for our game such that the
resulting trace will mimic σα. In order to do so, we can use that whenever
a mode is entered by β it can stay in that mode for at least some time.
Should we guess a number of loop iterations that is too high, it can be
stuttered off using the [?true] choice. Furthermore, the variables of α are
never altered directly by actions controlled by Verifier. In addition, we
can use that the program is in annotated standard form. Hence the trace
explicitly documents all discrete choices.

Proof of Lemma 13. Let σ ∈ τ(A(α)) be arbitrary. The trace σ has the
form

σ0, · · · , σi, σi+1, σk,l, · · · , σm,l, σm+1,lσk,l+1, · · · , σm,l+1, σm+1,l+1, · · · .

Here, 0 to i correspond to the initialization and i+1 is the test for the initial
condition. The index l counts the loop iterations, where in each iteration
indexes k to m give the discrete computations and m + 1 the continuous
evolution.

We now construct a strategy f for Falsifier in the game Gε,δ(α, β) such
that, for every strategy v with which Verifier wins the game, the equivalence

πVα(σ) ≡ ret−1(σp, V (α), s, r = ε ∧ s < 1)

holds where (
√
, σp) = pf,v(Gε,δ(α, β)@first(σ),

√
).

This strategy has to resolve the nondeterminism of Gε,δ(α, β) for Falsifier.
That means:

• In line 2, it has to choose initial valuations for the variables of α.

• In line 5 (to 19), it has to choose a number of loop iterations in the
game.

• During every loop iteration, in line 5 and 6, it has to choose which
branch of α to take and how to resolve the nondeterminism within
the discrete part of this branch. Alternatively, it is allowed to choose
to take no action ([?true]) at all (line 18).

• If a branch was chosen, it has to choose the evolution times for the
continuous evolutions (in lines 12-14).

Jan-David Quesel 145 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

Note that line 1 also contains an action controlled by Falsifier. However,
all the assignments are deterministic and, thus, there is only one choice for
a compatible strategy.

Strategies of Verifier that are winning cannot delay the evolution in time
arbitrarily long and can only produce a bounded number of interrupts
during the continuous evolutions of α. This follows from the fact that β
has to be able to stay in a mode for at least some time which is guaranteed
by the test (in line 11)

?(tβ < cβ → 〈Cj(β) ∧Hj(β), ṫβ = 1〉tβ ≥ cβ) .

The clock tβ is reset every time Verifier performs a discrete action from
the original program β in line 8. That way, it is ensured that he does not
take any actions that would lead to convergence of the evolution times (i.e.,
a Zeno run). Therefore, there is a strategy of Falsifier s.t. the resulting
trace matches. Using the auxiliary variables to determine which branch
was chosen to generate σ, we construct this strategy as follows:

To match σ0, · · · , σi, σi+1 we choose the same initial valuations. The
action controlled by Verifier in this initialization phase will later be removed
by the projection to the variables of α anyway and, thus, disregarded by
our notion of trace equivalence. The same holds for the variables that are
used to control the retiming, and measure sampling as well as minimal
dwell times.

The next important decision for Falsifier is the choice of the number
of loop iterations. Therefore, we compute the number of loop iterations
necessary in order to match σ for all possible initial values of the variables
of β as well as the variables cβ and ts:

1. Calculate the total number of loop iterations used to construct σ
and compute the overall time the trace took. This gives the minimal
number of iterations needed to match the trace.

2. Calculate the maximum number of interrupts caused by β based on
the value of cβ and the length of the current trace. Here, we can use
that the maximal trace in terms of variables in β is at most ε time
units longer than the trace σ.

3. Calculate the maximum number of interrupts caused by the sampling
of the retiming function.

4. Add these numbers to receive a sufficient amount of loop iterations n.

Jan-David Quesel 146 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

We choose n as the number of loop iterations and, subsequently, choose
for first execution of the loop the same discrete branch as was taken in the
construction of σ. For Di(α), we then choose exactly the same trace as in
σ which is possible as we are in the same state and Di(α) is syntactically
taken from α, and was used to produce this trace already during the run
that produced σ. Finally, we let the continuous evolution go on until we
either hit an evolution domain bound (by β or sampling) or we happen to
have evolved for the same amount of time as in σ modulo retiming. This
length modulo retiming can be computed as the strategy can already see
the choice for s (which is made by Verifier in line 9), the current value of
r, and thus knows about the retiming effect. If we are interrupted during
a continuous evolution and no discrete action is taken at that time in σ
we continue by choosing the “no operation case” in line 5 instead of really
performing an action of the program α in line 6, that is

?|pα| = i ∧ 〈t := 0;Ci(α) ∧Hi(α), ṫ = 1〉t > 0; pα := −i

which is possible as we know from σ that the loop invariant is not yet
violated. We repeat this step multiple times, that is, for each execution of
the original loop. Once we reach the end of σ we execute the no-op part of
the loop for the remainder of the iterations. This is, the strategy chooses
the branch [?true] (line 18).

Using this strategy we get a trace where the sequence of variable valu-
ations of the variables of α is the same as in σ. However, there might be
interruptions by β and the retiming control part, and the time axis during
continuous evolutions might be stretched or compressed. However, this
effect can be reverted using the notion of reverse retiming (Definition 57).
Observe that, as the reverse retiming projects the variables of α, in the
case where s = 0 holds no changes to these variables occur. Thus, the
resulting relation only contains a single point up until r = ε holds. Once,
r = ε is reached the variables evolve with the original speed anyway. The
interruptions are not visible under compression either (Definition 54) as no
changes to the variables of α occur and the compression function therefore
merges these trace elements with their neighbors.

Note that as the strategy v is winning for Verifier the game cannot have
ended in a position (⊥, ς). Further, as we have only chosen actions in f
that where also taken in σ, we are sure that we also will not end in a
position (>, ς) as last(σ) 6= Λ. Therefore, the play will end in a position

Jan-David Quesel 147 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

(
√
, σp). This trace σp is by construction a trace equivalent to σ modulo

compression and retiming.
Furthermore, the construction of this strategy relied on the auxiliary

variables. However, the existence of this strategy does not. Therefore, the
results carry over to the original traces and the version of the game that
was not annotated.

Having established a connection between the traces of α and those of
Gε,δ(α, β) we now have to create a link to those of β. Therefore, we show
that if Verifier follows its winning strategy then whatever strategy Falsifier
applies the resulting trace σp of Gε,δ(α, β) is equivalent up to retiming to
some trace σβ of β.

Lemma 14. If there is a winning strategy for Verifier in the game Gε,δ(α, β),
then there is a Verifier strategy v such that for all Falsifier strategies f holds
the trace produced by pf,v(Gε,δ(α, β)) corresponds to a trace of τ(β) with
respect to the common variables up to retiming, i.e., for all

(
√
, σ) ∈

⋃
ν∈Sta(V)

pf,v(Gε,δ(α, β)@ν)

there is σβ ∈ τ(β) such that ret−1(σ, V (β), 2 − s, r = −ε ∧ s > 1) ≡ σβ
where s arises in the construction of Gε,δ(α, β) as given in Definition 56.

Proof. We prove the lemma by contradiction. Assume that σ is a trace
that was produced by Gε,δ(α, β) for some strategies f and v, and that no
trace σβ ∈ τ(A(β)) exists that matches this trace. This means that at
some point there is a change to the variables of β that is not possible at
that point for any trace of β. The trace σ has the form:

σ0, · · · , σi, σi+1, · · · , σj ,
σk,l, · · · , σm,l, σm+1,l, · · · , σn,l, σn+1,l, σn+2,l, σn+3,l,

σk,l+1, · · · , σm,l+1, σm+1,l+1, · · · , σn,l+1, σn+1,l+1, σn+2,l+1, σn+3,l+1, · · ·

Here, indexes 0 to i correspond to the initialization of α, i+ 1 to j to that
of β. The indexes (k, l) to (m, l) to the discrete actions of α, the indexes
(m + 1, l) to (n, l) to the discrete actions of β. However, changes to the
variables of β occur using the same syntax as in β itself. Therefore, we
can just use the same elements to construct a trace of β that matches σ.
During the first execution of the loop we choose the path with matching

Jan-David Quesel 148 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

values of pβ . When the continuous evolution in the play stops, we analyze
the valuations of the variable pβ again. If this variable is negative we
continue the current continuous evolution until we match the next end of a
continuous evolution in the game. Otherwise, we execute the branch which
sets pβ to its current value. This gives us a trace that agrees with σ in the
valuations of the variables vβ and thus contradicts our assumptions.

Using the previous two lemmas we are now able to build a connection
between our notion of ε-δ-refinement and our encoding in dDGL. This gives
the main theorem for this chapter.

Theorem 9. If the formula Gε,δ(α, β)(||vα− vβ || ≤ δ∧ |r| ≤ ε) is valid for
two hybrid programs α and β then α ε-δ-refines β, i.e., α o ε,δ−−−→β.

Proof. Assume that φ =̂Gε,δ(α, β)(||vα− vβ || ≤ δ∧ |r| ≤ ε) hold and let σα
be an arbitrary trace of α.

From Lemma 13 we know that this trace can be performed by Gε,δ(α, β)
up to retiming and compression. Furthermore, we know that φ holds and,
therefore, the distance between the variables of α and those of β never
exceeds δ. Further, the temporal deviation is bounded by ε as |r| ≤ ε.
Now, using Lemma 14 we know that the trace of Gε,δ(α, β) matching σα is
also matched by a trace of β. As σα was arbitrary this holds for all traces
of α. Therefore, we can conclude that α o ε,δ−−−→β holds.

5.2.4 Example

Let j be a constant greater than 5. Consider the following simple example of
two hybrid programs α and β also depicted as hybrid automata in Figure 5.8
and Figure 5.10. For system α the value of x is heading towards 5 with a
velocity of 2, jumps to j and increases with rate 1 afterwards. The resulting
trajectory for initial value x = 0 and j = 8 is shown in Figure 5.11a. In
system β the value of y evolves with speed 1 the whole time and has a
single jump from 3 to j. The resulting trajectory for initial value y = 0
and j = 8 is shown in Figure 5.11b.

We consider the variables x and y to be the same entity and just give
them different names for easier reference. Although these two systems differ
in their absolute values, when comparing the variables x and y starting in
the initial region x ≥ 0 and y ≥ 0 they are 0.5-2-similar, i.e., α o 0.5,2−−−−→β

Jan-David Quesel 149 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

α =̂

(
x := ∗; ?x ≥ 0;((
(?x < 5; v := 2)

∪ (?x = 5;x := j; v := 1)

∪ (?x > 5; v := 1)
)
;

x0 := x;

ẋ = v& (x0 < 5→ x ≤ 5)
)∗)

(a) Hybrid program α

ẋ = 2
x ≤ 5

x ≥ 0

ẋ = 1
x > 5

x ≥ 5, x := j

(b) Hybrid automaton α

Figure 5.8: Hybrid system α

β =̂

(
y := ∗; ?y ≥ 0;((
(?y < 3)

∪ (?y = 3; y := j)

∪ (?y > 3)
)
;

y0 := y;

ẏ = 1 & (y0 < 3→ x ≤ 3)
)∗)

(a) Hybrid program β

ẏ = 1
y ≤ 3

y ≥ 0

ẏ = 1y > 3

y ≥ 3, y := j

(b) Hybrid automaton β

Figure 5.10: Hybrid system β

Jan-David Quesel 150 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

0 2 4
0

2

4

6

8

10

x

t

(a) Trajectory of α with x(0) = 0

0 2 4
0

2

4

6

8

10

y

t

(b) Trajectory of β with y(0) = 0

Figure 5.11: Example trajectories with j = 8

and β o 0.5,2−−−−→α both hold. This can be shown by proving that the following
invariant holds for the loop occurring in G0.5,2(α, β):

x ≥ 0 ∧ y ≥ 0 ∧
(

(x ≤ 5 ∨ y ≤ 3)→
(

3x = 5y ∧ r ≤ 1

6
y

))
∧ ((y > 3 ∨ x > 5)→ x = y) ∧ 0 ≤ r ∧ r ≤ 0.5 (5.2)

The winning strategy for the Verifier in this game is based on unifying the
switching time, i.e., the time where x reaches 5 and y reaches 3. This can
be done by using the retiming to ensure that the clock drift ratio of x to
y is 5

3 . The retiming that ensures this is constructed by choosing s = 10
11 ,

which by coordinate transformation gives that r = 1
6y before the jump of

y. After the jumps, x = y holds and r remains constant and thus in its
range of [0, 0.5].

Using the proof rules of Section 4.3 that we implemented in our theorem
prover KeYmaera [PQ08a], we can prove that the two systems are similar
even without knowing the concrete value of j. Thus, by proving that α
and β are similar we did prove this for families of systems depending on
the value of j. Our approach is able to deal with multiple parameters and
could even yield results for parametric bounds on the temporal and spatial

Jan-David Quesel 151 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

deviations. Thereby, we demonstrated a huge advantage of using dDGL
over the usual model checking tools as the dDGL-based approach permits
parametric reasoning.

5.2.5 Using Existing Properties

Let us take a step back and reconsider the results we just established. Our
goal was to transfer properties from a system β to a system α by showing
that α robustly refines β. For this, we constructed a game and showed
that whenever Verifier has a winning strategy in this game, then α indeed
robustly refines β. However, thus far we did not make use of the properties
of β that we have established earlier. Observe that, if φ is an invariant
of β, i.e., β |= �[0,∞[φ, then it is an invariant of Gε,δ(α, β) as well when
interpreted on the variables of β. This means we can add it as an evolution
domain constraint, or alternatively as an assertion of the form [φ] as last
statement in the loop.

Of course, also other properties of β can be used as assertions. For those
it might be necessary to add additional clocks in order to measure the sets
occurring in the formulas as annotations to the until operators.

5.3 Related Work

Even though the games presented in this section are specific to showing
ε-δ refinement relations, the idea of using simulation or simulation-like
notions in order to show refinement was inspired by Ehrenfreucht-Fräıssé
games [Ehr61]. These games are played by two players, usually called
Spoiler and Duplicator, on two structures. The goal of Duplicator is to
show that these two structures are equivalent while Spoiler tries to disprove
this assumption. Examples for these structures are labeled transition sys-
tems or first-order structures. On a smaller scale, the goal of Duplicator is
to match every action of Spoiler, whereas the goal of Spoiler is to produce
a run such that there is an action that cannot be matched by Duplica-
tor. The game is played as follows. In every iteration Spoiler first picks
one of the structures and some element in that structure (action for tran-
sition systems). Then Duplicator has to match this element (action) on
the other structure. If Duplicator cannot match this element then Spoiler
wins. Otherwise it is Spoiler’s turn again. If Spoiler does not eventually
win the game, then we say that Duplicator wins. A strategy for Duplicator

Jan-David Quesel 152 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

is a list of reactions to every possible move of Spoiler. In case there is
a winning strategy for Duplicator then the two structures are equivalent.
In the setting of labeled transition system we would have established a
bisimulation relation between the two systems. If we fix the structure from
which Spoiler chooses his moves it will witness the existence of a simulation
instead of bisimulation.

For instance, Tabuada [Tab09] applied this method for hybrid systems.
In order to show exact refinement relations and equivalences of systems he
defines simulation games. In these games Duplicator controls the imple-
mentation and Spoiler controls the specification. This idea strongly relates
to the robust refinement games defined in this section. Like in Tabuada’s
work the games presented in this chapter show stronger properties than
what is demanded by refinement. This is necessary as one cannot repre-
sent complete hybrid traces in order to pick a matching one from the trace
sets of the specification. Instead a matching trace is constructed stepwise.
Of course this stepwise construction might miss matching traces as some
decisions might be made too early in the construction. Still, when we can
show that the stepwise construction succeeds then the two systems are in
(robust) refinement relation.

5.4 Conclusion

In this chapter, we have presented two different approaches how to show
that a system α is an ε-δ refinement of another system β. The first approach
is based on an automaton representation of the systems. It is restricted
to the case where the system β is deterministic and we need to explicitly
encode the retiming strategy into the automaton. The main advantage
of this approach is that once the encoding has been done, the refinement
relation can be verified by a model checker automatically.

The second approach is based on our new logic for hybrid games dDGL.
We encode the question whether the systems are in refinement relation in
a similar game as we did using automata. In contrast to the automata-
based approach, we are not restricted to the class of deterministic systems
w.r.t. the choice of system β. In addition, we do not need to explicitly
encode the strategy for our retiming. This is an advantage as overall we
are only interested in the existence of this strategy in order to be sure that
the systems are similar but not in its concrete manifestation.

Jan-David Quesel 153 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 5. Similarity and Games

In addition, we profit from the special design of our logic. That is, we
can use the fact that we can encode sequential actions of different players
in dDGL easily and do not have to add artificial committed locations for
that. In addition the advance notice semantics of dDGL, i.e., the fact that
the number of loop iterations is revealed to the other player in advance,
favors this approach. The notion of ε-δ-refinement is defined similar to
trace inclusion. Thus, if for each trace σα of α the system β can produce
a similar one σβ , then α is considered a robust refinement of β. Here, the
choice of the trace σβ of system β is made based on the whole trace σα
of system α. However, as already mentioned, we cannot represent the
whole trace σα. Therefore, the games defined in this chapter are closer to
a notion of simulation in the sense that they construct a matching trace
of β step by step. This, obviously, is stronger than originally intended.
By design, however, dDGL allows us to reveal additional information about
the trace of α. As already mentioned, we use the interleaving semantics on
discrete actions to allow choice of discrete transitions of β to be dependent
on those just made by α. In addition the advance notice semantics allows
us to communicate information about the maximum number of discrete
actions early during the game.

Note, that this is one of the main reasons why we decided to use this
loop semantics for dDGL instead of going with a semantics where after each
loop iteration the player responsible for controlling the loop may decide to
perform the loop body once again.

In addition, dDGL allows for parametric reasoning. That is, the programs
can still contain unspecified variables. Hence the dDGL-based approach
allows us to prove robust refinements of classes of systems instead of single
systems. Furthermore, we can also use the refinement parameters ε,δ as
free variables in our robust refinement game and only specify relation with
some system parameters. That way, we could prove refinement relations
where the distances could, for instance, depend on the concrete sampling
rate of an implementation which occurs freely in its description. Thus,
this approach permits to choose the sampling rate later based on which
properties the implementation needs to preserve in which way.

Jan-David Quesel 154 Oldenburg, April 3, 2013

C H A P T E R S I X

Implementation

Fiction is obliged to stick to pos-
sibilities. Truth isn’t.

— Mark Twain

Contents

6.1 KeYmaera Verification Tool for Hybrid Systems 156
6.2 Alternative Approaches 158
6.3 Handling of Differential Equation Systems 160
6.4 Dealing with Arithmetic 160

6.4.1 Methods for Handling Real Arithmetic 162
6.4.2 Gröbner Bases for the Real Nullstellensatz (GRN)174
6.4.3 Experimental Results 180
6.4.4 Related Work 183
6.4.5 Discussion and Conclusions 184

In this chapter, we provide an overview of the implementation of the tech-
niques presented in the previous chapter in our theorem prover KeYmaera.
KeYmaera is an interactive theorem prover for differential dynamic logic
and its extensions. It is a hybrid theorem prover in a number of aspects.

155

Similarity, Logic, and Games CHAPTER 6. Implementation

First of all it is tailored to reason about hybrid systems and hybrid games.
Secondly, it uses a combination of powerful proof search strategies with
interactive guidance. Thirdly, it combines theorem proving with meth-
ods from the domain of computer algebra. Based on the KeY theorem
prover [BHS07] for JavaCard DL, a dynamic logic that talks about prop-
erties of JavaCard programs, we have implemented KeYmaera by adding
support for hybrid programs and interfacing with Mathematica [Wol03]
for handling problems of real arithmetic. For this thesis, we added differ-
ent methods for dealing with real arithmetic and perform a comparison of
these in this chapter. These results were partially published in [PQ08a]
and [PQR09a].

The proof calculus for dDGL presented in Chapter 4 has been imple-
mented in KeYmaera and results in proof obligations of the same structure
as those coming up in the process of hybrid system verification. Therefore,
the study of different methods of dealing with these proof obligations is a
worthwhile task.

Contributions. We survey different methods for handling real arithmetic
that we implemented in our theorem prover KeYmaera. We present a novel
method for dealing with real arithmetic based on semidefinite programming
for the Real Nullstellensatz and Gröbner Bases computation that provides
checkable certificates. Furthermore, we perform an experimental evaluation
of the different methods and implementations.

Structure of the Chapter. In Section 6.1 we sketch the overall approach
and the architecture of our theorem prover KeYmaera. Section 6.2 provides
a discussion of related approaches. In Section 6.3 we give a brief overview
of the techniques implemented in KeYmaera to deal with continuous evo-
lutions. Section 6.4 discusses the topic of handling the resulting first-order
formulas over the reals.

6.1 KeYmaera Verification Tool for Hybrid
Systems

KeYmaera [PQ08a] is a deductive verification tool for hybrid systems. Orig-
inally, we have implemented KeYmaera as a combination of the deductive

Jan-David Quesel 156 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

theorem prover KeY [BHS07] with the computer algebra system Mathe-
matica [Wol03]. KeY is an interactive theorem prover with a user-friendly
graphical interface for proving correctness properties of Java programs.
We generalized KeY from discrete systems to hybrid systems by adding
support for the differential dynamic logic (dL) [Pla07b, Pla08]. With this,
KeYmaera can prove correctness, safety, controllability, reactivity, and live-
ness properties of hybrid systems. Since then we have severely improved

Strategy

Rule Engine Proof

Input File

Rule
base

Quantifier
Elimination

ODE Solver

Semidefinite
Programming

KeYmaera Prover Solvers

Figure 6.1: Architecture and plug-in structure of the KeYmaera Prover

and extended KeYmaera. We have extended the rule base by implement-
ing rules for handling differential algebraic logic (DAL) [Pla10a, Pla10b],
quantified differential dynamic logic (QdL) [Pla12a], and most importantly
for this thesis, differential dynamic game logic (dDGL), our new logic pre-
sented in Chapter 4. In addition, we have studied the resulting arithmetic
problems and interfaced with a large number of different tools for handling
these.

Exploiting the compositional semantics of dL, KeYmaera verifies proper-
ties of hybrid programs by proving corresponding properties of their parts
in a sequent calculus (cf. Chapter 4 and [Pla07b,Pla08,Pla10b]). KeYmaera
uses an automatic strategy for the proof search. In addition interactive
guidance by the user is possible and sometimes necessary in order to verify
properties of complex systems.

In discrete KeY, rule applications are comparably fast, but in KeYmaera,
proof rules that use decision procedures for real arithmetic can require a
substantial amount of time to produce a result. To overcome this, we have
implemented automatic proof strategies for the hybrid case that navigate
among computationally expensive rule applications [Pla10b]. This is, once
a sequent only contains first-order formulas there might be several options

Jan-David Quesel 157 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

on how to proceed with the proof. In theory, the question whether the
sequent is valid is decidable by quantifier elimination. Hence a quantifier
elimination procedure like it is implemented in Mathematica could be used.
However, in practice we noticed that as the computational complexity of
this procedure is so high, it is hard to predict whether this will work or not.
Alternatively, rules from the propositional sequent calculus could be used to
further decompose the verification condition into multiple subtasks. This
can lead to tasks that then can be easily handled by quantifier elimination.
However, there are problems that split into many thousand equally difficult
problems (even equally difficult to the original one). In those cases it
is better to apply quantifier elimination early. The iterative background
closure procedure suggested in [Pla07a] tries to find the sweetspot of when
to apply quantifier elimination.

We have implemented a plug-in architecture for integrating multiple im-
plementations of decision procedures for the different fields of arithmetic
handling (cf. Figure 6.1). We integrate arithmetical simplification and real
quantifier elimination support by interfacing Mathematica and many other
tools. Symbolic solutions of differential equations, which can be used for
handling continuous dynamics, are obtained either from Mathematica or
Orbital, a math library for Java developed by André Platzer. Note that,
the architecture of KeYmaera is designed in such a way that other tools
for this task can be added conveniently.

6.2 Alternative Approaches

Theorem proving based approaches have been used for verifying hybrid
systems in STeP [MS98] or PVS [ÁMSH01]. However, they do not use a
genuine logic for hybrid systems but compile prespecified invariants of hy-
brid automata into an overall verification condition. Furthermore, by using
background solvers and iterative background closure strategies, we obtain
a larger degree of automation than interactive proving in STeP [MS98] or

higher-order logic [ÁMSH01]. VSE-II [NRS01] uses discrete approxima-
tions of hybrid automata for verification. In contrast, KeYmaera respects
the full continuous-time semantics of hybrid systems. HyTech [HHWT97],
PHAVer [Fre05], SpaceEx [FGD+11], and FOMC [DDD+12] are model
checkers primarily for linear hybrid automata. SpaceEx and FOMC fur-
ther feature methods to deal with linear differential equations. Check-
Mate [SRKC00] supports more complex continuous dynamics, but still re-

Jan-David Quesel 158 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

Figure 6.2: Screenshot of the KeYmaera user interface

quires initial states and switching surfaces to be linear. KeYmaera supports
nonlinear constraints on the system parameters as required for train, car, or
airplane applications or even simple examples like the parametric bouncing
ball.

Recently, Renshaw did a prototypical partial reimplementation of our
theorem prover KeYmaera, called KeYmaeraD [RLP11]. It features inter-
esting ideas w.r.t. the representation of proof search strategies and parallel
proof search. However, it does only cover the universal fragment of dif-
ferential dynamic logic (dL), differential algebraic dynamic logic (DAL),
and quantified differential dynamic logic (QdL), i.e., it does not allow for
any diamond modalities. In the settings of dDGL diamond modalities are
crucial as only these allow for specifying actions under the control of Veri-
fier. In addition, KeYmaeraD only interfaces with Mathematica and Ren-
shaw’s own implementation of Cohen-Hörmander quantifier elimination for
dealing with real arithmetic whereas KeYmaera use a variety of different
approaches (cf. Section 6.4).

Jan-David Quesel 159 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

6.3 Handling of Differential Equation Systems

For handling continuous evolutions we implement two different approaches.
The first approach is based on solutions of differential equation systems
implementing the rules presented in Chapter 4. That is, we implement
the rules D11 and D12 (see page 102). In order to generate the required
solutions to the differential equation systems, we use Mathematica and the
Orbital library.

As an alternative approach we have implemented differential induction
based on the work of Platzer on differential algebraic logic (DAL) [Pla10a,
Pla10b]. The main idea is to strengthen evolution domain constraints.
For that, we prove that in the region described by the current evolution
domain constraint the gradient of the system points inwards w.r.t. the
region described by the differential invariant candidate. This is much like
classical induction used to prove loop invariants. However, in this case
the effect of the program is not described in terms of discrete assignments,
tests, and choices but rather by derivatives of system variables. When
proving loop invariants, we show that after one execution of the loop body
the invariant is preserved. For continuous evolution there is no discrete
notion of progress. Thus, we have to show that at every point within the
evolution domain the trajectories point inwards w.r.t. to our differential
invariant candidate. We refer the reader to [Pla12c,Pla10b] for more details
on this issue.

6.4 Dealing with Arithmetic

We have implemented various ways of dealing with the arithmetic formulas
resulting from the decomposition of hybrid games and programs. The
calculus presented in Chapter 4 decomposes a given formula into a set of
verification conditions formulated in first-order logic over the reals. From
the soundness of the calculus it follows that if all these are valid, then the
original formula is valid.

The arithmetic formulas are formulas in first-order logic over the reals.
In the early 20th century, Tarski [Tar51] proved that this logic is decidable
in the sense that it is equivalent to the first-order theory of real-closed
fields, which is decidable by quantifier elimination. This is, one can replace
quantified formulas equivalently by quantifier-free formulas. Hence we ulti-
mately end up with a propositional variable-free formula containing terms

Jan-David Quesel 160 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

with only rational constants and +,−, · as function symbols connected by
the usual predicates for real arithmetic.

For quantifier elimination [CH91,Wei97] various implementations exists.
We have implemented generic interfaces within KeYmaera and refined these
tools.

In addition, we studied approaches based on Gröbner Bases [Buc65],
and semidefinite programming [Par03] for the Positivstellensatz [Ste73] for
the universal fragment of first-order logic over the reals. We interface with
modern satisfiability modulo theory (SMT) solvers, as these also implement
techniques to handle real arithmetic.

In [PQR09a], we presented a new decision procedure for the universal
fragment of real-closed fields that combines Gröbner Basis computations
with semidefinite programming for the real Nullstellensatz [Ste73] to avoid
the scalability issues with semidefinite programming for the Positivstellen-
satz.

Overall, we compare the following approaches:

1. Quantifier elimination for real-closed fields in Mathematica [Wol03],
QEPCAD B [Bro03], Redlog [DS97], HOL Light [MH05], and Ren-
shaw’s implementation of the Cohen-Hörmander procedure directly
in KeYmaera;

2. Real arithmetic handling with Gröbner Bases using external pro-
cedures in Mathematica, the Orbital library, and internally with
KeYmaera proof rules;

3. Semidefinite programming relaxations [Par03] for the Positivstellen-
satz [Ste73] using the CSDP solver [Bor99] in our own implementation
and in HOL Light [Har07];

4. Our new algorithm combining Gröbner Bases and semidefinite pro-
gramming for the real Nulstellensatz [Ste73] using CSDP [Bor99] and
the Orbital library.

5. The SMT solver Z3 [dMB08], implementing an approach based on
Boolean satisfiability (SAT) modulo real-arithmetic [JdM12] where
the search is guided by the projection operators originally defined for
cylindrical algebraic decomposition [Col75], a method for real quan-
tifier elimination.

Jan-David Quesel 161 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

Note that the following sections are taken from joint work with André
Platzer and Philipp Rümmer with only minor revisions compared to the
work previously published in [PQR09a].

6.4.1 Methods for Handling Real Arithmetic

We survey different approaches for handling real arithmetic in background
provers for verification following [PQR09a]. We phrase these approaches in
terms of reals for simplicity. Yet, all subsequent theory in Sections 6.4.1–
6.4.2 generalizes from R to real-closed fields.

To simplify the presentation, we assume simple rules to normalize se-
quents that translate, e.g., g ≤ f to f ≥ g, f 6= g to ¬(f = g) and ` f > g
to f ≤ g ` respectively. These rules are shown in Figure 6.3. We assume

(N1)
Γ, f ≥ g ` f = g,∆

Γ, g < f ` ∆

(N2)
Γ, f ≥ g ` ∆

Γ ` f < g,∆

(N3)
Γ, f ≥ g ` f = g,∆

Γ, f > g ` ∆

(N4)
Γ, f ≥ g ` ∆

Γ ` g > f,∆

(N5)
Γ, f ≥ g ` ∆

Γ, g ≤ f ` ∆

(N6)
Γ, f ≥ g ` f = g,∆

Γ ` f ≤ g,∆

(N7)
Γ, f ≥ g ` f = g,∆

Γ ` g ≥ f,∆

(N8)
Γ, f = g ` ∆

Γ ` f 6= g,∆

(N9)
Γ ` f = g,∆

Γ, f 6= g ` ∆

Figure 6.3: Rules for normalizing equalities and inequalities

all inequalities to be moved to the antecedent in this way. We get 4 rules
for handling “greater than” (>) and “less than” (<) as we want to eliminate
these operators. For “greater or equals” (≥) we only have to consider the

Jan-David Quesel 162 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

case where it occurs on the right side of the sequent. Whereas, for “less
or equals” (≤) we get two cases. In addition we have two cases for “not
equals” (6=).

6.4.1.1 Gröbner Bases for Real Arithmetic

Gröbner bases [Buc65] provide a sound but incomplete procedure for prov-
ing validity of formulas in the universal fragment of equational first-order
real arithmetic.

Preliminaries. Let Q[X1, . . . , Xn] be the set of multivariate polynomials
over the indeterminates X1, . . . , Xn with coefficients in Q. Each of these
polynomials p can be written as

p =
∑
i

ciX
d1(i)
1 · · ·Xdn(i)

n ,

where ci ∈ Q are coefficients and dj(i) ∈ N for j ∈ {1, . . . , n}. Terms of the

form ciX
d1(i)
1 · · ·Xdn(i)

n are called monomials. A subset I ⊆ Q[X1, . . . , Xn]
is an ideal, iff I is a subgroup with respect to addition and

rx ∈ I, for all x ∈ I, r ∈ Q[X1, . . . , Xn] .

The ideal generated by a set G ⊆ Q[X1, . . . , Xn] is the smallest ideal I
containing G, and is denoted by (G).

The notions of Gröbner bases and polynomial reductions are relative to
an admissible monomial order ≺, which is a strict well-order on monomials
such that uw ≺ vw whenever u ≺ v for arbitrary monomials u, v, w. Ad-
missible orders extend canonically to Q[X1, . . . , Xn] as a multiset order;
see [Buc65] for details. The monomial order determines the leading term
in multivariate polynomials, i.e., the maximal monomial with respect to ≺.

Definition 59 (Reduction). Let f, g ∈ Q[X1, . . . , Xn]. We say that f re-
duces to g with respect to G ⊂ Q[X1, . . . , Xn] iff for some m ∈ N there are
f0, f1, . . . , fm in Q[X1, . . . , Xn] with f0 = f, fm = g such that, for all i,
fi+1 = fi − higi for some hi ∈ Q[X1, . . . , Xn], gi ∈ G, and fi+1 ≺ fi. We
write g = redG f if, in addition, g cannot be reduced further, i.e., there is
no hm+1 ∈ Q[X1, . . . , Xn] and gm+1 ∈ G with g − hm+1 gm+1 ≺ g.

Jan-David Quesel 163 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

Definition 60 (Gröbner basis). A finite subset G of an ideal I of the poly-
nomial ring Q[X1, . . . , Xn], is called Gröbner basis iff I = (G) and redG f
is unique for all polynomials f . Further, G is reduced if no g ∈ G can be
reduced further with respect to G \ {g}.

There are several equivalent alternative formulations of this definition,
for instance that redG f = 0 iff f ∈ I. This means that Gröbner bases
solve the ideal membership problem and can, thus, directly be used as an
(incomplete) proof rule for equational arithmetic.

Gröbner Basis Eliminations. The most naive use of Gröbner bases for real
arithmetic is described by the rules A1, A2 in Figure 6.4. The rule A1 closes
a goal if the ideal G generated by equations in the antecedent contains 1.
The soundness of this rule relies on Hilbert’s Nullstellensatz.

Theorem 10 (Hilbert’s Nullstellensatz [Hil93]). For an algebraically closed
field K and some ideal I (K[X1, . . . , Xn] there exists some vector x with
x = (x1, . . . , xn) ∈ Kn such that p(x1, . . . , xn) = 0 for all p ∈ I.

This means if the constant function 1 is in the ideal (G), i.e., 1 ∈ (G),
then the equations do not have common solutions (i.e., are contradictory).
Note that this fact is crucial for the understanding of this chapter as the
many of the upcoming methods rely on detecting a contradiction in the
antecedent in this way. Similarly, A2 can be applied if the sides f, h of
an equation in the succedent have the same remainder modulo G, which
means f − h ∈ (G).

The scope of the rules can be extended by testing for radical membership
instead of ideal membership, which can prove problems like x2 = 0 ` x = 0
that A2 cannot prove. The radical of an ideal I is the set

√
I =

∞⋃
i=1

{g ∈ Q[X1, . . . , Xn] | gi ∈ I} ⊇ I

Because the inclusion I ⊆
√
I can be strict, testing for radical membership

is more liberal than ideal membership, while still being sound.

Example 22. Consider the ideal (x2) generated by the polynomial x2.
This contains all squares and sums of squares. Observe that, it does not
contain any polynomials with odd degrees like x, x3, x5. The radical

√
(x2),

however, contains all polynomials from (x), i.e.,
√

(x2) = (x).

Jan-David Quesel 164 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

In practice, the rule A3, which is known as Rabinowitch’s trick, repre-
sents a simple way of testing for radical membership. It is based on the
observation that g ∈

√
I if and only if 1 ∈ (I ∪ {gz − 1}) (where z is a fresh

indeterminate). The latter property can be tested by first applying A3 and
then A1.

Finally, inequalities can be translated to equations using A4, A5, which
exploit the fact that a real number is positive iff it is a square (A5 is an
optimized version including Rabinowitch’s trick). Combined with the rules
A1, A2, this encoding of inequalities is rather weak, and not able to derive
simple facts like (a ≤ b ∧ b ≤ c)→ a ≤ c. It is, however, an important pre-
processing step for the complete procedure described in the next subsection
(where we explain rule A6).

Proposition 8 (Soundness [PQR09b]). The Gröbner basis rules in Fig-
ure 6.4 are sound. Rules A3, A4, A5 are even satisfiability-equivalent trans-
formations, i.e., their respective premisses and conclusions are satisfiability-
equivalent.

Proof. The rules in Figure 6.4 are sound. As usual for the soundness proofs
we assume Γ to be true in a state ν and ∆ to be false as there is nothing
to show otherwise. For A3, A4, A5, we show equivalence of premiss and
conclusion, which implies soundness.

A2 Suppose the conclusion was false in ν, i.e.,

ν |= g1 = g̃1 ∧ · · · ∧ gn = g̃n ∧ f 6= h .

Thus, ν |= g = 0 for all g ∈ G. Consequently, ν |= g = 0 for all poly-
nomials g in the ideal (G) of G. As a consequence of the applica-
bility condition, we have redG(f − h) = 0, which, by Definition 60,
implies that f − h is in the ideal of G. In combination, we have
ν |= f − h = 0, hence ν |= f = h, which is a contradiction.

A1 The soundness of A1 is a special case of the soundness of A2 when
assuming the false formula 1 = 0 for the succedent f = h.

A3 Satisfiability-equivalence of A3 is a consequence of the Rabinowitch
trick equivalence

x 6= 0↔ ∃z (xz = 1) ,

using f − g for x. More generally, this holds in fields where non-
zero elements are exactly the elements that have some inverse z.

Jan-David Quesel 165 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

(A1)
∗

Γ, g1 = g̃1, . . . , gn = g̃n ` ∆

(A2)
∗

Γ, g1 = g̃1, . . . , gn = g̃n ` f = h,∆

(A3)
Γ, (f − g)z = 1 ` ∆

Γ ` f = g,∆

(A4)
Γ, f − g = z2 ` ∆

Γ, f ≥ g ` ∆

(A5)
Γ, (f − g)z2 = 1 ` ∆

Γ, f > g ` ∆

(A6)
Γ ` 1 + s21 + · · ·+ s2n = 0,∆

Γ ` ∆

In all rules, z is a fresh variable. With the Gröbner basis G of the

ideal (g1 − g̃1, . . . , gn − g̃n), rule A1 is applicable if redG 1 = 0, and A2 if

redG f = redG h. Rules similar to A2, A4 and A5 can be defined for inequalities

in the succedent. In A6, the polynomials s1, . . . , sn can be chosen arbitrarily.

Figure 6.4: Rule schemata of Gröbner calculus rules

By introducing a free new variable z, we obtain that the premiss is
satisfiable if and only if the conclusion is satisfiable.

A4 Satisfiability-equivalence follows from the equivalence

f ≥ g ↔ ∃z (f − g = z2)

in the domain of reals. More generally, this holds in real-closed fields
where squares are exactly the positive numbers. By introducing a free
new variable z in the rule, we obtain that the premiss and conclusion
are satisfiability-equivalent, i.e., the premiss is satisfiable if and only
if the conclusion is satisfiable.

Jan-David Quesel 166 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

A5 Satisfiability-equivalence follows from the equivalence

x > 0↔ ∃z (xz2 = 1)

in the reals, using f − g for x.

A6 Since a sum of squares is nonnegative over R, the value of the polyno-
mial 1 + s21 + · · ·+ s2n is strictly positive and 1 + s21 + · · ·+ s2n = 0 is
a contradiction over the reals. Consequently, if the premiss is valid,
then so is the conclusion.

The Gröbner basis approach gives a sound but incomplete overapprox-
imation. To see why Gröbner bases are incomplete for real arithmetic,
consider the following. Gröbner bases are a general approach and do not
take into account the special properties of the reals. For instance, the se-
quent x2 = −1 ` is valid, i.e., the formula x2 = −1 is unsatisfiable over R,
but the Gröbner basis of x2 + 1 is {x2 + 1} and, in fact, x2 = −1 is sat-
isfiable over the field of complex numbers C but not over the field of real
numbers R. Therefore, we can not detect the contradiction in the assump-
tion that x2 = −1 using Gröbner bases.

Implementations. We compare three implementations of the Gröbner ba-
sis rules:

GM The implementation provided by the Mathematica 9.0 computer
algebra system [Wol03], which can be used as a reasoning back-end by
KeYmaera.

GO The implementation of Buchberger’s algorithm [Buc65] in the open-
source Java-library Orbital (written by André Platzer).

GK An implementation of Buchberger’s algorithm with (verified) proof
rules that are directly defined within KeYmaera. This procedure gener-
alizes a calculus for integer arithmetic [Rüm07] to the reals, and differs
from GM and GO in that it does not use the rules A3, A4, A5, but in-
stead integrates the Fourier-Motzkin variable elimination rule [Sch86] to
handle inequalities (which is complete for linear arithmetic). This tight
integration of the two procedures can simplify terms in inequalities using
Gröbner bases, and can feed equations derived by the Fourier-Motzkin
procedure back to Buchberger’s algorithm. We evaluate the benefits of
this cooperation in Section 6.4.3. Since our domain are the reals, we do

Jan-David Quesel 167 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

not use the heuristic approach tailored to nonlinear integer inequalities
from [Rüm07].

6.4.1.2 A Complete Rule using the Real Nullstellensatz

While the rules A1, A2, A3, A4, A5 only form an incomplete calculus
for problems in real arithmetic, the situation is different over the complex
numbers: Hilbert’s Nullstellensatz tells that A1, A3 together yield a de-
cision procedure for universal equational problems in algebraically closed
fields like C. A corresponding result for real-closed fields is Stengle’s real
Nullstellensatz [Ste73]; also see [Har07]:

Theorem 11 (Nullstellensatz [Ste73] for real-closed fields). Let R be a real-
closed field (for instance, R = R) and G be a finite subset of R[X1, . . . , Xn].
Then the set {x ∈ Rn | g(x) = 0 for all g ∈ G} is empty if and only if
there are s1, . . . , sm ∈ R[X1, . . . , Xn] such that 1 + s21 + · · ·+ s2m ∈ (G). If,
moreover, G ⊆ Q[X1, . . . , Xn], then also the polynomials s1, . . . , sm can be
chosen among the elements of Q[X1, . . . , Xn].

This theorem leads to an extremely simple, yet complete, proof method
for the universal fragment of real arithmetic: in addition to the rules that
we have already discussed, we add a proof rule A6 in Figure 6.4 for injecting
the equation 1 + s21 + · · ·+ s2m = 0 into the succedent a proof goal. Any
valid proof goal can then be closed in the following way: (i) inequalities
and equations in the succedent are turned into equations in the antecedent
with the help of the rules A3, A4, and A5, (ii) the witness 1 + s21 + · · ·+ s2m
due to the real Nullstellensatz is generated using A6, and (iii) the goal is
closed by the Gröbner Basis computations with A2.

Corollary 8 (Completeness). Along with the propositional rules in Fig-
ure 4.6 and normalization rules in Figure 6.3, the rules in Figure 6.4 are
complete for the universal fragment of real arithmetic.

Proof. Completeness follows from Theorem 11 using the satisfiability-e-
quivalence properties for the transformation by A3, A4, A5 according to
Proposition 8.

The main difficulty with this calculus is obvious: it does not provide any
guidance for choosing the witness 1 + s21 + · · ·+ s2m = 0. One technique to
tackle the required search is semidefinite programming, following the work
based on Stengle’s Positivstellensatz (Section 6.4.1.5) in [Par03, Har07].

Jan-David Quesel 168 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

∗
A2 x− y = a2, z = b2, (yz − xz)c2 = 1 ` 1 + (abc)2 = 0
A6 x− y = a2, z = b2, (yz − xz)c2 = 1 `

A4,A5 x ≥ y, z ≥ 0, yz > xz `

Figure 6.5: Example proof using the real Nullstellensatz

Further, we describe an approach that combines semidefinite programming
with Gröbner bases in Section 6.4.2 that was first presented in [PQR09a].

Example 23. In Figure 6.5, we show a proof for the following implication
(leaving out propositional reasoning):

(x ≥ y ∧ z ≥ 0)→ xz ≥ yz. (6.1)

The inequalities x ≥ y and z ≥ 0 are turned into equations using A4. Prov-
ing by contradiction (or using propositional rules), the conclusion xz ≥ yz
is considered as an assumption yz > xz and subsequently eliminated with
the help of A5. Once this is done, we rely on an oracle to tell us the wit-
ness 1 + (abc)2, which is introduced using A6. Finally, the proof can be
closed by A2: the set {a2 − x+ y, b2 − z, xzc2 − yzc2 + 1} is a Gröbner
basis representing the equations in the antecedent. The basis reduces the
term 1 + (abc)2 to 0 as follows:

1 + a2b2c2
b2−z
 1 + a2zc2

a2−x+y
 1 + xzc2 − yzc2 0

6.4.1.3 Quantifier Elimination in Real-Closed Fields

A general method for handling quantified real arithmetic is based on the
seminal work by Tarski [Tar51]. He showed that there is an algorithm
computing a quantifier-free formula that is equivalent to a given formula
in (first-order) real arithmetic.

Theorem 12 (Quantifier elimination [Tar51]). The first-order theory of
reals (or of real-closed fields) admits quantifier elimination, i.e., to each
first-order formula φ, a quantifier-free formula QE(φ) can be associated
effectively that is equivalent and has no additional free variables. Thus
QE yields a decision procedure for closed formulas when evaluating the
remaining quantifier-free formulas.

Jan-David Quesel 169 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

Unlike the other approaches outlined in this chapter, QE directly applies
to full nonlinear (polynomial) real arithmetic and not just to the univer-
sal fragment. QE is also independent of propositional rules, except that
computational efficiency considerations advise to combine both [Pla07a].

Example 24. For instance, QE yields the following equivalence:

∃x (ax2 + bx+ c = 0) ≡ a 6= 0 ∧ b2 − 4ac ≥ 0 ∨ a = 0 ∧ (b = 0→ c = 0)

Tarski’s approach is of non-elementary complexity. However, it has been
extended to practical algorithms [Col75,CH91,Wei97], which are quite so-
phisticated.

Collin’s [Col75] introduced cylindrical algebraic decomposition. Let

φ =̂Q1x1 · · · Qnxn ψ

for Qi ∈ {∀,∃} be a first-order formula over the reals in prenex form, i.e.,
ψ is quantifier free. Thus φ has n variables. Collin’s idea is to decompose
the n-dimensional real-space into a finite number of disjoint connected sets
(called cells). In each such cell all the polynomials are sign-invariant, i.e.,
the sign of each polynomial in ψ is either non-negative or non-positive at
each point in the set. One can now determine in which of these cells the
quantifier-free formula ψ is true as the decomposition ensures that it is
sufficient to check a single point for each cell. This allows to regard univer-
sal and existential quantifiers to be seen as conjunctions and disjunctions
as they only bind finitely many distinguishable elements w.r.t. the equiv-
alence relation induced by the decomposition into cells. Collin’s method
constructs the cells in a way such that they can then be described in terms
of polynomials in n−1 variables and, thus, the quantifiers can be eliminated
one by one. Overall, this method is doubly exponential in the number of
variables [Col75].

Several optimizations where proposed for this method [CH91, Wei97].
Unfortunately, the complexity of QE is doubly exponential in the number
of quantifier alternations [DH88].

Implementations. We compare seven implementations of QE in experi-
ments:

QQ Partial cylindrical algebraic decomposition (PCAD) [CH91] in QEP-
CAD B [Bro03];

Jan-David Quesel 170 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

QQr Redlog [DS97] using QQ after simplifications;

QM QE based on partial CAD [CH91] and validated numerics [Str06]
in Mathematica [Wol03];

QR Virtual substitution [Wei97] in Redlog [DS97], falling back to an
internal partial CAD implementation [CH91];

QRq Virtual substitution [Wei97] in Redlog [DS97], falling back to QQ;

QC Harrison’s implementation of Cohen-Hörmander quantifier elimina-
tion;

QK David Renshaw’s implementation of Cohen-Hörmander quantifier
elimination directly in KeYmaera;

QH Proof-producing quantifier elimination [MH05] in HOL Light.

6.4.1.4 Boolean Satisfiability Modulo the Theory of Real-closed Fields

Jovanović and de Moura [JdM12] recently presented an approach based on
Boolean satisfiability modulo theory (SMT) that in contrast to the other
approaches tries to construct a model instead of showing its absence. Thus,
from our point of view we start with the negation ¬F of the formula F
which we want to prove valid. That way, if a model can be constructed
for ¬F we know that our assumption that F would be valid was false.
Otherwise, if their approach can come up with a proof why no model for
¬F can be found, we are certain that the original formula F is indeed a
valid.

Jovanović and de Moura’s method performs a backtracking search for
a model. When a conflict in the sense of Conflict-Driven-Clause Learn-
ing (CDCL) [SS99] is discovered they perform a projection into lower-
dimensional spaces similar to CAD on the set of the conflicting formulas.

These ideas have been implemented in the SMT solver Z3 [dMB08] which
we have connected as a back-end procedure to KeYmaera.

Jan-David Quesel 171 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

6.4.1.5 Semidefinite Programming for the Positivstellensatz

The Positivstellensatz for real-closed fields [Ste73] is a generalisation of the
real Nullstellensatz. It gives rise to a sound and complete proof method
for the universal fragment of first-order real arithmetic that does not re-
quire the reductions A3, A4, A5. The Positivstellensatz has recently been
exploited in combination with relaxations from semidefinite programming
by Parrilo [Par03] and Harrison [Har07].

For this, we need in addition to ideals the following algebraic structures:
monoids and cones.

Definition 61 (Multiplicative Monoid). For a set H ⊆ R[X1, . . . , Xn] of
polynomials, the multiplicative monoid mon(H) is the smallest set such
that:

1. 1 ∈ mon(H)

2. If p ∈ H then p ∈ mon(H).

3. If p, q ∈ mon(H) then p · q ∈ mon(H).

Definition 62 (Cone). For a set F ⊆ R[X1, . . . , Xn] of polynomials, the
cone con(F) is the smallest set such that:

1. If p ∈ F then p ∈ con(F).

2. If p ∈ R[X1, . . . , Xn] then p2 ∈ con(F).

3. If p, q ∈ con(F) then p+ q ∈ con(F) and p · q ∈ con(F).

Observe that the cone is not only generated from the polynomials in F
but contains all squares of polynomials of the original polynomial ring. For
more computational representations of cones and ideals, we refer to [Par03,
BCR98].

Theorem 13 (Positivstellensatz [Ste73] for real-closed fields). Let R be
a real-closed field (for instance, R = R) and F,G,H finite subsets of the
polynomial ring R[X1, . . . , Xn]. Then

{x ∈ Rn | f(x) ≥ 0 f.a. f ∈ F, g(x) = 0 f.a. g ∈ G, h(x) 6= 0 f.a. h ∈ H}

is empty iff

there are s ∈ con(F), g ∈ (G),m ∈ mon(H) such that s+ g +m2 = 0 .

Jan-David Quesel 172 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

(A7)
∗

f1 ≥ f̃1, . . . , fm ≥ f̃m, g1 = g̃1, . . . , gn = g̃n ` h1 = h̃1, . . . , hl = h̃l

A7 is applicable iff s+ g +m2 = 0 for some s ∈ con({f1 − f̃1, . . . , fm − f̃m}),
some g ∈ (g1 − g̃1, . . . , gn − g̃n), and some m ∈ mon({h1 − h̃1, . . . , hl − h̃l}).

Figure 6.6: Rule schemata of Positivstellensatz calculus rules

If, moreover, F,G,H ⊆ Q[X1, . . . , Xn], then also the polynomials s, g,m
can be chosen among the elements of Q[X1, . . . , Xn].

The polynomials s, g,m are polynomial infeasibility witnesses. Provided
a bound on the degree, witnesses s, g,m can be searched for using nu-
merical semidefinite programming [Par03] by parameterizing the resulting
polynomials. As (theoretical) degree bounds exist for the certificate poly-
nomials s, g,m, the Positivstellensatz yields a decision procedure. These
bounds are, however, at least triply exponential [Par03]. Thus, the ap-
proach advocated by Parrilo [Par03] is to increase the bound successively
and solve the existence of bounded degree witnesses due to the Positivstel-
lensatz by semidefinite programming [BV04].

As a simple corollary to Theorem 13 we have that A7 is a sound proof
rule.

Corollary 9 (Soundness). The rule in Figure 6.6 is sound.

In contrast to the rules in Figure 6.4 the only additional transformation
necessary for rule A7 is a reduction from > to ≥ via f > g ↔ f ≥ g ∧ f 6= g.
All other transformations follow from the propositional sequent calculus
rules (see Figure 4.6 on page 101) and the rewriting rules described in
the beginning of Section 6.4.1 (see Figure 6.3). Therefore, this approach
does not introduce new variables, as it does not need the rules A3 – A5.
Alternatively, A5 can be used in place of the f > g axiomatization as we
show in the sequel.

Example 25. A proof for the implication (6.1) that uses the Positivstel-
lensatz is depicted in Figure 6.7. In contrast to the proof in Figure 6.5,
it is now unnecessary to eliminate the inequalities x ≥ y and z ≥ 0, while

Jan-David Quesel 173 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

the rule A5 has to be used for xz ≥ yz (corresponding to yz > xz in the
antecedent). A witness for the problem is:

c2 · (x− y) · z︸ ︷︷ ︸
s

+ (yz − xz)c2 − 1︸ ︷︷ ︸
g

+ 1︸︷︷︸
m2

= 0

The terms x− y and z in s stem from the inequalities in the sequent, while
the term g is derived from the equation.

Implementations. We compare two implementations using the semidef-
inite programming optimization tool CSDP [Bor99] to find witnesses for
the Positivstellensatz:

PH John Harrison’s implementation [Har07] in HOL Light.

PK Our implementation within KeYmaera directly follows the approach
presented by Parrilo [Par03] and Harrison [Har07]. We follow Parrilo’s
enumeration of polynomials without further optimization.

6.4.2 Gröbner Bases for the Real Nullstellensatz (GRN)

We present an approach to turn the complete calculus based on the real
Nullstellensatz (NSS, Theorem 11) into an effective proof procedure. While
this method is strongly inspired by, and in parts based on, semidefinite
programming for the Positivstellensatz (PSS, Theorem 13) [Par03,Har07],
there are two main motivations to deviate from this approach: (i) the ap-
plication of the PSS requires reasoning about ideal membership (the set (G)
in Theorem 13) and, thus, to solve systems of polynomial equations. This
is an incentive to integrate Gröbner bases as a computational, efficient,
and well-studied method to this end; (ii) the PSS requires constructing
three witnesses s, g,m simultaneously, which makes it intricate to balance

∗
A7x ≥ y, z ≥ 0, (yz − xz)c2 = 1 `
A5 x ≥ y, z ≥ 0, yz > xz `

Figure 6.7: Example proof using the Positivstellensatz

Jan-David Quesel 174 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

degree bounds and the number of parameters to be determined by semidef-
inite programming. Using a combination of Gröbner basis computations
and the single witnesses of the real NSS, these issues are avoided.

In order to prove by NSS that a set G of polynomials does not have
common zeroes, we need to find polynomials s1, . . . , sm such that the poly-
nomial 1 + s21 + · · ·+ s2m ∈ (G). We reduce this problem to a search for
positive semidefinite matrices with the help of the following lemma. A
matrix X ∈ Rk×k is called positive semidefinite (PSD) if it is symmetric,
and if xtXx ≥ 0 for each vector x ∈ Rk. There is a simple correspondence
between PSD matrices and sums of squares:

Lemma 15. Suppose p ∈ Q[X1, . . . , Xn]k is a vector of rational polynomi-
als. The following identities hold:{

l∑
i=1

(cip)
2 | l ∈ N, ci ∈ Qk

}

=

{
l∑
i=1

αi(cip)
2 | l ∈ N, αi ∈ Q, αi ≥ 0, ci ∈ Qk

}
=
{
ptXp | X ∈ Qk×k positive semidefinite

}
Proof. The first equation holds because each non-negative rational num-
ber αi can be written as a sum of four rational squares by Lagrange’s
four-square theorem.

We consider the two directions of the second equation:

“⊇”: This is shown (constructively) by [Har07, Theorem 1].

“⊆”: Let
∑l
i=1 αi(cip)

2 be a sum of squares with αi ≥ 0. We define the
matrices

C =


ct1
ct2
...
ctl

 , D =


α1

α2

. . .

αl


and thus obtain the identity:

l∑
i=1

αi(cip)
2 = (Cp)tD(Cp) = pt(CtDC)p

Jan-David Quesel 175 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

Let X ∈ Qk×k be a matrix such that X = CtDC. This matrix is positive
semidefinite because of:

xt(CtDC)x =

l∑
i=1

αi(cix)2 ≥ 0 .

By combining Lemma 15 with the NSS, we see that a setG of polynomials
does not have any common zeroes if and only if there is a vector p of
polynomials and a PSD matrix X ∈ Rk×k such that 1 + ptXp ∈ (G). As
the vector space of polynomials is generated by monomials, it is sufficient
to consider vectors p of monomials.

Semidefinite programming [BV04] provides a simple method to deter-
mine such matrices X. A semidefinite program (SDP) is an optimization
problem in terms of traces (tr) of matrices:

maximise tr(CX)
subject to tr(AiX) = bi (for i ∈ {1, . . . , n}),
where X positive semidefinite

where Ai, C ∈ Rk×k are symmetric matrices and bi ∈ R. Such optimiza-
tion problems can be solved efficiently using numerical convex optimiza-
tion [BV04].

The key insight underlying this method is the following: by computing
a Gröbner basis B for the ideal (G), the NSS condition 1 + ptXp ∈ (G)
can be encoded as the linear side constraints tr(AiX) = bi (i ∈ {1, . . . , n})
of a semidefinite program searching for X. To see this, note that both
the expression 1 + ptXp and the reduction redB(1 + ptXp) are linear in
X. Because Gröbner bases determine unique remainders, we therefore
have 1 + ptXp ∈ (G) if and only if redB(1 + ptXp) = 0. This equation is
a linear constraint on X suitable for SDP.

To capture this observation formally, let Q be a symmetric k × k matrix
of parameters:

Q =


q1,1 q1,2 . . . q1,k
q1,2 q2,2 . . . q2,k
.
q1,k q2,k . . . qk,k


The polynomial 1 + ptQp is linear in Q and can be represented in the form

1 + ptQp = qtCm ,

Jan-David Quesel 176 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

where q = (q1,1, q1,2, . . . , qk,k)t is the vector of all the Q-parameters,

m = (m1, . . . ,ms)
t

is a vector of monomials over X1, . . . , Xn (containing, at least, 1 and all

products pipj of components of p), and C ∈ Qk2×s is a matrix. By comput-
ing the remainder qtDm = redB(qtCm) of this term for a Gröbner basis B
over Q[X1, . . . , Xn], we can construct the required side constraints:

Lemma 16. Suppose that the components of m are pairwise distinct, and
that qtCm, qtDm ∈ Q[q1,1, q1,2, . . . , qk,k][X1, . . . , Xn] are two polynomials

defined by the matrices C,D ∈ Qk2×s, such that qtDm = redB(qtCm).
Then the following equation holds:

{x ∈ Rk | redB(xtCm) = 0} = {x ∈ Rk | xtD = 0} (6.2)

Proof. First, observe that for all x ∈ Rn:

xtCm− xtDm ∈ (B) (6.3)

The proof of the lemma is as follows:

• “⊇”: Suppose xtD = 0. Then also xtDm = 0 and, by (6.3),

xtCm− xtDm = xtCm ∈ (B) .

This implies redB(xtCm) = 0 because B is a Gröbner basis.

• “⊆”: Suppose redB(xtCm) = 0, i.e., xtCm ∈ (B). By (6.3), this
implies xtDm ∈ (B).

Now, observe that also the instance xtDm is irreducible w.r.t. B:
because the parametrized polynomial qtDm is irreducible w.r.t. B, it
has to be the case that the i’th component of btD is zero whenever the
monomial mi is reducible w.r.t. B. This means that, in this case, the
i’th column of D only contains zeroes. Then also the i’th component
of xtD is zero and xtDm cannot contain any reducible terms.

Because B is a Gröbner basis, 0 is the only member of (B) that is
irreducible with respect to B, which implies xtDm = 0. Finally,
because the elements of m are pairwise distinct and thus linearly
independent, this is only possible if xtD = 0.

Jan-David Quesel 177 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

Example 26. We return to the implication (6.1) proven in Figure 6.5
by showing that the polynomials B = {a2 − x+ y, b2 − z, xzc2 − yzc2 + 1}
have no common zeroes. The witness 1 + (abc)2 used in the proof of Fig-
ure 6.5 can be constructed systematically for a suitable set of basis mono-
mials, say, p = (1, a2, abc)t. We need to find a PSD matrix X ∈ Q3×3 such
that 1 + ptXp ∈ (B). To do so, we compute the reduction redB(1 + ptQp)
for a symbolic 3× 3 parameter matrix Q:

redB(1 + ptQp)

= redB(1 + q1,112 + 2q1,2a
2 + 2q1,3abc+ 2q2,3a

3bc+ q3,3a
2b2c2)

= 1 + q1,1 − q3,3 + 2q1,2x− 2q1,2y + 2q1,3abc+ 2q2,3abcx− 2q2,3abcy

By comparing coefficients, the constraints on Q for this polynomial to be 0
are:

1 + q1,1 − q3,3 = 0 −2q1,2 = 0 2q2,3 = 0

2q1,2 = 0 2q1,3 = 0 −2q2,3 = 0

A positive semidefinite solution of the constraints is q3,3 = 1 and qi,j = 0
for all (i, j) 6= (3, 3), which means 1 + ptQp = 1 + (abc)2.

Theorem 14 (Completeness [PQR09a]). By enumerating all monomials
for p successively, Gröbner bases for the real Nullstellensatz give a com-
plete method for universal real arithmetic: If the original formula is valid,
then, when p contains all monomials of a sufficiently large degree, the cor-
responding semidefinite programs will have a solution (the witness).

Proof. The proof is a combination of Lemma 16 with Corollary 8.

6.4.2.1 Discussion and Practical Considerations

Semidefinite programming turns the search for witnesses 1 + s21 + · · ·+ s2m
into a (simpler) search for suitable basis monomials p. As the number of
basis monomials that need to be considered is finite (due to degree bounds
on witnesses [Par03]), this yields a theoretical decision procedure. Prac-
tically, we enumerate all monomials with ascending degree. There might
be more sophisticated methods, however: the number of monomials that
witnesses are actually built of is usually small, and it might be possible to
locate likely candidates by analyzing the Gröbner basis B. In our experi-
ence, the number of basis monomials that are considered before a solution

Jan-David Quesel 178 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

is found (and thus the difficulty of a problem) depends on (i) the num-
ber of variables in the polynomial ring, and (ii) the degree of the leading
monomials in the Gröbner basis.

Another issue is that implementations for semidefinite programming (like
the CSDP solver [Bor99] used by us) are numerical and produce answers
in floating point arithmetic. To recover precise solutions in Q from such
answers, we use a similar approach as in [Har07]: We approximate floating
point numbers to a certain precision by rationals, and check resulting solu-
tion candidate for semidefiniteness. In order to get rational candidates for
the floating point numbers we use Stern-Brocot trees [GKP94]. These trees
enumerate all fractions a

b such that their greatest common divisor is 1, i.e.,
gcd(a, b) = 1. For a floating point number x we start the tree construction

with the“fractions” bxc1 and 1
0 . The construction rule for Stern-Brocot trees

now creates a new fraction as the sum of denominators divided by the sum
of the numerators. We call the two inputs the left and the right fraction. If
the resulting fraction is smaller than x then we replace the left fraction, if
it is greater than x we replace the right one. Then we reiterate the proce-
dure. Once we get a fraction that with sufficient precision approximates x
we perform the same procedure to get approximations for the other floating
point numbers in the output of CSDP and check for semidefiniteness of the
matrix. If the matrix is semidefinite we are done, if not we increase the
precision successively as long as the solution candidate remains indefinite.

Optimizations. We found it essential to use preprocessing steps to reduce
the number of variables in a problem, such that the number of potential
basis monomials becomes tractable. Some heuristics are:

• If the Gröbner basis B contains a polynomial x+ t such that x does
not occur in t, then x and the polynomial can be eliminated by simple
rewriting.

• If B contains polynomials xy − 1 and xn + t such that xn does not
divide t, then x and the polynomial xy − 1 can be eliminated by
multiplying each polynomial in B (except xy − 1) with a power of y
and reducing w.r.t. xy − 1.

• Polynomials α1m
2
1 + · · ·+ αnm

2
n ∈ B for which all coefficients αi with

i ∈ {1, . . . , n} are strictly positive can be replaced by the monomi-
als m1, . . . ,mn.

Jan-David Quesel 179 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

• If B contains a polynomial α0x
2 − α1m

2
1 − · · · − αnm2

n such that
αi > 0 for i ∈ {0, . . . , n} where x only occurs with even degree in
B, then x can be eliminated by rewriting and the polynomial can be
removed.

The last two cases are surprisingly common, due to the encoding of in-
equalities by quadratic terms performed by A4 and A5.

6.4.3 Experimental Results

We have integrated the techniques presented in Section 6.4.1–6.4.2 into
KeYmaera. With the various methods for real arithmetic integrated into
a common framework and real arithmetic examples from different do-
mains, we have a solid base for our experiments. The benchmarks are
a collection of challenging arithmetic problems from the hybrid system
world [PQ08b,PQ09a,Pla10b,LPN11,ALPK12,MLP12], the verification of
invariant properties for mathematical algorithms [Kov08,dMB08] and alge-
braic geometry [DSW98], as well as a smaller number of synthetic problems.
For the examples with mixed quantifiers, our setting applies QM to the ex-
istential quantifiers such that we can still gain insight into the scalability
of the approaches that are restricted to the universal fragment on these
examples. We run our experiments on a dual Intel Xeon E5430 (quad core
with 2.66 GHz) and 32 gigabytes RAM.

The experimental results are summarized in Figure 6.8 and Tabular 6.1.
We have used a timeout of 200 seconds on the 1344 examples. The re-
sults show that, for our particular mix of examples, quantifier elimination
procedures are still faster than recent approaches with semidefinite pro-
gramming relaxations for the Positivstellensatz, while Gröbner bases alone
have difficulties with “real” problems. As expected, procedures tailored for
real arithmetic can solve substantially more cases than Gröbner bases for
general fields. Gröbner bases that integrate Fourier-Motzkin (GK) solve
many more problems. Z3 as the newest approach in our tool set performs
pleasingly well. For many easy examples it is a lot faster than QM and
solves almost as many examples. Interestingly, QR and QRq perform al-
most identical while QQr performs better than QQ. Thus, for our set of
examples the simplifications performed by Redlog are a lot more important
than the implementation of CAD.

Our combination, GRN, of Gröbner bases with the real Nullstellensatz
is competitive with quantifier elimination by partial cylindrical algebraic

Jan-David Quesel 180 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

0
0
0

1,
1
0
0

1
,2

0
0

1,
3
0
0

1
,4

0
0

1
0
−
1

10
0

10
1

10
2

E
x
am

p
le

s

Time(s)

G
R

N
P

H
G

O
Q

C
G

M
Q

Q
r

P
K

Q
Q

Q
K

Q
R
q

G
K

Q
H

Q
M

Q
R

Z
3

F
ig

u
re

6.
8:

E
x
am

p
le

s
so

lv
ed

p
er

ti
m

e

Jan-David Quesel 181 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

Table 6.1: Individual examples solved within x seconds

Conf. 1s 5s 10s 30s 60s 90s 120s 180s 200s

GO 120 519 725 738 740 742 742 743 743
GM 17 570 745 747 749 749 749 749 749
GK 112 700 850 1011 1011 1011 1011 1011 1011
PK 75 190 226 266 286 288 291 296 296
PH 17 420 706 911 919 924 924 926 926
GRN 189 640 1037 1188 1203 1208 1210 1212 1212
Z3 104 1249 1261 1269 1274 1275 1277 1281 1282
QH 17 148 167 196 209 225 235 239 240
QC 177 506 527 559 579 586 588 630 633
QK 17 437 528 608 615 637 642 647 648
QQ 66 964 998 1044 1050 1057 1064 1066 1066
QQr 17 1140 1162 1166 1169 1171 1172 1172 1172
QR 17 1318 1333 1334 1335 1335 1335 1335 1335
QRq 17 1317 1334 1335 1336 1336 1336 1336 1336
QM 17 1300 1326 1334 1336 1336 1338 1339 1339

decomposition [CH91] and finishes as the 5th best approach behind QR,
QRq, QM, and Z3. The experiments also show that substantial perfor-
mance improvements (QR and QM) are still possible beyond partial CAD.

The experiments show that GM and GO are on a par with a slight edge
for GM. Further, QM, QR, QRq are very close, but clearly outperform
QQr, QQ, QC, and QK both in runtime and number of provable cases.
The two implementations of Cohen-Hörmanders procedure QC and QK
are on par w.r.t. the number of examples solvable though in terms of run-
time QC is faster on many examples. QH is slower but competitive with
the number of examples solved by PK but does not yet perform as well
as other QE implementations, Z3, or GRN. The performance gap between
PK and PH is surprising. In part, it shows how important Harrison’s opti-
mizations [Har07] of Parrilo’s work [Par03] are, but may also be caused by
different heuristics for recovering rationals from floats and different enu-
meration orders for polynomials. This might indicate that PK, indeed,
gives a more objective comparison for GRN than PH, because PK and
GRN share exactly the same KeYmaera framework and rational recover-
ing. Our GRN procedure is a clear progress compared to PK. Inevitably,
performance depends on the system options and on the set of benchmarks.

Jan-David Quesel 182 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

6.4.4 Related Work

Nipkow [Nip08] presented a formally verified implementations of quantifier
elimination in an executable fragment of Isabelle/HOL, currently for linear
real arithmetic only. McLaughlin and Harrison [MH05] presented a nonver-
ified but proof-producing implementation of general quantifier elimination,
so that the result of the procedure can be checked independently.

The sum of squares approach has been pioneered by Parrilo [Par03] and
Harrison [Har07]. Harrison also gives optimizations for the univariate case.

Tiwari [Tiw05] presents an approach using Gröbner bases and sign con-
ditions on variables to produce unsatisfiability witnesses for nonlinear con-
straints. The approach depends on appropriate heuristic variable orderings
that are formed by successively introducing new variables for polynomial
expressions following certain heuristics (which may not terminate). Our
work and that of Tiwari share the combination of Gröbner bases with
witness generation. Yet we follow semi-definite programming for the real
Nullstellensatz, whereas [Tiw05] uses heuristic generation of polynomial
witness expressions. Tiwari uses the Positivstellensatz to prove refutational
completeness but not as part of his technique.

RSolver [Rat06] is a numerical approach for deciding validity of (robust
instances of) first-order formulas over real arithmetic extended with tran-
scendental functions. Unlike our work, this relies on numerical stability of
the input formula.

MetiTarski [AP07] is an interesting approach for handling special func-
tions using a combination of resolution proving with simple QE procedures.
Their focus is on handling special functions not on handling real arith-
metic. Recently, Andrew Sogokon implemented an interface connecting
MetiTarski and KeYmaera thus making it available as a back-end when
proving properties of hybrid systems and hybrid games. We decided to not
include it in our comparison in this chapter as the focus deviates from that
of the other approaches. In the current benchmark set it would just apply
its fall-back procedures like Mathematica’s quantifier elimination procedure
and thus produce almost identical results.

Hunt et al. [WAHKM03] describe the handling of nonlinear arithmetic
in ACL2, which is based on heuristic multiplication of inequalities in the
style of (6.1) and yields an incomplete method. The method is claimed
to be empirically successful, though, and can also be applied to nonlinear
integer arithmetic.

Jan-David Quesel 183 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

6.4.5 Discussion and Conclusions

The respective approaches from Section 6.4.1–6.4.2 have different advan-
tages and weaknesses for formal verification of real world problems in real
arithmetic. We draw a qualitative comparison complementing the quanti-
tative comparison from Section 6.4.3.

Quantifier Elimination. Quantifier elimination procedures [CH91] can han-
dle full nonlinear real arithmetic, including existential quantifiers. Their
implementations are quite intricate algorithms for which correctness is not
easily established formally. Unfortunately, QE does not produce simple
checkable certificates.

Proof-producing [MH05] or verified [Nip08] QE procedures may be inter-
esting improvements on the formal traceability of QE w.r.t. to generating
checkable proofs or certificates. Unfortunately, their performance is not yet
fully competitive with other quantifier elimination implementations, SMT
based approaches like Z3, or our proof-producing GRN procedure.

A compromise is reverification: Proof search [PC08,Pla07a] in KeYmaera
generates several problems of real arithmetic to find a proof, but only those
in the final proof are soundness-critical. For soundness, it is sufficient to use
a fast or untrusted implementation of QE during the proof search and to
reverify the final proof in a proof checker with a verified or proof-producing
QE implementation [MH05,Nip08]. For this purpose, KeYmaera strategies
are especially useful that identify the sweetspot for applying QE iteratively
during the proof search [Pla07a].

Positivstellensatz. In the context of verification, a useful property of the
Positivstellensatz is that it produces a witness (s+ g +m2 = 0) for the
validity of a formula. Once the witness has been found, it is checkable
by simple computations in the polynomial ring to determine whether the
polynomial identity holds by comparing the coefficients. Similarly, the well-
formedness of the witness can be determined by checking whether s is build
from sums of squares using an extension of“completing the square” [Har07].
Thus, complicated numerical semidefinite programming tools [BV04] do
not need to be part of the trusted computing base concerning soundness.
Due to its enumerative nature with a large number of extra parameters,
scalability with the number of variables is still limited.

Jan-David Quesel 184 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 6. Implementation

Gröbner Bases. The Gröbner Basis approach does not have simple wit-
nesses like Positivstellensatz approaches. Their working principle, however,
is strictly based on symbolic computations, which can be carried out from
a small set of rewrite rules within a logic. This corresponds to our built-in
Gröbner basis approach GK, which is almost as efficient as external Gröb-
ner basis implementations. Our experimental results indicate that, due
to the partial ignorance of real-closed field properties, the capabilities of
Gröbner bases alone are not sufficient, even in combination with Fourier-
Motzkin elimination. Still, GK is able to outperform other approaches like
the Cohen-Hörmander procedures QC and QK, and even be competitive
with CAD based methods like QQ on a large set of benchmarks.

SMT for real-closed fields. The recent advances in SAT modulo theory
resulted in an approach for dealing with real arithmetic using conflict-
driven clause learning. From our experiments we can see that the imple-
mentation of these ideas in Z3 performs faster than most other methods.
Only virtual substitution implemented in Redlog (QR and QRq) and the
commercial tool Mathematica (QM) can solve more examples.

Real Nullstellensatz. Our decision procedure based on Gröbner basis
computations and the real Nullstellensatz share the presence of checkable
witnesses with approaches based on the Positivstellensatz. Once a witness
1 +

∑
i s

2
i = 0 has been found, the polynomial equality check can be per-

formed easily within a proof system using the GK rules, giving a fully for-
mal proof. The performance in our experiments show that this approach is
promising. It outperforms most other approaches, except for highly tuned
QE procedures, which lack support for formal traceability and the new
competitor Z3 which performs extremely well while producing checkable
proofs. We believe that further research in this area is likely to produce
competitive but traceable solutions for real arithmetic.

Jan-David Quesel 185 Oldenburg, April 3, 2013

C H A P T E R S E V E N

Case Study

For a moment, nothing happened.
Then, after a second or so, noth-
ing continued to happen.

— Douglas Adams

Contents

7.1 Overview . 189
7.2 Specification . 191
7.3 Robust Refinements 192
7.4 Conclusion . 197

In this chapter we consider a case study taken from the domain of train
control. That is, we analyze a model of the European Train Control Sys-
tem (ETCS) [ERT02]. The ETCS is an approach to unify train control
and train protection units all over Europe while establishing additional
goals like maximzing throughput in order to be able to transport millions
of passengers throughout Europe each day.

187

Similarity, Logic, and Games CHAPTER 7. Case Study

Related Work. Train control and especially the ETCS has been used as
a case study by different authors in the past. We list some literature about
the application of formal methods in the domain of train control. Peleska
et al. [PGHD04] verify routing algorithms for trains using bounded model
checking. Faber et al. [FIJSS10] consider real-time aspects of a dynamically
reconfigurable model of the ETCS. They model the system in UML using
the graphical modeling tool Syspect [FLOQ11]. The semantics of this anno-
tated UML model is defined in terms of CSP-OZ-DC, a combination of the
specification languages communicating sequential processes (CSP) [Hoa78]
to model the operational behavior of systems, Object-Z (OZ) [Smi00] to
model infinite data types, and the duration calculus (DC) [ZHR91] to spec-
ify real-time properties. On this semantics, Faber et al. show safety prop-
erties of the train system by exploiting the fact that the theory of the
list structures used in this model form a local theory extension [SS05].
Thus, they can reduce reasoning about list structures in this case to a de-
cidable base theory. Cimatti et al. [CRT09] consider the consistency of
informal requirements on ETCS. These requirements are expressed as tem-
poral properties including the continuous system dynamics. They analyze
the requirements using an approach based on the combination of temporal
logic with regular expressions. Banach et al. [BZSH12] use a train model in
order to demonstrate their retrenchment based approach to control design.
We [QS06] formally verify correct functioning of a gate controller modeled
in the Shape Calculus [Sch06], a multi-dimensional extension of the Dura-
tion Calculus. By translating the Shape Calculus specification into monadic
second-order formulas and applying the model checker MONA [EKM98] we
fully automatically verfiy spatial and real-time properties of the controller.
In [PQ08b, PQ09a] we have studied different properties of a parametric
version of the ETCS. We used our theorem prover to show that our model
is controllable, reactive, safe, as well as live.

Contributions. We present a small case study from the setting of train
control. We prove that our specification is safe in the sense that the train
does not exceed the end of its movement authority and show for a family of
implementations with different communication delays that they are robust
refinements of our specification. Thus, we can conclude that these are safe
as well.

Jan-David Quesel 188 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 7. Case Study

Structure of this Chapter. In Section 7.1 we give a general introduction
in the relevant parts of the ETCS for our case study. These results have
been partially published in [PQ08b, PQ09a, PQ09b]. We provide a model
of a train controller and RBC in Section 7.2. Subsequently, we provide a
family of implementations that suffer from communication delays and show
that these are robust refinements of our original specification in Section 7.3.
We discuss the results of this chapter in Section 7.4.

7.1 Overview

The European Train Control System (ETCS) [ERT02] has a wide range
of different possible configurations of trains, track layouts, and different
driving circumstances. It is a standard to ensure safe and collision-free
operation as well as high throughput of trains at speeds up to 320km/h.
ETCS level 3 follows the moving block principle, i.e., movement permissions
are neither known beforehand nor fixed statically. They are determined
based on the current track situation by a Radio Block Controller (RBC).
Trains are only allowed to move within their current movement authority
(MA), which can be updated by the RBC using wireless communication.
Hence the train controller needs to regulate the movement of a train lo-
cally such that it always remains within its MA. Behind MA, there could
be open gates, other trains, or speed restrictions due to tunnels. The auto-
matic train protection unit (atp) dynamically determines a safety envelope
around a train, within which it considers driving safe, and adjusts the train
acceleration a accordingly. Figure 7.1 illustrates the dynamic assignment
of MA. The ETCS controller switches according to the protocol pattern
in Figure 7.2 which corresponds to a simplified version of the protocoal
studied by Damm et al. [DMO+07]. When approaching the end of its MA
the train switches from far mode (where speed can be regulated freely)
to negotiation (neg), which, at the latest, happens at the point indicated
by ST (for start talking). During negotiation the RBC grants or denies
MA-extensions. If the extension is not granted in time, the train starts
braking in the correcting mode (cor) returning to far afterwards. Emer-
gency messages announced by the RBC can also put the controller into cor
mode. If so, the train switches to a failsafe state (fsa) after the train has
come to a full stop and awaits manual clearance by the train operator.

Jan-David Quesel 189 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 7. Case Study

MAST SBp

Figure 7.1: ETCS train cooperation protocol (Dynamic assignment of
movement authorities)

far neg

cor fsa

Figure 7.2: ETCS train cooperation protocol (Cooperation pattern)

Lemma 17 (Principle of separation by movement authorities). If each
train stays within its MA and, at any time, MAs issued by the RBC form
a disjoint partitioning of the track, then trains can never collide (proof
see [PQ09b]).

Lemma 17 effectively reduces the verification of an unbounded number
of traffic agents to a finite number. We exploit MAs to decouple reasoning
about global collision freedom to local cooperation of every traffic agent
with the RBC. In particular, we verify correct coordination for a train
without having to consider gates or railway switches, because these only
communicate via RBC mediation and can be considered as special reasons
for denial of MA-extensions. We only need to prove that the RBC handles
all interaction between the trains by assigning or revoking MA correctly
and that the trains respect their MA. However, to enable the RBC to
guarantee disjoint partitioning of the track it has to rely on properties
like appropriate safe rear end computation of the train. Additionally, safe
operation of the train plant in conjunction with its environment depends

Jan-David Quesel 190 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 7. Case Study

on proper functioning of the gates. As these properties have a more static
nature, they are much easier to show once the actual hybrid train dynamics
and movements have been proven to be controlled correctly.

As trains are not allowed to drive backwards without clearance by track
supervision personnel, the relevant part of the safety envelope is the closest
distance to the end of its current MA. The point SB, for start braking, is
the latest point where the train needs to start correcting its acceleration
(in mode cor) to make sure it always stays within the bounds of its MA.

7.2 Specification

We consider an event driven train model. Whenever the distance to the
end of the movement authority is large enough, in that case the train
accelerates with maximal acceleration A. If the train approaches the end
of the movement authority it eventually switches into a mode where it
applies maximal braking force. A first version of our model is depicted in
Figure 7.3. The state of the train is stored in the variables p (position), v
(velocity), and a (acceleration). The RBC model consists of a clock c to
measure its cycle time and a variable MA that stores the current end of the
movement authority. This variable is assumed to be shared with the train.
We assume that MA is updated as the message saying that the movement
authority has been extended is received by the train. In line 1 a message
from the RBC is received and the internal representation of the movement
authority MA is updated. We assume that this happens every n-time units
and that the extension is of length mp > 0. This time is measured by
the clock c. Line 2 models the train controller. Whenever the distance to
the end of the movement authority is greater than the absolute braking
distance, the train chooses the maximum acceleration A. Otherwise, it
chooses the maximum deceleration −b. The train dynamics is split into
two modes (line 4 and 6) in order to make sure that braking does not
lead to a negative velocity. That is, in case the veolocity is positive, the
train follows the acceleration chosen by its controller (line 4). However, the
evolution is restricted by v ≥ 0 in order to make sure that the train is not
driving backwards. When the velocity is 0, then the maximal deceleration
is 0 (modeled by the max{a, 0} in line 6).

We assume that the system is started in an initial region where all system
variables are 0 and the parameters A and b are positive numbers. Using the
invariant v2 ≤ 2b(MA−p)∧v ≥ 0 we can prove that the system always stays

Jan-David Quesel 191 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 7. Case Study

1

(
if c ≥ n then MA := MA +mp; c := 0 fi;

2 if v2 < 2b(MA− p) then a := A else a := −b fi;
3 if v > 0 then
4 (ṗ = v, v̇ = a, ċ = 1, v2 ≤ 2b(MA− p), v ≥ 0, c ≤ n)
5 else
6 (ṗ = v, v̇ = max{a, 0}, ċ = 1, v2 ≤ 2b(MA− p), c ≤ n)

7 fi
)∗

Figure 7.3: ETCS model

within its movement authority, i.e., �(p ≤ MA), where �F =̂�[0,∞[F .
This can be done fully automatically using our theorem prover KeYmaera.

7.3 Robust Refinements

When the initial region satisfies c = 0 then there is no communication
delay. In case c = −com for com > 0 holds in the initial region, then there
is a communction delay of exactly com time units. Let com = 0 hold for
our specification S. We conjecture that for an implementation Icom with
some value for com ≥ 0, Icom is an com-0-refinement of the specification,
i.e., Icom o com,0−−−−−→S. In order to prove this, we first transform our program
into standard form. The result is depicted in Figure 7.4. It can be obtained
by applying the definition of the if-statement and the distributivity law of
sequential composition and nondeterministic choice, i.e.,

α; (β ∪ γ) ≡ (α;β) ∪ (α; γ) .

Observe that, in line 8 the choice of the acceleration is 0 as opposed to
−b in line 3 in the case of braking. This way, we could avoid the max-
function in the differential equation systems in line 4 and 9. We visualize
the trajectories for the case that there is no communication delay and an
implementation with com = 2. We use the following parameter instances
for the simulation in Figure 7.5 and Figure 7.6:

n = 7 ∧mp = 10 ∧A = 1 ∧ b = 2

Jan-David Quesel 192 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 7. Case Study

1

((
?v > 0;

2 if c ≥ n then MA := MA +mp; c := 0 fi;
3 if v2 < 2b(MA− p) then a := A else a := −b fi;
4 (ṗ = v, v̇ = a, ċ = 1, v2 ≤ 2b(MA− p), v ≥ 0, c ≤ n)

)
5 ∪
6

(
?v ≤ 0;

7 if c ≥ n then MA := MA +mp; c := 0 fi;
8 if v2 < 2b(MA− p) then a := A else a := 0 fi;
9 (ṗ = v, v̇ = a, ċ = 1, v2 ≤ 2b(MA− p), c ≤ n)

)
10

)∗

Figure 7.4: ETCS model in standard form

0 5 10 15 20 25
0

5

10

15

20

25

30

t

Position (com = 0)

Position (com = 2)

Figure 7.5: Position of a train with and without message delay

Jan-David Quesel 193 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 7. Case Study

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

t

Velocity (com = 0)

Velocity (com = 2)

Figure 7.6: Velocity of a train with and without message delay

Jan-David Quesel 194 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 7. Case Study

Using the model in standard form, we can construct a game as described
in Section 5.2. The resulting game, without the initialization phase is given
in Figure 7.7. Falsifier controls the implementation Icom with variables
index by 1. Verifier controls the specification S with variables index by 2. In
order to simplify the proof search we decided to encode the control strategy
for the retiming parameter s directly into the game thereby restricting the
possible strategies of Verifier. The game consists of a choice for Falsifier
whether he is in the mode where v1 > 0 (lines 1-16), the mode where
v1 = 0 (line 17-32), or wants to take no action at all (line 33). Note that
his choice whether v1 > 0 or v1 = 0 is determined by the current value
of v1. If he chooses one of his regular modes, there is the same choice for
Verifier determined by the value of v2. Verifier chooses the value of s as
follows: In case the velocity is positive he chooses s = 1 (lines 7 and 23).
Otherwise, he chooses s = 2 as long as this is possible, i.e., as long as r < δ
and s = 1 if r = δ (lines 14 and 30). At the end of each loop iteration
Verifier has to ensure that the distance between of the positions, velocities,
and movement authorities is 0 (line 33).

In order to prove that Verifier still has a winning strategy in this game,
we need to find an inductive loop invariant. As a minimum requirement
this loop invariant has to imply that the distance between the state vectors
of the implementation and the specification is 0. In addition it needs to
encode sufficient knowledge about the value of r during the execution of the
loop in order to allow for reasoning that the strategy respects the temporal
bounds, i.e., |r| ≤ ε. We prove that the following formula is invariant for
the loop in Figure 7.7 using KeYmaera:

x1 = x2 ∧ v1 = v2 ∧m1 = m2(
(−ε ≤ c1 ≤ 0 ∧ r − c1 = ε ∧ c2 = 0 ∧ x1 = 0 ∧ v1 = 0

∧m1 = 0 ∧ 0 ≤ r ≤ ε) ∨ (c1 = c2 ∧ r = ε)
)

The invariant encodes that with an increasing value of r towards 2 the
distance between c1 and c2 converges to 0. Further, while the values of c1
and c2 are not yet equal neither of the trains moves. That is, even though
this whole retiming process might consume more than n time units, no time
passes in our specification as Verifier chooses s = 2. We use the following
assumptions about our system parameters for the proof:

A > 0 ∧ b > 0 ∧ n > 0 ∧mp > 0 .

Jan-David Quesel 195 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 7. Case Study

1

((([(
?v1 > 0;

2 if c1 ≥ n then MA1 := MA1 +mp; c1 := 0 fi;

3 if v21 < 2b(MA1 − p1) then a1 := A else a1 := −b fi
]

4

((〈
?v2 > 0;

5 if c2 ≥ n then MA2 := MA2 +mp; c2 := 0 fi;
6 if v22 < 2b(MA2 − p2) then a2 := A else a2 := −b fi

〉
7 〈s := 1〉
8 [ṗ1 = s · v1, v̇1 = s · a, ċ1 = s, v21 ≤ 2b(MA1 − p1), v1 ≥ 0, c1 ≤ n,
9 ṗ2 = (2− s)v2, v̇2 = (2− s)a, ċ2 = 2− s, v22 ≤ 2b(MA2 − p2), v2 ≥ 0,
10 c2 ≤ n, ṙ = 2s− 2, |r| ≤ ε]

)
11 ∪
12

(〈
?v2 ≤ 0;

13 if c2 ≥ n then MA2 := MA2 +mp; c2 := 0 fi;
14 if v22 < 2b(MA2 − p2) then a2 := A else a2 := 0 fi

〉
15 〈if r < ε then s := 2 else s := 1 fi〉
16 [ṗ1 = s · v1, v̇1 = s · a, ċ1 = s, v21 ≤ 2b(MA1 − p1), v1 ≥ 0, c2 ≤ n,
17 ṗ2 = (2− s)v2, v̇2 = (2− s)a, ċ2 = 2− s, v22 ≤ 2b(MA2 − p2)

18 c2 ≤ n ∧ ṙ = 2s− 2, |r| ≤ ε]
)))

19 ∩
([(

?v1 ≤ 0;

20 if c1 ≥ n then MA1 := MA1 +mp; c1 := 0 fi;

21 if v21 < 2b(MA1 − p1) then a1 := A else a1 := 0 fi
]

22

((〈
?v2 > 0;

23 if c2 ≥ n then MA2 := MA2 +mp; c2 := 0 fi;
24 if v22 < 2b(MA2 − p2) then a2 := A else a2 := −b fi

〉
25 〈s := 1〉
26 [ṗ1 = s · v1, v̇1 = s · a, ċ1 = s, v21 ≤ 2b(MA1 − p1), c1 ≤ n,
27 ṗ2 = (2− s)v2, v̇2 = (2− s)a, ċ2 = 2− s, v22 ≤ 2b(MA2 − p2), v2 ≥ 0,
28 c2 ≤ n, ṙ = 2s− 2, |r| ≤ ε]

)
29 ∪
30

(〈
?v2 ≤ 0;

31 if c2 ≥ n then MA2 := MA2 +mp; c2 := 0 fi;
32 if v22 < 2b(MA2 − p2) then a2 := A else a2 := 0 fi

〉
33 〈if r < ε then s := 2 else s := 1 fi〉
34 [ṗ1 = s · v1, v̇1 = s · a, ċ1 = s, v21 ≤ 2b(MA1 − p1), c1 ≤ n
35 ṗ2 = (2− s)v2, v̇2 = (2− s)a, ċ2 = 2− s, v22 ≤ 2b(MA2 − p2),

36 c2 ≤ n, ṙ = 2s− 2, |r| ≤ ε]
)))

37 ∩[?true]

)
〈?x1 = x2 ∧ v1 = v2 ∧m1 = m2〉

)[∗]

Figure 7.7: Robust refinement game for the ETCS model

Jan-David Quesel 196 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 7. Case Study

The proof has 204465 steps on 2083 branches. With a single interactions
(supplying the loop invariant) the proof takes roughly 48h to complete using
Redlog for local quantifier elimination and Z3 to deal with the resulting
purely universal proof obligations. Instantiating some of the parameters
with for example n = 7, mp = 10, A = 1, and b = 3 the proof finishes
within 157 minutes (235508 steps, 2083 branches).

Let ε = com for com ≥ 0. For the initial regions

x1 = 0 ∧ v1 = 0 ∧m1 = 0 ∧ c1 = −com

and
x2 = 0 ∧ v2 = 0 ∧m2 = 0 ∧ c2 = 0 ,

we can thus show that Verifier has a winning strategy in the game depicted
in Figure 7.7. Therefore, we know that Icom o com,0−−−−−→S by Theorem 9 (see
page 149). Hence with recom,0(�(p ≤ MA)) = �(p ≤ MA) we can conclude
from

S |= �(p ≤ MA)

that
Icom |= �(p ≤ MA) .

7.4 Conclusion

In this chapter we have utilized the ETCS as a case study for our approach
advocated in the Chapters 4 and 5. We have modeled a simple train con-
troller interacting with an RBC and proven that it is safe in the sense
that it always stays within its movement authority. Subsequently, we have
developed an implementation template that suffers from communication
delays in the communication with the RBC. Using hybrid games and dDGL
we were able to show that these implementations are robust refinements
of our original model. That way, we reasoned that our safety results from
this specification transfer to its implementations. Our model in this system
used very simple continuous dynamics. As the rules from the DAL calculus
are implemented in KeYmaera adding more realistic train dynamics would
be feasible. An interesting extension to the case study would be considering
non-constant communication delays. In that case we would assume that
some more assumptions on the relation of the communication delay, the
cycle time of the RBC, the length of the movement authority extension,
and acceleration bounds would be needed.

Jan-David Quesel 197 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 7. Case Study

Note that, the point of this case study is to show that the tools developed
throughout this thesis can be applied to prove robust refinement of hybrid
systems. Of course, our method is more beneficial in cases where there is a
large number of properties that have been shown for the specification. In
the example discussed in this chapter, it would obviously be much easier to
prove safety for the implementations directly instead of concluding it from a
large proof for the robust refinement relation. Still, we have demonstrated
that showing similarity of hybrid systems can be done effectively using our
methods. Observe that, in cases where n is small and mp is large the train
never reaches the end of its movement authority again. This means for
that case there is no δ such that some implementation with com > 0 is an
0-δ-refinement as the distance between the two trajectories would strictly
monotonically increasing (it would follow some second order function on
the interval [n,∞[for the specification and the interval [n + com,∞[for
the implementation).

Jan-David Quesel 198 Oldenburg, April 3, 2013

C H A P T E R E I G H T

Conclusion

Coming back to where you started
is not the same as never leaving.

— Terry Pratchett

Contents

8.1 Summary . 200
8.2 Concluding Remarks 201
8.3 Future Work . 201

8.3.1 Exploiting Conjunctions 202
8.3.2 Dynamic Bounds 202
8.3.3 Compositional Reasoning 203
8.3.4 Differential Dynamic Game Logic with Distur-

bances and Control 206

199

Similarity, Logic, and Games CHAPTER 8. Conclusion

In this chapter we summarize the results of this thesis, give some con-
cluding remarks w.r.t. straight forward extensions, and discuss direction
for future work.

8.1 Summary

In this thesis we have studied several different families of similarity no-
tions. Thereby, we have built a formal basis to relate different models and
transfer properties that have been proven for one system to another. One
well-studied property type is stability. We have shown that each robust
refinement of a stable specification is region stable. Further, we presented
a variant of metric temporal logic, our new logic L\ (natural logic), to for-
mulate more complex properties of hybrid systems. Subsequently, we have
given a syntactic transformation that computes from a set of properties of
a specification a set of properties that all robust refinements of this spec-
ification exhibit. In order to prove that two systems are similar we have
studied hybrid games and presented a second new logic, differential dy-
namic game logic (dDGL), to reason about these. Based on automata and
program representations of hybrid systems, we have given two approaches
to show that two systems are in robust refinement relation. We presented
a sequent proof calculus for dDGL which we implemented in our theorem
prover KeYmaera. As a showcase for dDGL we considered a case study in
which a robot plays a game against other agents in a factory automation
scenario. A crucial part of proving properties about hybrid systems, hybrid
games, or mathematical textbook algorithms is dealing with the resulting
proof obligations in first-order logic over the reals. Therefore, we have
taken a deeper look into different methods of proving real arithmetic state-
ments. We presented a new approach for showing the validity of universal
first-order formulas over the reals based on Gröbner Bases and semidef-
inite programming for the Real Nullstellensatz that produces checkable
certificates. Subsequently, we provided experimental evidence that proof
producing methods for this task make a lot of progress and even outper-
form some well-established tools on an interesting set of benchmarks. In
order to demonstrate the applicability of our approach for showing robust
refinement, we have considered a case study from the domain of train con-
trol and proven that a system struggling with communication delays is a
robust refinement of a specification that assumes instantaneous message
passing. That way, we were able to reason that as the specification is safe
so are its imperfect implementations.

Jan-David Quesel 200 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 8. Conclusion

8.2 Concluding Remarks

In this thesis we formulated our notions of similarity in terms of hybrid
programs. Note that we could alternatively define these notions in terms
of quantified hybrid programs [Pla10c] as well. Quantified hybrid programs
can be used to express dynamically reconfigurable hybrid systems. In order
to show that two such systems are in robust refinement relation, we can use
the same constructions as in Chapter 5 on a variant of dDGL that is based
on quantified differential dynamic logic (QdL) [Pla10c]. This extension of
dDGL towards dynamically reconfigurable system description can be done
easily as the method to “gamify” dynamic logics presented in Chapter 4 on
the example of dL works on arbitrary dynamic logics and can thus be used
easily to “gamify” QdL. A pitfall that one should keep in mind is that the
state space described by quantified hybrid systems is not finite dimensional.
This does not pose an issue for the similarity notions itself. However, in
order to compute the properties that are preserved under this extended
notion of similarity we have to keep in mind that the equivalence of norms
stated in Lemma 3 does not hold for infinite vector spaces. Therefore, we
would need to choose a fixed norm like the maximum norm in order to be
able to easily compute it component wise while still having nice properties
like monotonicity. Other than that this extension is straightforward.

8.3 Future Work

In this section, we like to discuss some possible directions of future work.
Certainly worthwhile to explore would be how we could extend our logic
L\ while still being able to transfer properties. Furthermore, we sketch
the possibility to replace the constant bounds on the temporal and/or spa-
tial distances by more general functions. As proving similarity of hybrid
systems is computationally expensive, we discuss approaches for compo-
sitional reasoning in the sense of deducing from the similarity of parts of
systems that the whole systems are similar. For our differential dynamic
game logic the question arises whether we could extend it to reasoning
about differential games in addition to deterministic continuous evolutions
along differential equations. We sketch some ideas how this could be done
and what possible proof rules could look like.

Jan-David Quesel 201 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 8. Conclusion

8.3.1 Exploiting Conjunctions

The transformation function to compute what properties are preserved pre-
sented in Chapter 3 transformes each subformula individually. However, it
could be worthwhile to study what knowledge about the variable valuations
is provided by surrounding formulas. For example if we have a formula like

�(x ∈ [2, 4] ∧ x2 − 3 ≤ 0) (8.1)

for all trajectories in a distance of at most 1 w.r.t. the Euclidean norm we
can infer that they satisfy

�(x ∈ [1, 5] ∧ (x− 1)2 − 3 ≤ 0) (8.2)

even though the function f(x) = x2 − 3 is neither monotone nor Lipschitz
continuous. This results from the fact that the function is monotone on the
interval [1, 5]. Thus, using the surrounding information gives us an edge
over blindly checking the properties of the functions and disregarding this
property as it does not match our conditions.

A similar construction could be done if we have knowledge about the
Lipschitz continuity on a certain interval. Then, we could use the Lipschitz
constant for the specific interval instead of a global one, which might overall
give a tighter fit.

8.3.2 Dynamic Bounds

An interesting extension to our notions of similarity could be to move from
constant bounds on the spatial and temporal distances to functions defining
the bounds over time. Assume the spatial distance is bounded by a strictly
decreasing monotone function that converges towards zero. In that case we
could deduce from one system being asymptotically stable not only that its
robust refinements are region stable but in addition use the fact that the
variable valuations converge towards each other and, therefore, all robust
refinements are asymptotically stable as well.

Definition 63 (Dynamic Similarity of Traces). For two traces σ1 and σ2,
given a strictly monotonically decreasing function δ : R≥0 → R≥0, we say
that σ1 is weakly δ(t)-similar to σ2 (denoted by σ1 ∞←−−oo δ(t)−−−→σ2) iff there
is an retiming r such that

∀(t, t̃) ∈ r : ||σ1(t)− σ2(t̃)|| ≤ δ(t) .

Jan-David Quesel 202 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 8. Conclusion

In contrast to Definition 21 we have a strictly monotonically decreasing
function defining the spatial bounds.

Conjecture 1. Let σ1 and σ2 be hybrid traces such that σ1 ∞←−−−oo δ(t)−−−−→σ2.
If σ1 is asymptotically stable then σ2 is asymptotically stable as well.

8.3.3 Compositional Reasoning

To make proving robust refinement easier it would be nice to have compo-
sitional proof rules. However, it turns out that this task is rather difficult.
For the choice operator we can use the following result to get a composi-
tional proof rule.

Proposition 9. If A o ε1,δ1−−−−→A′ and B o ε2,δ2−−−−→B′ then

A ∪B o max{ε1,ε2},max{δ1,δ2}−−−−−−−−−−−−−−−−→A′ ∪B′ .

Proof. Assume A o ε1,δ1−−−−→A′ and B o ε2,δ2−−−−→B′. Consider an arbitrary hy-
brid trace σ ∈ τ(A ∪B) of A ∪B. From the semantics of ∪ we know that
either σ ∈ τ(A) or σ ∈ τ(B). By definition, τ(A′ ∪ B′) = τ(A′) ∪ τ(B′).
We make a case distinction over the origin of trace σ. If σ ∈ τ(A) then
there is a trace σA′ of A′ that is close because A o ε1,δ1−−−−→A′ holds. Also,
this traces can be chosen by A′ ∪B′, i.e., σA′ ∈ τ(A′ ∪B′). From Lemma
7 we know that our relation is monotone w.r.t. parameter values. There-
fore, this trace does not yield a counterexample to our assumption that
A ∪ B o max{ε1,ε2},max{δ1,δ2}−−−−−−−−−−−−−−−−→A′ ∪ B′. The second case, i.e., σ ∈ τ(B), is
symmetric. Overall, we can conclude that

A ∪B o max{ε1,ε2},max{δ1,δ2}−−−−−−−−−−−−−−−−→A′ ∪B′ .

However, already for sequential composition it gets more difficult. One
could conjecture that like for our weak transitivity it holds that A o ε1,δ1−−−−→A′

and B o ε2,δ2−−−−→B′ imply A;B o ε1+ε2,δ1+δ2−−−−−−−−−→A′;B′. However, this conjecture
is false as we can see from the following example.

Jan-David Quesel 203 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 8. Conclusion

Example 27. Let A,A′, B,B′ be defined as follows:

A =̂x := 0; ẋ = 0

A′ =̂x := 1; ẋ = 0

B =̂?x = 0; ẋ = 1

B′ =̂?x = 0; ẋ = 1

We can easily see that A;B has runs where x can reach any positive value.
Further, A o ε1,δ1−−−−→A′ for any ε1 ≥ 0 and any δ1 ≥ ||1||. The systems B
and B′ are even identical. Still, the composition A′;B′ does not have any
run and is, thus, not similar to A;B. This disproves our conjecture.

The issue is that we do not gain sufficient knowledge about B′ with
regard to its overall behavior as its initial values are existentially quantified
in our notion of refinement. Hence we need stronger premises. Let vC := x
be a vectorial assignment that updates all variables of a system C.

Proposition 10. If A o ε1,δ1−−−−→A′ and vB := a;B o ε2,δ2−−−−→ vB′ := b;B′ holds
for all points (a, b) ∈ Rn × Rn with ||a− b|| ≤ δ1 then

A;B o ε1+ε2,max{δ1,δ2}−−−−−−−−−−−−−→A′;B′ .

Proof. Assume that A o ε1,δ1−−−−→A′ and vB := a;B o ε2,δ2−−−−→ vB′ := b;B′ holds
for all points (a, b) ∈ Rn × Rn with ||a − b|| ≤ δ1. Further, assume that
there is a trace σ ∈ τ(A;B) as otherwise there is nothing to show. This
means that there is a trace σA ∈ τ(A) of A and a trace σB ∈ τ(B) of B
such that last(σA) = first(σB) and σA ◦ σB = σ. Let σA′ ∈ τ(A′) be such
that σA ε1←−−oo δ1−−→σA′ . This trace exists as we assume A o ε1,δ1−−−−→A′ to hold.
From this, we know that

||last(σA)− last(σA′)|| ≤ δ1 . (8.3)

Further, we can find a trace σB′ with first(σB′) = last(σA′) such that it
is similar to σB , i.e., σB ε2←−−oo δ2−−→σB′ . This is because we assume

vB := a;B o ε2,δ2−−−−→ vB′ := b;B′

holds for all points (a, b) ∈ Rn × Rn with ||a − b|| ≤ δ1. Hence we can
combine these two traces σA′ ◦σB′ = σ′. The resulting trace is close to the
original one, i.e., σ ε1+ε2←−−−−−oo max{δ1,δ2}−−−−−−−−→σ′. This is, because on the first

Jan-David Quesel 204 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 8. Conclusion

part the distance is at most δ1 and on the second part it is at most δ2.
Thus, overall it is at most max{δ1, δ2}. The temporal deviations, however,
add up. This results from the fact that it might be necessary to slow down
one system on both parts of the trajectory. As σ was arbitrary, we can
conclude that A;B o ε1+ε2,max{δ1,δ2}−−−−−−−−−−−−−→A′;B′.

Observe that the proposition has an uncountably many premisses. Still
it would be possible to adapt our robust refinement game construction to
this notion. This is, instead of letting Verifier choose the initial variable
valuation for the variables in B′ we give this choice to Falsifier with the
restriction that the choice has to satisfy ||vB − vB′ || ≤ δ.

For parallel composition we are out of luck for our notion of robust
refinement. Let us consider the case of a parallel composition operator
like defined on hybrid automata with synchronization on time passage and
interleaving on discrete actions.

Example 28. We extend Example 10 (see page 76). Let A,A′, B,B′ be
defined as follows:

A =̂x := 1; ẋ = x

A′ =̂x := 2; ẋ = x

B =̂ y := 2; ẏ = y

B′ =̂ y := 1; ẏ = y

As we can easily see it holds that A o ε,δ−−−→A′ for ε ≥ ln(1) and δ ≥ ||1||. The
same holds for B and B′, i.e. B o ε,δ−−−→B′. However, there is no common
retiming such that for all traces of A ‖ B there is a trace of A′ ‖ B′ that
is close. This is, because for the similarity of A and A′ we have to speed
up the evolution of A. Whereas for B and B′ we have to slow down the
evolution of B. When running the systems in parallel, however, we cannot
do both. Thus, it does not hold that A ‖ B o ε,δ−−−→A′ ‖ B′.

However, for the case where there are no temporal deviations, i.e., that
of 0-δ-refinements, there might be hope. Let the norm be the maximum
norm.

Proposition 11. For disjoint parallelism it holds that if A o 0,δ1−−−−→A′ and
B o 0,δ2−−−−→B′ then A ‖ B o 0,max{δ1,δ2}−−−−−−−−−−→A′ ‖ B′.

Jan-David Quesel 205 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 8. Conclusion

Proof. Assume A o 0,δ1−−−−→A′ and B o 0,δ2−−−−→B′. Let σ ∈ τ(A ‖ B) be a trace
of A ‖ B. By projection, we can extract a trace of A, i.e., σA ∈ τ(A) and
one of B, i.e., σB ∈ τ(B) such that σA ‖ σB = σ for a suitable definition
of ‖ on traces. Let σA′ ∈ τ(A′) be a trace such that σA 0←−−oo δ1−−→σA′ and
σB′ ∈ τ(B′) be a trace such that σB 0←−−oo δ2−−→σB′ . These traces exist by
assumption. Let σA′ ‖ σB′ =: σ′ ∈ τ(A′ ‖ B′) be a trace of A′ ‖ B′.
From our assumptions, we know that for each point in time the distance
w.r.t. the variables of systems A and A′ is at most δ1. The distance w.r.t.
the variables of systems B and B′ is at most δ2. Hence as the norm is the
maximum norm, the overall distance is, therefore, bounded by max{δ1, δ2}.
Therefore, σ 0←−−oo max{δ1,δ2}−−−−−−−−→σ′ and, as σ was an arbitrary trace of A ‖ B,
A ‖ B o 0,max{δ1,δ2}−−−−−−−−−→A′ ‖ B′.

This may give rise to a compositional (w.r.t. the operations choice,
sequential composition, and parallel composition) proof search for showing
0-δ-refinements.

8.3.4 Differential Dynamic Game Logic with Disturbances
and Control

In our definition of dDGL we restricted the interactions between the players
to discrete moves. However, in a continuous world influences by an ana-
log controller and the environment can change the dynamics of a system
concurrently. Therefore, we propose continuous disturbances and control
inputs as a concept to model such behaviors. This extension basically re-
places differential equation systems by differential games [Isa65], where the
two players pursue different reachability goals.

Syntax. For this extension we propose to add the differential games beside
the existing modalities.

M ::= [α] | 〈α〉 | [ẋ = f(x, u, d), χ]

G ::= M | (G1 ∩G2) | (G1 ∪G2) | (G1G2) | (G)[∗] | (G)〈∗〉

We conjecture that it is necessary to assume that f is globally Lipschitz
continuous in x, continuous in u and d, and bounded like in the work of
Gao et al. [GLQ07].

Jan-David Quesel 206 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 8. Conclusion

Semantics. For a function f : X → Y let Z C f for Z ⊆ X denote the
domain restriction of f to X.

Definition 64 (Control Law). Let d denote the dimension of the distur-
bance inputs and u the dimension of the control inputs. A control law is a
family of functions cR : R≥0×(R→ Rd)×Rn → (R≥0 → Ru) for R ⊆ R≥0
that satisfy the following properties:

• For all t ∈ R≥0, x ∈ Rn, d ∈ R → Rd with R ⊆ R≥0 the function
cR(t, d, x) is Lebesgues-measurable.

• For all T ≥ 0, x ∈ Rn, disturbances d1 ∈ R1 → Rd with R1 ⊆ R≥0,
and disturbances d2 ∈ R2 → Rd with R2 ⊆ R≥0 if d1(t) = d2(t) for
almost every t ∈ [0, T] then cR1

(s, d1, x)(t′) = cR2
(s, d2, x)(t′) for all

s ≥ T and almost all times t′ ∈ [0, T].

The latter restriction on the possible control laws is used to enforce
causality, i.e., the control law may not react on events that are occurring
in the future. Sometimes, this property is called non-antipativity [GLQ07].

We are now able to amend our semantics.

12. ν |= [ẋ = f(x, u, d), χ]φ iff there is a control law cR such that ω |= φ
for all states ω such that there is a t ∈ R≥0 and d : [0, t] → Rd such
that there is a solution y of the initial value problem

ẋ(s) = f(x(s), u(s), d(s)) ∧ x(0) = ν(x)

with u(s) = c[0,s](t, [0, s] C d, x)(s), (y(t′), u(t′), d(t′)) |= χ for all
0 ≤ t′ ≤ t, and y(t) = ω.

Proof Calculus. If there are only inputs under control of Falsifier we could
use differential algebraic constraints [Pla10b] in order to argue about these
disturbances already in dDGL.

[∃d : ẋ = f(x, d),−min ≤ d ≤ max]

For inputs under control of Verifier we have to do a more complex con-
struction. As we announce the number of loop iterations in advance the
maximum evolution time is known a priori by Verifier. In the following we
make this explicit using g for the global upper bound.

Jan-David Quesel 207 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 8. Conclusion

If a piecewise constant input function for Verifier suffices then we could
use the following encoding:

[t := 0; g := ∗; ?g ≥ 0] 〈s := ∗; ?s > 0〉(
〈?c < s ∪ (u := ∗; c := 0)〉[

ẋ = f(x, u), ċ = 1, ṫ = 1&c ≤ s ∧ t ≤ g
])[∗]

In this formula g denotes the maximum evolution time and this choice
is binding for Falsifier which is governed by the clock t. The variables s
denotes the sampling frequency of our input function and the clock c is
used to ensure that Falsifier respects this choice.

We could extend this idea to inputs that are piecewise polynomial.

[t := 0; g := ∗; ?g ≥ 0] 〈s := ∗; ?s > 0〉(
〈?c < s ∪ (a0 := ∗; · · · ; an := ∗; c := 0)〉

[
∃u : ẋ = f(x, u), ċ = 1, ṫ = 1&u =

n∑
i=0

aix
i ∧ c ≤ s ∧ t ≤ g

])[∗]

In addition to the previous encoding of piecewise constant function, Verifier
can choose coefficients of some polynomial over the state variables. The
polynomial thus determined then describes the inputs for the next sampling
period. We only sketch this for univariate polynomials here but it can be
easily extended to the multivariate case.

This could even be extended further to piecewise polynomial differen-
tiable inputs.

[t := 0; g := ∗; ?g ≥ 0] 〈s := ∗; ?s > 0〉(
〈?c < s ∪ (a0 := ∗; · · · ; an := ∗;u := ∗; c := 0)〉

[
ẋ = f(x, u), ċ = 1, ṫ = 1, u̇ =

n∑
i=0

aix
i&c ≤ s ∧ t ≤ g

])[∗]

Overall, this extension of dDGL certainly needs some more work. It
could be worthwhile to consider as it might enable us to reason about

Jan-David Quesel 208 Oldenburg, April 3, 2013

Similarity, Logic, and Games CHAPTER 8. Conclusion

specifications which feature some slackness w.r.t. the continuous evolution.
This slackness could be exploited when showing robust refinement relations.
The simplest and most common form of slackness are differential inclusions.
By allowing continuous inputs these could be added to our specification
language.

Jan-David Quesel 209 Oldenburg, April 3, 2013

210

Similarity, Logic, and Games Bibliography

Bibliography

[ABD08] Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors. Automated Reasoning, 4th International Joint Con-
ference, IJCAR 2008, Sydney, Australia, August 12-15,
2008, Proceedings, volume 5195 of Lecture Notes in Com-
puter Science. Springer-Verlag Berlin Heidelberg, 2008. (Ref-
erenced on page(s) 220, 221, 225)

[ACHH92] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger,
and Pei-Hsin Ho. Hybrid automata: An algorithmic ap-
proach to the specification and verification of hybrid systems.
In Grossman et al. [GNRR93], pages 209–229. (Referenced
on page(s) 4, 10, 11, 19, 25, 124)

[AD91] Rajeev Alur and David L. Dill. The theory of timed au-
tomata. In J. W. de Bakker, Cornelis Huizing, Willem P.
de Roever, and Grzegorz Rozenberg, editors, REX Work-
shop, volume 600 of Lecture Notes in Computer Science,
pages 45–73. Springer-Verlag Berlin Heidelberg, 1991. (Ref-
erenced on page(s) 3, 4)

[AH92] Rajeev Alur and Thomas A. Henzinger. Logics and models
of real time: A survey. In Proceedings of the Real-Time:
Theory in Practice, REX Workshop, pages 74–106, London,
UK, 1992. Springer-Verlag. (Referenced on page(s) 61)

Jan-David Quesel 211 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[ALPK12] Nikos Aréchiga, Sarah M. Loos, André Platzer, and Bruce H.
Krogh. Using theorem provers to guarantee closed-loop sys-
tem properties. In Dawn Tilbury, editor, American Control
Conference, Montréal, Canada, June 27-29, 2012. (Refer-
enced on page(s) 11, 180)

[ÁMSH01] Erika Ábrahám-Mumm, Martin Steffen, and Ulrich Hanne-
mann. Verification of hybrid systems: Formalization and
proof rules in PVS. In ICECCS, pages 48–57. IEEE Com-
puter, 2001. (Referenced on page(s) 158)

[AP07] Behzad Akbarpour and Lawrence C. Paulson. Extending a
resolution prover for inequalities on elementary functions. In
Nachum Dershowitz and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, 14th
International Conference, LPAR 2007, Yerevan, Armenia,
October 15-19, 2007, Proceedings, volume 4790 of Lecture
Notes in Computer Science, pages 47–61. Springer-Verlag
Berlin Heidelberg, 2007. (Referenced on page(s) 183)

[BBC09] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. O-
minimal hybrid reachability games. Logical Methods in Com-
puter Science, 6(1), 2009. (Referenced on page(s) 82, 116)

[BCR98] Jacek Bochnak, Michel Coste, and Marie-Francoise Roy. Real
Algebraic Geometry, volume 36 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. Springer-Verlag Berlin Heidelberg,
1998. (Referenced on page(s) 172)

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, ed-
itors. Verification of Object-Oriented Software: The KeY
Approach, volume 4334 of Lecture Notes in Computer Sci-
ence. Springer-Verlag Berlin Heidelberg, 2007. (Referenced
on page(s) 156, 157)

[BLL+95] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson,
Paul Pettersson, and Wang Yi. Uppaal - a tool suite for
automatic verification of real-time systems. In Rajeev Alur,
Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hy-
brid Systems, volume 1066 of Lecture Notes in Computer

Jan-David Quesel 212 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

Science, pages 232–243. Springer-Verlag Berlin Heidelberg,
1995. (Referenced on page(s) 4)

[Bor99] Brian Borchers. CSDP, a C library for semidefinite program-
ming. Optimization Methods and Software, 11(1-4):613–623,
1999. (Referenced on page(s) 161, 174, 179)

[Bro07] Luitzen Egbertus Jan Brouwer. Over de grondslagen der
wiskunde. Maas & van Suchtelen, 1907. (Referenced on
page(s) 5)

[Bro03] Christopher W. Brown. QEPCAD B: A program for com-
puting with semi-algebraic sets using CADs. SIGSAM Bull.,
37(4):97–108, 2003. (Referenced on page(s) 161, 170)

[Buc65] Bruno Buchberger. An Algorithm for Finding the Basis El-
ements of the Residue Class Ring of a Zero Dimensional
Polynomial Ideal. PhD thesis, University of Innsbruck, 1965.
(Referenced on page(s) 161, 163, 167)

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge Univ. Press, 2004. (Referenced on
page(s) 173, 176, 184)

[BZSH12] Richard Banach, Huibiao Zhu, Wen Su, and Runlei Huang.
Continuous KAOS, ASM, and formal control system design
across the continuous/discrete modeling interface: a simple
train stopping application. Formal Aspects of Computing,
pages 1–48, 2012. (Referenced on page(s) 78, 188)

[CH91] George E. Collins and Hoon Hong. Partial cylindrical alge-
braic decomposition for quantifier elimination. Journal of
Symbolic Computation, 12(3):299–328, 1991. (Referenced on
page(s) 161, 170, 171, 182, 184)

[Col75] George E. Collins. Hauptvortrag: Quantifier elimination
for real closed fields by cylindrical algebraic decomposi-
tion. In H. Barkhage, editor, Automata Theory and For-
mal Languages, volume 33 of Lecture Notes in Computer
Science, pages 134–183. Springer-Verlag Berlin Heidelberg,
1975. (Referenced on page(s) 5, 161, 170)

Jan-David Quesel 213 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[Con90] J.B. Conway. A Course in Functional Analysis. Graduate
Texts in Mathematics. Springer-Verlag Berlin Heidelberg,
1990. (Referenced on page(s) 34)

[Coo71] Stephen A. Cook. The complexity of theorem-proving pro-
cedures. In STOC ’71: Proceedings of the third annual ACM
symposium on Theory of computing, pages 151–158. ACM
Press, 1971. (Referenced on page(s) 25)

[CRT09] Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. Re-
quirements validation for hybrid systems. In Ahmed Bouaj-
jani and Oded Maler, editors, Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings, volume 5643 of Lecture
Notes in Computer Science. Springer-Verlag Berlin Heidel-
berg, 2009. (Referenced on page(s) 188)

[dAFS09] Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear
and branching system metrics. IEEE Trans. Software Eng.,
35(2):258–273, 2009. (Referenced on page(s) 77)

[Dav09] Jennifer M. Davoren. Epsilon-tubes and generalized sko-
rokhod metrics for hybrid paths spaces. In Rupak Majumdar
and Paulo Tabuada, editors, Hybrid Systems: Computation
and Control, 12th International Conference, HSCC 2009,
San Francisco, CA, USA, April 13-15, 2009, Proceedings,
volume 5469 of Lecture Notes in Computer Science, pages
135–149. Springer-Verlag Berlin Heidelberg, 2009. (Refer-
enced on page(s) 77, 80)

[DDD+12] Werner Damm, Henning Dierks, Stefan Disch, Willem Hage-
mann, Florian Pigorsch, Christoph Scholl, Uwe Waldmann,
and Boris Wirtz. Exact and fully symbolic verification of
linear hybrid automata with large discrete state spaces. Sci-
ence of Computer Programming, 77(10-11):1122–1150, 2012.
(Referenced on page(s) 132, 158)

[DH88] James H. Davenport and Joos Heintz. Real quantifier elim-
ination is doubly exponential. Journal of Symbolic Compu-
tation, 5(1/2):29–35, 1988. (Referenced on page(s) 5, 170)

Jan-David Quesel 214 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[DM10] Alexandre Donzé and Oded Maler. Robust satisfaction of
temporal logic over real-valued signals. In Krishnendu Chat-
terjee and Thomas A. Henzinger, editors, Formal Modeling
and Analysis of Timed Systems - 8th International Confer-
ence, FORMATS 2010, Klosterneuburg, Austria, September
8-10, 2010, Proceedings, volume 6246 of Lecture Notes in
Computer Science, pages 92–106. Springer-Verlag Berlin Hei-
delberg, 2010. (Referenced on page(s) 78, 80)

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An
efficient SMT solver. In C. R. Ramakrishnan and Jakob Re-
hof, editors, TACAS, volume 4963 of Lecture Notes in Com-
puter Science, pages 337–340. Springer-Verlag Berlin Heidel-
berg, 2008. (Referenced on page(s) 161, 171, 180)

[DMO+07] Werner Damm, Alfred Mikschl, Jens Oehlerking, Ernst-
Rüdiger Olderog, Jun Pang, André Platzer, Marc Segelken,
and Boris Wirtz. Automating verification of cooperation,
control, and design in traffic applications. In Cliff B. Jones,
Zhiming Liu, and Jim Woodcock, editors, Formal Methods
and Hybrid Real-Time Systems, volume 4700 of LNCS, pages
115–169. Springer, 2007. (Referenced on page(s) 189)

[DS97] Andreas Dolzmann and Thomas Sturm. Redlog: Computer
algebra meets computer logic. ACM SIGSAM Bull., 31:2–9,
1997. (Referenced on page(s) 161, 171)

[DSW98] Andreas Dolzmann, Thomas Sturm, and Volker Weispfen-
ning. A new approach for automatic theorem proving in real
geometry. Journal of Automated Reasoning, 21(3):357–380,
1998. (Referenced on page(s) 180)

[Ehr61] Andrzej Ehrenfeucht. An application of games to the
completeness problem for formalized theories. Funda-
menta Mathematicae, 49:129–141, 1961. (Referenced on
page(s) 152)

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Møller. Mona
1.x: New techniques for ws1s and ws2s. In Alan J. Hu
and Moshe Y. Vardi, editors, Computer Aided Verification,
10th International Conference, CAV ’98, Vancouver, BC,

Jan-David Quesel 215 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

Canada, June 28 - July 2, 1998, Proceedings, volume 1427 of
Lecture Notes in Computer Science, pages 516–520. Springer-
Verlag Berlin Heidelberg, 1998. (Referenced on page(s) 188)

[ERT02] ERTMS User Group, UNISIG. ERTMS/ETCS System re-
quirements specification. http://www.era.europa.eu, 2002.
Version 2.2.2. (Referenced on page(s) 187, 189)

[FGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott
Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, An-
toine Girard, Thao Dang, and Oded Maler. SpaceEx: Scal-
able verification of hybrid systems. In Ganesh Gopalakrish-
nan and Shaz Qadeer, editors, Computer Aided Verification
- 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011, Proceedings, volume 6806 of Lecture
Notes in Computer Science, pages 379–395. Springer-Verlag
Berlin Heidelberg, 2011. (Referenced on page(s) 132, 158)

[FHT+07] Martin Fränzle, Christian Herde, Tino Teige, Stefan
Ratschan, and Tobias Schubert. Efficient solving of
large non-linear arithmetic constraint systems with complex
boolean structure. Journal on Satisfiability, Boolean Mod-
eling and Computation, 1:209–236, 2007. (Referenced on
page(s) 132)

[FIJSS10] Johannes Faber, Carsten Ihlemann, Swen Jacobs, and Vior-
ica Sofronie-Stokkermans. Automatic verification of para-
metric specifications with complex topologies. In D. Méry
and S. Merz, editors, Integrated Formal Methods, volume
6396 of Lecture Notes in Computer Science, pages 152–167.
Springer-Verlag Berlin Heidelberg, 2010. (Referenced on
page(s) 188)

[Fit96] Melvin C. Fitting. First-Order Logic and Automated Theo-
rem Proving. Springer, New York, 2nd edition, 1996. (Ref-
erenced on page(s) 21, 22, 24)

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional
dynamic logic of regular programs. J. Comput. Syst. Sci.,
18(2):194–211, 1979. (Referenced on page(s) 118, 121)

Jan-David Quesel 216 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[FLOQ11] Johannes Faber, Sven Linker, Ernst-Rüdiger Olderog, and
Jan-David Quesel. Syspect - modelling, specifying, and ver-
ifying real-time systems with rich data. International Jour-
nal of Software and Informatics, 5(1-2):117–137, 2011. ISSN
1673-7288. (Referenced on page(s) 188)

[FM99] Melvin Fitting and Richard L Mendelsohn. First-order modal
logic, volume 277. Springer, 1999. (Referenced on page(s) 6)

[For08] Otto Forster. Analysis Band 2 Differential- und Integralrech-
nung im Rn, Gewöhnliche Differentialgleichungen. Vieweg-
Studium 31: Grundkurs Mathematik. Vieweg, Braun-
schweig, 8 edition, 2008. (Referenced on page(s) 29, 30)

[FP09] Georgios E. Fainekos and George J. Pappas. Robustness
of temporal logic specifications for continuous-time signals.
Theor. Comput. Sci., 410(42):4262–4291, 2009. (Referenced
on page(s) 78)

[Fre05] Goran Frehse. PHAVer: Algorithmic verification of hy-
brid systems past HyTech. In Manfred Morari and Lothar
Thiele, editors, Hybrid Systems: Computation and Control,
8th International Workshop, HSCC 2005, Zurich, Switzer-
land, March 9-11, 2005, Proceedings, volume 3414 of Lecture
Notes in Computer Science, pages 258–273. Springer-Verlag
Berlin Heidelberg, 2005. (Referenced on page(s) 158)

[Fre08] Goran Frehse. Phaver: algorithmic verification of hybrid
systems past hytech. Software Tools for Technology Transfer
(STTT), 10(3):263–279, 2008. (Referenced on page(s) 132)

[FT11] Uli Fahrenberg and Stavros Tripakis, editors. Formal Model-
ing and Analysis of Timed Systems - 9th International Con-
ference, FORMATS 2011, Aalborg, Denmark, September 21-
23, 2011. Proceedings, volume 6919 of Lecture Notes in Com-
puter Science. Springer-Verlag Berlin Heidelberg, 2011. (Ref-
erenced on page(s) 226, 228)

[Gen35] Gerhard Gentzen. Untersuchungen über das logische
Schließen II. Mathematische Zeitschrift, 39, 1935. (Refer-
enced on page(s) 99)

Jan-David Quesel 217 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[GJP08] Antoine Girard, A. Agung Julius, and George J. Pappas. Ap-
proximate simulation relations for hybrid systems. Discrete
Event Dynamic Systems, 18(2):163–179, 2008. (Referenced
on page(s) 76, 77)

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.
Concrete Mathematics: A Foundation for Computer Science.
Addison-Wesley Longman, Boston, MA, USA, 1994. (Refer-
enced on page(s) 179)

[GLQ07] Yan Gao, John Lygeros, and Marc Quincampoix. On the
Reachability Problem for Uncertain Hybrid Systems. IEEE
Transactions on Automatic Control, 52(9), September 2007.
(Referenced on page(s) 117, 206, 207)

[GMS12] Bernhard Gramlich, Dale Miller, and Uli Sattler, editors. Au-
tomated Reasoning - 6th International Joint Conference, IJ-
CAR 2012, Manchester, UK, June 26-29, 2012. Proceedings,
volume 7364 of Lecture Notes in Computer Science. Springer-
Verlag Berlin Heidelberg, 2012. (Referenced on page(s) 220,
226)

[GNRR93] Robert L. Grossman, Anil Nerode, Anders P. Ravn, and
Hans Rischel, editors. Hybrid Systems, volume 736 of Lecture
Notes in Computer Science. Springer-Verlag Berlin Heidel-
berg, 1993. (Referenced on page(s) 211, 221)

[Göd33] Kurt Gödel. Eine Interpretation des intuitionistischen Aus-
sagenkalküls. Ergebnisse eines mathematischen Kolloquiums,
4:34–38, 1933. (Referenced on page(s) 5)

[Har07] John Harrison. Verifying nonlinear real formulas via sums
of squares. In Klaus Schneider and Jens Brandt, edi-
tors, TPHOLs, volume 4732 of Lecture Notes in Computer
Science, pages 102–118. Springer-Verlag Berlin Heidelberg,
2007. (Referenced on page(s) 161, 168, 172, 174, 175, 179,
182, 183, 184)

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In
11th Annual IEEE Symposium on Logic in Computer Sci-
ence, New Brunswick, New Jersey, USA, July 27-30, 1996,

Jan-David Quesel 218 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

Proceedings, pages 278–292, Los Alamitos, 1996. IEEE Com-
puter Society. (Referenced on page(s) 4, 10, 11, 19)

[HHM99] Thomas A. Henzinger, Benjamin Horowitz, and Rupak Ma-
jumdar. Rectangular hybrid games. In Jos C. M. Baeten
and Sjouke Mauw, editors, CONCUR, volume 1664 of Lec-
ture Notes in Computer Science. Springer-Verlag Berlin Hei-
delberg, 1999. (Referenced on page(s) 82, 116)

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
Hytech: A model checker for hybrid systems. Software Tools
for Technology Transfer (STTT), 1(1-2):110–122, 1997. (Ref-
erenced on page(s) 4, 11, 158)

[Hil93] David Hilbert. Ueber die vollen Invariantensysteme. Math-
ematische Annalen, 42(3):313–373, 1893. (Referenced on
page(s) 164)

[HKPV95] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and
Pravin Varaiya. What’s decidable about hybrid automata?
In Frank Thomson Leighton and Allan Borodin, editors,
Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, 29 May-1 June 1995, Las Vegas,
Nevada, USA, pages 373–382. ACM, 1995. (Referenced on
page(s) 4)

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic
logic. MIT Press, 2000. (Referenced on page(s) 6, 28)

[HMP05] Thomas A. Henzinger, Rupak Majumdar, and Vinayak S.
Prabhu. Quantifying similarities between timed systems.
In Paul Pettersson and Wang Yi, editors, Formal Modeling
and Analysis of Timed Systems, Third International Confer-
ence, FORMATS 2005, Uppsala, Sweden, September 26-28,
2005, Proceedings, volume 3829 of Lecture Notes in Com-
puter Science, pages 226–241. Springer-Verlag Berlin Heidel-
berg, 2005. (Referenced on page(s) 77)

[Hoa78] Charles Anthony Richard Hoare. Communicating sequen-
tial processes. Communications of the ACM, 21(8):666–677,
1978. (Referenced on page(s) 188)

Jan-David Quesel 219 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[Isa65] Rufus Isaacs. Differential games: a mathematical theory
with applications to warfare and pursuit, control and opti-
mization. SIAM series in applied mathematics. Wiley, 1965.
(Referenced on page(s) 206)

[JdM12] Dejan Jovanovic and Leonardo Mendonça de Moura. Solving
non-linear arithmetic. In Gramlich et al. [GMS12], pages
339–354. (Referenced on page(s) 161, 171)

[JN91] Charles R. Johnson and Peter Nylen. Monotonicity proper-
ties of norms. Linear Algebra and its Applications, 148(0):43
– 58, 1991. (Referenced on page(s) 32)

[Kha96] H.K. Khalil. Nonlinear System. Prentice Hall, 1996. (Refer-
enced on page(s) 48, 49, 50)

[Kov08] Laura Kovács. Aligator: A mathematica package for in-
variant generation (system description). In Armando et al.
[ABD08], pages 275–282. (Referenced on page(s) 180)

[Koy90] Ron Koymans. Specifying real-time properties with met-
ric temporal logic. Real-Time Systems, 2(4):255–299, 1990.
(Referenced on page(s) 6, 61)

[Lew18] Clarence Irving Lewis. A Survey of Symbolic Logic. Semi-
centennial publications of the University of California, 1868-
1918. University of California Press, 1918. (Referenced on
page(s) 5)

[LPN11] Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive
cruise control: Hybrid, distributed, and now formally veri-
fied. In Michael Butler and Wolfram Schulte, editors, FM,
volume 6664 of Lecture Notes in Computer Science, pages
42–56. Springer-Verlag Berlin Heidelberg, 2011. (Referenced
on page(s) 180)

[MH05] Sean McLaughlin and John Harrison. A proof-producing de-
cision procedure for real arithmetic. In Nieuwenhuis [Nie05],
pages 295–314. (Referenced on page(s) 161, 171, 183, 184)

[Mil99] R. Milner. Communicating and Mobile Systems: The Pi Cal-
culus. Cambridge University Press, 1999. (Referenced on
page(s) 45)

Jan-David Quesel 220 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[MLP12] Stefan Mitsch, Sarah M. Loos, and André Platzer. Towards
formal verification of freeway traffic control. In Chenyang
Lu, editor, ACM/IEEE Third International Conference on
Cyber-Physical Systems, Beijing, China on April 17 - 19,
2012. (Referenced on page(s) 180)

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the
synthesis of discrete controllers for timed systems (an ex-
tended abstract). In Ernst W. Mayr and Claude Puech,
editors, STACS 95, 12th Annual Symposium on Theoreti-
cal Aspects of Computer Science, Munich, Germany, March
2-4, 1995, Proceedings, volume 900 of Lecture Notes in Com-
puter Science, pages 229–242. Springer, 1995. (Referenced on
page(s) 82)

[MRO02] Thomas Moor, Jörg Raisch, and Siu O’Young. Discrete su-
pervisory control of hybrid systems based on l-complete ap-
proximations. Discrete Event Dynamic Systems, 12(1):83–
107, 2002. (Referenced on page(s) 78)

[MS98] Zohar Manna and Henny Sipma. Deductive verification of
hybrid systems using STeP. In Thomas A. Henzinger and
Shankar Sastry, editors, Hybrid Systems: Computation and
Control, First International Workshop, HSCC’98, Berkeley,
California, USA, April 13-15, 1998, Proceedings, volume
1386 of Lecture Notes in Computer Science. Springer-Verlag
Berlin Heidelberg, 1998. (Referenced on page(s) 158)

[Nie05] Robert Nieuwenhuis, editor. Automated Deduction - CADE-
20, 20th International Conference on Automated Deduction,
Tallinn, Estonia, July 22-27, 2005, Proceedings, volume
3632 of Lecture Notes in Computer Science. Springer-Verlag
Berlin Heidelberg, 2005. (Referenced on page(s) 220, 228)

[Nip08] Tobias Nipkow. Linear quantifier elimination. In Armando
et al. [ABD08], pages 18–33. (Referenced on page(s) 183,
184)

[NOSY92] Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio
Yovine. An approach to the description and analysis of hy-
brid systems. In Grossman et al. [GNRR93], pages 149–178.
(Referenced on page(s) 4, 10, 11, 19, 124)

Jan-David Quesel 221 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[NRS01] Andreas Nonnengart, Georg Rock, and Werner Stephan. Us-
ing hybrid automata to express realtime properties in VSE-
II. In Ingrid Russell and John F. Kolen, editors, FLAIRS.
AAAI Press, 2001. (Referenced on page(s) 158)

[Orl28] Ivan Efimovich Orlov. The Calculus of Compatibility of
Propositions (in Russian). Mathematics of the USSR.
Sbornik (Matematicheskii Sbornik), 35:263–286, 1928. (Ref-
erenced on page(s) 5)

[OW08] Joël Ouaknine and James Worrell. Some recent results in
metric temporal logic. In Proceedings of the 6th international
conference on Formal Modeling and Analysis of Timed Sys-
tems, FORMATS ’08, pages 1–13, Berlin, Heidelberg, 2008.
Springer-Verlag. (Referenced on page(s) 6)

[Par85] Rohit Parikh. The logic of games and its applications. In An-
nals of Discrete Mathematics, pages 111–140. Elsevier, 1985.
(Referenced on page(s) 118, 120)

[Par03] Pablo A. Parrilo. Semidefinite programming relaxations
for semialgebraic problems. Math. Program., 96(2):293–320,
2003. (Referenced on page(s) 161, 168, 172, 173, 174, 178,
182, 183)

[PBGM62] Lev S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze,
and E. F. Mishchenko. The Mathematical Theory of Optimal
Processes. Wiley Interscience, New York, 1962. (Referenced
on page(s) 131)

[PC08] André Platzer and Edmund M. Clarke. Computing differ-
ential invariants of hybrid systems as fixedpoints. In Aarti
Gupta and Sharad Malik, editors, Computer Aided Verifi-
cation, 20th International Conference, CAV 2008, Prince-
ton, NJ, USA, July 7-14, 2008, Proceedings, volume 5123
of Lecture Notes in Computer Science, pages 176–189.
Springer-Verlag Berlin Heidelberg, Jul 2008. (Referenced on
page(s) 184)

[PGHD04] Jan Peleska, Daniel Große, Anne Elisabeth Haxthausen,
and Rolf Drechsler. Automated verification for train con-

Jan-David Quesel 222 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

trol systems. In FORMS/FORMAT, 2004. (Referenced on
page(s) 188)

[Pla07a] André Platzer. Combining deduction and algebraic con-
straints for hybrid system analysis. In Bernhard Beckert,
editor, 4th International Verification Workshop VERIFY’07,
at CADE-21, Bremen, Germany, July 15-16, 2007, volume
259 of CEUR Workshop Proceedings, pages 164–178. CEUR-
WS.org, 2007. (Referenced on page(s) 158, 170, 184)

[Pla07b] André Platzer. Differential dynamic logic for verifying para-
metric hybrid systems. In Nicola Olivetti, editor, Auto-
mated Reasoning with Analytic Tableaux and Related Meth-
ods, 16th International Conference, TABLEAUX 2007, Aix
en Provence, France, July 3-6, 2007, Proceedings, volume
4548 of Lecture Notes in Computer Science, pages 216–232.
Springer-Verlag Berlin Heidelberg, Jul 2007. (Referenced on
page(s) 157)

[Pla07c] André Platzer. A temporal dynamic logic for verifying hybrid
system invariants. In Sergei N. Artëmov and Anil Nerode,
editors, Logical Foundations of Computer Science, 5th Inter-
national Symposium, LFCS’07, New York, USA, June 4-7,
2007, Proceedings, volume 4514 of Lecture Notes in Com-
puter Science, pages 457–471. Springer-Verlag Berlin Heidel-
berg, Jun 2007. (Referenced on page(s) 17, 29, 121)

[Pla08] André Platzer. Differential dynamic logic for hybrid systems.
Journal of Automated Reasoning, 41(2):143–189, 2008. (Ref-
erenced on page(s) 7, 14, 15, 99, 103, 105, 157)

[Pla10a] André Platzer. Differential-algebraic dynamic logic for
differential-algebraic programs. Journal of Logic and Com-
putation, 20(1):309–352, 2010. (Referenced on page(s) 14,
15, 18, 19, 121, 157, 160)

[Pla10b] André Platzer. Logical Analysis of Hybrid Systems: Proving
Theorems for Complex Dynamics. Springer-Verlag Berlin
Heidelberg, Berlin Heidelberg, Sep 2010. (Referenced on
page(s) 6, 10, 11, 14, 15, 18, 19, 27, 29, 99, 100, 103, 104,
105, 107, 108, 136, 141, 157, 160, 180, 207)

Jan-David Quesel 223 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[Pla10c] André Platzer. Quantified differential dynamic logic for dis-
tributed hybrid systems. In Anuj Dawar and Helmut Veith,
editors, Computer Science Logic 24th International Work-
shop, CSL 2010, 19th Annual Conference of the EACSL,
Brno, Czech Republic, August 23-27, 2010, Proceedings, vol-
ume 6247 of Lecture Notes in Computer Science, pages 469–
483. Springer-Verlag Berlin Heidelberg, 2010. (Referenced
on page(s) 121, 201)

[Pla11] André Platzer. Stochastic differential dynamic logic for
stochastic hybrid programs. In Nikolaj Bjørner and Vior-
ica Sofronie-Stokkermans, editors, Automated Deduction -
CADE-23, 23nd International Conference on Automated
Deduction, Wroc law, Poland, July 31 – August 5, 2011,
Proceedings, volume 6803 of Lecture Notes in Computer
Science, pages 431–445. Springer-Verlag Berlin Heidelberg,
2011. (Referenced on page(s) 82)

[Pla12a] André Platzer. A complete axiomatization of quantified dif-
ferential dynamic logic for distributed hybrid systems. Log-
ical Methods in Computer Science, 8(4):1–44, 2012. Spe-
cial issue for selected papers from CSL’10. (Referenced on
page(s) 157)

[Pla12b] André Platzer. Differential game logic for hybrid games.
Technical Report CMU-CS-12-105, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA, March
2012. (Referenced on page(s) 118, 120)

[Pla12c] André Platzer. The structure of differential invariants and
differential cut elimination. Logical Methods in Computer
Science, 8(4):1–38, 2012. (Referenced on page(s) 160)

[Pla13] André Platzer. A complete axiomatization for differen-
tial game logic for hybrid games. Technical Report CMU-
CS-13-100, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, January 2013. (Referenced on
page(s) 120)

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th An-
nual Symposium on Foundations of Computer Science, Prov-
idence, Rhode Island, USA, 31 October - 1 November 1977,

Jan-David Quesel 224 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

pages 46–57. IEEE Computer Society, 1977. (Referenced on
page(s) 6)

[PP03] Marc Pauly and Rohit Parikh. Game logic - an overview. Stu-
dia Logica, 75(2):165–182, 2003. (Referenced on page(s) 118,
121)

[PQ08a] André Platzer and Jan-David Quesel. KeYmaera: A hy-
brid theorem prover for hybrid systems. In Armando et al.
[ABD08], pages 171–178. (Referenced on page(s) 8, 83, 113,
151, 156)

[PQ08b] André Platzer and Jan-David Quesel. Logical verification
and systematic parametric analysis in train control. In
Magnus Egerstedt and Bud Mishra, editors, HSCC, volume
4981 of Lecture Notes in Computer Science. Springer-Verlag
Berlin Heidelberg, 2008. (Referenced on page(s) 8, 11, 180,
188, 189)

[PQ09a] André Platzer and Jan-David Quesel. European Train Con-
trol System: A case study in formal verification. In Karin
Breitman and Ana Cavalcanti, editors, Formal Methods and
Software Engineering, 11th International Conference on For-
mal Engineering Methods, ICFEM 2009, Rio de Janeiro,
Brasil, December 9-12, 2009. Proceedings, volume 5885 of
Lecture Notes in Computer Science, pages 246–265. Springer-
Verlag Berlin Heidelberg, 2009. (Referenced on page(s) 8, 11,
180, 188, 189)

[PQ09b] André Platzer and Jan-David Quesel. European train con-
trol system: A case study in formal verification. Report 54,
SFB/TR 14 AVACS, September 2009. ISSN: 1860-9821,
avacs.org. (Referenced on page(s) 8, 189, 190)

[PQR09a] André Platzer, Jan-David Quesel, and Philipp Rümmer.
Real world verification. In Renate A. Schmidt, editor, In-
ternational Conference on Automated Deduction, CADE’09,
Montreal, Canada, Proceedings, volume 5663 of Lecture
Notes in Computer Science, pages 485–501. Springer-Verlag
Berlin Heidelberg, 2009. (Referenced on page(s) 8, 156, 161,
162, 169, 178)

Jan-David Quesel 225 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[PQR09b] André Platzer, Jan-David Quesel, and Philipp Rüm-
mer. Real world verification. Reports of SFB/TR 14
AVACS 52, SFB/TR 14 AVACS, June 2009. ISSN: 1860-
9821, http://www.avacs.org. (Referenced on page(s) 165)

[Pra76] Vaughan R. Pratt. Semantical considerations on floyd-hoare
logic. In 17th Annual Symposium on Foundations of Com-
puter Science, Houston, Texas, USA, 25-27 October 1976,
pages 109–121. IEEE Computer Society, 1976. (Referenced
on page(s) 6, 118, 121)

[Pri55] Arthur Norman Prior. Time and modality. John Locke lec-
tures. Greenwood Press, 1955. (Referenced on page(s) 5)

[Pri67] Arthur Norman Prior. Past, Present and Future. Oxford
books. Clarendon Press, 1967. (Referenced on page(s) 6)

[PW06] Andreas Podelski and Silke Wagner. Model checking of
hybrid systems: From reachability towards stability. In
João P. Hespanha and Ashish Tiwari, editors, Hybrid Sys-
tems: Computation and Control, 9th International Work-
shop, HSCC 2006, Santa Barbara, CA, USA, March 29-31,
2006, Proceedings, volume 3927 of Lecture Notes in Com-
puter Science, pages 507–521. Springer-Verlag Berlin Heidel-
berg, 2006. (Referenced on page(s) 51)

[QFD11] Jan-David Quesel, Martin Fränzle, and Werner Damm.
Crossing the bridge between similar games. In Tripakis and
Fahrenberg [FT11], pages 160–176. (Referenced on page(s) 8,
43, 44, 45, 82, 124)

[QP12a] Jan-David Quesel and André Platzer. Playing hybrid games
with KeYmaera. In Gramlich et al. [GMS12], pages 439–453.
(Referenced on page(s) 8, 83)

[QP12b] Jan-David Quesel and André Platzer. Playing Hybrid
Games with KeYmaera. Reports of SFB/TR 14 AVACS 84,
SFB/TR 14 AVACS, April 2012. ISSN: 1860–9821,
http://www.avacs.org. (Referenced on page(s) 83)

[QS06] Jan-David Quesel and Andreas Schäfer. Spatio-temporal
model checking for mobile real-time systems. In Kamel

Jan-David Quesel 226 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

Barkaoui, Ana Cavalcanti, and Antonio Cerone, editors,
Theoretical Aspects of Computing - ICTAC 2006, Third In-
ternational Colloquium, Tunis, Tunisia, November 20-24,
2006, Proceedings, volume 4281 of Lecture Notes in Com-
puter Science, pages 347–361. Springer-Verlag Berlin Heidel-
berg, 2006. (Referenced on page(s) 188)

[Rat06] Stefan Ratschan. Efficient solving of quantified inequality
constraints over the real numbers. ACM Trans. Comput.
Log., 7(4):723–748, 2006. (Referenced on page(s) 183)

[Rav13] Anders P. Ravn. Personal communication, 2013. (Referenced
on page(s) 3)

[Rey83] Osborne Reynolds. An experimental investigation of the cir-
cumstances which determine whether the motion of water
shall be direct or sinuous, and of the law of resistance in
parallel channels. Philosophical Transactions of the Royal
Society of London, 174:pp. 935–982, 1883. (Referenced on
page(s) 3)

[RLP11] David W. Renshaw, Sarah M. Loos, and André Platzer. Dis-
tributed theorem proving for distributed hybrid systems. In
Shengchao Qin and Zongyan Qiu, editors, Formal Methods
and Software Engineering - 13th International Conference on
Formal Engineering Methods, ICFEM 2011, Durham, UK,
October 26-28, 2011. Proceedings, volume 6991 of Lecture
Notes in Computer Science, pages 356–371. Springer-Verlag
Berlin Heidelberg, 2011. (Referenced on page(s) 159)

[RS07] Stefan Ratschan and Zhikun She. Safety verification of hy-
brid systems by constraint propagation based abstraction re-
finement. ACM Journal in Embedded Computing Systems,
6(1), 2007. (Referenced on page(s) 132)

[Rüm07] Philipp Rümmer. A sequent calculus for integer arithmetic
with counterexample generation. In Bernhard Beckert, edi-
tor, 4th International Verification Workshop VERIFY’07, at
CADE-21, Bremen, Germany, July 15-16, 2007, volume 259
of CEUR-WS.org, 2007. (Referenced on page(s) 167, 168)

Jan-David Quesel 227 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[Sch86] Alexander Schrijver. Theory of Linear and Integer Program-
ming. Wiley, 1986. (Referenced on page(s) 167)

[Sch06] Andreas Schäfer. Specification and Verification of Mobile
Real-Time Systems. PhD thesis, University of Oldenburg,
December 2006. (Referenced on page(s) 188)

[SHL11] Sriram Sankaranarayanan, Hadjar Homaei, and Clayton
Lewis. Model-based dependability analysis of programmable
drug infusion pumps. In Fahrenberg and Tripakis [FT11],
pages 317–334. (Referenced on page(s) 11)

[Smi00] Graeme Smith. The Object Z Specification Language. Ad-
vances in Formal Methods Series. Kluwer Academic Pub-
lisher, 2000. (Referenced on page(s) 188)

[SRKC00] B. Izaias Silva, Keith Richeson, Bruce H. Krogh, and
Alongkrit Chutinan. Modeling and verification of hybrid dy-
namical system using CheckMate. In ADPM 2000: 4th Inter-
national Conference on Automation of Mixed Processes: Hy-
brid Dynamic Systems, September 18-19, 2000, Dortmund,
Germany, 2000. (Referenced on page(s) 158)

[SS99] João P. Marques Silva and Karem A. Sakallah. Grasp:
A search algorithm for propositional satisfiability. IEEE
Trans. Computers, 48(5):506–521, 1999. (Referenced on
page(s) 171)

[SS05] Viorica Sofronie-Stokkermans. Hierarchic reasoning in local
theory extensions. In Nieuwenhuis [Nie05], pages 219–234.
(Referenced on page(s) 188)

[Sta02] Thomas Stauner. Discrete-time refinement of hybrid au-
tomata. In Claire J. Tomlin and Mark R. Greenstreet, edi-
tors, Hybrid Systems: Computation and Control, 5th Inter-
national Workshop, HSCC 2002, Stanford, CA, USA, March
25-27, 2002, Proceedings, volume 2289 of Lecture Notes in
Computer Science, pages 407–420. Springer-Verlag Berlin
Heidelberg, 2002. (Referenced on page(s) 79)

[Ste73] Gilbert Stengle. A Nullstellensatz and a Positivstellensatz
in semialgebraic geometry. Math. Ann., 207(2):87–97, 1973.
(Referenced on page(s) 161, 168, 172)

Jan-David Quesel 228 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

[Str06] Adam W. Strzebonski. Cylindrical algebraic decomposition
using validated numerics. Journal Symbolic Computation,
41(9):1021–1038, 2006. (Referenced on page(s) 171)

[Tab09] Paulo Tabuada. Verification and Control of Hybrid Systems:
A Symbolic Approach. Springer London, Limited, 2009. (Ref-
erenced on page(s) 75, 153)

[Tar51] Alfred Tarski. A Decision Method for Elementary Algebra
and Geometry. University of California Press, Berkeley, 2nd
edition, 1951. (Referenced on page(s) 5, 160, 169)

[TFL10] Claus R. Thrane, Uli Fahrenberg, and Kim G. Larsen.
Quantitative analysis of weighted transition systems. J.
Log. Algebr. Program., 79(7):689–703, 2010. (Referenced on
page(s) 75)

[Tiw05] Ashish Tiwari. An algebraic approach for the unsatisfiability
of nonlinear constraints. In C.-H. Luke Ong, editor, CSL,
volume 3634 of Lecture Notes in Computer Science, pages
248–262. Springer-Verlag Berlin Heidelberg, 2005. (Refer-
enced on page(s) 183)

[TLS00] Claire J. Tomlin, John Lygeros, and Shankar Sastry. A Game
Theoretic Approach to Controller Design for Hybrid Sys-
tems. Proceedings of IEEE, 88:949–969, July 2000. (Refer-
enced on page(s) 82, 117)

[VPVD11] Vladimeros Vladimerou, Pavithra Prabhakar, Mahesh
Viswanathan, and Geir Dullerud. Specifications for decidable
hybrid games. Theoretical Computer Science, 412(48):6770
– 6785, 2011. (Referenced on page(s) 82, 116, 117)

[WAHKM03] Jr. Warren A. Hunt, Robert Bellarmine Krug, and
J. Strother Moore. Linear and nonlinear arithmetic in ACL2.
In Proceedings, Correct Hardware Design and Verification
Methods, 12th IFIP Conference, volume 2860 of Lecture
Notes in Computer Science, pages 319–333. Springer-Verlag
Berlin Heidelberg, 2003. (Referenced on page(s) 183)

[Web40] Moritz Weber. Das Ähnlichkeitsprinzip der Physik und seine
Bedeutung für das Modellversuchswesen. Forschung auf dem

Jan-David Quesel 229 Oldenburg, April 3, 2013

Similarity, Logic, and Games Bibliography

Gebiet des Ingenieurwesens A, 11:49–58, 1940. (Referenced
on page(s) 3)

[Wei97] Volker Weispfenning. Quantifier elimination for real algebra -
the quadratic case and beyond. Appl. Algebra Eng. Commun.
Comput., 8(2):85–101, 1997. (Referenced on page(s) 161,
170, 171)

[Wol03] Stephen Wolfram. The Mathematica book (5. ed.). Wolfram-
Media, 2003. (Referenced on page(s) 156, 157, 161, 167, 171)

[ZHR91] Zhou Chaochen, Charles Anthony Richard Hoare, and An-
ders P. Ravn. A calculus of durations. Information Process-
ing Letters, 40(5):269–276, 1991. (Referenced on page(s) 188)

Jan-David Quesel 230 Oldenburg, April 3, 2013

Similarity, Logic, and Games INDEX

Index

Symbols
[α] . 29
〈α〉 . 29
Gn. .86
ẋ . 10
reε,δ(·) .63
Gε,δ(α, β) 139
σ1 ∞←−−oo δ(t)−−−→σ2 202
σ1 ∞←−−oo δ−−→σ2 46
σ1 ε←−−oo δ−−→σ2 43
R≥0 . 10
N . 10
Q . 10
R . 10
dom f .10
ε-δ-refinement.44
ε-δ-similar 43
ε-retiming.39
roε,δ(·) .64
∃ . 29, 86
∀Gφ . 103
∀ . 29, 85
G . 84

α o ∞,δ−−−−→β .47
α o ε,δ−−−→β . 44
dDGL . 83
dL . 27
Br .10, 51
L\ . 61
QE. .169

A
absolute value 10
advance notice semantics 84, 90,

120, 154

C
calculus rules 99

soundness 106
cardinality 10
cone . 172
conservative extension.98
continuous evolution.15

D
derivation 100

Jan-David Quesel 231 Oldenburg, April 3, 2013

Similarity, Logic, and Games INDEX

differential dynamic game logic
84

semantics 85, 85
syntax.84

differential dynamic logic . 27, 82
semantics.28
syntax 28

differential-algebraic constraints
18

E
ETCS . 7
European Train Control System

7, 187

F
Falsifier . 84
first-order logic 22

interpretation 23
over the reals 25, 28

semantics 25
semantics 23

formulas 23
terms 23

structure 23
syntax 23
valuation 23

G
game position 87
Gröbner basis.164

reduced 164

H
hybrid automaton19

deterministic 132
semantics.20

hybrid game
winning 94

hybrid game automaton.125
play.125
robust refinement product

129
strategy126

winning126
winning 126

hybrid games 82, 83
operational semantics87
play . 93
strategy 91

Falsifier 92
Verifier 92
compatible 91
winning 94

syntax.83
hybrid program 14

annotated standard form
144

standard form.135
syntax.14
trace semantics 17

hybrid system 11, 11
asymptotically stable48, 50,

53, 59, 60
attracted 48
exponentially stable . 50, 50,

53, 59, 60
region stable . 51, 53, 54, 59,

60
stable 48

hybrid trace.17
asymptotically stable48, 50,

51, 54, 58
attracted 48
composition 17
compression133
equivalent134

Jan-David Quesel 232 Oldenburg, April 3, 2013

Similarity, Logic, and Games INDEX

exponentially stable . 49, 50,
51, 55, 58

first state17
last state 17
observable42, 43
region stable . 51, 51, 52, 54,

55, 58
set of all traces 17
stable 48
terminates17
valuation 43

I
ideal .163

generator 163
ideal membership problem . . 164
if-statements 16

L
leading term 163
Lipschitz constant . . . 61, 64, 202
Lipschitz continuous . 61, 61, 65,

70, 74, 202

M
metric . 29
monomials163
movement authority 189
moving block principle 189
multiplicative monoid172

N
natural logic 61

semantics.62
syntax.61

nondeterministic assignment . 15,
17

nondeterministic choice 15
nondeterministic repetition . . . 15

norm 10, 30, 63, 66, 69, 131
absolute 32
equivalent 34
Euclidean.31, 131
linear scalability 30
maximum 31
monotone32, 63
triangle inequality . . . 30, 44

P
parallel discrete assignment. . .15
parallel jump 15
point flow .17
polynomial 163
polynomial arithmetic

expressions 14
positive semidefinite 175
propositional logic 21

semantics.22
syntax 21

provable . 100

Q
quantifier elimination 169

R
radical .164
radical membership 164
Radio Block Controller 189
reduction

polynomial 163
refinement see ε-δ-refinement
relation

bijection.38
left-total 37
surjective37

retiming . 38
set of possible combinations

40

Jan-David Quesel 233 Oldenburg, April 3, 2013

Similarity, Logic, and Games INDEX

reverse retiming 143
rich tests 141
robust refinement 47
robust refinement game 139
robust refinement relation 36

S
semantic modification of a

valuation 23
semidefinite program.176
sequent . 99
sequential composition 15
set of all extended game

positions87
set of all game positions87
set of all hybrid games 84
similar see ε-δ-similar
state . 17

strategy. .84
substitution24

application 24

T
timed automata 3
trace projection 87

U
universal closure 103

V
Verifier . 84

W
weak δ-refinement47
weak δ-similarity46
weakly δ(t)-similar202

Jan-David Quesel 234 Oldenburg, April 3, 2013

Technical Reports

Fakultät II, Department für Informatik, Universität Oldenburg,
Postfach 2503, 26111 Oldenburg, Germany

1/87 A. Viereck:
”
Klassifikationen, Konzepte und Modelle für den Mensch-Rechner-

Dialog“ (Dissertation)

2/87 A. Schwill:
”
Forbidden subgraphs and reduction systems: A comparison“

3/87 J. Kämper:
”
Non-uniform proof systems: A new framework to describe non-

uniform and probabilistic complexity classes“

1/88 K. Ambos-Spies, H. Fleischhack, H. Huwig:
”
Diagonalizing over deterministic

polynomial time“

2/88 A. Schwill:
”
Shortest edge-disjoint paths in geodetically connected graphs“

3/88 V. Claus, U. Lichtblau (Hrsg.):
”
1. Tagung zur Küsten-Informatik“

1/89 U. van der Valk:
”
Einige Entscheidbarkeits- und Unentscheidbarkeitsresultate für

Klasse von S/T-Netzen unter Maximum Firing Strategie und unter Prioritäten-
strategien“

2/89 J. Kämper:
”
Strukturelle Untersuchungen im Umfeld der Komplexitätsklassen P

und NP unter besonderer Berücksichtigung nichtuniformer, probabilistischer und
disjunktiv selbstreduzierender Algorithmen“ (Dissertation)

3/89 J. Kämper:
”
Nondeterministic oracle Turing machines with maximal computation

paths“

1/90 A. Schwill:
”
Shortest edge-disjoint paths in graphs“ (Dissertation)

2/90 K.R. Apt, E.-R. Olderog:
”
Using transformations to verify parallel programs“

3/90 U. Lichtblau:
”
Flußgraphgrammatiken“ (Dissertation)

4/90 K.R. Apt, E.-R. Olderog:
”
Introduction to program verification“

235

Similarity, Logic, and Games Technical Reports

5/90 H. Jasper:
”
Datenbankunterstützung für Prolog-Programmierumgebungen“ (Dis-

sertation)

1/91 F. Korf:
”
Net-based efficient simulation of AADL specifications“

2/91 S.V. Krishnan, C. Pandu Rangan, A. Schwill, S. Seshadri:
”
Two disjoint paths in

chordal graphs“

3/91 H. Eirund:
”
Modellierung und Manipulation multimedialer Dokumente“ (Disser-

tation)

4/91 G. Schreiber:
”
Ein funktionaler Äquivalenzbegriff für den hierarchischen Entwurf

von Netzen“

1/92 A. Viereck (Hrsg.):
”
Ergebnisse der 11. Arbeitstagung, Mensch-Maschine Kom-

munikation“

2/92 P. Gorny, U. Daldrup, H. Schwab:
”
Zwischenbilanz: Menschengerechte Gestaltung

von Software“

3/92 E.-R. Olderog, St. Rössig, J. Sander, M. Schenke:
”
ProCoS at Oldenburg: The In-

terface between Specification Language and occam-like Programming Language“

4/92 F. Korf:
”
Synthesis of VHDL Test Environments form Temporal Logic Specifica-

tions“

5/92 W. Kowalk:
”
Konstruktorentechnik: Neue Methoden zur Mengenrechnung, Lo-

gikrechnung und Intervallrechnung“

1/93 Ch. Dietz, G. Schreiber:
”
Eine Termdarstellung für S/T-Netze“

2/93 J. Sauer:
”
Wissensbasiertes Lösen von Ablaufplanungsproblemen durch explizite

Heuristiken“

3/93 M. Sonnenschein, U. Lichtblau (Hrsg.):
”
6. Kolloquium der Arbeitsgruppe Infor-

matik-Systeme“

4/93 H. Fleischhack, U. Lichtblau, M. Sonnenschein, R. Wieting:
”
Generische Defini-

tion hierarchischer zeitbeschrifteter höherer Petrinetze“

5/93 F. Köster, L. Twele, R. Wieting, W. Ziegler:
”
Fallbeispiele zur Modellierung mit

THORNetzen“

1/94 R. Götze:
”
Dialogmodellierung für multimediale Benutzerschnittstellen“

2/94 B. Müller:
”
PPO – Eine objektorientierte Prolog-Erweiterung zur Entwicklung

wissensbasierter Anwendungssysteme“

3/94 W. Damm, A. Mikschl:
”
Projekt Entwurf und Implementierung eines Multi-

threaded RISC-Prozessors“

4/94 S. Rössig:
”
A Transformational Approach to the Design of Communicating Sys-

tems“ (Dissertation)

5/94 G. Schreiber:
”
Funktionale Äquivalenz von Petri-Netzen“ (Dissertation)

1/95 A. Gronewold, H. Fleischhack:
”
Language Preserving Reductions of Safe Petri-

Nets“

2/95 H. Reineke:
”
Struktur und Verhalten von verteilten endlichen Automaten“ (Dis-

sertation)

Jan-David Quesel 236 Oldenburg, April 3, 2013

Similarity, Logic, and Games Technical Reports

3/95 H. Behrends:
”
Beschreibung ereignisgesteuerter Aktivitäten in datenbankgestütz-

ten Informationssystemen“ (Dissertation)

4/95 U. M. Levens:
”
Computerunterstütztes Modellieren von Musikstücken mit Petri-

Netzen: Das Mailänder Konzept“

1/96 M. Burke:
”
FDDI und ATM in multimedialen Anwendungsumgebungen“ (Disser-

tation)

2/96 I. Pitschke:
”
Interaktive Rekonstruktion geometrischer Modelle aus digitalen Bil-

dern“ (Dissertation)

1/97 L. Bölke:
”
Ein akustischer Interaktionsraum für blinde Rechnerbenutzer“ (Disser-

tation)

2/97 S. Schöf:
”
Verteilte Simulation höherer Petrinetze“ (Dissertation)

1/98 S. Kleuker:
”
Inkrementelle Entwicklung von verifizierten Spezifikationen für ver-

teilte Systeme“ (Dissertation)

2/98 J. Bohn:
”
Mechanical Support and Validation of a Design Calculus for Commu-

nicating Systems by a Logic-Based Proof System“ (Dissertation)

3/98 L. Köhler:
”
Fuzzy Geometrie und Anwendungen in der medizinischen Bildverar-

beitung“ (Dissertation)

4/98 J. Helbig:
”
Linking Visual Formalisms: A Compositional Proof System for Stat-

echarts Based on Symbolic Timing Diagrams“ (Dissertation)

5/98 G. Stiege:
”
Edge Partitions in Undirected Graphs“

6/98 A. Gerns:
”
Entwicklung und Bewertung von Objektmigrationsstrategien für ver-

teilte Umgebungen“

7/98 M. Stadler:
”
Abstrakte Rechnernetzmodelle als Grundlage einer umfassenden Au-

tomatisierung des Netzmanagements – Konzepte und Sprachen zu ihrer Umset-
zung“ (Dissertation)

8/98 M.-S. Steiner:
”
Lastverteilung in heterogenen Systemen“

9/98 Clemens Otte:
”
Fuzzy-Prototyp-Klassifikatoren und deren Anwendung zur auto-

matischen Merkmalsselektion“

1/99 Juliane Vorndamme:
”
Die Auswirkungen rechtlicher Verpflichtungen auf die Soft-

ware-entwicklung“

2/99 E. Best/K.M. Richter:
”
Relational Semantics Revisited“

3/99 J. S. Lie:
”
Einsatz von Objektmigrationssystemen zur Leistungssteigerung in ver-

teilten Systemen“

4/99 Zweijahresbericht des Fachbereichs Informatik

5/99 Ingo Stierand, Olaf Maibaum, Björn Briel, Günther Stiege:
”
Cassandra – Ge-

nerierung, Analyse und Simulation von eingebetteten Multiprozessor-Echtzeit-
systemen“

6/99 Gunnar Wittich:
”
Ein problemorientierter Ansatz zum Nachweis von Realzeitei-

genschaften eingebetteter Systeme“

7/99 Annegret Habel, Jürgen Müller, Detlef Plump:
”
Double-Pushout Graph Trans-

formation Revisited“

Jan-David Quesel 237 Oldenburg, April 3, 2013

Similarity, Logic, and Games Technical Reports

8/99 Ingo Stierand:
”
Eine Konfigurationssprache zur Erstellung von Ambrosia/MP-

Systemen“

9/99 Igor V. Tarasyuk:
”
Equivalences for Concurrent and Distributed Systems“

10/99 Eike Best, Alexander Lavrov:
”
Generalised Composition Operations for High-

Level Petri-Nets“

11/99 Alexander Lavrov:
”
Enhancing Mixed Nonlinear Optimization: A Hybrid Ap-

proach“

12/99 Alexander Lavrov:
”
Hybrid Techniques in Discrete-Event System Modelling and

Control: some Examples“

13/99 Eike Best, Raymond Devillers, Maciej Koutny:
”
Recursion and Petri Nets“

14/99 Eike Best, Raymond Devillers, Maciej Koutny:
”
The Box Algebra = Petri Nets

+ Process Expressions“

15/99 Eike Best, Harro Wimmel:
”
Reducing k-safe Petri Nets to Pomset-equivalent 1-

safe Petri Nets“

16/99 Udo Brockmeyer:
”
Verifikation von STATEMATE Designs“ (Dissertation)

1/00 Henning Dierks:
”
Specification and Verification of Polling Real-Time Systems“

(Dissertation)

2/00 Clemens Fischer:
”
Combination and Implementation of Processes and Data: from

CSP-OZ to Java“ (Dissertation)

3/00 Cheryl Kleuker:
”
Constraint Diagrams“ (Dissertation)

4/00 Thomas Thielke:
”
Linear-algebraische Methoden zur Beschreibung, Verfeinerung

und Analyse gefärbter Petrinetze“ (Dissertation)

1/01 Günther Stiege:
”
Higher Decomposition in Undirected Graphs“ (Bericht)

2/01 Ute Vogel: Zweijahresbericht

3/01 Josef Tapken:
”
Model-Checking of Duration Calculus Specifications“ (Dissertati-

on)

4/01 Björn Briel:
”
Analyse eingebetteter Systeme mittels verteilter Simulation“ (Dis-

sertation)

5/01 Günther Stiege:
”
Standard Decomposition and Periodicity of Digraphs“ (Bericht)

6/01 Ingo Stierand:
”
Ambrosia/MP – Ein Echtzeitbetriebssystem für eingebettete

Mehrprozessorsysteme“ (Dissertation)

1/02 Giorgio Busatto, Annegret Habel:
”
Improving the Quality of Hypertexts Using

Graph Transformation“ (Bericht)

2/02 Giorgio Busatto:
”
Modeling Hyperweb Dynamics through Hierarchical Graph

Transformation“ (Bericht)

3/02 Giorgio Busatto:
”
An Abstract Model of Hierarchical Graphs and Hierarchical

Graph Transformation“ (Dissertation)

4/02 Laila Kabous:
”
An Object Oriented Design methodology for hard real Time Sys-

tems: The OOHARTS approach“ (Dissertation)

1/03 Ute Vogel:
”
Zweijahresbericht“

Jan-David Quesel 238 Oldenburg, April 3, 2013

Similarity, Logic, and Games Technical Reports

2/03 Olaf Maibaum:
”
Bestimmung symbolischer Laufzeiten in eingebetteten Echtzeit-

systemen“ (Dissertation)

3/03 Günther Stiege, Ingo Stierand:
”
Connectedness-Based Hierarchical Decomposi-

tion of Undirected Graphs“ (Bericht)

4/03 Willi Hasselbring, Susanne Petersen:
”
Standards für die medizinische Kommuni-

kation und Dokumentation“ (Bericht)

5/03 Andreas Möller:
”
Eine virtuelle Maschine für Graphprogramme“ (Bericht)

6/03 Tom Bienmüller:
”
Reducing Complexity for the Verification of Statemate Designs“

(Bericht)

7/03 Sandra Steinert:
”
Graph Programs for Graph Algorithms“ (Bericht)

8/03 Jochen Klose:
”
Live Sequence Charts: A Graphical Formalism for the Specification

of Communication Behavior“ (Dissertation)

1/04 Jens Oehlerking:
”
Transformation of Edmonds’ Maximum Matching Algorithm

into a Graph Program“ (Bericht)

2/04 Sergej Alekseev:
”
Dienste Intelligenter Netze Graphentheoretische Methoden in

der Kontrollflussanalyse“ (Bericht)

3/04 Giorgio Busatto:
”
GraJ: A System for Executing Graph Programs in Java“ (Be-

richt)

1/05 Sergej Alekseev:
”
Ablaufanalyse objektorientierter Echtzeitanwendungen mit gra-

phentheoretischen Methoden“ (Dissertation)

2/05 Ute Vogel:
”
Zweijahresbericht“

3/05 Igor Tarasyuk:
”
Discrete time stochastic Petri box calculus“ (Bericht)

1/06 Henning Dierks:
”
Time, Abstraction and Heuristics“ (Habilitation)

2/06 Li Sek Su:
”
Full-Output Siphons and Deadlock-Freeness for Free Choice Petri

Nets“ (Bericht)

3/06 Timo Warns:
”
Solving Consensus Using Structural Failure Models“ (Bericht)

4/06 Sergej Alekseev:
”
Graphentheoretische Methoden in der Ablaufanalyse objektori-

entierter Anwendungen“ (Dissertation)

5/06 Li Sek Su:
”
Some Considerations on the Foundation of NP-Completeness Theory“

(Bericht)

6/06 Li Sek Su:
”
Semitraps and Deadlock-Freeness for Reduced Asymmetric Choice

Nets“ (Bericht)

7/06 Li Sek Su:
”
Algorithms of computing the Deadlock Markings Sets for Petri Nets“

(Bericht)

8/06 Annegret Habel, Karl-Heinz Pennemann, Arend Rensink:
”
Weakest Preconditions

for High-Level Programs (Long Version)“ (Bericht)

9/06 Jochen Hoenicke:
”
Combination of Processes, Data, and Time“ (Dissertation)

10/06 Steffen Becker, Marco Boscovic, Abhishek Dhama, Simon Giesecke, Jens Happe,
Wilhelm Hasselbring, Heiko Koziolek, Henrik Lipskoch, Roland Meyer, Marga-
rethe Muhle, Alexandra Paul, Jan Ploski, Matthias Rohr, Mani Swaminathan,
Timo Warns, Daniel Winteler:

”
Trustworthy Software Systems: A Discussion of

Basic Concepts and Terminology“ (Bericht)

Jan-David Quesel 239 Oldenburg, April 3, 2013

Similarity, Logic, and Games Technical Reports

11/06 Christian Zuckschwerdt:
”
Ein System zur Transformation von Konsistenz- in An-

wendungsbedingungen“ (Bericht)

01/07 Andreas Schäfer:
”
Specification and Verification of Mobile Real-Time Systems“

(Dissertation)

02/07 Günther Stiege:
”
General Graphs“ (Bericht)

03/07 Wolfgang Kowalk:
”
Integralrechnung“ (Bericht)

04/07 Karl Azab, Karl-Heinz Pennemann:
”
Type Checking C++ Template Instantiation

by Graph Programs“ (Bericht)

01/08 Roland Meyer:
”
On depth and breath in the Pi-Calculus“ (Bericht)

02/08 Ingo Brückner:
”
Slicing Integrated Formal Specifications for Verification“ (Dis-

sertation)

03/08 Ute Vogel:
”
2-Jahres-Bericht 2004 - 2006“ (Bericht)

04/08 Günther Stiege:
”
Summierbare Familien“ (Bericht)

05/08 Igor V. Tarasyuk:
”
Investigating equivalence relations in dtsPBC“ (Bericht)

01/09 Elke Wilkeit:
”
2-Jahres-Bericht 2007 - 2008“ (Bericht)

02/09 Roland Meyer:
”
Structural Stationarity in the pi-Calculus“ (Dissertation)

03/09 InformatikerInnen des Moduls Soft Skills:
”
E-Book Soft Skills 2008

”
(Bericht)

04/09 Eike Best:
”
Separability in Persistent Petri Nets“ (Bericht)

01/10 Igor Tarasyuk:
”
Equivalence relations for behaviour-preserving reduction and

modular performance evaluation in dtsPBC“ (Bericht)

02/10 Roman Dubtsov:
”
Timed Transition Systems with Independence and Marked

Scott Domains: an Adjunction“ (Bericht)

01/11 Elena S. Oshevskaya:
”
Matching Equivalences on Higher Dimensional Automata

Models“ (Bericht)

02/11 Elke Wilkeit:
”
2-Jahres-Bericht, 01.10.2008 - 30.09.2010“ (Bericht)

03/11 Johannes Faber:
”
Verification Architectures for Complex Real-Time Systems“

(Dissertation)

04/11 Igor V. Tarasyuk:
”
Equivalences for modular performance analysis in dtsPBC“

(Bericht)

01/12 Irina Virbitskaite, Nataliya Gribovskaya, Eike Best:
”
Some Evidence on the Con-

sistency of Categorical Semantics for Timed Interleaving Behaviours“ (Bericht)

1/12 Günther Stiege:
”
Playing with Knuth’s words.dat“ (Bericht)

02/12 Günther Stiege:
”
Flowerfree Finding of Maximum Matchings“ (Bericht)

01/13 Wolfgang Kowalk:
”
RunSort - Ein effizienter Sortieralgorithmus“ (Bericht)

02/13 Günther Stiege:
”
Cliques and Graphs of Type WORDS“ (Bericht)

Jan-David Quesel 240 Oldenburg, April 3, 2013

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Real-Time and Hybrid Systems
	Real Arithmetic
	Modal and Dynamic Logics
	Contributions
	Structure of this Thesis
	Sources
	How to Read this Thesis

	Preliminaries
	Notations and Abbreviations
	Models for Hybrid Systems
	Hybrid Systems by Example
	Hybrid Programs
	Differential-algebraic Constraints
	Hybrid Automata

	Logics
	Propositional Logic
	First-Order Logic
	First-Order Logic over the Reals
	Differential Dynamic Logic

	Metrics, Norms, and Distances

	Similarity
	Notions of Robust Refinement
	Property Preservation
	Stability and Region Stability
	Linear Time Real-Time Temporal Logic

	Related Work
	Conclusion

	Differential Dynamic Game Logic
	Syntax
	Semantics
	Classical Modal Semantics
	Game Semantics
	Semantics Relation

	Proof Rules for
	Case Study: Robotic Factory Automation
	Related Work
	Conclusion

	Similarity and Games
	Hybrid Game Automata
	Automata and Games
	Encoding our Robust Refinement Relation

	and Similarity
	Trace Equivalence
	Standard Form
	Encoding Similarity in
	Example
	Using Existing Properties

	Related Work
	Conclusion

	Implementation
	KeYmaera Verification Tool for Hybrid Systems
	Alternative Approaches
	Handling of Differential Equation Systems
	Dealing with Arithmetic
	Methods for Handling Real Arithmetic
	Gröbner Bases for the Real Nullstellensatz (GRN)
	Experimental Results
	Related Work
	Discussion and Conclusions

	Case Study
	Overview
	Specification
	Robust Refinements
	Conclusion

	Conclusion
	Summary
	Concluding Remarks
	Future Work
	Exploiting Conjunctions
	Dynamic Bounds
	Compositional Reasoning
	Differential Dynamic Game Logic with Disturbances and Control

	Bibliography
	Index

