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Zusammenfassung

Die Optimierung bekannter Moleküle und das Entdecken zuvor gänzlich unbekannter Sub-
stanzen ist ein Motor für den Fortschritt in den unterschiedlichsten Bereichen des alltäglichen
Lebens. Molekulares Design treibt die Forschung nach neuen Medikamente voran, kann bei
der Bindung von Treibhausgasen helfen oder die Effizienz der Stromerzeugung erhöhen. Al-
lerdings ist der Raum potenziell möglicher Substanzen riesig, und neben den gewünschten
Moleküleigenschaften müssen unterschiedlichste sekundäre Faktoren wie Synthetisierbarkeit
und Stabilität der Moleküle berücksichtigt werden. In den letzten Jahren hat dies zu einem ste-
tigen Anstieg der Forschung im Bereich des computergestützten Moleküldesigns geführt, bei
dem zunehmend Techniken der künstlichen Intelligenz eingesetzt werden. Ein zentraler Aspekt
der Forschung ist dabei dir Frage, in welcher Repräsentation die Moleküle gespeichert und
verarbeitet werden. Da jede Repräsentation ihre eigenen Vor- und Nachteile aufweist, finden
diverse Repräsentationen Anwendung: als einfache Zeichenketten, als Graphen aus Atomen
und Bindungen, als drei-dimensionale Punktewolken oder molekulare Fingerabdrücke.

Das Ziel dieser Arbeit ist es, State-of-the-Art Methoden der künstlichen Intelligenz (KI)
auf diese Repräsentationen zu adaptieren, um ihre Potenziale für die Generierung und Opti-
mierung von Molekülen zu nutzen. Dabei legt die Arbeit besonderen Fokus auf die Anforde-
rungen, die jede Repräsentation an die verwendeten Verfahren stellt und die Möglichkeiten,
die sie eröffnet. Auf methodischer Seite werden dafür zum einen evolutionäre Algorithmen
zur Optimierung von Molekülen verwendet. Darüber hinaus werden Transformer, eine Mo-
dellarchitektur aus der Sprachverarbeitung, auf die Generierung von Molekülen adaptiert.
Die durchgeführten Experimente zeigen, dass sich ein auf String-basierten Repräsentationen
arbeitender evolutionäre Algorithmen für die Optimierung von Molekülen anwenden lässt,
was an dem Beispiel der Proteaseinhibition untersucht wird. Der Algorithmus kann Mole-
küle hinsichtlich ihrer Bindungsaffinität zu einem Zielprotein verbessern, allerdings müssen
zusätzliche sekundäre Optimierungsziele berücksichtigt werden, um das Generieren realisti-
scher Moleküle zu forcieren. Generative neuronale Modelle hingegen bieten die Möglichkeit
auf Datenbanken bekannter Moleküle zu lernen und deren strukturellen Eigenschaften bei der
Generierung neuer Moleküle zu berücksichtigen. Die folgenden Experimente demonstrieren,
wie Transformer als solch generative Modelle für die Erzeugung von Molekülen im dreidi-
mensionalen Raum eingesetzt werden können und wie dieser Ansatz auch größere molekulare
Graphen unter Verwendung einer effizienteren Generierungsstrategie erzeugen kann. In einer
abschließenden Studie zeigt sich, dass ein Zusammenspiel aus einem Transformer, der moleku-
lare Fingerabdrücke erzeugt, und einem evolutionären Algorithmus zur Rekonstruktion dieser
Fingerabdrücke, neue Möglichkeiten für die Molekülgenerierung eröffnet.

Zusammengenommen zeigen die Ergebnisse neue Methoden auf, wie KI-Verfahren für die
Generierung von Molekülen in unterschiedlichen Repräsentationen genutzt werden können.
Dabei sind Transformer ein wirksames Instrument für die Verarbeitung von Molekülen mit
sequenziellen Repräsentationen und zur Erzeugung realistischer Moleküle. Evolutionäre Algo-
rithmen können für die Optimierung von Molekülen und das Durchschreiten des molekularen
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Suchraums eingesetzt werden. Eine Kombination der Verfahren bietet die Möglichkeit, diese
Vorteile zu vereinen.
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Abstract

Optimizing known molecules and discovering previously unknown substances is fuelling pro-
gress in various areas of everyday life. Molecular design drives research for new drugs that
can help bind greenhouse gases or increase the efficiency of electricity generation. However,
the space of potential substances is vast, and in addition to the desired molecular properties,
a wide variety of secondary factors, such as the synthesizability and stability of the molecules,
must be taken into account. In recent years, this has led to a steady increase in research on
computational molecular design, with increasing use of artificial intelligence techniques. A
central aspect of the research is the question in which representation the molecules are stored
and processed. Since each has its advantages and disadvantages, diverse representations are
finding application: as simple strings, as graphs of atoms and bonds, as three-dimensional
point clouds, or as molecular fingerprints.

This work aims to adapt state-of-the-art artificial intelligence (AI) methods to these rep-
resentations to exploit their potential for generating and optimizing molecules. In doing so,
the work focuses on the requirements that each representation poses for the methods used
and the possibilities that they open up. On the methodological side, evolutionary algorithms
are used to optimize molecules. Furthermore, transformers, a neural network architecture
from language processing, are adapted to the generation of molecules. The experiments show
that an evolutionary algorithm working on string-based representations can be applied to the
optimization of molecules, which is investigated using the example of protease inhibition. The
algorithm can improve molecules in terms of their binding affinity to a target protein, but
additional secondary optimization goals must be considered to force the generation of realistic
molecules. On the other hand, generative neural models offer the possibility to learn from
databases of known molecules and consider their structural properties when generating new
molecules. The following experiments demonstrate how transformers can be used as a model
for generating molecules in three-dimensional space and how this approach can also generate
larger molecular graphs using a more efficient generation strategy. A final study shows that an
interaction between a transformer that generates molecular fingerprints and an evolutionary
algorithm to reconstruct these fingerprints opens up new possibilities for molecule generation.

In summary, the results reveal new methods for using AI techniques to generate molecules
in different representations. In this context, transformers are an effective tool for processing
molecules with sequential representations and generating realistic molecules. Evolutionary
algorithms can be used for optimizing molecules and traversing the molecular search space.
A combination of the methods offers the possibility to combine these advantages.
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1 Introduction

“The ability of AI to design molecules is not only
a game changer for the pharmaceutical industry,
but has the potential to revolutionize the entire
field of medicine.”

GPT-31

Today, the search for new molecules and their synthesis is essential in industry and re-
search. In many domains of our everyday life, progress is directly linked to the discovery
of molecules with desired properties, e.g., in drug discovery, crop protection, and chemical
biology [Bro+20a]. Furthermore, humanity is in constant need of new materials to address
the major environmental challenges of our time, be it energy production and storage or green-
house gas conversion [But+18]. Overall, the discovery of new molecules can bring tremendous
societal and technological advances [Pol+20]. Traditionally, this design process is driven by
experimentation and guided by the experience and intuition of experts [Che+20]. The role of
computers in this process has consisted mainly of modeling and simulation. The underlying
physical principles of chemistry are well understood, and consequently, computers can facili-
tate the search for new molecules by predicting their behavior from the fundamental laws of
physics alone [But+18].

However, the emergence of artificial intelligence (AI) has the potential, as for many do-
mains in science and engineering, to change the role of computers in chemistry [But+18]. For
one, AI can facilitate material research by improving the prediction of molecular properties,
predicting phase diagrams and crystal structures, and increasing the speed of material sim-
ulations [MKR16]. Moreover, AI can assist in discovering entirely new molecules tailored to
the specific use case. The possibility of generating molecules directly for the task at hand
carries an enormous societal and technological impact and has, e.g., applications in energy
production and energy storage. The importance of AI in material design is further highlighted
by the fact that data-driven approaches form a core concept of the U.S. Materials Genome
Initiative [MKR16]. One of the most important potential applications for AI-guided molecule
generation is healthcare. In health care, effective means of discovering new molecules bear
immense potential, promising personalized and precise medicine and the potential of curing
rare diseases [Pol+20]. Throughout this thesis, molecule generation will be addressed, with a
particular focus on the construction of drug-like molecules.

Despite constant improvements and the high importance of the task, the discovery of new
molecules remains a complicated matter. A significant reason is the enormous theoretical

1GPT-3 is a language model based on deep learning [Bro+20b].
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space of molecules, which, e.g., has been estimated to be between 1023 to 1080 in size for
pharmacologically-sensible molecules [Ram+14; Rud+12; Pol+20]. This enormous number
of potential molecules, even when limited by molecular size, renders a complete experimental
or computational exploration infeasible [Bro+20a]. In addition, developing new drugs and
materials requires optimization of a wide range of parameters and consideration of additional
constraints such as synthetic accessibility [Bro+20a]. Chemical engineers are thus faced with
complex multi-objective optimization problems, and even to this day, the question of how
to effectively navigate the search space of potential molecules without having to enumerate
significant parts of it remains unanswered [Bro+19].

Identifying a suitable molecule candidate for the task at hand resembles searching for a
needle in a haystack, so the methodologies applied are constantly evolving. So far, there
have been three distinct paradigms of material discovery [Che+20]. Firstly, the conventional
experimentally-driven, trial-and-error molecule design. This approach is guided by expert
knowledge, experience, and intuition. The increasing computational power and advancements
in simulation and modeling tools enabled the second stage of material design. Computer sim-
ulations have made it possible to model the molecular properties of a compound before it
has been synthesized, opening up new possibilities in finding the suitable molecule [But+18].
Tools like molecular dynamics simulations or density functional theory made it possible to
analyze numerous known and hypothetical molecules to predict their structure, and behavior
[But+18]. These advancements have led to large databases of molecules and their properties
and introduced high-throughput virtual screening as a routine technique for molecular search
[Che+20]. Virtual screening is the process of searching huge compound databases in silico
with the help of computational methods to predict desired properties, similarities, or binding
affinities to a target structure [Baj02]. It complements high-throughput screening (HTS),
one of the most prominent techniques in molecule design to date. In HTS, molecule libraries
are experimentally tested for specific target properties utilizing robotics and autonomous de-
tection techniques. Although HTS has advanced the drug discovery process in the past two
decades, the estimated hit rates (finding a compound with the desired properties) are rel-
atively low, ranging between 0 and 0.01% [Sch+20]. However, it is of essential importance
for the success of a drug discovery project to select promising HTS hits as starting points
for the subsequent steps in the design process [Sch+20]. Overall, both introduced paradigms
of molecule discovery bear disadvantages, as they resemble Edisonian approaches [MKR16].
Relying solely on expert knowledge and intuition can result in the by-chance discovery and a
loss of generality in addition to being extremely time-, labor-, and cost-consuming [Che+20].
Although automating this process with HTS has had a significant influence on molecule dis-
covery, the process is still defined by a trial-and-error mindset, which does not favor the fact
that HTS is immensely costly [Sch+20]. To date, developing new drugs has been a time- and
resource-intensive process, primarily driven by a high proportion of failures in clinical trials
[Sch+20]. This holds true despite steady advances in technology and methods and a better
understanding of disease biology. All in all, biological systems are complex, and identifying
suitable candidate molecules requires extensive experimentation and testing, so molecule dis-
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covery remains challenging and prone to failure [Bro+20a]. It was reported in 2010 that the
cost for pharmaceutical companies to bring a new molecular entity to the market is estimated
to be approximately $1.8 billion and the development takes 13.5 years on average [Pau+10].
Although computer simulations have been successfully integrated into this process, allowing
virtual screening of molecular libraries, these models usually provide only a mapping between
the molecule and its properties [Che+20]. However, modeling the inverse mapping of proper-
ties to the molecular structure would enable a targeted search in the molecule space toward
promising candidate molecules.

The aforementioned shortcomings have led to the third state of molecule discovery, char-
acterized by increased incorporation of data-driven approaches [Che+20]. In addition to the
classic empirical, theoretical, and computational methods, the emerging data-intensive sci-
ence is discussed as the fourth paradigm of science with a major influence on various fields
of research [HTT09; HT20]. Machine learning algorithms are now an essential part of the
computational and medicinal chemists’ toolbox, driven by the growing amount of digitized
molecule data and increasing computational power available [Bro+20a]. In addition to the
ever-increasing amount of publicly available data, user-friendly software packages open the
field to a broader community of scientists, making it no longer the domain of experts alone.
There are multiple freely accessible databases of chemical structures, e.g., PubChem [Kim+21]
listing over 110 million unique compounds, ChEMBL [Men+19] with over two million com-
pounds, and ZINC [SI15] a database of 230 million commercially available compounds. This
sheer amount of data can pose a problem to classic methods from computational chemistry
but opens up possibilities for the application of AI-based methods, especially from the domain
of machine learning [Bro+20a].

AI promises improvements to the trial-and-error process of molecule design. For one, AI
offers new possibilities to predict a molecule’s properties before it has been made in the labo-
ratory [But+18]. Furthermore, these models may not only provide higher predictive accuracy
but can also capture the underlying structure of the molecular property space and enable
the search for new promising molecules [Bro+20a]. Such an AI modeling the distribution of
molecular data can be used to sample new molecule entities, just like sampling a random
number from a probability distribution [Pol+20]. These so-called generative models open up
a new paradigm of de novo molecular design, i.e., designing molecules from scratch based on
the desired properties [Bro+19].

Autonomously generating molecules with AI could obviate the necessity of costly full-deck
HTS and drastically reduce the time, cost, and risk associated with developing new drugs
and materials by proposing promising and unbiased starting points [Sch+20]. In contrast to
lengthy design, test, and experiment cycles that are state-of-the-art in molecule search up to
date, these algorithms can traverse the vast search space of potential molecules in a directed
and structured manner [Bro+19]. Furthermore, AI research offers a variety of optimization
approaches to improve molecules in the direction of desired properties and strategies to deal
with constraints like solubility or toxicity [Pol+20].
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All in all, de novo molecular design promises to dramatically reduce the number of molecules
that need to be evaluated in the design process by targeting promising regions of search space.
Conventional methods from computational chemistry struggle with such challenging problems
involving massive combinatorial spaces with nonlinear relations. However, AI is regularly
applied to multi-objective optimization problems and has the potential to approximate even
complex functions by learning from large, unstructured data sets. This renders AI a promising
addition to the molecular design process.

In particular in drug design, AI promises some considerable advantages by promising im-
provements to various parts of the design-make-test-analyse (DMTA) cycle. DMTA is the
dominant design process for discovering new drugs. In an iterative trial-and-error manner,
a team of experts optimizes molecules toward specific target properties. DMTA commonly
involves using theoretical chemistry to propose changes to known structures, synthesizing the
candidate molecules, measuring their performance in a series of in vitro and in vivo tests, and
analyzing the results. This process can span many years until a suitable candidate molecule
has been identified since every hypothesis cycle can take up to 4–8 weeks [Tho+22]. Especially
in the early stages of this process, large quantities of hypotheses are tested in a brute-force
manner by screening huge molecule libraries with minimal feedback or adjustments. Such a
process is not only expensive and inefficient but is also vulnerable to noisy data, personal
bias, and poor intuitive choices [Sch18]. Although the DMTA cycle is a central concept in
drug design, many of these challenges are transferable to other domains of molecule design.

AI research has proposed solutions targeted at different stages of the DMTA cycle. Ret-
rosynthesis models based on deep neural networks can predict reaction paths for a given
molecule and could facilitate the make stage, e.g., as demonstrated by Segler, Preuss, and
Waller [SPW18]. However, the design part has received the most attention, with various
proposed de novo design models [Bro+20a]. These so-called molecule generation models are
often trained on large publicly available molecule databases, e.g., ChEMBL, PubChem, and
ZINC. Just like random number generators, the models allow the sampling of new molecular
structures and can be used to explore the molecule search space. Since these models are
trained on libraries of known compounds, the generated molecules have feasible structures
and are similar to the training molecules in their property distributions. In drug design, these
models are also evaluated for their capability of generating realistic and “drug-like” molecules.
In this context, realism is defined as the molecules having a high degree of similarity to known
structures. In silico molecule design can be integrated into the design stage of the DMTA and
function as a small, virtual DMTA cycle, as pictured in Figure 1.1.

The in silico design cycle seeks to generate promising molecule candidates and optimize
them in the direction of the desired target property profiles [Bro+19]. Therefore, molecule
generation models can potentially improve the quality of the hypothesis generated in the
design phase of drug discovery, which could reduce the time and cost of subsequent steps
in the DMTA cycle [Tho+22]. This promise has led to an active research area of molecule
generation models, which are also a central research topic of this thesis and of which an
overview is provided in Section 3.3.
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Figure 1.1: Integration of in silico molecule design in the DMTA cycle.

A key challenge in applying AI to chemistry is the question of how to represent the molecule
data. Be it predicting molecular properties, generating new compounds, or optimizing existing
molecules; computers need a means of storing, processing, and generating molecular data. A
proper representation is key to a successful application and should be informative enough
to capture the molecular properties relevant to the task at hand but also easy to process
by machines. Furthermore, generative models require a representation that is reversible to
molecular formulas. Thus, an inadequate representation can be the Achilles’ heel of molecule
generation [Xue+19].

Figure 1.2 shows the four most common molecule representations for the same exemplary
molecule. The following is a brief overview, a more detailed explanation can be found in the
respective chapters of this thesis. Figure 1.2a pictures a representation that has been in use
for a long time: molecular fingerprints. These often fixed-size bit vectors encode the structural
features of a molecule. Various types of fingerprints are available, each with a specific set of
rules determining how the bit string is constructed. Further information on fingerprints is
provided in Chapter 7. For a long time, fingerprints have been a dominant representation in
computational chemistry, as they allow a straightforward way of comparing the similarity of
molecules, which makes them especially applicable for virtual screening [Pol+20].

One of the most common types of molecular representations today is string-based repre-
sentations, encoding the molecular graph as a sequence of characters. A prominent example
of string-based representations is the simplified molecular-input line-entry system (SMILES)
[Wei88], as depicted in Figure 1.2b. SMILES specifies a grammar and syntax rules to encode
a molecule spanning tree, and a SMILES string contains characters specifying a molecule’s
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. . . 0000001000000001000000. . .

(a) Molecular fingerprints

CN1C=NC2=C1C(=O)N(C. . .

(b) String-based

(c) Graph-based (d) Spatial

Figure 1.2: Four common types of molecular representation, illustrated using an exemplary
organic molecule.

atoms and their bonds. It also includes special characters to signalize more complex concepts
like branches, ring structures, or stereochemistry. String-based representations are simple to
process in terms of storing, reading, and writing. Furthermore, they allow a straightforward
adaption of language modeling tools, e.g., recurrent neural networks, to be applied to molecule
generation [Pol+20].

Operating directly on a molecule’s graph representation has become more prevalent in
recent years due to the increased knowledge of graph-modeling techniques [GMH22]. A graph
is an abstract data structure of nodes, specifying an entity, and edges between the nodes,
representing relations between the entities. In terms of molecular graphs, each node in a
graph specifies an atom of a specific type, while edges represent bonds between these nodes (see
Figure 1.2c). This way of encoding a molecule’s structural information in a more mathematical
way can benefit neural networks and eliminates the need for the model to learn a specific
syntax, as is the case for string-based representations.

There are also examples of models operating on three-dimensional representations of mole-
cules, as pictured in Figure 1.2d. This representation provides access to the spatial information
of the molecule and allows distinguishing between spatial isomers of the same structural for-
mula (the concept of isomers will be featured in Section 3.1). However, creating molecules
directly in three-dimensional atom space can be a difficult task, as it requires the prediction
of precise atomic distances and angles to ensure that the molecule is valid.

All the presented representations offer their advantages but also challenges when applied
to the generation of molecules. This work presents new methods for generating and optimiz-
ing molecules in all four aforementioned representations. We will investigate state-of-the-art
AI-based molecule generation models and discuss their possibilities and limitations. Further-
more, we will introduce new AI techniques for generating drug-like molecules that will open
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up new opportunities and applications. In this regard, we will focus on the recently intro-
duced transformer architecture for sequence processing. Transformers are a unique neural
network architecture initially designed for language processing tasks. Their unique attention
mechanism allows them to effectively process sequential information, as it allows attending to
arbitrary points in a target sequence. This benefit makes them an alternative to the methods
used so far, which are usually based on recurrence. In addition, their high degree of paral-
lelism allows training models with a considerable number of parameters, making them capable
of capturing even complex relationships. This work discusses the modeling and strategies re-
quired to apply this powerful architecture to the field of molecule generation and highlights
the advantages that such an application offers. The following sections provide a brief overview
of this thesis’ structure and the publications on which this work is based.

1.1 Overview of the Thesis

An overview of this thesis’ structure is pictured in Figure 1.3. The thesis is divided into three
main parts. Part I provides an overview of the theoretical foundations from AI, chemistry,
and molecule design on which this thesis is based. Part II presents four contributions to how
AI can be utilized to generate drug-like molecules in the four aforementioned representations.
Part III summarizes the results, presents a conclusion, and provides an outlook for possible
future work.

The foundations (Part I) begin with an introduction to the core concepts of AI on which
the research in this thesis is built in Chapter 2. This includes the concept of optimization
and the fundamentals of deep learning, with a particular emphasis on deep generative models.
Building on this, Chapter 3 pictures how these concepts have been applied to molecule design
and optimization thus far. The chapter starts with an introduction to the basic concepts of
organic chemistry. After that, it provides an overview of common molecular representations
and typical applications of AI in the context of molecule design. The chapter concludes with
an overview of the implications of AI for molecular design and the ethical implications that
arise from such a development.

Part II consists of four research contributions, each focusing on a different molecule repre-
sentation. In the first study presented in Chapter 4, a genetic algorithm (GA) is applied to
the generation of molecules in the string-based SELFIES representation. The molecules are
designed to function as SARS-CoV-2 protease inhibitor candidates and are evolved in a multi-
objective approach. Section 4.1 explains the concept of evolution-inspired algorithms such as
GAs, whilst Section 4.2 gives a brief overview of the problem domain: protease inhibition. The
evolutionary multi-objective approach for inhibitor design is introduced in Section 4.4. The
chapter concludes with an analysis of the generated molecules and their potential performance
as protease inhibitors.

Generative models based on neural networks can facilitate the generation of drug-like mol-
ecules. The approach presented in Chapter 5 demonstrates how a neural network based on
transformers can be used to generate molecules in a spatial representation. The chapter briefly
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Figure 1.3: Structure of this thesis.

introduces the transformer architecture in Section 5.1. Building up on this, the study explores
the difficulties arising when sampling molecules directly in three-dimensional space and the
adjustments that need to be made to the transformer architecture to make this possible.
Generating spatial molecules with transformers requires a customized way of representing the
molecular information but offers advantages for training and sampling, which are all discussed
in Section 5.3. A further advantage of the proposed approach is the capability of completing
unfinished, unconnected atoms to valid molecular structures. This property is investigated in
Section 5.4, as is the general performance of the model in generating new spatial molecules.

Building upon these results, Chapter 6 improves the processing and sampling strategy intro-
duced in the previous approach and transfers it to the domain of molecular graph generation.
This is achieved by incorporating state-of-the-art strategies from graph synthesis into the
model, as described in Section 6.2. The model’s capabilities of generating valid and novel
molecules are experimentally investigated in Section 6.3, in which the model is also compared
to other prominent molecule generation models.



1.2 Contributions 9

Chapter 7 addresses the topic of molecular fingerprints as a representation for generation
models. Since these bit string representations are usually not decodable, they are rarely used
for molecule generation. However, the approach presented in this chapter demonstrates how a
GA can be utilized for molecular fingerprint reconstruction. Section 7.1 describes how the algo-
rithm combines molecule fragments into valid molecules and the employed genetic operations.
The algorithm’s reconstruction capabilities are investigated in Section 7.2. Furthermore, a
transformer-based model for fingerprint generation is introduced, which complements the GA
to a molecular generation model based on fingerprints.

All in all, these four contributions demonstrate new techniques for molecule generation
models for the four most prominent molecule representations in computational chemistry.
Chapter 8 concludes this thesis by discussing the introduced enhancements to molecule gen-
eration in different representations. Furthermore, the two main AI instruments featured in this
thesis, namely GAs and transformers, are evaluated in their utility as molecular generation
models. Finally, a summary of possible future work is provided.

1.2 Contributions

This thesis features four main contributions in Part II published as peer-reviewed conference
articles. A short overview of the publications is presented in the following.

• The results in Chapter 4 are based on a collaborated work and demonstrate how a
genetic algorithm can be utilized for the generation of protease inhibitor candidates.
The approach represents molecules in the string-based SELFIES representation and is
a multi-objective optimization, i.e., it considers five molecule metrics. The results are
published in:

– T. Cofala, L. Elend, P. Mirbach, J. Prellberg, T. Teusch, and O. Kramer. “Evo-
lutionary Multi-objective Design of SARS-CoV-2 Protease Inhibitor Candidates”.
In: Parallel Problem Solving from Nature - PPSN XVI - 16th International Con-
ference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings,
Part II. ed. by T. Bäck, M. Preuss, A. H. Deutz, H. Wang, C. Doerr, M. T. M.
Emmerich, and H. Trautmann. Vol. 12270. Lecture Notes in Computer Science.
Springer, 2020, pp. 357–371. doi: 10.1007/978-3-030-58115-2_25

• Chapter 5 presents an approach for generating molecules in a three-dimensional repre-
sentation. The approach is based on transformers and is able to either generate new
molecules from scratch or even link predefined molecule fragments. The results are
published in:

– T. Cofala, T. Teusch, and O. Kramer. “Spatial Generation of Molecules with
Transformers”. In: International Joint Conference on Neural Networks. IEEE,
July 2021, pp. 1–7. isbn: 978-1-6654-3900-8. doi: 10.1109/IJCNN52387.2021.

9533439. © 2021 IEEE.

https://doi.org/10.1007/978-3-030-58115-2_25
https://doi.org/10.1109/IJCNN52387.2021.9533439
https://doi.org/10.1109/IJCNN52387.2021.9533439
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• The results in Chapter 6 extend the previous approach for the generation of molecular
graphs. A more efficient sampling procedure based on mixed categorical distributions
allows the generation of longer molecules. The results are published in:

– T. Cofala and O. Kramer. “Transformers for Molecular Graph Generation”. In:
ESANN 2021 proceedings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2021,
pp. 123–128. isbn: 978287587082-7. doi: 10.14428/esann/2021.ES2021-112

• In Chapter 7 a novel strategy for the reconstruction of molecular fingerprints is intro-
duced. The algorithm is based on GAs and composes molecules from a set of fragments.
Combining the approach with a transformer-based generation model for molecular fin-
gerprints offers new possibilities for molecular design. The results are published in:

– T. Cofala and O. Kramer. “An evolutionary fragment-based approach to molec-
ular fingerprint reconstruction”. In: Proceedings of the Genetic and Evolutionary
Computation Conference. New York, NY, USA: ACM, July 2022, pp. 1156–1163.
isbn: 9781450392372. doi: 10.1145/3512290.3528824

https://doi.org/10.14428/esann/2021.ES2021-112
https://doi.org/10.1145/3512290.3528824
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Foundations





2 Core Concepts of AI

AI is a research domain with many facets. In fact, so many different families of algorithms
are subsumed under this term that it is difficult to find a unified definition. Russell and
Norvig [RN16] call AI a field dedicated to build and study intelligent entities. Since it is
generally difficult to give a clear definition of what makes an entity intelligent, they focus on
the concept of rational agents. An agent is an entity that lives in an environment, perceives
that environment, and acts according to a specific goal, adapting its behavior in response to
change. A rational agent seeks to interact with the environment to maximize the expected
outcome with respect to that goal. AI deals with the construction of such rational agents.

Just as there are many facets to human intelligence, the development of intelligent agents
has many sub-fields. Research focuses on various domains that impact the agent’s ability to
achieve its goal, such as problem-solving, reasoning, planning, learning, perceiving, acting,
and more. This section provides an overview of AI concepts that form the basis for the
research in this study. Section 2.1 introduces the concept of problem-solving, with a focus
on optimization problems. In Section 2.2, we address how an agent can learn from data to
improve its performance in the given task. Since this work concerns the generation of new
molecules, Section 2.3 pays special attention to deep generative learning.

2.1 Problem-solving and Optimization

Optimization problems are a common problem domain, with examples from various areas of
our everyday life. A central element of these problems is the objective function (also called
fitness function), a quality measure of the generated solutions. Typical objectives are, e.g.,
minimizing an error, energy consumption, weight, or cost and maximizing profit, outcome,
or success [Kra17]. Optimization algorithms aim to generate valid solutions for the given
problem with optimal scores concerning the objective function.

For most problems, the space of potential solutions is so vast that a complete exploration
is infeasible. Therefore, an optimization algorithm has to search the solution space effectively
to find an optimal or near-optimal solution. The shape of the objective landscape has a
significant impact on the complexity of the optimization problem. Two examples of objective
landscapes are pictured in Figure 2.1. The x-axis represents the variable to be optimized,
while the y-axis shows the corresponding performance with respect to the objective function.
The unimodality of the objective landscape in Figure 2.1a makes it easy to find the best
solution, the global optimum. Usually, objective landscapes have a more complex shape,
with many plateaus and local optima, as shown in Figure 2.1b. A local optimum has a
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Figure 2.1: Objective landscapes of optimization problems.

higher objective score than its surrounding but less than the global optimum. An efficient
optimization algorithm has to be able to deal with multimodal objective landscapes to avoid
getting trapped in such local optima. Furthermore, most optimization problems require the
optimization of multiple variables, rendering the objective landscape even more complex.

The topic of optimization will be explored in more depth in later chapters of this thesis,
where it will be applied to the design of molecules. Chapter 4 will introduce GAs, a popular
optimization algorithm, and demonstrate how it can be utilized to optimize molecules as drug
candidates. In Chapter 7, a GA is applied to the reconstruction of molecular fingerprints.

2.2 Learning

Learning is the second central concept of AI relevant for this thesis. Learning helps an agent
improve its performance for a given task by observing data from the real world [RN16].
This approach is especially useful when the problem’s underlying structure and the required
solution strategy are not known to the designer [RN16]. Three main components define
learning algorithms: A task in which the algorithm tries to improve with respect to a certain
performance measure by learning from experiences [GBC16]. Machine learning can be applied
to a variety of different tasks. Common problem domains are, e.g., classification, regression,
anomaly detection, machine translation, and many more [GBC16]. The performance measure
usually depends on the problem domain, with common ones being accuracy or error rate.
Machine learning aims to build a model that makes predictions for the given tasks, maximizing
these performance measures. A key challenge in this regard is that the model should be able to
generalize from observed experience and be applicable to previously unknown inputs. A model,
therefore, approximates a function that maps a given set of inputs to hopefully reasonable
predictions or decisions.

Depending on the structure of the observed experiences, i.e., the data, machine learning
can be broadly divided into three categories: Supervised, unsupervised, and reinforcement
learning. In supervised learning, each data point is associated with a concrete label. The
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training objective is to learn a mapping from a given input to a probability distribution over
the possible labels. A model trained in such a fashion can, e.g., be utilized for classification
tasks. Unsupervised learning, on the other hand, does not include any labels and focuses on
the structure of the data itself. Its objective is to approximate the probability distribution
underlying the data, which can then be used for synthesis or denoising [GBC16]. A further
common application domain of unsupervised learning is clustering by identifying groups of
similar data points. The last type of learning is reinforcement learning, which is driven by
feedback from an environment. Based on the observed experiences, the algorithms interact
with their environment and are rewarded based on the performance. Typical applications are
learning robot control or strategies for games.

The capacity of the model has a significant influence on its possible achievable performance.
Capacity describes the variety of functions a model is able to fit [GBC16]. A model’s capacity
increases with its number of adjustable parameters and the variety of functions it can combine
to construct its outputs. Choosing the right capacity for a model can be challenging, but the
development of a model’s performance during training usually provides a good indicator.
Performance is typically measured against a test set that includes data not presented to the
model during training. This test error shows how well the model can generalize to unseen
data. Especially the relationship between training error and test error indicates if the chosen
model and its capacity are suitable for the specific problem. If the capacity is too low and
the given task too complicated, underfitting can occur, indicated by a high training error.
An underfit model is simply not powerful enough to capture the structure of the data and
cannot be used to make meaningful predictions. Conversely, a model with a too-high capacity
can result in overfitting, indicated by a low training error but a high test error. Especially
if there is not enough training data available, the high complexity of the model may cause
it to capture the training data too accurately, resulting in poor generalization. All in all, a
model performs at its best if its capacity matches the complexity of the given problem and a
sufficient amount of data is provided [GBC16].

Many classical machine learning models struggle with the high dimensionality of tasks like
speech recognition or image processing. However, with the continuous improvement of deep
neural networks, machine learning became applicable to many complex problem domains, and
deep learning was established. A neural network is composed of units that loosely resemble
a neuron in neuroscience. Neurons receive inputs from other neurons and combine them into
a scalar output. Every neuron, therefore, implements a linear vector-to-scalar function. The
neuron has a set of weights multiplied by the inputs and summed to construct the output.
This computation can be facilitated by grouping the neurons in layers and processing them
in parallel. Combined with an input-independent bias, a layer represents a vector-to-vector
mapping of the form:

f(x) = Wx + b (2.1)

The weight matrix W ∈ Rdout×din is multiplied by the input vector x ∈ Rdin summed to the
bias b ∈ Rdout . This most straightforward type of layer is called a feedforward, linear or dense
layer and forms the backbone of most deep neural networks. A layer is usually followed by
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a nonlinear activation function employed element-wise to allow the approximation of more
complex function types. A common example of such an activation function is the rectified
linear unit (ReLU):

ReLU(x) = max(0,x) (2.2)

A deep neural network with multiple subsequent layers can offer an immense number of
parameters θ, e.g., the weights and biases. By adjusting these parameters, the network can
be trained to approximate an arbitrary target function f∗(x) [GBC16]. During training, the
network observes examples of inputs x and outputs y produced by the target function f∗(x).
The network defines a mapping y = f(x; θ) that is iteratively improved to match the real
function by updating the parameters θ [GBC16].

Of course, this is a relatively high-level overview of the broad field of deep learning. An in-
depth explanation of the underlying principles, the mechanism of training through stochastic
gradient-descent, and various techniques to improve training stability and predictive power
can be found, e.g., in the work of Goodfellow, Bengio, and Courville [GBC16].

2.3 Deep Generative Learning

The previous section introduced machine learning, a family of algorithms with a wide range
of possible applications. One of these applications is generating new data points based on
conclusions drawn from the training data. This section provides an overview of generative
learning, as it is a crucial concept on how AI can be utilized to generate novel molecules.

Foster [Fos19] describes generative learning as follows: A generation model aims to generate
realistic instances of a type of entity. For example, its objective could be to generate realistic
images of a specific object. For this purpose, the model is trained on a dataset of real instances
of the target class. The previous section already introduced the concept of training a machine
learning model for function approximation. In generative learning, the model is trained to
approximate the unknown probability distribution that generated the training data pdata. In
contrast to classification, where the goal is to predict a label y for the data point x, p(y|x),
generative learning estimates the probability of observing the x at all: p(x). The probability
can also be conditioned on a label if one is present p(x|y). Accordingly, generative models
are necessarily probabilistic models. A model trained in such a fashion can then sample data
instances that are realistic in the sense that they are also likely in pdata. As an additional
objective, many generative models aim to generate new instances, i.e., they are suitably
different from the training data. In this manner, the generative model can thus be applied to
the search for new but realistic instances of the respective target class.

Every observation instance consists of features, for example, pixels in an image. All obser-
vations exist in a sample space spanned by all possible values these features can take. The
function pdata and its by the model approximated function pmodel are considered probability
density functions, i.e., they map a point from the sample space to a value between zero and
one, and the sum of all probabilities from all points in the sample space is one. There are
many possible pmodel that, based on the observations in the training data, estimate the true
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pdata. One way of constructing a suitable approximation is using a parametric model p̂θ(x)
that defines a probability density function based on a finite set of adjustable parameters θ.
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Figure 2.2: On the left: Sample data points and the true data-generating distribution p(x).
On the right: The estimated distribution p̂θ(x) and one exemplary generated
point.

Figure 2.2 visualizes an exemplary two-dimensional space with a set of observations repre-
sented as blue dots. The observations are generated by the unknown distribution p(x) marked
in blue. The distribution on the right is the approximation p̂θ(x) that is fit to match the p(x)
by adjusting the parameters θ. With the help of p̂θ(x), new observations (e.g., the orange
dot) can be sampled that should also be realistic with respect to p(x).

As discussed in the previous section, this can, e.g., be achieved with a deep neural network
resulting in the domain of deep generative learning. The training objective is usually defined
as the likelihood L(θ|x) of θ for a given observation x. For a set of independent observations X,
the likelihood defined as the product of the individual probabilities L(θ|X) =

∏
x∈X pθ(x).

Usually, the log-likelihood l(θ|X) =
∑

x∈X log pθ(x) is used to avoid the calculation of the
product.

Although research primarily focuses on classification models, partly due to their high degree
of comparability, there are various generative models for a variety of data types. Famous
examples from the domain of language processing are the text-generating model generative
pre-training (GPT)-3 [Bro+20b] and WuDoa, capable of writing articles, poems, source code,
and many more. Jukebox is a generative model for music introduced by OpenAI that can
generate various styles of music and even parts of rudimentary singing [Dha+20]. In the
domain of images, DALL·E, currently in its second version, is able to generate photorealistic
images from text queries [Ram+22].





3 The Role of AI in Molecule Design

With its tremendous capabilities to solve even complex optimization tasks and its ability to
generate innovative solutions, AI has found its way into many areas of industry and research.
This is also true for the field of chemistry, where AI shows promise in reducing the need for
complex simulations and facilitates the design of novel molecules. This chapter provides a brief
introduction to organic chemistry in Section 3.1 and typical applications of AI in this field in
Section 3.3. For this purpose, Section 3.2 pictures an overview of machine-friendly molecule
representations, which are a prerequisite to process molecules with AI efficiently. The chapter
concludes with a summary concerning the applications of AI in molecular design presented in
Section 3.4 and the ethical implications that arise from such integration in Section 3.5.

3.1 Organic Chemistry

The molecules generated and optimized in this thesis belong to the field of organic chemistry.
This section provides a brief overview of the fundamental concepts of organic chemistry and
the characteristics of such molecules. However, this overview only scratches the surface of
this vast field of science. For a deeper insight, the reader is kindly referred to the literature
from which the following information is obtained ([All+80; Liu21]).

Organic chemistry deals with molecules based on the element carbon, from which all living
things are built. Initially, the term only referred to molecules derived from living organisms
and was introduced in 1807 by Jöns Jakob Berzelius. However, the definition shifted to
considering all those molecules based on the strong covalent C–C and C–H bonds. Based
on this definition, not all molecules containing carbon are considered organic, but organic
compounds still form all living organisms.

Molecules are structures of atoms that are held together by attractive forces, so-called
bonds. Chemistry considers two major types of bonds between atoms, namely ionic and
covalent bonds. Ionic bonds are based on electrostatic attraction and occur between ions of
opposite charges. Covalent bonds, on the other hand, are the result of two bonding atoms
sharing electron pairs. Organic chemistry mainly considers molecules composed of atoms
with covalent bonds. Thereby, the concept of valence plays an essential role in this type of
bond. An atom’s valence electrons are those electrons that are on its outermost shell. Since
these electrons are the furthest from the atom’s nucleus, they are least attracted by its forces.
Valence electrons are the most reactive electrons of an atom and have the most significant
influence on bonding. The amount of valence electrons of a molecule defines the number of
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bonds it can form with other atoms. By sharing electron pairs, the two bonding atoms try to
achieve a filled outer shell, i.e., an octet.

(a) A molecular graph and the corresponding skeletal formula rep-
resentation.

(b) The same molecule in a cis
and trans conformation.

Figure 3.1: Exemplary organic molecules.

The carbon atoms of an organic molecule form strong covalent bonds in the form of chains
and rings. These structures build the carbon backbone of every organic molecule. Carbon has
a valence of four, which means it strives to form four bonds with other atoms. In their simplest
form, organic molecules only consist of these carbon structures filled with hydrogen based on
the remaining valence. Even when only considering these simple hydrocarbons, the number of
potential organic molecules is theoretically infinite. However, carbon is also capable of form-
ing strong bonds with other elements like oxygen, nitrogen, or sulfur, resulting in a diverse
and complex space of potential molecules. Since hydrocarbons are generally relatively inert,
the incorporation of other atoms often has a significant effect on the molecule’s properties.
Especially the functional groups—common structures of specific atoms—determine the chem-
ical reactions an organic molecule can undergo. Figure 3.1 depicts some exemplary organic
molecules. Figure 3.1a shows a molecular graph and the corresponding short-line structure
representation (also known as skeletal formula). In this representation, each line expresses
a bond between two atoms. Carbon atoms are usually omitted, and the carbon chains are
instead shown in a zigzag pattern. Each end of a bond and each intersection represents a
carbon atom unless a different atom type is explicitly shown. As long as hydrogen atoms are
bound to carbon atoms, they are usually not pictured. 2-Phenylethanol, the molecule pic-
tured in Figure 3.1a, features a hydrocarbon skeleton with a carbon ring and a small carbon
chain. At the end of the carbon chain is a hydroxyl group, which leads to the molecule being
classified as an alcohol.

Figure 3.1b shows the same molecule but highlights an additional important concept in or-
ganic chemistry: isomers. Isomers share a chemical formula but differ in structure. There are
two types of isomers: Stereoisomers, which show the same bonding but differ in the spatial ar-
rangement of atoms, and constitutional isomers, which differ in the way atoms are connected.
Although stereoisomers share the same bonds between atoms, the spatial arrangement can
significantly impact the molecule’s properties. Stereoisomers are further distinguished be-
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tween geometric isomers, isomers containing a chirality center, and conformational isomers.
Geometric isomers are divided into two groups depending on whether parts of the molecule
are either on the same side, “cis”, or on opposite sides, “trans”, of a reference structure, such
as a carbon ring or a double bond. An example is pictured in Figure 3.1b. Two molecules
are chiral if they are mirrored but can not be superimposed, i.e., transferred to each other by
rotation and translation. These isomers usually occur in molecules containing a stereocenter,
such as a carbon with four attached groups. Finally, conformational isomers are molecules
with the same chemical formula but different spatial arrangements caused by single-bond ro-
tations. These different configurations are called conformations, and, in contrast to previous
stereoisomers, molecules can change their conformation if a high enough energy is applied.
However, different conformations usually exhibit a varying degree of stability and thus occur
more frequently.

3.2 Molecular Representations

There is a variety of possible representations for molecular structures, for example, the already
in the previous section mentioned short-line structure. In general, every representation has its
characteristics in the form of simplicity, expressiveness, and ambiguity. This section provides
a high-level overview of the main molecule representations in computer science. A more
in-depth overview of approaches based on the respective representations is provided in the
corresponding research chapters 4–7.

3.2.1 Graphs

Graphs are a common data structure in computer science and can be applied in various
domains. A graph consists of nodes and edges. Nodes represent entities and can be connected
to other nodes through edges, displaying a relationship between the two nodes. Nodes and
edges can feature additional information to describe the objects and their relations further.

In chemistry, graphs can be used as a means of representing a molecule, as shown in Fig-
ure 3.2. A molecular graph contains nodes corresponding to its atoms and edges representing
the bonds. The nodes contain information about the atom type but can also feature further
information, like hybridization or charge [GMH22]. Edges usually contain information about
the respective bond type [GMH22].

Representing molecules as graphs is an effective way to encode the topology of a molecule
in a mathematical format. This allows the adaptation of specialized types of neural networks,
such as graph convolution networks or message passing neural networks, for processing mol-
ecules [Pol+20]. However, graphs are a more abstract representation that can complicate
the interpretation of results [GMH22]. Moreover, graphs can usually not express differences
between stereoisomers of the same molecule, as spatial information is not captured in graphs.
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3.2.2 Strings

The introduction of computers into chemistry caused the development and widespread appli-
cation of string-based molecular representation. Computers can process linear strings with
ease [Wei88] and string representations offer a condensed way of storing vast amounts of
molecular data.

Possible SMILES:
CN1C=NC2=C1C(=O)N(C)C(=O)N2C

Canonical SMILES:
CN1C=NC2=C1C(=O)N(C(=O)N2C)C

Start

Figure 3.2: A molecular graph with one of the possible SMILES strings and the canonical
SMILES representation.

One of the most widely used string representations for molecules are SMILES strings
[Wei88]. SMILES defines a vocabulary of symbols, a grammar, and syntactic rules which
allow encoding molecular structures into a short sequence of characters. The molecule’s
graph is the basis for constructing a SMILES string. For simplicity and readability, SMILES
has no intention of capturing three-dimensional information about the molecule. Figure 3.2
pictures an exemplary molecular graph and its SMILES representation. The syntactic rules
for constructing a SMILES string are briefly described in the following: Atoms are encoded by
their atomic symbols. Hydrogens are usually not shown explicitly, and each atom is assumed
to hold as many hydrogen atoms as correspond to its valency. Single bonds can be described
by the symbol –, but are also usually omitted. Double and triple bonds are explicitly stated
and represented by = and #, respectively. Branches are specified by including the branch in
parentheses, which can also be nested. Finally, to encode cyclic structures, a ring is broken
at a single bond, and the ring opening is marked with a digit. The ring is then traversed in
an arbitrary order, and the closure is marked with the same digit. Aromatic rings—common,
stable structures in organic compounds—can either be expressed as alternating single and
double bonds or by writing the atoms in the aromatic structure as lowercase letters. Fur-
thermore, SMILES contains special characters to capture many more niche cases, but the
aforementioned rules are sufficient to express most organic structures. Although there are
multiple different possible SMILES strings, SMILES features rules for a canonical ordering to
remove ambiguity. To a certain degree, SMILES also offers ways of distinguishing between
stereoisomers: The direction of single bonds in relation to a double bond can be expressed
with \ and /. Chiral molecules can be differentiated with the @ symbol.
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There are further examples for string-based representations, e.g., the international chemical
identifier (InChI). The InChI is a unique molecular identifier containing multiple layers of in-
formation about the encoded molecule. However, SMILES strings offer advantages over other
string-based representations, which facilitated its widespread application [GS22]: SMILES
offers a small but flexible set of syntactic rules. This can make it easier for generative models
to capture these rules and apply them for the generation of new structures. Additionally,
SMILES strings are easily readable and interpretable by humans. These advantages have
led to the creation of enormous molecule databases encoded as SMILES strings, which are
the foundation of many state-of-the-art generative molecule models. The sequential nature
of SMILES strings allows a straightforward application of techniques from natural language
processing, which makes SMILES especially suitable for molecule generation.

Despite the ease of use, string-based representations also have drawbacks. For example,
they do not contain complete information about the locality of atoms. Furthermore, when
generating SMILES strings, it is possible to generate strings that are syntactically not correct.
Even if a string is correct, it can encode a molecule with incorrect valences. Self-referencing
embedded strings (SELFIES), a further string-based representation, tries to overcome this
disadvantage and will be featured in Chapter 4.

3.2.3 Spatial

Representing molecules as graphs or strings bears the disadvantage of ignoring spatial infor-
mation about the molecules. However, how a molecule interacts with other substances is often
of interest, and these interactions take place in a three-dimensional space [GMH22]. Further-
more, in contrast to the other representations mentioned, a spatial representation enables
complete distinction between stereoisomers of the same molecule. Although stereoisomers
yield the same graph representation, they can have significantly different properties.

(a) Grid-based (b) Point cloud

Figure 3.3: The molecule vanillin in two different three-dimensional representations.
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Overall, fewer examples of approaches for property prediction or molecule generation oper-
ate on a three-dimensional representation. A significant challenge is representing the molecule
in a way that machines can efficiently process. One possible way is rendering the molecule’s
atoms in a grid of voxels. A voxel is the three-dimensional counterpart of the two-dimensional
pixel. In such a voxelized coordinate system, every voxel is either empty or contains infor-
mation about an atom. An example of the molecule vanillin is given in Figure 3.3a. This
representation is quite flexible and not only allows including further information about an
atom in additional channels of the grid space but can also contain parts of a target structure,
e.g., a protein’s binding site [Pol+20]. Finding a molecule that binds to a protein is a common
task in drug design and will be featured in Chapter 4. However, a disadvantage of grid-based
approaches is the sparsity of the encoded space, i.e., usually, most voxels are empty [Pol+20].

Another way to encode a molecule in 3D is to consider it a point cloud of atoms. Each
point is assigned an atom type which, in combination with its distance to all other atoms,
is enough information to fully describe a molecule, as shown in Figure 3.3b [GGS19]. This
representation, therefore, has no necessity for abstract concepts like bonds or rings [GGS19].
Working with point clouds involves additional complexity compared to grid-based approaches,
as the computational model must be able to handle inputs and outputs of varying size and
shape.

3.2.4 Fingerprints

Fingerprints are a somewhat abstract molecular representation with a long history in com-
putational chemistry [Pol+20]. There are various types of fingerprints available, but usually,
they share a common concept: The structural features of a molecule are encoded in a fixed-
length sequence, often a bit string or a count vector. Fingerprints are commonly applied
in virtual screening, as they allow an easy and fast way of comparing molecule similarities
[RL13]. The various types of fingerprints differ in the set of rules they use to encode the
molecule’s features and, according to Riniker and Landrum [RL13], can be divided into four
categories:

Dictionary-based. A common representative of dictionary-based fingerprints is the public
Molecular ACCess System (MACCS) structural keys. These offer a predefined set of
166 substructures. A to-be-encoded molecule is searched for these substructures, and,
if present, the corresponding bit in the fingerprint bit vector is set. This procedure
produces a fingerprint that is easy to interpret, in contrast to the following types of
fingerprints. However, it can only encode the occurrence of predefined features and
usually show a low performance level in virtual screening [RL13].

Topological or path-based fingerprints consider all subgraphs of a molecule up to a prede-
fined maximum length. The information about the subgraph, e.g., atom types, aro-
maticity state, and bond types, is hashed, and the hash is used to set a bit in the bit
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vector. A typical representative of path-based fingerprints is the daylight fingerprint
introduced by the commonly used cheminformatics software toolkit RDKit1.

Circular fingerprints consider the neighborhood of every atom of a target molecule. For
every atom, the environment up to a particular bond radius is encoded with a hash
function and folded into a bit vector of the defined size. Circular fingerprints, like
the extended-connectivity fingerprint (ECFP), are a more recent development but have
quickly become a popular type of fingerprint.

Pharmacophore fingerprints focus on the occurrence of pharmacophore features in molecules.
These features usually play an important role in the binding process. Pharmacophore
fingerprints consider the bond distances between pharmacophores and incorporate this
information into the fingerprint.

In summary, molecular fingerprints are an easily processable and comparable molecule
representation. Although fingerprints are broadly applied for virtual screening and sharing
molecule information without revealing the exact chemical formula, there are few examples
of fingerprints used for molecule generation. Dictionary-based fingerprints are limited in the
number of features they can encode, and fingerprints based on hashing are non-decodable.

3.3 Applications of AI in Molecule Design

With the advancements in representing molecular data in a machine-friendly manner, as
discussed in Section 3.2, AI algorithms became applicable to a variety of molecule design
problems. This section provides an overview of these application domains.

Quantitative Structure-Activity Relationship. An important aspect of identifying suitable
candidate molecules for drug development is the reliable assessment of a molecule’s properties.
Quantitative structure–activity relationship (QSAR) models are computational tools that
capture the relationship between a molecule’s descriptor and its biological activities. Xu
[Xu22] provides an overview on how QSAR models are applied in the drug design process.
For one, QSAR models can be utilized to prioritize candidate molecules for the given task
and evaluate the quality of newly generated compounds. Furthermore, they can provide
insight into how structural changes in a molecule affect its biological activities. Since the
development of QSAR models amounts to the solution of regression and classification tasks,
AI methods have been frequently used in this area. The models are usually trained using
experimentally obtained data on molecular properties. Especially deep neural networks have
proven to be powerful tools for these tasks, as, e.g., demonstrated by Ma, Sheridan, Liaw,
Dahl, and Svetnik [Ma+15]. Using deep neural networks, they won a Kaggle competition
in 2012 to find state-of-the-art machine learning methods for QSAR, beating the previously
dominant random forest approaches.

1https://www.rdkit.org

https://www.rdkit.org
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QSAR models based on deep learning can significantly reduce the time needed to test a large
number of compounds. Commonly, these models operate on either string-based representa-
tions, mostly SMILES, or fingerprints, like extended connectivity fingerprints. However, since
the number of available training experiences is limited due to the high cost of experimentally
deriving the true labels, transfer and multitask learning strategies are usually incorporated in
addition.

Virtual Screening is a brute-force approach to molecule design in which huge libraries are
systematically scanned for molecules with specific target properties. Clyde [Cly22] gives an
overview of how fast prediction models based on deep learning enable ultrahigh-throughput
virtual screening (uHTVS) for the task of protein-ligand docking. A ligand is a molecule able
to form a strong bond to a biomolecule, e.g., a protein. Identifying well-docking ligands is
a fundamental concept of the drug design process. Virtual screening is further divided into
ligand-based, structure-based, and hybrid methods. Ligand-based screening focuses on com-
paring candidate molecules to a set of known well-performing ligands. Consequentially, this
form of screening requires a reliable means of comparing molecules with respect to certain
target characteristics, e.g., the occurrence of specific pharmacophores or the match of molec-
ular properties. Structure-based screening aims to identify promising candidates by directly
estimating the binding energy between the candidate and the target protein. Finally, hybrid
methods combine both strategies into one approach.

Since molecule libraries usually contain many potential structures and traditional docking
tools are computationally expensive, only a small part of the molecule space can be covered
with virtual screening. Machine learning models can be incorporated into this process as sur-
rogate models to accelerate the analysis of each molecule. One possible strategy is to directly
train a surrogate that predicts a docking score based on a molecular descriptor, bypassing
the need for a docking program. However, in contrast to executing the docking program, this
approach does not provide additional information, like the best-found docking pose. This
may restrict the possibilities of subsequent expert analysis. An alternative approach is to
use a machine learning model to filter the libraries for promising candidates and perform the
complex docking program only for these molecules.

Chemical Synthesis. Even the search for a suitable candidate molecule for the task at hand
is a complex undertaking. However, the results are of no use without a strategy to transform
the theoretically well-functioning molecules into experimentally accessible ones [Tho+22].
Consequently, chemical synthesis is an important step in drug development and indispensable
for validating molecules [Tho+22]. Chemical synthesis is one of the most time-consuming
steps of the DMTA cycle, taking between 8–12 weeks [Tho+22]. One of the reasons is that
the concrete synthesis path from a set of starting points to the final target molecule is rarely
known. Therefore, drug design is in need of computer-aided tools able to derive a synthesis
path automatically. Since this process starts from a target molecule and traverses the synthesis
path backward until it reaches a set of commercially available starting structures, it is called
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retrosynthesis [Tho+22]. Complicating matters further, the optimal synthesis strategy can
dynamically change based on the availability of the starting material [Tho+22].

Historically, computer-aided synthesis planning was dominated by rule-based strategies
that use a set of hand-coded transformation rules [Tho+22]. In recent years, however, more
and more machine-learning-based approaches for retrosynthesis have been reported in the
literature (e.g., [SPW18]). The process is fueled by huge datasets of chemical reactions mined
from literature and patents. The models are either trained to predict the forward direction,
i.e., predicting the product of the reaction between a set of reactants, or they are trained
for backward reaction prediction, making them applicable for retrosynthesis. Training these
models can be characterized as a supervised learning task since the expected results for a
given set of inputs are known. However, synthesis planning poses some unique additional
challenges compared to traditional supervised learning tasks. First, the output representation
is more complex than the usual output in the form of a label, and second, the reaction data
from the literature contains mostly positive examples, preventing the model from experiencing
examples of reactions that do not occur [Tho+22].

All in all, there has been significant progress in the field of computer-aided synthesis plan-
ning in recent years. However, the widespread use of such techniques is still hindered by the
sparse, noisy, and unstructured training data. It is, therefore, unlikely that this technology
will render expert knowledge obsolete, even though it could become an indispensable tool for
the latter in the future [Tho+22].

De Novo Molecule Generation. Finding a suitable molecule for a respective task is still
dominated by combinatorial and high-throughput methodology. Although these strategies
have undeniably led to success and AI can facilitate the process as discussed in the previous
paragraphs, relying solely on information about known molecules restricts the search to a tiny
section of the vast space of potential molecules. Discovering new molecules and bringing them
to the market remains an extraordinarily expensive task. In drug development, this is even
more complicated, as time-consuming clinical trials are required. De novo molecule design,
i.e., the generation of novel molecules with specific property profiles, offers an alternative to
the current trial-and-error approaches. It is not limited to reusing information about known
structures but can freely explore chemical space and generate molecules not found in any
chemical databases [DSC15].

Up to date, the DMTA cycle is the standard procedure for discovering new molecules, as
discussed in Chapter 1. An AI-based generative model can function as an inner loop in the
DMTA cycle. It can generate new, viable, and promising candidate molecules as a starting
point, bringing innovation and potentially accelerating the process [Tho+22]. Furthermore,
the generated molecules are created from scratch and tailored to the specific requirements
of the problem. Consequently, generative models are an active area of research in molecular
design [Tho+22].

De novo molecule generation has to deal with three major challenges [SC19]: How are
molecules generated, how are molecules evaluated, and how are molecules optimized toward
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the target properties? Throughout the research on this topic, various AI methods have been
used to address these problems. The first approaches featured classical search algorithms
such as depth/breath-first searches, evolutionary algorithms (EAs), and Monte Carlo sam-
pling [Tho+22]. To date, there are several approaches in research based on the latter, which
we will focus on in Section 4.3. In addition, with the rise of deep learning, deep genera-
tive learning, introduced in Section 2.3, has also made its way into molecule design, taking
advantage of the vast amount of publicly available molecule data.

Devi, Sathya, and Coumar [DSC15] provide an overview of the role of EAs in de novo
drug design. EAs are a well-researched tool for molecule generation, not least through their
ability to optimize multiple objectives simultaneously. These approaches can be divided based
on the way the algorithm constructs molecules. Some use atoms as their smallest building
block, which lets them freely explore the whole space of potential molecules. However, they
have to deal with a vast search space, and the generated molecules are not necessarily valid
and synthesizable. Fragment-based approaches use a set of molecule fragments and combine
them to generate new structures. This limits the search space and increases the frequency
of realistic molecular structures, but on the other hand, reduces the flexibility of the search.
In the case of drug design, both representation strategies can be further subdivided into
structure-based and ligand-based approaches. Structure-based design centers the molecule
search around a target binding site of a protein. Information about the structure of the
binding site is directly incorporated into the search process. Likewise, the quality of the
molecules generated is determined by the interaction energy with the target protein. The
ligand-based design focuses on the similarity of the generated molecules to known ligands.

Finding an optimal drug candidate involves balancing multiple, often conflicting, objectives.
This can include biological activity, oral bioavailability, synthesizing feasibility and many more
[DSC15]. EAs can consider multiple objectives in their search by combining them into a single
weighted objective. Alternatively, multi-objective EAs can develop a set of Pareto-optimal
molecules, i.e., molecules for which no other molecule is better in all objectives [DSC15]. An
overview of EAs and how they can be utilized for the multi-objective design of SARS-CoV-2

inhibitor candidates is further discussed in Chapter 4.

Utilizing deep neural networks for molecule generation is a relatively recent development,
starting around 2016/2017 [Tho+22]. However, it has quickly attracted most of the commu-
nity’s attention because of the unique generation paradigm neural networks offer [Tho+22].
One of the significant advantages is that neural networks can benefit from the large amount
of molecule data available. A deep generative model trained on this data can implicitly learn
the underlying chemical principles to approximate the distribution that generated these mol-
ecules [Tho+22]. A generative model trained in such a fashion can be used to sample new
but realistic molecules, like sampling a number from a random number generator [Pol+20].
Furthermore, such models can be trained to generate molecules conditioned on a specific tar-
get property, which enables efficient exploration of the search space [Pol+20]. The process
of a generative model allowing traversal of the molecule space is pictured in Figure 3.4. In
this example, the molecule generation model is trained to generate molecules from a two-
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Objective Space

Design Space

Figure 3.4: Navigation in the multimodal molecule landscape with the help of a deep gener-
ative model. This model embeds molecules in the two-dimensional design space.
Starting from an origin molecule (red circle), the model can be used to explore
the objective space by sampling similar but new molecules in the design space.

dimensional latent space, pictured at the bottom. The model can be used to sample new
molecules of a certain distance to known solutions to explore the respective objective space
of the target property, illustrated above. Many approaches utilize an additional property
prediction network to evaluate the molecules with respect to these target properties. This
setup enables a structured search in chemical space for promising molecular candidates.

Two questions are of essential importance when designing a deep generative model, which
are both investigated extensively in research [SG20]: Firstly, on which architecture is the
model based in order to allow efficient training and sampling? Secondly, how can mole-
cules be represented in a computer-friendly way? Various studies have proposed different
approaches based on standard deep generative models, such as variational autoencoders, re-
current neural networks, and generative adversarial networks. Likewise, there are multiple
possible representations a generative model can utilize, as listed in Section 3.2. A more
in-depth discussion of how molecules can be represented for deep generative design and an
overview of the state-of-the-art techniques are provided in Chapter 5 and Chapter 6.

As with generative models in general, it is difficult to evaluate and compare the perfor-
mance of different molecule generation models. Benchmarking frameworks like molecular sets
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(MOSES) [Pol+20] and GuacaMol [Bro+19] try to provide a standardized suite for compari-
son. They offer training, test, and validation datasets and a collection of metrics to evaluate
the generated molecules. One of the most important qualities of a generative model is the abil-
ity to generate valid, unique, and novel molecules. A valid molecule does not violate chemical
constraints, e.g., atom valences. Uniqueness is usually measured by generating a fixed number
of molecules and calculating the ratio of uniquely occurring samples. This metric is the first
indicator of the model’s capability to generate a diverse set of samples. All unique molecules
not already contained in the training data are considered novel. Generally, a good generative
model is able to generate a variety of novel molecules. In addition, the molecules should also
resemble the properties of the training data in such a way that they could realistically have
originated from the same ground-truth distribution. The mentioned benchmarking frame-
works offer a variety of similarity and diversity measures to evaluate this property. These
metrics represent good properties that every molecular generation model should have. Fur-
thermore, generative models can be conditioned on additional molecule properties to allow a
goal-directed de novo molecule generation. For example, in drug design, the generated mol-
ecules can be evaluated for their biological activity, synthetic feasibility, similarity to known
drugs, or non-toxicity.

3.4 The Impact of De Novo Molecule Design

The previous section highlighted the various application possibilities for AI in computer-aided
molecule design. Especially de novo design has the potential to accelerate the molecule design
process with innovative new solutions. But are these theoretically well-performing candidates
transferable to real-world problems? This section briefly reviews the applications of de novo
molecular design, its potential, and the challenges associated with this new design philosophy.

In 2019, Schneider and Clark [SC19] provided an overview of recent de novo molecule
design applications. The review is focused on classical optimization approaches from AI rather
than deep generative models, as there are fewer application studies for this newer family of
algorithms. The listed studies include approaches for the design of various inhibitors, e.g., for
β-Secretase, Aurora Kinase A, Janus Kinase 3, and Helicobacter Pylori HtrA. Furthermore,
some studies investigated design problems with multiple objectives, like the generation of
selective matrix metalloproteinase 2 (MMP-2) inhibitors. This study aimed to generate novel
inhibitors for MMP-2 that show selectivity over MMP-9. A further example is the design of
dual-target inhibitors for COX-2 and LTA4H.

Overall, the authors note that the investigated algorithms have the potential to generate
synthesizable molecules with the desired biological activity. However, in a majority of the
cases, the molecules did not show the same performance as they did in silico. Considerable
manual effort and further refinement were often required, such as modifying the molecules to
facilitate their synthesizability. These results are not necessarily a failure but only highlight
the fact that the algorithms studied are only part of the overall molecular design process.
De novo design programs can play a useful role by generating innovative starting points and
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novel ideas. For example, algorithms can suggest molecules as starting points for hit-to-lead
chemistry, where they are on par with other traditional hit-finding methods, such as viral
screening.

All in all, Schneider and Clark [SC19] note that modern design tools are, to a certain degree,
able to generate synthesizable molecules with the desired property profile. Although de novo
design can not propose a perfect compound in a one-shot fashion, it can provide high-quality
ideas for a subsequent investigation by experts. Scoring the molecules remains an Achilles heel
of the investigated approaches. Moreover, the search is complicated by the highly nonlinear
relationships among the many factors determining a drug’s pharmacological effect.

Figure 3.5: The two most promising DDR1 inhibitors found by Zhavoronkov et al. [Zha+19]
with the help of deep learning.

A prominent example of the application of deep learning to drug design is the work of
Zhavoronkov et al. [Zha+19] on the design of discoidin domain receptor 1 (DDR1). They
introduced a generative tensorial reinforcement learning algorithm (GENTRL), combining a
variational autoencoder trained on the ZINC database with subsequent reinforcement learn-
ing. After initial training, the autoencoder was fine-tuned on known DDR1 inhibitors. Re-
inforcement learning was used to generate potential inhibitors with respect to three reward
functions. The reward functions were realized utilizing self-organizing maps (SOMs) and fa-
vored molecules that inhibited DDR1, were specific for DDR1 and had some degree of novelty.

The authors were able to select a set of six promising candidate molecules after only 23
days, which were successfully synthesized after a further 12 days. The lead candidates were
tested in vitro for their inhibitory activity. Two of the six compounds, pictured in Figure 3.5,
strongly inhibited DDR1 while at the same time showing excellent selectivity over DDR2. As
the authors note, the proposed molecules could benefit from further optimization regarding
selectivity, specificity, and other medicinal chemistry properties. Although the study was
followed by some controversy regarding the similarity of the main candidate compound with
the drug ponatinib, the results impressively demonstrate the potential of deep learning in
drug design [MRD22].

In their review on the importance of AI in drug design, Schneider et al. [Sch+20] hypothe-
size that with increasing accuracy of prediction models, the whole DMTA cycle could at some
point become virtual. The actual synthesis would only be an intermediate step to ensure that
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the process is proceeding in the right direction. Hypothesis generation could become signif-
icantly faster while proposing more promising molecules, including the particular synthetic
path. Ultimately, such tools could support chemists to become more effective and drastically
reduce the duration of DMTA cycles. However, one of the most significant challenges in com-
bining AI and drug discovery is the appropriate mindset and discovery “culture” of all parties
involved. The authors advocate that all stakeholders recognize and acknowledge people’s
different expertise and must collaborate to develop common terminology and methodology.
Crucial requirements for such cooperation are the availability and security of data, robust al-
gorithms, and modular platform pipelines. It should be noted that the goal of AI-driven drug
design is not to replace chemists and designers but rather to augment them. However, drug
discovery scientists must accept the value AI for this to happen. Interaction between scientists
and an adaptive AI might be crucial to overcoming the complex challenges of drug design.
This thesis is supported by Schneider and Clark [SC19], who note that chemists and computer
scientists often seem disconnected. Healthy skepticism about new data-driven technologies is
sometimes overshadowed by simple denial of their potential among some medical chemists.
However, such tools should not be seen as a threat to one’s expertise but should be integrated
into a collaborative workflow that leverages the respective strengths. The promise of accel-
erated, personalized healthcare that meets the challenges of the 21st century and provides
highly targeted and effective treatments for everyone should be well worth the effort.

3.5 Ethical Implications

As outlined in the previous sections, the application of AI in drug discovery holds incredible
potential for personalized, rapid, and affordable healthcare. Moreover, healthcare is just one of
the many areas of our daily lives that benefit from molecular design tailored to the problem.
Overall, the technology has enormous potential to bring significant advances to humanity.
AI-guided molecule design is already a powerful tool that is continuously improved year after
year. While continuous improvement and application are important, discussing the ethical
implications of such an influential technology should not be ignored. This section points out
some ethical questions that arise with the advancement of AI in molecule design, intending
to raise awareness for this topic.

In a thought-provoking study, Urbina, Lentzos, Invernizzi, and Ekins [Urb+22] demon-
strated how a molecule generation model could potentially be misused. They work for a
company called Collaborations Pharmaceuticals, Inc., which owns a generative model with
an extension to predict toxicity. This toxicity model usually penalizes molecules that could
be harmful to humans in order to guide the molecular design in the right direction. Origi-
nating from a simple thought experiment, the authors carried out a proof-of-work study and
inverted this objective, resulting in the generation of toxic molecules. In addition, the search
was guided toward compounds similar to the nerve agent VX, a highly toxic chemical warfare
agent. With this setup, the authors were able to generate 40 000 new molecules within the
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desired objective thresholds in only six hours. Many generated molecules looked plausible but
were predicted to be even more toxic than the original nerve agent.

None of the molecules found were actually physically synthesized, nor was any molecule
analyzed for synthesis capability or retrosynthesis software used. However, many software
components similar to those used in the generation process are readily available as open-
source software. In addition, there is a range of commercial companies offering chemical
synthesis.

The authors conclude that dual use of AI guided drug discovery is possible. With their
proof-of-work study, they wanted to raise awareness of this possibility and encourage dis-
cussion of such issues among the community of researchers and practitioners. However, the
question arises: “Can we lock away all the tools and throw away the key?” [Urb+22]. The
authors hypothesize that further means of restricting access to such technologies might be
needed like it is done for GPT-3 in the domain of language modeling. Further, common codes
of conduct for responsible science, such as The Hague Ethics Guidelines, could motivate com-
panies to raise awareness among their employees, protect the technology, and prevent misuse.
Universities, on the other hand, should also emphasize the ethical training of students and
broaden the scope to other disciplines so that the potential misuse of these technologies is
discussed from the very beginning.

Another problem regarding AI in drug development is whether the invented molecules are
actually patentable [Heu18; KC18]. The development of a new drug usually costs a consid-
erable amount of money. In order to make the process economically feasible, the invented
compound must be protected by a global patent. In the case of a drug designed by AI, it
is, however, debatable whether it was invented by a person. Under U.S. law, for example,
only people are entitled to patents. But if a designer can not explain how the AI derived a
particular compound, can she or he still be seen as the inventor? Patent law will likely have
to adapt to the change in drug development brought about by AI.

A further issue posed by data-driven AI technologies could be the reproduction of biases
embedded in the training data. The quality of the training data is a key factor for the quality
of the generative model. In the case of a systematic bias in the training data, the model is
most likely unable to represent the true observation space fully. An example of such a bias
in medicine is gender bias [Ham08]. For a long time, clinical trials have been performed on
populations consisting mainly of young or middle-aged white men. Although the situation
has improved in recent years, such gender or race biases could influence the molecules used in
the AI-driven design process, and the resulting model could reproduce the biases. Researchers
should be aware of these issues and make special efforts to ensure that the data sets used are
inclusive and balanced.
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4 Evolutionary Multi-Objective Design of
SARS-CoV-2 Protease Inhibitor
Candidates

Designing and testing molecular structures suitable for a given problem can be a challeng-
ing and costly task prone to failure [Bro+20a]. Chemical structures are complex, the space
of potential candidate molecules is vast, and experiments and trials can be time-consuming.
Incorporating AI methods in this process has the potential of developing new compounds
designed according to desired properties, and the respective problem requirements [Sch18]. In
the following, we introduce an approach based on a GA capable of proposing candidate mole-
cules for protease inhibition and demonstrate its application to the design of drug candidates
for the 2019 novel coronavirus (SARS-CoV-2). Inhibiting the functioning of the virus protease
is a possible way of limiting its replication. This can be achieved by identifying a suitable
biomolecule (the ligand) that can bind with the virus protease enzyme and thereby inhibit
its function. The crystal structure of the SARS-CoV-2 main protease Mpro is known [Jin+20]
and, therefore, finding a ligand expressing a high binding affinity to the protease poses an
optimization problem. However, the binding affinity is only one of several objectives that
can be considered in the search for a suitable drug candidate, like its drug-likeness or syn-
thesizability. The approach presented hereinafter takes multiple such molecular metrics into
account and utilizes a multi-objective GA to propose candidate ligands. It is based on the
published article: “Evolutionary Multi-objective Design of SARS-CoV-2 Protease Inhibitor
Candidates” [Cof+20].

Outline. Section 4.1 introduces the basic concepts of GAs and how this family of algorithms
represents, modifies, and evaluates solutions. In Section 4.3, an overview is given on the
application of GAs in molecule optimization and generation. Finally, in Section 4.4, we
present an approach on how GAs can be utilized for the multi-objective design of SARS-CoV-2

protease inhibitor candidates.

4.1 Genetic Algorithms

GAs are considered part of the collective term EAs describing a family of optimization tech-
niques. The following summary is an adaption of the overview given by Rudolph and Schwefel
[RS94].
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EAs are inspired by the evolutionary process occurring in nature. In the course of time,
evolution has created life forms that are almost optimally adapted to their respective habi-
tats. The underlying principles inspired a family of algorithms, commonly combined under the
name of evolutionary algorithms. First occurrences date back to the early sixties as Schwefel
[Sch77] and Rechenberg [Rec73] introduced the evolutionary strategy, Holland [Hol75] devel-
oped the GAs, and Fogel, Owens, and Walsh [FOW66] introduced evolutionary programming.
Throughout this paper, we will focus mainly on the subclass of GAs, which will be discussed
in more detail below.

GAs are commonly applied to optimization problems to approximate optimal solutions.
The concept of optimization as one field of artificial intelligence has already been described
in Section 2.1. A core concept of optimization problems is the fitness function f : X → R
mapping a solution x ∈ X to its fitness value, with X being the space of possible solutions.
The algorithm strives to find a solution that approximates the optimization objective

min
x∈X

f(x) (4.1)

One of the main advantages of GAs is that these algorithms can be applied for black-box op-
timization, as they iteratively and stochastically generate and improve solutions for the given
problem until a satisfaction criterion is met [Mir19]. This makes them applicable for multi-
modal optimization problems or problems containing nonlinearity and discontinuity [RS94].

Inspired by nature, a single solution for a given problem is commonly referred to as an
individual. GAs simultaneously process a set of individuals, the so-called population. There-
fore, the algorithms can consider different optimization paths at the same time, preventing
premature stagnation and making GAs scale well with more computational resources [RS94].
Algorithm 1 pictures a common structure of GAs and is inspired by Rudolph and Schwefel
[RS94]. At the first time step t = 0, a set of µ individuals is initialized to form the population
P . Individuals can be initialized completely randomly or with variations of already known
solutions. After initialization, all individuals in the population have to be evaluated regarding
the respective fitness function. This step is followed by a cycle of so-called generations that is
repeated until a chosen termination criterion is met. For every generation, a set of child indi-
viduals is created by recombining individuals from the population. After its creation, a child
can be randomly altered by mutations to increase the diversity in the population. Finally,
the newly generated individual is evaluated with the fitness function. The new population
is then composed by selecting the µ best performing individuals from the current population
and the children. This selection of only well-performing individuals lets GAs converge toward
optimal solutions.

The recombination and mutation functions are usually referred to as genetic operators.
Over the years, various possible operators have been introduced in the literature. Usually,
recombination functions as a way of mixing traits of multiple individuals into one child.
Because the algorithm favors high-performing individuals for recombination during selection,
the child has the opportunity to inherit well-adapted low-order schemas that collectively lead
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Algorithm 1 General structure of GAs.
1: t← 0
2: initialize P0 with individuals x1, . . . , xµ
3: evaluate f(x) for every x ∈ P0

4: repeat
5: C ← recombine individuals from Pt

6: mutate individuals in C
7: evaluate f(x) for every x ∈ C
8: Pt+1 ← select fittest individuals from Pt ∪ C
9: t← t+ 1

10: until termination criterion is met

to even better adaptation. Mutation operators usually randomly change minor aspects of
an individual, allowing for small adaptations over the course of evolution. The concrete
implementation of these operators usually depends on how the individuals are represented.
Common representations include sequences of bits, integers, or floats, but also more complex
data structures like graphs.

4.2 Virus Protease Inhibition

In the work presented hereinafter, a GA is utilized to design protease inhibitor candidates. A
protease inhibitor is a biomolecule able to bind to a protease, preventing it from performing
its normal function. Binding refers to the ligand positioning itself in a target binding site—the
so-called pocket—and forming various non-covalent interactions like hydrophobic interactions,
hydrogen bonding, π-stacking, salt bridges, and amide stacking [FS17]. A possible application
of protease inhibitors is as antiviral drugs.

In the following work, we will demonstrate the AI-guided design of molecules that could
function as such antiviral drugs. The entire process is illustrated by the development of
SARS-CoV-2 inhibitors but can be easily adapted to the development of inhibitors for any
known proteases. The disease COVID-19 is caused by SARS-CoV-2, an RNA virus from the
family of coronaviruses. It replicates by entering the cells of a host and taking over the cell’s
replication mechanism. A critical step of the replication is the cleavage process. Precursor
polyproteins have to be cut into mature non-structural proteins by the virus protease. A
ligand that binds to this protease can potentially inhibit this cleaving process and interfere
with the reproduction, as schematically pictured in Figure 4.1.

The described binding process can be computationally modeled. These models can be
utilized to estimate how well a ligand binds to a target protein. However, various factors
affect the concrete binding affinity, like the protein-ligand geometry, chemical interactions, and
various constraints and properties like hydration and quantum effects. Molecular dynamics
computations can be used to estimate the binding affinity but are complex and expensive.
Docking tools, like the software AutoDock [Mor+09], use heuristics and simplifications of the
physical reality to estimate the binding affinity. These tools aim to provide a sufficiently
accurate measurement while reducing the computational cost of the calculation.
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Virus Protease

Uncut Polypeptide
Virus Proteins Inhibitor

Figure 4.1: An illustration of the cleavage process. A protease enzyme cleaves the precursor
polyproteins into virus proteins. An inhibitor molecule can prevent the process.

Binding affinity calculations require information about the target structure, and for SARS-
CoV-2, this structure is known, e.g., [Dai+20; Jin+20; Zha+20]. This has led to the design
and proposition of various inhibitor candidates. Some proposed drugs are based on inhibitors
for other viruses [Cal+20]. Others are found by virtual screening of molecule libraries [Fis+20]
and by computational drug design [MPP20]. Although computational drug design can facil-
itate the search for a suitable drug candidate and can propose promising new molecules, it
has to be noted that such new molecules require extensive testing. However, these methods
have the potential to identify innovative starting points in the search for a potent inhibitor.

4.3 Related Work: Genetic Algorithms and Molecule Design

Several adaptations of AI for the de novo drug design can be found in literature [DSC15;
Bro+19]. The methods vary in their pursued objective; some target finding drug candidates for
a specific binding site [PHK01; YPL20], whilst others focus on generating drug-like molecules
in general [DTG00; Pol+20]. Furthermore, the proposed methods differ in how they construct
molecular structures. Some approaches work directly on an atom level, constructing molecules
atom by atom and bond by bond [DTG00; Nig+20]. Other approaches use sets of chemical
fragments and represent molecules as compositions of such fragments [PHK01].

There are various examples of GAs being utilized for molecule optimization and generation.
For example, single-target GAs have been successfully applied to the optimization of peptide
ligands [RBF12; Kra+18] by incorporating feedback from in-vitro experiments. Douguet,
Thoreau, and Grassy [DTG00] demonstrated how a GA can facilitate the process of finding
drug-like molecules. Therefore, they utilized the SMILES representation and altered molecules
directly on an atomic level. In contrast to the work presented in the following, their algorithm
is not targeted at a specific ligand. Although their approach also takes multiple objectives into
account, they are simply combined into a weighted sum and optimized as a single objective.
A further example of GAs operating on the SMILES representation is the work by Nigam,
Friederich, Krenn, and Aspuru-Guzik [Nig+20]. Their approach can be applied to various
molecule design tasks and incorporates deep neural networks. The networks are included as
a means to increase molecule diversity, acting as an adaptive fitness function by penalizing
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long-surviving molecules. The Molecule Evoluator by Lameijer, Kok, Bäck, and IJzerman
[Lam+06] is a general-purpose tool for the evolution of drug-like molecules. This program
works with a user-defined fitness function and also constructs molecules on an atomic level.

The approaches presented so far are not specific to protein inhibition but are general meth-
ods for de novo drug design. With ADAPT, Pegg, Haresco, and Kuntz [PHK01] presented
a fragment-based GA for molecule design able to optimize molecules to fit a specific binding
site. The approach represents molecules as acyclic graphs of molecular substructures and
evaluates a molecule’s fitness based on docking simulations with the target protein. A further
example of a fragment-based evolutionary de novo drug design tool is LigBuilder by Yuan,
Pei, and Lai [YPL20]. This software suite can be used to analyze a given binding site and
offers different strategies for constructing fitting ligands.

Finally, there are some examples of studies treating molecule generation as a multi-objective
optimization problem. Brown, McKay, Gilardoni, and Gasteiger [Bro+04] introduced a multi-
objective GA for molecules in a graph representation that features a Pareto ranking scheme.
In the approach for the identification of central nervous system drugs presented by Wager,
Hou, Verhoest, and Villalobos [Wag+16], six physicochemical properties are jointly analyzed.
However, unlike the approach presented here, this tool is based on medical knowledge rather
than evolutionary algorithms. A further multi-objective GA has been proposed by Horst et
al. [Hor+12]. Their approach targets the design of adenosine receptor ligands and includes
support vector machines. An overview of multi-objective optimization for drugs, with the
underlying problem definitions and different optimization methods, is given by Nicolaou and
Brown [NB13].

4.4 Evolutionary Multi-Objective Molecule Search

In the following, we present an evolutionary multi-objective approach for molecule design
and apply it to the design of SARS-CoV-2 protease inhibitor candidates. As mentioned in
Section 4.1, a core concept of GAs is the fitness function. Therefore, Section 4.4.1 provides an
overview of how molecule candidates are evaluated in the presented approach. Since we treat
molecule generation as a multi-objective problem, we introduce multiple molecule metrics to
the evolutionary process. Furthermore, the GA requires a molecular representation for its
individuals, which is introduced in Section 4.4.2, and operators to generate new molecules,
which are introduced in Section 4.4.3.

4.4.1 Molecule Metrics

We employ five molecule metrics to evaluate the inhibitor candidates. Table 4.1 provides an
overview of these metrics and their value ranges. Since all values differ in their range and
optimum, we scale the metrics to a standardized range of [0, 1] with 0 being the optimum.
Since the binding affinity has no upper or lower limit, the metric is rescaled with regard to a
maximum binding energy of 1 kcal/mol and a minimum of −15 kcal/mol. Rescaling is done
with the help of soft clipping [KP20]. All metrics are briefly described in the following.
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Table 4.1: Value ranges and optima for the employed metrics [Cof+20].

Docking score [kcal/mol] SA QED NP Filters

Value range R [1, 10] [0, 1] [−5, 5] {0, 1}
Optimum −∞ 1 1 5 1

Binding Affinity Score. Since the main objective of this approach is the design of protease
inhibitor candidates, we evaluate the binding affinity between the generated ligand and the
respective binding site on the target protease. A commonly used tool for estimating the
binding energy is the automated docking tool AutoDock [Mor+09]. To allow a fast execution,
AutoDock embeds the molecule in a grid and utilizes grid-based lookup tables. These lookup
tables are created by placing the probe atom sequentially at each grid point and calculating
the binding energy utilizing semi-empirical force field methods. This grid-based approach
allows for a fast evaluation of a conformations binding affinity and enables the application of
a Lamarckian GA. The GA generates and optimizes a population of conformations to find the
best conformation with the lowest binding energy. Furthermore, AutoDock allows modeling
parts of the receptor as flexible, which can increase prediction accuracy.

Various improvements have been made to AutoDock resulting in different versions of the
software. AutoDock Vina [TO09] exchanges the force field method used in AutoDock with a
hybrid scoring function based on empirical and knowledge-based data. QuickVina [Han+12]
and QuickVina 2 [Alh+15] modify the search algorithm to improve the computation time
required. This is achieved by identifying promising ligand positions and only executing the
complex calculations for those positions. Additionally, QuickVina 2 simplifies various physical
properties, e.g., neglecting water molecules and electrical properties of the ligand and the
protein that change due to their interaction.

Despite all simplifications, Gaillard [Gai18] demonstrated that AutoDock Vina provides
a better binding affinity prediction when compared to various other computational docking
methods. Alhossary, Handoko, Mu, and Kwoh [Alh+15] compared Quickvina 2 and Autodock
Vina and found them to be comparable in accuracy. Our multi-objective GA assigns a fitness
to every generated candidate molecule, and every fitness evaluation requires a binding energy
calculation. We employ QuickVina 2 for these calculations, as it provides an acceptable
balance between computation time and accuracy.

Synthetic Accessibility (SA). The main objective of the presented approach is to find an
inhibitor candidate with a strong binding affinity to the target protein. However, a candidate
is only useful in practice if it is also easy to synthesize. A complete retrosynthetic analysis—
finding a synthesis path based on commercially available structures—is not feasible. Instead,
we use the synthetic accessibility (SA) score proposed by Ertl and Schuffenhauer [ES09]. This
heuristic metric estimates the synthetic accessibility of drug-like molecules on a continuous
scale. The authors showed that the metric has a high degree of agreement with manual
estimates from experts.
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Quantitative Estimate of Drug-likeness (QED). In addition to ease of synthesis, a key
challenge of the presented approach is generating molecules suitable as drug candidates. When
considering if a molecule is drug-like, it is useful to investigate how similar it is to existing
drugs. This comparison can be based on different molecule properties. A commonly used
metric is the Lipinski rule of five [Lip+97] that considers the number of hydrogen bond donors
and acceptors, the molecular weight, and the octanol-water partition coefficient (logP). The
rule specifies value ranges for these metrics, and a molecule falling out of more than one of
these ranges is not considered drug-like. However, incorporating Lipinski’s rule of five into our
approach would have drawbacks. First, the rule is a binary metric; it only expresses whether
a molecule meets the criteria or not. Furthermore, there are examples of molecules among
modern drugs that violate more than one of Lipinski’s rules. Therefore, we employ the metric
introduced by Bickerton, Paolini, Besnard, Muresan, and Hopkins [Bic+12], the quantitative
estimate of drug-likeness (QED). The QED is a combination of multiple molecular properties.
In contrast to Lipinski’s rule of five that considers fixed value ranges for every property, QED
has an individual desirability function per property. The desirability scores are combined in
a geometric average to form a single drug-likeness score. Including QED into the GA’s fitness
evaluation should bias the generated molecules toward more realistic and drug-like molecules.

Natural Product-likeness (NP). To further incentivize the algorithm to generate realistic
molecules, we include the natural product-likeness (NP) in the fitness evaluation. This score
introduced by Ertl, Roggo, and Schuffenhauer [ERS08] is based on molecular properties that
commonly differ between synthetic and natural molecules. Exemplary structural features
considered by this score are the number of aromatic rings and the frequency of nitrogen
and oxygen atoms. Nature has produced and evaluated numerous bioactive structures, and
including such a metric in our approach should therefore increase the quality of the generated
molecules.

Medical Chemical Filters. Considering the target of generating drug candidates, the GA
should exclude potentially toxic molecules. In addition, the algorithm should also avoid gener-
ating unstable molecules with potentially toxic metabolites. Therefore, our approach considers
the medical chemical filters (MCF) and PAINS filters described by Polykovskiy et al. [Pol+20].
The filters are fast to calculate and check important properties of drug candidates. Although
the filters are a binary metric, we include them as an additional optimization objective rather
than a hard constraint. Molecules violating the filter may still survive the selection if they
perform well in other metrics, and these molecules could be helpful intermediate steps in the
evolutionary process.

4.4.2 The SELFIES Representation

The previous section introduced the metrics used to analyze the generated molecule candi-
dates. The question remains open, how the algorithm represents and evolves these molecules?
Section 3.2 already provided an overview of different families of molecule representations.
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In this approach, we utilize a string representation, but instead of opting for the commonly
used SMILES, we employed the more recently introduced SELFIES representation [Kre+20].
SELFIES—like SMILES—is a text-based representation. Figure 4.2 provides an exemplary
comparison of a molecule’s structural formula and its SMILES and SELFIES representation.

OH

F

SMILES: Oc1ccccc1F
SELFIES: [O][c][c][c][c][c][c][Ring1][Branch1_1][F]

Figure 4.2: Molecular structure formula, SMILES, and SELFIES of 2-fluorophenol [Cof+20].

SELFIES represents molecules as a sequence of tokens. Each token encodes a part of the
molecular graph, e.g., the occurrence of an atom or the start of a branch or ring. It bears
advantages over the SMILES that make it particularly suitable for the application in GAs.
A key aspect of SELFIES is that it is a 100% robust representation, meaning all SELFIES
encodes valid molecules and all molecules can be encoded as SELFIES [Kre+20]. This is
achieved by decoding every token with respect to a set of derivation rules. These rules
specify a formal grammar for the interpretation of SELFIES. For each token, there is a set
of possible derivation rules. Which rule is chosen during decoding depends on the current
state of derivation. The state of derivation keeps track of chemical constraints and ensures
that only those rules are chosen, fulfilling the constraints. For example, the rules ensure that
the maximum number of valence bonds is not exceeded. Since SELFIES always encode valid
molecules, applying random alterations to them also results in a valid molecule. This benefit
was already investigated by Krenn, Häse, Nigam, Friederich, and Aspuru-Guzik [Kre+20] and
makes SELFIES especially applicable for GAs and deep generative models.

In our approach, each individual is represented by a SELFIES encoding one candidate
molecule. The initial population is generated by randomly sampling fixed-length sequences
of SELFIES tokens from a list of possible tokens. Since different SELFIES can encode the
same molecule, every individual is translated to the canonical SMILES string and compared
with a list of all previously generated molecules. If a molecule has already occurred, it is
discarded, and a new candidate is initialized until the initial population is of the desired size.
This process ensures that the algorithm starts with a population of unique molecules.

4.4.3 Genetic Operations

Genetic operators allow evolving new individuals from already well-performing ones. They
are a central component of every GA, as they enable the traversal of the search space toward
optimal solutions. Many common mutation operators, such as the biologically inspired point
mutation, randomly alter an individual’s genome with a certain probability, called the muta-
tion rate. In our case, an individual’s genome is defined as its sequence of SELFIES tokens,
each token representing one gene. In the commonly used string-based SMILES representation,
a random mutation operator would most likely generate a high fraction of invalid molecules.
One of the reasons is that SMILES strings follow strict syntactic rules (e.g., closing parenthe-
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ses), and a random SMILES string is, therefore, most likely syntactically invalid. Additionally,
a SMILES string, although syntactically valid, may encode a molecule with incorrect atomic
valences. The SELFIES representation, however, ensures that a string resulting from random
mutations still encodes a valid molecule. This allows us to apply adaptations of common
nature-inspired mutation operators that are described in the following:

Replacement exchanges a SELFIES token with a random one. Each token in the genome has
an independent mutation rate of pr, so multiple replacements are possible per genome
during a mutation.

Insertion selects a random SELFIES token from the list of available symbols and inserts it
at a random position in the individual’s sequence of SELFIES tokens. This mutation is
applied to an individual with a probability of pi.

Deletion removes a random token from an individual’s sequence of SELFIES tokens. This
mutation is applied to an individual with a probability of pd.

The set of available SELFIES tokens is inspired by those used by Krenn, Häse, Nigam,
Friederich, and Aspuru-Guzik [Kre+20]. It contains tokens for the commonly occurring atom
types {C,O,N,F, S} and for rings and branches of different types. We extended this list with
benzene as a separate, composed token since benzene is a common substructure in organic
molecules. Including it as an extra token should facilitate the generation of more complex
molecules. Furthermore, every token is associated with an adjustable weight to control the
probability of its selection during mutation. This weight can increase the probability of more
common tokens, such as [C], in contrast to more complex ones, like ring structures.

4.4.4 Fitness Evaluation

The fitness evaluation is a core concept of GAs. By assigning a fitness to each individual, se-
lection pressure can be applied to the population, driving evolution toward higher-performing
individuals. Each individual is evaluated with a fitness function f(x) that is based on the
molecule metrics introduced in Section 4.4.1. All metrics are rescaled to a value range [0, 1],
with zero being the optimum.

A straightforward way of optimizing molecules with respect to the aforementioned metrics is
to aggregate them into a single fitness score. This strategy will be featured as one experimental
condition in the following and referred to as single-objective optimization. In this condition,
an individual’s fitness is determined by the weighted sum, which for a number of n metrics is
defined as:

f(x) =
n∑

i=1

wifi(x) (4.2)

We configure the weights to w = (0.4, 0.15, 0.15, 0.15, 0.15) with i corresponding to 1: docking,
2: SA, 3: QED, 4: NP, and 5: filters. These weights were chosen based on preliminary
experiments. Since generating drug candidates is the main focus of this work, the docking
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score is given the highest weight and, thus, the greatest influence on a molecule’s fitness. All
other metrics are weighted equally.

The fitness calculation for all individuals in a population is performed in parallel, making
the algorithm scale well with more computational resources. The first step in calculating an
individual’s fitness is to convert its SELFIES to the SMILES representation. The software
framework MOSES [Pol+20] is used to calculate the respective scores for QED, SA, NP and
apply the MCF. The docking score is estimated using the software QuickVina 2, introduced
in Section 4.4.1. Before a docking simulation can be performed with QuickVina 2, several
preprocessing steps must be applied to the molecule representation. The cheminformatics
software RDKit is used to estimate a conformation and convert the SMILES string to the
three-dimensional PDB file format. The PDB file is converted to the PDBQT file format
with the software MGLTools1. The PDBQT file is then used for the binding calculations
in QuickVina 2. QuickVina 2 is also provided with a PDBQT file for the respective target
receptor. In our case, the binding affinity is estimated for the COVID-19 Mpro (PDB ID: 6LU7
[Zha+20])2. However, an adaptation to other targets is easily conceivable by replacing the
target file. To limit the binding calculations to the desired target area of the receptor, a
search grid with a size of 22×24×22 Å3 is configured and centered around the position of the
native ligand. QuickVina 2 offers an exhaustiveness parameter to balance between accuracy
and execution time. We kept this parameter at its default value of eight for all experiments
presented below. Overall, this configuration leads to an execution time of just a few minutes
per molecule.

4.4.5 NSGA-II

In the previous section, we introduced the single-objective approach that defines fitness as
a weighted sum of five molecular sub-objectives. However, when multiple objectives are in-
volved, some are likely in conflict. It is, for example, conceivable that the GA tends to generate
highly complex molecules with a strong binding affinity to the target. Such molecules would
most likely be challenging to synthesize or unstable. Thus, the property profiles of the gener-
ated molecules strongly depend on the chosen weights of the metrics. Instead of combining all
metrics into one fitness value, an alternative approach is to optimize all objectives jointly in a
diverse population of molecules, each with a different tradeoff between these metrics. There-
fore, in a second experimental condition, we replace the single-objective selection procedure
with an explicit multi-objective approach called NSGA-II.

NSGA-II aims to evolve a population of non-dominated solutions, the so-called Pareto
set. Formally, for molecules from the solution space M a Pareto set is described by {x∗ |
∄x ∈ M : x ≺ x∗}, where x ≺ x∗ describes domination of an individual x over x∗. For a
set of n different objectives with their fitness functions f1, . . . , fn domination is defined as
∀i ∈ {1, . . . , n} : fi(x) ≤ fi(x

∗), while ∃i ∈ {1, . . . , n} : fi(x) < fi(x
∗). Therefore, the Pareto

set consists of molecules that provide a good tradeoff between the different molecular metrics

1https://mgltools.scripps.edu
2PDB: protein database, https://www.rcsb.org

https://mgltools.scripps.edu
https://www.rcsb.org
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since, for each of these molecules, there is no other molecule that performs better on all metrics.
The concrete fitness values of these solutions form the Pareto front in the objective space.
NSGA-II aims to evolve a set of solutions with broad coverage of the Pareto front. In its first
step, NSGA-II sorts the set of solutions based on their rank of domination. All non-dominated
solutions are assigned the first rank and removed from the set. All remaining solutions that
are no longer dominated form the second rank. This procedure continues until the original
solution set is empty, and each solution is assigned a rank. The second step continues with all
solutions from the first rank. The second or even higher ranks are appended if more solutions
are needed. To construct the GAs next generation, NSGA-II chooses µ solutions from this
selection that maximize a crowding distance. This results in the evolution of a set of solutions
with broad coverage on the Pareto front.

Since our goal is to optimize molecules with respect to the five molecule metrics introduced
in Section 4.4.1, the solutions are evaluated in a five-dimensional objective space. The MCF
are a binary metric, and it would therefore be conceivable to include the satisfaction of these
filters as a constraint rather than an additional objective. However, these filters are based
on heuristics, and a molecule violating these filters could still prove to be a suitable drug
candidate or potentially lead the optimization to promising areas of the search space.

4.5 Experiments

In this section, we evaluate the aforementioned GA for the design of SARS-CoV-2 protease
inhibitor candidates. Furthermore, we compare the single-objective approach and the multi-
objective approach based on NSGA-II. The configuration for these experiments is described
in the following. We employed a (10 + 100)-GA design for the single-objective runs, i.e., the
population size was ten, and 100 children were generated for every generation. Children were
generated by selecting a random parent and applying the mutation operators described in
Section 4.4.3, with mutation rates pr = 0.05, pi = 0.1, and pd = 0.1. The next generation was
composed of the ten fittest individuals selected from the parents and the children. The number
of parent individuals was increased to 20 for the multi-objective runs. This should allow the
NSGA-II to evolve a set of solutions with broader coverage of the objective space. All runs
were performed for 200 generations, and we executed 20 independent runs per experimental
condition. Based on the work of Krenn, Häse, Nigam, Friederich, and Aspuru-Guzik [Kre+20],
we limited the maximum length of SELFIES tokens for individuals to 80 for all experiments.

4.5.1 Metric Development

Figure 4.3 shows the development of the five molecular metrics over the course of optimization.
The graphs pictured on the left represent the scores of the best-performing individual after
each generation, averaged over the 20 single-objective runs. The GA was able to continuously
optimize the docking score with molecules passing the MCFs. However, the plots for QED,
NP, and SA show that the GA struggled to improve these secondary metrics simultaneously.
Especially after generation 140, the generated molecules seem to deteriorate in terms of SA
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Figure 4.3: Development of the molecule metrics during (left) single-objective and (right)
multi-objective NSGA-II optimization runs [Cof+20].

and QED in favor of a better docking score. This highlights how the different desired molecular
properties conflict with each other. The algorithm has to balance between generating complex
molecules tailored to the specific binding site and generating stable, synthesizable molecules
with drug-like properties. Since the binding affinity had the highest weight, the algorithm
concentrated on optimizing this property. In general, it is conceivable that the characteristics
of the generated molecules strongly depend on the chosen fitness weighting.

The plots on the right describe the NSGA-II runs and show the best score achieved for
each metric in each generation. Since the NSGA-II simultaneously optimizes every objective
in the population, these results do not necessarily come from the same individual. As for
the single-objective plots, the results are averaged over the 20 independent runs. The fitness
plots show that the NSGA-II was able to steadily improve the population in the direction
of well-performing individuals for each metric. However, an individual’s improvement on one
goal may lead to deterioration on other goals, which are not shown here.

0.2 0.4 0.6 0.8 1.0
Docking score

0.2

0.4

0.6

0.8

QE
D

(a) Docking score vs. QED

0.2 0.4 0.6 0.8 1.0
Docking score

0.1

0.2

0.3

0.4

0.5

NP

(b) Docking score vs. NP

0.2 0.4 0.6 0.8 1.0
Docking score

0.0

0.2

0.4

0.6

SA

(c) Docking score vs. SA

Figure 4.4: Typical Pareto fronts from an exemplary NSGA-II run: (a) docking score vs.
QED, (b) docking score vs. NP, (c) docking score vs. SA [Cof+20].

To further analyze the NSGA-II runs and to verify whether the algorithm succeeded in
generating molecules with a broad distribution of metrics at the Pareto front, we compare
different two-dimensional slices of the evolved Pareto fronts in Figure 4.4. The plots picture the
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docking score and a respective secondary metric for the non-dominated individuals for every
ten generations (earlier generations are marked with lighter shades of blue). The GA based
on NSGA-II was able to generate molecules with varying degrees of balance between these
metrics. Especially in Figure 4.4a and Figure 4.4c, it can be seen that NSGA-II has succeeded
in evolving the set of non-dominant solutions toward the lower left corner. This tendency
is not fully captured in the graphs presented, as they are only exemplary two-dimensional
slices of the Pareto-front, and improvements in one metric can cause deterioration in another.
However, the improvement of solutions is demonstrated by the hypervolume indicator, which
on average improved from 0.10± 0.03 in the first to 0.20± 0.05 in the last generation.

Table 4.2: Experimental results of the best molecules generated by the single-objective ap-
proach and NSGA-II. All results are averaged over 20 independent runs. The
values in the single-objective condition originate from the best individual found
during evolution. The NSGA-II results correspond to the best objective found and
do not necessarily originate from the same molecule. ▼ marks a minimization ob-
jective, while ▲ marks a maximization objective. Values for the native ligand N3
(from PDB 6LU7) and Lopinavir (a prominent drug candidate) are presented for
comparison [Cof+20].

Single-objective NSGA-II N3 Lopinavir
Objective Best Avg±Std Best Avg±Std Value Value

Fitness ▼ 0.30 0.32±0.01 0.31 0.39±0.06 0.43 0.41
Docking score ▼ −9.30 −7.68±0.90 −13.30 −10.63±1.18 −8.40 −8.40

SA ▼ 3.04 2.63±0.59 1.00 1.00±0.00 4.29 3.90
QED ▲ 0.66 0.76±0.10 0.94 0.92±0.01 0.12 0.20

NP ▲ 0.33 0.20±0.54 4.27 3.82±0.24 −0.18 −0.04
Filters ▲ 1.00 1.00±0.00 1.00 1.00±0.00 1.00 1.00

An overview of final scores for the two experimental conditions is given in Table 4.2. For
comparison, we also evaluated the five molecule metrics for the native ligand N3 from the
PDB and an HIV main protease inhibitor; Lopinavir [KH05]. At the time the study was
conducted, Lopinarvir was under consideration as a candidate SARS-CoV-2 inhibitor [MP20].
The results for the single-objective condition correspond to the score of the best-performing
individual from the last generation. For NSGA-II, the results show the best score achieved
in each metric, i.e., the scores mark corner points of the evolved Pareto front and do not
necessarily come from the same individual. In our experiment, Lopinavir and the N3 bind
similarly strongly to Mpro. With a docking score of −9.3 kcalmol−1, the best molecule found
in the single-objective condition surpasses these molecules while having a better estimated
SA and scores better in terms of QED and NP. The NSGA-II was able to generate a well-
performing molecule for every metric. On average, the best performing molecules in terms of
SA, QED, and NP have near-optimal values in the respective objective. In addition to the
outstanding best docking score of −13.30 kcalmol−1, these results indicate that the NSGA-II
can cover a wide area of the objective space. Obviously, these high values mark corner points
of the Pareto front, and the corresponding molecules might be impractical. For example, the
molecule with the docking score of −13.30 kcalmol−1 showed unrealistic chemical structures.
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Nevertheless, the results highlight the approach’s capability of terminating with a diverse
set of molecules. Therefore, NSGA-II enables a practitioner to choose from various solutions
with varying degrees of balance between the objectives. Figure 4.5 underlines this advantage
by comparing the molecules from the last generation of an exemplary single-objective and
an NSGA-II run. The individuals from the single-objective condition have a similar fitness
distribution, which might be caused by the fixed weighting of the molecular metrics. The
only clearly differing molecule (marked in green) expressed a significantly worse QED in
exchange for a slightly better docking score. The final population of the NSGA-II, on the
other hand, consists of molecules with different fitness profiles. The plots vividly illustrate
how the different objectives conflict and how no global optimal solution exists.
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docking
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Figure 4.5: Comparison of the last generation of an exemplary single-objective (ten mole-
cules) and NGSA-II (20 molecules) run. Each line represents a molecule candidate
[Cof+20].

4.5.2 Candidate Comparison

In the following, we will take a closer look at some interesting examples of the evolved mole-
cules. Figure 4.6 presents six molecules with their respective metrics, structural formula, and
chemical names. PI-I (a) to PI-III (c) are evolved with the single-objective design, whereas
PI-IV (d) to PI-VI (f) show candidates generated by NSGA-II. Overall, we made three ma-
jor observations during our experiments: Firstly, the algorithm favors molecules with a high
amount of aromatic rings. Secondly, the generated molecules tend to be relatively short, espe-
cially those with a high drug-likeness. A possible explanation might lay in the functioning of
the SELFIES syntax. The token sequence is processed from left to right, and if the syntactic
rules reach a terminal state, all the following tokens are ignored. This hampers the forma-
tion of longer molecules. Finally, the candidates with the highest binding affinities often had
unrealistic geometries. When considering the exemplary molecules in Figure 4.6, all pictured
molecules pass the MCF. PI-I offers a reasonable docking score while also scoring high on
SA. The molecule PI-II offers an excellent docking score of −9.7 kcalmol−1. PI-III, PI-IV,
and PI-VI all score high in terms of the drug-likeness QED and provide good docking results
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Figure 4.6: Exemplary protease inhibitors with properties presented as radar plot, structural
formula, and chemical name, a-c: single-objective, d-f: NSGA-II results [Cof+20].

around −7.0 kcalmol−1. PI-V offers a good balance between all the five molecule metrics and
has a docking score −7.7 kcalmol−1. Figure 4.7 shows a visualization of how ligand PI-I and
PI-V are localized in the target pocket of Mpro. The position and ligand conformation were
optimized with QuickVina 2.

4.6 Conclusion

In this chapter, we addressed the development of a protease inhibitor candidate for the Mpro

of SARS-CoV-2 as a multi-objective optimization task considering five different molecular met-
rics. Therefore, we employed a GA that utilizes SELFIES for molecule representation and
QuickVina 2 for binding affinity prediction. The algorithm either combines the five metrics
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(a) PI-I in Mpro pocket (b) PI-V in Mpro pocket

Figure 4.7: Molecules PI-I and PI-V docked to the pocket of SARS-CoV-2’s Mpro [Cof+20].

to a single weighted sum and optimizes them jointly or leverages NSGA-II to approximate a
set of molecules with a broad distribution of metrics on the Pareto front. We demonstrate
that the algorithm is able to evolve promising molecules, which could form a starting point
for further analysis. Although the metrics presented are based on heuristics, and the resulting
molecules are not guaranteed to be suitable inhibitor candidates, the presented approach could
facilitate the early stages of the drug discovery process as an AI-assisted virtual screening of
the chemical biomolecule space.

All in all, we conclude that the chosen SELFIES representation and the chosen mutation
operations are suitable for multi-objective molecular design. However, further work could
incorporate strategies to prevent the generation of bloated SELFIES, i.e., long strings that
describe comparatively small molecules. In addition, integration of more advanced multi-
objective evolutionary algorithms like the SMS-EMOA [BNE07], and improved tools for the
binding affinity prediction like AutoDock GPU [San+21] are conceivable.



5 Spatial Generation of Molecules with
Transformers

The search for new molecules has a critical part to play in various fields of research and in-
dustry, for example, in the domain of drug design or energy production [Pol+20]. However,
the space of potential candidate molecules is large, which has led to an increased demand for
efficient machine learning techniques for the molecular search problem. Generative models
play an essential role in this process, as they allow the creation of new molecules and, thus,
the traversal of the search space. The previous chapter already demonstrated how GAs can be
applied to molecule optimization. However, even though metrics favoring druglike molecules
were integrated into the approach, some generated molecules show unrealistic structures and
seem difficult to synthesize. GAs, as iterative stochastic search methods, aim to generate op-
timal molecules with respect to the optimization goals. Thus, they have no intrinsic incentive
to generate realistic molecules.

Generative models based on neural networks have become increasingly popular in recent
years for the de novo design of molecules (see Section 3.3). Using large amounts of molec-
ular data, these models learn the chemical principles underlying these molecules and can be
used to find new realistic structures. A majority of the models operate on molecules in a
string or graph representation to encode a molecule’s atoms and bonds. These representa-
tions provide a straightforward way of dealing with molecules; however, they are not without
drawbacks. There are fewer examples of generative models working directly on atom coordi-
nates. However, these models offer the advantage of incorporating all geometric information.
This paper introduces a new generative model for molecules working on three-dimensional
point clouds of atoms. The generation process is structured as a sequence-to-sequence task,
and a transformer-based architecture is implemented. This enables the model to use the pow-
erful self-attention mechanism to attend to previously generated atoms. In general, the model
exhibits the following advantageous features:

• The model operates in the three-dimensional atom space, allowing the model to process
and generate molecular structures while taking the geometry into consideration.

• The model is able to sample new molecules that are similar in structural properties to
the training data.

• The model is able to complete an arbitrary set of atoms into a valid molecule, which
offers new interesting opportunities for application as a generative model.



54 5 Spatial Generation of Molecules with Transformers

• The transformer architecture allows for the parallel processing of a molecule’s atoms
during training, resulting in a fast and scalable training procedure.

The following chapter is based on the published study: “Spatial Generation of Molecules with
Transformers” [CTK21].

Outline. In the following, Section 5.1 explains the functioning of transformers and their typ-
ical applications. Section 5.2 provides an introductory overview of different types of molecule-
generating models. Afterward, in Section 5.3, the introduced transformer-based generation
model is described, both in its architecture and in the training and sampling procedure. In
Section 5.4, the model is evaluated in its performance of generating new molecules and the
capability to complete unfinished sets of atoms to valid molecules. Conclusions are drawn in
Section 5.5.

5.1 Transformers

Transformers are a neural network architecture originally introduced for sequence processing
tasks. There are several areas where machine learning is applied to sequential data, such as
processing sensory and financial data or, as it is typical for transformers, language modeling,
and translation. Vaswani et al. [Vas+17] introduced transformers as an alternative to the
state-of-the-art techniques for sequence modeling, like recurrent neural networks, long short-
term memory, and gated recurrent neural networks. Those strategies rely on recurrence, i.e.,
the models keep track of a hidden state h. The output for a position t depends on the input
element at xt and the previous hidden state ht−1. This allows the model to condition its
output on previous elements of a sequence. However, this design has drawbacks. Firstly,
the sequential nature impedes parallel processing, which is especially important for longer
sequences. Second, this strategy makes it difficult to capture dependencies between elements
located at distant positions in the sequence. The transformer architecture circumvents these
disadvantages by relying solely on an attention mechanism to draw dependencies between
input and output elements. The following is an overview of the underlying architecture, how
the attention mechanism works, and typical applications of transformers.

5.1.1 Transformer Architecture

In its original form, a transformer is based on an encoder-decoder architecture, as shown in
Figure 5.1. The encoder processes an input sequence of symbols (x1, . . . , xn) to a continuous
encoded representation z = (z1, . . . , zn). The decoder combines z with previously generated
symbols to predict output probabilities for the following symbol in the sequence. Before the
transformer can process the input or output sequences, they must be converted into a sequence
of vectors. This is achieved by applying a learnable embedding to these sequences before
passing them to the transformer. The embedding layer maintains a fixed-size continuous
representation for each possible input token. These representations can either be trained
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directly in conjunction with the transformer or taken from an already well-performing model
from a similar task. Depending on the used embedding, the resulting sequence consists of
vectors with a dimensionality of dmodel. Increasing the size of the vectors allows the model to
generate more complex representations and can increase the model’s predictive power, but it
also increases the computational resources needed to train and execute the model.
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Input
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Figure 5.1: Overview of the transformer architecture based on the illustration provided by
Vaswani et al. [Vas+17].

Both the encoder and decoder consist of layers that process their input with a combination
of the attention mechanism and a feedforward layer. Since each layer outputs vectors of
the same dimensionality as its inputs (dmodel), the architecture allows stacking multiple of
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these layers to increase the computational capacity of the transformer. The encoder layer
consists of two sequential subcomponents, which feature skip connections and are followed by
layer normalization. The first component implements the multi-head attention mechanism. It
is followed by a simple, fully connected feedforward network applied to every position of the
sequence in parallel. These components are also found in the decoder layer, as well as a masked
multi-head attention block for processing the previously generated outputs. By applying a
binary mask to the attention mechanism, it is possible to control which elements in the output
sequence the transformer can attend to. Considering the example of language translation, the
input sentence corresponds to the words of one language and the output to the respective
ground truth translation. When predicting the word at position t in the output sequence, the
transformer shall only be able to attend to all previously generated words at positions less
than t. The decoder features a second multi-head attention block that combines the processed
input and output sequence and a feedforward network that generates the decoder layer output.
As with the encoder layers, stacking multiple decoder layers increases the processing power of
the transformer. The final output of the stacked encoder and decoder layers can be processed
by a linear layer and a Softmax activation function to predict the probability for the next
token.

5.1.2 Attention Mechanism

Attention was already a concept in language processing tasks before transformers were in-
troduced, e.g., by Bahdanau, Cho, and Bengio [BCB15], but transformers were one of the
first models to rely solely on attention rather than recurrence. Intuitively speaking, attention
combines the vectors of the input sequence to generate an output sequence of the same length
and dimensionality. The attention weights determine the influence of each input vector on
the output vectors. At the first step of the attention mechanism, three linear layers process
the inputs and generate a query, key, and value sequence. The value sequence of vectors of
dimensionality dv contains the information that will form the output sequence. The queries
and keys of dimensionality dk are combined into the attention weights to determine how
much influence the values have on the output sequence. The weights are calculated by the
dot-product between the matrix of queries Q and the matrix of keys K and scaled by the
factor 1√

dk
. Scaling is done to accommodate possible large values from the dot product of

vectors with a high dk. At this step, a mask can be applied to the attention weights before
each row is rescaled to a sum of one by applying the Softmax function. Multiplying the value
vectors V results in the output of the scaled dot-product attention,

Attention(Q,K, V ) = softmax
(
QKT

√
dk

V

)
(5.1)

as described by Vaswani et al. [Vas+17].
The scaled dot-product attention mechanism would suffice for a simple version of the trans-

former architecture. However, transformers incorporate a more powerful multi-head version
of this form of attention. The queries, keys, and values are transformed to a smaller di-
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mensionality h times by different linear projections, where h is the number of heads. The
smaller dimensionality dk and dv are commonly set to dk = dv = dmodel/h and each head
features its own set of learnable linear projections WQ

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dk ,

W V
i ∈ Rdmodel×dv . An independent attention mechanism processes each projected set of

queries, keys, and values, and the results are concatenated and combined by a learnable
output projection WO ∈ Rhdv×dmodel :

MultiHeadAttention(Q,K, V ) = Concat(head1, . . . , headi)W
O,

where headi = Attention(QWQ
i ,KWK

i , V W V
i ).

(5.2)

All heads can perform attention simultaneously, while the reduced dimensionality results in
a similar computational cost compared to one scaled dot-product attention on vectors of
size dmodel. However, executing multiple attention operations in one step enables each head
to independently attend to different positions in the input sequence, allowing each head to
specialize in specific features of the input data.

Attention enables the transformer to process sequential data without the need for recurrence
or convolutions. Depending on the generated queries and keys, transformers can adaptively
combine vectors from arbitrary positions in the input sequence. Queries and keys can either be
generated from the same sequence that provides the value vectors (self-attention) or originate
from different sources, like in the decoder’s second attention block. Without any additional
information, however, the attention mechanism would have no means of taking positional
information into account since it is completely based on the content of the vectors. To
counteract this, Vaswani et al. [Vas+17] include a positional encoding added to the vectors
after the embedding step. The authors decided on a positional encoding based on sine and
cosine functions, as in

PEpos,2i = sin

(
pos

10000
2i

dmodel

)

PEpos,2i+1 = cos

(
pos

10000
2i

dmodel

) (5.3)

with pos being the position of the vector in the sequence and i the dimension. This positional
encoding allows the transformer to attend to vectors based on their position in the input
sequence and to compare different vectors based on their relative positioning. The authors
hypothesize that the latter especially benefits from the chosen sinusoidal functions.

An architecture based on the aforementioned attention mechanism provides advantages over
networks featuring recurrent layers or convolutions. First, transformers provide a high degree
of parallelizable computation steps compared to recurrent neural networks that process inputs
sequentially. Second, transformers simplify the identification of long-range dependencies since
the association of any two vectors from a sequence requires only one operation, regardless of
their position. In contrast, the number of operations required in a recurrent system is O(n)
and O(logk(n)) for convolutional systems, where n is the sequence length and k the kernel
size. Lastly, attention, to a certain degree, increases the interpretability of the model. By
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analyzing the attention weights, conclusions can be drawn on what inputs are associated and
what inputs feature the highest priority for the given task, e.g., [RCW15; Roc+16; Vig19].

5.1.3 Transformer Applications

The advantages of transformers have led to a wide variety of algorithms based on this archi-
tecture in recent years. Especially the high degree of parallelizability allowed transformers
to be trained on increasingly large datasets, making transformers state-of-the-art in many
problem domains. With GPT, a prominent family of transformer-based models for language
modeling tasks was introduced by the company OpenAI and subsequently extended with
GPT-2 [Rad+19] and GPT-3 [Bro+20b]. These models are trained on large text corpora
with an autoregressive objective, e.g., for a sequence of tokens, predict the probability for
the next token given all the previous tokens. GPT-2 introduced the idea of pre-training a
language model in an unsupervised manner on a large, general text database automatically
generated from web pages. The generated WebText database contained approximately eight
million documents, resulting in up to 40 GB of text. Although the model was not trained
for a specific task, the vast amount of training data and the model’s size allowed applying
it in a zero-shot fashion to various problems from the language processing domain. Building
upon GPT-2, GPT-3 utilizes the same network architecture but with a significantly increased
number of parameters (175 billion). Furthermore, the authors increased the dataset size and
diversity. The model can be applied to various problems without the need for fine-tuning by
presenting the model with a textual representation of the problem.

Devlin, Chang, Lee, and Toutanova [Dev+19] introduced a model called bidirectional en-
coder representations from transformers (BERT) that founded a different family of language
models based on transformers. Unlike the previously mentioned models trained with an au-
toregressive target, these models can attend to context on the left and right sides of each
token. The training procedure contains an unsupervised pre-training phase with masked
token prediction, next sentence prediction, and a task-specific fine-tuning phase.

Both approaches have spawned a variety of further research and improved architectures.
A comprehensive overview and collection of open-source implementations is, e.g., given by
Wolf et al. [Wol+20]. Furthermore, transformer-based models have found wide application in
problem domains other than language processing. AlphaFold is an AI developed by Jumper
et al. [Jum+21] to solve the protein folding problem. The second version of this AI is based
on transformers and trained with a BERT-like masking technique. Tamashiro et al. [Tam+20]
demonstrated how transformers can be applied to image processing tasks by translating an
image into a sequence of patches, which can be processed by a transformer. The Beijing
Academy of Artificial Intelligence presented WuDoa, a multimodal model currently in its
second version, which is one of the world’s largest AI with 1.75 trillion parameters. It is
supposed to be the next step toward artificial general intelligence and can process natural
language and images, create realistic artwork and poetry, and compose music.
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In summary, due to their powerful attention mechanism and highly parallelizable architec-
ture, transformers find application in various problem domains, especially when they feature
large amounts of training data that can be transferred in a sequential representation.

5.2 Related Work: Molecular Generation Models

In the following study, we introduce transformers to the generation of molecules in a spa-
tial representation. The concept of de novo molecule generation has already been featured
in Section 3.3. Overall, many generative models for molecules have been developed in the
past. Hereinafter, a short overview of different types of models is presented, grouped by the
molecular representation on which these models operate.

String-based Representations. The SMILES is a string-based, broadly used representa-
tion for molecules [Wei88]. SMILES describes molecules as a sequence of tokens encoding
atom types and structural properties, like rings and branches. This allows the application
of language processing techniques for molecule generation. For example, Segler, Kogej, Tyr-
chan, and Waller [Seg+18] used a recurrent neural network to autoregressively construct new
SMILES strings. Another example is the work of Gómez-Bombarelli et al. [Góm+18], who
used a variational autoencoder in combination with recurrent neural networks on SMILES
strings to explore the chemical space.

Although the SMILES representation allows an easy adaption of language processing tech-
niques for molecular search, it is not without drawbacks. A string-based representation can
leave out important information about a molecule, like locality [Pol+20]. Additionally, the
generation problem is complicated by the fact that generated SMILES strings are not neces-
sarily valid [Góm+18]. Thus, some capacity of the model has to be used to understand the
underlying mechanism of the SMILES representation.

Graph-based Representations. Another common approach for the generation of molecules
is working on graph-based representations of molecules. A molecular graph is described by a
set of vertices representing atoms and edges representing bonds. Hydrogen atoms are often
implicitly assumed for simplicity [SG20]. Li, Vinyals, Dyer, Pascanu, and Battaglia [Li+18]
introduced a deep generative model for the creation of graphs which they also applied to
molecular graphs. The model generates a graph by deciding on a sequence of structure-
building actions, like adding a node and connecting it to previously generated ones. They
utilized a network architecture based on graph nets to predict the probabilities of the next
graph-building operation while considering the existing graph. However, this node-by-node
generation can be sensitive to the order of the nodes [SG20]. Additionally, multiple graphs
can map to the same molecule, called the graph isomorphism problem that can add noise to
the model [Pol+20].

Three-dimensional Representations. By working directly in the three-dimensional space
of atoms, a model can utilize the complete information about a molecule without work-
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ing on abstract, heuristic concepts like bonds and ring structures. One advantage of such
methods is that it enables differentiating between spatial isomers. Furthermore, additional
geometric information—like the structure of a protein’s active binding site—can be incorpo-
rated [Pol+20].

One possible approach for working directly on a molecule’s spatial information is positioning
atoms in a three-dimensional grid space. Such a representation has already been successfully
applied for predicting binding affinities [WDH15; Gom+17]. However, one fundamental chal-
lenge of such a representation is the sparsity in the grid space. Only a small portion of the
input space is actually used to encode atom information [Kuz+18]. A smoothing transforma-
tion can be used to cope with this problem, as shown by Kuzminykh et al. [Kuz+18].

With G-SchNet, Gebauer, Gastegger, and Schütt [GGS19] introduced a generative model
operating directly on three-dimensional point sets. The model is able to construct molecules
merely based on atoms and their relative positioning. G-SchNet processes a molecule’s atoms
sequentially, generating new atoms in an autoregressive manner. The order of atoms is de-
termined by a predefined procedure starting from a molecule’s center of mass. Molecules are
processed by embedding the atom types with a learned embedding and calculating atom in-
teractions based on continuous-filter convolutions. Thereby, the model can process molecules
in a translation and rotation-invariant manner. Two auxiliary tokens are used: One marking
the atom’s center of mass and one shifting the focus to an already placed atom. Newly placed
atoms are generated in the neighborhood of the focus token, which can therefore guide the
process. G-SchNet was trained on the QM9 database of small organic molecules. The authors
demonstrated that the model can generate novel molecules that resemble the training data in
their structural properties.

Furthermore, Hoffmann and Noé [HN19] demonstrated that it is possible to utilize neural
networks to generate valid Euclidean distance matrices with a three-dimensional embedding.
This procedure enabled them to train a Wasserstein GAN that can produce small molecules
in a one-shot manner.

5.3 Transformers for Spatial Molecule Generation

This article introduces a novel molecular generative model based on a transformer network
architecture. Like G-SchNet, the model can process molecules in a rotation and translation-
invariant manner. This is realized by directly operating on the Euclidean distance matrix
defined by the distances between molecular atoms. Consequentially, the introduced model
shares the earlier mentioned benefits of operating directly in the three-dimensional atom space.
The model has direct access to the molecule geometry and can even distinguish between spatial
isomers. However, as an advancement over G-SchNet, it does not need any auxiliary tokens
and directly predicts atom types and their corresponding distance vectors. Additionally, it
is able to process and sample a molecule’s atoms in an arbitrary order. This does not just
eliminate the need to generate molecule-specific sampling paths but also opens up a wider
field of possible applications.
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The model generates new atoms in an autoregressive manner. Each molecule is represented
by a sequence of atoms a = (a1, . . . , aN ) of length N and the corresponding distance ma-
trix DN×N of atomic distance values di,j . Since the distance matrix is symmetric, only the
upper-right triangle of the distance matrix is taken into consideration. The model jointly ap-
proximates two functions. Firstly, one describing the likelihood of a sequence of atoms types,
factorized in the conditional probabilities

p(a) =
N∏
j=1

p(aj | a<j , d:,<j) (5.4)

where d:,<j refers to all distance values of all columns of the distance matrix occurring before
the index j. Secondly, the model approximates the likelihood of entry di,j in the corresponding
distances matrix D, in relation to the previously generated atoms and distances

p(D) =
N∏
j=1

j∏
i=1

p(di,j | a≤j , d:,<j , d<i,j) (5.5)

Therefore, the model utilizes the transformer architecture, more specifically the encoder part,
to enable attending to already generated atoms and distances. The data structure, architec-
ture, and the training and sampling procedure are introduced in the following.

5.3.1 Data

The architecture requires a preprocessing step to convert a molecule into a representation
that the transformer can process. The first step reduces a molecule to its atoms and the
corresponding atom coordinates. The coordinates are used to calculate the Euclidean distance
matrix. Using the Euclidean distance matrix, rather than the Cartesian coordinates directly,
enables the model to process molecules in a rotation and translation-invariant manner.

The set of atoms and the distance matrix are converted to a sequence of atom tokens and
a sequence of distances, as pictured in Figure 5.2. Every molecule starts with a Beginning
of Molecule (BOM) token and is completed with an End of Molecule (EOM) token. The
input sequences are used as input for the transformer model. The target sequence specifies
the expected value at a given index. The model is trained to predict the target values at
a given index of the sequence in an autoregressive manner by using all entries in the source
sequence up to and including this index. Therefore, the input sequence is generated by passing
through the values of the distance matrix’s upper right triangle—column by column and row
by row. For every distance value, the atom type of the respective column is stored in the
atom sequence. At the start of every column, an input pair with a token of the new atom and
a placeholder distance value is inserted. This allows the model to take the new atom type
into consideration before predicting the column’s first distance value. The target distance
sequence is constructed by shifting the input distance sequence left by one. The atom target
for all distance values of a column j corresponds to the atom type of the (j + 1)-th column.
The model processes molecules in batches to accelerate the training speed. Since molecules
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Figure 5.2: Structure of the training data, illustrated by an exemplary molecule. Molecules are
defined by a set of atoms and the corresponding distance matrix, pictured on the
left. The information is converted to the input and target sequences pictured on
the right. Entries of the input sequence marked with an asterisk are placeholders
and have no influence on the current prediction. Entries of the target sequence
marked with an asterisk are not considered for calculating the loss.

vary in the number of atoms, the input and target sequence are padded to a unified size with
PAD tokens, which are processed but ignored for the loss calculation.

For the experiments presented in the following, we used the training and test samples from
the QM9 database, as in the work of Gebauer, Gastegger, and Schütt [GGS19]. The database
consists of 133 885 stable small organic molecules [Ram+14; Rud+12]. The molecules feature
up to nine heavy atoms of the types carbon, nitrogen, oxygen, and fluorine.

5.3.2 Architecture

At its core, the architecture is based on parts of the transformer architecture [Vas+17]. Trans-
formers are sequence transduction models utilizing attention rather than recurrence. Trans-
formers are generally encoder-decoder based. In this work, however, only the encoder part
is used. The encoder features a stack of layers implementing a multi-head self-attention
mechanism to encode the input sequence to a sequence of continuous latent representations.

The transformer architecture for the generation of molecules builds upon this attention
mechanism and is structured as follows. The atom sequence is processed by a trainable
embedding layer and concatenated with the distance sequence, resulting in a sequence of
feature vectors of size 64. A positional encoding is added to the embedded inputs, which
enables the transformer to attend to a desired vector in the sequence based on its position
[Vas+17]. The combined atom and distance sequence is processed by six stacked transformer
encoder blocks, which utilize eight heads for the multi-head attention to produce the encoded
feature vectors. Two decoders, consisting of two fully connected layers and ReLU non-linearity,
are used to predict the logits for the respective next atom token. For the prediction of
distances, the space between zero and a chosen maximum distance is split into a fixed number
of bins. Rather than predicting the distances directly, the distance decoder predicts the
index of a distance bin. This procedure yields two benefits: Firstly, the distance values are
most likely distributed multimodally [GGS19], which can render regressing continuous targets
difficult. Secondly, this enables the sampling of distance values during the generation of
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molecules, which can lead to more diverse molecules. A Softmax activation function processes
the atom and distance logits to produce the respective probabilities.

5.3.3 Training

The format of the training data renders the training procedure simple. During training, the
atom value tuples of the input sequence are processed in parallel. An autoregressive mask
prevents the model from attending to values at a later position in the sequence. Furthermore,
this procedure implements teacher forcing, meaning that the model always operates on the
ground truth data when predicting the probabilities for the next entry. One-hot labels are
calculated for the target sequence’s atoms and distance bins, and the cross entropy between
the predicted probabilities and the target values is calculated. All models mentioned in the
following are trained with the Adam optimizer.

For our experiments, we employed a learning rate of 10−4 and a batch size of 512 samples.
The training was stopped when the loss on the test samples stagnates, which was the case
after approximately 100 000 Iterations.

5.3.4 Sampling

The model can sample new molecules or complete existing ones. Since training samples are
processed in completely random permutations, the model is able to work with a starting set of
atoms of arbitrary size and position. Every molecule is initialized with a BOM token, followed
by an optional initial set of atoms and distances. The model sequentially predicts probabilities
for the next atom and distance value in an autoregressive manner. As described by Gebauer,
Gastegger, and Schütt [GGS19], a temperature parameter can be applied to the Softmax
functions to control the amount of randomness. After an atom type and distance value are
drawn from the predicted distribution, the input values are appended, and the process is
repeated for the extended inputs. The model can generate molecules in a batch to accelerate
the generation of multiple molecules and terminates after a configurable maximum number of
atoms is generated. For every molecule, only those atoms and distance values are considered,
which occur until the first occurrence of an EOM token. The distance values are regrouped
into a distance matrix. As it is possible that no set of three-dimensional coordinates satisfies
the generated distance matrix, we employ multidimensional scaling to iteratively approximate
a suitable set of coordinates. The resulting coordinates and the sampled atom types are passed
to RDKit, to allow further processing, like validation of valences and saving the molecules to
a common molecular representation.

5.4 Experiments

In the following, we present two experimental conditions to evaluate the generative capabilities
of the algorithm. The first condition features a fixed ordering of the atoms in the training
molecules. The order is determined by calculating a molecule’s center of mass and sorting the
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Table 5.1: Results of the generation procedure for the two experimental conditions grouped
according to the quality of the molecules. Valid molecules show correct valences and
are fully connected. Novel molecules are those not occurring in the QM9 database.

Fixed atomic order Random permutations

Correct valence 95.9 93.0
Valid 85.2 59.6

Unique 78.2 58.4
Novel 57.3 48.2

atoms ascending to their distance to the center. This condition forms a baseline to evaluate
the model’s general capability of generating molecules resembling the training data. In the
second condition, a random permutation of a molecule’s atoms is drawn each time it is selected
as a training sample. Although this should be a more complex task in general, it should train
the model to sample atoms in an arbitrary order, allowing the completion of molecules starting
with an arbitrary set of atoms.

We trained all models on 50 000 randomly selected molecules of the QM9 database. In the
following, the model is evaluated in its capability of generating new molecules from scratch
and completing a predefined, unconnected set of atoms placed in a three-dimensional space.

5.4.1 Generating Molecules from Scratch

To evaluate the performance of the models in generating new molecules we sampled 20 000

molecules per condition. The valences of the molecules were validated using RDKit, and mole-
cules with disconnected parts were excluded. Molecules passing these criteria were considered
valid. Furthermore, all duplicates were excluded from the generated molecules, and those
remaining were considered unique. Finally, all generated unique molecules were compared to
those present in the QM9 database, and only completely new structures remained and are
referred to as novel. Duplicates were identified by comparing the InChIstring representations
of the molecules, which were obtained with RDKit. Table 5.1 presents a comparison of the
aforementioned metrics for the two experimental conditions. Most molecules generated by
both models pass the valency checks. The model trained on a fixed ordering generated mostly
fully connected molecules, resulting in a high amount of valid and unique molecules. Overall,
it was able to generate 57.3% completely new molecules, i.e., molecules not included in the
QM9 dataset. The model trained on random permutations of molecules exhibited a consider-
ably higher amount of disconnected molecules. It is evident that this effect is a drawback of
the training procedure, which features a molecule’s atoms in an arbitrary order and is, in gen-
eral, a more difficult task. Although the number of valid molecules is lower in this condition,
nearly all generated valid molecules are unique, with a high portion of those considered novel.
Since this model is not dependent on a specific atom ordering, it seems capable of generating
more diverse molecules.

In the following, we analyze the generative models’ capability of capturing the structural
statistics of the training data. Therefore, we followed the procedure described by Gebauer,
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Figure 5.3: Comparison between the QM9 database and the two experimental conditions on
the average number of atoms and rings per molecule. a) The mean number of
atoms per molecule grouped by the four heavy atom types: carbon, oxygen, ni-
trogen, and fluorine. b) The mean number of rings per molecule grouped by the
ring size. c) Two exemplary generated molecules.

Gastegger, and Schütt [GGS19] and calculated the mean atom and ring counts of the valid
molecules from the two experimental conditions, which were compared to those of the QM9
database. The distribution of atom counts and ring sizes is pictured in Figure 5.3. Comparing
the mean number of atoms, pictured in Figure 5.3a, both models seem to generate molecules
with a similar total number of atoms compared to the QM9 database. Overall, the distribu-
tion of atom types matches, except for nitrogen atoms occurring slightly more frequently in
molecules of the generative models. The mean number of rings is pictured in Figure 5.3b,
and the comparison reveals that all types of ring structures occurring in the database are also
found in the generated molecules. However, the distributions in which the rings of different
sizes occur seem to differ between the experimental conditions. The model trained on fixed
atom orders generated molecules with a similar amount of rings of the size three, five, and
six as in the QM9 database. However, rings of size four occur less frequently in molecules
generated in this condition. Molecules generated by the random permutation model seem to
feature slightly fewer rings of size four, five, and six and slightly more rings of size three on
average.

To analyze how well the distribution of distances predicted by the generative models matches
that of the training data, a randomly selected subset of 1000 molecules from the random per-
mutation condition was analyzed consistent with the QM9 database using the Gaussian version
of the hybrid DFT functional B3LYP [Bec93; LYP88] and a 6-31G(2df,p) basis set [DHP71;
FPB84; HDP72; Kri+80] as implemented in the quantum chemical software package ORCA
4.2.0 [Nee12; Nee18]. We applied a full geometry relaxation using the default convergence
thresholds within ORCA.

The relaxed molecules were compared to an equal-sized, randomly chosen subset of the
QM9 database, and the results are pictured in Figure 5.4. Atoms of the relaxed molecules
should feature distance and angle distributions similar to the training data. Therefore, similar
to Gebauer, Gastegger, and Schütt [GGS19], the radial distribution functions of the distances
between the two most common atom pairs, namely carbon-carbon (Fig. 5.4a) and carbon-
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Figure 5.4: Comparison of radial and angular distribution functions between QM9 and the
generated molecules. a) Distances between carbon-carbon atom pairs. b) Dis-
tances between carbon-oxygen atom pairs. c) Angles between bonded carbon-
carbon-carbon chains. d) Angles between bonded carbon-carbon-oxygen chains.

oxygen (Fig. 5.4b) are compared. Furthermore, Figure 5.4c and Figure 5.4d show the angular
distribution functions for bonded carbon-carbon-carbon and carbon-carbon-oxygen chains.
Comparing the distribution functions, it is apparent that the structures of the generated
molecules clearly show similar properties to those of the training data. There seems to be
no distinct difference regarding the investigated atom distances when considering the radial
distribution functions. The angular distribution functions also show a similar distribution of
angles in the database and the generated molecules, with aligning peaks. However, angles
between 100 and 120 degrees are slightly overrepresented in the generated molecules.

In conclusion, both models are capable of generating new valid molecules simply by placing
atoms in a three-dimensional space. The model trained on a fixed atomic ordering produced
more valid and slightly more novel molecules, which may be caused by the lower complexity
of the task. However, processing atoms in an arbitrary order should give the model more
flexibility when it comes to the generation of molecules, which is investigated in the following
section. The generated molecules match the training database in many aspects, indicating
that the models can identify and reconstruct the underlying pattern of structural properties.
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Figure 5.5: Results of the completion experiment. a) The predefined distances to be com-
pleted (measured in angstrom). b) Some exemplary generated molecules after
the relaxation procedure. The predefined molecules are marked in yellow. c) The
mean absolute error in angstrom between the three predefined distance values and
the real distances after relaxation.

5.4.2 Completing Molecules

Due to processing random atom permutations during training, the generative model should
be able to complete an arbitrary set of atoms. Ideally, the resulting molecules should feature
similar distance values to those specified, even after relaxation. To investigate this, the
model was used to generate 100 valid, novel molecules starting with a set of three predefined,
unconnected atoms. The experimental results are pictured in Figure 5.5. Figure 5.5a shows the
given distances and the corresponding atom types. These atoms correspond to a randomly
selected subset of an exemplary molecule chosen from the QM9 test set. After sampling
the atoms and distances, a weighted version of multidimensional scaling [CPH06] is used to
obtain the atom coordinates, which allows assigning higher weights to the predefined distance
values. Even though the predefined atoms are disconnected, the model trained on random
permutation is able to generate approximately 34% valid molecules. As expected, the model
trained on fixed permutations cannot generate valid molecules for this configuration. After
generation, 100 unique molecules are selected and analyzed with the relaxation procedure
described in Section 5.4.1. Figure 5.5b pictures three exemplary molecules after relaxation,
with the predefined atoms marked in yellow. To measure how accurately the given distances
match the ground-truth data obtained from the relaxation procedure, we compute the mean
absolute error, pictured in Figure 5.5c. The median of 0.4 Å indicates that the model is
capable of generating multiple different molecules that approximate the predefined distances,
even after relaxation.

5.5 Conclusion

In this work, we introduce an autoregressive generative model based on the transformer ar-
chitecture that can sample new molecules directly in the three-dimensional atom space. The
generated molecules show similar structural properties when compared to the original mol-
ecules from the training dataset. Training on random permutations of a molecule’s atoms
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eliminates the necessity of predefined orderings and allows for a broader range of possible
applications. For example, extending the model for sampling longer molecules and applying
it to the domain of drug design would be a promising subsequent research topic since, in
contrast to other approaches, the presented model could take the structure of a protein’s
binding site into consideration. Overall, a model capable of completing unfinished molecules
could accelerate the search for suitable molecular candidates in applications where parts of
the target structure are known.

To improve the model, it is conceivable that generating atom and distance values block-
wise, rather than value after value, could drastically increase the sampling complexity. A
similar approach was shown by Liao et al. [Lia+19] for the generation of graphs with graph
recurrent attention networks. Furthermore, Hoffmann and Noé [HN19] demonstrated that it
is possible to predict valid Euclidean distances with a neural network directly. An adaption of
their approach for autoregressive molecule generation eliminates the need for multidimensional
scaling to obtain the atom coordinates.



6 Transformers for Molecular Graph
Generation

In the previous chapter, we presented an adaptation of the powerful transformer neural net-
work architecture for the spatial design of molecules. Since this architecture was initially
designed for sequence processing, we transferred the molecules’ atoms and their respective
Euclidean distance matrix to a sequential format and utilized the transformer to autoregres-
sively sample new molecules. One of the advantages of the transformer architecture is the high
degree of parallelizability during training. However, in the recent study, we mainly focused
on generating small molecules. The main reason is that the simple flattening of the distance
matrix causes the sequence length to grow quadratically as the number of atoms in the mole-
cules increases. Since an autoregressive strategy prevents parallelization during sampling, this
impedes the generation of longer molecules. In the study presented in this chapter, we explore
how we can extend the concepts presented previously so that the generation of more complex
molecules is possible. In this regard, we will make the following main contributions: Firstly,
we demonstrate how the transformer architecture can be utilized to autoregressively sample
new molecules in a graph representation. Secondly, we introduce a more efficient sampling
strategy that can sample a whole column of a molecule’s adjacency matrix at once to allow
the generation of larger molecules.

Generative neural networks for graphs have been extensively studied in recent years, e.g.,
[Li+18; Lia+19; You+18]. Graphs are a common representation used in various problem
domains, and generative models can play an important part in discovering new graphs. Fur-
thermore, they can be used to traverse the search space of candidate graphs in the direction
of desired properties. Particularly in molecular design, graphs are a common data structure
in addition to the string-based representation. Although some graph-based molecule gener-
ation models have been introduced in the past, most of these models rely on recurrence to
capture the underlying distributions over nodes and edges. In this work, we introduce an
autoregressive molecule generation model based on transformers utilizing their self-attention
mechanism.

To investigate whether the generative model captures the underlying structural properties
of its training data, we evaluate the quality of the generated molecules with MOSES [Pol+20]
and compare it to other state-of-the-art models for molecule generation. The results pre-
sented in the following are based on the published article: “Transformers for Molecular Graph
Generation” [CK21].
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Outline. Section 6.1 provides an overview of graph neural networks in general, how they
can be utilized for molecule generation, and the application of transformers for molecular
graphs. In Section 6.2, we demonstrate how transformers can be modified to train on molecules
represented as sequences of atoms and their adjacency matrix. This enables transformers to
be used as a molecular generation model. The generated molecules are compared to those
generated by other state-of-the-art models in Section 6.3. Section 6.4 concludes the work and
provides an overview of possible future work.

6.1 Related Work: Graph Generative Models

Li, Vinyals, Dyer, Pascanu, and Battaglia [Li+18] introduced a graph generative model, which
they also adapted to the domain of molecules. They employed an architecture combining
message passing networks and recurrent neural networks to autoregressively generate graphs.
Building on this, Liao et al. [Lia+19] improved the autoregressive sampling strategy. By
sampling a block of one or several rows of the adjacency matrix at a time, the number of
necessary decision steps during graph generation is drastically reduced. Since multiple edges
are generated simultaneously, a mixture of multiple Bernoulli distributions is used to decide
on the occurrence of edges. These mixture components can capture correlations between edges
in one block. GraphRNN [You+18] is another approach for the generation of graphs, which
uses a graph-level recurrent neural network (RNN) and edge-level RNN for the generation of
graphs.

Molecular generation models often operate on string-based molecular representations (com-
monly SMILES) since these are easy to access and process. Different approaches have been
introduced for the generation of molecules as strings, e.g., recurrent neural networks [Seg+18]
and variational autoencoder [Góm+18]. Despite its straightforward implementation, a string-
based representation bears some disadvantages. Generated SMILES strings are not neces-
sarily valid, and additional model capacity has to be attributed to learning the language’s
formal rules [Pol+20]. To overcome these limitations, Podda, Bacciu, and Micheli [PBM20]
introduced a fragment-based approach for generating SMILES strings. Rather than sampling
symbol by symbol, this approach first extracts a vocabulary of fragments from the training
data, on which the language model is then trained.

Directly processing and sampling molecular graphs was, e.g., demonstrated by Li, Vinyals,
Dyer, Pascanu, and Battaglia [Li+18]. Furthermore, Jin, Barzilay, and Jaakkola [JBJ18]
presented a generative model for molecules based on a junction tree variational autoencoder.
Rather than generating molecules on an atom-per-atom basis, this approach combines molecu-
lar substructures extracted from the training data, ensureing the generation of valid molecules.
A few examples of applying the transformer architecture to molecular graphs can be found in
the literature. Cai and Lam [CL20] demonstrated that it is possible to use transformers for
graph-to-sequence learning. Additionally, the transformer architecture has been utilized for
molecular property prediction [CBJ19; Ron+20]. Yoo et al. [Yoo+20] presented a transformer
specialized in processing graphs. Nodes are processed as tokens, while the edges are incor-
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Figure 6.1: Overview of the model’s architecture.

porated into the transformer’s self-attention mechanism. The model was mainly investigated
for property prediction on smaller molecules but can also be applied to graph generation.

6.2 Transformers for Graph Generation

In the following section, we introduce a transformer-based generative model for graphs. Albeit
applicable to various types of graphs, in this work, we evaluate its capabilities as a generative
model for molecular graphs.

6.2.1 Data Representation

This work utilizes the data sets provided by the benchmark framework MOSES, which are
based on the ZINC database and contain 1.6 million training and 176 thousand test molecules
[Pol+20]. The molecules are converted to a sequence of atom tokens and a corresponding
adjacency matrix. The adjacency matrix marks missing bonds as zeros, while bonds are
represented by a number unique to the respective bond type—in this work, single, double,
and triple bonds are considered. Since the transformer processes molecules in a column-wise
manner, the lower left half of the adjacency matrix is masked with zeros. Additionally, the
columns are padded with zeros to a user-defined maximum number of atoms to ensure a fixed
number of elements per column. Molecules are processed in batches. If molecules in a batch
are of different sizes, the input sequences are padded to the longest molecule length in the
batch.

6.2.2 Architecture

The architecture is pictured in Figure 6.1 with an exemplary input molecule. In the initial
step, a trainable embedding layer processes the atom sequence. The adjacency matrix is
treated as a sequence of matrix columns and embedded by a linear layer. The resulting
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two sequences are stacked, and a positional encoding is added, which helps the transformer
attend to specific positions in the sequence. This sequence forms the input for the transformer.
The transformer consists of multiple stacked encoder blocks and implements the multi-head
self-attention mechanism. The encoded sequences are used to predict the target atom and
bond logits. However, this process differs between training and inference. In both cases,
the probabilities for the next atom type are computed by a fully connected decoder network
FCATOM. The next column of the adjacency matrix is predicted by combining the encoded
sequence with information about the next atom. This way, the model can take a sampled
atom’s type into consideration when predicting its bonds. During training, this is achieved
by passing the ground truth sequence of target atoms to the atom embedding layer and
stacking it with the encoded sequence. During sampling, the predicted atom probabilities are
used to predict an appropriate next atom type, which is then passed to the atom embedding
and stacked with the encoded sequence. In both cases, the atom type enriched sequence
is passed to a fully connected decoder network FCBOND to predict the next column of the
adjacency matrix. Like Liao et al. [Lia+19] proposed, the network predicts not only a single
probability per edge but rather a mixture of multiple distributions. This enables the model
to capture correlations within one adjacency matrix column. Therefore, outputs produced by
the bond decoder have an additional dimension of size K, the user-defined number of mixture
components. Since each edge represents a bond and the approach presented considers single,
double, and triple bonds, the model predicts a mixture of categorical distributions. A single
layer decoder FCα produces the K-dimensional vector of probabilities for these components.

6.2.3 Training and Sampling

During training, the input sequence is processed in parallel. An autoregressive attention
mask is used to prevent the model from attending to subsequent sequence entries. This also
effectively implements teacher forcing, i.e., the ground truth data of all previous entries in the
input sequence is used to predict the next atom type and bonds. The bond decoder FCBOND is
provided with information about the current atom type when predicting its respective bonds.
In this way, the model can dynamically adjust the probability outputs since the conditions
for the subsequent bonds are likely to depend on the next atom’s type. The way the model
incorporates information about the next atom varies between training and sampling, but
both strategies are designed to maximize the degree of parallelizability. During training,
the atom sequence is shifted left to generate the target sequence. The target sequence is
processed by the same embedding layer as the input sequence of atoms, combined with the
transformer-encoded sequence, and passed to the bond decoder. During sampling, the model
starts with predicting the probabilities for the next atom type. The next atom is then sampled
from a categorical distribution, initialized with these probabilities, and also embedded. This
information is combined with the already encoded transformer output and passed to the bond
decoder, eliminating the need to run the transformer a second time.

The loss is defined by the cross entropy between the predicted atom and bond logits and the
respective next atom type in the atom sequence and the next adjacency matrix column. For
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Table 6.1: Comparison of molecules created by different generative models.
Model type Valid Unique@1k Unique@10k IntDiv IntDiv2 Filters Novelty

CharRNN 0.9700 1.0000 0.9994 0.8562 0.8503 0.9943 0.8419
AAE 0.9400 1.0000 0.9973 0.8557 0.8499 0.9960 0.7931
VAE 0.9800 1.0000 0.9984 0.8558 0.8498 0.9970 0.6949
JTN-VAE 1.0000 1.0000 0.9996 0.8551 0.8493 0.9760 0.9143
LatentGAN 0.9000 1.0000 0.9968 0.8565 0.8505 0.9735 0.9498
Our Model (fixed) 0.9893 1.0000 0.9989 0.8569 0.8510 0.9943 0.6312
Our Model (depth-first) 0.9751 0.9998 0.9994 0.8568 0.8509 0.9896 0.7931

the bond types, the predicted type and alpha logits are compared to the subsequent column of
the adjacency matrix, and the negative log-likelihood is calculated as the bond loss. The bond
and atom loss are added and form the loss for the parameter optimization. We optimized the
model parameters by gradient descent using the Adam optimizer.

Molecules are sampled in an autoregressive manner. The process is initiated by passing a
Beginning of Molecule token and an empty adjacency matrix column to the model. After every
pass, the predicted probabilities are used to sample the next atom type and adjacency matrix
column. The input sequence is then appended with the newly sampled values and passed to
the model for the next sampling step. This process is repeated until a maximum number of
atoms has been sampled. After sampling, the generated atom sequences are trimmed until
the first occurrence of an End of Molecule token. The atoms and the adjacency matrix are
converted to the desired output format with the help of RDKit.

6.3 Experiments

To evaluate the quality of the generative model, we utilize the evaluation tools provided by
MOSES. This allows a comparison to other generative models for molecules, like the Char-
RNN, adversarial autoencoder (AAE), variational autoencoder (VAE), junction tree varia-
tional autoencoder (JTN-VAE) and latent generative adversarial network (LatentGAN) model
provided by MOSES [Pol+20]. Our model was trained in two experimental conditions, differ-
ing in the order of atoms in the training molecules. In the fixed ordering condition, this order
was the same as defined by the data set. However, previous work has shown that graph-based
generative models can be applied to various node orderings [Li+18; Lia+19]. Some orderings
may be more challenging to learn, but utilizing different node orderings per molecule could
lead to a more diverse and robust generative model. Therefore, in a second condition, for
every molecule drawn as a training sample, a random starting atom was chosen, and the
remaining atoms were sorted by traversing the graph in a depth-first manner.

For evaluation, both models were used to sample the recommended amount of 30 000 mole-
cules each, which were passed to MOSES for analysis. This procedure was repeated ten times,
and the mean results are pictured in Table 6.1. Both models generated mostly valid mole-
cules. The model trained on fixed atom orderings is only surpassed by the JTN-VAE, which
can only generate valid molecules by design. The fraction of unique molecules in a random
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Table 6.2: Similarities between generated molecules and the test/scaffold test set.
FCD (↓) SNN (↑) Frag (↑) Scaf (↑)

Model type Test TestSF Test TestSF Test TestSF Test TestSF

CharRNN 0.0732 0.5204 0.6015 0.5649 0.9998 0.9983 0.9242 0.1101
AAE 0.5555 1.0572 0.6081 0.5677 0.9910 0.9905 0.9022 0.0789
VAE 0.0990 0.5670 0.6257 0.5783 0.9994 0.9984 0.9386 0.0588
JTN-VAE 0.3954 0.9382 0.5477 0.5194 0.9965 0.9947 0.8964 0.1009
LatentGAN 0.2968 0.8281 0.5371 0.5132 0.9986 0.9972 0.8867 0.1072
Our Model (fixed) 0.0639 0.5495 0.6355 0.5841 0.9997 0.9979 0.9409 0.0564
Our Model (depth-first) 0.0783 0.5319 0.6148 0.5724 0.9998 0.9981 0.9334 0.0914

subset of 1000 and 10 000 molecules is comparable to those of the other models. MOSES
gives two internal diversity metrics, estimating the diversity within the generated molecules
and therefore indicating how well the model covers the chemical search space. Both of our
models slightly surpassed the other models in these metrics. A high fraction of the generated
molecules passes chemical filters (e.g., MCF, PAINS). The model trained on a fixed ordering
generated a lower number of novel molecules when compared to the other approaches. As ex-
pected, the model trained on different depth-first orderings generated a clearly higher fraction
of novel molecules while still generating a high amount of valid molecules. However, some
other models still show a substantially higher fraction of novel molecules. It is conceivable
that the general necessity of a fixed node ordering limits the model’s capability of generating
more novel molecules. All in all, in the presented experiments, the proposed approach com-
peted with other state-of-the-art molecule generation models and generated a high fraction of
valid and diverse molecules.

Furthermore, MOSES features four similarity measures to determine how closely the gener-
ated molecules resemble the test sets. The statistics for the distance measures are presented
in Table 6.2. The Fréchet ChemNet Distance (FCD) uses ChemNet and compares the differ-
ent distributions in the activation of its last layer. The Nearest neighbor similarity (SNN) is
defined by the mean similarity of all molecules to their nearest neighbor. Fragment similarity
(Frag) and Scaffold similarity (Scaf) define cosine similarities between fragments and scaffold
frequencies between the sets. Comparing these similarities, both models generalize well and
generate molecules similar to those in the test sets. All in all, the similarity scores are close to
those of the other models. Furthermore, the fixed ordering model generated molecules with
a better FCD, SNN, and Scaf similarity to the test set and a better SNN similarity to the
scaffold test set.

6.4 Conclusion

In this work, we introduce a transformer-based generative model for graphs that directly uti-
lizes the multi-head self-attention mechanism to predict distributions over nodes and edges.
Representing a molecular graph as a sequence of atoms and adjacency matrix columns allows
a straightforward adaptation of the transformer architecture. Rather than relying on standard
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message passing, the transformer can utilize self-attention to decide how information is aggre-
gated at every generation step dynamically. In contrast to approaches relying on recurrence,
transformers can process every generation step in parallel during training, which facilitates
training on large molecular databases. The presented approach generates a mixture of prob-
ability distributions to simultaneously generate all elements of an adjacency matrix column
whilst still capturing in-column dependencies. Extending previous approaches, we generate
an output of mixed categorical distributions to model the occurrence of edges and their re-
spective binding type. In experiments on the generation of molecular graphs, the model was
able to generate a high amount of valid molecules. Different distance metrics suggest that the
model generalizes well to unseen molecules and is on par with other state-of-the-art molecule
generation models. Due to the parallelizability of the Transformer architecture and the fact
that no message passing is required, the framework scales well even for larger problems.

Possible directions for future work include further improving the generated number of valid
molecules and the molecules’ novelty. The former could be achieved by adding a masking
procedure to enforce simple atomic valency rules, similar to what was done by Imrie, Bradley,
Schaar, and Deane [Imr+20]. Unconnected nodes could be prevented by enforcing at least
one connection to previous nodes in the sampling step. Furthermore, the results indicate that
training on different node orderings can increase the number of novel molecules. Incorporating
additional ordering heuristics and utilizing varying orderings could artificially increase the
number of training samples and result in the discovery of even more new molecules.





7 An Evolutionary Fragment-based
Approach to Molecular Fingerprint
Reconstruction

Artificial intelligence has an increasingly important part to play for in silico drug design.
Choosing an appropriate representation of biomolecules is a crucial first step in the modeling
process. Various representations are utilized to store and process molecular data. One com-
monly employed approach is to use string-based representations, like the SMILES. SMILES
encodes the graph of a molecule by specifying atoms, bonds, ring structures, branches, and
other chemical information as characters in a string. Processing molecules in a string repre-
sentation allows straightforward adaptation of language modeling techniques for generating
new molecules, as, e.g. demonstrated by Segler, Kogej, Tyrchan, and Waller [Seg+18]. Since
SMILES strings follow strict syntactic rules, it is possible to generate invalid strings or mol-
ecules with incorrect valences. Operating on fragments of SMILES strings, rather than on
a character-by-character basis, can facilitate the generation of valid molecular structures, as
shown by Podda, Bacciu, and Micheli [PBM20]. A further way of representing molecules is
using graph structures of atoms and their connecting bonds. This representation allows the
application of graph neural networks for processing and generating molecules. Li, Vinyals,
Dyer, Pascanu, and Battaglia [Li+18], for example, demonstrated how, with the help of these
networks, molecular graphs can be constructed by iteratively generating atoms and connect-
ing them to previous nodes in the graph. Further examples are LigBuilder (a program for the
design of ligands) introduced by Wang, Gao, and Lai [WGL00] and the GA introduced by
Jensen [Jen19], which operate directly on molecular graphs.

This work focuses on a different family of representations for chemical structures: molecular
fingerprints. Fingerprints encode the presence of molecular features, often in the form of a
fixed-size bit vector. The resulting vectors can be utilized to approximate the similarity of
molecules and are therefore commonly used to search molecule databases for structures similar
to a target molecule. Furthermore, they can be used for substructure searching, clustering, and
classification tasks [RH10]. Various fingerprints are available, which differ in the information
they encode. Topological fingerprints like the RDKit fingerprint consider all subgraphs in a
molecule up to a specific length and hash information about atom types, atomic numbers,
aromaticity, and bond types. The more recently developed circular fingerprints consider the
environment around every atom up to a specific bond radius [RL13].

Although fingerprints are applied for various tasks, there are fewer examples of using fin-
gerprints for molecule generation and optimization. One potential reason is that fingerprints
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are typically not decodable [Pol+20]. There is no direct strategy for finding the molecule from
which a particular fingerprint originates. Additionally, multiple molecules can potentially map
to the same fingerprint [Le+20].

An early example of using GA for the reconstruction of molecular descriptors has been given
by Masek, Shen, Smith, and Pearlman [Mas+08]. They demonstrated on a small number
of target molecules and for a simple set of descriptors how a GA can be used to generate
molecules with similar descriptors. Winter, Montanari, Noé, and Clevert [Win+19] provided
one example of a reconstructable molecule representation. They introduced a deep neural
network for the translation of molecular representation into another. Using a small, fixed-size
latent vector between the encoder and decoder, they forced the model to encode meaningful
information in this vector, which can be utilized as a continuous and data-driven molecular
descriptor (cddd). Building up on this, Le, Winter, Noé, and Clevert [Le+20] trained a
neural network to predict the cddd from a given circular ECFP, which is a commonly used
type of fingerprint. By first translating the ECFP into the cddd-representation and then using
the model introduced by Winter, Montanari, Noé, and Clevert [Win+19], they were able to
reconstruct a portion of the original molecules from their respective fingerprints. Even if some
molecules could not be reconstructed entirely, the resulting molecules showed similar features
compared to the original molecule. Kwon, Kang, Choi, and Kim [Kwo+21] trained a recurrent
neural network to directly predict a molecule’s SMILES representation from its corresponding
ECFP. This enabled them to apply a GA for molecule optimization tasks. Implementing
individuals as fixed-size bit vectors allowed for a straightforward adaptation of classic genetic
operations to this problem. For the fitness evaluation, the molecule’s phenotype—in the form
of a SMILES string—was deduced by the aforementioned RNN. This application demonstrates
the potential of a method capable of generating molecules from its fingerprint representation.

Working with molecules in their fingerprint representation offers numerous advantages. Fin-
gerprints are fast to calculate and allow similarity measurements between molecules. Their
fixed size allows for a straightforward application of GAs and various neural network archi-
tectures. Reliable methods are needed to decode fingerprints into molecules similar to their
origin molecule or even reconstruct them entirely. This study presents such a method in the
form of a GA, capable of combining molecule fragments to decode molecular fingerprints. The
algorithm bears the following advantages:

• The algorithm constructs molecules from a set of fragments rather than on the scope of
individual atoms.

• By utilizing the breaking of retrosynthetically interesting chemical substructures (BRICS)
algorithm for the creation of fragments, the generated molecules are valid and composed
of retrosynthetically interesting substructures.

• We demonstrate the algorithm’s capability of reconstructing molecules from their fin-
gerprints. Even if a molecule is not fully reconstructed, the generated molecules show
similar structures to the original molecules.

• The algorithm can generate molecular structures of arbitrary size.
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This chapter is based on the following published article: “An Evolutionary Fragment-based
Approach to Molecular Fingerprint Reconstruction” [CK22].

Outline. This paper is structured as follows: Section 7.1 presents the GA approach for
fingerprint reconstruction by introducing the fragment-based representation, the data used
to construct the set of fragments, and the genetic operators applied during evolution. The
approach is experimentally analyzed in Section 7.2, complemented by a transformer-based
approach for fingerprint generation. In Section 7.3, the findings are concluded, and an outlook
on possible further work is presented.

7.1 Genetic Algorithms for Molecular Fingerprint
Reconstruction

The GA introduced hereafter constructs molecules and optimizes them to match a respective
target molecular fingerprint. In the following, we will describe the general structure of the
GA, how individuals, i.e., the molecules, are represented in the algorithm and the applied
genetic operations.

Algorithm 2 Pseudocode of the Fingerprint GA
1: ftarget ← read_target_fingerprint()
2: P ← initialize(pop_size)
3: repeat
4: for all i ∈ P do ▷ fitness evaluation
5: smilesi ← i.map_phenotype()
6: fi ← calculate_fingerprint(smilesi)
7: i.fitness← T (fi, ftarget)

8: clearing(P ) ▷ apply niching
9: Pnew = select_dominant_individuals(P )

10: repeat ▷ generate a new child
11: p1 ← tournament_selection(P )
12: p2 ← tournament_selection(P )
13: c← crossover(p1, p2)
14: c.mutate()
15: Pnew.append(c)
16: until len(Pnew) = pop_size
17: P ← Pnew
18: until termination_condition()

7.1.1 Genetic Algorithm

The structure of the GA is pictured in Algorithm 2. It starts by generating an initial popula-
tion of individuals representing candidate molecules and evaluating their fitness. The fitness
is evaluated with regard to the respective target fingerprint ftarget. Firstly, a molecule is
mapped to its phenotype in the form of its SMILES representation. Afterward, RDKit is
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used to generate the molecule’s fingerprint fi and to measure similarity to the target. The
algorithm is generally independent of the chosen fingerprint type and bit vector size. The sim-
ilarity is calculated by the Tanimoto similarity T (fi, ftarget) (also known as the Jaccard index)
between the individual’s and the target’s fingerprint and ranges between zero (dissimilar) and
one (similar).

It is conceivable that this fitness function results in a multimodal fitness landscape, e.g.,
different possible solutions for a respective target fingerprint exist. Therefore, we employ a
niching strategy to keep the population diverse and prevent premature stagnation. In princi-
ple, many niching strategies could be applied to this problem. Since molecules are converted
to their fingerprints for fitness evaluation, the Tanimoto similarity offers an uncomplicated
way of measuring the distance between individuals, which is a core component of many niching
techniques. We employ a clearing strategy [Pet96] in our featured approach. Clearing divides
the population into subspecies. Individuals in one species compete for limited resources, whilst
different species can coexist without competition. Each subpopulation is centered around a
dominant individual with the best fitness. A configurable similarity threshold defines the min-
imum distance between dominant individuals. All individuals more similar than this threshold
belong to the same species. Clearing assigns a fitness of zero to all individuals in the same
species, except for a configurable number of the specie’s best individuals.

After the fitness evaluation and niching are completed, the next generation is constructed.
We employ elitism, e.g., we transfer the dominant individual of every subspecies unaltered into
the next generation. The new population is constructed by repeatedly selecting two parents
by tournament selection, from which a new child is created by crossover. The child is mutated
by one of the multiple possible mutation operators and inserted into the next generation. The
cycle of generations is repeated until the termination criterion is met.

7.1.2 Representation and Molecule Data

As typical for many generative models for molecules, we represent molecules as graphs. A
molecular graph is defined by a set of nodes representing atoms of different types and edges
representing bonds between atoms. The bonds can also be of different types, e.g., single, dou-
ble, triple, or aromatic. However, constructing molecules in an atom-by-atom manner yields
disadvantages. For example, it allows the generation of molecules with incorrect valences. It
may be more efficient for the algorithm to work directly with meaningful substructures rather
than having to identify and assemble them. Finally, working with fragments of molecules
rather than atoms requires fewer generation steps per molecule and can scale well to the
generation of larger molecules.

One example of a fragment-based generative model constructing molecules has been given
by Jin, Barzilay, and Jaakkola [JBJ18]. They first created a set of fragments from a molecule
database and then trained a JTN-VAE to encode molecules to a tree-structured scaffold of
substructures. The nodes are then decoded by a message passing neural network and as-
sembled into a valid molecule. Pegg, Haresco, and Kuntz [PHK01] introduced a GA for the
generation of new ligands for a given protein target for which they represented molecules as an
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Figure 7.1: The BRICS fragments for an exemplary molecule. Asterisks mark breaking points
between fragments.

acyclic graph consisting of substructures from a small set of fragments. Podda, Bacciu, and
Micheli [PBM20] presented a language model for molecular design. Rather than operating
directly on the SMILES representation and processing sequences of characters, they trained
the model on a sequence of molecule fragments. Due to this strategy, the model solely gen-
erates valid molecules. As molecules must be reconstructible from a sequence of fragments,
they introduced a specific fragmentation strategy. This strategy requires a fixed ordering of
a molecule’s atoms. Molecules are recursively split into two fragments. The left is kept un-
changed, while the right is further split. Although this procedure ensures that molecules are
reconstructable, it reduced the average number of fragments per molecule to 2.24. To generate
the set of fragments used by their model, they utilized the BRICS algorithm [Deg+08], which
is also featured in this study. This algorithm for obtaining fragments from biologically active
compounds breaks molecules at retrosynthetically relevant bonds. An example of a molecule
and its BRICS fragments is given in Figure 7.1. Asterisks represent dummy atoms that mark
possible connection points for each fragment.

Table 7.1: Statistics of data set and resulting fragment library. Nc denotes a fragment’s
maximal number of connections to other fragments.

Number of molecules 1 526 990
Total number of fragments 31 102
Number of fragments Nc = 1 16 948
Number of fragments Nc > 1 14 155
Avg. fragments per molecule 4.88
Avg. atoms per molecule 24.53

Individuals of the GA featured in this study are composed of such fragments. The algorithm
can work with an arbitrary set of fragments, and fragments can be included or excluded
depending on the chosen problem domain. The experiments presented in this study are based
on a fragment library derived from the data provided by the MOSES framework for molecular
generation models [Pol+20]. This framework provides training and test data sets based on the
ZINC molecule library. We composed the fragment library by iterating over the training data
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set, consisting of around 1.6 million molecules. RDKit was used to decompose every molecule
into its BRICS fragments, resulting in fragments with a varying number of connection points
Nc. Molecules consisting of only one or two fragments were excluded. All other fragments
were composed in a fragment library, keeping track of the frequency of their occurrence. The
descriptive statistic about the data set is given in Table 7.1.

Inspired by genetic programming, individuals are represented by a tree structure. Every
node is described by one BRICS fragment. The tree’s leaves feature fragments with only one
connection point. Non-leave nodes are defined by one fragment with more than one connection
point. Each node can have up to Nc − 1 child nodes. The last remaining connection point
connects the substructure to its parent. The connection points are enumerated to define the
order in which they are connected to the parent and child fragments. The tree’s root node
is a dummy node that always has two children and connects the tree’s left and right halves.
To assemble a molecule, the fragments are connected as defined by the tree structure. For
further processing, the resulting graph can be converted to a SMILES string by RDKit. This
strategy ensures that the resulting molecular graphs are coherent and valid with respect to
atomic valences. Furthermore, it allows an easy implementation of techniques and genetic
operations such as those used in genetic programming, which are described in the following.

7.1.3 Genetic Operators

Due to the similarity between the representation of program trees in genetic programming
and our chosen molecule fragment tree representation, we adapted principles and genetic
operations from genetic programming to our problem. The initial population of individuals
is created by the grow method. Starting at a tree’s root node, random fragments are chosen
from the set of fragments and added to their parent node. If a predefined maximum depth is
reached, only terminal nodes (those with only one connection point) are sampled. Crossover is
implemented as a subtree crossover between the two parent molecules. The fragment trees are
split at their root node, and the child is created by combining one parent’s left half with the
other parent’s right one. Multiple mutation operators are included to allow a finer adjustment
of the molecules during evolution:

Insertion selects a random non-leave node and inserts a random fragment with at least two
connection points between the chosen node and one of its child nodes.

Deletion selects a random non-leave node and deletes it from the tree. The node’s first child
is connected to its parent to preserve a portion of its subtree and limit this mutation’s
effect on the molecule.

Permutation selects a random non-leave node and randomly permutes the ordering of its
connection points. This can change the connection point at which the fragment is
connected to its parent and the points connected to its children.
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Point mutation: Frequency selects a random node and replaces its fragment with one from
the set of fragments. The probability for each fragment is weighted by its frequency in
the data used for constructing the fragment set.

Point mutation: Similarity also selects a random node and replaces its fragment with a ran-
dom one. All previous mutation operations can have a significant impact on the resulting
molecule. To allow a finer adjustment of already well-performing individuals, the proba-
bility of a fragment being chosen as a replacement is weighted by its Tanimoto similarity
to the replaced fragment. The similarity is calculated by comparing the fingerprint of
the fragment to be mutated with the fingerprints of every fragment in the fragment
library.

7.2 Experiments

In the first part of this section, we investigate the GA in its capability of reconstructing
molecules for a given fingerprint. In the second part, we present a case study on a novel
generative model that can sample new molecular fingerprints. The introduced GA is used to
decode the fingerprints to molecular structures, which combines the two approaches to a new
molecular generation technique.

The default configuration for the GA, which is derived from preliminary experiments, is
described in the following: The population consists of 300 individuals. These are initialized by
the grow method with a maximum depth of two. Individuals are selected for reproduction by
tournament selection, with a tournament size of ten. When a new individual is created, it is
mutated with a random mutation operator. Each operator is weighted to control the probabil-
ity of its selection. We weighted all mutation operators equally, except for the similarity-based
point mutation. Since this operator is the algorithm’s best tool for making minor adjustments
to already well-performing individuals, the operator is weighted four times as high as the oth-
ers. Niching is configured to have a clearing radius of 0.6 and a capacity of four per niche. If
a niche contains more than four individuals, the niching operator clears their fitness scores.

7.2.1 Reconstruction of Molecules

As mentioned, we used the train and test data set provided by MOSES, which are based on
the ZINC database of drug-like molecules. Although the GA does not require training—as
neural networks do—we maintained this split and only used the training data to create the
fragment library. The molecules from the test set were used for the following evaluations.

To investigate if the introduced GA can reliably improve molecules in the direction of a
target fingerprint, we selected nine random fingerprints from the test data and carried out
30 independent optimization runs per target molecule. The target molecules were converted
to their fingerprint representation with RDKit. We used RDKit’s Morgan fingerprint—the
RDKit implementation of the common ECFP—with a bit vector size of 4096 and an atom
radius of six. During the fitness evaluation, fingerprints for the generated molecules were
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Figure 7.2: Fitness plots for nine different target molecules. Per molecule, 30 independent
runs are executed, and the fitness of the best-performing individual of every gen-
eration is averaged over the runs. The shaded area marks plus-minus one standard
deviation.

constructed with the same configuration and compared to the target using the Tanimoto
similarity. All runs were terminated as soon as a molecule with a similarity to the target
fingerprint of 1.0 has been evolved or after 1000 generations at the latest.

The results are presented in Figure 7.2. Even though the molecules came from the test
set, all target molecules could theoretically be assembled from fragments in the fragment
library. Throughout the 30 repetitions per target, the GA reconstructed the target molecule
at least once for all nine targets. On average, 86% of all runs resulted in the target molecule
being reconstructed. The fitness graphs indicate that the GA can continuously optimize
molecules toward better-performing individuals. The molecules appear to have varying degrees
of difficulty. Especially for the molecule pictured in Figure 7.2f, the algorithm struggled to
generate molecules with a high similarity consistently. The fitness values in Figure 7.2d and
Figure 7.2i also show higher standard deviations over the course of the generations compared
to those of the other molecules. For the molecules in Figure 7.2c, 7.2g, and 7.2h, the GA
succeeded in evolving molecules with a similarity to the target of 1.0 in the first few hundred
generations in all 30 runs.
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Figure 7.3: Percentage of reconstructed indi-
viduals for the RDKit and Morgan
fingerprint with varying bit vector
sizes.

Figure 7.4: Frequency of Tanimoto similari-
ties between the target fingerprint
and the fingerprint of the best
molecule found by the GA for 1000
different targets.

So far, we have used Morgan fingerprints with a bit vector size of 4096 for the fitness
evaluation. However, Le, Winter, Noé, and Clevert [Le+20] reported different reconstruction
results depending on the fingerprint’s size. Furthermore, since it is conceivable that the way
fingerprints encode information influences the structure of the fitness landscape, we compared
the reconstruction performance for the topological RDKit fingerprint and the circular Morgan
fingerprint. We executed independent runs for the two fingerprint types and four different
bit vector sizes: {1024, 2048, 4096, 8192}. Every experimental condition was performed on
100 different random target molecules from the test set. For each target molecule, one GA
run was executed per condition. Figure 7.3 shows how many of the 100 molecules could be
reconstructed. A comparison of the two representations demonstrates an evident difference.
The GA was able to reconstruct 22% to 29% of the topological RDKit fingerprints, whereas the
circular Morgan fingerprint could be reconstructed in 58% to 68% of the cases. Comparing the
bit vector sizes, there seems to be a slight advantage in the direction of larger bit vectors for
both types of fingerprints. All in all, the results indicate that the reconstruction performance
depends on the fingerprint representation chosen. The GA showed a higher success rate for
reconstructing circular fingerprints. O’Boyle and Sayle [OS16] investigated how well different
fingerprints capture molecule similarity and concluded that although the best performing
fingerprint depends on the particular context, ECFPs are among the best at ranking diverse
structures by similarity. It is conceivable that this leads to an easier-to-optimize fitness
landscape.

To test the GA on a broader range of targets, we performed a GA run for 1000 different test
molecules, using Morgan fingerprints with a bit vector size of 4096 for fitness evaluation. Of
the 1000 molecules, 97.5% could theoretically be constructed from the set of BRICS fragments
used. The results are pictured in Figure 7.4. The GA terminated with a similarity of 1.0 for
63.5% of the targets. There are only a few cases of final similarities in the range of 0.8 to 0.9,
suggesting that the GA can optimize the molecules to fit perfectly if such a similar molecule
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is found. There are cases in which the GA terminated with similarity scores around 0.5,
which could indicate the existence of local optima in which the optimization is trapped. It is
conceivable that GA would benefit from more advanced exploration methods. Although the
molecules are not reconstructed entirely, they still demonstrate structural similarities to the
target molecule. An exemplary overview of ten target molecules and their reconstruction is
given in Figure 7.5.

1.00 1.00

1.00 0.50

1.00 1.00

0.63 1.00

0.67 0.30

Figure 7.5: A randomly chosen selection of results from the reconstruction experiments. Every
box pictures a target molecule (left) and the best reconstruction found by the GA
(right). The number represents the Tanimoto similarity between the target and
the reconstruction, where 1.00 means a perfect match between the fingerprints.

In summary, the results indicate that the proposed fragment-based GA is a suitable method
for reconstructing molecular fingerprints. In the following section, we demonstrate how the
GA can be incorporated into other procedures to create a molecular generation model.
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7.2.2 Fingerprint Transformer

The previous experiments demonstrate the capabilities of the proposed GA for molecular
fingerprint reconstruction. Combining the GA with other programs could enable them to
operate directly on molecular fingerprints in the form of fixed-size bit vectors rather than on
more complex representations such as graphs. Depending on the particular task, e.g., opti-
mization or generation of molecules, the models can be designed to generate fingerprints that
encode the desired properties without expending computational resources toward generating
valid and realistic molecules. The GA maps the transformer-generated fingerprints to valid
molecules composed of known molecular fragments.

As an exemplary use case, we investigated how a neural language model trained on molecular
fingerprints can be applied to the task of generating new molecules. Molecular generative
models are a common tool for identifying and designing new molecular structures, e.g., in the
process of in silico drug design (see Section 3.3). For our study, a model was trained on a
data set of real molecular fingerprints with the aim of capturing the underlying distribution
of molecules that lead to these fingerprints. The model was then used to generate new
fingerprints that should encode similar features to those present in the training data. Using
the proposed GA, the newly generated fingerprints could then be decoded into novel molecules
whose properties should also be similar to the training data.

Different types of generation models could be applied to this problem. We employed a
deep neural network for fingerprint generation in the present study. The network was based
on the transformer architecture [Vas+17]. Initially designed for language modeling tasks,
this architecture is well suited for sequence processing as it features a powerful attention
mechanism. Attention enables the model to focus on different points in a sequence without
a need for recurrence, allowing it to combine information independent of its position in the
given sequence. We employed an encoder based on this architecture which generates molecular
fingerprints by processing them in an autoregressive manner—element for element—while
considering previously generated elements. The model was trained on fingerprints generated
from the MOSES training data set of ZINC molecules, with the objective of predicting the
likelihood of a given fingerprint. A fingerprint’s likelihood p(f) can be factorized in the
conditional probability:

p(f) =
N∏
i=1

p(fi|f<i) (7.1)

where N is the number of elements in the fingerprint and p(fi|f<i) is the probability of the
occurrence of an element at position i given the previous elements in the fingerprint. We uti-
lized PyTorch’s standard transformer implementation for the given task and constructed the
model from six stacked transformer encoder layers. The dimensionality of the feature vectors
was configured to 512, and the model used eight attention heads. For training, the molecules
were converted to Morgan fingerprints using an atom radius of six and a bit vector size of
2048. To decrease computation time and reduce the input sequence length, the fingerprints
were split into chunks of size eight so that each chunk contained one byte. This led to a
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vocabulary of 256 tokens plus one artificial token marking the beginning of each fingerprint.
Since fingerprints are fixed in size, no padding or end of sequence tokens were required. Before
the sequences were fed into the transformer, they were processed by a learnable embedding
layer, and a positional encoding was applied. The model was trained with a cross entropy
loss, and the Adam optimizer was used with a learning rate of 10−4.

Figure 7.6: Distributions of molecular metrics Weight, SA, QED, and logP in test data,
the molecules reconstructed from random fingerprints, and the molecules recon-
structed from fingerprints generated by the transformer.

We generated 500 fingerprints by initializing them with the start token and sampling them
in an autoregressive manner. To analyze the quality of the generated fingerprints, a baseline
of randomly generated fingerprints was created. The random fingerprints were constructed
by inferring from the training fingerprints the probability of a given index in the fingerprint
being one. Each element of the fingerprint was drawn from a Bernoulli distribution param-
eterized with these probabilities. We used the GA to decode 500 transformer-generated and
500 random fingerprints to molecules for 1000 generations. Since the transformer was trained
on molecules from the MOSES ZINC data set, the fingerprints generated should resemble
those from the training data, and therefore the GA should be able to decode them into mol-
ecules with similar properties compared to the molecules in ZINC. The random fingerprints
should, on the other hand, be more complicated to decode and differ from the original mol-
ecules. All in all, the molecules constructed as designed by the transformer showed a mean
Tanimoto similarity of 0.4 to their respective fingerprint, whereas the random baseline could
be reconstructed to molecules with an average similarity of 0.22. Both models generated only
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(a) Decoded random fingerprints

(b) Decoded transformer-generated fingerprints

Figure 7.7: Reconstruction of (a) randomly and (b) transformer-generated fingerprints.

valid molecules. All molecules proposed by the transformer resulted in unique molecules,
and 90.86% of the molecules were novel compared to the MOSES data set. For the decoded
random fingerprint, 99.41% of the molecules were unique, and 100% were new. To investi-
gate how well these molecules resemble the training data, we picture the distribution of four
different molecular properties in Figure 7.6. The four properties, also included in MOSES,
are the molecular weight, the SA score, a heuristic for qualifying how easy a molecule is
to synthesize, the QED estimating how suitable a molecule would be as a drug candidate,
and the water-octanol partition coefficient which measures how well a molecule mixes with
water [Pol+20]. As a reference, we compare the distributions for these properties between
the molecules generated by the random fingerprints, the transformer fingerprints, and the
molecules included in the test set of ZINC molecules that were not used for training. When
considering the distribution plots, it is evident that the molecules generated from the random
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fingerprints differ from the test data in these properties, although they are composed of similar
fragments. Most noticeably, they exhibit an on average lower QED and a worse SA. For mol-
ecules reconstructed from the transformer-generated fingerprints, the distribution of logP and
molecular weights indicate a higher spread for the generated molecules when compared to the
test data. One possible explanation could be that the reconstructed fingerprints are bit vec-
tors that do not encode the frequency of a substructure in the molecule and therefore provide
no direct incentive to reconstruct molecules with the exact number of atoms. However, the
molecules perform better than the baseline regarding drug-likeness and synthetic accessibility.
The distributions of these metrics clearly resemble the corresponding test data distributions.
It is conceivable that the chosen fingerprint captures these more holistic molecular properties
more easily than more concrete features, such as the exact number of atoms. For one, this
indicates the transformer’s capability to describe new molecules with similar characteristics to
the training data. Furthermore, it demonstrates that the proposed GA can decode molecules
in a way that matches the specifications of the respective fingerprint. Since the GA allows
for the simple inclusion of additional fitness metrics or other fingerprint representations, it
could be promising to explore whether they allow specifying different target properties of the
generated molecules. An exemplary overview of the generated molecule is given in Figure 7.7.

All in all, the property distributions demonstrate that the transformer is able to generate
fingerprints that encode meaningful information about the training data and which relate
to new but similar molecules. The experiments show how the introduced GA enables other
approaches to work directly with fingerprint representations allowing the specification of de-
sired molecule properties, while the GA handles the task of decoding the fingerprints to valid
molecules.

7.3 Conclusion

In this study, we present a GA capable of combining molecular fragments to generate mole-
cules and optimize them to resemble target fingerprints. The algorithm can be employed to
reconstruct molecules based on their fingerprint representation, for which the circular Morgan
fingerprint seems particularly suitable. Working with molecule fragments rather than on an
atom basis ensures that the resulting molecules are valid and contain realistic substructures.
To construct a diverse set of retrosynthetically interesting fragments, we employ the BRICS
algorithm on molecules from the ZINC library of drug-like molecules. Using a set of molecule
fragments allows control over the generated molecules, as it enables the inclusion or exclusion
of substructures depending on the specific problem. Furthermore, we demonstrate how the
GA opens up the easily accessible fingerprint representation as the basis for other molecular
generation or optimization models by utilizing a fingerprint transformer to discover new mole-
cules. In contrast to other methods based on deep learning, applying the GA to new problem
domains does not require re-training and opens up the possibility of incorporating additional
fitness functions or constraints into the process.
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Future work could include adapting the workflow for other molecular optimization prob-
lems, such as drug discovery. In this context, using fingerprints containing information about
pharmacophoric features may be particularly well suited, as it could help encode the molecule
properties responsible for biological activity. Applying the approach to the reconstruction of
continuous molecular descriptors rather than bit vectors, as described by Winter, Montanari,
Noé, and Clevert [Win+19], could be a promising follow-up. It is conceivable that these
continuous descriptors provide a different fitness landscape more suitable for optimization.





Part III
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8 Conclusion

This thesis aims to improve AI-based molecule generation models for the four molecule rep-
resentations most commonly used in this field. To achieve this, we leverage different AI
techniques—namely optimization algorithms and deep generative learning—over the course
of four consecutive research studies. We introduce new generation models based on genetic
algorithms for multi-objective design and transformers for molecule generation of sequential
representations. Both AI techniques offer unique features and advantages, as they are quite
different approaches to molecule generation. Combined, the results indicate that more than a
single AI method is needed to address the variety of problems that molecular design presents.
There is no one best strategy for molecule generation. Likewise, there are a variety of ways to
represent the molecules. And for them, too, this thesis demonstrates that each offers unique
advantages but also challenges in terms of generation. In addition, the combination of the
representation and generation technique provides a variety of opportunities to exploit the
strengths of these approaches fully.

In what follows, we will discuss these findings in detail by summarizing and combining the
results of the presented work. Furthermore, we will explore what recommendations can be
derived from this study and what possible future work could arise from it.

8.1 Representations

Throughout the experiments in this thesis, we have seen applications of molecule generation
based on the four major molecular representations utilized in de novo molecule generation:
string, graph, spatial, and fingerprint representations. The obtained results not only reinforce
the knowledge about their advantages and disadvantages but also provide new insights into
their applicability for molecule generation. This section summarizes and combines these
findings.

String-based representations offer an easy entry point into molecule generation, as demon-
strated in the Chapter 4. There are huge libraries of druglike molecules in string representa-
tions available. Most chemical computation frameworks offer straightforward implementations
for processing molecular strings. These factors and the simple sequential nature of strings
have led to various approaches based on this representation. Although the SMILES repre-
sentation is most common, it is not particularly suitable for representing individuals in GAs.
Since random alterations of a SMILES string most likely result in invalid molecules, such
a GA would require complex mutation operators to ensure validity. In our study on the
design of SARS-CoV 2 inhibitors, we demonstrate that the SELFIES representation, on the
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other hand, can easily be evolved with a GA. The SELFIES syntax ensures molecule validity,
even for a completely random string. This property makes the algorithm independent of any
knowledge about chemical rules and molecular structures and allows applying a standard GA
approach to the problem. For example, in our work, we apply simple yet effective mutation
operators, like point mutations, to alter the SELFIES. In comparison, mutation operators for
SMILES would have to take syntactic and chemical rules into consideration to ensure feasible
molecules.

We show that the GA based on individuals represented as SELFIES is able to navigate
through the vast search space of potential molecules. In this process, the selected genetic
operations are capable of generating a wide variety of molecular structures. However, the
experiments also demonstrate the disadvantages of the SELFIES representation. Since parsing
a SELFIES ends when the valence of a molecule is satisfied, even if symbols remain in the
string, random mutations are biased toward decreasing the molecules’ size. This complicates
evolving larger molecules and the implementation of crossover operators.

Lessons Learned – Strings

With its validity enforcing syntax, SELFIES offers a straightforward representation for
GAs.

While the simplicity of string representations is an advantage when it comes to accessibility,
it sometimes misappropriates information that is relevant to the task at hand. Therefore, in
another study, we investigate three-dimensional representations that encode the entire spatial
information about a molecule. Such a representation does not need abstract concepts like
bonds or rings and allows the description of spatial isomers of the same molecule (see Sec-
tion 3.1). In particular, for problems with known structural requirements, a three-dimensional
representation can include this information in its search. However, constructing a suitable
three-dimensional representation—especially for molecule generation—is a difficult task.

In our study, we decided against a voxelized representation, as it has disadvantages that
can not be dismissed. Embedding molecules in voxel spaces leaves most of the space empty,
resulting in significant computational effort for subsequent operations. Furthermore, the mol-
ecules are not invariant to rotation, which renders training of machine learning methods less
efficient. Based on the Euclidean distance matrix, our generation approach allows us to work
directly with atom positions and is invariant to rotation and translation. A representation
based on Euclidean distances requires a further post-processing step to approximate the re-
spective set of coordinates. We utilize multidimensional scaling in our approach, which is a
sound strategy, as shown by the results of the molecular dynamics analysis. It is also con-
ceivable to extend the approach to generate an atom’s position directly, for example, similar
to E(n)-equivariant graph neural networks [SHW21].

The generally smaller number of valid molecules in our results suggests that the generation
of molecules in 3D is more complicated than with string representations. This is to be ex-
pected, as more chemical knowledge has to be captured by a spatial model. Furthermore, a
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spatial model introduces additional sources of errors into the generation. It is not sufficient
to state that two elements of a molecule are connected. Adding a valid connecting component
requires specifying appropriate distances and angles to already generated atoms. Finally,
it should be noted that the storage and conversion of molecules into other representations
becomes more complicated when three-dimensional information is involved.

Despite these drawbacks, our approach shows significant advantages of including spatial
information in the generation process. Due to the training procedure featuring varying atom
permutations for every molecule, our approach can complete unfinished Euclidean distance
matrices to valid molecules. This demonstrates that it is possible to incorporate desired struc-
tural properties into the generation process. An advantage that could be particularly useful in
drug design where a respective target structure is known. A three-dimensional representation
allows selecting promising substructures and placing them at the desired spatial positions to
ensure that the generated molecule meets the spatial requirements of the problem. All in
all, spatial representations promise significant advantages over other representations. How-
ever, generating molecules in 3D is considerably more complicated and introduces additional
challenges, which is probably why there are hardly any approaches using this representation.
There is great potential for the further development of such algorithms.

Lessons Learned – Spatial Representations

Three-dimensional representations allow molecules to be directly tailored to the spatial
requirements of the problem. Yet, they introduce additional challenges for molecule
generation.

Using a representation based on Euclidean distances allows a straightforward transfer of
the presented approach toward graph generation. Our approach in Chapter 6 represents and
generates molecular graphs via the adjacency matrix. This sets it apart from other state-
of-the-art graph generation approaches, e.g., the common message passing neural networks.
However, this design translates graph generation to a sequence generation problem—in our
case, the prediction of adjacency matrix columns––which allows applying language processing
techniques like transformers.

In general, encoding and generating molecules in the form of graphs has several advantages.
Unlike string-based representations, graphs directly express an atom’s connections and the
corresponding bond types. For strings, this information may be scattered throughout the
string and must be inferred based on the syntactic rules. Adding an atom to a molecule is
also easier since only the desired bonds need to be specified. In the case of strings, such an
extension may require additional symbols, for example, to indicate opening branches or ring
structures. In the case of a spatial representation, the new atom would have to be placed in
precisely the correct position to create these bonds. This is also reflected in our experiments
by the generally high number of valid molecules generated, despite the fact that the molecules
were significantly larger than in the spatial generation experiment. Overall, with the graph
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representation introduced, our algorithm was able to generate a variety of different molecules
with similar properties to the training data.

One of the disadvantages of the presented approach is that, as with strings, spatial infor-
mation is not represented. A further disadvantage is a need to decide on an order of the
molecules’ atoms, which is usually not inherent. However, this also opens up possibilities for
further research comparing different orders. For some applications, it is conceivable that a
particular generation order is advantageous, e.g., starting at outer points and growing toward
the center.

Lessons Learned – Graphs

The representation of molecules as graphs via the adjacency matrix enables the ap-
plication of sequential generation strategies, such as transformers. The simplicity of
graphs, as opposed to spatial representations, allows larger molecules to be efficiently
sampled.

Molecular fingerprints are an uncommon representation for molecule generation. Much
more frequently, this representation is applied to similarity search in virtual screening. Due
to their fixed size and discrete value ranges, fingerprints are one of the simplest representations
imaginable regarding processing and storage. Especially for generation, a fixed output size is
advantageous to many generation models, e.g., neural networks.

In our study presented in Chapter 7, we demonstrate how—with the help of a GA for fin-
gerprint reconstruction—fingerprints can indeed be used for molecule generation. This way,
we can transfer sequence generation techniques from language processing to the generation
of fingerprints and, building on this, to the generation of molecules. This poses a different
generation paradigm compared to the other de novo approaches. The generation model does
not directly propose new molecules but rather a molecular descriptor that specifies the re-
spective desired molecular characteristics. A subsequent procedure is then used to construct
realistic molecules based on these descriptors. Our results indicate that the final molecules
indeed show the predefined characteristics, as they show similar property distributions to the
molecules used to train the fingerprint generation model.

Due to the involvement of two different procedures, the overall approach is more compli-
cated than the other introduced strategies. However, this also opens up the possibility of
combining the advantages of multiple approaches. In our case, the fast and data-driven gen-
eration of fingerprints with the flexible, fragment-based GA. It is also conceivable to use other
molecular descriptors, for example, those containing pharmacological information, to tailor
the generation to the specific problem area.

Lessons Learned – Fingerprints

Due to their non-decodability, molecular fingerprints are usually not used for molecule
generation. However, fingerprints become a valuable, straightforward representation
for generation models when combined with a reconstruction GA.
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8.2 Genetic Algorithms and Transformers

In addition to different representations, we utilize two distinct AI methods for the design of
molecules in this thesis, namely GAs and transformers. These methods, too, have a unique
profile of advantages and disadvantages with respect to the various applications in molecular
design. Moreover, the usefulness of these approaches depends on the representation chosen
and the specific problem requirements. In this section, we will highlight key findings and
compare the two different strategies.

Inhibitor development is a complex process, and compounds must be designed with respect
to multiple target metrics. GAs have a rich theoretical foundation for multi-objective design.
In Chapter 4, we demonstrate how GAs can be used for the multi-objective design of SARS-CoV

2 inhibitors and illustrate the GA’s capability of generating a diverse set of promising can-
didate molecules. In particular, when combined with NSGA-II, the algorithm generated a
diverse set of candidate molecules distributed across the Pareto front. Due to the usage of
a GA, the approach is flexible to changes in the objectives or the target protease. Unlike a
neural network-based approach, which requires complete retraining or parameter refinement,
a GA can be restarted directly if conditions change.

The study on the design of SARS-CoV 2 inhibitors also reveals disadvantages of GAs. Due to
their heuristic nature, GAs lack an intrinsic motivation for generating realistic molecules. Re-
alism must be enforced via additional objectives, but these are often evaluated with heuristics
that can be exploited.

Lessons Learned – Genetic Algorithms

GAs are a powerful tool for the generation of protease inhibitors, as they can consider
the multi-objective nature of this problem domain. However, GAs lack an intrinsic
motivation for generating realistic, drug-like molecules.

A further advantage of GA is their flexibility in terms of the possible molecule representa-
tions. In the case of the fingerprint generation study presented in Chapter 7, the use of a GA
allows for a flexible representation based on trees of molecular fragments. The representation
can be used to generate molecules of arbitrary size and enables a variety of possible muta-
tion and crossover operators. Another example is the SELFIES representation, chosen in the
first study. GA can easily be applied to this representation, while it is conceivable that the
ambiguous meaning of SELFIES tokens could pose a problem for neural networks.

Molecule generation with transformers, as an instance of deep generative models, involves
a different design philosophy. In contrast to GAs, this approach is not necessarily centered
around optimization. Instead, the models are data-driven and trained to generate molecules
that could originate from the distribution underlying the training data. Training these models
can take considerable time, but new molecules can be sampled nearly instantaneously.

As demonstrated in the studies on three-dimensional and graph-based molecule generation
(Chapter 5 and Chapter 6), transformers are a powerful tool for generating realistic mole-
cules. Once a suitable sequential representation is found, transformers can learn the complex
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relationships underlying molecular composition simply by observation. Remarkably, this also
holds true for the complex chemical principles influencing spatial molecule generation. Our
experiments demonstrate that the predicted conformation of the generated molecules is close
to the results predicted by the molecular dynamics simulations. It is conceivable that the pow-
erful attention mechanism, in particular, enables the transformer to capture these relations.
Due to this technique, the transformer can easily combine information at different positions of
the input sequence to decide on the next sampling step. In contrast, a GA would require some
form of conformation estimating heuristic to generate three-dimensional molecules. However,
such an approach would only be as good as the accuracy of these heuristics, and the actual
molecules would likely exhibit different conformations.

Compared to GAs, deep generative models are not as flexible regarding the structure of
inputs and outputs. Sequential sampling is required to allow the generation of molecules
with an arbitrary number of atoms. This is straightforwardly applicable to string-based
representations, but spatial generation presents additional challenges. Typically, sequential
models are trained with the goal of increasing the likelihood of a sequence sampled from
categorical distributions. This is more difficult to model for continuous three-dimensional
atom spaces. In our design, we overcame this challenge by discretizing the distance space into
bins.

Lessons Learned – Transformers

By sequentializing the Euclidean distance matrix or adjacency matrix of a molecule,
transformers can be used as generation tools for three-dimensional molecules and molec-
ular graphs. Their unique attention mechanism helps transformers to capture even
complex chemical relationships.

The study presented in Chapter 7 demonstrates how GAs and transformers can be combined
into one molecule generation model. This way, the approach utilizes the advantages of both
techniques. A transformer approximates a probability distribution underlying the given set of
molecules and allows the sampling of new and realistic descriptors. The flexibility of the GA
allows molecules to be optimized to fit these descriptors while using a flexible representation,
ensuring all molecules are valid and consist of retrosynthetically interesting fragments. All in
all, these results demonstrate that various methods have their justification when it comes to
generating molecules and that sometimes even a combination of methods can be advantageous.

8.3 Future Work

Although some suggestions for extending the presented approaches are already included in
the research sections, this section concludes with additional general guidance for future work.
Overall, it is conceivable to transfer the lessons learned from the latter studies to real-world
drug design problems. The first study already gives an idea of how GAs can be used to solve
present, highly relevant problems in molecule design. In particular, incorporating spatial
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information into the process could be a promising area for further research. Binding to a
target protease imposes structural requirements on drug design, and a spatial approach could
incorporate this information directly into its search.

However, further research is needed to improve the standing of spatial representations in
molecular design. Due to their simplicity and availability, research mainly focuses on string-
based representations. There is great potential for developing new spatial representations
invariant to rotation, translation, and permutation yet allowing for simple training and sam-
pling procedures.

The design of generative models constructing molecules from molecule descriptors, as dem-
onstrated in the Chapter 7, also shows great potential. Such a design paradigm has multiple
advantages. It decouples the design of a molecular property profile from the actual structural
design of a molecule on an atomic basis. Our study shows that each task can be approached
with an individual, customized technique. This can make it easier to use different strategies,
adapt them to the respective tasks and combine their distinct advantages. It is also conceivable
that the overall interpretability of generative models in molecular design could be improved by
utilizing interpretable descriptors that include task-specific information, e.g., pharmacological
information. Moreover, practitioners could interact with the generation model as they can
review and improve the proposed descriptors.

In conclusion, the presented studies introduce new ways to utilize AI strategies for gener-
ating molecules in different representations. Our findings have the potential to advance the
role of AI in molecular design to facilitate humanity’s search for innovative materials and
medicine.
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