
Carl von Ossietzky Universität Oldenburg

Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Legacy Software Migration based on Timing Contract
aware Real-Time Execution Environments

Von der Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften der Carl von
Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

angenommene Dissertation

von Frau Irune Yarza Perez
geboren am 7. Juni 1992 in Galdakao (Spanien)

Irune Yarza Perez: Legacy Software Migration based on Timing Contract aware Real-
Time Execution Environments

Gutachter:
Prof. Dr.-Ing. Wolfgang Nebel

Weitere Gutachter:
Prof. Dr.-Ing. Axel Hahn

Tag der Disputation:
26. Juni 2020

Abstract

The fast evolution of embedded systems market is generating interest on improved
embedded microprocessor technologies. As a consequence, the obsolescence period
for the underlying hardware is being shortened. As this happens, software designed
for those platforms, that might be functionally correct and validated code, may
be lost in the architecture and peripheral change. As embedded systems usually
have real-time computing constraints, the legacy code retargeting issue directly
affects real-time systems. When it comes to legacy code migration, binary translation
appears to be a standard approach. However, when dealing with real-time legacy
code, not just the functional behaviour, but also the timing behaviour has to be
preserved. In the direction to solve this problem, the overall goal of this research
line is to enhance the latest low-overhead machine-adaptable binary translation tool
with the ability to preserve the timing behaviour on the translated binary. Through a
feasibility study, a static binary translation tool is selected, which is latter enhanced
with a timing enforcement mechanism that at the same time provides means for
validating the enforced timing behaviour on the new platform using formal timing
specification in the form of contracts.

Keywords: real-time, legacy software, migration, time contract

iii

Kurzzusammenfassung

Die schnell fortschreitende Marktentwicklung für eingebettete Systeme weckt das
stetige Interesse an verbesserten eingebetteten Mikroprozessoren und den zuge-
hörigen Hardwareplattformen (sog. Systems-on-a-Chip). Daraus ergibt sich als
unmittelbare Folge, dass auch die Veraltung von existierenden eingebetteten Mikro-
prozessoren und der zugrundeliegenden Hardware immer schneller voranschreiten.
Eingebettete Software die einmal geschrieben wurde und für den jeweils eingesetzten
Prozessor und die umgebenden Hardwareplattform hin angepasst, optimiert und
validiert wurde, lässt sich in der Regel nicht auf triviale Weise auf eine neue Prozes-
sorplattform portieren. Dies wird noch einmal dadurch erschwert, dass eingebettet
System neben den funktionalen Eigenschaften auch noch Echtzeiteigenschaften
einzuhalten haben. Bei einer Portierung der alten Software auf eine neue Hard-
wareplattform müssen demnach die Einhaltung der vollen Funktionalität und der
zeitlichen Eigenschaften garantiert werden. Traditionelle Ansätze zur Portierung
alter und hardwarearchitekturabhängiger Software auf neue Prozessorsystem nutzen
häufig sog. „Binary Translation“ Techniken. Diese Techniken können in der Regel
nur die Erhaltung der korrekten Funktionalität nicht aber die zusätzliche Einhaltung
der Zeiteigenschaften sicherstellen. Im Rahmen dieser Arbeit wird die Verwendung
der „Binary Translation“ Technik in Kombination mit Zeit- und Kontrollblöcken zur
automatisierbaren funktionalitäts- und zeiteigenschaftserhaltende Übersetzung von
bestehender echtzeitkritischer Software auf neue Hardwarearchitekturen untersucht.
Im Rahmen der Arbeit wurde zunächst eine Vergleichs- und Realisierbarkeitsstudie
verschiedener „Binary Translation“ Techniken und Werkzeuge durchgeführt. Das in
diese Studie ausgewählte Werkzeug wurde mit kontraktbasierten Zeitspezifikations-
und Zeitkontrollblöcken angereichert, um die korrekte Funktionalität und eine
Einhaltung des spezifizierten und akzeptablen Zeitverhaltens auf der neuen Hard-
wareplattform zu ermöglichen.

Schlagworte: Echtzeit, veraltete Software, Portierung, Zeitvertrag

v

Acknowledgement

I would like to express my deep and sincere gratitude to everyone who gave me
suggestion, guidance and support over the past few years.

I would like to express my special thanks to my supervisor, Prof. Wolfgang Nebel,
as well as to Dr. Kim Grüttner and Dr. Mikel Azkarate-askatsua who gave me the
golden opportunity to carry out this project in collaboration between the Dependable
Embedded System group of Ikerlan Research Centre (Basque Country, Spain), and
the Hardware/Software Design Methodology group of OFFIS (Oldenburg, Germany).
I would also like to thank them for their continued support, encouragement and
wise advise that guided me towards the goals of this thesis.

I am grateful to all of those with whom I have had the pleasure to work during this
time. Thanks to the Ikerlan family, specially to those members who I call friends:
Irune, Iñaki, Imanol, Ane, Charly, Itxaso, Asier, Peio, Aritz, Ángel and Blanca. Many
thanks also to my colleagues at OFFIS, specially to Philipp, for their hospitality and
support during my stays in Oldenburg, you made me feel at home.

I am lucky to have a family and friends that always supported me on whatever
decision I made. Thanks to my closest friends, that during these years where by my
side: Jenny, June, Irati, Nekane, Oihane, Francisca, Lukas, and Lena.

Most of all, I am forever grateful to my family, specially my parents Eva and Iñigo,
my brother Gorka, and Rossana for their comprehension, motivation and for all the
opportunities they gave me. And to my boyfriend Bingen, for his sincere love and
optimism even in the difficult moments, this thesis would not have been possible
without his endless support.

vii

Contents

Contents ix

1. Introduction 1

1.1. Scope . 3

1.2. Research Questions and Methodology 4

1.3. Thesis Organization . 5

2. Background and Basic Concepts 7

2.1. Embedded Systems . 7

2.1.1. Architecture . 7

2.1.2. Software . 8

2.1.3. From High-Level to Machine Code 8

2.1.4. Abstraction Layers . 9

2.2. Real-Time Embedded Systems . 10

2.2.1. Time Model . 11

2.2.2. Real-Time Control Systems 11

2.3. Timing Property Specification . 13

2.3.1. MULTIC Time Specification Language 14

2.4. Legacy Migration Techniques . 19

2.4.1. Emulation vs. Simulation . 19

2.4.2. Binary Translation . 20

2.4.3. Static Binary Translation . 22

2.4.4. Dynamic Binary Translation 23

ix

3. Related Work 25

3.1. Timing-aware Recompilation . 25

3.1.1. LET-based Software on E-machine 25

3.1.2. WCET-aware C Compiler . 26

3.1.3. BIP & FreeRTOS . 27

3.1.4. Timed C . 27

3.1.5. Real-Time Concurrent C . 28

3.1.6. Time Measurement and Control Blocks 28

3.1.7. Timing-aware Recompilation – Analysis 29

3.2. Binary Translation . 31

3.2.1. Binary Translator for Real-Time Applications 31

3.2.2. Machine-adaptable Binary Translators 33

3.2.3. Binary Translators for Embedded Systems 35

3.2.4. Binary Translation Tools – Analysis 36

3.3. Gap Analysis . 39

4. Thesis Contributions 41

4.1. Contributions . 41

4.2. Assumptions & Constraints . 42

5. Real-Time Legacy Software Migration 45

5.1. Legacy System Model Definition . 46

5.1.1. Application Model . 46

5.1.2. Execution Model . 47

5.1.3. Example Application . 47

5.2. Lifting of Timing Properties . 48

5.2.1. Profiling Legacy System . 49

x

5.2.2. Legacy Timing Enforcement 52

5.2.3. Extract Timing Specifications 57

5.3. Testing, Reallocation & Adjustment 59

5.3.1. Testing Timing Properties – MULTIC tool 60

5.3.2. Testing Functional Properties 61

5.3.3. Time Control Block Reallocation/Adjustment 61

5.3.4. Formal Timing Specification Adjustment 62

5.4. Timing Block Support within Binary Translation 63

5.4.1. Static Binary Translation based Timing Block handling 63

5.4.2. Dynamic Binary Translation based Timing Block handling . . 63

6. Implementation 67

6.1. Development Platforms . 67

6.1.1. Xilinx Zynq-7000 SoC ZC702 68

6.1.2. MinnowBoard Turbot Dual-Core 68

6.2. Translation Tools . 68

6.2.1. QEMU . 68

6.2.2. Rev.ng . 70

6.3. Operating System – Linux . 71

6.4. Timing Measurement and Control Blocks 72

6.4.1. Timing Measurement Block 72

6.4.2. Timing Control Blocks . 73

6.5. Timing Measurement within Translated Binary 79

6.5.1. Legacy Platform – Timing Measurement 80

6.5.2. Dynamic Approach – Timing Measurement 80

6.5.3. Static Approach – Timing Measurement 82

6.6. Timing Control within Static Binary Translation 84

xi

6.7. Testing Timing & Functional Properties within Migration Flow 85

6.7.1. Testing Timing Properties . 85

6.7.2. Testing Functional Properties 85

7. Evaluation Process and Result Analysis 87

7.1. Overview & Organization . 87

7.2. Evaluation Software . 88

7.2.1. Mälardalen WCET benchmarks 89

7.2.2. Example application . 91

7.2.3. Industrial application . 91

7.2.4. Multirotor application . 91

7.3. Feasibility Study – Dynamic vs. Static Binary Translation 92

7.3.1. Translation tool selection . 92

7.3.2. Evaluation set-up . 93

7.3.3. Translation overhead analysis 94

7.3.4. Static vs. Dynamic migration 96

7.3.5. Summary . 98

7.4. Block-Level Timing Enforcement Assessment 98

7.4.1. Evaluation set-up . 99

7.4.2. Timing test . 101

7.4.3. Functional test . 111

7.4.4. Summary . 113

7.5. Timing-aware Static Legacy Software Translation Assessment 115

7.5.1. Evaluation set-up . 115

7.5.2. Timing test . 116

7.5.3. Functional test . 125

7.5.4. Summary . 126

xii

8. Conclusion and Future Work 131

8.1. Conclusions . 131

8.2. Future Work . 132

Bibliography 135

List of Figures 143

List of Tables 147

List of Listings 149

Acronyms 151

A. Systematic Annotation & Transformation 155

A.1. Systematic Annotation with Time Measurement Blocks 155

A.2. Systematic Annotation with Time Control Blocks 159

A.3. Systematic Transformation to Formal Timing Specifications 163

xiii

Introduction 1
Due to the great expansion and fast evolution of embedded systems’ market, com-
panies within the embedded system industry are facing a relentless demand for
increasingly stringent requirements such as better performance, increased depend-
ability, and energy efficiency, while offering a cost-effective product within a reduced
time-to-market. This transition to next generation embedded systems is being en-
couraged by the rapid development of computing architectures. As a consequence,
the obsolescence period of embedded systems is being shortened and maintenance
is gaining importance in software life-cycle. Several empirical surveys analysed the
percentage of software maintenance in software life-cycle over the years [71, 24, 81,
70, 79, 76, 37, 92]. These studies point out that the lower bound of maintenance
cost continues to increase over the years [93]. In fact, most projects are no longer
developed from scratch and need to deal with legacy systems and their integration.

Legacy systems are characterized by some particular properties:

• They usually run on obsolete hardware and operating system which are slow
and expensive to maintain [97].

• Use customized and deprecated toolchain(s) and the compilation process takes
a very long time [93].

• Have no or outdated documentation and original developers or users are no
longer available [93].

• They are essential for the company [17] since they comprise business knowl-
edge [94].

Due to their nature and particular properties, legacy systems present a complex
scenario in software maintenance and evolution. The process of updating legacy
systems is usually complex, error-prone, time-consuming and requires high cost
investment.

1

Regardless of the strategy chosen to cope with legacy systems, modernization or
complete replacement, both comprise the costly and complex reengineering process 1.
Retargeting, which consists on the analysis and migration of software to a new
hardware platform meeting new requirements and easing future maintenance is one
of the existing forms of reengineering. Existing retargeting methods can be classified
into the following three categories:

• New development: which implies re-writing the legacy application. This
approach is commonly associated with huge cost and many risks;

• Wrapping or a black box approach: which enables legacy software compo-
nents to be reused without any knowledge of their implementation. However,
this approach might only be a short term solution, since basic problems are
not necessarily solved; and

• Migration or white box approach: which analyses existing legacy code and
extracts the relevant parts to be reused. This is an intermediate between new
development and wrapping, it is more complex than wrapping but less risky
than new development.

Based on the retargeting methods, research efforts have provided several solutions,
whereof the most common approaches can be listed as follows [27]:

• Retargeting compilers to a new architecture: a specially-constructed com-
piler is used to translate the system and its applications into the machine
language for the new architecture. This approach is commonly used when the
difference between source and target architectures is not very great or when
legacy source code is at sufficiently high level that is effectively architecture
independent. This approach requires that the legacy source code is available,
which is not always the case in legacy systems.

• Interpretation: the Instruction Set Architecture (ISA) of the old architecture
is emulated, by software interpreter, on top of the new architecture. This
approach generally results in performance degradation.

• Binary translation: existing binaries (for the legacy ISA) are translated to
binaries for the new architecture, either statically (before runtime) or dynam-

1Reengineering was described by Tilley and Smith [90] as "[...] the systematic transformation of
an existing system into a new form to realize quality improvements in operation, system capability,
functionality, performance, or evolvability at a lower cost, schedule, or risk to the customer".

2 Chapter 1 Introduction

ically (during execution) 2. This approach could results in the binary code
growing significantly; as a consequence performance could be reduced.

Nonetheless, Binary Translation (BT) appears to be a standard approach, as it can
be applied when there is a great difference among source and target architectures
and either to port application- or system-level legacy code. Moreover, it can pro-
vide greater performance rates than interpretation, since translated code is reused
avoiding retranslation.

1.1 Scope

Besides being the default approach for code retargeting, BT techniques have been
implemented for many other purposes. Some of the utilities include fast emulation
and simulation of instruction sets, binary instrumentation, analysis and optimization,
resource protection and management (safety) and software security enforcement.

However, while BT techniques offer great advantages, there are challenges that
have limited their adoption in the embedded systems domain. Embedded systems
usually have tight memory and stringent performance requirements, whereas BT
has been traditionally employed on computer systems with large memory and high
performance capacities. Moreover, many of the embedded computing systems in
today’s technology market have strict timing and certification requirements, Critical
Embedded Real-Time Systems (CERTS) are such an example, but BT techniques have
not yet successfully came through this field, since satisfying the strict requirements
in the CERTS domain is challenging itself [5].

Although binary translation has been successfully applied for legacy software mi-
gration, it is necessary to consider that Real-Time (RT) embedded systems usually
run bare-metal code. Therefore, the binary has dependencies beyond the functional
code, such as libraries and legacy hardware dependent firmware and/or drivers.
When it comes to port legacy code hosted by an Operating System (OS) based plat-
form, dependencies are commonly solved by porting user-level code and reusing the
Application Programming Interface (API) to the underlying OS. UQBT [29], Crossbit
[98], and LLBT [86] are some of the binary translation solutions that port user-level
code maintaining the underlying OS. Moreover, when dealing with RT legacy code
migration, not just the functional properties, but also the timing behaviour has to
be preserved. To the authors knowledge, Cogswell and Segall [33] and Heinz [48]

2Dynamic binary translation defers from interpretation in that dynamic binary translation saves
generated target machine code to be reused in future runs.

1.1 Scope 3

are the only ones who considered timing on their proposed retargeting solutions.
However, none of them presents a portable solution, therefore, industry still needs
an embedded RT legacy software retargeting solution that can be easily ported to
different source and target architectures.

In the direction to approach an embedded real-time legacy software migration
solution, this thesis will set the focus on the timing issue, therefore, the overall goal
is to provide a migration path to real-time legacy software by integrating a portable
timing enforcement mechanism into a machine-adaptable binary translation tool.
The proposed solution should also provide means to validate the enforced timing
behaviour on the new platform. Figure 1.1 depicts the scope of this research work.

Figure 1.1.: Scope of this thesis.

1.2 Research Questions and Methodology

On the way to achieve the defined goal, this thesis intends to answer to the following
research questions:

RQ1 How can legacy code be ported to a new architecture while maintaining its
functional and timing behaviour?

4 Chapter 1 Introduction

RQ2 Under which constraints is it feasible to port RT legacy code using BT tech-
niques?

RQ3 How can expert knowledge related to legacy timing be expressed and anno-
tated to the legacy application?

RQ4 How can the annotated timing behaviour be preserved during the migration
process?

RQ5 How can the timing behaviour on the new architecture be verified?

To determine existing techniques to port real-time legacy software, the literature
is reviewed first, and two open-source machine-adaptable binary translation tools,
one dynamic and the other static, are selected. As a first step, this thesis analyses
and compares the suitability of the selected binary translation tools for their use in
a real-time property conserving migration process. Through this feasibility study,
the most suitable translation tool is selected, which is latter enhanced with a timing
enforcement mechanism that at the same time provides means for validating the
enforced timing behaviour on the new platform using formal timing specification
in the form of contracts. The proposed real-time legacy software migration path is
finally evaluated using three use-case applications.

1.3 Thesis Organization

This thesis is organized in eight chapters. The background and basic concepts on
which the work described in this thesis is based are introduced in Chapter 2. Once
the basis are set, Chapter 3 discusses related scientific work covering timing-aware
recompilation and binary translation. Then, Chapter 4 defines the contributions
that cover, at some point, the existing gap. Next, in Chapter 5, the real-time legacy
software migration approach is presented, which starts with the legacy system model
definition. Once the solution is constraint to a specific application model, the lifting
of legacy timing properties is described, followed by the process of testing timing
as well as functional properties and reallocating time control blocks. The chapter
concludes with the timing equivalent legacy software translation. The proposed
migration path is then implemented as described in Chapter 6 and evaluated in
Chapter 7. The evaluation discusses the results obtained in the feasibility study,
block-level timing enforcement assessment and timing-aware static legacy software
migration assessment through the example, industrial and multirotor applications.
Chapter 8 concludes the thesis and presents an outlook on future research work in
this area. Finally, Appendix A presents the algorithms for the systematic annotation

1.3 Thesis Organization 5

of legacy code using time measurement and control blocks, as well as the systematic
transformation of annotated legacy code into formal timing specification for the
latter timing validation.

6 Chapter 1 Introduction

Background and Basic
Concepts

2
This chapter presents the background on which this thesis is based and explains
basic concepts in the field of embedded systems (with a refinement to real-time
embedded systems), timing specification, and legacy software migration.

2.1 Embedded Systems

Embedded systems have a great presence in our everyday life, many of the devices
in common use today are controlled by embedded systems. We are surrounded by
large systems enhanced with an embedded computing system that turns the overall
system into an intelligent product. Hence, an embedded system is a controller with
a dedicated function within a larger system, which has limited resources and often
also real-time constraints. When it comes to embedded computer systems design,
defining and understanding its architecture and the components that make it up is
essential for a good design.

2.1.1 Architecture

Noergaard [75] presented the Embedded Systems Model shown in Figure 2.1. This
model introduces in a modular representation the main elements present in embed-
ded computer systems architecture. The application software layer is the software
that defines systems functionality and implements most of the man-machine inter-
face. The system software layer contains any software that supports the application,
be it middleware, OS or device driver. The middleware acts as an abstraction layer
between application and the underlying systems software component, either OS or
device driver. The OS is a set of software libraries that provides an abstraction layer
to middleware and application and manages multiple system software and hardware
resources to ensure efficient and reliable system operation. Whereas Device drivers
are the software libraries that directly interface with and control hardware. The
hardware layer integrates most of the physical components in the embedded board

7

(i.e., processor, memory, Input/Output (I/O) devices and buses), the architecture
layer is present in every embedded system. Instead, system and application software
layers, which make up all the software in the computer system, may or may not be
present in an embedded system.

Figure 2.1.: Embedded Systems Model [75]).

2.1.2 Software

The components in an embedded systems hardware layer can only transmit, store
and execute machine code, a hardware dependent binary language. Machine code,
considered the fist generation in programming languages, was originally used to
program computer systems. However, to make programming more efficient, program-
ming languages evolved towards higher levels of abstraction. The second generation
in programming languages was assembly, which consists on a set of hardware specific
instructions that correspond to one or multiple machine code operations. Unlike
assembly language, which is hardware-dependent and therefore considered as a low-
level language, next generation languages are referred to as high-level languages since
they are more independent (or even completely independent) of the underlying hard-
ware layer. Languages such as C and Pascal with more English like expressions (third
generation) or C++ and Java object-oriented languages (forth generation) are part
of the high-level and very high-level programming language groups respectively.

2.1.3 From High-Level to Machine Code

Except for machine code, software written in any other programming language
needs some kind of mechanism to generate equivalent machine code in order to
be executed on top of the hardware layer. This mechanism is based on one or a
combination of the following components: compiler and interpreter. The former
translates source code into a particular target language at one time, whereas the
later generates machine code interpreting source code line by line.

8 Chapter 2 Background and Basic Concepts

Compilers usually run on the host machine (typically non-embedded) and generate
code for a different hardware platform, target machine, this type of compilers are
known as cross-compilers. Moreover, the supported source/target code can vary
among compilers. In the case of assembly language compilers (a.k.a. assembler), the
generated code is always target machine code. In contrast, high-level programming
language compilers can either generate machine code, other high-level code or
assembly code. When the generated code is another high-level language code, this
needs to be further compiled or interpreted to generated machine code. Whereas,
when the compiler generates assembly code, it needs to run through an assembler.

Programming projects may contain multiple source code files compiled with inde-
pendent compilation units. Moreover, routines commonly used in the application
program are collected into libraries to ease their use in multiple projects, increasing
the productivity of software developers. Libraries can be linked to the program ei-
ther statically (before execution) or dynamically (during execution). Therefore, the
object files resulting from the compilation process are then combined with any other
required system libraries into a single binary program using a linker. The executable
file resulting from the linking process contains code and statically linked data in
binary representation. The executable file is stored in the embedded platform and
the loader is in charge of reading the file and copying code and data into memory
for its execution. During execution, a dynamic linker does the binding of symbols in
shared libraries.

2.1.4 Abstraction Layers

Embedded systems are organized into several abstraction layers as shown in Fig-
ure 2.2 [54]. At the bottom layer, the ISA, which defines the instruction set for the
processor, registers, memory and interrupt management, provides the abstraction
between software and hardware layers. The ISA is divided into user ISA, visible to
applications, and system ISA, visible to supervisor software. At the next level, the
Hardware Abstraction Layer (HAL) allows that the OS interacts with the hardware at
an abstract level rather than at a detailed hardware level. The Application Binary
Interface (ABI) separates the OS and device drivers from middleware and application
software. So, once the application has been compiled and linked, the ABI provides
the interface between the executable file and the layer bellow. At the highest level
of abstraction, the API mediates between the application program and underlying
middleware and OS.

2.1 Embedded Systems 9

Figure 2.2.: Abstraction Layers and Embedded Systems Model.

Abstraction layers provide compatibility among systems. The ISA abstraction layer
allows software built to a given ISA to run on any hardware that supports that
ISA. The HAL enables the OS to be easily portable across different hardware. The
ABI provides portability of applications and middleware across OSs, since binaries
compiled to a specific ABI can run unchanged on a system with the same OS, device
drivers and ISA. Whereas software using a given API can be ported to other platforms
through recompilation.

2.2 Real-Time Embedded Systems

RT embedded systems make up the most important market segment for RT tech-
nology and computer industry in general [61]. As RT systems’ state changes as a
function of physical time, correctness of the entire system’s behaviour depends not
only on the correct logical results of computations, but also on the instant when
these results are produced and shared with other subsystems.

The instant when the result must be produced is named a deadline. If the result is
useful even after a deadline miss, the deadline is said to be soft, whereas otherwise it
is a firm deadline. Moreover, according to the consequences of a deadline miss, a firm
deadline is referred to as hard when a miss could lead to catastrophic consequences.
According to the deadlines they must meet, real-time systems are classified into
hard or soft. A real-time computer system is said to be hard or safety-critical when it
must meat at least one hard deadline. In contrast, when no hard deadline exists, the
computer system is classified as soft real-time.

10 Chapter 2 Background and Basic Concepts

2.2.1 Time Model

Given its close relationship, incorporating the notion of time into RT embedded
systems is a key requirement [78]. RT is usually represented with a timeline, showing
the progression of time from past into the future. The timeline consists of an infinite
set of instants T , where an instant corresponds to a cut on this line. Any relevant
happening at a particular instant is called an event, e. The event that decouples
past from future and determines the present point in time is named now. The value
of an event, denoted by v(ei), is the value of time at the instant when the event
happened. An interval between two events, denoted by d(ei, ej), is called a duration,
an event itself does not take any time [58]. Figure 2.3 depicts the described time
model [62].

Figure 2.3.: Time model: timeline, events, and duration.

2.2.2 Real-Time Control Systems

RT control is a relevant application field in RT embedded system. Industrial plant
automation was the first field for the application of RT control systems. However,
many others followed and RT control systems are now widespread in consumer,
industrial, medical, and military applications.

Embedded RT control systems are commonly decomposed into a set of self-contained
subsystems: the physical environment to be controlled, the real-time computer system
that controls this environment through the instrumentation interface, and, most
often, a man-machine interface to interact with the system. If the RT computer
system is distributed, computing resources will be distributed over several hard-
ware resources, possibly at different locations, and connected to other (distributed)
computer system.

Functional and Temporal Requirements

In a RT computer system, the systems functional requirements determine the func-
tions that the real-time computer system must perform. With regard to RT control

2.2 Real-Time Embedded Systems 11

system, functional requirements would consist of e.g., monitoring of significant
state variables, detection of abnormal system conditions through alarm monitoring,
inform and assist the operator in controlling the environment object, and execution
of the control algorithm to drive the state variable to the set point. However, as
already stated, the main characteristic of embedded real-time systems is the exis-
tence of temporal as well as functional requirements. The temporal requirements
specify timing constraints for sequences of events. To understand where do this
temporal requirements come from in a real-time control system, some basis of control
engineering are needed.

Control Engineering

Real-time control systems commonly exhibit a highly regular pattern, consisting on
a cyclic sequence of actions. Figure 2.4 shows representative events and intervals of
a real-time control loop. To this end, a cyclic representation of time has been used
[61], which better fits the cyclic pattern or a control system and human cognitive
nature of time.

Figure 2.4.: Real-Time Control Loop – cyclic time representation.

The first task consists on collecting data by observation of significant state variables.
However, because the state of the physical environment under control changes as
a function of real time, an observation will only be accurate for a limited time
interval. Therefore the computer system must sample state variables periodically.
The constant duration between two sampling points (dsampling) is called sampling
period and is determined by the dynamics of the controlled system. In Figure 2.4 the
sampling period corresponds to the time interval between consecutive e1 events, a
full control loop. Obtained input data is then transmitted and the control algorithm
is executed next, which based on the error calculated from comparing the state
variable with the corresponding set point value, computes the new value for the
control variable. The last step consists on the output of the new control variable to

12 Chapter 2 Background and Basic Concepts

the actuator. The duration between the events associated with control cycle start
and finish (dcomputer = d(e1, e6)) is called computer delay, which includes apart
from the time needed to perform the control computations, the time needed for I/O
communication. The difference among the maximum and minimum computer delay
is called computer delay jitter, ∆dcomputer. For a correct behaviour of the real-time
system, the computer delay should be less than the sampling period. Moreover,
the computer delay jitter should be a small fraction of the computer delay. The
control algorithm can be designed to compensate a constant computer delay, but
the uncertainty introduced by the delay jitter has an adverse effect on the quality of
control.

2.3 Timing Property Specification

When it comes to RT embedded systems design, there is a need for means to specify
timing properties along the design process in order to enable coherent reasoning
about timing within complex scenarios. To this end, the MULTIC project [14] defined
a timing specification language, which was then updated on [15]. The defined time
specification language is based on specification patterns, which are natural language
like statements. The syntax and semantics of specification patterns are defined in
terms of timed traces that satisfy the pattern. Timed traces are based on a notion of
sampled signals and determine the value of variables in the time domain.

A signal can describe continuous as well as discrete systems behaviour, as depicted
in Figure 2.5. If a signal has non-absent values only for t ∈ T ⊂ T, where T is some
discrete set, is said to be a discrete-event signal. Whereas if a signal is non-absent for
all time points, two further signal types are distinguished: discrete-evolution signals,
when value changes happen only at time points, or continuous-evolution signals.
The MULTIC Time Specification Language (MTSL) focusses on discrete-event signal
based systems.

Figure 2.5.: Signal types.

2.3 Timing Property Specification 13

Signals are only visible at ports and every behaviour observable at a given port p is
restricted its value domain, denoted by Σp. Therefore, semantics of port behaviour
can be represented in terms of timed traces:

Definition 2.3.1. (Timed Trace). A timed trace observed at port p, is defined as
a tuple ωp = (ti, σi)i∈N, where (ti)i∈N is an infinite sequence of monotonic time
instances and, for each time instance, σi ∈ Σp denotes the corresponding element
from the value domain of port p. Timed traces are required to be non-zero, therefore,
for each t ∈ T exists a timed trace (ti, σi) such that ti ≥ t. A set of timed traces
observed at port p is denoted by Ωp = {ω = (ti, σi)i∈N}.

The same way, a set of timed traces observed at a port set P = {(pi)i∈N} is denoted
by ΩP = {ωP = (ti, ~σi)i∈N}, where ~σi = (σ1, . . . , σn) ∈ Σp1 × . . .× Σpn .

Projection ωP |q of traces over a port set P to port q ∈ P , where ωP |q = (ti, σq
i)i∈N if

and only if ωP = (ti, (. . . , σq
i , . . .)i)i∈N.

2.3.1 MULTIC Time Specification Language

MTSL is based on timing specification patterns (defined in terms of Backus-Naur
Form (BNF) grammar), which consist of natural language like statements composed
of fixed keywords and parameters specified by the user.

Within the MULTIC project, parameters are written in slanted font, whereas key-
words are written in bold font and additionally enclosed in quotation marks (as
’keyword’) when they are hardly recognisable. Optional parts are enclosed in brack-
ets and followed by a question mark, such as [optional part]?. Whereas parts that
may occur zero or more times are also enclosed in brackets but followed by a star, as
for example [repeated part]*. Grammar patterns are composed (from left to right)
of a name separated with a double colon :: from the definition. Alternatives within
the definition are separated by a vertical bar denoting for this | that.

As stated above, timing specifications describe relations among events, which are
only observable at ports and fixed to a corresponding value domain. A timing
specification refers to one or multiple events, however, the event value may or may
not be of importance. Therefore, event specifications are specified as follows:

EventSpec :: Port | Port ’.’ EventValue

The EventValue parameter is deliberately left open, it could consist of labels as well
as (complex) values. If an EventValue is not specified in the EventSpec, any event
observed at the Port is considered.

14 Chapter 2 Background and Basic Concepts

In fact, given a timed trace ω = (ti, σi)i∈N and an event (ti, σi) ∈ ω, it is said to
satisfy the event specification, denoted as (ti, σi) |=EventSpec, if either EventSpec
specifies a port and σi corresponds to its value domain or EventSpec specifies an
event value and σi equals to it.

Timing specifications may refer to a single event, a sequence or a set of events:

EventExpr :: EventSpec | ’(’ EventList ’)’ | ’{’ EventList ’}’
EventList :: EventSpec [’,’ EventSpec]*

Extending the notion of satisfaction to event expressions, a timed trace (ti, σi), . . . ,
(ti+n−1, σi+n−1) is said to satisfy an event sequence es = (e1, . . . , en) if every event
(ti+k−1, σi+k−1), 1 ≤ k ≤ n, satisfies the event specification ek. While (ti, σi), . . . ,
(ti+n−1, σi+n−1) satisfies an event set es = {e1, . . . , en} if a sequence (es1 , . . . , esn)
exists that satisfies {es1 , . . . , esn} = {e1, . . . , en}.

Timing specifications can either refer to a time point or an interval:

TimeExpr :: Value Unit
Boundary :: ’[’ | ’]’
Interval :: TimeExpr | Boundary Value ’,’ Value Boundary Unit

Time units and values in time expressions are restrict to usual time units and simple
numbers:

Unit :: s | ms | us | ns
Number :: 0 .. 9[0 .. 9]*
Value :: Number | Number ’.’ Number

In the following, some of the patterns defined within the MULTIC Timing Specifica-
tion Language (those relevant for this work) are presented. Detailed information on
the Timing Specification Language can be found in [15], Chapter 3.

Event Occurrence

To describe a repetitive event occurrence in a particular port, the Repetition pattern
is introduced. This pattern complies with the usual meaning of periodic patterns, as
well as patterns with minimum and maximum inter-arrival times. The Repetition
pattern is defined as follows:

Repetition :: EventList occurs every Interval1 [with RepetitionOptions]?.
RepetitionOptions :: Jitter [and Offset]? | Offset [and Jitter]?
Jitter :: jitter TimeExpr
Offset :: offset Interval2

2.3 Timing Property Specification 15

Within the Repetition pattern, parameter Interval1 determines the minimum and
maximum time period between subsequent occurrences of the EventList. The Jitter
defines an additional delay between subsequent occurrences of the EventList, while
the Offset defines a delay interval for the first occurrence of the EventList.

Definition 2.3.2. (Repetition pattern semantics). Semantics of the repetition pattern
"EL occurs every I with jitter J and offset O." is defined as the set of timed traces
(ti, ~σi)i∈N such that ~σi corresponds to the event list EL, and ti = ui + ji ∧ u0 ∈
O ∧ ui+1 − ui ∈ I ∧ ji ∈ [0, J], where I = (P−, P+) is the specified interval (where
(and/or) may be replaced, to indicate a closed upper and/or lower bound, by [
and/or] respectively), O = [O−, O+] is the offset interval, and J ≥ 0 is the jitter.
P− > 0 is required.

For large jitter (i.e., J > P−), the language definition is not quite correct because ti
may not be monotonic ordered any more. This issue is corrected by reordering the
trace through a bijective function k : N→ N, where (tk(i), σk(i))i∈N defines a trace so
that (tk(i))i∈N froms a monotonic sequence again. Such trace is part of the pattern
for which holds tk(i) = ui + ji ∧ u0 ∈ O ∧ ui+1 − ui ∈ I ∧ ji ∈ [0, J].

Figure 2.6 shows multiple pattern instances with different parameters. In the first
pattern, a minimal instance of the pattern is shown, with no jitter and no offset.
The second pattern adds an up to 5ms jitter. The light blue bars in the time-line
mark the period intervals as for the first patter, showing that the jitter is "added"
to the "baseline" periodic behaviour. The third pattern defines a period interval
(between 20 and 25ms). As none of the first three patterns defines an offset, the first
event always occurs at time point 0. On the contrary, the forth pattern defines an
offset in the [0, 10]ms interval. Therefore, the first event occurs somewhere in the
interval (for example at 5ms), whereas the time interval between two successive
event occurrences is in the interval [20, 25]ms.

Reaction Constraints

To specify a forward delay over events, event sets and event sequences, the Reaction
pattern is introduced:

Reaction :: whenever EventExpr occurs then EventExpr occurs within Interval
[once]?.

Definition 2.3.3. (Reaction pattern semantics). Semantics of the reaction pattern
"whenever es1 occurs then es2 occurs within I.", where es1 and es2 are either a
set or a sequence of events that contain k and l events, respectively, is defined as

16 Chapter 2 Background and Basic Concepts

Figure 2.6.: Event occurrence pattern examples.

the set of timed traces (ti, σi)i∈N such that ∀(ti, σi) . . . (ti+k−1, σi+k−1) |= es1 : ∃ j ≥
i+ k : (tj , σj) . . . (tj+l−1, σj+l−1) |= es2 ∧ tj+l−1 − ti+k−1 ∈ I.

The optional keyword once determines that the patter fails if more than one reaction
occurs within the determined time window, meaning that only one j ≥ i+ k exists
such that the corresponding sequence satisfies es2.

Figure 2.7 depicts multiple examples of the reaction pattern. The first time-line
shows a fragment of a pattern instance where event f occurs within an interval of
[15, 25]ms since event e. In contrast to the first pattern, the second pattern forbids
multiple instances of event f within the specified interval due to the keyword once.
The third pattern defines an event sequence (f, g) instead of a single event as the
reaction to event e.

Causal Event Relations

Besides being able to reason about the timely behaviour of events, it is also important
to be able to reason about relation of events. This can be captured by specifying
the order of occurrence of different events. The MTSL allows the definition of basic
functional relations by assigning event values. However, more complex functional
relations are not (yet) supported.

2.3 Timing Property Specification 17

Figure 2.7.: Reaction pattern examples.

The formal definition of causal event relations is as follows:

Definition 2.3.4. (Causal Event Relation). Consider ports p1 and p2, and let Ωp1,p2

be the semantics of the ports. A causal event relation between p1 and p2 is a function

.(p1, p2) : (T× Σp1)→ 2T×Σp2

where for all ω ∈ Ωp1,p2 and for all event occurrences (ti, σi) ∈ ω|p1 exist (tj , σj),
. . ., (tk, σk) ∈ ω|p2 such that it holds .(p1, p2)((ti, σi)) = {(tj , σj), . . ., (tk, σk)} and
ti ≤ tj , . . ., tk.

Moreover, causal event relations are transitive, which means that given three ports
p1, p2, p3 and causal event relations .(p1, p2) and .(p2, p3), then the causal event
relation .(p1, p3) is given by:

(tj , σj) ∈ .(p1, p2)((ti, σi))∧(tk, σk) ∈ .(p2, p3)((tj , σj))⇒ (tk, σk) ∈ .(p1, p3)((ti, σi))

Based on the causal event relation (see Definition 2.3.4), a causal version of the
reaction pattern is defined:

CausalReaction :: Reaction(EventSpec ’,’ EventSpec within Interval.

Definition 2.3.5. (Causal reaction pattern semantics). Semantics of the causal
reaction pattern "Reaction(e1, e2) within I.", where e1 and e2 refer to p1 and p2,

18 Chapter 2 Background and Basic Concepts

Figure 2.8.: Causal reaction pattern example.

respectively, is defined as the set of timed traces ω ∈ Ωp1,p2 where for all (ti, σi)i∈N ∈
ω|p1 , (ui, ρi)i∈N ∈ ω|p2 , and for all event occurrences (ti, σi) ∈ (ti, σi)i∈N such that
σi |= e1, holds .(p1, p2)((ti, σi)) 6= ∅ and ((uj , ρj) ∈ .(p1, p2)((ti, σi)) ∧ pj |= e2) ⇒
uj − ti ∈ I.

Figure 2.8 shows an example of the causal reaction pattern. The dashed light blue
line indicates that those events are related by the definition of causal reaction event
relation. It is due to the causal relation, the causally related instance of event f
does not occur within the defined time interval, that the pattern is violated within
the second occurrence of event e, in contrast to the first example in the non-causal
reaction pattern (see first example in Figure 2.7).

2.4 Legacy Migration Techniques

When it comes to run code from a given ISA in a different architecture, there are
two main techniques available: Emulation and Simulation. Although both solutions
provide means to run code compiled for a given ISA in a different hardware platform,
the purpose of each technique is different. In the following the differences among
emulation and simulation are presented first, followed by a description of binary
translation as a technical solution to emulation.

2.4.1 Emulation vs. Simulation

Emulation and simulation terms are commonly used interchangeably, since both
provide means to run software in platform different from that it was designed for,
however there is a great difference among them.

On the one hand, emulation is the process of replicating the externally observable
behaviour of a system with no regard for how the system functions internally. In fact,
the internal state of the emulator does not have to accurately mimic the internal start

2.4 Legacy Migration Techniques 19

of the source that is being emulated on the target processor 1. The main purpose of
emulation is to be used as a substitute to the original device or system, so it must
operate close to real-time.

On the other hand, the simulation process models the internal state of the source
on the target processor. The main purposed of simulation is to analyse and study
the source system. All in all, the simulator has to model the internal state of the
source system with sufficient detail according to the purposed of the analysis. Unlike
emulators, a simulator may run far slower than real-time.

Given that the purpose of the work presented in this thesis is to port a legacy
application to a new hardware platform preserving its functional as well as timing
requirements, binary translation is presented as a technical solution to emulation.

2.4.2 Binary Translation

The main purpose of BT techniques was architecture compatibility, in fact, BT is
the default approach for legacy code migration. However, BT techniques have been
implemented for many other purposes, such as fast simulation of instruction sets, e.g.
Desoli et al. [35], Dehnert et al. [34], Bellard [16], and Imperas Ltd. Open Virtual
Platforms (OVP) [56], for understanding the counterparts of different hardware
designs and exploring novel ideas before the real hardware is available; binary
instrumentation, e.g. Bruening et al. [20], Luk et al. [67], Hazelwood and Klauser
[47], Nethercote and Seward [74], and Lyu et al. [68], where code is injected into a
running process for debugging, simulation or profiling purposes; binary optimization,
e.g. Bala et al. [13], Chen et al. [26], and Lu et al. [66], which aims to improve
the performance of an executable program; and software security enforcement, e.g.
Scott et al. [83], Kiriansky et al. [59], and Hu et al. [53].

BT is a technique that transforms existing binaries compiled for the source ISA (Ms)
into binaries for the target ISA (Mt)1. In a binary translation process, the basic
unit of translation is referred to as a Basic-Block (BB) and consists of a sequence of
instructions that are likely to run as a whole, since the code block has just one entry
and one exit point.

The first binary translators followed a direct translation approach, from source to
target machine-code. However, the fact that BT is highly dependent on the source
and target architectures hinders reusability. Therefore, researchers adopted the

1Some authors refer to source/target terms as target/host.

20 Chapter 2 Background and Basic Concepts

general approach in portable compilers, where machine-dependent and machine-
independent concerns are separated through an Intermediate Representation (IR),
which acts as an abstraction layer between source and target ISAs. This approach
eases the adaptation of the translation tool to multiple source and target archi-
tectures, since the NxM translation graph is transformed into an N+M graph (see
Figure 2.9) [72]. Therefore, the resulting IR based translation process consists on
the following three parts: the front-end which deals with the source machine-code
and does the decoding processor; the middle that works at the IR-level and con-
ducts the analysis and optimization phase; and the back-end that generates target
machine-code through the encoder. The middle will be common for all source/tar-
get architectures, whereas a new front-end/back-end needs to be implemented to
support a new source/target architecture respectively. A binary translation tool is
said to be machine-adaptable when it can easily and inexpensively handle different
source and/or target machines.

Figure 2.9.: Direct vs. IR-based BT. Direct BT = NxM binary translators (left side). IR-based
BT = N front-ends + M back-ends (right side).

According to the supported input code, binary translators can be divided into two
groups: user-level or system-level. If the tool supports the translation of a full
software stack, including the legacy application, middleware and OS, it is known as
system-level translator. Whereas a user-level translator support just the translation of
the legacy application, implementing an interface at the ABI level or higher.

Moreover, according to the time when translation is performed, BT systems can be
classified into two categories: Dynamic Binary Translation (DBT) and Static Binary
Translation (SBT). Dynamic Binary Translation systems translate the binary code
at run-time, during program execution, therefore this technique can easily handle
indirect branches and can perform optimizations based on program’s run-time
behaviour. However, as translation and optimization time counts for a part of the
execution time (which incurs execution overhead), dynamic translation approaches
cannot perform aggressive optimizations. Whereas, Static Binary Translation systems
translate the binary code offline, before the program is executed, so static translation
approaches can perform whole program optimization without influencing run-time
overhead, but they must deal with code discovery, code location and self modifying

2.4 Legacy Migration Techniques 21

code issues effectively to be considered a real solution 2. Some researches, such as
Shen et al. [85], have even developed hybrid binary translation techniques to take
advantage of the strengths of both methods.

2.4.3 Static Binary Translation

SBT is composed of two separate phases: translation and execution phase. Fig-
ure 2.10 presents the structure of the translation phase in an IR-based SBT system.

Figure 2.10.: Static Binary Translation flow diagram.

The front-end, which as already mentioned is a source machine dependent module,
generates the intermediate code from the source machine code. To this end, the
input binary is first loaded, then BBs are identified and for each BB machine code is
disassembled/decoded to assembly code and translated into a machine-independent
representation. At a machine and system independent level, the middle-end analyses
the generated IR code for each BB and performs machine-independent optimizations.
This type of optimization is known as local optimization as it is applied at a BB level.
The translated and optimized BB is stored and once every BB has been translated,
global optimizations are applied, which leverage relations among BBs. Finally, the
back-end, which is a target machine dependent module, translates the optimized IR
code on each BB into target machine code. The generated target machine code can
be further optimized taking advantage of special characteristics on the target system
to apply machine-dependent optimizations.

For the execution phase, some SBT systems have a fall-back mechanism used by
the translator to effectively solve code location problems and to emulate access
to hardware devices (in such a case that respective instructions have not been
previously translated by the translator).

2Self modifying code is not a common practice.

22 Chapter 2 Background and Basic Concepts

2.4.4 Dynamic Binary Translation

In a DBT system both translation and execution are performed simultaneously, the
legacy binary is dynamically analysed and translated into target machine code
during runtime. In other words, program regions are translated on demand, if a new
source code block needs to be translated the translator is invoked to generate the
corresponding machine code using either a compiler or an emulator. Figure 2.11
shows the structure of an IR-based DBT system.

Figure 2.11.: Dynamic Binary Translation flow diagram.

The source machine dependent front-end generates intermediate code for a block
of source code according to the address pointed by the source machine Program
Counter (PC) value. The source code block usually corresponds to a BB, however,
if the BB is too large the translator takes just a fragment of the BB. To generate
the IR code, the block of code to be translated, Translation Block (TB), is fetched,
decoded and then translated into an intermediate representation. Then the back-end
translated the generated intermediate code into (unoptimized) target machine code
and stores the resulting machine code in the code cache to be reused in future runs.
When the cache is full, the cache manager is in charge of deciding whether to evict
part or all the translated code, or to increase the cache size if possible. The simplest
cache eviction policy (FLUSH) consist on erasing the entire content of the cache.

To reduce the overhead derived from context switched, code chaining is implemented
on the DBT system, direct branches are replaces with a jump to the corresponding
target code block, this way context switches are avoided. Moreover, as SBT systems
do, DBT systems do also optimize translated code. However, as optimization counts
on runtime, for dynamic binary optimization to be profitable a proper trace selection
strategy is needed. The most common strategy is hot paths detection. The translator

2.4 Legacy Migration Techniques 23

keeps track on the number of times a block has been executed and if a threshold
is reached, optimizations are applied to generate optimized target machine code.
Some DBT tools do not translated the code until a threshold is reaches, so on the
first runs the generated intermediate code is emulated and just frequently used code
is translated and cached.

24 Chapter 2 Background and Basic Concepts

Related Work 3
Given that legacy software migration is a common issue in industry it has been
widely studied during the last decades. Therefore, this chapter provides an overview
of existing migration solutions and places in context the work presented in this thesis.
The analysed solution space covers solutions for a timing-aware recompilation of the
legacy source code, as well as techniques to directly port the legacy binary, although
most of existing binary migration solutions are not timing aware.

3.1 Timing-aware Recompilation

Software recompilation is a well known solution when it comes to port legacy
software to a new ISA. However, recompilation to be applicable on the legacy
migration process, the legacy source code must be available and it must be written in
sufficient high level that it is independent (or almost independent) from the legacy
hardware platform. Moreover, when it comes to port real-time legacy software, apart
from functional requirements, timing requirements must also be preserved on the
migration process. In the following, existing timing-aware recompilation solutions
are covered. Although solutions exist for Ada [96, 63] and Real-Time Java [21, 95],
the focus is set on solutions for C programming language, which is the scope of this
work as well as the most common programming language when it comes to the
development of small-scale embedded system running on bare metal or lightweight
RTOS based platforms [23].

3.1.1 LET-based Software on E-machine

Resmerita et al. [80] proposed a systematic approach to apply real-time program-
ming to legacy embedded control systems composed of time triggered as well as
event triggered tasks with different priority levels. Their solution is based on the
Logical Execution Time (LET) model [60], a real-time programming abstraction
introduces with the time-triggered programming language Giotto [50]. The LET de-
termines the time interval from reading task input to writing task output, regardless

25

of the time duration (within the defined interval) that task’s execution actually takes.
Then, a dedicated middleware ensures task realization, achieving an increased sys-
tem robustness and predictability. Therefore, the legacy source code is first analysed
and transformed into LET-based software by replacing existing code and inserting
new code for the realization of the LET. The timing specification language they
used to implement the LET is Timing Definition Language (TDL) [89]. The trans-
formed code is then compiled into LET-scheduling instructions named E-code and
interpreted at run-time by an Embedded Machine (E-machine) which was presented
by Henzinger and Kirsch [49]. The E-machine is a virtual machine that provides a
real-time interaction among software and physical processes. The E code (executed
by the E-machine) is platform-independent and supervises the environment time
(interaction of software processes with physical processes). Whereas the E-machine
interprets the E code taking care of platform time (time at which software processes
execute on a specific platform, scheduling). There are several implementations of
the E-machine, being one of them in C under Linux using Portable Operating System
Interface (POSIX) threads and semaphores.

3.1.2 WCET-aware C Compiler

The WCET-aware C Compiler (WCC) was the first compiler to provide means to
reduce the Worst Case Execution Time (WCET) at both, source code and assembly
code level. First, Fidge [41] presented techniques to integrate WCET data into the
WCC compiler infrastructure. Using these techniques the compiler’s low-level IR
code is automatically feed into the WCET analyser (aiT static timing analysis tool
developed by AbsInt [4]) and the result produces by the WCET analysis tool is
re-imported into the compiler infrastructure. Then, Falk and Lokuciejewski [39]
completed the implementation of the WCC, a compiler that has a clear notion of a
program’s worst-case behaviour (combining measurement-based WCET analysis and
static program analyses) and applies specialized compiler optimizations to reduce
program’s WCET. To this end, the WCC’s optimizations focus exclusively on those
parts of the program that lie on the Worst Case Execution Path (WCEP), the path
within program’s Control Flow Graph (CFG) that has the maximal WCET. The WCEP
may change on the course of an optimization, therefore, it must be recomputed
whenever necessary. The WCC’s target architecture is the Infineon TriCore TC1796
and TC1797 processors heavily used in the automotive industry.

26 Chapter 3 Related Work

3.1.3 BIP & FreeRTOS

Behaviour Interaction Priority (BIP) [1] is a component-based framework for build-
ing systems by superposition of the Behaviour (B), Interaction (I), and Priority (P)
layers. The Behaviour layer consists of a set of components represented by timed
automata [6]. The Interaction layer describes possible interactions between atomic
components (defined by connectors), providing means for synchronization. The
third layer defines priorities between conflicting interactions.

Real-Time BIP (RT-BIP) [2] is the extension of the BIP language for modelling
real-time systems together with a real-time engine used for execution. RT-BIP frame-
work, combines an abstract model representing the behaviour of a given application
software integrating user-defined platform-independent timing constraints, and a
physical model that describes the behaviour of the abstract model by assigning to its
actions an upper bound of the actual execution times for a specific platform. Then,
based on a time-robust physical model, the real-time execution engine coordinates
the execution of the application software to meet the corresponding timing con-
straints. When robustness cannot be guaranteed, the execution engine can detect
time-safety violations and stop execution.

Le Nabec et al. [65] describe the process of modelling real-time legacy code using the
BIP framework. To this end, they specify a configurable component pattern, called
Real-Time BIP Agent (RT-BIPAgent), that follows a classical template for a real-time
task, composed of a start time, a period, a set of input data, a set of output data and
a computational function. Then, based on the FreeRTOS platform, executable code
is generated from the BIP model. Each RT-BIPAgent models a real-time task and for
each connector in the BIP model a FreeRTOS queue is created.

3.1.4 Timed C

Natarajan and Broman [73] proposed an extension of the C programming language,
called Timed C, consisting of a set of primitives for defining soft and firm real-time
constraints that ease real-time systems’ implementation. Authors defined primitives
for introducing soft and firm timing delays that can be implemented to define a
periodic behaviour, as well as primitives for defining concurrent tasks with com-
munication channels that can be scheduled by an underlying real-time operating
system according to the scheduling policy and priority determined through the
scheduling primitives. Then, using their source-to-source compiler KTC, a Timed
C file is compiled into a target specific C file. The resulting file can then be linked

3.1 Timing-aware Recompilation 27

against POSIX or FreeRTOS to implement the user defined timing and scheduling
behaviour.

3.1.5 Real-Time Concurrent C

Gehani and Ramamritham [42] implemented one of the few C languages that
incorporates a set of temporal constructs into Concurrent C, a parallel superset
of C. Real-Time Concurrent C provides means to specify strict timing constraints
through the temporal constructs, which allow delaying program’s execution, defining
periodicity or specifying deadlines. Whenever the specified timing constrains are not
met or compliance of timing constraints cannot be guaranteed, alternative actions
can be performed. Given that Real-Time Concurrent C was designed for a UNIX-based
implementation of Concurrent C and its compiler is no longer available, Real-Time
Concurrent C is considered to be outdated [73].

3.1.6 Time Measurement and Control Blocks

The timing measurement and control blocks [22] are a C++ extension, implemented
as a C++ library, that provide to software developers support to add block-level
timing annotations into embedded C++ software. Through these annotations it is
possible to measure and profile software block’s execution timing. In addition, the
blocks can also be implemented to control and enforce a specific timing behaviour
at run-time. Using the timing control blocks two execution modes can be defined;
either the specified block duration is kept precisely by inserting a delay after blocks
execution, or execution continues with the next block right after execution of the
current block finishes and remaining time until the expected end of the current block
(according to the star of block’s execution and the specified time limit) is passed to
the next block. In order to define a more complex timing behaviour, blocks can be
nested. Moreover, blocks are never allowed to run longer than expected (considering
the budget from previous blocks) and a timing violation is reported when the block
is about to exceed the specified time limit. Time measurement and control blocks
have been implemented for bare-metal C++ applications running on an Zynq-7000,
using the Global Timer Counter and a Central Processing Unit (CPU) Watchdog,
therefore, the solution has limitations regarding its portability.

28 Chapter 3 Related Work

3.1.7 Timing-aware Recompilation – Analysis

Considering the purpose of the work described in this thesis, this section analyses
the presented timing-aware recompilation solutions with a focus on the following
aspects: portability, legacy code support, timing enforcement and WCET reduction.
Table 3.1 summarizes the analysis on timing-aware recompilation solutions:

Retargetability is an important enabler for a wide adoption of any software tool [36]
and is a great concern when it comes to implement a RT legacy software migra-
tion solution. However, the analysed timing-aware recompilation solutions have
limitations regarding portability. In the solutions based on LET and BIP, both, the
E-machine and BIP execution engine need to be retargeted to the corresponding
target platform; the same happens with the WCC, which currently only supports
the Infineon TriCore target processor; and the Timed C approach also requires its
source-to-source compiler to be adapted to the target architecture. Whereas porting
Real-Time Concurrent C means implementing a compiler from scratch, since its
compiler is no longer available. While the solution presented by Bruns et al. [22]
requires the adoption of timer accesses to the new target platform.

Given that the main objective of the presented work is finding a migration path
for real-time legacy software, legacy software support is another important factor.
Although, in theory, any of the analysed solutions is applicable to legacy C code, [80]
and [65] are the only ones who consider RT legacy C code and describe the transfor-
mation process to LET-based software (compiled into E code and interpreted by the
E-machine) and a BIP-based model (executed on top of FreeRTOS), respectively.

On the direction to provide a migration path to real-time legacy code, one of the
main contributions of this work consists of providing means for legacy timing
enforcement. Every analysed solution, except for Falk and Lokuciejewski [39],
provides means to enforce a given timing behaviour during execution. Resmerita
et al. [80] transform a legacy control application composed of time triggered as
well as event triggered tasks with different priorities using the TDL. Moreover,
they implemented a tool that provides support on the transformation process. Le
Nabec et al. [65] implemented a BIP component pattern that follows the classical
template for a real-time task. Through this pattern and the BIP framework it is
also possible to describe time and event triggered tasks with different priorities.
However, the latter is based on timed automata, which allows more general timing
constraints than LET (i.e., lower and upper bounds or time non-determinism).
The C programming language extension presented by Natarajan and Broman [73],
provides means to describe periodic as well as aperiodic real-time tasks with different

3.1 Timing-aware Recompilation 29

Table
3.1.:

Tim
ing-aw

are
recom

pilation
solution

analysis.
Each

of
the

solutions
described

in
Section

3.1
is

analysed
according

to
four

aspects:
portability,legacy

code
support,tim

ing
enforcem

ent
and

W
C

ET
reduction.

N
am

e
Portability

Legacy
Softw

are
Tim

in
g

En
forcem

en
t

W
C

ET
R

edu
ction

LET
&

E-m
achin

e
[80]

R
etargeting

E-m
achine

3
Tim

e
&

Event
triggered

-
tasks

w
ith

priorities
W

C
C

[39]
R

etargeting
W

C
C

-
N

o
support

3
B

IP
&

FreeR
T

O
S

[65]
R

etargeting
execution

engine
3

Tim
e

&
Event

triggered
-

tasks
w

ith
priorities

Tim
ed

C
[73]

R
etargeting

K
TC

-
Periodic

&
aperiodic

R
T

-
tasks

w
ith

priorities
&

soft
&

firm
deadline

R
eal-Tim

e
C

on
cu

rren
t

R
etargeting

com
piler

-
D

elays,periodicity
&

deadlines
-

C
[42]

Tim
e

M
easu

rem
en

t
an

d
A

dapt
tim

er
accesses

-
Tim

e
budget

&
deadlines

-
C

on
trolB

locks
[22]

30 Chapter 3 Related Work

deadline criticality and configurable priority through Timed C primitives. Real-
Time Concurrent C provides means to delay program’s execution, define a periodic
behaviour or specify deadlined. Last but not least, the Time Measurement and
Control Blocks provide means to specifying time budget as well as time deadline
within source code blocks.

Although WCET reduction is not a goal for the described research work, we consider
WCET-aware optimization of the generated code is a relevant research line on the
hard real-time systems field. Falk and Lokuciejewski [39] presented the first compiler
that applies compilation time optimizations to reduce the WCET on the generated
code.

3.2 Binary Translation

The first binary translation techniques were developed in the late 1980s for academic
researches and commercial products [30]. In 1987, HP developed one of the earliest
commercial binary translation systems to migrate source HP 3000 programs to
the new Precision Architecture [18]. Followed by the IBM System/370 simulator
running on top of an IBM RT(RISC) PC, MIMIC [69]. Later, binary translation
techniques were used by many other affiliations. Indeed, in the ’90s translators
became quite common among hardware manufacturers aiming a migration path for
existing software from their Complex Instruction Set Computer (CISC) architecture
to Reduced Instruction Set Computer (RISC) architecture (e.g., Andrews and Sand
[7], Silberman and Ebcioglu [87], Sites et al. [88], Cmelik and Keppel [32], and
Hookway [52]).

Binary translation techniques have been widely studied and developed in the last
decades. So, given the great amount of binary translation systems and the interest
of this thesis on embedded real-time legacy software migration, just cross-platform
translators heeding portability, embedded systems and/or RT applications will be
considered in this section.

3.2.1 Binary Translator for Real-Time Applications

When it comes to translate RT legacy code, not just its functional behaviour, but also
the timing behaviour has to be preserved. To the authors knowledge, Cogswell and
Segall [33] and Heinz [48] are the only ones who considered RT legacy software in
their proposed binary translation approach.

3.2 Binary Translation 31

TIBBIT

The TIBBIT project, implemented by Cogswell and Segall [33], was the first binary
translation approach developed for embedded RT applications that needed to be
migrated to a different processor but still maintaining the externally observable
timing behaviour. TIBBIT analyses the timing of each instruction in the source binary
code and assuming that execution time for every instruction in the source ISA is
constant, generates a target binary with an equivalent timing behaviour. To this
end, both, the legacy application and the operating system code, are packed in a
black box, converted into an equivalent C program, and then statically translated
into the target binary format using the GNU Compiler Collection (GCC) retargetable
compiler.

To ease and automate the support of multiple source and target ISAs, a binary-
to-binary translator generator is provided, Automated Synthesis of TRAnslators
(ASTRA). Based on a source/target machine description file ASTRA produces a
translator for that source/target combination. The source machine description file
contains the timing information which serves as input to preserve the legacy tim-
ing.

To provide a timing invariant migration, during the translation process, timing code
is inserted into each BB. The RT supervisor uses these timing annotations to maintain
a record of the execution timing on the legacy processor. During execution a virtual
clock indicating the execution time in the legacy processor is kept updated. Within
every loop and before every I/O event, the virtual clock is compared to the real
(wall) clock. If the execution is ahead of schedule, the extra time is used to run other
tasks until the execution is back on schedule.

Heinz

In 2008, Heinz [48] proposed an approach to preserve the temporal behaviour of RT
legacy software when statically translating binary code. To this end, Heinz presents
a solutions based on statically computed temporal barriers that preserve the legacy
timing behaviour at a synchronization point accuracy level. The synchronization
point accuracy consists on preserving the timing behaviour at specific points in
program which are considered time sensitive, such as I/O instructions or accesses to
shared memory locations.

The proposed solution statically computes a set of delay constants for each program
point and selects the appropriate constant at run-time according to the context of a

32 Chapter 3 Related Work

program point. This way, the delay computation is shifted from run-time to compile-
time avoiding the need to keep track of the execution time on the source machine
and the corresponding overhead. The context based constant delay approach can
not precisely preserve the temporal behaviour. However, the delay constants are
computed such that the deviation from the legacy timing is minimized. Moreover,
the temporal displacement can be safely bounded to a maximum deviation.

3.2.2 Machine-adaptable Binary Translators

Implementing a binary translator from scratch requires a great effort, and given that
binary translation tools are highly dependent on source and target architectures,
there is a great interest on machine-adaptable binary translation solutions.

UQBT & UQDBT

UQBT [29] was the first SBT tool designed with portability in mind. UQBT translates
the user-level legacy binary into source machine Register-Transfer Levels (RTLs)
(MS-RTLS). After the analysis phaseMS-RTLS is lifted into a machine-independent
representation Higher-Level Register Transfer Language (HRTL), then down to a
target machine RTLs (MT -RTLS) and finally the target machine binary code is
generated. To handle indirect calls that could not be discovered at static time, the
UQBT uses an interpreter.

Based on the static UQBT framework, Ung and Cifuentes [91] implemented the
first retargetable DBT approach, UQDBT. From UQBT the front-end is reused in
its dynamic version. However, the granularity of decoding is changed from proce-
dure level to BB level. Just like its predecessor, UQDBT separates the system into
machine-dependent and machine-independent parts using a machine independent
intermediate representation. The legacy binary is first decoded into a source machine
RTL instructions (MS-RTLS) which are then converted into machine-independent
RTL instructions (I-RTLS). Finally, these machine-independent RTL instructions are
converted into target machine assembly instructions. To improve generated code,
UQDBT performs generic hot path optimizations that are applicable on different
machines.

This two phase translation, eases the portability of the translators to new source and
target architectures. Moreover, both translators can be configured to handle multi-
ple source and target machines through specifications that describe the operating

3.2 Binary Translation 33

system’s conventions and specific machine instruction set’s properties. However, the
machine adaptability of the translator comes at the cost of performance.

Since UQBT and UQDBT there have been a wide variety of machine-adaptable binary
translation tools.

QEMU

Bellard [16] developed Quick EMUlator (QEMU), a well known machine emulator
built upon a fast and portable DBT system. QEMU uses Tiny Code Generator (TCG)
to translate target source code into a machine independent IR and then translates
IRs into host machine code. In order to reduce system overhead, QEMU applies
TB 1 chaining, which directly jumps to the next TB without returning control to the
execution engine.

DisIRer

DisIRer [55] is a multi-target SBT tool that leverages the GCC infrastructure. DisIRer
translates x86 user-mode instructions into GCC’s RTL instructions and then translates
RTL instructions into GCC’s Abstract Syntax Tree (AST). The fact that it is built upon
the GCC optimizer and back-end makes the tool cost effective and easily adaptable
to multiple targets (those supported by GCC).

CrossBit

CrossBit [98] is a multi-source and multi-target DBT approach, which, as the rest of
portable solutions do, uses a machine-independent IR known as VInst to translate
user-level binaries from different source ISAs into binaries hosted by the same OS
for different target architectures. CrossBit uses profiling information to determine
the hot code where machine-independent optimizations are applied. Moreover, just
as QEMU does, it also applies BB chaining to further reduce system overhead.

Rev.ng

Based on SBT technique, Rev.ng [40] is a machine-adaptable binary analysis frame-
work that relies on QEMU and Low Level Virtual Machine (LLVM) 2 to perform the
binary translation. Rev.ng takes advantage of the core element of QEMU, TCG, to
translate user-level instructions of a supported ISA into a machine independent IR.

1A TB is the unit of a basic block in QEMU.
2LLVM [64] is a compilation framework that provides a source and target independent optimizer, as

well as code generation support for multiple ISAs.

34 Chapter 3 Related Work

Then, instead of generating machine code for the host architecture in emulation
mode, QEMU IR is further translated into a higher level IR, LLVM IR. Employing
LLVM as a back-end, the generated LLVM IR is translated into host machine code.

3.2.3 Binary Translators for Embedded Systems

Embedded systems are controllers with a dedicated function and limited resources,
which often have real-time constraints and contain a significant amount of low-
level code dedicated to control either processor integrated or external devices. For
this reason, traditional binary translator might not fit into embedded systems and,
therefore, specific solutions might be required.

Baiocchi

Baiocchi et al.proposed different approaches to adapt DBT to embedded systems with
Scratchpad Memory (SPM), which is a single cycle access and low power memory.
To this end, Baiocchi et al. [11] present an approach to manage the translated code
cache, which is placed on the SPM, by reducing the amount of additional code
injected by the translator. This reduces the cost for re-translating application code,
and avoiding eviction of frequently executed code. Baiocchi et al. [12] proposed to
bound the size of the translated code cache, located also on the SPM, and to reduce
the amount of code injected by the translator to control the execution flow, which
accounts for about the 70% of the code in the translation cache. Furthermore, [10]
presents a code cache spread between SPM, for most frequently used code, and main
memory, where code cache reduction techniques described in [12] are also applied.
For their investigation they used Strata [84], an open-source infrastructure for
building user-level software dynamic translators. Besides being a portable solution
that has been implemented for SPARC, MIPS, and x86 architectures, given that their
goal is Flash demand paging [8], its focus is on native BT solutions where the source
and target architecture are the same.

Guha

Guha et al. also proposed techniques to adapt DBT tools to embedded systems, by
presenting in [45] four different techniques to reduce the amount of code cache
occupied by exit stubs, a balanced path selection policy, and a selective flushing
approach, which are combined with auxiliary code optimization to improve memory
efficiency and performance in [44]. Their solutions have been implemented on
Pin [67], an open-source dynamic instrumentation tool for Linux platforms on IA32,

3.2 Binary Translation 35

EM64T, Itanium, and ARM architectures. Although Pin has been designed with
portability in mind, it is not a cross-platform translation tool.

Chen

Chen et al. [25] developed a SBT solution for embedded systems. However, their
tool directly migrates ARM binaries to a MIPS-like architecture, without using an
IR, which allows applying architecture specific optimization techniques but at the
same time hinders translator’s portability. Their translation tool was able to migrate
user-level ARM binaries without using a run-time emulator or any DBT support.

LLBT

Shen et al. [86] worked out another SBT tool, LLBT, an LLVM 2 based multi-target
SBT tool for embedded systems. LLBT translates ARM user-mode instructions into
LLVM IRs and then LLVM IRs are translated into machine code for multiple ISAs.
The LLVM compiler infrastructure provided LLBT with means for optimization and
retargetability. Moreover, in order to make the system suitable for embedded systems,
LLBT reduces the size of the address mapping table.

3.2.4 Binary Translation Tools – Analysis

The proposed solution aims to provide a migration path for RT embedded legacy
software. Therefore, this section analyses the presented binary translation solutions
(static and dynamic) with a focus on the following four aspects: portability, embedded
systems, RT code, and system-level code support. Table 3.2 provides a summary of
this analysis.

Development cost is one of the main concerns when developing a binary transla-
tor, since the implementation of such a system from scratch requires great effort.
Furthermore, binary translation tools are highly dependent on the source and tar-
get architectures. For this reason, researchers adopted the general approach of
portable compilers, where machine-dependent and machine-independent concerns
are separated, to provide a machine-adaptable binary translator. Cifuentes and
Emmerik [29] implemented the first machine-adaptable binary translator, UQBT.
Their approach supports multiple source and target machines by using specifications
that describe the ISA and OS. Since UQBT, many other static and dynamic machine-
adaptable solutions have been implemented. Unlike UQBT, most of them benefit
from a retargetable compiler to provide this same property to their binary translator.

36 Chapter 3 Related Work

Ta
bl

e
3.

2.
:B

in
ar

y
Tr

an
sl

at
io

n
to

ol
an

al
ys

is
.E

ac
h

of
th

e
to

ol
s

de
sc

ri
be

d
in

Se
ct

io
n

3.
2

is
an

al
ys

ed
ac

co
rd

in
g

to
fo

ur
as

pe
ct

s
w

e
co

ns
id

er
es

se
nt

ia
l

fo
r

a
R

T
em

be
dd

ed
le

ga
cy

so
ft

w
ar

e
m

ig
ra

ti
on

so
lu

ti
on

:
m

ac
hi

ne
ad

ap
ta

bi
lit

y,
an

d
R

T
co

de
,e

m
be

dd
ed

sy
st

em
s

an
d

sy
st

em
-l

ev
el

co
de

su
pp

or
t. N
am

e
St

at
ic

/D
yn

am
ic

M
ac

hi
n

e-
ad

ap
ta

bl
e

R
T

le
ga

cy
C

od
e

Em
be

dd
ed

Sy
st

em
s

U
se

r-
/S

ys
te

m
-l

ev
el

T
IB

B
IT

[3
3]

St
at

ic
-

3
3

Sy
st

em
-l

ev
el

H
ei

n
z

[4
8]

St
at

ic
-

3
3

Sy
st

em
-l

ev
el

U
Q

B
T

[2
9]

St
at

ic
So

ur
ce

an
d

Ta
rg

et
-

-
U

se
r-

le
ve

l
U

Q
D

B
T

[9
1]

D
yn

am
ic

So
ur

ce
an

d
Ta

rg
et

-
-

U
se

r-
le

ve
l

Q
EM

U
[1

6]
D

yn
am

ic
So

ur
ce

an
d

Ta
rg

et
-

3
U

se
r-

an
d

Sy
st

em
-l

ev
el

D
is

IR
er

[5
5]

St
at

ic
Ta

rg
et

-
-

U
se

r-
le

ve
l

C
ro

ss
B

it
[9

8]
D

yn
am

ic
So

ur
ce

an
d

Ta
rg

et
-

-
U

se
r-

le
ve

l
R

ev
.n

g
[4

0]
St

at
ic

So
ur

ce
an

d
Ta

rg
et

-
-

U
se

r-
le

ve
l

B
ai

oc
ch

i[
9]

D
yn

am
ic

Po
rt

ab
le

-
3

U
se

r-
le

ve
l

(i
m

pl
em

en
te

d
on

St
ra

ta
[8

4]
)

(n
o

cr
os

s-
pl

at
fo

rm
)

G
u

ha
[4

4]
D

yn
am

ic
Po

rt
ab

le
-

3
U

se
r-

le
ve

l
(i

m
pl

em
en

te
d

on
Pi

n
[6

7]
)

(n
o

cr
os

s-
pl

at
fo

rm
)

C
he

n
[2

5]
St

at
ic

-
-

3
U

se
r-

le
ve

l
LL

B
T

[8
6]

St
at

ic
Ta

rg
et

-
3

U
se

r-
le

ve
l

3.2 Binary Translation 37

However, some binary translation approaches can easily be ported to multiple target
ISA, but porting them to a different source ISA involves the entire design process of
the corresponding front-end. Therefore, we do not consider them multi-source and
-target translators, but just multi-target translators.

Binary translation has been successfully applied to port non-RT legacy code. However,
when dealing with time sensitive code migration, not just its functional behaviour,
but also the timing behaviour of time critical tasks has to be preserved. From the
related work, just Cogswell and Segall [33] and Heinz [48] presented a migration
path for RT legacy software. The former, proposes a instruction level annotation
approach that describes the amount of time required to execute the block on the
source processor. This way a virtual clock is provided to the run-time system that
compares its value to the target clock and enforces an equivalent timing behaviour.
This approach is efficient for simple architectures where the execution time of each
instruction is predictable. The latter, implements static temporal barriers to reduce
the runtime overhead of the delay computation. Based on a WCET analysis tool a
set of delay constants are precomputed for each program point and according to the
program context the appropriate value is selected at runtime.

Embedded systems often contain a significant amount of low-level code dedicated
to control either processor integrated or external devices (e.g. Analog-to-Digital
Converter (ADC); serial, Ethernet or CAN controller; sensor/actuator), also known as
system-level code. However, most of the approaches in the State of The Art (SotA)
propose migration solutions for user-level code, where the underlying OS’s API
abstracts the low-level code from the application. Even if the translator proposed by
Chen et al. [25] and LLBT [86] were designed to port embedded system software,
they do not support system-level code. These binary translators set their focus on
OS-based embedded systems, such as smartphones and tablets. Baiocchi and Guha
developed techniques to reduce the memory footprint of DBT tools to fit them on
embedded systems. However, their proposed solutions are applied to user-level
translation tools. Whereas, Cogswell and Segall [33] and Heinz [48] presented
embedded system capable solutions, but unlike previous solutions, they support
system-level binaries. On the contrary, QEMU that now supports embedded system-
level binary translation, was fist designed for Linux machine emulation.

38 Chapter 3 Related Work

3.3 Gap Analysis

Based on the literature review, this section maps existing solutions in the area of
timing-aware recompilation and binary translation to the scope of this work in order
to identify the research gap.

To this end, related work is identified from R1 to R6 (timing-aware recompilation
solutions) and from B1 to B5 (binary translation solutions). Then, identifiers are
placed in the scope map according to the research are they cover. The following list
shows the related work that has been mapped to the scope:

R1 LET & E-machine [80] (see description in Section 3.1.1)
R2 BIP & FreeRTOS [65] (see description in Section 3.1.3)
R3 Timed C [73] (see description in Section 3.1.4)
R4 Real-Time Concurrent C [42] (see description in Section 3.1.5)
R5 Time Measurement and Control Blocks [22] (see description in Section 3.1.6)
R6 WCC [39] (see description in Section 3.1.2)
B1 TIBBIT [33] (see description in Section 3.2.1)
B2 Heinz [48] (see description in Section 3.2.1)
B3 UQBT [29] & UQDBT [91] (see description in Section 3.2.2)

QEMU [16] (see description in Section 3.2.2)
DisIRer [55] (see description in Section 3.2.2)
CrossBit [98] (see description in Section 3.2.2)
Rev.ng [40] (see description in Section 3.2.2)
LLBT [86] (see description in Section 3.2.3)

B4 Baiocchi [9] (see description in Section 3.2.3)
Guha [44] (see description in Section 3.2.3)
LLBT [85] (see description in Section 3.2.3)

B5 Chen [25] (see description in Section 3.2.3)

Figure 3.1 shows the diagram resulting from mapping related work to the scope,
which is composed of four research areas: binary translation, where machine-
adaptable solutions form a sub-area of research in binary translation; RT software,
where RT legacy software is a sub-area in this group; timing enforcement that forms
another research area with retargetable timing enforcement solutions as a subgroup
of it; and timing validation which is the fourth research area covered on this research
work.

On the one hand, in the are of timing-aware recompilation solutions exists, as R1
and R2, that provide means to enforce a specific timing behaviour within RT soft-
ware. Moreover, both of these solutions describe how their proposed solutions can

3.3 Gap Analysis 39

Figure 3.1.: Related work analysis. Mapping related work to the scope.

be implemented on RT legacy software. R3, R4, and R5 are also solution to en-
force a specific timing behaviour. However, none of them describe how they can
be integrated on RT legacy software. Nevertheless, none of the timing enforcement
solutions presents a retargetable solution. Although R6 does not provide means
to enforce a specific timing behaviour within RT software, it applies compiler spe-
cialized optimizations to reduce program’s WCET, which is of great interest for RT
software developers.

On the other hand, regarding BT tools, B1 and B2 are the only solutions that
provide a migration path to RT legacy software. However, none of these translators
is machine-adaptable. In contrast, many machine-adaptable BT tools exist (see B3),
but none of them supports a timing-aware binary translation, where not just the
functional behaviour, but also the timing behaviour needs to be preserved during
the translation process. Concerning embedded system support, solutions exist that
aim to reduce the memory footprint of the translator so that it fits in an embedded
system (see B4 and B5). Some of them, such as those in B4, are machine-adaptable
solutions (although just [85] is a cross-platform tool), whereas B5 is not. However,
none of the embedded system solutions supports RT legacy code translation.

40 Chapter 3 Related Work

Thesis Contributions 4
From the gap analysis (see Section 3.3) we concluded that few solutions exist to port
embedded RT legacy software while still preserving its timing behaviour. Moreover,
existing solutions have limitations regarding their portability.

In the direction to provide a portable real-time legacy software migration solution,
this chapter presents the contributions of this work, and describes how they fit in
the scientific scope in order to, at some point, fill the existing gap. The assumptions
and constraints concerning the real-time legacy software migration solution are also
presented.

4.1 Contributions

The overall goal of this research work is to provide a RT legacy software migration
solution based on a existing BT solution, which will be enhanced with a timing
enforcement mechanism that at the same time provides means for validating the
enforced timing behaviour. All in all the contributions of this thesis are:

C1 A feasibility study of two machine-adaptable binary translators, one dynamic
and the other one static, for their use in a RT property conserving legacy code
migration process.

C2 A set of portable temporal constructs that provide means to measure the dura-
tion of legacy code sections and means to enforce a specific timing behaviour
within the legacy software.

C3 A systematic annotation of legacy timing properties into the behavioural legacy
code using the temporal constructs, to transform timing properties implicit on
the legacy application into explicit timing properties.

C4 A systematic transformation of legacy timing properties into formal timing
specifications for their latter use within the timing validation phase.

C5 The integration of the temporal constructs within the binary translation process
to achieve a timing-aware binary translation.

41

By mapping the presented contributions to the scope of this research work, as shown
in Figure 4.1, the gap intended to cover through each of the contributions can be
appreciated.

Figure 4.1.: Contributions analysis. Mapping contributions to the scope.

The first contributions (C1) works in the are of machine-adaptable BT tools to assess
existing solutions with respect to timing. Then, the second contribution (C2) provides
a retargetable timing enforcement mechanism, which can be systematically applied
to RT legacy software through the third contribution (C3). C4 contributes in the area
of timing validation through the systematically obtained formal timing specifications.
Finally, contribution C5 covers every scope area providing a machine-adaptable
timing-aware RT legacy software translation with means for timing validation.

4.2 Assumptions & Constraints

The contributions listed in the previous section are tied to the following assumptions
and constraints:

A&C1 The new processor (multicore processors are out of the scope in this first
approximation) has greater processing capacity (measured in Cycles Per In-

42 Chapter 4 Thesis Contributions

struction (CPI)) than the legacy processor, such that makes affordable the
overhead of the timing enforcement mechanism management and code trans-
lation overhead. The impact of multicore processors is out of the scope in this
first approximation.

A&C2 The legacy source code and toolchain are available, since the proposed timing
enforcement mechanism is applied at source code level.

A&C3 The legacy toolchain supports Linux, which is a requirement implicit to the
selected binary translation tool.

A&C4 The timing properties of the legacy application are known.

A&C5 The legacy application follows the typical pattern of a reactive control system
consisting of a set of periodic tasks (which might have different periods)
executed following a static scheduling policy.

A&C6 Legacy platform dependent I/O is not considered, since the presented approach
does not provide I/O virtualization between the legacy and new hardware
platform.

A&C7 A binary translation framework for the legacy and new ISA is available, since
the design and implementation of a new front- or back-end is not considered
in this work.

Section 8.2 presents an outlook on future research work to relieve some of these
shortcomings.

4.2 Assumptions & Constraints 43

Real-Time Legacy Software
Migration

5
This chapter presents a retargeting solution for RT legacy code. Section 5.1 presents
the legacy system model, which is followed by the description of the real-time legacy
software migration process in the next sections. Figure 5.1 depicts (from left to
right) the real-time legacy software migration process (described in the remaining
sections) that ports the RT legacy control software running on top of the legacy
hardware platform to a new (different) hardware architecture.

Figure 5.1.: RT Legacy Software Migration flow. Lifting of timing properties (step 1) is
described in Section 5.2. Testing timing and functional properties (step 2), as
well as block and budget reallocation (step 3) are described in Section 5.3.
Timing equivalent legacy software porting (step 4) is described in Section 5.4.

The migration process consists of four main steps. The first step (marked with
number 1 in the figure) corresponds to the process of lifting the legacy timing
properties (extract legacy timing properties and transform them into formal timing
specification), which is presented in Section 5.2. To this end, time measurement and
control blocks are annotated within the legacy application. These blocks, which are
based on the blocks presented by Bruns et al. [22], provide means to extract the
legacy timing properties and enforce them during execution. The annotated code
is then tested to check whether it meets the legacy system’s timing and functional
properties (see number 2a in the figure). To do so, timing properties are transformed
into formal timing specifications and compared against time traces, whereas a set
of reference values for input state variables and the corresponding output control
variables are extracted from the legacy system to check the functional requirements.
According to the results obtained, if any of the requirements (temporal and/or

45

functional) are not met, time control blocks might have to be reallocated and the
time budget as well as the timing specifications adjusted, see number 3a in the figure.
The timing and functional test procedure as well as the block and budget reallocation
process is described within Section 5.3. The next step, number 4, consists of porting
the timing annotated binary code to the ISA of the new hardware platform, with a
focus on how the static/dynamic translation tools handle the timing annotations
(dynamic translation is shown with a dashed line since it was considered as an option,
but the static approach was chosen instead). The timing block aware translation
process is described in Section 5.4. Finally, after the annotated legacy code has been
translated, temporal and functional requirements are tested once again (marked
as 2b) and if needed time control blocks reallocated and time budget as well as
timing specifications adjusted (marked as 3b). It is worth to mention that the block
reallocation as well as the time budget and contract adjustment step might have to
be accomplished several times during the migration process.

5.1 Legacy System Model Definition

The RT legacy control system is a computer system that executes a set of periodic
tasks according to a predefined static scheduling policy. The following subsections
describe through formal notation the main modelling elements in the considered RT
legacy system.

5.1.1 Application Model

Table 5.1 shows an example set of tasks with the corresponding timing properties.
Such a task set is described through the application model.

Definition 5.1.1. (Application Model). The legacy application A is composed of
a set of periodic tasks T , where a task ti can be represented by a tuple (pi, φi, ei,
di, cri), where pi is the period of the task, φi specifies a release time (as an offset
relative to the start of the period), ei is an upper bound of the execution time of
the task (the WCET of the task can be used as this upper bound), di is the relative
deadline of the task and cri is an identifier of the existence of a section of critical
code within the task. A critical code section is set to be a section that generates
an exchange of information among application tasks within a distributed real-time
control system. Every element in the tuple, except for cri, is composed of the value
v and the corresponding time unit tu.

46 Chapter 5 Real-Time Legacy Software Migration

5.1.2 Execution Model

The set of periodic tasks T is executed according to a predefined static schedule.
Figure 5.2 depicts the execution trace of an example set of tasks.

Definition 5.1.2. (Execution Model). The execution E consists of a hyper-period
H, which determines the time after which the task execution patter repeats itself,
that is in turn composed of a set of frames {fj}. The size of the hyper-period H is
determined through the Least Common Multiple (LCM) among all tasks’ period,
H = lcm(pi) and the frame size F is determined through the Greatest Common
Divisor (GCD) among all tasks’ period, F = gcd(pi). Both, H and F are composed of
the value v and the corresponding time unit tu. According to the hyper-period and
frame size, the number of frames within a hyper-period is limited to: max(j) = H/F .

Each frame fj is characterized with a set of time slots {slj,1, slj,2, . . . , slj,n}, describ-
ing each time slot slj,k as a tuple (tj,k, sj,k, ej,k), where tj,k is the task mapped to
the slot, sj,k is the start instant of slj,k, and ej,k the end instant of slj,k. Time slots
are consecutively ordered so that ∀k < n : ej,k ≤ sj,k+1.

The function α : ti → slj,k maps tasks to slots. A task can only be mapped to one
slot slj,k within a frame fj . However, a task can be mapped to the same slots within
different frames. For example, task t1 can be mapped to sl1,2, sl2,2 and sl3,2, but
never to sl1,2 and sl1,3, since a task can only run once in each frame.

When mapping tasks to slots, it is assumed that if a precedence relation exists among
two tasks ti, tl ∈ T , such that tl shares the results produced by ti, then tl will never
start before ti has finished execution: ∀(ti, tl) ∈ T : α(ti).ej < α(tl).sj

5.1.3 Example Application

For a better understanding of the presented approach, the whole chapter is drawn on
an illustrative example that resembles the typical pattern of reactive control systems.
Consider a legacy system consisting of seven tasks ti, i = 1, ..., 7. A task consists
of a sequential code block that starts reading input data and its internal state and
terminates when it provides the computed results and updates its internal state.
Tasks are ordered considering precedence relation and data sharing among them.
Through the use of timers and internal counters, tasks run periodically following a
static scheduling policy. Tasks t1, t2, t5, t6 and t7 have a period of 20 ms, whereas t3
and t4 have a period of 40 ms. Moreover, tasks t1, t3, t4 and t6 consist of a critical
section. Therefore, in order to preserve correctness of the entire system’s behaviour,

5.1 Legacy System Model Definition 47

the instant at which these critical tasks run must be kept equivalent on the migration
process (same offset with respect to the start of the period as in the legacy system
and minimum jitter among subsequent task instances). The offset of tasks t1, t3, t4
and t6 is 0, 10, 10 and 15 ms respectively. On the contrary, for tasks t2, t5 and t7, a
variation in their offset and jitter among subsequent task instances does not hinder
a correct behaviour of the overall system. However, precedence relation and data
sharing among tasks must still be considered. Table 5.1 summarizes this information
and completes it with the WCET of each task. Whereas, Figure 5.2 depicts the
execution of the example task set.

Table 5.1.: RT legacy application example. Tasks with their corresponding timing infor-
mation, such as period, offset (if relevant, otherwise Not Relevant (N/R) is
shown), an upper bound for the execution time, as well as identification of
critical sections are shown.

Task Period [ms] Offset [ms] WCET [ms] Critical section

t1 20 0 5 3
t2 20 N/R 5 -
t3 40 10 3 3
t4 40 10 3 3
t5 20 N/R 2 -
t6 20 15 2 3
t7 20 N/R 3 -

Figure 5.2.: Example execution trace of the RT legacy application example. Execution is
composed of two frames that compose the hyper-period.

5.2 Lifting of Timing Properties

The timing property lifting process (see Figure 5.3) consist of three main stages.
The profiling phase constitutes the first stage, where expert knowledge is crucial to
properly characterize the systems temporal behaviour. As a result of the profiling
phase, the behavioural legacy code and the corresponding timing properties are
obtained. The next step consist of the annotation of the timing properties into the
behavioural code in order to enforce an appropriate temporal behaviour during

48 Chapter 5 Real-Time Legacy Software Migration

execution. To this end, time measurement blocks are substituted with time control
blocks (Periodic Execution Time (PET), Forced Execution Time (FET), Budgeted Exe-
cution Time (BET) and Period N Execution Time (PNET), described in Section 5.2.2).
Finally, the annotated legacy application is systematically transformed into formal
timing specifications that will later be used to validate the timing behaviour of the
annotated legacy application.

Figure 5.3.: Lifting of timing properties. Profiling phase: extract timing properties and
behavioural code from RT legacy code. Annotation phase: annotate behavioural
code with time control blocks. Time Specification phase: transform annotated
timing properties into timing specifications attached to virtual ports.

5.2.1 Profiling Legacy System

Although the legacy timing properties are considered to be known, this subsection
presents an overview of the profiling phase. As depicted in Figure 5.4, the profiling
phase, combines code analysis, legacy system’s specifications and timing measure-
ments (the Estimated Execution Time (EET) described in Section 5.2.1 can be used
to perform timing measurements), which are then evaluated by an expert, to extract
the necessary timing information from the legacy system.

Information regarding the period of each task, precedence relation and data sharing
among tasks as well as identification of critical sections must be obtained through
the analysis of the legacy source code, legacy system’s specifications and expert
knowledge. Whereas the EET block can be helpful to extract information concerning
the WCET and offset of tasks.

5.2 Lifting of Timing Properties 49

Figure 5.4.: Profiling phase.

In order to systematically annotate the legacy code, first, Algorithm A.1.1 (in Ap-
pendix A.1) sorts out the task set T (see Definition 5.1.1) according to the execution
model (see Definition 5.1.2), the output consists of the sorted task set TSO (see
Definition A.1.1 in Appendix A.1).

Then, Algorithms A.1.2 to A.1.4 (in Appendix A.1) describe the systematic annotation
of the execution model with time measurement blocks, EET blocks. The output of
the main algorithm (see Algorithm A.1.2) consists of a set of time measurement
block nodes MB (see Definition A.1.2).

Example 5.2.1

The example application presented in the previous section (see Section 5.1.3) is annotate with
EET time measurement blocks. To this end, the periodic loop must be identified first, which
is then wrapped into an EET block. This will be the root node that will provide information
regarding the WCET of a frame, which corresponds to the frame size F . Then, each legacy
task is wrapped into an independent EET block. Moreover, to compute the offset of tasks
identified as a critical section, every task preceding such a critical task is wrapped into another
EET block, where the WCET of the wrapped code block corresponds to the offset of the next
critical task. Listing 5.1 shows the resulting EET annotated legacy example application.

Time Measurement Block – Estimated Execution Time

The EET block [22] employed in the profiling phase provides means to measure the
execution time of the annotated code block and perform a measurement based WCET
analysis. For each wrapped code block the execution time duration is computed and
stored under a block ID for a latter analysis. After several runs, from the stored data,

50 Chapter 5 Real-Time Legacy Software Migration

1 i n t main () {
2 i n i t i a l i z a t i o n () ;
3 while (1) {
4 XTime_GetTime(& t S t a r t) ;
5 t ogg l e_ l ed (1) ;
6 t ogg l e_ l ed (2) ;
7 do {
8 XTime_GetTime(&tNow) ;
9 tEnd = 1.0*(tNow−t S t a r t)/

10 (COUNTS_PER_SECOND/1000000);
11 } while (tEnd <10000000);//10ms
12 switch (i){
13 case 0:
14 t ogg l e_ l ed (3) ;
15 i =1;
16 break ;
17 case 1:
18 t ogg l e_ l ed (4) ;
19 i =0;
20 break ;
21 }
22 t ogg l e_ l ed (5) ;
23 do {
24 XTime_GetTime(&tNow) ;
25 tEnd = 1.0*(tNow−t S t a r t)/
26 (COUNTS_PER_SECOND/1000000);
27 } while (tEnd <15000000);//15ms
28 t ogg l e_ l ed (6) ;
29 t ogg l e_ l ed (7) ;
30 do {
31 XTime_GetTime(&tNow) ;
32 tEnd = 1.0*(tNow−t S t a r t)/
33 (COUNTS_PER_SECOND/1000000);
34 } while (tEnd <20000000);//20ms
35 }
36 }

a: Legacy example application.

1 i n t main () {
2 i n i t i a l i z a t i o n () ;
3 while (1) {
4 EET() {
5 EET() {
6 XTime_GetTime(& t S t a r t) ;
7 EET() {
8 t ogg l e_ l ed (1) ;
9 }

10 EET() {
11 t ogg l e_ l ed (2) ;
12 }
13 do {
14 XTime_GetTime(&tNow) ;
15 tEnd = 1.0*(tNow−t S t a r t)/
16 (COUNTS_PER_SECOND/1000000);
17 } while (tEnd <10000000);//10ms
18 }
19 EET() {
20 switch (i){
21 case 0:
22 EET() {
23 t ogg l e_ l ed (3) ;
24 }
25 i =1;
26 break ;
27 case 1:
28 EET() {
29 t ogg l e_ l ed (4) ;
30 }
31 i =0;
32 break ;
33 }
34 t ogg l e_ l ed (5) ;
35 do {
36 XTime_GetTime(&tNow) ;
37 tEnd = 1.0*(tNow−t S t a r t)/
38 (COUNTS_PER_SECOND/1000000);
39 } while (tEnd <15000000);//15ms
40 }
41 EET() {
42 t ogg l e_ l ed (6) ;
43 }
44 EET() {
45 t ogg l e_ l ed (7) ;
46 }
47 do {
48 XTime_GetTime(&tNow) ;
49 tEnd = 1.0*(tNow−t S t a r t)/
50 (COUNTS_PER_SECOND/1000000);
51 } while (tEnd <20000000);//20ms
52 }
53 }
54 }

b: Legacy example application annotated
with timing measurement block (EET).

Listing 5.1: Llegacy example application and the resulting time measurement block (EET
block) annotated legacy example application.

the average, standard deviation, 99%-quantiles and maximum observed duration
are computed, which are also represented in a histogram.

5.2 Lifting of Timing Properties 51

5.2.2 Legacy Timing Enforcement

Once the timing properties (i.e., precedence relation and data sharing, period, offset,
and WCET) have been extracted through the profiling phase, the legacy timing
behaviour must be enforced. The proposed time control solution is based on a
block-level source code annotation approach. According to typical patterns on RT
control systems, four different annotation blocks have been defined: PET, FET, BET
and PNET.

• The PET block is used to implement the periodic execution of a frame, the
argument passed to this block corresponds to the frame size (F).

• The FET block allows preserving a specific offset for tasks and a minimum
jitter among subsequent task instances (although there might always be some
jitter incurred by control block management, the underlying OS, and the
hardware platform itself). Therefore, every task preceding a critical task must
be encapsulated into a FET block.

• The BET block is used to allocate a time budget to tasks without enforcing
a specific duration. This block might be used to wrap tasks preceding others
without any critical code section.

• The PNET block allows allocating a time budget to tasks that run with a period
greater than that specified in the PET block. Combining the period and offset
arguments of this block, tasks can be mapped into different frames.

To enforce the legacy timing behaviour, the legacy behavioural code (see Listing 5.2.a
where the code used to implement the static scheduling policy described in Defini-
tion 5.1.2 has been removed) is annotated with time control blocks.

Algorithms A.2.1 to A.2.4 (see Appendix A.2) describe the systematic transformation
of the legacy system’s model into time control block based annotated legacy code.
The input to the main algorithm (Algorithm A.2.1) consists of the frame size F and
a set of sorted tasks where every time element has the same time unit TSOunit (see
Definition A.2.1). The output resulting from Algorithm A.2.1 consists of a set of time
control block nodes CB (see Definition A.2.2).

Example 5.2.2

The example legacy application presented in Section 5.1.3 is annotated as follows. The root
node is a PET block with period set to 20 ms, which is the GCD of all tasks’ period. Then,
each task is wrapped into a BET or PNET block according to its period. Tasks with a period

52 Chapter 5 Real-Time Legacy Software Migration

equal to that defined through the PET block are wrapped into BET blocks, whereas tasks with
a greater period are mapped into PNET blocks. The budget for either block (BET or PNET) is
determined by the WCET of the task it contains. Whereas the period and offset parameters of
PNET blocks are determined according to the period of the task they wrap. For the example
application, tasks t3 and t4 have a period two times greater than that defined on the PET
block, therefore, the period argument is set to 2, whereas the offset parameter is set to 0 in
the PNET block that wraps t3 and to 1 in the block containing t4. This way t3 and t4 will run
every two periods starting at period 0 and period 1 respectively. Finally, in order to preserve
a specific offset and minimum jitter among subsequent task instances for critical tasks, every
BET or PNET block preceding a block wrapping a task marked as critical section must be
wrapped into a FET block. Therefore, BET blocks corresponding to t1 and t2 are wrapped
into a FET block. The duration of this FET block is set to 10 ms so that the next tasks marked
as critical preserve their offset. The PNET blocks and the BET block corresponding to t5 are
wrapped into another FET block. The upper limit of PNET blocks that can be wrapped in a
FET block is determined by the period argument of the PNET blocks, which has to be equal
for every PNET block within a FET, while the offset has to be different for each PNET block
within a FET. To preserve the offset of the following critical task (t6), the duration of the FET
block is set to 5 ms. The resulting annotated code is shown in Listing 5.2, together with the
behavioural legacy code, and the corresponding tree diagram in Figure 5.5.

1 i n t main () {
2 i n i t i a l i z a t i o n () ;
3 t ogg l e_ l ed (1) ;
4 t ogg l e_ l ed (2) ;
5 t ogg l e_ l ed (3) ;
6 t ogg l e_ l ed (4) ;
7 t ogg l e_ l ed (5) ;
8 t ogg l e_ l ed (6) ;
9 t ogg l e_ l ed (7) ;

10 }

a: Behavioural legacy example applica-
tion.

1 i n t main () {
2 i n i t i a l i z a t i o n () ;
3 PET1(20 ms) {
4 FET2(10 ms) {
5 BET6(5 ms) {
6 t ogg l e_ l ed (1) ;
7 }
8 BET7(5 ms) {
9 t ogg l e_ l ed (2) ;

10 }
11 }
12 FET3(5 ms) {
13 PNET8(3 ms , per iod 2 , o f f s e t 0) {
14 t ogg l e_ l ed (3) ;
15 }
16 PNET9(3 ms , per iod 2 , o f f s e t 1) {
17 t ogg l e_ l ed (4) ;
18 }
19 BET10(2 ms) {
20 t ogg l e_ l ed (5) ;
21 }
22 }
23 BET4(2 ms) {
24 t ogg l e_ l ed (6) ;
25 }
26 BET5(3 ms) {
27 t ogg l e_ l ed (7) ;
28 }
29 }
30 }

b: Time control block annotate legacy ex-
ample application.

Listing 5.2: Behavioural legacy example application and the resulting time control block
annotated legacy example application.

5.2 Lifting of Timing Properties 53

Figure 5.5.: Time control blocks’ behaviour and nesting. Description of execution time con-
trol blocks’ behaviour and nesting through the RT legacy application example
(see Section 5.1.3). PET1 is the root node. It has four child nodes: FET2, FET3,
BET4 and BET5. PET1 manages the timing budget passed across BET4 and
BET5 siblings. FET2 has two child nodes (BET6 and BET7) and manages the
time budget passed across them. FET3 has three child nodes, two PNET blocks
(PNET8 and PNET9) and a BET block (BET10). The timing budget passes across
the sibling PNET and BET blocks is managed by their parent node, FET3.

In the following, time control blocks’ runtime behaviour is described. For a better
understanding, Figure 5.6 shows the structure and functionality of timing control
blocks through an example execution of the application presented in Section 5.1.3.

Time Control Blocks – Periodic Execution Time Block

The PET Block enforces a periodic execution of the wrapped code block. The only
argument passed to this block specifies the execution period of the wrapped code
block (Pmain). As shown in Figure 5.6, the PET block inserts a delay at the end of its
execution in order to consume the remaining time (if any) and maintain the block’s
periodicity. On the contrary, if the block takes longer than expected leading to a
period violation, a user defined error handling routine takes place. There should
only exist one PET block in the whole legacy control application, which will always
be the root node.

Time Control Blocks – Forced Execution Time Block

The FET Block enforces a concrete duration (specified in its only input argument)
for the wrapped code block. Taking a look at Figure 5.6 it can be seen that, as it

54 Chapter 5 Real-Time Legacy Software Migration

Figure 5.6.: Time control blocks’ structure and functionality. Description of execution time
control blocks’ structure and functionality through the RT legacy application
example (see Section 5.1.3). PET block enforces a periodic execution. FET
enforces a concrete duration. BET defines an upper bound duration and passes
remaining time to next sibling BET or PNET blocks. PNET defines an upper
bound duration for a code block that runs every N th period starting at an
specific period (according to its offset).

is done in the PET block, extra duration at the end of the block will be consumed
(delay insertion). However, if the specified duration is exceeded a user defined error
handling routine takes place. FET blocks are always defined within another FET
or PET block, therefore, they always have an indirect or direct parent PET block
respectively. The use of FET blocks is unlimited; nevertheless, the temporal overhead
the block management structure entails should be taken into consideration.

5.2 Lifting of Timing Properties 55

Time Control Blocks – Budget Execution Time Block

The BET Block defines an upper bound duration for the wrapped code block. A
BET block should always be defined within another BET or a FET or PET block.
Therefore, a BET block will always have a direct (if it is defined within a FET or PET)
or indirect (if it is defined within another BET) parent PET or FET block. As shown
in Figure 5.6, the time remaining at the end of a BET block execution is passed to
the next BET or PNET block (described latter) with the same next (direct or indirect)
parent FET or PET block, whatever comes first. This parent block is in charge of
managing the execution time budget. However, as FET and PET blocks have a fixed
duration, BET blocks can only use the remaining time budget of earlier finished
same level BET or PNET blocks. The use of BET blocks is unlimited; nevertheless,
the timing overhead introduced by the block management structure should be taken
into consideration.

Time Control Blocks – Period N Execution Time Block

The PNET Block accepts three input arguments. The first one determines an upper
bound duration for the wrapped code block, the second one determines the N th

period at which the blocks is activated, whereas the third one determines the offset
of the wrapped code block in periods with respect to the start of the execution.
Combining the period and offset arguments, tasks can be mapped to different frames
(i.e. N th period 3 and offset 1 means that the block will run every three frames
starting with the first run at the second frame due to 1 period offset). A PNET
block must always be used within a FET or PET block and remaining time at the
end of a PNET block is passed through the following BET blocks (see Figure 5.6).
Therefore, a PNET block will always have a direct parent FET or PET block, which
will managed the execution time budget among sibling PNET and BET blocks. As
in previously described control blocks, a user defined error handling routine takes
place if the time budget is exceeded. The use of PNET blocks is unlimited, however,
PNET blocks within the same parent FET or PET block should be defined combining
the second and third parameters in such a way that they will never run at the same
time. Moreover, the temporal overhead of the block management structure should
also be considered.

56 Chapter 5 Real-Time Legacy Software Migration

5.2.3 Extract Timing Specifications

The annotated legacy application is systematically transformed into formal timing
specifications. To this end, the timing specification language described in Section 2.3
is used, which follows a contract-based approach. This timing specification language
was defined within the MULTIC project [14].

The MULTIC project assumes systems to be built from components (see Figure 5.7),
which depending on the design context, may represent software functions, hardware
elements or any other part of a system. Components interact with the environment
(including other components) through a set of ports, which are linked through
connectors. A connector can either be simple, when it takes no time to transport
a value between the connected ports, or complex, when it represents a physical
transmission medium that comprises a complex behaviour. In fact, a complex con-
nector is a component itself. Within this context, timing specifications are defined
over component interfaces, the ports of components, since any behaviour in the
component model is only observable at the component ports.

Figure 5.7.: General Component Model.

Based on the general component model, the MTSL described in Section 2.3, specifies
ports as follows:

Port :: PortName | ComponentName ’.’ PortName

Timing specifications about components are expressed in terms of contracts. A con-
tract states on the one hand, assumptions about the components environment and
the behaviour that the component’s implementation must guarantee, considering
the component is used in a context where the assumption about the environment
is accomplished, on the other. Contracts are expressed by instances of the MULTIC
timing specification language [14] described in Section 2.3. Figure 5.8 shows an

5.2 Lifting of Timing Properties 57

example of a contract, where the assumption(s) (denoted with an A) specify the con-
text in which the component should be executed to accomplish with the behaviour
stated as a set of guarantee(s) (denoted with a G). Therefore, the example contract
states that assuming that an event occurs on Entry port every 20 ms, whenever an
event is observed on Entry port, an event will be observed on Exit port within 0 to
20 ms.

Figure 5.8.: Contract example.

In order to prove correctness of the defined contracts, a Virtual Integration Test (VIT)
should be accomplished, which checks two conditions: compatibility and refinement.
The former, consist of verifying whether two (or more) components can be put
together without violating any of the contracts. That means that two components are
compatible if the assumption about the environment of a component are not violated
by another component connected to this component. The latter verifies whether
the composition of a set of sub-components satisfies the contract(s) of the parent
component. This means that the guaranteed behaviour of a set of sub-components
must refine the behaviour guaranteed by the parent contract, within an environment
that complies with the parent contract assumption. Both the compatibility and the
refinement check reason about components of a particular model as well as about
components from different viewpoints or abstraction levels (different models). Model
artefacts within a viewpoint at a certain abstraction level are allocated to artefacts
of other viewpoints, and artefacts at a lower abstraction level are considered to
realize those of a higher abstraction level. In this sense, a mapping, which defines
an interface between artefacts of models from different viewpoints or abstraction
levels, provides the foundation to reason about refinement of the specification of an
observing model by the specification of the observed model. Thus, the VIT checks
for consistency of models of the system from different viewpoints and abstraction
levels meaning that the contacts of the observed model are a valid refinement of the
contracts of the observing model.

Although VIT could ideally be achieved by formal methods, this task can become
close to impossible. Therefore, the MULTIC-tool provides an alternative through a

58 Chapter 5 Real-Time Legacy Software Migration

simulation based approach. Simulation based VIT is not capable of guaranteeing
completeness of the test, but can be used instead for functional testing1. To this end,
the MULTIC approach assumes that a SystemC simulation model can be derived form
a SysML component model, which consists of generators and observers according to
the specified contracts. Based on this simulation model a simulation-driven VIT can
then be executed.

Based on the MULTIC approach, the RT legacy software migration solution describes
each time control blocks as a component. Within each component, virtual ports
are defined, at which events are observable. Moreover, component-to-component
connections are done according to a causality order. Consistency of contracts is given
by constructions, whereas to check compatibility and composition of contracts a VIT
should be accomplished.

Algorithms A.3.1 to A.3.5 (see Appendix A.3) describe the systematic transformation
of the time control block annotated code into a component-contract structure. The
input to the main algorithm (see Algorithm A.3.1) consist of a set of control block
nodes CB = {cbm} (see Definition A.2.2), whereas the output consists of a set
of component nodes CO = {com} (see definition A.3.1) with their corresponding
contract in the form of assumptions A and guarantees G.

The annotated legacy example application presented in Listing 5.2, which follows a
tree diagram as depicted in Figure 5.5, is transformed into a set of component nodes
with their corresponding contract. The resulting component-contract structure is
shown in Figure 5.9.

5.3 Testing, Reallocation & Adjustment

As a result of the lifting process, the formal timing specifications and the annotated
legacy application are obtained. To check that timing and functional requirements
are still met after the lifting process, the annotated legacy application is compared
against the original legacy application. Therefore, the control block annotated
legacy application is executed on the legacy hardware platform to check whether
the functional and timing traces meet the reference values. To test the timing
properties, the annotated application, the formal timing specifications and the
MULTIC tooling [15] are needed. Whereas to test the functional properties, a set
of reference values for input state variables and the corresponding output control

1Formal methods such as [43, 31] guarantee completeness of the test and should be used in a
combination with simulation based testing.

5.3 Testing, Reallocation & Adjustment 59

Figure 5.9.: Component-contract structure. Description of component-contract structure
through the RT legacy application example (see Section 5.1.3). Each component
has its corresponding contract, composed of assumption(s) and guarantee(s),
which are based on MTSL repetition and causal reaction patterns. Port names
are shown in blue colour.

variables, as well as the annotated legacy application are needed. If the test results
with unsatisfied timing or functional requirements, it might be necessary to reallocate
and/or adjust either time control blocks, formal timing specifications or both of
them.

5.3.1 Testing Timing Properties – MULTIC tool

Figure 5.10 depicts the process of testing the timing properties. The annotated legacy
application runs on the legacy hardware platform. As described in the previous
sections (see Section 5.2.2) time control blocks generate time traces on runtime.
These time traces are then compared against formal timing specifications using
MULTIC tool, which allows expressing timing requirements and provides means for
their validation and verification through a simulation based method based on the
SystemC [51] simulation framework. Timing specification are expressed in terms
of contracts through the pattern-based MTSL (see Section 2.3). According to the
specified contracts, the tool generates for each specification pattern two automata; a
generator, which produces every trace adhered to the specification, and a monitor
that recognizes every trace adhered to the specification. Generators and monitors
are implemented in C++ code for their inclusion in the simulation framework.

60 Chapter 5 Real-Time Legacy Software Migration

As a result, the tool provides information regarding compliance of system’s timing
behaviour to timing specifications.

Figure 5.10.: Description of the process for testing timing properties.

5.3.2 Testing Functional Properties

Figure 5.11 depicts the process of testing the functional properties. For the functional
test, the reference input/output traces need to be obtained first. To this end, the
legacy application is executed with a set of reference input values for state variables
and the corresponding reference output values are obtained for the control variables.
Once the input/output reference values have been collected, as it is done for testing
the timing properties, the annotated legacy application is executed on the legacy
hardware platform. During execution, instead of observing state variables, the
annotated legacy application is feed with the reference input values (for state
variables) and the output values obtained for the control variable are compared
against the expected output results, the reference output traces.

5.3.3 Time Control Block Reallocation/Adjustment

According to the timing and functionality test result, a time control block reallocation
and budget adjustment process might be necessary. During the lifting process, source

5.3 Testing, Reallocation & Adjustment 61

Figure 5.11.: Description of the process for testing functional properties.

code is extracted, modified and rearrange. In this reverse engineering process,
the functional and timing behaviour of the legacy application might have been
changed. Therefore, if the timing and/or functional test results is not successful
(i.e., the allocated budget is not enough, the offset before critical section tasks is not
appropriate, the task precedence relation has been corrupted), time control blocks
need to be reallocated and budgets adjusted accordingly, while still ensuring an
appropriate timing behaviour.

5.3.4 Formal Timing Specification Adjustment

Systematically generated timing specifications (see Section 5.2.3 for information on
how timing specifications are generated) describe an ideal timing behaviour where
jitter is not considered. However, in a real scenario the timing behaviour is not ideal
and timing deviations exist as a consequence to the overhead of time control block
management or binary translation, as well as deviations caused by the underlying
OS or hardware platform itself. As a consequence, formal timing specifications might
need to be adjusted accordingly, while still ensuring an appropriate timing behaviour.

62 Chapter 5 Real-Time Legacy Software Migration

Moreover, every time formal timing specifications are adjusted, it is necessary to
prove correctness of contracts through a simulation-based VIT.

During the lifting process it might be necessary to repeat the temporal a functional
property test, the control block reallocation and the budget and contract adjustment
process several times, until all legacy system’s requirements are met, temporal as
well as functional requirements.

5.4 Timing Block Support within Binary Translation

The RT legacy software migration approach differs depending on the chosen porting
system. The static binary translation tool is a user-level translator that implements
the translation at the ABI-level, whereas the dynamic binary translation tool is
a system-level translator. Although the dynamic translation tool is a system-level
translator, many of the legacy hardware peripherals, such as timers, are emulated.
Therefore, it should be considered that the translated legacy application would
accesses emulated peripherals instead of accessing target peripherals.

5.4.1 Static Binary Translation based Timing Block handling

The static binary translation tool is a user-level translator that implements the
translation at an application-level. As described in the lifting process, the legacy
source code is annotated using timing control blocks. The annotated legacy code is
then compiled for the legacy hardware platform. To exploit the ABI in the translation
process, the static binary translation tool requires a statically linked Linux binary
as input file, therefore, a Linux toolchain is used for the compilation process. Then,
the translator leverages the ABI to reroute accesses to the underlying hardware
by linking the legacy Linux binary translated for the target ISA against the target
hardware platform libraries. Figure 5.12 depicts the described static binary translator
based timing control block handling. Whereas, Figure 5.13 depicts the run-time
architecture of the annotated and statically translated application running on the
new hardware platform.

5.4.2 Dynamic Binary Translation based Timing Block handling

The dynamic binary translator based migration solution implements the translation at
a system-level. As described in the lifting process, the legacy source code is annotated

5.4 Timing Block Support within Binary Translation 63

Figure 5.12.: Description of the static binary translator based block handling.

Figure 5.13.: Runtime architecture for statically translated binary running on the new
hardware platform.

using time control blocks. However, the dynamic binary translator reroutes timer
accesses to the emulated timer. Therefore, the legacy code is annotated with time
control blocks, but blocks’ management and functionality is implemented at the
translation time. The block annotations have no functionality and serve to detect
annotation points at translation time. The empty control block annotated legacy
code is compiled for the legacy hardware platform and runs on top of the dynamic
translator on the new hardware platform. During translation, annotation points are
detected and blocks’ functionality and management (as described in Section 5.2.2)
is implemented. To this end, the DBT tool has to be adapted and linked against
the timing measurement and control block library during compilation for the new
hardware platform. Figure 5.14 depicts the described dynamic binary translator
based block handling. Whereas, Figure 5.15 depicts the run-time architecture of the
annotated legacy application running on the new hardware platform on top of the
DBT tool.

As it is done after the lifting process, after translating the annotated code temporal
and functional properties need to be tested on the new hardware platform. If the
test results are unsuccessful, time control blocks might have to be reallocated and/or
the assigned time budget and/or timing specifications adjusted (see Section 5.3 for
more information).

64 Chapter 5 Real-Time Legacy Software Migration

Figure 5.14.: Description of the dynamic binary translator based block handling. Legacy
code is annotated with structural blocks. The DBT tool is adapted to implement
timing control blocks’ functionality and management (at annotation points)
during translation.

Figure 5.15.: Runtime architecture for the empty control block annotated legacy binary
running on the new hardware platform on top of the adapted DBT tool.

5.4 Timing Block Support within Binary Translation 65

Implementation 6
The implementation chapter explains how the aforementioned theoretical model
could be implemented using current software and hardware technology. To this
end, the RT legacy software migration approach described in Chapter 5 has been
implemented as a migration path for RT legacy software running on ARMv7-A to an
Intel Atom processor. Based on the binary translation tool analysis on the related
work chapter(see Section 3.2.4), two candidate tools, QEMU machine emulator and
Rev.ng reverse engineering framework, have been selected to translate code from
one ISA to another. These translation tools where mainly selected for being source
and target machine-adaptable open source solutions. During translation, the legacy
timing behaviour is preserved through a block level source code annotation approach
based on a refinement, as described in Section 5.2, of the time measurement and
control blocks presented by Bruns et al. [22].

Therefore, this chapter describes first the development platforms (see Section 6.1)
and the translation tools with their corresponding translation process (see Sec-
tion 6.2). Then, in Section 6.4 the implementation of time measurement and control
blocks is described. Section 6.4.1 describes how the timing measurement block
is integrated into the static and dynamic binary translation process for its use in
the feasibility study. Finally, Section 6.6 describes how timing control blocks are
integrated on the static binary translation tool to implement the timing contract
aware static binary translation.

6.1 Development Platforms

As a proof of concept, the RT legacy software migration approach described in
previous chapter (see Chapter 5) has been implemented to port ARM Cortex-A9
legacy software to an Intel Atom processor. The main reason for the selection of these
processors has been the support of the ARM-x86 source-target architectures on both
binary translation tools, QEMU and Rev.ng. Therefore, the Xilinx Zynq-7000 System
on a Chip (SoC) ZC702 evaluation kit and the MinnowBoard Turbot Dual-Core board
have been selected as source and target platforms, respectively.

67

6.1.1 Xilinx Zynq-7000 SoC ZC702

The Zynq-7000 SoC provides software and hardware programmability integrating
and ARM multicore processor (Dual-core ARM Cortex-A9 MPCore) and a Field
Programmable Gate Array (FPGA) on a single chip. The programmable logic pro-
vides flexibility to the SoC, allowing its adoption to a broad variety of embedded
applications. Taking advantage of the flexibility of the SoC, both the ARM Cortex-A9
processor as well as the FPGA, implementing a MicroBlaze processor, have been
used in this work. The ARM Cortex-A9 MPCore is a 32-bit performance and power
optimized multi-core processor implementing the ARMv7-A architecture. Whereas
MicroBlaze is a 32-bit soft microprocessor core designed to be implemented on Xilinx
FPGAs.

6.1.2 MinnowBoard Turbot Dual-Core

The MinnowBoard Turbot is an open source hardware platform integrating a dual-
core Intel Atom E3866 SoC. The MinnowBoard Turbot is a reference design in many
embedded products on market today. The Intel Atom E3866 is a 64-bit ultra-low-
voltage processor implementing an x86 architecture.

6.2 Translation Tools

From the binary translation tool analysis, a dynamic and a static binary translation
tool were selected. The former, QEMU, is an open source machine emulator portable
to multiple source as well as target ISAs. Although it was first designed for Linux
machine emulation, it currently supports embedded system-level emulation too.
Rev.ng is a fully open source reengineering framework that provides means to lift
Linux binaries to LLVM IR and recompile them for a different architecture. Moreover,
it provides means to perform instrumentation and run various (provided or custom)
analyses.

6.2.1 QEMU

The core element in QEMU [16] is its code generator, TCG, which is responsible
for the dynamic translation of target source code into host machine code. As a
machine-adaptable DBT, the TCG adopts the general approach in portable compilers.

68 Chapter 6 Implementation

Therefore, the source code TBs (the unit of a basic block in QEMU) are first translated
into tiny code instructions, a machine independent IR, and then this IR code is further
translated into target machine code. Once translated, the TBs are stored in the code
cache to be reused in future runs. TB caching reduces translation overhead since the
time spent on code translation is reduced. For the sake of simplicity, when the code
cache overflows, all stored TBs are removed. Moreover, to avoid returning control
from the code cache to the emulation manager and back again to the code cache,
QEMU chains consequentially executed TBs. As an example, after the execution of
TB1, as there was no chaining, execution returns to the emulation manager. In that
case, the next TB, TB2, has to be found, generated (if target machine code for this
TB is not available), executed and chained to TB1. This way, the next time TB1 is
executed TB2 will follow the execution without returning control to the emulation
manager.

Figure 6.1.: QEMU’s dynamic binary translation flow diagram.

Figure 6.1 illustrates in a flow diagram QEMU’s run-time behaviour. Execution starts,
and the first step is to set-up the Virtual Machine (VM) environment according to
its specifications (e.g., number of CPUs, RAM size and available devices). Then,
CPU execution starts with cpu_exec() function, referred to as the ’main execution
loop’. Inside this execution loop, the first step is to handle the interrupts if any. After-
wards, tb_find() function searches the next TB according to the current PC value.

6.2 Translation Tools 69

If no TB is found, the target machine code is generated through tb_gen_code()
function, which subsequently call functions gen_intermediate_code() to trans-
late source code into tiny code instructions and tcg_gen_code() to convert in-
termediate code into target machine code. After target machine code has been
generated, the TB is stored in the code cache, tb_jmp_cache, at an index found
by tb_jmp_cache_hash_func(). The generated/found TB is then chained to the
previous TB, tb_add_jump(), to avoid a context switch in a following run. Finally,
translated code execution continues through cpu_loop_exec_tb() function.

6.2.2 Rev.ng

Rev.ng is a binary analysis framework whose core element is, Revamb, its SBT
tool, which combines the benefits of QEMU with those of LLVM. As described in
Section 6.2.1, QEMU is a DBT based machine emulator, that follows a retargetable
compiler like structure. Moreover, QEMU supports both system and user mode
emulation. However, Rev.ng exploits just its front-end in user-mode to parse the
source binary code and emit QEMU’s IR. LLVM is a compilation framework that
provides source and target independent optimisation support as well as resources
for multiple machine code generation. The main components of LLVM’s architecture
are: (1) the front-ends, which translate source code in a variety of languages into
LLVM IR. Clang, a C, C++ and Object-C front-end, is the one that has received
the most attention; (2) Its IR, the core element in LLVM, a target-independent low-
level programming language; (3) the Pass Framework, that is in charge of IR to IR
transformation, most of the times seeking for code optimization and/or analysis; and
(4) the back-end, which supports machine code generation for multiple instruction
sets.

This tool suite currently supports static ARM, MIPS and x86-64 Linux binaries as
input and can generate machine code for X86-64 output architecture. However, even
if the current tool suite supports just a few input/output architecture combinations,
the fact that it is based on QEMU and LLVM makes Rev.ng adaptable to other
source/target architectures supported by QEMU 1 and LLVM 2 respectively.

As already mentioned, the core element in Rev.ng is its SBT tool. Revamb parses the
statically linked Linux binary and uses QEMU’s TCG as a front-end to generate tiny
code instructions from any of the input architectures it supports. Then code in QEMU

1QEMU supports the emulation of various architectures including: Alpha, ARM, CRIS, x86, MicroBlaze,
MIPS, OpenRISC, PowerPC, RISC-V, SH4, Sparc and their 64-bit variant when applicable.

2LLVM’s back end supports many ISAs, including ARM, MIPS, PowerPC, Sparc, x86 and x86-64.
However, just x86 (both 32-bit and 64-bit), ARM and PowerPC include most of the features.

70 Chapter 6 Implementation

IR form is further translated into LLVM IR instructions. However, in QEMU, certain
features such as syscalls and complex instructions (e.g. floating point division)
are handled through a set of external functions (written in C) known as helper
functions. Therefore, using Clang, QEMU helper functions are obtained in the form
of LLVM IR and statically linked before generating the LLVM module. Besides the
helper functions, additional support is needed mainly for initialization purposes. To
this end, revamb provides a set of support functions which are linked to the LLVM
module. Then, the linked LLVM IR module is translated into machine code using
LLVM compiler infrastructure. Figure 6.2 depicts the translation process of Rev.ng
tool suite, which combines the use of QEMU’s front-end and LLVM.

Figure 6.2.: Rev.ng’s static binary translation process combining the use of QEMU, Revamb
and LLVM.

6.3 Operating System – Linux

The use of Linux is a requirement implicit to both, the static and dynamic translation
tools. Rev.ng translated a Linux binary from a set of source to a set of target ISAs.
Therefore, the generated output binary is a Linux binary. Whereas QEMU DBT tool
requires an OS to run, that can either be Linux, macOS or Windows.

Given that the described approach is desired to port code from a given embedded
platform to another, for the implementation described in this chapter a minimal
Linux distribution has been chosen. However, Linux is not a real-time OS and timing
is one of the main concerns of this migration approach. Therefore, the PREEMPT_RT
patch has been added to Linux kernel. The main purpose of this patch is to improve
the RT behaviour on Linux by reducing the kernel’s scheduler latency and response
time. Moreover, PREEMPT_RT achieves a more deterministic Linux environment
without the need for a specific API. To this end, the RT task running on top needs to
be defined as so and given the highest allowed priority in the system 3.

3Given that PREEMPT_RT uses 99 as the priority for the kernel task sets and interrupt handler, the
highest allowed priority is 98.

6.3 Operating System – Linux 71

6.4 Timing Measurement and Control Blocks

Timing measurement and control blocks are a C++ extension, developed as a C++
library, that provides means for adding block-level timing annotations into embedded
C/C++ applications. The blocks have been conceptually described in Sections 5.2.1
and 5.2.2, whereas this section describes their implementation.

6.4.1 Timing Measurement Block

The EET block, provides means to measure the end-to-end duration of a specific
code section. The EET annotated application interacts with the block manager, timer
and memory to implement the described behaviour. Figure 6.3 depicts the sequential
diagram for the EET block. The application registers a new EET block in the block
manager, which gets the current time instant. Then, after finishing execution of
the wrapped code block, the block manager gets again the current time instant,
computes the block’s duration and saves the result in memory (under block’s ID).

Figure 6.3.: EET block’s execution – sequential diagram.

Within this research work, the EET block has a double use, it is used on top of
the legacy hardware platform during the profiling phase and for timing analysis
purposes, as well as on top of the new hardware platform for timing analysis
purposes. Therefore, two variations of EET block are implemented; one considering a
bare-metal development for the legacy hardware (ARM Cortex-A9), and the other for
a Linux-based x86-64 architecture. Moreover, there is a third variant, which consists
of a non-functional implementation. This particular EET block implementation is

72 Chapter 6 Implementation

used during the feasibility study of the dynamic binary translation approach (see
Section 6.5.2 for further information).

Bare-metal EET block

From the multiple timers available on the Zynq-7000 (i.e., System Watchdog Timer,
Triple Timer Counter, Global Timer Counter, CPU Watchdog, and CPU Private Timer),
the Global Timer Counter has been chosen for the bare-metal implementation. The
Global Timer is an automatically started, independently of the software, 64-bit auto-
incrementing counter. As it is supported on Xilinx’s Board Support Package (BSP), a
collection of libraries and drivers that form the application’s bottom layer, there is no
need to do any particular adjustment on the hardware design for its implementation.
Using the Global Timer, the duration of the EET block is computed and the elapsed
time result is saved in memory for a latter analysis.

Linux-based EET block

The Linux version is implemented using the C++ based Chrono library to access a
high-resolution clock and compute the elapsed time. Chrono library was designed
to deal with the fact that clocks might differ across systems and clock and timer
precision improves over time (see Chapter 5.7 in Josuttis [57]). A relevant aspect
regarding Chrono is that it provides a precision-neutral solution by separating
duration and time instants from specific clocks [28]. The elapsed time is then saved
in a binary file for a latter analysis.

Structural EET block

The structural version of the EET block enclosures the annotated code section but
does not implement the block’s functionality. This block serves as a detection mecha-
nism during the dynamic binary translation process. The adapted dynamic translator
detects the structural EET block and implements its functionality (interacting with
the block manager as well as host timer and memory).

6.4.2 Timing Control Blocks

Timing control blocks provide means to enforce a specific timing behaviour through a
block-level source code annotation approach. They are used on the legacy hardware

6.4 Timing Measurement and Control Blocks 73

platform for a midway test of the proposed timing enforcement solution during the
migration process, as well as on the new hardware platform, where the dynamically
or statically translated binary runs on top of Linux. Therefore, access to the timer
within the timing control blocks is implemented using Chrono library. The library is
used to access a high-resolution clock and assign real physical time to time points as
well as to implement the time delay in PET and FET blocks. However, instead of using
Chrono to operate over time points and time intervals with time units, time control
blocks use Boost Units library, which provides means for time unit compile-time
type checking as well as its conversion. Moreover, existing C++ language features
have been used to wrap source code blocks and implement the corresponding time
control functionality (according to the code wrapper type: PET, FET, BET or PNET)
at a block scope level.

Time Control Blocks – Periodic Execution Time Block

The PET block annotated in the application interacts with the block manager, timer
and memory to implement its behaviour as described in Section 5.2.2. Figures 6.4a,
6.4b and 6.5 depict the sequential diagram for the PET block in the three possible
situations, block’s execution: finished on time, finished earlier or exceeded the
deadline.

Sequence starts on the application, which registers the PET block in the block
manager. The block manager gets the current time instant and generates a trace
with the block ID and the corresponding time-stamp. Then, it computes the block’s
deadline according to the budget. After running the wrapped code block on the
application, the block manager gets once again the time-stamp and generates the
corresponding time trace. If the time-stamp matches the deadline (see Figure 6.4a),
execution returns to the beginning of the application code. Whereas if the code block
had finished before the deadline was met (see Figure 6.4b), the block manager will
insert a delay to meet the deadline and execution will continue after the delay at
the beginning of the application code. If on the contrary, the code block’s execution
exceeded the deadline (see Figure 6.5), an error handling routine will take place.

Time Control Blocks – Forced Execution Time Block

The FET block annotated in the application interacts with the block manager, timer
and memory to implement its behaviour as described in Section 5.2.2. Figures 6.6
and 6.7 depict the sequence diagram for a FET block finishing on time and earlier
than expected respectively. In the first case (Figure 6.6), the application registers

74 Chapter 6 Implementation

(a) PET block’s execution on time

(b) PET block’s execution early

Figure 6.4.: PET block’s execution – sequential diagram for block’s execution finishing on
time and finishing early.

a new FET block in the block management object, which will get the current time
instant. Then, the annotated code block runs until completion, that is when the bock
management object will once again get the current time instant and compute the
duration. As the block’s duration matches that specified in the budget the application
will continue execution with the next block. However, if as depicted in Figure 6.7 the
block’s execution finishes earlier than expected (actual duration is less than budget)
a delay is inserted until the budget is met. Then, execution continues with the next
bock. Whereas an error handling routine will take place, as shown in Figure 6.5, if
the block runs longer than expected.

6.4 Timing Measurement and Control Blocks 75

Figure 6.5.: PET block’s execution late (same for FET and BET blocks) – sequential diagram
for blocks’ execution when budget is exceeded.

Figure 6.6.: FET block’s execution on time (same for BET block) – sequential diagram for
blocks’ execution finishing on time.

Time Control Blocks – Budgeted Execution Time Block

The BET block can have three different behaviours depending on the wrapped code
block’s execution time. In order to deploy the block’s functionality as described in
Section 5.2.2, the application, block manager, timer and memory objects interact
with each other. At the beginning of the BET block, the application registers the new
block in the block manager, which will get the current time-stamp, generate the
corresponding trace in memory and compute the block’s deadline according to the
budget. After running the wrapped application code, the block manager updates
the time-stamp and accordingly generates the trace. If the deadline matches the
time-stamp (see Figure 6.6), same as for the FET block execution will continue with
the next block in the application code. Whereas if execution had finished earlier than

76 Chapter 6 Implementation

Figure 6.7.: FET block’s execution early – sequential diagram for block’s execution finishing
early.

expected, as is the case in Figure 6.8, the block manager will compute the budget
that will be passes to the next sibling BET or PNET block. In constrast, if execution
took longer than expected, block’s duration exceeded the budget (see Figure 6.5),
as it is in PET and FET blocks, an error handling routine will take place.

Figure 6.8.: BET block’s execution early – sequential diagram for block’s execution finishing
early.

Time Control Blocks – Period N Execution Time Block

The PNET block can involve four different execution sequences according to execu-
tion’s duration, but also according to the N th period and offset arguments, since
these arguments constraint the periods at which the wrapped code block is active
(see Section 5.2.2 for more information on PNET block’s functional behaviour).

6.4 Timing Measurement and Control Blocks 77

Therefore, Figure 6.9 depicts the execution sequence when the block is not active.
In that case, at the time of registering the new block, the block manager will realise
that the block is not active and execution will continue with the next block in the
application code.

Figure 6.9.: PNET block execution not active – sequential diagram for block’s execution
when it is not active (according to N th period and offset arguments).

If on the contrary, the PNET block is active on this period, possible execution
sequences depend on block’s execution finishing: on time, early or late. In the first
case, depicted in Figure 6.10, the application object register the new block in the
manager, which realizes the block is active and gets the time-stamp, generates the
trace accordingly and computes the block’s deadline according to the budget. After
running the wrapped code, the block manger gets the new time-stamp and generates
a new trace. As block’s execution finished on time, the application will run the next
block in the code.

Figure 6.10.: PNET block’s execution on time – sequential diagram for block’s execution
finishing on time.

In the case that the block runs faster than expected, as depicted in Figure 6.11, after
running the wrapped code, updating the time-stamp and generating the new trace,
the block manager will compute the budget that will be passed to the next sibling
BET block. The execution will continue with the next block in the application. In

78 Chapter 6 Implementation

contrast, if the block runs slower than expected exceeding its deadline, as shown in
Figure 6.12, instead of computing the budget, the block manager will run an error
handling.

Figure 6.11.: PNET block’s execution early – sequential diagram for block’s execution fin-
ishing early.

Figure 6.12.: PNET block’s execution late – sequential diagram for block’s execution when
budget is exceeded.

6.5 Timing Measurement within Translated Binary

The timing measurement block is used in the legacy hardware platform to measure
the end-to-end duration of legacy code. Moreover, it is integrated within the dy-
namic as well as the static binary translation tool in order to measure the end-to-end
duration of the translated code. However, according to the chosen binary translation

6.5 Timing Measurement within Translated Binary 79

approach, static or dynamic, annotations are handled in a different way. Section 5.4
describes the integration of timing blocks within the static/dynamic binary trans-
lation process in an implementation agnostic way. Whereas this section describes
how the bare-metal implementation of the EET block is used on the legacy hardware
platform and how QEMU and Rev.ng integrate the EET block (Linux-based and
structural implementation) within their translation flow. This will provide means
to measure the end-to-end duration of annotated code sections when running on
the ARM Cortex-A9 and Intel Atom (after translation) processors, assessing the
translation overhead with respect to timing as part of the feasibility study.

6.5.1 Legacy Platform – Timing Measurement

The legacy system follows the typical pattern of a reactive control system, as de-
scribed in the system model presented in Section 5.1. The legacy application runs on
the legacy hardware platform without any support of an operating system. Therefore,
in order to measure the end-to-end duration of the legacy application, following Al-
gorithms A.1.2 to A.1.4, the legacy code is systematically annotated with EET blocks.
The annotated legacy code is then linked against the bare-metal implementation
of the time measurement block and compiled for the legacy hardware platform.
The annotated legacy binary runs on top of the legacy hardware platform and the
required timing-related data is collected. Figure 6.13 shows on the left side the
linking and compilation of the annotated legacy code. Whereas on the right side the
runtime architecture of the annotated legacy binary is shown, where the annotated
legacy binary runs on top of the ARM Cortex-A9 processor.

6.5.2 Dynamic Approach – Timing Measurement

The dynamic approach takes advantage of QEMU [16], a machine emulator built
upon a portable and low overhead DBT tool, to translate legacy code at run-time.
As timer virtualization is not supported, in order to access the target timer and
implement timing measurement block’s functionality, apart from annotating the
legacy behavioural code, QEMU’s source code has to be adapted before translation.
Then, the annotated legacy code is linked against the structural TMCB library and
compiled for the legacy processor, whereas the adapted QEMU is linked against
the Linux version of the TMCB library and compiled for the new processor. The
annotated legacy binary runs on top of the adapted QEMU, which runs on top of
a minimal Linux distribution configured using the PREEMPT_RT patch. Moreover,

80 Chapter 6 Implementation

Figure 6.13.: On the left side the linking and compilation process of the EET annotated
legacy code is shown. The annotated legacy code is linked against the bare-
metal implementation of the Timing Measurement and Control Block (TMCB)
library and compiled using the ARM toolchain. On the right side the runtime
architecture is shown, where the annotated legacy binary runs on top of the
ARM Cortex-A9 processor.

when launching QEMU, the chrt command is used to manipulate the real-time
attributes of the process and run it with the highest allowed priority. Figure 6.14
depicts on the left side the linking and compilation process of the annotated legacy
code and adapted DBT tool, whereas the right side of the figure shows the runtime
architecture, which includes the dynamic translation process. In the following the
annotation of legacy code and adaptation of QEMU are covered.

Annotate Legacy Code

Through Algorithms A.1.2 to A.1.4, the legacy code is systematically annotated with
EET blocks. The annotated code is then linked against the TMCB library, where the
EET block is implemented following the structural version described in Section 6.4.1.
The annotation point to be detected by QEMU is a function call, this way we ensure
that there is a branch in the code, consequently this instruction will be the first ones
in its corresponding TB.

Adapt QEMU

QEMU’s source code has to be adapted in such a way that it identifies the structural
EET block annotations in the legacy application and implements their functionality.
Figure 6.15 illustrates in a flow diagram the run-time behaviour of the adapted
QEMU, which is based on the original translation flow presented in Figure 6.1.

6.5 Timing Measurement within Translated Binary 81

Figure 6.14.: On the left side the linking and compilation process of the EET annotated
legacy code and adapted DBT tool are depicted. The annotated legacy code
is linked against the structural implementation of the TMCB library and
compiled using the ARM toolchain. The adapted DBT source code is linked
against the Linux implementation of the TMCB library and compiled using
the x86 Linux toolchain. On the right side the runtime architecture is shown,
which includes the dynamic translation process.

QEMU identifies TBs according to the PC value of the first instruction in the block.
Since the annotation points consist of function calls, it is ensured that the annotations
are the first instruction in the TB. So, if the generated/found TB corresponds to
the annotation’s PC value an auxiliary code is inserted that, through the Linux
implementation of the EET block, gets the start/end time, measures the end-to-end
duration, and saves obtained data in memory for the latter analysis phase. However,
as QEMU chains consequent TBs, start and end TBs would be chained to previous
TBs and it would not be possible to detect them. So, it is necessary to ensure that
the TBs containing the annotation are never chained to the previous one.

6.5.3 Static Approach – Timing Measurement

The static legacy code migration approach employs a suite of tools for binary analysis,
Rev.ng [40], to translate a statically linked Linux binary into an equivalent target
machine code. In order to measure the end-to-end duration of the translated code,

82 Chapter 6 Implementation

Figure 6.15.: QEMU’s dynamic binary translation flow diagram adapted to detect EET
block’s and insert their functionality.

following Algorithms A.1.2 to A.1.4, the legacy code is annotated with EET blocks.
Using a Linux toolchain for the legacy architecture, the annotated code is then
statically linked against the TMCB library, where the EET block is implemented
following the Linux version, as described in Section 6.4.1 and compiled for the
legacy architecture. The statically linked binary is then translated off-line, before
execution (see left side of Figure 6.16. Once translated, the new binary runs on top
of a minimal Linux distribution that has been configured with the PREEMPT_RT
patch. When launching the translated binary, the chrt command is used to run the
application with the highest allowed priority. On the right hand of Figure 6.16 the
run-time architecture of the static migration approach, as it has been described, is
shown.

6.5 Timing Measurement within Translated Binary 83

Figure 6.16.: On the left side the linking, compilation and static translation process of the
annotated legacy code is depicted. The annotated legacy code is linked against
the Linux implementation of the TMCB library and compiled using the ARM
Linux toolchain. The annotated legacy Linux binary is statically translated,
using Rev.ng, to obtain the translated binary. On the right hand the runtime
architecture is shown, where the translated binary runs on top of Linux RT on
the new architecture (x86).

6.6 Timing Control within Static Binary Translation

Integrating the timing enforcement described in previous section (see Section 6.4.2)
within the SBT process, a timing-aware translation is achieved. As already stated
in previous sections, the static approach takes advantage of the Rev.ng binary
analysis tool-suite to statically migrate the legacy code. Through the profiling phase
(see Section 5.2.1), the behavioural legacy code and legacy timing properties are
extracted. Then, the behavioural legacy code is systematically annotated with timing
control blocks in order to make legacy timing properties explicit. The systematic
annotation of timing control blocks is covered through Algorithms A.2.1 to A.2.4
where the legacy system’s model is transformed into a time control block based
annotated legacy code. As it is done with time measurement block based annotated
legacy code, the time control block based annotated behavioural legacy code is
statically linked to the Linux version of the TMCB library and compiled using the
ARM Linux toolchain. The technical implementation of TMCBs as a library enables
its use across multiple platforms. Then, the annotated binary is statically translated
from ARM to x86 ISA using Rev.ng tool-suite. The translated binary runs on top of a
minimal Preempt-RT Linux distribution on the new Intel Atom processor.

84 Chapter 6 Implementation

6.7 Testing Timing & Functional Properties within
Migration Flow

Testing of timing as well as testing functional properties is carried out several times
within the RT legacy software migration flow (see Section 5.3.1, steps 2a and 2b
in Figure 5.1). Sections 5.3.1 and 5.3.2 describe, respectively, the testing of timing
and functional properties from an implementation agnostic point of view, whereas
this subsection sets the focus on the implementation of the test framework for such
testing process.

6.7.1 Testing Timing Properties

To validate the timing behaviour, the systematically (through Algorithms A.2.1
to A.2.4) annotated time control blocks generated time traces at runtime, which
together with systematically (through Algorithms A.3.1 to A.3.5) obtained formal
timing specifications and MULTIC tool provide means to validated the timing be-
haviour. The first timing validation comes after the lifting of timing properties. The
annotated behavioural legacy code, that has been linked against the Linux version
of the TMCB library and compiled for the ARMv7-A ISA, runs on top of a minimal
Preempt-RT Linux distribution on the legacy ARM Cortex-A9 processor to obtain the
corresponding time traces, which are then validated. Timing is validated once again
after the static translation of the annotated legacy binary. Using Rev.ng, the anno-
tated binary for the ARMv7-A ISA is translated to a equivalent (from the functional
and timing behaviour perspective) binary for the x86 ISA. The new binary, which
integrates the timing enforcement, runs on top of the Intel Atom E3866 processor
and the corresponding time traces are obtained for the latter validation.

6.7.2 Testing Functional Properties

Functional behaviour validation is carried out using a set of reference I/Os, which are
obtained for the legacy applications running on the ARM Cortex-A9 processor. After
the lifting of timing properties the functional behaviour is validated for the first time.
The systematically (following Algorithms A.2.1 to A.2.4) annotated behavioural
legacy code, that has been linked against the Linux version of the TMCB library and
compiled for the ARMv7-A ISA, runs on top of the ARM Cortex-A9 processor. On
runtime, the annotated application is feed with the reference input data and obtained

6.7 Testing Timing & Functional Properties within Migration Flow 85

output data is collected. After execution, collected output data is compared to the
reference output data to validate the functional behaviour. Then, the annotated
ARM binary is statically translated into an equivalent (from the functional and
timing behaviour perspective) binary for the x86 ISA. The new binary runs on the
Intel Atom E3866 processor and is feed with the reference input data to collect the
corresponding output data, which is compared to the reference output data after
execution. This way the functional behaviour is validated after the timing-aware
translation process.

86 Chapter 6 Implementation

Evaluation Process and
Result Analysis

7
The following sections evaluate the RT legacy software migration flow described in
Chapter 5. The first section presents an overview of the following sections, mapping
each step on the evaluation process to the contributions that are evaluated and the
answered research questions. Section 7.2 introduces the WCET benchmarks and
applications that take place in the evaluation process. Then, each of the evaluation
steps is presented in a dedicated section. Section 7.3 described the feasibility study
of two machine-adaptable binary translation tools for their use in a timing property
conserving migration process. Then Section 7.4 describes the evaluation of the
implement block level timing enforcement mechanism as well as the systematic
annotation process. Finally Section 7.5 evaluates the timing-aware legacy software
migration approach.

7.1 Overview & Organization

As already stated, the evaluation process consists of three main steps: a feasibility
analysis, the timing enforcement assessment and the timing-aware static migration
assessment. Figure 7.1 depicts a summary of each of the steps in the evaluation
process.

Figure 7.1.: Evaluation overview and organization.

87

The feasibility study itself is the first contribution (C1) of this work. To this end,
through the analysis of the SotA two machine-adaptable binary translators are
selected and their feasibility to port RT legacy software is analysed. This evaluation
step gives an answer to the first and second research questions (RQ1 and RQ2). The
related work analysis serves to find out how legacy code can be ported to a new
architecture while preserving its timing as well as functional behaviour. Then, the
selected machine-adaptable static and dynamic binary translators are assessed with
respect to timing to determine the constraints of binary translation techniques when
porting RT legacy software.

The timing enforcement assessment evaluates the block-level timing annotation
mechanism. The temporal constructs developed as part of Contribution C2 are used
to systematically annotate legacy timing properties into the behavioural legacy code
in Contribution C3. Moreover, to evaluate the timing behaviour on the annotated
code Contribution C4 systematically transforms legacy timing properties into formal
timing specifications, which are used together with the time traces generated at
runtime by the temporal construct to perform the timing test on MULTIC tool. This
process answers to RQ3 describing how to express and annotate into the legacy
application expert knowledge related to legacy timing, as well as evaluating the
proposed timing annotation mechanism.

Finally, the third step in the process evaluates Contribution C5, the integration
of the timing enforcement mechanism into the binary translation process. To this
end, the formal timing specification of Contribution C4 are needed. As a result
of this evaluation step an answer is given to Research Questions RQ4 and RQ5.
The technical implementation of the temporal constructs is presented as a possible
solutions to preserve the annotated timing behaviour during the migration process.
Whereas, the formal timing specifications and time traces generated at runtime by
the temporal constructs serve, together with MULTIC tool, on the validation of the
timing behaviour on the new architecture. As the final step the migration flow is
being analysed, this step serves also as an evaluation of the whole migration process
described in Chapter 5.

7.2 Evaluation Software

Multiple benchmarks and applications take place in the evaluation process, starting
from the Mälardalen WCET benchmarks and followed by the example, industrial
and multirotor applications. The WCET representative benchmarks contain a great
variety of algorithms (including loops, nested loops, use of array and/or matrices,

88 Chapter 7 Evaluation Process and Result Analysis

and use of floating point operations), therefore, their use in the feasibility study
ensures a wide analysis of the timing behaviour of the proposed static and dynamic
solutions. For the timing enforcement and timing-aware migration assessment the
three applications have been used. The example application is a complete application
in the sense that it contains tasks with different periods and some of the tasks are
considered critical code sections and hence through the example application every
timing control block can be evaluated, analysing this way corner cases. However,
this is a self generated application and therefore the great effort of porting non-
proprietary code is excluded. On the contrary, the industrial application is real
legacy industrial code that was implemented by a third party. For this reason, it is a
suitable application to evaluate the effort of porting non-proprietary legacy industrial
code. The main drawback of using the industrial application on the evaluation is
its confidentiality, which hinders the open discussion of obtained results. Moreover,
through the industrial application not every corner case is analysed. To cover the
mentioned drawback, the multirotor application is evaluated. This is also not self
implemented legacy code and hence serves to evaluate the effort of porting third
party code with the advantage of being public, which means that results can be freely
discussed. As for the industrial application, every corner cases is not covered, but
the analysis of corner cases has been achieved through the example application.

7.2.1 Mälardalen WCET benchmarks

The Mälardalen WCET research group provides a suite of WCET representative
benchmark programs to make comparable WCET estimates derived by WCET analy-
sis tools. Given the great amount of benchmarking suites for computer science, this
benchmark suite collects those which have most relevance to WCETa analysis. In
the following the Mälardalen WCET benchmarks are classified for the latter timing
assessment as part of the feasibility study (see Section 7.3).

Classification

When analysing the results, benchmarks are classified into short- and long-running
according to their average execution time on the legacy hardware. We consider a
benchmark to be short-running bellow 100000 ns and long-running over 100000 ns
(measured on the legacy processor). Moreover, for a better result analysis, bench-
marks are classified according to their characteristics (see Table 7.1). To the infor-
mation provided by the Mälardalen WCET research group [46], we have added a
column to classify the benchmarks depending on whether they are dominated by (1)

7.2 Evaluation Software 89

complex computations, (2) simple computations or (3) control flow statements. This
classification is closely related to the next three columns, where branching, memory,
integer and floating point utilization has been classified as high (H), medium (M)
or low (L). The first group is expected to have a low translation overhead, since
the new processor can handle better complex computations. The second group also,
since the translator can efficiently translate this code. Whereas the third group is
expected to have a high translation overhead, since control flow statements hinder
translation efficiency, mainly in the dynamic approach due to the difficulties to apply
TB-chaining, but also in the static approach because statements might depend on
run-time behaviour.

Table 7.1.: Benchmark classification. S = always single path program. L = contains loops.
N = contains nested loops. A = uses arrays and/or matrixes. B = uses bit
operations. R = contains recursion. U = contains unstructured code. F = uses
floating point calculation. CC = code dominated by complex computations. SC
= code dominated by simple computations. CF = code dominated by control
flow statements.

Benchmark S L N A B R U F CC/SC/CF Branching Memory Integer Floating Point

adpcm - 3 - - - - - - CF H L H -
bs - 3 - 3 - - - - CF H M L -
cnt - 3 3 3 - - - - CF H M L -
compress - 3 3 3 - - - - CF H M M -
cover 3 3 - - - - - - CF H L L -
crc 3 3 - 3 3 - - - CC M M M -
duff 3 3 - - - - 3 - CF H M L -
edn 3 3 3 3 3 - - - CC M H H -
expint 3 3 3 - - - - - SC M L M -
fac 3 3 - - - 3 - - CF H L M -
fdct 3 3 - 3 3 - - - CC L H H -
fft1 3 3 3 3 - - - 3 CC M H L H
fibcall 3 3 - - - - - - CF M L L -
fir - 3 3 3 - - - - SC M M L -
insertsort - 3 3 3 - - - - SC M M L -
janne_complex 3 3 3 - - - - - CF H L L -
jfdctint 3 3 - 3 - - - - SC L H H -
lcdnum - 3 - - 3 - - - CF H L L -
lms 3 3 - 3 - - - 3 CC H L L H
ludcmp - 3 3 3 - - - 3 CC H H L H
matmult 3 3 3 3 - - - - SC M H M -
minver 3 3 3 3 - - - 3 CF H H L M
ndes - 3 - 3 3 - - - CC L M H -
ns - 3 3 3 - - - - CF H H L -
prime 3 3 - - - - - - SC M M L -
qsort-exam - 3 3 3 - - - 3 CF H H L M
qurt 3 3 - 3 - - - 3 CC M H L H
recursion 3 - - - - 3 - - CF H L L -
select - 3 3 3 - - - 3 CF H H L M
sqrt 3 3 - - - - - 3 CC H L L H
st 3 - 3 - 3 - - 3 CC M M L H
statemate - 3 - - - - - - CF H L L -

90 Chapter 7 Evaluation Process and Result Analysis

7.2.2 Example application

The example application, first introduced in Section 5.1.3, resembles the typical
pattern of a reactive control system. This bare-metal application includes seven
periodic tasks (with different periods) executed following a static scheduling policy.
The functionality of the example application consists on a bit toggling sequence,
where each of the sequential tasks toggles a specific bit in an output variable (the
bit in the position corresponding to the task number, the bit in position zero never
toggles).

7.2.3 Industrial application

The industrial application is also a reactive control application consisting of a periodic
task that runs every 1 ms. This application is an industrial legacy application that
belongs to an industrial field client from IKERLAN and it is therefore confidential. For
this reason, the functional behaviour of this application cannot be described. Beside
the inconveniences derived from using a confidential application in the evaluation
process, the interest on porting this application lies in the intention to prove the
applicability of the approach to a real legacy industrial applications.

7.2.4 Multirotor application

Multirotors are remotely piloted air-crafts with multiple applications fields such
as agriculture 1, construction 2, aerial photography, fire-fighting 3, and retail and
delivery 4 among many others.

The multirotor application that will be used in the evaluation process is the OFFIS
multirotor [77], which supports a mixed-critical architecture and enables high-
performance processing while still supporting a safe flight control. As part of the
public demonstrator in SAFEPOWER project [38], OFFIS multirotor was extended
to support low-power management methods to reduce power consumption without
jeopardizing the safety critical system’s safety requirements.

1DroneSeed developed drones for insecticide spreading, and is developing drones able to plat trees
2ETH Zürich is working in an aerial construction research project
3DroneFly has developed drones, equipped with thermal cameras, for monitoring as well as individual

search and rescue purpose
4Amazon is working in a the Prime Air delivery project

7.2 Evaluation Software 91

The flight control algorithm is responsible for computing the motor values (control
variable) based on the control orders from the user (set-point) and the sensor data
(process variable). Figure 7.2 depicts the main components of the flight controller,
which are Read Sensors, Sensor Processing, Read Remote, Remote Processing, Flight
Controller, and Send Motor Values. To guarantee a stable flight behaviour, an update
rate of 500 Hz must be ensured in the motor drivers, therefore the control cycle
cannot exceed 2.1 ms.

Figure 7.2.: Overview of the flight controller [82]

7.3 Feasibility Study – Dynamic vs. Static Binary
Translation

The feasibility study starts with the selection of the dynamic and static binary trans-
lation tools under test. Therefore, the first subsection reasons about this selection
process. The evaluation set-up is described then, followed by the corresponding
result’s analysis, which consists of the translation overhead analysis and the static
vs. dynamic migration comparison. Finally from the result analysis the obtained
conclusions are presented.

7.3.1 Translation tool selection

According to the literature review in the are of cross-platform machine-adaptable
binary translators (see Section 3.2), two binary translation tools, one dynamic and
the other static, have been selected for the feasibility study. As already stated in Sec-
tion 6.2, the selected dynamic and static tools are QEMU and Rev.ng respectively.

Several aspects, relevant when targeting a timing-aware legacy software migration
approach, have been considered for the selection of these tools. On the one hand, a
cross-platform translator is as essential requirement given the main objective of this
research work. On the other hand, a machine-adaptable binary translator is also of

92 Chapter 7 Evaluation Process and Result Analysis

great interest. Since for the fact that BT tools are highly dependent on source and
target architectures, developing a BT tool from scratch entails a great effort. QEMU
as well as Rev.ng comply with these aspects, offering a cross-platform source and
target machine-adaptable binary translator. Moreover, they are both open-source
solutions.

7.3.2 Evaluation set-up

In order to perform a feasibility analysis of the static and dynamic binary translation
tools for they use in a timing property conserving migration process, a test framework
has been constructed. This framework provides means to perform a measurement
based WCET analysis on the legacy platform and on the new hardware platform
using both migration approaches, static and dynamic. The feasibility test measures
the execution time of a selection of WCET representative benchmark programs,
provided by the Mälardalen WCET research group [46]. Together with the WCET
representative benchmarks, the execution time of an empty application 5 has also
been analysed. Measuring the empty application execution time provided a mean
to measure the overhead introduced by the underlying system on either migration
approach, which is composed of: QEMU and Linux PREEMPT_RT on the dynamic
solution and the extra instructions inserted on the code by Rev.ng translator and
Linux PREEMPT_RT on the static solution. The obtained results are then analysed
and compared in Sections 7.3.3 and 7.3.4.

As already stated in Section 6.1, the test framework has been implemented on
top of the following two Evaluation Boards (EBs): the ZC702 with a Zynq-7000
XC7Z020 SoC (consisting of a FPGA and an ARM Cortex-A9 processor with an
operation frequency of 666 MHz) and the MinnowBoard Turbot Dual-Core with a
Dual-core Intel Atom E3826 processor with an operation frequency of 1463 MHz.
The former is employed as the source processor (legacy), whereas the latter is
used as the target processor where the static and dynamic legacy code migration
techniques are tested 6. To perform the execution time measurements on the ARM
processor the bare-metal implementation of the timing measurement block has been
used, as described in Section 6.5.1. Whereas to measure the execution time on the
Intel Atom the Linux-based implementation and the structural implementation of
the timing measurement block have been used. Sections 6.5.2 and 6.5.3 describe

5We consider an empty application that whose main function does not contain any instruction.
6Despite the fact that the Cortex-A9 processor is not a legacy hardware platform (which is usually

slower than the new hardware platform), it has been chosen for the feasibility analysis for the fact
that it is supported by the selected SBT tool. However, Rev.ng can be "inexpensively" adapted to
support other source/target ISAs.

7.3 Feasibility Study – Dynamic vs. Static Binary Translation 93

how the measurements are done when applying the dynamic and static approach
respectively. The annotated benchmarks and empty application are compiled without
any optimization. This is a common industrial practice, since usual compilers have
no integrated notion of timing and applied optimizations may lead to large WCET
degradations [39].

To get the results, each annotated benchmark and the annotated empty application
run 15000 times (statistically representative enough) on the ARM Cortex-A9 and
Intel Atom E3826 processors. Through the annotated EET blocks results are saved
in memory and analysed afterwords. Then, the feasibility survey compares the
execution time of the Mälardalen WCET benchmarks and the empty application
running on top of the legacy hardware platform and the new hardware platform
using both, dynamic and static migration approaches. Given that we are targeting
the migration of a reactive control system where the application is periodically
triggered, the first runs can be excluded from the analysis. This way the DBT warm-
up time, code translation/optimization overhead on the first runs when there is still
no translated code available in the code cache, does not affect the measurements.
Moreover, to avoid the overhead of launching QEMU itself, the benchmarks are
periodically executed without re-launching QEMU.

7.3.3 Translation overhead analysis

The translation overhead analysis is performed based on the empty application,
measuring the execution time on the legacy and new ISAs following a dynamic and
static translation process. Figure 7.3 shows the collected data distribution with a
zoom in the maximum execution time result area. Table 7.2 contains the minimum,
maximum, average, standard deviation and 99%-quantile of the collected data.

Results show that, as expected, the average translation overhead of the dynamic
binary translation solution is higher than the average static approach overhead,
almost 3.7x greater. In the dynamic approach, translation and optimization counts
on the measured execution time and even though QEMU applies counter measures,
such as translated code caching and consequent TB chaining, it still implies great
overhead. Whereas the static approach is capable of generating more efficient code,
since neither translation nor optimization counts on the execution time. Therefore,
it is possible to apply more aggressive optimizations.

Regarding the 99%-quantile, which indicates the value bellow which the 99% of the
measured values are found, the difference between the static and dynamic migration
approaches is even greater. The 99%-quantile in the dynamic migration approach is

94 Chapter 7 Evaluation Process and Result Analysis

p
ro

b
ab

ili
ty

 d
en

si
ty

Figure 7.3.: Distribution of execution time data collected running the empty application
on the Intel Atom E3866 processor following a dynamic/static translation
process. The x-axis and the y-axis are respectively the measured duration for
each execution of the empty application and the frequency of occurrence of
each measurement. In the zoom-in area it can be appreciated that the dynamic
approach (light pink) has sporadic corner execution time values that differ
greatly from the average.

13x higher than that in the static approach and 3.9x higher than the dynamic average
execution time. Whereas the 99%-quantile in the static approach is just 1.1x higher
than the static average execution time. The standard deviation is similar in both
migration approaches, 58.9% of the average in the dynamic vs. 51.5% in the static
approach. These results lead to the conclusion that although both approaches have
little difference on the maximum execution time, these sporadic corner execution
time values, which can be appreciated in the zoom-in area in Figure 7.3, are more

Table 7.2.: Maximum, minimum, average, standard deviation and 99%-quantile of the
measured execution time when running the empty application on the Intel Atom
E3866 processor following a dynamic/static translation process. The average
translation overhead of the dynamic binary translation solution is 3.7x higher
than the average static approach overhead. The 99%-quantile in the dynamic
migration approach is almost 13x higher than that in the static approach and
3.9x higher than the dynamic average execution time. The 99%-quantile in
the static approach is just 1.1x higher than the static average execution time.
The standard deviation is similar in both migration approaches, 58.9% of the
average in the dynamic vs. 51.5% in the static approach.

Execution time (ns)

min max avg std 99%-quantile

Dynamic 8342 358739 10043,33 5913,59 38860,76
Static 2558 330480 2751,55 1415,85 2985,18

7.3 Feasibility Study – Dynamic vs. Static Binary Translation 95

frequent in the dynamic migration approach. This is reflected on the 99%-quantile,
which greatly differs form the average.

To get a better knowledge about how each migration approach performs depending
on the characteristics of the translated binary, the following subsection provide a
Static vs. Dynamic re-targeting comparative analysis.

7.3.4 Static vs. Dynamic migration

The comparative analysis is performed based on the execution time results obtained
from running a WCET representative benchmark suite on top of the legacy and new
hardware platforms. The benchmarks are first compiled for the legacy architecture
and then translated following static and dynamic migration approaches.

In order to solve scaling problems, results have been clustered into 4 different
graphs, see Figure 7.4. These graphs show a comparison between the average value
and 99%-quantile (overlapped) of the measured execution time on the new ISAs.
Moreover, the standard deviation is represented as an error bar on the average value.
Each graph shows the timing results obtained for the dynamic and static migration
approaches.

Results show that most of the benchmarks that have been analysed run faster
applying the static translation approach (4.6x faster on average), which might be
due to the following two reasons: (1) the dynamic approach has heavy run-time
overhead, including code translation/optimization and run-time management; and
(2) due to the fact that optimisation time counts on execution time, the dynamic
approach does not apply aggressive optimization, which leads to worse code quality.
However, we did not find any relationship between the benchmark characteristics
and the average dynamic/static execution time ratio. As a general rule, the shorter
the benchmark execution time, the higher the 99%-quantile/average ratio in the
dynamic approach, which goes from 1.03 on long-running to 3.74 on short-running
benchmarks. In fact, QEMU’s run-time overhead is significant on short-running
benchmarks, whereas it is not so, or at least not that much significant, on long-
running benchmarks. Moreover, from analysing the average execution time ratio
between dynamically translated binaries running on the new hardware and legacy
binaries running on the legacy hardware, it can be appreciated that the 10 slowest
benchmarks (bs, fac, fdct, fibcall, janne_complex, lcdnum, minver, qsort_exam,
select, statemate) are mainly composed of control flow statements and simple
computations, except for fdct. Whereas from the analysis of the average execution
time ration between statically translated binaries running on the new hardware

96 Chapter 7 Evaluation Process and Result Analysis

Fi
gu

re
7.

4.
:T

im
in

g
re

su
lt

s
of

be
nc

hm
ar

ks
ru

nn
in

g
on

th
e

le
ga

cy
an

d
ne

w
H

W
pl

at
fo

rm
s:

st
at

ic
vs

.d
yn

am
ic

tr
an

sl
at

io
n.

A
ve

ra
ge

an
d

99
%

-q
ua

nt
ile

ex
ec

ut
io

n
ti

m
e

re
su

lt
s

ar
e

sh
ow

n
ov

er
la

pp
ed

an
d

st
an

da
rd

de
vi

at
io

n
is

sh
ow

n
as

an
er

ro
r

ba
r

on
av

er
ag

e.
M

os
t

of
th

e
be

nc
hm

ar
ks

(e
xc

ep
t

fo
r

lm
s

an
d

st
)

ru
n

fa
st

er
ap

pl
yi

ng
th

e
st

at
ic

tr
an

sl
at

io
n

m
et

ho
d.

T
he

sh
or

te
r

th
e

be
nc

hm
ar

k
ex

ec
ut

io
n

ti
m

e,
th

e
hi

gh
er

th
e

99
%

-q
ua

nt
ile

/a
ve

ra
ge

ra
ti

o
in

th
e

dy
na

m
ic

ap
pr

oa
ch

.T
he

sl
ow

es
t

(w
it

h
re

sp
ec

t
to

ex
ec

ut
io

n
ti

m
e

on
th

e
le

ga
cy

pr
oc

es
so

r)
dy

na
m

ic
al

ly
tr

an
sl

at
ed

be
nc

hm
ar

ks
ar

e
m

ai
nl

y
co

m
po

se
d

of
co

nt
ro

lfl
ow

st
at

em
en

ts
(e

.g
.,

bs
,l

cd
nu

m
,q

so
rt

_e
xa

m
,s

el
ec

t)
.T

he
sl

ow
es

t(
w

it
h

re
sp

ec
t

to
ex

ec
ut

io
n

ti
m

e
on

th
e

le
ga

cy
pr

oc
es

so
r)

st
at

ic
al

ly
tr

an
sl

at
ed

be
nc

hm
ar

ks
ar

e
m

ai
nl

y
co

m
po

se
d

of
co

nt
ro

lfl
ow

st
at

em
en

ts
(e

.g
.,

bs
,

lc
dn

um
)

an
d

co
m

pl
ex

flo
at

in
g

po
in

t
co

m
pu

ta
ti

on
s

(e
.g

.,
ff

t1
,l

m
s,

sq
rt

,s
t)

.

7.3 Feasibility Study – Dynamic vs. Static Binary Translation 97

and legacy binaries running on the legacy processor, it can be appreciated that
among the 10 slowest benchmarks (bs, expint, fft1, janne_complex, lcdnum, lms,
ludcmp, qurt, sqrt, st), some are mainly composed of control flow statements and
little computations (e.g., bs, lcdnum), but many others are mainly composed of
complex computations (e.g., fft1, lms, sqrt, st). However, these slow benchmarks
mainly composed of complex computations, share a common characteristic: they all
contains floating point operations. In fact, benchmarks with complex floating point
operations (e.g., fft1, lms, ludcmp, sqrt, st) have the lowest average dynamic/static
ratio.

7.3.5 Summary

The feasibility study analyses the suitability of QEMU (dynamic) and Rev.ng (static)
machine adaptable binary translation tools for their use in a real-time legacy software
migration process.

From the experimental result analysis, it can be concluded that among the proposed
migration approaches, the static is the most appropriate method to port short-
running real-time legacy code. It can provide, compared to the dynamic proposal,
lower average execution time and 99%-quantile on every benchmark that has been
analysed. Whereas the dynamic approach might be appropriate to port real-time
legacy code with long periods (over 0,01 s) and mainly composed of floating
point complex computations, since the translation and optimization overhead is
not that significant on long-running benchmarks and the static approach implies
a great slowdown on benchmarks mainly composed of complex floating point
computations.

7.4 Block-Level Timing Enforcement Assessment

The timing enforcement solution presented in Section 5.2.2, which consist of a
block-level source code annotation mechanism is being assessed in this section. This
evaluation process is accomplished through the example, industrial, and multirotor
applications. To this end, the first subsection covers the evaluation set-up, followed by
the corresponding result’s analysis, which consists of the evaluation of the functional
as well as timing behaviour. The timing enforcement assessment is completed with
the conclusions reached through the evaluation process.

98 Chapter 7 Evaluation Process and Result Analysis

7.4.1 Evaluation set-up

In order to asses the set of temporal constructs implemented as a block-level timing
enforcement mechanism, different applications have been selected (see Section 7.2).
For each of the applications the functional as well as the timing behaviour have been
assessed. The timing behaviour assessment concerns about the timing behaviour
preservation after the timing annotation process, whereas the functional behaviour
assessment checks that functional properties are preserved after the block-level
timing annotations has been integrated into the application.

The ARM Cortex-A9 has been considered as the legacy processor, so the timing
enforcement assessment is carried out on the ZC702 EB (see Section 6.1). As
described in Section 6.6, each application is systematically annotated with timing
control blocks 7. The annotated application is linked against the Linux version
of the TMCB library and compiled for the ARMv7-A ISA. Then, as described in
Section 6.7.1, to test the timing behaviour the annotated code is systematically
transformed into formal timing specifications. These timing specifications, together
with the time traces that the annotated binary generates when running on top of the
ARM Cortex-A9 processor (running Preempt-RT Linux) are feed to the MULTIC tool
and thus the timing behaviour is validated. Whereas to test the functional behaviour,
as described in Section 6.7.2, the annotated binary running on the ARM Cortex-A9
processor (running Preempt-RT Linux at a 666 MHz operation frequency) is feed
with the reference input data and the obtained output data is compared to the
reference output data to check the functional behaviour.

To get the reference data, the example application (without annotations) runs
on the ARM Cortex-A9 processor and the reference output variable bit toggling
sequence is obtained. Then, the control block annotated example application shown
in Listing 7.1, which was obtained as a result of the lifting of timing properties, runs
on top of the ARM Cortex-A9 processor. The execution lasts for 50000 time steps
(statistically representative enough), and the corresponding functional and timing
data is collected.

For the industrial application, the application (without annotations) running on top
of the ARM Cortex-A9 processor is feed with reference input data that was provided
by an expert group and the control variables are observed to collect the reference
output data over a 5000 time step execution. Then, the control block annotated
industrial application shown in Listing 7.2, which was obtained as a result of the

7To annotate the example application every type of timing control block has been used, whereas to
annotate the industrial and multirotor applications just the PET blocks is needed.

7.4 Block-Level Timing Enforcement Assessment 99

1 void main () {
2 i n i t i a l i z a t i o n () ;
3 BLOCK_PET(20_ms) {
4 BLOCK_FET(10_ms) {
5 BLOCK_BET(5_ms) {
6 t o g g l e _ b i t (1 , &output_var) ; // f1
7 }
8 BLOCK_BET(5_ms) {
9 t o g g l e _ b i t (2 , &output_var) ; // f2

10 }
11 }
12 BLOCK_FET(5_ms) {
13 BLOCK_PNET(3_ms , 2 , 0) {
14 t o g g l e _ b i t (3 , &output_var) ; // f3
15 }
16 BLOCK_PNET(3_ms , 2 , 1) {
17 t o g g l e _ b i t (4 , &output_var) ; // f4
18 }
19 BLOCK_BET(2_ms) {
20 t o g g l e _ b i t (5 , &output_var) ; // f5
21 }
22 }
23 BLOCK_BET(2_ms) {
24 t o g g l e _ b i t (6 , &output_var) ; // f6
25 }
26 BLOCK_BET(3_ms) {
27 t o g g l e _ b i t (7 , &output_var) ; // f7
28 }
29 }
30 }

Listing 7.1: Example application annotated with time control blocks.

lifting of timing properties, runs on top of the ARM Cortex-A9 processor. As stated
before, the execution lasts for 5000 time steps (statistically representative enough),
and the corresponding functional and timing data is collected.

1 in t main(in t argc , char ** argv) {
2 proces s_args (argc , argv) ;
3 allocate_memory () ;
4 i n i t _app () ;
5 BLOCK_PET(1_ms) {
6 read_ inputs () ;
7 execute_app () ;
8 wri te_output s () ;
9 }

10 }

Listing 7.2: Industrial application annotated with time control blocks.

For multirotor application, again the application (without annotations) running on
top of the ARM Cortex-A9 processor is feed with the reference input data, generated
through a flight simulation program i.e. AeroSIM RC [3], and control variables are
observed to collect the reference output data. The scenario behind these data is
that the multirotor takes off, hoovers for a while and then lands, which covers an
execution of about 3000 time steps. Then, the control block annotated multirotor
application shown in Listing 7.3, which was obtained as a result of the lifting of

100 Chapter 7 Evaluation Process and Result Analysis

timing properties, runs on top of the ARM Cortex-A9 processor. As stated before, the
execution lasts for about 3000 time steps (statistically representative enough), and
the corresponding functional and timing data is collected.

1 void main(void)
2 {
3 p l a t f o r m _ i n i t () ;
4 BLOCK_PET(2_ms)
5 {
6 plat form_execute () ;
7 }
8 }

Listing 7.3: Multirotor application annotated with time control blocks.

7.4.2 Timing test

The timing test validates the timing behaviour of annotated applications (example –
see Listing 7.1, industrial – see Listing 7.2, and multirotor – see Listing 7.3) running
on the ARM Cortex-A9 processor. Using the MULTIC tool, the time traces that
each of the annotated applications generates at run-time are validated against the
ideal component-contract structure for each application (example – see Figure 7.5,
industrial – see Figure 7.6, and multirotor – see Figure 7.7) obtained as a result of
the lifting of timing properties.

Example application – ideal contracts

Table 7.3 shows the time traces generated by the annotated example application
running on the ARM Cortex-A9 processor validated against the ideal component-
contract structure (see Figure 7.5).

Table 7.3.: Time traces generated by the annotated example application running on the ARM
Cortex-A9 processor validated against the ideal component-contract structure
(see Figure 7.5). The first column shows the time trace. The second column
shows the valid time interval according to time traces and the corresponding
contract. The third column shows contract pass/fail information.

Time Trace Contract limitation Pass/Fail

PET20.Entry 0 ns Should occur within [0,0] ns. 3

FET21.Entry 504825 ns Should occur within [0,0] ns. 7

BET22.Entry 580910 ns Should occur within [0,0] ns. 7

BET22.Exit 706839 ns Should occur within [580910,5580910] ns. 3

BET26.Entry 761326 ns Should occur within [0,5000000] ns. 3

Continued on next page

7.4 Block-Level Timing Enforcement Assessment 101

Table 7.3 – Continued from previous page

Time Trace Contract limitation Pass/Fail

BET26.PEntry 504825 ns Should occur within [0,0] ns. 7

BET26.Exit 901679 ns Should occur within [504825,10504825] ns 3

FET21.Exit 9987845 ns Should occur within [10504825,10504825] ns. 7

FET31.Entry 10070300 ns Should occur within [10000000,10000000] ns. 7

PNET32.Entry 10131856 ns Should occur within [10000000,10000000] ns. 7

PNET32.Exit 10248073 ns Should occur within [10131856,13131856] ns. 3

BET40.Entry 10304820 ns Should occur within [10000000,13000000] ns. 3

BET40.PEntry 10070300 ns Should occur within [10000000,10000000] ns. 7

BET40.Exit 10418145 ns Should occur within [10304820,15070300] ns. 3

FET31.Exit 14497737 ns Should occur within [15070300,15070300] ns. 7

BET45.Entry 14593920 ns Should occur within [15000000,15000000] ns. 7

BET45.Exit 14716674 ns Should occur within [14593920,16593920] ns. 3

BET49.Entry 14769626 ns Should occur within [15000000,17000000] ns. 7

BET49.PEntry 0 ns Should occur within [0,0] ns. 3

BET49.Exit 14907534 ns Should occur within [15000000,19769626] ns. 7

PET20.Exit 19989077 ns Should occur within [20000000,20000000] ns. 7

PET20.Entry 20052985 ns Should occur within [20000000,20000000] ns. 7

FET21.Entry 20112780 ns Should occur within [20504825,20504825] ns. 7

BET22.Entry 20171498 ns Should occur within [20580910,20580910] ns. 7

BET22.Exit 20284313 ns Should occur within [20171498,25171498] ns. 3

BET26.Entry 20337595 ns Should occur within [15761326,25761326] ns. 3

BET26.PEntry 20112780 ns Should occur within [20504825,20504825] ns. 7

BET26.Exit 20449783 ns Should occur within [20337595,30112780] ns. 3

FET21.Exit 29529340 ns Should occur within [30112780,30112780] ns. 7

FET31.Entry 29600643 ns Should occur within [30070300,30070300] ns. 7

PNET36.Entry 29663642 ns Should occur within [30000000,30000000] ns. 7

PNET36.Exit 29779277 ns Should occur within [29663642,32663642] ns. 3

BET40.Entry 29832028 ns Should occur within [27304820,33304820] ns. 3

BET40.PEntry 29600643 ns Should occur within [30070300,30070300] ns. 7

BET40.Exit 29944063 ns Should occur within [29832028,34600643] ns. 3

FET31.Exit 34023382 ns Should occur within [34600643,34600643] ns. 7

BET45.Entry 34083446 ns Should occur within [34593920,34593920] ns. 7

BET45.Exit 34195623 ns Should occur within [34083446,36083446] ns. 3

BET49.Entry 34248931 ns Should occur within [32769626,36769626] ns. 3

BET49.PEntry 20052985 ns Should occur within [20000000,20000000] ns. 7

BET49.Exit 34382318 ns Should occur within [35052985,39248931] ns. 7

PET20.Exit 39461774 ns Should occur within [40052985,40052985] ns. 7

102 Chapter 7 Evaluation Process and Result Analysis

Figure 7.5.: Ideal component-contract structure for the annotated example application. Each
component has its corresponding contract. Contracts describe the assumptions
and guarantees observable at ports (named in blue colour). Contacts describe
an ideal behaviour and therefore do not describe possible time variations (jitter)
present in real a scenario.

Industrial application – ideal contracts

Table 7.4 shows the time traces generated by the annotated industrial application
running on the ARM Cortex-A9 processor validated against the ideal component-
contract structure (see Figure 7.6).

Figure 7.6.: Ideal component-contract structure for the annotated industrial application.
The only component (PET463) has its corresponding contract. The contract
describes the assumption and guarantee observable at Entry/Exit ports (named
in blue colour). The contract describes an ideal behaviour and therefore does
not describe possible time variations (jitter) present in real a scenario.

7.4 Block-Level Timing Enforcement Assessment 103

Table 7.4.: Time traces generated by the annotated industrial application running on the
ARM Cortex-A9 processor validated against the ideal component-contract struc-
ture (see Figure 7.6). The first column shows the time trace. The second column
shows the valid time interval according to time traces and the corresponding
contract. The third column shows contract pass/fail information.

Time Trace Contract limitation Pass/Fail

PET463.Entry 0 ns Should occur within [0,0] ns. 3

PET463.Exit 1184268 ns Should occur within [1000000,1000000] ns. 7

PET463.Entry 1250930 ns Should occur within [1000000,1000000] ns. 7

PET463.Exit 2290602 ns Should occur within [2250930,2250930] ns. 7

PET463.Entry 2368367 ns Should occur within [2250930,2250930] ns. 7

PET463.Exit 3397243 ns Should occur within [3368367,3368367] ns 7

PET463.Entry 3464529 ns Should occur within [3368367,3368367] ns. 7

PET463.Exit 4495282 ns Should occur within [4464529,4464529] ns. 7

PET463.Entry 4558500 ns Should occur within [4464529,4464529] ns. 7

PET463.Exit 5588914 ns Should occur within [5495282,5495282] ns. 7

PET463.Entry 5665185 ns Should occur within [5495282,5495282] ns. 7

PET463.Exit 6695552 ns Should occur within [6665185,6665185] ns. 7

PET463.Entry 6759117 ns Should occur within [6665185,6665185] ns. 7

PET463.Exit 7789133 ns Should occur within [7759117,7759117] ns. 7

PET463.Entry 7851112 ns Should occur within [7759117,7759117] ns. 7

PET463.Exit 8880746 ns Should occur within [8851112,8851112] ns. 7

PET463.Entry 8942968 ns Should occur within [8851112,8851112] ns. 7

PET463.Exit 9972494 ns Should occur within [9942968,9942968] ns. 7

PET463.Entry 10034665 ns Should occur within [9942968,9942968] ns. 7

PET463.Exit 11064074 ns Should occur within [11034665,11034665] ns. 7

Multirotor application – ideal contracts

Table 7.5 shows the time traces generated by the annotated flight control application
running on the ARM Cortex-A9 processor validated against the ideal component-
contract structure (see Figure 7.7).

Figure 7.7.: Ideal component-contract structure for the annotated multirotor application.
The only component (PET36) has its corresponding contract. The contract
describes the assumption and guarantee observable at Entry/Exit ports (named
in blue colour). The contract describes an ideal behaviour and therefore does
not describe possible time variations (jitter) present in real a scenario.

104 Chapter 7 Evaluation Process and Result Analysis

Table 7.5.: Time traces generated by the annotated flight control application running on the
ARM Cortex-A9 processor validated against the ideal component-contract struc-
ture (see Figure 7.7). The first column shows the time trace. The second column
shows the valid time interval according to time traces and the corresponding
contract. The third column shows contract pass/fail information.

Time Trace Contract limitation Pass/Fail

PET36.Entry 0 ns Should occur within [0,0] ns. 3

PET36.Exit 2042507 ns Should occur within [2000000,2000000] ns. 7

PET36.Entry 2122859 ns Should occur within [2000000,2000000] ns. 7

PET36.Exit 4155069 ns Should occur within [4122859,4122859] ns. 7

PET36.Entry 4221302 ns Should occur within [4122859,4122859] ns. 7

PET36.Exit 6251056 ns Should occur within [6221302,6221302] ns 7

PET36.Entry 6313935 ns Should occur within [6221302,6221302] ns. 7

PET36.Exit 8344471 ns Should occur within [8313935,8313935] ns. 7

PET36.Entry 8422069 ns Should occur within [8313935,8313935] ns. 7

PET36.Exit 10452413 ns Should occur within [10422069,10422069] ns. 7

PET36.Entry 10515106 ns Should occur within [10422069,10422069] ns. 7

PET36.Exit 12545624 ns Should occur within [12515106,12515106] ns. 7

PET36.Entry 12607801 ns Should occur within [12515106,12515106] ns. 7

PET36.Exit 14636994 ns Should occur within [14607801,14607801] ns. 7

PET36.Entry 14698283 ns Should occur within [14607801,14607801] ns. 7

PET36.Exit 16727964 ns Should occur within [16698283,16698283] ns. 7

PET36.Entry 16790705 ns Should occur within [16698283,16698283] ns. 7

PET36.Exit 18820345 ns Should occur within [18790705,18790705] ns. 7

PET36.Entry 18893214 ns Should occur within [18790705,18790705] ns. 7

PET36.Exit 20923498 ns Should occur within [20893214,20893214] ns. 7

Given that the contracts presented in Figure 7.5, Figure 7.6, and Figure 7.7 are ideal
and therefore do not consider any timing variation cause by the overhead of time
control block management or by the underlying OS and hardware platform itself, a
great percentage of the traces did not pass the corresponding contract (about 60%
of the time traces for the example application, and about 99% for the industrial and
multirotor applications). In order to cover the timing deviations present in a real
scenario, contracts are adjusted as follows:

• Adjust the offset in some of the assumptions (following a repetition pattern)
to cover little variations on the time distance from the start of execution to the
first occurrence of an event on a particular port.

• Adjust the interval in some of the assumptions (following a repetition pat-
tern) to cover little variations on the time distance between repetitive event
occurrences on a particular port.

7.4 Block-Level Timing Enforcement Assessment 105

• Adjust the interval in some of the guarantees (following a causal reaction
pattern) to cover little variations on the time distance between causally related
events on input/output ports.

Example application – annotation adjusted contracts

Figure 7.8 shows the adjusted component-contract structure for the annotated
example application. Changes in the contracts with respect to the ideal component-
contract structure in Figure 7.5 are shown in bold. Up to time steps 1600 adjustments
had to be done on the contracts, then the example application run for over 5000 time
steps without failing any contract. Table 7.6 shows the time traces generated by the
annotated example application running on the ARM Cortex-A9 processor validated
against the adjusted component-contract structure presented in Figure 7.8. Changes
in the time interval with respect to the validation against the ideal component-
contract structure (see Table 7.3) are shown in bold.

Figure 7.8.: Adjusted component-contract structure for the annotated example application.
Each component has its corresponding contract. Contracts describe the assump-
tions and guarantees observable at input/output ports (named in blue colour).
Contracts have been adjusted to cover possible jitter present on a real scenario,
in this case adjustments are applied for the annotated example application
running on the ARM Cortex-A9 processor. Changes in the contracts with respect
to the ideal component-contract structure in Figure 7.5 are shown in bold.

106 Chapter 7 Evaluation Process and Result Analysis

Table 7.6.: Time traces generated by the annotated example application running on the ARM
Cortex-A9 processor validated against the adjusted component-contract structure
(see Figure 7.8). The first column shows the time trace. The second column
shows the valid time interval according to time traces and the corresponding
contract, changes with respect to the validation with ideal component-contract
structure (see Table 7.3) are shown in bold. The third column shows contract
pass/fail information.

Time Trace Contract limitation Pass/Fail

PET20.Entry 0 ns Should occur within [0,0] ns. 3

FET21.Entry 504825 ns Should occur within [0,600000] ns. 3

BET22.Entry 580910 ns Should occur within [0,600000] ns. 3

BET22.Exit 706839 ns Should occur within [580910,5580910] ns. 3

BET26.Entry 761326 ns Should occur within [0,5000000] ns. 3

BET26.PEntry 504825 ns Should occur within [0,600000] ns. 3

BET26.Exit 901679 ns Should occur within [761326,10504825] ns 3

FET21.Exit 9987845 ns Should occur within [9904825,10504825] ns. 3

FET31.Entry 10070300 ns Should occur within [10000000,10100000] ns. 3

PNET32.Entry 10131856 ns Should occur within [10000000,10200000] ns. 3

PNET32.Exit 10248073 ns Should occur within [10131856,13131856] ns. 3

BET40.Entry 10304820 ns Should occur within [10000000,13000000] ns. 3

BET40.PEntry 10070300 ns Should occur within [10000000,10100000] ns. 3

BET40.Exit 10418145 ns Should occur within [10304820,15070300] ns. 3

FET31.Exit 14497737 ns Should occur within [14470300,15070300] ns. 3

BET45.Entry 14593920 ns Should occur within [14500000,15000000] ns. 3

BET45.Exit 14716674 ns Should occur within [14593920,16593920] ns. 3

BET49.Entry 14769626 ns Should occur within [14700000,17000000] ns. 3

BET49.PEntry 0 ns Should occur within [0,0] ns. 3

BET49.Exit 14907534 ns Should occur within [14769626,19769626] ns. 3

PET20.Exit 19989077 ns Should occur within [19400000,20000000] ns. 3

PET20.Entry 20052985 ns Should occur within [19400000,20100000] ns. 3

FET21.Entry 20112780 ns Should occur within [19904825,20604825] ns. 3

BET22.Entry 20171498 ns Should occur within [19980910,20680910] ns. 3

BET22.Exit 20284313 ns Should occur within [20171498,25171498] ns. 3

BET26.Entry 20337595 ns Should occur within [15761326,25761326] ns. 3

BET26.PEntry 20112780 ns Should occur within [19904825,20604825] ns. 3

BET26.Exit 20449783 ns Should occur within [20337595,30112780] ns. 3

FET21.Exit 29529340 ns Should occur within [29512780,30112780] ns. 3

FET31.Entry 29600643 ns Should occur within [26970300,32570300] ns. 3

PNET36.Entry 29663642 ns Should occur within [29600000,30000000] ns. 3

PNET36.Exit 29779277 ns Should occur within [29663642,32663642] ns. 3

BET40.Entry 29832028 ns Should occur within [27204820,33304820] ns. 3

BET40.PEntry 29600643 ns Should occur within [26970300,32570300] ns. 3

BET40.Exit 29944063 ns Should occur within [29832028,34600643] ns. 3

FET31.Exit 34023382 ns Should occur within [34000643,34600643] ns. 3

BET45.Entry 34083446 ns Should occur within [31393920,37293920] ns. 3

BET45.Exit 34195623 ns Should occur within [34083446,36083446] ns. 3

Continued on next page

7.4 Block-Level Timing Enforcement Assessment 107

Table 7.6 – Continued from previous page

Time Trace Contract limitation Pass/Fail

BET49.Entry 34248931 ns Should occur within [31569626,37469626] ns. 3

BET49.PEntry 20052985 ns Should occur within [19400000,20100000] ns. 3

BET49.Exit 34382318 ns Should occur within [34352985,39248931] ns. 3

PET20.Exit 39461774 ns Should occur within [39452985,40052985] ns. 3

Industrial application – annotation adjusted contracts

Figure 7.9 shows the adjusted component-contract structure for the annotated
industrial application. Changes in the contracts with respect to the ideal component-
contract structure in Figure 7.6 are shown in bold. On the first two time steps
adjustments had to be done on the contract to cover the previously mentioned
needs. The interval in the assumption is set to [1000, 1300] us, whereas the interval
in the guarantee is set to [1000, 1200] us. Then, the industrial application runs for
over 5000 time steps without any further failure. Table 7.7) shows the time traces
generated by the annotated industrial application running on the ARM Cortex-A9
processor validated against the adjusted component-contract structure presented in
Figure 7.9. Changes in the time interval with respect to the validation against the
ideal component-contract structure (see Table 7.4) are shown in bold.

Figure 7.9.: Adjusted component-contract structure for the annotated industrial application.
The only component (PET463) has its corresponding contract. The contract
describes the assumption and guarantee observable at Entry/Exit ports (named
in blue colour). The contract has been adjusted to cover possible jitter present
on a real scenario, in this case adjustments are applied for the annotated
industrial application running on the ARM Cortex-A9 processor. Changes in the
contracts with respect to the ideal component-contract structure in Figure 7.6
are shown in bold.

108 Chapter 7 Evaluation Process and Result Analysis

Table 7.7.: Time traces generated by the annotated industrial application running on the
ARM Cortex-A9 processor validated against the adjusted component-contract
structure (see Figure 7.9). The first column shows the time trace. The second
column shows the valid time interval according to time traces and the corre-
sponding contract, changes with respect to the validation with ideal component-
contract structure (see Table 7.4) are shown in bold. The third column shows
contract pass/fail information.

Time Trace Contract limitation Pass/Fail

PET463.Entry 0 ns Should occur within [0,0] ns. 3

PET463.Exit 1184268 ns Should occur within [1000000,1200000] ns. 3

PET463.Entry 1250930 ns Should occur within [1000000,1300000] ns. 3

PET463.Exit 2290602 ns Should occur within [2250930,2450930] ns. 3

PET463.Entry 2368367 ns Should occur within [2250930,2550930] ns. 3

PET463.Exit 3397243 ns Should occur within [3368367,3568367] ns 3

PET463.Entry 3464529 ns Should occur within [3368367,3668367] ns. 3

PET463.Exit 4495282 ns Should occur within [4464529,4664529] ns. 3

PET463.Entry 4558500 ns Should occur within [4464529,4764529] ns. 3

PET463.Exit 5588914 ns Should occur within [5495282,5695282] ns. 3

PET463.Entry 5665185 ns Should occur within [5495282,5795282] ns. 3

PET463.Exit 6695552 ns Should occur within [6665185,6865185] ns. 3

PET463.Entry 6759117 ns Should occur within [6665185,6965185] ns. 3

PET463.Exit 7789133 ns Should occur within [7759117,7959117] ns. 3

PET463.Entry 7851112 ns Should occur within [7759117,8059117] ns. 3

PET463.Exit 8880746 ns Should occur within [8851112,9051112] ns. 3

PET463.Entry 8942968 ns Should occur within [8851112,9151112] ns. 3

PET463.Exit 9972494 ns Should occur within [9942968,10142968] ns. 3

PET463.Entry 10034665 ns Should occur within [9942968,10242968] ns. 3

PET463.Exit 11064074 ns Should occur within [11034665,11234665] ns. 3

Multirotor application – annotation adjusted contracts

Figure 7.10 shows the adjusted component-contract structure for the annotated
multirotor application. Changes in the contracts with respect to the ideal component-
contract structure in Figure 7.7 are shown in bold. On the first two time steps
adjustments had to be done on the contract to cover the previously mentioned needs.
The interval in the assumption is adjusted to [2000, 2200] us and the interval y in
the guarantee is set to [2000, 2100] us. Then, the flight control application runs for
almost 3000 time steps without any further failure. Table 7.8 shows the time traces
generated by the annotated flight control application running on the ARM Cortex-A9
processor validated against the adjusted component-contract structure presented in
Figure 7.10. Changes in the time interval with respect to the validation against the
ideal component-contract structure (see Table 7.5) are shown in bold.

7.4 Block-Level Timing Enforcement Assessment 109

Figure 7.10.: Adjusted component-contract structure for the annotated multirotor appli-
cation. The only component (PET36) has its corresponding contract. The
contract describes the assumption and guarantee observable at Entry/Exit
ports (named in blue colour). The contract has been adjusted to cover possible
jitter present on a real scenario, in this case adjustments are applied for the
annotated multirotor application running on the ARM Cortex-A9 processor.

Table 7.8.: Time traces generated by the annotated flight control application running on the
ARM Cortex-A9 processor validated against the adjusted component-contract
structure (see Figure 7.10). The first column shows the time trace. The second
column shows the valid time interval according to time traces and the corre-
sponding contract, changes with respect to the validation with ideal component-
contract structure (see Table 7.5) are shown in bold. The third column shows
contract pass/fail information.

Time Trace Contract limitation Pass/Fail

PET36.Entry 0 ns Should occur within [0,0] ns. 3

PET36.Exit 2042507 ns Should occur within [2000000,2100000] ns. 3

PET36.Entry 2122859 ns Should occur within [2000000,2200000] ns. 3

PET36.Exit 4155069 ns Should occur within [4122859,4222859] ns. 3

PET36.Entry 4221302 ns Should occur within [4122859,4322859] ns. 3

PET36.Exit 6251056 ns Should occur within [6221302,6321302] ns 3

PET36.Entry 6313935 ns Should occur within [6221302,6421302] ns. 3

PET36.Exit 8344471 ns Should occur within [8313935,8413935] ns. 3

PET36.Entry 8422069 ns Should occur within [8313935,8513935] ns. 3

PET36.Exit 10452413 ns Should occur within [10422069,11422069] ns. 3

PET36.Entry 10515106 ns Should occur within [10422069,12422069] ns. 3

PET36.Exit 12545624 ns Should occur within [12515106,13515106] ns. 3

PET36.Entry 12607801 ns Should occur within [12515106,14515106] ns. 3

PET36.Exit 14636994 ns Should occur within [14607801,15607801] ns. 3

PET36.Entry 14698283 ns Should occur within [14607801,16607801] ns. 3

PET36.Exit 16727964 ns Should occur within [16698283,17698283] ns. 3

PET36.Entry 16790705 ns Should occur within [16698283,18698283] ns. 3

PET36.Exit 18820345 ns Should occur within [18790705,19790705] ns. 3

PET36.Entry 18893214 ns Should occur within [18790705,20790705] ns. 3

PET36.Exit 20923498 ns Should occur within [20893214,21893214] ns. 3

Result analysis

Result show that systematically generated formal timing specifications needed to
be adjusted to cover the timing deviations caused by the overhead of time control
block management or by the underlying OS and hardware platform itself. After the
adjustment of formal timing specifications, time traces generated at runtime by the

110 Chapter 7 Evaluation Process and Result Analysis

annotate example, industrial and multirotor applications fit into the defined timing
contracts. Future work considers characterizing the overhead generated by control
block management and adjusting the blocks accordingly to, at some point, overcome
it (see Section 8.2).

7.4.3 Functional test

The functional test compares the reference output value for control variables with
the output value (for those control variables) when running the annotated applica-
tions (example – see Listing 7.1, industrial – see Listing 7.2, and multirotor – see
Listing 7.3) on the ARM Cortex-A9 processor (using reference input data for state
variables).

Example application

Figure 7.11 shows the bit toggling sequence of the output variable on both test
scenarios. However, due to scaling problems, the figure depicts just the output
variable value for the first 100 time steps.

Figure 7.11.: Functional test results for the annotated example application running on the
ARM Cortex-A9 processor. For each time step (X-axis) the corresponding output
variable value (Y-axis) is shown, both, for the legacy example application
(without annotations) as well as for the annotated example application. On
both test scenarios (legacy and annotated), the bit toggling sequence is equal,
although there is a delay on the annotated application with respect to the
legacy application due to time control block management.

7.4 Block-Level Timing Enforcement Assessment 111

Industrial application

Figure 7.12 shows the output values for each of the industrial application control
variables on both test scenarios. Control variables are observed for a 5000 time step
interval.

(a) Output variable 1

(b) Output variable 2

Figure 7.12.: Functional test results for the annotated industrial application running on the
ARM Cortex-A9 processor. (a) shows for each time step (in the X-axis) the
corresponding output value of control variable 1 (in the Y-axis), whereas (b)
shows for each time step (in the X-axis) the corresponding output value of
control variable 2 (in the Y-axis). Both, (a) and (b) show the results obtained
for the legacy industrial application (without annotations) as well as for the
annotated industrial application. On both test scenario (legacy and annotated),
the output value of the control variables is equal, although there is a delay on
the annotated application with respect to the legacy application due to time
control block management.

112 Chapter 7 Evaluation Process and Result Analysis

Multirotor application

Figure 7.13 shows the output values for each of the multirotor application control
variables on both test scenarios. Control variables are observed for an interval of
about 3000 time steps (about 6 s simulation).

Result analysis

Results show that the signal observed on every control variable is equivalent (in
value) before and after the lifting of timing properties. However, due to time control
block management overhead, a delay (with respect to non-annotated code) is
observable on every control variable output signal. This delay in the response of
the controller might slightly disturb the functional behaviour of the overall control
system, therefore, for each particular case a further analysis (on a more realistic
scenario) would be necessary to determine whether the functional behaviour is
acceptable after the lifting of timing properties. Future work considers providing
support to port legacy platform I/O port dependent code, which will provide means
to perform a functional test on a more realistic scenario (see Section 8.2).

7.4.4 Summary

The block-level timing enforcement assessment, evaluates the lifting of timing prop-
erties presented in Section 5.2 through an example, an industrial and a multirotor
use-case. The former, is used to evaluate corner-cases, however it is self generated
code, therefore, the industrial and multirotor use-cases are used to evaluate the
effort of porting real third party legacy code.

According to the timing test, results show that systematically generated formal
timing specifications needed to be adjusted to cover timing deviations caused by
the overhead of time control block management as well as timing deviations caused
by the underlying OS and hardware platform itself. For each case it might be
necessary to evaluate if the introduced overhead is affordable. Once timing contracts
are adjusted, as shown in Figures 7.8 to 7.10, time traces generated at runtime
through the annotated time control blocks (see Tables 7.6 to 7.8) fit into the defined
time contacts. Therefore, it can be concluded that the proposed block-level timing
enforcement mechanism incurs some overhead, but in turn it can be applied through
the lifting process to transform legacy timing properties (implicit on the legacy

7.4 Block-Level Timing Enforcement Assessment 113

(a)
Front

m
otor

point
(b)

R
ear

m
otor

point

(c)
R

ight
m

otor
point

(d)
Left

m
otor

point

Figure
7.13.:

Functionaltest
results

for
the

annotated
m

ultirotor
application

running
on

the
A

R
M

C
ortex-A

9
processor.(a)

show
s

for
each

tim
e

step
(in

the
X-axis)

the
corresponding

value
ofm

otor
front

point
variable

(in
the

Y-axis),(b)
show

s
for

each
tim

e
step

(in
the

X-axis)
the

corresponding
value

of
m

otor
rear

point
variable

(in
the

Y-axis),(c)
show

s
for

each
tim

e
step

(in
the

X-axis)
the

corresponding
value

ofm
otor

right
point

variable
(in

the
Y-axis),and

(d)
show

s
for

each
tim

e
step

(in
the

X-axis)
the

corresponding
value

ofm
otor

left
point

variable
(in

the
Y-axis).Every

graph,(a),(b),(c),and
(d),show

the
results

obtained
for

the
legacy

m
ultirotor

application
(w

ithout
annotations)

as
w

ellas
for

the
annotated

m
ultirotor

application.O
n

both
test

scenarios
(legacy

and
annotated),the

output
value

ofcontrolvariables
is

equal,although
there

is
a

delay
on

the
annotated

application
w

ith
respect

to
the

legacy
application

due
to

tim
e

controlblock
m

anagem
ent.

114 Chapter 7 Evaluation Process and Result Analysis

code) into explicit timing properties that will then be preserved on the translation
process.

Functional test results (see Figures 7.11 to 7.13) show that the transformations
applied on the lifting of timing properties do not disturb the value observed on
any of the control variable output signals. However, due to time control block
management overhead, a delay is observable in the controller response time with
respect to the (original) legacy system, which might slightly disturb the functional
behaviour of the overall control system. Therefore, for each particular case a further
analysis (on a more realistic scenario) would be necessary to determine whether the
functional behaviour is acceptable after the lifting of timing properties. As described
in Section 8.2, future work considers I/O virtualization in order to provides means
for such analysis.

7.5 Timing-aware Static Legacy Software Translation
Assessment

This section evaluates the timing equivalent static BT approach described in Sec-
tion 5.4.1. As the timing enforcement assessment, the assessment of the timing-aware
static legacy software translation is accomplished through the example, industrial,
and multirotor applications. Therefore, the first subsection covers the evaluation
set-up, which is followed by the results analysis section where the functional and
timing behaviour is evaluated. To end up, the last section presents the conclusion
reached through the evaluation process.

7.5.1 Evaluation set-up

As already state, in order to offer a wide analysis, multiple applications have been
selected to assess from a timing and functional perspective the proposed timing-
aware static translation approach (see Section 7.2). The timing behaviour assessment
concerns about the preservation of the timing behaviour after the timing-aware static
translation is accomplished, whereas the functional behaviour assessment checks
that the functional behaviour is preserved after the timing-aware static translation
process.

As for feasibility study, the ARM Cortex-A9 and the Intel Atom E3866 processors have
been selected as source and target respectively. So, the timing-aware translation

7.5 Timing-aware Static Legacy Software Translation Assessment 115

assessment is carried out on the ZC702 and Minnowboard EBs (see Section 6.1). As
described in Section 6.6, each application is systematically annotated with timing
control blocks 7. The annotated application is linked against the Linux implemen-
tation of the TMCB library and compiled for the ARMv7-A ISA. Then, using Rev.ng
tool, the annotated ARM binary is statically translated into an equivalent binary
for x86 ISA that is executed on top of the Intel Atom E3866 processor (running
Preempt-RT Linux). To test the timing behaviour, as described in Section 6.7.1, from
the annotated legacy code formal timing specifications are systematically obtained.
These timing specifications, which have been adjusted as part of the block-level
timing enforcement assessment, are latter used on the MULTIC tool, together with
the time traces that the translated binary generates when running on the Intel Atom
processor, to validate the timing behaviour. To test the functional behaviour, as
described in Section 6.7.2, the translated binary running on the Intel Atom processor
is feed with the reference input data and the obtained output data is compared to
the reference output data, Section 7.4.1 describes how reference input/output data
is obtained for each of the applications (example, industrial and multirotor).

7.5.2 Timing test

The timing test validates the timing behaviour of translated applications (example
– see Listing 7.1, industrial – see Listing 7.2, and multirotor – see Listing 7.3)
running on the Intel Atom E3866 processor. Using the MULTIC tool, the time traces
that each of the translated applications generates at run-time are validated against
the component-contract structure for each application (example – see Figure 7.8,
industrial – see Figure 7.9, and multirotor – see Figure 7.10), obtained as a result
of the lifting of timing properties and adjusted as part of the timing enforcement
assessment.

Example application – annotation adjusted contracts

Table 7.9 shows the time traces generated by the translated example application run-
ning on the Intel Atom E3866 processor validated against the component-contract
structure presented in Figure 7.8, adjusted as part of the timing enforcement assess-
ment.

116 Chapter 7 Evaluation Process and Result Analysis

Table 7.9.: Time traces generated by the translated example application running on the
Intel Atom E3866 processor validated against the (before translation) adjusted
component-contract structure (see Figure 7.8). The first column shows the time
trace. The second column shows the valid time interval according to time traces
and the corresponding contract. The third column shows contract pass/fail
information.

Time Trace Contract limitation Pass/Fail

PET20.Entry 0 ns Should occur within [0,0] ns. 3

FET21.Entry 860897 ns Should occur within [0,600000] ns. 7

BET22.Entry 1093058 ns Should occur within [0,600000] ns. 7

BET22.Exit 1447619 ns Should occur within [1093058,6093058] ns. 3

BET26.Entry 1597033 ns Should occur within [0,5000000] ns. 3

BET26.PEntry 860897 ns Should occur within [0,600000] ns. 7

BET26.Exit 1966338 ns Should occur within [1597033,10860897] ns 3

FET21.Exit 11138808 ns Should occur within [10260897,10860897] ns. 7

FET31.Entry 11445947 ns Should occur within [10000000,10100000] ns. 7

PNET32.Entry 11644891 ns Should occur within [10000000,10200000] ns. 7

PNET32.Exit 12063298 ns Should occur within [11644891,14644891] ns. 3

BET40.Entry 12233075 ns Should occur within [10000000,13000000] ns. 3

BET40.PEntry 11445947 ns Should occur within [10000000,10100000] ns. 7

BET40.Exit 12580840 ns Should occur within [12233075,16445947] ns. 3

FET31.Exit 17023455 ns Should occur within [15845947,16445947] ns. 7

BET45.Entry 17404573 ns Should occur within [14500000,15000000] ns. 7

BET45.Exit 17816493 ns Should occur within [17404573,19404573] ns. 3

BET49.Entry 17987424 ns Should occur within [14700000,17000000] ns. 7

BET49.PEntry 0 ns Should occur within [0,0] ns. 3

BET49.Exit 18307373 ns Should occur within [17987424,20000000] ns. 3

PET20.Exit 20486905 ns Should occur within [19400000,20000000] ns. 7

PET20.Entry 20932500 ns Should occur within [19400000,20100000] ns. 7

FET21.Entry 21241476 ns Should occur within [20260897,20960897] ns. 7

BET22.Entry 21532219 ns Should occur within [20493058,21193058] ns. 7

BET22.Exit 22164893 ns Should occur within [21532219,26532219] ns. 3

BET26.Entry 22428261 ns Should occur within [16597033,26597033] ns. 3

BET26.PEntry 21241476 ns Should occur within [20260897,20960897] ns. 3

BET26.Exit 23046048 ns Should occur within [22428261,31241476] ns. 3

FET21.Exit 31745743 ns Should occur within [30641476,31241476] ns. 7

FET31.Entry 32165890 ns Should occur within [28345947,33945947] ns. 3

PNET36.Entry 32493916 ns Should occur within [29600000,30000000] ns. 7

PNET36.Exit 33168537 ns Should occur within [32493916,35493916] ns. 3

BET40.Entry 33432596 ns Should occur within [29133075,35233075] ns. 3

BET40.PEntry 32165890 ns Should occur within [28345947,33945947] ns. 3

BET40.Exit 34055520 ns Should occur within [33432596,37165890] ns. 3

FET31.Exit 37729554 ns Should occur within [36565890,37165890] ns. 7

BET45.Entry 38097877 ns Should occur within [34204573,40104573] ns. 3

BET45.Exit 38600576 ns Should occur within [38097877,40097877] ns. 3

BET49.Entry 38878960 ns Should occur within [34787424,40687424] ns. 3

Continued on next page

7.5 Timing-aware Static Legacy Software Translation Assessment 117

Table 7.9 – Continued from previous page

Time Trace Contract limitation Pass/Fail

BET49.PEntry 20932500 ns Should occur within [19400000,20100000] ns. 7

BET49.Exit 39354809 ns Should occur within [38878960,40932500] ns. 3

PET20.Exit 41428915 ns Should occur within [40332500,41032500] ns. 7

Industrial application – annotation adjusted contracts

Table 7.10 shows the time traces generated by the translated industrial application
running on the Intel Atom E3866 processor validated against the component-contract
structure presented in Figure 7.9, adjusted as part of the timing enforcement assess-
ment.

Table 7.10.: Time traces generated by the translated industrial application running on the
Intel Atom E3866 processor validated against the (before translation) adjusted
component-contract structure (see Figure 7.9). The first column shows the
time trace. The second column shows the valid time interval according to
time traces and the corresponding contract. The third column shows contract
pass/fail information.

Time Trace Contract limitation Pass/Fail

PET463.Entry 0 ns Should occur within [0,0] ns. 3

PET463.Exit 1197464 ns Should occur within [1000000,1200000] ns. 3

PET463.Entry 1402604 ns Should occur within [1000000,1300000] ns. 7

PET463.Exit 2476902 ns Should occur within [2402604,2602604] ns. 3

PET463.Entry 2782782 ns Should occur within [2402604,2702604] ns. 7

PET463.Exit 3838616 ns Should occur within [3782782,3982782] ns 3

PET463.Entry 4073170 ns Should occur within [3782782,4082782] ns. 3

PET463.Exit 5125884 ns Should occur within [5073170,5273170] ns. 3

PET463.Entry 5354859 ns Should occur within [5073170,5373170] ns. 3

PET463.Exit 6585172 ns Should occur within [6354859,6554859] ns. 7

PET463.Entry 6836977 ns Should occur within [6354859,6654859] ns. 7

PET463.Exit 8048998 ns Should occur within [7836977,8036977] ns. 7

PET463.Entry 8275385 ns Should occur within [7836977,8136977] ns. 7

PET463.Exit 9508556 ns Should occur within [9275385,9475385] ns. 7

PET463.Entry 9766759 ns Should occur within [9275385,9575385] ns. 7

PET463.Exit 10821137 ns Should occur within [10766759,10966759] ns. 3

PET463.Entry 11052332 ns Should occur within [10766759,11066759] ns. 3

PET463.Exit 12103321 ns Should occur within [12052332,12252332] ns. 3

PET463.Entry 12315870 ns Should occur within [12052332,12352332] ns. 3

PET463.Exit 13496474 ns Should occur within [13315870,13515870] ns. 3

118 Chapter 7 Evaluation Process and Result Analysis

Multirotor application – annotation adjusted contracts

Table 7.11 shows the time traces generated by the translated flight control application
running on the Intel Atom E3866 processor validated against the component-contract
structure presented in Figure 7.10, adjusted as part of the timing enforcement
assessment.

Table 7.11.: Time traces generated by the translated flight control application running on
the Intel Atom E3866 processor validated against the (before translation) ad-
justed component-contract structure (see Figure 7.10). The first column shows
the time trace. The second column shows the valid time interval according to
time traces and the corresponding contract. The third column shows contract
pass/fail information.

Time Trace Contract limitation Pass/Fail

PET36.Entry 0 ns Should occur within [0,0] ns. 3

PET36.Exit 2124215 ns Should occur within [2000000,2100000] ns. 7

PET36.Entry 2541230 ns Should occur within [2000000,2200000] ns. 7

PET36.Exit 4868417 ns Should occur within [4541230,4641230] ns. 7

PET36.Entry 5146059 ns Should occur within [4541230,4741230] ns. 7

PET36.Exit 7643136 ns Should occur within [7146059,7246059] ns 7

PET36.Entry 7935216 ns Should occur within [7146059,7346059] ns. 7

PET36.Exit 10450728 ns Should occur within [9935216,10035216] ns. 7

PET36.Entry 10743715 ns Should occur within [9935216,10135216] ns. 7

PET36.Exit 13303320 ns Should occur within [12743715,12843715] ns. 7

PET36.Entry 13596742 ns Should occur within [12743715,12943715] ns. 7

PET36.Exit 16099024 ns Should occur within [15596742,15696742] ns. 7

PET36.Entry 16501496 ns Should occur within [15596742,15796742] ns. 7

PET36.Exit 19017908 ns Should occur within [18501496,18601496] ns. 7

PET36.Entry 19434240 ns Should occur within [18501496,18701496] ns. 7

PET36.Exit 21984387 ns Should occur within [21434240,21534240] ns. 7

PET36.Entry 22414182 ns Should occur within [21434240,21634240] ns. 7

PET36.Exit 24975024 ns Should occur within [24414182,24514182] ns. 7

PET36.Entry 25401653 ns Should occur within [24414182,24614182] ns. 7

PET36.Exit 27949025 ns Should occur within [27401653,27501653] ns. 7

The contracts presented in Figure 7.8, Figure 7.9, and Figure 7.10 had already been
adjusted, however, they do not consider any timing variation cause by the overhead
of the static translation process. Moreover, the code is now running on the new
hardware platform, so time variations caused by the underlying OS and hardware
platform itself, might vary. This caused many of the traces to fail the corresponding
contract (almost 50% of the traces for the example application, about 40% of the
traces for the industrial application, and every trace for the multirotor application).

7.5 Timing-aware Static Legacy Software Translation Assessment 119

In order to cover the timing deviations caused by the static translation and the new
hardware platform, contracts are adjusted as it was done before translation.

Example application – translation adjusted contracts

Figure 7.14 shows the adjusted component-contract structure for the translated
example application. Changes in the contracts with respect to the (before translation)
adjusted component-contract structure in Figure 7.8 are shown in bold. Up to
time step 1400 adjustments had to be done in the contracts, then the example
application runs for over 5000 time steps without failing any contract. Table 7.12
shows the time traces generated by the annotated example application running on
the Intel Atom E3866 processor validated against the adjusted component-contract
structure presented in Figure 7.14. Changes in the time interval with respect to the
validation against the (before translation) adjusted component-contract structure
(see Table 7.9) are shown in bold.

Figure 7.14.: Adjusted component-contract structure for the translated example applica-
tion. Each component has its corresponding contract. Contracts describe the
assumptions and guarantees observable at input/output ports (named in blue
colour). Contracts have been adjusted to cover possible jitter present on a
real scenario, in this case adjustments are applied for the translated example
application running on the Intel Atom E3866 processor. Changes in the con-
tracts with respect to the (before translation) adjusted component-contract
structure in Figure 7.8 are shown in bold.

120 Chapter 7 Evaluation Process and Result Analysis

Table 7.12.: Time traces generated by the translated example application running on the
Intel Atom E3866 processor validated against the (after translation) adjusted
component-contract structure (see Figure 7.14). The first column shows the
time trace. The second column shows the valid time interval according to
time traces and the corresponding contract, changes with respect to the vali-
dation with (before translation) adjusted component-contract structure (see
Table 7.11) are shown in bold. The third column shows contract pass/fail
information.

Time Trace Contract limitation Pass/Fail

PET20.Entry 0 ns Should occur within [0,0] ns. 3

FET21.Entry 860897 ns Should occur within [0,900000] ns. 3

BET22.Entry 1093058 ns Should occur within [0,1100000] ns. 3

BET22.Exit 1447619 ns Should occur within [1093058,6093058] ns. 3

BET26.Entry 1597033 ns Should occur within [0,5000000] ns. 3

BET26.PEntry 860897 ns Should occur within [0,900000] ns. 3

BET26.Exit 1966338 ns Should occur within [1597033,10860897] ns 3

FET21.Exit 11138808 ns Should occur within [10260897,11660897] ns. 3

FET31.Entry 11445947 ns Should occur within [10000000,11500000] ns. 3

PNET32.Entry 11644891 ns Should occur within [10000000,11700000] ns. 3

PNET32.Exit 12063298 ns Should occur within [11644891,14644891] ns. 3

BET40.Entry 12233075 ns Should occur within [10000000,13000000] ns. 3

BET40.PEntry 11445947 ns Should occur within [10000000,11500000] ns. 3

BET40.Exit 12580840 ns Should occur within [12233075,16445947] ns. 3

FET31.Exit 17023455 ns Should occur within [15845947,17345947] ns. 3

BET45.Entry 17404573 ns Should occur within [14500000,17500000] ns. 3

BET45.Exit 17816493 ns Should occur within [17404573,19404573] ns. 3

BET49.Entry 17987424 ns Should occur within [14700000,18000000] ns. 3

BET49.PEntry 0 ns Should occur within [0,0] ns. 3

BET49.Exit 18307373 ns Should occur within [17987424,20000000] ns. 3

PET20.Exit 20486905 ns Should occur within [19400000,21000000] ns. 3

PET20.Entry 20932500 ns Should occur within [19400000,21000000] ns. 3

FET21.Entry 21241476 ns Should occur within [20260897,22160897] ns. 3

BET22.Entry 21532219 ns Should occur within [17793058,26093058] ns. 3

BET22.Exit 22164893 ns Should occur within [21532219,26532219] ns. 3

BET26.Entry 22428261 ns Should occur within [16597033,26597033] ns. 3

BET26.PEntry 21241476 ns Should occur within [20260897,22160897] ns. 3

BET26.Exit 23046048 ns Should occur within [22428261,31241476] ns. 3

FET21.Exit 31745743 ns Should occur within [30641476,32041476] ns. 3

FET31.Entry 32165890 ns Should occur within [28345947,33945947] ns. 3

PNET36.Entry 32493916 ns Should occur within [29600000,32500000] ns. 3

PNET36.Exit 33168537 ns Should occur within [32493916,35493916] ns. 3

BET40.Entry 33432596 ns Should occur within [29133075,35233075] ns. 3

BET40.PEntry 32165890 ns Should occur within [28345947,33945947] ns. 3

BET40.Exit 34055520 ns Should occur within [33432596,37165890] ns. 3

FET31.Exit 37729554 ns Should occur within [36565890,38065890] ns. 3

BET45.Entry 38097877 ns Should occur within [34204573,40104573] ns. 3

Continued on next page

7.5 Timing-aware Static Legacy Software Translation Assessment 121

Table 7.12 – Continued from previous page

Time Trace Contract limitation Pass/Fail

BET45.Exit 38600576 ns Should occur within [38097877,40097877] ns. 3

BET49.Entry 38878960 ns Should occur within [34787424,40687424] ns. 3

BET49.PEntry 20932500 ns Should occur within [19400000,21400000] ns. 3

BET49.Exit 39354809 ns Should occur within [38878960,40932500] ns. 3

PET20.Exit 41428915 ns Should occur within [40332500,41932500] ns. 3

Industrial application – translation adjusted contracts

Figure 7.15 shows the adjusted component-contract structure for the translated
industrial application. Up to time step 2400 adjustments had to be done in the
contract to cover the previously mentioned needs. The interval in the assumption
is set to [1, 2] ms, whereas the interval in the guarantee is set to [1000, 1500] us.
Then, the industrial application runs for over 5000 time steps without any further
failure. Table 7.13 shows the time traces generated by the translated industrial
application running on the Intel Atom E3866 processor validated against the adjusted
component-contract structure presented in Figure 7.15. Changes in the time interval
with respect to the validation against the (before translation) adjusted component-
contract structure (see Table 7.10) are shown in bold.

Figure 7.15.: Adjusted component-contract structure for the translated industrial appli-
cation. The only component (PET463) has its corresponding contract. The
contract describes the assumption and guarantee observable at Entry/Exit
ports (named in blue colour). The contract has been adjusted to cover possible
jitter present on a real scenario, in this case adjustments are applied for the
translated industrial application running on the Intel Atom E3866 processor.

122 Chapter 7 Evaluation Process and Result Analysis

Table 7.13.: Time traces generated by the translated industrial application running on the
Intel Atom E3866 processor validated against the (after translation) adjusted
component-contract structure (see Figure 7.15). The first column shows the
time trace. The second column shows the valid time interval according to
time traces and the corresponding contract, changes with respect to the val-
idation with the (before translation) adjusted component-contract structure
(see Table 7.10) are shown in bold. The third column shows contract pass/fail
information.

Time Trace Contract limitation Pass/Fail

PET463.Entry 0 ns Should occur within [0,0] ns. 3

PET463.Exit 1197464 ns Should occur within [1000000,1500000] ns. 3

PET463.Entry 1402604 ns Should occur within [1000000,2000000] ns. 3

PET463.Exit 2476902 ns Should occur within [2402604,2902604] ns. 3

PET463.Entry 2782782 ns Should occur within [2402604,3402604] ns. 3

PET463.Exit 3838616 ns Should occur within [3782782,4282782] ns 3

PET463.Entry 4073170 ns Should occur within [3782782,4782782] ns. 3

PET463.Exit 5125884 ns Should occur within [5073170,5573170] ns. 3

PET463.Entry 5354859 ns Should occur within [5073170,6073170] ns. 3

PET463.Exit 6585172 ns Should occur within [6354859,6854859] ns. 3

PET463.Entry 6836977 ns Should occur within [6354859,7354859] ns. 3

PET463.Exit 8048998 ns Should occur within [7836977,8336977] ns. 3

PET463.Entry 8275385 ns Should occur within [7836977,8836977] ns. 3

PET463.Exit 9508556 ns Should occur within [9275385,9775385] ns. 3

PET463.Entry 9766759 ns Should occur within [9275385,10275385] ns. 3

PET463.Exit 10821137 ns Should occur within [10766759,11266759] ns. 3

PET463.Entry 11052332 ns Should occur within [10766759,11766759] ns. 3

PET463.Exit 12103321 ns Should occur within [12052332,12552332] ns. 3

PET463.Entry 12315870 ns Should occur within [12052332,13052332] ns. 3

PET463.Exit 13496474 ns Should occur within [13315870,13815870] ns. 3

Multirotor application – translation adjusted contracts

Figure 7.16 shows the adjusted component-contract structure for the translated
multirotor application. Up to time step 1000 adjustments had to be done in the
contract to cover the previously mentioned needs. The interval in the assumption is
set to [2000, 3600] ms, whereas the interval in the guarantee is set to [2000, 3000] us.
Then, the multirotor application runs for over 3000 time steps without any further
failure. Table 7.14 shows the time traces generated by the translated flight control
application running on the Intel Atom E3866 processor validated against the adjusted
component-contract structure presented in Figure 7.16. Changes in the time interval
with respect to the validation against the (before translation) adjusted component-
contract structure (see Table 7.11) are shown in bold.

7.5 Timing-aware Static Legacy Software Translation Assessment 123

Figure 7.16.: Adjusted component-contract structure for the translated multirotor appli-
cation. The only component (PET36) has its corresponding contract. The
contract describes the assumption and guarantee observable at Entry/Exit
ports (named in blue colour). The contract has been adjusted to cover possible
jitter present on a real scenario, in this case adjustments are applied for the
translated multirotor application running on the Intel Atom E3866 processor.

Table 7.14.: Time traces generated by the translated flight control application running on
the Intel Atom E3866 processor validated against the (after translation) ad-
justed component-contract structure (see Figure 7.16). The first column shows
the time trace. The second column shows the valid time interval according
to time traces and the corresponding contract, changes with respect to the
validation with the (before translation) component-contract structure (see
Table 7.11) are shown in bold. The third column shows contract pass/fail
information.

Time Trace Contract limitation Pass/Fail

PET36.Entry 0 ns Should occur within [0,0] ns. 3

PET36.Exit 2124215 ns Should occur within [2000000,3000000] ns. 3

PET36.Entry 2541230 ns Should occur within [2000000,3600000] ns. 3

PET36.Exit 4868417 ns Should occur within [4541230,5541230] ns. 3

PET36.Entry 5146059 ns Should occur within [4541230,6141230] ns. 3

PET36.Exit 7643136 ns Should occur within [7146059,8146059] ns 3

PET36.Entry 7935216 ns Should occur within [7146059,8746059] ns. 3

PET36.Exit 10450728 ns Should occur within [9935216,10935216] ns. 3

PET36.Entry 10743715 ns Should occur within [9935216,11535216] ns. 3

PET36.Exit 13303320 ns Should occur within [12743715,13743715] ns. 3

PET36.Entry 13596742 ns Should occur within [12743715,14343715] ns. 3

PET36.Exit 16099024 ns Should occur within [15596742,16596742] ns. 3

PET36.Entry 16501496 ns Should occur within [15596742,17196742] ns. 3

PET36.Exit 19017908 ns Should occur within [18501496,19501496] ns. 3

PET36.Entry 19434240 ns Should occur within [18501496,20101496] ns. 3

PET36.Exit 21984387 ns Should occur within [21434240,22434240] ns. 3

PET36.Entry 22414182 ns Should occur within [21434240,23034240] ns. 3

PET36.Exit 24975024 ns Should occur within [24414182,25414182] ns. 3

PET36.Entry 25401653 ns Should occur within [24414182,26014182] ns. 3

PET36.Exit 27949025 ns Should occur within [27401653,28401653] ns. 3

Result analysis

Result show that formal timing specifications adjusted as part of the timing enforce-
ment assessment needed to be re-adjusted to cover the timing deviations generated
due to translation overhead. After the re-adjustment of formal timing specifications,
time traces generated at runtime by the translated example, industrial and multirotor

124 Chapter 7 Evaluation Process and Result Analysis

applications fit into the defined timing contracts. However, the static translation
process involves a considerable overhead (analysed through the feasibility study –
see Section 7.3) which might not be affordable depending on the application to be
ported. For each particular case, an expert should assess, considering the incurred
overhead, whether the RT legacy software migration solution is acceptable. Future
work considers optimizing time control blocks to, at some point, overcome the block
management and translation overhead (see Section 8.2).

7.5.3 Functional test

The functional test compares the reference output values for control variables with
the output value (for those control variables) when running the systematically
annotated and then translated applications (example – see Listing 7.1, industrial –
see Listing 7.2, and multirotor – see Listing 7.3) on top of the Intel Atom processor.

Example application

Figure 7.17 shows the bit toggling sequence of the output variable on both test
scenarios. However, due to scaling problems, the figure depicts just the output
variable value for the first 100 time steps.

Figure 7.17.: Functional test results for the translated example application running on the
Intel Atom E3866 processor. For each time step (X-axis) the corresponding
output variable value (Y-axis) is shown, both, for the legacy example applica-
tion (without annotations) as well as for the translated example application.
On both test scenarios (legacy and translated), the bit toggling sequence is
equal, although there is a delay on the translated application with respect
to the legacy application due to time control block management and static
translation overhead.

7.5 Timing-aware Static Legacy Software Translation Assessment 125

Industrial application

Figure 7.18 shows the output values for each of the industrial application control
variables on both test scenarios. Control variables are observed for a 5000 time step
interval.

Multirotor application

Figure 7.19 shows the output values for each of the multirotor control variables
on both test scenarios. Control variables are observed for a 3000 time step interval
(about 6 s simulation).

Result analysis

Results show that the signal observed on every control variable is equivalent (in
value) before and after the timing-aware migration process. However, due to time
control block management and static translation overhead, a delay (with respect
to the legacy platform) is observable on every control variable output signal. This
delay in the response of the controller might disturb the functional behaviour of
the control system, therefore, for each particular case a further analysis (on a
more realistic scenario) would be necessary to determine whether the functional
behaviour is acceptable after the RT legacy software migration process. Future work
considers providing support to port legacy platform I/O port dependent code, which
will provide means to perform a functional test on a more realistic scenario (see
Section 8.2).

7.5.4 Summary

The timing-aware static legacy software translation assessment, evaluates the timing
block handling within the static BT process (presented in Section 5.4.1) through an
example, an industrial and a multirotor use-case. The former, is used to evaluate
corner-cases, however it is self generated code, therefore, the industrial and mul-
tirotor use-cases are used to evaluate the effort of porting real third party legacy
code.

According to the timing test, results show that systematically generated formal
timing specifications needed to be adjusted to cover timing deviations caused by the
overhead of the static translation and time control block management, as well as

126 Chapter 7 Evaluation Process and Result Analysis

(a) Output variable 1

(b) Output variable 2

Figure 7.18.: Functional test results for the translated industrial application running on the
Intel Atom E3866 processor. (a) shows for each time step (in the X-axis) the
corresponding value of output variable 1 (in the Y-axis), whereas (b) shows
for each time step (in the X-axis) the corresponding value of output variable
2 (in the Y-axis). Both, (a) and (b) show the results obtained for the legacy
industrial application (without annotations) as well as for the annotated
and then translated industrial application. On both test scenario (legacy and
translated), the output value of control variable is equal, although there is a
delay on the translated application with respect to the legacy application due
to time control block management and static translation overhead.

7.5 Timing-aware Static Legacy Software Translation Assessment 127

(a)
Front

m
otor

point
(b)

R
ear

m
otor

point

(c)
R

ight
m

otor
point

(d)
Left

m
otor

point

Figure
7.19.:

Functionaltest
results

for
the

translated
m

ultirotor
application

running
on

the
IntelA

tom
E3866

processor.(a)
show

s
for

each
tim

e
step

(in
the

X-axis)
the

corresponding
value

ofm
otor

front
point

variable
(in

the
Y-axis),(b)

show
s

for
each

tim
e

step
(in

the
X-axis)

the
corresponding

value
of

m
otor

rear
point

variable
(in

the
Y-axis),(c)

show
s

for
each

tim
e

step
(in

the
X-axis)

the
corresponding

value
ofm

otor
right

point
variable

(in
the

Y-axis),and
(d)

show
s

for
each

tim
e

step
(in

the
X-axis)

the
corresponding

value
ofm

otor
left

point
variable

(in
the

Y-axis).Every
graph,(a),(b),(c),and

(d),show
the

results
obtained

for
the

legacy
m

ultirotor
application

(w
ithout

annotations)
as

w
ell

as
for

the
annotated

and
the

translated
m

ultirotor
application.

O
n

both
test

scenarios
(legacy

and
translated),the

output
value

of
controlvariables

is
equal,although

there
is

a
delay

on
the

translated
application

w
ith

respect
to

the
legacy

application
due

to
tim

e
controlblock

m
anagem

ent
and

static
translation

overhead.

128 Chapter 7 Evaluation Process and Result Analysis

timing deviations caused by the underlying OS and hardware platform itself. For
each case it might be necessary to evaluate if the introduced overhead is affordable.
Once timing contracts are adjusted, as shown in Figures 7.14 to 7.16, time traces
generated at runtime through the annotated time control blocks (see Tables 7.12
to 7.14) fit into the defined time contacts. Therefore, it can be concluded that the
proposed timing equivalent legacy software translation incurs some overhead, but
in turn it can be applied to port legacy software to a new hardware platform while
preserving its timing as well as functional behaviour.

Functional test results (see Figures 7.17 to 7.19) show that the transformations
applied on the timing-aware static translation process do not disturb the value
observed on any of the control variable output signal. However, due to the static
translation overhead, a delay is observable in the controller response time with
respect to the (original) legacy system, which might disturb the functional behaviour
of the overall control system. Therefore, for each particular case a further analysis (on
a more realistic scenario) would be necessary to determine whether the functional
behaviour is acceptable after the RT legacy software migration process. As described
in Section 8.2, future work considers I/O virtualization in order to provides means
for such analysis.

7.5 Timing-aware Static Legacy Software Translation Assessment 129

Conclusion and Future Work 8
This research work, first, reasons about the need for a portable legacy software
migration solution that preserves the timing as well as the functional behaviour of
the retargeted application. In the direction to cover this gap, the contributions of
this thesis present a RT legacy software migration solution based on existing binary
translation techniques, which are enhanced with a timing enforcement mechanism
that at the same time provides means for validating the enforced timing behaviour.
The proposed solution is then evaluated and as a result, this section presents the
conclusions reached through this evaluation process as well as the envisioned future
work to cover the limitations observed in the presented approach.

8.1 Conclusions

The analysis of the SotA answers to RQ1 on how legacy software can be ported
to a new architecture while preserving its timing as well as functional behaviour.
As a result of the related work analysis, two machine-adaptable binary translation
tools were selected to study the constraints under which is feasible to use binary
translation techniques in a real-time property conserving legacy software migration
process, answering to RQ2. QEMU and Rev.ng are equipped with specific timing
measurement support to assess the translation overhead with respect to timing.
From the experimental result analysis, it can be concluded that among the proposed
migration approaches, the static (based on Rev.ng) is the most appropriate method to
port short-running real-time legacy code, since it ensures lower translation overhead
and a more deterministic timing behaviour. Instead, the dynamic approach (based
on QEMU) might be a suitable solution for porting real-time legacy code with long
periods (over 0,01s) and dominated by complex floating point computations.

To find out, as stated in RQ3, how expert knowledge on the legacy timing can be
expressed and annotated to the legacy application, first, through a legacy system
model (see definition in Section 5.1) the solution is constraint to a specific class
of application. Then, based on these constraints, a set of temporal constructs are
defined which provide means to systematically annotate the legacy timing behaviour
onto the application. The annotated timing behaviour can then be systematically

131

expresses as formalized timing properties in the form of contracts. The timing
enforcement assessment concludes that, given a fixed set of reference input data, the
described process of lifting legacy timing properties does not disturb the functional
behaviour of the legacy system. Moreover, the time traces generated at runtime by
time control blocks can be used together with the formal timing specifications to
perform a timing assessment on the annotated application, which concludes that a
timing behaviour equivalent to that in the legacy system can be enforce through the
defined temporal construct.

In order to answer RQ4 and preserve the annotated timing behaviour during the
migration process, the temporal constructs are implemented as a library that can be
used across platforms. Though the timing-aware static legacy software translation
assessment, it is proven that time traces can be generated from the translated binary
on the new architecture. Moreover, answering to RQ5, the timing behaviour on
the new architecture is validated combining the use of time traces with formal
timing specifications and MULTIC tool. Results show that although formal timing
specifications needed to be relaxed such that they reflect the uncertainties generated
by time control block management, the static translation process as well as the new
hardware platform itself it is possible to achieve an equivalent timing behaviour on
the new platform.

8.2 Future Work

Although the presented timing-aware migration approach paves the way to a RT
legacy software migration, it has certain limitations, therefore, this section presents
the future work that could give an answer to those limitations.

Timing-aware dynamic legacy software translation

From the feasibility study we reached to the conclusion that the static migration
approach ensures a lower translation overhead and a more deterministic timing be-
haviour for most of the analysed cases. For this reason, the real-time legacy software
migration solution has been implemented using a static translation tool. However,
for some particular cases with long execution periods where code is dominated by
complex floating point computations the dynamic approach turns to offer a better
solution with respect to timing. Therefore, future work considers the extension of
the timing-aware legacy software migration approach with a dynamic translation

132 Chapter 8 Conclusion and Future Work

alternative. This way, the most suitable approach can be chosen depending on the
legacy application to be ported.

IR-level time control block annotation mechanism

The current approach presents the time control blocks which provide means to
annotate the legacy timing information at source code level. As stated in A&C2, this
requires the legacy source code as well as the legacy toolchain to be available. This
limitation could be undertaken through an IR-level timing annotation mechanism.
Rev.ng translates the legacy binary into LLVM’s IR, so annotations could be done at
this level. However, this approach entails some other limitations, since it would not
be possible to accomplish such a fine grained timing enforcement. Therefore, future
work considers the implementation of such an IR-level annotation mechanism even
though depending on the legacy system to be ported it might be convenient to apply
a source code annotation mechanism.

System-level real-time legacy software migration

Given that the static binary translation tool does not support system-level code trans-
lation, a legacy Linux toolchain is currently required (see A&C3). Before translation,
the legacy application is compiled and statically linked using a Linux toolchain for
the legacy architecture. To cope with this limitation it would be necessary to provide
system-level code support in the static translation tool. An other alternative would
be to choose the timing-aware dynamic migration solution (presented as future work
also), since the dynamic binary translation tool already provides system-level code
support and, therefore, there is no need for a legacy Linux toolchain.

Legacy platform dependent I/O support

As stated in A&C6, the current timing-aware migration approach does not consider
code that accesses legacy platform dependent I/Os, which is quite common in
embedded systems. For this reason, future work should consider a process of lifting
these I/O dependent code (in a similar way as it is done with timing) and implement
an I/O virtualization mechanism to provide the ported legacy application with means
to interact with the external environment when running on top of the new hardware
platform.

8.2 Future Work 133

Systematic adjustment of formal timing specifications

The timing test carried out either in the block-level timing enforcement assessment
or in the timing-aware static legacy software translation assessment points out the
need to adjust formal timing specifications such that they reflect the uncertainties
generated by time control block management, the static translation process as well as
the new hardware platform itself. This relaxation process is currently accomplished
manually, therefore, future work considers studying the main sources that cause
these timing uncertainties as well as the implementation of a systematic adjustment
mechanism based on previous results.

Adjust time control blocks to overcome block management and translation
overhead

The temporal constructs that control the timing based on annotations are a source
of overhead as is the static translation process. For this reason, this overhead should
be characterized for each particular migration process (combination of hardware
platform, required time control blocks and application type) and time control blocks
adjusted accordingly when possible. A possible solution would be to adapt time
control blocks in such a way that they consider the overhead they incur for the
deadline of the block, this way the overhead is compensated on PET and FET blocks’
delay.

Extension to multi-cores

Multi-core processors play an important role in the transition to next generation
embedded systems, providing concurrent resources and increased performance rates
at lower clock frequencies and lower power consumption [19]. In order to maximize
the resource utilization, multi-core processors share physical resources, but shared
resources are a source of timing-interferences. Time contracts defined within the
RT legacy software migration solution do not consider sources of interference,
therefore, as stated in A&C1 multi-core processors are out of the scope in this first
approximation. However, future work considers the integration of multiple legacy
lifted RT applications into a modern multi-core architecture with multiple other
applications through a hypervisor that provides the required resource and time
partitioning.

134 Chapter 8 Conclusion and Future Work

Bibliography

[1]Tesnim Abdellatif. “Rigorous Implementation of Realtime Systems”. In: (2012) (cit. on
p. 27).

[2]Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. “Rigorous implementation of
real-time systems–from theory to application”. In: Mathematical Structures in Computer
Science 23.4 (2013), pp. 882–914 (cit. on p. 27).

[3]AeroSIM-RC radio control training simulator. http://www.aerosimrc.com/en/home.
htm. Web Page. 2019 (cit. on p. 100).

[4]aiT: Worst-Case Execution Time Analyzer. http://www.absint.com/ait. Web Page.
2005 (cit. on p. 26).

[5]Erik Altman, Bruce R Childers, Robert Cohn, et al. “08441 Final Report–Emerging
Uses and Paradigms for Dynamic Binary Translation”. In: Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009 (cit. on p. 3).

[6]Rajeev Alur and David L Dill. “A theory of timed automata”. In: Theoretical computer
science 126.2 (1994), pp. 183–235 (cit. on p. 27).

[7]Kristy Andrews and Duane Sand. “Migrating a CISC computer family onto RISC via
object code translation”. In: ACM Sigplan Notices. Vol. 27. ACM, 1992, pp. 213–222
(cit. on p. 31).

[8]José A Baiocchi and Bruce R Childers. “Demand code paging for NAND flash in MMU-
less embedded systems”. In: Design, Automation & Test in Europe. IEEE, 2011, pp. 1–6
(cit. on p. 35).

[9]José A Baiocchi, Bruce R Childers, Jack W Davidson, and Jason D Hiser. “Enabling
dynamic binary translation in embedded systems with scratchpad memory”. In: ACM
Transactions on Embedded Computing Systems (TECS) 11.4 (2012), p. 89 (cit. on pp. 37,
39).

[10]Jose A Baiocchi and Bruce R Childers. “Heterogeneous code cache: using scratchpad
and main memory in dynamic binary translators”. In: Design Automation Conference,
2009. DAC’09. 46th ACM/IEEE. IEEE, 2009, pp. 744–749 (cit. on p. 35).

[11]Jose A Baiocchi, Bruce R Childers, Jack W Davidson, Jason D Hiser, and Jonathan
Misurda. “Fragment cache management for dynamic binary translators in embedded
systems with scratchpad”. In: Proceedings of the 2007 international conference on Com-
pilers, architecture, and synthesis for embedded systems. ACM, 2007, pp. 75–84 (cit. on
p. 35).

135

http://www.aerosimrc.com/en/home.htm
http://www.aerosimrc.com/en/home.htm
http://www.absint.com/ait

[12]Jose A Baiocchi, Bruce R Childers, Jack W Davidson, and Jason D Hiser. “Reducing
pressure in bounded DBT code caches”. In: Proceedings of the 2008 international
conference on Compilers, architectures and synthesis for embedded systems. ACM, 2008,
pp. 109–118 (cit. on p. 35).

[13]Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. “Dynamo: a transparent
dynamic optimization system”. In: ACM SIGPLAN Notices 35.5 (2000), pp. 1–12 (cit. on
p. 20).

[14]Eckard Böde, Matthias Büker, Werner Damm, et al. “Design Paradigms for Multi-Layer
Time Coherency in ADAS and Automated Driving (MULTIC)”. In: FAT-Schriftenreihe
302. 302nd ed. FAT-Schriftenreihe. Forschungsvereinigung Automobiltechnik e.V. (FAT),
Oct. 2017 (cit. on pp. 13, 57).

[15]Eckard Böde, Werner Damm, Günter Ehmen, et al. “MULTIC-Tooling”. In: FAT-Schriftenreihe
316. 316th ed. FAT-Schriftenreihe. Forschungsvereinigung Automobiltechnik e.V. (FAT),
June 2019 (cit. on pp. 13, 15, 59).

[16]Fabrice Bellard. “QEMU, a fast and portable dynamic translator”. In: USENIX Annual
Technical Conference, FREENIX Track. 2005, pp. 41–46 (cit. on pp. 20, 34, 37, 39, 68,
80).

[17]Keith Bennett. “Legacy systems: Coping with success”. In: IEEE software 12.1 (1995),
pp. 19–23 (cit. on p. 1).

[18]Arndt B Bergh, Keith Keilman, Daniel J Magenheimer, and James A Miller. “HP-3000
EMULATION ON HP PRECISION ARCHITECTURE COMPUTERS”. In: Hewlett-Packard
Journal 38.11 (1987), pp. 87–89 (cit. on p. 31).

[19]Geoffrey Blake, Ronald G Dreslinski, and Trevor Mudge. “A survey of multicore proces-
sors”. In: IEEE Signal Processing Magazine 26.6 (2009), pp. 26–37 (cit. on p. 134).

[20]Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. “Design and implemen-
tation of a dynamic optimization framework for Windows”. In: 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization (FDDO-4). 2001 (cit. on p. 20).

[21]Eric J Bruno and Greg Bollella. Real-Time Java Programming: With Java RTS. Pearson
Education, 2009 (cit. on p. 25).

[22]Friederike Bruns, Philipp Ittershagen, and Kim Grüttner. “Timing Measurement and
Control Blocks for Bare-Metal C++ Applications”. In: Forum on Specification and Design
Languages (FDL). 2019 (cit. on pp. 28–30, 39, 45, 50, 67, 155).

[23]Alan Burns and Andrew J Wellings. Real-time systems and programming languages: Ada
95, real-time Java, and real-time POSIX. Pearson Education, 2001 (cit. on p. 25).

[24]Paul M Cashman and Anatol W Holt. “A communication-oriented approach to structur-
ing the software maintenance environment”. In: ACM SIGSOFT Software Engineering
Notes 5.1 (1980), pp. 4–17 (cit. on p. 1).

[25]Jiunn-Yeu Chen, Wuu Yang, Tzu-Han Hung, Hong-Men Su, and Wei-Chung Hsu. “A
static binary translator for efficient migration of ARM-based applications”. In: Workshop
on Optimizations for DSP and Embedded Systems. Citeseer, 2008 (cit. on pp. 36–39).

136 Chapter 8 Bibliography

[26]Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David M. Gillies. “Mojo: A Dynamic
Optimization System”. In: 3rd ACM Workshop on Feedback-Directed and Dynamic Opti-
mization (FDDO-3) (2000), pp. 81–90 (cit. on p. 20).

[27]René J Chevance. Server architectures: Multiprocessors, clusters, parallel systems, web
servers, storage solutions. Digital Press, 2004 (cit. on p. 2).

[28]Chrono in C++. https://www.geeksforgeeks.org/chrono-in-c/. Web Page. 2019
(cit. on p. 73).

[29]C. Cifuentes and M. Van Emmerik. “UQBT: adaptable binary translation at low cost”.
In: Computer 33.3 (2000), pp. 60–66 (cit. on pp. 3, 33, 36, 37, 39).

[30]C. Cifuentes and V. Malhotra. “Binary translation: static, dynamic, retargetable?” In:
1996 Proceedings of International Conference on Software Maintenance. 1996, pp. 340–
349 (cit. on p. 31).

[31]Alessandro Cimatti and Stefano Tonetta. “Contracts-refinement proof system for component-
based embedded systems”. In: Science of computer programming 97 (2015), pp. 333–348
(cit. on p. 59).

[32]Bob Cmelik and David Keppel. “Shade: A fast instruction-set simulator for execution
profiling”. In: Fast Simulation of Computer Architectures. Springer, 1995, pp. 5–46
(cit. on p. 31).

[33]Bryce Cogswell and Zary Segall. “Timing insensitive binary to binary translation of real
time systems”. In: Workshop on Architectures for Real-Time Applications, ISCA. 1995
(cit. on pp. 3, 31, 32, 37–39).

[34]James C Dehnert, Brian K Grant, John P Banning, et al. “The Transmeta Code Mor-
phing™ Software: using speculation, recovery, and adaptive retranslation to address
real-life challenges”. In: Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization. IEEE Computer Society,
2003, pp. 15–24 (cit. on p. 20).

[35]Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Paolo Faraboschi, and Joseph
A Fisher. “Deli: A new run-time control point”. In: Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture. IEEE Computer Society Press,
2002, pp. 257–268 (cit. on p. 20).

[36]Premkumar T Devanbu. “Re-targetability in software tools”. In: ACM SIGAPP Applied
Computing Review 7.3 (1999), pp. 19–26 (cit. on p. 29).

[37]Len Erlikh. “Leveraging legacy system dollars for e-business”. In: IT professional 2.3
(2000), pp. 17–23 (cit. on p. 1).

[38]Maher Fakih, Kim Grüttner, Sören Schreiner, et al. “Experimental Evaluation of SAFE-
POWER Architecture for Safe and Power-Efficient Mixed-Criticality Systems”. In: Journal
of Low Power Electronics and Applications 9.1 (2019), p. 12 (cit. on p. 91).

[39]Heiko Falk and Paul Lokuciejewski. “A compiler framework for the reduction of worst-
case execution times”. In: Real-Time Systems 46.2 (2010), pp. 251–300 (cit. on pp. 26,
29–31, 39, 94).

137

https://www.geeksforgeeks.org/chrono-in-c/

[40]Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. “rev.ng: a unified binary
analysis framework to recover CFGs and function boundaries”. In: Proceedings of the
26th International Conference on Compiler Construction. 3033028: ACM, 2017, pp. 131–
141 (cit. on pp. 34, 37, 39, 82).

[41]C. J. Fidge. “Formal change impact analyses for emulated control software”. In: Interna-
tional Journal on Software Tools for Technology Transfer 8.4 (2006), pp. 321–335 (cit. on
p. 26).

[42]Narain Gehani and Krithi Ramamritham. “Real-time Concurrent C: A language for
programming dynamic real-time systems”. In: Real-Time Systems 3.4 (1991), pp. 377–
405 (cit. on pp. 28, 30, 39).

[43]Tayfun Gezgin, Raphael Weber, and Markus Oertel. “Multi-aspect virtual integration
approach for real-time and safety properties”. In: International Workshop on Design and
Implementation of Formal Tools and Systems (DIFTS14). 2014 (cit. on p. 59).

[44]Apala Guha, Kim Hazelwood, and Mary Lou Soffa. “Memory optimization of dynamic
binary translators for embedded systems”. In: ACM Transactions on Architecture and
Code Optimization (TACO) 9.3 (2012), p. 22 (cit. on pp. 35, 37, 39).

[45]Apala Guha, Kim Hazelwood, and Mary Lou Soffa. “Reducing exit stub memory con-
sumption in code caches”. In: International Conference on High-Performance Embedded
Architectures and Compilers. Springer, 2007, pp. 87–101 (cit. on p. 35).

[46]Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. “The Mälardalen
WCET Benchmarks – Past, Present and Future”. In: WCET2010. Ed. by Björn Lisper.
Brussels, Belgium: OCG, July 2010, pp. 137–147 (cit. on pp. 89, 93).

[47]Kim Hazelwood and Artur Klauser. “A dynamic binary instrumentation engine for the
ARM architecture”. In: Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems. ACM, 2006, pp. 261–270 (cit. on p. 20).

[48]Thomas Heinz. “Preserving temporal behaviour of legacy real-time software across
static binary translation”. In: Proceedings of the 1st workshop on Isolation and integration
in embedded systems. ACM, 2008, pp. 1–4 (cit. on pp. 3, 31, 32, 37–39).

[49]Thomas A Henzinger and Christoph M Kirsch. “The Embedded Machine: Predictable,
portable real-time code”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 29.6 (2007), p. 33 (cit. on p. 26).

[50]Thomas A Henzinger, Benjamin Horowitz, and Christoph M Kirsch. “Giotto: A time-
triggered language for embedded programming”. In: Proceedings of the IEEE 91.1
(2003), pp. 84–99 (cit. on p. 25).

[51]Homepage of the Accellera Systems Initiative. http://www.accellera.org. Web Page.
2019 (cit. on p. 60).

[52]Ray Hookway. “DIGITAL FX! 32 running 32-Bit x86 applications on Alpha NT”. In:
Compcon’97. Proceedings, IEEE. IEEE, 1997, pp. 37–42 (cit. on p. 31).

138 Chapter 8 Bibliography

http://www.accellera.org

[53]Wei Hu, Jason Hiser, Dan Williams, et al. “Secure and Practical Defense Against Code-
injection Attacks Using Software Dynamic Translation”. In: Proceedings of the 2Nd
International Conference on Virtual Execution Environments. VEE ’06. ACM, 2006, pp. 2–
12 (cit. on p. 20).

[54]“Chapter 2 - Virtualization”. In: Mobile Cloud Computing. Ed. by Dijiang Huang and
Huijun Wu. Morgan Kaufmann, 2018, pp. 31 –64 (cit. on p. 9).

[55]Yuan-Shin Hwang, Tzong-Yen Lin, and Rong-Guey Chang. “DisIRer: Converting a
retargetable compiler into a multiplatform binary translator”. In: ACM Transactions on
Architecture and Code Optimization (TACO) 7.4 (2010), p. 18 (cit. on pp. 34, 37, 39).

[56]Imperas Ltd. Open Virtual Platforms (OVP). http://www.ovpworld.org/. Web Page.
2018 (cit. on p. 20).

[57]Nicolai M Josuttis. The C++ standard library: a tutorial and reference. Addison-Wesley,
2012 (cit. on p. 73).

[58]Inkyu Kim. “Timing analysis in binary-to-binary translation”. In: (1998) (cit. on p. 11).

[59]Vladimir Kiriansky, Derek Bruening, and Saman P Amarasinghe. “Secure Execution via
Program Shepherding”. In: USENIX Security Symposium. Vol. 92. 2002, p. 84 (cit. on
p. 20).

[60]Christoph M Kirsch and Ana Sokolova. “The logical execution time paradigm”. In:
Advances in Real-Time Systems. Springer, 2012, pp. 103–120 (cit. on p. 25).

[61]Hermann Kopetz. Real-time systems: design principles for distributed embedded applica-
tions. Springer Science + Business Media, 2011 (cit. on pp. 10, 12).

[62]Hermann Kopetz and Wilhelm Ochsenreiter. “Clock synchronization in distributed
real-time systems”. In: IEEE Transactions on Computers 100.8 (1987), pp. 933–940
(cit. on p. 11).

[63]Phillip A Laplante and Seppo J Ovaska. Real-time systems design and analysis: tools for
the practitioner. John Wiley and Sons, 2011 (cit. on p. 25).

[64]Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong program
analysis & transformation”. In: Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization. IEEE Computer
Society, 2004, p. 75 (cit. on p. 34).

[65]Briag Le Nabec, Belgacem Ben Hedia, Jean-Philippe Babau, Mathieu Jan, and Hela
Guesmi. “Modeling legacy code with BIP: how to reduce the gap between formal
description and real-time implementation”. In: 2016 Forum on Specification and Design
Languages (FDL). IEEE, 2016, pp. 1–8 (cit. on pp. 27, 29, 30, 39).

[66]Jiwei Lu, Howard Chen, Pen-Chung Yew, and Wei-Chung Hsu. “Design and implemen-
tation of a lightweight dynamic optimization system”. In: Journal of Instruction-Level
Parallelism 6.4 (2004), pp. 332–341 (cit. on p. 20).

[67]Chi-Keung Luk, Robert Cohn, Robert Muth, et al. “Pin: building customized program
analysis tools with dynamic instrumentation”. In: Acm sigplan notices. Vol. 40. ACM,
2005, pp. 190–200 (cit. on pp. 20, 35, 37).

139

http://www.ovpworld.org/

[68]Yi-Hong Lyu, Ding-Yong Hong, Tai-Yi Wu, et al. “DBILL: an efficient and retargetable
dynamic binary instrumentation framework using llvm backend”. In: Acm Sigplan
Notices. Vol. 49. ACM, 2014, pp. 141–152 (cit. on p. 20).

[69]Cathy May. Mimic: a fast system/370 simulator. Vol. 22. ACM, 1987 (cit. on p. 31).

[70]James R McKee. “Maintenance as a function of design”. In: Proceedings of the July 9-12,
1984, national computer conference and exposition. ACM, 1984, pp. 187–193 (cit. on
p. 1).

[71]Harlan D Mills. “Software development”. In: IEEE Transactions on Software Engineering
4 (1976), pp. 265–273 (cit. on p. 1).

[72]Victor Moya. “Study of the techniques for emulation programming”. In: Proyecto fin de
carrera. Universidad Politécnica de Cataluña. España (2001) (cit. on p. 21).

[73]Saranya Natarajan and David Broman. “Timed C: An Extension to the C Programming
Language for Real-Time Systems”. In: 2018 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2018, pp. 227–239 (cit. on pp. 27–30, 39).

[74]Nicholas Nethercote and Julian Seward. “Valgrind: a framework for heavyweight
dynamic binary instrumentation”. In: SIGPLAN Not. 42.6 (2007), pp. 89–100 (cit. on
p. 20).

[75]Tammy Noergaard. Embedded systems architecture: a comprehensive guide for engineers
and programmers. Newnes, 2012 (cit. on pp. 7, 8).

[76]John T Nosek and Prashant Palvia. “Software maintenance management: changes in
the last decade”. In: Journal of Software Maintenance: Research and Practice 2.3 (1990),
pp. 157–174 (cit. on p. 1).

[77]OFFIS multirotor. https://multirotor.offis.de/wordpress/. Web Page. 2019
(cit. on p. 91).

[78]J. Perez, A. Perez, and R. Obermaisser. “Executable Time-Triggered Model (E-TTM)
for Real-Time Control Systems”. In: 2010 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing. 2010, pp. 42–
49 (cit. on p. 11).

[79]Chittoor V Ramamoorthy, Atul Prakash, Wei Tek Tsai, and Yutaka Usuda. “Software
engineering: Problems and perspectives”. In: Computer 17.10 (1984), pp. 191–209
(cit. on p. 1).

[80]Stefan Resmerita, Andreas Naderlinger, Manuel Huber, Kenneth Butts, and Wolfgang
Pree. “Applying real-time programming to legacy embedded control software”. In: 2015
IEEE 18th International Symposium on Real-Time Distributed Computing. IEEE, 2015,
pp. 1–8 (cit. on pp. 25, 29, 30, 39).

[81]John Reutter III. “Maintenance is a management problem and a programmer’s opportu-
nity”. In: Proceedings of the May 4-7, 1981, national computer conference. ACM, 1981,
pp. 343–347 (cit. on p. 1).

[82]Consortium SAFEPOWER. “D4.6 Final cross-domain public demonstrator”. In: (2017)
(cit. on p. 92).

140 Chapter 8 Bibliography

https://multirotor.offis.de/wordpress/

[83]Kevin Scott, Jack W Davidson, and Kevin Skadron. “Low-overhead software dynamic
translation”. In: University of Virginia, Charlottesville, VA (2001) (cit. on p. 20).

[84]Kevin Scott, Naveen Kumar, Siva Velusamy, et al. “Retargetable and reconfigurable
software dynamic translation”. In: Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization. IEEE Computer
Society, 2003, pp. 36–47 (cit. on pp. 35, 37).

[85]Bor-Yeh Shen, Jyun-Yan You, Wuu Yang, and Wei-Chung Hsu. “An LLVM-based hybrid
binary translation system”. In: Industrial Embedded Systems (SIES), 2012 7th IEEE
International Symposium on. IEEE, 2012, pp. 229–236 (cit. on pp. 22, 39, 40).

[86]Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. “LLBT: an LLVM-based
static binary translator”. In: Proceedings of the 2012 international conference on Compilers,
architectures and synthesis for embedded systems. ACM, 2012, pp. 51–60 (cit. on pp. 3,
36–39).

[87]G. M. Silberman and K. Ebcioglu. “An architectural framework for supporting hetero-
geneous instruction-set architectures”. In: Computer 26.6 (1993), pp. 39–56 (cit. on
p. 31).

[88]Richard L Sites, Anton Chernoff, Matthew B Kirk, Maurice P Marks, and Scott G
Robinson. “Binary translation”. In: Communications of the ACM 36.2 (1993), pp. 69–81
(cit. on p. 31).

[89]Josef Templ. “Timing definition language (TDL) 1.5 specification”. In: University of
Salzburg, Tech. Rep 24 (2007) (cit. on p. 26).

[90]Scott R Tilley and Dennis Smith. Perspectives on legacy system reengineering. 1995 (cit.
on p. 2).

[91]David Ung and Cristina Cifuentes. “Machine-adaptable dynamic binary translation”. In:
ACM SIGPLAN Notices. Vol. 35. ACM, 2000, pp. 41–51 (cit. on pp. 33, 37, 39).

[92]Hans Van Vliet. Software engineering: principles and practice. Vol. 13. Wiley, 2008 (cit.
on p. 1).

[93]Christian Wagner and Christian Wagner. Model-Driven Software Migration. Springer,
2014 (cit. on p. 1).

[94]M. Wahler, R. Eidenbenz, C. Franke, and Y. A. Pignolet. “Migrating legacy control
software to multi-core hardware”. In: Software Maintenance and Evolution (ICSME),
2015 IEEE International Conference on. 2015, pp. 458–466 (cit. on p. 1).

[95]Andrew Wellings. Concurrent and real-time programming in Java. John Wiley & Sons,
Inc., 2004 (cit. on p. 25).

[96]Andy Wellings and Alan Burns. “Real-time utilities for Ada 2005”. In: International
Conference on Reliable Software Technologies. Springer. 2007, pp. 1–14 (cit. on p. 25).

[97]Bing Wu, Deirdre Lawless, Jesus Bisbal, et al. “Legacy system migration: A legacy
data migration engine”. In: Proceedings of the 17th International Database Conference
(DATASEM’97). 1997, pp. 129–138 (cit. on p. 1).

141

[98]Yindong Yang, Haibing Guan, Erzhou Zhu, Hongbo Yang, and Bo Liu. Crossbit: a
multi-sources and multi-targets DBT. Journal Article. 2010 (cit. on pp. 3, 34, 37, 39).

142 Chapter 8 Bibliography

List of Figures

1.1. Scope of this thesis. 4

2.1. Embedded Systems Model [75]). 8

2.2. Abstraction Layers and Embedded Systems Model. 10

2.3. Time model: timeline, events, and duration. 11

2.4. Real-Time Control Loop – cyclic time representation. 12

2.5. Signal types. 13

2.6. Event occurrence pattern examples. 17

2.7. Reaction pattern examples. 18

2.8. Causal reaction pattern example. 19

2.9. Direct vs. IR-based BT. 21

2.10.Static Binary Translation flow diagram. 22

2.11.Dynamic Binary Translation flow diagram. 23

3.1. Related work analysis. Mapping related work to the scope. 40

4.1. Contributions analysis. Mapping contributions to the scope. 42

5.1. RT Legacy Software Migration flow. 45

5.2. Example execution trace of the RT legacy application example. . . . 48

5.3. Lifting of timing properties. 49

5.4. Profiling phase. 50

5.5. Time control blocks’ behaviour and nesting. 54

5.6. Time control blocks’ structure and functionality 55

143

5.7. General Component Model. 57

5.8. Contract example. 58

5.9. Component-contract structure. 60

5.10.Description of the process for testing timing properties. 61

5.11.Description of the process for testing functional properties. 62

5.12.Description of the static binary translator based block handling. . . . 64

5.13.Runtime architecture for statically translated binary running on the
new hardware platform. 64

5.14.Description of the dynamic binary translator based block handling. . 65

5.15.Runtime architecture for the empty control block annotated legacy
binary running on the new hardware platform on top of the adapted
DBT tool. 65

6.1. QEMU’s dynamic binary translation flow diagram. 69

6.2. Rev.ng’s static binary translation process combining the use of QEMU,
Revamb and LLVM. 71

6.3. EET block’s execution – sequential diagram. 72

6.4. PET block’s execution – sequential diagram for block’s execution
finishing on time and finishing early. 75

6.5. PET block’s execution late (same for FET and BET blocks) – sequential
diagram for blocks’ execution when budget is exceeded. 76

6.6. FET block’s execution on time (same for BET block) – sequential
diagram for blocks’ execution finishing on time. 76

6.7. FET block’s execution early – sequential diagram for block’s execution
finishing early. 77

6.8. BET block’s execution early – sequential diagram for block’s execution
finishing early. 77

6.9. PNET block execution not active – sequential diagram for block’s
execution when it is not active (according to N th period and offset
arguments). 78

144 LIST OF FIGURES

6.10.PNET block’s execution on time – sequential diagram for block’s
execution finishing on time. 78

6.11.PNET block’s execution early – sequential diagram for block’s execu-
tion finishing early. 79

6.12.PNET block’s execution late – sequential diagram for block’s execution
when budget is exceeded. 79

6.13.Timing measurement on ARM Cortex-A9. 81

6.14.Timing measurement on Intel Atom (dynamic translation). 82

6.15.Adapted QEMU – translation flow diagram 83

6.16.Timing measurement on Intel Atom (static translation) 84

7.1. Evaluation overview and organization. 87

7.2. Overview of the flight controller [82] 92

7.3. Distribution of execution time data collected running the empty appli-
cation on the Intel Atom E3866 processor following a dynamic/static
translation process. 95

7.4. Timing results of benchmarks running on the legacy and new HW
platforms: static vs. dynamic translation. 97

7.5. Ideal component-contract structure for the annotated example appli-
cation. 103

7.6. Ideal component-contract structure for the annotated industrial appli-
cation. 103

7.7. Ideal component-contract structure for the annotated multirotor ap-
plication. 104

7.8. Adjusted component-contract structure for the annotated example
application. 106

7.9. Adjusted component-contract structure for the annotated industrial
application. 108

7.10.Adjusted component-contract structure for the annotated multirotor
application. 110

LIST OF FIGURES 145

7.11.Functional test results for the annotated example application running
on the ARM Cortex-A9 processor. 111

7.12.Functional test results for the annotated industrial application running
on the ARM Cortex-A9 processor. 112

7.13.Functional test results for the annotated multirotor application run-
ning on the ARM Cortex-A9 processor. 114

7.14.Adjusted component-contract structure for the translated example
application. 120

7.15.Adjusted component-contract structure for the translated industrial
application. 122

7.16.Adjusted component-contract structure for the translated multirotor
application. 124

7.17.Functional test results for the translated example application running
on the Intel Atom E3866 processor. 125

7.18.Functional test results for the translated industrial application running
on the Intel Atom E3866 processor. 127

7.19.Functional test results for the translated multirotor application run-
ning on the Intel Atom E3866 processor. 128

146 LIST OF FIGURES

List of Tables

3.1. Timing-aware recompilation solution analysis. 30

3.2. Binary Translation tool analysis. 37

5.1. RT legacy application example . 48

7.1. Benchmark classification. 90

7.2. Measured execution time data obtained when running the empty
application on the Intel Atom E3866 processor following a dynam-
ic/static translation process. 95

7.3. Time traces generated by the annotated example application run-
ning on the ARM Cortex-A9 processor validated against the ideal
component-contract structure. 101

7.4. Time traces generated by the annotated industrial application run-
ning on the ARM Cortex-A9 processor validated against the ideal
component-contract structure. 104

7.5. Time traces generated by the annotated flight control application
running on the ARM Cortex-A9 processor validated against the ideal
component-contract structure. 105

7.6. Time traces generated by the annotated example application run-
ning on the ARM Cortex-A9 processor validated against the adjusted
component-contract structure. 107

7.7. Time traces generated by the annotated industrial application run-
ning on the ARM Cortex-A9 processor validated against the adjusted
component-contract structure. 109

7.8. Time traces generated by the annotated flight control application run-
ning on the ARM Cortex-A9 processor validated against the adjusted
component-contract structure. 110

147

7.9. Time traces generated by the translated example application running
on the Intel Atom E3866 processor validated against the (before
translation) adjusted component-contract structure. 117

7.10.Time traces generated by the translated industrial application running
on the Intel Atom E3866 processor validated against the (before
translation) adjusted component-contract structure. 118

7.11.Time traces generated by the translated flight control application
running on the Intel Atom E3866 processor validated against the
(before translation) adjusted component-contract structure. 119

7.12.Time traces generated by the translated example application run-
ning on the Intel Atom E3866 processor validated against the (after
translation) adjusted component-contract structure. 121

7.13.Time traces generated by the translated industrial application run-
ning on the Intel Atom E3866 processor validated against the (after
translation) adjusted component-contract structure. 123

7.14.Time traces generated by the translated flight control application
running on the Intel Atom E3866 processor validated against the
(after translation) adjusted component-contract structure. 124

148 LIST OF TABLES

List of Listings

5.1. Llegacy example application and the resulting time measurement block
(EET block) annotated legacy example application. 51

5.2. Behavioural legacy example application and the resulting time control
block annotated legacy example application. 53

7.1. Example application annotated with time control blocks. 100
7.2. Industrial application annotated with time control blocks. 100
7.3. Multirotor application annotated with time control blocks. 101

149

Acronyms

ABI Application Binary Interface

ADC Analog-to-Digital Converter

API Application Programming Interface

AST Abstract Syntax Tree

ASTRA Automated Synthesis of TRAnslators

BB Basic-Block

BET Budgeted Execution Time

BIP Behaviour Interaction Priority

BNF Backus-Naur Form

BSP Board Support Package

BT Binary Translation

CERTS Critical Embedded Real-Time Systems

CFG Control Flow Graph

CISC Complex Instruction Set Computer

CPI Cycles Per Instruction

CPU Central Processing Unit

DBT Dynamic Binary Translation

EB Evaluation Board

EET Estimated Execution Time

E-machine Embedded Machine

FET Forced Execution Time

FPGA Field Programmable Gate Array

151

GCC GNU Compiler Collection

GCD Greatest Common Divisor

HAL Hardware Abstraction Layer

HRTL Higher-Level Register Transfer Language

IR Intermediate Representation

ISA Instruction Set Architecture

I/O Input/Output

LCM Least Common Multiple

LET Logical Execution Time

LLVM Low Level Virtual Machine

MTSL MULTIC Time Specification Language

N/R Not Relevant

OS Operating System

PC Program Counter

PET Periodic Execution Time

PNET Period N Execution Time

POSIX Portable Operating System Interface

QEMU Quick EMUlator

RISC Reduced Instruction Set Computer

RT Real-Time

RTL Register-Transfer Level

RT-BIP Real-Time BIP

RT-BIPAgent Real-Time BIP Agent

SBT Static Binary Translation

SoC System on a Chip

SotA State of The Art

152 List of Listings

SPM Scratchpad Memory

TB Translation Block

TCG Tiny Code Generator

TDL Timing Definition Language

TMCB Timing Measurement and Control Block

VIT Virtual Integration Test

VM Virtual Machine

WCC WCET-aware C Compiler

WCEP Worst Case Execution Path

WCET Worst Case Execution Time

List of Listings 153

Systematic Annotation &
Transformation

A
This appendix presents the algorithms for the systematic annotation of legacy code
using the time measurement and control blocks, as well as the systematic trans-
formation of annotated legacy code into formal timing specification for the latter
validation of the timing behaviour on the new architecture.

A.1 Systematic Annotation with Time Measurement
Blocks

The profiling phase in the RT legacy software migration flow, presented in Sec-
tion 5.2.1, describes how the time measurement block, EET [22], can be used to
easily perform execution time measurements on the legacy code. Timing measure-
ments are then evaluated by an expert, together with code analysis and legacy
system’s timing specifications, to extract the necessary timing information from the
legacy system.

In order to systematically annotate the legacy code with time measurement blocks,
algorithm A.1.1 sorts out the legacy task set T (see definition 5.1.1) according to
the execution model (see definition 5.1.2), resulting in a sorted task set TSO:

Definition A.1.1. (Sorted Task Set). TSO consists of a set of sorted tasks, where
each task is represented by a tuple (pi, φi, ei, di, cri) (see Definition 5.1.1 for the
description of each element in the tuple).

Algorithm A.1.1 Sort out task set.

Input: Set of time slots slj,1, slj,2, . . . , slj,n.
Set of frames {fj}.

Output: Set of sorted tasks TSO.

1 i, j, k ← 0 . Initialize task, frame and slot identifiers to 0
2 cntSL← 0 . Initialize frame and slot counters to 0

155

3 TSO ← {NULL} . Initialize sorted task set to NULL
4 for all fj ∈ {fj} do
5 cntF ← cntF + 1
6 end for
7 for all sl1,k ∈ f1 do
8 cntSL← cntSL+ 1
9 end for

10 while k < cntSL do
11 while j < cntF do
12 if ti 6= slj,k.t then
13 ti ← slj,k.t

14 i← i+ 1
15 end if
16 j ← j + 1
17 end while
18 k ← k + 1
19 end while

Then, the sorted task set TSO is annotated with time measurement blocks following
algorithms A.1.2 to A.1.4. The output of the main algorithm A.1.2 consist of a set of
time measurement block nodes MB, sorted from left to right, starting from the root
node and incrementing the level when there is no node left in the current level:

Definition A.1.2. (Time Measurement Block Tree). Each node in the time measure-
ment block node set MB = {mbm} consists of a tuple (nm, l, p, tf), where nm is the
name of the node that is composed of the type tp (EET) and an identifier id (id ∈ N),
l represents the level of the node, p is the parent node and tf consists of the task
functions that are wrapped by the time measurement block of each node.

Algorithm A.1.2 Systematic annotation of legacy code with time measurement
blocks.

Input: Set of sorted tasks TSO.
Frame size F .

Output: Set of time measurement block nodes MB.

1 i,m← 1 . Initialize task and node identifiers to 0
2 l← 1 . Initialize node level to 1
3 p← NULL . Initialize node parent to NULL
4 tf ← t0 . Initialize node task function to t0
5 n← 0 . Initialize number of tasks to 0
6 crCnt, crMax← 0 . Initialize critical task counter and maximum to 0
7 cntAp,Ap← 0 . Initialize active period task counter and active period to 0

156 Appendix A Systematic Annotation & Transformation

8 cnt← 0 . Initialize counter to 0
9 for all ti ∈ TSO do

10 tf ← tf”, ”ti
11 n← n+ 1
12 if ti.cr = 1 then
13 crMax← crMax+ 1
14 end if
15 end for
16 (MB)← EETNode(m, l, p, tf)
17 l← l + 1
18 m← m+ 1
19 p← 0
20 tf ← t0

21 while i ≤ n do
22 if crMax− crCnt > 1 or (crMax− crCnt = 1 and ti.cr 6= 1) then
23 repeat
24 (Ap, cntAp, crCnt)← TaskManagement(TSO, F, i, cntAp, crCnt)
25 tf ← tf”, ”ti
26 i← i+ 1
27 until ti.cr = 1 and (ti.p/F 6= Ap or cntAp = Ap)
28 else
29 tf ← ti

30 i← i+ 1
31 end if
32 (MB)← EETNode(m, l, p, tf)
33 l← l + 1
34 m← m+ 1
35 Ap← 0
36 cntAp← 0
37 end while
38 cnt← m− 1
39 i← 0
40 while i ≤ n and (crMax− crCnt > 1 or (crMax− crCnt = 1 and ti.cr 6= 1)) do
41 repeat
42 (Ap, cntAp, crCnt)← TaskManagement(TSO, F, i, cntAp, crCnt)
43 p← m− cnt
44 tf ← ti

45 (MB)← EETNode(m, l, p, tf)
46 m← m+ 1
47 cnt← cnt+ 1
48 until ti.cr = 1 and (ti.p/F 6= Ap or cntAp = Ap)
49 cnt← cnt− 1
50 Ap← 0
51 cntAp← 0

A.1 Systematic Annotation with Time Measurement Blocks 157

52 end while

Algorithm A.1.3 Manage tasks with period greater than F and task containing
critical sections.

Input: Set of sorted tasks TSO.
Frame size F .
Task identifier i
Active period task counter cntAp
Critical task counter crCnt

Output: Task’s active period Ap.
Updated active period task counter cntAp.
Updated critical section counter crCnt.

1 procedure TASKMANAGEMENT(TSO, F, i, cntAp, crCnt)
2 if ti.p > F then
3 if cntAp = 0 then
4 Ap← ti.p/F

5 end if
6 cntAp← cntAp+ 1
7 end if
8 if ti.cr = 1 then
9 crCnt← crCnt+ 1

10 end if
11 end procedure

Algorithm A.1.4 Create EET node.

Input: Node identifier m.
Node level l.
Node parent p
Task functions wrapped by the node tf

Output: Set of time measurement block nodes MB.

1 procedure TASKMANAGEMENT(m, l, p, tf)
2 mbm.nm.tp← ”EET”
3 mbm.nm.id← k

4 mbm.l← l

5 mbm.p← p

6 mbm.tf ← tf

7 end procedure

158 Appendix A Systematic Annotation & Transformation

A.2 Systematic Annotation with Time Control Blocks

From the profiling phase, legacy timing properties and legacy behaivoural code are
obtained. Then, using algorithms A.2.1 to A.2.4 and A.3.1, the behavioural legacy
code is annotated with time control blocks to make the legacy timing behaviour
explicit. The input to the main algorithm (algorithm A.2.1) consists of the frame
size F and a set of sorted tasks where every time element has the same time unit
TSOunit:

Definition A.2.1. (Unit Transformation Function). Function β : TSO → TSOunit

transforms every time element in the sorted task set TSO to sorted elements with
the same time unit, resulting in TSOunit .

The output resulting from Algorithm A.2.1 consists of a set of time control block
nodes CB, where nodes are sorted from left to right, starting from the root node
and incrementing the level when there is no any node left at the current level:

Definition A.2.2. (Time Control Block Tree). Each node cbm in the time control
block node set CB consists of a tuple (nm, l, p, bg, of, tu, ap, op, tf), where nm is the
name of the node that is composed of the type tp (be it PET, FET, BET or PNET)
and an identifier id (id ∈ N), l represents the level of the node, p is the parent node,
bg is the budget assigned to the node, of is the offset, tu is the time unit for the bg,
ap and op are the active period and the offset in periods, which is only necessary in
nodes with tpi=PNET, whereas tf consists of the task functions that are wrapped by
the control block this node corresponds to.

Algorithm A.2.1 Systematic annotation of legacy code with time control blocks.

Input: Set of sorted tasks TSOunit .
Frame size F .

Output: Set of time control block nodes CB.

1 i,m← 1 . Initialize task and node identifiers to 0
2 l← 1 . Initialize node level to 1
3 p← 0 . Initialize node parent to root node
4 n← 0 . Initialize number of tasks to 0
5 crCnt, crMax← 0 . Initialize critical task counter and maximum to 0
6 pnetOp, pnetAp← 0 . Initialize PNET offset and active period to 0
7 fetCnt, fetOf ← 0 . Initialize FET counter and offset to 0
8 for all ti ∈ {ti} do
9 n← n+ 1

A.2 Systematic Annotation with Time Control Blocks 159

10 if ti.cr = 1 then
11 crMax← crMax+ 1
12 end if
13 end for
14 (CB)← PETNode(TSOunit

, i,m, l, CB)
15 m← m+ 1
16 l← l + 1
17 while i ≤ n do
18 if crMax− crCnt > 1 or (crMax− crCnt = 1 and ti.cr 6= 1) then
19 (CB, i,m, crCnt, pnetOp, pnetAp, fetOf)← FETNode(TSOunit

,

F, i,m, l, CB, pnetOp, pnetAp, fetOf, crCnt)
20 else
21 (CB, pnetOp, pnetAp, crCnt)← BETPNETNode(TSOunit

, F, i,m,

l, p, pnetOp, pnetAp, crCnt)
22 if ti.p/F 6= pnetAp or pnetOp = pnetAp or ti.p = F then
23 pnetAp← 0
24 pnetOp← 0
25 end if
26 end if
27 end while
28 fetCnt← m− 1
29 i← 0
30 l← l + 1
31 while i ≤ n and (crMax− crCnt > 1 or (crMax− crCnt = 1 and ti.cr 6= 1)) do
32 repeat
33 p← m− fetCnt
34 (CB, pnetOp, pnetAp, crCnt)← BETPNETNode(TSOunit

, F, i,m,

l, p, pnetOp, pnetAp, crCnt)
35 fetCnt← fetCnt+ 1
36 until ti.cr = 1 and (ti.p/F 6= pnetAp or pnetOp = pnetAp or ti.p = F)
37 fetCnt← fetCnt− 1
38 pnetAp← 0
39 pnetOp← 0
40 end while

Algorithm A.2.2 Create root PET node.

Input: Set of sorted tasks TSOunit .
Task and node identifiers i,m.
Tree node level l.
Set of control block nodes CB.

Output: Updated set of control block nodes CB.

1 procedure PETNODE(TSOunit , i,m, l, CB)

160 Appendix A Systematic Annotation & Transformation

2 cbm.nm.tp← ”PET”
3 cbm.nm.id← m

4 cbm.l← l

5 cbm.bg ← F.v

6 cbm.of ← ti.φ.v

7 cbm.tu← ti.p.tu

8 for all ti ∈ {ti} do
9 cbm.tf ← cbm.tf”, ”ti

10 end for
11 end procedure

Algorithm A.2.3 Create FET node.

Input: Set of sorted tasks TSOunit .
Frame size F .
Task and node identifiers i,m.
Tree node level l.
Set of control block nodes CB.
PNET offset and active period pnetOp, pnetAp.
FET node offset fetOf .

Output: Updated set of control block nodes CB.
Updated critical section counter crCnt.
Updated PNET offset and active period pnetOp, pnetAp.
Updated FET node offset fetOf .

1 procedure FETNODE(TSOunit
, F, i,m, l, CB, pnetOp, pnetAp, fetOf)

2 cbm.nm.tp← ”FET”
3 cbm.nm.id← m

4 cbm.l← l

5 cbm.p← 0
6 cbm.of ← ti.φ.v

7 cbm.tu← ti.p.tu

8 repeat
9 if ti.p > F then

10 if pnetOp = 0 then
11 pnetAp← ti.p/F

12 end if
13 pnetOp← pnetOp+ 1
14 end if
15 if ti.cr = 1 then
16 crCnt← crCnt+ 1
17 end if

A.2 Systematic Annotation with Time Control Blocks 161

18 cbm.bg ← ti+1.φ.v − fetOf
19 cbm.tf ← cbm.tf”, ”ti
20 i← i+ 1
21 until ti.cr = 1 and (ti.p/F 6= pnetAp or pnetOp = pnetAp or ti.p = F)
22 m← m+ 1
23 pnetAp← 0
24 pnetOp← 0
25 fetOf ← fetOf + cbm−1.bg

26 end procedure

Algorithm A.2.4 Create BET/PNET node.

Input: Set of sorted tasks TSOunit .
Frame size F .
Task and node identifiers i,m.
Tree node level and parent l, p.
Critical section counter crCnt.
PNET offset and active period pnetOp, pnetAp.

Output: Updated set of control block nodes CB.
Updated critical section counter crCnt.
Updated PNET offset and active period pnetOp, pnetAp.

1 procedure BETPNETNODE(TSOunit
, F, i,m, l, p, crCnt, pnetOp, pnetAp)

2 if ti.p > F then
3 cbm.nm.tp← ”PNET”
4 if pnetOp = 0 then
5 pnetAp← ti.p/F

6 end if
7 cbm.ap← pnetAp

8 cbmop← pnetOp

9 pnetOp← pnetOp+ 1
10 else
11 cbm.nm.tp← ”BET”
12 end if
13 cbm.nm.id← m

14 cbm.l← l

15 cbm.p← p

16 cbm.bg ← ti.e.v

17 cbm.of ← ti.φ.v

18 cbm.tu← ti.p.tu

19 cbm.tf ← ti

20 if ti.cr = 1 then

162 Appendix A Systematic Annotation & Transformation

21 crCnt← crCnt+ 1
22 end if
23 i← i+ 1
24 m← m+ 1
25 end procedure

A.3 Systematic Transformation to Formal Timing
Specifications

In order to verify the correct timing behaviour of annotated legacy code, legacy
timing properties are systematically transformed into formal timing specifications
(formal timing specifications are based on the MTSL described in section 2.3).
Algorithms A.3.1 to A.3.5 describe the systematic transformation of the time control
block annotated legacy code into a component-contract structure. The input to
the main algorithm (see Algorithm A.3.1) consist of a set of control block nodes
CB = {cbm}, as described in definition A.2.2, whereas the output consists of a set
of component nodes CO = {com} with their corresponding contract in the form of
assumptions A and guarantees G:

Definition A.3.1. (Component Tree). CO is a set of component nodes where each
node consists of a tuple (nm, l, p, EN, ex,A,G, tf), where nm is the name of the
node that is composed of the type tp (be it PET, FET, BET or PNET) and an identifier
id (id ∈ N), p is the parent node, EN is a set of entry ports, ex is the exit port, A is a
set of assumptions, G is a set of guarantees and tf consists of the task functions that
correspond to the component node. Each entry and exit port consists of a port name
pn and a port connexion pc, which determines the output/input port it is connected
to.

Algorithm A.3.1 Transforming timing annotations into timing specifications.

Input: Set of control block nodes CB.
Output: Set of component nodes CO.

1 ∀m : com.nm← cbm.nm . Every component node inherits the name from the control
block node

2 ∀m : com.l← cbm.l . Every component node inherits the level from the control block
node

3 ∀m : com.p← cbm.p . Every component node inherits the parent from the control block
node

A.3 Systematic Transformation to Formal Timing Specifications 163

4 ∀m : com.tf ← cbm.tf . Every component node inherits the task functions from the
control block node

5 m← 0 . Start with the first node
6 F ← cbm.bg . Set the size of the frame to the rood node (PET) budget
7 Bg ← 0 . Budget to be passed within sibling BET and PNET nodes
8 Fst← 1 . Flag to identify the first sibling BET/PNET node
9 cntPNET, cntBET ← 0 . Initialize sibling PNET and BET node counters to 0

10 for all cbm ∈ CB do
11 if cbm.nm.tp = PET then
12 (CO,m)← PETTransformation(CB,m,F)
13 else if cbm.nm.tp = FET then
14 (CO,m,Fst, cntPNET)← FETTransformation(CB,m,F,Bg)
15 else if cbm.nm.tp = BET then
16 (CO,m,Bg, Fst, cntPNET, cntBET)← BETTransformation(CB,m,F,

Bg, Fst, cntBET)
17 else if cbm.nm.tp = PNET then
18 (CO,m,Bg, Fst, cntPNET, cntBET)← PNETTransformation(CB,m,F,

Bg, Fst, cntPNET, cntBET)
19 end if
20 end for

Algorithm A.3.2 PET block transformation.

Input: Set of control block nodes CB.
Node identifier m.
Frame size F .

Output: Set of component nodes CO.
Updated node identifier m.

1 procedure PETTRANSFORMATION(CB,m,F)
2 com.en0.pn← Entry

3 com.ex.pn← Exit

4 com.a0 ← com.en0.pn” occurs every [”F”, ”F”] ”cbm.tu” with
offset [”(cbm.of)+”, ”cbm.of”] ”cbm.tu”.”

5 com.g0 ← ”Reaction (”com.en0.pn”, ”com.ex.pn”) within [”F”, ”F
”] ”cbm.tu”.”

6 m← m+ 1
7 end procedure

Algorithm A.3.3 FET block transformation.

Input: Set of control block nodes CB.
Node identifier m.

164 Appendix A Systematic Annotation & Transformation

Frame size F .
Output: Set of component nodes CO.

Updated node identifier m.

1 procedure FETTRANSFORMATION(CB,m,F)
2 com.en0.pn← Entry

3 com.ex.pn← Exit

4 if com.p 6= com−1.p then
5 com.en0.pc← cocom.p.en0

6 else
7 com.en0.pc← com−1.ex

8 end if
9 com.a0 ← com.en0.pn” occurs every [”F”, ”F”] ”cbm.tu” with offset [”cbm.of”, ”

cbm.of”] ”cbm.tu”.”
10 com.g0 ← ”Reaction (”com.en0.pn”, ”com.ex.pn”) within [”cbm.bg”, ”cbm.bg”] ”

cbm.tu”.”
11 m← m+ 1
12 end procedure

Algorithm A.3.4 BET block transformation.

Input: Set of control block nodes CB.
Node identifier m.
Frame size F .
Budget Bg.
First sibling BET/PNET node flag Fst.
BET block counter cntBET .

Output: Set of component nodes CO.
Updated node identifier m.
Updated budget Bg.
Updated first sibling BET/PNET node flag Fst.
Updated PNET block counter cntPNET .
Updated BET block counter cntBET .

1 procedure BETTRANSFORMATION(CB,m,F,Bg, Fst, cntBET)
2 com.en0.pn← Entry

3 com.ex.pn← Exit

4 if com.p 6= com−1.p then
5 com.en0.pc← cocom.p.en0

6 com−1.ex.pc← com−1.ex.pc
′, ′cocom−1.p.ex.pc

7 Bg ← 0
8 Fst← 1
9 cntPNET ← 0

A.3 Systematic Transformation to Formal Timing Specifications 165

10 cntBET ← 0
11 else
12 com.en0.pc← com−1.ex

13 if com−1.nm.tp = PNET then
14 Fst← 0
15 end if
16 end if
17 if Fst then
18 com.a0 ← com.en0.pn” occurs every [”F”, ”F”] ”cbm.tu” with offset [”cbm.of”, ”

cbm.of”] ”cbm.tu”.”
19 com.g0 ← ”Reaction (”com.en0.pn”, ”com.ex.pn”) within [0, ”cbm.bg”] ”

cbm.tu”.”
20 Fst← 0
21 else
22 com.en1.pn← PEntry

23 com.en1.pc← cocom.p.en0

24 com.a0 ← com.en0.pn” occurs every [”F −Bg”, ”F +Bg”] ”cbm.tu” with offset”
” [”(cbm.of −Bg)”, ”cbm.of”] ”cbm.tu”.”

25 com.a1 ← com.en1.pn” occurs every [”F”, ”F”] ”cbm.tu” with offset [”
cbcbm.p.of”, ”cbcbm.p.of”] ”cbcbm.p.tu”.”

26 com.g0 ← ”Reaction (”com.en0.pn”, ”com.ex.pn”) within [0, ”cbm.bg +Bg”] ”
cbm.tu”.”

27 if cocom.p.nm.tp = PET then
28 com.g1 ← ”Reaction (”com.en1.pn”, ”com.ex.pn”) within [”(cbm.of −Bg

)”, ”cbm.of + cbm.bg”] ”cbm.tu”.”
29 else
30 com.g1 ← ”Reaction (”com.en1.pn”, ”com.ex.pn”) within [0, ”cbm.bg +Bg

”] ”cbm.tu”.”
31 end if
32 end if
33 cntBET ← cntBET + 1
34 m← m+ 1
35 Bg ← Bg + cbm.bg

36 end procedure

Algorithm A.3.5 PNET block transformation.

Input: Set of control block nodes CB.
Node identifier m.
Frame size F .
Budget Bg.
First sibling BET/PNET node flag Fst.
PNET block counter cntPNET .
BET block counter cntBET .

166 Appendix A Systematic Annotation & Transformation

Output: Set of component nodes CO.
Updated node identifier m.
Updated budget Bg.
Updated first sibling BET/PNET node flag Fst.
Updated PNET block counter cntPNET .
Updated BET block counter cntBET .

1 procedure PNETTRANSFORMATION(CB,m,F,Bg, Fst, cntPNET, cntBET)
2 com.en0.pn← Entry

3 com.ex.pn← Exit

4 if cbm.p 6= cbm−1.p then
5 com.en0.pc← cocom.p.en0

6 com−1.ex.pc← com−1.ex.pc
′, ′cocom−1.p.ex.pc

7 Bg ← 0
8 Fst← 1
9 cntPNET ← 0

10 cntBET ← 0
11 else
12 if cntBET = 0 then
13 com.en0.pc← cocom.p.en0

14 else
15 com.en0.pc← com−1−cntP NET .ex

16 end if
17 if cntPNET > 0 then
18 com.ex.pc← com−1.ex

19 end if
20 end if
21 if Fst then
22 com.a0 ← com.en0.pn” occurs every [”F ∗ cbm.ap”, ”F ∗ cbm.ap”] ”cbm.tu” with

offset [”F ∗ cbm.op+ cbm.of”, ”F ∗ cbm.op+ cbm.of”] ”cbm.tu”.”
23 com.g0 ← ”Reaction (”com.en0.pn”, ”com.ex.pn”) within [0, ”cbm.bg”] ”cbm.tu”.”
24 else
25 com.en1.pn← PEntry

26 com.en1.pc← cocom.p.en0

27 com.a0 ← com.en0.pn” occurs every [”F ∗ cbm.ap−Bg”, ”F ∗ cbm.ap+Bg”] ”
cbm.tu” with offset [”F ∗ cbm.op+ cbm.of −Bg”, ”F ∗ cbm.op+ cbm.of

”] ”cbm.tu”.”
28 com.a1 ← com.en1.pn” occurs every [”F”, ”F”] ”cbm.tu” with offset [”cbcbm.p.of

”, ”cbcbm.p.of”] ”cbcbm.p.tu”.”
29 com.g0 ← ”Reaction (”com.en0.pn”, ”com.ex.pn”) within [0, ”cbm.bg +Bg

”] ”cbm.tu”.”
30 if cocom.p.nm.tp = PET then
31 com.g1 ← ”Reaction (”com.en1.pn”, ”com.ex.pn”) within [”cbm.of −Bg”, ”

cbm.of + cbm.bg”] ”cbm.tu”.”
32 else

A.3 Systematic Transformation to Formal Timing Specifications 167

33 com.g1 ← ”Reaction (”com.en1.pn”, ”com.ex.pn”) within [0, ”cbm.bg +Bg

”] ”cbm.tu”.”
34 end if
35 end if
36 if cntPNET = 0 then
37 Bg ← Bg + cbm.bg

38 end if
39 m← m+ 1
40 cntPNET ← cntPNET + 1
41 end procedure

168 Appendix A Systematic Annotation & Transformation

Declaration

I hereby declare that this thesis titled, "Legacy Software Migration based on Timing
Contract aware Real-Time Execution Environments" was composed by myself, and
that the work contained herein is my own except where explicitly stated otherwise
in the text. This thesis has also not been submitted in whole or part for any other
degree or professional qualification.

Oldenburg, 2020-01-26

Irune Yarza Perez

170 Appendix A Systematic Annotation & Transformation

	Title: Legacy Software Migration based on Timing Contract aware Real-Time Execution Environments
	Abstract
	Acknowledgement
	Contents
	Contents
	1 Introduction
	1.1 Scope
	1.2 Research Questions and Methodology
	1.3 Thesis Organization

	2 Background and Basic Concepts
	2.1 Embedded Systems
	2.1.1 Architecture
	2.1.2 Software
	2.1.3 From High-Level to Machine Code
	2.1.4 Abstraction Layers

	2.2 Real-Time Embedded Systems
	2.2.1 Time Model
	2.2.2 Real-Time Control Systems

	2.3 Timing Property Specification
	2.3.1 MULTIC Time Specification Language

	2.4 Legacy Migration Techniques
	2.4.1 Emulation vs. Simulation
	2.4.2 Binary Translation
	2.4.3 Static Binary Translation
	2.4.4 Dynamic Binary Translation

	3 Related Work
	3.1 Timing-aware Recompilation
	3.1.1 LET-based Software on E-machine
	3.1.2 WCET-aware C Compiler
	3.1.3 BIP & FreeRTOS
	3.1.4 Timed C
	3.1.5 Real-Time Concurrent C
	3.1.6 Time Measurement and Control Blocks
	3.1.7 Timing-aware Recompilation – Analysis

	3.2 Binary Translation
	3.2.1 Binary Translator for Real-Time Applications
	3.2.2 Machine-adaptable Binary Translators
	3.2.3 Binary Translators for Embedded Systems
	3.2.4 Binary Translation Tools – Analysis

	3.3 Gap Analysis

	4 Thesis Contributions
	4.1 Contributions
	4.2 Assumptions & Constraints

	5 Real-Time Legacy Software Migration
	5.1 Legacy System Model Definition
	5.1.1 Application Model
	5.1.2 Execution Model
	5.1.3 Example Application

	5.2 Lifting of Timing Properties
	5.2.1 Profiling Legacy System
	5.2.2 Legacy Timing Enforcement
	5.2.3 Extract Timing Specifications

	5.3 Testing, Reallocation & Adjustment
	5.3.1 Testing Timing Properties – MULTIC tool
	5.3.2 Testing Functional Properties
	5.3.3 Time Control Block Reallocation/Adjustment
	5.3.4 Formal Timing Specification Adjustment

	5.4 Timing Block Support within Binary Translation
	5.4.1 Static Binary Translation based Timing Block handling
	5.4.2 Dynamic Binary Translation based Timing Block handling

	6 Implementation
	6.1 Development Platforms
	6.1.1 Xilinx Zynq-7000 SoC ZC702
	6.1.2 MinnowBoard Turbot Dual-Core

	6.2 Translation Tools
	6.2.1 QEMU
	6.2.2 Rev.ng

	6.3 Operating System – Linux
	6.4 Timing Measurement and Control Blocks
	6.4.1 Timing Measurement Block
	6.4.2 Timing Control Blocks

	6.5 Timing Measurement within Translated Binary
	6.5.1 Legacy Platform – Timing Measurement
	6.5.2 Dynamic Approach – Timing Measurement
	6.5.3 Static Approach – Timing Measurement

	6.6 Timing Control within Static Binary Translation
	6.7 Testing Timing & Functional Properties within Migration Flow
	6.7.1 Testing Timing Properties
	6.7.2 Testing Functional Properties

	7 Evaluation Process and Result Analysis
	7.1 Overview & Organization
	7.2 Evaluation Software
	7.2.1 Mälardalen WCET benchmarks
	7.2.2 Example application
	7.2.3 Industrial application
	7.2.4 Multirotor application

	7.3 Feasibility Study – Dynamic vs. Static Binary Translation
	7.3.1 Translation tool selection
	7.3.2 Evaluation set-up
	7.3.3 Translation overhead analysis
	7.3.4 Static vs. Dynamic migration
	7.3.5 Summary

	7.4 Block-Level Timing Enforcement Assessment
	7.4.1 Evaluation set-up
	7.4.2 Timing test
	7.4.3 Functional test
	7.4.4 Summary

	7.5 Timing-aware Static Legacy Software Translation Assessment
	7.5.1 Evaluation set-up
	7.5.2 Timing test
	7.5.3 Functional test
	7.5.4 Summary

	8 Conclusion and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	A Systematic Annotation & Transformation
	A.1 Systematic Annotation with Time Measurement Blocks
	A.2 Systematic Annotation with Time Control Blocks
	A.3 Systematic Transformation to Formal Timing Specifications

	Declaration

