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Abstract

Producing green hydrogen through water electrolysis with electricity from renewable
sources offers a promising solution to decarbonize various industrial sectors. As
a result, the global installed capacity of water electrolyzers is expected to grow
rapidly in the near future. One of the mature water electrolysis technologies is the
proton exchange membrane (PEM) water electrolysis. It has several advantages such
as allowing for quick dynamic operation and having a smaller size. However, its
market expansion is hindered by its high cost and short lifetime. To mitigate these
disadvantages, PEM electrolyzer operators must maximize its utilization by carefully
planning maintenance activities and optimizing the operation schemes. This requires
close monitoring of the state of health (SOH) of the industrial PEM electrolyzers.
Existing SOH quantification methods for PEM water electrolyzers are primarily
based on direct measurements in laboratory environments under strictly controlled
operating conditions, which are not suitable for industrial applications. To bridge this
gap, this research focuses on the easily measurable degradation indicator — voltage,
and uses data-driven methods to correct voltage measured under arbitrary operating
conditions to the reference conditions, denoted as U,. — the SOH indicator for PEM
water electrolyzers.

Two methods are developed in this research. They share the same working principle:
Voltage models are fitted over time with the help of fleet knowledge; the fitted models
are used to calculate voltage under the reference condition and obtain U,.. The first
method is based on the transfer linear regression algorithm, which adjusts a pre-
existing fitted voltage model based on new data in a sequential manner. The second
method is based on Bayesian inference, using fleet knowledge as the prior probability
distribution. These methods are validated with both industrial and synthetic data.
In addition, this research suggests a framework to guide industrial practitioners in
developing fleet-based algorithms based on their business requirements.

The proposed methods will enable automatic and continuous degradation monitoring
for industrial PEM water electrolyzer. It provides a strong foundation to enhance
the operation safety and profitability. It also facilitates knowledge discovery from the

large amount of industrial data to gain more insights into the degradation behavior.



Kurzzusammenfassung

Die Erzeugung von griinem Wasserstoff durch Wasserelektrolyse mit Strom aus
erneuerbaren Quellen bietet eine vielversprechende Losung, um verschiedene Indus-
triesektoren zu dekarbonisieren. Dementsprechend wird erwartet, dass die weltweit
installierte Kapazitdt von Wasserelektrolyseuren in naher Zukunft schnell wach-
sen wird. Eine der ausgereiften Technologien fiir Wasserelektrolyse ist die Pro-
tonenaustauschmembran (PEM) Wasserelektrolyse. Sie hat mehrere Vorteile, wie
zum Beispiel die Ermoglichung eines schnellen, dynamischen Betriebs und eine
kleinere Grofle. Allerdings wird ihre Marktausweitung durch hohe Kosten und eine
kurze Lebensdauer gehemmt. Um diese Nachteile zu mildern, miissen Betreiber von
PEM-Elektrolyseuren deren Nutzung maximieren, indem sie Wartungsaktivitiaten
sorgfiltig planen und die Betriebsschemata optimieren. Dies erfordert eine genaue
Uberwachung des Gesundheitszustands (engl. State of Health, SOH) der industriellen
PEM-Elektrolyseure.

Bestehende Methoden zur Quantifizierung des SOH fiir PEM-Wasserelektrolyseure
basieren hauptséchlich auf direkten Messungen in Laborumgebungen unter streng
kontrollierten Betriebsbedingungen, die fir industrielle Anwendungen nicht geeignet
sind. Um diese Liicke zu schlieflen, konzentriert sich diese Forschung auf den leicht
messbaren Degradationsindikator — die Spannung — und verwendet datengetriebene
Methoden, um die unter beliebigen Betriebsbedingungen gemessene Spannung auf
die Referenzbedingungen zu korrigieren, die als U, — der SOH-Indikator fiir PEM-
Wasserelektrolyseure — bezeichnet wird.

In dieser Forschung werden zwei Methoden entwickelt. Sie teilen das gleiche Ar-
beitsprinzip: Spannungsmodelle werden iiber die Zeit mit Hilfe von Flottenwissen
angepasst; die angepassten Modelle werden verwendet, um die Spannung unter
der Referenzbedingung zu berechnen und U,. zu erhalten. Die erste Methode
basiert auf dem Transfer-Linear-Regression-Algorithmus, der ein bereits vorhan-
denes angepasstes Spannungsmodell basierend auf neuen Daten sequenziell anpasst.
Die zweite Methode basiert auf der Bayesschen Inferenz, wobei das Flottenwissen als
die a-priori-Wahrscheinlichkeitsverteilung verwendet wird. Diese Methoden werden
sowohl mit industriellen als auch mit synthetischen Daten validiert. Dartiber hinaus
schldgt diese Forschung einen Rahmen vor, um industrielle Praktiker bei der Entwick-
lung von flottenbasierten Algorithmen, basierend auf ihren Geschéftsanforderungen,
zu leiten.

Die vorgeschlagenen Methoden erméglichen eine automatische und kontinuierliche
Degradationsiiberwachung fiir industrielle PEM-Wasserelektrolyseure. Sie bieten eine
starke Grundlage, um die Betriebssicherheit und Rentabilitdt zu erhéhen. Zudem
erleichtern sie die Wissensentdeckung aus der grolen Menge an industriellen Daten,

um tiefere Einblicke in das Degradationsverhalten zu gewinnen.
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CCM

GDL

GPR

MEA

PEM

PFSA

PTL

PV

RMSE

SLR

SOH

TLR

catalyst coated membrane
gas diffusion layer
Gaussian process regression
membrane electrode assembly
proton exchange membrane
perfluorosulfonic acid
porous transport layer
photovoltaic

root mean squared error
simple linear regression
state of health

transfer linear regression






Nomenclature

a Tafel slope [V dec™]

A Cell area [cm?]

a Charge transfer coefficient [-]

b Tafel constant [V]

I5] A vector of unknown model coefficients
c Coefficients to be fitted

C Concentration [molm™3]

2% Model coefficients shift

€ Errors

n Overpotential [V]

F Faraday’s constant, 96 485 C mol !

I Electric current [A]

i Electric current density [A cm 2]

i0 Exchange current density [A cm 2]

A A hyperparameter used in transfer linear regression to control the

parameter shift

m Mean
n Number of data [-]
N Normal distribution

OH Operating hours since last start [h]



Uo

X7

Probability distribution

Pressure [Pa)

Ideal gas constant, 8.314 J K~ mol ™!
Ohmic resistance [(2]

Covariance

Standard deviation

Temperature [°C]

Voltage [V]

Reversible cell voltage [V]
Independent variables

A hyperparameter used in transfer linear regression to control the

parameter shift
Dependent variables

Number of electrons exchanged in the chemical reaction, z = 2 for water

electrlysis reaction
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dif

future

IC
trans

true

Reference working condition used in Nernst equation
Activation overpotential
Anode

Bubbles overpotential
Cathode

Diffusion overpotential

Fleet

Data in the future

Hydrogen
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Ohmic overpotential

Data from polarization curves
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Introduction

Hydrogen is a versatile resource with a wide range of uses across industry, transport, and
power sectors [1]. Global hydrogen demand reached a new high of 97 Mt in 2023, with a
2.5% year-on-year increase [2]. As consuming hydrogen does not generate CO, emission, it
is recognized as an essential component for decarbonization, especially for hard-to-abate
sectors such as steel and chemical production [1,3]. In the Net Zero Emission by 2050
scenario, the International Energy Agency anticipates that the global hydrogen demand
will reach 400 Mt in 2050 (Fig. 1.1). The three largest demand sources are projected to be
aviation and marine fuel (e.g., synthetic kerosene, ammonia, methanol), power generation
(e.g., fuel cells, co-firing hydrogen in gas turbines), and chemical production (e.g., ammonia
for fertilizers) [4,5].

450
g 400 Qil refining
= Chemical
s 350
T 300 Iron and steel
[§]
£ 250
c 200 Aviation and marine fuel
60
£ 150
> Road transport
< 100
(4]
§ 50 Power generation
© 0 Other industry
2022 2030 2040 2050

Figure 1.1: Global hydrogen demand by sector in the Net Zero Emission scenario [6].

Nevertheless, to achieve decarbonization over the lifecycle, hydrogen production must
become cleaner. As of now, the production of hydrogen is almost entirely fossil fuel-based,
dominated by natural gas reforming and coal gasification [7]. These carbon-intensive pro-

duction processes make hydrogen production responsible for more than 900 Mt of CO,
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emission, equivalent to 2.7% of global total CO, emission (33572.1 Mt in 2021 [8]). As a
comparison, the total CO, emission of Germany in 2021 is 624.1 Mt [8].

One low-emission hydrogen production technology is water electrolysis using electricity
from renewable sources (such as solar and wind) or nuclear power [4]. In 2023, water
electrolysis constitutes only 0.1% of global hydrogen production [4]. However, the installed
capacity is expected to grow rapidly, from 2.2 GW in 2023 to over 400 GW by 2030 (Fig.
1.2), corresponding to 28 Mt hydrogen production per year [4].

Among the announced projects, alkaline and proton exchange membrane (PEM) water
electrolysis are the most selected technologies (Fig. 1.2). Other technologies such as solid
oxide electrolysis and anion exchange membrane electrolysis only account for a marginal

share. The focus of this research lies on the PEM water electrolysis technology.

420
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Figure 1.2: Global electrolyzer capacity by technology based on announced projects [4].
The expected capacity in 2030 includes early-stage projects (e.g., projects with
only a stakeholder cooperation agreement).

In comparison to alkaline water electrolysis (Fig. 1.3), PEM electrolyzer has several ad-
vantages, including the capability to operate at higher current densities (resulting in higher
hydrogen production rate for a given size), higher gas purity, less corrosion, smaller size,
and quicker start. However, its main disadvantages are the high manufacturing cost (mainly
due to the precious metal for catalysts) and short lifetime, hindering the market expansion.
To mitigate these disadvantages, operators of PEM electrolyzers must maximize their uti-
lization by carefully planning maintenance activities and optimizing operation schemes,
which require close monitoring of the state of health (SOH) of the PEM electrolyzers.

Tracking the SOH of PEM electrolyzers not only provides financial benefits for the
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Alkaline Electrolysis PEM Electrolysis
© Anode E Eectrode; @ Cathode © Anode I !ectrode; athode

Current density [A/cm2]  0.2-0.4 1.0-2.0
Hydrogen purity [%] >99.8 >99.99
Corrosion High Low
Size Big Small (~1/3)
Cold/warm start Slow Fast (~1/3 time)
Manufacturing cost Low @ High
Lifetime Long @ Short

Figure 1.3: Comparison between alkaline and PEM electrolysis technologies [9-11].

operators, but also facilitates knowledge discovery to further understand the degradation

behavior, supports risk assessment, and enables early detection of safety hazards.

The SOH of PEM electrolyzers can be observed from several aspects, such as increase
in voltage, decrease in gas purity, and fluoride release into the effluent water. Among the
various indicators, voltage degradation is the focus of this research. First of all, it is easily
measurable in industrial environments without the need for costly equipment. Moreover,
it has a significant economic relevance: An increase in voltage is directly associated with
higher energy demand (i.e., lower efficiency) for hydrogen production. Specifically, the goal
of this research is to track the temporal evolution of the overall voltage, without delving
into the degradation mechanisms.

Existing studies on PEM water electrolyzer degradation focus on quantifying the SOH
through direct measurements in laboratory environments, such as measuring voltage under
predefined current levels. However, quantifying degradation for industrial electrolyzers is
not as straightforward and faces various challenges:

Few testing opportunity. The operation modes of industrial electrolyzers are business-
driven, making it impractical to frequently run predefined operational procedures to
obtain SOH values.

Various influencing factors. Multiple operating variables (e.g., electric current and tem-

3
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perature) influence degradation-related measurements such as voltage. Therefore, a
simple 1-dimensional characteristic curve (e.g., a voltage-current curve) is insufficient
to capture the impact of these variables.

Limited data coverage. The coverage of industrial operation data can be limited. For ex-
ample, when an electrolyzer is operated under a constant electric current, the coverage
of the current data is very narrow. Such limited data coverage poses challenges in
modeling the impact of operating variables on the degradation-related measurements.

Heterogeneous fleet. As PEM water electrolyzer just recently gained industrial interest,
it is experiencing rapid design updates. This makes data collected from one machine
not representative for another. Based on such diverse datasets, it is hard to construct
a data-driven model that is consistently applicable for all electrolyzers.

Lack of degradation model. Given the complex degradation mechanism and limited op-
eration experience, comprehensive degradation models for industrial PEM water
electrolyzers are not yet available. Therefore, filter-based methods (e.g., Kalman

filter) to identify physical parameters are not applicable.

To address these challenges, this research seeks to answer the research question:

How to quantify the state-of-health of industrial PEM water electrolyzers?

Through investigating the research question, this research has made the following con-
tributions.

Empirical voltage models. This research presents two empirical models that capture the
impacts of operating parameters on the electrolyzer voltage. These models not only
include the commonly assessed parameters — electric current and temperature, but
also address the impact of restarting an electrolyzer after it has been shut down. The
models feature simple and transparent linear structures, yet they have proven to be
effective in describing the voltage behaviour of the industrial electrolyzers.

Transfer linear regression (TLR) algorithm. To tackle the model fitting difficulty under
limited data coverage, the TLR algorithm is developed. This algorithm adjusts the
parameters of an existing fitted model based on new data. The parameter adjustment
is controlled using fleet experience (e.g., how much the parameters are expected to
change over time). When applied sequentially, the TLR algorithm effectively captures
the temporal drift in the voltage model caused by degradation.

Incorporating fleet knowledge with Bayesian inference. In addition to TLR, this research
presents a second approach to assist model fitting under limited data coverage. This
approach involves incorporating aggregated information from a fleet of electrolyzers

(fleet knowledge) with Bayesian inference. The fleet knowledge is formed by aggregat-
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ing model parameters from multiple electrolyzers, and used as the prior probability
distribution in the Bayesian inference scheme.

Synthetic data generation. This research introduces a framework to generate synthetic
data based on industrial data. The central component of the framework is a model
that describes the relationships between the input variables (e.g., electric current)
and the output variable (voltage). The model’s coefficients, input variables, and noise
levels are set based on the industrial data and can also be customized to simulate
various scenarios. This framework ensures that the generated synthetic data exhibit
a similar behaviour as the industrial data and provides flexibility of varying the setup
to support sensitivity analysis.

Practical guide for industrial applications. This research provides a practical guide to
assist industrial practitioners in developing data-driven models using fleet data. This
guide consists of three core steps of fleet-based algorithms: data selection, model
development, and model adjustment. It guides the practitioners to integrate these

steps according to their use cases and accuracy requirements.

These contributions are presented in the following publications.

e Yan, X., Locci, C., Hiss, F., Niefle, A.: State-of-health estimation for industrial H,
electrolyzers with transfer linear regression. Energies 17(6), 1374 (2024). doi:10.3390/
en17061374 [12]

e Yan, X., Helmers, L., Zhou, K., Niele, A.: Fleet-based degradation state quantifica-
tion for industrial water electrolyzers. Electrochemical Science Advances 5(3), 70002
(2025). doi:10.1002/e1sa.70002 [13]

e Yan, X.=, Woelke, J.=, Bensmann, B., Eckert, C., Hanke-Rauschenbach, R., Niefle,
A.: Cross-method overview of fleet-based machine health estimation and prediction:
a practical guide for industrial applications. IEEE Access 13, 6013160147 (2025).
doi:10.1109/access.2025.3556251 (= equal contribution) [14]

It is also discussed with the scientific community through a poster presentation.
e Yan, X., Helmers, L., Lettenmeier, P.: Fleet-based performance model and degradation
estimation. In: Book of Abstracts of the 4th International Conference on Electrolysis,

p. 160 (2023). https://engineering.nwu.ac.za/hysa/book-abstracts [15]

Additionally, an international patent is filed.
e Yan, X., Helmers, L.: Method of Determining a Degradation of an Energy System
and Computer Program Product. International patent, application number: PC-
T/EP2024/074685. https://register.epo.org/application?number=EP24765160
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This research is conducted as part of the hydrogen flagship project H2Giga, specifi-
cally within the scope of SEGIWA (serial production of gigawatt-scale PEM electrolyzers,
grant number: 03HY121A) and DERIEL (de-risking for PEM electrolyzers, grant number:
03HY122A) projects, sponsored by the German Federal Ministry of Education and Re-
search (Bundesministerium fiir Bildung und Forschung, BMBF). During the course of this
research, the author is employed as a data analyst at Siemens Energy Global GmbH & Co.
KG, Munich.

This dissertation is structured as shown in Fig. 1.4. Following this introduction chapter,
it reviews the state of the art of SOH quantification methods and fleet-based algorithms
(Chapter 2), then presents two SOH quantification methods for industrial electrolyzers
(Chapter 3 to Chapter 6). Next, it generalizes the algorithm development process and
provides a guide for industrial practitioners (Chapter 7). Finally, it concludes the research
by answering the research question, reflecting on the methods, and suggesting future

research directions (Chapter 8).
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Figure 1.4: Dissertation structure.
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2 Foundation and state of the art

This chapter first introduces the fundamentals of PEM water electrolysis, including its
components and degradation mechanisms (Section 2.1). Next, it provides a deep dive into
PEM water electrolyzer models, with a particular focus on the voltage models (Section 2.2).
Furthermore, it reviews the state of the art of SOH quantification methods (Section 2.3) and
fleet-based algorithms (Section 2.4). Finally, the identified research gaps are summarized
(Section 2.5).

2.1 PEM WATER ELECTROLYZER AND ITS DEGRADATION

Stack
Cell (,,Electrolyzer”) Array

Hy0 = 02+2H++2e 2H* +2¢” > H, B

Bipolar
I Plate
oz H*
[} /\modn | © Cathode

Electrode

Figure 2.1: PEM water electrolyzer cell, stack, and array (source: Siemens Energy).

Water electrolysis is a technology that uses electricity to split water into oxygen and
hydrogen. PEM electrolysis uses a proton exchange membrane as the central element. As
shown in Fig. 2.1 (left), the membrane separates the anode and cathode electrodes and
allows protons (H™) to pass through. Water is fed into the anode side and split into oxygen
and protons. The protons flow to the cathode side and get converted to hydrogen. To yield
a higher hydrogen generation rate, multiple electrolyzer cells are assembled together as an
electrolyzer stack (Fig. 2.1, middle). Multiple electrolyzer stacks can be further aggregated
as an electrolyzer array to simplify auxiliary systems such as gas/water treatment equipment
(Fig. 2.1, right).
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An PEM electrolyzer cell consists of a membrane, electrodes, gas diffusion layers (GDLs),
and bipolar plates (Fig. 2.1, left). Their functions, materials, and degradation mechanisms
are introduced below. Unless specified otherwise, the content is primarily summarized
from [16-18].

1. Membrane. The membrane is typically a thin perfluorosulfonic acid (PFSA) poly-
mer membrane with a thickness of 100 —400 pm. It serves to separate and support
the electrodes and to conduct the protons. Degradation mechanisms related to the
membrane include:

o Mechanical. The membrane might suffer from mechanical failures (such as punc-
ture and cracking) caused by impurities introduced during the manufacturing
process, inhomogeneous compression, local heating, hydraulic pressure, etc.

¢ Chemical. The membrane can get attacked by the oxidizing species generated
by the crossover gases and metal impurities (such as Fe*), leading to the loss
of functional groups and thinning. Additionally, metallic cations can occupy the
ion exchange sites of the membrane, causing the membrane proton conductivity
to decrease.

2. Electrodes. Anode and cathode electrodes are coated on each side of the membrane
to form a membrane electrode assembly (MEA) or catalyst coated membrane (CCM).
Due to the harsh electrochemical environment (e.g., high potential, low PH) and the
inactive chemical reaction, precious metals are typically used as catalysts. Platinum
is a common catalyst on the cathode side, and Iridium or its oxides is the state-of-the-
art catalyst on the anode side. The catalysts are often dispersed on the supporting
materials (such as TiO4 or carbon-based materials) to maximize the catalyst utiliza-
tion and improve their stability. Degradation mechanisms related to the electrodes
include:

o Catalyst dissolution. Iridium can convert to unstable forms (such as Ir(OH),
and Ir,O3) with high solubility at low PH. Platinum can be oxidized to Pt**
and get dissolved.

o Catalyst agglomeration. Catalyst agglomeration is the increase in the size of cat-
alyst particles, causing the active surface area to decrease. Although a reaction-
specific particle agglomeration mechanism has not yet been identified, studies
have shown that platinum particle agglomeration is related to the hydrogen
generation rate [19] and iridium agglomeration is related to the ionomer loss of
the membrane [20].

« Metallic poisoning. Cationic impurities (such as Nat, Ca®", Fe*™) do not only
occupy the ion exchange sites of the membrane (mentioned under point 1), but

also block the catalyst surface area, decreasing the catalyst reactivity.
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e Support passivation. Metallic support material can form an oxide layer that
reduces the electrical conductivity. This is influenced by current density and
impurities in the cell.

3. GDL. GDL is also named as the porous transport layer (PTL) or the current collector.
Its porous structure allows the generated gas to evacuate away from the electrodes
and water to flow towards the electrodes. It also provides good electrical conductivity
as well as mechanical support for the MEA. Carbon material is commonly used on the
cathode side, and metallic material (such as titanium and stainless steel) is preferred
on the anode side to sustain the corrosive environment. Degradation mechanisms
related to the GDL include:

e Mechanical degradation. During the electrolyzer manufacturing process, MEA,
GDL, and bipolar plates are mechanically pressed together to form a stack.
High compress pressure improves the electrical contact but also decreases the
gas/water permeability.

e Chemical degradation. Different materials face different degradation mecha-
nisms: Titanium GDL suffers from hydrogen embrittlement, passivation, and
corrosion, whereas stainless steel’s main concern is corrosion. (Similar to the
degradation mechanisms of the bipolar plate under point 4.)

4. Bipolar plate. Bipolar plates are placed between each two adjacent cells in an elec-
trolyzer stack. It conducts electrical current from one cell to the next, serving as the
anode of one cell and the cathode of the next. It also has flow channels to distribute
the water input and remove the produced gas. Titanium is the commonly used ma-
terial for bipolar plates because of its corrosion resistance, high conductivity, strong
mechanical support, and lightweight. Degradation mechanisms related to the bipolar
plate include:

e Hydrogen embrittlement. Titanium absorbs hydrogen and forms TiH, at high
temperature and pressure, which makes the material very brittle and might lead
to mechanical failure.

o Passivation. An oxide film can form on the surface of titanium, which increases
the electrical resistance between the bipolar plate and the GDL.

e Corrosion. Titanium can be corroded in the presence of certain chemicals, such
as fluoride ions. Fluoride ions attack the TiO4 film on the surface of the bipolar
plates, resulting in Ti—F~ compounds. An alternative material for bipolar plates
is stainless steel, which reduces the embrittlement concern but has a larger
corrosion problem: Stainless steel corrosion releases multivalent cations such as
Fe?™ and Ni?* which will further damage the catalyst and membrane.

The above-mentioned degradation mechanisms occur at a microscopic scale. On a macro-
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scopic level, degradation can be observed from several aspects, such as increase in voltage,
decrease in gas purity, and fluoride release into the effluent water. Commonly used degra-

dation indicators in the literature will be summarized in Section 2.3.2.

2.2 PEM WATER ELECTROLYZER MODELS

2.2.1 Variety of models

In the literature, a variety of PEM water electrolyzer models are available, encompassing
diverse physical domains, targeting different aggregation levels, and employing various
modeling approaches.

One or more physical domains can be included in PEM water electrolyzer models, such as
the electrochemical, thermal, mass transport, and fluidic domains [21]. The electrochemical
domain is the core in PEM water electrolyzer models, as it captures the key function
of electrolyzers: using electrical energy to trigger chemical reactions. For example, [22]
models the electrolyzer voltage with respect to current density and proposes an efficient
way to identify the model parameters; [23] uses an electrochemical model as the basis to
optimize a photovoltaic (PV)-PEM energy system. In addition, to capture the impact of
temperature on the electrochemical reaction, thermal models are sometimes coupled with
the electrochemical model. For example, [24] considers the thermal effects and captures
the temperature inhomogeneity in industrial-scale PEM water electrolyzers; [25] includes
a thermal model to facilitate fault identification. Next, mass transport models can also
be considered to quantify the resulting overpotential, gas production, and gas crossover.
For example, [26] models the mass flow to calculate the resulting overpotential, thereby
investigating the impacts of temperature and pressure on the electrolyzer voltage; [27]
summarizes the mechanisms and models for the mass transport of Hy, and evaluated their
contribution to Hy crossover from the cathode to the anode side (a safety concern due to
the formation of explosive gas mixture with Oy produced on the anode side). Finally, some
models also include the fluidic domain. For example, [28] models the water flow in the
bipolar plate to examine the distribution of pressure and velocity; [29] models the biphasic
flow in the GDL to analyze the impact of geometrical and operating parameters on the
electrolyzer performance.

PEM water electrolyzer models can target various aggregation levels, ranging from the
cell or stack level, to the component level, and even down to the molecular level. At a high
level of aggregation, a cell or a stack is modeled as a whole, also named as a single-box
model [30]. For example, [31] models the energy demand of an electrolyzer to optimize

the design of a power-to-gas plant; [12] models the voltage of an electrolyzer to monitor



2.2 PEM WATER ELECTROLYZER MODELS |

its performance degradation over time. One level deeper, the model can consider the
individual components within an electrolyzer [32]. For example, [33] breaks down the
voltage into different overpotentials to investigate the impact of catalyst loading and GDL
properties; [34] extends the voltage breakdown with more details on the ohmic resistance of
each component and the mass transport loss, thereby offering insights into the performance
at high current densities. Delving further, the models can be at the molecular level. For
example, [35] models the membrane degradation process by considering the formation of
H,0, and 23 related chemical reactions; [36] models the dissolution of iridium in the anode
catalyst layer, to investigate its impact on the performance degradation.

Regarding the modeling approach, PEM water electrolyzer models can be physics-based
or empirical models [21,37]. In physics-based models, all parameters have a physical mean-
ing, although some of them can be fitted with data or obtained from empirical equations [21].
For example, [38] models different sources of overpotentials as well as the flow of water and
gas based on physical laws; [39] models the electrolyzer voltage as an equivalent circuit and
uses the current interrupt technique to identify the resistance and capacity. In empirical
models, the parameters do not have any physical meanings [21]. Empirical models can have
explicit functional forms to describe the relationship of variables. For example in [40,41],
the electrolysis voltage is modeled as a linear function of current. Empirical models can
also have complex structures (such as neural networks) to learn complex patterns based
on a large amount of data. For example, [42] models the electrolysis voltage based on a
neural network using electric current and temperature as inputs; [43] uses five different
machine learning algorithms to model the hydrogen production rate and current density
as a function of design parameters (e.g., electrode and catalyst types). Physical knowledge
can also be incorporated into empirical models to enhance its performance, such as [44],
which models the activation overpotential with a neural network and includes a physical

formula of the overpotential in the loss function.

2.2.2 Voltage models

As already mentioned in Chapter 1, this research focuses on tracking voltage degradation,
as voltage is easily measurable and has direct economic relevance. Therefore, this section

deep dives into the existing PEM water electrolyzer voltage models.

2.2.2.1 Physics-based voltage model

The electrolysis voltage (U) is the sum of the reversible voltage (Up), activation overpo-

tential (nact), ohmic overpotential (7ohm), and mass transport overpotential (7trans) [17]:

13



14

| FOUNDATION AND STATE OF THE ART

U="Up+ Nact T Nohm + Mtrans- (21)

Reversible voltage is sometimes also referred to as the open circuit voltage [45]. It is the
minimum voltage required to split 1 mole of water, determined by the Gibbs free energy

change (AG) which is a function of temperature (7") and pressure (P) [46]:

_ AG(T,P)

U
0 “F ;

(2.2)

where z is the number of electrons exchanged in the reaction (z = 2) and F is Faraday’s
constant (F = 96485 Cmol ).

Activation overpotential is the extra voltage required to overcome the molecular bonds
and begin the reaction [45]. It can be further split into the activation overpotential of the
anode (Nact.an) and cathode (7act,ca) side, where the contribution from the cathode side is

often neglected because it is a small contribution compared to the anode side [47]:

Tact = Tact,an + Nact,ca ~ Tact,an- (23)

There are different formulations to model the activation overpotentials, mostly based on
the Butler-Volmer equation [21]. One popular formulation is the Tafel equation, adopted
in many publications such as [22-25,33,47-50]. It is a simplification of the Butler-Volmer
equation where only the forward reaction is considered and the backwards reaction is

neglected:

RT 1
act,an = —1 P 2.4
"lact, zalF . (20> (2.4)

where R is the ideal gas constant (R =8.314 JK~! mol™!), o is the charge transfer coefficient,
1 is the electric current density, and ig is the exchange current density. Both a and ¢y are

temperature dependent [24]. The equation above can also be simplified to be
TNact,an = alni —b, (25)
where a is named as the Tafel slope and b as the Tafel constant [17].

Ohmic overpotential arises from the resistance to the electron flow through the cell

components as well as to the proton flow through the membrane [17]. It can be modeled
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with the standard Ohm’s law:

Tlohm = IRohm, (2'6)

where Rop, is the sum of all electronic and protonic resistances because they are connected
in series [17,51,52]. The resistance is temperature dependent [21].
Mass transport overpotential comprises two components: diffusion overpotential (7qjt,

also named as concentration overpotential [26,52]) and bubbles overpotantial (npyp) [17]:

Ttrans = Mdif + Tbub- (27)

Diffusion overpotential is caused by gas bubbles hindering the water supply through the
porous media, while bubbles overpotential arises when gas bubbles shield the electrochem-
ical active area, thereby reducing the catalyst utilization [17]. There are different models
to describe the diffusion overpotential [21]. One widely used model is based on the Nernst
equation, adopted in [17,22,24,26,51-54]:

1
RT Co, \> RT Ch.
= —1 2 —1 2. 2.8
Tt zF " (COQ,()) * zF " (CHQ,()) ( )

Co, and Cp, stand for the gas concentrations at the membrane-electrode interface. Co, o
and Cq, o are the concentrations at a reference working condition (saturation concentra-
tions are used in [24,55]). Bubbles overpotential also has various formulations [21]. However,
it is rarely explicitly modeled in literature, because it only becomes significant at high
current density [17]. Overall, mass transport overpotential receives less attention compared
to other overpotentials (ohmic and activation overpotentials) [21], because of its relatively
minor influence at low to medium current densities.

The voltage model is often graphically presented with a polarization curve: the rela-
tionship between voltage and current density under constant operating temperature and
pressure [46,56]. An example is shown in Fig. 2.2. Polarization curves and their drift over
time are used in many studies to investigate the degradation of PEM water electrolyzers.
For example, it is used in [57] to analyze the degradation caused by iron ions and in [58]
to investigate the impact of intermittent operation.

While physics-based voltage models are solidly grounded in theoretical principles, they
have certain disadvantages. First, they require numerous parameters that are sometimes
challenging to determine. For example, the Tafel parameters to describe the activation
overpotential (Eq. 2.5) can only be determined with data at very low current densities (typ-

ically between 0.01 and 0.1 A cm~2 [58-60]). However, in industrial applications, operation
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Figure 2.2: An exemplary polarization curve with the individual voltage components
(adapted from [17]).

at low current density is very rare due to the risk of high gas crossover [39] and the high
levelized cost of Hy [61]. In addition, the more impact factors to include in the model, the
more parameters are needed. For example, to capture the impact of temperature on the
membrane’s resistance, parameters such as the membrane’s water content and thickness
are required [24]. While these parameters can be obtained from the membrane’s supplier or
lab measurements for a pristine membrane, getting these values for a degraded membrane
in use is very difficult.

Second, to reduce model complexity, simplified assumptions are sometimes necessary,
which can lead to poor accuracy [62]. For example, the mass transport overpotential is
often omitted in the voltage model [21], but [33] shows that this can lead to a biased
Tafel fit. Another example is regarding the inhomogeneity within large-scale electrolyzers.
[24] demonstrates the inhomogeneous temperature and current density distribution in
an industrial scale electrolyzer stack (40 cells, each with 1m? active cell area). If such
inhomogeneities are neglected in a model, degradation or even failure caused by local

effects might be overlooked.

2.2.2.2 Empirical voltage model

To avoid the above-mentioned difficulties in fully capturing the physics, some studies
employ empirical models to describe the electrolysis voltage. While empirical models
have the limitation of being accurate only for a specific operating range and electrolyzer

design [37], they can be sufficient for industrial applications, which are typically engineered
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for a predefined operating range using the same design.

In [40], voltage is modeled as a linear function of current:
U =0.3261 + 1.476. (2.9)

Although the models’ simplicity is appealing, it might not adequately capture the complexi-
ties of industrial electrolyzers. In an industrial setting, operating parameters besides current
(such as temperature) might not be constant. Therefore, to ensure that the model accurately
reflects the real-world conditions of industrial operations, these additional parameters also
need to be included in the model.

Study [63] uses a more complex formula, which includes non-linear terms and temperature

dependency based on the model proposed in [64]:

r1 +roT

U=Uy+ 2

t+ 2+ 7%
I+ (s1+ soT + s37%) In <1§1T21 + 1) , (2.10)

where Uy represents the reversible cell voltage, A is the cell area, r;, s;, and t; are all fitting
parameters. As the model complexity increases, the number of unknown parameters to be
fitted also increases. Consequently, more data are needed to accurately determine these
parameters.

Studies [42] and [65] further increase the model’s flexibility by using machine learning
models, which do not require any predefined relationship between voltage and its impact
factors. [42] uses a neural network model with electric current and temperature as in-
puts; [65] uses both neural network and support vector regression models with various
operating and material parameters as inputs. Although these machine learning models offer
great flexibility and the potential for high predictive accuracy, they sacrifice the model’s

interpretability, which hinders their adoption for industrial applications.

2.3 SOH QUANTIFICATION METHODS

2.3.1 SOH applications and types

The SOH of an industrial machine refers to its performance, efficiency, and reliability. For
fault detection or diagnosis purposes, SOH can be represented by categorical labels such
as healthy, faulty, or the exact fault types. Whereas for tracking the gradual degradation
processes, SOH is represented with low-dimensional (typically 1-dimensional [66]) numerical
values. The latter is the focus of this research.

Tracking the SOH of industrial machines can support various business needs across the

17
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entire product lifecycle, from the research and development (R&D) phase to the end of
life.

o Knowledge discovery. To support R&D, the SOH data can be analyzed to identify
degradation patterns, trends, and root causes, thereby providing a basis for improving
the system design.

e Performance warranty calculation. To support sales, the SOH data can be used to
assess the performance and risk of the product. This information can be utilized to
determine warranty terms and risk mitigation strategies.

e Operation optimization. During the operation phase, continuously monitoring the
machines’ condition and performance allows for data-driven operation or dispatch
decisions to optimize overall efficiency and resource utilization.

¢ Safety monitoring. During the operation phase, continuous SOH monitoring enables
early detection of potential safety hazards to prevent unexpected equipment failures
or accidents.

¢ Electrolyzer replacement planning. When electrolyzers approach the end of life, SOH
monitoring helps to schedule replacement based on the degradation trend, thereby

maintaining the operation efficiency and minimizing downtime.

There are two types of SOH indicators: physical and synthetic indicators [66]. Examples

of physical indicators include

« for batteries: capacity [67], characteristics of the discharge capacity curve [68], charg-
ing duration for a predefined voltage range [69], normalized voltage [70];

o for fuel cells: normalized voltage [71], internal resistance [72];

o for gas turbines: normalized power output [73];

o for rolling bearings: root mean square of vibration signals [74], maximum power

spectral density [75].

In contrast to physical indicators, synthetic indicators do not have clear physical meanings.
They are obtained through statistical techniques such as multiple linear regression - linearly
combining multiple sensor measurements [76,77], principal components analysis - reducing
the original multi-dimensional input data to a small number of variables that capture
patterns in the data [78,79], and autoencoders - using a neural network-based model to

learn features in an unsupervised manner [80,81].

For PEM water electrolyzers, existing studies focus on physical health indicators directly

measured in laboratory experiments. This is introduced next.
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2.3.2 In-situ measurements for PEM water electrolyzers

The upper part of Table 2.1 provides an overview of the commonly used SOH quantification
methods for PEM water electrolyzers. Only in-situ methods are considered because of their
high relevance to the goal of this research - continuous condition monitoring, while ex-
situ or postmortem methods are excluded. As shown in the table, existing studies focus
on directly measuring the SOH: Typically, degradation triggers are applied in laboratory
environments (e.g., contaminated water [57], extreme operation schemes [58, 82], harsh
manufacturing procedures [83], modified design [82]), followed by the measurement of
degradation responses. Among the various SOH measurements, voltage-related quantities

are the most widely used.

These SOH quantification methods are evaluated against the following requirements of

continuous condition monitoring for industrial electrolyzers (Table 2.1).

o Easy to measure in industry. Many laboratory measurement techniques are imprac-
tical to implement in the industry. For example, the current interrupt technique
requires data with nanosecond [84] or millisecond [24] resolution, leading to expensive
sensors and data acquisition systems; the electrochemical impedance spectroscopy
technique is constrained by its maximum deliverable current, which is insufficient to
gain insights for industrial size electrolyzers [24].

e Not require specific operation mode. Most measurements require a predefined op-
erational protocol. For example, voltage under constant current requires that an
electrolyzer is constantly operated under the same current; polarization curve mea-
surement requires the current to vary over a wide range (e.g., 0.001 - 4 A /em? in [59])
under constant temperature and pressure. Such measurements are inconvenient for
the industry as the operation scheme should be aligned with the operator’s business
requirements. Fluoride release is the only exception, which does not necessarily re-
quire a specific operation mode. Here, a distinction between total fluoride release and
fluoride release rate needs to be made. Total fluoride release as an SOH indicator does
not require a specific operation mode, because it is an accumulated value to reflect
the membrane thinning over time. A higher total fluoride release is always more con-
cerning than a lower one, regardless of how the electrolyzer is operated. On the other
hand, fluoride release rate faces instantaneous impacts from operation modes such
as current density, water flow, and pressure. Therefore, to ensure the comparability
of fluoride release rates, they must be measured under the same operation modes.

o Not reliant on degradation model. As PEM water electrolyzer is an emerging tech-
nology with limited long-term operation experience and rapid design updates, it is

risky to assume a degradation model and rely on it for SOH quantification. This is
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not an issue for the direct measurement-based method, as no model or assumption

on the degradation behavior is needed.

Table 2.1: Two types of SOH quantification methods evaluated against requirements: (a)
in-situ measurements for PEM water electrolyzers that are commonly used in
the literature and (b) statistical methods that mitigate the impact of operation

modes.
Easy to Not require Not reliant
measure in specific on
industry operation degradation
mode model
Voltage under constant X X
current [57,83]
® Polarization X X
= qi g | curve [57,58,82,85-88]
<5} L +
g § g Current X
2 8 | & | interrupt [39,84,89]
x © | @
£ 2 | 5 | Electrochemical X
£ £ ~ | impedance spectroscopy
g b= [39,57,58,82,83,85-88,90]
— =
~ Cyclic X
N
S| voltammetry [58,82,86]
Foreign gas concentration [27,91] X
Fluoride release [35,85—88| (X) X
Filter-based method to X X
Tg identify physical
:‘5 1§ parameters [92, 93]
£ =
g,c% T | Measurement correction (X) (X) X
= e based on characteristic
\_/ curves [71,73,94-96]

As mentioned above, most direct measurement-based methods require a predefined op-
eration procedure, which is impractical for the industry. The following section reviews
statistical methods that mitigate the impact of operation modes. While none of these sta-
tistical methods have been applied to PEM water electrolyzers, their underlying principles

are relevant.
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2.3.3 Statistical methods to mitigate the impact of operation modes

As shown in the lower part of Table 2.1, two types of statistical methods applicable under
various operation modes have been identified. The first type is filter-based methods to
identify physical parameters that are invariant to operation modes. The disadvantage
of these methods is that they rely on degradation models that explicitly describe the
degradation behavior. For example, [92] uses an extended Kalman filter to estimate the
SOH indicator « for PEM fuel cells. It is defined as the degradation of resistance (R) and
limiting current density (ir): oy = % —-1=1- Zi—é, where the subscript 0 and ¢ denote
the initial value and the value at time ¢, respectively. The definition of « reveals the first
assumption: R and iy have the same degradation state. Moreover, it is assumed that «
varies linearly overtime: oy = [t, where (3 is the degradation speed. Another example
is [93]. It also applies an extended Kalman filter for SOH quantification for PEM fuel cells,
with the assumption that the resistance, limiting current, and exchange current all change
linearly over time. As mentioned in Section 2.3.2, due to the limited operation experience
and rapid design updates, such degradation models for industrial PEM water electrolyzers

are not yet established, making filter-based methods unsuitable.

The second type of statistical method is to correct the measured values based on charac-
teristic curves. This approach requires measuring characteristic curves to derive a correction
model. For example, [71,94] use voltage-based SOH indicators for fuel cells, and the im-
pact of current on cell voltage is corrected using a fitted voltage-current model from the
polarization curve measured at the beginning of life (and additionally at the end of life
in [71]). [95] uses a power-based SOH indicator and accounts for the impact of current with
a fitted power-current curve. [96] uses a resistance-based SOH indicator for lithium-ion
batteries and compensates for the temperature influence with a resistance-temperature
curve. Although obtaining 1-dimensional characteristic curves at the beginning or end of
life is relatively straightforward, capturing multi-dimensional curves over time is impracti-
cal but essential to ensure comparability across complex operating conditions and various
degradation states (hence the parentheses in the last row of Table 2.1). For instance, to
capture the voltage degradation for PEM water electrolyzers, re-measuring characterization
curves over time is necessary due to the changing voltage-current relationship depending on
the degradation mechanism. Additionally, the voltage measurement is impacted by many
factors such as current, temperature, and start, thus a multi-dimensional correction for the
voltage is required.

The second type of statistical method is the closest to fulfilling all requirements and
therefore is the basis for this research. To overcome the difficulty in measuring multi-

dimensional characteristic curves over time, this research develops data-driven methods
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to regularly generate a multi-dimensional performance model regardless of the operation
mode, which is then used to correct the measured electrolyzer voltage to a predefined
operating condition. By doing so, the impact of operating modes is eliminated, so the

corrected voltage can be compared across time as a SOH indicator.

2.3.4 Challenge of limited data coverage

The challenge of regularly generating a multi-dimensional performance model is to gather
sufficient data to fit the model coefficients. As mentioned in Chapter 1, the coverage of
industrial operation data can be limited. For example, when an electrolyzer is operated
under a constant electric current, the coverage of the current data is very narrow. This
scarcity of data complicates the quantification of the voltage-current relationship.

The approaches to address the limited data coverage can be broadly classified into data-
and model-level approaches. Data-level approaches involve adding new data. This can be
achieved by identifying the data gap and then collecting additional data in a targeted
manner for the underrepresented group [97]. However, such data collection is only possible
if one has control over the data source. Another way to add new data is to generate
synthetic data with data augmentation techniques. This has been widely used for image
data [98] but is less researched for time series data [99], especially for multivariate time
series data [100]. Demir et al. [100] proposed using autoencoders, variational autoencoders,
and generative adversarial networks to augment multivariate time series data. However,
training such neural network-based algorithms on a daily basis—a typical frequency for
SOH monitoring—is computationally expensive. Therefore, data augmentation is not a
suitable solution for this research.

Model-level approaches use the limited data to train a model without altering the dataset,
which is also named as few-shot learning [101]. This is the focus of this research. Specifically,
this research utilizes fleet knowledge to enhance the model fitting under limited data

coverage. In the next section, existing fleet-based algorithms in the literature are reviewed.

2.4 FLEET-BASED ALGORITHMS

This section is a recap of a more detailed publication: Yan, X.=, Woelke, J.=, Bensmann,
B., Eckert, C., Hanke-Rauschenbach, R., Niefle, A.: Cross-method overview of fleet-based
machine health estimation and prediction: a practical guide for industrial applications.
IEEE Access 13, 60131-60147 (2025). doi:10.1109/access.2025.3556251 (= equal contri-
bution) [14].
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2.4.1 Basics of fleet

Data-driven methods require a large amount of data to train a reliable model. This is often
challenging in the industry due to design variations and diverse operating conditions. This
makes data collected from one machine not directly applicable to another. Especially for
costly machines with limited testing opportunities, generating a large amount of data for
each design and operating condition is unrealistic. To address the data scarcity problem,
fleet data can be leveraged to enrich the database, allowing for improved data-driven
models.
A fleet is a group of machines that share some technical and/or operational characteristics

[102,103]. It can be described by the following dimensions [103].

o Purpose (e.g., transportation, power generation).

o Context, i.e. general information of the fleet without details (e.g., unit, size, lifetime).

o Composition, i.e. technical and functional characteristics of the units in the fleet (e.g.,

design, manufacturer).
o Operating condition, i.e. the environment the fleet is exposed to (e.g., usage, load,
stress).

o Data characteristics (e.g., structure, type, source).
From the manufacturer’s perspective, a fleet consists of machines that are technically similar
but may be operated differently; while from the operator’s perspective, machines in a fleet
perform the same function but have different technical characteristics [104]. Depending
on the level of similarity, a fleet can also be categorized as identical, homogeneous, or
heterogeneous fleets [103]. To address differences within a fleet, it can be helpful to divide
it into subfleets - groups of machines exhibiting higher similarities, e.g., regarding technical
characteristics or degradation patterns, depending on the modeling objective [103].

Fleet data can be used in modeling through various approaches. This research reviews

the existing fleet-based algorithms in the literature and the results are presented in the

next section.

2.4.2 Categories of fleet-based algorithms

As this research focuses on tracking the gradual degradation process of industrial elec-
trolyzers, literature within the following scope is deemed the most relevant.
o Goal: SOH estimation and/or prediction.
o Application: A fleet of industrial machines, sub-systems, components, and equipment.
e Method: Regression algorithm.
e Data: Time series data.

o Type: Peer-reviewed publication.
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o Language: English.

By reviewing the collected literature, six categories of fleet-based methods have been

identified and illustrated in Fig. 2.3. They are differentiated in the data used for modeling

(input) and the resulting model (output). On the input side, the data basis consists of data

from all machines in the fleet. They can be experimental data from the lab, operational data

from the field, or simulation data from a suitable model. Some methods - fleet modeling,

parameter-based, and feature-based transfer learning, use data from all machines as input;

while other methods use only data from a part of the machines. On the output side, fleet and

subfleet modeling produce a generic model for multiple machines; while similarity-based

modeling and transfer learning produce a dedicated model for the target machine.

Fleet modeling Subfleet modeling

Fleet

Similarity-based Parameter-based Feature-based Instance-based / hybrid
modeling transfer learning transfer learning transfer learning
Fleet Fleet
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Figure 2.3: Categories of fleet-based algorithms.

o Fleet modeling is the most straightforward method of utilizing fleet data. It simply

uses data from all units to construct a model that applies to the entire fleet. For

example, [68] pools degradation data of 124 lithium-ion batteries and builds a linear

model to predict the batteries’ lifetime.

o Subfleet modeling first identifies a group of similar units (the subfleet) within the fleet,

then builds a model that applies to all the machines within this subfleet. For example,

[105] measures the Euclidean distance of the degradation trajectories between the

target unit and other units. Units with a distance lower than a predefined threshold

are grouped together as a subfleet to train a degradation forecast model.

¢ Similarity-based modeling measures the statistical similarity between the target unit

and other units in the fleet, selects the most similar ones as the referential instances,
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and then makes predictions for the target machine based on the referential instances.
In some studies, an additional weighting is applied: Higher weights are assigned to
units with higher similarities in the modeling process. Similarity-based modeling is
primarily used for remaining useful life prediction, which has been reviewed by Xue
et al. [66]. For example, [106] quantifies the similarity among fleet units with the
maximum mean discrepancy metric, which measures the distance between probability
distributions. Then data from similar units are aggregated with Weibull distribution
fitting, where the mean of the fitted distribution is the predicted lifetime.

o Parameter-based transfer learning starts with developing an initial model with data
from non-target units (named as "source domain" in transfer learning), and then
its parameters are fine-tuned with data of the target unit ("target domain"). For
example, in [69], a neural network-based SOH prediction model is first trained using
data from one battery. Then, the parameters of one layer in the neural network are
fine-tuned using data from another battery with a different design.

o Feature-based transfer learning typically starts from multi-dimensional sensor data
and aims to find features that are effective for both the target and non-target units
(i.e., creating domain-invariant features). For example, in [107], a neural network-
based model is constructed to predict the SOH of lithium-ion batteries, with features
extracted using convolutional neural networks. The difference between the features
from the source and target domains is measured using the maximum mean discrep-
ancy, and this metric is incorporated into the loss function to be minimized during
the model training process. Consequently, the final model minimizes the feature
differences between the domains.

o Instance-based transfer learning selects the most relevant data from the fleet to assist
model training for the target unit. It is usually combined with parameter-based or
feature-based TL to form a hybrid approach [104]. Hence this category is named
instance-based /hybrid transfer learning. For instance, in [108], a neural network-
based algorithm is developed for predicting the lifetime of lithium-ion batteries. The
algorithm selects the most relevant batteries based on factors such as degradation
rate and degradation curve shape. Then, a pre-trained model is fine-tuned using the
data from the selected batteries.

In Table 2.2, these fleet-based algorithms are evaluated against the following require-
ments.

o Machine-specific model. As PEM water electrolyzer is an emerging technology with
quick technology iterations, a machine-specific model is advantageous for accommo-
dating the differences among the electrolyzers. For this requirement, fleet and subfleet

modeling fall behind as they build an average model for multiple machines instead
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of emphasizing individual differences.

o Interpretable model. For industrial applications, model interpretability is crucial
because it enhances the credibility of decision-making, reduces safety risks, and facil-
itates knowledge discovery [109,110]. However, most transfer learning algorithms are
based on neural network structures, which are hard to interpret. The other method
categories do not have a predominant model structure, for which both interpretable
and non-interpretable models are available in the literature.

e Quick retraining. To accurately capture the unknown long-term degradation behavior
and adapt to new technologies, regularly and quickly updating the model is beneficial.
However, most algorithms start with the entire fleet database, resulting in time-
consuming model training, especially when dealing with complex model structures.
The only exception is parameter-based transfer learning, which allows for fine-tuning

an existing model without the need for fully retraining the entire model.

Table 2.2: Fleet-based algorithms evaluated against requirements. Only one exemplary
reference is given for each category. More references can be found in [14].

Machine- Interpretable Quick
specific model | model retraining

Fleet modeling [68] (X)

Subfleet modeling [105] (X)

Similarity-based modeling [106] | X (X)

oo | Parameter-based transfer | X (X)

= :

= learning [69]

g Feature-based transfer X

% learning [107]

§ Instance-based / hybrid X

= | transfer learning [108]

To fulfill all the requirements, this research proposes two SOH quantification methods
with the following highlights: (1) Model is trained for each electrolyzer and is regularly
updated over time. (2) Simple linear model structures are used that are easy to interpret.
(3) Fleet data are aggregated into a prior probability distribution that can be directly used
for model fitting.
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2.5 RESEARCH GAP

Reviewing the existing literature reveals the following research gaps.

o Existing in-situ SOH measurement methods for PEM water electrolyzers are not
suitable for industrial electrolyzers. The main gap is the requirement for a predefined
operation modes, which is not practical for industrial electrolyzer due to the non-
standardized but business-driven operation modes. (Section 2.3.2)

o Existing statistical approaches to mitigate the impact of operation modes are also
not suitable, because they either require established degradation models or rely on
measuring characteristic curves. (Section 2.3.3)

o An alternative to measuring characteristic curves is fitting performance models with
operation data. However, this approach faces challenges due to limited data coverage.
Existing algorithms that leverage fleet data to address this issue fall short in providing
tailored, machine-specific models that are interpretable and can be updated quickly
with new data. (Section 2.4)

To address these research gaps, two SOH quantification methods designed for industrial
electrolyzers are developed in this research. Their fundamental principles are presented in

the next section.






3 Method and data overview

This research develops two methods for SOH quantification for industrial water electrolyzers.
The commonalities between these two methods are presented in this chapter, including
the basic principle (Section 3.1), the data used for method evaluation (Section 3.2.1), the
evaluation metrics (Section 3.2.2), and the benchmark method for comparison (Section
3.2.3).

3.1 METHOD OVERVIEW

As mentioned in Chapter 1, the target of this research is to track the voltage degradation of
PEM water electrolyzers. A degraded electrolyzer requires a higher voltage to maintain the
electrochemical reaction at a given rate [17]. Nonetheless, the measured voltage cannot be
directly used as a degradation indicator, because it depends not only on degradation, but
also on operating conditions such as current and temperature. In laboratory environments,
dedicated tests under strictly controlled operating conditions can be performed to measure
the voltage degradation. But as stated in Section 2.5, this is impractical for industrial
electrolyzers due to the arbitrary, business-driven operation modes.

To address the impact of arbitrary operating conditions in the industry, this research
develops data-driven SOH quantification methods that adjust the measured voltage under
arbitrary operating conditions to the reference condition (U, in Fig. 3.1). The basis for
this adjustment is mapping the relationship between voltage and operating conditions by
fitting a voltage model (Case A in Fig. 3.1). However, in cases of limited data coverage
(e.g., when an electrolyzer is operated under a constant electric current), the model cannot
be accurately determined (Case B in Fig. 3.1). To address this difficulty in model fitting,
fleet knowledge is leveraged. This research presents two methods that incorporate fleet
knowledge in two different manners. The general working principle of the two methods is
presented below, and details will be introduced in Section 4 and 5.

Both proposed methods follow a similar principle, as illustrated in Fig. 3.2. The input is
operation data, segmented into intervals. For each interval, a voltage model is fitted with

the data, and the fitted model can be used for the following purposes.
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Voltage
model

Measured
data

lee

Figure 3.1: Case A: Voltage model fitting and U,. calculation based on arbitrary operation
data. Case B: Model fitting ambiguity under limited data coverage. (Note:
Voltage is a function of several variables. To simplify the visualization, only
the electric current is plotted on the x-axis here.)

o It can be used to calculate voltage under a predefined reference condition (Uy.), which
serves as the SOH indicator for electrolyzers.

e It can be used to calculate voltages at different electric current levels to obtain polar-
ization curves (Section 2.2.2.1), providing a basis for understanding the degradation
mechanism.

e It can be used to predict the voltage performance in the near future. This forecast
capability enables operators to optimize the power input to the electrolyzers, ensuring
efficient hydrogen production.

As shown in Fig. 3.2, this process involves two main considerations: what voltage model
to use, and how to fit the model. On an abstract level, the two proposed voltage models
in this research both have a linear structure. They can be written in the standard linear

regression matrix form:
Y =X0+e, (3.1)

where Y is a vector of the dependent variable (e.g., voltage), and X is a matrix of the
independent variables (e.g., operating conditions that impact voltage). Both X and Y

are directly obtained from the operation data. The parameter 3 is a vector of unknown
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coefficients that need to be fitted, and € is a vector of errors that follow a normal distribution
with an expectation of zero. There are different model fitting methods to estimate the
unknown parameter 5: a basic benchmark method (will be introduced in Section 3.2.3)
and two fleet-based methods developed in this research (will be introduced in Section 4.1.3
and 5.1.3). With the fitted coefficient 8 and the predefined reference condition X, the

corresponding Y;. can be calculated with
K‘C = chﬁ‘ (32)

The subscript "rc" denotes the reference condition, which can be tailored based on the use
case. For example, for maintenance planning, where the focus is the performance under
the nominal condition, X;. should correspond to the nominal values; while for method
validation, where more measured data are desired as the ground truth, X,. should be set
at the most common operating conditions.

Based on this common working principle, the two SOH quantification methods proposed
in this research differ in (1) the voltage model and (2) the model fitting approach to address

limited data coverage. Details will be introduced in Section 4 and 5.

3.2 METHOD EVALUATION

The proposed methods are evaluated using two types of data: industrial data and synthetic
data. Industrial data allow to develop realistic voltage models and to validate the methods’
effectiveness for actual industrial applications (Section 3.2.1.1). Synthetic data offer more
detailed ground truth to validate the methods’ accuracy and support sensitivity analyses
with varying data setups (Section 3.2.1.2). These two types of data complement each other,
ensuring a comprehensive evaluation of the proposed methods. The evaluation metrics
encompass three perspectives: the accuracy of Uy, polarization curves, and voltage fore-
cast (Section 3.2.2). Furthermore, the proposed methods are compared with a benchmark

method: simple linear regression (SLR) (Section 3.2.3).

3.2.1 Data for evaluation
3.2.1.1 Industrial data

The data are from 12 multi-cell PEM water electrolyzer stacks used for industrial purposes.
Each stack has a nominal power above 0.5 MW. They are operated under atmospheric
pressure, at around 60°C. The temperature variation during normal operation is within

several degrees. The input current densities are at medium levels, resulting in a nearly

31



32 | METHOD AND DATA OVERVIEW

U, evolution
U over time
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Figure 3.2: The proposed methods involve fitting voltage models to convert measured
voltage under arbitrary operating conditions to a reference condition (denoted
by the subscript "rc"). The fitted models can be used for calculating the SOH
indicator Uy, polarization curves, and voltage forecast.

linear voltage-current relationship. The operation profiles are not standardized but business-
driven, including periods of volatile and constant operation. The analyzed data cover a
duration of 1 to 3 years with a 1-minute resolution. The following measurements are used in

this research. Due to confidentiality reasons, more detailed technical specifications cannot
be provided.

o Voltage: the average cell voltage of all electrolyzer cells in a stack, measured with
sensors attached to the bipolar plate of each cell.

e Current: the direct current output of the rectifier supplying power to the electrolyzer
stack.
o Temperature: the average stack temperature derived from the mean of the process
water inlet and gas/water outlet temperature measurements.
The measurement error of industrial data is set as the benchmark to evaluate the accuracy

of the proposed methods. Specifically, the error of the modeled voltage or Uy, should not
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exceed the error of the actual voltage measurement, which is below 10 mV. Hence, the

target is to achieve a single-digit-mV level error.

3.2.1.2 Synthetic data

The second type of data used in this research is synthetic data, which is generated based
on industrial data analysis. The synthetic data generation scheme is illustrated in Fig. 3.3.
The synthetic data also consists of the three variables present in the industrial data: voltage,
current, and temperature. Voltage is simulated using an empirical model, with current and
temperature as inputs into the model. The empirical model has a linear form with 4 or
5 coefficients (details can be found in Section 4.1.2 and 5.1.2). The coefficients vary over
time, representing degradation. Noises are added to the variables to represent measurement
error. The operation data (current and temperature), model, model coefficients, and noise
are all generated based on industrial experience. However, for confidentiality reasons, they

do not necessarily reflect the actual industrial values.

Plausible values
—>

Current and temperature >

Model coefficients > Voltage - Voltage
model

Industrial > Noise >
data analysis ‘[

| Basis for developing the model

Figure 3.3: Synthetic data generation scheme.

The known coefficients can be used to calculate Uy, at each timestamp and under any
reference condition, serving as the ground truth for validating the accuracy of the proposed
methods. In addition to providing a known ground truth, synthetic data offers the possibility
of simulating various operation profiles, degradation behaviors, fleet sizes, etc. This allows

for a more comprehensive evaluation of the proposed methods’ applicability and sensitivity.

Before using synthetic data for method validation, the fidelity of the synthetic data
generation scheme is first verified. This is done by using the generation scheme to reproduce
the industrial data. The quality of the reproduction is presented with a histogram of the
error distribution. As mentioned in Section 3.2.1.1, error at a single-digit-mV level is

considered satisfactory.
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3.2.2 Evaluation metrics
3.2.2.1 Accuracy of U,

The accuracy of Uy is the key metric for evaluating the proposed methods, as U, is the
target quantity of this research - SOH for water electrolyzers.

With industrial data, the voltage is filtered at reference conditions within a narrow margin
and the filtered voltages are regarded as the ground truth Uy trye. Three reference conditions
covering high, medium, and low current densities are considered. These conditions are
selected in a way that abundant measurement data is available. The margins are set as
small as possible to obtain precise Uy true values, yet large enough to yield sufficient data.
The resulting Uy true have the same time resolution as the measurement data (i.e., minute
resolution) and are sparsely available over time. Then, to match with the time resolution
of the calculated Uy, from the proposed methods, Uy true are resampled and gaps are
filled with linear interpolation. Finally, the error is quantified using the root mean squared
error (RMSE):

1>
RMSE = g Z(Urc,true,i - Urc,i>27 (33)
i=1

where n denotes the number of U, data. Using RMSE as the error metric has the advantage
that it has the same units as the target variable. For voltage, it enables easy comparison
with the measurement error of the voltage sensor. As mentioned in Section 3.2.1.1, given
that the voltage measurement error is below 10 mV, the RMSE of Uy, should ideally also
be at the single-digit-mV level.

With synthetic data, the ground truth Uy true is calculated with the model coefficients
used to generate the data. The resulting Uy true have the same time resolution as the
synthetic data (i.e., minute resolution) and are continuously available over time. Then,
same as above, Uy true are resampled to match the time resolution of the calculated Uy

and the error is quantified with Eq. 3.3.

3.2.2.2 Accuracy of polarization curves

As mentioned in Section 2.2.2.1, polarization curve is a widely used metric to describe the
performance of an electrolyzer and it offers additional insights into degradation mechanisms.
Therefore, polarization curves derived from the proposed methods are also examined.
The industrial data contains very few polarization curve test results. These tests are
conducted by stepwise varying the electric current from the minimum operating level to

beyond the nominal level. For confidentiality reasons, details on the test protocol cannot
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be disclosed. For each polarization curve test, the most recently fitted voltage model within
3 days using the proposed method is retrieved. The operating data during the polarization
curve test (e.g., current and temperature) is provided as input into the fitted model to
calculate the voltage Upo. The measured voltage during the polarization test is used as

the ground truth Upel true and compared with Up derived from the proposed method:

n

1
RMSE = \l ﬁ Z(Upol,‘crue,i - Upol,i)za (34)
i=1
where n denotes the number of data during the polarization test.
With synthetic data, polarization curves can be readily calculated for any time step

with the model coefficients used for data generation. The model is supplied with different

current densities, while other operating parameters (e.g., temperature) are kept constant.

The voltage obtained is the ground truth Upel true. Providing the same operating data to
the fitted voltage models from the proposed methods yields Uy, which is then compared
with Upol true using Eq. 3.4.

Same as for Uy, the RMSE of the voltage during polarization curve tests should also be

comparable with the voltage measurement error, namely at the single-digit-mV level.

3.2.2.3 Accuracy of voltage forecast

The voltage model obtained from the proposed methods not only describes the as-is voltage
behavior, but also can be used to predict the voltage performance in the near future. This
forecast capability enables operators to optimize the power input to the electrolyzers,
ensuring efficient hydrogen production.

With industrial or synthetic data, the measured or synthetic operating voltage in the
next 1, 2, and 7 days is the ground truth Upyture true- The future operating current and
temperature are provided as inputs to the fitted voltage models from the proposed methods

to obtain voltage forecast Usypure. The error is quantified with:

n

1
RMSE = \l E Z(Ufuture,true,i - Ufutured)zv (35)
=1

where n is the number of data in the forecast horizon.

The RMSE of voltage forecast is calculated for all fitted voltage models, i.e. if voltage
models are fitted for each day over a year, there will be 365 RMSE results. Box plots
are used to depict the distribution of the RMSE results (for example in Fig. 4.7¢). The
box extends from the first quartile (Q1 or 25th percentile) to the third quartile (Q3 or

35
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75th percentile) values of the data, with a line at the median (Q2 or 50th percentile). The
whiskers extend from the edges of the box to no more than 1.5 times the interquartile
range (IQR = Q3 - Q1), ending at the farthest data point within the interval. Outliers are
plotted as separate dots [111].

The target RMSE for voltage forecast is also at the single-digit-mV level, aligning with

the voltage measurement error.

3.2.3 Benchmark method

Besides error quantification by comparing with the ground truth, the proposed methods
are also evaluated against a benchmark method. Given that both proposed methods are
extensions of the SLR algorithm, it is used as the benchmark. SLR aims to solve a linear

equation (Eq. 3.2) by minimizing the error [112]:

B = arg min[Y - Xp|?, (3.6)

where ||*|| denotes the Euclidean norm and the hat”denotes that this is an estimation, not

the real value. The closed-form solution is [112]:
B=(XTX)"xTy. (3.7)

In practice, the parameter § is fitted with the curve_ fit function from the Python package
SciPy [113]. With the fitted model, the evaluation metrics introduced in Section 3.2.2 can
be applied. The resulting RMSE from this benchmark method is then compared with the
RMSE from the proposed methods.



I Method 1: SOH quantification with transfer

linear regression

This chapter presents the SOH quantification method based on the TLR algorithm. The
method is detailed in Section 4.1, then evaluated with both synthetic data (Section 4.2)
and industrial data (Section 4.3). Limitations are discussed in Section 4.4. This chapter
is largely based on the publication: Yan, X., Locci, C., Hiss, F., Niefle, A.: State-of-health
estimation for industrial Hy electrolyzers with transfer linear regression. Energies 17(6),
1374 (2024). doi:10.3390/en17061374 [12].

4.1 ALGORITHM

4.1.1 Overview

As described in Section 3.1 and illustrated in Fig. 4.1, the method involves fitting a
voltage model for each interval and using the fitted model to calculate Uy, serving as the
SOH indicator. Specifically, this method adopts an empirical voltage model, featuring a
linear voltage-current relationship. The model is fitted with the TLR algorithm, which
adjusts a pre-existing fitted voltage model based on new data in a sequential manner. Fleet
knowledge is incorporated into the initial voltage model (e.g., a generic begin-of-life model)
and considered in the TLR algorithm.

Next, the empirical voltage model will be detailed in Section 4.1.2 and the TLR algorithm
in Section 4.1.3.

4.1.2 Voltage model

Since this research focuses on industrial electrolyzers, which are typically designed for a
specific operation range, it is not necessary to use an intricate physics-based model. Instead,
a model that effectively describes the voltage within the typical operation range is sufficient.

Therefore, a simple linear empirical voltage model is adopted:

U=cii+coT+ c3ln(OH) + ¢4 (4.1)


10.3390/en17061374
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Operation data (segmented into intervals)
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U Initial model U u U

Fleet knowledge is involved.

Figure 4.1: Overview of the SOH quantification method using TLR.

where voltage (U) is a linear function of current density (i), temperature (7), and the
natural logarithm of operating hours since the last start (OH). Coefficients c¢1—c4 are

unknown and need to be fitted for each interval.

This model is developed by analyzing the operation data of an industrial electrolyzer
described in Section 3.2.1.1. Its accuracy is demonstrated with the three exemplary intervals
in Fig. 4.2, each with a different operating scheme: (a) constant operation with several
starts, (b) volatile operation, and (c) staircase operation. These three intervals all have
a duration of 1 day. As the data preprocessing step, data beyond the normal operation
range (e.g., during standstill, data with extremely low or high current) are excluded. The
proposed empirical model Eq. 4.1 is trained on 75% of the preprocessed data and RMSE
is calculated on the remaining 25% of the data. The results show that the model can
accurately describe the voltage with RMSE at single-digit-mV level, fulfilling the accuracy

requirement defined in Section 3.2.
The model Eq. 4.1 can be written in the matrix form as in Section 3.1:

Y =XB+e (4.2)
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Figure 4.2: Validation of the empirical model Eq. 4.1 with operation data from three
different operation schemes. For confidentiality reasons, the y-scales are hidden.

The dependent variable Y is a vector of the measured voltages

T
Y:[U1 Uy ... U, . (4.3)

The independent variable X is a matrix of the impact factors, where the column of ones

corresponds to the constant term cy4

’il T1 IH(OH)l 1
’iQ T2 ln(OH)Q 1

X = (4.4)
in Tn, In(OH), 1
The parameter 5 is a vector of the unknown coefficients
T
B= [01 ¢ 3 64} : (4.5)
and € is a vector of errors
T
€= [61 € ... en} . (4.6)

The subscript n denotes the number of data points used for model fitting.

The parameter § is unknown and needs to be fitted. As the benchmark method, SLR
is used to fit B as described in Section 3.2.3, where no fleet knowledge is incorporated in
the model fitting process. Whereas to address model fitting difficulty under limited data
coverage (as illustrated in Fig. 3.1), the TLR algorithm is developed to incorporate fleet
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knowledge, which will be introduced in the next section. With the fitted coefficient 3, the

SOH indicator U,. under the predefined reference condition X,. can be calculated:

Ure = Xie B, (4.7)
where

Xpe = [z Te In(OH,) 1} . (4.8)

Additionally, the polarization curve can be obtained by calculating Uy, for various i, values
while fixing T}. and OH .

4.1.3 Model fitting

The TLR algorithm is inspired by the data-enriched linear regression algorithm proposed
in [114]. This is introduced first as the foundation for the TLR algorithm.

4.1.3.1 Background: data-enriched linear regression

The data-enriched linear regression algorithm was proposed by Chen et al. in 2015 [114].
It aims to build a linear regression model for a small dataset with the help of a second
dataset that is large but possibly biased. This aim closely aligns with the purpose of this
research: building a linear voltage model (Eq. 4.1) for intervals with a limited operation
range (the small dataset) with the help of historical data that cover a larger operation
range but have another degradation state (the second large but biased dataset).

As illustrated in Fig. 4.3a, the data-enriched linear regression algorithm assumes that

the small dataset follows a linear regression model
Yi1=X18+¢ (4.9)

where X7 and Y7 are the independent and dependent variables, 8 is the linear coeflicient,

and €7 is the error. The second dataset follows the model
Y2 = Xo(B+7) + e (4.10)

where Xo and Y5 are the independent and dependent variables, €5 is the error, and the
linear coefficients are shifted by 7. The parameter ¥ corresponds to the drift and rotation
of the model.
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The parameters S and 7 are estimated by minimizing the loss function

)

= argmin(||Y1 — X15]* + Y2 — X2(8 + 7)|* + M| X77]*).
————

(4.11)

By

€1

€2

control ~y

The first two terms in the loss function are the squared errors of Eq. 4.9 and Eq. 4.10.

This is similar to the ordinary least squares regression technique, which estimates model

coefficients by minimizing the fitting error. The third term controls the coefficient drift 7.

The reason for controlling 7 is to restrict the shape of the model.

Small dataset
Yi=Xf+e

. -
2"

 § /.”/6 [}

/"/
L]

° e

)

.
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shift y

Large, but biased dataset
L=XB+y)+e

(a) Data enriched linear regression

Unknown model
to be fitted with data o

Y=XB+y)+e

T

Coefficient
shift y

A known model
Y=XpB

(b) Transfer linear regression

Figure 4.3: Illustration for (a) data-enriched linear regression algorithm and (b) transfer
linear regression algorithm.

Two hyperparameters A\ and X7 are required to control 7. A € [0, co] controls the overall
size of 7. Its impact can be illustrated with two extreme cases: Setting A = 0 means no
constraint on 7; therefore, 5 and 8 + 7 are fitted separately with the two datasets; in
contrast, setting A = oo forces ¥ = 0, which is equivalent to fitting 8 with two datasets
jointly. The second hyperparameter X7 can be used to control each value in the vector ¥
in detail, but the paper [114] does not provide concrete instructions on how to construct
the X7 matrix.

As a result, the estimated parameters B and ¥ obtained by solving Eq. 4.11 are

B .
<A =0T (4.12)
3
X1 0 Y
where y = | Xo X, |and T = |Yy | [114].

0 A Xp 0

41
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4.1.3.2 Transfer linear regression

Mathematical formulation The TLR algorithm is a modification of the data-enriched
linear regression algorithm (Fig. 4.3b). The difference is that the data-enriched linear re-
gression algorithm uses two datasets to estimate two parameters S and 7, whereas the
TLR algorithm uses only one dataset to estimate 7, assuming that the parameter g is
already known (e.g., fitted with historical data or derived from expert knowledge). This
setup enables the inclusion of an existing model without requiring a second database and
is computationally cheaper by handling smaller data matrices.

The TLR algorithm aims to estimate the parameter ¥ in the equation
Y=X(B+7)+e, (4.13)

where X and Y are the data from the target dataset, and § is already known. Analogous to
the data-enriched linear regression algorithm, the unknown parameter A can be estimated

by minimizing the loss function

¥ =argmin(||Y — X (8 + )% + | X7[?). (4.14)
Y —_— ——
€ control ~y

The hyperparameters A and X7 control the size of 7 in the same manner as the data-

enriched linear regression. Their impacts will be detailed later. Solving Eq. 4.14 gives

¥=XTX + X\XEX)IXT(Y — Xp). (4.15)

The derivation process to obtain Eq. 4.15 is provided in Appendix A.1.

In summary, the TLR algorithm is proposed for SOH quantification due to the following
reasons.

e It can capture the model drift caused by degradation.

o It tackles the problem of limited data coverage.

o It is suitable for a linear model.

e It is computationally efficient by not including a second dataset.

e Its model transfer mechanism is easy to interpret.

Application on time series data To realize continuous SOH estimation along the
lifetime of electrolyzers, the TLR algorithm is applied iteratively over a time series to
continuously update the fitted empirical voltage model. Algorithm 1 shows a minimum

example of a time series application. In addition to this minimal example, several modi-
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fications can be implemented in practice. For instance, one can set A\ and/or Xp flexibly
for each interval instead of fixing a global value for all intervals; one can also add a fitting
quality check for each interval—if the fitting accuracy is not satisfactory, one can use
Bi = Pi—1 instead of B; = fi—1 + V; (i-e., not updating the coefficients).

Algorithm 1 Apply TLR on time series data

Input: Initial coefficients 5y, hyperparameters A and X7, time series data X and Y
segmented into n intervals (X1, Y1), ... (Xn, Yn)

Output: Coefficients for all n intervals g1, ... 5y
for i =1ton do

i = argmin(||Y; — X;(Bi—1 + )| + Al X2V]?) (4.16)
v
= (X{ X + AXT X)X (Y - XiBia) (4.17)
Bi = Bi—1 + 7 (4.18)
end for

Setting initial coefficients §y Algorithm 1 requires an initial coefficient 3y. There
are different methods to obtain £y: It can be derived from the initial time series data, data
from other similar systems, or expert knowledge. For the method evaluation with industrial
data (Section 4.3), [y is derived from a SLR fit using the initial 30 days of data from all
electrolyzers stacks described in Section 3.2.1.1, to represent fleet knowledge of the initial

model.

Impacts of hyperparameters A and X1 Hyperparameters A and X7 need to be
set before model fitting. Same as in the data-enriched linear regression algorithm [114], A
is a constant that controls the overall size of 7. Its impact can be seen from the following
examples of setting extreme values for A (also summarized in Table 4.1):

e Setting A = oo forces ¥ = 0. This leads to 8; = 5;_1; that is, the linear coefficients
do not change over time. In this case, high fitting errors along the time series are
expected.

e In contrast, setting A = 0 implies no constraint on the size of 7. Equation 4.16

becomes
¥; = argmin(||Y; — Xi(Bic1 +7)|1%);
v

that is, 7; is estimated freely by minimizing the fitting error. The freedom of 7; leads

to the freedom of 3; (Eq. 4.18), meaning that 3; is not influenced by the previous
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coefficient 8;_1. This is equivalent to fitting the model independently for each interval.

In this case, fluctuating § and low fitting errors along the time series are expected.
Regarding X, the original paper on data-enriched linear regression [114] does not provide
concrete instructions on how to construct Xr. For TLR, X7 is designed as a diagonal matrix

with dimensions p X p (p is the dimension of 5 and 7):

X711

Xrp
The term X777 in Eq. 4.14 and Eq. 4.16 is then

X1

XTprp

This shows that the diagonal elements X771 — X7, can control the individual values 71 —7,
in the vector 7 separately. The impact of the diagonal elements X7, is similar to that of
A (Table 4.1).

Table 4.1: Impacts of setting extreme values for hyperparameters A and Xr.

Values of

A or X1p 0 o’}
Impact on
Coefficient shift v Not constrained Shrink to 0

B; is flexibly fitted with data in

ffici . -
Coefficient f; interval 7, not influenced by 3;_1. Bi = Bima
Trend of 5 overtime Fluctuating Constant
Fitting error Low High

Table 4.1 summarizes the impacts of setting extreme values for A and X7. It shows that
setting small values for A and X7 results in a low fitting error but fluctuating coefficients,
whereas setting high values has the opposite impact. Balancing the trade-off between the
fitting accuracy and coefficient stability is key to setting proper values for A and Xp. This

is introduced next.

Setting A As explained above, setting A involves a trade-off between the fitting accuracy

and coefficient stability. In practice, this trade-off can be observed by testing different As
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on multiple intervals. This is demonstrated in Section 4.2 and 4.3.

Setting diagonal elements in X7 Recall that X7 is a p x p diagonal matrix, and p
is the dimension of 5 and 7, namely, the number of variables. Table 4.1 shows that for any
variable p, setting X1, = 0o leads to 3;, = Bi—1,, i.e., the linear coefficient stays constant
along the time series; whereas setting X7, = 0 leads to flexible 3,. That means, if the
coefficient for variable p is allowed to have a large variation, the corresponding X7, should
be small. Large variations should be allowed when
« (a) the coefficient (3, varies largely by nature over time, and
 (b) the variable p covers a wide range during an interval. (In this case, 3, can be
easily identified because of the wide data coverage, so it is allowed to be fitted flexibly
with the data. On the contrary, if the variable p covers only a small range in the
interval 4, (3; ) is constrained toward the previously fitted coefficient 5;_; ).
Applying these principles in the electrolyzer context, the X7 matrix is designed as in
Algorithm 2.

Algorithm 2 Setting diagonal elements in X7 for electrolyzers

1. Following (a): Fit the model (Eq. 4.1) for all n intervals, to obtain n coefficients
Cp,1---Cpn for each variable p, where p = 1, 2, 3 for the voltage model Eq. 4.1. The
variations of ¢, 1...cp, represent the expected variation of 3, through time. Calculate
the 1st term for X7, which decreases with the expected variation of 3, over time:

1
75th-25th percentile of ¢,

1st term =

2. Following (b): For each interval ¢ and each variable p, calculate the 2nd term for X,
which decreases with the data coverage of X:

Normal operation range of variable p
75th-25th percentile of X,

2nd term =

3. For each interval ¢ and each variable p,

X7p,i = 1st term x 2nd term

4.2 METHOD EVALUATION WITH SYNTHETIC DATA

As described in Section 3.2, the TLR algorithm is evaluated with both synthetic data and

actual operation data from industrial electrolyzers. In both cases, the TLR algorithm is
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compared with the benchmark method SLR, to highlight the necessity and effectiveness
of transfer learning.

In this section, synthetic data is employed to validate the proposed method, as the
ground truth is known for every timestamp, enabling the quantification of the method’s
accuracy.

The synthetic data is generated following the scheme described in Section 3.2.1.2, with
the empirical voltage model Eq. 4.1. To assess the fidelity of the synthetic data generation
scheme, it is first used to reproduce the industrial data (used in Section 4.3). Due to the
model simplification and unknown model coefficients, reproduction error cannot be avoided.
The error distribution is shown in Fig. 4.4. The average error is -0.1 mV, and 95.9% of the
data has an error within 10 mV - the same magnitude as the measurement noise (Section

3.2.1.1). Thus, the synthetic data generation scheme is considered satisfactory.

40000 - Mean: -0.1mV
Std: 5.1mv

Within £ 10mV: 95.9%
35000 4

30000 +

Frequency
N N
(=1 w
o o
(=] (=]
(=] (=]

! !

15000 A

10000 -

5000 1

T T
—40 —-20 o] 20 40
Error [mv]

Figure 4.4: Error of using the synthetic data generation scheme to reproduce industrial
data.

Then, the following settings are incorporated into the synthetic data generation scheme
to produce synthetic data. These settings are inspired by industrial operation data but do
not necessarily represent actual values.

¢ Resolution: 1 min.

e Length: 1year.

« Current density range: 0.4 — 2 A /cm?.

e Temperature: Sine wave between 58 and 60°C. Decrease to 20°C during standstill.
o Noise: Current density + 1%, temperature +0.1°C, voltage + 1mV.

e Operation modes: The entire time frame is randomly segmented into periods with
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one of the following operation modes.
— Low variation: A random current density + 1% variation.
— Medium variation: A random current density + 10% variation.
— High variation: Random current densities within the full operating range.
— Standstill: Zero current density.

e Degradation behavior is described with model coefficients ¢; — ¢4 evolving over time:

— ¢1: Linearly increases from 0.2 to 0.3.
— ¢o: Linearly decreases -0.003 to -0.0036.
— c3: Stays constant at 0.003.

— ¢4: Linearly increases from 1.6 to 1.65.

The resulting synthetic operation data is shown in Fig. 4.5.

3]
1

Current density
[Alem?]

g o

Temperature
rCl
&

20 1 -

- WM A

100 150 200 250 300 350
Days

Voltage
(during operation)
V]
~J
[4}

Figure 4.5: Synthetic data.

The TLR algorithm is executed with the following settings.
e Model fitting interval: 1 day.
o Reference condition to calculate Uyc: iy. = 2A/ cm?, Ty = 60°C, and OH,. = 72h.
o Parameters required by the TLR algorithm (Algorithm 1):
— Initial model coefficient 5y. Derived from plain linear regression with the initial
10% of the synthetic data.
— Hyperparameter Xp. Following Algorithm 2.
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— Hyperparameter \. Selected by testing various As to find a trade-off between
fitting accuracy and coefficient stability. Eleven different A values ranging from
1078 to 10% (Fig. 4.6) are tested on the first 50 days of synthetic data. For each
day, a model fitting with TLR is performed, yielding 50 sets of coefficients ¢; to
c4 and 50 fitting errors RMSE. By calculating the standard deviations of each
coeflicient and the average RMSE, the impact of the various As can be observed:
As ) increases, the coefficients get more stable (the standard deviations decrease)
and the fitting error increases, which aligns with the expectations in Table 4.1.
Ultimately, A = 1072 is selected as a trade-off between coefficient stability and

model accuracy.
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Figure 4.6: Different As ranging from 10~® to 10? are tested for their impact on the coef-
ficient stability (represented with the standard deviations of ¢; to ¢4) and on
the fitting error.
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Using the selected A, the TLR process (Algorithm 1) is performed. The results are
compared with the benchmark method SLR (Section 3.2) that does not incorporate fleet
knowledge in the model fitting process. Fig. 4.7a shows that the TLR algorithm captures
the true U, with a significantly smaller RMSE than SLR. Regarding the accuracy of polar-
ization curves (generated by applying the fitted voltage model Eq. 4.1 on various current
densities between 0.3 A /cm? and 2.0 A /cm?, while keeping 7' = 60°C and OH = 72h), Fig.
4.7b shows that incorporating fleet knowledge with the TLR algorithm significantly stabi-
lizes the polarization curves, showing a consistent rise over time. Quantitatively, the RMSE
is reduced from 20.9mV to 0.9mV. Last, Fig. 4.7c shows that voltage models fitted with
TLR can forecast voltage more accurately than with SLR. The superiority is particularly
substantial for multi-days ahead forecast: For 7-days ahead forecast, SLR produces errors
of up to 10% mV, while SLR produces errors consistently below 10mV. These comparisons

strongly underscore the necessity and effectiveness of the TLR algorithm.
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Figure 4.7: TLR captures ground truth with significantly smaller errors than the benchmark
method SLR.
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4.3 METHOD EVALUATION WITH INDUSTRIAL DATA

Next, the TLR algorithm is applied to the operation data of one industrial PEM water
electrolyzer stack described in Section 3.2.1.1. It is executed with the following settings.

e Model fitting interval: 1 day.

e Reference condition to calculate U.: Three different reference conditions. One is the
nominal operating condition, and two are operation conditions that occur relatively
often with abundant data to facilitate model validation. For confidentiality reasons,
the exact conditions cannot be provided.

o Parameters required by the TLR algorithm (Algorithm 1):

— Initial model coefficient By: Obtained by plain linear regression fitting using the

initial 30 days of data from all electrolyzers stacks described in Section 3.2.1.1.

— Hyperparameter Xp: Following Algorithm 2.

— Hyperparameter \: Selected by testing various As to find a trade-off between
fitting accuracy and coefficient stability. Eleven different A values ranging from
1078 to 10? (Fig. 4.8) are tested on the first 50 days of synthetic data. For each
day, a model fitting with TLR is performed, yielding 50 sets of coefficients ¢; to
¢4 and 50 fitting errors RMSE. By calculating the standard deviations of each
coefficient and the average RMSE, the impact of the various As can be observed:

As X increases, the coefficients get more stable (the standard deviations decrease),

and the fitting error increases, which aligns with the expectations in Table 4.1.

Ultimately, A = 1072 is selected as a trade-off between coefficient stability and
model accuracy. (A deep dive into the challenge of A selection can be found in
Section 4.4.2.)
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Figure 4.8: Different As ranging from 10~® to 10? are tested for their impact on the coef-
ficient stability (represented with the standard deviations of ¢; to ¢4) and on
the fitting error.

Using the selected A, the TLR process (Algorithm 1) is performed on approximately
2 years of operation data (Fig. 4.9, right). Uy, under 3 different reference conditions are
calculated and compared with the measured voltage at roughly these reference conditions.
As the benchmark method, SLR is also applied on the industrial data, where no fleet
knowledge is involved (Fig. 4.9, left). Looking at the measured voltages at the reference
conditions, they are only sparsely available (especially at reference condition 1) because the
operating conditions are arbitrary and rarely at these reference conditions. This underscores
the necessity of the SOH indicator U,. for continuous condition monitoring. Furthermore,

upon examining the calculated Uy, it can be observed that SLR produces noisy and
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unstable U, results, which contradicts the gradual degradation process; in contrast, TLR
produces smoother results with a consistent increasing trend over time. The accuracy of
the calculated Uy is quantified with RMSE (Section 3.2.2.1). The RMSE of U,, computed
with TLR is at the same magnitude as the voltage measurement error (Section 3.2.1.1)
and they are much smaller than with SLR at all three reference conditions. This signifies

the effectiveness of incorporating fleet knowledge using TLR.
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Figure 4.9: U, calculated with SLR (left) and TLR (right) under 3 different reference
conditions, compared with measured voltage at roughly these conditions. For
confidentiality reasons, the y-scales are hidden.

The superiority of the TLR algorithm can also be examined with the fitted polarization
curves (Fig. 4.10). The polarization curves are plotted by applying the fitted voltage model
Eq. 4.1 on various current densities while keeping constant T' and OH. Fig. 4.10 shows
that SLR produces polarization curves with inconsistent shapes, whereas incorporating
fleet knowledge with the TLR algorithm notably stabilizes the curves, showing a steady

rise over time, which aligns with the physical expectation of voltage degradation.
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Figure 4.10: TLR produces more stable polarization curves than the SLR algorithm. For
confidentiality reasons, the x- and y-scales are hidden.

The TLR algorithm is also evaluated regarding the forecast capability of the fitted voltage
models and is compared with the benchmark method SLR (Fig. 4.11). RMSE is quantified
as introduced in Section 3.2.2.3. For both SLR and TLR, the forecast error increases as
the forecast horizon extends from 1 day to 7 days, due to the changing degradation state
over time. The voltage models fitted with SLR produce errors of up to 10° mV, whereas
with TLR, the errors consistently remain below 100 mV, with the majority below 10 mV.
The error reduction effect of TLR is particularly pronounced for the outliers, showing the

robustness of the algorithm.
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Figure 4.11: Voltage forecast accuracy of the voltage models fitted with SLR and TLR.
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4.4 LIMITATIONS

4.4.1 Elevated error for degraded electrolyzers

The empirical voltage model Eq. 4.1 characterizes a linear voltage-current relationship and
is proven to be valid for the industrial operation data with Fig. 4.2. The calculated Uy, is
also accurate for 600 days (Fig. 4.9). However, as more operation data is gathered during
the research, it is observed that the model is no longer accurate for degraded electrolyzers,
particularly exhibiting bias at high current densities.

As shown in Fig. 4.12, by extending the evaluation period from 600 days to 1200
days, it becomes evident that the calculated U,. consistently underestimates the measured
voltage at reference condition 1, with an RMSE of 64.7 mV. To investigate the cause, the
measured polarization curves are compared with the modeled results (Fig. 4.13). RMSE
is quantified as introduced in Section 3.2.2.2. The comparison reveals that the voltage-
current relationship of the polarization curve measurement at 723 days and 884 days
after installation is not anymore linear, where the voltages at higher current levels show
an upward bend. To address this, the second proposed method (Section 5) updated the

empirical voltage model to capture this non-linear voltage-current behavior.

With fleet knowledge (TLR)

I -

: RMSE: 64.7mV Ref cond 1,

! RMSE: 9.5mV calculated U,

1 .

: RMSE: 8.1mV Ref cond 1,

\ ®  measured voltage
1 . .. . . .Hl

! v p E Ref cond 2,

o ® A calculated Uy,

\oltage
°
t

measured voltage

- 1
e 1
— i Ref cond 2,
oD :" ] ®  measured voltage
o i Ref cond 3,
© REDOEDE :- ® @ 0o calculated Uy,
d Ref cond 3,
1
1
1

0 200 400 600 800 1000 1200
Days since installation

Figure 4.12: U, calculated with TLR under 3 different reference conditions, compared with
measured voltage at roughly these conditions, over roughly 1200 days.

4.4.2 Difficulty in determining hyperparameters

Fig. 4.6 and 4.8 demonstrate the rationale behind the selection of the hyperparameter

A, which involves assessing coefficient stability and fitting accuracy. Nevertheless, this
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Figure 4.13: Fitted voltage model compared with measured polarization curves.

empirical approach does not guarantee the accuracy of the resulting coefficients. Due to
the lack of knowledge of the true coefficients in practice, it is impossible to ensure the
correctness of the selected hyperparameter.

Fig. 4.14 showcases the difficulty in determining the hyperparameter A. Three different \s
107°,1074, and 1073 are tested on 50 randomly selected days of industrial data. The model
coefficient ¢y shows very different trends over time: from almost constant with A\ = 1073,
to varying between 80% to 150% with A = 107°. Despite the different trends, the average
fitting errors across the 50 days are only minimally affected, with a narrow range between
2.4 mV and 2.7 mV. Without knowing the true coefficients, it is hard to determine which
A is more appropriate. To simplify the parameter setting, the second proposed method
(Section 5) is based on an established algorithm with standard parameters that do not

require customization.

4.4.3 Rely on the last fitted model

The essence of the TLR algorithm is to adjust an existing fitted voltage model with
newly available data. Simply speaking, if the new data covers a wide range, the model
coefficients can be re-fitted with little constraint; on the contrary, if the new data have
a limited coverage, the model coefficients are fixed toward the existing coefficients. This
behavior is controlled with the hyperparameter Xr (Section 4.1.3.2). As a result, if limited
data coverage persists over an extended period, such as during constant operation, the
coefficients fitted with the TLR algorithm may eventually drift from the true value.

Fig. 4.15 demonstrates the effect of a long constant operation period using synthetic
data. The data is generated similarly as described in Section 4.2, with an intentionally

added constant operation period of 64 days. Due to the limited current density coverage,
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Figure 4.14: The impact of A on the model coefficient ¢o and fitting error.

the coefficient ¢y, which describes the voltage-current relationship, drifts away from the

ground truth and remains close to the last fitted ¢;. Consequently, the voltage cannot be

accurately extrapolated to the reference condition, and the bias gets larger as the constant

operation continues.

To overcome this limitation, the second proposed method (Section 5) incorporates prior

knowledge of the model coefficients into the fitting process, which is derived from the

overall degradation trend of similar electrolyzers. The prior knowledge provides additional

information that enables the model coefficients to be updated even during extended periods

of limited data coverage.
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5 Method 2: SOH quantification with Bayesian

inference

This chapter presents the SOH quantification method using Bayesian inference. The method
is detailed in Section 5.1, then evaluated with both synthetic data (Section 5.2) and
industrial data (Section 5.3). Limitations are discussed in Section 5.4. This chapter is
largely based on the publication: Yan, X., Helmers, L., Zhou, K., Niefle, A.: Fleet-based
degradation state quantification for industrial water electrolyzers. Electrochemical Science
Advances 5(3), 70002 (2025). doi:10.1002/elsa.70002 [13].

5.1 ALGORITHM

5.1.1 Overview

The underlying principle of this method is the same as the first method: It fits an empirical
voltage model for each interval and uses the fitted model to calculate the SOH indicator
Ue (Fig. 5.1). To facilitate model fitting with limited data coverage, fleet knowledge of
how the model parameters develop over time is incorporated with Bayesian inference. The
fleet knowledge is derived by aggregating the model parameters from multiple similar
electrolyzers, i.e. the electrolyzer fleet.

Next, the empirical voltage model will be detailed in Section 5.1.2 and the model fitting
method in Section 5.1.3.

5.1.2 Voltage model

As pointed out in Section 4.4.1, the previous empirical voltage model (Eq. 4.1) is not able
to capture the voltage behavior of degraded electrolyzers. Therefore, the voltage model is
updated to incorporate a stronger physical basis and to account for the non-linear voltage-
current behavior that occurs in degraded electrolyzers. The updated voltage model follows
this structure:

Overpotentials (impact of current,

Voltage = Reversible voltage
temperature, and start).


10.1002/elsa.70002

60

| METHOD 2: SOH QUANTIFICATION WITH BAYESIAN INFERENCE

Operation data (segmented into intervals)

Measurement

Voltage model parameter .Fleet knowledge* of how
of similar electrolyzers the parameter develops
A A

Parameter
Parameter

»
> »

Time Time

Figure 5.1: Overview of the SOH quantification methods with Bayesian inference

As introduced in Section 2.2.2.1, reversible voltage (Up) is the minimum voltage required
to split 1 mole of water. This physical quantity can be accurately calculated with the

Python package CoolProp [115]. But for fast computation, it is approximated with a linear
function

Up = —8.2975 x 10T + 1.24965, (5.1)

where T is in °C and P is set at the atmospheric pressure. Fig. 5.2 shows that the
approximation aligns well with the CoolProp calculation within the typical operation

temperature range of 50 to 60°C. The mean absolute error is 0.002 mV.

The overpotentials are modeled empirically considering the impacts of current, temper-
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Figure 5.2: Comparison between the reversible voltage calculated with the Python package
CoolProp and with the linear approximation (Eq. 5.1).

ature, and starts:
Uoverpotentials =c1i+ cotl + c3 hl( OH) + C4Z'2 + ¢5 (52)

where i is the electric current density in A/cm?, T is temperature in °C, and OH stands
for operating hours since last start. The coefficients ¢; to ¢5 are unknown and need to be
fitted with operation data. The variables included in the proposed overpotential model are
selected for the following reasons.

e 4: The investigated electrolyzers are operated mostly under medium current density,
where voltage and current show a linear relation (quasi-ohmic behavior).

e ¢1": This term is to capture the impact of temperature, which is dependent on the
current level.

o In(OH): This term is to describe the impact of starts (i.e., the electric current supply
rises from below the minimum operating current to the normal range). Similar as
reported in [57,59,83], the investigated electrolyzers typically show a voltage increase
after each start, with a pattern resembling a logarithmic curve.

« i2: This term is to capture the nonlinear voltage-current relation observed with
degraded electrolyzers as described in Section 4.4.1.

Combine Eq. 5.1 and 5.2, the final empirical voltage model is

U =(—8.2975 x 10T + 1.24965)
+ c19 + coiT + c3In(OH) + c43% + c5. (5.3)
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This model is validated with industrial operation data (described in Section 3.2.1.1) from

different operation schemes. Three examples are shown in Fig. 5.3: (1) constant operation

with several starts, (2) volatile operation, and (3) staircase operation. These example

intervals are 24 hours long. As the data preprocessing step, data beyond the normal

operation range (e.g., during standstill) are excluded. The proposed empirical model Eq.

5.3 is trained on 75% of the preprocessed data and RMSE is calculated on the remaining

25% of the data. The results show that the model can accurately describe the voltage with

RMSE at a single-digit-mV level, fulfilling the required accuracy defined in Section 3.2.

Current
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Figure 5.3: Validation of the proposed empirical model Eq. 5.3 with operation data from
three different operation schemes. For confidentiality reasons, the y-scales are

hidden.

The model Eq. 5.3 can be written in the matrix form as in Section 3.1:

Y = X5 +e,

The dependent variable Y is a vector of the overpotentials

Ui —Upa
v — Us — Up,2
Un - UO,n

(5.5)

The independent variable X is a matrix of the impact factors, where the column of ones
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corresponds to the constant term cs

it 9Ty In(OH); 3 1
s isTy In(OH)y i3 1

X = (5.6)
in T, W(OH), i2 1
The parameter § is a vector of the unknown coefficients
T

B = {61 co 3 ¢y 05] ; (5.7)

and € is a vector of errors
T
€= [61 € ... en} . (5.8)

The subscript n denotes the number of data points used for model fitting. The parameter
(B is unknown and needs to be fitted. As the benchmark method, SLR is used to fit
[ as described in Section 3.2.3, where no fleet knowledge is incorporated in the model
fitting process. Whereas to address model fitting difficulty under limited data coverage
(as illustrated in Fig. 3.1), a model fitting method that incorporates fleet knowledge with
Bayesian reference is introduced in the next section. To ease the convergence, data is first
scaled to a comparable range of 0 to 1 with the MinMaxScaler function from the Python
package scikit-learn [116] prior to model fitting.

With the fitted coefficient 8, the SOH indicator U,. under the predefined reference

condition X,. can be calculated:

Ure = Xic B, (5.9)
where

Xoe = [ire irTie I(OHy) 2 1] (5.10)

Additionally, the polarization curve can be obtained by calculating U, for various i,. values
while fixing T and OH ..

5.1.3 Model fitting

The proposed empirical model Eq. 5.3 consists of 5 unknown coefficients ¢; to ¢ that

need to be fitted with operation data for each interval (Fig. 5.1). This section presents a
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model fitting approach that incorporates fleet knowledge through Bayesian inference. The
process of extracting and incorporating fleet knowledge is illustrated in Fig. 5.4. It has the

following three steps.

Noisy fleet param. Aggregated fleet param. Target electrolyzer param.

/

—

/

. - N
> > >

Parameter
Parameter
Parameter

Time Time Time

Figure 5.4: Process of constructing and incorporating fleet knowledge in model fitting for
the target electrolyzer.

Step 1: Obtain noisy fleet parameters with SLR. In this step, the SLR method (Section
3.2.3) is applied to get model parameters for the electrolyzer fleet. Due to the model fitting
difficulty under limited data coverage (Fig. 3.1 Case B), the obtained parameters are very
unstable at this stage.

Step 2: Remove unreliable results and aggregate to fleet knowledge with Gaussian process
regression. In this step, unreliable fitting results identified with high condition numbers of
the covariance matrix [117,118] are first removed. Then the remaining fitted parameters are
aggregated with Gaussian process regression (GPR). GPR is a machine learning technique
to obtain a probabilistic model based on observed data [119,120]. It is used for two
reasons: (1) It produces probabilistic prediction, which can be utilized by the Bayesian
linear regression in the next step. (2) It is a nonparametric method, which does not rely
on any assumed functional form to describe the parameter development trend.

Step 3: Model fitting with Bayesian linear regression [121] using fleet knowledge as the
prior probability distribution. The GPR model from Step 2 provides a prior probability
distribution on the model parameter distribution for each model fitting interval. It is
combined with the measured operation data with Bayesian linear regression to obtain the
posterior probability distribution of the model parameter. This is illustrated in Fig. 5.5
using the coefficient ¢; as an example. By applying Bayes’ theorem, the posterior model
parameter distribution is proportional to the product of the prior distribution and the
likelihood function [121,122]:

p(B | data) o< p(B) x p(data | B). (5.11)
—_— =

posterior prior likelihood
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Figure 5.5: Using Bayesian method to obtain the posterior probability distribution of model
parameter (¢; as an example) by combining fleet knowledge and data of the

target electrolyzer.

Assume that the prior distribution for the model parameter /3, obtained from the GPR

process in Step 2, follows a normal distribution with mean m and covariance Sy (f denotes

that it is from the fleet knowledge):

p(B) = N(my, Sy). (5.12)

Bayesian linear regression gives the posterior distribution of the model parameter § [121]:

p(B | data) = N(m, S), (5.13)
where
41 _
S=(S"+ ﬁXTX) L (5.14)
_ 1
m = S(S; my + EXY), (5.15)

and o2 is the noise variance, which represents the inaccuracy of the target linear regression
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model. A higher value of o2 results in a reduced contribution from the measurement data
(%X TX and %X Y get smaller), so the posterior is more dominated by the prior. The
mean m of the posterior distribution can be used as the point estimator of the parameter
B (informally represented as = m).

This 3-step model fitting process is demonstrated with synthetic data in Section 5.2.

5.2 METHOD EVALUATION WITH SYNTHETIC DATA

In this section, synthetic data is utilized to validate the proposed method. First, the
entire modeling process is demonstrated with a synthetic electrolyzer fleet. Then, three in-
depth sensitivity analyses are presented, regarding the impact of data coverage, fleet-target

discrepancy, and fleet size.

5.2.1 Evaluation with a synthetic fleet

The synthetic data is generated following the scheme described in Section 3.2.1.2, with
the empirical voltage model Eq. 5.3. To assess the fidelity of the synthetic data generation
scheme, it is first used to reproduce the industrial data (data of the target electrolyzer
used in Section 5.3). Due to the model simplification and unknown model coefficients,
reproduction error cannot be avoided. The error distribution is shown in Fig. 5.6. The
average error is -1.6 mV, and 87.9% of the data has an error within +£10 mV - the magnitude
of the measurement noise (Section 3.2.1.1). With this, the synthetic data generation scheme

is considered satisfactory.

60000 1 Mean: -1.6mV
Std: 8.0mV
o ] o

50000 - Within £ 10mV: 87.9%
2 40000
c
[
3
5 30000 1
=

20000

10000 -

0- T T
-40 -20 0 20 40
Error [mV]

Figure 5.6: Error of using the synthetic data generation scheme to reproduce industrial
data.
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Then, the following settings are incorporated into the synthetic data generation scheme

to produce a synthetic electrolyzer fleet. These settings are inspired by industrial operation

data but do not necessarily represent actual values.

Resolution: 1 min.

Length: 1 year.

Full load: 2 A /cm?.

Temperature: Sine wave between 58 and 60°C. Decrease to 20°C during standstill.
Noise: Current + 1%, temperature + 0.1°C, voltage + 1mV.

Operation modes: The entire time frame is randomly segmented into periods with
one of the following operation modes. (The percentage values are related to the full
load 2A/cm?.)

Constant at 100%.

Constant at 60%.

— Constant at 20%.

Random fluctuate between 60 and 100%.

— Random fluctuate between 20 and 100%.

— Random fluctuate between 20 and 60%.

— Standstill.

Number of electrolyzers: 11 (1 target electrolyzer and 10 electrolyzers to form the fleet

knowledge). To demonstrate the effectiveness of incorporating fleet knowledge, the
target electrolyzer is deliberately designed to have a challenging operation scheme:
It is often under constant operation, making the voltage-current relationship difficult
to model; it also has few starts, making the start behavior (associated with the
coefficient c¢3) difficult to model. The rest of the 10 electrolyzers have randomly

assigned operation modes, without special treatment.

Degradation behavior is described with model coefficients c¢; - ¢5 evolving over time.

Their values are set based on the fitted values from the industrial data.
— ¢1: Linearly increases from 0.3 to 0.36.
— co: Linearly decreases -0.002 to -0.0024.
— c3: Stays constant at 0.004.
— c4: Exponentially increases from -0.0225 to 0.1.
— c5: Stays constant at 0.35.

The resulting synthetic operation data of the target electrolyzer is shown in Fig. 5.7.
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Figure 5.7: Synthetic data of the target electrolyzer.

The proposed method is executed with the following settings.

Model fitting interval: 1 day.

Reference condition to calculate Uc: i = 2A/cm?, T} = 60°C, and OH .. = 72h.
Condition number threshold to identify unstable fitting results: 105 (determined
empirically by examining the distribution of the condition numbers from SLR model
fitting in Step 1).

Parameters for GPR [116]: Kernel (a function that computes the similarity between
data points) is set as the widely used radial basis function kernel [123]. Alpha (noise
of the data) is set as the standard error obtained from SLR in Step 1.

Parameters for Bayesian linear regression: noise o is set as the average RMSE from
SLR in Step 1.

Fig. 5.8 demonstrates the proposed modeling process described in Section 5.1.3. In Step 1,

parameters (taking c¢; as an example) from different electrolyzers obtained with SLR are

very unstable. In Step 2, after removing unreliable results based on condition number, the
parameters exhibit a clear trend, which is captured with GPR as the fleet knowledge. In
Step 3, the fleet knowledge is incorporated into the model fitting process for the target
electrolyzer with Bayesian linear regression, resulting in parameters that closely follow the
fleet knowledge (the orange line). In contrast, model fitting without fleet knowledge using

the benchmark method SLR results in very unstable parameters (the blue line).
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(a) Step 1: Obtain noisy fleet parameter with simple linear regression
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Figure 5.8: Demonstration of the modeling process with synthetic fleet data.
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Fig. 5.9 compares the results obtained with the proposed fleet-based method against the
benchmark method SLR without fleet knowledge. Fig. 5.9a shows that incorporating fleet
knowledge with the proposed method reduces the U, estimation error from 106.6 mV to
1.7mV. Regarding the accuracy of polarization curves (generated by applying the fitted
voltage model Eq. 5.3 on various current densities between 0.4 A /ecm? and 2.0 A /cm?, while
keeping T' = 60°C and OH = 72h), Fig. 5.9b shows that incorporating fleet knowledge
significantly stabilizes the polarization curves, showing a consistent rise over time, and the
RMSE is reduced from 51.9mV to 0.9 mV. Last, Fig. 5.9¢ shows that voltage models fitted
with the fleet-based method can forecast voltage more accurately than the benchmark
method, where RMSE are mostly below 10 mV for all three forecast horizons except a few
outliers. These comparisons clearly highlight the superiority of the proposed fleet-based
method.
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Figure 5.9: Results comparison between the proposed fleet-based method and the bench-
mark method SLR without using fleet knowledge.



72 | METHOD 2: SOH QUANTIFICATION WITH BAYESIAN INFERENCE

5.2.2 Sensitivity analysis 1: impact of data coverage

Following the demonstration of the modeling process with a synthetic electrolyzer fleet,
synthetic data is now utilized to conduct three in-depth sensitivity analyses. The first
sensitivity analysis focuses on the impact of data coverage. Specifically, the operating
range (i.e., the coverage of current density) is varied to observe how it affects the accuracy
of Uy estimation (Fig. 5.10).
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Figure 5.10: Impact of data coverage.

The data is generated using the following setup.

¢ Resolution: 1 min.

e Length: 1 day.

e Number of electrolyzers: 1.

« Operation range: Current density randomly fluctuates within X to 2 A/cm?. The
lower bound X decreases from 2 A/cm? to 0.4 A/cm? (the x-axis in Fig. 5.10),
corresponding to an increase in data coverage.

e Temperature: Sine wave between 58 and 60°C.

¢ Noise: The noise of voltage is randomly generated from a normal distribution with a
mean of 0V and a standard deviation of 0.001 V.

o Coefficients ¢; — ¢5: Mean of the fleet knowledge derived in Section 5.2 at the first
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timestamp.

For each dataset with a different operation range, both model fitting methods with and
without fleet knowledge are applied. The proposed fleet-based method is conducted with
the following parameters.

o Model fitting interval: 1 day.

o Reference condition to calculate Uyc: ip. = 1A/ cm?, Ty = 60°C, and OH,. = 72h.

o Parameters for Bayesian linear regression: The prior probability distribution is the
fleet knowledge derived in Section 5.2 at the first timestamp, which is the basis for
data generation as mentioned above. The noise parameter o is set to be 0.001V,
matching the standard deviation of the synthetic noise.

The resulting U,. estimation errors are shown in Fig. 5.10. It can be observed that with
low data coverage, the benchmark method without using fleet knowledge produces errors
of up to 100 mV and the fluctuation shows that the method is unstable, while including
fleet knowledge significantly reduces the error to less than 1 mV with high stability. On
the other hand, with high data coverage, both methods show comparable accuracy. This
underscores the necessity of incorporating fleet knowledge especially when handling limited
data coverage.

Note that the issue of data coverage applies to all variables on the right-hand side of the
voltage model Eq. 5.3. Here only the coverage of the electric current is demonstrated. But
in practice, the term In(OH) is also problematic when an electrolyzer keeps operating for a
long time. This is because the coverage of In(OH) gradually decreases as OH increases. For
example, from operating hour 1 to 2 after a start corresponds to In(2)—In(1) = 0.69 coverage
in In(OH); while from operating hour 101 to 102 corresponds only to In(102) — In(101) =
0.01 coverage in In(OH).

5.2.3 Sensitivity analysis 2: impact of fleet-target discrepancy

The second sensitivity analysis focuses on the impact of fleet-target discrepancy on the
accuracy of Uy estimation by varying the coefficient ¢; (Fig. 5.11).

The data generation scheme and modeling setup are mostly the same as in Section 5.2.2,
with the following differences.

« Operation range: 1.98 to 2 A/cm?.

o For data generation, coefficient ¢y is additionally increased by 0 to 25% based on the
fleet knowledge, to represent the discrepancy between the fleet and the target (the
x-axis in Fig. 5.11).

For each dataset, both model fitting methods with and without fleet knowledge are

applied. The resulting errors of Uy, estimations are shown in Fig. 5.11. It can be observed
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Figure 5.11: Impact of the discrepancy between the fleet and the target electrolyzer.

that model fitting without using fleet knowledge produces errors fluctuating between 102
and 10° mV, while incorporating fleet knowledge reduces the error by nearly an order
of magnitude or even more. Nevertheless, as the discrepancy increases, the error of the
fleet-based U, also increases, indicating the advantage of having an electrolyzer fleet that

is similar to the target electrolyzer.

5.2.4 Sensitivity analysis 3: impact of fleet size

The third sensitivity analysis focuses on the impact of fleet size (i.e., the number of elec-
trolyzers used to construct the fleet knowledge) on the quality of the fleet knowledge by
varying the fleet size from 1 to 10 electrolyzers (Fig. 5.12a, b). Furthermore, the subsequent
impact on the accuracy of U, estimation is investigated using multiple scenarios with var-
ious data coverage (Fig. 5.12c) and fleet-target discrepancy (Fig. 5.12d), with similar data
generation schemes as in Section 5.2.2 and Section 5.2.3, respectively. Model fitting with
fleet knowledge is applied.

Fig. 5.12a and 5.12b show that increasing the fleet size reduces the error and uncertainty
of the fleet knowledge. The benefit of error reduction gets more evident as the data coverage
decreases (Fig. 5.12¢): If deliberately introducing errors to the fleet knowledge of ¢; from
0.1 to 0, the U, estimation error decreases significantly with a small data coverage of 1.8

2.0 mA /cm?; in contrast, with a large data coverage of 0.6-2.0 mA /cm?, the Uy, estimation
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Figure 5.12: Impact of fleet size.

error stays low. This is because, under a small data coverage, the fleet knowledge gains
more importance in the model fitting, thus the error of the fleet knowledge has a more
evident impact.

The uncertainty reduction effect of an increasing fleet size has a negative consequence
under large fleet-target discrepancy (Fig. 5.12d): If altering the standard deviation of the
fleet knowledge for ¢; from 0.1 to 0, the U,. estimation error increases in the presence of
a fleet-target discrepancy. The reason is, referring to Fig. 5.5, as the uncertainty of fleet

knowledge reduces, the resulting posterior estimation tends to converge more closely with
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the prior fleet knowledge, thus diverging from the data of the target electrolyzer. However,
despite the potential error increase with a very large fleet, it is crucial to acknowledge
the substantial benefit of incorporating fleet knowledge (demonstrated in Fig. 5.11): The
inclusion of fleet knowledge can reduce the U, error by almost tenfold or more given
fleet-target discrepancies. In comparison, the potential error introduced by using a large

fleet remains acceptable.

5.3 METHOD EVALUATION WITH INDUSTRIAL DATA

Next, the proposed method is applied to real-world operation data from an industrial
fleet of electrolyzers. The data has been introduced in Section 3.2.1.1. The fleet comprises
12 electrolyzers, one of which is regarded as the target electrolyzer, while data from the
remaining 11 electrolyzers are used to form the fleet knowledge. The operation profiles
are not standardized but business-driven, including periods with limited data coverage.
For confidentiality reasons, all figures in this section do not show the voltage and current
values.

The proposed method is executed with the following settings, which are mostly the same
as in the evaluation with synthetic data (Section 5.2), except for the reference conditions.

e Model fitting interval: 1 day.

¢ Reference condition to calculate U,.: Three different reference conditions. One is the
nominal operating condition, and two are operation conditions that occur relatively
often with abundant data to facilitate model validation. For confidentiality reasons,
the exact conditions cannot be provided.

 Condition number threshold to identify unstable fitting results: 10° (determined
empirically by examining the distribution of the condition numbers from SLR model
fitting in Step 1).

o Parameters for GPR [116]: Kernel (a function that computes the similarity between
data points) is set as the widely used Radial basis function kernel [123]. Alpha (noise
of the data) is set as the standard error obtained from SLR in Step 1.

o Parameters for Bayesian linear regression: noise ¢ is set as the average RMSE from
SLR in Step 1.

Fig. 5.13 presents the calculated U, for the target electrolyzer under three different
reference conditions, alongside the measured raw data filtered at these conditions. It should
be noted that the raw data are only sporadically available (especially at the high current
level, i.e., reference condition 1) because the operating conditions are arbitrary and rarely
match the reference conditions. This is the motivation to derive the degradation indicator

Uy for continuous condition monitoring.
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Figure 5.13: Uy, calculated with the benchmark method (without fleet knowledge, left) and
with the proposed method (with fleet knowledge, right) under three reference
conditions. They are compared with the raw measured data filtered at these
conditions.

The accuracy of U, is quantified with the RMSE between the calculated U, and the raw
data, as described in Section 3.2.2.1. The comparison between the RMSE of the benchmark
method SLR without using fleet knowledge (Fig. 5.13, left) and the proposed fleet-based
method (Fig. 5.13, right) shows that incorporating fleet knowledge significantly improves
the Uy estimation accuracy. However, the RMSE at a high current level (reference condition
1) is much higher than the other two reference conditions. This is because the investigated
electrolyzer rarely operates at this current level. The lack of operation experience makes

the model less accurate in describing the voltage behavior in the high current region.

By calculating U,. at multiple current levels, polarization curves can be obtained (Fig.

5.14). The benchmark method without using fleet knowledge produces noisy curves. In
contrast, with the support of fleet knowledge, the proposed method yields stable model
parameters, leading to consistent polarization curves. This comparison further proves the
superiority of the proposed method.

The polarization curves obtained with the fleet-based method are further compared

with the raw measurement data, as described in Section 3.2.2.2. Fig. 5.15 shows that

five polarization curve tests have been performed with the target electrolyzer, where the

input current varies from the minimum operating current to beyond the nominal current.

The RMSE ranges from 1 mV to 12mV, which is a significant improvement over the first

proposed method (up to 54mV as shown in Fig. 4.13).
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Figure 5.14: Polarization curves obtained with the benchmark method (without fleet knowl-
edge, left) and with the proposed method (with fleet knowledge, right).
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Figure 5.15: Comparison of polarization curves modeled using the fleet-based method with
the measured data.
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The proposed method is also evaluated regarding the forecast capability of the fitted
voltage models and is compared with the benchmark method. RMSE is calculated as
described in Section 3.2.2.3. For both benchmark (Fig. 5.16, left) and the proposed fleet-
based method (Fig. 5.16, right), the forecast error increases as the forecast horizon extends
from 1 day to 7 days, due to the changing degradation state over time. The voltage models
fitted with the benchmark method produce errors of up to 10° mV, whereas with the
fleet-based method, the errors consistently remain below 100 mV, with the majority (75th
percentile, marked with the upper edge of the box) below 10 mV. The error reduction
effect of the fleet-based method is particularly pronounced for the outliers (dots beyond

the whiskers), showing the robustness of the algorithm.

Without fleet knowledge With fleet knowledge
5 o 4
10 b °
1 04_ 5 § |
9 8
S 10°1 8 8 1
£
% 10 3 8 3
=
ad 1
10 7 3
10" 1 3
10_1 T T T T T T
1 2 7 1 2 7

Forecast horizon [days] Forecast horizon [days]

Figure 5.16: Voltage forecast accuracy of the voltage models fitted with the benchmark
method (left) and the proposed fleet-based method (right).

5.4 LIMITATIONS

5.4.1 Similarity between the fleet and the target electrolyzer

The sensitivity analysis in Section 5.2.3 shows that larger fleet-target discrepancy causes
larger U, estimation error with the proposed method. To account for this, future research
could develop a metric for quantifying the degree of similarity between the fleet and the
target electrolyzer. This metric may include the similarity of both operational data [93]
and static metadata, such as manufacturing parameters. This similarity information can
then be incorporated into the Bayesian process. For example, if the target electrolyzer

has a large difference from the fleet, one can assign a higher uncertainty value to the fleet
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knowledge (i.e., the prior probability distribution), so the Bayesian process attributes more

weight to the data from the target electrolyzer.

5.4.2 Influence of operation modes

The fleet knowledge used in this study is constructed with Gaussian process regression
using calendar time as the independent variable. This implies that all electrolyzers in the
fleet degrade similarly relative to calendar time. However, degradation is also influenced by
operation modes. For example, studies have shown that dynamic operation with frequent
cycling [82] and high current density [124] might accelerate degradation. Therefore, future
research could consider including operation modes in the fleet knowledge construction

process, to broaden the applicability of the derived fleet knowledge.

5.4.3 Nonlinear voltage models

The voltage model used in this method (Eq. 5.3) has a linear structure, which is proven
to be effective with Fig. 5.3. However, due to the model’s empirical nature, it might be
invalid for other electrolyzers. In cases where the voltage model cannot be linearized, the
analytical solution for the posterior probability distribution (Eq. 5.14 and 5.15) based on
Bayesian linear regression does not apply anymore. Instead, Markov chain Monte Carlo
(MCMC) sampling can be deployed to derive a numerical approximation of the posterior

probability distribution of the model parameters [125].



6 Discussions on the methods

This section discusses additional aspects of the proposed methods, including the impact
of using different temperature sensors (Section 6.1), the impact of different lengths of
model fitting intervals (Section 6.2), other impact factors on voltage (Section 6.3), and the
transferrability of the method to other health indicators (Section 6.4).

6.1 IMPACT OF USING DIFFERENT TEMPERATURE DATA

The investigated industrial electrolyzers (Section 3.2.1.1) have multiple temperature sensors
for each stack: Hy-side inlet, Oq-side inlet, Ho-side outlet, and O,-side outlet. The average
temperature of these 4 sensors is regarded as the average stack temperature and is used
in the modeling process.

Fig. 6.1a illustrates the temperature data for three exemplary intervals, each featuring
a different operation scheme: constant, volatile, and staircase operation. The temperature
differences compared with the average temperature (baseline) are quantified in Fig. 6.1b:
The inlet temperatures are consistently lower than the average, by up to 0.8 °C, while the
outlet temperatures are the opposite.

The different temperature data are used in fitting the proposed voltage model Eq. 5.3 for
these three intervals, with the benchmark model fitting method SLR. The resulting fitting
errors RMSE are summarized in Fig. 6.1b. Overall, all errors are at a single-digit-mV level,
fulfilling the accuracy requirement defined in Section 3.2.1.1. Furthermore, the difference
in using different temperature data is marginal, indicating that the model fitting quality

is insensitive to the different temperature data.

6.2 IMPACT OF MODEL FITTING INTERVAL LENGTH

The proposed methods are applied to industrial data on a daily basis: A voltage model is
fitted for each day, thereby yielding a daily Us.. Setting the model fitting interval involves
a trade-off between the amount of data and the model accuracy. Choosing a longer interval
provides more data for model fitting, but also encompasses more degradation within the

interval, leading to an inaccurate SOH estimation.
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(a) Different temperature measurements for 3 exemplary periods with different operation schemes:

constant, volatile, and staircase operation. For confidentiality reasons, the y-scales are hidden.
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(b) Temperature differences and impact on model fitting errors.
Example interval 1 Example interval 2 Example interval 3
Temperature data used Temperature Temperature Temperature
in model fitting difference RMSE [mV] difference RMSE [mV] difference  RMSE [mV]
Average stack temperature Baseline 0.26 Baseline _ Baseline 1.09

H,-side inlet temperature  Baseline-0.0°C 027 Baseline-0.7°C 1.30 Baseline-0.8°C 1.06
O,-side inlet temperature  Baseline-0.2°C 0.29 Baseline-0.8°C 205 Baseline-0.7°C 0.99

H,-side outlet temperature  Baseline+0.1°C 0.24 Baseline+.7°C Baseline+{.7°C 1.25
0,-side outlet temperature  Baseline+0.1°C 0.24 Baseline+0.8°C Baseline+.8°C 126

Figure 6.1: Different temperature data and their impact on model fitting error RMSE.

Fig. 6.2a presents three exemplary 7-day intervals, each featuring a different operation
scheme: constant, volatile, and staircase & constant operation. For each interval, the pro-
posed voltage model Eq. 5.3 is fitted with 1, 2, or 7 days of data using the benchmark
method SLR. The modeled voltage is plotted in the last row of figures, aligning well with
the measured voltage. The model fitting errors are summarized in Fig. 6.2b. In all cases, the
RMSE is at a single-digit-mV level, fulfilling the accuracy requirement defined in Section
3.2.1.1. As the model fitting interval increases, two different effects can be observed: For
examples 1 and 2, the error increases, likely due to the degradation over a longer interval;
while for example 3, the error decreases, which can be attributed to the larger number of
data points used in the fitting process.

In practice, the modeling interval can be determined based on factors such as the degrada-
tion rate (a shorter interval for electrolyzers with a higher degradation rate), data coverage
(a shorter interval if there is abundant data with sufficient coverage), and business routines

(e.g., aligning with the frequency of scheduled condition monitoring activities).
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(a) 7-day intervals of 3 exemplary periods with different operation schemes: constant, volatile, and
staircase & constant operation. For confidentiality reasons, the y-scales are hidden.
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(b) Impact of model fitting interval on fitting errors.

Example interval 1 Example interval 2 Example interval 3
(Constant operation)  (Volatile operation)  (Staircase & constant operation)
Model fitting mterval RMSE [mV] RMSE [mV] RMSE [mV]

1 day 0.80 2.62
2 days 0.93 2.67
7 days 1.98

2.96

Figure 6.2: Different model fitting intervals and their impact on model fitting error RMSE.

6.3 OTHER IMPACT FACTORS ON VOLTAGE

The voltage models used in this research (Eq. 4.1 and 5.3) contain three variables that
influence the voltage: current density, temperature, and time since the last start. These
variables have been demonstrated to effectively capture the voltage behavior of the inves-
tigated electrolyzers (Section 3.2.1.1). Yet, for different electrolyzer designs, the impact

factors on the voltage behavior may extend beyond these three parameters.

For example, for electrolyzer systems with fluctuating pressures, the impact of pressure
should also be considered. [38] and [126] both show that higher pressure leads to higher
voltage. To capture this behavior, pressure should be added into the voltage mode, and a

reference condition regarding pressure needs to be defined to calculate Ul.

However, it should be noted that including more variables in the model will also in-
crease the difficulty of determining its coefficients. Overfitting and instability might occur.
Therefore, careful consideration must be given to the trade-off between model complexity

and its predictive accuracy, ensuring that the model remains both robust and practically
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applicable.

6.4 TRANSFERABILITY OF THE METHOD TO OTHER HEALTH

INDICATORS

The essence of the proposed methods is to correct the impact of operation mode on
degradation-related indicators. This research focuses on voltage because it is commonly
used, easy to measure, and has high economic relevance in the industry. Nevertheless, the
underlying principle of the proposed methods can be applied to other degradation-related
indicators that are impacted by operational modes.

For example, hydrogen permeation rate can be another use case. The crossover of hy-
drogen gas from the cathode to the anode through the membrane not only serves as an
indicator of membrane degradation, but also poses a safety concern due to the formation
of explosive gas mixtures [27]. Trinke et al. [127] reported that the hydrogen permeation
rate is linearly related to current density and increases with elevated temperatures. By em-
ploying the proposed methods, the influence of operational modes can be isolated, allowing
for the comparison of the permeation rate over time as a SOH indicator.

Similarly, the fluoride release rate, an indicator of the chemical degradation of the mem-
brane, is also impacted by operating conditions. As demonstrated in [87], the fluoride
release rate peaks at a moderate current density of approximately 0.4 A/cm?, decreases at
lower or higher current densities, and increases with rising temperatures. These impacts

can also be addressed with the proposed methods.



; Practical guide for fleet-based algorithm

development

Chapter 3 to 6 presented two fleet-based SOH quantification methods for PEM electrolyzers
developed in this research. This chapter distills the algorithm development process and pro-
vides a framework for industrial practitioners. First, core steps of fleet-base algorithms are
summarized (Section 7.1). Then, a step-by-step guide on developing fleet-based algorithms
is provided (Section 7.2). This chapter is based on the publication: Yan, X.=, Woelke, J.=,
Bensmann, B., Eckert, C., Hanke-Rauschenbach, R., Niefle, A.: Cross-method overview
of fleet-based machine health estimation and prediction: a practical guide for industrial
applications. IEEE Access 13, 60131-60147 (2025). doi:10.1109/access.2025.35656251 (=

equal contribution) [14].

7.1 CORE STEPS OF FLEET-BASED ALGORITHMS

Through reviewing various fleet-based algorithms (Section 2.4), three core steps shared
across these algorithms are identified: data selection, model development, and model ad-
justment (Table 7.1).

Data selection refers to selecting the most relevant machine or data segment as the basis
for model training to mitigate the potential negative impact of irrelevant data (also referred

to as negative transfer in the context of transfer learning [128]). It is included in the sufleet

Table 7.1: Core steps of fleet-based algorithms

Fleet Subfleet | Similarity- Transfer learning
modeling | modeling | based Parameter- | Feature- | Instance-
modeling | based based based /hybrid

Data. X X X
selection
Model X X X X X X
development
Model X X X
adjustment
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modeling, similarity-based modeling, and instance-based/hybrid transfer learning methods.
In subfleet modeling, data selection refers to identifying machines that belong to the same
subfleet (i.e., a subgroup of fleet units sharing some similarities). The most straightforward
approach is to leverage engineering knowledge. For example in [129], milling machines of
different materials (cast iron and steel) are separated and different SOH quantification
models are developed for each material type. To facilitate such engineering knowledge-based
selection more systematically, machines’ technical features and operational context can
be structured semantically into an ontology model [102]. When conducting any modeling
task, one can search for similar machines based on this ontology model. Besides using
engineering knowledge to identify subfleets, another approach is to measure statistical
similarities. For example, [105] uses the Euclidean distance of the degradation trajectories
to quantify the similarity between the target machines and other machines. If the distance
is lower than a predefined threshold, the units are regarded as similar, then their data
are pooled together to train a degradation forecast model. Such data selection methods
using statistical similarity measurements are widely employed in similarity-based modeling
and instance-based /hybrid transfer learning. The most commonly used metric to quantify
similarity is Euclidean distance, adopted in [76-81, 129-142]. Moreover, some existing
algorithms inherently contain a data selection process, such as TrAdaBoostR2 [143]. Tt
is an instance-based transfer learning algorithm for regression tasks, which dynamically

adjusts the weights of the training instances based on the prediction error [144].

Model development refers to establishing a model that maps input data with the desired
output. It is a necessary step in all algorithms. The most popular model architecture is a
neural network-based model, including long short-term memory (LSTM) network [93, 145—
159], convolutional neural network (CNN) [107,160-167], autoencoders (AE) [168-170], etc.
Other models that are not based on neural networks, can also be found in the literature,
including regularized linear regression [68, 73], Gaussian process regression [171], Gaussian
mixture model [172], random forest [173], kernel ridge regression [174], support vector
machine [170], etc. Some studies incorporate physical knowledge (i.e., empirical degradation
models) into the data-driven model, such as in [143,175].

Model adjustment is a transfer learning-specific step, which tailors a source model (mostly
neural network-based models) toward the target machine. This can be achieved by fine-
tuning the parameters of the source model: either parameters of all the neural network
layers [162, 163,168, 169] or parameters of the last layers [147-152,161]. Besides, model
adjustment can be done by aligning features between the source and target domain, through
adversarial training [153, 164, 165, 176], incorporating the feature difference into the loss
function [107,166,167,177,178], or transfer component analysis [170,174].
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7.2 FLEET-BASED ALGORITHM DEVELOPMENT PROCESS

The above-mentioned three core steps are the building blocks of developing fleet-based algo-
rithms for industrial applications. This section suggests a step-by-step guide for industrial
practitioners to integrate these steps, ensuring the developed algorithms are well-suited to
their specific requirements. The guide (Fig. 7.1) is developed with the following practical
considerations.

First, the guide starts with a simple method and gradually adds complexity as needed,
because simple methods tend to be more robust and understandable than complicated
alternatives [179], which is highly desired by industrial users.

Second, the development of algorithms is considered as an iterative process, not as a
one-off decision. Therefore, the guide offers the flexibility for the modeler to evaluate the
model, subsequently enrich it with additional components, or even refine their objectives
and restart the modeling process.

Third, it is assumed that a predefined requirement on the accuracy of the algorithm exists
based on the business need. For example, if a remaining useful life prediction algorithm is
developed for maintenance planning, and a typical time buffer for preparing a maintenance
activity is half a year (e.g., for gathering the required spare parts or arranging onsite
workers), then the required accuracy for the algorithm might be at month-level. In the
proposed guide, the question regarding the satisfaction of the model quality refers to the
predefined requirement.

The guide consists of questions (blue), branches of possible answers (red), and suggestions
(grey), leading practitioners through the hierarchically structured levels that are processed
one after the other.

Level 1: Scope of application The guide starts with the main question regarding the use
case (scope of application) of the model, because this significantly limits the suitable
methods. If a model for the whole fleet is required, one can directly proceed to
build a fleet model (branch 1.1). If a model for a subfleet (e.g., for a specific product
generation) is required, one can select the data from the desired subfleet and construct
a corresponding subfleet model (branch 1.2). In contrast, if a model for one specific
machine is of interest and the data of the target machine itself is insufficient to obtain
a satisfactory model, the next level can be entered to check the similarity of the target
machine compared to the rest of the fleet (branch 1.3).

Level 2: Similarity Depending on the similarity of the target machine to the rest of the
fleet, a decision is made as to whether and, if so, which data from the fleet should be
used to assist in the modeling of the target machine. If the target machine is similar

to the entire fleet, a fleet model can be built (branch 2.1). If it is only similar to a
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part of the fleet, similar machines can be selected in order to use their data to build a
corresponding subfleet model (branch 2.2). In cases where the similarity is unknown,
the next level can be entered to check the label availability (branch 2.3). However,
the use of fleet data is not recommended if it is known that the target machine is
not similar to the fleet (e.g., if the machine belongs to a new product generation) to
avoid a negative influence from the fleet (branch 2.4).

Level 3: Label availability This level checks whether the target machine has labeled data.
This determines whether training a supervised model and model quality quantification
are possible. Having at least partly labeled data from the target machine, one can start
with building a basic model (branch 3.1) and check the quality of this model using
the labeled data in the next level. Otherwise, if the available dataset is completely
unlabeled (branch 3.2), only transductive transfer learning is applicable [104]. Among
all transductive transfer learning techniques, feature-based transfer learning is the
most common [104]. Therefore, incorporating feature-based transfer learning into the
modeling process is recommended.

Level 4: Suggestion On this level, first-order suggestions are made based on the previous
answers. The suggestions have been justified above. For the modeling part, the full
potential of general data-driven techniques such as comprehensive feature engineering
and hyperparameter optimization should be fully explored, in order to elaborate the
additional benefit of using fleet knowledge.

Level 5: Evaluation and refinement As mentioned at the beginning of this section, the
method development is designed as an iterative process. Therefore, the first-order sug-
gestions are followed by an evaluation step, to check the need for further improvement
of the method. The resulting fitting quality (e.g., RMSE) should be compared against
the predefined business requirement. If the quality is satisfactory for the required
business use cases, no further improvement is needed (branch 5.1). If the quality is
unsatisfactory and the modeling scope is the (sub)fleet (branch 5.3), it is perhaps
not appropriate to build one overarching model for the (sub)fleet. Therefore, recon-
sidering the modeling scope is needed, e.g., by downscaling the modeling scope from
fleet to subfleet, from subfleet to a specific machine, or by regrouping the subfleets.
If the quality is unsatisfactory and the modeling scope is a target machine (branch
5.2), a model adjustment in the form of an additional transfer learning step can be
added to address slight fleet-target deviation. The primary recommended method
is parameter-based transfer learning as it is the most common inductive transfer
learning method [104]. If adding a model adjustment step still provides unsatisfac-
tory modeling quality, one can reconsider which data to use in the modeling process

(branch 5.2%), e.g., by enhancing exploratory data analysis to identify machines that
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share the most commonalities with the target machine. In case the quality deviates
far from the requirements, there is a high risk of negative transfer, i.e., using fleet
data might deteriorate the modeling quality. It is necessary to reconsider which data
should be used in the modeling process (branch 5.4), just as mentioned above.

All branches leading to the refinement of the selection and modeling steps (5.2%, 5.3,
and 5.4) are continuously evaluated for feasibility. This ensures that the refinement

process does not get trapped in an infinite loop.

7.3 EXAMPLE OF USING THE GUIDE

Now, the SOH quantification methods developed in this research will be used as examples

to navigate through the guide.

Level 1: Scope of application As PEM water electrolyzer is an emerging technology with
quick technology iterations, machine-specific models are desired to accomodate the
differences among the electrolyzers (Section 2.4). Therefore, branch 1.3 should be
followed.

Level 2: Similarity The 12 electrolyzers investigated in this research (Section 3.2.1) have
various designs, operating history, and degradation states, resulting in ambiguous
similarities. Additionally, to ensure that the developed methods are generally ap-
plicable, this research intentionally avoids making assumptions on the similarities.
Therefore, branch 2.3 is followed.

Level 3: Label availability Labels are available (e.g., the ground truth of U;., as shown in
Fig. 4.9 and 5.13). Therefore, branch 3.1 is followed.

Level 4: Suggestion Following branch 3.1, it is suggested to begin with constructing a
basic model. This corresponds to the benchmark method SLR (Section 3.2.3), which
fits the voltage models without any additional treatment.

Level 5: Evaluation and refinement As demonstrated in Sections 4.3 and 5.3, the bench-
mark method SLR yields inaccurate and unstable results, failing to fulfill the accuracy
target of a single-digit-mV error as defined in Section 3.2.2. Despite these shortcom-
ings, there are instances where the SLR results align well with the ground truth (e.g.,
when the data coverage is sufficient). This suggests that although SLR does not fully
meet the requirement, it retains some value. Therefore, branch 5.2 is followed and
model adjustment toward the target electrolyzer is conducted. Model adjustment is
conducted with either the transfer linear regression algorithm (Chapter 4) or the
Bayesian approach (Chapter 5). Both methods yield results fulfilling the accuracy

criteria and thus end at branch 5.1.



Conclusion

The global movement towards decarbonization is catalyzing an unprecedented surge in the
demand for green hydrogen, produced via water electrolysis. PEM water electrolysis is one
of the mature technologies. However, its market expansion is hindered by high costs and a
relatively short lifetime. Therefore, operators of PEM electrolyzers must closely monitor
their SOH to optimize the utilization. Quantifying the SOH of industrial electrolyzers faces
several challenges, such as limited testing opportunities and restricted data coverage. The
central goal of this research is to provide solutions to quantifying SOH for industrial PEM
water electrolyzers.

In this chapter, a brief recap of the research outcome is provided (Section 8.1), followed
by a reflection on the developed methods including their limitations (Section 8.2). Finally,

Section 8.3 closes this dissertation with an outlook on future research.

8.1 ANSWER TO THE RESEARCH QUESTION

The research question raised in Chapter 1 is:
How to quantify the state-of-health of industrial PEM water electrolyzers?

This question is answered from the following perspectives.

Suitable SOH indicators for industrial PEM water electrolyzers (Section 2.3). Voltage
under reference condition U, can be used as a SOH indicator for industrial PEM
water electrolyzers. U has the following advantages:

o It is based on voltage, which is an easily measurable quantity in industrial
environments and has direct economic relevance.

e It does not require a specific operation mode, but uses statistical methods
to correct the voltage measured under arbitrary operating conditions to the
reference condition.

e The above-mentioned statistical correction does not rely on any predefined

degradation model.
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Besides voltage, other SOH indicators found in the literature (such as foreign gas
concentration and fluoride release rate, Section 2.3.2) also have the potential to be ap-
plied to industrial electrolyzers. They provide additional insights into the degradation
mechanism. Nevertheless, for these indicators to be viable in industrial environments,
the measurement devices must further mature with lower costs, and the impact of op-
erating conditions needs to be corrected, e.g., with the help of the proposed methods

in this research.

Suitable fleet-based modeling methods (Section 2.4). The coverage of industrial oper-

ation data can be limited, which poses challenges in establishing voltage models.
Fleet data can be leveraged to tackle this problem. Six types of fleet-based mod-
eling approaches are identified in the literature: fleet modeling, subfleet modeling,
similarity-based modeling, parameter-based transfer learning, feature-based transfer
learning, and instance-based/hybrid transfer learning. However, none of these six
types fully fulfills the requirements of providing machine-specific models, having an
interpretable model structure, and offering the capability for quick updates. Therefore,

the following two methods are proposed to address the gap.

A method with transfer linear regression (Section 4). The transfer linear regression al-

gorithm is developed in this research. It builds upon the strengths of parameter-based
transfer learning, providing machine-specific models that can be quickly updated
through fine-tuning of model parameters. In addition, it features a linear model struc-
ture, which is easily interpretable and thus well-suited for industrial applications.
This algorithm is used to fit voltage models with operation data in a sequential man-
ner, then the fitted models are used to correct the measured voltage to the reference

condition, thereby yielding Uy..

A method with Bayesian inference (Section 5). The second proposed method for SOH

quantification leverages Bayesian inference and is characterized by the utilization of
an aggregated fleet knowledge — the degradation trajectories of multiple electrolyzers
are aggregated to a prior probability distribution. This prior probability distribution
is then used in Bayesian inference to derive the posterior probability distribution
of the parameters in the voltage model. With these inferred parameters, U, can be

calculated.

Customize the method based on the business need (Section 7). The proposed methods

are not the only solutions. Depending on the intended application scope (e.g., for the
entire electrolyzer fleet or for only one electrolyzer), the fleet characteristic (e.g., how
similar are the electrolyzers), the data situation (e.g., whether labels are available),
and the accuracy requirement, customizing the method is advisable to achieve a

suitable complexity and accuracy in the given context. This research suggests a gen-
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eral framework to guide industrial practitioners in developing fleet-based algorithms.
Through a cross-method literature review, three core steps can be identified: data
selection, model development, and model adjustment. In the proposed practical guide,
these steps are integrated in an iterative manner based on the business purpose and

accuracy requirement.

8.2 METHODS REFLECTION

This research develops two methods to quantify the SOH of industrial PEM water elec-
trolyzers. The highlights of these two methods are: (1) They have simple linear structures
that are easy to interpret. (2) The models are updated regularly over time to capture the
evolving degradation states of individual electrolyzers. (3) Fleet knowledge is incorporated
to assist the model fitting.

The first method is based on the transfer linear regression algorithm, which adjusts a pre-
existing fitted voltage model based on new data in a sequential manner. The voltage model
is an empirical model developed based on industrial data, which has a linear voltage-current
relationship. However, as more industrial data is collected, a new degradation behavior
is revealed: The linear voltage-current relationship no longer holds. Another drawback
of this method is the need to determine hyperparameters before model fitting. These
hyperparameters largely influence the fitted coefficients but their correctness is hard to
judge. This poses potential risks for modeling error. In addition, this method relies on the
last fitted voltage model. If the new data have a limited coverage, the model tends to stay
unchanged. All these limitations motivate a further improvement of the method, which
leads to the second proposed method.

The second method uses a revised voltage model, which captures the nonlinear voltage-
current relationship. The fleet knowledge is constructed by aggregating the model parame-
ters from multiple electrolyzers. The voltage model is fitted with Bayesian inference and
the fleet knowledge is incorporated as the prior probability distribution. In comparison
to the first method, this method is based on established algorithms that do not require
customized hyperparameters; and it does not rely on the last fitted model, but is supported
by the degradation trajectory of other electrolyzers. While the revised voltage model with
more unknown coefficients increases the model fitting difficulty, incorporating fleet knowl-
edge with Bayesian inference is proven to effectively capture the ground truth. Sensitivity
analyses show that this method is particularly helpful for small data coverage and small
fleet-target discrepancy.

The limitations of these two methods have been presented in Section 4.4 and 5.4. Besides

the method-specific limitations, there is one generic limitation to both methods: Although
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they facilitate the monitoring of the temporal evolution of the overall voltage, they do
not provide physical insights into the degradation mechanisms. While it may be tempting
to attach physical meanings to the model parameters, such as interpreting c¢; in Eq. 4.1
or Eq. 5.3 as the Ohmic resistance, it should be avoided. Due to the empirical nature
of these models, they are significantly simplified in comparison to physics-based voltage
models (Section 2.2.2.1), and their coefficients do not directly correspond to physical
parameters. Consequently, even when the proposed methods are employed to monitor
the SOH, opportunities to conduct experimental tests should still be seized, as they are

invaluable to obtain a deeper understanding of the degradation processes.

8.3 OuTLoOK

Based on the learnings from this research, an outlook on future research is suggested in
this section.

First, closely monitor the degradation behavior and refine the model accordingly. This
research (in particular Section 4.4) already demonstrates the necessity of closely tracking the
suitability of the voltage model with long-term operation data. As PEM water electrolyzer
just recently gained industrial interest, the long-term behavior is not yet well known and
is likely design-specific. Therefore, there is no one-size-fits-all solution. Researchers and
industrial practitioners must keep learning from the data, to ensure the model’s suitability
over time.

Second, consider other degradation indicators beyond voltage. As mentioned in Section
2.1, the degradation of PEM water electrolyzers can be observed on a macroscopic level
through the increase of voltage, decrease of gas quality, and increase of fluoride release.
Considering multiple degradation indicators offers a more comprehensive view of the
degradation state. While the proposed methods in this research are applied to quantify
the voltage degradation, their fundamental principle — correcting the impact of operating
conditions — can be adapted to other degradation indicators (Section 6.4).

Finally, identify degradation contributors with a large amount of industrial data. One
research direction is to investigate the temporal evolution of the SOH, to identify op-
erational factors related to degradation. The methods proposed in this research enable
tracking the SOH of industrial electrolyzers, which lays a foundation for analyzing long-
term degradation patterns and revealing the operational stressors in real-world industrial
settings. Another research direction is to explore differences among electrolyzers. Owing to
the advancement in data acquisition and management technologies, the industry can now
systematically collect lifecycle data of electrolyzers, from procurement to manufacturing

and beyond. With this data asset, one can, for example, correlate the degradation behavior
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with the manufacturing parameters (such as the pressure for the press belt and the speed
for direct coating [180]), which can be a basis for improving the manufacturing process to

increase the lifespan of PEM water electrolyzers.






A Appendix

A.1 DERIVATION OF EQUATION 4.15

The minimization in Eq. 4.14 can be computed by setting the partial derivative of the loss

function with respect to ¥ to zero:

oY = X(B+ N2+ MIXrV|*)

oy =0

The loss function can be written as

1Y = X (B 4+ + Al Xr7|?

=Y = XB+MIEY - XB+7) + M XN T (X77)
—YTY =208+ XTY + (B+1)TXTX(B+7)

+ M XE X7

Its derivative with respect to 7 is

Y — X(B+)” + AN Xr7?)
oY
= 2XTY + 2XTX (B +7) + 22 X7 X77.

Setting it to zero yields

—2XTY +2XTX(B+7) + 20 X7 X7 =0
—XTY + XTXB+ (XTX + \XEX7)v =0
Y= (XTX + AXF X7) ' XT (Y - Xp)

This is Eq. 4.15 in the main text.
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