
Predicting Power and Timing of
Large-Scale Distributed Applications on

Highly Heterogeneous Platforms

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften der Carl von

Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

angenommene Dissertation

von Herrn Jörg Walter

geboren am 15. März 1977 in Kiel

Gutachter:
Prof. Dr.-Ing. Wolfgang Nebel

Weiterer Gutachter:
Prof. Dr.-Ing. Axel Hahn

Tag der Disputation:
10. Dezember 2020

Zusammenfassung

Im Bereich des Hoch- und Höchstleistungsrechnens oder auch High Performance Compu-
tings (HPC) werden hochgradig parallele Anwendungen auf verteilten Systemen mit hun-
derten von Rechenknoten ausgeführt. Durch die Dimensionen von Plattformen und Pro-
grammen sind Vorhersagen über Laufzeit und Energiebedarf dieser Programme schwierig.
Diese Schwierigkeiten werden noch verstärkt, wenn Entwickler ihre Anwendungen opti-
mieren wollen, ohne dazu Messungen durch instrumentierte Probeläufe auf der Zielplatt-
form zu machen. Zudem behandeln die meisten Vorhersagemethoden nur den Zeitaspekt,
da bis vor kurzem der Energiebedarf für die meisten HPC-Entwickler keine Bedeutung hat-
te. Zwei unabhängige Entwicklungen haben diese Situation verändert: Zum einen werden
auch bei eingebetteten Systemen immer öfter Cluster-Architekturen eingesetzt, und zuman-
deren wird im HPC-Bereich inzwischen mit einer Überprovisionierung von Rechenknoten
gearbeitet, wodurch ein direkter Einfluss von Energiebedarf auf die verfügbare Rechenleis-
tung entsteht.
Ich stelle in dieserArbeit einen neuenAnsatz vor, der mit einer Simulationstechnik arbei-

tet, wie er im Bereich der eingebetteten Systeme verbreitet ist. Will man eine solche Technik
auf die Größenordnung vonHPC-Systemen anwenden, kann jedoch die eigentlicheAnwen-
dungsfunktionalität nichtmehr ausgeführtwerden. Stattdessen benutzt die vorgestellteMe-
thodik eine abstrakte Simulation auf Basis von Task-Graphen, wie sie im HPC-Bereich be-
liebt sind, und die Gemeinsamkeiten mit synchronen Datenflussgraphen aus dem Bereich
der eingebetteten Systeme haben.
Vorhersagen zu Rechenoperationen werden über eine messbasierte Charakterisierungs-

prozedur realisiert. Anders als existierende Trace-basierte Ansätze benötigt diese Prozedur
jedoch keinAusführen der gesamtenApplikation auf der gesamten Zielplattform. Es reicht
ein einzelner instrumentierter Rechenknoten aus, um die notwendigen Eingabeparameter
für die abstrakte Simulation zu generieren. In dieserArbeit stelle ich auch eine beispielhafte
Plattform vor, die zeigt, welche Messdatenerfassung und welche Hardwareeigenschaften
die vorgestellte Vorhersagemethodik benötigt.
WährendRechenoperationen abstrakt gehandhabtwerden, behandelt die SimulationKom-

munikationsvorgänge mit deutlich höherem Detailgrad, da dies mehr Einfluss auf die Ge-
nauigkeit der Vorhersagen hat. Das Ergebnis ist eine Vorhersagemethode für Zeit und Ener-
gie, die schnell genug für interaktives Feedback bei der Anwendungsentwicklung ist, und
die dabei ein hinreichendes Maß an Genauigkeit hat. Dadurch eignet sie sich außerdem für
automatisierte Exploration von Entwurfsmöglichkeiten hinsichtlichAlgorithmen, Paralleli-
sierungsgrad, oder Task-Granularität.
Ich habe die Arbeit mit Hilfe von direkten physikalischen Messungen evaluiert, anstatt

mich nur auf detailliertere Referenzmodelle oder indirekte Messungen wie z.B. Energiemo-
delle auf Basis von CPU-Ereigniszählern zu verlassen. Dadurch sind unerwartete Effekte
sichtbar geworden, die erheblichen Einfluss auf das Systemverhalten haben können. Ins-
gesamt betrachtet konnten die Zeitvorhersagen eine gute Genauigkeit erreichen, die mit
etablierten Verfahren vergleichbar ist. Die Evaluation der Energievorhersagen zeigte weni-
ger eindeutige Ergebnisse: Vorhersagen haben ein klares Potential für hinreichende Genau-
igkeit, aber sie wurden von externen Einflüssen (insbesondere Herstellungsqualität und
Umgebungsbedingungen) beeinträchtigt, die im Rahmen dieser Arbeit nicht vollständig
kompensiert werden konnten.

3

4

Abstract

Applications in the high-performance computing (HPC) domain are often designed
to run on cluster-like distributed platforms with hundreds of nodes. Due to the size
of both – applications and platforms – predictions of application run time and energy
usage is challenging. Difficulties increase when developers want to guide application
design without profiling on a massively parallel platform. Furthermore, most HPC
prediction methodologies only address timing, because energy predictions used to have
little relevance for HPC application design. Two different developments changed this:
Cluster architectures are becoming popular in the embedded domain, and hardware
overprovisioning in recent HPC systems creates a direct influence of energy usage on
application performance.
I propose a new approach to this challenge based on a simulation technique well

known in the embedded computing domain. In order to apply such a methodology
at HPC scale, I cannot execute actual applications during simulation. I use abstract
simulation based on the Task Graph model of computation, which is popular in HPC
and which has properties similar to the synchronous dataflow model that is popular in
the embedded domain.
For computation predictions, the methodology uses a measurement-based character-

isation procedure. Unlike trace-based HPC prediction methodologies, this procedure
does not require a full application execution over the entire target platform. Instead, a
single instrumented cluster node is sufficient to create input parameters for the abstract
simulation. I present an exemplary embedded cluster that demonstrates the measure-
ment instrumentation and hardware properties required by the proposed methodology.
While the simulation handles execution in an abstract way, it keeps a high level of

detail for communication, since this has much bigger impact on overall accuracy. The
end result is a time and energy prediction methodology that is fast enough for interactive
feedback in the application design workflow while still maintaining a useful level of
accuracy. It also allows designers to employ automatic design space exploration across a
wide range of high-level design choices like choice of algorithms, degree of parallelism,
or task granularity.
I have performed the evaluation of the proposed methodology against direct physical

measurements, and not against more detailed referencemodels or indirect measurements
like CPU performance counter based energy models. This has uncovered unexpected
practical issues that can have significant impact on system behaviour. Overall, timing
predictions can reach a high degree of accuracy, fully on par with established HPC
predictionmethodologies. The evaluation of energy predictions is less conclusive: results
clearly show a potential for useful accuracy, but they have a higher dependency on
external factors like hardware build quality and environmental conditions than could be
controlled for in this thesis.

5

6

Publications

Some ideas and figures have appeared previously in the following publications:

[1] J. Walter, R. Görgen, and W. Nebel, “Predicting performance and energy efficiency
for large-scale parallel applications on highly heterogeneous platforms,” in 19th
GI/ITG/GMMWorkshop Methoden und Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen, MBMV 2016, Freiburg im Breisgau, Germany,
March 1-2, 2016., 2016, pp. 116–127.

[2] J. Walter and W. Nebel, “Energy-Aware Mapping and Scheduling of Large-Scale
Macro Data-FlowApplications,” in 1st International Workshop on Investigating Data-
flow in Embedded Computing Architecture, 2015. 9.6.2

[3] P. Knocke, R. Görgen, J. Walter, D. Helms, and W. Nebel, “Using early power and
timing estimations of massively heterogeneous computation platforms to create
optimized HPC applications,” in Proceedings of the 12th IEEE International Conference
on Embedded and Ubiquitous Computing, 2014.

[4] J. Walter, M. Fakih, and K. Grüttner, “Hardware–Based Real–Time Simulation on
the Raspberry Pi,” in 2nd Workshop on High-performance and Real-time Embedded
Systems (HiRES 2014), Jan. 2014. 10.1.4.1

7

8

Contents

I. Introduction 15

1. Context and Motivation 17

2. Scope of Contribution 19
2.1. Research Questions . 19

3. Outline 23

II. Fundamentals 25

4. Timing and Energy Prediction for HPC Applications 27
4.1. Hardware Aspects . 27

4.1.1. Speed Variation and Synchronisation 27
4.1.2. Current and Future Hardware Architectures 28
4.1.3. HPC Cluster Scale . 28
4.1.4. Energy Considerations . 29
4.1.5. Heat . 30

4.1.5.1. Thermal Management . 30
4.1.5.2. Observable Effects . 31
4.1.5.3. Modelling . 31

4.1.6. CPU-specific Performance Optimisation 31
4.2. Software Aspects . 33

4.2.1. HPC Problem Classes . 33
4.2.2. Parallelism and its Limitations . 34
4.2.3. Application Patterns . 35

4.2.3.1. Structural Patterns . 35
4.2.3.2. Parallel Algorithm Strategy Patterns 36

4.2.4. Scheduling . 36
4.2.4.1. Dynamic Scheduling . 37
4.2.4.2. Static Scheduling . 37
4.2.4.3. Rescheduling . 37

4.2.5. Resource Modelling . 38
4.2.6. Auxiliary Aspects . 39

4.2.6.1. Data Representation . 39

9

Contents

4.2.6.2. Data Distribution . 39

4.2.6.3. Fault Tolerance . 40

4.3. Parallelisation Tools . 40

4.3.1. Local Parallelism . 40

4.3.2. Communication Middleware . 41

4.3.3. Deployment . 42

4.4. Common Benchmarks . 42

4.5. Common Prediction Approaches . 44

4.5.1. Analytical Models . 44

4.5.2. Simulation . 45

4.5.3. Symbolic Simulation . 45

4.5.4. Trace-Based Simulation . 46

5. Time and Energy Measurement 47
5.1. Data Collection . 47

5.2. Time Measurement . 48

5.2.1. Eligible Effects . 48

5.2.2. Measurement Techniques . 48

5.2.2.1. Internal Measurement . 48

5.2.2.2. Comparability . 48

5.2.2.3. External Measurement 49

5.3. Energy Measurement . 49

5.3.1. Eligible Effects . 49

5.3.2. Measurement . 50

5.3.2.1. Microarchitectural Power Estimation 51

5.3.2.2. Power Management Circuits 51

5.3.2.3. Dedicated Measurement Circuits 52

5.3.2.4. External Measurement 52

5.3.2.5. Parallel Measurement . 53

6. Modelling and Simulating with SystemC 55
6.1. Components of SystemC Models . 55

6.2. Discrete-Event Simulation . 56

6.3. System Level Modelling . 57

6.3.1. Computation . 58

6.3.2. Communication . 59

6.4. Time and Energy Traces . 59

7. Thesis Contributions 61
7.1. Contributions . 61

7.2. Assumptions . 63

10

Contents

8. Related Work 67
8.1. Time and Energy Prediction . 67

8.1.1. Execution-Driven Simulation . 67
8.1.2. Trace-Based Simulation . 68
8.1.3. Abstract Simulation . 69
8.1.4. Analytical Modelling . 69

8.2. Measurement Platforms . 70

III. Models and Methodology 71

9. Power and Timing Prediction Methodology 73
9.1. Overall Design Flow . 73
9.2. Abstract Application Model . 76

9.2.1. Task Graph . 76
9.2.2. Application Semantics . 79
9.2.3. Modelling Process . 80
9.2.4. Discussion of Design Decisions . 81

9.3. Execution Runtime Model . 82
9.3.1. Initialisation . 83
9.3.2. Main Loop . 84
9.3.3. Communication Scheduler . 84
9.3.4. Hardware Abstraction Layer . 85
9.3.5. Overall Design Decision . 86

9.4. Abstract Platform Model . 86
9.4.1. Platform Model . 86

9.4.1.1. Platform Hierarchy Graph 86
9.4.1.2. Platform Communication Graph 87
9.4.1.3. Platform Graph . 88

9.4.2. Platform Resource Model . 89
9.4.3. Discussion of Design Decisions . 89

9.5. Computation Resource Model . 92
9.5.1. Abstract Resource Model . 93
9.5.2. Model Building . 94
9.5.3. Discussion of Design Decisions . 94

9.6. Mapping . 95
9.6.1. Representation . 95
9.6.2. Automatic Mapping . 95

9.7. Simulation Model . 96
9.7.1. SystemC Object Hierarchy . 96
9.7.2. Power Models . 98
9.7.3. Computation Modelling . 98
9.7.4. Communication Modelling . 100

9.7.4.1. Basic Operation . 100

11

Contents

9.7.4.2. Routing . 102

9.7.5. Resulting Prediction . 102

9.8. Physical Execution . 103

9.8.1. Deployment . 103

9.8.2. Initialisation . 104

9.8.3. Execution . 104

9.8.3.1. Node-Local Time . 105

9.8.3.2. Time Synchronisation . 105

9.8.4. Communication . 106

9.8.4.1. TCP Backend . 106

9.8.4.2. Eth Backend . 106

10.Measurement Platform 111
10.1. Power Distribution and Measurement . 111

10.1.1. Power Distribution . 111

10.1.2. Analogue Front-End . 112

10.1.3. Signal Acquisition . 115

10.1.3.1. Multiplexer . 115

10.1.3.2. Analog-to-Digital Converter 115

10.1.3.3. Data Transfer . 117

10.1.4. Signal Processing and Transmission 117

10.1.4.1. Data Reduction . 119

10.1.4.2. Transmission . 119

10.1.4.3. System Control . 119

10.2. Embedded Cluster Platform . 119

10.2.1. Cluster Management . 122

10.3. Measurement Process . 122

10.3.1. Energy . 122

10.3.2. Time . 122

10.3.3. Time Correlation . 123

10.3.4. Kernel Characterisation . 124

10.3.4.1. Energy Markers . 125

10.3.4.2. External Time Measurement 126

10.3.4.3. Secondary Time Model 126

10.4. Platform Characterisation . 126

10.4.1. Sustainable Clock Frequency . 127

10.4.2. Platform Power . 127

10.4.3. Communication Timing . 128

10.4.3.1. Cutoff Metric . 128

10.4.3.2. Model Parameters . 129

10.4.3.3. Benchmark Suite . 129

10.4.4. Communication Power . 130

12

Contents

IV. Evaluation 131

11.Evaluation Goals 133
11.1. Overall Methodology . 133

11.1.1. End User Requirements . 133

11.1.2. Evaluation Criteria . 133

11.1.2.1. Time . 133

11.1.2.2. Energy . 134

11.1.2.3. Performance . 134

11.2. Measurement Accuracy . 135

11.2.1. Time . 135

11.2.2. Energy . 136

11.3. Evaluation Platform . 136

11.3.1. Platform Characterisation . 137

11.3.2. Power Variation and Heat . 137

11.4. Individual Design Decisions . 137

12.Evaluation of Measurement Accuracy 139
12.1. Setup . 139

12.1.1. DC Accuracy . 139

12.1.2. Channel Independence . 141

12.1.3. Frequency Response . 141

12.1.4. Time Measurement . 141

12.2. Results . 142

12.2.1. DC Accuracy . 142

12.2.2. Channel Independence . 145

12.2.3. Frequency Response . 145

12.2.4. Time Measurement . 147

12.3. Discussion . 150

12.3.1. Energy . 150

12.3.2. Timing . 151

12.3.3. Summary . 152

13.Characterisation of the Evaluation Platform 153
13.1. Setup . 153

13.1.1. Platform Model . 153

13.1.2. Platform Characterisation . 153

13.2. Results . 154

13.2.1. Clock Speed . 154

13.2.2. Platform Power . 155

13.2.3. Communication Timing . 155

13.2.4. Communication Power . 159

13.3. Discussion . 159

13.3.1. Sustainable Clock Speed . 159

13

Contents

13.3.2. Platform Power . 162
13.3.3. Communication Timing . 163
13.3.4. Communication Power . 163
13.3.5. Summary . 164

14.Evaluation of the Overall Methodology 165
14.1. Setup . 165

14.1.1. Overview . 165
14.1.2. Measurement Details . 165
14.1.3. Cholesky Matrix Subdivision . 166
14.1.4. Computation Resource Model . 167
14.1.5. Application Benchmark . 167

14.2. Results and Discussion . 168
14.2.1. Computation Resource Model . 168
14.2.2. Application Benchmark . 171

14.2.2.1. Time Predictions . 173
14.2.2.2. Simulation Speed . 173
14.2.2.3. Energy Predictions . 175

14.3. Summary . 177

15.Evaluation of Individual Design Decisions 181
15.1. Fixed Clock Frequencies . 181
15.2. External Time Measurement . 182

15.2.1. Reproduction of Inconsistent Behaviour 182
15.2.2. Results . 182
15.2.3. Discussion . 185

15.3. Custom Network Protocol . 185
15.4. Custom Runtime System . 187

15.4.1. Discussion . 187

V. Conclusion 189

VI. Appendix 195

References 197

List of Figures 203

List of Tables 205

Listings 207

Nomenclature 209

14

Part I.

Introduction

15

1. Context and Motivation

In the high-performance computing (HPC) world, platforms have become much more
complex over time. Ever since the first Cray supercomputer, a core principle of HPC
systems was parallelisation. There is cluster-level parallelism where multiple distinct
machines collaborate through explicit communication, and local parallelism where
multiple processors within one machine collaborate through shared memory.

The logical continuation of this principle led to clusters of HPC servers, each equipped
with multiple processors, each of which as multiple CPU cores. In these clusters, every
computation resource (i. e. CPU core) is the same – this is the age of homogeneous
supercomputing, which has become rare in the HPC field.

A real change came about when graphics processing units (GPUs) evolved from
fixed geometry manipulation circuits to highly parallel single-instruction-multiple-data
(SIMD) processors. CPUs had SIMD capabilities as well, but GPUs exceeded the parallel-
ism of CPUs by an order of magnitude or two. People started to use them for scientific
computing tasks, and GPUs optimised for this use case are called general purpose GPUs
(GPGPUs).

Thus was the concept of heterogeneous supercomputing born. The Top 500 list of
the fastest computers on earth is dominated by such machines that consist of clusters of
machines, each with multiple multi-core CPUs and multiple GPGPUs.

In order to increase the performance for certainworkloads, companies invented various
even more unconventional computation resources. Manycore processors like the Intel
Xeon Phi or the Adapteva Epiphany tried to bridge the gap between highly parallel but
inflexible GPGPUs and versatile but less parallel CPUs. These had impressive capabilities
in theory, but were difficult to program, which led to their ultimate demise.

Field-programmable gate arrays (FPGAs) are another unconventional computation
resource – programmable logic circuits. Hardware programming has always been
challenging to normal software developers. Vendors tried to offer high level synthesis
(HLS), i. e. the translation of imperative program code into a hardware description; for
many years, this generated inefficient hardware designs. Over time the situation has
improved: HLS is now capable of delivering competitive designs, but programmers still
need high familiarity with the strengths and weaknesses of programmable logic.

The most important development towards accessibility of FPGAs to normal program-
mers was the combination of traditional CPU cores and FPGA fabric on a single chip.
This made it easy to accelerate those parts of a program that would profit the most, while
everything else could be written in a traditional programming language. Essentially,
people now use FPGAs as add-on accelerators like GPGPUs. As an example for their
success, big cloud providers now offer all three types of computation resources (CPUs,
GPGPUs, FPGAs) for rent.

17

1. Context and Motivation

What keeps FPGAs from becoming a mainstream accessory is complexity: HPC pro-
grammers have adapted to CPU+GPGPU programming, but they already need two
fundamentally different mental models for them. Even assuming that HLS works per-
fectly, a third type of computation element massively increases the amount of possible
hardware setups and parallelisation strategies. HPC needs new ways to manage com-
plexity. How do you optimise programs for such systems? How do you design efficient
hardware platforms?
Another emerging challenge is energy usage of HPC systems. The ‘Green 500’ list is

a companion to the Top 500 list of supercomputers that lists the most energy-efficient
machines on earth. Yet users of shared HPC systems have no energy constraints whatso-
ever. They apply for computation time, get assigned a time slot, and can do whatever
they want during that time. All this despite the fact that power supply leads to many
follow-up costs: there is the cost of energy itself, there is the cost of cooling systems, and
finally there is the cost of power distribution, which is massively overprovisioned in
order to cope with the worst case, even though that is so rare that it may never occur
during the lifetime of the cluster.
On the other hand, there are no establishedmethodologies for programmers to consider

energy usage of their programs. They want to optimise their programs before running
them on the HPC system, but how do you find out if your program will stay within a
desired energy limit?
Meanwhile, a research field on the opposite end of the ‘hardware size’ scale answers all

these questions on a daily basis: Embedded system design, more specifically electronic
system-level design, deals with exactly these questions: Given an abstract description
of some functionality and constraints on timing and energy usage of that functionality,
how do you build a system that performs this functionality within those constraints?
How do you optimise such a system to minimise some arbitrary cost function? How do
you decide which parts to implement in hardware or in software? What computation
resources do you need? How do they communicate?

18

2. Scope of Contribution

In this thesis, I try to answer the emerging questions from the HPC field with lessons
learned while answering the same questions in the embedded field. I propose a method-
ology that allows users to model software applications and hardware systems, to map
applications to systems, and to get a prediction for time and energy of the resulting
execution. The massive difference in system and application size requires trade-offs that
would be unforgivable in embedded systems, but are inevitable for HPC applications.

One scenario I had in mind while developing the methodology is the process of design
space exploration (DSE). In embedded system design, it is an established way to explore
many different system configurations in order to find the set of Pareto-efficient solutions.

Thus my secondary goal is that the proposed prediction methodology is fast enough
so that users can perform semi-automatic DSE over many design choices: Choice of
fundamental algorithms, granularity of parallelisation, or usage of and mapping to
computation resources. Commercial HPC users might want use predictions to design a
hardware platform that is cost-optimised for a specific, known set of applications.

I consider this thesis a first step: It does not yet handle the full heterogeneity described
above, but the methodology I present is intentionally generic and extensible so that
future work can expand on it.

2.1. Research Questions

The resulting research questions I want to answer are these:

Research Question 1. How can programmers of HPC applications manage the complex design
space of different algorithms, possible target platforms, and mappings of their applications onto a
platform?

This an overarching question which the following questions derive from. It addresses
the increased complexity of the modern HPC landscape. A systematic methodology is a
common strategy for complexity management. For embedded systems, model-based
design methodologies are well established. High performance computing does not yet
have as much acceptance for more formal ways of designing applications.

Research Question 2. How can programmers model applications so that their fundamental
structure becomes more accessible to automated tools and formal methodologies?

When trying to formalise a design methodology, especially when introducing auto-
mated processing steps, the source application shouldmake it easy to extract the required

19

2. Scope of Contribution

information. Just like assembler code is difficult to translate into a high-level program-
ming language, arbitrary C++ code does not readily showopportunities for parallelisation
or optimisation.

Research Question 3. How can programmers model the platform they are targeting in an
abstract way?

For the same reason, such a designmethodology also needs information about available
computation or communication resources and key properties like computation speed or
communication bandwidth.
On the other hand, many hardware details are not accessible to users of the hardware.

Therefore it would be pointless to model every microarchitectural detail of a system.
The model must support a granularity that matches observable metrics.
As a bonus, having an abstract model also enables users to model hypothetical plat-

forms and explore the impact of a different target system.

Research Question 4. How should an application behave when executed on the modelled
hardware?

Having an application model does not mean that its execution behaviour is fully
specified. Programmers probably don’t want to create a full semantic specification for
themselves; it is sufficient that the methodology includes a specific runtime behaviour
that is reasonably efficient.
This execution model is also required for the following group of questions, because

predictions can only work if execution behaviour is sufficiently specified.

Research Question 5. How can programmers of HPC applications optimise them without
running them on the intended target platform?

This is the second fundamental question that guides more detailed research questions.
It is based on the observation that HPC platforms are often not accessible to programmers
while they create the bulk of their applications. In the embedded field, hardware/software
co-design poses a similar challenge: How do you test software written for hardware that
does not yet exist? A common answer is ‘simulation’, and this thesis expands on this
insight.

Research Question 6. How can a simulation predict timing and energy of an application
running on a target platform without executing functional behaviour?

This is the key challenge when trying to simulate HPC applications on a typical
development system: how to get it fast. The faster predictions can be generated, the
better will the methodology be accepted by programmers for daily use. Indirectly
this also addresses the question of making simulation fast enough for design space
exploration.
Executing real HPC code on a developer workstation would already be much too slow

outside of a simulator. If no functional behaviour can be executed, then the simulation
needs a different way to determine time and energy; this question asks for some other
resource usage model.

20

2.1. Research Questions

Research Question 7. How can programmers create an abstract resource model when they
don’t have access to the target platform?

This assumes that programmers cannot simply go to the target machine, hook up a
multimeter, execute their program, and measure energy. The resource model should be
designed in a way that developers can create missing parts of the resource model using
tools that fit on their desks and in their budgets.

Research Question 8. How do you measure energy and timing for the abstract resource model
properly?

Going further into details, it is surprisingly complex to acquire good measurement
data. This is not about the general question of how tomeasure correctly, which should be
part of basic technical education. This is about the question which aspects are important
for the proposed methodology. Ideally, a recommended best practice shows a systematic
way of performing relevant measurements.

21

2. Scope of Contribution

22

3. Outline

This thesis is structured in five parts.

Part I - Introduction gives a general overview of the topic of this thesis. It concludes
with this outline.

Part II - Fundamentals contains five subsections covering relevant topics from the
technological environment this thesis is based on.
Section 4 covers topics that relate to HPC hard- and software, execution behaviour,

and existing time prediction approaches; it also covers energy, but there is little work
that specifically relates to HPC applications – this is a very recent field of research.
Instead, this is covered more generically in Section 5, which addresses the practical

side of measurement of time and energy of hardware that is running applications.
After that, Section 6 deals with the simulation side of things, specifically SystemC as a

discrete-event simulation framework.
After all related technologies have been presented, Section 7 states the specific contri-

butions that this thesis makes; The part concludes with an overview of related work in
Section 8.

Part III - Models and Methodology introduces the overall methodology. Section 9
presents the proposed overall design flow and all of its components, many directly
addressing the research questions.
Section 10 then presents the evaluation platform I have built for this thesis. While

part of the platform only exists for evaluation of the proposed methodology, the actual
measurement infrastructure is a more generic proposal for creation of the resource model.
Furthermore, the section also proposes a systematic approach to create a specific model
and to check platforms for some effects that would impair usage with the proposed
methodology.

Part IV - Evaluation then presents the evaluation process and its results. In Section 11,
I present four evaluation goals, give an overview of each and derive detailed evaluation
criteria. I then describe the evaluation process for each of the goals in Section 12 through
Section 15, where Section 14 evaluates the main contributions.

Part V - Conclusion sums up the results of this thesis and presents promising exten-
sions for future work.

23

3. Outline

24

Part II.

Fundamentals

25

4. Timing and Energy Prediction for HPC
Applications

In the field of high performance computing (HPC), applications and platforms are much
larger than in virtually any other computing domain. This poses unique challenges for
attempts to predict execution times of programs.

Most importantly, the platforms being predicted are orders of magnitude bigger than
the platforms used for development. Moreover, they often use specialised hardware and
specialised application modelling approaches. The latter two properties also apply to
embedded systems engineering, which is why the methodology proposed in this thesis
actually has its roots in the embedded domain.

4.1. Hardware Aspects

Apart from the size, HPC hardware has another significant difference to embedded
systems: Embedded systems usually run tightly synchronised, up to the point that
different compute resources run off a single master clock signal. In contrast, HPC
systems are built as an asynchronous cluster architecture.

A typical HPC cluster – as assumed for this thesis – consists of multiple compute nodes.
A compute node is a computer that has one or more performance-optimised multi-core
CPUs and possibly specialised compute accelerators. It is equipped with main memory
(RAM) that is directly accessible to all compute resources in that node. That memory
might have different timing characteristics depending on which computing resource
wants to access which address (nonuniform memory architecture, NUMA).

Nodes are connected through a high-bandwidth networking technology, often Ether-
net or InfiniBand, and the topology of this network need not be a simple star topology,
e. g. it might be hierarchically structured.

Due to the distributed nature, and due to the size of applications and data sets, inter-
node communication is a critical resource. Foreign traffic can have significant impact
on application performance, so the cluster network is mostly isolated from the outside
world, often only offering a single gateway node that manages application and data
deployment.

4.1.1. Speed Variation and Synchronisation

With regard to this thesis, the most important implication of this architecture is the fact
that different parts of the system run completely asynchronously. Clock speeds vary

27

4. Timing and Energy Prediction for HPC Applications

due to manufacturing variations. Their speed even changes over time due to thermal
effects. And nodes usually do not know their exact speed in relation to other nodes.

The employed networking technology does not offer a real-time mode of operation1;
it works asynchronously, usually employing a store-and-forward approach for routing
network packages.

Thus, time based synchronisation only works in the millisecond range, e. g. through
the Network Time Protocol (NTP) [39]. Event based synchronisation needs to happen
on higher levels of the communication protocol stack.

The net result is that events happening on different nodes cannot easily be synchron-
ised, and event sequences from different nodes are difficult to relate to each other. It
also means that applications that need frequent global synchronisation pay a significant
performance overhead, which has implications for the suitability of different models of
computation.

4.1.2. Current and Future Hardware Architectures

Current HPC systems have a slight degree of heterogeneity. Nodes tend to be identical.
They usually consist of one or more high performance x86 CPUs and one or more general
purpose GPUs (GPGPUs) as accelerators.

Some problems benefit from a higher count of slower CPU cores. For these applications,
ARM based servers exploit the power saving nature of current ARM CPUs to densely
pack many ARM CPUs in a small form factor, improving computation density.

GPUs are popular accelerators specialised for numerical computation. They are highly
parallel floating point arithmetic units that can process thousands of (homogeneous)
calculations in parallel. On such tasks, they usually exceed CPUs in performance per
Watt or performance per cost. But for some problems, Field Programmable Gate Arrays
(FPGAs) achieve higher efficiency than GPUs (e. g. [40]), so they start to appear in HPC
systems as well.

Finally, there are approaches that allow combination of these elements in a single
server rack mount [14]. With these HPC systems, users can build their hardware to
solve the problem at hand in the most efficient way (by whatever efficiency metric they
choose).

4.1.3. HPC Cluster Scale

HPC systems exist in various sizes. Smaller ones are used in commercial applications.
For example, many engineering domains use a finite elements approach to physics simu-
lations. These divide a physical volume of the real world into millions of sub-volumes
and predict the interaction of physical properties (gas pressure, liquid flows, forces,
etc.) for each of them. Another application of highly parallel commercial computation
is video processing (encoding/transcoding, rendering of computer generated imagery,

1There is Ethernet Time Sensitive Networking (TSN), but it is not commonly used in HPC.

28

4.1. Hardware Aspects

image analysis). Finally, machine learning is an emerging high-performance problem
that also has applications in the embedded domain.
These systems may be as small as a single cluster node (making it just a regular

computer) or as big as a few 19” server racks, resulting in tens or hundreds of nodes,
typically with a power consumption below 1MW [24].
The other notable application is research, where the biggest HPC systems are used

[11]. These consist of thousands of nodes and typically consume up to 16MW [24]; even
20MW is acceptable for future systems [23].

4.1.4. Energy Considerations

In research HPC systems, actual end users usually don’t need not take energy into
consideration, because resource allocation is solely based on time. In contrast, the
operators do care about energy. First of all, power limits the size of HPC systems as
power distribution is far from trivial [23]. Secondly, power translates into operating
costs.
In special-purposeHPC systems as found in commercial settings, the set of applications

is limited and possibly even known ahead-of-time. Since end users and operators are
much closer, an energy-aware development methodology like the one presented in this
thesis might be beneficial: Energy usage of applications directly relates to the profitability
of the commercial activity. Additionally, predicting energy usage prior to building the
HPC system can lead to significant cost reductions by using an optimised hardware
setup.
In fact, this approach is also actively researched in the scientific HPC community, just

from a slightly different angle.
First of all, there is simple reduction of operating costs by trying to reduce power

of unmodified applications. Dynamic voltage/frequency scaling (DVFS) is a way to
reduce power which usually comes at the expense of performance. A smart scheduler
(see Section 4.2.4) can avoid this. For example, the SuperMUC-NG HPC system already
employs an energy-aware DVFS scheduler that uses performance predictions to save
energy without performance impact [22].
A different approach is hardware overprovisioning: Traditional HPC cluster design is

usually power overprovisioned, i. e. much of its power distribution capacity is never used
in real-world applications. The ratio between average operating power and provisioned
worst-case power can be as bad as 60% in real world clusters, yet there are rareworkloads
(HPC LINPACK, see Section 4.4) that exploit the worst-case limit [49]. Running at 60%
peak power also means that cooling systems and power converters run at less efficient
operating points.
In contrast, a hardware overprovisioned cluster has more compute nodes than its

power distribution system can power simultaneously. It can then dynamically use as
many nodes as the power limit allows, which leads to efficient operation for cooling and
power distribution. Since cooling and power distribution are expensive for Megawatt
class clusters, this can be economically beneficial [50] while also improving overall
performance [49].

29

4. Timing and Energy Prediction for HPC Applications

Such a hardware platform effectively is a dynamically reconfigurable one. Cluster
management software must decide which nodes to use for a given workload – which
is a classic allocation optimisation problem. It could be addressed by a prediction-
based design space exploration workflow like proposed in this thesis. In fact, existing
management software does exactly that, just withmassively simplified predictionmodels.
For example, the RMAP resource manager [48] uses a set of instrumented executions
in various configurations to build a linear regression model which predict all other
configurations.

4.1.5. Heat

All electronic circuits convert the largest part of their supply power into heat. This power
can be separated into static and dynamic parts, where dynamic power leakage scales
linearly with clock frequency. If heat rises too high, CPUs suffer transient failures or
even permanent damage.

While changes in energy consumption can happen in almost arbitrarily short time
spans, heat distribution and dissipation is a comparably inert effect. This means that
overall temperature depends on the average power over a certain time span; with real-
world materials, it is inherently low-pass filtered.

4.1.5.1. Thermal Management

Modern performance-oriented CPUs support clock frequencies that would cause heat
failure when used permanently. They assume that the workload is mixed and contains
enough idle time so that overall heat production stays within the safe operating range.

The limitations of heat dissipation are so prevalent that modern CPUs don’t even
advertise their maximum clock speed as nominal clock speed. They can no longer
guarantee continuous operation under their maximum clock frequency. Instead they
specify a safer, slower speed, and call the ability to exceed this clock depending on
circumstances by various marketing terms (e. g. Precision Boost for AMD and Turbo
Boost for Intel). CPU vendors for mobile devices sometimes use a different approach
and specify a maximum duration for the nominal clock speed. CPUs might also switch
to lower than nominal clock speeds if heat rises too high.

Another approach to manage heat is to completely shut off parts of an integrated
circuit. Parts of circuits that cannot be powered due to heat or energy constraints are
also known as dark silicon. Some CPUs temporarily (and repeatedly) suspend the entire
chip in order to prevent dangerous heat levels; this is also known as thermal throttling.

Finally, CPUs may contain a last-resort protection mechanism that turns the CPU off
or resets it if – after employing all previously mentioned mechanisms – temperature still
rises to a damaging level.

30

4.1. Hardware Aspects

4.1.5.2. Observable Effects

The net effect is that practically achievable CPU performance depends on the amount of
cooling. More efficient cooling means that the CPU spends less time throttling, or at a
higher clock frequency.
Another effect of heat is that it affects energy consumption. For metal-oxide semicon-

ductor field effect transistors (MOSFETs) as used inside virtually all digital circuits these
days, heat increases their so-called subthreshold power leakage, leading to increased
static energy consumption.
Furthermore, real-world electronic components have a nonzero temperature coeffi-

cient: their internal resistance changes with temperature. The temperature coefficient of
silicon-based components is a complex topic, but most other components always have a
positive temperature coefficient, i. e. their resistance increases with heat. For example, if
the overall resistance of voltage converter components increases, conversion efficiency
drops, and this directly affects overall power consumption. Even the copper PCB traces,
which inevitably heat up through heat dissipation from the CPU, will add to the losses.
These effects are big enough that there is a significant overall effect on modern elec-

tronic circuits that is easy to observe through measurements.

4.1.5.3. Modelling

Unfortunately, accurate heat modelling requires deep insight into the physical structure
of the CPU (see [46] for an example), which is not available for off-the-shelf hardware.
As a substitute, heat effects can be accounted for through controlled circumstances.

Heat dissipation from a hot into a cool material is proportional to their temperature
difference. Thermal coefficients on the other hand are constant2. At some point, a circuit
with positive thermal coefficient will reach thermal equilibrium, i. e. a balance between
heat generation and dissipation. Under the assumption that dynamic power behaviour
doesn’t significantly change the thermal equilibrium, modelling can then pretend that
there are not thermal effects.
This has the potential to interact in complex ways with the active thermal management

mechanism presented above. Clock frequency scaling should behave mostly predictable
once thermal equilibrium is reached. However, the more extreme protectionmechanisms
(throttling, reset) have the potential to disrupt predictability due to their blunt nature.
These should be avoided if predictability (or performance, or stability, for that matter) is
desired.

4.1.6. CPU-specific Performance Optimisation

Most CPUs include complex techniques to speed up execution. While CPU clock fre-
quency should have direct influence on application performance, bottlenecks of the
memory subsystem may lead to CPU cycles spent on waiting for data, for example.

2At least within a few 10K around room temperature. Universally speaking, they are not constant at all,
and MOSFETs are special as well, but that doesn’t matter here.

31

4. Timing and Energy Prediction for HPC Applications

With desktop applications, users take these optimisations as they are and simply buy
a faster computer if performance is insufficient. If you’re working with one of the fastest
computers that exist, that is not an easy option3. Thus, authors of HPC software usually
invest much time in optimising algorithms for these effects, despite the fact that most of
the optimisations are time consuming and highly CPU-specific.
Some of these effects are:

Caching Caches keep frequently used memory content in a fast temporary memory area.
To profit from this, applications need cache friendly data arrangement. This is
one of the most important small scale optimisations in HPC, and one of the most
generic ones.

Prefetching If applications know in advance what data they need, they can instruct
the CPU to fetch that data early enough so that memory latency is partially or
completely hidden. This optimisation usually depends on specifics of CPU and/or
cache architecture.

Out-of-order execution The CPU itself might be able to rearrange instructions so that
operations that wait for data are set aside. It can then execute instructions that
have no unfulfilled data dependencies instead. This is typically not accessible to
manual optimisation.

Multiple issue Some CPUs can even execute multiple instructions at the same time, as
long as they don’t use the same internal resources (FPU, ALU, etc.). Again, this is
almost impossible to optimise for.

Speculative execution When there is no better alternative, CPUs might execute instruc-
tions speculatively, i. e. without knowing the data they are dependent on. They
simply guess, and if the guess is correct, speed is gained. Otherwise, CPU state is
reverted without any loss4. To optimise for this technique, developers can arrange
branches so that the most likely outcome is the one guessed by the CPU.

Simultaneous Multi-Threading (SMT) With SMT, the CPU provides multiple logical
CPU cores that share the resources of a single physical core. By executing multiple
independent threads tightly interleaved, out-of-order execution and multiple issue
optimisations become more effective as the CPU can choose between completely
independent instruction streams. Effectively, this is makesmultiple issue hardware
visible through the threading API.

Write reordering Not just instructions can be reordered. Writes to memory can also
benefit from reordering and combining. This is less of an optimisation target and
more of a performance impediment to watch out for; it slows down synchronisa-
tion between threads. Reordered writes may not become globally visible in the

3Just like the embedded domain, but for a totally different reason: upgrading hardware is easy, but cost
per unit matters a lot when producing millions of embedded control units.

4For the purpose of this thesis, the Spectre and Meltdown class of security vulnerabilities are not relevant.
Mitigating them does incur a measurable performance impact.

32

4.2. Software Aspects

order they appear in the program, so extra effort must be spent for safe thread
synchronisation.

As an overall measure of the availability and effectiveness of these optimisations, the
IPC metric (instructions per cycle) describes typical throughput of a CPU.

The methodology proposed in this thesis assumes that task granularity is so large
that these effects are not relevant to overall application modelling. However, Section 9.5
shows a simple way to account for the effect of sharing common resources between tasks
(cache, SMT).

4.2. Software Aspects

Due to developments in the space of HPC hardware, awareness for energy aspects is
increasing. Nevertheless, the usual goal during development of HPC applications is to
minimise their overall execution time (called makespan), since the result is what the user
of an application is interested in most. This is a hard enough problem by itself.

Since HPC platforms these days are highly parallel platforms, one of the most import-
ant high-level optimisation challenges is to overcome parallelisation limits inherent in
algorithms in general or implementations in particular. And since most HPC problems
belong to one of a few generic classes of algorithms, there are also generic strategies
to address these challenges. The following subsections give an overview of existing
concepts that are related to the methodology proposed in this thesis.

4.2.1. HPC Problem Classes

In order to discuss HPC application optimisation, it is useful to classify them. Many
problems have a natural formulation in one of a number of computational patterns (as
defined in [12]). Notable problem classes are:

State Space Exploration Many problems require searching a state space for a state that
either fulfils some condition or that optimises a criterion (often called cost function).
Various search strategies exist, either exact methods (backtracking branch and
bound, dynamic programming) or probabilistic heuristics (simulated annealing,
genetic algorithms, ant colony optimisation).

Linear Algebra Problems that require linear algebra to solve, often revolving around
matrix multiplications. This is one of the largest classes of problems; many real-
world problems can be reduced to linear algebra, e. g. artificial neural networks.
Subclasses are dense and sparse linear algebra, where sparse problems take ad-
vantage of the fact that their matrices have many zero elements, eliminating a
significant amount of computation.

Mesh Problems that model a system as a mesh of discrete points or volumes. Each mesh
node’s behaviour depends on its neighbourhood. This is another huge class of

33

4. Timing and Energy Prediction for HPC Applications

problems, as finite element physics simulations fall into this category. Meshes can
be structured (tightly coupled to the geometry they model) or unstructured. Struc-
tured meshes can exploit the regularity of their structure to optimise calculations,
while unstructured meshes allow higher resolution in areas of interest without
forcing the whole mesh to have that high resolution, effectively reducing data size.

N-Body Problems consisting of a system of N members where the behaviour of each
member depends on all other members, not just its neighbours. Naïve solutions
have a time complexity of O(N2), which requires approximation schemes for large
N . For example, physics simulations that consider long range interactions (like
gravity or electromagnetic fields) fall into this category.

This thesis is not restricted to a single problem class, but evaluation is heavily based on
linear algebra (see Section 14.2.2).

4.2.2. Parallelism and its Limitations

Since the possible speed of a single CPU is limited by available technology, using many
CPUs in parallel is the only way to speed up software further. Of course, applications
must be written in a way that allows distribution across multiple CPUs. Due to various
effects, application speed does not scale linearly with the number of CPUs.

Most obviously, theoretically achievable speedup depends on the relative amount of
work that can be parallelised. Amdahl’s Law [16] describes this in a generic way.

Communication is another important aspect that can significantly limit achievable
speedup. Assume two processing steps A and B, where B processes data that A gener-
ates. If they run on different cluster nodes, communication increases the latency of the
combined processing sequence. This can slow down maketime directly.

This does not exclusively apply to inter-node communication. Node-local communic-
ation can result in memory copies and cache pollution, adding measurable latency as
well.

The distributed case, however, allows an easy improvement: Interleave multiple
processing sequences so that some independent computation C is performed while
B waits for data. This is sometimes called communication hiding and is an important
optimisation for distributed computing.

If there is no other computation that the node ofB can perform during communication,
computing resources go unused and the actually achieved parallelisation is less than
the theoretical maximum. Utilisation expresses this as the ratio of used over available
computing resources.

Some problems are very prone to such effects. For example, mesh and N-body prob-
lems need bidirectional exchange between elements after every simulation time step.
This tight coupling makes communication hiding difficult. More generally speaking,
any kind of global synchronisation has the potential to severely limit utilisation.

As a result, communication patterns are an important optimisation target. For regu-
larly structured problems on mostly homogeneous hardware, efficient communication

34

4.2. Software Aspects

strategies are easy to implement using establishedHPCmiddleware likeMessage Passing
Interface (MPI). On platforms with higher degrees of heterogeneity or with less regularly
structured problems, maximising utilisation is difficult5.

In fact, communication in such complex situations is amajor aspect of themethodology
proposed in this thesis.

4.2.3. Application Patterns

Scheduling parallel systems is a varied, well established research field [53]. To make
matters more complex, application design influences which scheduling algorithms are
even applicable. For example, dynamic task parallelism cannot be scheduled ahead-of-
time.

Therefore it is useful to classify parallel applications through design patterns. From
the classification in [12], some notable patterns for HPC problems are structural and
parallel algorithm strategy patterns.

4.2.3.1. Structural Patterns

describe high level software architecture, mainly concerning data flow and only to a
lesser extent control flow. Examples are:

Pipe/Filter Streaming data is processed by filters (computation) that are connected by
pipes (communication). Filters are assumed to be stateless, which makes the whole
setup easily parallelisable.

Map/Reduce Independent data sets are first transformed individually in a map opera-
tion, then summarised in a reduce operation. Due to the independence of the data
sets, he map step is easy to parallelise, while the reduce step may or may not be
parallelisable. The latter often uses a binary partitioning approach.

Iterative Refinement Adata set represents some initial state. The program is repeatedly
applied to the data, creating an increasingly accurate approximation of the desired
solution. Iteration stops when some terminating condition is met.

In the case of mesh and N-body problems, iterations usually represent time steps,
and the terminating condition is either a desired time span or the detection of a
stable state.

Arbitrary Task Graph This is a generalisation of the other design patterns. The task
graph expresses how different parts of the application (the tasks) interact with each
other. There are many variants; some are pure data flow graphs (like used in this
thesis, see Section 9.2.1), some are control flow graphs, or a combination of these,
e. g. [10]. Likewise, there are various semantics for tasks.

5Probably an NP-hard problem, although the claim is too vague for a definite proof.

35

4. Timing and Energy Prediction for HPC Applications

4.2.3.2. Parallel Algorithm Strategy Patterns

describe how the parallelisation of a software architecture is organised. As a result, these
patterns have a high impact on how work can be distributed and scheduled across a
cluster. Examples are:

Task Parallelism The algorithm is decomposed into a collection of tasks, and dependen-
cies between tasks are known. Except for these dependencies, execution order is
unspecified and does not affect the final result. If tasks are completely independent,
the pattern is also known as embarrassingly parallel.

Task parallelism can be static or dynamic. In the dynamic case, running tasks
spawn new tasks on demand, while otherwise the set of tasks is known in ad-
vance. Dynamic task parallelism is especially suitable for dynamic programming
problems.

Pipeline This is a specialisation of task parallelism: a sequence of dependent tasks
executes on an independent set of data elements. While a single data element
needs to visit each task in sequence, each task can work on a different data element
at the same time. Stream data processing (audio/video) often uses a pipeline
architecture. If task execution times are data independent, scheduling a pipeline is
much easier than scheduling generic task parallelism.

Data Parallelism With this pattern, the same operation is applied to multiple data sets
at the same time. This is most useful for node-local parallelisation using CPU
vector instructions (SIMD – single instruction multiple data), which process a
fixed number of data streams in parallel. This is also a useful pattern for GPGPU
acceleration.

In the distributed case, data parallelismmostly results in an embarrassingly parallel
problem. There are exceptions: The reduction step of the Map/Reduce structural
pattern also counts as data parallelism but isn’t embarrassingly parallel.

Discrete Event This pattern is based on a collection of tasks that interact in unpredictable
(or at least highly irregular) intervals. It is popular in the embedded domain as a
simulation technique for intrinsically parallel hardware [7], and inmodern industry
automation [5]. It is uncommon in HPC because it needs frequent synchronisation
between cluster nodes, which reduces performance significantly (see above).

In this thesis, the focus lies on task parallel programs expressed as static task graphs (see
Section 9.2.1).

4.2.4. Scheduling

Static task graphs are a fairly generic model of computation that allow a wide variety of
execution strategies. Furthermore, both dynamic (event driven) and static scheduling
approaches apply.

36

4.2. Software Aspects

In [53], the authors developed a detailed taxonomy of scheduling algorithms. In the
area of modern high performance computing, a few classes are notable:

4.2.4.1. Dynamic Scheduling

Dynamic scheduling in a cluster is more or less equivalent to load balancing when
applied to embarrassingly parallel problems on homogeneous platforms. Since there
are no dependencies between tasks, overall execution speed is merely a matter of keep-
ing execution units busy. Dynamic scheduling can be centralised (doesn’t scale well;
e. g. [41]), hierarchical (scales better, but has problems beyond 10000 cores; e. g.[42]), or
fully distributed.
Themost popular fully distributed dynamic parallel schedulingmethod iswork stealing

[54], which has evolved into an entire class of schedulers. It works by managing local
queues of tasks to execute. If an execution unit is idle it will execute the next task from
the local task queue. If the queue is empty the node will remove a task from a random
other node’s task queue and add it to its own queue. Work stealing provides upper
bounds in space and time that are within a constant factor of optimum values [55]. It
has been shown that it also scales well in practice [61].
The complementary class to work stealing is called work sharing. In this class, local or

global schedulers push tasks out to execution units instead of execution units pulling
tasks. Centralised and hierarchical schedulers are usually work sharing, although it is
possible to implement work stealing on top of a hierarchical structure [56].

4.2.4.2. Static Scheduling

Besides fully dynamic scheduling there is static scheduling. There, all cluster nodes
have a list of tasks to execute, and possibly also a time when to execute them. The latter
part is common in embedded time triggered architectures. Due to the synchronisation
difficulties in large cluster architectures, they usually use some kind of dependency
management instead of fixed execution times, i. e. tasks start as soon as their dependencies
are fulfilled.
While dynamic scheduling usually doesn’t even know the exact workload, static

schedulers can reason about the entire application and thus (in theory) can calculate
an optimal schedule. For the general case this is an NP-hard problem, however, so a
multitude of approximations and heuristics exist.
Furthermore, schedule quality depends on the resource model used for predicting

execution and communication time. On the other hand, schedules can easily take into
account other metrics like energy (as done in this thesis), as this does not change the
fundamental nature of the optimisation problem, only its size.

4.2.4.3. Rescheduling

Finally, there is the approach of periodic rescheduling as a way to make static schedulers
able to react to changes in applications or platforms. It uses a static scheduler that is

37

4. Timing and Energy Prediction for HPC Applications

invoked in response to some event (application changes, platform changes, or simply at
regular intervals).

This allows a static scheduler to reevaluate its choices to compensate for unpredictable
developments during execution. Most importantly, it allows compensating for incorrect
timing predictions due to insufficient resource models.

The main problem with this approach is of course the processing time the scheduler
needs. If the scheduler needs more resources than an updated schedule can save, its
execution is pointless. If the latency of the scheduler results in long idle times for
execution units, its execution is actively detrimental. Also, publishing a new schedule
needs some kind of synchronisation, which further hurts performance.

This thesis assumes a fully static scheduler and proposes an improved scheduler with
O(n) time complexity as a secondary contribution (see Section 9.6). Rescheduling could
be introduced in the future.

4.2.5. Resource Modelling

All task schedulers have in common that they need some kind of model that assigns a
cost to each decision. For dynamic schedulers, this is often as simple as a bimodal model
where idle processing units have high costs and busy ones have low costs assigned; there
is no distinction made between different tasks. In other words, they use utilisation as
their main metric. Unused processing capacity is avoided under the assumption that
this will optimise application makespan.

Since dynamic schedulers react on observed task performance, this assumption works
well, as shown in [55].

This is not generally true for heterogeneous platforms. For example, an idling general
purpose processing unit may better be left idling if a suitable highly efficient unit will
become idle within a short time span. Furthermore, optimising for other metrics than
makespan is difficult. This is where static schedulers have an advantage.

As mentioned before, static schedulers can exploit more detailed resource models,
but creating them is difficult. On smaller platforms, various approaches work: register
transfer level (RTL) simulations, analytical models provided by CPU manufacturers, or
plain measurements. However, HPC platforms usually don’t have enough idle time for
measurements (assuming they even have measurement infrastructure), don’t come with
manufacturer-supplied models, and use CPUs that are too complex for RTL simulation.

Many static scheduling algorithms use a simple weighted approach in which tasks and
dependencies have abstract weights assigned to them that represent relative resource
usage. Instead of providing measurements, weights can be assigned through extrapola-
tion of previous observations (i. e. guessing), expert estimation (i. e. guessing), or just by
guessing.

Abstract weights don’t solve the problem of how to systematically determine HPC
application resource usage. Furthermore, modelling overall execution behaviour also
depends on correctly modelling the run time system used to execute the application. The

38

4.2. Software Aspects

communication and execution behaviour of code-centric6 middleware like the popular
MPI is difficult to model in a generic way. These modelling difficulties may be some of
the reasons why dynamic scheduling is so dominant in the HPC domain.

Nevertheless, there are some options to create a suitable resource model. There are
HPC platforms with integrated power measurement infrastructure that even provide
out-of-band data transmission [14], thus allowing noninvasive task measurement. It may
then be feasible to allocate a very small subset of the cluster to model building without
significantly affecting production use.

Another solution would be if the cluster was modular so that users can build a ded-
icated measurement platform based on a small number of production modules with
added measurement infrastructure.

The methodology proposed in this thesis works with either kind of representative
measurement platform (see Section 10).

4.2.6. Auxiliary Aspects

During production use, there are some additional restrictions and practical difficulties.
While these are out of scope for this work, the chosen task graph application model does
allow for them, increasing its usefulness and relevance.

4.2.6.1. Data Representation

With heterogeneous systems, data representations may vary. For example, floating-point
numbers may have different bit pattern representations on different CPU architectures,
or integer numbers may have different byte order or sign representations.

For simplicity, this thesis assumes a common wire format for all data. Required data
conversion is accounted for as part of the computing time of those tasks that need it.

4.2.6.2. Data Distribution

In large applications, it may be a challenge to get data to the place it is needed in time,
especially if certain data is used in widely separated locations. Scheduling should try to
hide delays caused by this. An additional degree of freedom is gained if the scheduler
supports task cloning:

Assume there are four tasks A,B,C,D and task dependencies A → B → {C,D},
where C and D are executed on different cluster nodes and B → {C,D} requires
significant unhideable transmission time. If transmission size of A → B is much smaller
than B → {C,D}, and execution time of B is small enough, it may actually be faster
to clone task B (creating task B′), and to execute B → C on one node, and B′ → D on
another. This replaces the transmission time of B → {C,D} with A → {B,B′} plus the
extra CPU time spent on B′.

6as opposed to model based approaches

39

4. Timing and Energy Prediction for HPC Applications

4.2.6.3. Fault Tolerance

In the real world, systems may fail. Cluster nodes may vanish at any time, e. g. due
to hardware defects. When this happens, a significant amount of work may be lost. A
popular approach for this is snapshotting, i. e. saving of intermediate application states.
With task graphs, snapshots can actually be represented as a special kind of task that

just saves its input to persistent storage (and passes it through unmodified). This way,
snapshotting is a local operation that does not require global synchronisation. Snapshot
tasks are inserted into task graphs according to external reliability requirements. To
resume execution, the task graph is reduced by checking which snapshots exist and
pruning all predecessor nodes that don’t have any successors without snapshots. The
pruned task graph is then scheduled as usual.

4.3. Parallelisation Tools

Parallel programs face three practical issues beyond the actual work they try to perform:

• They need to start processes on different cluster nodes. This requires transfer of
the required executables and possibly initial data as well.

• Those processes need to communicate with each other.

• They probably also want to exploit local parallelism in the form of multiple CPU
cores or dedicated accelerator hardware.

Some programs might not need special tool support for this. For example, deployment
of an application across the cluster might happen through standard operating system
(OS) tools like networked filesystems and SSH. Problems that are embarrassingly par-
allel in their entirety are efficient to run just by starting multiple processes with no
communication between them. This addresses local parallelism as well as distributed
computing.

4.3.1. Local Parallelism

A single HPC cluster node already offers multiple forms of parallelism. At the very
least, there are multiple CPU cores with data-parallel vector instructions (SIMD – single
instruction multiple data). GPUs can be used as math accelerators, and then there are
more exotic accelerators like FPGAs, dedicated artificial intelligence accelerators (e. g. the
Intel Myriad coprocessors), or manycore coprocessors like the Intel Xeon Phi.
The definition of what parts actually count as a single local node is twofold: The most

important property is that of shared memory. All computational units that can access
the primary RAM can exchange data very efficiently. Some accelerators might not have
direct memory access at all, but need explicit data transfer from the CPU. Others might
have non-uniform memory access characteristics, with fast local RAM and slower access
to CPU memory.

40

4.3. Parallelisation Tools

For the purposes of this thesis, a single node consists of all processing units that
cannot enter global communication on their own, plus the main CPU that performs
communication on their behalf. An equivalent definition for the scope of this thesis is
that a single node is running exactly one instance of a general purpose operating system.
To exploit node-local parallelism, applications might simply use operating system

threads (POSIX / Win32 threads), handwritten SIMD instructions and APIs provided by
accelerator vendors. But this is tedious, error-prone, and often not portable.
Various libraries exist that offer abstractions to hide low level optimisations. For

example, the basic linear algebra subprograms (BLAS) specification has multiple optim-
ised implementations. Among them are ATLAS with a portable automatic optimisation
strategy, OpenBLAS with hand-optimisations for many CPUs, and cuBLAS/nvblas using
NVIDIA GPU acceleration.
Such libraries work well if they contain the required algorithms. If not, libraries and

language extensions exist for higher level parallelisation. The most prominent C/C++ lan-
guage extension for parallelism is probably OpenMP [19]. It works through annotations
(compiler pragmas) attached to serial code. These annotations tell the OpenMP runtime
in what way work can be parallelised. They can express data parallelism (vectorisation),
task parallelism, and many other parallel patterns.
OmpSs [20] is an extension to OpenMP that tries to integrate OpenMP with GPUs,

FPGAs, and other accelerators. StarPU [21] is another library with similar goals. Both
use task parallelism as their primary pattern.
The proposed methodology of this thesis models multiple CPU cores as separate exe-

cution resources, so it manages multi-threading internally (via OS threads). Accelerators
are not addressed at all, but they offer opportunities for future work. Instruction level
parallelisation and optimisation is out of scope; tasks may use vector instructions or
libraries at will. In fact, the primary evaluation example consists of BLAS routines (see
Section 14.2.2).

4.3.2. Communication Middleware

Coordinated work across multiple cluster nodes needs communication. Applications
could simply use operating system networking APIs, which most probably means some-
thing derived from the BSD socket interface. For advanced communication patterns and
deployment strategies, it is more efficient to use specialised libraries and tools.
For inter-node communication, there are several popular choices beyond low-level

socket programming. Some also address deployment:

PVM (Parallel Virtual Machine) is one of the oldest projects for cluster computing. It is a
fairly comprehensive solution that encompasses deployment, communication, and
even data conversion in a heterogeneous cluster and across different programming
languages [17]. Furthermore, PVM supports dynamic changes in the cluster setup
including fault tolerance.

MPI (Message Passing Interface) is almost as old as PVMand still actively developed. Be-
ing a vendor driven standard, it focuses on high performance instead of maximum

41

4. Timing and Energy Prediction for HPC Applications

interoperability. It provides a rich set of communication patterns (point-to-point,
group communication, asynchronous opportunistic messaging, etc.) and topolo-
gies. MPI only has limited support for deployment or interoperability. It is the
most widely used HPC middleware, thus high level job schedulers often have
dedicated MPI support, and it is often used in conjunction with OpenMP.

RPC Interfaces (Java RMI, CORBA, Sun RPC, etc.) These interfaces transparently map
local function calls to network communication. They are usually tied to object
oriented programming languages and try to hide the distributed nature of the
application behind a remote object abstraction. In practice, this abstraction has
shown to be too widely separated from the network layer and its failure modes
[18]. These interfaces provide data conversion in heterogeneous environments, but
do not address deployment.

Ømq ZeroMQ is a fairly new middleware that has many similarities to MPI. Like MPI,
it supports a wide variety of communication patterns. Unlike MPI, it emphasises
asynchronous communication. Furthermore, its communication primitives are
optimised for heterogeneous communication technologies, including an efficient
node-local (shared memory) transport. Data format and language interoperability
is integral part of ZeroMQ, deployment is not addressed.

All these middlewares have in common that distributed modelling is still fairly low-
level: Two different programs on different cluster nodes send and receive data. Even
though they are part of a single operation, a send primitive and its corresponding receive
primitive are completely separated in the code. Some patterns express more integrated
communication, but overall functionality is still modelled as multiple distinct processes.
The task graph executor used in the evaluation of this thesis doesn’t use one of these,

it only needs OS facilities (see Section 9.8).

4.3.3. Deployment

For deployment, HPC machines usually have a standalone high level job scheduler. It
performs resource allocation and load balancing on the application level. One of the
most popular examples is the Slurm Workload Manager. It can deploy and monitor
multiple independent applications on different or even overlapping subsets of cluster
nodes while improving communication by optimising application locality [57].
This thesis’ evaluation did not use any specialised deployment tool. OS facilities were

sufficient since access to the evaluation testbed was fully controlled (see Section 10).

4.4. Common Benchmarks

LINPACK For HPC systems, the stereotypical benchmark is LINPACK [25]. Due to
its historically long and widespread use, it is the de-facto standard metric to compare
HPC systems of the past four decades. The actual metric that is used in comparisons is

42

4.4. Common Benchmarks

floating-point operations per second (FLOP/s). This is also the metric used in the Top500
ranking of supercomputers as it is an indicator of achievable computation speed. In
contrast, theoretical maximum speed (derived from clock frequency and assuming ideal
vectorisation/code arrangement) is almost never actually attainable due to the many
bottlenecks in modern systems (see Section 4.1.6).
Like all benchmarks, LINPACK is not representative for all workloads. Its strength

lies in the comparability across many generations of computers. A big weakness is that
it originates in an era of shared-memory HPC systems, i. e. single nodes that don’t need
networking. This is why derivatives exist, most prominently Highly-Parallel LINPACK
(HPL) for distributed-memory cluster architectures. Another degree of variation deals
with problem size: 100× 100 element matrices were a challenge in 1979, but are trivial
today. With HPL, 10000 × 10000 is an equally valid benchmark. Multiple sizes may
be measured, and the highest observed result is reported. Since results are always
normalised to FLOP/s, this does not significantly impact comparability.
LINPACK and its variants essentially solve a linear system of n equations Ax = b for

x, where A ∈ Rn×n and x, b ∈ Rn. The original LINPACK enforced a specific sequence
of vector operations for this. HPL allows any implementation, but the total number
of floating-point operations is assumed to be 2

3n
3 + 2n2 regardless of the algorithm

that is actually executed. This gives implementors enough freedom to optimise for
unusual architectures. It also resolves the difficulties in counting modern floating-point
operations like fused multiply-add (FMA), which almost – but not exactly – correspond
to two traditional operations.

Cholesky Matrix Decomposition A conforming HPL implementation has additional
restrictions that aim to improve comparability but result in additional implementation
effort. Most algorithms use matrix factorisation followed by triangular solving, where
factorisation represents the main amount of work. Benchmarking just that is still a
strong indicator for LINPACK performance but is much faster to implement and analyse.
Cholesky and LU (lower/upper) decomposition are both popular benchmarks for this
reason. This is also one of the reasons why Cholesky is the running example in most
parts of this thesis.

SPEC Benchmarks The Standard Performance Evaluation Corporation is a non-profit
corporation that publishes various benchmarks to compare different aspects of computing
systems. They haveHPCbenchmarks, but focus on shared-memory nodes, i. e. not cluster
architectures. Unlike LINPACK, they regularly publish changed/updated benchmark
suites. This way, benchmarks allow better evaluation of new computational hardware
features, but long term comparability is much reduced.

PARSEC Benchmark Suite The PARSEC benchmark suite [26] (not to be confused
with the PaRSEC parallel programming model, which also relates to the HPC world) is a
diverse collection of real-world programs for benchmarking shared-memory computers.
They represent computationally intense tasks from a wide variety of application fields,

43

4. Timing and Energy Prediction for HPC Applications

not just traditional HPC problems; for example, one benchmark is based on the x264
video encoder. Overall, problems represent more modern workloads than comparable
previous benchmarks [27]. Since these benchmarks are real-world programs, distributed
benchmarks use MPI as middleware.

PARSECSs Benchmark Suite PARSECSs[16] is a subset of the PARSEC benchmarks
ported to a task parallel execution model using OmpSs (see Section 4.3.1). After the trans-
formation, some applications yield very irregular structure that was not adequately ad-
dressed in the original thread-based implementation. As a result, benchmark makespan
improved by 13% on average while also reducing code complexity. Even though OmpSs
tasks are not exactly the same as the tasks used in this thesis, this shows that the task
paradigm can outperform established parallelisation methods.

Single Application Benchmarks There is a wide variety of benchmarks that consist of
a single HPC application from some important subdomain. These usually consist of code
that is highly optimised for the middleware in use (usually OpenMP+MPI) and thus
is difficult to port to other parallelism paradigms. These are more suitable to perform
comparisons between related cluster platforms or middleware implementations.

4.5. Common Prediction Approaches

With the amount of applications, middlewares, parallelisation strategies, and hardware
platforms, and due to the size of data sets and hardware platforms, predicting application
performance is difficult in HPC.As mentioned in Section 4.2.5, HPC systems often do not
allow iterative performance optimisation based on test suites and/or profile generation.
Nevertheless, programmers need metrics to optimise application performance, just like
future operators of HPC systemswant to optimise their machines for expectedworkloads.
Since the main contribution of this thesis is a new prediction approach, Section 8 lists
current practical examples of these approaches.

4.5.1. Analytical Models

Simple analytical models can already give a lot of insight. In fact, Amdahl’s Law [16] itself
is such a model. It only returns an abstract measure, but one that is suitable for certain
application optimisation decisions. More complex models may involve linear regression
or integer linear programming. They have in common that they are comparatively fast.

However, modern hardware architectures contain optimisations that have nonlinear
behaviour (see Section 4.1.6), and asynchronous network communication adds highly
irregular behaviour on top. As a result, analytical models are easier to apply to limited
issues within a cluster instead of an HPC system as a whole.

For whole system modelling, analytical models might extrapolate from measurements
by using statistical methods (e. g. curve fitting or histograms). These can work well

44

4.5. Common Prediction Approaches

as long as all significant boundary conditions are known. Thus the main challenge
for statistically derived models is to identify such boundary conditions that limit the
applicability of the model. For example, a model that predicts performance for high
numbers of CPU cores based on linearly fitted measurements on fewer cores might
become invalid once RAM bandwidth is saturated.

4.5.2. Simulation

A simulation model is composed of chosen elements of the modelled system, and ele-
ments operate at a chosen abstraction level. The behaviour of each simulation element
then leads to a change in system state over time. Simulation adds overhead over native
execution. The abstractions represented by the simulation model determine accuracy
and speed of the simulation.

For example, a CPU in an HPC cluster might be represented by a register transfer
level simulation of the digital circuit, an instruction set simulator, or by application code
compiled for the simulation host machine. The latter only models functional behaviour,
the second version is slower but introduces some degree of timing behaviour, while the
first one results in clock cycle accurate behaviour of all I/O signals at greatly reduced
speed.

Abstraction decisions may depend on abstractions chosen in other parts of the simula-
tion. For example, simulations might or might not include an instruction cache model.
Including it improves timing accuracy but needs to know binary code layout on the
target platform; it can’t work with host-based executables.

A big advantage of simulation over analytical modelling is that it is much easier
to vary abstraction levels between different parts of the system. For example, users
could combine instruction set simulators for some area of interest while using host-based
execution for all other simulated CPUs in order to provide a fast but functionally accurate
environment.

Simulation is popular in the embedded domain, where simulatedmachines usually are
much slower that simulation hosts. In such setups, it is easy to achieve parity between
simulation time and simulated time. For HPC, the situation is reversed: simulated
systems are much bigger than simulation hosts, even when using massively parallel
simulation. Existing simulators (see Section 8) often focus on a specific issue and use
very simple modelling for all other parts of the system.

4.5.3. Symbolic Simulation

A special subclass of simulation is symbolic simulation. In these, simulation models do not
accumulate concrete values of time or other properties. Instead, they record symbolic
variables of these processes that can represent multiple states or entire ranges of values.

For example, instead of modelling the time required for each floating-point operation
in a CPU, a symbolic simulation might only record the number of operations. This could

45

4. Timing and Energy Prediction for HPC Applications

then represent an analytical performance model: dividing the number of operations by a
given target machine’s LINPACK FLOP/s value results in a rough makespan prediction7.
An analytical model derived this way has the advantage that the abstraction choices

of the simulation model are preserved. The practical disadvantage is that symbolic
variables represent state that might not be composable in a simple way. Linear execution
of machine instructions might allow linear combination of symbolic variables. Parallel
processes on the other hand result in a superposition of states; if these are not reduced
in some way, the symbolic state space grows exponentially and simulation becomes
impractical.

4.5.4. Trace-Based Simulation

A related class of simulations is trace-based simulation. It consists of two steps: First, the
application is executed on a regular HPC system while recording events of interest (the
trace). Event abstraction level ranges from as low-level as individual memory read/write
instructions up to communication transactions using MPI semantics. This approach
has a very practical advantage: it works with unmodified existing applications; tracing
instrumentation can be added automatically through MPI facilities.
In the second step, the trace is replayed on a simulation model of a different machine.

Computation speed and communication latency for the simulated machine is derived
from on trace contents. Computation models might be as simple as a linear speedup
factor, while communication models tend to be more complex (e. g. in [58]).
Tracing imposes an important limitation: a trace must exhibit the same amount of

parallelism as the target machine. To simulate a 10000-core machine, a trace from a
different 10000-core machine is needed.
Logical transactions might be recorded as their constituent low-level communication

primitives. If that is the case the causal relationship between them is lost and simulations
might produce incorrect timings. Generally speaking, the main challenge for trace-based
simulations is to make sure that a trace is actually portable between tracing machine and
target machine.
The second limitation concerns trace acquisition itself. It is usually invasive, i. e. it af-

fects execution behaviour of the traced application. In literature, 5-10% performance loss
is reported [58]. This creates the question if the trace itself is an accurate representation
of application behaviour.
For trace recording, the application must already be in a runnable state. This may

sound obvious, but it precludes feedback during the initial development process. As
a workaround, a skeleton application can generate synthetic traces (e. g. in [60]). Such
traces have less timing accuracy than recorded traces but may still give useful insight,
especially for high-level application structuring.
Parts of the methodology proposed in this thesis have similarities to synthetic trace-

based simulation.

7Assuming a lot of things that most probably are not actually true.

46

5. Time and Energy Measurement

Models that predict application makespan for a given target platform need some timing
input to base their predictions on. To the best of my knowledge, there is no CPU
clock cycle accurate reference simulator (or one approximating this accuracy) for HPC
platforms, hence physical measurement is about the only choice to reliably assess the
quality of performance models. For energy models, similar arguments apply.

Measurement is surprisingly difficult. The main issues are:

1. Collect measurement data without interfering with the system being measured.

2. Find out what physical effects there are that can and/or should be measured. That’s
an input to model building: the decision of what should be modelled is influenced
by what can be measured.

3. Measure correctly.

5.1. Data Collection

Two main styles for data collection exist:

In-band means measurement data is collected by the monitored CPU and/or transmitted
over the target network. This modifies time and energy properties of the target
system. If this interference is predictable, it can be accounted for after the fact.
For platforms with complex and/or undocumented microarchitectural details (see
Section 4.1.6), this is not feasible.

Out-of-band means data is acquired by some external mechanism and transmitted/col-
lected over a separate communication path. Implemented correctly, this does not
interfere with target system behaviour.

Experience from trace-based prediction methodologies (see Section 4.5.4) suggests that
performance overhead is 5-10% when capturing time traces. Power or energy measure-
ments would double the amount of data.

With energy, the impact is actually much worse: Time tracing only needs to take a time
stamp at predetermined events. Power tracing needs to take continuous measurements
and average (for power) or integrate (for energy) them. The performance impact is likely
significant. As a result, any measurement infrastructure needs to be out-of-band.

47

5. Time and Energy Measurement

5.2. Time Measurement

5.2.1. Eligible Effects

Measuring the overall makespan of an application is fairly easy. There is just one effect,
the passage of physical time. This is suitable for evaluation but helps little when building
performance models.

When building those, there are lots of detailed effects that could be of interest. Related
to the generic overview in Section 4.1.6, modern CPUs offer a catalogue of performance
events that can be measured, sometimes down to the level of individual instructions.
These are based on microarchitectural features and thus vary widely between CPUs.

Various approaches (including the methodology proposed in this thesis) opt for a
middle ground: they are interested in net execution time for a fragment of application
code. Obviously, the larger code fragments and their data sets are, the less their timing
varies due tomicroarchitectural features. Thismeans that a simplemeasurement captures
all of these effects; they need not be modelled individually. The downside is that longer
code fragments may introduce data-dependent control flow variations, but that’s a
problem of modelling, not measurement.

5.2.2. Measurement Techniques

For overall makespan, it’s sufficient to take time stamps at start and end. Assuming HPC
scale, the few milliseconds drift of an internet-synchronised real-time clock don’t matter.
On the other hand, at this time scale there could be time zone changes or leap seconds.
Time stamps should therefore be in International Atomic Time (TAI), since it most closely
represents physical passage of time without regional or astronomical adjustments.

5.2.2.1. Internal Measurement

For measuring intervals at the granularity of single functions, CPUs nowadays offer a
high precision timer. The exact details vary between CPUs, but every relevant CPU does
have a monotonically increasing high resolution clock. The monotonic property means
that it is unaffected by manual changes of system time as might happen with daylight
savings time, for example.

For even finer granularity down to microarchitectural effects, modern CPUs offer
event counters that capture performance-related events, e. g. the number of clock cycles
spent waiting for data that was not in cache memory. Since modelling these effects is
extremely difficult, these performance event counters are not useful in the context of this
thesis.

5.2.2.2. Comparability

Monotonicity of a time source does not preclude clock adjustment and synchronisation.
Since cluster nodes run asynchronously, measurements from one machine probably

48

5.3. Energy Measurement

don’t exactly match measurements on another machine. Clock synchronisation is a way
to address this problem.
For example, the network time protocol (NTP) process will synchronise system time

to a master clock. On the Linux operating system it uses a system call that slightly
slows down or speeds up the system timer1. Observed timer values will always be
monotonically increasing despite the fact that these values are synchronised to an external
source.
NTP synchronisation offset between machines is in the millisecond range. For smaller

measurements, such synchronisation might not be useful. There is also the precision
time protocol (PTP, IEEE 1588) that is part of the IEEE Time Sensitive Networking (TSN)
collection of standards. In ideal conditions it can achieve synchronisation offsets of less
than a microsecond. Both make assumptions about communication latency that might
not apply to heavily loaded networks.

5.2.2.3. External Measurement

As a result, it might be more beneficial to account for timing differences between cluster
machines in some other way. An effective alternative is centralised measurement by an
external mechanism. For example, a dedicated measurement system could be connected
to a binary general purpose input/output (GPIO) signal on each node. The software on
each node can then just toggle that GPIO signal, and the central measurement system
records time stamps of all bit flip events. GPIO toggling can be very fast, sometimes a
single machine instruction suffices. On the other hand, this mechanism does not allow
to distinguish different event types, and events from multiple CPU cores may interfere
with each other.
If there are no true GPIO signals accessible, other output signals might be available

that allow software control with low latency. It might even be possible to determine
timing purely by observing physical properties of the system during normal operation,
like energy consumption. This is what this thesis uses as auxiliary time source.
The big advantage of centralised external time measurement is that all time stamps

have the same time base and thus are comparable to each other. Measurement accuracy
is independent of CPU model or speed. This advantage comes at the price of additional
effort required to relate captured events to their originating events in the measured
program.

5.3. Energy Measurement

5.3.1. Eligible Effects

Current hardware offers solid timing measurement for many effects. On the other hand,
built-in energy measurement is often completely absent. The first question therefore is
to determine what can be measured at all.

1Unless the difference was too high. Initial synchronisation may lead to a non-monotonous time step.

49

5. Time and Energy Measurement

On embedded development boards there sometimes are external energy measurement
circuits, but not usually on production scale HPC systems. One example for an HPC sys-
tem with measurement hardware is the RECS|Box system [14]. It contains measurement
circuits that monitor supply voltage and current of the individual nodes.

Generally speaking, measuring power supply of entire circuit boards should always
be possible. However, there are several individual components that are desirable for
model building:

• Entire processing units (models for CPUs or GPUs)

• Individual compute units that are part of a CPU (models for a single CPU core,
different CPU microarchitectures in a single CPU, internal GPU blocks)

• RAM (potentially significant secondary energy for computation)

• Ethernet transceivers (models for communication energy)

• External chips in general (models for peripheral functions)

• The power supply itself (losses in voltage converters)

Below that granularity, models might want to use measurements of individual CPU
instructions or functions of circuits. The smaller the granularity, the less likely these
effects can be measured directly.

A second dimension of effects are different power states. In the most simple case,
components have an idle power consumption that always occurs while they are powered,
even when inactive. To make this orthogonal to the effects listed above, the latter can
be expressed as power difference to idle power. CPUs with DVFS might have many
more different operating modes, and usually there is a nonlinear relationship between
operating modes and power2.

5.3.2. Measurement

Energy measurement facilities are not a common part of computing systems. They
do exist, but availability and suitability is insufficient for systematic modelling and
evaluation purposes.

Power measurement works by measuring voltage and current: P = U · I , where U
is the measured voltage in Volts, and I is the measured current in Amperes, resulting
in electrical power P in Watts. In practice, current measurement works by measuring
voltage drop across a shunt resistor, as shown in Figure 5.1. After applying Ohm’s Law

(U = R · I), this results in P = UDevice · UShunt
RShunt

. To get electrical energy, multiply average

power within a time interval by its duration: E = Paverage · t (to be precise, E =
∫
P · dt).

Since this thesis assumes parallel time and power measurement, either average power
or energy is sufficient. The other property can always be derived using timing data.

2Most importantly because power scales quadratically with voltage.

50

5.3. Energy Measurement

V Device Voltage

P
ow

er
 S

up
pl

y

VDevice Current
Shunt Voltage

Shunt Resistor

D
ev

ic
e

U
nd

er
 T

es
t

Figure 5.1.: Basic electrical power measurement circuit.

The most important observation from the physical aspects is that some sort of meas-
urement resistance (the shunt resistor in Figure 5.1) is required in series with the device
being measured. All measurement circuits, no matter if built from discrete components
or using an integrated circuit (IC), work this way3.

5.3.2.1. Microarchitectural Power Estimation

For CPUs that have them, it is possible to build power models through the use of
performance event counters [28]. The Intel Power Gadgets software also supports the
integrated GPU. Of course, this is only an estimation and can only cover the CPU
package itself, not that of external peripherals. On the other hand, it requires no extra
measurement hardware.

The Running Average Power Limit (RAPL) feature present in recent Intel CPUs allows
direct measurement (and control) of processor and RAM power with decent accuracy,
despite also being based on CPU activity counters [51]. Its impact on system performance
is small. Within its accuracy limitations, this approach has been shown to work in an
HPC context [48]. It might be an acceptable substitute if the physical measurement
approach proposed in this thesis is not possible, e. g. for existing clusters.

5.3.2.2. Power Management Circuits

On modern systems, power supply is usually managed through one or more dedicated
power management integrated circuits (PMIC). These contain multiple output power
rails with different voltages for different system components.

Some have current sensors that are readable through a communication interface
like Inter-IC (I²C) or Serial Peripheral Interface (SPI). Availability, accuracy, and time
resolution of these vary wildly.

Even if they are present for a given target platform measurements might not be useful
for model building. For one, power rails are often shared between unrelated components.

3There is an alternate way of measuring current using the electromagnetic effect of moving charges, but
this has no relevance at the scale being discussed here.

51

5. Time and Energy Measurement

Furthermore, their main purpose is power management at the level of fault detection
and protection; another use is battery charge control. Both use cases do not require high
time resolutions. Fault detection/protection doesn’t even need that much accuracy.

5.3.2.3. Dedicated Measurement Circuits

As a result, the most reliable measurement infrastructure is one that specifically exists
for the purpose of monitoring system power at a given level of detail. Unfortunately,
even those few systems that include such measurement circuits still fall short of the
capabilities required by this thesis.

Two examples of systems that do have such an infrastructure are themodular RECS|Box
HPC systems, and the ODROID XU3 single-board computers (SBCs). The RECS|Box
systems have current and voltage measurement circuits on each node’s printed circuit
board (PCB). They also have an administrative Ethernet network that is separate from
the main network connectivity so that measurements can be collected out-of-band.

The ODROID XU3 single-board computer uses the INA219 power measurement ICs
from Texas Instruments for the power supply of four main components: the four ARM
Cortex A15 CPU cores, the four ARM Cortex A7 CPU cores, the GPU, and the RAM. The
INA219 offers an analogue bandwidth of 1 kHz and an ADC sample rate of up to 10 kHz.
Data collection must be done by the main CPU, i.e. there is no out-of-band access.

Both systems have in common that their effective time resolution is only about 1ms.
A further disadvantage is that they are not representative for the majority of systems.

5.3.2.4. External Measurement

Therefore the only universal solution is a dedicated external measurement infrastructure.
The downside is that only power supply lines external to the CPU can be measured.
Given that the previously mentioned solutions provide no substantially finer granularity,
this is not really a limitation. The real challenge is to access the desired power rails.

Voltage measurement is the easy part: The measurement device just needs electrical
contact to ground potential and the desired power rail. There is a good chance that
somewhere on the printed circuit boards (PCBs) of the target system is a place where a
wire can be attached (possibly soldered) to the desired signal.

The true limitation is current measurement. As shown in Figure 5.1, a shunt resistance
needs to be added to an existing power supply line. This is potentially destructive and
might not be possible in practice. In current PCB designs, the main power rails exist as
buried copper layers in a multi-layered PCB. Since modern CPUs use ball grid array
packages, the electrical contacts are located below the CPU itself, and there is no exposed
place at all that lies between power rail and CPU.

This means that external power measurement is unable to reach the same granularity
as built-in measurement circuits. Measuring the external power supply of the entire
system is a pragmatic and generic solution. The advantage is that this captures all
components. The disadvantage is that this captures all components. In other words,

52

5.3. Energy Measurement

while the applicability is almost universal and it covers all aspects of a system, the effort
of model building increases. Section 9.5 argues that this can be a useful trade-off.
A second disadvantage is that internal voltage regulators commonly use smoothing

capacitors. These can add a delay between the moment system power changes and the
changed power is observable at the external power supply. For HPC applications, this
should not be significant, since systems can be expected to run near their maximum
power, which would lessen or eliminate this delay. But this effect needs consideration
when low power situations are involved.
When measuring system power through the external lines, signal quality is reduced.

These mainly stem from voltage conversion. Common voltages for main PCBs range
from 3.3V through 12V. Onboard voltage regulators or PMICs then create the required
target voltages, often multiple different voltages between 1V and 3.3V.
These voltage regulators add undesirable effects to the power measurement signal.

At the very least, stabilising capacitors effectively create a low pass filter. Switching
mode regulators modulate one or more periodic signals on top of the desired signal.
The operating frequencies range from 100Hz to 100 kHz, wave forms and frequencies
may change during operation. The signal is symmetric, however, so when integrating or
averaging such a power signal over a sufficient time span, the net impact is negligible.

5.3.2.5. Parallel Measurement

Another question is how to measure a complete cluster instead of just a single node. For
model building, a single node might be sufficient. For evaluation of prediction accuracy,
the entire cluster must be measured. On the other hand, evaluation needs much less
detail, so the external power supply measurement approach is quite sufficient. If more
details are needed for model building, a single node can be treated more invasively.

53

5. Time and Energy Measurement

54

6. Modelling and Simulating with SystemC

SystemC [7] is a C++ class library that was originally designed as a hardware description
language (HDL) working at the register transfer level [29]. If authors use a supported
subset of C++, hardware designs expressed in SystemC can be synthesised to hardware
by commercial tools like Xilinx Vivado.
The task of designing a modern electronic system requires design methodologies that

are more complex than just using a traditional HDL for hardware design. System level
design [30] is a systematic approach rooted in a high-level functional specification of
system behaviour.
The main advantages of SystemC over established HDLs like VHDL and Verilog are

twofold: First of all, by expressing the hardware design as C++ code, SystemCmodels are
also executable simulation models. This supports the continuous validation approach of
system level design.
Secondly, C++ facilities allow easy abstraction and composition so that SystemC spans

a wide range of abstraction levels. It is able to express system models from the purely
functional specification level down to the register transfer level. Even better, different
abstraction levels can coexist in the same model; refinement steps can leave some parts
of the system untouched while fully refining others.
Add-on libraries add flexibility to this process: Transaction Level Modelling (TLM [7])

provides an abstract communication model that allows designers to specify physical
implementations (data bus structures and protocols) very late in the design process while
providing accurate communication timing and behaviour much earlier.
The Oldenburg System Synthesis Subset (OSSS, [31]) adds abstraction features that

ease the refinement process from functional specification models to synthesisable hard-
ware/softwaremodels. Other add-on libraries provided extended support for verification
of models or modelling of mixed-signal (analogue/digital) systems.
The methodology of this thesis uses SystemC as simulation platform. Despite its

original purpose, SystemC is not used as a design tool1, merely as a tool to model
existing systems in varying degrees of abstraction.

6.1. Components of SystemC Models

The fundamental modelling unit in SystemC is the module. Every SystemC component
is contained in a module, and the simulation model as a whole is a collection of modules.
Technically, a module is a subclass of C++ class sc_core::sc_module.

1To be exact, there is no low-level hardware design. In the terminology of system level design, some
aspects of the methodology might be interpreted as a platform-based system modelling approach.

55

6. Modelling and Simulating with SystemC

Modules consist of several components:

Child Modules (or rather, instances of modules) inside a parent module represent hier-
archical composition of a model. It is possible to build a module hierarchy algorith-
mically. This allows parametric static modelling but excludes dynamic models.
The hierarchy cannot be modified during simulation.

Processes implement functional and extrafunctional behaviour of a module. These
are C++ functions that exist in two basic flavours: SC_THREAD and SC_METHOD.
The differences between them are their semantics during simulation. Threads
are basically coroutines that are interrupted and resumed based on events, while
methods are called once for each event of interest and run to completion before
simulation proceeds.
Processes declare events they want to react on. They can do so statically or dynam-
ically during simulation.

Channels represent communication facilities. These can be as simple as objects of class
sc_core::sc_signal<bool>, which models a single-bit digital signal or as
complex as a TLM-based memory bus model with multiple bus masters, priority-
based arbitration, and pipelined bus protocol.
Channels are either classes derived from class sc_core::sc_prim_channel
(prımıtıve channels) or they are modules themselves, in which case they are called
hıerarchıcal channels.

Ports and Sockets are interface objects for channels. Modules are not expected to
provide channels for external communication. Instead, they contain ports (for
simple channels) or sockets (for TLM channels) that are bound to channels during
model instantiation.
Canonical SystemC design expects a parent module to contain channels for its
child modules, and to bind these together during instantiation. They should not
contain channels for communication outside its local module hierarchy.
The exception to this guideline are hierarchical channels. These commonly con-
tain internal channels which they partially expose to the outside world through a
special forwarding port called an export.

6.2. Discrete-Event Simulation

SystemC has a well defined execution behaviour for such a structural model. Before
simulation starts, elaboratıon happens. It consists of the instantiation of all SystemC
modules by the main program. During this process, module constructors and the main
program itself bind all ports to appropriate channels. The result is the final connected
object hierarchy used as simulation model.
The actual sımulatıon then proceeds in distinct steps:

1. A one-time ınıtıalısatıon phase gives all modules the chance to set up initial
events.

56

6.3. System Level Modelling

2. Each event has an annotation determining the simulation time it will be triggered.
The SystemC scheduler determines the earliest simulation time that has pending
events and forwards simulation time accordingly.

3. For all pending events at the current simulation time, the scheduler collects all
processes that wait for that event. This results in the set of runnable processes.
This starts the evaluatıon phase.

4. The SystemC kernel executes the runnable processes one after the other in an
indeterminate order. Methods are simply called and run to completion, while
threads are resumed and run until they issue a wait() statement, at which point
they are paused.
Processes may trigger (notıfy) new events at defined moments in the future, or
even during the current evaluation phase. Notifications are categorised in three
classes:

Immediate notifications take effect during the present evaluation phase; they can
directly modify the set of runnable processes.

Delta notifications represent an unspecified (or infinitesimally small) time span
for immediately consecutive processes. In other words, delta notifications
enforce a causal order on processes that would otherwise run concurrently,
but without specifying an exact temporal relationship.

Timed notifications express passage of physical simulation time.

5. Conceptually the processes in the evaluation phase run concurrently, so com-
munication through channels does not take place immediately. Communication
operations and signal changes are noted down by channels but not executed. After
all runnable processes have been handled, the update phase is used by channels to
put the noted down effects in place. This can trigger new events.

6. This process repeats with step 2. If delta notifications are pending, these are
considered earlier than any timed notification and the resulting simulation loop
iteration is called a delta cycle. Simulation ends if no events are pending anymore
or the model explicitly requests simulation end.

6.3. System Level Modelling

Given the wide range of abstraction levels, SystemC models support a typical system
level design flow starting at a purely functional specification without any hardware
structure. In subsequent steps, computation and communication refinement would
then introduce a hardware platform and mappings of system behaviour to various
computational elements and their communication infrastructure.

Hardware models can then introduce extrafunctional properties. Chief among them is
timing, while energy is another common property of interest. More rarely, simulations

57

6. Modelling and Simulating with SystemC

model temperature and ageing effects. Time is a first class citizen in SystemC; other
physical properties are supported through add-on libraries, e. g. Timed Value Streams
[32].

While the typical design target is an embedded system, this flow can also work on
larger systems like a networked cluster architecture. In this case, some existing facilities
might be based on assumptions that either do not hold for large systems or are too
detailed for feasible simulation. This affects both, computation and communication
modelling, as described in the following sections.

6.3.1. Computation

In regular system design, computation modelling has three major levels of detail: un-
timed host-based execution, annotated host-based execution, and simulated execution.

Purely functional behaviour models run application code compiled natively inside
SystemC processes; this is also called host-based execution. In this mode, no extrafunc-
tional information (timing, energy, etc.) of the code is present in the simulation. On the
other hand, simulation speed is maximised.

The next level of detail adds annotations to host-based code. SystemC offers the
wait() call that suspends the running SystemC thread for a specified amount of sim-
ulation time. These can be inserted into application code in appropriate places so that
simulation time is advanced in intervals. More wait() calls mean more timing accuracy
but less performance due to additional scheduling overhead.

Actual time values can be determined in a variety of ways. For simple CPUs, a
static timing model might be able to calculate timings from compiled machine code.
Measurement is another common approach; it works well on different granularities
like whole functions or basic blocks. Expert estimation may also work, and even some
arbitrary constant delay sometimes conveys enough information for the desired insight.
The overview in Section 4.2.5 applies here as well.

The most detailed way to model computation timing is simulated execution. Ap-
plication code is ported to and compiled for the target platform and executed inside
an instruction set simulator (ISS) for the target architecture. Models can then use the
executed instruction stream to provide detailed timings. Accuracy ranges from counting
of number of executed instructions up to clock cycle accurate simulation of all microar-
chitectural details. While theoretically offering best possible accuracy, performance is
often several orders of magnitude slower than host-based execution.

Computation timing often also depends on more resources than just a CPU core. RAM
bandwidth, cache size, and other details can influence computation timing between
different CPU cores. The hierarchical modelling approach that is common in SystemC
is well suited to represent these effects: For example, two CPU cores could be part of
an intermediate SystemC module that also contains the shared cache. By routing both
core’s RAM accesses through that cache, the hierarchy models the interference quite
naturally.

58

6.4. Time and Energy Traces

6.3.2. Communication

For on-chip communication, there are two major modelling approaches: modelling
individual signals and transaction level modelling.

Signal-level models contain all individual digital signals of a transmission path, which
can easily amount to over a hundred signals for a parallel bus. Simulating the exact
signal waveforms is costly, but is clock cycle accurate.

That’s needlessly much detail for many use cases. Transaction level modelling (TLM)
raises the modelling abstraction so that communication is described in terms of com-
munication transactions. A TLM transaction is a full read or write operation across a
communication path, e. g. a bus or a serial line. Since communication protocols tend
to be very regular, TLM can still reach clock cycle accuracy. TLM leaves out the actual
signals involved, but keeps communication content and timing. Timing accuracy is
variable; TLM offers multiple speed vs. accuracy trade-offs.

When modelling networked communication, application-level communication is usu-
ally much more complex and spans the entire range of the OSI reference model [33].
Multiple communication protocols work on different layers. A single read or write
transaction involves effects that are hard to predict (e. g. multiple round trips for session
establishment, retransmission upon packet loss, or computational overhead of encryp-
tion). Thus a simple TLM approach can’t model communication timing as easily as with
local communication.

To fill that gap, dedicated network simulation tools exist. A popular tool is OMNET++
[34] (also known as OMNEST, which is the name of the commercially licensed variant). It
is a network simulator that supports co-simulation with SystemC. The INET framework
for OMNET++ provides simulation models for a wide range of internet-related network
protocols from all protocol layers. With such a simulator, even nondeterministic effects
like packet loss can be simulated.

Simulating all network layers is slow of course. This effort may not be needed: For
switched Ethernet, transmission is pretty reliable and the major source of nondetermin-
istic behaviour is competing (unaccounted) network traffic. In a fully controlled network
environment, there is no competing network traffic. Furthermore, protocol effects that
are hard to model individually might average out over longer transfers. A simple time
model based on average net bandwidth would then allow TLM to model networked
communication.

6.4. Time and Energy Traces

In the end, a simulation run should produce some kind of useful output. For functional
testing for example, input/output behaviour of the system is of interest. SystemC includes
a tracing facility with which internal state can be recorded in value change dump (VCD)
files . VCD is standardised as part of Verilog (IEEE 1364) and supported by various
electronic design automation (EDA) tools. VCD files contain a set of variables (signals)
and their values over time, including timestamps for each value change.

59

6. Modelling and Simulating with SystemC

The source of VCD values can be SystemC signals, plain C++ variables, or explicit API
calls that assign a new value to a given VCD entry. As a result, VCD is not restricted
to tracing communication signals and their timings. Values being traced could also
represent current power consumption of individual system components, for example.
Formore detailed analogue systems, simple discrete snapshots of average powermight

be insufficient. These are often modelled in a time-continuous manner. The add-on
library SystemC-AMS (analogue mixed signals) allows such models and offers its own
tracing facility designed after core SystemC tracing.
Both tracing facilities have the drawback that the amount of information in big sim-

ulation models can become unwieldy. When looking at extrafunctional properties, a
full trace is often not needed, only consolidated values. For example, when comparing
a simulation to measurements of the main power supply (see Section 5.3.2), only the
(momentary) overall power consumption is of interest. In a simulation model that cal-
culates power in many different subcomponents, the amount of data could be reduced
by only storing the sum of all power values instead of all the individual values. This
consolidation means extra effort in the SystemC model.
To make matters worse, systems might use different clock frequencies and thus timing

resolutions for their extrafunctional properties. This makes consolidation even more
difficult. The Timed Value Streams [32] add-on library solves this problem by providing a
tracing framework that supports on-the-fly consolidation and resampling. Furthermore,
tracing code remains separated from simulation logic, improving maintainability of
both.

60

7. Thesis Contributions

Applying the methods and technologies presented so far to the context outlined in
Section 1, this thesis proposes a number of contributions to address the research questions
presented in Section 2.1.

7.1. Contributions

Contribution 1. An application meta-model for large parallel applications that is suitable for
static modelling of a significant subset of high performance computing (HPC) workloads.

The application meta-model is based on task dependency graphs. Unlike current
approaches in HPC that use dynamic construction of task graphs during run time,
application models are meant to be built statically (ahead of time). This is the crucial
property that the methodology proposed in this thesis builds upon.

Two notable drawbacks of static construction are graph size and the inability to
vary graph structure based on intermediate results. The application meta-model and
associated methodology address the scalability issue by employing algorithms with (at
worst) linear time complexity. Data dependencies in general cannot be handled, but
there are ways to express some important kinds of data-dependent graph variation.

Contribution 2. A hardware platform meta-model of highly heterogeneous cluster systems that
allows variable abstraction and irregular communication infrastructure.

The hardware meta-model allows users to model heterogeneous compute resources
and their equally heterogeneous communication infrastructure. The level of detail in
these models is intended to capture relevant system parameters (e. g. communication
bandwidth). A given platform model should contain just enough structure and all
required parameters to build a complete simulation model.

Contribution 3. A well defined execution model for applications provided as Contribution 1
models executed on platforms captured in Contribution 2 models, and an implementation of this
model for clusters running the Linux operating system.

Predictability requires well defined execution semantics for applications. The method-
ology proposed in this thesis builds upon a custom execution runtime hosted on Linux1

for applications modelled as described above. The most distinctive property is that it
assumes a static task graph.

1Probably working other operating systems as well, but that is untested.

61

7. Thesis Contributions

This execution runtime does not aim to be exceptionally fast. Nevertheless, application
speed should be at least in the same order of magnitude as a straightforward best-effort
implementation. Otherwise, optimisations discovered through the methodology of this
thesis are of little use.

Contribution 4. A parameterised resource model (timing and energy) for applications, and a
measurement-based methodology to determine platform and application model parameters.

Since the ultimate goal of this thesis are time and energy predictions, a platformmodel
needs to contain parameters that facilitate such predictions. Physical measurements are
one way to provide the required data. The important part of this contribution is that
such measurements must be practical even in the context of HPC hardware.

Contribution 5. A simulation-based methodology for time and energy prediction for large
parallel applications on parallel cluster architectures.

This is the central step that joins the preceding contributions to create actual predictions.
It supports multiple usage scenarios:

• In an interactive optimisation flow developers would use predictions to make
design decisions for an application while they are still developing it.

• In an interactive hardware tailoring scenario users would explore different hard-
ware platforms in order to find the one most suitable for a given application or set
of applications.

• In automated variants of the above users would perform design space exploration
(DSE). They would generate application and/or platform variants and determine
the set of pareto-optimal variants.

The key property to support all of these is speed: Prediction is fast enough so that these
scenarios work with a useful delay.

Contribution 6. An affordable evaluation platform for evaluation of Contributions 1 to 5.

To evaluate the proposedmethodology in its original scale, a high performance comput-
ing system with suitable energy measurement infrastructure would be needed. Existing
approaches do not meet the capabilities needed for evaluation.

As this doesn’t exist as an off-the-shelf obtainable product, this thesis proposes a
scaled-down cluster system made of common single-board computers. The ratio of
computation speed over communication speed matches HPC systems, so the evaluation
of Contribution 5 likely stays valid when applying it to HPC-scale systems.

Since off-the-shelf components evolve quickly, the design principles behind this con-
tribution can also be used to build updated variants of the embedded cluster system
while systematically checking for common pitfalls of consumer grade components.

Contribution 7. A measurement system for synchronous multi-channel power measurements.

62

7.2. Assumptions

As a minor byproduct, this thesis proposes a custom measurement platform. It offers
multiple synchronised channels of power supply current and voltage measurement to
support the externalmeasurement approach presented in Section 5.3.2. Signal bandwidth
is high enough to identify systematic noise, which means it can observe all meaningful
details of a power supply measurement approach.

The measurement platform is not strictly required, and other means of obtaining
measurement data for Contribution 4 are equally valid. The proposed platform is much
cheaper than traditional measurement equipment, however. It makes it financially
feasible for employers to give all developers their own measurement system.

This platform is integrated with Contribution 6 for measurement of the entire cluster
system.

7.2. Assumptions

The methodology proposed in Contribution 5 relies on several assumptions:

Assumption 1. Applications can be expressed as a static task graph with up to 107nodes.

The chosen applicationmeta-model is not capable of expressing all kinds of parallelism,
but many algorithms can be unrolled to generate a static task graph. The graph size limit
is big enough for practical applications, e. g. for finite element simulations with a million
cells.

Due to linear scaling throughout the methodology, the actual limit is dependent on
how slow a single prediction may get, and at what point external nonlinear effects
become noticeable, e. g. from the operating system.

Assumption 2. The majority of application tasks can be grouped into a few classes (N < 10).

In other words, an application executes a small set of code fragments repeatedly, but
in arbitrary combinations and with different data sets. Among others, this covers the
class of HPC applications that make heavy use of linear algebra libraries, but also many
mesh and N-body problems (see Section 4.2.1).

Assumption 3. Parallelism is coarse grained.

More specifically, execution times of atomic units of computation are assumed to be
between 10−2 s and 104 s. Shorter tasks are permitted as long as they do not contribute
significantly to the overall execution time. Application maketime is expected to be on
the order of hours or days.

Longer tasks are permitted and should work as well, but evaluation does not cover
larger time scales.

Assumption 4. Communication transactions are on a similar time scale as the atomic computa-
tion operations.

63

7. Thesis Contributions

The majority of transmission operations are expected to have a size between 105 bytes
and 109 bytes. This precludes applications that perform frequent small scale synchron-
isation.
The main reason for this requirement is of a practical nature: The exact internal

operation of networking devices (e. g. Ethernet switches and network interface hardware)
is almost impossible to predict. It shows nondeterministic behaviour, so this thesis relies
on scale to minimise the impact of that nondeterminism.
In theory, a communication stack with improved determinism (e. g. Ethernet TSN)

could improve or even lift this requirement, but practical availability of Ethernet TSN is
still insufficient for building evaluation systems.

Assumption 5. Applications have no requirement for significant amounts of variable-time
input/output besides explicitly modelled communication.

This mainly addresses mass storage. Applications that process data sets much larger
than can be stored in distributed RAM need to perform input/output operations to a
mass storage medium. Predicting the latency of these operations is an entire research
field in itself.
Consequently, loading of initial data and storing of final results is assumed to happen

in constant time. An alternative view is that loading and storing of data happen outside
the predictions.

Assumption 6. Hardware platforms provide sufficient control over automatic mechanism that
vary execution time.

The main effects addressed here are dynamic voltage and frequency scaling (DVFS)
and thermal throttling as explained in 4.1.4 and 4.1.5. These may react to influences
outside of the modelled system, like ambient temperature. As a result, meaningful
prediction needs the execution runtime to turn off automatic clock frequency changes
and lower the operating frequency to a sustainable value.
This assumption means that performance may be lost because running at a lower

clock frequency may waste temporarily available thermal budget. On the other hand,
the higher the utilisation is the less CPU temperature will vary. So this might not be a
significant loss for fully optimised applications.
While not addressed in this thesis, it should be possible to extend the proposed

methodology to support explicitly controlled DVFS in future work.

Assumption 7. The atomic units of computation have already been fully optimised for microar-
chitectural effects.

The methodology does not address this level of optimisation; due to Assumption 3,
this can be separated into a separate step that is outside the scope of this methodology.
This also means that future changes in the code will invalidate predictions: They

cannot easily be modified for a change in low-level application code. After such a change,
the prediction process needs to be rerun partially or entirely.

Assumption 8. The hardware platform is a real-world heterogeneous cluster system.

64

7.2. Assumptions

This is mostly not meant as a limiting assumption, but as an explicit statement towards
adverse effects the methodology does take into account. Among them are:

• more than two different kinds of computation resources

• at least tens to hundreds of compute resources

• manufacturing variations between nodes concerning power and timing character-
istics

• asynchronous operation of individual cluster nodes

More restricted platforms will work, of course, but for those there may be more efficient
methodologies for time and energy prediction.
One limiting factor this assumption includes is that the proposed methodology does

not explicitly model heat, so the target platform needs to run in a temperature-controlled
environment for reliable results.

65

7. Thesis Contributions

66

8. Related Work

The methodology proposed in this thesis mainly relates to other approaches to predict
extrafunctional application properties in high performance computing. Physical meas-
urement is a secondary contribution. This section will discuss these fields separately.

8.1. Time and Energy Prediction

Table 8.1 shows an overview of the prediction techniques discussed in this subsection.

8.1.1. Execution-Driven Simulation

Execution-driven system simulation is an obvious technique for time and energy predic-
tions. Many flexible simulation platforms exist that manage power as well as timing,
e. g. Gem5 [64] or Simics [63].

These can be many orders of magnitude slower than real time, so they are not suitable
for HPC applications. Optimisations include instrumentation in combination with static
recompilation or dynamic binary translation, e. g. [8].

SystemC [7] as used in this thesis is a popular simulation framework in embedded
system design, although usually at a less abstract level. The COMPLEX framework [38]
achieves high performance by using SystemC with host-based execution.

Parallel discrete-event simulation provides further speedup, and combining this with
dynamic binary translation [8] yields impressive results.

Still, none of these can overcome the inherent performance limits of execution-driven
(i. e. functional) simulation. As long as the simulated platform is much bigger than
the simulation host, execution-driven simulation has performance limits that cannot be
overcome.

Another approach to speed up execution driven simulation is sampling and check-
pointing. Simulators like SimPoint [6] or SMARTS [9] use this to only execute certain
parts of a system simulation. While useful for localised optimisation even for HPC
applications, this does not help with predictions of overall application properties.

There is one place where execution-driven simulation might be of use in the context
of this thesis: A suitably accurate simulator could be used for the characterisation phase
instead of doing measurements on real hardware specimens.

67

8. Related Work

Table 8.1.: Typical characteristics of prediction techniques (represented by prominent
examples) and comparison to the proposed methodology

Section/Class Speed Granularity Energy? Data Heterogeneous
(Examples) (est.) Deps.? Platforms?

8.1.1 Execution
Gem5 [64] 10−3× Instruction Yes Yes Yes

8.1.2 Trace
PSINS [58] 103× MPI - Yes -

TaskSim [59] 1× –
10−5×

Task
–Instruction

- Yes Yes

RMAP [48] O(1) Application Yes - -

8.1.3 Abstract
SimMatrix [61] 1× Task - - -

8.1.4 Analytical
Petri Nets [62] 102× Task - - Yes

This Thesis > 103× Task Yes (Histogram) Yes

8.1.2. Trace-Based Simulation

If exact functional behaviour isn’t needed, abstraction is away to simulate extrafunctional
behaviour of HPC-scale applications. More specifically, trace-driven simulators skip
executing actual code during the prediction process. Dimemas [66], PSINS [58], and
TaskSim [59] are examples of this class of simulators.

Dimemas and PSINS work at the granularity of MPI API calls. In some circumstances,
these can reach speeds comparable to the methodology proposed in this thesis.

TaskSim is significantly more detailed, down to individual memory operations. This
allows it to provide accuracy much closer to execution-driven simulators. Of course,
simulation speed gets closer to execution-driven simulation as well: even in its fastest
mode, TaskSim only reaches parity between simulation time and simulated time.

Trace-driven simulators have drawbacks over this thesis’ methodology, as explained
in Section 4.5.4: they require execution traces from a comparable system, which in turn
means that the application must already be completely runnable.

SST/Macro [60] is an example of the synthetic trace approach. It allows performance
prediction during application design similar to the methodology proposed in this thesis.
The main difference is that SST/Macro uses a simulated MPI API as programming
model. With MPI, the skeleton application encodes computation, communication, and
parallelisation as C++ code. This means that target platform variations require changing
the skeleton application. Similar complexity affects time modelling; in fact SST/Macro

68

8.1. Time and Energy Prediction

focuses on communication and uses a very simple computation time model.

A recent publication [67] shows an approach using Dimemas or SST/Macro driven by
skeleton applications, which are also an important option for the methodology proposed
in this thesis. Similar to this thesis, the paper uses characterisation data from a test
run on a small subset of the target machine to predict application behaviour on the
full machine. Skeleton applications eliminate the need for full execution, but hurt
Dimemas performance; except for small configurations, simulation time is much slower
than simulated time. As the approach is based on Dimemas or SST/Macro, their other
limitations still apply.

In HPC simulators, energy is usually ignored. A notable exception is the RMAP
resource manager [48], which predicts power and timing of a given HPC application
in order to find the optimal subset of the available hardware for execution. In relation
to the proposed methodology, it has two main drawbacks: its linear regression model
probably only works for homogeneous platforms, and it needs multiple executions of
the full application on the target platform for model building. On the other hand it is
very fast, since a linear regression model has O(1) time complexity for predictions.

8.1.3. Abstract Simulation

Abstract simulation is not based on execution of real application code, neither directly
nor indirectly through traces; instead it uses abstract approximations for significant parts
of the application.

In the HPC world, it is rarely seen (except in the form of trace-based simulation).
SimMatrix [61] is an example that explores future exascale systems. It is specialised for a
specific scenario, though: it assumes a fixed cluster architecture and workload. Again, it
doesn’t handle energy.

The main point of this thesis is to propose a much more general approach of abstract
simulation without incurring the inflexibility of existing trace-based methods.

8.1.4. Analytical Modelling

In theory, analytical modelling approaches can be faster than simulation-based ap-
proaches. One example for HPC-style hardware is [65], but it addresses single-core
performance only.

The authors of [62] use Petri nets on task graphs; they demonstrated it on small task
graphs only (less than 10k tasks) and use an even more abstract platform model than
this thesis.

In practice, analytical modelling of multi-core architectures and big cluster systems
is difficult or not feasible at all. There are various approaches using Integer Liner
Programming or Timed Automata, but they all suffer from poor scalability due to the
inherent nonlinear nature of asynchronous and heterogeneous cluster systems.

69

8. Related Work

8.2. Measurement Platforms

There are commercial vendors for highly parallel power measurements. For example,
dSPACE offers modular measurement systems with variable channel count and accuracy.
Such systems support a wide range of voltages and currents, but easily cost tens of
thousands of Euros even for low channel counts. As a result, various research projects
built low-cost solutions tailored to their requirements.
The MAGEEC (Machine Guided Energy Efficient Compilation) project has designed

an analogue measurement interface board [35] measuring three channels at up to 2 MHz
if paired with a suitable ADC. There is no published evaluation of accuracy or effective
analogue bandwidth, however.
TheADEPT (Addressing Energy in Parallel Technologies) project similarly produced a

custom measurement solution [36]. It is based around a central FPGA-based processing
board that supports up to about 80 channels of dedicated 18-bit ADC boards each
running with up to one million samples per second. There is no published evaluation
of the platform itself either. The ADEPT solution has additional hardware tools for
measurement of PCI Express and SDRAM boards.
In [51], Khan et al. present a power model that uses the Intel RAPL feature present in

modern Intel CPUs to derive system power. While this is based on CPU activity counters
and doesn’t really measure power, the accuracy is close to physical measurements. The
time resolution is 1ms (although jitter is reported to be high), and mean error is less than
5%. This is within one order of magnitude of the proposed measurement infrastructure
and widely (but not universally) available.
Apart from the lack of accuracy evaluation, the ADEPT solution would have fulfilled

the requirements of this thesis. However, it wasn’t available at the time this thesis’
evaluation platformwas built. Furthermore, the measurement platform designed for this
thesis combines the cost effectiveness of the MAGEEC approach with the most important
performance aspects of the ADEPT approach.

70

Part III.

Models and Methodology

71

9. Power and Timing Prediction
Methodology

Figure 9.1 shows the setting in which the proposed method is assumed to work. Users
work on a (potentially) parallel application that they want to deploy on a parallel cluster
system. The deployment process involves mapping parts of the application to individual
cluster servers for execution. Measurement of the running application can then provide
feedback for optimisation of the application’s structure or its mapping to the platform.
The methodology I propose adds an alternative path, where the mapped application is

not executed; a simulation predicts application timing and energy usage instead. Users
can then perform optimisation the same way as if they had measurements.
Predictions are only useful if they are faster than physical execution. They must be

orders ofmagnitude faster if they should support useful iterative developmentworkflows
of high performance computing (HPC) applications on typical developmentworkstations.
This is only possible through abstraction – a simulation that leaves out many details of
physical execution. As a result, predictions will not match physical measurements, and
the accuracy describes how reliable they are.

9.1. Overall Design Flow

Figure 9.2 shows the final development flow as proposed in this thesis including the
models that are needed. When starting out with a new application design, the overall
methodology operates in a series of steps:

Task Graph Creation To use the proposed prediction methodology, users first need
an abstract model of their application in form of a task graph (see Section 9.2.1). There
are various ways to create these, but I anticipate three main approaches:

• An application might already use task graph representation. Users would only
need to provide a transformation into the models specified above.

• Users start from scratch and use our flow to guide design decisions in a top-down
development process. They model their application using skeleton applications.

• For a bottom-up approach, users can decompose a sequential reference implement-
ation of an application. They extract computation kernels, which contribute to the
characterisation database, and control structure, which they transform into a task
graph.

73

9. Power and Timing Prediction Methodology

Figure 9.1.: Assumed development approach for the prediction methodology.

Figure 9.2.: Final development flow including all models. Bold borders indicate elements
introduced by this thesis.

74

9.1. Overall Design Flow

The task graph does not fully define application behaviour. An execution runtime model
(see Section 9.3) defines how tasks are executed across a given target platform, both for
simulation and real execution. This model is part of the methodology; the user does not
need to create it.

Platform Graph Creation A platform model provides information about the target
compute system (see Section 9.4). It captures type, number, and connectivity of pro-
cessing elements, and their hierarchical composition. Users can easily create these by
hand, or use existing ones.

Platform Resource Model Creation Users need to perform a platform characterisation
process or have the results of one already available. (See Section 9.4.2)

Computation Resource Model Creation A characterisation database supplies perform-
ance and energy data for functional kernel code (see Section 9.5). In the case of top-down
modelling from scratch, users could delay implementing kernel code and provide es-
timates for early feedback at less accuracy. Once kernels are implemented, prediction
accuracy increases.

Mapping The next step is mapping (see Section 9.6), which uses task graph, resource
model, and platform model to map each task of the task graph to a processing element
on the target platform and generates a task list for each PE.

Simulation Simulation then uses this mapping in conjunction with the resource model
to predict maketime and power consumption of the entire system in detail. In addition
to those, it may calculate other metrics provided by simulation models (see Section 9.7).

Iteration With these predictions, users can successively refine and optimise the applic-
ation: they can restructure the task graph, e. g. by changing the amount of parallelism,
they can change the application’s separation into kernels, and they can even start over
and rewrite the application using different algorithms. Simulation is intended to be fast
enough for frequent iterations of this process in an interactive workflow.

Deployment Finally, users run the optimised application using the physical task graph
execution runtime, which executes concrete implementations of computation kernels
according to the specifications of the mapped task graph.

The following subsections explain each model and the simulation process in detail.

75

9. Power and Timing Prediction Methodology

9.2. Abstract Application Model

The main principle of the proposed methodology is that simulation does not execute
functional application code. Therefore, the proposed methodology uses an abstract
application model, labelled task graph in Figure 9.2.

9.2.1. Task Graph

The application model is an attributed directed acyclical multigraph, the task graph. In
literature, there aremany variations of task graphswith subtle differences and capabilities
(see [10] for an overview). For some applications (e. g. finite element simulation using
iterative refinement), this task graph can be thought of being executed periodically, while
predictions cover a single iteration.
The task graph I propose is the primary applicationmodel; it expresses an application’s

high level parallel data flow structure. Experience has shown that trying to extract it
from existing program code by automated means is difficult or impossible; users of the
methodology should design and maintain it explicitly.
An interesting comparison for these task graphs is that they are similar to the syn-

chronous dataflow (SDF) model of computation as used in embedded system design.
More specifically, task graphs are roughly equivalent to homogeneous SDF graphs. This
means an SDF model can be transformed into a functionally equivalent task graph by
determining a static schedule and transforming SDF activations into task graph tasks1.
The resulting task graph should be executed repeatedly. The reverse transformation is a
trivial 1:1 mapping of graph elements.

Task Graph In the task graph, nodes represent computation and are called tasks,
while edges represent communication and are called data dependencıes. More formally
defined, a task graph G is a tuple

G = (T,D, p, s)

where T is the set of tasks andD is the set of data dependencies., and p, s are functions
that specify the predecessor and successor of each data dependency, respectively.
This definition includes graphs with multiple disjoint task subsets. This represents

running multiple independent applications in parallel.
Figure 9.3 shows an example for Cholesky matrix decomposition.

Kernels Each task is an invocation of a code fragment called a kernel. Kernels have
attributes that define required ınput data and produced output data. Kernels can be
parametrised by varıables, e. g. to specify the data size they operate on.
Formally, an application is based on a setK of kernels. Each kernel k ∈ K is annotated

with a set Ik of inputs, a set Ok of outputs, and a set Vk of variables. Inputs and outputs

1Additional work needs to be done to convert communication, but that’s similar in complexity.

76

9.2. Abstract Application Model

INIT

POTRF

TRSM TRSMTRSM TRSM

SYRK GEMM SYRKGEMMGEMMSYRK GEMM GEMMGEMM SYRK

POTRF

TRSM

SYRK

TRSM

GEMMSYRK

TRSM

GEMMGEMM SYRK

POTRF

TRSM

SYRK

TRSM

GEMM SYRK

POTRF

TRSM

SYRK

POTRF

GEMM

TRSM

SYRK

POTRF

Figure 9.3.: Example of a task graph performing Cholesky matrix decomposition with
5× 5matrix subdivision. Colour denotes different kernels.

77

9. Power and Timing Prediction Methodology

Listing 9.1: Example of a kernel definition in an XML serialisation.

<kernel id="GEMM">

<variable id="tile_size" />

<input id="GEMM.A" size="tile_size * tile_size * 8"/>

<input id="GEMM.B" size="tile_size * tile_size * 8"/>

<input id="GEMM.C" size="tile_size * tile_size * 8"/>

<output id="GEMM.Cout" size="tile_size * tile_size * 8"/>

</kernel>

Listing 9.2: Example of a task definition in an XML serialisation.

<task id="GEMM-0" kernel="GEMM">

<assign var="tile_size" val="1024"/>

</task>

have one attribute, the data size expressed as amathematical expression that can reference
kernel variables. Listing 9.1 shows an example for the GEMM kernelwhich has one variable
and three inputs; it calculates Cout = AB + C, where A, B, and C are two-dimensional
square matrices of double-precision floating-point values. The GEMM subroutine from
the BLAS library modifies C in place, but as a kernel this is not relevant; conceptually,
inputs and outputs are distinct.

Tasks Every task t ∈ T is annotated with the kernel k(t) ∈ K it executes, and a function
νt : Vk(t) → R that assigns a value to each kernel variable. Listing 9.2 shows an example
for a task executing the GEMM kernel on a set of 1024× 1024 element matrices.

Data Dependencies Each dependency has annotations that specify which output of
the predecessor task is transmitted to which input of the successor task. If multiple
data sets are transmitted between two tasks, they are modelled as parallel edges with
differing annotations.

Thismeans that a dependency d ∈ Dwith predecessor p(d) ∈ T and successor s(d) ∈ T
is further annotated with output od ∈ Ok(p(d)) and input id ∈ Ik(s(d)). Listing 9.3 shows
an example for two GEMM tasks executing in sequence.

Task inputs must always have exactly one dependency associated with them; the tuple
(s(d), id) uniquely identifies every dependency. On the other hand, the tuple (p(d), od)
uniquely identifies each data set (some of which may be transmitted to multiple target
tasks or not at all).

Validity Constraints Not all task graphs that can be expressed this way are actually
valid. Some additional constraints apply:

78

9.2. Abstract Application Model

Listing 9.3: Example of a dependency in an XML serialisation

<dependency predecessor="GEMM-0" successor="GEMM-1"

src="GEMM.Cout" dest="GEMM.A"/>

1. The graph must not have cycles.

2. All annotations as specified above must be present.

3. For each dependency d ∈ D, the size of output od of its predecessor must match
the size of input id of its successor

2.

4. For every task t ∈ T and every input ik(t) ∈ Ik(t) there must be exactly one depend-
ency d ∈ D associated with it, i. e. id = ik(t).

There are additional properties that might prevent execution of a task graph on real-
world systems, like memory required to store incoming inputs until they are consumed.
These do not invalidate the task graph itself, but might invalidate a particular assignment
of tasks to nodes in a target platform.

This thesis does not address these platform-specific validity constraints. Platform
resources are always assumed to be sufficient for any given assignment.

9.2.2. Application Semantics

Conceptually, tasks run atomically and without side effects. They only start execution
after all incoming data dependencies have been transmitted from their predecessors.
Incoming communication happens strictly before the start of the task, while outgoing
communication happens strictly after the end of the task.

On a real system, various effects can delay or interrupt the execution of a task, e. g. hard-
ware resource conflicts, runtime middleware, or operating system scheduler. Tasks also
have the obvious side effects of causing a computation resource to consume energy and
time. The application model does not cover these properties; rather, they emerge from
the properties of a particular mapping to a target platform.

In real-world applications, some tasks must have functional side effects. Input data
must enter the application in some way, and results must be output somehow. Thus
some tasks must perform I/O activities that cannot be expressed as data dependencies.

In cases where the task graph describes a single iteration of a periodic process, users
can use special tasks to transfer state from one iteration to the next. Since these tasks
only influence the next iteration, they do not have side effects for the currently running
task graph.

Generally speaking, side effects are allowed as long as they do not break the isolation
between tasks (both, functionally and regarding time and energy). Furthermore, I/O

2Strictly speaking, their data types must match, but type checking is out of scope for this thesis.

79

9. Power and Timing Prediction Methodology

tasks must either be predictable by the proposed characterisation approach or they may
only consume a negligible share of the overall maketime and energy3.

9.2.3. Modelling Process

There aremultiple ways to create such a task graph. Possible approaches are fullymanual
specification, static code analysis (see for example [13]), or partial evaluation techniques.

Skeleton applications are a form of partial evaluation. They offer the advantage of
configurability: with little effort, users can create skeleton applications that generate
multiple task graphs that differ in degree of parallelisation, problem size, and other
properties. This allows fully automated design space exploration, for example. Listing 9.4
shows a code excerpt that works this way. The main loop is exactly the code a serial
implementation would run, except it would call Basic Linear Algebra Subprograms
(BLAS) functions instead of creating tasks.

Skeleton applications can also model dynamic programming techniques to a certain
degree. For example, they may be able to build optimised task graphs for sparse matrix
operations if enough information about the input data set is present.

Listing 9.4: Skeleton program excerpt that generates Cholesky matrix decomposition
task graphs in different parallelisation granularities.

// function that adds task and returns outgoing data set id

extern DataId addTask(string kernel, vector<DataId> inputs);

// task graph granularity parameter

int num_tiles = 5;

// dependency tracking matrix

DataId matrix[num_tiles][num_tiles];

// create data source tasks

... // (omitted for brevity)

// run algorithm main loop

for (int k = 0; k < num_tiles; k++) {

matrix[k][k] = addTask("POTRF",

{ matrix[k][k] });

for (int i = k+1; i < num_tiles; i++) {

matrix[k][i] = addTask("TRSM",

3Otherwise simulation would need to model those I/O activities, which gets complex pretty fast (e. g. for
spinning hard disks).

80

9.2. Abstract Application Model

{ matrix[k][k], matrix[k][i] });

}

for (int i = k+1; i < num_tiles; i++) {

for (int j = k+1; j < i; j++) {

matrix[j][i] = addTask("GEMM",

{ matrix[k][i], matrix[k][j], matrix[j][i] });

}

matrix[i][i] = addTask("SYRK",

{ matrix[k][i], matrix[i][i] });

}

}

// create data sink tasks

... // (omitted for brevity)

9.2.4. Discussion of Design Decisions

Task Graph Task graphs in general apply to modern HPC problems; compared to
traditional parallel program code they have been shown to offer performance advantages,
code size improvements, and better parallelisation properties [16].
This is consistent with the observation that one of the biggest HPC challenges these

days is to distribute load effectively. Task graphs address exactly this challenge. As-
sumption 7 also emphasises this focus.

Static Task Graph Many task-based runtime systems use dynamic tasks. Since the
goal of this thesis is to generate predictions without actually running application code,
task graphs cannot be dynamic. As a useful substitute, skeleton programs can generate
static task graphs algorithmically. Being a form of partial evaluation, skeleton programs
can include data properties known at prediction time.

Kernel Variables Skeleton programs can use any information they can derive without
running the full application. This even allows them to generate task graphs for some
dynamic programming algorithms or sparse matrix operations.
Kernel variables are simply a generalisation of that ability, so that simulation models

may base their behaviour on them.

Fully Generated Static Task Graph Static task graphs that are generated algorithmic-
ally might not need to be generated all at once. Different parts of a methodology might
possibly work with an evolving, partially generated graph as well (as done for example

81

9. Power and Timing Prediction Methodology

in [13]). The advantage would be that it could handle task graphs that are too big to be
represented in their fully generated form. The main disadvantage would be that no part
of the methodology can base its decisions on a global view of the application.
The decision to fully specify the task graph instead of generating it incrementally

is more or less arbitrary. It makes some parts of the proposed methodology easier to
implement, and achievable sizes are sufficient for real world problems. Themethodology
could also be adapted to partial generation.
Furthermore, the proposed methodology scales linearly with the number of tasks –

regardless of how they were generated. As a result, a task graph that exceeds the limits
specified in Assumption 1 is slow regardless of task graph representation.

Communication Granularity (Assumption 4) Since the goal is to simulate large applic-
ations on distributed platforms, the expected bottleneck is communication. Frequent
synchronisation and small communication transactions can severely reduce overall
performance. Consequently, users will want to avoid them in any case.

Task Granularity (Assumption 3) Task granularity simply matches communication
timing. More detailed modelling would not add significant optimisation opportunities,
i. e. opportunities to perform communication hiding.
Another important aspect of the chosen task/communication granularity is that it

makes the methodology mostly orthogonal to low level optimisation. Cache effects,
branch prediction, and other microarchitectural effects do not have significant effect
across independent tasks. Competition between simultaneously executing tasks are
modelled more generically.

Kernels (Assumption 2) The kernel concept is central to the feasibility of the proposed
methodology. Limiting the total number of kernels is required as characterisation effort
scales polynomially, but usually not linearly. Nevertheless, the stated limits cover a
significant set of applications.

9.3. Execution Runtime Model

The dependencies of the task graph constrain the order in which tasks can be executed.
Since the task graph’s purpose is to express potential parallelism, it does not usually
enforce one unique order. It also does not specify actual parallelism, i. e. how tasks are
distributed across cluster servers and how they are executed there.
The executıon runtıme model (see Figure 9.4) fulfils this role. It is specified as an

executable program that takes information from several models (as shown in Figure 9.2)
and then deterministically executes the application.
The execution runtime uses abstracted APIs for initialisation, communication, and

execution of kernels. For actual execution, a hardware abstraction layer (HAL) provides
interfaces to the physical hardware, while a simulation could provide a virtual HAL that

82

9.3. Execution Runtime Model

Figure 9.4.: Execution Runtime Model

interfaces with the simulation model. That way, physical execution semantics always
match simulation.
Section 9.8 gives details on the physical HAL used in this thesis, while Section 9.7

shows the simulation model.

9.3.1. Initialisation

During initialisation, one instance of the execution runtime is started up on each cluster
server. This deployment is strictly separated from productive operation of the cluster;
the HAL takes care of that by temporal separation (see steps 4 and 5 below).
Each runtime instance receives task and platform graphs with an assignment of tasks

to PEs. It also gets the information which node in the platform graph is the current node.
The task assignment can be created in any way. Section 9.6 explains an automated

process I propose.
The runtime then performs the first half of initialisation:

1. Start communication threads. They are restricted to execute on a single CPU core
dedicated for this purpose.

2. Start one worker thread per local PE. Each one is restricted to run on exactly one
CPU core fully dedicated to that PE.

3. Set up task list for each worker thread.

4. Worker threads wait for a separate start signal.

After that, the HAL proceeds with its own initialisation until all nodes are ready for
operation, then it sends a signal for the second half of initialisation. This synchronisation
ensures that the cluster network is free of deployment-related traffic.

83

9. Power and Timing Prediction Methodology

5. Signal start to each worker thread.

6. Each worker thread calls a HAL method mark that allows the HAL to signal PE
start to an external control system.

7. Each worker thread enters the main loop.

9.3.2. Main Loop

During normal operation, the execution runtime (or rather, each worker thread) operates
in four steps:

1. Fetch the first task from the task list that has not yet been executed.

2. Wait until all input data sets have arrived.

3. Allocate memory buffers for output data sets.

4. Instruct the HAL to execute the task.

5. Release input data sets.

6. Submit all output data sets to the communication scheduler

This repeats until all tasks have been executed. At the end, each worker thread waits
until the others signal completion, then they issue another mark call to signal completion
to an external control system.

9.3.3. Communication Scheduler

In order to make communication more predictable, transmission of each data set is also
deterministically ordered. While execution uses explicit mapping and ordering, the
communication scheduler determines a fixed communication order during intialisation.
It also determines the mapping between communication transactions and transmission
paths.

The precise algorithm of the communication scheduler may have a significant impact
on application performance and might even decide if a given application can be executed
at all4. It does not impact prediction accuracy, however, since simulation and physical
execution both use the same scheduler.

In this thesis, the communication scheduler simply orders communication by their
dependency identifier (see Data Dependencies on page 76) and uses a straightforward
static routing table.

4Due to memory requirements for communication buffers, for example.

84

9.3. Execution Runtime Model

Table 9.1.: Main API calls of the execution runtime HAL

Name Parameters Effect

(initialisation) cluster server id,
task graph,
platform mapping

starts runtime, sets up task list

mark none notify external control system that PE
execution started/ended

startThread thread function,
CPU core index

runs the supplied function in a
hardware thread on the given CPU core

receive none returns received data set handle

send destination node,
output handle

sends data set to destination

run kernel,
input handles,
output handles
variable assignments

executes kernel

allocate size allocates a memory buffer and returns
its data set handle

release data set handle frees a memory buffer

9.3.4. Hardware Abstraction Layer

The HAL consists of three APIs: Initialisation, Communication, and Execution. Table 9.1
summarises the core API calls. The actual implementation is more complex due to
practical issues.

Initialisation provides all required information to each instance of the execution
runtime. This is not a single API call but spread across object constructors and additional
information methods.

Communication provides high level interfaces to send and receive a single data set.
Data sets are represented by abstract handles which may or may not reference actual
data in memory.

Execution provides an interface to run a single kernel with input data provided as
abstract handles, returning output data as abstract handles. Auxiliary functions are for
thread and memory management.

85

9. Power and Timing Prediction Methodology

9.3.5. Overall Design Decision

The prediction approach needs clearly defined execution semantics; it must be reasonably
ensured that simulation and real-world execution actually execute the same program.

An alternative to specifying these semantics from scratch would have been to map
them to the facilities offered by a popular middleware, i. e. MPI. MPI does not have a
specification for its temporal behaviour and multiple vendors may implement MPI in
different ways. This makes modelling its behaviour very difficult.

On the other hand, if applications can reach high utilisation and overhead of the
execution runtime is negligible, there is no significant advantage of using MPI.

9.4. Abstract Platform Model

In order to execute a task graph on a target platform, tasks must somehow be assigned
to execution units of the platform. Among other purposes, the platform model specifies
what execution units are available. Additionally, it models communication paths, and it
contains parameters for simulation models.

9.4.1. Platform Model

The platform model actually consists of two graphs that share a set of nodes but have
disjoint sets of edges.

The platform communıcatıon graph is a directed graph that expresses the commu-
nication structure of a platform. The platform hıerarchy graph expresses physical
composition of the target platform as a rooted tree. It serves two main purposes: It
identifies cluster servers for deployment, where a single execution runtime manages all
resources of the local node; and it allows users to control abstraction levels for energy
models by grouping multiple components that shall not have individual energy models.

9.4.1.1. Platform Hierarchy Graph

The platform hierarchy graph (PHG) is an annotated rooted tree with implicitly direc-
tional edges that express composition: Any node contains its directly connected nodes
further away from the root. This can be simple physical accumulation (e. g. a system
contains the computers it is made up from) or components inside a system-on-chip.
Formally speaking, it is a tuple

PHG = (N,H, r)

where N is the set of nodes, H is the set of edges (the hierarchy), and r ∈ N is the
root element. Each node n ∈ N is annotated with an archıtecture a(n) ∈ A, where A is
the set of known architectures. Architectures identify resource characteristics of a given
node, see Section 9.4.2 for details.

86

9.4. Abstract Platform Model

0
Platform

17
Ethernet-Cat5e

4
RaspberryPi3

1
Switch-1Gb

16
CPU-BusIF

15
CPU-BusIF

14
CPU-BusIF

13
CPU-BusIF

12
DDR3-IF

11
RasPi3-Ethernet

10
RasPi3-Core

9
RasPi3-Core

8
RasPi3-Core

7
RasPi3-Core

6
DDR3-RAM

5
RasPi3-Bus

3
1GbSwitchPort

2
Switch-Backbone

Figure 9.5.: Excerpt of an example platform hierarchy graph.

Each node has a type, so that the generic set of nodes is in fact a union of several
subclasses of nodes: N = NP ∪NC ∪NB ∪NM ∪NH

Processing Elements (NP) (PEs) are CPU cores that can execute tasks.

Communication Elements (NC , NB) (CEs) are nodes that take part in explicit transmis-
sion of data, like network interface ports, Ethernet cable, or network switches.
These are the nodes that both platform graphs share. CEs themselves are sub-
divided into brıdges and channels (see below).

Main Memory (NM) nodes represent shared RAM that PEs can use without the need
for explicit transmission of data. The parent node of a RAM node must contain all
PEs that communicate by sharing memory. RAM nodes are also CEs, and they are
the end points of explicit data transmissions. Memory nodes have an additional
annotation that specifies their size. Both, physical execution and simulation use
this for memory management purposes.

Hierarchy Nodes (NH) are all other nodes. The leaf nodes consist of PEs and CEs, while
internal nodes serve to group components of the system for energy modelling.
Through the architecture annotation, users can associate energy models with each
node. Such an energymodel could thenmodel energy consumption of components
not explicitly specified in the PHG (e. g. voltage regulators), or it could provide a
unified model for all descendants. Finally, hierarchy nodes also allow modelling
of implicit resource conflicts, e. g. slowdowns due to competing memory accesses.

9.4.1.2. Platform Communication Graph

The platform communication graph (PCG) is a directed multigraph that expresses the
communication structure of a platform. Each edge represents a brıdge between two
communication channels, which are the nodes. Or in a formal way, the PCG is a tuple

PCG = (NC , NB, i, o)

87

9. Power and Timing Prediction Methodology

2
Switch-Backbone

17
Ethernet-Cat5e

5
RasPi3-Bus

6
DDR3-RAM

7
RasPi3-Core

8
RasPi3-Core

9
RasPi3-Core

10
RasPi3-Core

Figure 9.6.: Example of a platform communication graph.

where NC ⊂ N is the set of nodes (channels), NB ⊂ N is the set of edges (bridges),
and functions i : NB → NC , o : NB → NC specify the input and output channel for each
bridge. Figure 9.6 shows the PCG counterpart of Figure 9.5.
This definition shows that channels and bridges of the PCG are nodes in the PHG and

thus carry architecture annotations. For communication modelling, architectures also
identify timing properties of a communication path. See Section 9.4.2 for details.
Bridges usually represent interface circuits like an Ethernet driver ICwith its associated

electronic parts and the connector. Channels either represent transmission media like
cables and buses, or they are communication end points. Since bridges always have
exactly two associated channels and are directional, bidirectional interfaces are modelled
as two bridges with opposing direction. In contrast, channels have no directionality and
can have any number of associated bridges. This way, they can model conflicts of shared
transmission media.
Channels and bridges may have implicit requirements on their connections. Enforcing

these requirements is up to the user creating the platform model. In other words, both
ends of a bridge have a type, and channels have typed connection points, but type
checking is out of scope for this thesis.
The algorithms in this thesis assume the communication graph is strongly connected,

i. e. it is possible to send data from every node to any other node in the platform.

9.4.1.3. Platform Graph

The combination of PHG and PCG is the platform graph. Listing 9.5 shows an XML
serialisation of the unified graphs of Figures 9.5 and 9.6. The platform contains an

88

9.4. Abstract Platform Model

Ethernet switch and a system-on-chip (SoC) with four PEs, RAM interface, Ethernet
interface, and an internal SoC bus to connect these. For simplicity, the separation between
SoC and RAM is not modelled, but the outgoing Ethernet cable is not part of the node, it
is a sibling channel.
This example shows that the platform graph is meant to express just the amount of

structure needed. When using energymodels derived from supply powermeasurements
(see page 50), a cluster server can be as little as the PEs, a memory node, a network
interface, and the minimum amount of communication infrastructure.
At the abstraction level shown here, the Ethernet interface actually represents the entire

networking stack of the execution runtime, the operating system, and the hardware.
Listing 9.5 also shows a convenience shortcut: Child elements of channel nodes specify

which bridges interface with a given channel, and in which direction. Since bidirectional
links are commonplace, the XML serialisation allows bidirectional connections via the
<inout> element. Conceptually, this specifies two instances of the referenced bridge
with opposing directional links on either. In fact, the example model does not contain
pure unidirectional or asymmetric links at all. The latter does occur in real world
hardware. See Listing 9.6 for an example.

9.4.2. Platform Resource Model

The main platform graph only contains explicitly modelled information. Simulation
models might need data derived from measurements on the physical target platform.
The main targets for this are power measurements and communication speed. Since
these are application-independent, they only need to be measured once.
Resource model parameters are associated with platform graph nodes through the

architecture annotation. As a result, any parameters must represent the same level of
abstraction. It is usually not sufficient to use nominal best case metrics. Instead, these
parameters should be measured using a representative benchmark that takes all effects
into account that are hidden behind the chosen abstraction.
Listing 9.6 shows some examples of entries in the platform resource model, including

an asymmetric Ethernet interface that sends packets faster than it can receive them. In
theory, any parameter that a simulation model needs could be stored here.
When comparing different applications and/or mappings on a single platform with

the sole intent of determining the best alternative, even idle power can be left out, since
it does not influence the relative ranking.
The actual characterisation process to determine platform parameters depends on

details of the target hardware. Section 10.4 shows a process that works for the evaluation
cluster proposed in this thesis, and which should be a good starting point for other target
platforms.

9.4.3. Discussion of Design Decisions

Dual Graphs The most unusual feature of the platform graph is probably the split
between two different views onto a common data set. Initially, the hierarchical structure

89

9. Power and Timing Prediction Methodology

Listing 9.5: Example of a small platform graph in an XML serialisation

<node id="Switch" architecture="Switch-1Gb">

<channel id="Switch.Backbone" architecture="Switch-Backbone">

<inout peer="Switch.Port0"/>

</channel>

<bridge id="Switch.Port0" architecture="1GbSwitchPort"/>

</node>

<node id="RPi3_0" architecture="RaspberryPi3">

<channel id="RPi3_0.RasPi3-Bus_0" architecture="RasPi3-Bus">

<inout peer="RPi3_0.DDR3-IF"/>

<inout peer="RPi3_0.Ethernet"/>

<inout peer="RPi3_0.BusIF0"/>

<inout peer="RPi3_0.BusIF1"/>

<inout peer="RPi3_0.BusIF2"/>

<inout peer="RPi3_0.BusIF3"/>

</channel>

<main-memory id="RPi3_0.DDR3-RAM" architecture="DDR3-RAM"

size="1073741824">

<inout peer="RPi3_0.DDR3-IF"/>

</main-memory>

<pe id="RPi3_0.RasPi3-Core_0" architecture="RasPi3-Core">

<inout peer="RPi3_0.BusIF0"/>

</pe>

<pe id="RPi3_0.RasPi3-Core_1" architecture="RasPi3-Core">

<inout peer="RPi3_0.BusIF1"/>

</pe>

<pe id="RPi3_0.RasPi3-Core_2" architecture="RasPi3-Core">

<inout peer="RPi3_0.BusIF2"/>

</pe>

<pe id="RPi3_0.RasPi3-Core_3" architecture="RasPi3-Core">

<inout peer="RPi3_0.BusIF3"/>

</pe>

<bridge id="RPi3_0.Ethernet" architecture="RasPi3-Ethernet"/>

<bridge id="RPi3_0.DDR3-IF" architecture="DDR3-IF"/>

<bridge id="RPi3_0.BusIF0" architecture="CPU-BusIF"/>

<bridge id="RPi3_0.BusIF1" architecture="CPU-BusIF"/>

<bridge id="RPi3_0.BusIF2" architecture="CPU-BusIF"/>

<bridge id="RPi3_0.BusIF3" architecture="CPU-BusIF"/>

</node>

<channel id="Ethernet-Cable_0" architecture="Ethernet-Cat5e">

<inout peer="Switch.Port0"/>

<inout peer="RPi3_0.Ethernet"/>

</channel>

90

9.4. Abstract Platform Model

Listing 9.6: Excerpt of an XML serialisation of a platform resource model. Parameters
are given in W, nJ, or ns, where applicable.

<node-architecture id="RaspberryPi3"

name="Raspberry Pi 3"

idle-power="1.3" />

<bridge-architecture id="RasPi3-Ethernet"

name="RasPi3 1Gb Ethernet Interface"

init-latency="830000"

packet-size="1492"

packet-latency="45000"/>

<bridge-architecture id="Exynos-Ethernet-1Gb-in"

name="Exynos 1Gb Ethernet Interface"

init-latency="2040000"

packet-size="1492"

packet-latency="150000"

packet-energy="7000"/>

<bridge-architecture id="Exynos-Ethernet-1Gb-out"

name="Exynos 1Gb Ethernet Interface"

init-latency="916000"

packet-size="1492"

packet-latency="100000"

packet-energy="12000"/>

91

9. Power and Timing Prediction Methodology

only served to express the recommended way of building models in SystemC, while the
platform communication graph was the primary platform model.
The execution runtime model created the true need to express a ‘contains’ relationship.

Nodes in the PCG are not all equal – some share RAM, and shared memory is the
granularity at which common operating systems work. Data transmission through
sharedRAMoccurs as part of the computation, so there is noway to separate computation
from communication on a local node.
The execution runtime model thus runs as a single process on each shared-memory

node with one hardware thread per PE. It then manages local communication simply by
passing memory references between threads. The platform model needs to specify what
nodes are part of such a local node, and the platform hierarchy graph contains exactly
this information.

PCG Edges as PHG Nodes The platform hierarchy contains every element that has a
corresponding simulation model with model parameters. That way, simulation has a
uniform way to access these. Bridges are important for modelling of communication
time, so they need to be nodes in the PHG.
On the other hand, bridges are single input, single output data links, so in the commu-

nication graph they are best represented by edges. The alternative would have been to
make the PCG a bipartite graph of channels and bridges as nodes, which would have a
more complicated structure with no obvious benefit.

Strong Connectivity Constraint This is an easy constraint to make, as it probably
matches all of the target platforms users would like to use. A platform that does not have
a strongly connected communication graph is quite exotic, and mapping and routing
gets much easier if this can be excluded.
This is not a strict requirement if the mapping is aware of connectivity deficits, but

that case is not explored in this thesis. Users would have to supply their own algorithms
for that.

Choice of Platform Resource Parameters The platform resource model allows for
any amount of model parameters. However, at the granularity addressed by this thesis,
simple idle power, communication timing, and packet energy have shown to be sufficient.
Since the overall methodology is based on physical measurements, there would be the

additional challenge of how to obtain more detailed platform parameters if those were
desired.

9.5. Computation Resource Model

As argued before, simulation of the abstract task graph cannot use functional code to
determine time and energy of task execution. It uses a computation resource model
instead.

92

9.5. Computation Resource Model

9.5.1. Abstract Resource Model

The core resource model is based on a set E of available execution configurations. Each
entry e ∈ E is a tuple e = (k, v, a), where k ∈ K is a kernel (see Section 9.2.1) that
executes on a PE of architecture a ∈ A (see Section 9.4) using kernel variable assignment
v : Vk → R.
E is not intended to contain all combinations of k, a, and v. Combinations that are

missing denote invalid mappings. These could be intentional to control execution of
tasks on special-purpose nodes (storage or other I/O for example); they could also be
of a technical nature, e. g. missing implementations for a given CPU type or variable
assignments that would exceed system resources on certain architectures.

The actual resource model is a function m : E → R2 that returns an execution time
measured in seconds and an execution energy measured in Joule for each execution
configuration.

Secondary Resource Model A secondary resource model describes the way that other
tasks running at the same time slow down execution of a kernel. The secondary model
is a simple slowdown factor that is multiplied with the baseline execution time.

Energy is not adjusted. Dynamic energy consumption mainly depends on switching
activity, and a slower task will still perform the same basic calculations inside the CPU.
Of course, slowdown due to resource conflicts does incur additional activity like context
switching, waiting for cache loads, or waiting for free bus cycles. Due to the targeted
task granularity, I assume that this has negligible power overhead compared to the main
work.

Formally speaking, function mload : K ×Kc−1 × A → R2, where c is the number of
CPU cores of A, returns a slowdown factor s so that s ·m specifies the execution time of
a kernel k ∈ K that is executed on a CPU with architecture a ∈ A concurrently with a
set of kernels (k1, . . . , kn) ∈ Kc−1.

Due to practical constraints,mload may not be fully defined. In theory, an exhaustive
characterisation of all combinations of concurrent kernels could be performed, but this
can easily lead to combinatorial explosion for CPUs with many cores.

There are two feasible strategies to limit characterisation effort. Many combinations
might not occur at all, others might be so rare that they can’t significantly affect pre-
dictions. A simulation without the secondary time model can already rule out many
possible combinations, and it can also give an impression of what combinations are most
significant.

For typical HPC workloads, it is common to have a small set of relevant interactions;
for example, matrix multiplication often dominates execution time of linear algebra
workloads, so interaction with matrix multiplication is most important and all other
combinations might not be relevant. In order to judge if a given interaction can have
a significant effect at all, users can assume their hardware behaves sanely: Activity on
two CPU cores should never slow them down by a factor of 2.0 or more, since otherwise

93

9. Power and Timing Prediction Methodology

both pieces of code could better have been executed serially than in parallel5.
Secondly, in larger sets of kernels there might be very similar, yet subtly different

kernels (e. g. variants of matrix multiplication). In order to address their interference,
users can define mload : C × Cc−1 × A → R2, where C is a set of kernel classes, and
c(k) ∈ C is an additional annotation that assigns a class to each kernel. Apart from
changing kernels to kernel classes, the application ofmload stays the same.

9.5.2. Model Building

The intention behind the resource model as specified is that users can derive model
values from automated measurements on a single node.
They first decide on the set E of execution configurations that are relevant for their

application. Then they create a set of representative input data sets for each kernel and
variable assignment. Finally, they run each execution configuration once for each input
data set on a single PE of a single cluster server while measuring time and energy. The
average results constitute functionm.
Then they perform additional measurement runs based on the identified relevant

interactions. In these, the other PEs run a load in parallel that competes for the same
implicitly shared resources, e. g. RAM bandwidth, cache, or low-level execution units.
They measure how long the main kernel runs, and from the ratio tom they createmload.
Users may choose other ways to determinemodel parameters. For example, they could

apply techniques like in [65] to extrapolate values from existing timings with decent
accuracy. A shared database of well known kernels and their properties is another
obvious source.

9.5.3. Discussion of Design Decisions

Core Model The resourcemodel is at the core of the feasibility versus accuracy trade-off.
As evaluation has shown, using an average value of multiple measurements works well
as approximation. At the targeted granularity, data dependent variation of execution
time cancelled out in most cases.
An advantage of such a simple model is the ability to address unconventional pro-

cessing elements in future work, e. g. accelerators like GPUs or FPGAs. Since the model
is so abstract, code running on them can be measured just like execution on a CPU.
Furthermore, since the model is expressed as a simple function, unconventional pro-

cessing elements could use an entirely different model as long as it yields time and
energy of a task.

Secondary Model Modelling competition for cache lines or RAM bandwidth suffers
from the abstractions just like everything else. The slowdown factors have shown good
results in practice, but creating a genericK×K× . . . matrix of all possible combinations

5Of course it’s still possible that this situation happens. However, if this happens regularly, users have far
worse problems than prediction accuracy of the presented methodology.

94

9.6. Mapping

of running kernels is infeasible. As evaluation has shown, the subset selection process
works as a compromise.

Kernel Classes The concept of kernel classes reduces the number of measurements
required and at the same time can improve model accuracy. Classifying kernels is
a manual task, however, and requires the user to understand kernel behaviour with
regard to resource conflicts. There have been attempts to use machine learning for kernel
classification [15], but that is out of scope for this thesis.

Measurement-based Approach It is difficult to get reliable simulators or analytical
models of HPC CPUs. Physical measurement at the level of detail shown in this thesis is
a safe fallback, however. It uses only a single CPU of each architecture, and it works with
simple supply power measurement. This should enable users to model an entire HPC
system without access to the full platform and without need for special measurement
infrastructure. If both are present, they can be used to speed up the characterisation
process, of course

9.6. Mapping

One final part of the input models is still missing, which is the assignment of tasks to
processing elements for execution, and with it the order of tasks on each PE.

9.6.1. Representation

The mapping is expressed as an additional annotation on the tasks in a task graph.
Function s : T → NP × N assigns a PE and a relative execution order to each task.
Reusing the definitions above, T is the set of tasks in the task graph, NP is the set of
PEs in the platform, and n ∈ N defines the order of tasks on the PE, with lower n being
executed before higher values. Listing 9.7 shows an example, where the task from
Listing 9.2 is mapped to the platform from Listing 9.5.

Listing 9.7: Task graph task with mapping annotation in an XML serialisation.

<task id="GEMM-0" kernel="GEMM">

<assign var="tile_size" val="1024"/>

<map pe="RPi3_0.RasPi3-Core_0" priority="1" />

</task>

9.6.2. Automatic Mapping

The purpose of the methodology proposed in this thesis is to predict timing and energy
for a given mapping. Strictly speaking the process of creating such a mapping is out

95

9. Power and Timing Prediction Methodology

of scope. Once a resource model exists, however, automatic creation of mappings that
approximate optimal solutions becomes feasible.
Such an automated mapping algorithm would need to do predictions itself, somewhat

overlapping with the goals of this thesis. However, it also needs to have linear runtime
in the number of tasks due to targeted task graph sizes. This means it cannot explore
significant portions of the space of valid mappings; it must use approximations and
heuristics instead. Predictions done by the mapper would need to be very simple to
yield usable mapping speed.
In [2] I presented an automated mapping/scheduling algorithm that has linear time

complexity in the number of tasks and thus is suitable to create mappings at the scale
targeted by this thesis. By using an extremely simplified communication model, it
performs suitably for the goals of this thesis.
The algorithm uses a constructive hybrid heuristic: A list-based mapper processes a to-

pologically sorted list of tasks, using the earliest-finishing-time-first strategy. In a second
step, a simulated annealing heuristic explores randompermutations of topological orders.
While the list-based mapper/scheduler only considers timing, the heuristic optimises a
user-selectable cost function that can include timing and energy. Furthermore, users can
guide the mapper through manually specified mapping constraints.
At this point, all models are in place to describe the exact execution of an application

on a platform.

9.7. Simulation Model

The final part of the prediction methodology is the simulator that creates the actual time
and energy predictions. The simulation model is a dynamic SystemC model that builds
the final simulation model on the fly during elaboration, then performs initialisation of
the execution runtime model and passes control to it. During application execution on
the simulated system, SystemC tracing facilities record time and power traces.

9.7.1. SystemC Object Hierarchy

Figure 9.7 shows the SystemC module classes that simulation models use. For each type
of platform graph node (PE, Memory, Bridge, Channel, Node; see Section 9.4), there is
one class. They are generic and parameterised through the platform graph’s architecture
data (see Section 9.4.2), although future extensions of the methodology presented here
might use custom subclasses.
PE and Memory implement computation models while Bridge and Channel in-

stances model communication. Node instances serve as containers for the other classes.
Since PEs count as channels in the platform communication graph, class PE is a

subclass of class Channel. For practical reasons, class Memory is a subclass of PE:
Memory implements most of the abstract HAL interface, while PEs implement the run
call and forward everything else to their associated Memory instance. Memory poses as
HAL instance to an ExecutionEngine instance, while PE does the same for execution

96

9.7. Simulation Model

0..*

bridges

0..*
channels

Communication
Modelling

Computation
Modelling «interface»

OS

0..*pes

in 1

1

outFIFO 1..*

1

out

1

1

inFIFO1..*

1

mem

1

0..*

pes

0..* nodes

1 1

tlm::tlm_fifo tlm::tlm_fifo

Channel

initDelay : Time
packetDelay : Time
packetSize : Size

+ transport()

Bridge

initDelay : Time
packetDelay : Time
packetSize : Size

+ transport()

Node

sc_core::sc_module

PE

idlePower: Power
totalEnergy: Energy

+ run(Kernel, Buffer, ...)
+ setSlowdown(double)
+ ...

ExecutionEngineMemory

+ startThread(Function, int)
+ kernelChanged(Kernel, PE)
+ send(int, Buffer)
+ receive(): Buffer
+ allocate(Size): Buffer
+ release(Buffer)

CharacterisationDB

+ get(Kernel, Architecture, ...)
 : Resources

Figure 9.7.: Class diagram of SystemC simulation models (simplified).

97

9. Power and Timing Prediction Methodology

threads. Memorymanagement uses the samememory allocator as the physical execution
runtime, except returned memory handles are not backed by actual memory.

During elaboration, the main program instantiates a Node representing the whole
system. Each Node instantiates one module for each immediate child node in the plat-
form hierarchy graph, leading to recursive model creation. An additional constructor
argument is a SystemC trace file handle for power signals.

During model instantiation, Bridges and Channels are recorded in a global asso-
ciative map. After instantiation, this map is passed recursively across the hierarchy
so that each Bridge element can bind to its corresponding Channel according to the
communication graph. This map also serves to build routing tables using a minimal
spanning tree algorithm. Furthermore, each Node that contains a Memory instance will
recursively collect all descendant PE nodes and link them to their local Memory.

Finally, the main program passes the task graph down the hierarchy, which starts the
initialisation phase of the execution runtime model (Section 9.3).

9.7.2. Power Models

Due to the flexibility of SystemC, each module could have a power model attached to it.
The model building approach used in this thesis only measures supply power, so there
is not enough data for detailed power models. There is only idle power consumption at
the granularity of cluster servers (Section 9.4.2), and dynamic power expresses by the
computation resource model (Section 9.5).

For this thesis I even leave out idle power, since it is a constant offset independent of
workload. A very simple runtime model extension could temporarily shut down unused
cluster servers or employ other power saving procedures. For such an extended runtime
model, the simulation could easily support multiple power states of non-computation
resources. In any case, model parameters would be supplied through architecture data
(Section 9.4.2).

Since the prediction methodology is actually supposed to predict energy, class PE
implements this directly using the computation resource model. When a task starts
execution, it adds the kernel’s energy value to an internal energy accumulator variable.
These accumulators are collected and summed up at the end of the simulation.

In theory it is also possible to calculate (and regularly update) average power from
time and energy values in the resource model and create a true power over time trace
this way. That would still be inaccurate, however, because kernels can have varying
power while they run, which the resource model doesn’t capture. This might be solvable
without too much extra effort, but it is out of scope for this thesis.

9.7.3. Computation Modelling

As shown earlier, memory nodes uniquely represent cluster servers – each server has
exactly one memory node in the platform graph. For that reason, the global parts of the
execution runtime model are embedded into the Memory class.

98

9.7. Simulation Model

:PE

notify
end time

:Char.DB :PE

notify
time

change

notify
end time

(preempted)

notify
new

end time

:ExecutionEngine
::Worker

notify
data received

kernelChanged()
setSlowdown()

return

return

run() get()

concurrent
execution

on other PE

:Memory

notify
time

change

kernelChanged()
setSlowdown()

returnsetSlowdown()
return

send()
return

return

:ExecutionEngine

notify
send data

receive()
return

addData()
return

setSlowdown()
return

return

notify
new

end time
(preempted)

sendData()
return

return

1

2

3

4

5

6

7
8

Figure 9.8.: Sequence Diagram of a single task execution with communication and con-
current execution on a second PE. Numbers refer to the explanation in the
text.

Worker threads are associated with a specific PE. For them, class PE implements the
HALAPI as a proxy. It only provides the run call itself and forwards all other calls to
the common Memory object.

Initialisation Initialisation begins during elaboration, after instantiation of all modules
and binding communication channels has finished.
The startThread call creates a dynamic SC_THREAD. If a specific CPU core is re-

quested, the corresponding PE instance provides the HALAPIs.
The markAPI call does nothing.

Communication The Memory class will forward the communication calls to the com-
munication infrastructure described below.

Execution Figure 9.8 shows the process of executing a single task, starting with the
arrival of required data up until output data has been submitted for sending. It shows

99

9. Power and Timing Prediction Methodology

one PE (left) that runs a task uninterrupted, while another one (right) runs a task that is
subject to multiple slowdown factor changes.
The core of computation modelling happens in the run call provided by class PE.

Execution of a task consists of several steps (highlighted in Figure 9.8 as circled numbers):

1. Wait for all data packets required by the next task to arrive via receive() and
addData().

2. get() task resource usage from the characterisation database and record task
execution time and energy.

3. Signal start of execution to the common Memory instance, so that it can check if
the slowdown factor of the resource model needs to be applied (see Section 9.5).

4. Wait until either the execution time has elapsed or the Memory instance signals
that a new slowdown factor is in effect.

5. If the execution time has not elapsed, calculate the remaining time including the
new slowdown factor and repeat at the previous step.

6. Signal end of execution to the Memory instance to have it update all slowdown
factors.

7. Record simulated end time of task.

8. Submit output data to execution runtime for sending.

The common Memory instance receives notification from all PEs about their workload. It
will consult the secondary resource model shown in Section 9.5 each time a PE changes
its workload and update the slowdown factors of all PEs if necessary.

9.7.4. Communication Modelling

Communication local to a cluster server is managed by the execution runtime model
itself through shared memory. Non-local communication starts with a call from the com-
munication scheduler to the send call (Section 9.3). It is implemented by class Memory,
which counts as a Channel from the perspective of the platform communication graph.
Figure 9.9 shows the process as a sequence diagram.

9.7.4.1. Basic Operation

A complete transmission originates and terminates at a Memory instance6. Between
them there are alternatingly Channels performing routing and Bridges modelling
communication timing. A Bridge has four parameters: a startup latency that is applied
once per frame, a packet latency that is applied once per low-level data packet, the payload

6Besides pragmatic implementation considerations, this probably reflects reality, since modern network
interfaces use direct memory access (DMA) transfers for packet data.

100

9.7. Simulation Model

:Bridge

wait

inFIFO:tlm_fifooutFIFO:tlm_fifo

notify

read()

:Channel

return

:Memory

1
2

3

write()

return

write()
return

notify

inFIFO:tlm_fifo

write()

return

notify

:ExecutionEngine

send()

return

read()
return

4

5

6

7

Figure 9.9.: Sequence diagram of a single data set transmission (initial part). Numbers
refer to the explanation in the text.

size of its low-level data packets, and an optional packet energy that is added to an internal
energy accumulator variable for each packet crossing the bridge.
In the simulator, a data set is always transmitted en bloc. The underlying assumption is

that data size is large enough that latency jitter of individual packets evens out statistically.
Since there is no actual data, an abstract frame is transmitted. It consists of four values:

• A PE identifier that specifies the frame’s destination,

• a data set identifier that specifies the frame’s content,

• the size of its (virtual) payload, and

• a latency value that is updated at each step to contain the worst-case packet latency
of the entire communication path.

Transmission proceeds in several steps (highlighted in Figure 9.9 as circled numbers):

1. The originator assembles the abstract data frame.

2. The originator queues the packet in an input FIFO (of size 1) that the inherited
Channel class evaluates.

3. The Channel reads the abstract frame from the input FIFO, determines the destin-
ation, and writes the frame to an output FIFO (of size 1).

4. The Bridge connected to that output FIFO reads the abstract frame and checks if
its own packet latency is higher than the worst-case packet latency the frame has
encountered so far. If so, it will update the worst-case packet latency and wait for

101

9. Power and Timing Prediction Methodology

a time span equal to the difference between the old and the new worst-case packet
latency.

5. The Bridge waits for a time span equal to its startup latency.

6. The Bridgewrites the frame to its output port, which is connected to the input
FIFO of another Channel.

7. If the Channel is not the destination, this process repeats at step 3.

8. The destinationChannel (actually aMemory instance) reads the abstract frame and
stores it so that the receive call of the execution runtime model communication
API can return it.

The sequential nature of this sequence has the desired side effect that no other transmis-
sion can use the involved communication elements at the same time.
For example, an Ethernet switch can be modelled as a set of Bridges (its ports) and a

Channel representing the internal backbone bus. Assuming the backbone bus is fast
enough for full duplex operation on all ports, it is perfectly fitting that the Channel
has no time model of its own – it has enough capacity to appear as a resource usable in
parallel. The ports are not usable in parallel, and the procedure outlined above ensures
that.

9.7.4.2. Routing

In many communication systems, a bus (which would be a Channel) is a passive
component, while busmasters (whichwould be a kind ofBridge) contain the addressing
logic that selects the communication path. In the abstracted view I have chosen for the
simulator, these roles are reversed for better modularity and encapsulation: A Bridge

always has exactly two connected Channels, so it always knows where to forward a
data packet to (the opposite end from where it entered).
On the other hand, Channels can have any number of Bridges connected to them,

so they need to decide where to forward a data packet. They have a static routing table
to determine which destinations can be reached via which Bridge.
In the implementation evaluated in this thesis, the routing tables are created during

elaboration by building a simple minimal spanning tree. They happen to be equivalent
to the default routing tables used by the evaluation system. For more complex commu-
nication setups, routing tables might have to be specified manually so that simulation
matches the cluster servers.

9.7.5. Resulting Prediction

Timing data is recorded by PEs during execution and written as additional annotations
in the task graph. This is the same format that the physical execution runtime uses.
The accumulated energy prediction from the run function is printed out to the console

at the end of the simulation run.

102

9.8. Physical Execution

9.8. Physical Execution

When finally running the optimised application, a physical implementation of the ex-
ecution runtime model (Section 9.3) calls implementations of kernels according to the
defined execution and communication semantics. The physical execution runtime should
try hard to avoid performance or energy variations not covered by the prediction meth-
odology.
For this thesis, I created a Linux-based execution runtime that provides the hard-

ware abstraction layer APIs as shown in Figure 9.4. Additionally, a platform-specific
deployment phase occurs before starting application initialisation.

9.8.1. Deployment

The execution runtime is a single Linux executable that could be statically linked, so
that system dependencies are minimal. Kernel code can be provided as dynamically
loadable shared objects (DSOs), or they can be statically compiled into the runtime. The
runtime probably works on different operating systems as well, but this has not been
explored during this thesis.
For execution, the runtime needs only a few files:

• the executable itself, with kernel code compiled into it or as DSOs,

• XML serialisations of supported kernel data, platform graph, and architecture data,

• a list of network addresses and corresponding PE identifiers in order to identify
the local node and to set up communication with other PEs.

Distribution of these files can use anymeans, from cluster management software through
hand scripted SSH connections down to network booted nodes (which is what the
evaluation platform presented in Section 10 uses). At the end of the platform-specific
deployment phase, the execution runtime executable is started on each cluster server.

Execution Controller A cluster running successfully deployed execution runtimes can
execute multiple task graphs in sequence. A controller executable running on a dedicated
deployment node manages actual application execution. It proceeds in a sequence of
steps:

1. Check that nodes are still responsive, or wait for all nodes to signal successful
startup.

2. Transmit the task graph to execute to all nodes.

3. Wait for all nodes to signal successful initialisation.

4. Broadcast a UDP packet as synchronised start signal.

5. Wait for all nodes to signal completion.

103

9. Power and Timing Prediction Methodology

6. Save measurement data to disk.

The synchronised start helps to improve predictability and timingmeasurements. During
step five, the nodes also transmit start and end time of task executions as measured by
their local clocks, relative to the start signal.
Timeouts and runtime consistency checks provide error detection. Upon encountering

an error condition, a platform-specific error handler might then collect logging data from
each node and shut down the execution runtime executables across the platform.

9.8.2. Initialisation

During startup, the execution runtime first waits for the execution controller to transmit
the task graph to execute. Then the sequence of initialisation steps begins:

1. Read all provided data files and build in-memory models from these.

2. Initiate communication links to every other cluster server.

3. Instantiate the execution runtime model (first half of initialisation)

4. Signal readiness to the execution controller and wait for synchronisation packet.

5. Set relative execution time to zero for local time measurement.

6. Signal start to execution runtime (second half of initialisation)

The startThreadAPI call simply starts a new POSIX thread and uses the POSIX API
to set CPU core affinity.
The markmethod that each worker threads runs is a ten second code sequence that

consumes a variable amount of energy; this is intended to be easy to identify on energy
measurement traces in order to synchronise external energy measurements with the
local execution time. It also toggles a general-purpose input/output pin, meant as trigger
signal for an external time measurement circuit.

9.8.3. Execution

Execution proceeds under control of the common execution runtime model as shown in
Section 9.3.
The runAPI call from Table 9.1 will first try to locate kernel code (a native function

using C calling conventions) by checking multiple places and stop as soon as it is found:

1. Check table of statically linked kernels.

2. Try to load DSO for that specific kernel.

3. Try to load a fallback DSO.

4. Use a fallback kernel.

104

9.8. Physical Execution

It then calls the kernel function with the kernel name, a list of input buffers, a list of
output buffers, and a list of kernel variable assignments.

For practical reasons, the execution model supports one extension to the application
model as laid out in Section 9.2.1. Kernels can specify bidirectional (‘inout’) data sets.
These share a single memory buffer for algorithms that do in-place modification. This is
an important memory saving mechanism because the frequently used generic matrix
multiplication kernel supports it.

The implementations for the allocate and release calls use a dedicated fixed-size
memory arena using a simple first-fit allocation algorithm. Since the expected workload
is tens of active allocations with only a few different sizes, this has shown to be quite
sufficient. Using a custom allocator has the additional benefit that simulation can use
the same algorithm (without actual physical memory), so allocation behaviour will be
identical.

9.8.3.1. Node-Local Time

For time measurements, there is a function now that returns the time elapsed since start
of the application.

Beyond the generic functionality of the runtimemodel, the physical runtime stores start
and end time of each task. It also stores start and end of each non-local data transmission.
This information is used by the proposed characterisation process (Section 10.3.4); the
runtime stores it in additional annotations in the task graph.

Timings obtained this way are not always reliable: during evaluation it became ap-
parent that values can be incorrect under high computation loads. Depending on the
hardware employed, an external measurement circuit may be needed (see Section 10.3.2).
To support this as well, the physical runtime toggles a general-purpose input/output pin
at the start and end of each task.

9.8.3.2. Time Synchronisation

Clock speed usually varies between nodes. There are manufacturing variations that
lead to slightly different base speeds, and heat changes oscillator frequency as well.
Nevertheless, cluster servers do not synchronise their clocks.

Network-based clock synchronisation (e. g. through NTP) would lead to additional
network traffic interfering with the regular load, while the network load could signific-
antly reduce its accuracy. It could also interfere with the computation workload of the
node. Finally, temperature variations can happen faster than NTP can compensate for,
so the result is not worth the effort.

The Precision Time Protocol (IEEE 1588-2008) might be worth the effort, but like
Ethernet TSN, the required hardware support is rare and wasn’t available for this thesis.

As a result, node-local time can only be considered a rough estimate; for reliable figures
an external measurement mechanism must be used (see Section 10.3.2 for example).

105

9. Power and Timing Prediction Methodology

9.8.4. Communication

Communication between tasks uses an abstract interface so that the physical execution
runtime can be adapted to different networking interconnects. The runtime assumes the
network is isolated and carries no other traffic.

During startup, each cluster server initiates a persistent connection to every other
node. When the communication scheduler submits a data set for transmission, actual
transmission only happens when communication scheduler on the receiving node is
ready for that transmission. The sender first transmits a header of 16 bytes that identifies
the data set ready to be sent; it does not proceed to send the data. The receiver signals
readiness to receive the data set by sending an acknowledge byte. Then the sender
proceeds to send the actual data.

While the underlying network protocols can cope with a receiver that is stalling, this
situation leads to interference with existing traffic: Additional traffic interferes with
ongoing transmissions, buffer memory used by an inactive transmission reduces buffer
memory for active transmissions, and in the end these additional packets may end up
being dropped entirely. The explicit handshake avoids this situation by adding just a
single packet (plus protocol overhead) in each direction until the transmission path is
available for exclusive transmission.

As part of this thesis, I evaluated two communication backends: one based on regular
TCP/IP, and one based on a custom protocol implemented over raw Ethernet packets.

9.8.4.1. TCP Backend

The TCP/IP backend uses plain TCP connections. For each pair of nodes, the node with
the higher numeric PE identifier initiates the connection, while the other node waits for
a connection attempt. Transmission maps to the regular read and write system calls.
Routing happens through the system’s static IP routing tables.

9.8.4.2. Eth Backend

During evaluation, the TCP backend showed significant variations in transmission
bandwidth (see Section 15.3). These were too large to build a useful timing model. For
this reason, I implemented a custom network protocol dubbed ‘Eth’ that was optimised
for deterministic transmission at high bandwidth over an unloaded Ethernet network
path with minimal packet loss. I consider it a provisional arrangement, as I designed it
in a pragmatic approach after an unsuccessful search for an existing network protocol
with suitable characteristics.

The actual solution I envision is Ethernet TSN real-time scheduling (IEEE 802.1Qbv).
With TSN, network packets can be assigned exclusive access time on the physicalmedium,
which could facilitate deterministic high performance networks. Unfortunately, this
technology is not yet widely available in general purpose networking equipment, so it
could not be explored during this thesis.

106

9.8. Physical Execution

Table 9.2.: Eth packet format

Offset Size Content

0 2 user data size

2 1 destination port

3 1 packet type

4 4 packet metadata

8 0-1492 user data

Table 9.3.: Packet types in the Eth protocol

Name Numeric Function

CONNECT 0 initiate connection

CONN_ACK 1 confirm connection establishment

CLOSE 2 close connection

ACK 3 acknowledge complete transmission

NAK 4 request packet retransmission

DATA 5 transmit user data

The core design idea of Eth is to transmit packets in fixed intervals for determinism
and to rely on the high reliability of a local Ethernet network in order to eliminate much
of the recovery mechanisms of TCP, thus maximising bandwidth. Retransmission of
data is still available, but optimised for rare cases of packet loss.

The Eth protocol uses regular layer 2 IEEE 802.3x Ethernet II frames, but with a custom
EtherType (0x88b5, IEEE 802.1 Local Experimental 1). Within the 1500-byte Ethernet
payload, an eight byte header precedes user data.

Table 9.2 shows the basic structure of Eth packets. It startswith a size field for additional
error checking, as the size field from the layer 2 header sometimes did not match the
payload size. The port number serves a similar purpose as in IP networking, except that
fewer ports are available. The packet type differentiates between control packets and
data packets, and the packet metadata field holds additional parameters for the packet
type.

Table 9.3 shows the available packet types. The protocol has a state machine with three
main states (CLOSED, CONNECTING, OPEN). Opening and closing connections works
similar to TCP. The main difference is data transmission, which significantly differs from
TCP on multiple levels and has a number of implicit sub-states of OPEN.

First of all, Eth transmits in transactions, where each transaction corresponds to a

107

9. Power and Timing Prediction Methodology

call to the sendmethod of the Eth backend. The receiver must issue a matching call to
receive; the communication scheduler has enough information to do this.

Successive transactions are logically separated. The advantage is that special handling
of start and end of a data set reduces timing variation over TCP, which cannot handle
some data differently from other data. Furthermore, transactions help in identifying lost
packets and to eliminate acknowledge packets.

Retransmissions of packets of a recently finished transaction may accidentally confuse
a new transaction. To prevent that, the lowest bit of DATA packet metadata identifies a
transaction. It is toggled at the start of one, so that packets belonging to two adjacent
transactions cannot be confused. The remaining part of the metadata field is a packet
counter that starts at 0 for the first packet in a transaction and which is incremented for
every successive packet.

During a transaction, user data packets are sent in regular intervals according to
a statically configurable table of transmission timings. Users can use the platform
characterisation process (Section 9.4.2) to determine optimal values.

Unlike TCP, data packets are not acknowledged. I assume that the local network has
almost no packet loss and that packet timing does not exceed the capabilities of any
networking component, so packet loss should be a rare event. The metadata field will
inform the receiver if it has missed a packet, in which case it sends a NAK packet to the
sender to explicitly request retransmission of a single packet.

TCP has a send data buffer and can only retransmit data in its buffer. It can discard data
only after receiving an acknowledge packet. Since Eth directly uses the user supplied
data buffer, it does not need to discard data and can serve any NAK at any time.

Eth has only one acknowledge at the end of a transaction: The receiver signals to the
sender that it has received all data of that transaction, so that the sender can return from
the sendmethod call and discard all buffered data.

A retransmission does not honour the regular packet interval. It is sent immediately
and does not replace the scheduled regular packet. Consequently, occasional retrans-
missions can be hidden between regular traffic and don’t affect overall timing, unless it
is one of the last packets of a transaction that needs retransmission.

Despite being optimised for very low packet loss, the protocol can cope with channels
of any quality. One source for excessive packet loss is a packet interval that exceeds the
capabilities of the hardware. This can create an excessive amount of retransmissions and
thus ruin transaction timing completely. But still there are only two outcomes: Either
the transaction succeeds eventually, or the connection is aborted due to a timeout. The
latter result would lead to program abortion.

Power Hiding The Eth protocol runs in its own thread on the CPU core reserved for
the runtime. It uses pretty aggressive busy wait loops in order to get low jitter for the
packet timer. As such, it has a significant impact on the energy consumption. Since Eth
is only meant as a stopgap solution, I chose to reduce its energy profile by spawning a
second low-priority task that just consumes energy when no other threads run on the
core.

108

9.8. Physical Execution

This increases the baseline power of the system, but reduces load-dependent effects
on system power. The dynamic power behaviour will be closer to the behaviour of a
system which has hardware support for real-time communication, since such a system
would spend much less CPU time for communication.

109

9. Power and Timing Prediction Methodology

110

10. Measurement Platform

One important aspect of this thesis is the physical evaluation platform. For HPC-scale
applications, evaluating energy predictions is particularly hard, since HPC systems don’t
usually have the measurement equipment that is required.

Another approach common in embedded system design is to compare an approach to
a more accurate but slower simulation, but that again is hardly feasible: Simulating a full
HPC system in more detail would be extremely slow, and how would one determine
accuracy of that more accurate simulator?

To solve these difficulties, I designed and built a hardware platform that serves two
major purposes: to evaluate the methodology, but also to provide a reference setup to
fill the (intentional) gaps left by the platform-independent methodology.

The platform consists of a networked cluster of single-board computers (SBCs) that
are powered over a central power distribution board with integrated energy measure-
ment. It addresses an implicit assumption of the methodology described in Section 9: It
demonstrates that the hardware requirements for measurement are low enough that any
developer can use the methodology; inexpensive hardware is sufficient for characterisa-
tion of server grade hardware.

10.1. Power Distribution and Measurement

The power distribution and measurement board supports up to 15 channels of synchron-
ous voltage and current measurement with a combined supply power of more than
600W and a combined sampling rate of 2million samples/s. The total cost of one board
was about 200 Euro at the time of this thesis.

It consists of three separate power distribution paths, analogue front-ends for meas-
urement of voltage and current, and a microcontroller-based data acquisition system. It
is a two layer design meant for manufacturing using 70µm copper layers.

While the design was tailored for the evaluation platform, using it for other targets
like an HPC-grade mainboard using ATX power connectors is perfectly feasible. The
distribution layout is flexible enough that the additional 3.3V and 12V power rails can
be routed through two additional measurement channels; a suitably manufactured cable
could then provide the ATX connector.

10.1.1. Power Distribution

AnATX power supply provides all power to the measurement board. Its standby 5V
power output powers a step-upDC-DC converter for the data acquisitionmicrocontroller.

111

10. Measurement Platform

Figure 10.1 shows the a schematic of the main power distribution path. It connects
the power supply’s 5V rail with ten connectors rated for up to 4A. I have chosen 10mm
width and 70µm thickness of the traces. Each channel can supply up to 4A, but the ten
primary channels in total may only draw 20A. At that load, power loss due to PCB trace
resistance is about 1W; the PCB will heat up to about 10K above ambient temperature;
the connectors have similar performance specifications. A 20A fuse protects the path
from damage through overload.
The board has two secondary power distribution paths with three channels each, also

shown in Figure 10.1. I have chosen dimensions so that they can supply 7A at 12V on
each channel; performance characteristics of all parts are similar to the 5V rail. A 21A
fuse protects each path.
The actual voltage provided through the secondary channels can be configured, how-

ever. A wire jumper with large soldering pads connects each path to the 12V rail of
the power supply. By removing the jumper and connecting it to an alternate source
(e. g. the 3.3V power rail), other voltages can be supplied. Figure 10.2 shows the physical
arrangement of this.
In total the board can distribute a maximum power of 604W. In this thesis, I only use

the 5V part, which allows up to 100W.

10.1.2. Analogue Front-End

Current measurement works via a shunt resistor in the power supply path (see Fig-
ure 10.1). It should be dimensioned such that the maximum expected load results in a
voltage drop of 100mV. The surface mount soldering pads for the shunt resistors are
intentionally large and easily accessible from the top side even on a fully populated
measurement board (see Figure 10.2). For this thesis, I used 25mΩ for boards that were
specified up to 4A, and 40mΩ for those specified up to 2.5A; all shunt resistors had a
nominal 0.1% accuracy and a temperature coefficient of less than 75 ppm/K.
AMaximMAX4378 instrumentation amplifier with a fixed gain of 20V/V amplifies the

current signal into the range 0-2V. Supply voltage is measured after the shunt resistor.
This part of the setup is very similar to the MAGEEC measurement hardware (see
Section 8).
When using all 15 channels, the sampling rate per channel would be 66.7 kHz. As

used in this thesis, 10 channels lead to 100 kHz per channel, and single channel operation
would use the full 1MHz. By the Nyquist-Shannon sampling theorem, the signal should
not contain frequency components beyond 33.3 kHz, 50 kHz, or 500 kHz, respectively.
Otherwise, the time-discrete digitised signal may show artificial distortions (aliasing).
To reduce the impact of aliasing, both signals are passed through a capacitive filter

that is specified for 10dB attenuation at 1MHz and roughly 3dB at 500 kHz. This is a
safeguard to at least have the highest frequency mode protected. Other components and
the PCB layout itself may have frequency-limiting effects as well, so the actual effective
bandwidth can only be determined through measurement.
Another potential source of errors would be if signals measured on one channel

somehow influenced the signal measured on another channel, sometimes called cross

112

10.1. Power Distribution and Measurement

(a) Primary power distribution path including analogue instrumentation front-end.

(b) Secondary power distribution path.

Figure 10.1.: Power distribution path of the power distribution and measurement board.

113

10. Measurement Platform

Primary Power Outputs

Power Input

Fu
se

s

Shunt Resistors

DC-DC converter

S
e
co

n
d

a
ry

 O
u

p
tu

ts

D
ia

g
n

os
ti

c
 D

is
p

la
y

C
on

n
e
ct

io
n

USB Connection

Filters

Measurement MCU

Ju
m

p
e
r

P
a
d

s

(a) Layout of the major functional units.

(b) Overlay of PCB layout, front copper layer. Notable are the wide traces that can carry
up to 20A. The back copper layer is mostly one big ground plane.

Figure 10.2.: Physical design of the power distribution and measurement board.

114

10.1. Power Distribution and Measurement

talk. Cross talk from the main power rail to the measurement signal lines is realistic
danger. To minimise potential influence, signal lines cross power lines in right angles
only, with as little parallel traces as possible. As Figure 10.2 shows, the secondary outputs
do have a short segment where they run in parallel with power rails, but they are not
used in this thesis.

10.1.3. Signal Acquisition

After analogue conditioning, the signal is led to the central microcontroller unit (MCU),
a Cypress PSoC 5LP (specifically, the CY8C5888LTI-LP097). It has two successive ap-
proximation analog-to-digital converters (ADCs) that work at up to 1MHz at 12 bit
resolution.

A unique property of the Cypress PSoC microcontrollers is that they have a flexible
input/output (I/O) signal routing layer combined with user programmable hardware
logic in the form of Complex Programmable Logic Device (CPLD) cells. This makes it
possible to build a robust signal acquisition circuit with integrity checks. Figure 10.3
shows the CPLD schematics as provided by Cypress PSoC Creator version 4.

10.1.3.1. Multiplexer

The analogue signal enters through one of 30 pins configured as analogue inputs. They
are connected to two 15-channel multiplexers, shown in Figure 10.3a. A custom memory
mapped register sets the start channel and multiplexing period; this way the firmware
can control the sampling sequence.

The multiplexer must leave enough time for a new input voltage to settle at the
ADC. The EOS output shown in Figure 10.3b signals that the input voltage has been
buffered by the ADC and a new voltage may be applied. This is much earlier than the
finished conversion, so via signal InputMux_Next, the multiplexer switches to a new
channel long before the new value is sampled. I could not determine an exact value, but
documentation suggests that signal sampling takes 4 cycles, so the settling period is up
to 14 clock cycles.

10.1.3.2. Analog-to-Digital Converter

The output of each multiplexer connects to one ADC, shown in Figure 10.3b. The current
ADC works in single-ended mode where its effective range is 0-2.048V. Each ADC count
is thus equivalent to 0.5mV of the amplified signal, or 0.025mV of the voltage drop
across the shunt resistor.

The voltage ADC works in differential mode, where it measures the difference to
a reference voltage. The measurement board contains a precision reference voltage
source (Maxim MAX6126AASA50+) that provides a reference voltage of 5.0V, thus the
effective range of the voltage ADC is 4-6V (more exactly: 5.0V +/- 1.024V); one ADC
count represents 0.5mV.

115

10. Measurement Platform

(a) Multiplexer

(b) ADC

Figure 10.3.: CPLD schematics of the power measurement board.

116

10.1. Power Distribution and Measurement

The ADCs cannot measure (absolute) voltages higher than the supply voltage of the
SoC. ATX power supplies on the other hand are usually a bit inaccurate, so the nominal
5V rail could in fact provide more than 5V. In order to measure such voltages, the
step-up DC-DC converter that powers the MCU outputs about 5.45V, just below the
rated maximum voltage of 5.5V.

TheADC signal inputs have a reasonably high input impedance. I could not determine
it exactly, but the data sheet suggests that it is on the order of 100 kΩ. This means the
signal lines carry only a small current, probably a few µA. With these values, there is
little danger of signal to signal cross talk. At the same time it is low enough for a new
signal to settle quickly after switching the multiplexer to a new channel.

10.1.3.3. Data Transfer

The ADCs run continuously and take 18 clock cycles for a single conversion, so they are
driven by an 18MHz clock. Both ADCs are started on the same clock cycle and thus are
expected to run fully synchronously. On completion of a single conversion, an output
signal triggers a preconfigured direct memory access (DMA) transfer into a buffer that
the firmware will read, shown in Figure 10.4.

To ensure that logic synthesis and mapping did not introduce any delays, and to catch
transient errors, additional logic checks that both ADCs always finish conversions on
the same clock cycle; this is the SYNC_ERR signal in Figure 10.3b). In the event of a
mismatch, an error bit in a firmware-readable status register is set.

To ensure that no samples are lost, DMA transfers use a double buffering scheme:
After the required amount of samples have been written into the first transfer buffer, an
interrupt is triggered (Buffer_Full in Figure 10.4). The firmware can then access it
safely. In the meantime, DMA will fill the second transfer buffer. The firmware signals
end of processing by submitting the finished buffer back to the DMA engine.

TheDMAcompletion signalwill also increment aDMAbuffer counter; another counter
tracks the number of individual ADC samples. At buffer boundaries, the sample counter
equals the buffer counter times the buffer size in samples.

Should the DMA engine fail to transmit a sample (e. g. because the firmware did
not return an empty transfer buffer in time), these two counters would no longer be
consistent. That way, the firmware can ensure that no sample has been lost even when it
runs at the limit of the MCU’s computational power and the timing is difficult to predict1.

10.1.4. Signal Processing and Transmission

The MCU’s main CPU is an ARM Cortex-M4 core running at 72MHz. The firmware
running on the CPU has the job of reading the input buffers and transmitting them to
the attached computer system.

1Most importantly, USB transmission introduces unpredictable latency.

117

10. Measurement Platform

Figure 10.4.: CPLD schematics: DMA error checking.

118

10.2. Embedded Cluster Platform

10.1.4.1. Data Reduction

Unfortunately, the fastest way to get measurement data off of the MCU is a USB (full
speed) connection as a CDC (communications device class, serial port) device. An
obvious alternative would have been a serial peripheral interface (SPI) link, but only the
SPI master module would have supported the required clock speed, while the single-
board computers either don’t support SPI slave operation at all, or are severely limited
[4].

As the nominal gross data rate of USB full speed is 12Mbit/s, but the maximum
ADC data rate is 2×12Mbit/s, the firmware must first reduce the amount of data to be
transmitted. I have implemented two dynamically selectable strategies: Averaging over
a selectable number of samples, and reducing the resolution to 8 bit.

10.1.4.2. Transmission

The firmware will read the input buffer, perform averaging and resolution reduction
(in that order) as configured, write the output as 64 byte packets into a ring buffer, and
submit the packets to the USB stack. A packet header of 4 byte identifies the amount
of averaging, resolution, number of channels, and error flags from the hardware stage.
Finally, there is an error flag if the ring buffer overflows.

Since USB transfers are always initiated by the host, the attainable net data rate varies
with host interface circuit and software stack behaviour. Furthermore, more USB packets
mean more processing time spent in the USB stack, so high data rates reduce the amount
of available processing time. The error flags ensure that any data loss can be detected
reliably. Evaluation has shown that a safe operating point for all tested host platforms is
10× averaging at 8 bit resolution.

Even though this reduces the signal’s temporal resolution, averaging preserves the
overall energy measurement, which is the point of this measurement platform. With a
100 kHz sampling rate (1MHz distributed over 10 channels), this means that analogue
bandwidth can be be up to 50 kHz before aliasing becomes a problem.

10.1.4.3. System Control

In the reverse direction, a host can send command packets that configure which channels
to sample, sampling resolution, and number of samples to average. There are also
commands to turn power distribution on or off, and to restart the MCU.

10.2. Embedded Cluster Platform

Figure 10.5 show the full evaluation platform. The computation platform is a down-
scaled version of a high-performance computing system. It has roughly 1/10th of the
computation and communication capabilities of (small) HPC clusters: CPU performance,
RAM size, and network speed are each on the order of 10% of a small HPC system. Most

119

10. Measurement Platform

5x ODROID C1+

5
x
 O

D
R

O
ID

 X
U

4

5x ASUS TinkerBoard*

2x Energy Measurement

1x Time

Measurement*

1x Cluster Management

Figure 10.5.: Picture of the embedded cluster platform with integrated measurement
infrastructure (initial version). Components marked with an asterisk were
added/changed later due to significant evaluation challenges.

120

10.2. Embedded Cluster Platform

importantly this means that the ratio of computation speed over communication speed
roughly matches that of HPC systems.

Besides the scaled overall performance, another design goal of the platform was to
exhibit heterogeneity beyond state-of-the-art HPC systems. Therefore it consists of three
different types of SBCs. It contains:

• five ASUS TinkerBoard with a quad-core ARM Cortex A17 CPU and 2GB RAM

• five ODROID C1+ with a quad-core ARM Cortex A5 CPU and 1GB RAM

• five ODROID XU4 with an octa-core ARM CPU (four Cortex A7 and four Cor-
tex A15) and 2GB RAM

• one Raspberry Pi as cluster management node (‘head node’)

At the time of construction, none of the available single-board computers reached the
theoretically possible throughput on their gigabit Ethernet interface. I selected the
ODROID boards due to their high reported real-world network speeds. I added the
ASUS TinkerBoards later, selecting this particular model for its fully open drivers and no
(known) hidden firmware, which was a problem with the C1+ boards (see Section 15.2
for details).

Since the ODROID boards do not have full mainline kernel support2, the platform
is limited to those kernel versions provided by the vendor. This means that ODROID
boards use Linux kernel version 3.10.107, while ASUS boards use Linux kernel version
4.4.132 (they do not support 3.10 kernels).

Excluding the management node this cluster offers 80 CPU cores and 25GB RAM.
Each of the 15 compute nodes also offers GPU processing capacities, but they have not
been used during this thesis.

The networking infrastructure consists mainly of a Cisco SG100-16 16 port 1Gbit/s
Ethernet network switch. As the switch has an internal bandwidth of 16Gbit/s, it supports
simultaneous full duplex transmission on all ports. With the exception of the Raspberry
Pi, all SBCs offer 1Gbit/s Ethernet ports.

All boards need a 5V power supply. The XU4 boards have a nominal maximum supply
current of 4A. The other boards have 2.5A nominal maximum; in practice all boards stay
significantly below these limits. Since the measurement boards support up to 20A on
the 5V rail distributed over up to 10 channels, the platform contains two measurement
boards, one for five XU4 boards, the other for all other boards. This also means that
every channel gets a minimum sampling rate of 100 kHz.

Each measurement board is powered by an LC-Power LC6560GP3 560WATX power
supply, which is specified for up to 27A on the 5V rail.

2At the time of this writing, there was partial mainline kernel support, but it was not in a sufficiently
complete state for this thesis.

121

10. Measurement Platform

10.2.1. Cluster Management

The cluster nodes are configured to boot from an SD card. They will load a vendor-
supplied version of the U-Boot boot loader; I changed the default configuration so that
each board will load a system-specific Linux kernel and a common RAM filesystem from
the head node via TFTP.

In the common part of the boot process, an initialisation script loads an archive con-
taining the current experiment’s executables and data files, extracts it, and passes control
to it.

During experiment startup, a startup script configures some Linux kernel parameters
to make the systemmore predictable. Most importantly, it will set a fixed clock frequency
and try to prevent any intervention of the processor3. After that, it starts a minimal SSH
server for debug purposes and then passes control to the task graph execution runtime.
The end result is that no processes run on the system except for the SSH server and the
task graph runtime.

10.3. Measurement Process

Measurements on the platform consist of three parts: energy measurement, local time
measurement, and time correlation with energy traces.

10.3.1. Energy

The execution controller program described in Section 9.8 also performs energy meas-
urement. It spawns one thread for each measurement board. The measurement thread
will connect to the corresponding USB interface and configure 10 channels of 8 bit data
with 10× averaging.

When the controller sends out the start signal, the measurement threads start record-
ing data to disk. After the last node signalled completion, recording is stopped. The
measurement thread continuously checks that no error flag is set and that the data stream
parameters match the expected values.

The end result is one file per measurement channel containing raw samples with no
header, totalling 30 files (15 boards, voltage and current).

10.3.2. Time

Challenges Time measurement turned out to be much more difficult than anticipated,
which is why this measurement facility is more involved than it could have been. I
discovered the main problem only after finishing the energy measurement boards, at
which point they did not have enough resources (CPU, I/O pins, transmission bandwidth)
left to perform time measurement as well.

3Not always successfully, see Section 15.2.

122

10.3. Measurement Process

During evaluation, significant discrepancies occurred between node-local timers and
timings inferred through energy traces. Time stamps could be much earlier or much later
than the energy trace suggests; they could vary by several seconds in either direction
over the course of a few minutes. Section 15.2 analyses these effects in more detail.

Energy traces of multiple channels are recorded synchronously, but timing differences
were independent across channels. This means that it is highly unlikely that clock drift
of the measurement boards was the source of this effect.

Instead, this strongly suggests that some timers vary their clock frequency. A second
observation suggests that his is a platform-specific effect: Reliability correlates with
board type – timers for the TinkerBoard were consistently plausible, XU4 timers were
somewhat inconsistent, and C1+ boards had the largest variations.

Solution To eliminate the internal timers as a source of errors, the platformuses external
time measurement. An external microcontroller board records time stamp signals sent
via general-purpose input/output (GPIO) pins. A single Arduino board is connected to
one GPIO pin on each of the 15 cluster nodes, using a voltage level shifter where required.
Data is transmitted to the cluster management node via a USB serial connection.

The Arduino cyclically samples each pin and transmits a time stamp whenever pin
levels change. An internal buffer stores time stamps for transmission; it is big enough
that it does not overflow during the pin patterns that occur during evaluation.

Overall accuracy of time predictions depends on the accuracy of the Arduino’s system
clock. For use cases with high precision requirements, the Arduino can be clocked from
an external high precision clock.

CPU Time There is a significant drawback of external time measurement, and that is
the fact that the measurement approach shown above can only reliably measure a single
CPU core. This covers the use cases that are time critical: Characterisation uses a single
core and is very sensitive to clock variation, and overall execution time is also easy to
measure this way.

It might be desirable to visualise activity across all CPU cores. For this only CPU
timers work, and thus their measurements (start and end time of kernels, start and end
time of network communication) are still recorded.

This usage is not directly part of the proposed methodology and can be thought of as
a debugging tool, so the resulting potential inaccuracy will not matter as much. Users
should just bear in mind that these timings might not be as reliable, depending on board
type and load situation.

10.3.3. Time Correlation

To measure overall execution time more exactly, the energy measurement traces can be
related to the pin change timings. As explained earlier, the execution runtime provides
the markAPI call that worker threads call during startup. It leaves a distinct pattern in

123

10. Measurement Platform

R
e
la

ti
ve

 d
yn

a
m

ic
 p

o
w

e
r

(1
.0

 =
 m

a
x.

 o
b
se

rv
e
d
 p

o
w

e
r,

 0
.0

 =
 id

le
 p

o
w

e
r)

Time/0.1ms

Figure 10.6.: Power trace of the initial mark sequence on five channels (denoted by
colour). At 100ms (1,000 power samples), the marker energy begins. After
10 s (100,000 power samples), the first task executes.

the energy trace so that the start time can be determined with about 1ms accuracy by
searching for the start of this pattern (shown in Figure 10.6).

At the same time, the runtime will toggle GPIO pins for the timingmeasurement board.
This helps during kernel characterisation, when only a single core is creating energy and
pin events.

The runtime will also create a distinct energy pattern at the end of execution, again
paired with GPIO pin events. This makes it possible to determine the overall running
time of any task graph. This also allows to calculate a linear correction factor to match
GPIO timings to energy samples.

It also eliminates timing inaccuracies due to clock speed variations: The Arduino
samples all 15 GPIO signals in a round robin fashion, so the timing between channels
is reliably synchronised. The same is true for each energy trace. Thus, clock speed
differences can be corrected for by correlating GPIO time stamps and energy trace
markers.

10.3.4. Kernel Characterisation

To build the computation resource model according to Section 9.5, it is trivial to build
a task graph that creates some input data, feeds it to the kernel to be measured, and
discards the output. Characterisation then consists of running this specially crafted
task graph, measuring energy and time, and extracting those parts of the measurement

124

10.3. Measurement Process

Figure 10.7.: Supply current trace of the MARK kernel. The left spike is the marker energy,
followed by 2 s pause. The right spike is from the following kernel.

results that belong to the kernel being characterised.

10.3.4.1. Energy Markers

Unfortunately, even producing dummy input does take some time, so it is not entirely
trivial to determine the start and end time of the task to measure. As has been discussed
before, the local time source must be considered unreliable. Instead, the approach
used to measure overall node execution time also works for kernel characterisation:
create detectable energy patterns to mark start and end of a task, and use external time
measurement to locate these patterns with high reliability.

A special kernel MARK creates a pattern that can be detected in an energy trace. The
pattern consists of a short pause of 300ms, then an assembler instruction sequence that
consumes much power, then another pause of 2 s (see Figure 10.7). By placing the MARK
kernel before and after the kernel being characterised, its start and end times can be
derived from the energy trace. Assuming the edge rise time of the mark sequence is
sufficiently short, timings should be accurate to about a millisecond.

Besides time measurement, the MARK kernel has a second use: The 2 s pause means
that it’s easy to determine the current idle energy. This is useful because the idle energy
can change slightly over time, for example due to CPU temperature.

Using the MARK kernel, multiple characterisations can be run in sequence. This reduces

125

10. Measurement Platform

the amount of time spent in the deployment phase. If a fully instrumented platform is
available for characterisation, the task graph can actually contain many characterisations
in parallel across all cluster nodes. This can speed up the characterisation process
significantly. Still, this also works if only a single CPU is available for measurements.

10.3.4.2. External Time Measurement

Using energy markers to determine kernel duration isn’t sufficiently reliable to be auto-
mated. Using various signal processing algorithms to detect relevant MARK events, there
are always spurious false positives or false negatives. Thus theArduino time base is used
to locate kernels in the trace (see above). The MARK signature surrounding the kernel to
be measured is long enough that time measurement errors can be compensated for.

I chose the start pause to be much longer than any sensible4 approximation error
between time measurement and energy measurement clock. Also, a typical HPC kernel
is unlikely to have such a long pause, as it will perform heavy calculation, and its
atomic nature means it should not wait on synchronisation primitives or the like. Unless
characterising an atypical kernel, there should be no 2 s pauses except for those created
by the MARK kernel. This makes a visual inspection of energy traces easier and can be
used as an additional consistency check during automated measurements. The trailing
pause is intentionally small so that it cannot be mistaken for a start pause. It is just long
enough that it can compensate for a reasonable approximation error.

When measuring dynamic energy, i. e. the energy consumption beyond idle power, it
does not matter if the energy trace contains segments of pure idle power (i. e. pauses).
Thus, kernel characterisation can sample a slightly larger window of the energy trace
than the measured kernel duration suggests. That way, characterisation can determine
the full energy consumed by the kernel even in the presence of small timing errors.

10.3.4.3. Secondary Time Model

To determine the slowdown factors for concurrent loads, another series of measurements
can be made on task graphs constructed to exhibit the required amount of concurrent
load. The exact details vary depending on what kernels are involved or if kernels are
grouped into classes.

For this use case, GPIO pins are only toggled by the first compute core, so that external
measurement can reliably determine behaviour on that core regardless of concurrent
load on the other cores.

10.4. Platform Characterisation

The measurements that are needed to characterise the platform according to Section 9.4.2
can be expressed as (pretty trivial) task graphs as well. That way, they run in the exact

4i. e. if it’s bigger, there are worse problems than characterisation.

126

10.4. Platform Characterisation

same environment as the final application, especially regarding external influences –
there is only the execution runtime itself, which will be present during application runs
as well.

For the evaluation platform, three main parameters are relevant: (fixed) clock speed,
communication timing, and communication energy.

10.4.1. Sustainable Clock Frequency

As explained in Section 4.1.5, if a CPU is getting too hot, it may reduce its clock frequency
or take other measures to protect itself from damage. This can impact everything on the
local system and will most certainly make the system very difficult to predict. Apart
from improving cooling, this can only be prevented by setting the clock frequency so
that no thermal throttling can happen.

Some thermal management mechanisms might be acceptable, if the throttling happens
predictably and can be modelled with the primary/secondary time models proposed in
this thesis. In this case, ‘thermal budget’ becomes another shared resource that is not
explicitly modelled, much like cache size, RAM bandwidth, and others.

However, there are mechanisms that are completely unsuitable for this approach, as
has been encountered during evaluation. So during platform characterisation, users
should test if they have accidentally configured their platform for such a case.

The test is a simple task graph that executes computationally demanding tasks in
parallel over a significant time span. In order to detect local timing variations, it should
contain short pauses every once in a while, possibly using the marker used in kernel
characterisation (see above).

Users can then check that these pauses in the energy trace match the time stamps
recorded by the execution runtime and that they are distributed uniformly. If times
deviate significantly, some undesirable effect has happened. Users can then try to lower
the CPU clock frequency and run the test again.

10.4.2. Platform Power

During this thesis, I mostly ignore static (idle) power consumption of platform compon-
ents, since it should be a constant offset. Thermal effects might create variations, but
modelling temperature is out of scope for this thesis. During kernel characterisation, the
2 second pause before each kernel makes it possible to determine the current idle power
including any thermal effects, so that small variations can be compensated for.

However, if users want to produce absolute predictions, they might need a more
detailed model for static power behaviour of each node. Variance in analogue or digital
components might lead to different idle power for different systems of the same archi-
tecture. If the efficiency factors of voltage converters and similar components vary, then
computational activity might yield different offsets from idle power as well.

For the embedded cluster, it is possible to normalise power traces across compute
boards. In all measurements, the start and end of each power trace contains idle time

127

10. Measurement Platform

Run TCP benchmark

Yes

NoTimings as
expected?

Increase latency

Yes

No Fastest
timing
found?

Note final timings

Decrease latency

Platform
Characterisation

Set Eth latencies to
50% TCP best case

Run Eth benchmark

Figure 10.8.: Suggested communication timing characterisation procedure.

and well defined load sequences. Users can choose one system as reference and perform
a linear regression over these matching data points to create a table of correction factors.
If users want to check for heat effects that could impair accuracy of this approach, the

benchmark from Section 10.4.1 is suitable to check how big load-dependent heat variation
is. It has clearly identifiable periods of different activity. For a single architecture these
will even be at similar points in time, so that it should show board-specific and heat-
related variation, if present.

10.4.3. Communication Timing

In order to determine optimal timing values for the Eth networking layer (see Sec-
tion 9.8.4), I suggest a trial-and-error approach as shown in Figure 10.8. It uses repeated
execution of a transmission benchmark to successively test packet latencies until the best
value is found.

10.4.3.1. Cutoff Metric

To find out if a given latency configuration is acceptable, a good criterion is timing
variance: The closer packet latencies approach their lowest possible value, the less time

128

10.4. Platform Characterisation

will be available for hidden retransmissions, and benchmark results will show increasing
timing variation. A noticeable variation increase indicates that a given packet latency
has crossed its lower threshold.
I thus propose a simple metric to identify good timings: the difference between

measured timings and ideal transmission time, calculated as textra = tmeasured − tpacket ·
npackets, where tpacketis the configured packet delay for the given path, and npackets is the
number of packets needed for a given transmission size.
This difference consists of total path latency, measurement error, and excess retrans-

missions due to too small packet delays. Assuming measurement error and path latency
stay roughly the same, excess retransmissions easily dominate this number. End-to-end
path delay is below 2ms for typical Ethernet equipment. As evaluation showed, relative
error of time measurement should be 10−4 or less, i. e. 1ms per 10 seconds of transmis-
sion time. This means that if textra is lager than a few milliseconds, the error must be
from retransmissions.
Since spurious retransmissions errors occur even for good packet timings, a second

metric helps to fine tune the result. For a given path, almost perfect timings will have
a median textra in the low milliseconds. The mean can be larger, however: occasional
outliers will produce a mean that is noticeably larger but still within a few percent
difference, but regular outliers will have a significantly bigger mean.
The exact difference between good mean and median values differs by board type; I

have observed differences up to 400% for one board type, no matter how slow packet
timings were configured. Instead of a fixed boundary, evaluation has shown that this
difference can increase by several orders of magnitude for a small (e. g. 10%) decrease
of packet delay; this is a good indicator that the higher packet delay is close to being
optimal.

10.4.3.2. Model Parameters

As stated before, one pair of bridges per node implement the time model; it consists of a
startup delay and a packet delay. Once good real-world timings have been identified,
the configured packet delays can directly be used as packet delays in the platformmodel.
textra can be used to determine sensible values for startup delay: Create a system of

linear equations that has two variables for each available hardware architecture, one
representing incoming packet latency, the other one representing outgoing packet latency.
For all data points from the benchmark suite, identify sender and receiver architecture
and add a suitable equation (textra = tout + tin). Then perform a linear regression to find
the best set of latencies for the system of equations.

10.4.3.3. Benchmark Suite

The transmission benchmark suite uses a simple dummydata source kernel and a dummy
data sink kernel. A number of source and sink tasks are linked to each other and mapped
to different cluster nodes. If that mapping covers all relevant transmission paths, the
only missing piece is reliable transmission timing.

129

10. Measurement Platform

For the platform used in this thesis, I have devised a suite of benchmarks that tests all
important aspects. It has several test classes:

iobench-1 is a simple non-overlapping transmission between two nodes.

iobench-1bidir is a bidirectional transfer between two nodes that checks if parallel
transmission and reception impacts possible packet timing.

iobench-1c3 is like iobench-1, except all PEs on one node try to send a packet to
another node. This checks if local packet queuing has any unexpected impact.

iobench-max is likeiobench-1bidir, except all nodes transmit data simultaneously.
This tests if the switch is indeed capable of handling a fully loaded network.

iobench-crosscore is like iobench-1, but between different node architectures.
This identifies asymmetric transmission paths (see Listing 9.6 for example).

iobench-crosscore-bidir is the same, but bidirectional. This checks if asymmetric
timings deteriorate during full duplex operation.

This set of tests is then executed for various data sizes between 1 and 150,000,000 bytes5,
and repeated ten times. This helps identifying additional startup delays.
While this benchmark suite is tailored to the proposed evaluation platform, the general

principle behind it should be a good starting point for tests on other platforms as well.

10.4.4. Communication Power

Communication activities can consume significant amounts of energy. As described
in Section 9.8.4, the Eth network layer tries to reduce its dynamic energy profile using
an idle priority thread that wastes energy while the communication stack isn’t active.
But even if this was perfectly working or the anticipated hardware support of real-time
Ethernet was present, network interface hardware would still consume non-negligible
amounts of energy.
The simple two state power model (idle vs. active power) of the platform resource

model (Section 9.4.2) should work. Therefore, results from above benchmarks can
be reused: iobench-1 and iobench-1bidir contain long phases of transmission
without any computation activity. Idle and active states are easy to locate in the energy
trace, from this the communication power offset can easily be calculated. As a sanity
check, traces will also show if the assumption of a simple two state power model is
correct.
iobench-1 has transmission on one channel and reception on another, so that these

measurements can be used to derive model parameters. iobench-1bidir can show if
full-duplex transmission needs a slightly expanded model, or if the two directions are
independent of each other.

5The maximum that fits into memory on all nodes.

130

Part IV.

Evaluation

131

11. Evaluation Goals

In order to structure the evaluation process, I divide the overall evaluation effort into
four separate steps, three for the main methodology and one for additional aspects.
The main goal is to establish the viability of the presented methodology (Contributions

1 through 5). To do so, the accuracy of the measurement infrastructure needs to be
established first (Contribution 7), then the evaluation platform must be evaluated and
characterised (Contribution 6). As far as possible, this part will resemble the steps that
users of the proposed methodology would also perform.
After evaluating the main methodology, I then present justifications for some design

decisions that do not directly fit into the design flow and that would otherwise appear
to be arbitrary.
This section gives an overview of these four goals and derives evaluation criteria for

each of them. The actual evaluation process and discussion of results will then be covered
in the following sections, one section per goal.

11.1. Overall Methodology

11.1.1. End User Requirements

As stated in Section 2, the anticipated use of the presented methodology is to give
HPC programmers a way to optimise their applications by comparing different variants
without running them on the designated target platform. As a result, the main goal is
to minimise approximation error of simulation results: For a given simulation result,
the true result lies within a range of possible values. If the error ranges of two different
results do not overlap, they accurately determine the better variant.
Furthermore, having a correct estimate of expected maketime and energy usage helps

in planning execution, so even for singular predictions a high accuracy is desirable.

11.1.2. Evaluation Criteria

11.1.2.1. Time

As shown in Section 8, there is no directly comparable methodology in terms of flexibility
and speed. Still, it is desirable to have an accuracy that is on parwith establishedmethods.
Table 11.1 shows accuracy values reported by some of them. None of these are actually
comparable, as they measure different kinds of predictions at widely varying orders
of magnitude (see Table 8.1 for details). Nevertheless, these values suggest that HPC
predictions with an error of about 5-15% are useful results.

133

11. Evaluation Goals

Table 11.1.: Reported time prediction error in related methodologies. Multiple values
are given if more than one simulation technique is evaluated.

Name Reported Error(s)

PSINS [58] 15%

TaskSim [59] 8% - 17%

SimMatrix [61] 2.5%

Petri Nets [62] 4.5%

As a result, I consider a relative error of 5% to be a good result for overall maketime
predictions, while an error of more than 15% can be deemed of limited practical use.

11.1.2.2. Energy

For energy, there are few related HPC-scale energy prediction methodologies to compare
with. The main energy-related concern is power provisioning (see Section 4.1.4), and the
relative differences are significant: on some machines, more than 40% of the provisioned
power stay unused over long time spans [48]. The proposed methodology could be
applied to a hardware overprovisioned platform in order to select the fastest subset for a
program that fits within the power limit.

This means that evenwith 20% prediction error, a hardware-overprovisioned platform
would still have a performance advantage over a traditional power-overprovisioned
platform, if both had the same power limit.

When comparing to an existing predictions approach, the RMAP resource manager
[48] has a reported prediction error of up to 15% for the worst case, and less than 10%
for 96% of the predictions. Unlike this thesis, these figures are not based on physical
measurement and only include dynamic CPU and RAM power, so they are only suitable
as a rough guideline.

As a result, I consider an error of 5% or better an ideal result, and anything below
10% a good result. Anything below 20% would still be a result with some usefulness.

11.1.2.3. Performance

Since predictions should be used in interactive workflows and in automated exploration
of larger design spaces, individual simulation runs should ideally complete within
milliseconds to seconds on real-world developer equipment. Simulation times of more
than a minute would limit usefulness for the intended purpose.

The definition of ‘real-world developer equipment’ is vague, of course – a reasonably
recent mid-range to high-end consumer CPU would be a valid choice. The exact times
are not too important, the order of magnitude is. Also, I expect the methodology to scale

134

11.2. Measurement Accuracy

linearly with the number of tasks so that hardware upgrades can effectively increase
usable application sizes.

11.2. Measurement Accuracy

Since evaluation depends on the measurement infrastructure presented in this thesis, its
accuracy needs to be established first. Its margin of error increases the perceived error of
the proposed methodology, so it should be as low as possible within the design goal of
universal (i. e. low-cost) availability.

11.2.1. Time

Relative Error The inputs for the prediction methodology use the same reference clock
as the measurements of the evaluation benchmarks. The way input timings are used,
every linear relationship between system clock and real-world time results in the same
relative error. This means that measurements involving relative error are correct by
definition.

If accurate absolute readings are required and linearity is good, then wall clock time
can easily be calibrated each time the system is used, simply by comparing a long enough
time span to a highly accurate external time source, for example the GPS time signal.

As shown in Section 10.3.2, the Arduino clock is the reference time source. Assuming
stable ambient conditions, the its clock crystal should not experience a significant non-
linear drift. This results in a linear relationship between reference clock and real-world
time. In practice, unstabilised quartz crystal oscillators have a frequency error of much
less than 1%, down to 0.01% in the best case [43], so this should be suitable for the
intended purpose without needing to determine the exact error range.

In the long term, ambient conditions (temperature, humidity, etc.) of a simple office
or laboratory setting change, and these do influence crystal oscillators. The experiments
for this thesis were short enough that these conditions did not vary significantly during
a single benchmark run.

I therefore do not evaluate the accuracy of converting Arduino clock cycles into wall
clock time. As a sanity check for the assumed linearity, I compare all clocks in the platform
against each other and expect less than 1% deviation from ideal linear behaviour.

Absolute Error As discussed in Section 10.3.4, kernel characterisation needs energy
trace timing to be correlated with reference time in order to measure the energy of kernel
execution. As has been stated, a task running the kernel to be characterised is preceded
by a 2 s pause and followed by a 300ms pause.

Since idle power will be subtracted from the resulting energy, the time window used
for energy measurement can safely include pause times. Assuming an absolute error
of up to 150ms, the sampling window can thus be increased by 150ms without risking
inclusion of unrelated parts of the energy trace.

135

11. Evaluation Goals

Thus, the reference clock will be converted into the time base of the measurement
boards using a linear approximation. The absolute approximation error should not
exceed 150ms.

This evaluation needs to be done under realistic power settings, because there might
be an additional timing error due to voltage regulator capacitance on the compute boards
(see Section 5.3.2). Since the evaluation platform includes several low power CPU cores,
this effect may be large enough to be significant.

11.2.2. Energy

The arguments about time linearity apply to energy measurements in a similar way:
as far as relative error is concerned, only non-linearity of the measuring equipment
matters. Evaluation therefore needs to assure that measurement results deviate from
linear behaviour as little as possible.

The main components that affect accuracy and linearity are the Maxim MAX4378T
instrumentation amplifier and the ADC itself. According to the data sheets, the former
has a typical error of 0.5% above a minimum sense voltage of about 25mV, the latter has
a maximum error of 0.1% (+/- 2mV).

For absolute readings, the voltage references also affect the result. The internal voltage
reference is specified at 0.5% error. For supply voltage measurements, there is an
additional Maxim MAX6126 voltage reference with a specified error of 0.02%.

Given these technical specifications and the fact that timing error is expected to be less
than 1%, I would consider this a good result for energy as well.

11.3. Evaluation Platform

I consider the evaluation platform to be a minor contribution, born out of the need for
a compact evaluation system with a suitable integrated measurement infrastructure.
Therefore, its most distinguishing feature is the measurement infrastructure, which has
been covered in the previous subsection.

Nevertheless, there is a clear distinction between measurement itself and running the
workload; the evaluation platform should at least be examined for any properties that
would affect the primary evaluation goal of this thesis. This applies to more than the
evaluation platform itself: Users of the methodology also benefit from a systematic check
that their target hardware has no surprising and/or undesirable properties.

One design goal of the evaluation platform itself is that the ratio of computation over
communication speed is similar to HPC systems, making it a downscaled model of HPC
systems. While not central to the proposed methodology, it would also be advantageous
if the platform had a similar ratio between idle and active power as a HPC cluster. This
would improve comparability of energy prediction quality with HPC research, e. g. [48].
In [52], an idle system is reported to have about 50% of active power; this is for the same
HPC architecture (IBM BlueGene/Q) as used in [48].

136

11.4. Individual Design Decisions

11.3.1. Platform Characterisation

Characterisation of the target platform (Section 10.4) is a standard step for the proposed
methodology. It covers the most important aspects: timing and power of communication
and application-independent computation (clock speed and idle power).

I designed simulation models to match common hardware behaviour. I expect that
platform characterisation shows no anomalies that reduce or preclude applicability.

11.3.2. Power Variation and Heat

The platform consists of multiple independent compute boards. Manufacturing variation
can have a significant effect on the power properties of each board. Furthermore, heat
effects might affect boards, but the simulation models do not model heat.

Ideally, all boards of the same type should show the same general power behaviour.
If the difference is too large, absolute predictions become meaningless without a full
platform characterisation.

Variations should be small enough that characterisation of a single specimen is suffi-
cient to predict the behaviour of a full platform. If this is not viable, at least comparisons
of dynamic power should be reliable.

An additional test should check for heat effects. Since HPC loads will lead to heav-
ily loaded systems, behaviour of cold systems is not relevant, but there should be no
significant variance over longer periods of mixed usage. I expect that under a uniform
compute load, power should not vary significantly over time.

11.4. Individual Design Decisions

There are some design decisions that are not evaluated individually in the above sections.
The previous steps will already have established the overall methodology’s accuracy and
performance, so strictly speaking, the design decisions as a whole have been assessed
already.

Since these tests (or variations of them) were done (or at least attempted) during the
development of the presented methodology, they still offer valuable insight. So I present
them at the end of the evaluation part in order to show how some decisions affect the
methodology:

1. Fixed clock frequencies instead of dynamic frequency scaling (Section 10.2.1) might
affect computation performance.

2. Using an external time measurement circuit (Section 10.3.2) introduces additional
complexity in the measurement setup.

3. The more predictable Eth network protocol instead of TCP (Section 9.8.4) affects
communication performance.

137

11. Evaluation Goals

4. The physical execution runtime (Section 9.8) might introduce additional overhead
that traditional runtime systems avoid.

138

12. Evaluation of Measurement Accuracy

Since all other evaluation procedures depend on the measurement platform presented
in Section 10, it had to be evaluated first.
As stated in Section 11.2, the main goal is to ensure that energy measurements exhibit

linear behaviour. As has been argued there, time measurements should not need a
detailed evaluation. To be on the safe side, the expected time linearity should at least be
confirmed in a simple test.

12.1. Setup

To determine basic energy measurement accuracy, DC signal linearity needs to be
established first. Then the channels need to be checked if they are independent of each
other. Finally, the frequency response should be appropriate for the sampling rate the
boards will be operated at.
For time measurement, a simple test compares all clock sources in the system to each

other to see if there are any inconsistencies that would invalidate the linearity assumption
stated in Section 11.2.
For all tests in this thesis, the measurement boards have been operating for at least

one hour prior to starting measurements, so that they should have reached thermal
equilibrium.

12.1.1. DC Accuracy

To establish DC accuracy, I use a Rohde & Schwarz HMC8042 programmable power
supply as power source, an ITECH IT8500 programmable electronic load as consumer,
and a Rohde & Schwarz HMC8012 digital multimeter as reference measurement device.
All three devices can be controlled from a computer using a serial connection. I used a
shunt resistance of 40mΩ (at 1% accuracy and a temperature coefficient of 35 ppm/K)
for all tests.

Current Measurement In the first test run, I configured the power source to supply
exactly 5V and no current limit (beyond the physical limit of 5A of the power supply
itself) and connected it to ground and the 5V fuse clamp. I connected the electronic load
to the output pins of one channel. Finally, I set up the multimeter to measure the voltage
across the shunt resistor.
During a one hour run-in period, the electronic load was set to draw 1A. After that,

measurement began.

139

12. Evaluation of Measurement Accuracy

A script I wrote set the load to 0A and then increased it by 1mA for each measurement.
For each step, it waits 3 s for the new load value to settle, averages five consecutive
measurements from the multimeter, and averages 80µs of measurements (one data
packet) from the analog-to-digital converter (ADC) on the measurement board. It then
writes all values to a tabular text file. The result is a look-up table that associates electrical
current flowing through the shunt with shunt voltages and ADC sample values for the
channels that have been measured.
With a look-up table, piecewise linear interpolation can be used to get highly accurate

absolute readings. On the downside, this approach depends on the accuracy of multiple
devices (multimeter and electronic load). Also, it requires longmeasurements to calibrate
each board to be used.
To determine that shunt voltages and ADC sample values have a linear relationship,

the accuracy of the electronic load does not matter at all, and only the linearity of the
multimeter matters. As discussed in Section 11.2, linearity is the most important goal.
If absolute values are desired, good linearity means a single calibration measurement1

on each channel can provide the conversion factor fromADC samples to physical units.
Thus I compared the lookup table to a linear formula derived by linear regression of

the results. The maximum difference determines the worst case non-linearity.
In all calculations I ignored shunt resistor measurements below 25mV and did not

use them for linear regression, because the MAX4378T instrumentation amplifier has a
much bigger error below that value.

The evaluation so far only tests the accuracy of shunt resistor voltage measurement.
The final gap that needs to be closed is the relation between actual current and shunt
resistor voltage. The shunt resistor value is meant to be chosen by users according to
their needs, yet this evaluation can only evaluate the resistors used during this thesis.
Furthermore, assuming a linear relationship between current and voltage (which resistors
should certainly exhibit), this is only relevant for users that require absolute predictions,
not relative comparisons.
As a result, I checked the absolute values of the measurements described above for

any inconsistencies with these assumptions.

Voltage Measurement Voltage measurements use an ADC identical to the one used
by current measurement, and the analogue signal path is almost the same but with one
less active component (the instrumentation amplifier). Voltage measurement linearity
should therefore be similar to or better than current measurement linearity. Therefore, I
performed a shorter examination to confirm my assumption.
Using the same setup as before, but connecting the multimeter to the output pins

instead, I again let the system run in with a load of 1A. Then I adjusted the input voltage
so that after the shunt resistor, a voltage of about 4.5V registered on the multimeter and
noted voltage and ADC sample value. I repeated this measurement across the range of
4.5V through 5.4V in steps of roughly 100mV.

1or two, to eliminate a possible offset error.

140

12.1. Setup

12.1.2. Channel Independence

If the design succeeded in preventing cross talk between channels or between main
power and measurement signal, this can be tested easily: using an execution run that
exhibits sudden and significant current changes on one channel, there should be no trace
of current changes on another channel.
Evaluation already includes various characterisation procedureswith suitable expected

energy patterns across all channels, so I selected a random current measurement that
showed the desired current changes to confirm that there is no detectable cross talk.
Note that voltage signals will not be independent of each other: If a channel causes a

voltage drop in the power source (e. g. due to a sudden increase in current), this voltage
drop will of course be visible on all channels. Therefore, voltage signals cannot be
sensibly tested for cross talk. However, they are routed parallel to current signals, so it
is safe to assume that they behave the same regarding cross talk.

12.1.3. Frequency Response

As argued in Section 10.1.2, it is important to establish the frequency response of the
measurement signal path. To determine the influence of different parts of the analogue
signal path, I performed three separate tests:

1. Signal path from 5V supply line to MCU pin

2. Signal path from MCU pin to ADC

3. Entire signal path (1 and 2 combined)

I repeated the first two tests with five randomly selected channels; I did the third meas-
urement on all 5V channels on both boards.
For the first test, I used a Siglent SDG2122X function generator to generate a white

noise signal on a 5V output pin. I used a TektronixMSO2012B digital storage oscilloscope
to measure and calculate the frequency spectrum of both, the source and the signal as it
arrives at the MCU.
For the second and third test, I used the function generator to generate a fixed-

amplitude sine wave. I looked at a live display of the signal and increased the frequency
to the point where the signal amplitude drops to 71% of the DC value (since -3 dB is
equivalent to a relative amplitude of 0.708). I then recorded the current frequency of the
sine wave.

12.1.4. Time Measurement

As discussed before, I want to confirm that all clock sources behave as can be expected
from quartz crystals. Assuming that these sources do not all have the same systematic
error, this is possible by comparing the behaviour of all available time sources (CPU
timers on 15 compute nodes, sample clock from two energy measurement boards, and
GPIO timings from one time measurement board).

141

12. Evaluation of Measurement Accuracy

0 500 1000 1500 2000 2500
0

250

500

750

1000

1250

1500

1750

2000

ADC Sample Value (0-4095)

S
hu

nt
 R

es
is

to
r

C
ur

re
nt

 (
m

A
)

Figure 12.1.: DC current measurement: shunt resistor current over ADC sample values,
channel 10.

For this evaluation step, I treated energy trace timings as accurate reference values. I
created a benchmark where the cluster servers would do nothing but wait for multiple
spans of 3 minutes, interrupted by a MARK task (see Section 10.3.4). In total, a single
benchmark ran for one hour and had about 50 tasks that can be correlated between traces.
I used the procedure outlined in Section 10.3.4 to detect kernel timings in the energy
trace.
I then matched GPIO timings to their energy trace events and performed a linear

regression, noting the approximation error of the result. I did the same with CPU timer
values. For comparison, I also calculated a simple linear correction factor using just the
trace end markers.
Since the compute nodes might have different energy behaviour due to construction

details, I performed these tests for all CPU types; I tested the A7 and A15 cores on the
ODROID XU4 boards separately, because as noted in Section 11.2.1, different power
settings might lead to different influences by voltage regulator capacitance.

12.2. Results

12.2.1. DC Accuracy

Figure 12.1 shows a plot of shunt resistor current over the ADC readings obtained from
a measurement board equipped with 40mΩ (±0.1%) shunt resistors. To the naked eye,
sample values seem to be perfectly linear, even for low currents. However, shunt voltages
were actually lower than expected, shown in column two of Table 12.1. At 1A, the shunt
voltage should be exactly the resistor value, with Ohms replaced by Volts.

142

12.2. Results

Table 12.1.: Shunt resistor voltages for a nominal current of 1A

Channel Shunt Voltage at 1A (40mΩ) Shunt Voltage at 1A (100mΩ)

1 36.957mV 1.009V

2 37.017mV 0.992V

3 37.308mV 1.005V

4 37.360mV 0.996V

5 37.430mV 0.999V

6 37.109mV 1.007V

7 37.753mV 1.008V

8 37.809mV 1.001V

9 37.407mV 0.991V

10 37.617mV 0.990V

In order to eliminate the resistors as source of the errors, I desoldered them and
measured them in a standalone setting. Using a constant current source of 1A, Imeasured
the voltage drop across them. All resistors were well within their specified accuracy.

Due to the unclear situation and the fact that the compute boards turned out to have
much less typical current than expected, I decided to replace the 40mΩ resistors with
100mΩ (±0.1%) resistors. Column three of Table 12.1 shows the measurements of that
configuration; they match the expected values within an error margin of 1%.

Table 12.2 shows a closer analysis of shunt resistor voltage using three different fitting
methods: a linear regression using all measurements > 25µV, a linear regression using
just two measurements (one in the middle, one at the upper end of the data set), and
a static formula derived from ideal values according to the data sheets of all involved
components: U = ADC

4096 · 2 · Uref · 1
g , where Uref is the reference voltage of 1.024V and g is

the instrumentation amplifier gain factor of 20; effectively, U = ADC · 25µV.
Using the full regression, no sample value deviated more than 1% from a linear

approximation. The relative error increased slightly when using just two measurements
for linear regression, but the error is still around 1%. The static formula has up to 4%
error, channels with a high voltage offset are worst.

Figure 12.2 shows a detailed plot of the relative error of one channel (the one with
the largest offset voltage). It shows that below 25mV (an ADC sample value of roughly
1000), relative accuracy suffers significantly. In fact, an ADC sample value of 1500 seems
to be a better lower boundary for high accuracy. This corresponds to slightly less than
40mV shunt resistor voltage.

143

12. Evaluation of Measurement Accuracy

Table 12.2.: Maximum error of different linear fitting methods for ADC to shunt voltage
conversion: linear regressions using 2000 and 2 data points per channel, and
the theoretical value of 25µV per ADC count.

Chan. 2000-Point Linear Fit 2-Point Linear Fit 25µV
Factor Offset Rel. Err. Abs. Err. Rel. Err. Abs. Err. Error

1 25.11µV 48.30µV 0.79% 491µV 1.13% 554µV 1.41%

2 25.07µV 75.41µV 0.82% 737µV 0.98% 630µV 1.24%

3 25.01µV 282.92µV 0.88% 599µV 1.20% 449µV 2.02%

4 25.01µV 200.27µV 0.97% 541µV 0.98% 551µV 1.41%

5 25.12µV 421.39µV 0.82% 567µV 1.18% 875µV 2.81%

6 24.99µV 462.77µV 0.80% 969µV 1.21% 846µV 2.58%

7 24.92µV 490.21µV 0.79% 945µV 0.77% 921µV 2.31%

8 25.15µV 548.11µV 0.73% 705µV 1.18% 488µV 3.37%

9 25.10µV 291.51µV 0.81% 463µV 1.01% 584µV 2.19%

10 25.05µV 722.12µV 0.86% 929µV 0.92% 942µV 3.77%

0 500 1000 1500 2000 2500
-4

-3

-2

-1

0

1

2

3

4

ADC Sample Value

Li
ne

ar
 A

pp
ro

xi
m

at
io

n
E

rr
or

 (
in

 %
)

2000-Point Fit

2-Point Fit

25uV Formula

Figure 12.2.: DC current measurement: relative error over ADC sample values, channel
10.

144

12.2. Results

Measured Voltage ADC sample value Ideal Voltage Relative Error

4.496V 1052 4.502V -0.13%

4.611V 1280 4.616V -0.11%

4.715V 1486 4.719V -0.08%

4.789V 1632 4.792V -0.06%

4.893V 1837 4.895V -0.03%

5.000V 2048 5.000V 0

5.115V 2275 5.114V 0.03%

5.208V 2460 5.206V 0.04%

5.287V 2613 5.283V 0.09%

5.386V 2811 5.382V 0.08%

Table 12.3.: DC voltage measurement results for a single channel.

Voltage Table 12.3 shows the results of the reduced measurement series for voltage
readings. Ideally, voltages would conform to Uideal =

ADC
4096 · 2 · Uref + Uext − Uref, where

Uref is the internal reference voltage of 1.024V and Uext is the external reference voltage
of 5.00V. Effectively, Uideal = ADC · 0.5mV+ 3.976V.

12.2.2. Channel Independence

Figure 12.3 shows two channels recorded during their typical initialisation sequence
in the worst possible configuration: Channel 5 is an ASUS TinkerBoard, which has the
largest current swing of the three board types. Channel 6 is an ODROID C1+, which has
a very low current consumption. These two channels use the same MAXIMMAX4378T
instrumentation amplifier, and their PCB traces are physically close.

The graph shows that the big current step of channel 5 has no noticeable effect on
channel 6. During evaluation, I looked at hundreds of such traces and did not see any
bigger effect.

When looking closely at the pause around 0.6 s, it seems a tiny effect might be present
within the noise floor. I filtered the signal using a 10ms sliding mean; the effect was
barely visible and I determined its size to be 0.3 sample counts, which is an error of about
0.5%.

12.2.3. Frequency Response

Figure 12.4 shows the frequency response of the analogue path between 5V power
supply and measurement MCU pin of one channel. The external signal path (orange

145

12. Evaluation of Measurement Accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

Time since start signal (s)

ra
w

 A
D

C
 s

am
pl

e
va

lu
e

(1
m

s
av

er
ag

e)

Channel 5

Channel 6

Figure 12.3.: Electrical current of two physically adjacent channels with significant power
consumption steps to make cross talk visible, if present.

146

12.2. Results

0.1 1.0 10.0 100.0

-24

-21

-18

-15

-12

-9

-6

-3

0

5V Rail

MCU Pin

Frequency (kHz)

R
el

at
iv

e
S

ig
n

al
 S

tr
en

g
th

 (
dB

)

Figure 12.4.: Frequency response of the external analogue signal path.

line) has a frequency limit of 38 kHz for 3 dB attenuation, while the 5V rail itself (blue
line) has an almost linear response within the frequency range of interest.

The signal path betweenMCU pin andADC showed a frequency limit of about 20 kHz.
For overall frequency response, I measured about 15 kHz as frequency limit. Thus
the measurements are consistent with each other. The other channels showed similar
behaviour.

12.2.4. Time Measurement

Figure 12.5 shows the results of the clock linearity tests. CPU and GPIO timings have a
worst-case error of less than 0.1% or less when scaling them via a simple linear approx-
imation derived from trace end markers only. For most boards, a full regression creates
worse relative error.

The absolute error between different time sources is shown in Figure 12.6. Worst case
errors below 40ms error in many cases; low power CPU cores are noticeably worse
again, but still below 80ms. A full linear regression reduces the mean absolute error as
expected, but its effect on worst-case timings is less pronounced.

147

12. Evaluation of Measurement Accuracy

A17
1

A17
2

A17
3

A17
4

A17
5

A5
6

A5
7

A5
8

A5
9

A5
10

A7
11

A7
12

A7
13

A7
14

A7
15

A15
11

A15
12

A15
13

A15
14

A15
15

0.0001

0.001

0.01

0.1

1

ARM Cortex CPU Core/Compute Board Number

G
P

IO
 ti

m
e

de
vi

at
io

n
fr

om
 e

ne
rg

y
tr

ac
e

(%
)

Simple

Full

(a) GPIO and energy trace timings

A17
1

A17
2

A17
3

A17
4

A17
5

A5
6

A5
7

A5
8

A5
9

A5
10

A7
11

A7
12

A7
13

A7
14

A7
15

A15
11

A15
12

A15
13

A15
14

A15
15

0.0001

0.001

0.01

0.1

1

ARM Cortex CPU Core/Compute Board Number

C
P

U
 ti

m
e

de
vi

at
io

n
fr

om
 e

ne
rg

y
tr

ac
e

(%
)

Simple

Full

(b) CPU timer and energy trace timings.

Figure 12.5.: Maximum andmean relative deviation between different timings using two
different approximations: ‘Simple’ uses a linear correction factor calculated
from trace end markers, while ‘Full’ is a linear regression over all task
execution events.

148

12.2. Results

A17
1

A17
2

A17
3

A17
4

A17
5

A5
6

A5
7

A5
8

A5
9

A5
10

A7
11

A7
12

A7
13

A7
14

A7
15

A15
11

A15
12

A15
13

A15
14

A15
15

0

20

40

60

80

100

ARM Cortex CPU Core/Compute Board Number

G
P

IO
 ti

m
e

de
vi

at
io

n
fr

om
 e

ne
rg

y
tr

ac
e

(m
s)

Simpe (Maximum)

Simple (Mean)

Full (Maximum)

Full (Mean)

(a) GPIO and energy trace timings

A17
1

A17
2

A17
3

A17
4

A17
5

A5
6

A5
7

A5
8

A5
9

A5
10

A7
11

A7
12

A7
13

A7
14

A7
15

A15
11

A15
12

A15
13

A15
14

A15
15

0

20

40

60

80

100

ARM Cortex CPU Core/Compute Board Number

C
P

U
 ti

m
e

de
vi

at
io

n
fr

om
 e

ne
rg

y
tr

ac
e

(m
s)

Simpe (Maximum)

Simple (Mean)

Full (Maximum)

Full (Mean)

(b) CPU timer and energy trace timings.

Figure 12.6.: Absolute deviation between different timings using two different approx-
imations: ‘simple’ uses a linear correction factor calculated from trace end
markers, while ‘full’ is a linear regression over all task execution events.

149

12. Evaluation of Measurement Accuracy

12.3. Discussion

12.3.1. Energy

Shunt Resistance The most glaring deviation from expectations is the effective value
of shunt resistances. The results in Table 12.1 show that actual resistor values seem to be
up to 7.6% lower than the nominal value.

I could eliminate the resistors as source of this discrepancy. The instrumentation
amplifier is another possible source, because it is connected in parallel to the shunt
resistor. The input resistance might be the origin of the difference, but its data sheet does
not specify it. Since the second set of shunt resistor values showed much less error, this
is not a plausible explanation.

This leaves the electronic load as a possible culprit. If it had a faulty calibration, that
could explain the error, including the fact that the overall system still had a good linearity.
Unfortunately, at this point in the investigations I did not have access to this exact unit
anymore – the measurement process was automated and lasted several days, so I did
not inspect the results immediately.

I used a different device for themeasurements of the 100mΩshunt resistors, and Imade
sure that the actual current matched the nominal current by measuring it independently.
Given that this test was successful, it is likely that the first electronic load had a defect.

There is no way to test this hypothesis. Nevertheless, even the faulty measurements
behaved linearly, just the scale seemed to be off. The new set of resistors show good
values overall, so these findings can simply be accepted as they are with no consequence
on further evaluation steps.

DC Current The measurements show a linear approximation error that is below the
expected accuracy of 1%, at least for shunt voltages over 25mV. The error shrinks to
0.5% for shunt voltages over 40mV.

Channels have a slight offset error which result in a worst-case error of about 3%
when using the naïve scaling factor of 25 µV with no offset voltage. If users would like to
have more accurate predictions, they can perform two calibration measurements on each
channel. On the other hand, an overall error below 5% is acceptable in many situations,
so it may not be worth the effort.

This is no problem for the intended usage: simulation models primarily use the
difference between idle power and active power, which eliminates a constant offset;
the remaining idle power offset is constant over the entire prediction time, so it can be
corrected after the fact, should the need arise.

DC Voltage Results show that accuracy is very good; relative error is below 0.15%.
This was to be expected, since the involved components are identical, apart from one
less active component, and one less shunt resistor.

The ADC uses a differential amplifier as input stage. It samples voltages centred
around the reference voltage, and a 5.000V signal indeed leads to the exact centre value.

150

12.3. Discussion

With increasing difference from the centre, the relative error increases. The measurement
results suggest a voltage range of 5.000± 1.038V instead of ±1.024V as specified in the
data sheet. Since the error is so low, eliminating it is not worth the effort. I used the ideal
formula for the remaining evaluation.

Channel Independence Measurement channels are sufficiently independent from each
other. Even underworst possible conditions (sudden high current change on one channel,
small signal on neighbouring channel) the effect, if there is any at all, is smaller than
signal noise. Given that I could only observe an induced error of 0.3 sample counts, I
did not examine whether the observation was actually caused by the source signal or if
it was just a random fluctuation.

Frequency Response The frequency limit is much lower than the explicit filter element
would have enforced. Layout of PCB signal traces and internal microcontroller signal
path contribute to this result in similar orders of magnitude.

The final frequency limit of 15 kHz almost perfectly fits the intended usage: Low-
pass filtering does not change overall energy when integrating over a sufficiently long
time span. For the same reason, the exact shape of the frequency response curve does
not matter (yet it is almost ideal below 10kHz). Only aliasing must be suppressed
effectively. For a sampling rate of 100 kHz, 15 kHz is much lower than the Nyquist-
Shannon frequency, thus aliasing is sufficiently suppressed.

Furthermore, the recording mode used for this thesis averages 10 samples at a time.
This reduces the effective sampling rate to 10 kHz; since the frequency limit is above that,
the effective temporal resolution in the averaged signal is not reduced by the analogue
signal path.

12.3.2. Timing

Linearity Deducing timings from energy traces works well: When comparing linear
approximations of different time sources with energy traces, the simple linear approx-
imation deviates by less than 0.1% in the worst case. A full linear regression almost
reaches the documented error of uncompensated crystal quartz oscillators (0.01%) for
some boards.

For most boards, the average error is better than the worst case error by an order
of magnitude. One ASUS TinkerBoard reaches an average error of 0.001%. The big
difference is probably due to the comparably imprecise detection of energy signatures in
the energy trace.

I regard it as highly unlikely that these results are just due to a coincidental correlation
– it would involve 18 devices of five unrelated sources (different manufacturers, differ-
ent device classes, acquisition several years apart). Thus, the ability to create a linear
approximation with such a low margin of error confirms the accuracy assumption stated
in Section 11.2.1.

151

12. Evaluation of Measurement Accuracy

Absolute Error Likewise, absolute accuracy is excellent: Errors were less than 80ms
throughout. As discussed in Section 11.2.1, during kernel characterisation there is a 2 s
pause before and a 300ms pause after each kernel execution. In fact, I chose the trailing
pause based on the absolute error measured here: For an execution that is measured to
run from tstart until tend, kernel characterisation can safely sample the energy signal from
tstart − terr through tend + terr without including unrelated energy data2, if both pauses
are at least 2terr.
I decided to use terr = 150ms during kernel characterisation so that I can be sure

that even a slowly rising signal is captured entirely, while keeping a safe distance from
following unrelated energy data.

12.3.3. Summary

Overall, the evaluation of the measurement platform shows that it is well suited for
the intended purpose. Accuracy is good throughout. Relative comparisons show less
than 1% error even without calibration, and absolute readings are below 3% error
(uncalibrated).
The most notable exception is measurement of small currents. Users of the meas-

urement platform should make sure that they choose shunt resistor values so that the
expected load leads to a voltage drop of more than 25mV; for maximum accuracy, values
should exceed 40mV.
As a conclusion, the measurement infrastructure fully meets the goals of Contribution

7, but users are advised to note the design guideline stated in the previous paragraph.

2Assuming, as stated earlier, that I subtract idle energy.

152

13. Characterisation of the Evaluation
Platform

The evaluation platform itself is a minor contribution which only aims to deliver a ratio
of computation speed over communication speed in the same order of magnitude as an
HPC system.

The output of the characterisation process is required by the prediction methodology,
so it is an important preparation for the evaluation of the core methodology.

13.1. Setup

13.1.1. Platform Model

I created a program that can generate platform graphs of the evaluation platform con-
taining any subset of available cluster servers.

The communication time model is realised by a single pair of bridges (of opposing dir-
ection) per cluster server. These represent the Ethernet interface of the server. The other
communication graph nodes do not get time models, since the platform characterisation
process doesn’t yield more detailed data.

13.1.2. Platform Characterisation

Sustainable Clock Speed I expressed the clock speed test presented in Section 10.4
as a trivial task graph: On one core, an alternating sequence of MARK and a dummy
calculation kernel runs. On another core, there runs a special kernel which just tries to
produce as much heat as possible, which happens to be a tight floating-point math loop
on the CPUs I tested. That second core has a flat energy profile, so it does not interfere
with detection of the MARK kernels on the first core.

Using this test, I tried various frequencies using 200MHz steps until I found the fastest
working configuration.

Platform Power As discussed in Section 10.4.2, I used the final clock speed benchmark
to check for adverse effects. I also use it to determine a table of correction factors between
boards of the same architecture.

For each MARK kernel I calculate the average power of the 2 s pause and the maximum
power of the following dummy calculation kernel. From these value pairs, I discarded
the last one, since the heat-up kernel on the second core might have ended at that point;

153

13. Characterisation of the Evaluation Platform

in order to ignore data points from a completely cold system, I also discarded the first
three value pairs.

I chose the last board of each group as reference. I then calculated the mean of the
pause power values and the mean of the maximum power values and used them in a
simple linear regression. The result was a table of scaling factors and absolute offsets
between the reference boards and all other boards. To determine idle power, I calculated
the average power of the initial pause before the first kernel. I checked all results for any
extraordinary heat effects that should be addressed.

Idle power and correction factors might vary with ambient conditions. For later
measurements I calculated new correction factors and idle power from each set of power
traces. This is not possible for predictions, of course, so I used the idle power determined
in this step in the platform resource model.

In order to get an impression of the proportions between idle and active power, I
looked at the power trace start markers, since they are designed to consume as much
energy as possible and should approximate peak power.

Communication Timing I then performed the communication characterisation as de-
scribed in Section 10.4. Using the TCP networking layer, I generated an initial latency
estimate. I then iterated a few times with different Eth packet latencies, until I arrived at
the fastest timings that had reasonably few outliers.

I used transmission sizes of 100 kByte, 1MByte, 10MByte, 50MByte, 100MByte, and
150MByte for each of the benchmarks presented in Section 10.4. This covers the range of
data sizes that will be used in later evaluation steps.

Communication Power As described in Section 10.4.4, I use the above benchmark
to measure the average value of each architecture’s idle and transmission power (per
direction) and used the difference as power value in the platform resource model.

After this step, the platform resource model was complete.

13.2. Results

13.2.1. Clock Speed

As a result from the benchmark procedure, I initially set the CPU frequencies of the
XU4 Cortex A7 cores to 1400MHz, the A15 cores to 1600MHz, and the TinkerBoards to
1GHz. I was unable to find a reliable operating point for the C1+ boards after trying all
frequencies between 200MHz and 1.4GHz; see Section 15.2 for further evaluation of the
anomalies. I decided on a mid-range 1GHz for these boards.

Later during the evaluation process, I discovered that the XU4 boards, specifically the
A15 cores, showed signs of thermal throttling after prolonged usage. While executing a
series of identical kernels, a random kernel in that sequence would suddenly have twice
the execution time compared to the other kernels in that sequence. This only happened

154

13.2. Results

after more than one hour of operation, and I could not identify a correlation with any
other event.

The relative effect of this anomaly lessened with lower clock speed, and at 600MHz
it disappeared completely. It appears as if the XU4 firmware suddenly decided to
unconditionally switch to 600MHz for a few seconds.

The anomaly had a significant effect on the predictability of execution times, so I had
to repeat the evaluation with a lower clock speed than (apparently) possible. Unless
otherwise noted, the remaining evaluation shows results for the 600MHz configuration.

13.2.2. Platform Power

Figure 13.1 gives a rough impression of the power behaviour of all 15 boards. Table 13.1
shows the calculated correction factors and idle power values for the procedure as
described. Idle power (i. e. static power for the purposes of this thesis) varies by up to
5% between boards of the same type. Scale (i. e. dynamic power) varies a bit more, with
up to 20% worst-case difference for XU4 boards. Two boards (one C1+ and one XU4)
have a noticeable power offset, they consume about 0.6W more than their siblings.

Figure 13.1 shows power over a longer time spanwithout applying the linear correction
factors1. Most channels show virtually no power increase over time, except for ASUS
TinkerBoards. Those show increasing power that resembles a logistic function or a
similar asymptotically constant function.

Note that pauses are not at idle power – these measurements also originate from
the load benchmark as before, which means that a second core is still running dummy
calculations meant to increase power usage. Pauses are merely wait times on the first
CPU core.

Figure 13.2 shows the ATB boards in more detail. The power difference between active
periods and pauses seems to be constant, but some channels have high variance – some
outliers differ by more than 10%.

13.2.3. Communication Timing

After performing the iterative communication characterisation process, I arrived at the
timings shown in Table 13.2; it shows the delay between two sent packets, enforced on
the sender side.

For a given packet delay, ideal transmission timing is the packet delay times the
number of packets required for the transmission. Figure 13.3 shows the differences
between ideal and measured transmission time across all benchmark for two sets of
packet delays. One set is the selected set of packet delays, and one set is a tighter set of
delays that shows how pronounced these measures react when timings cross their lower
threshold. Table 13.2 shows the timings I used for the remaining evaluation.

1These two figures use the 1.6GHz configuration for the XU4 boards in order to analyse a more challenging
scenario.

155

13. Characterisation of the Evaluation Platform

Table 13.1.: Correction factors and idle power for the 15 boards.

Board Short Scale Offset (W) Idle (W)
A
S
U
S
T
in
k
er
B
o
ar
d ATB 1 1.062 0.030 2.190

ATB 2 1.033 0.158 2.195

ATB 3 0.983 0.053 2.182

ATB 4 0.984 -0.074 2.154

ATB 5 1.000 0.000 2.177

O
D
R
O
ID

C
1+

C1+ 1 0.982 -0.627 1.126

C1+ 2 1.011 0.094 1.138

C1+ 3 0.999 -0.019 1.123

C1+ 4 0.976 0.092 1.123

C1+ 5 1.000 0.000 1.124

O
D
R
O
ID

X
U
4 XU4 1 1.120 -0.585 2.279

XU4 2 0.914 0.139 2.347

XU4 3 1.037 -0.066 2.364

XU4 4 1.030 0.066 2.355

XU4 5 1.000 0.000 2.356

156

13.2. Results

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

Time (s)

P
ow

er
 (

W
)

ATB

C1+

XU4 (A7)

XU4 (A15)

(a) Pauses

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

Time (s)

P
ow

er
 (

W
)

ATB

C1+

XU4 (A7)

XU4 (A15)

(b) Active periods

Figure 13.1.: Power over time during pauses and active periods. Lines are linear approx-
imations.

157

13. Characterisation of the Evaluation Platform

0 50 100 150 200 250 300 350
2.5

3

3.5

4

4.5

Time (s)

P
ow

er
 (

W
) ATB 1

ATB 2

ATB 3

ATB 4

ATB 5

(a) Pause (dotted) and active (dashed) current. This time, lines are quadratic approximations in order to show
the gradual change in slope.

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time (s)

P
ow

er
 (

W
) ATB 1

ATB 2

ATB 3

ATB 4

ATB 5

(b) Difference between active and pause. Lines are linear approximations.

Figure 13.2.: Power over time for the five ASUS TinkerBoards.

158

13.3. Discussion

Table 13.2.: Final communication packet timing and net bandwidth (BW) for the Eth
networking layer.

Destination→ ATB C1+ XU4

Source ↓ Delay BW Delay BW Delay BW

ATB 50µs 30MB/s 110µs 14MB/s 220µs 7MB/s

C1+ 80µs 19MB/s 110µs 14MB/s 220µs 7MB/s

XU4 190µs 9MB/s 190µs 9MB/s 220µs 7MB/s

I was unable to reduce the remaining variance for theATB boards, even with massively
increased packet times. Also, the repeated evaluation of the XU4 boards showed that
timings are sensitive to clock frequency – at 1.6GHz, stable XU4 packet delays were
exactly half as long.

13.2.4. Communication Power

I examined the above benchmarks to derive communication power as described in
Section 10.4.4. Figure 13.4 shows the entire energy trace from one iobench-1 run. It is
easy to see the active communication phase, which adds slightly less than 0.1W to idle
power.

Figure 13.5 shows an analysis of all communication time benchmarks, converted to
energy per packet and plotted in relation to packet delay. It shows that the energy per
packet is in the same order of magnitude for all boards and constellations. In order
to emphasise the general trend, Figure 13.5 also contains linear approximations where
possible. Due to the limited data set, these cannot be considered very reliable; what they
do show is that bidirectional transfer (solid lines) not exactly the sum of send and receive
traffic (dashed and dotted lines), but it is close.

13.3. Discussion

13.3.1. Sustainable Clock Speed

No board could run at its nominal clock speed without intrusive thermal protection
measures kicking in – obviously, the clock ratings are only available in certain circum-
stances, similar to ‘Turbo’ frequencies of desktop CPUs. In Section 15.1 I report on my
effort to gain more insight into the effects of fixed frequency selection.

The clock speeds ultimately selected might still trigger thermal throttling, but in a way
that does not disturb timing of the nodes in an unpredictable way. The exception are the
C1+ boards, and I analyse their anomalies in more detail in Section 15.2. I consider them

159

13. Characterisation of the Evaluation Platform

0 100 200 300 400 500

ATB -> ATB (40us)

ATB -> C1+ (80us)

ATB -> XU4 (190us)

C1+ -> C1+ (80us)

C1+ -> XU4 (190us)

C1+ -> ATB (60us)

XU4 -> XU4 (190us)

XU4 -> ATB (170us)

XU4 -> C1+ (170us)

Transmission Latency Overhead (us)

Mean
Median

(a) Configuration with timings that are slightly too tight.

0 5 10 15 20

ATB -> ATB (50us)

ATB -> C1+ (110us)

ATB -> XU4 (220us)

C1+ -> C1+ (110us)

C1+ -> XU4 (220us)

C1+ -> ATB (80us)

XU4 -> XU4 (220us)

XU4 -> ATB (190us)

XU4 -> C1+ (190us)

Transmission Latency Overhead (us)

Mean
Median

(b) Optimum configuration

Figure 13.3.: Eth networking layer timing difference between measured and ideal values
(i. e. calculated from the stated packet delays).

160

13.3. Discussion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2

2.5

3

3.5

4

Time (s)

P
ow

er
 (

W
)

Channel 4

Figure 13.4.: Energy trace of a single communication benchmark, showing the receiver
of a unidirectional ATB-to-ATB transfer. Communication happens between
10.5 s and 13.8 s.

50 100 150 200
0

5

10

15

20

25

30

Packet Delay (us)

P
ac

ke
t E

ne
rg

y
(u

J)

ATB
C1P
XU4
recv
send
bidir

Figure 13.5.: Communication energy per packet, plotted over packet delay. Colour
denotes board type, while shape distinguishes between receive-only, send-
only, and bidirectional transfers. Lines are linear approximations.

161

13. Characterisation of the Evaluation Platform

to be too unreliable for the proposed methodology, but still use them during further
evaluation simply to see what effect hardware has that shows adverse behaviour.

For the XU4 boards, initial results are consistent with other findings in literature: The
selected clock frequencies are very similar to the best-performing clock frequencies repor-
ted in [45]. Unfortunately, the surprising long term behaviour makes this configuration
unusable for the purposes of this thesis.

In [47], the author reports similar findings from other embedded platforms, where
some embedded platforms seemed to be well behaved but had very rare anomalies. This
means that when selecting a target platform, users should check long term behaviour
over many hours or even days.

13.3.2. Platform Power

One important insight of the power characterisation is that boards of the same type
vary noticeably – about 10% deviation is common. The exact reason is unknown, but
plausible causes are variations in efficiency factor (of power converters for example) and
differences in board components other than CPU and RAM.

There are two outliers with a constant power offset of about 0.6W. Given that this is off-
the-shelf consumer grade hardware, this shows that build quality can significantly affect
power behaviour, even when performance is not distinguishable from other specimens.

This natural variation means that for a platform of this style, accurate energy predic-
tions only make sense if either natural variation is low or the entire platform has been
characterised. The intention that a single specimen of each CPU or board is sufficient for
the methodology is only valid under such a constraint. For their own target platforms,
users should at least check a few random samples until they have sufficient evidence
about natural variation.

Furthermore, the difference in (apparent) efficiency factor means that if minimising
energy is a user goal, the resource model used for scheduling should take individual
board differences into account; the algorithm presented in Section 9.6 doesn’t.

On the other hand, predictions using an idealised platform model without variations
are useful on their own. They might not be able to predict exact energy values, but might
still produce valid rankings of multiple alternative implementations, which is the main
goal anyway.

On the positive side, the load test confirms one design goal of the evaluation platform:
to provide a high degree of heterogeneity. The load test has shownquite clearly that board
types vary widely in power and timing. This will exercise the proposed methodology’s
ability to predict highly heterogeneous hardware.

Finally, the initialisation sequence in Figure 13.4 shows that idle power is about 60%
of peak power. While there are many factors that preclude a direct comparison, this
shows that the power ratio is at least in the same order of magnitude as the HPC setup
referenced in Section 11.3.

162

13.3. Discussion

Heat-related Power The only platform that showed a heat-up effect at all was the
ASUS TinkerBoard. This is a result of the evaluation setup: I intentionally disregarded
the first three data samples in order to skip the heat-up phase, and for the other boards
this strategy worked. However, ATB boards are much faster than other boards – they
finished the entire benchmark before A7 cores even generated their first recorded data
sample.

The results show that thermal equilibrium seems to be achieved within about two to
three minutes of active computation. This is suitable for the benchmarks chosen for the
main evaluation, which run for much longer time spans.

Finally, the visible heat-up effect of the ATB boards matches the subthreshold leakage
effect presented in Section 4.1.5: there is a significant effect that affects static power,
while there is no visible effect on dynamic power.

13.3.3. Communication Timing

The characterisation procedure for the Eth protocol works well, exhibiting a very strong
indicator for too tight timings. This means that it is easy to optimise throughput while
maintaining a high degree of prediction accuracy. ATB boards show a higher variance
than the other boards, however. This might be due to system-specific differences in
the respective Linux kernel version, configuration, and drivers. Nevertheless, their
behaviour remains sensible enough for the purposes of this thesis.

One of the design goals of the embedded cluster system is to provide a ratio of com-
putation speed over communication speed that is similar to HPC systems. The net
bandwidth that the predictability-optimised Eth protocol shows is well within this range:
at up to 30Megabytes per second, the net bandwidth, it is about one quarter of the
achievable bandwidth of Gigabit Ethernet.

A real HPC cluster would likely use faster technologies, thus would have at least 40
times faster communication speed for 10GBit/s Ethernet, for example. Computational
speed is difficult to state in general, but it sounds plausible that a factor of 40 or more
matches real hardware.

The de-facto standard LINPACK benchmark supports this impression: According to
[45], the Cortex A15 cores of the XU4 boards reach up to 4.96 GFLOPS (billion floating-
point instructions per second). On the other end of the spectrum, one of the fastest HPC
nodes in 2019, a dual-processor configuration of the AMD Epyc 7H12 processor, reaches
4296 GFLOPS according to a press release [44]. Such a system is roughly 800 times faster
than a single XU4 board; a high end 200GBit/s InfiniBand communication infrastructure
would match this factor of 800.

13.3.4. Communication Power

Communication power does not show any surprising results. The effect is small but
noticeable. Given that communication power is much smaller than computation power,
a constant energy per packet sent and received is a sufficiently accurate approximation.

163

13. Characterisation of the Evaluation Platform

Based on Figure 13.5, the simulation model will use 5µJ per packet for ATB and C1+
boards, and 10µJ for XU4 boards.

13.3.5. Summary

The platform behaved in a way that is mostly compatible with the modelling approach
used in this thesis, albeit with two important exceptions: the reduced clock speed of
XU4 boards is acceptable for the purposes of this thesis, but it makes comparison to
other publications using the XU4 infeasible. Secondly, the ODROID C1+ boards show
unexplained behaviourwhichmight affect predictability, thus theymust be considered as
unreliable for timing and energy behaviour. The error is large enough that the proposed
kernel characterisation process might not work. Only the ASUS TinkerBoard did not
exhibit any unexpected behaviour.
I actually introduced the ASUS TinkerBoards only after discovery of this problem,

so that the platform still shows significant heterogeneity even when disregarding C1+
boards.
A main insight of this part of the evaluation is that stability and predictability of

embedded platforms can vary widely. In [47], the author observes that this not an
issue for server-grade x86 hardware, at least not at that time. Users should confirm that
their hardware does not exhibit anomalies that would preclude usage of the proposed
methodology.
As far as the other system properties are concerned, the platformmeets its main design

goals of being complex enough for the proposed methodology, and being a scaled-down
version of an HPC system. This means that under the restrictions discussed above, the
proposed platforms meets the goals of Contribution 6. However, the following section
will evaluate an important additional constraint that is part of Assumption 8 as stated in
Section 7.

164

14. Evaluation of the Overall Methodology

For evaluation of overall prediction accuracy, I performed the design steps as presented
in Section 9. As stated in 11.1, the main goal is to determine the approximation error of
simulation predictions.

14.1. Setup

14.1.1. Overview

As benchmark application, I chose Cholesky matrix subdivision, a classic linear algebra
algorithm. I created a generator program for application models of different problem
sizes (Section 9.2.1). Then I performed kernel characterisation (Section 9.5).

With these generic inputs, I then examine multiple scenarios. For each one, I cre-
ated a mapping (Section 9.6), ran the mapped application on the evaluation platform
(Section 9.8), and simulated it on the simulation model of the platform (Section 9.7).

Due to their questionable reliability, the C1+ boards are not used throughout this
section.

14.1.2. Measurement Details

I uses the evaluation and measurement platform presented as part of this thesis. Due to
their unreliability, I excluded C1+ nodes. The platform ran in a plain office environment
that did not offer systematic ambient temperature control.

For all measurements, I only considered dynamic power. In order to do so, I measured
each board’s power after the application had ended and the execution runtime was
completely idle. I used the end in order to account for heat – idle power during startup
was usually about 10% less, but Section 13.2.2 did establish that temperature seemed to
be stable after about two to three minutes of operation.

Figure 13.4 illustrates this: Initial idle power can be measured during the 10-second
startup sequence. At around 14 s, the end marker sequence begins, with two easily
visible intervals of high energy consumption. At the end of the first marker, all worker
threads have exited. At the end of the second marker, the runtime has been shut down
completely and idle power can be measured.

I also normalised measurement channels as shown in Section 13.2.2: From each set of
power traces, I determined new linear correction factors in order to reduce differences
due to ambient temperature changes.

165

14. Evaluation of the Overall Methodology

14.1.3. Cholesky Matrix Subdivision

I chose distributed Cholesky matrix decomposition as primary benchmark application.
It belongs to the class of linear algebra programs (see Section 4.2.1) and has a nontrivial
task graph structure with highly parallel sections as well as synchronising/consolidating
tasks. Properties of linear algebra programs are also found in other important application
classes: For example, deep learning applications rely on matrix multiplication a lot, and
neural net structure has a natural representation as data flow graph. Finite element
simulations also emphasise arithmetic over control flow, and they exhibit complex data
flow if irregular meshes are involved. Thus Cholesky represents aspects of a significant
set of HPC programs.
Distributed Cholesky decomposition works by subdividing the source matrix into

equal-sized square tiles; each task works on one to three tiles at a time. Figure 9.3
shows the Cholesky task graph for a subdivision of 5× 5 tiles. Using this subdivision
as parameter, I wrote a skeleton application that can create task graphs of different
complexity and size. Each task graph solves the same underlying problem, but with
different computation and communication granularities. This makes them ideal to test
how well the methodology supports different task sizes.
Cholesky matrix decomposition uses four kernels:

GEMM is generic matrix multiplication: C := AB + C.

TRSM solves matrix equation AX = B, where A is a triangular matrix and X is the
output matrix.

SYRK performs a rank k update of a symmetric matrix: C := AA′ + C.

POTRF is (non-distributed) Cholesky matrix decomposition.

Each kernel has one kernel variable, the tile size. It specifies the number of rows (and
columns) of one matrix tile.
For evaluation, I added two technical kernels that operate under Assumption 5 (see

Section 7):

MATSRC pseudo-randomly generates a single tile of a Hermitian, positive-definitematrix
as required by the Cholesky algorithm. It does so without generating the whole
matrix, which would not fit into memory. It has one extra variable, the tile index
that identifies the tile to generate.

MATSINK takes the resulting value of a matrix tile and performs some finalising action
on it. Actions might include checking the value for correctness, storing the data
for later checks, or just ignoring it. I chose the third option in order to minimise
the influence on the running algorithm, as the other two behaviours would incur
significant memory usage and/or data transmission.

Memory size for these is an important factor; I tried to maximise tile size in order to stress
the platform. On the evaluation platform the benchmark works well with 1024× 1024

166

14.1. Setup

element tiles for 10 × 10 matrix subdivision (800MiB matrix size), while 2048 × 2048
element tiles (32MiB each for 3.2GiB total matrix size) did lead to occasional memory
overflow on some nodes.
Just as a side note: The 3.2GiB configuration shows a potential advantage of task

graph applications: No compute node is able to keep the entire matrix in memory, but
due to inherently distributed data the application still works (in theory – if the runtime
had smarter memory management).

14.1.4. Computation Resource Model

With platform and application known, I then proceeded with kernel characterisation
according to Section 9.5.2. To increase the data set, I used the full parallelism of the
platform: I ran one task graph for each CPU core type. Each task graph contains 10
consecutive executions of the kernel to characterise, repeated for each of the five boards
with that CPU type. This results in 50 executions for a single kernel configuration, each
with different input data.
Each single characterisation consists of an appropriate number of MATSRC tasks, the

kernel to characterise, then a MATSINK task. Between these tasks, there are MARK tasks.
In order to vary input data, each MATSRC task was configured to generate a different
matrix tile.
I repeated the whole process for all four main kernels and four tile sizes from 128×128

through 1024× 1024.
For the secondary time model (see Section 9.5) I looked at the task graph itself and

at a simulation run (without secondary time model) to see if it is possible to reduce the
characterisation space. To get a sense of what such a subset selection would miss, I
characterised every main kernel with a competing load of one or two of each of the four
main kernels.

14.1.5. Application Benchmark

Using the above inputs, I generated a set of task graphs that solve the same overall
problem (decomposition of a 10240 × 10240 matrix) using the tile sizes characterised
during the previous step. Table 14.1 shows the application configurations I chose for
evaluation. They fulfil Assumptions 1 through 4.
This selection represents the optimisation question: Which task granularity is best for

the given platform?
Using the computation resource model I then ran the mapping algorithm presented

in Section 9.6 in order to get executable (i. e. mapped) task graphs. I also configured
simulation and physical execution runtime according to the platform resource model.
Finally, I ran simulation and physical execution of each task graph and compared

overall maketime and energy consumption.
Since time measurement also captures individual task timings, I also plotted a detailed

task execution trace and compared it to a similarly plotted simulation trace for additional
insights.

167

14. Evaluation of the Overall Methodology

Table 14.1.: Evaluated application configurations.

Name Matrix Tiles Tile Size Matrix Size Tasks

Ch-10 10×10 1024×1024 10240×10240 330

Ch-20 20×20 512×512 10240×10240 1,960

Ch-40 40×40 256×256 10240×10240 13,120

Ch-80 80×80 128×128 10240×10240 95,040

In order to determine the time the simulator needs to run one simulation, I note the
execution time on an otherwise unloaded Intel Core i7-8750H CPU running at 2.2GHz.

14.2. Results and Discussion

14.2.1. Computation Resource Model

Table 14.2 shows the values of the primary computation resource model as generated by
the kernel characterisation process.

An additional result is that the characterisation confirmed that kernels have no sig-
nificant data-dependent timing variation – differences were less than 1%. Given the
coarse granularity, this is actually not too surprising: With large data sets, the chance of
different effects cancelling each other out is pretty high. A special case might be sparse
matrices with matrix tiles that are entirely zero, but those can be more efficiently handled
at the task graph level anyway.

Figure 14.1 shows the result of a preliminary simulation run without a secondary time
model. The mapping algorithm did not allocate any tasks on the C1+ boards, and ATB
boards only ran source and sink tasks, plus a few POTRF tasks.

With the increased parallelism in the other configurations, ATB boards did see signi-
ficant usage, but the mapping algorithm never allocated any task on C1+ boards; since I
consider them unreliable, this was my intention in the first place, so I did not need to
force the mapper to ignore them.

It’s somewhat surprising that even during the massively parallel initial parts of
Cholesky, the low speed of the Cortex A5 cores plus communication overhead res-
ulted in no task allocations at all1. The Cortex A7 cores of the XU4 are used sometimes –
fast cross-core communication seems to outweigh their speed disadvantage.

By visual inspection of the simulation result, we can see several kernel properties of
the Cholesky benchmark:

1As Section 9.6 shows, the mapper uses a significantly simplified prediction model, so its output should
not be used to infer properties of applications and/or the platform.

168

14.2. Results and Discussion

Table 14.2.: Results from the characterisation procedure.

CPU

S
iz
e GEMM TRSM SYRK POTRF

t in s E in J t in s E in J t in s E in J t in s E in J

C1+

12
8

0.226 0.030 1.009 0.036 0.098 0.014 0.005 0.010

XU4 A7 0.459 0.041 0.101 0.033 0.111 0.027 0.007 0.018

XU4 A15 0.136 0.056 0.041 0.038 0.050 0.041 0.003 0.021

ATB 0.073 0.048 0.026 0.022 0.026 0.022 0.001 0.006

C1+

25
6

2.379 0.463 0.882 0.170 0.995 0.149 0.044 0.015

XU4 A7 4.496 0.369 0.924 0.162 1.027 0.120 0.053 0.027

XU4 A15 1.157 0.414 0.325 0.144 0.424 0.190 0.024 0.028

ATB 0.600 0.364 0.210 0.141 0.233 0.159 0.013 0.013

C1+

51
2

51.80 22.80 22.03 10.00 22.26 9.624 0.540 0.150

XU4 A7 59.85 12.92 24.52 5.770 23.26 4.959 0.637 0.126

XU4 A15 17.69 6.332 3.566 1.700 5.806 1.879 0.179 0.088

ATB 15.09 9.146 5.573 3.849 4.563 2.911 0.122 0.089

C1+

10
24

422.5 173.6 158.2 72.10 147.8 64.86 3.213 1.308

XU4 A7 510.3 110.9 215.3 50.44 240.4 53.74 5.635 1.052

XU4 A15 269.1 140.2 70.70 45.84 126.1 59.18 1.684 0.933

ATB 134.7 79.84 52.76 35.01 54.35 34.04 0.971 0.831

169

14. Evaluation of the Overall Methodology

C
P

U
 C

o
re

Time (s)
3386

A
1

7
A

7
A

1
5

A
7

A
1

5
A

7
A

1
5

A
7

A
1

5
A

7
A

1
5

GEMM

TRSM

SYRK

POTRF

Figure 14.1.: CPU activity for Ch-10 as determined by a simulation without secondary
time model. Each row of boxes represents one compute core, while the
coloured boxes themselves represent tasks, with colours showing the kernel
being executed.

170

14.2. Results and Discussion

• GEMM is the most important kernel by far, almost everything runs concurrently to
GEMM kernels.

• TRSM is the second-most frequent, and it seems to be on the critical path, so its
behaviour matters, too. The chance of TRSM/TRSM concurrency seems to be high.

• SYRK occurs almost as often as TRSM. It is often followed by pauses in CPU activity,
so its impact on global prediction accuracy is unclear.

• TRSM/SYRK concurrency is rare and doesn’t seem to occur without GEMM also in
the mix.

• POTRF is rare. Given that its execution time is less than 1
100 of GEMM, its detailed

behaviour is bound to be insignificant.

Table 14.3 shows a subset of the slowdown factors generated by the secondary character-
isation runs. The results confirm the expectation that slowdown factors are less than 2.0
(see Section 9.5).

The table shows that the different board types vary a lot regarding reaction to different
load situations. For example, the SYRK kernel scales badly on the C1+, while it is pretty
constant on the XU4, except when run with two competing SYRK tasks. Another unusual
example are the Cortex A15 cores of the XU4 boards: They have about 10% slowdown
in most situations, but the TRSM kernel scales particularly badly on them. As a final
example, ATB boards have higher slowdowns overall.

These three examples show that slowdown factors are important, since board beha-
viour can be quite counterintuitive. If users choose to characterise only a subset of load
situations as suggested in Section 9.5, they should not make assumptions about platform
behaviour. They should base subset selection solely on application structure like in the
example shown above.

Characterisation Time The entire characterisation process presented in this subsection
takes about two days of continuous automated characterisation runs. Post-processing
of measurement results is fast and can be done in parallel to execution, so the limiting
factor is execution speed of the platform itself.

This is a significant time factor that users must consider in their workflow, but it only
needs to be done once for a given set of kernels and size parameters, so this is still viable
for the intended purpose. This is also addressed by Assumption 7: if a kernel itself is
modified or application structure changes produce new kernel interactions, the changed
parts need to be reexamined.

14.2.2. Application Benchmark

Table 14.4 shows the resulting values for execution and simulation of the selected bench-
mark suite.

171

14. Evaluation of the Overall Methodology

Table 14.3.: Slowdown factors of the secondary time model (competing POTRF loads left
out due to insignificance).

Kernel Competing Load C1+ XU4 (A7) XU4 (A15) ATB

G
E
M
M

1× GEMM 1.035 1.007 1.046 1.217

2× GEMM 1.145 1.115 1.257 1.501

1× SYRK 1.030 1.003 1.026 1.190

2× SYRK 1.111 1.008 1.073 1.459

1× TRSM 1.044 1.002 1.056 1.222

2× TRSM 1.113 1.009 1.166 1.519

P
O
T
R
F

1× GEMM 1.004 1.056 1.025 1.309

2× GEMM 1.078 1.101 1.087 1.589

1× SYRK 1.010 1.060 1.032 1.363

2× SYRK 1.082 1.098 1.104 1.691

1× TRSM 1.002 1.058 1.086 1.335

2× TRSM 1.091 1.100 1.266 1.646

S
Y
R
K

1× GEMM 1.448 1.047 1.024 1.185

2× GEMM 1.575 1.056 1.056 1.400

1× SYRK 1.427 1.032 1.027 1.287

2× SYRK 1.556 1.048 1.063 1.634

1× TRSM 1.420 1.020 1.052 1.209

2× TRSM 1.566 1.024 1.215 1.500

T
R
S
M

1× GEMM 1.309 1.072 1.376 1.175

2× GEMM 1.466 1.300 1.714 1.437

1× SYRK 1.304 1.075 1.074 1.202

2× SYRK 1.428 1.105 1.130 1.523

1× TRSM 1.276 1.037 1.457 1.292

2× TRSM 1.428 1.068 1.754 1.560

172

14.2. Results and Discussion

Table 14.4.: Results of the initial benchmark run. Power values are average power. Etotal

and Ptotal include idle power.

Name t in s Edyn in kJ Etotal in kJ Pdyn in W Ptotal in W tsim in s

Ch-10 pred. 4127 21.19 114.73 5.13 27.80 0.034

meas. 4146 18.81 111.22 4.54 26.83

rel. -0.45% +12.64% +3.15% +13.16% +3.62%

Ch-20 pred. 1249 9.25 37.56 7.41 30.07 0.160

meas. 1312 9.20 39.08 7.01 29.78

rel. -4.81% +0.55% -3,88% +5.63% 0.97%

Ch-40 pred. 663 4.17 19.20 6.29 28.96 0.880

meas. 670 4.71 20.12 7.03 30.03

rel. -1.04% -11.51% -4,60% -10.57% -3.59%

Ch-80 pred. 612 4.56 18.43 7.45 30.11 8.200

meas. 608 3.97 17.91 6.52 29.45

rel. +0.58% +14.85% +2.90% +14.12% +2.23%

14.2.2.1. Time Predictions

These results show that the proposed prediction methodology is able to predict tim-
ing of task graph executions with an error of less than 5%. This is well within the
targeted accuracy range and is also consistent with the accuracy of the measurement
infrastructure.

In order to check the internal time model, I plotted an entire execution trace of simula-
tion versus execution. Figure 14.2 shows the result. It shows that there is some variation,
but errors appear to be randomly distributed and cancel each other out over time.

14.2.2.2. Simulation Speed

Simulation speed is also fully consistent with the goals of this thesis, in particular the
usage scenarios stated for Contribution 5. Furthermore, it scales roughly linearly with
the number of tasks, which means that hardware upgrades can yield much higher task
counts – tens of millions of tasks would be achievable on fast simulation hosts, enough
for real-world problems in the field of finite element simulations, for example (also see
Assumption 1).

173

14. Evaluation of the Overall Methodology

C
P

U
 C

o
re

Time (s)
4146

A
1

7
A

7
A

1
5

A
7

A
1

5
A

7
A

1
5

A
7

A
1

5
A

7
A

1
5

GEMM

TRSM

SYRK

POTRF

Figure 14.2.: CPU activity for Ch-10, similar to Figure 14.1 but showing measurement
and final simulation side-by-side. Each pair of rows represents one compute
core, with measurement result on the top row and simulation result on the
bottom row.

174

14.2. Results and Discussion

Figure 14.3.: CPU activity for Ch-40, similar to Figure 14.1 but showing measurement
and final simulation side-by-side. Each pair of rows represents one compute
core, with measurement result on the top row and simulation result on the
bottom row.

14.2.2.3. Energy Predictions

Energy predictions are not as accurate as time predictions. They have an error of roughly
±15%, which is more than anticipated. Even worse, the error is big enough that it
changes the relative order of the individual benchmarks.

Values that include idle power yield less relative error, which is not too surprising,
as idle power should not vary too much. In Section 13.2.2, combined idle power was
measured to be 22.6W for ATB and XU4 boards combined. This means that average
dynamic power was only up to 30% of idle power.

As shown in Section 13.3.2, peak dynamic power is only slightly less than idle power,
so a real-world application does not use nearly the power that would be available.
Figure 14.3 shows that even for the highest power configuration, there are long idle
phases on most CPUs, and ATB boards are still not used a lot; this explains the low
proportion of dynamic power.

For a better analysis of possible sources of the inaccuracy in dynamic energy prediction,
Table 14.5 shows a comparison of predictions and measurements by individual board.

The table shows that with a few exceptions, per-board predictions are similar in

175

14. Evaluation of the Overall Methodology

Table 14.5.: Comparison of energy measurements (M) and predictions (P) by individual
board. All values are given in Joules.

Board
Ch-10 Ch-20 Ch-40 Ch-80

M P M P M P M P

ATB-1 317 8 396 337 192 164 238 238
ATB -2 84 1 282 240 201 163 238 238
ATB-3 4 0 192 159 208 163 237 238
ATB-4 2 0 79 51 229 161 205 238
ATB-5 0 0 29 12 213 161 250 237
XU4-1 6009 6179 1889 1773 766 684 580 680
XU4-2 3979 4745 1650 1712 746 681 533 680
XU4-3 3349 4077 1564 1691 719 678 567 678
XU4-4 2652 3238 1545 1659 690 676 546 697
XU4-5 2412 2955 1575 1648 747 690 572 721
Sum 18810 21188 9203 9254 4713 4171 3967 4557

accuracy to global prediction accuracy. Yet there are some noteworthy observations.
First of all, ATB boards show that measurement is challenging at low energies. Ex-

amples are ATB-1 for Ch-10 (309 J difference) or Ch-40, where ATB predictions are
30-60 J below measurements. In these situations, small errors in idle power detection
will lead to big relative errors. On the other hand these are small absolute values, so they
will have little effect on total energy. XU4 boards differ by similar values, but since the
reference values are much bigger, relative error is smaller.
Another unexpected result are XU4 boards for Ch-40. They have almost identical

loads (as can be seen in Figure 14.3), which results in pretty uniform predictions, but
measurements show 10% worst-case difference (between XU4-1 and XU4-4).

Second Benchmark Run Natural variation could be a cause for this. In order to get
an idea how big natural variation is for multiple executions, I ran the benchmark suite
a second time. Table 14.6 shows the results of the second run. They show that timing
behaviour varies very little, but energy measurements differ significantly. In fact, the
difference between benchmark runs is almost as big as the difference between prediction
and measurement. It is between 5% and 10%.
This variation can also be seen in Table 14.7, which shows energy per board. The

observed irregularity in Ch-40 is present again, but other data points show that the
results really are insufficient to draw definite conclusions: In Ch-20, XU4-2 and XU4-3
even reversed their relative energy consumption.
Since I did not see such variation within a single characterisation run or similar situ-

ations like the one shown in Figure 13.1, the effect must be related to the temporal
distance between both benchmark runs, which was ten days. This suggests external
influence like ambient temperature as a possible explanation, since this is sufficient time

176

14.3. Summary

for slow influences to take effect, e. g. outside temperature.

Almost all boards in Table 14.7 show increased energy usage. This supports the
hypothesis of a systematic external influence. This does not exclude additional random
variation: the case of XU4-2 in Ch-20 shows that there might be more than one influence.

A statistically significant test series to examine board behaviour would require that
the external influence can be controlled. Temperature is the most probable explanation,
so that would require ambient temperature controls. Since this was not available for this
thesis, I could not investigate natural variation of the boards any further.

If ambient temperature is indeed the source of the variations, it might even explain the
higher inaccuracy of Ch-40: The full characterisation takes about two days to complete,
and the automated characterisation scripts happen to order individual characterisation
runs by tile size. This means that it is possible that a slow external influence on ambient
temperature affected size 256 kernels only.

Comparison with Stable Ambient Conditions To add another data point, Table 14.8
shows early evaluation results produced about one year earlier. It ran on an earlier
version of the evaluation platform, which had five additional C1+ boards instead of the
ATB boards, but otherwise used an identical setting. The huge difference in Ch-40 was
due to the reliability problems of the C1+ boards2, but the other two benchmarks show
good accuracy.

The main difference between this early evaluation result and the other ones presented
in this thesis is the environment: A year ago, the platform ran in a regular office environ-
ment with lots of natural ventilation and stable weather conditions. The other results had
two adverse factors: The office environment was not ventilated due to a global reduction
of office activity3. At the same time, outside temperature fluctuated much more.

This again supports the assumption that ambient conditions have much more impact
than expected. It might even be possible that this caused the unexpected behaviour of
XU4 boards reported in Section 13.2.1.

14.3. Summary

This section has shown that the proposed modelling approach fulfils the expectations
of Contributions 1 through 5 – at least for time predictions. Given the amount of not
attributable influence, energy predictions retain some usefulness: prediction errors are
similar to observed execution variations, and the worst observed error was about 20%.
Nevertheless, evaluation of this aspect had to remain inconclusive.

Ambient temperature seems to be much more significant than earlier experiments
indicated. Further evaluation would either require heat modelling (which is out of
scope for this thesis) or a temperature-controlled environment (which was not available

2In fact, this benchmark led to the discovery of these problems – Ch-40 is the only benchmark with
significant C1+ activity.

3the platform was operated remotely

177

14. Evaluation of the Overall Methodology

Table 14.6.: Results of the second benchmark run, including relative difference to energy
measurements of the first benchmark run.

Name t in s Edyn in kJ Etotal in kJ Pdyn in W Ptotal in W

Ch-10 predicted 4,127 21.19 114.73 5.13 27.80

measured 4,134 20.01 109.55 4.84 26.50

relative -0.17% +5.90% +4.73% +6.08% +4.90%

rel. to prev. -0.29% +6.36% -1.51% +6.67% -1.22%

Ch-20 predicted 1,249 9.25 37.56 7.41 30.07

measured 1,275 9.72 37.94 7.63 29.76

relative -2.04% -4.84% -0.99% -2.85% +1.07%

rel. to prev. -2.82% +5.66% -2.91% +8.73% -0.09%

Ch-40 predicted 663 4.17 19.20 6.29 28.96

measured 646 5.18 19.56 8.01 30.28

relative +2.54% -19.41% -1.86% -21.47% -4.37%

rel. to prev. -3.58% +9.80% -2.79% +13.88% +0.82%

Ch-80 predicted 612 4.56 18.43 7.45 30.11

measured 608 4.39 17.97 7.23 29.56

relative +0.65% +3.69% +2.54% +3.03% +1.87%

rel. to prev. 0.00% +10.76% +0.35% +10.76% +0.35%

178

14.3. Summary

Table 14.7.: Difference between both sets of energy measurements by individual board.
Absolute values are given in Joules.

Board
Ch-10 Ch-20 Ch-40 Ch-80

abs. rel. abs. rel. abs. rel. abs. rel.

ATB-1 -128 -40.4% 42 10.6% 15 7.8% 17 7.1%

ATB -2 -33 -39.3% 13 4.6% 3 1.5% 14 5.9%

ATB-3 0 0.0% 5 2.6% 5 2.4% 15 6.3%

ATB-4 1 50.0% 4 5.1% 16 7.0% 65 31.7%

ATB-5 0 0.0% 0 0.0% 18 8.5% 15 6.0%

XU4-1 190 3.2% 117 6.2% 117 15.3% 89 15.3%

XU4-2 176 4.4% -78 -4.7% 44 5.9% 56 10.5%

XU4-3 414 12.4% 168 10.7% 79 11.0% 47 8.3%

XU4-4 311 11.7% 152 9.8% 84 12.2% 52 9.5%

XU4-5 267 11.1% 98 6.2% 82 11.0% 57 10.0%

Sum 1197 6.4% 521 5.7% 462 9.8% 427 10.8%

Table 14.8.: Results of an early benchmark on an earlier variant of the evaluation platform,
leading to the discovery of irregularities related to C1+ boards. Energy figures
exclude idle power.

Name Predicted Measured rel. Difference
t in s E in J t in s E in J t E

Ch-10 4,171 27,153 4,146 25,580 +0.6% +6.1%

Ch-20 1,335 16,914 1,330 16,425 +0.4% +3.0%

Ch-40 543 7,802 582 13,933 -6.7% -44.0%

179

14. Evaluation of the Overall Methodology

for this thesis). Earlier experiments with promising results ran under a more uniform
environment, but that was more by chance than systematically. This result is consistent
with observations about other platforms – power models using Intel RAPL as input
encountered similar problems on some CPU architectures [51].
This could have consequences for absolute predictions that include static power,

e. g.when planning operating cost or power provisioning. With the observedmultitude of
hardware effects across board types, different boards of the same type, and environment
conditions, users cannot reasonably expect accurate absolute predictions. However,
the primary target for this thesis are classic HPC systems. These usually run in a fully
temperature-controlled environment, so the impact should be low enough. Assumption
8 must be interpreted this way.
The results also mean that the systems that users use for characterisation need to be

temperature controlled the same way as the production system. In a big cluster setting,
one approach would be that a small number of nodes could be reserved for character-
isation, while the rest operates normally. The advantage over trace-based prediction
methodologies is that a single node per architecture is sufficient for characterisation,
while trace recording needs a much bigger cluster subset.
When looking beyond traditional HPC platforms, an final aspect of these results is that

passively cooled platforms like emerging embedded compute platforms might indeed
require heat modelling. A development cluster with integrated power measurement as
proposed in this thesis could even be adapted for exploring different heat scenarios.

180

15. Evaluation of Individual Design
Decisions

This final evaluation section discusses additional experiments I considered or performed
for the evaluation goals described in 11.4. While the previous sections follow the pro-
posed design flow just like users would apply it, the experiments in this section do not
belong to the design flow itself.

15.1. Fixed Clock Frequencies

I intended to evaluate how fixed clock frequencies affect the performance of applications.
My expectation is that this would not show a significant difference, since I already tried
to find the highest sustainable clock speed using the procedure shown in Section 10.4.

For this test, I used the benchmark of Section 14.2.2, but configured the platform for
maximumperformance, i. e. default Linux CPU frequency scaling using the ‘performance’
governor algorithm.

Unfortunately, the test did not succeed: a few seconds into the benchmarks, some
boards spontaneously rebooted. This happened multiple times with different boards,
so I aborted the test. Since I did not encounter this behaviour otherwise, I assume this
happened as a thermal protection measure due to the heat caused by higher system clock
frequencies.

As a result, I can’t quantify how much fixed clock frequencies affect execution per-
formance. For a fully utilised system, the effect should be small, since during platform
characterisation, the maximum clock frequency for exactly that load situation is selected.

Another observation supports the assumption that variable clock speed would not
improve system performance much, if at all: In [45], the authors examine the Samsung
Exynos 5422 system-on-chip on the ODROID XU3 board, which is for all practical matters
identical to the XU4 boards used in this thesis. The computational speed measurement
they report hit their maximum roughly around the clock frequency initially selected in
this thesis.

In any case, the long term stability issues I encountered forced me to use a much
slower clock frequency for the XU4 boards (see Section 13.2), so the selected hardware is
not suitable for such a comparison anyways. It is probably safe to assume that system
performance for the final platform configuration is not on par with an unrestrained
system. Had the used hardware had better long term behaviour, there would be a chance
that fixed frequencies do not harm overall throughput.

181

15. Evaluation of Individual Design Decisions

15.2. External Time Measurement

Initially, I had planned to use CPU timers for time measurement, without an external
time measurement board. However, I encountered severe difficulties when trying to
match CPU time values to energy trace positions. Especially the ODROID C1+ boards
consistently failed to deliver stable results when running under load. In an attempt to find
the source of the error, I introduced the measurement board described in Section 10.3.2.

The remainder of this subsection describes the insights I gained by introducing external
time measurement.

15.2.1. Reproduction of Inconsistent Behaviour

In order to find out more about the inconsistent behaviour I saw, I performed a similar
set of benchmarks as done for the measurement platform in Section 11.2.1, with one
difference: instead of keeping the compute boards idle, I used a workload designed to
maximise power consumption, similar to the one described in Section 10.4. The additional
heat might introduce clock drift, but external time measurement will be unaffected by
this.

I then examined the resulting measurements in a variety of ways in order to gain more
insight.

15.2.2. Results

Figure 15.1 shows the absolute difference between energy trace timings and both, CPU
and GPIO timings. For the ASUS TinkerBoard and the ODROID XU4, they don’t show
anything unusual, but the ODROID C1+ (compute boards 6 to 10) is much worse than in
the idle case, with no clear pattern.

In fact, when looking at the energy traces of channels 6 to 10, the time error is so large
that CPU/GPIO timings could not be matched with energy events anymore. Figure 15.2
shows an example from channel 7 where the difference between the expected time of the
WAIT kernel and its occurrence in the energy trace was so large that it did not get matched
for the analysis shown above – the algorithm that does the matching ignores events that
are too far apart, because otherwise CPU/GPIO events might get matched with wrong
energy events. In the example of Figure 15.2, the leading edge of the following MARK
kernel is almost close enough to be confused as the leading edge of WAIT.

The net result is that the true error for the ODROID C1+ boards is even larger than
shown in Figure 15.1. In order to eliminate energy trace event detection as source of
inaccuracy, I finally compared GPIO times directly to CPU times. Figure 15.3 shows the
result, comparing idle and busy systems.

182

15.2. External Time Measurement

A17
1

A17
2

A17
3

A17
4

A17
5

A5
6

A5
7

A5
8

A5
9

A5
10

A7
11

A7
12

A7
13

A7
14

A7
15

A15
11

A15
12

A15
13

A15
14

A15
15

0

100

200

300

400

500

ARM Cortex CPU Core/Compute Board Number

G
P

IO
 ti

m
e

de
vi

at
io

n
fr

om
 e

ne
rg

y
tr

ac
e

(m
s)

Simpe (Maximum)

Simple (Mean)

Full (Maximum)

Full (Mean)

(a) GPIO and energy trace timings

A17
1

A17
2

A17
3

A17
4

A17
5

A5
6

A5
7

A5
8

A5
9

A5
10

A7
11

A7
12

A7
13

A7
14

A7
15

A15
11

A15
12

A15
13

A15
14

A15
15

0

100

200

300

400

500

ARM Cortex CPU Core/Compute Board Number

C
P

U
 ti

m
e

de
vi

at
io

n
fr

om
 e

ne
rg

y
tr

ac
e

(m
s)

Simpe (Maximum)

Simple (Mean)

Full (Maximum)

Full (Mean)

(b) CPU timer and energy trace timings.

Figure 15.1.: Absolute deviation between different timings using two different approx-
imations: ‘simple’ uses a linear correction factor calculated from trace end
markers, while ‘full’ is a linear regression over all task execution events.

183

15. Evaluation of Individual Design Decisions

Figure 15.2.: Excerpt of an energy trace showing two seconds of channel 7. Cyan bars
mark algorithmically detected edges in the energy trace, red bars mark
GPIO and CPU timings (which coincide in this example).

A17
1

A17
2

A17
3

A17
4

A17
5

A5
6

A5
7

A5
8

A5
9

A5
10

A7
11

A7
12

A7
13

A7
14

A7
15

A15
11

A15
12

A15
13

A15
14

A15
15

0.1

1

10

100

ARM Cortex CPU Core/Compute Board Number

C
P

U
 ti

m
e

de
vi

at
io

n
fr

om
 G

P
IO

 (
m

s)

Idle (Maximum)

Idle (Mean)

Busy (Maximum)

Busy (Mean)

Figure 15.3.: Absolute deviation between GPIO and CPU timings using the simple cor-
rection factor, for an unloaded system as in Figure 12.6 and for a loaded
system like in Figure 15.1.

184

15.3. Custom Network Protocol

15.2.3. Discussion

It is obvious that there is a problem with the ODROID C1+ boards. When testing them
when mostly idling, there are no surprising results. Timing error is a bit higher than for
the other boards (see Figure 12.6), but not by much, and it is uniform across all boards.

Under load however, board behaviour becomes unpredictable. Sometimes CPU timers
are much worse than GPIO timing, but for some boards the situation is reversed. Fur-
thermore, the simple linear correction factor seems to be unusably inaccurate – except
for the one board where it is excellent.

This is a behaviour that doesn’t match anything seen during this thesis, and the direct
comparison between GPIO and CPU timings strongly suggests that the timer values
themselves have weird behaviour. Given that there is a single GPIO time measurement
board, and that it behaved consistently throughout this thesis, the source must be the
local timers on the ODROID C1+ boards.

An internet search brought me to a discussion on the armbian (Debian onARM) forum
that suggests that the direct successor of the SoC used in the ODROID C1+ (Amlogic
S805) doesn’t honour the DVFS settings made by the Linux kernel [37]; real CPU speed
would vary without the Linux kernel ever knowing.

A hidden firmware which switches clock frequencies under the hood can very well
affect timer values – it would have to compensate for missed timer interrupts, which
might lead to temporary fluctuations of locally perceived time. That would match the
behaviour observed here: globally, CPU time seems to be within the expected accuracy,
only local variations are unusual. There is no easy way to test this hypothesis, however,
and it doesn’t add insights for the goals of this thesis.

The effect of local time variation can be severe, however. When characterisation fails
to identify the correct time span of a kernel in the power trace, the resource model will be
wrong. If the sampling window for a kernel shifts into the leading 2 s pause, it will cover
more idle time due to the pauses inserted around characterised kernels. The results
shown in Table 14.8 are consistent with this: predictions for Ch-40 were much too low.

Before introducing an overall synchronous time base, I was unable to analyse this
behaviour at all. I regularly saw inconsistencies, but didn’t have a way to identify a root
cause, let alone to quantify the error.

External time measurement through GPIO signals made this problem clear, and I
could finally distinguish the erratic behaviour of C1+ boards from heat-related issues of
XU4 boards. The latter led to the clock characterisation process shown in Section 10.4.1.

Other parts of the methodology benefit as well, as there is less effort required to
determine correct timings. The main disadvantage is that the target hardware must
provide a low-latency GPIO signal.

15.3. Custom Network Protocol

I decided to develop the custom Eth network protocol (Section 9.8.4) instead of using TCP.
I already evaluated the general performance of the Eth networking layer in Section 13.

185

15. Evaluation of Individual Design Decisions

Table 15.1.: Comparison of TCP networking and Eth network protocol bandwidth.
Columns specify maximum, mean, and standard deviation for a given pair
of communication partners.

Source Destination
TCP MByte/s Eth MByte/s

Max Mean SD Max Mean SD

ATB ATB 117.6 73.6 28.1 29.8 26.7 5.9

ATB C1+ 72.3 45.2 24.0 13.6 12.2 3.32

ATB XU4 40.1 27.3 11.4 6.8 6.0 1.69

C1+ C1+ 51.3 37.9 9.2 13.6 13.0 1.07

C1+ XU4 41.4 30.1 11.0 6.8 6.6 0.47

C1+ ATB 51.0 45.8 6.3 18.7 17.7 1.87

XU4 XU4 24.3 18.7 4.8 6.8 6.6 0.40

XU4 ATB 24.3 21.7 3.2 7.9 7.7 0.38

XU4 C1+ 24.3 21.2 3.2 7.9 7.7 0.37

In this section I show the observations that led to that decision and evaluate the impact
of the Eth networking layer.

I designed the physical execution runtime so that I could easily swap the networking
backend. In order to compare the TCP and Eth protocols, I simply run the same bench-
mark as described in Section 13.1.2, once with the TCP backend and once with the Eth
backend.

The difference is that I don’t measure deviation from the expected or ideal transmission
time. With TCP, unlike Eth, I do not directly control transmission timing. Instead, I look
at the effective bandwidth of each individual benchmark run, measured in Megabyte
per second. Table 15.1 shows the results of this set of benchmarks.

Two major facts are easy to see: TCP networking has a higher maximum bandwidth,
up to eight times the value of Eth. This is not too surprising, as Eth uses uncommon and
thus less optimised network APIs with no hardware acceleration support, and it is CPU
intensive by itself.

When comparing mean bandwidth, this difference is only half as big, and this is
also visible in the standard deviation. This variability made TCP network connections
difficult to predict. I tried to slow down TCP connections by inserting artificial pauses,
but no amount of slowdown would reduce this variability to an acceptable degree.

On the other hand, Eth networking has muchmore predictable behaviour. The general
trend established in Section 13 is visible in this benchmark as well. C1+ and XU4 boards
have excellent results and ATB boards slightly less so.

When comparing mean bandwidth of TCP and Eth, C1+ and XU4 performance differ-

186

15.4. Custom Runtime System

ence is about a factor of two. ATB results differ by a factor of roughly three. This is the
origin of the claim that Eth is not meant as a production-ready protocol (Section 9.8.4),
although it is in a similar order of magnitude.
As has already been discussed in Section 13, the overall bandwidth of Eth meets the

design goals of the evaluation platform, so its introduction is reasonable and offers
a significant improvement in predictability. Since more expensive Ethernet interfaces
already support Ethernet TSN, it is reasonable to assume thatHPCnetworking equipment
has or will have hardware support for a similar level of predictability.

15.4. Custom Runtime System

Several times during this thesis, I trade performance for predictability. For this reason,
Contribution 3 states that the physical execution runtime as presented in see Section 9.8
does not have the goal to be as fast or faster than established runtimes. But the results
of this thesis should not put users at such a large disadvantage that the performance
loss would make predictions correct but useless. In other words, the physical execution
runtime should at least show a credible potential to be competitive in real world settings.
This is expressed by the claim that the performance of the physical execution runtime is
at the same order of magnitude as established runtime systems.
The physical execution runtime of Section 9.8 has not been optimised for performance

or energy. This means that if a task graph can execute in roughly the same time as
an established (presumably optimised) runtime system executes the same application
using a similar parallelisation strategy, it is reasonable to assume that the presented
execution runtime could be optimised to be competitive. It also means that the presented
methodology applies to at least some real-world settings.

15.4.1. Discussion

While there are MPI implementations of Cholesky matrix decomposition, they assume
a fully homogeneous platform. The commonly used algorithm uses global synchron-
isation1, so the slowest board would force all other boards to wait. Since one of the
distinguishing points of the proposed methodology is the applicability to highly hetero-
geneous platforms, such a comparison would be of limited use.
Disregarding this aspect, a homogeneous subset consisting of the fiveATB boards could

be used for a comparison. But even then, it is more than likely that this would primarily
benchmark the difference in algorithmic structure. In a non-distributed multi-core
setting, the performance difference of task graph based applications has been reported
to be between a 6% slowdown and a 42% speedup when compared to implementations
using more traditional parallelisation strategies [16]. This is a nontrivial influence on
application performance, which means that such a comparison would not really show
the overhead of the runtime itself.

1In fact, the high likelihood of TRSM/TRSM seen in Figure 14.1 concurrency is due to a natural synchronisa-
tion behaviour of the algorithm itself.

187

15. Evaluation of Individual Design Decisions

On the other hand, evaluation of the overall methodology in Section 14 shows no sign
of significant overhead. Simulation models do not include any time modelling of the
execution runtime itself, yet time prediction accuracy is good. Measurements show no
unexpected pauses between task executions during physical execution: the time span
between end of a task and start of a following, immediately runnable task is usually less
than 0.1ms, and the visualisation in Figure 14.2 is consistent with this observation.
So while an actual evaluation of this aspect is difficult, it can safely be deduced from

Section 14 that the performance claim of Contribution 3 is fulfilled.

188

Part V.

Conclusion

189

Conclusion

In this thesis I have presented a fully integrated, novel design flow for prediction-based
optimisation of high-performance computing (HPC) application behaviour. It is based
on familiar concepts from embedded system design, but changes critical aspects in order
to cope with the huge difference in scale between embedded and HPC systems.
The methodology uses abstract models to represent applications, hardware, and re-

source usage of applications. It also explicitly models application semantics. As a result,
an abstract simulator can use these models to predict execution time and energy of a
given application on a given platform without executing application code.
I have evaluated the methodology using Cholesky matrix decomposition, a linear al-

gebra algorithm that exhibits properties of several important classes of HPC applications.
Performance of the simulation that generates time and energypredictions is fast enough

for interactive workflows and design space exploration. It scales linearly with the num-
ber of tasks in the application model.
The error of time predictions is below 5%, which is on par with the best prediction

methods from the HPC world.
Unfortunately, energypredictions raised questions about the circumstances underwhich

energy predictions are valid. The result of this thesis is that the target platformmust run
in a temperature-controlled environment, which limits applicability for emerging embed-
ded compute platforms that might be passively cooled.
In a setting with varying ambient conditions, I have observed prediction errors of up

to 20% for dynamic energy consumption and up to 5%when including idle power. This
means that predictions could be useful in overprovisioning scenarios, although they do
not outperform existing trace-based methods.
In this regard, themain advantage of the proposedmethodology is that it does not need

final applications nor traces from a full cluster, so that predictions are available much
earlier and can be updated more often. This allows user to shift focus from optimising
platform management to optimising applications for energy.
As aminor contribution, I have shown a scaled-downversion of anHPC cluster system.

The decision to use consumer grade off-the-shelf hardware did lead to complications,
and the evaluation offers valuable insight for selection of reliable compute nodes. After
accounting for several adverse effects, the platform worked within its design goals.
I have also presented an inexpensive, yet powerful way of obtaining synchronised time

and energy measurements of up to ten consumers with high quality. Accuracy of the
measurement platform is fully in linewith themain contributions: energymeasurements
have less than 1% error over most of the measurement range. Time measurement error
is less than 0.1%. While it was optimised for the evaluation platform, the measurement
board also supports usage with HPC-grade CPUs.

191

192

Future Work

Most importantly, the relation between ambient conditions and energy behaviour of
off-the-shelf hardware needs further investigation. A temperature-controlled evaluation
platform is required to evaluate how the proposed methodology would behave under
ideal circumstances.

Apart from this, there are other interesting topics that emerge from the modelling and
simulation approach:

Power over Time To fully support use cases involving power provisioning, the sim-
ulation model would have to be extended to produce power traces as mentioned in
Section 9.7.2. This is actually not too difficult: For a simple approximation, PEs can
calculate momentary power by distributing the energy of the resource model over the
task run time (including the dynamically changing slowdown situation). This ignores
that tasks can have varying power over time themselves. That power profile is captured
during characterisation and integrated over time to get task energy, but the entire profile
could also be stored in the resource model. PEs could then replay it.

Memory The observation that the evaluation platform cannot reliably execute Cholesky
decomposition of a 20480×20480 matrix (see Section 14) is actually another interesting
question: Will the application be able to complete under the memory constraints of the
platform?

This ismore important thanwith traditionalHPC applications, because those distribute
work and data in a very regular manner. In contrast, task graphs as shown in this thesis
lead to dynamic data distribution. While this can reduce overall memory consumption
(as it does for Cholesky), it creates the question of maximum required memory size.

There are formal approaches to this, but they might struggle with HPC scale applica-
tions. An extended execution model may even be able to prevent failures by delaying
data reception (i. e. memory allocation) or prioritising transmissions (i. e. memory deal-
location). Accurate simulation could predict this with a suitably specified execution
model.

Profiling Metrics A simulation-based approach offers the advantage that it can eas-
ily be extended to provide additional metrics to guide optimisation. Memory usage
could be one metric. Another useful metric for developers would be the number of
pending communication requests across the platform, which can highlight bottlenecks
in algorithm or network structure.

193

Accelerators One aspect of the initial problem statement has not been covered in depth.
While I did show heterogeneity in principle, I did not explore GPGPUs or FPGAs. Due to
the high level of abstraction, the methodology is prepared for unconventional compute
elements. The execution runtime could simply contain the ability to execute OpenCL
code or FPGA accelerator functions; GPUs and FPGAs would be modelled as further
processing elements, and OpenCL code and bitstream would function as kernel code. In
a similar vein, fixed function units like video encoders could be represented as PEs that
only support a limited set of kernels. Using the task graph approach for characterisation,
this might work in a straightforward way, but this needs evaluation.

Multiple PE Allocation A related question concerns multi-threaded kernels. A highly
optimised kernel might use multiple cores more efficiently than running two unrelated
tasks on them.
In general, a parallel execution unit like a CPU, GPU, or FPGA can be represented as

multiple independent PEs or as one big PE with internal parallelism, or as a combination
of these. This would increase the search space for automatic mapping algorithms, but
might give developers additional optimisation opportunities.

194

Part VI.

Appendix

195

References

[5] International Electrotechnical Commission, “IEC 61499-1: Function blocks – Part 1:
Architecture,” Nov. 2012. 4.2.3.2

[6] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder, “Using
SimPoint for accurate and efficient simulation.” in SIGMETRICS. ACM, 2003, pp.
318–319. 8.1.1

[7] IEEE Computer Society, “IEEE Standard for Standard SystemC Language Reference
Manual,” IEEE Std 1666-2011, 2012. 4.2.3.2, 6, 6, 8.1.1

[8] O.Almer, I. Böhm, T. J. K. E. von Koch, B. Franke, S. C. Kyle, V. Seeker, C. Thompson,
and N. P. Topham, “A Parallel Dynamic Binary Translator for Efficient Multi-Core
Simulation.” International Journal of Parallel Programming, vol. 41, no. 2, pp. 212–235,
2013. 8.1.1

[9] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Statistical sampling of
microarchitecture simulation,” ACM Trans. Model. Comput. Simul., vol. 16, no. 3, pp.
197–224, Jul. 2006. 8.1.1

[10] V. Adve and R. Sakellariou, “Application representations for multiparadigm per-
formance modeling of large-scale parallel scientific codes,” International Journal of
High Performance Computing Applications, vol. 14, no. 4, pp. 304–316, 2000. 4.2.3.1,
9.2.1

[11] P. M. Kogge and T. J. Dysart, “Using the top500 to trace and project technology
and architecture trends,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 2011, p. 28. 4.1.3

[12] K. Keutzer, B. L. Massingill, T. G. Mattson, and B. A. Sanders, “A design pattern
language for engineering (parallel) software: merging the PLPP and OPL projects,”
in Proceedings of the 2010 Workshop on Parallel Programming Patterns. New York, NY,
USA: ACM, 2010, pp. 9:1–9:8. 4.2.1, 4.2.3

[13] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra,
“PaRSEC: Exploiting Heterogeneity to Enhance Scalability,” Computing in Science &
Engineering, vol. 15, no. 6, pp. 36–45, 2013. 9.2.3, 9.2.4

[14] R. Griessl, M. Peykanu, J. Hagemeyer, M. Porrmann, S. Krupop, M. vor dem Berge
et al., “A Scalable Server Architecture for Next-Generation Heterogeneous Compute

197

Clusters,” in Proceedings of the 12th IEEE International Conference on Embedded and
Ubiquitous Computing, 2014. 4.1.2, 4.2.5, 5.3.1

[15] T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth, F. Gaud, and J. Pei, “A Practical
Method for Estimating Performance Degradation on Multicore Processors, and Its
Application to HPCWorkloads,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2012, pp. 83:1–83:11. 9.5.3

[16] D. Chasapis, M. Casas, M. Moretó, R. Vidal, E. Ayguadé, J. Labarta, and M. Valero,
“PARSECSs: Evaluating the Impact of Task Parallelism in the PARSEC Benchmark
Suite.” TACO, vol. 12, no. 4, p. 41, 2016. 4.2.2, 4.4, 4.5.1, 9.2.4, 15.4.1

[17] G. Geist, J. A. Kohl, and P. M. Papadopoulos, “PVM and MPI: A comparison of
features,” Calculateurs Paralleles, vol. 8, no. 2, pp. 137–150, 1996. 4.3.2

[18] J. Spolsky, The Law of Leaky Abstractions. Berkeley, CA: Apress, 2004, pp. 197–202.
4.3.2

[19] L. Dagum and R. Menon, “OpenMP: An industry-standard API for shared-memory
programming,” Computing in Science & Engineering, no. 1, pp. 46–55, 1998. 4.3.1

[20] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and
J. Planas, “Ompss: a proposal for programming heterogeneous multi-core architec-
tures,” Parallel processing letters, vol. 21, no. 02, pp. 173–193, 2011. 4.3.1

[21] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures,” in Euro-
Par 2009, Delft, Netherlands, Aug. 2009. 4.3.1

[22] A. Auweter, A. Bode, M. Brehm, L. Brochard, N. Hammer, H. Huber, R. Panda,
F. Thomas, and T. Wilde, “A Case Study of Energy Aware Scheduling on Super-
MUC,” in Supercomputing, J. M. Kunkel, T. Ludwig, and H. W. Meuer, Eds. Cham:
Springer International Publishing, 2014, pp. 394–409. 4.1.4

[23] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon,
W.Harrod, K. Hill, J. Hiller et al., “Exascale computing study: Technology challenges
in achieving exascale systems,”Defense Advanced Research Projects Agency Information
Processing Techniques Office (DARPA IPTO), Tech. Rep, vol. 15, 2008. 4.1.3, 4.1.4

[24] M. Pospieszny, “Electricity in HPC Centres,” Partnership for Advanced Computing
in Europe (PRACE) Project, Tech. Rep., 2014. 4.1.3

[25] J. J. Dongarra, P. Luszczek, andA. Petitet, “The LINPACK benchmark: past, present
and future,” Concurrency and Computation: practice and experience, vol. 15, no. 9, pp.
803–820, 2003. 4.4

198

[26] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite: Char-
acterization and architectural implications,” in Proceedings of the 17th international
conference on Parallel architectures and compilation techniques. ACM, 2008, pp. 72–81.
4.4

[27] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: A quantitative comparison
of two multithreaded benchmark suites on chip-multiprocessors,” in 2008 IEEE
International Symposium on Workload Characterization. IEEE, 2008, pp. 47–56. 4.4

[28] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation and
thread scheduling via performance counters.” SIGARCH Computer Architecture
News, vol. 37, no. 2, pp. 46–55, 2009. 5.3.2.1

[29] F. Kesel,Modellierung von digitalen Systemen mit SystemC: von der RTL-zur Transaction-
Level-Modellierung. Walter de Gruyter, 2012. 6

[30] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded system design: model-
ing, synthesis and verification. Springer Science & Business Media, 2009. 6

[31] K. Grüttner, A. Herrholz, P. A. Hartmann, A. Schallenberg, and C. Brunzema, OSSS
– A Library for Synthesisable System Level Models in SystemC, 2008. 6

[32] P. A. Hartmann, K. Grüttner, and W. Nebel, “Advanced SystemC Tracing and
Analysis Framework for Extra-Functional Properties.” inARC, K. Sano, D. Soudris,
M. Hübner, and P. C. Diniz, Eds., vol. 9040. Springer, 2015, pp. 141–152. 6.3, 6.4

[33] International Organization for Standardization, “ISO/IEC 7498-4:1989 – Information
technology – Open Systems Interconnection – Basic Reference Model: Naming and
addressing,” International Standards Organisation, Tech. Rep., 1989. 6.3.2

[34] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environment,”
in Proceedings of the 1st international conference on Simulation tools and techniques for
communications, networks and systems & workshops. ICST (Institute for Computer
Sciences, Social-Informatics and …, 2008, p. 60. 6.3.2

[35] S. Kerrison, “Monitoring the energy consumption of a Raspberry Pi with aMAGEEC
Wand,” The MAGEEC Project, Tech. Rep., 08 2016. 8.2

[36] A.McCormick, N. Johnson, D. Dolman, C. Holyoake, S. Kaxiras, andV. Spiliopoulos,
“D3.2 – Power Usage of Hardware Platforms,” The ADEPT Project, Tech. Rep., Mar.
2015. 8.2

[37] Various pseudonymous authors, “Amlogic still cheating with clock-
speeds,” Apr. 2018, accessed: 2019-12-17. [Online]. Avail-
able: https://web.archive.org/web/20191217200444/https://forum.armbian.com/
topic/7042-amlogic-still-cheating-with-clockspeeds 15.2.3

199

https://web.archive.org/web/20191217200444/https://forum.armbian.com/topic/7042-amlogic-still-cheating-with-clockspeeds
https://web.archive.org/web/20191217200444/https://forum.armbian.com/topic/7042-amlogic-still-cheating-with-clockspeeds

[38] K. Grüttner, P. A. Hartmann, K. Hylla, S. Rosinger, W. Nebel, F. Herrera, E. Villar,
C. Brandolese,W. Fornaciari, G. Palermo et al., “TheCOMPLEX reference framework
for HW/SW co-design and power management supporting platform-based design-
space exploration,” Microprocessors and Microsystems, vol. 37, no. 8, pp. 966–980,
2013. 8.1.1

[39] D. L. Mills, “Internet time synchronization: the network time protocol,” IEEE
Transactions on communications, vol. 39, no. 10, pp. 1482–1493, 1991. 4.1.1

[40] M. Kierzynka, L. Kosmann, M. vor dem Berge, S. Krupop, J. Hagemeyer, R. Griessl,
M. Peykanu, and A. Oleksiak, “Energy efficiency of sequence alignment tools -
Software and hardware perspectives,” Future Generation Computer Systems, pp. –, 5
2016. 4.1.2

[41] M. Harchol-Balter, “Job placement with unknown duration and no preemption.”
SIGMETRICS Performance Evaluation Review, vol. 28, no. 4, pp. 3–5, 2001. 4.2.4.1

[42] M. Willebeek-LeMair and A. P. Reeves, “Strategies for Dynamic Load Balancing
on Highly Parallel Computers.” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 9, pp.
979–993, 1993. 4.2.4.1

[43] J. R. Vig, “Introduction to Quartz Frequency Standards,”Army Research Laboratory,
Electronics and Power Sources Directorate, Tech. Rep. SLCET-TR-92-1, 1992. 11.2.1

[44] Atos SE, “Atos’ BullSequana supercomputer powered by AMD processor sets
world-record performance,” Sep. 2019. [Online]. Available: https://web.archive.org/
web/20200711032057/https://atos.net/en/2019/press-release_2019_09_18 13.3.3

[45] A. Butko, A. Gamatié, G. Sassatelli, L. Torres, and M. Robert, “Design Exploration
for next Generation High-Performance Manycore On-chip Systems: Application to
big.LITTLE Architectures.” in ISVLSI. IEEE Computer Society, 2015, pp. 551–556.
13.3.1, 13.3.3, 15.1

[46] S. Rosinger, M. Metzdorf, D. Helms, andW. Nebel, “Behavioral-Level Thermal- and
Aging-Estimation Flow,” in Test Workshop (LATW), 2011 12th Latin American, 3 2011,
pp. 1–6. 4.1.5.3

[47] C. Emde, “Man nehme: ARM oder x86?” in Embedded Software Engineering Kongress
2014, 2014. 13.3.1, 13.3.5

[48] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth, B. Rountree, M. Schulz, and
B. R. de Supinski, “Practical Resource Management in Power-Constrained, High
Performance Computing.” in HPDC, T. Kielmann, D. Hildebrand, and M. Taufer,
Eds. ACM, 2015, pp. 121–132. 4.1.4, 5.3.2.1, 8.1, 8.1.2, 11.1.2.2, 11.3

[49] T. P. D. Lowenthal, B. Rountree,M. Schulz, andB. de Supinski, “ExploringHardware
Overprovisioning in Power-Constrained, High Performance Computing.” 4.1.4

200

https://web.archive.org/web/20200711032057/https://atos.net/en/2019/press-release_2019_09_18
https://web.archive.org/web/20200711032057/https://atos.net/en/2019/press-release_2019_09_18

[50] T. Patki, D. K. Lowenthal, B. L. Rountree, M. Schulz, and B. R. de Supinski, “Eco-
nomic Viability of Hardware Overprovisioning in Power-Constrained High Per-
formance Computing.” in E2SC@SC. IEEE Computer Society, 2016, pp. 8–15.
4.1.4

[51] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in action: Ex-
periences in using rapl for power measurements,”ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (TOMPECS), vol. 3, no. 2, pp. 1–26,
2018. 5.3.2.1, 8.2, 14.3

[52] S. Wallace, V. Vishwanath, S. Coghlan, Z. Lan, and M. E. Papka, “Measuring power
consumption on IBM Blue Gene/Q,” in 2013 IEEE International Symposium on Parallel
& Distributed Processing, Workshops and Phd Forum. IEEE, 2013, pp. 853–859. 11.3

[53] T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-purpose
distributed computing systems,” Software Engineering, IEEE Transactions on, vol. 14,
no. 2, pp. 141–154, 1988. 4.2.3, 4.2.4

[54] R. D. Blumofe and D. S. Park, “Scheduling large-scale parallel computations on
networks of workstations,” in Proceedings of 3rd IEEE International Symposium on
High Performance Distributed Computing. IEEE, 1994, pp. 96–105. 4.2.4.1

[55] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by
work stealing,” Journal of the ACM (JACM), vol. 46, no. 5, pp. 720–748, 1999. 4.2.4.1,
4.2.5

[56] G. P. Pezzi, M. C. Cera, E. N. Mathias, N. Maillard, and P. O. A. Navaux, “On-line
Scheduling of MPI-2 Programs with Hierarchical Work Stealing.” in SBAC-PAD.
IEEE Computer Society, 2007, pp. 247–254. 4.2.4.1

[57] J. A. Pascual, J. Navaridas, and J. Miguel-Alonso, “Effects of topology-aware alloca-
tion policies on scheduling performance,” inWorkshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2009, pp. 138–156. 4.3.3

[58] M. M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely, “PSINS: An Open
Source Event Tracer and Execution Simulator for MPI Applications.” in Euro-Par,
H. J. Sips, D. H. J. Epema, andH.-X. Lin, Eds., vol. 5704. Springer, 2009, pp. 135–148.
4.5.4, 8.1, 8.1.2, 11.1

[59] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion, A. Ramírez, and
M. Valero, “On the simulation of large-scale architectures usingmultiple application
abstraction levels.” TACO, vol. 8, no. 4, p. 36, 2012. 8.1, 8.1.2, 11.1

[60] C. L. Janssen, H. Adalsteinsson, and J. P. Kenny, “Using simulation to design
extremescale applications and architectures: programming model exploration.”
SIGMETRICS Performance Evaluation Review, vol. 38, no. 4, pp. 4–8, 2011. 4.5.4, 8.1.2

201

[61] K. Wang and I. Raicu, “SimMatrix: SIMulator for MAny-Task computing execution
fabRIc at eXascales,” in High Performance Computing Symposia (HPC), Apr. 2013.
4.2.4.1, 8.1, 8.1.3, 11.1

[62] N. Lopez-Benitez and J.-Y. Hyon, “Simulation of task graph systems in heterogen-
eous computing environments,” in Proceedings of the 8th Heterogeneous Computing
Workshop, 1999. IEEE, 1999, pp. 112–124. 8.1, 8.1.4, 11.1

[63] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg, J. Högberg,
F. Larsson,A.Moestedt, and B.Werner, “Simics: A Full SystemSimulation Platform.”
IEEE Computer, vol. 35, no. 2, pp. 50–58, 2002. 8.1.1

[64] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The Gem5 Simulator,” SIGARCH Comput. Archit. News,
vol. 39, no. 2, pp. 1–7, Aug. 2011. 8.1.1, 8.1

[65] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic performance
model for superscalar out-of-order processors.”ACM Trans. Comput. Syst., vol. 27,
no. 2, 2009. 8.1.4, 9.5.2

[66] J. Labarta, S. Girona, and T. Cortes, “Analyzing Scheduling Policies UsingDimemas.”
Parallel Comput., vol. 23, no. 1-2, pp. 23–34, 1997. 8.1.2

[67] C. Camarero, C. Martínez, and J. L. Bosque, “Simulation with skeletons of applica-
tions using dimemas.” in CF, F. Palumbo, M. Becchi, M. Schulz, and K. Sato, Eds.
ACM, 2019, pp. 274–278. 8.1.2

202

List of Figures

5.1. Basic electrical power measurement circuit. 51

9.1. Assumed development approach for the prediction methodology. 74
9.2. Final development flow including all models. Bold borders indicate ele-

ments introduced by this thesis. 74
9.3. Example of a task graph performing Cholesky matrix decomposition with

5× 5matrix subdivision. Colour denotes different kernels. 77
9.4. Execution Runtime Model . 83
9.5. Excerpt of an example platform hierarchy graph. 87
9.6. Example of a platform communication graph. 88
9.7. Class diagram of SystemC simulation models (simplified). 97
9.8. Sequence Diagram of a single task execution with communication and

concurrent execution on a second PE. Numbers refer to the explanation in
the text. 99

9.9. Sequence diagram of a single data set transmission (initial part). Numbers
refer to the explanation in the text. 101

10.1. Power distribution path of the power distribution and measurement board.113
10.2. Physical design of the power distribution and measurement board. . . . 114
10.3. CPLD schematics of the power measurement board. 116
10.4. CPLD schematics: DMA error checking. 118
10.5. Picture of the embedded cluster platform with integrated measurement

infrastructure (initial version). Components marked with an asterisk were
added/changed later due to significant evaluation challenges. 120

10.6. Power trace of the initial mark sequence on five channels (denoted by
colour). At 100ms (1,000 power samples), the marker energy begins. After
10 s (100,000 power samples), the first task executes. 124

10.7. Supply current trace of the MARK kernel. The left spike is the marker
energy, followed by 2 s pause. The right spike is from the following kernel.125

10.8. Suggested communication timing characterisation procedure. 128

12.1. DC current measurement: shunt resistor current overADC sample values,
channel 10. 142

12.2. DC current measurement: relative error overADC sample values, channel
10. 144

12.3. Electrical current of two physically adjacent channels with significant
power consumption steps to make cross talk visible, if present. 146

203

List of Figures

12.4. Frequency response of the external analogue signal path. 147
12.5. Maximum and mean relative deviation between different timings using

two different approximations: ‘Simple’ uses a linear correction factor
calculated from trace end markers, while ‘Full’ is a linear regression over
all task execution events. 148

12.6. Absolute deviation between different timings using two different approx-
imations: ‘simple’ uses a linear correction factor calculated from trace end
markers, while ‘full’ is a linear regression over all task execution events. 149

13.1. Power over time during pauses and active periods. Lines are linear ap-
proximations. 157

13.2. Power over time for the five ASUS TinkerBoards. 158
13.3. Eth networking layer timing difference between measured and ideal val-

ues (i. e. calculated from the stated packet delays). 160
13.4. Energy trace of a single communication benchmark, showing the re-

ceiver of a unidirectional ATB-to-ATB transfer. Communication happens
between 10.5 s and 13.8 s. 161

13.5. Communication energy per packet, plotted over packet delay. Colour
denotes board type, while shape distinguishes between receive-only, send-
only, and bidirectional transfers. Lines are linear approximations. 161

14.1. CPU activity for Ch-10 as determined by a simulation without secondary
time model. Each row of boxes represents one compute core, while the
coloured boxes themselves represent tasks, with colours showing the
kernel being executed. 170

14.2. CPU activity for Ch-10, similar to Figure 14.1 but showing measurement
and final simulation side-by-side. Each pair of rows represents one com-
pute core, with measurement result on the top row and simulation result
on the bottom row. 174

14.3. CPU activity for Ch-40, similar to Figure 14.1 but showing measurement
and final simulation side-by-side. Each pair of rows represents one com-
pute core, with measurement result on the top row and simulation result
on the bottom row. 175

15.1. Absolute deviation between different timings using two different approx-
imations: ‘simple’ uses a linear correction factor calculated from trace end
markers, while ‘full’ is a linear regression over all task execution events. 183

15.2. Excerpt of an energy trace showing two seconds of channel 7. Cyan bars
mark algorithmically detected edges in the energy trace, red bars mark
GPIO and CPU timings (which coincide in this example). 184

15.3. Absolute deviation between GPIO and CPU timings using the simple
correction factor, for an unloaded system as in Figure 12.6 and for a
loaded system like in Figure 15.1. 184

204

List of Tables

8.1. Typical characteristics of prediction techniques (represented by prominent
examples) and comparison to the proposed methodology 68

9.1. Main API calls of the execution runtime HAL 85

9.2. Eth packet format . 107

9.3. Packet types in the Eth protocol . 107

11.1. Reported time prediction error in related methodologies. Multiple values
are given if more than one simulation technique is evaluated. 134

12.1. Shunt resistor voltages for a nominal current of 1A 143

12.2. Maximum error of different linear fitting methods for ADC to shunt
voltage conversion: linear regressions using 2000 and 2 data points per
channel, and the theoretical value of 25µV per ADC count. 144

12.3. DC voltage measurement results for a single channel. 145

13.1. Correction factors and idle power for the 15 boards. 156

13.2. Final communication packet timing and net bandwidth (BW) for the Eth
networking layer. 159

14.1. Evaluated application configurations. 168

14.2. Results from the characterisation procedure. 169

14.3. Slowdown factors of the secondary time model (competing POTRF loads
left out due to insignificance). 172

14.4. Results of the initial benchmark run. Power values are average power.
Etotal and Ptotal include idle power. 173

14.5. Comparison of energy measurements (M) and predictions (P) by indi-
vidual board. All values are given in Joules. 176

14.6. Results of the second benchmark run, including relative difference to
energy measurements of the first benchmark run. 178

14.7. Difference between both sets of energymeasurements by individual board.
Absolute values are given in Joules. 179

14.8. Results of an early benchmark on an earlier variant of the evaluation
platform, leading to the discovery of irregularities related to C1+ boards.
Energy figures exclude idle power. 179

205

List of Tables

15.1. Comparison of TCP networking and Eth network protocol bandwidth.
Columns specify maximum, mean, and standard deviation for a given
pair of communication partners. 186

206

Listings

9.1. Example of a kernel definition in an XML serialisation. 78
9.2. Example of a task definition in an XML serialisation. 78
9.3. Example of a dependency in an XML serialisation 79
9.4. Skeleton program excerpt that generates Cholesky matrix decomposition

task graphs in different parallelisation granularities. 80
9.5. Example of a small platform graph in an XML serialisation 90
9.6. Excerpt of an XML serialisation of a platform resource model. Parameters

are given in W, nJ, or ns, where applicable. 91
9.7. Task graph task with mapping annotation in an XML serialisation. . . . 95

207

Listings

208

Nomenclature

ADC Analog-to-Digital Converter

ALU Arithmetic and Logical Unit

API Application Programming Interface

ARM CPU architecture originally devised by Acorn Ltd.

BLAS Basic Linear Algebra Subprograms

CE Communication Element

CPLD Complex Programmable Logic Device

CPU Central Processing Unit, i.e. Main Processor

DC Direct Current

DMA Direct Memory Access

DSE Design Space Exploration

DSO Dynamically Shared Object

DVFS Dynamic Voltage and Frequency Scaling

EDA Electronic Design Automation

FLOP/s Floating-Point Operations per Second

FPGA Field Programmable Gate Arrays

FPU Floating Point Unit

GPGPU General Purpose GPU

GPIO General-Purpose Input/Output

GPU Graphics Processing Unit

HAL Hardware Abstraction Layer

HDL Hardware Design Language

HLS High-Level Synthesis

209

Nomenclature

HPC High Performance Computing

HPL Highly-Parallel LINPACK

IC Integrated Circuit

IPC Instructions Per Cycle

ISS Instruction Set Simulator

I²C Inter Integrated Circuit

MCU Microcontroller Unit

MOSFET Metal–Oxide Semiconductor Field Effect Transistor

MPI Message Passing Interface

NTP Network Time Protocol

OS Operating System

OSSS Oldenburg System Synthesis Subset

PCB Printed Circuit Board

PCG Platform Communication Graph

PE Processing Element

PHG Platform Hierarchy Graph

PMIC Power Management Integrated Circuit

PTP Precision Time Protocol

RAM RandomAccess Memory

RTL Register Transfer Level

SBC Single-Board Computer

SDF Synchronous Dataflow

SIMD Single Instruction Multiple Data

SMT Simultaneous Multi-Threading

SoC System on Chip

SPI Serial Peripheral Interface

SSH Secure Shell

210

Nomenclature

TAI International Atomic Time

TLM Transaction Level Modelling

TSN Ethernet Time Sensitive Networking

TSN Time Sensitive Networking

VCD Value Change Dump

x86 CPU architecture originally devised by Intel

211

Nomenclature

212

Acknowledgements

Parts of the research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No.
609757 (FiPS - Developing Hardware and Design Methodologies for Heterogeneous Low
Power Field Programmable Servers).

213

	Introduction
	Context and Motivation
	Scope of Contribution
	Research Questions

	Outline

	Fundamentals
	Timing and Energy Prediction for HPC Applications
	Hardware Aspects
	Speed Variation and Synchronisation
	Current and Future Hardware Architectures
	HPC Cluster Scale
	Energy Considerations
	Heat
	Thermal Management
	Observable Effects
	Modelling

	CPU-specific Performance Optimisation

	Software Aspects
	HPC Problem Classes
	Parallelism and its Limitations
	Application Patterns
	Structural Patterns
	Parallel Algorithm Strategy Patterns

	Scheduling
	Dynamic Scheduling
	Static Scheduling
	Rescheduling

	Resource Modelling
	Auxiliary Aspects
	Data Representation
	Data Distribution
	Fault Tolerance

	Parallelisation Tools
	Local Parallelism
	Communication Middleware
	Deployment

	Common Benchmarks
	Common Prediction Approaches
	Analytical Models
	Simulation
	Symbolic Simulation
	Trace-Based Simulation

	Time and Energy Measurement
	Data Collection
	Time Measurement
	Eligible Effects
	Measurement Techniques
	Internal Measurement
	Comparability
	External Measurement

	Energy Measurement
	Eligible Effects
	Measurement
	Microarchitectural Power Estimation
	Power Management Circuits
	Dedicated Measurement Circuits
	External Measurement
	Parallel Measurement

	Modelling and Simulating with SystemC
	Components of SystemC Models
	Discrete-Event Simulation
	System Level Modelling
	Computation
	Communication

	Time and Energy Traces

	Thesis Contributions
	Contributions
	Assumptions

	Related Work
	Time and Energy Prediction
	Execution-Driven Simulation
	Trace-Based Simulation
	Abstract Simulation
	Analytical Modelling

	Measurement Platforms

	Models and Methodology
	Power and Timing Prediction Methodology
	Overall Design Flow
	Abstract Application Model
	Task Graph
	Application Semantics
	Modelling Process
	Discussion of Design Decisions

	Execution Runtime Model
	Initialisation
	Main Loop
	Communication Scheduler
	Hardware Abstraction Layer
	Overall Design Decision

	Abstract Platform Model
	Platform Model
	Platform Hierarchy Graph
	Platform Communication Graph
	Platform Graph

	Platform Resource Model
	Discussion of Design Decisions

	Computation Resource Model
	Abstract Resource Model
	Model Building
	Discussion of Design Decisions

	Mapping
	Representation
	Automatic Mapping

	Simulation Model
	SystemC Object Hierarchy
	Power Models
	Computation Modelling
	Communication Modelling
	Basic Operation
	Routing

	Resulting Prediction

	Physical Execution
	Deployment
	Initialisation
	Execution
	Node-Local Time
	Time Synchronisation

	Communication
	TCP Backend
	Eth Backend

	Measurement Platform
	Power Distribution and Measurement
	Power Distribution
	Analogue Front-End
	Signal Acquisition
	Multiplexer
	Analog-to-Digital Converter
	Data Transfer

	Signal Processing and Transmission
	Data Reduction
	Transmission
	System Control

	Embedded Cluster Platform
	Cluster Management

	Measurement Process
	Energy
	Time
	Time Correlation
	Kernel Characterisation
	Energy Markers
	External Time Measurement
	Secondary Time Model

	Platform Characterisation
	Sustainable Clock Frequency
	Platform Power
	Communication Timing
	Cutoff Metric
	Model Parameters
	Benchmark Suite

	Communication Power

	Evaluation
	Evaluation Goals
	Overall Methodology
	End User Requirements
	Evaluation Criteria
	Time
	Energy
	Performance

	Measurement Accuracy
	Time
	Energy

	Evaluation Platform
	Platform Characterisation
	Power Variation and Heat

	Individual Design Decisions

	Evaluation of Measurement Accuracy
	Setup
	DC Accuracy
	Channel Independence
	Frequency Response
	Time Measurement

	Results
	DC Accuracy
	Channel Independence
	Frequency Response
	Time Measurement

	Discussion
	Energy
	Timing
	Summary

	Characterisation of the Evaluation Platform
	Setup
	Platform Model
	Platform Characterisation

	Results
	Clock Speed
	Platform Power
	Communication Timing
	Communication Power

	Discussion
	Sustainable Clock Speed
	Platform Power
	Communication Timing
	Communication Power
	Summary

	Evaluation of the Overall Methodology
	Setup
	Overview
	Measurement Details
	Cholesky Matrix Subdivision
	Computation Resource Model
	Application Benchmark

	Results and Discussion
	Computation Resource Model
	Application Benchmark
	Time Predictions
	Simulation Speed
	Energy Predictions

	Summary

	Evaluation of Individual Design Decisions
	Fixed Clock Frequencies
	External Time Measurement
	Reproduction of Inconsistent Behaviour
	Results
	Discussion

	Custom Network Protocol
	Custom Runtime System
	Discussion

	Conclusion
	Appendix
	References
	List of Figures
	List of Tables
	Listings
	Nomenclature

