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Abstract

Finding the root causes of faulty processes is an integral part of our lives. For

this purpose, counterfactual formulations from the field of causal inference can be

utilized to answer the following question: "Would the observed failure have occurred

if a different system behaviour had been present?". Addressing such counterfactual

questions provides insights into potential system improvements by estimating the

effects of hypothetical interventions on prior observation of system behaviour.

We aim to address this issue within an industrial setting for practical applications.

First, the hypothetical nature of counterfactual distributions makes them inherently

ambiguous, which is particularly challenging in continuous settings. If the underlying

system is dynamic, as it is typically the case in industrial processes like production

plants, this increases complexity, particularly with regard to scalability. Furthermore,

the process may contain unobserved variables that influence it, which may significantly

impact the outcomes of counterfactual analyses. In summary, in an industrial context,

several key challenges are focused on in this work: uncertainties while estimating

the counterfactual distribution, counterfactual reasoning for identifying the root

cause within a dynamic system, and the impact of latent confounding variables. We

address these challenges within the realm of causal inference, taking advantage of the

powerful properties of causal models, such as performing hypothetical interventions

in a system.

To address the challenge of uncertainties in counterfactual distribution estimation,
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we propose a Bayesian method that accounts for the ambiguities involved, allowing

for more reliable decision-making. In order to automatically identify root causes

in a dynamic system, we develop an auto-regressive model with sampling-based

estimation of dynamic processes. Compared to most non-causal approaches, this

allows the root cause of the failure to be identified using only a single faulty observation

by leveraging the counterfactual properties. Finally, we sketch ideas for potential

extensions of deconfounding approaches to the identification of root causes when

unobserved variables influence the causal relationships in a dynamic system.

Together, these methods address key challenges in practical applications, enhancing

the robustness of counterfactual reasoning while enabling faster and more accurate

root cause identification, ultimately simplifying quality control processes.
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Zusammenfassung

Die Suche nach den Ursachen fehlerhafter Prozesse ist ein wesentlicher Bestandteil

unseres Lebens. Zu diesem Zweck können kontrafaktische Formulierungen aus dem

Bereich der kausalen Inferenz verwendet werden, um die folgende Frage zu beant-

worten: „Wäre der beobachtete Fehler aufgetreten, wenn ein anderes Systemverhalten

vorgelegen hätte?“. Die Beantwortung solcher kontrafaktischen Fragen liefert Erkennt-

nisse über mögliche Systemverbesserungen, indem die Auswirkungen hypothetischer

Eingriffe auf ein zuvor beobachtetes Systemverhalten abgeschätzt werden.

Unser Ziel ist es, diese Frage in einem industriellen Umfeld für praktische Anwen-

dungen zu beantworten. Zunächst sind kontrafaktische Verteilungen aufgrund ihres

hypothetischen Charakters von Natur aus mehrdeutig, was in kontinuierlichen Umge-

bungen eine besondere Herausforderung darstellt. Wenn das zugrunde liegende

System dynamisch ist, wie es typischerweise bei industriellen Prozessen wie Pro-

duktionsanlagen der Fall ist, erhöht dies die Komplexität, insbesondere im Hinblick

auf die Skalierbarkeit. Darüber hinaus kann der Prozess unbeobachtete Variablen

enthalten, die ihn beeinflussen, was die Ergebnisse der kontrafaktischen Analysen

erheblich beeinflussen kann. Zusammenfassend lässt sich sagen, dass sich diese Ar-

beit im industriellen Kontext auf mehrere zentrale Herausforderungen konzentriert:

Unsicherheiten bei der Schätzung der kontrafaktischen Verteilung, kontrafaktische

Argumentation zur Identifizierung der Grundursache in einem dynamischen System

und die Auswirkungen latenter Störfaktoren. Wir befassen uns mit diesen Heraus-

forderungen im Bereich der kausalen Inferenz, indem wir die starken Eigenschaften
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von Kausalmodellen nutzen, wie z. B. die Durchführung hypothetischer Eingriffe in

ein System.

Um die Herausforderung der Unsicherheiten bei der Schätzung der kontrafaktischen

Verteilung zu bewältigen, schlagen wir eine Bayes’sche Methode vor, die die damit

verbundenen Mehrdeutigkeiten berücksichtigt und eine zuverlässigere Entscheidungs-

findung ermöglicht. Um die Ursachen in einem dynamischen System automatisch

zu identifizieren, entwickeln wir ein autoregressives Modell mit stichprobenbasierter

Schätzung dynamischer Prozesse. Im Vergleich zu den meisten nicht-kausalen An-

sätzen ermöglicht dies die Identifizierung der Fehlerursache mit nur einer einzigen

fehlerhaften Beobachtung, indem die kontrafaktischen Eigenschaften genutzt werden.

Abschließend skizzieren wir Ideen für mögliche Erweiterungen von Deconfounding-

Ansätzen zur Identifizierung von Grundursachen, wenn unbeobachtete Variablen die

kausalen Beziehungen in einem dynamischen System beeinflussen.

Zusammengefasst adressieren diese Methoden wichtige Herausforderungen in der

Praxis, indem sie die Robustheit der kontrafaktischen Argumentation erhöhen und

gleichzeitig eine schnellere und genauere Identifizierung der Ursachen ermöglichen,

was letztlich die Prozesse in der Qualitätskontrolle vereinfacht.
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Notation

N j exogenous variable

YF factum

Yj observational variables for node j

Yj
t j th observable of a system at time t

M Structural Causal Model

do(X = x) Intervene in the system by setting random variable

X to realization x

f j functional relationship (causal link) of j

YPA(j) observed PA(j) parents of the node j
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1 Introduction

As modern industries become increasingly complex and interconnected, promptly

identifying and addressing potential failures has become more critical. In manufac-

turing, where products are passed from one station to the next, every inefficiency,

defect, or downtime event can majorly affect productivity and profitability. When a

failure occurs at a station, the root cause may have occurred at the station itself or

at previous stations at a specific point in time. In the worst case, the expert has to

consider each station individually, which makes an automated root cause analysis

particularly valuable. It is, therefore, desirable to discover the root cause of a fault in

a production line at an early stage. To effectively identify root causes, we use causal

analysis rather than relying solely on correlation-based reasoning. Depending exclu-

sively on correlations may lead to misleading or spurious conclusions, as correlations

do not imply causation.

Furthermore, causal analysis enables us to change a system through an intervention,

which is essential for making informed decisions and predicting the consequences

of an intervention without actually performing it. A conceivable intervention in a

manufacturing plant could, for example, change the state of a single station and,

as a result, influence all following stations. Based on the concept of interventions,

causal models offer the capability to calculate counterfactual reasoning, allowing to

explore "what-if" questions and hypothetical interventions on a past observation.

In a manufacturing plant identifying the failure-causing station, one could ask the

counterfactual question: "Would the observed failure also occur if we had replaced the
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behaviour of a station at a certain point in time with its normal behaviour?". As we

address this question in a dynamic context, this poses new challenges like the effect

of an intervention may change depending on when in time it is applied or delayed

effects, where the influence of an intervention is recognizable with a considerable

time delay. This temporal complexity also opens up practical problems, particularly

in terms of scalability, where, in addition to the complexity due to the increased

number of variables, the number of possible interventions scales with the number

of points in time where the failure could have occurred. To perform counterfactual

reasoning, the analytical or at least computational expressions of the functional

couplings between the variables are required [8]. As causal relationships (we call

them also functional relationships) between different aspects of a system might not

be fully known to an expert and, therefore, have to be inferred from observational

data, there are uncertainties surrounding the identified relationships. Within the

setting of counterfactual reasoning, it turns out that additional inherent ambiguities

occur, which cannot be constrained by the observational data but will lead to different

counterfactual results [8]. Ambiguities in the causal relationships may also occur due

to hidden confounding variables, which simultaneously influence both the treatment

and the outcome. As a result, the assumption of no present hidden confounders can

lead to an inaccurate representation of the system, thereby introducing bias into

the estimated effect of an intervention [4]. This may lead to incorrect conclusions,

making it essential to account for potential confounders to ensure the validity and

reliability of causal analysis.

In the context of ambiguities, the current work does not address the uncertainty in

counterfactual distributions while accounting for the uncertainty of functional cou-

plings in a continuous and nonlinear context. Furthermore, the related work focuses

on additive external influences causing failures rather than structural influences in a

static and often linear setting, which limits its practicability (for a review of related

work, see Chapter 3).
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Research questions

To overcome the previously mentioned shortcomings, we identified the following

research questions:

1. How to represent different uncertainties in functional couplings within an

uncertain Structural Causal Model?

2. How to perform counterfactual reasoning for root cause analysis in a dynamic

system?

3. How to incorporate unobserved confounding variables in estimating counterfac-

tual reasoning for dynamic root cause analysis?

To answer these questions, we developed a dynamic counterfactual reasoning frame-

work designed to automatically identify root causes within a system while accounting

for inherent ambiguities. Based on the stated research questions, the work is struc-

tured as follows. First of all, in Chapter 2, we summarize the foundational causal

concepts and methodologies on which this work is based. Following this, we review

the related literature in Chapter 3. In Chapter 4, we address the first research

question by incorporating uncertainty into counterfactual reasoning, which is based

on our published work in Weilbach et al. [9]. We then progress to a dynamic setup in

Chapter 5, targeting the second research question by performing root cause analysis

using counterfactual reasoning in a dynamic context (based on our published work in

Weilbach et al. [10]). Finally, in Chapter 6, we discuss how the third research question

could be addressed by sketching potential approaches for integrating unobserved

confounders into a dynamic setting.
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2 Background

This chapter aims to equip the reader with a comprehensive overview of the founda-

tional concepts of causal inference. It is structured around Judea Pearl’s causal ladder

[1], which consists of three rungs, namely Association-Intervention-Counterfactuals

categorising the different levels of causal reasoning. We start by introducing causal

graphical models, which serve as the backbone of causal reasoning, providing a struc-

ture to represent and analyse cause-and-effect relationships. Building on the causal

graphical models, we explore Structural Causal Models (SCMs), which extend these

by specifying the causal relationships. SCMs provide a comprehensive framework

for understanding how interventions affect outcomes and modelling complex causal

structures.

Subsequently, we examine the interventional distribution, a key concept in causal

inference that describes the distribution of outcomes under specific interventions.

This distribution forms the basis for evaluating the effects of actions in both observed

and hypothetical scenarios, further solidifying our understanding of the second rung

of the causal ladder. As we move to the third rung of the causal ladder, we introduce

the counterfactual distribution addressing counterfactual "what if" questions like

’What would have been the outcome if the circumstances had been different?’.

We then discuss the Potential Outcomes Framework, an alternative approach to

counterfactual inference that originated in a medical context that focuses on com-

paring the outcomes under different treatment scenarios for an individual. This

framework naturally leads to the concept of the Average Treatment Effect (ATE),
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which quantifies the average causal effect across a population. As the described

causal concepts rely on assumptions to ensure that the conclusions drawn from causal

models are reliable, we take a look at the most relevant assumptions for this work.

Finally, the chapter concludes with a discussion of the key methods that we use in

this dissertation for causal inference.

2.1 Causal Graphical Model

In this work, we consider causal models as described in the Causal Ladder Fig. 1

that give an overview of the levels of causal reasoning [1]. A causal model usually

has an underlying directed acyclic graph (DAG) to represent the causal relationships

between variables in a system. A DAG offers the advantage of clear visualisation

and intuitive interpretation. The edges of a causal graphical model are considered

causal links, and therefore, these models offer additional properties to a probabilistic

graphical model.

The first rung of the causal ladder represents the learning from association, which

is usually specified by conditional probabilities. For example, in a causal graphical

model as shown in Fig. 2, the joint probability of the random variables factorises in

conditional distributions (without accounting for the exogenous variables N at this

point): P (X,Y, Z) = P (Z) · P (X|Z) · P (Y |X,Z). The directed edges illustrate the

conditional dependence of the observed random variables.

Incorporating causal graphical structures ensures correct assumptions about the

causal relationships, helps avoid biases, and guides model construction. For this

reason, in the following we will take a closer look at the most important graphical

structures in a causal graph.

A Chain represents a sequence of random variables in which each node is condition-

ally dependent on its predecessor in the chain. In terms of conditional independence,
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Figure 1: Ladder of Causality(Figure taken from [1])

a chain can be "blocked" by conditioning on a node. For example, in the causal

chain in Fig. 3, conditioning on Z blocks the influence of X on Y , making X and
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x y

z

Figure 2: A directed acyclic graph, also referred to as causal graph. Here, Z is
an (observed) confounder, affecting the treatment variable X and the
outcome Y . Each (observed) endogenous variable has a (latent) exogenous
variable N influencing it.

x yz

Figure 3: Chain

Y conditionally independent given Z. The variable Z in a chain is also called a

mediator.

A Confounder (in a graphical context also called fork) is a structure that indicates

that the two child nodes (X and Y ) are conditionally independent given the parent

node Z. However, without conditioning on Z, X and Y may be correlated due to

their common cause, Z.

x yz

Figure 4: Confounder or Fork

In a Collider structure like in Fig. 5, X and Y are marginally independent of each

other. However, they become conditionally dependent given the collider Z. In a

graphical model, conditioning on a collider Z (or any of its descendants) opens a path
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between X and Y , potentially leading to spurious correlations (known as collider

bias).

x yz

Figure 5: Collider

Reichenbach’s Common Cause Principle states that if two random variables X

and Y are statistically dependent, then this dependency must be due to one of the

following reasons: X causes Y , Y causes X, or there exists a third variable Z —a

common cause — that influences both X and Y . In the context of the confounder

structure, Z serves as the common cause that explains the correlation observed

between X and Y .

d-separation (or directed separation) offers a rule-based approach to determine

conditional independence directly from the topology of the DAG without requiring

explicit knowledge of the underlying probability distributions. For example, in the

confounder structure of Fig. 4, if X and Y are d-separated by Z, then X and Y are

conditionally independent given Z. In this example, we ensure this by adjusting for

Z. To build an adjustment set of nodes (nodes we need to condition on to block

spurious information flow) for a directed graph, the backdoor or frontdoor criterion

may be used (introduced by [11]).

Backdoor Criterion

The idea behind the backdoor criterion is to adjust for the confounder Z (in Fig.

2) that could create a spurious relationship between treatment X and the result Y .

Conditioned on Z, one can isolate the causal effect of X on Y . For the backdoor

criterion to be applicable, the following conditions must be met:
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• No Confounders After Conditioning on Z: The identification of a set of variables

Y (confounders) that "block" all backdoor paths from X to Y . A backdoor

path is a path that starts with an arrow that points to X and then reaches Y .

• Blocking Backdoor Paths: The set of variables Z should block every path

between X and Y that contains an arrow that points to X, except for the direct

path from X to Y

The backdoor criterion is used when a confounder can be identified and observed. In

contrast, the frontdoor criterion is used when a confounder is not observed.

Frontdoor Criterion

The frontdoor criterion is a concept of causal inference used to identify and estimate

causal effects if unobserved confounders are present. It provides a way to estimate the

effect of a treatment or intervention on an outcome by using an intermediate variable

(often called a mediator) that lies on the causal pathway between the treatment and

the outcome. In Fig. 2 imagine an additional mediator node M in the path from

X to Y such that X → M and M → Y . The idea behind this is to decompose the

causal effect of X on Y into two components:

• The effect of X on M : This can be estimated directly because there are no

unobserved confounders allowed between X and M .

• The effect of M on Y : This can also be estimated because M blocks any

backdoor paths from X to Y , making the relationship between M and Y

unconfounded.

By examining the graphical structure of a causal graph, we can infer how certain nodes

might need to be conditioned to draw proper conclusions. However, the precise nature

of the influence that a variable X has on a variable Y remains unclear. Specifically,
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we do not yet know whether manipulating X will result in an increase or decrease in

Y .

2.2 Structural Causal Model

An important advantage of causal models is that they can be represented by direct

graphical models, which offer greater interpretability. However, when building a new

car or designing autonomous driving functions, the underlying causal graph may not

be sufficient to define the relationship of the components or entities involved. In

this regard, a Structural Causal Model (SCM) serves as a mathematical structure in

causal inference that allows the representation and examination of causal connections

among variables. Each equation typically includes a functional form that describes

how the variable is determined by its direct causes. In order to capture the stochastic

component of the system, exogenous variables are integrated into the structural

equations.

Definition 2.2.1. (Structural causal model (SCM)) [8]

An SCM M(S, PN ,G) is defined by a set of structural equations S, an acyclic graph

G = (Y, E) with nodes Y and edges E, and a set of independent noise variables

N j ∼ PNj , j ∈ Y. The structural equations for each node j are given by:

Sj := Y j = f j(Y PA(j)G , N j)

describing the functional relationship f j of the observational variables Yj, where

S = ∪j∈E{Sj} is a set of structural collections, and PA(j)G ⊆ E denotes the parents

of the node j according to the graph G.

For a given SCM, observations Y = (Y1, .., Yd) can be generated by sampling N j ∼ PNj

and subsequently applying the functional couplings. We denote this observational
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Figure 6: Summary graph G (on the left) and corresponding unrolled graph Gt over
discrete timesteps t (on the right).

distribution by PG . An extension of Structural Causal Models (SCMs) is dynamic

SCMs that capture causal relationships in dynamic systems, where variables evolve

over time. While traditional SCMs focus on static relationships between variables,

dynamic SCMs explicitly model how variables change over time and how interventions

at different time points affect the system’s behaviour.

To formally describe dynamic SCMs, we extend the definition 2.2.1 to the dynamic

case by unrolling a causal graph over time, as seen in Figure 6. We follow the notation

of [8] and define the structural equations for a node Y j
t by:

Definition 2.2.2. (Dynamic SCM)

In analogy to a static SCM, a dynamic SCM M(St, PNt ,Gt) is given by an acyclic

graph Gt and exogenous noise influences N j
t ∼ P

Nj
t

independent over each point in

time t and variable j. Gt refers to a graph consisting of an unrolled version of a

summary graph G (see Fig. 6).

Sj
t := Y j

t = Y j
t−1 + f j(Y

PA(j)
t−1 , Y j

t−1, N
j
t )

with YPA(j) being the parents of node j according to the summary graph G excluding

the node itself. A notable difference to static SCMs is that the functional coupling f

is constant over time.
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We model autoregressive dynamic behaviour by assuming discretised time steps.

This is a legitimate approach, as the (industrial) problems considered in this work

provide measurements at discrete points in time. As long as the intervals between the

points in time are sufficiently small, dynamic behaviour can be sufficiently mapped.

However, there are several works that focus on continuous dynamical systems in a

causal context, see Chapt. 3.3.

2.3 Interventional distribution

In the second level of the causal ladder, in Figure 1, manipulations enable us to

intervene in a system and observe the resulting changes, which is a critical feature of

causal models that makes them particularly powerful. It is crucial to emphasize that

interventions are fundamentally distinct from conditioning within a causal model.

An intervention modifies the causal structure by changing the relationship between a

variable and its parents. This can be performed as hard intervention (sometimes also

referred to as structural intervention) by breaking the causal link to the parent nodes

or as soft intervention (sometimes also referred to as parametric intervention) by

manipulating the structural equation with remaining edges to the parents, allowing

for a more nuanced form of manipulation. This indicates that a hard intervention

has the consequence that edges in the causal graph coming from the parents are

eliminated completely [8].

This manipulation or intervention gives rise to a new (interventional) distribution.

Interventional distributions represent the distribution of outcomes that would be

observed if a particular intervention or action were taken on a system. For example,

causal model interventions can be used to find a suitable therapy plan for patients to

achieve a desired outcome without actually performing the treatment physically [8].

Formally, an intervention can be carried out in various ways, for example, by adding

noise to a variable, by entirely removing a variable from the causal graph, or by

setting a variable to a specific value. After an intervention is performed, the new
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state of the intervened on variable is propagated through the causal graph. This

involves applying the structural equations while taking into account the intervened

variables. To formally distinguish between intervening and conditioning, we use the

do-operator to manipulate a variable [1] For example, the (hard) intervention on a

variable X by setting it to a specific value x is denoted by do(X = x). Sequentially

the interventional distribution of an outcome variable Y when the variable X is set to

a specific value x is described by P (Y |do(X = x)). The do-calculus consists of three

main rules, each serving a specific purpose in transforming and simplifying causal

expressions.

2.3.1 Do-calculus

The do-calculus is a set of rules developed by Judea Pearl to facilitate causal reasoning

in complex systems when dealing with interventions [11]. The choice of which do-

calculus rule to apply is directly informed by the graph’s structure. We illustrate

these rules using the graph introduced in Fig 2.

Definition 2.3.1. Rule 1 (Insertion/Deletion of Observations) This rule applies

when certain irrelevant variables can be ignored.

P (Y |do(X), Z) = P (Y |do(X))

If Y is independent of Z given X in the intervened on graph, then the effect of Z on

Y can be ignored.

Definition 2.3.2. Rule 2 (Action/Observation) This rule is used when the effect of

an intervention is equivalent to an observation.

P (Y |do(X), Z) = P (Y |X,Z)
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If we condition on Z, the relationship between X and Y remains the same whether X

is observed naturally or manipulated through an intervention. This holds because Z

blocks any unmeasured confounders, making the effect of X on Y equivalent whether

X is set or observed.

Definition 2.3.3. Rule 3 (Insertion/Deletion of Actions) This rule relies on iden-

tifying and blocking all back-door paths and corresponds to the backdoor criterion

2.1

P (Y |do(X), do(Z)) = P (Y |do(Z))

If Z blocks all back-door paths from X to Y (which it does in this case since Z

directly influences both X and Y ), then the effect of intervening on X does not provide

additional information about Y once we have already intervened on Z. This means

that the intervention on Z alone is sufficient to determine the effect on Y .

In summary, intervening involves actively manipulating or changing the value of

a variable to observe its causal effect on another variable of interest. Suppose an

intervention is performed by setting a variable to a value. In that case, this variable

receives no input from its parents any more, meaning the underlying graphical

model is changed by cutting the connections between the variable and its parents.

This is particularly useful in scenarios where interventions can only be carried out

theoretically, for instance because of ethical reasons.

2.4 Counterfactual distribution

The highest and third rung allows for imagining or counterfactual reasoning. A

counterfactual distribution is a hypothetical distribution that represents what the

outcome would have been for a particular individual under different circumstances.
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An (industrial) example for a counterfactual question would be "Would the ob-

served failure also occur if we had changed the behaviour of the system at a certain

point in time?". However, only one outcome for each individual can be observed,

meaning that the counterfactual is unobservable. The formal method for reasoning

about counterfactuals (introduced by [12]) based on an SCM consists of three steps:

Abduction-Action-Prediction. We introduce the procedure using the causal graphical

model of Fig 2. We assume that an SCM M has been defined like in Sec 2.2. Since a

counterfactual is interlinked to a particular observation, we first observe a so-called

factum YF generated from the underlying SCM (see Definition 2.2.1). For this

individual YF we can now calculate the three steps as follows:

Abduction

In the abduction step, we infer the state of the latent variables of the causal model

that explain the observation YF . To estimate these latent variables, a noise posterior

distribution P (N | YF) can be calculated with Bayesian Inference [13]. The noise

posterior distribution restricts the exogenous noise influences to the ones which are

consistent with the given factum YF within the functional couplings of a given

SCM M. The exact form of the posterior distribution depends on the specific

model assumptions, such as the functional form and the distributions of the variables

involved.

Intervention

The action step refers to the process of intervening in the causal model by changing

the value of a variable. Assume we want to change the value of X to a new value x′

in the model in Fig 2. We denote this (in this case hard) intervention by do(X = x′),

as described in Sec. 2.3. Then the structural equation for the node X is modified

by the intervention like: do(X = x′) ⇒ Y X = x′. By performing this action step
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which modifies the causal model so that X is fixed at the new value x′, the causal

dependence to the parent Z is broken.

Prediction

In the last step, we use the modified causal model from the action step to estimate

the counterfactual outcome Y CF . Given the inferred values of the latent variables N

from the abduction step, and the modified structural equation from the action step,

we calculate the values for the descendants of X by following the structural equations

of M.

2.4.1 Twin networks

The concept of twin networks, as introduced by Balke and Pearl [14], provides a

formal mechanism to evaluate counterfactuals. A twin network consists of two parallel

models: one representing the actual (factual) world and the other representing the

counterfactual world. In this twin of the factual causal model, an intervention is

applied, creating a counterfactual causal model.

The primary goal of the twin network approach is to simplify the computation of

counterfactual queries by representing both factual and counterfactual scenarios in a

unified graphical model. These two models are interconnected through shared latent

variables, ensuring that the underlying causal structure remains consistent between

the factual and counterfactual scenarios.

However they require duplicating the entire causal model to create a parallel structure

for the counterfactual scenario. This duplication increases the model’s complexity,

making it more difficult to manage, especially in large-scale or complex systems with

many variables. Furthermore, twin networks are limited to two possible networks.

However, this problem has previously been addressed in a so-called parallel worlds

graph [15]. In contrast, in counterfactuals, as introduced by Pearl [12] are based on a
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single set of structural equations, without the need to duplicate the entire model. This

can lead to simpler computations, especially when duplicating the entire structure,

as in twin networks might be computationally expensive.

2.5 Potential Outcomes

Since we consider the Potential Outcomes (PO) Framework in Chapter 6 in the context

of latent confounding, we would like to provide a brief introduction in the following.

The Potential Outcomes (PO) Framework, also known as the Neyman-Rubin Causal

Model [16], [17], [18], is a widely used approach for causal inference in statistics and

social sciences. It provides a formal way to define and estimate causal effects by

comparing the outcomes that would occur under different interventions or treatments.

The outcomes are called potential outcomes because, for any given individual, only

one of these outcomes can actually be observed (depending on whether they receive

the treatment or not). The potential outcome is denoted with Y ∼ P (Y |do(T = 1)) if

the individual receives the treatment and with Y ∼ P (Y |do(T = 0)) if the individual

does not receive the treatment (i.e., is in the control group).

2.5.1 Potential Outcomes and Counterfactuals

In recent decades, there have been repeated discussions in the causality community

about the differences and similarities between the Structural Causal Model and

the Potential Outcomes (PO) framework. In [19], Bollen and Pearl explain that

the two frameworks are interchangeable and that they are logically equivalent [20].

They explain that the key difference lies in how they represent causal knowledge.

In an SCM, causal knowledge is encoded through functional relationships among

endogenous (observable) and exogenous (latent) variables, while PO represent it

using statistical relationships among hypothetical (or counterfactual) variables, whose
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values are defined after a treatment is carried out. Further, they show that a theorem

or assumption in one framework has a corresponding interpretation in the other.

For instance, in an SCM, the assumption that X does not cause Y is represented

by the absence of an X → Y arrow. In contrast, a PO analyst would imagine a

hypothetical variable Yx (representing the value that Y would have if treatment

X = x were applied) and state that Yx = Y , indicating that the potential outcome

Yx remains unchanged regardless of x, and equals the observed value Y . Similarly,

SCM’s assumption of independent disturbances is captured in the PO framework as

an independent relationship between counterfactual variables.

In this work, we mainly follow Pearl’s counterfactual framework because it offers

better interpretability through the representation of causal graphical models.

2.6 Assumptions in Causal Reasoning

A key assumption in causal inference is the absence of unobserved confounders between

the treatment variable and the potential outcomes. This assumption, often referred

to as ignorability or unconfoundedness, implies that all variables affecting both the

treatment assignment and the outcome have been observed and accounted for [21]. If

this assumption is violated, the estimated Average Treatment Effect may be biased,

leading to potentially misleading conclusions [22].

The following assumptions are commonly made when estimating potential outcomes

in the Neyman-Rubin Causal model, see [23, 18].

Stable Unit Treatment Value Assumption (SUTVA) has two components: first,

it requires that the value of the potential outcome for any individual is unaffected

by the treatment assignment mechanism; second, it assumes that an individual’s

potential outcome is unaffected by the treatment exposures of other individuals. This

assumption is crucial for ensuring that the potential outcomes are well-defined and
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that interference between units does not occur [18]. Peters et al. [8] show that SUTVA

is satisfied when the data are generated from an SCM.

Positivity requires that every individual in the population has a positive probability

of receiving each treatment level. This ensures that comparisons between treated and

untreated groups are valid because there are individuals in each group who could

feasibly have received the other treatment.

Consistency states that if a unit is assigned to a particular treatment, the observed

outcome is the same as the potential outcome corresponding to that treatment. This

means that the potential outcome for an individual is exactly what would be observed

if the individual were exposed to that treatment, implying that there are no different

versions of the treatment that might lead to different outcomes. Consistency also

requires that the potential outcome is uniquely determined by the treatment value

and that no unaccounted-for variations exist in how the treatment is implemented.

2.7 Average Treatment Effect

Once an intervention or treatment1 has been carried out, we are interested in measuring

the overall impact of the intervention. Specifically, we want to quantify how the

outcome changes on average when the intervention is applied compared to when it is

not. The Average Treatment Effect (ATE) provides a formal way to quantify this

effect by comparing the expected outcomes under both the treatment and control

conditions. In the context of the potential outcomes framework, each individual

exposed to treatment has a potential outcome and another potential outcome if

the individual is in the control group. The treatment effect, then, is the difference

between these two potential outcomes.
1Note that we use the terms intervention and treatment interchangeably.
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Definition 2.7.1. For an outcome variable Y and a binary treatment variable T the

ATE for the potential outcome with a given treatment Y ∼ P (Y |do(T = 1)) and the

potential outcome for no treatment has been given Y ∼ P (Y |do(T = 0)) is defined as:

ATE = E[Y |do(T = 1)]− E[Y |do(T = 0)]

However, only one potential outcome for each individual can be observed, meaning that

the remaining potential outcome is unobservable. This is known as the fundamental

problem of causal inference [23]. If a treatment effect affects individuals differently it

is called heterogeneous and can be addressed by dividing the data into subgroups (e.g.,

men and women). It is then analysed if the average treatment effects the subgroups

differently. The per-subgroup ATE is called a conditional average treatment effect

(CATE) [22].

2.8 Method Background

In this concluding section of the background, we outline the theoretical foundations of

the methodologies employed throughout this dissertation, highlighting their respective

strengths and limitations. Specifically, given observational data and a known causal

graphical structure, these methods first infer the underlying functional relationships.

Once the model representing this inferred SCM is fitted, we can utilize it to estimate

both interventions and counterfactuals.

Causal Discovery

Although we assume in this work that the causal graph is known, we would like

to briefly discuss the area of research dealing with inferring the causal graph from

observational data. In the causal discovery community, one of the most prominent
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approaches is the PC Algorithm [24], which is based on conditional independence

tests. If time series data is available, Granger causality [25], a method that determines

a causal relation by verifying if one-time series can predict another one. However,

Granger-causality is designed to handle pairs of variables and may result in mis-

leading results when the causal relationship involves more variables. Yet, there are

several extensions to address these limitations [26]. A more recent approach is using

Large Language Models to infer the causal relationship with the use of metadata, for

example, by using the names of variables as additional information [27]. A limitation

in the evaluation of causal discovery methods is that for most real-world examples,

the true underlying graph is unknown. Therefore, these methods result in a set of

candidate causal graphs. Performing causal inference based on this set of causal

graphs induces additional uncertainty. This uncertainty would be present in the

complete inference chain, which significantly increases the complexity of estimating

causal effects. For this reason, inferring the causal graph from observational data

is out of the scope of this dissertation. Although it is evaluated how a violation

of the known causal graph assumption affects the causal inference model, see Sec. 5.6.2.

In Chapter 4, we utilize a Warped Gaussian Process (WGP), an extended form of

traditional Gaussian Processes, for estimating counterfactual interventions under

uncertainty. Chapter 5 involves the application of a Residual Network (ResNet) to

identify root causes based on these counterfactual estimations. Although various

alternative models are available, we have selected these specific methods due to the

distinct properties they offer, which are elaborated upon in the following.

2.8.1 Warped Gaussian Process

A Gaussian Process (GP) is a powerful non-parametric method used for regression and

classification tasks [28]. It models the relationship between inputs and outputs as a

probability distribution over functions. A GP is fully defined by a prior characterized
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by its mean function m(x) and covariance function (or kernel) k(x, x′), which together

determine the properties of the functions that the GP can model. We can incorporate

expert knowledge into the model by appropriately selecting the prior on the functions.

Bayesian inference is employed to update the belief over the functions, resulting in a

posterior distribution over functions, which reflects how the GP’s understanding of

the data has been adjusted based on the observations.

A significant advantage of GPs is their ability to provide uncertainty estimates, which

naturally increase as the posterior predictive (representing the model’s predictions

along with uncertainty estimates for new inputs) is evaluated further from the training

data. Although Gaussian Processes are capable of modelling complex relationships,

they inherently follow Gaussian distributions. However, in many real-world scenarios,

the data may exhibit non-Gaussian characteristics, such as with multi-modal noise

distributions. Therefore, Snelson et al. [29] developed Warped Gaussian Processes,

which are particularly useful when the data (or the underlying function) to be

modelled is not well-represented by the assumptions of a standard Gaussian Process.

Warped Gaussian Processes apply a nonlinear warping function to transform the

observation space, making the data more compatible with modelling by a GP. This

transformation allows the model to capture more complex behaviours, including

non-Gaussian characteristics such as multi-modality.

The non-linear warping function allows for a non-Gaussian mapping with non-additive

noise. Maroñas et al. [30] apply a Normalizing flow (NF) [31] as non-linear warping

since it is a powerful and flexible class of models used for density estimation and

generative modelling. An NF is based on the idea of transforming a simple, well-

known distribution (such as a Gaussian) into a more complex target distribution by

applying a series of invertible and differentiable transformations. These characteristics

ensure that the transformation remains bijective, in the sense that forward mapping

and the reconstruction of the original space is feasible. An NF covers multi-modal

distributions well while accounting for complex densities and maintaining analytical

tractability [31].
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In summary, WGPs are generalisations of GPs that can model a wider range of data

distributions than standard GPs, making them more versatile in practice. However,

GPs are computationally expensive depending on the size of the training data, and

so are WGPs. The additional learning of the warping function adds additional

complexity to the model, which could make it more computationally intensive and

harder to interpret. However, to make GPs more efficient there are various extensions,

such as sparse GPs [32], but this is outside the scope of this work.

2.8.2 Residual Networks

Residual Networks are a type of deep neural network architecture that was introduced

to address the challenges of training very deep networks, particularly the problem of

vanishing and exploding gradients [2]. In a traditional feedforward neural network,

each layer learns a transformation of its input.

Figure 7: Residual Neural Network building block. Here, F is a residual function
with a mutable number of layers, x being the input. (Image taken from
[2])

In contrast to that, the core idea of ResNets is the residual block (see Fig. 7), which

allows us to learn only the differences (or residuals) between the output and the

input rather than trying to learn the entire transformation. The learning or training

process in ResNets, like other neural networks, involves minimizing the empirical risk

or training error, where the network adjusts its parameters (specifically the weights)

by minimizing a loss function (e.g. cross-entropy or mean squared error depending
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on if the task is belonging to classification or regression). The loss function quantifies

the difference between the neural network’s predictions and the actual target values.

The model weights are then updated via backpropagation using gradient descent or

its variants [33, 34].

In addition to the standard neural layers, a residual block includes skip connections.

These connections allow the input to bypass one or more layers and be added directly

to the output of the residual block. In other words, the original input is added directly

to the output of the standard layers [2]. These skip connections facilitate better

gradient flow during backpropagation, allowing for deeper networks to be trained

effectively by mitigating issues like vanishing gradients. In ResNets, the use of skip

connections can also be viewed as a form of implicit regularization. We commonly

use regularization techniques to prevent overfitting, especially when dealing with

limited data. Regularization methods such as weight decay or dropout are used

to ensure that the model is not overfitting by penalizing overly complex models.

However, skip connections may not always provide a significant advantage and may

introduce unnecessary complexity. For example, ResNets can lead to overfitting in

small datasets, as the model may struggle to learn the patterns [35, 36].
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3 Previous Work

In this chapter, we review the related work based on the research questions stated

in Sect.1. First, we review the literature on different uncertainties in functional

couplings as well as the ambiguities of a Structural Causal Model. Secondly, we

review dynamic counterfactual reasoning for root cause analysis. And finally, how to

incorporate an unobserved confounder in such a dynamic model.

3.1 Uncertainties in Structural Causal Models

In this section, we review the literature related to our work (in Chapter 4), where we

account for ambiguities in the underlying SCM as well as for the uncertainties arising

from imperfect knowledge of functional couplings due to limited observational data.

Specifically, we want to capture the uncertainty about the parameterisation of an

SCM in addition to the uncertainty in the functional couplings in a continuous setting.

Counterfactual distributions are non-identifiable due to an inherent ambiguity in

counterfactual reasoning. This arises from the fact that different SCMs can have

distinct parametrizations of stochastic influences, resulting in identical observational

and interventional distributions but producing different counterfactual outcomes (see

an illustrative example in Sec. 4.3). Although this non-identifiability of counterfactual

distributions can be avoided by imposing additional assumptions onto the underlying

structural equation and the exogenous noise distributions [11, 37], these additional

assumptions are inherently non-testable and specific modelling assumptions are
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currently only available for discrete variables within the structural causal model [38].

Correspondingly, the identifiability of discrete variable SCMs has been addressed

by [39, 40, 41, 42] and [43] by treating the counterfactual distribution directly as a

Bayesian variable.

In the counterfactual reasoning, the analytical or at least computational expressions

of functional couplings of the SCM (see Def. 2.2) are required [8]. Although these

functional couplings can be learned from data, they cannot be uniquely identified

due to limited data or intrinsic degrees of freedom of the modelling choices of the

functional couplings. In Karimi et al. [44], a Gaussian process is used to capture

the uncertainty over the functional couplings. However, they do not account for the

inherent uncertainty over the parameterisations of an SCM in a counterfactual.

Given the range of methods focused on ensuring robust counterfactuals, we will

explore some of them in more detail in the following. In [45], they quantify the

robustness of counterfactual explanations by evaluating how small changes in input

data affect the validity of the counterfactual. However, they do not account for

uncertainties in the functional couplings; they even assume that these functions are

given. The authors of [46] primarily focus on the robustness of counterfactuals under

model changes in the context of neural networks (e.g. occurring while retraining the

model). They assumed that the neural network model is fully accessible without

accounting for uncertainties. Dutta et al. [47] introduce an algorithm that refines

counterfactuals generated by existing methods to make them more robust. However,

these methods do not consider the underlying causal structure. Note that the term

counterfactuals does not necessarily imply using a causal model.

In summary, the current work does not address the ambiguity in counterfactual distri-

butions while accounting for the uncertainty of functional couplings in a continuous

and non-linear context. Therefore, we would like to use Chapter 4 to close the gap of

nonidentifiability of counterfactual distributions in a continuous setting by explicitly

modelling the uncertainty over the parameterisation of an SCM and the uncertainty

over the functional couplings.
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3.2 Counterfactuals in Dynamic Systems

In this section, we give an overview of the related work to our research question about

counterfactuals for dynamic systems. We want to address the identification of root

causes in terms of a counterfactual query: "Would the observed failure also occur if

we had replaced the behaviour of a sub-system at a certain point in time with its

normal behaviour?". We notice the following shortcomings in the existing literature:

Static systems: Root cause analysis based on causal inference has been addressed

in [48, 49, 3], but only in static environments.

Structural influences: Existing causal inference methods using counterfactuals

[49, 3] focus on additive external influences causing failures rather than structural

influences. To detect root causes affecting the graphical structure or transition

function Assad et. al. [7] propose a method based on the assessment of the direct

causal effect. By modelling such causal effects with linear models, Assad et al. [7]

shows that the total effect changes if the underlying causal model changes. In turn,

they can use this fact to identify structural changes in the causal model. However,

their method is limited to linear models and does not include single-time external

influences.

Non-linear systems: Existing methods for root cause analysis are typically limited

to linear dynamic models. Additionally, existing methods are limited to small systems

as they rely on the computation of Shapley values, which scale exponentially with

the number of variables. This becomes infeasible in a dynamic setting since the

corresponding causal graph – unrolled over time – would have an increasingly large

number of nodes.

Suppose more than one observation (as in our counterfactual approach) of anomalous

data is available. In that case, the problem of identifying the root causes is also

amenable to statistically estimating the correlation or causation of the different

variables and time points onto the variable associated with the label "anomalous". To

this end, Tonekaboni et al. [50] introduce feature importance in time (FIT), a scoring
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mechanism to quantify the importance of features in a multivariate time series. The

authors propose to assess feature importance based on their predictive power w.r.t.

the outcome distribution while accounting for temporal distributional shifts. The

approach localizes important features over time and can thus be used to gain useful

insights into the behaviour of dynamic systems. However, FIT does not exploit the

causal structure of the underlying system and provides correlative explanations for

the observed outcomes.

However, the best alignment with the problem setup presented in Chapter 5 is the

work by [3], which defines the problem of identifying root causes of system failure

as a counterfactual query. With this reformulation, the authors claim to be the

first to propose actionable explanations for the anomalous behaviour of underlying

systems. In principle, counterfactual reasoning assumes and leverages complete

causal knowledge of the underlying system in the form of a SCM. More precisely,

the work in [3] assumes linear functional causal models in invertible models in which

exogenous variables are computable from endogenous system observations. In fact,

the authors leverage the default split between endogenous and exogenous variables

in a graphical causal model to disentangle a node’s inherited impact from its own

contribution. They further complement their work with two key contributions. They

account for the notion of graded causation [51] and provide order-independent feature

scoring using a game-theoretic concept commonly adopted in explainable machine

learning [52]; namely Shapley values [53]. With its computational complexity, their

approach lacks direct applicability to dynamical systems because Shapley values scale

exponentially with the number of variables. This becomes infeasible in a dynamic

setting since the corresponding unrolled causal graph would have an increasingly large

number of potential candidates; see Sect. 5.4. Furthermore, they assume linear causal

relationships. In summary, the existing causal methods for root cause identification

are typically limited to linear static settings and focus on failures caused by additive

external influences rather than structural influences. In Chapter 5, we address failures

from both influences by modelling the dynamic causal system using a Neural Network
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and deriving corresponding counterfactual distributions over trajectories.

3.3 Unobserved Confounding in Dynamic Systems

The exploration of causal models, particularly those involving hidden confounding

variables, has been an important area of research for several decades. In this section,

we briefly present the research concerned with latent confounding in order to form

the basis for Chapter 6.

One of the fundamental works in this field is the work of Pearl et al. [54]. This work

introduced a probabilistic framework for evaluating sequential decision plans in the

presence of hidden variables. Specifically, it uses a graphical model structure where

hidden variables are incorporated into the causal graph that allows for the adjustment

of these hidden variables. Building on this foundation, Elidan et al. [55] continued

to explore the implications of hidden variables in causal inference. They search for

“structural signatures” of hidden variables — substructures in the causal graph that

tend to suggest the presence of a hidden variable. Rosenbaum’s work on sensitivity

analysis [56] provides another major perspective on dealing with confounders. He

focuses on assessing the robustness of causal inferences in observational studies, where

randomization is impossible and hidden biases might exist. His sensitivity analysis

method quantifies how the estimated treatment effect would change if an unmeasured

confounder affected both the treatment and the outcome. Numerous further works

focus on the calculation of the treatment effect with the present latent confounding

variables in a static setup, e.g. [4, 57, 58, 59, 60]. In fact, some works even consider

latent variable modelling and cyclic behaviour, such as [61], [62].

To address time-varying confounders in dynamic settings, Robins [63] introduced

Marginal Structural Models (MSMs) to estimate causal effects in longitudinal data.

To address time-varying confounders, MSMs use Inverse Probability of Treatment

Weighting to create a pseudo-population in which the treatment assignment is inde-

pendent of the observed confounders. The weighting adjusts for observed confounders
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and allows for an unbiased estimate of treatment effects. More recently, some ap-

proaches have focused on the estimation of causal effects that vary over time with

latent time-dependent confounders by first inferring the latent confounders and then

using MSM for the estimation of effects (see Chapter 6) [5], [64]. Since existing ap-

proaches like [5] assume multiple treatments available at each time step (see Chapter

6), Hatt et al. [65] recently introduced an approach for a single treatment at each

time step. Another recent approach by Haussmann et al. [66] focuses on single-arm

trials where all patients belong to the treatment group. They propose an identifiable

deep latent-variable model that can also account for missing covariate observations.

Finally, for further reading, we refer to a comprehensive review of recent developments

in causal reasoning with latent variables, see [67]. Overall, while there is substantial

research on static confounders, there is limited work on unobserved confounders in

dynamic systems. Additionally, some approaches assume idealized conditions, such

as the availability of multiple treatments, which may not reflect real-world scenarios.

Given the limited attention to complex dynamic environments where unobserved

confounders evolve over time, we sketch an idea to address this in Chapter 6.

3.4 Continuous-Time Dynamic Causal Models

Although we employ discretised time series in this dissertation, we would like to

briefly present some papers on the modelling of continuous time series, as our work

could also be extended in this regard. The following methods define a mathematical

framework through differential equations in order to define an SCM. In continuous-

time causal models based on differential equations, Peters et al. [68] introduce

foundational concepts in causal modelling specifically tailored for dynamical systems.

The research of [69], [70] focuses on the identifiability of the effects of interventions

in time-continuous dynamic systems. Similarly, the approach of Bouwer et al. [71]

introduces a method to predict the effects of interventions over time, also accounting

for the inherent uncertainty. In addition to estimating interventions and their effects,
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research is being pursued that addresses the counterfactual in continuous time, such

as [72] and the work of Sanchez et al. [73], where by using a diffusion model in the

counterfactual they allow for latent variable inference with forward diffusion. However,

in practice, observations are available at discrete points in time, and therefore, we

focus on time-discretized formulations.
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4 Estimation of Counterfactual

Interventions under Uncertainties

Due to their hypothetical nature, counterfactual distributions are inherently am-

biguous. This ambiguity is particularly challenging in continuous settings in which

a continuum of explanations exists for the same observation. In this chapter, we

address this problem by following a hierarchical Bayesian approach that explicitly

models such uncertainty. In particular, we derive counterfactual distributions for a

Bayesian Warped Gaussian Process, see Sect. 2.8.1 thereby allowing for non-Gaussian

distributions and non-additive noise. Finally, we illustrate the properties of our

approach in a synthetic and semi-synthetic example and show its performance when

used within an algorithmic recourse downstream task [9].

Within the context of counterfactual reasoning, there is an inherent uncertainty due

to different SCMs featuring disparate parameterisation of stochastic influences but

producing the same observational and interventional distributions (see Figure 8).

Although this non-identifiability of counterfactual distributions can be avoided by

imposing additional assumptions onto the underlying structural equation and the

exogenous noise distributions [11, 37], these additional assumptions are inherently non-

testable and specific modelling assumptions are currently only available for discrete

variables within the structural causal model [38]. Instead of imposing non-testable

assumptions on the model structure, we propose to follow a hierarchical Bayesian

approach which assigns a prior on different parametrizations that leads to potentially
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different counterfactual distributions and infers the corresponding posterior from ob-

servations. By averaging across different parametrizations, we effectively account for

all possible counterfactual distributions consistent with the observations. Specifically,

we equip the established Gaussian Process with random transformations by placing

a Normalizing Flow on the likelihood function [30]. Such a transformation allows

for non-Gaussian distributed descendent node variables. It also provides a means of

assessing possibly different SCMs with the same observational distribution. To this

end, we extend the method of [44] by replacing the Gaussian Process with a Bayesian

transformed Gaussian Process according to [30] using a Bayesian Normalizing flow as

likelihood transformation. Using this extended setting, we derive the corresponding

counterfactual distribution and show that the resulting distribution over counterfac-

tual estimates can account for the non-uniqueness of counterfactual distributions due

to ambiguous parametrizations.

4.1 Uncertain Structural Causal Model

Throughout this Chapter, we assume that there is no latent confounder influencing

multiple observational variables, reflected by the independence assumption of PN =∏j PNj of the exogenous variables N j . For a given SCM, observations Y = (Y1, .., Yd)

can be generated by sampling N j ∼ PNj and subsequently applying the functional

couplings. To incorporate imperfect knowledge into the notation of an SCM, we extend

Definition 2.2.1 to allow functional couplings to be subject to further uncertainty:

Definition 4.1.1 (Uncertain SCM). An uncertain structural causal model M =

(S, PF , PN ,G) additionally contains a distribution PF which allows for specifying

independent distributions over functional couplings within an SCM M:

Sj : Y j = f j(Ypa(j), N
j), N j ∼ PNj , f j ∼ PF j
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Note that, within the above definition, we introduced an additional distribution on

functional couplings f j , which allows us to separately interpret different random

effects: exogenous noise and imperfect knowledge of functional mappings. The un-

certainty arising from incomplete knowledge of the functional couplings is epistemic

and can be reduced by acquiring more data. In contrast, the uncertainty due to

exogenous noise is intrinsic to the system’s randomness and is categorised as aleatoric

uncertainty.

When uncertainty is introduced through parameterisation, it becomes both epistemic

and aleatoric since the structural equation is modified by the function g (which

dictates the interaction between the sampled function f and exogenous noise). Conse-

quently, the output of g encompasses both epistemic and aleatoric residual uncertainty.

However, with an adequately accurate model, the residual uncertainty should pre-

dominantly be aleatoric.

To estimate interventional distributions, we would average across both random in-

fluences, whereas for counterfactual analysis, we fix the exogenous noise influence

and only average across our imperfect knowledge of the functional mappings. With a

slight abuse of notation, we do not distinguish between uncertain and deterministic

SCMs as deterministic SCMs are a special case of uncertain SCMs by defining a

point mass distribution PF on the deterministic functional couplings. Within an

SCM, we denote interventions using the do-operator. That is when intervening on

a set of variables YI = (YI1 , . . . YIa) to set values θ explicitly for these variables,

we substitute the corresponding structural equations by SIi : YIi = θi and denote

the corresponding derived SCM with M[do(YI = θ)]. With PM we denote the data-

generating distribution from which observations Y can be generated by propagating

samples of Ypa(j) to Y j via sampling N j and applying the functional mapping.

Counterfactual analysis estimates hypothetical alternative outcomes that would arise

if an individual had made a different decision. It is, therefore, directly linked to a

particular observation Y F generated from the underlying SCM (see Definition 2.2.1).

To perform this kind of analysis, in the first abduction step [11], a noise posterior
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distribution PN |Y F is calculated. This noise posterior distribution restricts the exoge-

nous noise influences to those that are consistent with the given factum Y F within

the functional couplings of a given SCM M. Consequently, for a given SCM M

and factum Y F , we denote the adapted counterfactual SCM M|Y F = (S, PN |Y F ,G).

Calculating the noise posterior depends on both the functional coupling f j and the

noise distribution PN , which is particularly challenging when functional couplings

are also considered to be probabilistic, i.e., f j ∼ Pfj . Within this work, we rely on

available results for calculating the noise posterior distribution for the case in which

functional couplings and noise distributions are modelled with Gaussian distributions,

which we state in the following:

Proposition 4.1.1 (Noise posterior of a Gaussian Process [44]). Let a node j of

an uncertain SCM in which the functional couplings are distributed according to a

Gaussian Process with kernel kj and additive noise N j be given by:

Y j = f j(Ypa(j)) +N j ; f j ∼ GP(0, kj);N j ∼ N (0, σ2
j )

For an observed factum Y F with yj,F , yFpa(j) containing descendent and parent obser-

vations according to the graph G and training data Yj = {yj,i}i,Ypa(j) = {Y i
pa(j)}i,

the noise posterior PN |Y F is given by:

P (N j |Y F ) = N (µj ,Σj), with µj = σ2
j

((
Kj + σ2

j1
)−1 (

Yj , y
F
j

))
iF

,

Σ2
j = σ2

j

(
1− σ2

j

(
Kj + σ2

j1
)−1

)
iF ,iF

, Kj = kj
((

Ypa(j), y
F
pa(j)

)
,
(
Ypa(j), y

F
pa(j)

))
where iF indicates the index of the factum, i.e. the last entry, as training data and

factum are concatenated.
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4.2 Algorithmic recourse

To evaluate the proposed method in are more realistic setting, we apply it on an

established algorithmic recourse benchmark [44], thereby assessing the impact of the

counterfactual distribution on the downstream task as making accurate decisions in

such settings based on quantitative results requires handling uncertainties effectively.

Optimizing interventions for complex and often intransparent decision processes

is a key application of counterfactual analysis and is called algorithmic recourse.

However, the graph of the causal dependencies between variables is often not sufficient

to perform the necessary optimizations. When using counterfactual distributions

to devise recourse actions [44, 74, 75], rendering counterfactual explanations more

robust against uncertainties, is an active field of research. For a recent survey on

algorithmic recourse, refer to [76]. The algorithmic recourse setting aims at finding a

counterfactual explanation[77], which would have led to a more desirable outcome

for a particular individual represented by observations Y F . This can be translated

into an optimization problem in which the outcome is characterized by a given

classifier h : X → [0, 1] from which the outcome of an observation, e.g., getting a

loan approved, can be predicted by thresholding h(x) ≥ 0.5 or alternatively sampled

according to the probability h(x). In turn, the recourse problem can be formulated

as a constrained optimisation problem which minimises the costs for performing an

intervention under the constraint that it would have led to an alternative (more

desirable) outcome. The costs are typically associated with the distance of the action

of setting a particular value to the factum for which one would like to obtain a

different outcome, as performing such action would require changing the individual

or its properties. In [44], it is extended to also account for the uncertainty within the

functional couplings resulting in the following algorithmic recourse formulation:
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min
a=do(YI)

cost(a, Y F ) s.t.PM[a]|Y F
(h(Y )) ≥ 1− δ (1)

Eq. 1 minimises the cost of an action a (performing interventions on an intervention set

I) for an individual Y F (one observation, "negatively" classified) such that the found

counterfactual sample Y reaches the "positive" side after being applied to a classifier

h under the counterfactual distribution (PM[a]|Y F ). Herein δ specifies the residual risk

that one is willing to accept for not achieving the desired outcome. The constraint,

therefore, measures the minimal probability, which can be stated as a threshold on

the expectation of the classifier. Note that the constraint in the above optimisation

problem is specified in terms of the counterfactual distribution. In this work, however,

instead of requiring a high success rate under a single counterfactual SCM, we

additionally average across possible SCMs, i.e. replacing the constraint in Eq. 1 by

P j
(
PMϕ[a]|Y F

(h(Y ))
)
≥ 1− δ. Here, P j represents the distribution over possible ϕ-

parametrized SCMs Mϕ that are all consistent with the observations. By introducing

additional uncertainty, which only affects the counterfactual distribution, we expect

a more uncertain classification outcome under the counterfactual distribution and

hence also expect more robust recourse actions.

4.3 Counterfactual Inference with a Bayesian Warped

Gaussian Process

The interventional or observational distribution of an SCM is determined by the

conditional distributions p(Y j |Ypa(j)). These distributions, however, can be realized

with different combinations of functional coupling and exogenous noise influences. The

chosen representation determines the counterfactual distribution in which the exoge-

nous noise influence is kept fixed. To illustrate this effect of different parametrizations
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of the noise influence and functional coupling, consider the following adapted example

from [8]. We construct a family of SCMs Mϕ with ϕ ∈ [0, 1), over two observational

variables Y1, Y2. All members of the family give rise to the same observational and

interventional distributions, but each leads to different counterfactual distributions.

Specifically, these SCMs are constructed using the following relationship between

Y1, Y2 and the corresponding noise influences N1, N2:

Y1 = N1, N1 ∼ U [0, 1]; Y2 = 1Y1<0.5N2Y1 + 1Y1≥0.5ζϕ(N2) N2 ∼ U [0, 1]

ζϕ(n) = 1n+ϕ≥1(n+ ϕ− 1) + 1n+ϕ<1(n+ ϕ) (2)

Here, ζϕ modifies a uniform distribution U [0, 1] by shifting its support by ϕ and

re-mapping it to [0, 1] by cutting off all values larger than 1 and mapping them

to [0, ϕ]. Consequently, the resulting random variable shares the same cumulative

distribution function as U [0, 1]. However, solving for a particular realization n for a

given factual observation (y1, y2) results in the following dependence on ϕ:

n1 = y1; n2 =


y2
y1

y1 < 0.5

y2
y1

− ϕ+ 1y2<ϕy1 y1 ≥ 0.5

That is, depending on the value of y1 we either observe a reparameterised version

of n2 or n2 directly. In particular, if y1 < 0.5 is observed, the noise posterior is

independent of the parametrization, yet different parametrization will lead to different

interventional predictions when interventions are applied in the y1 > 0.5 regime.

Due to this dependence, all these SCMs have different counterfactual distributions,

as illustrated in Fig. 8. Here, the graphical causal model on the left contains

a free parameter ϕ that characterises the way the influence of exogenous noise

affects the SCM. The parameterisation is chosen such that each evaluation of such
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Figure 8: Illustration of the SCM in Eq.2
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a representational parameter ϕ1, ϕ2, ϕ3 leads to the same observational distribution

of Y1, Y2 (top row in Fig. 8) when marginalising out N1, N2. The conditional of

this observational distribution p(Y2|Y1) coincides with the interventional distribution

p(y2|do(Y1) = y1) due to the simple generating SCM in which Y1 corresponds to

the root-node. For the three different observations indicated by the markers in the

upper row, we constructed the counterfactual distributions (three lines, lower row)

for three different representational parameters ϕ1, ϕ2, ϕ3. Although the observational

distributions are identical, the bottom row shows different counterfactual distributions

corresponding to the three SCMs. As the observational distributions are identical

across all parameterisations, the exact SCM cannot be recovered even if an infinite

number of data were available. In practice, this is further complicated by the limited

amount of data that can be obtained, from which the functional couplings and

interaction with the exogenous noise distributions would have to be estimated.

To this end, consider i = 1, . . . , N observations (yj)i, Y j = {(yj)i}i=1...,N from a node

j as well as the corresponding observations Ypa(j) = {(ypa(j))i}i=1,...,N , (ypa(j))i ∈

Rdim(pa(j)) from the parent nodes pa(j). To model their relationship, we use the

following generative model.

Definition 4.3.1 (Bayesian Warped GP (BW-GP)). Given kernel parameter θ and a

distribution over parametrizations pϕ, we refer to the following as a Bayesian Warped

GP:

Y j = g−1
ϕ (f(Ypa(j)) +N j , Ypa(j)), f ∼ GP(µGP , kθj ), N j ∼ N (0, σj), ϕ ∼ pϕ

(3)

Here, gϕ is a parametrized mapping, in this work modelled by a Normalizing flow,

which is bijective w.r.t. Y j for all Ypa(j). This renders the model similar to the

post-nonlinear causal model [78]. The possible parametrizations within the model are

represented by the Bayesian belief pϕ.
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Note that a BW-GP is equivalent to a transformed Gaussian Process with G = I,T =

gϕ within the notation of [30]. By inverting the bijective mapping gϕ w.r.t. its first

argument, we transform the likelihood (not the prior) of a Gaussian process. As

gϕ is non-linear Y j = g−1
ϕ (f(Ypa(j)) +N j , Ypa(j)) is non-Gaussian with non-additive

noise [30]. By allowing for a non-linear warping using a normalising flow, this

Gaussian distribution can be mapped to any other distribution of the same dimension

arbitrarily well (under some mild regularity assumption, see [79]), provided that the

neural network is sufficiently flexible. To learn such a model, we employ mean-field

variational inference. More precisely, using qϕ = N (m, diag(s)) as a variational

approximation to the true posterior pϕ(·|Ypa(j), Y
j , θ), we optimise the following

stochastic approximation (using S samples) to the evidence lower bound (ELBO)

[30]:

L(m, s, θ) = Eqϕ

[
log

(
p(Y j |Ypa(j), ϕ, θ)

)]
− KL [qϕ||pϕ]

≈ 1

S

∑
ϕi∼qϕ

log
(
p(Y j |Ypa(j), ϕi, θ)

)
− KL [qϕ||pϕ] (4)

Here, the marginal likelihood for a fixed transformation gϕ is given by (see also

[29]):

log
(
p(Y j |Ypa(j), ϕ, θ)

)
=

1

2
log |Kθ|+

1

2
z⊤Kθ

−1z

−
∑
i

log

∣∣∣∣∂gϕ∂xj

(
xji , x

pa(j)
i

)∣∣∣∣+ N

2
log(2π),

with Kθj =
(
kθ

(
Ypa(j),Ypa(j)

)
+ σ1

)
;

z =
(
gϕ

(
Y j ,Ypa(j)

)
− µGP

(
Ypa(j)

))

The ELBO in Eq. 4 is a lower bound on the observational data distribution as a
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function of the parameters m, s, θ, where m and s are the mean and variance of the

variational approximation q, ϕ while θ summarises parameters from the Gaussian

process and therefore enters the first likelihood term only. Once we have obtained

an approximate posterior distribution qϕ and kernel parameters θ by optimizing

the ELBO Eq. 4, we can also perform predictions using the generative model Eq. 3.

Specifically, as the generative model is a Gaussian process for any fixed transformation

within the transformed space, we first sample parameters ϕ ∼ qϕ. Using this fixed

transformation, we can sample a function and noise values on any given test input

and transform the sampled observation back into the original space [29].

The resulting process is a hierarchical Bayesian model in which the distribution qϕ

determines the different noise parameterisations, and conditioned on this transforma-

tion, the residual uncertainty associated with a limited amount of data is captured by

a Gaussian process. In [44] Gaussian Processes have also been used to model an SCM

under imperfect knowledge. This allows for calculating counterfactual distributions

and hence enables us to analyse the potential outcome of different decisions even when

the functional couplings between the causal variables are not fully known. However,

Gaussian processes fail to model non-Gaussian exogenous noise distributions for

transitions between two causally linked variables X → Y .

In contrast, Normalising Flows [80] offer an alternative that can model complex

densities while maintaining analytical tractability for density evaluation and sampling.

The combination of a Gaussian process with a normalising flow has already been

pursued in [30]. However, they have not previously been used for the purpose of

calculating counterfactual distributions. Exploiting the Gaussian process property for

a fixed transformation in the hierarchical Bayesian model, we can use and extend the

result Prop. 4.1.1 on calculating counterfactual SCMs for GPs to derive a sampling

procedure for the counterfactual distribution of a Bayesian warped GP.

Proposition 4.3.1 (Noise posterior distribution of a BW-GP). Let M be an uncertain
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SCM in which the functional couplings are distributed according to a BW-GP. For an

observed factum Y F with yj,F , yFpa(j) containing descendent and parent observations

according to the graph G, training data Yj ,Ypa(j), the noise posterior is given by:

P (N j |Y F ) =

∫
ϕ
N (µj(ϕ), sj(ϕ))qϕ(ϕ)dϕ, with

µj(ϕ) = σ2
j

(
Kj (gϕ(Y,Y)− µGP(Y)

)
N+1

; sj(ϕ) = σ2
j

(
1− σ2

jK
j
)
N+1,N+1

Kj =
(
kθj (Y,Y) + σ2

j1
)−1

; Y = (Ypa(j), y
F
pa(j));Y = (Yj , y

F
j )

(5)

where N + 1 is the last entry, i.e., the index of the factum when concatenated with

the training data Ypa(j),Yj.

Proof The statement follows from the fact that for a given transformation, which

is specified by ϕ, gϕ((Yj , y
F
j ), (Ypa(j), y

F
pa(j)))− µGP ((Ypa(j), y

F
pa(j))) is distributed

according to a zero-mean Gaussian with covariance given by

kθr((Ypa(j), y
F
pa(j)), (Ypa(j), y

F
pa(j))). The rest follows by applying Prop. 4.1.1.

Equation (5) also directly gives us a way to approximate the noise posterior by

first sampling ϕ from the variational approximation qϕ and subsequently sampling

a latent function and corresponding observational noise. To sample from the coun-

terfactual distribution, similarly to [44], we average across latent functions, but also

across different parameterisations as modelled by p(ϕ). Specifically, by exploiting

p(f j(y∗), N j |ϕ, y∗, Y F ) = p(f j(y∗)|ϕ, y∗, Y F )p(N j |ϕ, Y F ), we can first sample from

the predictive distribution of the BW-GP and add a sample from the noise distribution

according to Equation (5) in order to get a sample from the counterfactual distribution

in which we intervened on the parent node of j and estimate its effect for the observed

factum Y F . Note that the noise posterior depends on the transformation ϕ only

via the transformed values for the descendant nodes. Consequently, the variance

and especially the inverse of the kernel matrix can be computed beforehand and

independently for all samples of the counterfactual distribution. Calculating the

counterfactual distribution for the BW-GP only requires averaging across additional
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samples for the parameters of the normalising flow, for which also the training data

have to be transformed. Consequently, although most causal reasoning methods,

including algorithmic recourse, do not scale well due to the large number of possible

intervention sets, the present method only adds linear computational effort compared

to the GP-SCM due to the additional samples of different parameterisations.

4.4 Experiments

In the following, we evaluate our Bayesian Warped GP model (Eq .3) on the illus-

trative example (Eq. 2) as well as on an algorithmic recourse benchmark. In these

experiments, we represent the bijective mapping gϕ by a neural spline flow with

element-wise (referred to as bins) rational conditional spline functions [81, 82] and

use an independent normal prior pϕ on the network weights.

4.4.1 Illustrative example

First, we analyse our proposed hierarchical Bayesian model w.r.t. its ability to

cope with the inherent ambiguity of different parametrizations leading to the same

interventional but different counterfactual distributions by learning a BW-GP on

data arising from the SCM of Eq. 2 (see also Fig. 8). To also account for probing the

learnt model in sparsely covered regimes of the training data, we selected 174 training

points, all of which were within [0, 0.6], but also tested the model in the regime

[0.6, 1]. On these training datapoints, we fitted both a BW-GP as well as a Gaussian

process. To assess the quality of the modelled SCM, we generated 1000 samples of X1

uniformly across the range [0, 1] and drew one sample from the modelled interventional

distribution. The resulting predictive distribution of the BW-GP (left) and GP (right)

is illustrated in Fig. 9. Both models are trained on points between 0 and 0.6, rendering

the range between 0.6 and 1 as an extrapolation regime. The blue points in the
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Figure 9: The predictive distribution of the BW-GP (left) and the GP (right) of
the modelled interventional distribution.

background show the observational distribution of the SCM Fig .2, and the orange

points correspond to samples of the interventional distribution of our BW-GP (left)

and a GP (right). The blue points in the background indicate samples from the

ground truth model of Eq. 2 (see Fig. 8). As can be seen in Fig. 9, the BW-GP

provides a close fit to the ground-truth observational distribution, whereas a GP is

not able to fit the observational data as accurately, due to the non-stationary noise

distribution. This heteroscedasticity of the noise distribution also forces the plain

GP to explain the data using non-zero functional coupling uncertainty. The BW-GP

model, however, nicely adjusts for such uncertainty by allowing for non-stationary

distributions over functional couplings.

Second, we also evaluate the counterfactual distribution for both a Gaussian process

without parametrisation uncertainty and our BW-GP which includes such uncertainty.

In Fig. 10, we plot the resulting counterfactual distribution estimates when inter-

vening in Y1 and using the noise posterior of the observation Y F
1 = 0.22, Y F

2 = 0.08

(marked by an orange square in Fig. 8) and compare them against counterfactual

distributions arising from different parametrisations in Eq. 2. Here, the blue points

in the background show samples of the true counterfactual distribution constructed
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Figure 10: Illustration of the modelled counterfactual distribution of our BW-GP
(left) and a GP (right).

from the factum (orange box) and varying parametrizations ϕ. The purple points

represent a sample drawn of the counterfactual distribution of our BW-GP (left)

and a GP (right). The interventional distribution of the counterfactual SCM (as

shown in Fig. 10) is forced to recover the observation on which it is conditioned, if

we would intervene in Y1, forcing the variable to have the same value as observed

(orange marker in Fig. 10). Although this property is recovered by both BW-GP and

GP (by the construction of the counterfactual SCM), the stationarity assumption

of the noise of the GP results in larger uncertainty around the observation in the

counterfactual. Despite the non-stationarity of the noise of the BW-GP, it seems to

also cover the uncertainty of counterfactual distribution in the out-of-training data

regime. We focus on isolating the impact of uncertainties that arise from the inherent

ambiguity of different parameterisations of the same observational and interventional

distributions.

4.4.2 Benchmark Experiments

Besides the illustrative example, we evaluated the BW-GP on an important down-

stream task of a counterfactual distribution to assess the impact of the BW-GP on a
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more realistic decision-making process. To this end, we compare our model (BW-GP)

against other baseline methods within the algorithmic recourse benchmark of [6],

including a standard GP, a linear regressor and a conditional variational autoencoder

(CVAE). For the CVAE, we use the implementation of [44], yet it can be regarded

as a non-amortised version of the CVAE by [83]. Analogously to [6], we compared

both the counterfactual model (denoted by M<model>) as well as the interventional

variants of the different models (denoted by CATE<model>).

Table 1: Experimental results of a three variable causal model in a recourse setting
with 100 individuals. We compare our model (MBW-GP) against the
reproduced baselines LIN, GP, CVAE of [6].

Linear SCM NON LINEAR SCM NON ADDITIVE SCM

Valid(%) Cost(%) MMD Valid(%) Cost(%) MMD Valid(%) Cost(%) MMD

M∗ 100 11.2 ± 7.4 - 100 19.7 ± 12.3 - 100 10.3 ± 8.6 -
MLIN 100 12.0 ± 8.0 0.019 ± 2.37 · 10−5 67 20.6 ± 10.8 0.202 ± 0.006 100 10.1 ± 8.3 0.383 ± 0.027
MGP 100 13.3 ± 9.7 0.043 ± 0.001 100 22.0 ± 13.5 0.036 ± 0.001 98 10.3 ± 8.5 0.369 ± 0.019
MCVAE 100 12.7 ± 8.2 0.031 ± 0.001 91 25.4 ± 14.3 0.139 ± 0.002 97 10.1 ± 8.1 0.146 ± 0.013
MBW-GP 100 13.0 ± 9.0 0.069 ± 0.002 99 22.3 ± 14.7 0.043 ± 0.001 99 10.2 ± 9.1 0.120 ± 0.009
CATE∗ 88 12.4 ± 9.6 - 99 28.1 ± 28.9 - 100 10.1 ± 8.2 -
CATEGP 90 12.6 ± 8.5 0.044 97 27.4 ± 17.8 0.043 94 9.6 ± 8.5 0.261
CATECVAE 87 12.8 ± 10.5 0.066 99 33.4 ± 25.0 0.069 100 10.1 ± 8.3 0.064
CATEBW-GP 93 12.8 ± 9.0 0.073 98 29.8 ± 19.4 0.039 98 9.7 ± 7.9 0.089

Table 2: Experimental results of a seven variable semi-synthetic causal model on
100 facta in a recourse setting.

LINEAR LOG. REGR. NON-LINEAR LOG. REGR. RANDOM FOREST

Valid∗(%) Cost(%) MMD Valid∗(%) Cost(%) MMD Valid∗(%) Cost(%) MMD

M∗ 100 17.4 ± 8.0 - 100 15.8 ± 9.3 - 100 19.3 ± 9.1 -
MLIN 100 18.0 ± 8.3 0.121 ± 0.007 96 16.2 ± 9.5 0.101 ± 0.009 94 19.5 ± 9.4 0.094 ± 0.007
MGP 100 22.0 ± 8.7 0.128 ± 0.004 100 18.6 ± 10.4 0.042 ± 0.001 100 21.2 ± 9.4 0.040 ± 0.001
MBW-GP 100 22.3 ± 9.3 0.050 ± 0.002 100 19.6 ± 12.1 0.053 ± 0.002 99 20.7 ± 9.2 0.049 ± 0.002
CATE∗ 88 25.7 ± 9.3 - 89 21.4 ± 14.2 - 92 23.9 ± 9.0 -
CATEGP 91 26.6 ± 9.5 0.082 93 22.3 ± 14.8 0.088 98 24.5 ± 9.5 0.086
CATEBW-GP 95 28.1 ± 11.1 0.090 94 22.5 ± 14.4 0.087 98 24.6 ± 9.4 0.077

In this algorithmic recourse benchmark setting, the goal is to find both the optimal

nodes for an intervention as well as the optimal intervention value in relation to

the cost (Eq. 1). We report validity and cost of [6], where the validity defines the

percentage of individuals with a beneficial outcome after a counterfactual sample

is drawn. The cost is the L2-norm between the factum Y F and the intervention,

normalised by the range of each training variable. To assess the quality with which
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we represent the counterfactual distribution, not just the algorithmic recourse task,

we additionally, evaluate the maximum mean discrepancy (MMD) [84] between the

modelled counterfactual distribution and the counterfactual distribution of the ground

truth model (denoted as M∗). As both depend on the observed factum, we average

the obtained MMD values across 100 facta. More precisely, to generate a sample

of the modelled counterfactual distribution, we first calculate the posterior noise

distribution and then perform a soft intervention on the root node by sampling values

for the root node from the ground truth distribution. Using this sampling process,

we obtain one counterfactual sample per factum. The same sampling process is used

to evaluate the quality of the modelled interventional distribution in terms of MMD

value, however, the noise prior is used instead of the noise posterior per factum to

generate a sample. To generate samples from the counterfactual distribution of the

ground truth SCM, we stored the noise variables N that generated a particular Y F

in the test data and substituted it into the structural equations of the SCM after

performing an intervention. In order to use the same MMD metric across different

models, we used a squared exponential kernel and used two independent samples of

the ground truth distribution to estimate hyperparameters of the kernel according to

the median heuristic [85].

4.4.3 Interventional distribution

In this section, we provide additional plots illustrating the properties of the different

models visually. Due to the complex yet low-dimensional setting, the non-additive

SCM of the three-variable model (see Tab. 1)) is of particular interest. Since this was

visually not the case for the other SCMs, we do not explicitly show them.

In Fig. 11, we plotted the ground truth distribution (see Fig. 11 (left)) and in (Fig. 11

(right)) the corresponding distribution as modelled by the BW-GP. To generate

samples from the different models, we generated samples from the ground truth model

for the variable of the root-node X1. Using the different models for the conditional

51



4

2

0

2

4

x1

10

0

10

x2

5 0 5
x1

20

10

0

10

20

x3

10 0 10
x2

20 0 20
x3

4

2

0

2

4

x1

15

10

5

0

5

10

x2

5 0 5
x1

10

0

10

x3

10 0 10
x2

10 0 10 20
x3

Figure 11: On the left, we plot the ground truth, and on the right, the Bayesian
Warped Gaussian Process model. The colouring corresponds to the
classes the classifier yields in the recourse task (blue are the negative
and orange are the positive classified points).
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Figure 12: On the left, the Gaussian Process is plotted, and on the right, the CVAE
model. The colouring corresponds to the classes the classifier yields
in the recourse task (blue is the negative and orange are the positive
classified points).

distributions of children given to the parents, we generated the remaining variables

X2, X3 according to the causal graph. As also indicated by the small MMD-Values

(Tab. 1), the BW-GP also visually fits the ground truth data much better than the

GP (see Fig. 12 (left)), which learns two Gaussian distributions for the multimodal

distribution. While the CVAE in (Fig. 12 (right)) fits the data also better than the

52



GP, it exhibits a higher variance than the BW-GP, which is also reflected by a slightly

larger MMD-value.

Synthetic three variable causal model

First of all, we evaluate our model on three SCMs, a linear and a non-linear both

with additive noise and a nonlinear with non-additive noise. Each SCM has the same

underlying causal graph consisting of three variables, yet differs in the functional

couplings being either linear, non-linear or exhibiting non-additive noise. Since the

ground truth is known of this artificial, we can generate data from it. Analogously to

[6], we trained each model on 250 such samples from the observational distribution

and evaluated 100 facta sampled from the observational distribution that are found

to be negatively classified according to a logistic regression, see Tab. 1. Here, CATE∗

refers to the optimisation process in which interventions are evaluated with respect

to the interventional SCM rather than the counterfactual SCM within Eq. 1 (in the

constraint set); see [6]. Therefore, interventions found by CATE∗ in Tab. 1,2 are

not necessarily achieving 100 per cent validity when checked with counterfactual

ground truth SCM. To set hyperparameters for our model (number of bins in the

spline and size of the neural network), we performed a Bayesian optimisation on a

validation set (details can be found in the Appendix; see Chapter 8). Although the

BW-GP performs comparably in terms of costs and validity as the other best models,

on the non-additive SCM we show a significantly smaller MMD than the GP in the

counterfactual and interventional (CATE) task. This could be due to the fact that the

normalising flow is able to learn multimodal distributions well. Nevertheless, the GP

achieves high validity and comparable loss, which means that the learnt conditional

distributions do not have a strong impact on the recourse task itself. The conditional

variational auto-encoder (CVAE) performs similarly well on the non-additive SCM

but operates considerably worse on the non-linear SCM counterfactual task. As

noted in [6], samples of MCVAE are "pseudo-counterfactual", possibly amounting to a
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reduced accuracy.

In the linear SCM experiment, we observe that the BW-GP performed slightly worse

than the GP in terms of the MMD, yet without significant impact on validity or costs.

Note, however, that the costs and validity are computed based on a counterfactual

distribution which is constructed from a single ground truth SCM and hence does not

include the additional uncertainty of potentially different parametrizations. We argue

that the slight drop in performance of the MMD can, therefore, be attributed to the

additional uncertainties accounted for by the BW-GP. Therefore, we additionally

measured the variance of the counterfactual distribution samples over the different

facta to assess a potential increase in the overall uncertainty of the counterfactual

distribution modelled by the different methods. Indeed, we observed that our model

has the highest variance (2.9907) across counterfactual distribution samples, followed

by the GP (2.9531), the linear model (2.9271), the CVAE (2.9189).

Semi synthetic seven variable causal model

The semi-synthetic seven variable system is inspired by the German Credit UCI

dataset as it features relevant variables such as age, savings, gender, etc., as well

as a labelling mechanism representing the loan-approval. Based on data generated

from this constructed SCM, different classifiers are trained: linear and non-linear

logistic regression, and a random forest. Similarly to the three-variable model we

used the same benchmark setting, models and computation as in [6] and performed

a hyper-parameter optimization on a validation set. In this more realistic and

higher-dimensional setting, we also observe a more accurate characterisation of the

counterfactual distribution, as indicated by significantly lower MMD scores without

sacrificing validity (see Tab. 2)1. Although the BW-GP performs slightly worse

than the GP in terms of the accuracy of the interventional distribution for the
1Note that the results for the variational auto-encoder could not be reproduced with the provided

source code.
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logistic regression setting, it still achieves better validity. Similarly to the evaluation

within the three-variable model, each method is only evaluated against a single SCM

assumed to be the ground truth. However, the BW-GP additionally accounts for the

uncertainty in the parameterisation, leading to a larger spread of counterfactual costs

as indicated by the standard errors, yet without sacrificing validity.

4.5 Conclusion

In this chapter, we proposed a hierarchical Bayesian model to account for ambiguities

in the underlying SCM as well as for the uncertainties arising from imperfect knowl-

edge of functional couplings due to limited observational data. By using a Bayesian

Warped GP, we were able to allow not only non-Gaussian distribution at descendent

nodes but also non-stationary noise distributions. This seems to be particularly

beneficial for counterfactual distributions (see Figure 10). Although we introduced

an additional source of uncertainty about the parameterisation, this resulted in a

more accurate fit of the counterfactual distribution also in more realistic settings (see

Table 12).

In summary, we presented a method which allowed us to (i) capture uncertainty

about the parametrisation of an SCM additionally to the uncertainty in the functional

couplings and exogenous noise uncertainty about continuous variables; (ii) derive a

counterfactual distribution in this extended setting; and (iii) investigate the impact of

modelling additional uncertainties on an important downstream task of algorithmic

recourse.

The gained expressiveness of the model also leads to robust recourse actions in terms

of the achieved validity without an increase in costs due to the additional uncertainty

within considered SCMs. In fact, our BW-GP (Eq. 3) theoretically provides a suffi-

ciently flexible model to capture any conditional distribution p(Y j |Ypa(j)). However,

in practice, the flexibility of the neural network, as well as the amount of observa-

tional data, is limited. The proposed method could also be used in settings with
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unobserved confounders by introducing additional, yet unobserved, nodes within the

SCM and integrating out their values during the training phase. However, when

falsely assuming potential hidden confounders by introducing latent variables, each

of which is associated with a flexible probability distribution, predictive power is

likely to decline. Although we have shown that the proposed model can account for

ambiguities to a certain degree, it still contains hard and soft assumptions, which

could be relaxed. For example, in this research, we assumed that the graphical

structure between the static-modelled variables is known. By imposing yet another

probability distribution on the graphical structure, such a hard assumption could

be relaxed with the downside of additional computational complexity to learn these

models [86].
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5 Counterfactual-based Root Cause

Analysis in Dynamic Systems

Explaining unexpected behaviour in terms of underlying causes is a difficult challenge

with a broad range of applications. Such applications range from identifying potential

problems in industrial processes to understanding the factors influencing anomalous

weather phenomena. For example, within an assembly line of an industrial manufac-

turing plant, faster identification of root causes of increased scrap rate (the rate at

which assembled products fail quality assessment audits) can minimise cost, increase

production yield, and increase overall efficiency. If one can observe sufficiently many

instances of anomalous behaviour or faulty traces of a process, one option would be to

perform a correlation-based analysis or causal discovery [87], thereby estimating the

influencing factors to the variable "fault" [50, 88, 7]. Alternatively, causal inference

can be used even if only one anomalous observation is available [49, 3]. Here, the

identification of root causes is formulated in terms of a counterfactual query: "Would

the observed failure also occur if we had replaced the behaviour of a sub-system at a

certain point in time with its normal behaviour?".

To this end, a formal description of the behaviour of the full system is needed in which

such counterfactual questions can be answered. However, existing causal methods for

root cause identification are typically limited to static settings and focus on additive

external influences causing failures rather than structural influences; see Section

3.2. In this chapter, we address these problems by modelling the dynamic causal

system using a Residual Neural Network and deriving corresponding counterfactual
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distributions over trajectories. We show quantitatively that more root causes are iden-

tified when an intervention is performed on the structural equation and the external

influence, compared to an intervention on the external influence only. By employing

an efficient approximation to a corresponding Shapley value, we also obtain a ranking

between the different subsystems at different points in time being responsible for an

observed failure, which is applicable in settings with a large number of variables. We

illustrate the effectiveness of the proposed method on a benchmark dynamic system

as well as on a real-world river dataset.

We briefly restate and specify the notation used throughout this chapter. Following

the notation of Peters et al. [8], we denote the sequence of observations of the system

of interest by d -variate time series (Yt)t∈Z, where each Yt for fixed t is the vector

(Y 1
t , ..., Y

d
t ). Each Yj

t represents the j th observable of a system at time t. By some

abuse of notation, if we omit superscripts or subscripts, we refer to the full time series.

That is, Y = (Yt)t∈Z, Yj = (Y j
t )t∈Z, and Yt = (Y j

t )j∈{1,...,d}. The full-time causal

graph Gt with a node for each time point and the signal Y j
t for (j, t) ∈ 1, ..., d×Z the-

oretically has infinitely many nodes and is assumed to be acyclic, while the summary

graph G with nodes Y 1, ..., Y d may be cyclic.

5.1 Interventional Dynamic SCM

As each SCM (interventional or not) defines structural equations and noise distribu-

tions, it can generate a trajectory of observations. We denote the distribution of the

observations generated by the SCM as PM and the distribution of the observations

generated by the intervened SCM as PMJ .

Definition 5.1.1. (Interventional Dynamic SCM) Let J be a set of interventions in

which each element ξ can be of the following form:
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ξ := do(P
Nj

t
) = P̃

Nj
t
, (6) or ξ := do(Sj

t ) = S̃j
t (7)

where P̃
Nj

t
is a new noise distribution and S̃j

t is a new structural equation for the node

j at time t. The interventional dynamic SCM is then defined by replacing the noise

distribution or structural equation within a given dynamic SCM (see Definition 2.2.2)

M(St, PNt ,Gt). Here, Eq. 6 denotes a soft intervention on the noise distribution

whereas Eq. 7 denotes an intervention on the structural equation. We then denote

the intervened dynamic SCM resulting by MJ (St, PNt , Gt).

5.2 Abducted and Counterfactual SCM

Given an observed trajectory, we can now also define the counterfactual distribution

describing hypothetical trajectories that would have been observed if an (alternative)

intervention had been performed. Let YF be an observed trajectory and M a given

dynamic SCM (see Definition 2.2.2). In order to construct a counterfactual dynamic

SCM, we define the noise posterior distribution P
Nj

t
(N j

t |YF ) = δ(N j
t −NF,j

t ) by:

NF,j
t = −Y F,j

t−1 − f j(Y
F,PA(j)
t−1 , Y F,j

t−1) + Y F,j
t (8)

where f j is the structural equation of the node j and PA(j) are the parents of

the node j according to the summary graph G. The resulting dynamic SCM, in

which the noise distributions P
Nj

t
are replaced with the above defined noise posterior

distributions, is then denoted as MF indicating that the noise distributions are

abducted from the observed trajectory YF . In fact, when generating trajectories from

this abducted SCM, it only generates the observed trajectory YF due to the above

setting of the noise variables. In order to generate new counterfactual trajectories

reflecting alternative outcomes, we need to perform an intervention on this abducted

SCM, leading to the counterfactual SCM. That is, given an abducted SCM MF and
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a set of interventions J , we refer to the resulting interventional SCM MF
J as the

counterfactual SCM. For example, when performing an intervention do(P
Nj

t
) = P̃

Nj
t

on the noise distribution at a specific point in time t and a node j, the counterfactual

SCM is defined by the following structural equations:

Y e
s = Y e

s−1 + fe(Y
PA(e)
s−1 , Y e

s−1) +N e
s , where (9)

N e
s ∼


P̃
Nj

t
if s = t and e = j

δ(N j
t −NF,j

t ) otherwise
(10)

5.3 Root cause

As we are interested in identifying a root cause, we state here more precisely what

we mean by this term. We define a root cause as an intervention according to

MJ (St, PNt , Gt) leading to a faulty behaviour. Here, we assume that a faulty be-

haviour can be detected or defined using a known classifier ϕ. This classifier maps

a time series to a binary value, indicating whether the time series is faulty. Such

a classifier can either be given as a known test function (e.g. corresponding to an

end-of-line test in an assembly line, an assertion in a software system, or a medical

diagnosis) or can be learned from data (e.g. an outlier-score function learned on

normal data).

Definition 5.3.1. (Root cause) Given a classifier ϕ that determines whether an

observed trajectory is faulty, we refer to a (set of) intervention(s) Ξ to be the root

cause of a failure associated with the classifier ϕ, if observations (YF
t,t=1,...T )j from

the interventional SCM M{Ξ} are leading to an increased failure rate:

EYF
t,t=1,...T∼MΞ

[ϕ(YF
t,t=1,...T )]− EYt,t=1,...T∼M[ϕ(Yt,t=1,...T )] > 0

Note that this corresponds to the average treatment effect of an intervention on the
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external influence or structural intervention. If the probability of a failure for an

external intervention on the noise or structure is higher than without any intervention,

we assume that the failure has an underlying root cause.

5.4 Shapley Value

Shapley values, originally defined to quantify the contribution of individual players to

the outcome of a game, have been used by Budhathoki et al. [3] in a static setup to

define a score for nodes that are potential root causes of an observed fault. To this

end, interventions (or possible root causes) are identified with players in a game whose

outcome is determined by a value function that quantifies the degree to which a set

of interventions can increase the likelihood of correcting a failure (defined below).

Definition 5.4.1. (Shapley value) The Shapley value [53] of a player i out of a set

N of possible players to the outcome of a game characterized by the outcome function

v is defined by:

Sh(i) :=
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S))

Note that in order to calculate the Shapley value, one has to sum over exponentially

many subsets of the set of possible players. This is feasible only for small sets of

players. In the context of root cause analysis within a dynamic framework, the set

of players represents the potential interventions, which span all possible times and

nodes within the unrolled graph of a dynamic Structural Causal Model (SCM). Due

to the exponential growth of the number of possible interventions, exact Shapley

value estimation is computationally infeasible for dynamic SCMs, and we have to

resort to an approximate version.
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5.5 Method for identifying root causes

'Normal' observations
2. Define dynamic SCM (Def. 2)

 Summary graph 

 1. Derive unrolled graph 

3.1 Obtain normal system       by learning      with 'normal' data
                   of each node and its parents and 3.2 the system
by learning        with 'normal' & factum data 
on same parents.                                       
        

Faulty observation

4. Estimate Counterfactual SCM for intervention set     
and sample trajectories:  
        

5. Receive root causes by using approximative Shapley values to calculate the contribution of a counterfactual 
intervention to the failure. (Eq. 8)

Counterfactual samples for intervention at: (x1, t=6)

x
w

y z

x

w

y z

Failure classifier

Predictive samples with initial values:

Evaluation

MethodInputs 

Assumptions

outputs a score for each point in time 
and node                 of being a root cause 
for the observed failure.

Figure 13: This figure shows an overview of the individual steps of our method.

Now that we have the necessary background, we can describe our method for identi-

fying root causes in dynamic SCMs. The method is based on the following steps and

is illustrated in Fig. 13. We want to identify the root cause that caused an observed

failure in a system. To this end, we cast this problem in a counterfactual query:

"Would the observed failure also occur if we had replaced the faulty behaviour of a

sub-system at a certain point in time with its normal behaviour?". To answer this

question after we observed a faulty observation (YF
t,t=1,...T )j , as illustrated in Inputs

in Fig. 13, we follow the steps of counterfactual distribution calculation: abduction,
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action and prediction [89]. However, in order to apply those steps, we need an SCM

characterising the normal and potentially abnormal systems. To characterise the

normal system, we assume that we have access to data representing the normal

behaviour of the system, as shown in Inputs in Fig. 13. Additionally, we assume that

we have at least a summary graph G of the system. This summary graph can be

obtained from expert knowledge or from data. Furthermore, as shown in Assumptions

in Fig. 13, we assume that we know a function ϕ that classifies an observation as

faulty or normal.

Fitting the model: In step 3.1 of the Method part in Fig. 13 we obtain the normal

behaviour system M by learning the functions f j
N with the inputs being normal

observations Yt of each node and its parents of the summary graph G. If for both

normal and abnormal data, a node and hence its transition function is not anomalous,

the transition function would be identical for both settings. Therefore, in 3.2 we

additionally fit a transition function f j
NF with normal and factual data as input to

the same parents and children as in 3.1 of the known graph G and with that we define

the SCM FM. We show predictive samples of M in the graph; see Fig. 13 step

3.2.

Estimating the Counterfactual: In the abduction step, we first infer the noise

distribution corresponding to the observed factum. We refer to the abducted SCMs

MF and FMF by applying the factum as function input to f j
N and f j

NF and

constructing the resulting noise posterior distributions as described in Eq. 8. We need

to calculate the noise variables for both SCMs separately because function couplings

and noise variables are coupled. In the action step, we perform an intervention in

M by ξM := {do(P
Nj

t
) = P̃

Nj
t
} (see Eq. 6), where we use the prediction error of our
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model to estimate the Gaussian noise variance:

P̃
Nj

t
= N (0, σ2

val), σ2
val =

1

V

1

T

∑
v

∑
t

(Y j,v
t+1 − fj(Y

Pa(j),v
t ))2 (11)

with Y j,v being a validation trajectory of the normal data, and V the number of

validation trajectories. For an intervention in FM we intervene on the noise as before

and we additionally intervene on the structure by do(Sj
t ) = S̃j

t (see Eq. 7), which

replaces the previous transition function f j
FN with a new structural equation S̃j

t

consisting of the transition function f j
N originating from the "normal" SCM, obtained

purely from training data ξFM := {do(P
Nj

t
) = P̃

Nj
t
, do(Sj

t ) = S̃j
t }. After the construc-

tion of the corresponding counterfactual SCM, we can then generate counterfactual

trajectories under the different interventions YCF ∼ PMF
ξM

, as illustrated in 4. in

Fig. 13. If an external influence on node j at time t leads to an abnormal factum, an

intervention of this type should remove the abnormal behaviour and, therefore, lead

to a normal trajectory.

Evaluation: To quantify how close these counterfactual samples are to normal tra-

jectories, the trajectories are processed using a classifier function ϕ (Eq. 5.5). In turn,

we receive a score for each counterfactual sample indicating whether the failure was

removed by counterfactual intervention ξ. We then averaged over multiple counterfac-

tual samples. To rank interventions at different times and nodes, we can use Shapley

values by identifying players with interventions and matching outcomes by the average

normality of the counterfactual sample. Shapley values, however, scale exponentially,

and therefore, we use the following simple approximation, which we obtain by ignor-

ing interactions between different interventions, thereby only considering single-ton

intervention sets. Although mainly motivated by pure computational tractability, we

can alternatively assume that a perfectly synchronous occurrence of multiple root

causes is very unlikely, thereby justifying the restriction to single-ton intervention sets.

This simplification enables static causal reasoning in a dynamic setup but introduces
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two key challenges: (1) we cannot capture instantaneous interactions in physical

models directly, and (2) multiple-step delays must be represented with intermediate

states, leading to larger models. This adds complexity, as each intermediate state

introduces additional exogenous variables and functional couplings. Thus, fitting a

dynamic SCM becomes more computationally intensive, as each new intermediate

state must maintain functional consistency with previous steps while ensuring that

causal relationships are preserved across multiple time steps. However, in practice,

although physical models may involve instantaneous interactions, causal dependencies

typically unfold gradually over time. Therefore, with an appropriately high model

resolution (sufficient small-time steps), the unit-level approximation can capture

essential dynamic causal behaviour with sufficient accuracy. Secondly, although in

this chapter we consider a model trained on one-time step (i.e. a mapping from t

to t + 1 is learned), further trainings could be performed considering larger time

windows. This would allow multiple-step delays to be addressed. However, the ability

to learn over multiple time steps and the increase in the number of time steps through

very small increments have a complementary effect, and their actual compatibility in

practice still needs to be studied.

Consequently, we arrive at the following simple expression of the contribution score

of individual interventions ξ for each point in time and node:

Sh(ξ) := logEY∼PMF
ξ

{ϕ (Y)} (12)

5.6 Experiments

In the following experiments, we evaluate the effectiveness of the proposed method for

different synthetic and real-world data sets. As for synthetic data sets, we consider

both linear and non-linear dynamic systems with single-point external failure-causing
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disturbances as well as a benchmark data set for identifying structural causes for

anomalies [7]. For the real-world data set, we are investigating the dynamic water flow

rate in rivers [90]. For our synthetic experiments, we perform two meta-experiments,

which analyse the influence on the model performance of varying root cause injections

and how robust the model is against violating the assumption that the causal graph

is known. We denote our models, a linear and a non-linear model both performing

a counterfactual intervention on the external noise influence and on the structural

equation with Lin(Sj
t , N

j
t ) and NLin(Sj

t , N
j
t ). We compare against a linear layer

model with counterfactual noise-influence intervention Lin(N j
t ), similar to [3] and

EasyRCA [7] in the benchmark experiment. For completeness, we additionally provide

a non-linear model NLin(N j
t ) with counterfactual noise influence intervention. In

order to model the nonlinear dynamic SCM, for NLin we use a simple three-layer

residual neural network (ResNet) with hyperbolic tangent activation functions and

128 neurones as latent layer.

5.6.1 Experimental datasets

Linear synthetic system: In our first data set, we consider a linear multivariate

system with additive Gaussian noise consisting of four nodes (w, x, y, z), each having

two dimensions. The summary graph of the system is shown in Assumptions in Fig.

13. The structural equations of the system are of the form:

Y j
t := AiYj

t−1 +
∑

k∈PA(j)

BkYk
t−1 + C lN j

t , (N j
t )d ∼ N (0, 1) ∀d

with N j
t being zero mean standard Gaussian noise. In the following we show the

coefficient matrices for the data generation of the linear synthetic system. The matrix

of the root node w was chosen such that the eigenvalues are smaller than 1, which

guarantees a stable system.
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Aww =

 0.949 0.313

−0.313 0.949

 , Axx =

 0.2 −0.1

−0.1 0.2

 , Ayy =

0.2 0.1

0.1 0.2

 , Azz =

0.2 0.1

0.1 0.2



Bwx =

0.5 0.2

0.2 −0.5

 , Bxy =

−0.9 0.7

0.7 −0.9

 , Bxz =

0.4 0.9

0.9 0.4

 , Byz =

0.6 0.4

0.4 0.6



Cw, Cx, Cy, Cz =

0.01 0.01

0.01 0.01

 (13)

To simulate a root cause, we inject an additive constant term at a single dimension

of a node j at time t to the equation above. Instead of a learned anomaly scoring

function, in this experiment, we assume to have access to a function that checks the

validity of a given observation, similarly, as it would be in a manufacturing scenario,

in which an end-of-line test is performed [91]. Therefore, we examine if a failure on

the "last" node in a manufacturing line (here "last" node in the summary graph is

z) has occurred. To this end, we use a threshold function, fixed over time for each

dimension of node z. More precisely, this classifier can be applied to any time-series

observation (Yj
t )t∈{1,...,T}, j∈{w,x,y,z}:

ϕ(Y) = 1− 1

Dz

Dz∑
k=1

1[(µz)k−(σz)k,(µz)k+(σz)k](Y
z
k)

Here, the dimension of node z is denoted with Dz. Note that this function provides

gradual feedback on how many of the dimensions in node z are outside of the

pre-specified corridor given by the threshold function.

FitzHugh–Nagumo system: Next, to allow for non-linear dynamic behaviour, we

are generating data of the FitzHugh–Nagumo system (FHN), which is cyclic with
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regard to its summary graph, but acyclic in the unrolled graph Gt. Although being

a multivariate system, as the two dimensions interact, the corresponding dynamic

SCM consists of one node x with two dimensions:

ẋ1 = 3(x1 − x31/3 + x2), ẋ2 = (0.2− 3x1 − 0.2x2)/3

We chose the initial values as in [92] but with slightly reduced additive Gaussian

noise variance σ2 = 0.0025. The root cause is simulated similarly to the linear system

by adding a constant to the difference equation at one dimension and time point. We

classify an observation as faulty if it deviates too much from a normal observation.

As we have, in this setting, access to the ground truth, a normal observation is

represented by a trajectory generated from the ground truth system. Consequently,

the classifier consists of a time-varying threshold bound around each dimension of the

normal observation without the injected root cause of node x. Denoting the expected

trajectory from the system by E a given observation Y is then classified to be faulty

if it does deviate more than 10 standard deviations at any point in time from the

expected trajectory: ϕ(Y) = 1−
∏

t 1[Ex
t −10σx,Ex

t +10σx](Y
x
t ).

5.6.2 Evaluation

When we have drawn counterfactual samples from our model, we calculate the

approximate Shapley values (see Eq. 5.5) and use the ϕ function to evaluate each

intervention performed based on whether it corrected the failure. The root cause is

the intervention of the node j at time t that has the highest influence on failure. If

all counterfactual samples lead to the same ϕ evaluation for all interventions, then

no unique root cause could be identified. However, due to random sampling of the

counterfactual, this is an unlikely scenario (see, for example, Fig. 18). Nevertheless,

for the evaluation, we only require that the ground-truth root cause is within the

set of identified root causes. In Fig. 14 we show five counterfactual samples for the
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Figure 14: The figure shows the counterfactual samples for the FHN system with
injected root cause at (j = x1, t = 24). The injected root cause disrupts
the system observation heavily (black dashed line). However, the coun-
terfactual intervention performed by our model NLin(Sj

t , N
j
t ) corrects

the failure in both dimensions, such that it lies inside the threshold
region (orange area).

nonlinear FHN system at the actual root cause injection point. Although the injected

root cause is fairly large with regard to the interval of the normal observation without

failure (drawn as an orange line), the counterfactual intervention performed by our

model NLin(Sj
t , N

j
t ) corrects the failure for both dimensions of x. In order to analyse

root cause injections and how the identification capabilities of our model behave

under varying injections, we performed an Injection experiment for the synthetic

linear and nonlinear FHN system. External disturbances in dynamic systems may be

propagated and thereby increase their impact. Alternatively, if the system is robust

against incremental noise (as is the case in the defined systems above due to the

external noise influence even under the ’normal’ conditions), it is not obvious how

large an external influence at which point in time is noticeable. In Fig. 15, we show

varying root cause injections for the linear synthetic system (varying constant added

to the structural equation) over 20 randomly sampled facta with T = 20. It can be

seen that the models that intervene in the structure and noise achieve a significantly

higher identification score for large added constants. This could be due to a large

root cause, in this setting leading to a factum with high distance to the normal data,
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Figure 15: The root cause was injected at a random node j = x1 at t = 6 with
varying constants in [1, 10]. The horizontal axis shows the injected
constant in relation to the noise standard deviation denoted by σ. We
report how many root causes could be identified in %.

which can lead to a divergence over time of the normal behaviour system M. We

performed the same kind of injection experiment as for the linear system. In Fig.

16, we show varying root cause injections (varying constant added to the structural

equation) over 20 randomly sampled facta with T = 50.

Assumption violation. We probe our models in violation of the causal graph as-

sumption for the linear synthetic system. For this, we modify the causal graph used

by the underlying model by adding or removing random edges, while keeping the

original summary graph for data generation. We use the same facta generated as σ

= 500 in Fig. 15. In Tab. 3 it can be seen that removing edges for all models has a

stronger impact on predictive performance than adding. As expected, Lin((Sj
t , N

j
t ))

performs best on this linear system, closely followed by NLin((Sj
t , N

j
t )). It must be

mentioned that, in a graph with only four edges, removing an edge is a major incision

in the model assumption.
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Figure 16: The root cause was injected at a random node j = x1 at t = 24 with
varying constants in [0.1, 2.0]. The x-axis shows the injected constant
in relation to the noise standard deviation denoted by σ. We report
how many root causes could be identified in %. On the left, for NLin
it can be seen that the model intervening on the structure and the
noise achieves a significantly higher identification score for larger added
constants. This could be due to a large root cause, in this setting leading
to a factum with high distance to the normal data, which may lead to a
divergence over time of the normal behaviour system M. On the right,
we illustrated Lin and as expected, it is inadequate for addressing the
complexities of the non-linear problem.
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Table 3: We show the Accuracy for the setup σ = 500 of the linear synthetic
system (see Fig. 15) with varying number of removed or added edges of
the summary graph G used by the models.

NLin(Sj
t , N

j
t ) NLin(N j

t ) Lin(Sj
t , N

j
t ) Lin(N j

t )

nr. of removed edges
1 0.47 ± 0.25 0.23 ± 0.18 0.47 ± 0.24 0.18 ± 0.15
2 0.29 ± 0.20 0.06 ± 0.06 0.47 ± 0.24 0.12 ± 0.10

nr. of added edges
1 0.82 ± 0.15 0.12 ± 0.10 1.0 ± 0.0 0.18 ± 0.15
2 0.88 ± 0.10 0.0 ± 0.0 0.88 ± 0.10 0.06 ± 0.06

Linear EasyRCA Benchmark. We compare against the linear univariate benchmark

of [7] consisting of six nodes and two types of root causes. The parametric root

cause means they change the coefficient of the parent nodes to a random uniform

sampled value. As a special case of the parametric setting, they inject structural

root causes, which set the coefficient of the parent nodes to zero. Since EasyRCA

excludes single time point root causes, in order to do a fair comparison, we only rank

sets of interventions, where we intervene on all times for a given node and evaluate

it accordingly by Sh(ξj0, ...ξ
j
T ). In their work, they inject on two nodes, where one

is always the root node of the system and the other one a randomly chosen node.

As in their benchmark comparison, the root cause of the root node is excluded,

and we exclude it from the evaluation as well. In the evaluation, they distinguish

for parametric and structural root causes, but because our model does not make a

prediction about the type of root cause, it is sufficient if the EasyRCA predicted root

causes contain the true root cause, regardless of the type. To rate the normality of

a given trajectory Y, we make use of the learnt dynamical SCM M that was fitted

on normal observations of the system. More precisely, for the EasyRCA benchmark

and the following River experiment, we used an outlier score similar to [3], based on

the learnt dynamic SCM. That is, given a dynamic SCM M consisting of N nodes

and providing the conditional distribution p(Yj
t |Y

PA(j,t)
t ) via the dynamics equation

learned from normal observational data (Y)k, we can define the following outlier
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score:

ϕ(Y) =
1

NT

∑
j,t

log p(Yj
t |Y

PA(j,t)
t ) (14)

In Tab. 4, it can be seen that, in general, the intervention (Sj
t , N

j
t ) is preferable

to an intervention only on (N j
t ). For linear systems, the accuracy of NLin(Sj

t , N
j
t )

and Lin(Sj
t , N

j
t ) are similarly good, while EasyRCA shows lower performance in the

factum experiments T = 100. However, Lin(Sj
t , N

j
t ) is inadequate to address the

complexities of the non-linear problem.

Table 4: We report the Accuracy over 20 facta of the summary graph on a linear
system and the FHN oscillator. In the lower part of the table we present
the experimental results of the EasyRCA benchmark [7] comparing the
accuracy for one factum over 30 graphs for different factum lengths T (here,
normal data has the same size T ). 1

NLin Lin EasyRCA

(Sj
t , N

j
t ) (N j

t ) (Sj
t , N

j
t ) (N j

t )

Lin. system 0.94 ± 0.05 0.59 ± 0.24 1.0 ± 0.0 0.29 ± 0.20 -
FHN oscillator 0.90 ± 0.09 0.65 ± 0.23 0.20 ± 0.16 0.15 ± 0.13 -

Lin. Parametric
Factum-100 1.0 ± 0.0 0.97 ± 0.03 1.0 ± 0.0 0.97 ± 0.03 0.87 ± 0.12
Factum-200 0.97 ± 0.03 0.93 ± 0.06 1.0 ± 0.0 0.93 ± 0.06 0.93 ± 0.06
Factum-500 1.0 ± 0.0 0.97 ± 0.03 1.0 ± 0.0 0.97 ± 0.03 1.0 ± 0.0
Factum-1000 1.0 ± 0.0 1.0 ± 0.0 0.97 ± 0.03 0.83 ± 0.14 0.97 ± 0.03

Lin. Structural
Factum-100 1.0 ± 0.0 0.87 ± 0.12 1.0 ± 0.0 0.83 ± 0.14 0.8 ± 0.16
Factum-200 0.90 ± 0.09 0.27 ± 0.20 0.70 ± 0.21 0.53 ± 0.25 0.90 ± 0.09
Factum-500 1.0 ± 0.0 1.0 ± 0.0 0.87 ± 0.12 1.0 ± 0.0 1.0 ± 0.0
Factum-1000 1.0 ± 0.0 0.8 ± 0.16 1.0 ± 0.0 1.0 ± 0.0 0.97 ± 0.03

Real World River Experiment. We analyse our method on real-world data consid-

ering a univariate river experiment consisting of four nodes. The nodes represent

measuring stations of the Ribble River in England (data is from [90]). These mea-
1We excluded the 2000 factum length experiment of the EasyRCA benchmark for computational

reasons. Additionally, note that since EasyRCA is univariate, it can not be applied to our
synthetic systems.
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Figure 17: With the geographical knowledge of the river flow, a summary graph
can be inferred (Figure taken from [3]).

suring stations are influenced by unknown external influences. For this reason, the

summary graph includes a node Z representing unobserved common causes like

weather conditions (e.g. rain, temperature) influencing all nodes. These unobserved

confounders affect the accuracy of our model when learning the normal system M

from observational data. The nodes represent the stations of the Ribble River that

measure the flow rate. Although this data set has been investigated in [3], as a result

of our dynamic viewpoint, we consider a slightly different factum. They consider four

time points as static facta and infer the root causes of these. In contrast, we consider

an entire time series as factum and infer the root cause. In addition, we use a finer

time resolution of 15-minute intervals instead of averaged daily values, which has

the advantage that the resulting SCM is less prone to instantaneous effects due to

aggregation within a time-window. The finer resolution means that we consider a

shorter period of time, namely the three days from 16.03.2019 to 19.03.2019 in which

the flow rate is particularly high. As training data, we used the same time span as [3]

from 01.01.2010 to 31.12.2018. They provide a z-score threshold for the New Jumbles

Rock station, which we use as ϕ in 14, see Fig.18. We find the Shapley values with

the highest scores at the Henthorn station, which is an upstream station of the New

Jumbles Rock station. Although no ground-truth root cause exists for this experiment

since it is a real-world example, the result is plausible both geographically and with

regard to the time point. However, counterfactual intervention cannot correct the
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Figure 18: We show five counterfactual samples (for each station) of our model
NLin(Sj

t , N
j
t ) with the intervention at the predicted root cause at 08:30

on 16.03.2019. Additionally, we illustrate the resulting Shapley values
for each time point, showing that right before the failure occurs the
Shapley values increase.
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failure, as the counterfactual sample is not below the z-score threshold. This could be

due to the fact that the influence of unobserved confounders is particularly high.

5.7 Conclusion

In this chapter, we have presented a method for identifying root causes in dynamic

systems based on counterfactual reasoning. As the proposed method ranks individual

interventions corresponding to individual nodes or sensors at particular times within a

trajectory, our method is capable of exploiting not only the causal structure but also

the natural direction of causality over time. By modelling temporal transitions with a

non-linear neural network and a Shapley-value approximation, we are able to remove

important limitations of current counterfactual root cause analysis methods. While we

demonstrated both on synthetic as well as on real data the effectiveness of our method

in identifying root causes in dynamic systems, there are several directions for further

improvement. For example, our method is currently limited to the assumption that

the root cause consists of a single intervention and that the causal graphical structure

is known as well as the absence of latent confounders. In the next chapter, we sketch

the extension of our method to account for the influence of latent confounders.
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6 Confounding

To address the limitations of previous approaches, in this chapter, we analyse an

existing approach that considers hidden confounding factors in a dynamic context. On

the basis of this approach, we sketch ideas on how to perform root cause analysis with

present hidden confounding factors. Up to this point, our analysis has relied on the

assumption of strong ignorability (see 2.6), which presumes the absence of unobserved

confounders. However, hidden confounders are prevalent in real-world systems. For

instance, in the river experiment 5.6.2, rainfall could act as a hidden confounder,

potentially influencing the observed flowrates both temporally and geographically.

Additional complexities may arise in practice, such as multiple hidden confounders

exerting simultaneous effects, large measurement errors obscuring the influence of

hidden confounders or temporal shifts involving substantial time lags.

Given the prevalence of unobserved confounders, their presence introduces significant

uncertainty in the causal inference process, as these hidden variables simultaneously

affect both the treatment and the outcome. Consequently, assuming strong ignorability

may lead to an inaccurate representation of the system and result in biased estimates of

causal effects. This challenge arises because we lack direct knowledge of the underlying

structural equations and must infer them from an (incomplete) causal graph with

observational data which does not include information about the confounder. Even

when we include the confounding variable in the causal graph and develop a latent

variable model, determining the hidden confounder is not possible without imposing

additional assumptions. For instance, we might assume that the latent variable
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follows a particular distribution, a temporal ordering or we need prior knowledge

about the nature of confounding. Without such assumptions, there is no guarantee

that the latent confounder is estimated accurately, leading to potentially biased causal

estimates.

Extending the summary causal graph of the previous chapter to hidden confounding

opens up new challenges in the counterfactual. Specifically, to the best of our

knowledge, limited work exists on the separate inference of the exogenous variables

and hidden confounders in the notion of SCMs during the counterfactual abduction

step, see Sec. 3.3. Given these challenges, some methodologies employ the potential

outcome framework rather than relying exclusively on a SCM.

The potential outcome framework provides a different perspective on causal inference

by focusing on the comparison of potential outcomes under different treatment

conditions. This framework is often more flexible when dealing with unobserved

confounding because it does not require a fully specified causal graph to perform

causal inference. One of the key advantages of the potential outcome framework in

this setting is that it encapsulates the assumption of independent noise through the

Stable Unit Treatment Value Assumption (SUTVA) (see Background Chapter 2.6).

Besides the theoretical causal framework, various inference methods exist to address

a complex multivariate latent space. Here, we aim to outline several potential

approaches, acknowledging that a comprehensive discussion of each is beyond the

scope of this section. First, a hierarchical Bayesian model could be used, where latent

noise and hidden confounders could be treated as distinct latent variables, each with

its own prior distribution. This approach enables the separate modelling of these

variables, with Bayesian inference used to estimate their posterior distributions based

on observed data. For a recent overview of causal hierarchical modelling and the

potential applications of Bayesian hierarchical modelling, see [93]. In addition, some

work focuses on the latent space of dynamical systems [94], [95], also in a causal context

[72]. Alternatively, Independent Component Analysis (ICA) could be employed to
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decompose a multivariate signal into additive, independent components. ICA leverages

the statistical properties of the data to separate these components, but it requires the

assumption that the latent noise and hidden confounder are statistically independent,

which might be difficult to guarantee [96]. Another approach involves using proxy

variables, which are observed variables correlated with the hidden confounders [97].

During the abduction step, these proxy variables could be used to approximate

the influence of the hidden confounders, thereby facilitating more accurate causal

estimation.

Finally, extending the causal model to include latent variables representing hidden

confounders offers another strategy. These additional unobserved variables could be

inferred from the observed data before estimating causal effects. But as mentioned

before, when exogenous noise influencing each covariate is present, as typically in

a causal model, it is quite difficult to derive the two latent variables separately. A

specific latent variable model, known as the Deconfounder [4], will be explored in

the subsequent section.

6.1 Static Deconfounder

In their approach, Bica et al. [5] estimate the treatment effect over time while

addressing hidden confounding factors. Since their methodology builds upon the

static deconfounding approach of [4], we will illustrate first the static concept before

transitioning to the Time Series Deconfounder of Bica et al. The main idea involves a

two-step process: first, estimating substitutes for the latent confounding variables and

then using these substitutes for treatment effect estimation. Particularly the static

deconfounder first fits a probabilistic factor model and outputs substitute confounders

Zi ∼ p(zi|ai). It then uses the individual factor weights ẑi = EM [Zi|Ai = ai] of the

fitted model M to fit an outcome model p(yi|ai, ẑi). With that the average potential

outcome estimate
∑n

i=1 EY [Yi(Ai)|Ai = a, Zi = ẑi] can be computed, for more details

see [4].
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Figure 19: Static multi-cause confounder (Figure taken from [4]). Note that the
substitute confounders Zi are pre-treatment variables and should not
contain any mediators along the assigned causes and the outcome because
mediators cannot be identified by looking only at the assigned causes
[4].

In their latent variable model, they assume that confounding variables are present

as multi-cause confounders. This implies that a confounder must influence multiple

causes to be inferable. For instance, in an economic context, the causes could be

the prices of various items, and the effect would be the total consumer expenditure.

Seasonality could act as a multi-cause confounder, affecting both prices and demand

for multiple items.

In Fig.19, for each individual i, the latent substitute confounder Zi renders the assigned

causes Aij (with j for each cause) conditionally independent p(ai1, ..., aik|zi) =∏
j p(aij |zi). This implies that by contradiction, all confounding effects are captured

by the substitute Zi, and it can’t exist another multi-cause confounder Ui, which

has not been accounted for. However, this argument does not apply to single-cause

confounders Si [4].
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6.2 Time Series Deconfounder

In this section we closely look at the work of [5] describing their Time Series Decon-

founder. We introduce their approach including the latent model to infer hidden

confounder variables and the outcome model to estimate the treatment effect over

time.1 When extending to time series, Bica et al [5] account for hidden confounders

that may change over time and are affected by past treatments and covariates. To

infer a latent confounder in the following, the probabilistic factor model of [5] is

described, extending the work of [4] for time-varying treatments. They use multiple

treatment assignments Atk with k treatments (causes) at each timestep t to infer

a sequence of latent variables Zt = (Z1, ...,Zt) ∈ Zt. These treatments could be

binary and/or continuous. The time-dependent covariates are denoted by Xt. The

observational data of an individual i consists of realizations {x(i)
t , a(i)

t ,y(i)
t+1}T

(i)

t=1 with

samples collected for T (i) discrete and regular timesteps.2 Like in [4] the treatment is

conditionally independent of the latent substitute confounder and the covariates:

p(at1, ..., atk|zt,xt) =
k∏

j=1

p(atj |zt,xt) (15)

where zt = g(ht−1) being a function of the history and ht−1 = (at−1,xt−1, zt−1) being

the realization of history Ht−1. To infer the latent confounding variables they model

the marginal distribution of the assigned treatments p(aT ) as a probabilistic factor

model.

6.2.1 Factor model

Definition 6.2.1. The factor model with joint distribution p(θ1:k, xT , zT ,aT ) is

defined with a prior over the parameters p(θ1:k), the distribution of the observed

1Note that not every detail of their work is discussed here, but only the main characteristics in
order to describe the application for root cause analysis.

2We omit the individual superscript (i) in the following.
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covariates p(xT ) (over all timepoints T ) capturing the dynamics of the observed

variables by:

p(θ1:k)p(xT ) ·
T∏
t=1

(p(zt|ht−1)
k∏

j=1

p(atj |zt, xt, θj)) (16)

They assume that at each timestep t, the treatment history, the covariates and the

latent variable contain all dependencies between the assigned causes (At1, ..., Atk) and

the potential outcomes by defining the sequential ignorable treatment assignment :

Y(a≥t) ⊥⊥ (At1, ..., Atk)|At−1,Xt,Zt (17)

for all a≥t and for all t ∈ 0, ..., T . The potential outcome Y(a≥t) is denoted for

each possible course of treatment a that starts at time t and consists of a sequence

of treatments that end just before the patient outcome Y is observed. And Xt =

(X1, ...,Xt) ∈ X t is the history of covariates until timestep t. Besides sequential

ignorable treatment assignment, they assume positivity and consistency (see 2.6)

which are usually used among the existing methods.

The factor model in Fig 20 is showing the relationship between the Zt, Xt and

the assigned treatments Atk. We want to emphasise that with their framework

simultaneous treatments at each timepoint are possible. It is implemented by a

Recurrent Neural Network (RNN), which is typically used for time series data. Note

that this is not a causal graph since, for the potential outcomes framework, no causal

graphical model is necessary. In the following, in the second stage, the inferred

variables Zt can be used to estimate the treatment effects over time by using an

outcome model.
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Figure 20: Time Series Deconfounder (Figure taken from [5]). The Time Series
Deconfounder rules out the existence of other multi-cause confounders
like Vt which are not captured by Zt by assuming conditional indepen-
dence between Atk given Zt and Xt. As in the static approach of [4],
they assume no hidden single cause confounders Lt.

6.2.2 Outcome model

After the factor model has been fitted to observational data and captures the distribu-

tion of the assigned treatments, Bica et al [5] fit an outcome model to predict potential

outcomes. They sample latent variables Zt from the factor model and augment it with

the observational dataset (meaning Zt and the observational data is joined). Secondly,

they fit a (Recurrent) Marginal Structural Model (R-MSN) to estimate the treatment

effect (for each individual i) at each timestep (meaning they make one-step-ahead

predictions) as E[Yt+1(at)|At−1,Xt,Zt]. Using RNNs as R-MSN [98] to estimate the

treatment effect over time, they use the Inverse Probability of Treatment Weighting

to remove the bias from time-dependent confounders. They hereby present unbiased

estimates in their work as long as the factor model captures the distribution of the

assigned causes well3 (see Eq. 15) and the assumptions hold (positivity, consistency

and no hidden single cause confounders). However, the authors of [5] state that the

3To ensure this, they perform predictive checks on the factor model, but this is out of the scope of
this section.
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estimated hidden confounders from the factor model result in unbiased but higher

variance estimates of the treatment effects. Therefore they trade off the confounding

bias for estimation variance, which was also pointed out already in the static version

[4]. Nevertheless, they argue that the treatment effects computed without considering

the hidden confounders will inevitably be biased. After presenting the related work,

we will now sketch how this approach can be applied to root cause analysis.

6.3 Deconfounding Dynamic Root Cause Analysis

In principle, the Time Series Deconfounder can be applied to root cause analysis. For

this we are primarily interested in the counterfactual potential outcome of the outcome

model. Probably the biggest distinction between the Time Series Deconfounder

and our root cause approach is the way treatments, or called interventions in our

approach, are carried out. They assume to have observed the covariates and, in

addition, the assigned treatments (over the same timespan as the covariates) with

the corresponding observed outcome Yt+1 of a diseased patient. In our approach, we

observe the covariates Xt and the outcome Yt+1 of "healthy" patients and diseased

patient samples in addition (we called this normal and factum data).

Since in the root cause analysis setup, we observed no separate historical treatment

samples, we would assume that all covariates are potential intervenable variables,

i.e., At = Xt.4 An intervention could then be described by a change in a covariate

starting at time t: x≥t. In order to follow the assumption of a multi-cause confounder,

since we utilized data from multivariate systems, we assume the confounder to affect

multiple dimensions of a covariate (and the outcome) at time t. The dimensions

of the influenced covariate are then assumed to be conditionally independent of Zt.

The adapted factor model p(θ1:k,xT , zT ) is then described without explicit treatment

4We maintain this assumption here, although, in real-world applications, not all covariates are
intervenable variables.
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variables:

p(θ1:k,xT , zT ) = p(θ1:k) ·
T∏

j=1

(p(zt|(xt−1, zt−1)

k∏
j=1

p(xtj |zt, θj)) (18)

After sampling substitute confounders Zt for a factum sample i, we could then as in

[5] estimate the potential outcomes for an performed treatment (intervention) x≥t.

With the (given) classifier ϕ applied to the counterfactual (potential) outcome, we

receive the information if the intervention removed the failure or not. Afterwards, we

could calculate the Shapley value over the performed intervention x≥t (as discussed

in 5.4). As we do not have any normal, failure-free data in this setup, we cannot

provide information on how close the counterfactual outcome has come to a normal

state. In principle, the Time Series Deconfounder methodology enables the possibil-

ity of simultaneous interventions, thereby necessitating an extended Shapley value

estimation, like [99].

6.3.1 Deconfounding with a Counterfactual SCM

If we stay in the counterfactual SCM framework instead of using potential outcomes

as [5], we first need to define an extended causal graphical model. In the following, we

demonstrate a potential extension for the linear synthetic system 5.6.1. We could, of

course, extend the other presented dynamic systems as well. For the linear synthetic

problem, an extended summary causal graph, as depicted in Fig. 21, is conceivable.

In this setup, we define time dependent covariates as Xt = {wt,bt,dt,yt+1}Tt=1.

If we implement a latent confounder as a multi-cause confounder that influences

all covariates (and in our case all treatment variables, At = Xt) like in the river

example, see Fig.17, we have to assume that all treatment variables are conditionally

independent. However, this breaks the dependencies in the causal graph.

Instead, we could imagine a simpler model where the latent confounder v affects the

multiple dimensions of one variable b and the outcome value y. Since we aim to use
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Figure 21: Extended causal graph with hidden confounder v. Note that variable
names in the summary graph have been changed to prevent notation
misuse.

the factor model of [5], the dimensions of (the multivariate treatment variable) b need

to be conditionally independent given v. After the latent confounder is inferred by the

factor model and present in the observational data, the counterfactual intervention

could, in principle, be performed on any covariate regardless of the treatment variable

we used for estimating the confounder v. However, if the root cause is in b and we

intervene on b, it is unclear if information about the root cause is still in b. We expect

that the information about the root cause b could then be represented in v.

In summary, we believe that it is possible to use the Time Series Deconfounder of

[5], with an attached evaluation of Shapley Values for root cause analysis. Using

exclusively the factor model of the Time series deconfounder to derive the latent

confounders and then using the (counterfactual) SCM framework with underlying

causal graphs as in Chapt. 5 is not easily feasible. This is due to the assumption that

the latent multi-cause confounder renders the treatments conditionally independent,

which conflicts with the properties of a directed causal graph.

However, in principle, the counterfactuals in both frameworks are equivalent, as the

potential outcomes framework and the counterfactual SCM framework are logically

equivalent [20]. This may be only valid under the condition that the same Zt values

are sampled and the same interventions/treatments could be applied [100].
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7 Conclusion

In this dissertation, we focused on the application of counterfactual reasoning within

realistic and dynamic environments. First, we addressed the open research question

of incorporating uncertainty into counterfactual reasoning. For this purpose, we intro-

duced a hierarchical Bayesian model designed to handle ambiguities in the underlying

SCM and uncertainties arising from limited observational data. By incorporating a

Bayesian Warped Gaussian Process, we allowed for non-Gaussian and non-stationary

noise distributions, which proved particularly effective for counterfactual distributions.

Although we introduced additional uncertainty about the model’s parameters, our

approach led to a more accurate fit of counterfactual distributions in realistic scenarios.

However, Gaussian Processes, along with Bayesian Warped Gaussian Processes, are

computationally expensive, especially as the size of the training data increases. The

added complexity of learning the warping function further intensifies the computa-

tional cost and reduces the model’s interpretability. To improve the efficiency of

Gaussian Processes, several extensions, such as sparse Gaussian Processes, have been

proposed and could potentially be applied to Bayesian Warped Gaussian Processes.

We leave this exploration as future work.

To address the second research question regarding the automatic identification of

root causes in dynamic systems, we introduced a counterfactual-based approach. We

demonstrated that our method is capable of ranking individual interventions as poten-

tial root causes, where these interventions correspond to failure candidates at specific

points in time within a given trajectory. By utilizing a non-linear neural network
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and a Shapley value approximation for temporal transitions, our approach overcame

the scalability and linearity limitations of current counterfactual root cause analysis

techniques. However, given that the proposed method is limited to considering a

single intervention, future research could explore extending this approach to handle

multiple interventions simultaneously. While we discussed the effect of relaxing the

assumption of a known causal graphical structure, extending the approach to an

upstream causal discovery task would represent an intriguing direction for future

work.

Although this thesis focused on the uncertainties associated with counterfactual rea-

soning, other unobserved factors, such as latent confounders, could also be considered.

We outlined potential extensions for addressing latent confounding within a dynamic

counterfactual root cause framework. However, this outline should be regarded as

a preliminary suggestion, and we leave the development of these extensions open

for future research. In conclusion, this work provides a significant advancement

in both causal inference and dynamic systems analysis, providing robust tools for

counterfactual reasoning, dynamic root cause analysis, and decision-making under

uncertainty.
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8 Appendix

8.1 Estimation of Counterfactual Interventions under

Uncertainties

8.1.1 Hyperparameter Setup

Since our Bayesian Warped GP consists of various components, there are a couple of

hyperparameters that can be optimized, see Table (5). We represent the bijective

mapping gϕ of the Normalizing flow by a neural spline flow transform with element-

wise (referred to as bins) rational conditional spline functions, to represent the

conditional distributions in the causal model. Each conditional spline transform

consists of a dense neural network with three Bayesian linear layers and a RELU

activation function. In this neural network the hidden dimensions (hidden dims)

need to be set (implemented with Pyro [101]). Furthermore, the spline is defined in a

bounding box (bounds), which should cover the range of input data, for details see

[81]. To relax this requirement, we normalize the input data.

According to our variational inference scheme, we can optimize further parameters

affecting the training: the number of Monte Carlo samples (S) to be drawn, the

prior variance (prior var), the learning rate (lr), and the training steps (steps).

We optimize these variables in the seven variable setup to minimize the MMD on a

held-out validation dataset of size 250 (generated from the ground truth SCM). For

the three-variable setup, we optimized the hyperparameters w.r.t. the cost due to
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time constraints. In both cases, we used the BOHB (Bayesian Optimization algorithm

using Hyperband) algorithm [102] for optimization. More specifically, we used the

python ray-tune package of [103] as the implementation of BOHB.

Table 5: Optimal Hyperparameters found with BOHB on a validation set for each
SCM and classifier setting.

LINEAR SCM NON-LINEAR SCM NON-ADDITIVE LINEAR LOG. REGR. NON-LINEAR LOG. REGR. RANDOM FOREST

bounds 6 1 10 27 3 21
hidden dims 10 13 40 2 6 27
lr 0.03 0.03 0.01 0.04 0.008 0.05
steps 5719 5719 4501 6982 6198 4956
S 15 21 20 31 24 21
prior var 0.1 0.1 0.05 0.03 0.01 0.02

8.2 Counterfactual-based Root Cause Analysis in Dynamic

Systems

8.2.1 Hyperparameter Setup

We report the hyperparameters of our Residual neural network in Table (6). It

consists of three layers with hyperbolic tangent activation functions and 128 neurons

as latent layer. Note that we chose ∆t = 1.0 for all experiments.

Table 6: Hyperparameter setup of NLin for the performed experiments.

Lin. system FHN oscillator EasyRCA benchmarking River

splits 4 4 6 4
Ttrain 1000 1000 -1 300.000
Tfactum 20 50 - 90
lr 0.01 0.01 0.1 0.01
epochs 50 100 200 50
dim 2 2 1 1

1In the EasyRCA benchmark the normal data and the factum have for each experiment the same
length, see Table 2 in the main paper for corresponding T .
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