
Carl von Ossietzky Universität Oldenburg
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Testing of Machine Learning Algorithms and
Models

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften der Carl von
Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation von
Arnab Sharma

Gutachter
Prof. Dr. Heike Wehrheim
Prof. Dr. Michael Leuschel

Tag der Disputation: 28.11.2023

Abstract

Machine learning (ML) based software systems are increasingly being used in several
application domains affecting our daily lives substantially. In many of those domains,
ML software has shown exceptional performances, however, has also shown catastrophic
failures. This raises concerns about applying such software to critical application areas
and therefore, it is necessary to test whether ML software conforms to specific properties
before deploying them for a specific application.

In this thesis, we present testing approaches considering the entire pipeline of the ML
software systems. To this end, we first consider testing the learning algorithms and then
the models which are generated after the learning phase. For testing the learning algo-
rithms part, first of all, we gave a specific property of the ML algorithms, termed as
balanced data usage. We formally defined this and then presented a metamorphic test-
ing approach to test the property. This approach is further implemented in a testing
tool which we evaluated on diverse ML algorithms taken from prominent ML libraries.
Surprisingly, we found a large number of ML algorithms do not conform to this property.

Depending on the domain of the application, the ML models (i.e., the ML software
systems) must guarantee certain properties such as fairness, monotonicity, security, and
so on. To this end, in the last few years, there has been a plethora of work being done
proposing verification and validation approaches for checking specific properties on ML
models. These approaches either consider a specific type of ML model, for instance, deep
neural networks or check a specific property such as robustness or fairness. However, there
might be cases when the ML model is completely black-box to us, i.e., we do not have any
knowledge about it. We might furthermore require that the ML model conforms to differ-
ent kinds of properties. Considering these two cases, we developed a testing approach that
allows black-box testing of ML models and contains a specification framework that allows
the testers to specify the properties of their choices. Thus, our approach is independent of
the ML models and their properties. We termed this as property-driven testing approach.

We implemented the property-driven testing approach in a tool and evaluated it in
testing diverse properties on different types of ML models. The results of the evaluations
have shown that MLcheck could outperform even the tools specifically designed for a
specific property. Furthermore, it was able to outperform all the existing black-box testing
approaches in finding out violations of the corresponding properties.

Zusammenfassung

Auf maschinellem Lernen (ML) basierende Softwaresysteme werden zunehmend in ver-
schiedenen Anwendungsbereichen eingesetzt, die unser tägliches Leben wesentlich beein-
flussen. In vielen dieser Bereiche hat ML-Software außergewöhnliche Leistungen gezeigt,
aber auch katastrophale Ausfälle verursacht. Daher ist es notwendig zu testen, ob eine
ML-Software den spezifischen Anforderungen entspricht, bevor sie für eine bestimmte An-
wendung eingesetzt wird.

In dieser Arbeit werden Testansätze vorgestellt, welche die gesamte Pipeline von ML
Software Systemen berücksichtigen. Zuerst wird das Testen von ML Algorithmen betra-
chtet, gefolgt vom Testen der ML Modelle, die im Wesentlichen als ML Software Systeme
verwendet werden. Zu diesem Zweck wurde zunächst eine spezifische Anforderung an die
ML Algorithmen formuliert, die als balanced data usage bezeichnet wird. Diese Eigen-
schaft wurde formal definiert und dann wurde ein metamorpher Testansatz vorgestellt,
um sie zu testen. Auf der Grundlage dieses Testansatzes wurde TiLe entwickelt und
mit verschiedenen ML-Algorithmen aus mehreren bekannten ML-Bibliotheken evaluiert.
Überraschenderweise wurde festgestellt, dass mehrere ML-Algorithmen diese Anforderung
nicht erfüllen.

Je nach Anwendungsbereich müssen die ML Modelle (d. h. die ML Software sys-
teme) bestimmte Eigenschaften wie Fairness, Monotonie, Sicherheit usw. garantieren.
Zu diesem Zweck wurde in den letzten Jahren eine Fülle von Arbeiten durchgeführt, in
denen Verifikations- und Validierungsansätze zur Überprüfung bestimmter Eigenschaften
von ML Modellen vorgeschlagen wurden. Diese Ansätze berücksichtigen entweder einen
bestimmten Typ von ML Modellen, z. B. Deep Neural Networks, oder prüfen eine bes-
timmte Eigenschaft wie Robustheit oder Fairness. Es kann jedoch auch Fälle geben, in
denen die ML Modelle eine vollständige black-box sind, d. h., dass keine Informationen
über sie bekannt sind. Außerdem könnte verlangt werden, dass die ML Modelle ver-
schiedene Arten von Anforderungen erfüllen. Unter Berücksichtigung dieser beiden Fälle
wurde ein Testansatz entwickelt, der Black-Box-Tests von ML Modellen ermöglicht und
einen Spezifikationsrahmen enthält, der es den Testern ermöglicht, die Eigenschaften ihrer
Auswahl zu spezifizieren. Somit ist der Ansatz unabhängig von den ML Modellen und
ihren Eigenschaften. Dies wird als eigenschaftsgesteuerter Testansatz bezeichnet.

Der eigenschaftsgesteuerte Testansatz wurde in einen Tool namens MLcheck imple-
mentiert und beim Testen verschiedener Eigenschaften für unterschiedliche Arten von ML
Modellen evaluiert. Die Ergebnisse der Evaluierungen haben gezeigt, dass MLcheck sogar
die speziell für eine bestimmte Eigenschaft entwickelten Tools übertreffen konnte. Darüber
hinaus war es in der Lage, alle bestehenden Black-Box-Testansätze beim Auffinden von
Verstoßen der entsprechenden Eigenschaften zu übertreffen.

Acknowledgements

When I started writing this part of my thesis, so many wonderful people came to my
mind that I hope in the end I could acknowledge all of them. Without them, this thesis
would probably not have been done so easily.

First and most importantly I would like to thank my supervisor Heike Wehrheim for all
the guidance, support, and patience. During my Ph.D, more often I would come in with a
chaotic pile of questions, problems, and issues while having meetings with her. She would
always listen to me, refining the orders in my problems and discussing the solutions of my
issues which would then clear my mind and the path ahead. This thesis would not have
been possible without her guidance and indispensable feedback. I will always be grateful
to her for allowing me to work in her research group and giving me academic freedom.

I would also like to thank my Ph.D. committee members Prof. Dr. Martin Fränzle, and
Dr. Christian Schönberg, and the reviewer of my thesis Prof. Dr. Michael Leuschel for
their feedback, comments, and all the help in making this thesis in a much better shape.

I am really lucky to have had some wonderful colleagues during my Ph.D. I am really
thankful to Oleg Travkin with whom I initially shared my office. I would also like to
express my appreciation to all my colleagues for insightful discussions, and constructive
feedback, and for making my workplace so much more enjoyable. When I look back, I
cannot remember how many countless times I went to them, asking questions, and they
would always answer and discuss no matter how busy they were and I am wholeheartedly
thankful for that. For you, I will always happily remember and cherish my time doing the
Ph.D.

Thanks to all the coauthors and collaborators of all the research papers that we pub-
lished together. In particular, I am really thankful to Vitalik Melnikov for all the discus-
sions that I had with him which helped me a lot to understand the project we were working
on and also to decide on my thesis topic. Since my thesis was on testing of machine learn-
ing systems, he being an ML expert would always give me constructive feedback on my
research.

I want to thank Elisabeth Schlatt for her help with all the administrative stuff right from
the beginning of my Ph.D. Because of her help, I could smoothly do all the paper-works
needed to start in Germany. I am always thankful for all the assistance I still get from
her. This work would also not have been possible without the funding from the CRC-901
(On-The-Fly Computing) project. This has also given me the opportunity to travel to
different scientific conferences across the world.

I would like to thank all my friends and especially Chiara Cappello with whom I could
always share my happiness, pains, and all those emotions that I had during my journey
of working on this thesis. Being a Ph.D. student herself, she probably could understand
it more than the others.

Finally, I am really thankful to my family and especially to my brother Apurba and my
mother who have always encouraged me, no matter what. Last but not least I am really
thankful to Jana who has always supported me and allowed me to work even during the
weekends and holidays. This thesis would not have been possible without your constant
support and compromises.

Contents

1 Introduction 13
1.1 Motivation and Problem Statement . 13
1.2 Contributions and Structure of Thesis 16
1.3 Publications . 17

2 Background 19
2.1 Machine Learning Fundamentals . 19

2.1.1 ML Algorithms and Models . 20
2.1.2 Properties . 26

2.2 Software Testing . 29
2.2.1 Adaptive Random Testing . 30
2.2.2 Metamorphic Testing . 31
2.2.3 Model-Based Testing . 32
2.2.4 Property-Based Testing . 34
2.2.5 Property-Driven Testing . 34

2.3 Machine Learning Testing . 35

3 Logical Encoding 37
3.1 Logic and Theories . 37
3.2 Encoding . 39

3.2.1 Decision Tree . 41
3.2.2 Neural Network . 45

3.3 Computation of Property . 51

4 Balancedness Testing of ML Algorithms 55
4.1 Balanced Data Usage . 56
4.2 Testing Approach . 60

4.2.1 Overview . 60
4.2.2 Permutation Strategies . 62
4.2.3 Checking Equivalence . 63

4.3 Evaluation . 68
4.3.1 Experimental Setup . 69
4.3.2 Results and Discussions . 71

4.4 Threats to Validity . 78
4.5 Related Work . 78

5 Verification-based Testing 81
5.1 Formalization . 81
5.2 Testing Methodology . 83

5.2.1 White-box Model Learning . 83
5.2.2 Property Computation . 84
5.2.3 Pruning . 86

9

Contents

5.2.4 Cross Checking and Retraining 89
5.2.5 Overall Algorithm . 90

6 Property-driven Testing 91
6.1 Property Specification Language . 92

6.1.1 Syntax and Semantics . 93
6.2 Test Input Generation . 95

6.2.1 Connecting to Model Encoding 96
6.2.2 Property Translation . 97
6.2.3 Property Translation Example 99
6.2.4 SMT Solving . 100

6.3 Related Work . 101

7 Evaluation of MLcheck 105
7.1 Implementation of MLcheck . 105
7.2 Experimental Setup . 106

7.2.1 Properties . 106
7.2.2 Datasets . 112
7.2.3 Models Under Test . 114
7.2.4 Baseline Tools . 117

7.3 External Evaluation . 119
7.3.1 Fairness . 119
7.3.2 Monotonicity . 123
7.3.3 Security . 125
7.3.4 Concept Relationship . 127
7.3.5 Properties of Regression Models and Aggregation Functions . . . 128
7.3.6 Discussions . 131

7.4 Internal Evaluation . 132
7.4.1 Model Comparison . 132
7.4.2 Pruning Comparison . 132

7.5 Limitations and Threats to Validity . 134
7.6 Related Work . 136

8 Conclusion & Future Work 139
8.1 Summary . 139
8.2 Discussion . 141
8.3 Future Work . 142

A Technical Details & Extra Results 145
A.1 Tool Implementation of TiLe . 145
A.2 Configuration of MLcheck . 147
A.3 Artifact . 151
A.4 Monotonicity Features & Extra Results 151

Index 155

Bibliography 157

10

1 Introduction

In recent years, there have been increased advancements in the field of machine learning
(ML). This enabled us to develop high performing ML-based software systems which
are now effectively replacing humans in decision-making process. For instance, from
autonomous cars [MWYY20] to loan granting software [GPKB20] and even in medical
diagnosis and prognosis [SGSG19], software systems are controlling every aspect of our
lives. Furthermore, in the USA the justice system uses ML software to decide who
goes to jail and who is to be set free [VDO+19]. Due to such critical nature of the
application areas, the need for the ML software systems to be working as expected is
crucial.

This has prompted the stakeholders to mandate the assurance of the quality of
ML-based software systems. Thanks to some quality research done by the researchers
to this end, we can find a plethora of works [ALN+19, ZHML22, ZWS+20, BSS+19,
ZVGG17] aims to ensure that such software meets the desired requirements. These
works can be broadly classified into two major categories, (a) developing ML software
by taking into account the desired requirements [ZVGG17, CKP09], and (b) verifying
or testing the software after being developed [BSS+19, ZWS+20]. The research shows
that the software which by design is ensured to guarantee a desired requirement, often
does not perform as expected and the undesirable behaviour still persists [GBM17].
Therefore, verifying or testing the ML software is still required to perform to check for
failures. Although a large body of works considers verification as a means to achieve
a provable guarantee that the software conforms to the given set of requirements, it
often does not scale to ML-based software systems because of high dimensional input
space. Most importantly, verification requires access to the internals of the given
software which might not be available in some cases. Therefore, in this dissertation,
we primarily develop testing techniques to validate the ML-based software systems
(without considering its internals) for finding out potential undesirable behaviours in
its different phases.

Testing of ML-based software systems is an active research area and there exist a
number of research works to this end. However, there are specific issues that are not
addressed in the related works. In this Chapter, we start by briefly stating the research
gaps as the motivation behind this dissertation and the problem at hand (Section 1.1).
Then we describe the contributions and give the outline of this thesis in Section 1.2.
Finally, we give the publications corresponding to the thesis in Section 1.3.

1.1 Motivation and Problem Statement

Motivation. Unlike traditional software, ML-based software systems are not developed
by writing programs, rather the functionality of the software, i.e., what it is supposed
to do, is learned. Therefore, the core of an ML-based software system is a machine
learning model which is generated by training a machine learning (ML) algorithm on

13

1 Introduction

a set of data instances (a set of vectors with fixed sizes). Essentially, a supervised1

ML algorithm ‘learns’ the behaviour as a sort of generalization from a set of training
data instances using statistical methods, thereby generating an ML model (or in short
model). This model is then used as a decision-making software in several applications.

The emergence of the machine learning model as a decision-making software system
has found its way into various critical application areas [DMBT17, McK20, YBK18,
LBM+18, DHB20]. ML models are now being used in autonomous cars, replacing
humans completely. For example, what started as a research project by Google back
in 2009 of building self-driving cars, is now becoming a reality by Waymo2. They have
already started commercializing autonomous cars in Phoenix and California in the
USA. In hospitals, doctors are using ML software for early detection, prediction, and
even diagnosis of several chronic diseases [YBK18]. What was seemingly impossible to
understand like dementia, Alzheimer, and other brain-related diseases, a conjunction
of ML models and medical research are on the verge of even curing those [NZK+20].
When someone applies for a loan in the bank, nowadays the application is granted
or rejected based on the decision given by an ML-based software 3. In some of the
states in the USA, an ML-based decision support system–Correctional Offender Man-
agement Profiling for Alternative Sanctions (COMPAS)–is used in the judiciary system
to determine the likelihood of a criminal doing a crime again and thereby deciding the
sentencing of the offender [SCDG]. Unknowingly, we are led by ML-based software in
what to buy (online shopping websites), which movies to watch, or where to go for
vacations.

Although such ML software systems have shown to be performing astonishingly well
in such areas, they are prone to undesirable behaviours which in some cases led to
catastrophic failures. For example, in 2018 the e-commerce company Amazon.com
found out that the machine learning algorithm it was using for recruiting employees,
was biased as it was favoring the men [Das] in giving recruitment decisions. In the
same year, within a span of a few months, an autonomous car from Uber fatally injured
and killed a woman in Arizona [AAH], because the underlying ML model mistook
the woman for something else. In another case, an ML model for predicting cancer
treatment approaches, developed by IBM was recommending wrong treatments [Che].
Although these incidents4 are isolated but they have one thing in common, failing of
the ML software systems to function correctly.

Research gap. As the usage of the ML models in developing decision-making software
is growing, the research in an effort to ensure the quality of the models is also increasing.
Currently, there are two orthogonal approaches to achieve this goal: (a) designing
an ML algorithm to generate an ML model which is guaranteed to satisfy a specific
requirement, (b) verifying or testing the requirements of the ML model. Both of these
approaches have their limitations and they do not encompass all the aspects of checking
a machine learning paradigm. For instance, on the one hand, the first approach to
designing ML algorithms is limited to a handful of requirements like fairness, and
robustness. Moreover, some recent works suggest that these ML algorithms might
actually not ensure generating ML models guaranteeing the corresponding requirement

1In this work, we only consider supervised learning, hence for the rest of the dissertation we will
simply use ‘ML algorithm’.

2https://waymo.com/
3https://sdk.finance/machine-learning-deep-learning-forecasting-for-banking-industry/
4see https://incidentdatabase.ai/summaries/incidents for more such incidents

14

1.1 Motivation and Problem Statement

(see [GBM17, ALN+19]). On the other hand, approach (b) is possible to use only
when either a validation (verification or testing) technique exists to be applied on a
specific type (e.g. neural network, random forest, etc.) of ML model [PLS20, TN20],
or can only be used to check a specific property [ALN+19, XLLL23]. Moreover, the
verification technique cannot be applied to a model when it is a black-box to us, i.e.,
we do not have any knowledge about the internals of the given model to check. So
to summarize the problem, the existing verification and testing techniques are either
restricted to a specific type of ML model or to a single property. This brings us to a
question about the research gap,

What if someone wants to check different properties without having
the knowledge of the internals of an ML model?

A machine learning algorithm in its learning phase uses the training data to gen-
eralize from it in order to generate a predictive function or the ML model. There
are specific requirements on the ML models that are defined in the related works and
there are validation techniques for checking such requirements. Furthermore, there are
techniques to develop a requirement-guaranteed learning algorithm that by design can
ensure the requirement to a certain extent. However, this will not necessarily guar-
antee learning from the training data as ‘expected’. Thus, in both of these cases, we
can not draw any conclusion on the learning phase of an ML algorithm. In fact, it
is essentially unclear what the correct outcome of the learning phase is, i.e., unclear
what it means to learn what is in the training data. There are some works focusing on
identifying the implementation bugs in the ML algorithms (see [PLQT19, DAS+18].
However, none of these works define the expected outcome by the ML algorithms or
give validation techniques to check the outcome of the learning phase. So we ask the
following question:

How to define the requirement of the learning phase and check it?

Our solution. In this thesis, we focus on checking different phases of the machine
learning paradigm. More specifically, we look at the learning phase of the ML algorithm
in generating models and the prediction phase of the ML models as the predictive
software. Since validating the requirements of the ML models only is not sufficient,
we, therefore, also look at the learning phase. By validating, we mean testing the
requirements of the machine learning paradigm. To this end, first of all, we define
a concept called ‘balancedness’, describing what it means to be ‘learning from the
data’, and subsequently give a testing mechanism to check it. Next, we give a testing
technique that can be applied to check arbitrary types of non-stochastic requirements
on the arbitrary types of machine learning models. This approach allows the testers
to specify the requirement of interest and then a targeted test generation technique is
performed to find out the violation of the given requirement.

We use testing instead of verification as a means of checking the requirements.
There are two main reasons for this. First, there exist many different types of ML
algorithms and the models, such as naive Bayes, random forests, logistic regression, etc.
Therefore, to verify each of them, a separate verification technique is required. Second,
these techniques might also differ based on the type of properties being considered for
checking. The aim of our thesis is to develop validation mechanisms that could be

15

1 Introduction

used for any type of ML algorithm or model. Thus, to achieve this goal we do not
consider developing verification techniques, rather we develop two testing techniques
which consider the algorithms and the models as black-box. In other words, the testing
techniques we develop assume to have no knowledge of the given algorithms and the
models to check.

1.2 Contributions and Structure of Thesis
After describing the necessary background on machine learning along with the relevant
testing approaches and some related works in Chapter 2, the contributions of this thesis
can be structured as follows:

Chapter 3 First, we give our approach of logically encoding two machine learning
models, decision trees, and neural networks. This is required for the testing
approaches that we describe in the subsequent chapters. More specifically, as
part of the testing approach proposed for ML algorithms (in Chapter 4), we
require the logical encoding of the decision tree model. Moreover, the testing
approach proposed for ML models (in Chapter 5) also requires the encoding
of decision trees and neural networks models. Apart from the encoding of the
models, we also describe the approach for checking requirements on the logically
encoded models. Thus, Chapter 3 gives a much required foundations of the
testing approaches we propose later on.

Chapter 4 We present a testing approach to test the machine learning algorithms in
Chapter 4. For this, we first define a property called balanced data usage, which
formalizes a way to conceptualize the correct outcome of the learning phase.
Then we propose a metamorphic testing approach [CKL+18] to test the prop-
erty. Subsequently, we validate the property on several popular machine learning
libraries such as scikit-learn, WEKA, XGBoost, LightGBM, and CatBoost.

Chapter 5 As mentioned earlier, we aim to develop a testing mechanism for ML models
which is model agnostic, i.e., applicable to any type of model. To achieve this,
we propose verification-based testing which is based on the idea of learning-based
testing [AMM+18]. In this approach, an ML model is learned to approximate the
functional behaviour of the model under test. Thereafter, a verification technique
is applied to the learned model to analyze the given requirement on it. We
describe in detail about this testing approach in Chapter 5.

Chapter 6 Next, we take the verification-based testing approach one step further. We
develop a property specification mechanism on top of it to develop what we call
a property-driven testing technique. This then allows the tester to specify any
property in the pre- and post-condition format. Based on the specification, the
underlying verification-based testing technique then uses the property to generate
test cases in order to find a violation of the specified property. In Chapter 6 we
define the syntax and semantics of the specification language and furthermore
describe how we incorporate it to develop the property-driven testing approach.

Chapter 7 In Chapter 7, we give the evaluation results of our property-driven testing
tool while applying it to validate diverse properties on the different types of ML
models. While doing so, we also compare the performance of our tool with several

16

1.3 Publications

state of the art testing approaches and report the results. Moreover, we perform
several experiments to argue about several design approaches that we have taken
in developing this tool.

Chapter 8 At the end, we summarize the works done in this thesis and end it with
some possible future works in Chapter 8.

Furthermore, the technical details of the tools we presented in this thesis are de-
scribed in Appendix A. It also includes the links to all the artifacts developed as part
of this thesis.

1.3 Publications
The work presented in Chapter 4 on testing of machine learning algorithms for bal-
ancedness was published in IEEE International Conference on Software Testing, Veri-
fication and Validation (ICST) in 2019 [SW19].

The concept of verification-based testing presented in Chapter 5 was published in
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA)
in 2020 [SW20b]. Apart from presenting the testing technique, in this paper, we also
used it to test the monotonicity property of the ML models.

In Chapter 6 we extend the idea of verification-based testing to develop the property-
driven testing mechanism. We employed this testing approach for testing several types
of fairness properties. This work was published in IFIP International Conference
on Testing Software and Systems (ICTSS) in 2020 [SW20a]. Later we extended the
specification language and applied our testing mechanism to test a security property
and the concept relationships on specific types of ML models. This work was published
in IEEE International Conference on Machine Learning and Applications (ICMLA) in
2021 and detailed in Chapter 7.

We furthermore validated diverse numerical properties on a specific type of ML
model, namely the regression model by appropriately extending our approach. This
work was published in ACM SIGSOFT International Conference on Formal Methods
in Software Engineering (FormaliSE) in 2022.

17

2 Background

In this thesis, we focus on testing machine learning (ML) algorithms and learned
models. Therefore, first of all, we start by giving a brief description of the necessary
background in machine learning. More specifically, we explain the typical workflow
of ML and some classification and regression algorithms that form the basis for the
work of this thesis. Furthermore, we mention some application areas of ML and the
properties of interest in such areas.

As mentioned before, we use testing as a means to validate several properties on the
ML algorithms and models. So that the reader can comprehend the idea of software
testing, we briefly describe the typical testing approach and later explain how some
specific approaches are particularly useful in the context of ML testing. Finally, we
end this chapter by describing some of the existing works, the research gap, and how
our work address this gap in this thesis. As a quick outlook of this chapter, we focus
on the following three aspects:

1. typical workflow of machine learning with necessary formalization, including a
brief description of some algorithms (Section 2.1)

2. some traditional software testing approaches, primarily focus on the approaches
we use in this work (Section 2.2)

3. related work of some specific ML testing approaches (Section 2.3)

2.1 Machine Learning Fundamentals
We start by introducing some basic terminologies in machine learning and then briefly
describe some specific learning algorithms.

A supervised machine learning algorithm essentially has two main steps. First of all,
in the learning phase, the learning algorithm generalises from a set of data instances
called training data to generate a predictive function. This function is called the ML
model or in short model. Next, this model is used in the prediction phase as a decision-
making software to predict or classify classes for unknown data instances. Essentially,
there exist two broad categories of learning algorithms depending on the nature of the
class values: classification and regression. While the classification algorithm learns
to classify integer values as the class values, regression learns to predict1 real-valued
numbers. Moreover, depending on the number of classes, i.e., whether a single class
or a set of classes is predicted, the learning algorithm can be further categorized into
single-label and multi-label learning approaches. Below we give a formalism, which
caters to all these types of learning strategies.

Formally, the ML algorithm learns a predictive function or model as follows:

M : X1 × . . .×Xn → Y1 × . . .× Ym

1We use the term ‘predict’ for both classification and regression and ‘classify’ for only classification

19

2 Background

where Xi is the value set of the feature i (also called attribute i) and 1 ≤ i ≤ n,
Yj is the class for the jth label and 1 ≤ j ≤ m. Depending on the type of feature
values we can divide the features into three broad categories: categorical, numerical,
and text features. Categorical features have a finite set of feature values and are
more often defined as a string, such as features like gender which could be male or
female. Numerical features as the name suggests, contain numerical values which can
be integers or rational numbers. Finally, text features consist of text, such as product
reviews or social media posts (containing a collection of strings) and only a specific
type of classifiers (natural language processing algorithms) can be used to learn from
them.

This formalism we defined so far will now enable us to define the different types of
learning approaches. When m > 1, it is defined as multi-label learning and in case
of m = 1, it is the single-label learning approach. Basically, a multi-label learning
algorithm learns to predict a vector as output, whereas a single-label learner learns
to predict a single value. Furthermore, when |Yi| > 2 it is considered as a multi-class
classification, and when |Yi| = 2, it is a binary classification problem, and in case of
regression, Yi ⊆ R.

We define X⃗ for X1 × . . .×Xn and similarly Y⃗ for Y1 × . . .×Ym. We use x⃗ ∈ X⃗, and
y ∈ Y⃗ as the corresponding class and therefore (x⃗, y) forms an element of X⃗ × Y⃗ . The
training data consists of a set of such pairs (x⃗, y) ∈ X⃗ × Y⃗ . The learning algorithm
generalizes the dataset, using a statistical learning technique, thereby generating the
function M to which when an x⃗ is given, an y as its class is predicted. We furthermore
define x⃗(i) as the ith feature of the data instance and similarly when considering multi-
label learning yj as the jth class. Based on this formalization, next we define some
machine learning algorithms.

2.1.1 ML Algorithms and Models

In this section, first we give a brief description of some machine learning algorithms
which are relevant in order to understand the work of this dissertation. Then we
mention some of the most important properties of ML models based on the application
areas.

k-nearest neighbors. The k-nearest neighbors (or in short k-NN) algorithm is
a simple supervised learning algorithm that can be used for both classification and
regression tasks. The learning process in this algorithm does not depend on the dis-
tribution of the training data, which is why it is called a non-parametric method. It
assumes that similar instances stay together and therefore, it finds the k nearest data
points for a given input instance and predicts the label of that instance based on the
k data points found.

In its learning phase, the algorithm simply stores the training data instances. Later
in its prediction phase, given an instance, it computes the distances from that instance
to all the data instances of the training set. It then takes k-nearest instances and
returns the class which occurs most frequently amongst these k instances. The distance
metric used in this algorithm is most often the Euclidean distance measure, however,
other distance measures (such as Manhattan or Minkowski) are also used. The value
of k plays an important role and can be optimized depending on the problem at hand.
On the one hand, a smaller value of k results in a low bias but high variance model 2

2Please refer to this book [AMMIL12] for more on bias and variance of the machine learning models.

20

2.1 Machine Learning Fundamentals

x0 < 10

x1 < 65

0

True

1

False

True

x1 < 60

0

True

1

False

False

Figure 2.1: A decision tree of depth 1

and therefore, prone to overfitting, and on the other hand, a higher value of k results
in a high bias but low variance model, which might lead to underfitting. Therefore,
the optimal value for this depends on the specific dataset and task at hand.

Decision tree. Given a set of training instances X⃗ × Y⃗ , a decision tree learner
learns decision rules inferred from the features of the data instances. The collection
of such rules forms a binary tree which is then used as a classification or a regression
model. A perfectly balanced decision tree has 2d number of nodes, where d is the
depth of the tree. Each internal node corresponds to a decision function or a condition
defined on a feature, is of the form x⃗(i) ∼ vi, where ∼ can be any conditional operators
like <,≤,≥, etc. and vi can be a value of type integer, or real3.

Each of the decision function on a feature recursively splits the input space into
two sub-spaces. The decision as to which feature should be used for splitting is done
based on the information theory, essentially by calculating the entropy before and
after applying the split. The feature, splitting on which would give the maximum
information gain, is considered. In other words, we generate the decision function on
a feature that would give us a more refined decision rule in predicting a class [Qui97].
The tree is evaluated in a top-down manner, i.e., starting with the root node of the
tree and then subsequently satisfying the decision conditions in each internal node until
reaching the leaf. When a leaf is reached, an output class associated with the leaf node
is returned. Eventually, such a tree specifies a partition of the input space into hyper-
rectangles and form a piece-wise constant approximation function. Further details of
different types of decision trees and their applications can be found here [WKQ+08].

Figure 2.1 shows a simple classification tree of depth 1. Considering the dataset
containing only two features x0 and x1, all inner nodes have conditions on the argu-
ments x0 and x1 and one child for the True (left edge) and one for the False (right
edge) case. However, it might happen that some features are not considered in the
tree. This generally happens when either using a feature in a decision function does
not result in gaining new information or simply the tree size needs to be reduced and
hence, less important features are removed. For a concrete input to the model, the
tree is traversed depending on the values of the features and their corresponding con-
ditions on the nodes of the tree. The value of the leaf reached in this traversal gives
the predicted output which in this example is either 0 or 14.

Neural network. This ML algorithm exists in different forms such as perceptron,
feed-forward, convolutional, and more. Depending upon the activation functions used,

3Note that, we consider that the training dataset containing categorical attributes are pre-processed
to yield a dataset containing only numerical values.

4Note that, for simplicity, we consider here the example of binary classification.

21

2 Background

those networks can be further categorized. However, we do not discuss all of these
different types (for interested readers we refer to this book [Agg18]), rather we focus
on describing the-feed-forward neural network with ReLU (Rectified Linear Unit) as
activation function, which is relevant to understand the work of this dissertation.

Figure 2.2 shows a feed-forward neural network and we consider this network to
have ReLU as the activation function. A feed-forward network can be described as
a sequence of layers starting with the input layer. Each layer consists of a number
of neurons. In this example, for simplicity, we assume that we have only two hidden
layers each consisting of three neurons. We consider an input instance of size 3, there-
fore, we have 3 neurons in the input layer and for simplicity, we consider the binary
classification, hence, two neurons in the output layer 5.

Each neuron consumes a linear combination of the outputs of neurons from the
previous layer. For example, the first neuron (n(1)

0) of the hidden layer gets the values
from the input layer and then sums them up with its bias as x0 ∗w(1)

00 +x1 ∗w(1)
10 +x2 ∗

w
(1)
20 + b

(1)
0 , where w(1)

00 , w
(1)
10 , w

(1)
20 are the weights associated with the edges connecting

the input layer neurons x0, x1, x2, respectively, and the bias term b
(1)
0 in this case is

0.784. It then applies an activation function which in our case is ReLU (Rectified Linear
Unit) [NH10], and can be described as ReLU(x) = max(0, x). Thus, the output of the
first neuron would be ReLU(x0 ∗w(1)

00 +x1 ∗w(1)
10 +x2 ∗w(1)

20 + b1
0). The same process is

repeated for all the other neurons in this layer. Similarly, a neuron in the second layer
gets its inputs from the previous layer neurons. For example, assuming the outputs of
the neurons n(1)

0 , n(1)
1 and n

(1)
2 are o(1)

0 , o(1)
1 and o

(1)
2 respectively. Now, the output of

the first neuron n
(2)
0 would be ReLU(o(1)

0 ∗ w(2)
00 + o

(1)
1 ∗ w(2)

10 + o
(1)
2 ∗ w(2)

20 + b2
0) where

w
(2)
00 , w

(2)
10 , w

(2)
20 are the weights associated with the edges connecting the previous layer

neurons. This is furthermore repeated for all the neurons in the second layer.
Finally, the output layer neuron does not apply ReLU and moreover, the number of

neurons can vary depending on the problem at hand. For example, when the sigmoid
function [GBC16] is applied to the output layer, the function bounds the output–which
is calculated as a linear combination of the outputs of neurons of the previous layer
plus the bias term of the output neuron–between 0 and 1. On the other hand, if
we consider a softmax function [GBC16] for binary classification, then the number of
neurons in the output layer is 2 and the output neuron which receives the maximum
value from the previous layer is considered as the output class 6. Essentially, the
softmax function converts a vector of N real numbers into a probability distribution
of N possible outcomes. For instance, in our example if the output neuron n

(3)
0 has

got the maximum value from the previous layer then the predicted class would be 0.
Note that, in case of multi-class classification, the number of neurons depends on the
number of classes, and softmax is applied to choose the right class [HTF09]. Finally,
in case of regression, no such function is applied to the output value and there would
be a single neuron in the output layer.

The weights and biases of the neural network are initially set to some random values
(although in some cases the initial values are determined from the training dataset). Af-
terward, the backpropagation algorithm [RHW86] is used to find the optimized weights

5Note that depending on the activation function chosen for the output layer the number of neurons
in the output layer can also be one for binary classification.

6Note that, in this case the ascending order of classes are considered from top to bottom, i.e., the
top most output neuron has the lowest class value and the bottom most has the highest.

22

2.1 Machine Learning Fundamentals

x0

x1

x2

b
(1)
0 =0.784

n
(1)
0

b
(1)
1 =-0.142

n
(1)
1

b
(1)
2 =-0.921

n
(1)
2

b
(2)
0 =0.843

n
(2)
0

b
(2)
1 =0.329

n
(2)
1

b
(2)
2 =-0.730

n
(2)
2

b
(3)
(0)=-0.178

n
(3)
0

b
(3)
(1)=-0.182

n
(3)
1

Figure 2.2: A feed-forward neural network

and biases. In its simplest form, starting with the first training instance, the algorithm
gives the instance to the network and thereby gets a class value which might or might
not be the actual class for the given instance. If the actual class is predicted, the algo-
rithm proceeds with the next instance. If it is a different class, it updates the weights
and biases so that the network learns the correct class for the first instance. How-
ever, this is inefficient and time consuming as often the number of training instances
are huge as well as the size of the network. Therefore, modern-day algorithms use
faster optimization algorithms such as gradient descent, stochastic gradient descent,
etc. [Nie15] for this purpose.

Random forest. This is an ensemble learning algorithm, combining a collection
of decision tree models where each model learns from a random subset of the training
dataset [HTF09]. The idea of such an ensemble was proposed to improve the learning
of a single decision tree. The decision tree learning algorithm is a simple, yet effective
technique and in many cases works really well. However, when the size of the tree is
too big, then it tends to overfit the training dataset, i.e., not giving good results on
the unseen data instances. If the size of the tree is small it does not generalize well
on the training dataset (variance problem). This is more commonly known as bias-
variance tradeoff in learning (see [AMMIL12]). The random Forest learning algorithm
is proposed for reducing the variance by getting an ensemble of a number of decision
trees. Essentially, each tree generated in this ensemble is completely independent of
each others as they learn from a subset of the training data instances randomly chosen
with replacement. The collection of such trees forming the random forest model is said
to be significantly reducing the variance of the model.

Formally, a random forest R can be defined as a collection of l decision trees, such
as R = ⟨D1 . . . Dl⟩, whereas the final predicted class for a given data instance is
decided after evaluating it on all the trees of the ensemble. For an input instance
x⃗ ∈ X1 × . . . × Xn, the output given by each tree is essentially an ordered set of
probabilities, where each of the values in this set denotes the probability of predicting

23

2 Background

the corresponding class 7. The final class for x⃗ would be then the one with the highest
mean probability estimated across all the decision trees of the ensemble. For example,
suppose, pj

i is the probability of class j given by tree i such that, ∑k
j=1 p

j
i = 1, where

k is the number of classes and 1 ≤ j ≤ k, 1 ≤ i ≤ l. So for a class j, we have.

yj = 1
l

l∑
i=1

pj
i

So the predicted class for a classification problem can be defined as,

R(x⃗) = arg max
j

yj

On the other hand, in case of regression each tree gives a rational number as output
and the final prediction for an input instance would be simply

R(x⃗) = 1
l

l∑
i=1

vi

where vi is simply the value given by the tree i.

Gradient boosted trees. Unlike random forest learning algorithm, which at-
tempts to reduce the variance of the model, the boosted trees reduce the biasedness.
First of all, given the training dataset, each of the instances in the dataset gets a weight
value of 1/N , where N is the number of training instances. Then a base (‘weak’) learner
is used to train on the dataset which would minimize the loss which defines a quantita-
tive measurement as how many of such instances are wrongly predicted by the learned
model. The idea of learning is to minimize the loss defined by using a function. There
exist several loss functions, depending upon the problem at hand [HTF09]. Note that,
in the case of boosted algorithms, the loss function considers the weight given to each
training instance.

Initially, the learner is trained on the training dataset, the loss function computes
the loss and this is used to update the weights given to the training instances. This is
repeated a number of times (based on the number of base learners) and at each iter-
ation, these weights are modified individually when a learner is trained. For example,
at any step i, the training instances– misclassified by the learner Gi−1 generated in the
previous iteration –have their weights increased, and the correctly classified training
instances are given lesser weights. The idea is to rectify the mistakes made by the
previous learners and thereby collectively generate a strong model. At each step of
boosting, such a learner is searched by using a gradient method in order to minimize
the loss incurred by the previous learner. This process iterates over the number of
learners (chosen by the user). In the end, collectively the learned models are said to
have learned from the data, minimizing the loss and reducing the bias. Considering
regression learning, the prediction for a given instance x⃗ is as follows:

7Note that a decision tree in its leaf nodes essentially gives the probability values corresponding
to each class. Thus, amongst those probabilities, the one with the highest value is chosen as
the corresponding class value of a leaf node in case of a decision tree model. For random forest,
however, the probability values are taken for further computation.

24

2.1 Machine Learning Fundamentals

G(x⃗) =
k∑

i=1
αiGi(x⃗)

Here αi is the weight given to a learner i based on how much loss is incurred by it,
i.e., more accurate model is given higher weight in order to increase its influence in the
final prediction. The idea of boosting was first proposed by Schapire [Sch90]. Later
the usage of the gradient method for searching a weak learner and the use of the tree
as the weak learner was proposed by Breiman [Bre96]. In case of the gradient boosted
trees, the learning algorithm works a bit differently. The derivation from the basic
boosting algorithm to the gradient boosted tree is out of scope for this dissertation,
for interested readers we refer to [HTF09]. Next, we describe the steps of the gradient
boosted trees through an example.

Let us assume, we are given a set of training instances D = {d1, . . . , dN } where
di = (x⃗i, yi), is a data instance and its corresponding class. Initially, we calculate the
average of all the class values, i.e., y1

a = (y1 + . . . + yN)/N . Then we subtract each
yi from the y1

a to get a set of residual values, {y11
r , . . . , y

1N
r }. Now we have a set of

instances in the form D1
r = {(x⃗1, y11

r), . . . , (x⃗N , y1N
r)}. Next a regression decision tree

is learned on Dr, where the predicted value for a x⃗i is a residual value y1i
r , i.e., a value

denoting how different it from the actual prediction yi is. Then the residual is used
to calculate the actual prediction as y1

a + α ∗ y1i
r , where α is learning rate, which can

be chosen beforehand8. We again compute how this value is different from the actual
prediction by subtracting yi to it. We do this for all the instances and again get a set
of residual values as {y21

r , . . . , y
2N
r } thereby resulting a new training set for the second

tree D2
r = {(x⃗1, y21

r), . . . , (x⃗N , y2N
r)}. This process is repeated to a fixed number of

times and at each iteration the residual i.e., the loss decreases until it becomes a small
value. So the idea is at each iteration the newly learned tree rectifies the mistake of
the previous tree. The number of trees (i.e the iterations) is a hyper-parameter to this
algorithm and can be chosen at the start of the algorithm. Formally for a given x⃗, the
prediction of a gradient boosted regression tree can be defined as,

G(x⃗) =
k∑

i=1
Gi(x⃗)

Here k is the number of decision trees chosen initially (hyper-parameter value). For
classification, the learning algorithm constructs a single strong model for each class
(also by iteratively learning weak decision trees). Suppose c is the number of classes,
formally, the classifier Gc is a sequence of c GBT regressors, Gc = ⟨Gr1 . . . Grc⟩. Each
of the GBT regressors is furthermore consisting of let us say k decision trees (i.e.,
decided based on the hyper-parameter selection). That is a GBT regressor Grj =
⟨DT1 . . . DTk⟩, where 1 ≤ j ≤ c For a given input instance x⃗, each of the regressors
gives a real value and thereby we have c number of such values. The class is chosen
with the maximal value, that is

Gc(x⃗) = arg max
j

(Grj (x⃗))

8This is one of the hyper-parameters of the gradient boosted trees. There are detailed studies available
how to choose this value [PVG+11].

25

2 Background

Support Vector Machine (SVM). This learning algorithm attempts to find the
best possible decision boundary, that represents the largest separation, or margin,
between two groups of classes 9. Such a decision boundary maximally separates the
data instances into different classes. In its simplest form, this can be done by finding a
line separating different classes, if the data instances are linearly separable. However,
when the data instances are not linearly separable, SVM generates a hyperplane as the
maximal separator between two sets of classes by transforming the input data into a
higher-dimensional feature space.

Given a set of labeled data instances, SVM first employs a technique called the
kernel method [CV95], which allows to implicitly transform the original feature space
into a higher-dimensional space. Precisely, the kernel function calculates the similarity
between pairs of data instances to perform such a transformation. After that, the
SVM searches for the hyperplane that maximizes the margin between the nearest
data points of different classes. The margin is defined as the distance between the
hyperplane and the closest data points, known as support vectors. The SVM aims to
find the hyperplane with the largest margin while also minimizing the loss. This is
achieved by formulating an optimization problem that involves maximizing the margin
and at the same time minimizing the loss occurred by the generated hyperplane.

Essentially, a hyperplane is represented by a set of weights assigned to each feature,
along with an offset (also called a bias) term. For instance, for a binary classification
problem, such a hyperplane takes the form: w0 ∗ x⃗(0) + . . .+ wn ∗ x⃗(n) + b, where wi

is the weight associated with the feature i and b is the offset term. At the end of the
training phase of SVM, optimal values for wis and b are obtained that maximize the
support vectors between the classes while minimizing the losses. Thus, classification of
a new data point x⃗ is done by evaluating the equation w0 ∗ x⃗(0)+ . . .+wn ∗ x⃗(n)+ b. If
the result is positive, the data point is assigned to one class; if negative, it is assigned
to the other class.

Next, we highlight some important properties of several application areas of ML
models.

2.1.2 Properties

Previously we discussed a range of application areas of machine learning models such as
social, economic, transportation, medicine, law, etc. Now, there exists several proper-
ties concerning these application areas, which need to be ensured before the deployment
of the ML models. As the model is generated through the training phase, we also need
to ensure that the learning algorithm learns the ‘correct’ model in this phase. Primar-
ily, the properties of ML-based software can be classified into two different categories:
functional and non-functional [ZHML22].

Note that, in the typical notion of software testing, functional and non-functional
properties correspond to different kinds of requirements compared to ML testing. For
instance, functional properties correspond to what the software is supposed to do and
how it should respond to different inputs. In other words, functional properties can be
thought of as the specific requirements that outline the desired behavior of the software.
To this extent, in ML testing, functional properties do relate to the functionalities of
the ML model, such as properties like accuracy or model relevance. However, in the

9Note that for simplicity we consider the case with the Binary classification problem. However, this
concept can easily be extended to multi-class classification problems.

26

2.1 Machine Learning Fundamentals

case of non-functional properties which concern performance, reliability, and maintain-
ability in traditional software testing, in ML testing this means something different.
More specifically, in machine learning, non-functional properties relate to fairness, ro-
bustness, monotonicity, security, interpretability and more such properties. Since in
this thesis, we always talk about ML testing, with the functional and non-functional
properties we would always point to their respective definitions in ML testing.

Functional properties. These properties mainly concern the correctness and
model relevance. The correctness of the model is defined as the model accuracy. More
formally, suppose x⃗i is an unseen data instance (i.e., it has been not observed by the
learning algorithm in the training phase) and yi as the true prediction for it and M(x⃗i)
is the prediction given by the learned model. In its simplest form, correctness for a
classification model can be defined as,

1
T

T∑
i=1

L(M(x⃗i), yi)

Here, T is the number of test instances and L(M(x⃗i), yi) is a binary function gives
1, when M(x⃗i) = yi otherwise 0. However, for regression, this measure cannot be used
since finding out whether two real values match exactly might be intractable. Instead,
error metrics such mean squared error, mean absolute error or root mean squared error
are used in practice.

So accuracy essentially measures the success rate of an ML model on a number of
previously unseen data instances. However, the availability of such data instances are
often scarce and therefore a more practical approach determines the accuracy of the
learned model by splitting the training dataset into training and validation data. To
this end, the learning algorithm gets trained on the training data and the validation set
later determines how well the learned model performs on the previously unseen data.
However, a potential drawback of this approach is the selection of the size of either of
the set. On the one hand, If we select a large size of training data and a small number
of validation data instances, the accuracy measure might not give a real estimate. On
the other hand, setting aside a large number of validation data might give a badly
trained model [AMMIL12]. A technique called the K fold cross-validation approach
is proposed to tackle this issue. For this, the training instances are divided into ⌈N

K ⌉
number of groups. Now the training process iterates over different groups and at each
training phase the learning algorithm gets trained on ⌈N

K ⌉ − 1 groups and one group
of K instances are used for validation. At the end of the iterations, we will have K
number of accuracy results which is then averaged to get a final estimate [AMMIL12].
Training a model and measuring the accuracy to further improve the model is strongly
co-related to each other and are mainly done in the training phase by the model
developer.

Model relevance, closely related to the accuracy, measures whether the model is
too complex for learning the dataset (overfitting) or does not generalise the training
data well enough (underfitting) [VLL94]. Cross-validation, the same as before, can be
used to detect those. However, it is essentially unclear, what an acceptable overfitting
is. There exists a large body of work to tackle this problem, for example, by re-
sampling the data [MLL+18], by generating adversarial data instances [WGS19], etc.
We, however, in this work do not focus on the model relevance or correctness, rather
we intend to find out whether the learning phase works correctly.

27

2 Background

As we have mentioned before, due to the statistical nature of learning, it is often
not clear what to expect as the outcome of the learning phase. We can of course
measure the correctness of a model by observing how well it performs on unknown
data instances, however, there does not exist a property defining what is expected to
be learned from the training data. To this end, we introduce a property called balanced
data usage, which essentially says, in the learning phase the learning algorithm learns
what is in the training data. As the purpose of the learning is to learn from the given
training instances, therefore the learning algorithm in its learning phase should not
leave out any instances and consider each one of them in its learning phase. In the
next chapter (Chapter 4), we formally define this property and give a testing approach
to validate the property.

Non-functional properties. As mentioned beforehand, non-functional properties
for machine learning models are specific requirements that correspond to properties
like fairness, robustness, monotonicity, etc. [ZHML22]. In this dissertation, we primar-
ily look at some of these non-functional properties of the ML models. To this end, we
validate four different types of such properties on the classification models such as fair-
ness, monotonicity, concept relationship, trojan attack, and a number of mathematical
properties on the regression models.

To start with, there exist multiple definitions of the fairness property and they can
be broadly categorized into two categories: similarity-based measures and statistical
fairness. Since our approach cannot be used to check statistical fairness properties,
in this thesis we only look at the similarity-based definitions. To give an example of
such let us consider individual discrimination. This property requires the ML model
to give similar predictions for similar individuals. For example, a loan granting soft-
ware is discriminating against any individual with respect to gender if the change of
gender from male to female and keeping other feature values the same, changes the
prediction (individual discrimination). A weaker definition (fairness through aware-
ness) does not strictly enforce equality on the non-protected feature values, rather it
says if two instances are similar–which is defined using a distance measure–then the
model prediction should also be the same. The statistical fairness definitions such as
predictive parity, and equal opportunity [RT16] require to have equal probabilities to
predict a class by the ML model for different groups of people in the society.

Similar to the fairness property, monotonicity is another non-functional property
where the model predictions of two input instances are compared to find the violation
of the property. This too has many variants. The basic idea is: if some feature values
are increasing in the input instance, then the prediction of the ML model should also
be increasing. For example, consider a loan granting model that is predicting the
chance of giving a loan to any person. The chance of getting a loan should be higher
for a person with a higher income compared to a person with a low income. This
requirement occurs frequently in domains like credit scoring, house pricing, insurance
premium determination, etc.

As machine learning models are frequently applied in the security domain, ML mod-
els need to be robust against vulnerability attacks. As an ML model is designed to give
a prediction for a specific instance, it can be manipulated by the attacker to achieve
a desired prediction. For example, consider a spam filtering case, where an ML model
is used to detect any incoming mail for possible spam. In this case, if the attackers
can find out which specific features are responsible for a mail being predicted as spam
by the model, they can alter the values of these features, thereby fooling the model

28

2.2 Software Testing

into detecting the mail as a non-spam mail. This type of attack is called a trojan at-
tack [LMA+18] where such a specific input pattern if present in the input data instance
the attacker expects to yield a specific prediction.

The non-functional properties, that we have discussed so far, mainly concern single-
label classification models. Our ML model testing approach can, however, also be
used for multi-label classification models where we consider a specific application area
known as knowledge graphs [DN21]. These graphs are being learned by the models to
categorize entities according to given concepts that are fixed in an ontology. Ontologies
not only describe concepts (like animal, dog, or cat), but also state the relationship
between them (e.g. “every dog is an animal”). In such a setting, we get a multi-label
classifier where each concept is a class label and the labels are binary (for e.g. an
instance is a cat and an animal, but not a dog). To this end, we consider a prop-
erty called the concept relationship which is basically defined as a Boolean expression
over the class labels checking whether a multi-label classification model holds such
relationships.

Apart from these properties, we also look at a number of numerical properties of the
regression models and a specific type of numeric function called aggregation functions.
We give the formal definition of these properties in Chapter 7.

Next, we describe some specific software testing techniques and later we describe
how these can be used to test ML algorithms and models.

2.2 Software Testing

Based on [MSB11], “Software testing is the process of executing a program with the
intention of finding errors.” The errors are essentially unexpected behaviour or cases
where the software fails to comply with specific requirements. Testing involves gen-
erating the test cases, and then executing the software on the generated test cases in
order to find the violations of the requirements. The quality of these test cases gener-
ally depends on the coverage criteria, i.e., what percentage of the source code the test
cases can cover. For example, one measure of such could be how many lines of code
have been covered by a set of test cases. Test case generation technique that can cover
most lines of code for most of the programs is deemed to be effective. Intuitively, if
most lines of the program are covered, then the parts of the program which is faulty,
must have been covered or has more chance to be covered by the test cases. As the ef-
fectiveness of the testing primarily depends upon the quality of the test cases, over the
years a plethora of works have been proposed to this end. Instead of mentioning them
individually here, we refer the readers to these works [Har07, ABC+13, BCR21, CS13].

Now, different test case generation techniques can be further categorized depending
on the accessibility of the software under test (SUT), i.e., whether the internal struc-
ture or the implementation of the software is available to us. For this, there exist two
most prevalent strategies: black-box and white-box testing. For example, test gen-
eration techniques like random or adaptive random testing, model-based testing, and
metamorphic testing do not require to have the implementation of the SUT. However,
the testing techniques like symbolic execution, grey or white-box fuzzing, concolic test-
ing need the implementation of the software for generating test cases. As we consider
the given learning algorithm and the ML model as a black-box in our thesis, we restrict
our discussion to mainly black-box testing techniques here.

29

2 Background

Algorithm 1 Test Generation for ART
Input: testSet, POOL_SIZE, MAX_SAMPLE
Output: set of test cases

1: count := 0;
2: while | testSet | < MAX_SAMPLES do ▷ extend start set
3: cand := ∅; count :=0;
4: while count < POOL_SIZE do ▷ generate candidates
5: cand := cand ∪ {genRandom()}; count++;
6: cfur := oneOf(cand);
7: maxDist := 0;
8: for c ∈ cand do ▷ determine “furthest away” cand.
9: dist := minDistance(c, testSet);

10: if dist > maxDist then
11: cfur := c; maxDist := dist;
12: testSet := testSet ∪{cfur};
13: return testSet;

2.2.1 Adaptive Random Testing

We start with a simple testing technique that was essentially developed to encounter
the weakness of simple random testing [CLM04]. In random testing, test cases are first
generated uniformly at random and then those test cases are executed on the program
under test in order to find an error10. Although, in some cases it has been shown to
be surprisingly useful, often generating test cases blindly might not give a desirable
coverage of the program and therefore can be ineffective in finding errors. The main
goal of adaptive random testing (ART) is to bring diversity to the generated test cases.
The process can be best described by Algorithm 1 [Wal18].

The algorithm starts with testSet, which is initially a randomly generated set of test
cases and user given input parameters POOL_SIZE and MAX_SAMPLE. First of all,
given a set of initial test cases, we generate a set of candidate test cases randomly as
cand (Lines 4-5). Afterward, we take a new test case from cand which is the ‘furthest
away’ from the set of initial test cases testSet. It starts at line 8, where we first take a
test case c from cand, compute the minimal distance between c, and all the test cases
from testSet and in the end, keep it in cfur. In the second iteration, if the new test
case from cand has a greater minimal distance than the previous one, we replace the
furthest away candidate with the new c. This process is repeated for all the candidate
test cases from cand and in the end, we select single a test case from this candidate
set. We repeat this process until a maximum number of test cases are generated. Note
that, there are other termination criteria available such as time out. However, most of
the algorithms consider a limit on the number of test cases.

The distance function plays an important role in generating new test cases in ART.
The default approach is to use a Euclidean distance metric [Wal18]. However, it cannot
be applied in some cases. For example, if the input parameters are of different scales
or the test cases are not numeric, the Euclidean distance measure is not applicable.
To this end, there have been a number of works proposing several distance measures,

10We define error as the failure of the program to produce desirable behaviour.

30

2.2 Software Testing

MR R

SUT S

SUT S

t t

R(t) = t′

t

S(t)

S(t′)

Figure 2.3: Workflow of metamorphic testing. Test input t is transformed based on a
specific metamorphic relation R to t′, and executing these two test inputs
generate two outputs. Depending upon R, the relation between the outputs
S(t) ∼ S(t′) is determined.

depending on the problem at hand. In this work, we also propose such a distance
metric [SW20a] based on the property we check. We use ART as one of the baseline
approaches to compare against our testing approach and in Chapter 7, we give details
of it. For a comprehensive survey of different distance metrics and the usage of ART,
we refer to the works of Huang et al. [HSX+21].

2.2.2 Metamorphic Testing

Although software testing is frequently used to ensure quality by validating require-
ments, however, it often suffers from the oracle problem. The oracle problem refers to
the scenario, where we do not know what would be the expected outcome for a test
case. Generally, in software testing, first, we generate a sequence of test cases T =
⟨t1, t2, .., tn⟩ and then we execute the software S on these test cases to find out whether
the outputs ⟨S(t1), S(t2), ..S(tn)⟩ match the expected outcomes ⟨f(t1), f(t2), ..f(tn)⟩.
Here, the function f (also can be called a target function) works as the oracle, deciding
whether the output generated by the software S is as expected. If any of the test cases
generate an unexpected behaviour such as S(ti) ̸= f(ti), we say that the software does
not conform to the requirement. However, in many applications, there is no oracle f
available, i.e., it cannot be defined what a correct outcome is supposed to be.

The metamorphic testing (MT) technique was introduced to alleviate this oracle
problem in software testing. Although it was first intended as simply a test case gen-
eration technique (i.e., generating new test cases from a set of some existing randomly
generated test cases), but soon it became obvious that this new testing technique could
be used to tackle the oracle problem. When implementing metamorphic testing, first
of all, a sequence of input instances as T are randomly generated and then through
a specific metamorphic-relation R a follow-up input sequence T ′ = ⟨t′1, t′2, .., t′n⟩ are
generated where, R : t → t′. Once we have the two sets of test cases T and T ′, both of
these are then executed on the software under test to generate two different outputs
which are then compared with reference to the metamorphic relation (MR) R (see
Fig. 2.3).

For a given software, a metamorphic relation is a property of the target function.
For example, to check the program implementing sin function, one MR could be to
apply negation on the input, i,e, to check for an input x and −x, if sin(−x) = −sin(x).
If this relation does not hold, x is said to be a failed test case. We do not intend to
summarize all about metamorphic testing and different metamorphic relations and all

31

2 Background

of its application in various domains here (For interested readers, we refer to the works
of Chen et al. [CKL+18]).

Metamorphic properties. Several non-functional properties of ML models which we
have considered in this thesis are metamorphic in nature. For example, the individual
discrimination property states: if two instances have the same values for all the features
except for the protected attribute(s), then the output prediction should also be the
same; is a metamorphic property as the original and the follow-up test cases have
a specific MR and thereby the output predictions are expected to hold the equality
relation. We consider more such metamorphic properties in our thesis. In Chapter 7
we give a detailed overview of the ones we validate. Note that, in software engineering
literature such properties are also called hyper-properties [BF22] where two outputs
corresponding to two inputs are needed to check a property. In an existing literature,
these are called k-specific properties [CEH+22]. In this thesis, we, however, call them
metamorphic and hyper-properties interchangeably.

2.2.3 Model-Based Testing

This is a specific type of testing technique where a model is generated (or learned) from
the software under test (SUT) and then it is used to guide the test generation process.
The model is essentially an abstract and partial representation of the SUT and can be
of different types such as information, workflow, behavioural, etc. [Sch12]. Once the
model is there, test cases are generated from the model in order to find a violation of
the given specification. The test cases are of the same abstraction level as the model.
Moreover, as these are generated without considering the structure of the SUT, this
testing technique can be essentially used as black-box testing. There exist several ways
to generate test cases from the model and that depends on two main factors: a) type of
testing, for example, requirements testing, conformance testing, system testing, etc.,
and b) type of models, such as finite state machines or ML models. As in this work,
we focus on testing whether a given requirement specification is violated by the SUT,
we discuss here model-based testing (MBT) in the context of requirements testing.

Models are at the heart of this testing technique and there are several ways to learn
them. However, the basic idea of learning remains somewhat the same. Model learning
requires the existence of a learner, which interacts with both the learned model and the
SUT in order to find out whether the model that is being learned, is accurate enough to
capture the intended behaviour of the SUT [AMM+18]. First of all, a set of inputs are
generated, which are given to the SUT, and for which we get a set of outputs. Thus,
a set of input-output pairs are generated which is then used to generate an initial
model. Further test inputs are generated, feeding them to the model and the SUT in
order to find out whether their outputs match. If they agree on the inputs, we achieve
equivalency (with some theoretical bounds), otherwise, failed cases are used to improve
the learned model. This process is repeated until we do not find any more failed cases,
or we reach a bound of generating the number of input cases. This learning framework
is first proposed by Angluin in [Ang87] and is defined as Minimally Adequate Teacher
(MAT).

Most of the existing works of learning a model evolve around learning finite state
machines. Peled et al. [PVY99] first proposed the idea of combining Angulin’s learning
algorithm [Ang87] with the model checking [BK08] technique in order to perform black-
box checking. Much like ours, they assume the SUT to be black-box, and only the

32

2.2 Software Testing

SUT S
Learning
algorithm

Model
analysis

Check Tests

in (in, on) Mn

n = 1, 2, ..

Figure 2.4: Workflow of model-based testing. At any time instance, given a set of
input-output pairs (in, on), the learning algorithm learns to generate a
model Mn. The model is then further analyzed to find violations, which
are either returned in case they are valid, or used to improve the model.

input-output behaviour is known. To this end, first of all, they build a Büchi automaton
from the negation of the given specification which is called a specification automaton
P̄ . Let us consider, the automaton P̄ accepts a set of words over a finite alphabet
Σ. We denote this set as L(P̄) and call it the language of P̄ . Note that, L(P̄) ⊆
Σ∗. Then a sequence of automata M1,M2, .. are generated based on the learning
algorithm. Essentially, they start with a very trivial automaton and check the property
on the automaton. For instance, suppose at the i-th iteration we have the generated
automaton as Mi, and L(Mi) is the language of the automaton. It is checked whether
L(Mi) ∩L(P̄) ̸= ∅. If the intersection is not empty then a counter-example is provided
and checked with the SUT. If it matches, then a violation has been detected, otherwise,
this is used as a failed case of equivalence and furthermore used to improve Mi to get
another automaton. There have been an extensive number of works done in this area in
the past few years considering different types of FSMs such as Mealy machines [SG09],
register automaton [CHJS16], labeled transition systems [HNS03], etc. However, in
our context, learning an FSM is not suitable, as the ML models (SUT) we consider
often perform complicated numerical operations. Moreover, the properties we consider
cannot be easily described by any automaton. Hence, we use the idea of learning an
ML model from a given ML model as the SUT and then analyze it to find a violation
of the given property.

The idea of learning a machine learning model from a given software and then
using the model to generate test cases is termed learning-based testing (LBT). This
renders the idea of model-based testing and was first proposed by Meinke et al. [MN10].
Using the same basic idea of model learning described above, they first learn a piece-
wise polynomial function from the SUT. Essentially, this function learns the functional
behaviour of the SUT through input-output pairs (in, on), where in is the input given to
the SUT and on is the corresponding output. Using a set of such pairs, the polynomial
function is being learned, approximating the SUT. The function is then converted to
a logical formula and conjoined to the first order logic expression of the negation of
the property specification. Then the Hoon-Collins cylindric algebraic decomposition
(CAD) [CJ12] algorithm is used for checking the satisfiability of this formula. If a
counter-example (CEX) is found, then it is checked with the SUT. In case of a false
positive, the model is retrained with all the previous input-output pairs along with
this new counter-example. This process goes on until a CEX is found, or a timeout is
reached.

Next, we describe the property-based testing technique, the idea of which in com-

33

2 Background

bination with learning-based testing forms the basis of our property-driven testing
concept.

2.2.4 Property-Based Testing

This testing technique was first introduced by Claessen et al. [CH00] in order to gener-
ate test cases for Haskell programs. The idea herein lies in the automation of the test
case generation process. Previously, the test case generation process was dependent on
the tester. Given a set of test cases, whether it fails or passes should have been checked
each time by the tester. Also, the test case generation process was limited to a specific
requirement, i.e., the test case generator has to be changed manually each time a new
requirement needed to be checked. This was a cumbersome process and hindered the
testing process, especially when a large number of requirements needed to be checked.
The property-based testing approach can solve these two problems by proposing a
domain-specific language that the testers can use to specify the requirement they want
to check. First of all, the tester can specify the constraint on the test inputs to be
generated as pre-condition as well as the expected output as post-condition. Afterward,
a number of test cases would be generated following the pre-condition given, executed
on the software under test, and then automatically checked whether the output of
the software under test conforms to the requirement based on the post-condition. For
generating test cases, Claessen et al. [CH00] proposed to use random generation as the
default approach. In this thesis, we give a testing mechanism that allows the tester to
specify requirements much like using the specification language of the property-based
testing.

2.2.5 Property-Driven Testing

Here, we combine the idea of learning-based testing with property-based testing to
develop a property-driven testing mechanism. More specifically, first of all, we gen-
erate (i.e., learn) a known ML model (for e.g., a decision tree) D from the given ML
model under test. Here, the learning works in the same way as described before, i.e.,
generating a number of input-output pairs by executing the SUT and thereby gener-
ating a training dataset which is then trained on a learning algorithm for generating
a model. The learned model D is then converted to a conjunctive normal formula
(CNF) ϕD using a specific translation mechanism (described in Chapter 3). Conse-
quently, the property specification (specified using a pre-post condition-based format)
is negated and converted to a CNF formula ϕ¬p. Then the formula ϕD ∧ ϕ¬p is given
to the satisfiability modulo theory (SMT) solver Z3 [MB08]. If the SMT solver finds a
counter-example (i.e., violation) to the property, we first check it with the SUT. If the
counter-example (CEX) is an invalid one, we use a sort of incremental SMT solving
approach to generate a number of CEXs from the initial one and then retrain the
learned model by appending the invalid CEXs to further improve the learned model.
This process repeats until a user-defined timeout occurs or we find a counter-example
violating the property on the SUT. We detail several parts of this technique in the
subsequent chapters.

However, if a counter-example is not found then we could either stop the testing
process which would be considered as the failure of the process, or we could start the
entire process by generating a new model approximating the model under test and try
again. If a number of trials still lead to no counter-example generation, then we stop.

34

2.3 Machine Learning Testing

2.3 Machine Learning Testing

Finally, in this section, we discuss some existing works of machine learning testing
which use the testing strategies we have discussed so far.

Metamorphic testing. The idea of using metamorphic testing to test machine learn-
ing software was first introduced by Murphy et al. [MKA07]. They first used meta-
morphic testing to validate the implementation of two ML algorithms: support vector
machine (SVM) and MartiRank. While the implementation of MartiRank did not
reveal any error, SVM indeed produced some unexpected results. In order to find out
whether the implementation of the SVM learning algorithm worked as expected, they
considered permutative MR. They basically trained the learning algorithm twice–once
with the original dataset and then with the permuted version of the dataset–thereby
resulting in two ML models. However, these two models turned out to be different
which was not expected, and the reason was the batch processing of the data by the
optimization algorithm used in SVM. In later works [MKHW08, MSK09], they consid-
ered several other metamorphic relations (MRs), such as additive, multiplicative, and
inclusive to check the implementation of several other classification algorithms such as
Naive Bayes, K-nearest neighbors, and decision trees in WEKA [WFH11] library. In
a more recent work, Dwarakanat et al. [DAS+18] introduced a specific MR for SVM
classification algorithm with non-linear kernel and some MRs for a deep learning based
image classifier ResNet [HZRS16]. In this thesis, we, however, define a property of the
learning phase called balancedness, based on some specific metamorphic relations. The
MRs we consider, are inspired by the work of Murphy et al. [MSK09]. However, in
our case, they are used to define the balancedness property of the learning phase. We
also give a metamorphic testing approach to check this property. In the next chapter
(Chapter 4), we formally define this property and the MRs we consider and detail our
testing mechanism.

There exists a number of works [DKH17, XLY+22, ZWG+21, ZS18, FWJ+22, JFL+22]
which use metamorphic testing to test the ML models and these works mainly con-
sider testing deep neural networks (DNN). For example, Zhang et al. [ZWG+21] gave
a metamorphic testing framework for DNN based image classifiers where they defined
a number of metamorphic relations based on the background-related changes such as
blurring the background of the images. In [XLY+22], Xiao et al. proposed metamor-
phic testing for deep learning based compilers by using several semantic preserving
MRs on the DNN model. In a recent work, Ji et al. [JFL+22] used MT to test a deep
learning-based speech recognition system and for that, they considered several trans-
formations on the speech input as metamorphic relations to find a violation. In this
dissertation, we do not use metamorphic testing to test ML models, rather we check
some metamorphic properties using the property-driven testing technique.

Model-based testing. There have been a number of works extracting automaton
from ML models for the purpose of understanding or explaining the learned rules of
the ML models [Jac05, OG96, AEG18], or to simply infer the automaton in order to
facilitate the future analysis process [WGY18, OWSH20], or to check properties on
the automaton [MVY20, KNR+21]. Here, we limit our discussion to the latter two
types of works. The pioneering work of Giles et al. [OG96], first proposed the idea of
extracting deterministic finite automaton (DFA) as a way to understand the rules of a
recurrent neural network (RNN). They applied a clustering algorithm to extract several
DFAs from the network. Then a heuristic method was applied to find the optimized

35

2 Background

DFA model approximated from the RNN. The clustering approach of extracting DFA
essentially works by finite partitioning of the state space of the RNN and dividing
them into some k intervals. However, this technique suffers from state space explosion
problems and is not suitable for modern day RNN models.

More recent work by Weiss et al. [WGY18] tackled this issue by using the Angluin
learning paradigm by employing L* learning algorithm. Given an RNN R accepting
a regular language L over some alphabet Σ, they, first of all, started with a hypoth-
esis automaton H and through membership queries they checked whether H and the
RNN R differs on any input, if so, then it was used to improve the automaton. Later
Okudono et al. [OWSH20] extended this approach to learning a weighted finite au-
tomaton (WFA), as they argued, for probabilistic classification, learning quantitative
finite state machine such as WFA, was more amenable compared to DFA.

In [MVY20], Yovine et al. proposed an on-the-fly property checking technique, where
they learned the intersection of the given RNN and the negation of the property to be
checked on it. If the intersection showed to be non empty, it was a correct counter-
example with probability 1, otherwise they provided a probabilistic guarantee (i.e.,
provably approximate correct (PAC)), that the RNN satisfied the property. In a more
recent work [KNR+21] Khmelnitsky et al. presented an approach by adapting the idea
of Angluin’s algorithm. They first of all, learned a hypothesis automaton H from the
given RNN R and at the same time, they also generated specification automaton A.
Given L ⊆ Σ∗ and L(H) denoting the regular language of the automaton, they checked
whether the automaton L(H) ⊆ L(A), which amounts to checking whether the learned
automaton model satisfies the property in hand. If they could find a counter-example,
then they checked whether it was a valid one, if yes, return it as a violation otherwise
use it to improve the automaton H. However, when there is no counter-example, they
check whether L(R) ⊆ L(H) where L(R) regular language of the given RNN R.

As discussed above, using the idea of model-based testing to check the property on
the given ML model mostly (if not all) (a) checks a specific type of neural network
RNN, (b) considers the cases where the inputs can be deduced as regular language and
(c) learn automaton as the model approximating the given ML model. Our approach,
on the other hand, can be used for any ML model (not only RNN) and the ‘language’
of the model does not need to be regular in nature. Therefore, we resort to the idea of
using an ML model to learn the given model under test. In the subsequent chapters,
we give more details about our technique and we strongly believe at the end of this
dissertation, the readers would be convinced about the need and the advantages of
using our technique over the others.

36

3 Logical Encoding

In this chapter, we describe techniques to encode two machine learning models, namely
decision trees and neural networks, into logical formulas. We require these logical en-
codings for two reasons. Firstly, while testing decision tree algorithms with respect to
balanced data usage property (defined in Chapter 4), we need to perform equivalence
checking to find out whether two decision tree models are equivalent. This requires en-
coding two decision tree models into logical formulas and then performing satisfiability
checking using an appropriate solver. Secondly, we need to have the logical encodings
of decision tree or neural network models (as inferred models) in our property-driven
testing approach in order to generate test cases on a given model under test (MUT).

We start with the basic formulations of logics and theories and then give the encod-
ings of two models and furthermore exemplify them. The content of this chapter is
structured as follows.

1. logic and linear arithmetic theories (Section 3.1),

2. logical encoding of the decision tree and neural network along with the exam-
ples(Section 3.2),

3. computing property on the logically encoded model (Section 3.3).

3.1 Logic and Theories

Propositional logic. We begin with the propositional logic which provides the basis
of our encoding approach. Typically, a propositional logical formula φ can be induc-
tively defined over a set of Boolean variables using the grammar as follows.

φ ::= true | false | φ ∧ φ | φ ∨ φ | φ ⇒ φ | φ ⇔ φ | ¬φ

Essentially, the formula in its simplest form can either be true or false. It can
furthermore also be composed of conjunction (∧), disjunction (∨), or a mix of both
of these operations. The negation is essentially a unary operator with the highest
operator precedence, followed by conjunction and disjunction. The rest of the binary
operators, implication (⇒) and bi-implication (⇔) can be furthermore expressed by
using the aforementioned operations.
Example 1. As a simple example, consider the formula

φ ≡ (x ∧ y) ∨ z

where we have a set of Boolean variables v(φ) = {x, y, z} in the formula φ and it
is composed of two operations, conjunction and disjunction. Note that we use the
symbol ≡ here to denote that we are defining the formula φ to be the formula on the
right of ≡.

37

3 Logical Encoding

Interpretation. If we consider v(φ) to be the set of Boolean variables in the
formula φ, then an interpretation I of the formula φ is defined as the mapping from
the variables in the set v(φ) to true or false [Cur63]. Therefore, essentially, we can
write I : v(φ) → {true, false}, and moreover for syntactic simplicity we write I(φ) to
denote the evaluation of the formula where we replace the variables in the formula φ
with the interpretation I.
Example 2. For our example formula

φ ≡ (x ∧ y) ∨ z

we have an interpretation I as,

I = {x 7→ true, y 7→ true, z 7→ true}

When we apply I to the formula φ, we get

I(φ) = (true ∧ true) ∨ true

which evaluates to true.
Note that, we do not give here the evaluation rules for propositional logical formulas,

and assume the readers have the basic knowledge of such rules, however, if required,
the readers can look here [Cur63].

Satisfiability checking. Satisfiability checking of a propositional logical formula
φ involves finding an assignment of its Boolean variables v(φ) such that the formula
evaluates to true. To this end, if we essentially find an interpretation such that the
formula φ is evaluated to be true, then we say I is a logical model of the formula,
denoted as I |= φ.
Example 3. Consider our example formula φ ≡ (x ∧ y) ∨ z. This formula is satisfiable
and (one of) the model is, I = {x 7→ true, y 7→ true, z 7→ false}.

Additionally, when no such interpretations exist such that the formula could be
evaluated to be true, then the formula is said to be unsatisfiable.
Example 4. Consider the following formula

φ ≡ (x ∨ y) ∧ ¬x ∧ ¬y

This formula is unsatisfiable since there does not exist an interpretation of the variables
in the formula which would evaluate it to be true.

Conjunctive normal form. To find out the satisfiability and the corresponding
logical model of a propositional logical formula, it needs to be given to a satisfiability
solver. However, before the solver is applied to the logical formula, it needs to be con-
verted into conjunctive normal form (CNF). This is required since the core algorithm
behind the satisfiability solving technique (namely DPLL algorithm [DP60]) requires
the formula to be in this form.

A formula φ is said to be in CNF, if it has the following form: φ ≡ φ1 ∧ . . . ∧ φn,
where each of the subformula φi is called a clause and each clause further constitutes
of a set of literals. Each literal forms the atomic part of the formula, for instance, a
Boolean variable or its negation. Note that any propositional logical formula can be
converted into an equivalent CNF, by using De Moragn law [Ros02]. However, using

38

3.2 Encoding

this law to convert a formula into CNF might sometimes be highly inefficient, and
therefore, a more common approach is to use Tseitin’s transformation [Tse83]. This
transformation produces a CNF formula of size linear in the size of the given non-CNF
formula. In this chapter, we propose an encoding approach which generates the logical
formula of the ML models in the CNF form, and therefore, exempt the need for using
any further CNF conversion techniques.

Satisifiability modulo theories. The propositional logical formula, given in CNF,
in its purest form, however, does not suffice in encoding the decision tree or neural net-
work models. Since these models involve logical comparison and arithmetic operations
between real-valued variables, we need to go beyond using propositional logical for-
mulas which only constitute Boolean variables. To this end, we consider an extended
version of the propositional logic defined using theories, and therefore, the satisfiabil-
ity checking problem is now termed as satisfiability modulo theories (SMT) 1 solving
problem.

There exist many theories to this end, for instance, bit-vectors (for modeling machine
arithmetic), arrays (for encoding arrays), strings (for string values) and so on. In this
thesis, we use linear real arithmetic (LRA) theory, which extends the propositional
logic by considering all the rational number constants along with the set of arithmetic
operations {+,−, ∗} and logical comparators {>,<,≤,≥, ̸=}. A formula φ in this case
is said to be satisfiable if it evaluates to true for an interpretation I over the set of
variables v(φ) of the formula, such that I : v(φ) → R.

Example 5. Consider the following formula φ ≡ (x − y ≥ 0) ∧ (y > 5). This formula
given in LRA is satisfiable and one of the model satisfying this formula would be:
I = {x 7→ 5, y 7→ 5}. So, if we apply I to the formula we get: (5 − 5 ≥ 0) ∧ (5 > 5) ⇔
true ∧ true ⇔ true.

Note that, while evaluating the above LRA formula, the standard rules for the
evaluation of arithmetic inequalities are applied, for instance, 0 ≥ 0 ≡ true, or, 5 > 5 ≡
false.

Here, we do not discuss the SMT-solving algorithms since those are not relevant for
describing the work done in this thesis (for interested readers we recommend to look
here [BSST09]). Once, our encoding approach generates the logical formula describing
the ML model (in SMTLIB format 2), we can directly apply the SMT solver Z3 [MB08]
to check the satisfiability of that formula.

Next, we give some formalization of machine learning models which are required to
describe the approach of encoding the decision tree and neural network models into
logical formulas.

3.2 Encoding

First, we revisit 3 the basic formalizations that are needed to describe the concepts of
this Chapter.

1Note that, some recent works such as the works of Silva et al. [IIM22] or Ghosh et al. [GBM21]
propose propositional logical encoding of decision tree which could be an interesting extension of
our current approach.

2http://smtlib.cs.uiowa.edu/
3Note that, we only describe the formalization here which is needed to explain our testing concepts

and further details can be found in Chapter 2.

39

3 Logical Encoding

We define a machine learning model to be a predictive function which takes the
input from the set X1 × . . . × Xn and predicts output(s) depending on the type of
the learning considered. Xi is the value set of the feature i and we write X⃗ to denote
X1×. . .×Xn. Next we describe the three types of learning approaches that we consider
in this chapter.

Single-label classification. In this type of learning the predictive model M takes the
following form:

M : X⃗ → Y

In this case, given an instance x⃗ ∈ X⃗, M returns a single class value y ∈ Y .
The set of possible class values for this is the set of positive integers and thus,
Y ⊆ Z+.

Multi-label classification. The predictive model in this case returns an output vector
instead of a single value and can be defined as follows:

M : X⃗ → Y1 × . . .× Ym

We define Y⃗ to denote Y1 × . . .× Ym. If a single instance x⃗ ∈ X⃗ is given to the
model M , an output vector y⃗ ∈ Y⃗ is predicted as the (set of) class values in this
case. We use the label names to denote the variables corresponding to each of
the class j, where 1 ≤ j ≤ m, and let L = {L1, . . . , Lm} be the set of such label
names. In multi-label learning, we have the predicted class as a binary vector,
and hence, Yi ⊆ {0, 1}.

Regression. Finally, in case of regression learning, the model can be defined as follows:

M : X⃗ → R

Thus, the predicted value in this case is simply a real-valued number.

In this work we require the logical encodings for decision trees and neural network
models for two reasons, (a) computing the balanced data usage property of decision
tree algorithms and, (b) analyzing either of the models which is learned as a white-box
model in our property-driven testing approach. Now, for the latter case, based on
the MUT, we require three sorts of encodings of the ML models (for both decision
tree and neural network). If the given MUT is a single-label classification model,
predicting discrete values as class labels, we learn a single-label classification model
and in the case of a multi-label or regressor MUT, we learn a multi-label or a regression
model. Therefore, we require the encodings for single- and multi-label classification
and regression models of decision trees and neural networks.

The generic encodings for the classification and the regression cases, however, do not
differ much except for the final evaluation of the class labels. For instance, in the case
of the decision tree, the encodings of the branches remain the same except for the leaf
nodes for these three cases. Similarly, in the case of the neural network, only the final
layer of the network would require a different encoding. Hence, we do not describe the
encodings of classification and regression in isolation for these three cases, rather, we
give a unified encoding only differentiate when required.

40

3.2 Encoding

n
(0)
1

n
(1)
1

n
(2)
1

class = 0

x1 < 65

n
(2)
2

class = 1

x1 ≥ 65

x0 < 10

n
(1)
2

n
(2)
3

class = 0

x1 < 60

n
(2)
4

class = 1

x1 ≥ 60

x0 ≥ 10

Figure 3.1: A decision tree of depth 1

3.2.1 Decision Tree

A decision tree model as described in Chapter 2 is a binary tree, in which every
inner node (including the root node, but excluding the leaf nodes) represents Boolean
conditions over the input feature values and every leaf node is labeled with a prediction
giving the class values. An edge connecting a parent node to its child node is labeled
with the result of the condition defined on the parent node and thus for each internal
node, we have two edges connecting to its child nodes, when the condition evaluates
to true and to false. For a given input x⃗ ∈ X⃗ to the tree, a specific path of the tree is
visited by satisfying the conditions on the edges before reaching to a leaf node. The
class value corresponding to that leaf node is then returned as the prediction for x⃗.

For the ease of explanation, we consider the single-label decision tree classifier in
Figure 3.1, which is adapted from the tree in Figure 2.1 of Chapter 2 . Here, instead
of labelling a node with the Boolean condition we label each edge from the node
with the corresponding condition (and with the negation of the condition). Thus, for
each parent node connecting to its two child nodes, we have two edges, one labelled
with condition and other with its negated version. For instance, the root node n(0)

1 is
connected with its two child nodes n(1)

1 and n
(1)
2 via two edges which are labelled as

x0 < 10 and ¬(x0 < 10) ≡ (x0 ≥ 10) respectively.
Next we give the encoding of the decision tree in two steps, first we describe the

encoding of the internal nodes (considering the root node as a special case of an
internal node) and then we describe the encoding for the leaf nodes. For the latter, we
differentiate the encoding of the classification and regression trees.

We encode the decision tree as a logical formula by encoding every paths of the tree.
We essentially do this by giving the encoding for each of the nodes in the tree. To this
end, we use two Boolean variables for defining a node and the condition connecting the
node with its parent node. The idea herein is to encode that a node variable becomes
true only when its parent node is true and the condition on the edge holds. We repeat
this for all the nodes of the tree and finally give the constraints corresponding to the
predictions for each of the leaf nodes of the tree. The prediction corresponding to any
leaf node is returned, only if the node variable corresponding to that node is true. This
way we ensure that for a specific input to the tree only the nodes in a single path in the
tree are visited, and the others are not taken. Note that, the encoding of the decision
tree could be done by using some other methods (such as in [EGSS08]), however, we
choose this approach since it reduces the size of the formula compared to the previous
work and is linear in the size of the tree.

To this end, we first define for each level i in the tree n(i)
j be the j-th node (while

41

3 Logical Encoding

considering n(i)
0 be the leftmost node at level i), and n(i−1)

pre(j) be its parent or predecessor
node at the level i−1. The Boolean condition defined over an element of input x⃗ on the
edge between n(i−1)

pre(j) and n(i)
j is written as cond(i)

pre(j) and the negation of the condition
as ¬cond(i)

pre(j). We consider n(i)
j to be a Boolean variable denoting the node, which

becomes true when the node is visited, otherwise, it is false. Using the node and the
condition variables next we describe the logical constraints for the internal nodes.

Root node constraint. We begin with the constraint for the root node of the tree,
which can be written as follows:

Croot ≡ n
(0)
1

This constraint is always true, since the traversal of the root node does not depend
on any condition beforehand.

Example. Consider the example decision tree model depicted in Figure 3.1, the root
node of the tree is n(0)

1 , the constraint for which can be written as:

Croot ≡ true

This constraint is always true and thus the Boolean variable n(0)
1 = true.

Internal node constraint. Next, for every internal node n(i)
j of the tree, we get

one constraint as follows:

C
(i)
j ≡ (n(i−1)

pre(j) ∧ cond
(i)
pre(j) ∧ n

(i)
j) ∨ ((¬n(i−1)

pre(j) ∨ ¬cond(i)
pre(j)) ∧ ¬n(i)

j)

This constraint ensures that the node variable n
(i)
j becomes true only when the

predecessor node variable n
(i−1)
pre(j) and the condition on the edge between these two

nodes cond(i)
pre(j) are true. However, if either the ¬n(i−1)

pre(j) or the ¬cond(i)
pre(j) is true

then ¬n(i)
j becomes true. In other words, if either the predecessor node 4 n

(i−1)
pre(j) is

false (while it is not visited) or the condition cond
(i−1)
pre(j) is false, then the node n(i)

j

becomes false and thus implies in either of these two cases the node n(i)
j will not be

visited.
Example. We continue with our example tree in Figure 3.1 where for the inner node

n
(1)
1 we get the constraint as:

C
(1)
1 ≡ (true ∧ (x0 < 10) ∧ n

(1)
1) ∨ ((false ∨ ¬(x0 < 10)) ∧ ¬n(1)

1).

Since the predecessor node of the n(1)
1 is the root node, which is always true, and if

the condition on the edge x0 < 10 holds, we can derive the node variable n(1)
1 to be

true. Otherwise, if the condition does not hold, then the n(1)
1 would be false, implying

that the node is not visited. Similarly, we get the constraint for the leaf node n(2)
1 as

follows:

C
(2)
1 ≡ (n(1)

1 ∧ (x1 < 65) ∧ n
(2)
1) ∨ ((n(1)

1 ∨ ¬(x1 < 65)) ∧ ¬n(2)
1)

4While describing the encoding, we use the terms node and node variable interchangeably.

42

3.2 Encoding

Thus, the leaf node variable n(2)
1 can be further derived as true in case the node

variable n(1)
1 is true and the condition x1 < 65 holds.

Note that, these encodings for the node constraints do not depend on any learning
problem and therefore remain the same for (single and multi-label) classification and
regression learning.

Prediction constraint. Once we get the constraints for all the non-root nodes,
next we derive the constraints describing the prediction of the classes by the leaf nodes
of the tree. Since the predictions are different based on the different learning scenarios,
we therefore describe these constraints for the three learning problems separately.

Single-label classification. The decision tree predicts a single class value in case of
single-label classification which is essentially the value associated with the leaf
node. We define a variable class to denote the class value corresponding to a
leaf node. For every leaf node n(i)

j with the prediction c ∈ Y , along with the
constraint for the leaf node, we furthermore get a constraint for the prediction
of the class value as,

R
(i)
j ≡ n

(i)
j ⇒ (class = c).

Essentially, when the leaf node variable n(i)
j becomes true, then the corresponding

class value of the leaf node is predicted.

Multi-label classification. For the multi-label classification, we require one Boolean
variable classl for every label l ∈ L. Then, for every leaf node n(i)

j , with the
prediction ∧ℓ∈L(l = c) (where c ∈ Yl), we get the following constraint for the
class values:

R
(i)
j ≡ n

(i)
j ⇒

∧
ℓ∈L

(classℓ = c)

Hence, whenever the n(i)
j becomes true, the final prediction, in this case, is a set

of class values, described as a conjunction of L class values.

Regression. For the regression tree, we introduce a variable called value which denotes
the prediction associated with the leaf node, a real-valued number. Now, for a leaf
node n(i)

j , we define the prediction associated to it as, r(i)
j ∈ R. The prediction

constraint in this case can be defined as,

R
(i)
j ≡ n

(i)
j ⇒ (value = r

(i)
j)

When the n
(i)
j is true, the final prediction is the value associated to the leaf

node 5, which is r(i)
j ∈ R.

Example. To exemplify the encoding given for the prediction of the decision tree,
let us again consider the tree in Figure 3.1.

• As the tree depicted in Figure 3.1 is a single-label classification tree, a leaf node
here is associated with a single class value only. For instance, for the leaf node

5Note that, for all these three cases we assume the decision tree always makes deterministic prediction,
i.e., at a time only a single leaf is chosen.

43

3 Logical Encoding

n
(2)
1 , we have the corresponding class value as class = 0. Thus, we get the

constraint corresponding to the prediction of the node n(2)
1 as follows:

R
(2)
1 ≡ n

(2)
1 ⇒ (class = 0)

If the node variable of the previous node n(1)
1 becomes true and the condition on

the edge x1 < 65 between the previous node n(1)
1 and the current leaf node (n(2)

1)
becomes true, then the class 0 is predicted. For example, if the input feature
vector to the tree is (5, 12) as (x0, x1), and if we feed this to the tree in Figure 3.1,
then the condition x0 < 10 becomes true, and thereby, n(1)

1 is derived to be true.
Furthermore, x1 < 65 is evaluated to be also true and thus n(2)

1 becomes true
and the class value associated with the input vector (5, 12) becomes 0.

• For the multi-label classification tree model, each leaf node is associated with a
set of class labels, unlike the tree we consider in Figure 3.1. To give an example
of such, let us assume the leaf nodes of the tree we consider have the following
structure:

n
(2)
1

classℓ1 = 0
classℓ2 = 1

n
(2)
2

classℓ1 = 0
classℓ2 = 1

n
(2)
3

classℓ1 = 0
classℓ2 = 0

n
(2)
4

classℓ1 = 1
classℓ2 = 1

Here, we consider each leaf node is associated with two class labels classℓ1 and
classℓ2. Now, since we consider the rest of the tree remains the same, the con-
straints for the inner nodes, along with the constraints of the leaf nodes (i.e.,
the node constraints) do not change. We, however, get different constraints only
corresponding to the prediction of the class labels. For instance, for the leaf node
n

(2)
1 , we get the constraint for the class labels as follows:

R
(2)
1 ≡ n

(2)
1 ⇒ ((classℓ1 = 0) ∧ (classℓ2 = 1))

Hence, when the leaf node variable n(2)
1 becomes true, then the predicted class

labels are described as the conjunction of labels 1 and 2 which translates to the
output vector (0, 1). Similarly, we can derive the prediction constraints for the
leaf nodes n(2)

2 , n(2)
3 and n

(2)
4 as follows:

R
(2)
2 ≡ n

(2)
2 ⇒ ((classℓ1 = 0) ∧ (classℓ2 = 1))

R
(2)
3 ≡ n

(2)
3 ⇒ ((classℓ1 = 0) ∧ (classℓ2 = 0))

R
(2)
4 ≡ n

(2)
4 ⇒ ((classℓ1 = 1) ∧ (classℓ2 = 1))

• Finally, for the regression tree, the encoding of the leaf node is similar to the
single-label classification, except the class value in this case is a real valued
number. Assuming, the class value associated with the leaf node n(2)

1 as 3.28, the
constraint R(2)

1 corresponding to the class value of the node can be described as:

R
(2)
1 ≡ n

(2)
1 ⇒ (class = 3.28).

44

3.2 Encoding

After deriving the constraints for all the nodes of all the paths of the tree and the
constraints for the predictions for all the leaf nodes we conjoin them to get the final
logical formula describing the decision tree. Assuming we have a tree with depth d and
at each depth we have na number of nodes, where 1 ≤ na ≤ 2(d−1) we get the logical
formula describing the tree as:

Ctree ≡
d∧

i=1

na∧
j=1

C
(i)
j ∧R

(i)
j

For instance, in case of our example decision tree from Figure 3.1 we get the final
formula of the tree 6 as:

Ctree ≡ C
(1)
1 ∧ C

(1)
2 ∧ C

(2)
1 ∧ C

(2)
2 ∧ C

(2)
3 ∧ C

(2)
4 ∧R

(2)
2 ∧R

(2)
3 ∧R

(2)
4

For an input x⃗, if for instance, a single-label decision tree model predicts a class
of c, then it can be proven that, following our encoding, the corresponding leaf node
(denoted as nc) variable would be true and thus we would get the prediction condition
nc ⇒ c to be evaluated as true.

Next we describe the encoding of the feed-forward neural network model with ReLU
as an activation function.

3.2.2 Neural Network
The second model we use in our property-driven testing approach as the approximated
white-box model for the given MUT, is the neural network model. In the literature,
there exist a long line of works that proposed SMT encodings for translating neural
networks into logical formulas [GZW+19, FJ18, INM19]. The encoding approach we
follow here is in a spirit similar to the approach proposed by Bastani et al. [BIL+16].

To start with, we assume to get a feed-forward neural network with ReLU (Rectified
Linear Unit) activation functions modeling a predictive model M . Such a network
can be described as a sequence of layers starting with an input layer, ending with an
output layer, and might include a number of hidden layers in between. Each layer
furthermore consists of a number of neurons that form the atomic parts of the neural
networks. Each of these neurons consume a linear combination of the outputs of the
neurons from the previous layer (see Chapter 2 for more explanation). The number of
neurons in the input layer depends on the size of the input vector x⃗ ∈ X⃗, and thus is
|x⃗|. The number of output layer neurons varies depending on the type of the learning
approach and moreover, the number of classes.

For instance, in the case of a multi-label learning, with the predictive function M :
X⃗ → Y⃗ , the number of neurons in the output layer would be |Y⃗ |. For a single-label
learning problem, as we have only a single class label, the number of output nodes
is the cardinality of the set of the class values, i.e., |Y |. Since the prediction for the
regression approach is simply a real-valued number, therefore, we only have a single
neuron in the output layer. The number of hidden layer neurons is provided as part
of the hyper-parameter setting during the learning process.

To exemplify the encoding of the neural networks, we consider the network model
depicted in Figure 3.2 which we previously described in the Background (Chapter 2).

6For the entire encoding of this decision tree see the Figure 3.3 (see Lines 2-7)

45

3 Logical Encoding

x0

x1

x2

b
(1)
0 =0.784

n
(1)
0

b
(1)
1 =-0.142

n
(1)
1

b
(1)
2 =-0.921

n
(1)
2

b
(2)
0 =0.843

n
(2)
0

b
(2)
1 =0.329

n
(2)
1

b
(2)
2 =-0.730

n
(2)
2

b
(3)
(0)=-0.178

n
(3)
0

b
(3)
(1)=-0.182

n
(3)
1

Figure 3.2: A feed-forward neural network

This network accepts inputs of size of 3 and thus it has 3 neurons at the input layer.
The output layer contains 2 nodes, and we consider it to be a single label classification
model with two classes, while explaining the encoding of the output layer for single-
label network model. We consider the model to predict two output labels when defining
the encoding of the output layer of the multi-label network model. Note that, the
architecture of the neural network remains the same for a single-label classifier with
c class values and a multi-label classifier with c different class labels. The only thing
which is different for these two cases is the way the output layer is encoded.

Hidden layer encoding. We start with the encoding of the hidden layers of a
network model. Suppose, we have n = |X⃗| input nodes, and k number of hidden layers
and in each layer we have ni neurons, 1 ≤ i ≤ k. Moreover, we set the number of
input neurons n0 to be n and nk+1 as the number of output neurons (which would vary
depending on the learning problem). Since we consider a fully connected feed-forward
neural network model, each neuron l in layer i+ 1 is connected via an edge to each of
the neuron ni of layer i. There is a weight associated with this edge connecting neuron
j from layer i to the neuron l in layer i + 1, and we denote it as w(i)

jl . Each neuron j

in layer i has also an associated bias term denoted as b(i)
j .

For the logical encoding of this part, we furthermore introduce two real-valued vari-
ables in(i)

l and out
(i)
l which indicate the input and the output of the l-th neuron on

the i-th layer respectively. For every neuron l in a hidden layer i, we define two con-
straints, one for the input and the other for the output. The conjunction of all the
input constraints of all the neurons of layer i forms the constraint C(i)

in , describing the
conditions on the inputs to the layer i, and similarly, C(i)

out describes the condition on
the outputs of all the neurons of the layer i. These two constraints can be described
as follows:

46

3.2 Encoding

C
(i)
in ≡

ni∧
l=1

(in(i)
l = Σni−1

j=1 w
(i−1)
jl out

(i−1)
j + b

(i)
l)

C
(i)
out ≡

ni∧
l=1

(in(i)
l < 0 ∧ out

(i)
l = 0) ∨ (in(i)

l ≥ 0 ∧ out
(i)
l = in

(i)
l)

Essentially, the input constraint C(i)
in fixes the input of layer i as the weighted sum

over all the outputs from the previous (i − 1) layer neurons, plus the bias terms. On
the other hand, C(i)

out encodes the ReLU activation function as the output of the i-th
layer, which essentially set the output as 0, if the input is a negative value, otherwise
it sets the output as the value equal to the input. Note that, the input layer of the
network model does not have ReLU, and therefore, for the output of the l-th neuron
on the input layer, we add the constraints out0l = x⃗(l) where x⃗ = x⃗(1), . . . , x⃗(n). So,
the input to a neuron l on the first hidden layer in(1)

l is the weighted sum over all the
xis plus the bias term of the neuron l. Therefore, the constraint defining the input to
the first hidden layer can be described as follows.

C
(1)
in ≡

n1∧
l=1

(in(1)
l = Σn

j=1w
(0)
jl xj + b

(1)
l)

Thus, we generate the logical constraints for k hidden layers and conjunct them
all together to obtain the final constraint describing the hidden layers of the neural
network model as follows.

Chidden ≡
k∧

i=1
C

(i)
in ∧ C

(i)
out

Example. We use the example network model depicted in Figure 2.2 to exemplify
the hidden layer encoding we described above. We begin with the first hidden layer of
the network model and to this end, the constraints defining the inputs to the neurons
n

(1)
0 , n(1)

1 and n
(1)
2 can be described as follows:

in
(1)
0 = w

(0)
00 ∗ x0 + w

(0)
10 ∗ x1 + w

(0)
20 ∗ x2 + 0.784

in
(1)
1 = w

(0)
01 ∗ x0 + w

(0)
11 ∗ x1 + w

(0)
21 ∗ x2 + 0.142

in
(1)
2 = w

(0)
02 ∗ x0 + w

(0)
12 ∗ x1 + w

(0)
22 ∗ x2 + 0.921

The conjunction of all the input constraints in(1)
0 ∧in(1)

1 ∧in(1)
2 form the input constraint

C
(1)
in of the first hidden layer, i.e.,

C
(1)
in ≡ in

(1)
0 ∧ in

(1)
1 ∧ in

(1)
2 .

Next, the encoding of the activation function ReLU is performed by considering two
cases for each neuron. For instance, for the neuron n(1)

0 , we get (in(1)
0 < 0 ∧ out(1)

0 = 0)
when the input to the neuron–as the linear combination of the previous layer neurons
(in this case the input neurons) and the weights, plus the bias terms–is computed to

47

3 Logical Encoding

be a negative value. Similarly, we get the constraint (in(1)
0 ≥ 0 ∧ out(1)

0 = in
(1)
0), when

the input value is positive. Next, we perform the disjunction of these two constraints
to get a single constraint defining the ReLU for neuron n

(1)
0 . Similarly, we derive the

ReLU constraints for the other neurons and thus, in the end we get the constraint
defining the output of the first hidden layer as follows:

C
(1)
out ≡ ((in(1)

0 < 0 ∧ out
(1)
0 = 0) ∨ (in(1)

0 ≥ 0 ∧ out
(1)
0 = in

(1)
0))

∧((in(1)
1 < 0 ∧ out

(1)
1 = 0) ∨ (in(1)

1 ≥ 0 ∧ out
(1)
1 = in

(1)
1))

∧((in(1)
2 < 0 ∧ out

(1)
2 = 0) ∨ (in(1)

2 ≥ 0 ∧ out
(1)
2 = in

(1)
2))

In a similar manner, we derive the input constraint for the second hidden layer as C(2)
in

and the output constraint as C(2)
out, which can be described as,

C
(2)
in ≡ (in(2)

0 = w
(1)
00 ∗ out(1)

0 + w
(1)
10 ∗ out(1)

1 + w
(1)
20 ∗ out(1)

2 + 0.843)
∧(in(2)

1 = w
(1)
01 ∗ out(1)

0 + w
(1)
11 ∗ out(1)

1 + w
(1)
21 ∗ out(1)

2 + 0.329)
∧(in(2)

2 = w
(1)
02 ∗ out(1)

0 + w
(1)
12 ∗ out(1)

1 + w
(1)
22 ∗ out(1)

2 − 0.730)

C
(2)
out ≡ ((in(2)

0 < 0 ∧ out
(2)
0 = 0) ∨ (in(2)

0 ≥ 0 ∧ out
(2)
0 = in

(2)
0))

∧((in(2)
1 < 0 ∧ out

(2)
1 = 0) ∨ (in(2)

1 ≥ 0 ∧ out
(2)
1 = in

(2)
1))

∧((in(2)
2 < 0 ∧ out

(2)
2 = 0) ∨ (in(2)

2 ≥ 0 ∧ out
(2)
2 = in

(2)
2))

We furthermore conjunct all the above constraints to derive the hidden layer con-
straints for the network as,

Chidden ≡ C
(1)
in ∧ C

(1)
out ∧ C

(2)
in ∧ C

(2)
out.

Output layer encoding. Same as the decision tree model, here we also describe
the encoding of the output layer for three individual cases: single-label and multi-label
classification and then regression learning.

Single-label classification. First of all, for the single-label classification, we define a
variable class denoting the final prediction of the model. Here, the number of
output neurons is equal to the number of class values, i.e., |Y |, and the output
prediction is determined by considering the input values received by each of the
output neurons. For instance, if the l-th output neuron receives the maximal
input, the final prediction by the neural network would be l 7. Now, to encode
the output layer k + 1, we first need the constraint in(k)

c for every c ∈ |Y |, or in
other words, for every output neuron. This can be derived as C(k+1)

in using the
encoding technique described beforehand and written as follows:

7Note that, typically the classes associated with the output neurons are determined in a top-down
manner. Hence, the l-th class is associated with the l-th neuron from the top.

48

3.2 Encoding

C
(k+1)
in ≡

nk+1∧
l=1

(in(k+1)
l = Σnk

j=1w
(k)
jl out

(k)
j + b

(k+1)
l)

Next, the output constraint for the output layer is defined by encoding arg-max
function over the inputs of the output layer neurons which essentially encodes
the technique for predicting class values by the single-label neural network. For
each class c, the constraint can be defined as follows 8:

C
(k+1)
out (c) ≡

(∧
c′ ̸=c

(in(k+1)
c ≥ in

(k+1)
c′) ∧ class = c

)

This constraint encodes that if the input value received by the output neuron,
corresponding to the class c (in(k+1)

c) has a larger value than all the other input
values received by all the other output neurons, then class c will be selected.
Note that, a common approach in the case of single-label classification of the neu-
ral network model, is to perform a sort of normalization on the output layer, for
instance applying the softmax function. This function essentially converts a vec-
tor of N numbers to a probability distribution of N possible outcomes [GBC16].
However, such transformation does not alter the final prediction we compute by
considering the output node with the maximum value.

Multi-label classification Now for the multi-label classifier, we define a Boolean vari-
able classℓ for every label ℓ ∈ L. Unlike the single-label classification approach,
here the classℓ for a label ℓ, can be either 0 or 1, decided based on a threshold
th (which is learned). More specifically, if the input in(k+1)

ℓ for the l-th output
neuron is greater than th, the prediction will be given as 1, otherwise 0. The
constraint for the output layer thus can be described as follows:

C
(k+1)
out ≡

nk+1∧
ℓ=1

(in(k+1)
ℓ ≥ th ∧ classℓ = 1) ∨ (in(k+1)

ℓ < th ∧ classℓ = 0)

Regression Finally, for regression learning the output layer consists of a single neuron
and the output prediction outk+1 is simply the input to the neuron ink+1 and
can be described as follows:

C
(k+1)
out ≡ outk+1 = (in(k) = Σnk

j=1w
(k)
jl out

k
j + b

(k+1)
l)

Thus, the output constraint in this case simply fixes the output of the neural
network model to be the input to the neuron of the output layer 9.

In this way, we get two constraints for the output layer and we define the output
layer constraint for any learning approach as follows:

8For simplicity, the encoding described here assumes there are no ties.
9Note that, since the input constraint C

(k+1)
in can be similarly obtained for the multi-label classifi-

cation and regression learning as described for the single-label classification approach, we do not
repeat it for the former two approaches.

49

3 Logical Encoding

Coutput ≡ C
(k+1)
in ∧ C

(k+1)
out

Finally, the conjunction of the hidden layer constraint and the output layer con-
straint gives us the encoding describing the entire neural network model (Cnn) as
follows:

Cnn ≡ Chidden ∧ Coutput

Example. We exemplify the encoding of the output layer considering the three
learning cases separately using our example network model in Figure 2.2.

• First of all, considering the network performing single-label classification, we
encode the output layer in such a way that the node with the maximum input
value is chosen for the corresponding class value. To this end, we first encode
the input constraint to the output layer as follows:

C
(3)
in ≡ (in(3)

0 = w
(2)
00 ∗ out(2)

0 + w
(2)
10 ∗ out(2)

1 + w
(2)
20 ∗ out(2)

2 − 0.178)
∧(in(3)

1 = w
(2)
01 ∗ out(2)

0 + w
(2)
11 ∗ out(2)

1 + w
(2)
21 ∗ out(2)

2 − 0.182)

For the two output neurons at the output layer, we need to derive two constraints
for each of those, giving the prediction for the two classes, 0 and 1. Thus, the
output constraints can be described as follows:

C
(3)
out(0) ≡ ((in(3)

0 ≥ in
(3)
1) ∧ class = 0)

C
(3)
out(1) ≡ ((in(3)

1 ≥ in
(3)
0) ∧ class = 1)

The conjunction of these two constraints form the output layer constraint as

C
(3)
out ≡ C

(3)
out(0) ∧ C

(3)
out(1).

For example, assuming in
(3)
1 = 0.584 and in

(3)
0 = 0.0, we have the constraint

C
(3)
out(0) ≡ (false ∧ class = 0), and C

(3)
out(1) ≡ (true ∧class = 1), leading to the

prediction of class 1.

• Consider our example network to be a multi-label classifier with two class labels.
The input constraint of the output layer in this case remains the same as before,
i.e., C(3)

in . To encode the output constraints in this case, we require two Boolean
variables classℓ1 and classℓ2, denoting two class labels corresponding to the out-
put neurons n(3)

0 and n
(3)
1 , respectively. Essentially, when either of the output

neurons receiving input from the previous layer has a larger or equal value than
a threshold th, the prediction corresponding to that neuron would be considered
as 1. Hence, in this case, we get two constraints for each of the output neurons
and the conjunction of these two forms the final output constraint, which can be
defined as follows:

C
(3)
out ≡ ((in(2)

0 ≥ th ∧ classℓ1 = 1) ∨ (in(2)
0 < th ∧ classℓ1 = 0))

∧((in(2)
1 ≥ th ∧ classℓ2 = 1) ∨ (in(2)

1 < th ∧ classℓ2 = 0))

50

3.3 Computation of Property

For example, assuming th = 0.5 and in
(2)
0 = 0.76 and in

(2)
1 = 0.32, we have

((true ∧classℓ1 = 1) ∨ (false ∧classℓ1 = 0)) ∧ ((false ∧classℓ2 = 1) ∨ (true
∧classℓ2 = 0)), which in turn evaluates to (classℓ1 = 1) ∧ (classℓ2 = 0).

• Finally, assuming the example network to be a regression model, we have only a
single neuron n(3)

0 in the output layer. Thus, we get a single input constraint for
the output neuron as,

C
(3)
in ≡ (in(3)

0 = w
(2)
00 ∗ out(2)

0 + w
(2)
10 ∗ out(2)

1 + w
(2)
20 ∗ out(2)

2 − 0.178).

The output constraint in this case simply fixes the prediction to be equal to the
input to the neuron as in(3)

0 ,

C
(3)
out ≡ out3 = (in(3) = w

(2)
00 out

2
0 + w

(2)
10 out

2
1 + w

(2)
20 out

2
2 + b

(3)
0)

Here out3 essentially gives the output prediction as a real-valued number by the
neural network model.

The conjunction of the input and the output constraints for the output layer, con-
sidering any learning approach gives us the output layer constraint for this network as
follows:

Coutput ≡ C
(3)
in ∧ C

(3)
out

Finally, the conjunction of the hidden layer constraint Chidden and the output con-
straint Coutput gives us the logical formula describing the entire network model 10.

Next, we describe how we use the logically encoded formula of an ML model to
compute a specific property by using satisfiability solving technique.

3.3 Computation of Property

Once we have the logically encoded model, next we use it to compute a specific prop-
erty on it. As mentioned before, we require the encoding of the two ML models for
two different contributions of this thesis, for computing the equivalency between two
decision tree models and computing a specific property on the approximated model (ei-
ther decision tree or neural network), thereby testing the property on the given model
under test. In both of these cases, we compute a specific property on the encoded
model. While the property we check in the former work (i.e., testing balanced data
usage) is the equivalence property, for the latter case, the property we check depends
on the specification as specified by the tester. However, the technique to compute the
property for both of these two cases remains the same and is performed by using SMT
solving technique.

The types of properties we consider in this thesis are typically written in pre- and
post-condition format. The pre-condition specifies constraints on the inputs of the
model under test, and the post-condition specifies the constraints on the output(s).
Let us assume, φpre and φpost denote the logical constraints for pre- and post-conditions
10Note that the code implementing the models to logical formulas can be found in this link:

https://github.com/arnabsharma91/model2logic

51

3 Logical Encoding

1 ; Encoding of the tree of Figure 3.1
2 (true ∧ (x0 < 10) ∧ n

(1)
1) ∨ ((false ∨ ¬(x0 < 10)) ∧ ¬n

(1)
1)

3 (n(1)
1 ∧ (x1 < 65) ∧ n

(2)
1) ∨ ((¬n

(1)
1 ∨ ¬(x1 < 65)) ∧ ¬n

(2)
1)∧ (n(2)

1 ⇒ class1 = 0)
4 (n(1)

1 ∧ (x1 ≥ 65) ∧ n
(2)
2) ∨ ((¬n

(1)
1 ∨ ¬(x1 ≥ 65)) ∧ ¬n

(2)
2)∧ (n(2)

2 ⇒ class1 = 1)
5 (true ∧ (x0 ≥ 10) ∧ n

(1)
2) ∨ ((false ∨ ¬(x0 ≥ 10)) ∧ ¬n

(1)
2)

6 (n(1)
2 ∧ (x1 < 60) ∧ n

(2)
3) ∨ ((¬n

(1)
2 ∨ ¬(x1 < 60)) ∧ ¬n

(2)
3)∧ (n(2)

3 ⇒ class1 = 0)
7 (n(1)

2 ∧ (x1 ≥ 60) ∧ n
(2)
4) ∨ ((¬n

(1)
2 ∨ ¬(x1 ≥ 60)) ∧ ¬n

(2)
4)∧ (n(2)

4 ⇒ class1 = 1)
8
9 ;Constraint describing the negation of the property

10 ((x0 = 0) ∧ (x1 = 0))
11 ¬(class = 0)

Figure 3.3: Logical encoding of the property and the decision tree model

respectively, and φmodel denotes the logical formula describing the model under test.
The property specified in this format (φprop) takes the following form:

φprop ≡ φpre ⇒ φpost

Thus, the specification mandates if the pre-condition is satisfied then the post-
condition must also be satisfied. Now, in computing a property using satisfiability
solving approach, we essentially aim to find out whether we can find a case where
the property is violated. For this, we take the negation of the property specification
(denoted as φ¬prop) which can be derived as follows:

φ¬prop ≡ ¬(φpre ⇒ φpost) ≡ ¬(¬φpre ∨ φpost) ≡ φpre ∧ ¬φpost

In summary, we aim to find out given the pre-conditions are evaluated to be true,
if there exists a case where the post-condition is false or the negation of the post-
condition is true. Hence, to compute this on the ML model, we generate a formula of
the following form:

φ ≡ φmodel ∧ φpre ∧ ¬φpost

Essentially, given this formula to the solver, it will attempt to find a satisfiable
example where φ is evaluated to be true. For this, each part of the formula needs to
be true, since they are logically conjoined. Given this formula to an SMT solver, it
would then return a logical model as the satisfiable example of this formula (if exists),
where the ¬φpre, φpost, and φmodel, are true. This would then imply that an input
to the model is found satisfying the pre-condition, the output corresponding to which
fails to satisfy the post-condition, thus violating the property. On the other hand, if
the solver does not find any satisfiable example to this formula, it would then imply
that there does not exist any interpretation of the formula for which the ¬φpost is
true 11 and thus the model satisfies the property.

Next, we give a simple example to illustrate how the computation of a property
on the logical formula of an ML model is performed using the satisfiability solving
technique.

For this, we take a simple property that specifies if the elements of the input instance

11Note that, the model formula φmodel is always true.

52

3.3 Computation of Property

are all zeros, then the prediction should also be zero 12. More formally:

∀x⃗ ∈ X⃗ : ∀i ∈ {1, . . . , n} : x⃗(i) = 0 ⇒ M(x⃗) = 0

To compute this property, let us take the example decision tree depicted in Figure 3.1
(page 41). Based on the inputs x0 and x1 of the tree, we can write the logical constraint
describing the property for this tree as,

φprop ≡ ((x0 = 0) ∧ (x1 = 0)) ⇒ (class = 0)

The property essentially contains two parts, the constraint ((x0 = 0) ∧ (x1 = 0))
specifies the pre-condition, and the constraint (class = 0) specifies the post-condition.
Thus, the negation of the property can be written as,

φ¬prop ≡ ((x0 = 0) ∧ (x1 = 0)) ∧ ¬(class = 0)

Figure 3.3 shows the encoding of the entire formula (tree model and the property
with the negated post-condition) we use to compute the property on the model. Note
that, for simplicity, we do not write the conjunction between the lines and implicitly
assume that all the constraints in different lines are conjoined. When this formula
is given to the satisfiability modulo theory (SMT) solver, it would then attempt to
find a satisfiable example which in this case cannot be found. This would then imply,
since we cannot find any satisfiable example to the formula with the negation of the
property 13, the model satisfies the property. In other words, in this case, we cannot
find an interpretation of the variables in this formula, such that the formula can be
evaluated to be true and thus we prove the satisfaction of the property on the model.

Now, supposedly consider, we want to check a property as, if x0 > 20 and x1 < 50
then the prediction is class = 1, which can be formulated as,

((x0 > 20) ∧ (x1 < 50)) ⇒ (class = 1)

Note that, to compute this property on the model in order to find a violation of
the property, we take the negation of the post-condition, and thus, the negation of the
property is written as,

((x0 > 20) ∧ (x1 < 50)) ∧ ¬(class = 1)

After connecting the above constraint to the logical formula of the tree of Figure 3.1,
and then applying an SMT solver on the entire formula, we could find a logical model
as the satisfiable example, for instance as, {x0 7→ 21, x1 7→ 49, class 7→ 0}. Hence,
this property is said to be violated on the decision tree model and the logical model
returned by the solver would be then considered as a counter-example to the property.

Note that, this property computation method renders the idea of constraint-based
verification technique, where this is used to formally prove that a software program
meets its specified requirements. It involves the use of logic and reasoning to verify the
correctness of a program [HH19]. This technique is further used to verify robustness

12Note that, this property is termed as infimum property and in our thesis we later show the evaluation
of this property on the learned regression models.

13For simplicity, we write the ‘negation of the property’ to denote the property with the negated
post-condition.

53

3 Logical Encoding

properties of the deep neural network models, for instance, in the works of Ehlers et
al. [Ehl17], Katz et al. [KBD+17, KHI+19]. However, in contrast to these approaches
we do not use this technique to verify robustness property on the given model. Rather,
we use this to verify a (specified) property on the inferred model, thereby testing the
property on the MUT. Moreover, we use this technique in checking equivalence prop-
erty of two decision tree models while testing balancedness property of the algorithm,
which none of the previous works have considered.

To conclude, in this chapter, we gave the foundation of logic and theories and de-
scribed how we encode two machine learning models into logical formulas through
examples. Furthermore, we have shown the property computation technique on the
learned model by using the satisifiability checking approach. In the subsequent chap-
ters, we use these techniques in the testing of the balanced data usage property of
the decision tree algorithm (Chapter 4) and in describing the test data generation
technique for our property-driven testing approach.

54

4 Balancedness Testing of ML Algorithms

The principle idea of this thesis is to develop testing mechanisms for both the learning
and prediction phases of the machine learning pipeline. To achieve this goal, in this
chapter, we start with the testing of learning algorithms (or, in short learners). A
machine learning algorithm in its learning phase generalizes from a given training
dataset to generate a predictive function or model to which if an input instance is
given, an output is predicted. However, it is essentially unclear, whether the generated
model is the expected one, since there does not exist an oracle to define a so called
correct outcome of the learning phase. In other words, a ground truth in terms of a
target function to compare the generated predictive function or the model against is
mostly missing.

The missing oracle problem is not new in software testing and it can be found in
many other types of programs, for instance in compilers, search engines, and programs
implementing mathematical functions, where characterizing specific requirements on
the output is not possible. These types of programs are referred to as non-testable
or untestable programs, terms coined by Weyuker in her work on discussing this issue
in software testing [Wey82]. To tackle the oracle problem, researchers first came up
with the idea of implementing several versions of a program and comparing their
outputs to detect discrepancies, which is termed N-way testing [MK01]. However,
implementing several versions of a large program is a complicated task. Therefore,
Chen et al. [CLM04] proposed the metamorphic testing technique to alleviate the
missing oracle problem. The basic idea of the metamorphic testing approach is to
apply a specific transformation (also called a metamorphic relation) on an initial set
of (randomly generated) inputs and then check whether the outputs generated before
and after applying the transformations, by executing both the inputs on the programs
under test, obey the desired relationship. For example, a program that outputs the
shortest distance between a source and a distance point should be producing the same
result even when we change the source to destination and destination to source. The
metamorphic relations to consider in this testing approach, therefore, depend on the
domain and the problem at hand.

Now, a program implementing a machine learning algorithm can also be categorized
as a non-testable program since it cannot be determined whether the output (which in
this case is a statistical model) is the correct one. Thus, we need a definition for the
correct outcome of the learning phase. To solve this problem, we first define a property
called the balanced data usage or in short balancedness of the learning algorithms. We
say, as the sole purpose of the learning algorithm is to learn from the training instances
in its learning phase, the algorithm should be learning from the entire dataset. In other
words, the learning algorithm should not keep out any of the instances or features and
treat all the features and instances of the training dataset in the same way. We aim
to determine whether the learner is learning what is in the training data or by design
is not considering some specific instances or features in the dataset. This would then
essentially imply that the learning algorithm is not learning from the dataset the way

55

4 Balancedness Testing of ML Algorithms

it is expected.
Precisely, we use the idea of metamorphic testing to define the balancedness property

of learning algorithms. This is done by formally defining balancedness by considering
some specific metamorphic transformations (MT) on the training data. More specif-
ically, we define the property with the use of three domain independent MTs on the
training data, and constrain for each of the transformations applied on the training
data, the learning algorithm should generate the same model, before and after applying
the transformations. To test this property, we furthermore provide a testing approach,
implemented in a tool named TiLe.

Now, one significant challenge in this testing approach is to check the equality of the
two models generated before and after applying a specific metamorphic transformation,
or, in other words, finding out the equivalency between two models. We employ two
techniques for it: (a) computing and (b) testing the equivalency between two models.
There are pros and cons to both of these techniques. However, in combination, they
constitute an effective equivalency checking mechanism.

We start by formally defining the balanced data usage property in Section 4.1. Then
we present our testing framework using the idea of metamorphic testing in Section 4.2.
We have implemented our testing approach in a tool called TiLe (details of which are
given in Appendix A.1). Then we evaluated TiLe on a number of machine learning
algorithms which we describe in Sections 4.3 and 4.3.2. Finally, we discuss the related
works in Section 4.5 to end the chapter.

4.1 Balanced Data Usage

We start by introducing some basic terminologies in machine learning and then formally
define the balanced data usage property.

A supervised learning algorithm gets a training dataset in its learning phase and
learns by generalizing the dataset to generate a predictive model (or in short model).
This model can be defined as follows:

M : X1 × . . .×Xn → Y

Here Xi denotes the value set of feature i (also called attribute or characteristic
i), and 1 ≤ i ≤ n. Y denotes the set of classes1 We furthermore use X⃗ to write
X1 × . . .×Xn. Note that, depending on the type of the feature values Xi, the feature
i can be categorical (string value), or numerical (integer or real values) 2.

After the learning, in the prediction phase, the learned model gets a data instance
(x1, . . . , xn) ∈ X⃗, to which the model M assigns a class y ∈ Y to it. We assume
M to be the set of all such models which are generated on arbitrary value sets and
classes. Let M1 and M2 are two models where M1,M2 ∈ M and we can define their
equivalency as follows:
Definition 4.1 Any two models M1 and M2, are said to be equivalent, denoted as
M1 ≡ M2, if for any data instance x = (x1, . . . , xn) ∈ X⃗, we have M1(x) = M2(x).

1In this chapter, we only consider checking the single-label ML algorithms and therefore, we only
give here the formalization corresponding to that.

2There are other types of features such as text or array which constitute of these two basic feature
types.

56

4.1 Balanced Data Usage

Table 4.1: Example banking data set
No. income age gender class

1 1000.0 35 male 1
2 800.0 40 male 0
3 1200.0 53 female 1
4 900.0 30 female 0
5 800.0 38 female 0

To learn a predictive model, the learning algorithm in its learning phase gets a train-
ing dataset which contains a set of training instances T , where T ∈ X⃗ × Y . Suppose,
the set of training instances consists of m number of instances and each of these in-
stances are vector of size n, hence, T = ((x1

1, . . . x
1
n), y1), . . . ((xm

1 , . . . x
m
n), ym). Along

with the set of training instances, the training dataset also contains a list of feature
names, F = (f1, . . . , fn). In this thesis, we only consider a tabular representation of
the dataset which is essentially a two dimensional matrix, containing rows as data in-
stances and columns as feature values. The first row of the dataset defines the feature
names, and the last column gives the class values for each of the instances. Assuming
F to be the set of all feature name lists and T be the set of all training data, we define
the learner (i.e., the learning algorithm) as a function of the following form:

learn : F × T → M

The number of features or the size of the feature names list fits the number of
columns in the training dataset.

The learner in its learning phase gets a training dataset (F, T) ∈ F × T , and then
generates a predictive model as M . Table 4.1 shows the example of a small training
dataset (inspired by one of our previous work [SW20b]). Here, we have three features
F = (income, age, gender), amongst which income and age are numerical and gender
is categorical (i.e., containing string values). Now, for each of these features, we have
five feature values, giving five training instances and for each of these instances, we
get class values given by the last column (named as class).

Balanced data usage or balancedness property requires the learning algorithm to
use the training data entirely and not keep out any of them. For instance, in case of
our example dataset when presented as training data to a learner, it should use all
these five instances and three feature values in the same way to learn a model. In
other words, the position of the instances and the features or their names and values
should not affect the learning process in any way. More formally, we want the learning
algorithm to be invariant in terms of generating a model when specific transformations
are applied to the training dataset. This matches with the typical idea of metamorphic
testing, where an input and its transformed version are given to a system under test,
and the two outputs are then checked for a specific relation. The transformations that
we consider here are thus metamorphic transformations and we furthermore expect
that the two models learned from these two datasets (i.e., original and transformed)
are equivalent (based on the definition of equivalency in Definition 4.1). We use the
term transformation instead of relation in the rest of the chapter, as we use them to
transform the original training data into a new one.

To this end, we consider four metamorphic transformations: permuting the rows

57

4 Balancedness Testing of ML Algorithms

(instances), columns (feature values), and feature names, and renaming the feature
values. Since our transformations are permutative in nature we first of all define
permutation through a bijective function π : Nl → Nl, where Nl = {1, . . . , l}. The set
of all such permutations with l elements can be defined as Sl, thus, |Sl| = l!. Based
on this, next we define the metamorphic transformations.

Permutation of instances. Given a set of training instances, this metamorphic trans-
formation changes the ordering of the instances, i.e., it gives a new ordering of
the instances or rows of the training set. More formally, assuming we have a
training dataset as T = ((x1

1, . . . x
1
n), y1), . . . ((xm

1 , . . . x
m
n), ym) containing m in-

stances. For a permutation function π ∈ Sm applied on the training set T we
get the transformed dataset as, π(T) = ((xπ(1)

1 , . . . x
π(1)
n), yπ(1)), . . . ((xπ(m)

1 , . . .

x
π(m)
n), yπ(m)).

Example. We now give an example of applying the instance permutation op-
eration on the dataset presented in Table 4.1. For this dataset T=((1000.0,
35, male), yes), ((800.0, 40, male), no), ((1200.0, 53, female), yes), ((900.0, 30,
female), no), ((800.0, 38, female), no) containing 5 instances, if we apply a per-
mutation function π ∈ S5, we get a permutation as, π(T) =((800.0, 40, male),
no), ((1200.0, 53, female), yes), ((1000.0, 35, male), yes), ((800.0, 38, female),
no), ((900.0, 30, female), no). Here the first row is moved to the third position.
The second and the third rows become the first and the second rows respectively.

Permutation of features. This transformation when applied on the training dataset
changes the order of the columns. However, this is only applied to the set of
columns containing feature values and exempts the column containing the class
values. For a given dataset T , containing n features and (n + 1)th column
denoting the class values, a permutation function π ∈ Sn when applied on T ,
gives ((x1

π(1), . . . x
1
π(n)), y1), . . . ((xm

π(1), . . . x
m
π(n)), ym).

Example. For our example dataset, when the feature permutation is applied as
π ∈ S3, we get the transformed dataset as π(T) =((40, 800.0, male), no), ((53,
1200.0, female), yes), ((35, 1000.0, male), yes), ((38, 800.0, female), no), ((30,
900.0, female), no). The first and the second columns here have moved their
positions to second and first columns respectively.

Shuffling the feature names. The shuffling of the feature names simply permutes the
feature names of the dataset. We take a permutation function π ∈ Sn and apply
it to the list of feature names F = (f1, . . . , fn), and get, π(F) = (fπ(1), . . . fπ(n)).
We do not consider the class as a feature name and this transformation is only
applied to the feature names and not to the data instances.
Example. In this case, the rows and the columns of the dataset remain the
same with only exception being the column names or feature names. Hence, for
our running example dataset, we get a new list of feature names as for example,
π(F) = (gender, age, income).

Renaming the feature values. In this transformation, we convert the categorical fea-
tures to numerical ones. More specifically, if a feature contains categorical values,
we replace them with numerical values by using fixed mapping. We assume, the
domain of such a categorical feature Xi to be finite, |Xi| = di, where 1 ≤ i ≤ n.

58

4.1 Balanced Data Usage

The renaming function can be defined as a bijective function, numi : Xi → Ndi
,

and Ndi
= {1, . . . , di}. The resulted training set after applying this transforma-

tion is, ((num1(x1
1), . . . numk(x1

n)), y1), . . . (num1(xm
1), . . . numk(xm

k)), ym).

Example. In our example banking dataset we have two numerical features,
income and age, and one categorical feature gender. Hence, we rename the
feature values of our example dataset by considering male mapping to 0 and
female to 1.

We define a set P containing the three permutation transformations–permutation
of features, permutation of instances, and shuffling of feature names, and we use p to
denote an element of it, i.e., p ∈ P . We further define Types = {pr, pc, sf , rf } to be
the set of transformation types we consider. For this, we denote row permutation as
pr, column permutation as pc, feature name shuffling as sf and renaming of feature
values as rf . We furthermore let type(p) ∈ Types. We assume (F, T) ∈ F × T and a
metamorphic transformation p ∈ P when applied to (F, T) gives a transformed training
data as p(F, T). Finally, we are ready to formally define the balancedness definition
which can be defined as follows:

Definition 4.2 An ML algorithm learn : F × T → M is said to be balanced, if for
any feature vector and training data (F, T) ∈ F × T , and for all the metamorphic
transformations p ∈ P , learn(F, T) ≡ learn(p(F, T)).

The metamorphic transformations we consider in balancedness or balanced data
usage are domain-independent, since they are not considered based on the specifics of
any learning algorithms. For instance, permuting the rows or columns, or shuffling
the feature names should not have any effect on the learning, as any type of learning
algorithm does not consider the position of the instances or columns and the feature
names as part of its learning process. Therefore, we expect, all the ML algorithms
to be invariant under these transformations. If a learning algorithm generates two
different models before and after applying any of these transformations on the training
dataset, we say that the algorithm is sensitive to that transformation and hence, is
not balanced 3.

The idea is, although, for some machine learning experts, this is known that apply-
ing the metamorphic transformations on the training dataset we consider here, might
change the generated models for some algorithms, due to the specifics of the imple-
mentations of those algorithms, an ordinary software developer with no knowledge of
machine learning would not expect that. For instance, Pham et al. [PQW+20] found
that the changes in a generated model due to the specific implementations of an ML
algorithm were even unknown to machine learning practitioners both in industries and
academia. Thus, we believe the study of testing the balancedness of ML algorithms
would help to understand the extent to which ML algorithms generate different models
when changes are applied to the training data.

Next, we describe the testing approach for checking the balanced data usage prop-
erty.

3We do not consider renaming of feature values transformation as the part of the balanced data usage
property, see Section 4.3 for more explanation.

59

4 Balancedness Testing of ML Algorithms

<xml>
ML Algorithm

...
<\xml>

training data
repository

Metamorphic
transformation p

Training 2

Training 1

Equivalence
checker

Output

yes / no

M2

M1

p(F, T)

learn

(F, T)

••

•

TiLe

Figure 4.1: Workflow of the testing approach

4.2 Testing Approach

The central idea of the balanced data usage is to perform three metamorphic trans-
formations on the training data, and then finding out whether, in each of these cases,
equivalent models are being generated. As described beforehand (in Section 2.2.2 of
Chapter 2), the metamorphic testing approach works by first taking two inputs (the
original and the transformed ones) and then executing both of them separately on the
system under test to get two different outputs. These are then compared based on
the transformation that is being applied. Hence, using metamorphic testing to test
the balanced data usage property fits quite naturally. To test the balanced data usage
property we propose a metamorphic testing approach that consists of two main steps:
(a) applying the metamorphic transformations on the training dataset, (b) checking
the equivalence of the ML models generated before and after applying a transforma-
tion. We give a brief overview of our approach next and then describe these two steps
in detail.

4.2.1 Overview

The workflow of our testing approach is depicted in Figure 4.1. We have several parts
in this testing approach. First of all, as inputs, we give an ML classification algorithm
implemented in any of the machine learning libraries we consider4 and a metamorphic
transformation to apply to the training data, both of which can be specified by the
tester using an XML file 5.

As part of our framework, we furthermore have a set of training datasets, form-
ing a training data repository. Along with that, we have a unit applying the desired
metamorphic transformation p on the training dataset. Finally, there is an equiva-
lence checking mechanism which is used to check the equivalency between two models.
Given an input ML algorithm and a specific metamorphic transformation, first of all,
we take a training dataset (F, T) from the data repository and apply the user-given
transformation p on it. Next, we train the algorithm on the original (F, T) and the
transformed dataset p(F, T), thereby resulting in two different models M1 and M2.
These models are then supplied to the equivalence checker, which then checks whether
the two models are equivalent. This process is then repeated for every (F, T) in the

4The libraries we consider in this work are detailed in Section 4.3.
5An example of such an XML file can be found in Figure A.1 in page 146.

60

4.2 Testing Approach

data repository, and each time the models are checked by the equivalence checker. If
they are equivalent then the checker returns ‘yes’, otherwise ‘no’.

We check the balancedness property by considering each of the metamorphic trans-
formations p ∈ P (defined in Section 4.1), and for each of these transformations, we
check whether the generated models are equivalent. When any of the transformations
p resulted in non-equivalent models reported by the equivalence checker, for any of
the datasets in the training data repository, unbalancedness is detected and reported.
More formally, for our training data repository TR, if

∀(F, T) ∈ TR : ∀p ∈ P : learn(F, T) ̸≡ learn(p(F, T))

then we say the transformation p applied on the training set (F, T) has caused unbal-
ancedness.

However, apart from getting a simple yes/no answer in testing balancedness, we are
also interested in computing relative unbalancedness. This would then essentially give
us an idea of how often an ML algorithm shows sensitivity to a specific transformation.
Given a metamorphic transformation p ∈ P and for a training set (F, T), we suppose,

diff (F, T, p, learn) =
{

1 if learn(F, T) ̸≡ learn(p(F, T))
0 else

Essentially, the diff (F, T, p, learn) function returns 1, if the transformation p when
applied on the training data (F, T) resulted in a non-equivalent model, otherwise it
returns 0. We use this to first compute how each metamorphic transformation in-
dividually contributes to unbalancedness. In other words, we aim to find out the
relative unbalancedness for each transformation or the transformation specific bal-
ancedness indicator. For this, we furthermore define Pt(F, T) = {p ∈ P | type(p) =
t ∧ p is applicable to (F, T)}. For a dataset (F, T), we can apply the permutation π
function on it only if the permutation function π belongs to group Sm for the cor-
responding transformation p. For instance, let us consider the p to be the row per-
mutation and type(p) as rp. Then for a (F, T) with m instances, we can apply the
transformation function only if π ∈ S. Hence, here ‘applicable’ refers to the fact that
the considered permutative metamorphic transformation for the balanced data usage
fits the number of rows of the training set. Thus, in the end, Pt(F, T) gives the set of
different permutations corresponding to a metamorphic transformation t.

The relative unbalancedness or the transformation specific balancedness indicator
with respect to a transformation t, defined as bit(learn), can be deduced as follows:

bit(learn, F, T) =
Σp∈Pt(F,T)diff (F, T, p, learn)

|Pt(F, T)|

bit(learn) =
Σ(F,T)∈TRbit(learn, F, T)

|TR|

With the bit(learn, F, T), we first compute the relative unbalancedeness with respect
to the metamorphic transformation t for the dataset (F, T). Note that the denomi-
nator in this case Pt(F, T) gives the total number of permutations for the specific
transformation t applied on (F, T). The numerator sums up the equivalence results
(either 0 or 1) for each of the permutations applied on the training data. bit(learn)
then computes the average of relative unbalancedness over all the training datasets in

61

4 Balancedness Testing of ML Algorithms

the data repository.
However, the transformation specific balancedness indicator, in this case, cannot be

exactly computed in practice, since the number of possible permutations while consid-
ering a typical training dataset, is often too large. For example, a training dataset,
Census-income, considered as part of our training data repository, contains 48,842 in-
stances. Hence, for row permutation operation, generating 48,842! permutation of
instances and checking each of them is practically impossible. Therefore, in our work
we do not compute the exact values of different balancedness indicators or, we do
not check the equivalency considering each of the permutations. Rather we consider
approximated versions of them by considering some specific permutations. Our em-
pirical evaluation (in Section 4.3) showed, without considering all the permutations,
we still could find algorithms sensitive to different such transformations. Next, we de-
scribe these specific permutation strategies we adopt to check the balanced data usage
property.

4.2.2 Permutation Strategies
Balanced data usage property essentially requires three types of metamorphic trans-

formations to be applied to the training data–permutation of training instances, per-
mutation of feature values and the shuffling of feature names. However, due to a large
number of instances or features in most of the datasets, we cannot check for all the
possible permutations. Therefore, to this end, we employ some specific strategies to
select some of them. Next, we briefly describe each of the permutation strategies.

Random. In this case, we sample a fixed percentage of the total number of permuta-
tions uniformly at random. This percentage value can be configured by the tester
during the testing process. For example, let us consider that the tester specified
a value of 50% in performing column permutation (like in the example XML
file depicted in Figure A.1 on page 146). This means that 50% of all possible
permutations will be selected randomly and then will be checked when column
permutation is performed. For example, if a dataset contains 6 features, then⌈
(6! × 50)/100

⌉
or 320 different permutations will be checked. In other words,

we would then generate 320 different permutations of the columns resulting in
320 different transformed datasets. For each of these 320 cases, we would check
the equivalency between the models generated on the original and transformed
dataset.

Ordering. This is done by first of all giving the set of class values Y an ordering and
then sorting the training instances of the dataset based on that. To this end, we
perform the ordering of the instances either in ascending or in descending order
by keeping the ordering of the training data within the classes. This strategy can
only be applied for the permutation of the training instances and is not possible
to be used for permuting the feature values (i.e., columns).

Alternating. Here we again use the ordering on the set of class values and then reorder
the training instances so that the classes corresponding to each of the instances
alternate.

Reversing. This transformation simply inverses the order of the original training dataset,
either row-wise or column-wise (based on the specified transformation). For ex-

62

4.2 Testing Approach

ample, let us suppose, the training dataset we consider contains m instances.
This is defined as the set of ordered instances, ⟨i1, i2, . . . , im−1, im⟩, on which the
reversing the row operation would result in an order as ⟨im, im−1, . . . , i2, i1⟩. We
can similarly perform the reversing of the columns.

Batch-flipping. For this, first of all, we divide the training set into b number of batches
based on the user-given parameter shuffleBatchSize. For example, let us as-
sume that the size of each batch is 10 and therefore, if we have N number of
training instances we will have b =

⌈
N/10

⌉
number of batches. Once we have the

batches, next we randomly move the batches to any of the b positions. Initially,
we have b choices as we have b number of such blocks to fill in. This can be
thought of as if we have b number of training instances and we are performing a
random permutation on them. Except, in this case, each of them is not a single
instance, but rather a set of training instances. The total number of possible
permutations with b batches can again be very large if b is large. This can also
be controlled by the tester by providing a percentage value. This would then be
used to select the percentage of all possible permutations uniformly at random.
Furthermore, the size of the batch should not be really small, for instance, if it
is 1, we will end up performing a random permutation of instances.

Note that, except for random and reversing permutation strategies, the rest of them
are only applicable to the permutation of rows and not to feature values or columns.
In case of feature name shuffling transformation, we simply consider a single random
shuffle and not all possible permutations. Furthermore, as several of the ML algorithms
can only consider numerical attributes, we do not take the transformation –renaming
of the feature values– as a part of the balanced data usage property. Rather, we apply
this transformation to the training dataset beforehand as a part of the data processing
step, and therefore, none of the ML algorithms are considered to be sensitive to this.

After applying a metamorphic transformation on the training dataset we train the
given ML algorithm on it to generate a new model. Next, we check whether this newly
generated model is equivalent to the one we generated using the original training
dataset. This is done by performing equivalence checking methods which we describe
next.

4.2.3 Checking Equivalence

In this step, we check the equivalence relationship between the models generated be-
fore and after applying a transformation. To this end, we have several challenges to
overcome. First of all, as we discussed in the last chapter (Chapter 2), machine learn-
ing models can be of various types, depending on the learning algorithms being used.
On top of that, the learned models are essentially complex entities and therefore, we
need specific mechanisms to check the equivalency between them. For that, we employ
two mechanisms, namely computing and testing equivalence. First, we describe the
equivalence computation method and then we reason why this approach can only be
used for some algorithms. Thereafter, we give our equivalence testing approach and in
the end, we present an algorithm to effectively combine both of these mechanisms.

63

4 Balancedness Testing of ML Algorithms

n0
1

n1
1

n2
1

class1 = 0

x1 < 65

n2
2

class1 = 1

x1 ≥ 65

x0 < 10

n2
1

n2
3

class1 = 0

x1 < 60

n2
4

class1 = 1

x1 ≥ 60

x0 ≥ 10

Tree T1

n0
1

n1
1

n2
1

class2 = 0

x0 < 10

n2
2

n3
1

class2 = 0

x1 < 60

n3
2

class2 = 1

x1 ≥ 60

x0 ≥ 10

x1 < 65

n1
2

class2 = 1

x1 ≥ 65

Tree T2

Figure 4.2: Two syntactically different but equivalent trees

Computing Equivalence

This approach cannot be applied to all the classification algorithms and moreover,
the techniques would be different for different types of ML algorithms. We start by
describing the equivalence computation method for the decision tree algorithm.

Decision tree. Given a training dataset, a decision tree algorithm learns a (binary)
tree of decisions where the branches are conjoined with the conditions on the feature
values and the leaves denote classes (see Section 2.1.1 of Chapter 2 for more details
on decision trees). Let us consider Figure 4.2, where we have two trees, T1 and T2.
Let us assume that trees T1 and T2 are generated before and after applying a specific
metamorphic transformation respectively. These two trees look different as they have
different representations, however, they are defining the same model. Therefore, if we
use a simple technique like comparing tree branches and leaf nodes, it will fail in this
case and is not sufficient to determine whether the two trees are equivalent. Hence, we
give an equivalence checking mechanism by translating both of the decision trees into
logical formulas and then checking their logical equivalence by using the state-of-the-art
satisfiability modulo theory (SMT) solver Z3 [MB08].

To perform this checking, first of all, we need the logical formulas for the two trees.
For this, we use the encoding approach described in Section 3.2.1 of Chapter 3. Let us
assume, the logical encoding of the tree T1 is denoted as φT 1 and the tree T2 as φT 2.
We furthermore use the variables class1 and class2 to represent the class predictions
for T1 and T2 trees respectively.

Once we get the encodings of the trees, next we define the logical constraint specify-
ing the equivalency. Two machine learning models are said to be equivalent if for any
input, the predictions given by the models are the same, i.e., (class1 = class2) (see

64

4.2 Testing Approach

1 ; Encoding of the tree of Figure 3.2
2 (true ∧ (x0 < 10) ∧ n

(1)
11) ∨ ((false ∨ ¬(x0 < 10)) ∧ ¬n

(1)
11)

3 (n(1)
11 ∧ (x1 < 65) ∧ n

(2)
11) ∨ ((¬n

(1)
11 ∨ ¬(x1 < 65)) ∧ ¬n

(2)
11)∧ (n(2)

11 =⇒ class1 = 0)
4 (n(1)

11 ∧ (x1 ≥ 65) ∧ n
(2)
12) ∨ ((¬n

(1)
11 ∨ ¬(x1 ≥ 65)) ∧ ¬n

(2)
12)∧ (n(2)

12 =⇒ class1 = 1)
5 (true ∧ (x0 ≥ 10) ∧ n

(1)
12) ∨ ((false ∨ ¬(x0 ≥ 10)) ∧ ¬n

(1)
12)

6 (n(1)
12 ∧ (x1 < 60) ∧ n

(2)
13) ∨ ((¬n

(1)
12 ∨ ¬(x1 < 60)) ∧ ¬n

(2)
13)∧ (n(2)

13 =⇒ class1 = 0)
7 (n(1)

12 ∧ (x1 ≥ 60) ∧ n
(2)
14) ∨ ((¬n

(1)
12 ∨ ¬(x1 ≥ 60)) ∧ ¬n

(2)
14)∧ (n(2)

14 =⇒ class1 = 1)
8
9 ; Encoding of the tree of Figure 3.3

10 (true ∧ (x1 < 65) ∧ n
(1)
21) ∨ ((false ∨ ¬(x1 < 65)) ∧ ¬n

(1)
21)

11 (n(1)
21 ∧ (x0 < 10) ∧ n

(2)
21) ∨ ((¬n

(1)
21 ∨ ¬(x0 < 10)) ∧ ¬n

(2)
21)∧ (n(2)

21 =⇒ class2 = 0)
12 (n(1)

21 ∧ (x0 ≥ 10) ∧ n
(2)
22) ∨ ((¬n

(1)
21 ∨ ¬(x0 ≥ 10)) ∧ ¬n

(2)
22)

13 (n(2)
22 ∧ (x1 < 60) ∧ n

(3)
21) ∨ ((¬n

(2)
22 ∨ ¬(x1 < 60)) ∧ ¬n

(3)
21)∧ (n(3)

21 =⇒ class2 = 0)
14 (n(2)

22 ∧ (x1 ≥ 60) ∧ n
(3)
22) ∨ ((¬n

(2)
22 ∨ ¬(x1 ≥ 60)) ∧ ¬n

(3)
22)∧ (n(3)

22 =⇒ class2 = 1)
15 (true ∧ (x1 ≥ 65) ∧ n

(2)
21) ∨ ((false ∨ ¬(x1 ≥ 65)) ∧ ¬n

(2)
21)∧ (n(2)

21 =⇒ class2 = 1)
16
17 ; Equivalency constraint
18 ¬(class1 = class2)

Figure 4.3: Logical encoding in finding out equivalence of tree models T1 and T2

Definition 4.1). Essentially, we aim to find out a satisfiable example for the formula
φT 1 ∧ φT 2 ∧ ¬(class1 = class2) by giving it to the SMT solver. If the solver finds a
satisfiable example to this formula, it would then give us a logical model as the assign-
ments to the features which in this case are x0 and x1 (and also the node variables),
for which the values of class1 and class2 are different. In other words, from the logical
model we could extract a feature vector, which given to the models T1 and T2, would
produce two different class values, and thus ¬(class1 = class2) constraint evaluates to
true and hence, the models are not equivalent. However, if the solver cannot find a
satisfiable example to the formula, then the two models are said to be equivalent since
the constraint ¬(class1 = class2) cannot be evaluated to be true for any assignment
of values to the features x0 and x1.

The encodings of the two trees T1 and T2 are given in Figure 4.3, based on the
approach discussed in Chapter 3, from Lines 2-7 and 10-15 respectively. Note that,
each line here represents the encoding of a node and all the lines are essentially con-
joined 6. Finally, in line 18, we give the logical constraint describing the negation of
the equivalency constraint. Given, this logical formula to a satisfiability checker, we do
not find a satisfiable example, and thus, it proves that these two trees are equivalent.
However, if we change any of the class values for either of the trees and keep the others
unchanged, we will have two non-equivalent trees. For instance, if we change the class
values of the leaf node n(3)

1 from 0 to 1 of the tree T2, then the trees are not equivalent
and we will get a counter-example as I = {x0 7→ 10, x1 7→ 0, class1 7→ 0, class2 7→ 1}.
It tells us, for the input vector (10, 0), the tree T1 gives a class value of 0, and the
tree T2 gives the class value of 1 and therefore, they are not equivalent.

Neural network. It is possible to use a similar sort of technique, as described
for the decision tree, in checking the equivalency of neural network (NN) models,
i.e., by translating the NN model into logical formula (using the technique described

6Note that we do not put a conjunction operation at the end of each line for the brevity.

65

4 Balancedness Testing of ML Algorithms

in Chapter 3) and computing for equivalency. However, there are two significant
challenges in performing such computations on the neural networks: (a) only specific
types of neural networks can be translated to logical formulas, and (b) even if we are
able to translate the NN model to logical formula, the satisfiability checking would
be time consuming due to the presence of a large number of arithmetic operators in
the encoding of the model. Therefore, in this case, we check the equivalency between
two neural networks models by comparing the weights and biases, i.e., by comparing
the two sets of parameters defining the networks. The two networks considered for
equivalence checking has the same architectures, i.e., an equal number of layers and
neurons, since they are generated by training a single given neural network algorithm
(i.e., the algorithm under test). However, note that, having the same architecture in
two neural networks does not automatically imply that they are equivalent models
since the parameters learned for the two networks could still be significantly different.
Our technique to compare the learned parameters of two networks can only be used
for ReLU network, is fast, and furthermore not bounded by the size of the network
compared to the satisfiability checking approach. For checking the equivalency of any
other types of networks, testing equivalency technique can be used 7.

Support vector machine (SVM). For SVM, we check the equivalency by com-
paring the hyperplanes between two SVM models. As described in Section 2.1.1 of
Chapter 2, the objective of this learning algorithm is to generate a hyperpalane in the
n dimensional space (where n is the size of the feature vector) which should distinctly
classify the data points. Hence, after the learning phase, this algorithm generates a
hyperplane as the learned model 8. For a binary classification problem, the hyperplane
takes the following form:

h(x1, . . . , xn) = w1x1 + . . .+ wnxn + b

Here, wj is the weight associated with the feature j and b is defined as the offset
value. The weights associated with the features and the offset are learned during the
learning phase of the SVM. Thus, a learned SVM model has a unique set of weights
and offset. To check the equivalency between two SVMs, we compare these parameters
between two models. If the difference between these two sets of parameters for two
SVM models are significant, we conclude that they are not equivalent.

Apart from these three algorithms, we also have an equivalence computation mecha-
nism for the logistic regression model. We do not describe it separately as this method
works similarly to the method described for SVM, i.e., by comparing the weights cor-
responding to the features.

However, we do not have computation techniques for checking the equivalence of
other types of machine learning models. There are two reasons for this: (a) some
ML algorithms do not generate any models after the learning phase which could be
computed for equivalence, and (b) even if we have models, computing equivalence can
be really expensive in some cases. ML algorithms like k nearest neighbors (k-NN)
and naive Bayes do not generate any model after the learning phase. For instance,
k-NN algorithm after the learning phase simply stores the training instances. During

7In this work, we check the balancedness of ReLU network, and checking other types of networks
such as convolutional or binarized networks are potential future work.

8Note that, if the training dataset contains instances that are not linearly separable, a non-linear
transformation is first performed on the plane by performing higher order polynomial transforma-
tions [AMMIL12].

66

4.2 Testing Approach

the prediction phase, for a given input instance, k nearest data points are computed.
The classes of those data points are then used to predict the class value of the input
instance (see Chapter 2 for more details). Thus, k-NN does not generate any model to
be used for the prediction phase. Naive Bayes algorithm works by simply computing
the posterior probability of predicting a class by using the Bayes theorem, or the
Gaussian process. Thus, naive Bayes also does not generate any model which could be
used for equivalence computation.

For the tree-based ensemble algorithms like random forest and boosting, it is possible
to apply a similar sort of mechanism as is used for decision trees. However, solving
the SMT formula describing the ensemble containing a large number of decision trees
would incur a huge runtime and therefore, SMT solving to find out equivalency in
this case is costly 9. As a result, currently, we use testing as a means to check the
equivalency of such models. To summarize, in this thesis, we developed equivalence
computation methods for decision trees, SVM, neural networks and logistic regression
algorithms, and for the rest, we perform equivalency testing which we describe next.

Testing equivalence

This testing approach follows the traditional random testing approach of generating
test inputs by using the uniform distribution and then executing them on the software
under test in order to find a failure. In our case, we randomly generate a test instance
x and then check if M1(x) = M2(x), and we do it for a number of such instances. Since
it is not possible to perform exhaustive testing, i.e., testing for all possible test inputs
using random testing, to this end, we employ some strategies to generate test cases in
a systematic way.

• First of all, we randomly generate some data instances from the domain of the
feature values X⃗ of the dataset. The number of such test instances generated
can be controlled by a tester-defined parameter INPUT-RATIO (see Algorithm 3)
as a percentage of all possible inputs of the feature values X⃗.

• We also use training data for testing the models. We randomly get a number
of training instances from the training dataset based on the input given by the
tester in TRAIN-RATIO. This value indicates the percentage of the training data
to be used for testing.

• Finally, in order to cover the corner cases we generate two instances with the
minimum and maximum of all the feature values (as obtained from the training
dataset). Along with that we also generate instances with the arithmetic mean
and median of all the feature values.

Algorithm 2 describes the overall equivalence checking approach which combines the
equivalence computation and the testing methods. This algorithm requires the inputs
as the two models to be checked; M1 and M2, and the original training dataset. In
Line 2 first we check, whether there exists an equivalence computation method for
the given type of model. If it exists, we compute, and if we find the two models to
be equivalent, we return true (in Line 5). Otherwise, when our computation method

9Note that there are some recent works such as [IISM22] which gives SAT encodings for these models.
As a potential future work, this can be used to compute equivalency for the tree based models.

67

4 Balancedness Testing of ML Algorithms

Algorithm 2 equi (checking equivalence of models)
Input: M1, M2 ▷ models to be compared

(F, T) ∈ F × T ▷ features and training data
Output: boolean ▷ yes or no answer

1: equal := false;
2: if equiComputable(type(M1)) then ▷ compute equivalence
3: equal := computeEquitype(M1)(M1, M2);
4: if (equal) then
5: return true;
6: else ▷ test equivalence
7: equal:= equiTest(F, T ,M1,M2);
8: return equal;

finds the models to be not equivalent or in case of non-applicability of the equivalence
computation method, we call the equiTest algorithm (in Lines 6-7).

The equiTest algorithm 3 essentially performs testing to check the equivalency be-
tween two models. We earlier mentioned our two main sources of getting the test
inputs: random input generation from the domain of feature values and randomly
taking the test inputs from the training dataset. In this algorithm, we effectively com-
bine these two approaches. First, we randomly generate INPUT-RATIO percentage of
instances from the domain of feature values X⃗. The function random(X⃗) in Line 4
generates an input instance uniformly at random. If this input is not generated before-
hand, it is included in test set ts (Lines 5-6). With this newly generated instance, we
check if it shows the violation of the equivalency, if yes, we return. Otherwise, we go
on until we generate a fixed number of test inputs (given by the value of no-random).

After testing with the randomly generated instances, we furthermore randomly take
the instances from the training dataset as test inputs and test equivalency (Lines 10-
15). Finally, the minimum, maximum, arithmetic mean, and median are computed
from the set of feature values X⃗. For each of these functions f in Line 16, we generate
the corresponding instance by applying the function on the training set T in Lines
17-18. If these instances are not already generated by the random generation process
beforehand they are added to the test set ts and then used to check for equivalency
(Lines 19-22).

The equivalency checking between two models corresponding to a test instance is
performed by the Algorithm 4. To this end, for any generated test inputs t ∈ X⃗,
assuming the prediction corresponding to M1 and M2 are y1 and y2 respectively, then
we check whether y1 = y2.

The entire framework implementing the workflow from Figure 4.1 and the Algo-
rithms 2, 3 and 4 are implemented in a testing tool called TiLe 10. We give a brief
description of the tool in Section A.1 of Appendix A.

4.3 Evaluation
In this section, we describe the experimental evaluation of our testing tool TiLe (Test-
Ing of LEarners) on learning algorithms. In our evaluation, we aim at testing the ML
classification algorithms taken from 5 different ML libraries with respect to the bal-
10https://github.com/arnabsharma91/TiLe

68

4.3 Evaluation

Algorithm 3 equiTest (testing equivalence of models)
Input: M1, M2 ▷ models to be compared

(F, T) ∈ F × T ▷ features and training data
Output: boolean ▷ yes or no answer

1: ts:= ∅; count :=0;
2: no-random := INPUT-RATIO×|X⃗|

100 ;
3: while count < no-random do
4: t := random(X⃗); count := count + 1;
5: if (t /∈ ts) then
6: ts := ts ∪ {t};
7: if ¬equiv(M1, M2,t) then
8: return false;
9: no-train := TRAIN-RATIO×|T |

100 ; count :=0;
10: while count < no-train do
11: t := random(T); count := count + 1;
12: if (t /∈ ts) then
13: ts := ts ∪ {t};
14: if ¬equiv(M1, M2,t) then
15: return false;
16: for f ∈ {min, max, median, mean} do
17: for i from 1 to |F | do
18: t[i] := f(i, T); ▷ compute f-value of feature i

19: if (t /∈ ts) then
20: ts := ts ∪ {t};
21: if ¬equiv(M1, M2,t) then
22: return false;
23: return true;

anced data usage property, and furthermore, find out the effectiveness of our tool.
Essentially, for the latter, we perform an internal evaluation of our tool in finding
out the effectiveness of the transformations we consider and our equivalence checking
approach. We first describe the research questions which drive our evaluations and the
corresponding setup for it in Section 4.3.1. Then we report the results of evaluating
TiLe in Section 4.3.2.

4.3.1 Experimental Setup

The evaluation of our testing approach focuses on two main aspects. We first perform
the external evaluation of TiLe which looks at whether the classification algorithms
implemented in the state-of-the-art ML libraries use the training data in the learning
phase in a balanced way. Furthermore, we also check whether we could use TiLe to
detect unbalancedness in known unbalanced algorithms. The following two research
questions are designed considering the external evaluations of TiLe.
RQ1 Are ML algorithms used in the popular machine learning libraries balanced?
RQ2 Can TiLe be used to detect unbalancedness in by-design-unbalanced ML algo-
rithms?
Next, we aim to find out the effectiveness of our tool by performing some internal
evaluations. To this end, we check the effectiveness of different permutation strategies
(described in Section 4.2.2) and also our equivalence testing mechanism. The following
research questions are considered for the internal evaluations of our tool.

69

4 Balancedness Testing of ML Algorithms

Algorithm 4 equiv (testing equality of models M1 and M2 on given input data
instance t)
Input: M1,M2 ▷ models to be compared

t ∈ X1 × . . .×Xn ▷ test instance
Output: boolean ▷ yes or no answer

1: y1 := M1(t);
2: y2 := M2(t);
3: return (y1 = y2);

RQ3 Which permutation strategies are effective in finding unbalancedness?
RQ4 How effective is our equivalence testing mechanism?

Next we describe the experimental setup that we design to evaluate the above-
mentioned research questions.

RQ1. For evaluating this research question, we consider twenty nine machine learning
algorithms taken from the 5 prominent ML libraries, namely scikit-learn [PVG+11],
WEKA [WFH11], and for ensemble algorithms, XGBoost [CG16], CatBoost [PGV+18],
and LightGBM [lig19]. Note that for the evaluations we set the hyper-parameters
of the algorithms we check, to the default values (as given in the corresponding
libraries) 11. For example, in the case of neural networks, the hyper-parameter
includes the number of layers and the number of neurons in each layer. We set
these numbers to their default values for the neural networks (as defined in the
scikit-learn library). Moreover, we take a support vector machine with the
linear kernel, a naive Bayes algorithm with the Gaussian process, and ada boost
algorithm with the decision trees as the base algorithm.

RQ2. In this evaluation, we consider the ML algorithms which are by design not bal-
anced. For instance, there are fairness-aware algorithms, that learn from the
training data in a specific way, as to ensure that the generated model is fair
with respect to a specific fairness definition (see Section 7.2.1 of Chapter 7 for
details on fairness in ML). These algorithms are required to treat the training
data in an unbalanced way during the learning phase to mitigate the unfairness
present in the dataset. Therefore, the fundamental idea of our balanced data us-
age property–learning what is in the training data–is implicitly violated by any
fairness-aware algorithm at the cost of learning a fair model. We check the bal-
ancedness of two such fair-aware algorithms, proposed by Zafar et al. [ZVGG17]
and Calders et al. [CKP09]. As the implementation of the latter was not publicly
available, we implemented their approach using the techniques described in their
paper.
Moreover, we consider a similar type of unbalanced algorithm, which learns to
guarantee the monotonicity property. These are known as monotonicity-aware
algorithms. Alike the algorithms discussed above, monotonicity-aware algorithms
are required to generate monotone models, even when the training data contains

11For an ML algorithm, a set of hyper-parameters of the learning algorithm is required to be set
to some specific values before the learning process. They control the behavior of the learning
algorithm and affect how the model is trained.

70

4.3 Evaluation

non-monotonicity. For this, we consider the monotonicity-aware algorithms from
two ML libraries, XGBoost[Che19] and LightGBM[lig19].
A variant of the k-NN algorithm considers a specific number of training instances
in its learning phase. Since k-NN requires storing the training instances in its
learning phase, in some cases, when the number of instances in the training
dataset is high, the algorithm stores a subset of such instances. The number
of instances considered in this set is called the window size. Since this process
involves ignoring some training instances deliberately, this k-NN algorithm is
inherently unbalanced. We take the k-NN algorithm from the scikit-learn
library and fix a window size of 500, and denote the algorithm as k-NNws.

RQ3. In this evaluation, we consider the experiments conducted for RQ1 and record
how often each of the permutations reveals unbalancedness. For this, we com-
pute the relative unbalancedness as described in Section 4.2 to find out the ef-
fectiveness of different permutation strategies described in Section 4.2.2 by only
considering the row permutations. We, however, do not include the random
permutation strategy in this experiment, since it could randomly generate the
permutations of one of the other strategies.

RQ4. With this research question, we aim to find out the effectiveness of our equiva-
lence testing approach. For this, we consider generating non-equivalent models
by applying a specific metamorphic transformation. Precisely, we take the flip-
ping operation which is guaranteed to generate non-equivalent predictive models
when applying it on the training data.
To this end, this transformation, when applied on a training dataset, a specific
percentage of the total number of instances are selected randomly, and their
corresponding class values are changed to different values. For example, suppose
we have a total of N number of instances in the dataset, and we apply the flipping
transformation with P% change. Then

⌈
N ∗ P/100

⌉
number of data instances

selected randomly will have their class values changed. Basically, we simply flip
the class values for these selected instances from 1 to 0, or 0 to 1, and any class
value of ≥ 1, is changed to 0.

4.3.2 Results and Discussions

We now report the results for all the research questions described above.

RQ1. In Table 4.2, we show the results of TiLe applied to 11 classification algo-
rithms. The first column of the table specifies the name of the different algorithms
and the next three columns give the results of the three metamorphic transformations
corresponding to the balanced data usage: feature name shuffling (FN shuffle), row per-
mutation (Row perm.) and column permutation (Col. perm.). Here we give the results
for two of the most popular libraries12, sklearn [PVG+11] and Weka [WFH11]. The
✓ indicates that the algorithm is sensitive to that specific transformation, i.e., when
retrained on the transformed training data, a different model is generated compared
12Note that, since the other libraries we consider contain only ensemble algorithms, for uniformity,

we report the results of these libraries along with the results of ensemble algorithms for sklearn
together.

71

4 Balancedness Testing of ML Algorithms

Table 4.2: Sensitivity to metamorphic transformations
ML algorithms FN shuffle Row perm. Col. perm.

sklearn/Weka sklearn/Weka sklearn/Weka

k-NN ✗/✗ ✓/✓ ✓/ ✗
Decision Tree ✗/✗ ✗/✗ ✓/✓
Naive Bayes ✗/✗ ✗/✗ ✗/✗
SVM ✗/✗ ✓/✓ ✗/✗
Neural Network ✗/✗ ✓/✓ ✓/✓
Logistic Regression ✗/✗ ✓/✗ ✓/✓
AdaBoost ✗/✗ ✗/✗ ✓/✓
Bagging Classifier ✗/- ✓/- ✓/-
Extra Trees ✗/✗ ✗/✗ ✓/✓
Gaussian ✗/- ✗/- ✗/-
Elastic Net ✗/- ✗/- ✓/-

Table 4.3: Sensitivity to metamorphic transformations of random forest and gradient
boosting algorithms

Classifiers FN shuffle Row perm. Col. perm.
skl/XGB/LGBM/CB/Wk skl/XGB/LGBM/CB/Wk skl/XGB/LGBM/CB/Wk

Random Forest ✗/✗/✗/✗/✗ ✓/✓/✓/-/✓ ✓/✓/✓/-/✓
Gradient Boosting ✗/✗/✗/✗/✗ ✓/✗/✗/✓/✓ ✓/✓/✓/✓/✓

to the model trained on the original training data. On the other hand, ✗ denotes that
the algorithm is not sensitive to that transformation. If the implementation of a spe-
cific ML algorithm is not available in the corresponding library, we mark it as ‘-’. For
instance, the bagging and the elastic net classification algorithms are not implemented
in the WEKA library.

Since all the algorithms do not consider feature names during their learning phase,
none of them are sensitive to feature name shuffling. However, it is quite evident from
the results of Table 4.2, that except for naive Bayes and Gaussian process, the rest
of the ML algorithms are unbalanced because of their sensitivity to either the row
or column permutations. The results are consistent across scikit-learn and WEKA
libraries except for two algorithms, k-NN, and logistic regression. The reasons for such
differences might be due to the different implementation approaches used for these
algorithms.

In addition to the two libraries we discussed above, we furthermore consider several
boosting libraries in testing the implementations of the random forest and gradient
boosting algorithms, results for which are depicted in Table 4.3. Note that, here
we consider three boosting libraries: XGBoost (XGB) [Che19], LightGBM (LGBM) [lig19],
CatBoost (CB) [cat21], along with scikit-learn (skl) [PVG+11] and WEKA (Wk) [WFH11].
The results further show that most of these ensemble algorithms across different li-
braries are sensitive to row and column permutations. For example, the random forest
algorithm is sensitive to both row and column permutations across all the libraries.
The implementations of boosting algorithms in some libraries show row sensitivities,
for instance in CatBoost or scikit-learn library, however, not present in the XGBoost
library.

72

4.3 Evaluation

Table 4.4: Transformation specific balancedness indicators
Classifiers Row perm. Col. perm.

sklearn/Weka sklearn/Weka

k-NN 2.24/0.88 1.98/0.00
Decision Tree 0.00/0.00 21.19/25.19
SVM 5.85/2.98 0.00/0.00
Neural Network 1.05/4.98 25.65/19.09
Logistic Regression 0.63/0.00 0.02/1.19
AdaBoost 0.00/0.00 1.66/5.09
Bagging Classifier 28.61/- 16.73/-
Extra Trees 0.00/0.00 19.05/28.10
Elastic Net 0.00/- 11.10/-

Table 4.5: Transformation specific balancedness indicators for random forest and gra-
dient boosting algorithms

Classifiers Row perm. Col. perm.
skl/XGB/LGBM/CB/Wk skl/XGB/LGBM/CB/Wk

Random Forest 11.20/9.01/2.35/-/18.98 21.09/12.87/18.88/-/19.19
Gradient Boosting 2.12/0.00/0.00/8.81/1.21 17.12/16.53/3.98/9.09/11.17

We further investigate the algorithms which showed unbalancedness in any form, to
find out how often such sensitivities occur. To this end, we compute transformation-
specific balancedness indicators bit (see Section 4.2.1) for row and column permuta-
tions, which give us relative measures of sensitivities for each transformations. Ta-
bles 4.4 and 4.5 give the results in percentages of total test instances, causing non-
equivalency for the corresponding transformation. Here, we omit the FN shuffle trans-
formation and the naive Bayes, Gaussian process algorithms since neither the feature
name shuffling transformation nor those algorithms revealed any sort of unbalanced-
ness in Table 4.2.

Now, these results show the unbalancedness in the form of sensitivities to the meta-
morphic transformations we consider, however, do not explain the reasons for such.
Below we describe some of the reasons that we found that causing unbalancedness in
the ML algorithms.

Tie breaking. This is one of the reasons, causing the k-NN algorithm to be sensitive
to the row permutations and the tree-based algorithms to column permutations.
k-NN learning algorithm is sensitive to the ordering of the rows, especially when
there are ties involved (see Section 2.1.1 of Chapter 2 for details on k-NN al-
gorithm). More specifically, if a new instance to be predicted has the same
shortest distance to more than two instances in the dataset, which is a tie situ-
ation, the instance to be included in the k nearest neighbors would depend on
the order of the instances. Therefore, the changes in the ordering of the rows in
the training data can change the model being generated. This similar reasoning
can also be applied to tree-based algorithms. In the case of the decision tree,
while deciding which feature to be used for splitting at a certain depth of the
tree (see Section 2.1.1 of Chapter 2), we take the one which causes maximum

73

4 Balancedness Testing of ML Algorithms

entropy changes. Now, for some datasets, this might not be a unique feature
and there might exist several of them. If we change the ordering of the columns,
the choice of such a feature to split would be affected, thereby causing a change
to the model being generated. This same reasoning can also be used for any
tree-based ensemble algorithms like random forest or boosting are sensitive to
column permutations.

Randomness. This is prevalent in the implementations of many ML algorithms and
in some cases even impossible to avoid. For example, for the decision tree, the
hyper-parameter random_state in scikit-learn library controls which feature
to be selected in case of a tie while finding the best split. Algorithms like support
vector machine and logistic regression randomly shuffle the data while learning in
batches. Moreover, the random forest algorithm learns by randomly selecting a
subset of instances from the training dataset. In our experiments, we attempted
to control such randomness by fixing the parameter random_state to a fixed
value. However, even after that randomness still persists in some ML algorithms
and is one of the reasons for the ML algorithms being unbalanced.

Imprecise numerical calculations. The numerical calculations performed in ML algo-
rithms are inherently imprecise and some algorithms are required to perform a
lot of such computations. For example, the algorithms like SVM and neural net-
works perform a large number of arithmetic operations involving high-precision
decimal values. Many of these operations are non-commutative and therefore,
changing the ordering of the rows can definitely lead to the generation of non-
equivalent models.

Initialization. The implementations of some ML algorithms use specific optimization
algorithms and/or initialize some of the learned parameters to specific values
based on the initial observations of the training data. This in some cases is done
based on the structure of the training data, and therefore, if the structure changes
in any way (after performing row or column permutations), the optimization
algorithms would probably give different results or we would get a different set
of initial values for the parameters. In either of the cases, we might then get
different models. For example, the implementation of k-NN in scikit-learn
library contains different types of learning algorithms for the learning process,
such as k-d tree, ball tree, and so on. The selection of such an algorithm is
performed based on the nature of the training dataset. Hence, if we perform
column permutation, it would potentially change the structure of the dataset
and eventually the choice of the learning algorithm as a result would also change.
Moreover, these different algorithms have different ways of breaking the tie if it
occurs. For instance, k-d tree does it randomly and the ball tree algorithm uses
the ordering in the training dataset. As a result, even a column permutation
can lead to a change in the generated model for k-NN (which we also saw in
Table 4.2). The neural network algorithm in scikit-learn assigns some initial
values to the learned parameters: weights and biases, based on the structure
of the data. Hence, any kind of changes, row or column-wise might lead to a
different set of initial values for the weights and biases, ultimately leading to the
generation of a different model.

These reasons indicate that essentially the implementation choices that are taken

74

4.3 Evaluation

Table 4.6: Sensitivity to metamorphic transformations in fair-aware and monotonicity-
aware algorithms

Classifiers FN shuffle Row perm. Col. perm.

Fair1 ✓ ✗ ✗
Fair2 ✓ ✗ ✗
Montonic (XGBoost) ✓ ✗ ✗
Montonic (LightGBM) ✓ ✗ ✗
k-NNws ✗ ✓ ✗

while developing the machine learning algorithms are to blame for the unbalanced data
usage. The list of reasons that are mentioned here is not exhaustive, and there might
be more. Finding out more such reasons could be an interesting future work. Next,
we report the results of applying TiLe on the by-design unbalanced algorithms.

RQ2. Table 4.6 shows the results of applying TiLe to the classification algorithms
which use the training data in unbalanced ways in their learning phases. As we pre-
sume, all of them are sensitive to some specific transformations. For instance, the fair
aware (Fair1 [ZVGG17] and Fair2 [CKP09]), or the monotonicity aware algorithms
(taken from XGBoost and LightGBM libraries) are expected to be sensitive with respect
to the feature name shuffling. In the learning phase, such an algorithm takes the col-
umn values corresponding to a user-given feature name and aim to generate a fair or
monotone model, by either changing the dataset or learning in a specific way in order
to generate a fair or a monotone model. Therefore, these algorithms inherently treat
the training data in an unbalanced way. Hence, changing the name of the features
would definitely cause the learner to take a different column and thereby generate a
different model. Finally, the k-NNws which considers storing a subset of instances of
the training dataset in its learning phase, as expected, shows to be sensitive to the row
permutation.

Thus, by using TiLe we were successfully able to detect unbalancedness present in
the algorithms which by design use the data in the learning phase in an unbalanced way.
With this, we can also see the potential use of TiLe to detect unbalancedness present
in any algorithms. Next, we look at the effectiveness of different row permutation
strategies.

RQ3. The aim of this research question is to find out which of the row permutation
strategies are effective in detecting the sensitivities occurring due to row permutations.
As mentioned earlier, due to a high number of permutations possibilities, we do not
consider all of these, rather we take some specific strategies in selecting those. Fig-
ure 4.4 compares the result of average deviations over all the algorithms13 (across all
the libraries), caused by different row permutation strategies. The x-axis gives the
percentage of average deviations and the y-axis gives different row permutation strate-
gies. Essentially, we record on average how many percentages of test instances show
sensitivity for a specific row permutation strategy. The results suggest, almost all of
them are equally successful in showing unbalancedness, except ‘Reversing’ strategy
surprisingly being a bit more effective than the others. Note that, the values depicted
in Figure 4.4 cannot be directly compared to the results of Table 4.4. However, the

13Note that here we do not consider the algorithms which did not show any sensitivity to the row
permutation, for e.g., decision tree, Ada boost, etc.

75

4 Balancedness Testing of ML Algorithms

0 10 20 30 40 50 60

Random

Ordering

Alternating

Reversing

Batch-flipping

Average deviation (in percentage)

R
ow

pe
rm

ut
at

io
n

st
ra

te
gi

es

Figure 4.4: Deviation detected by different row permutation strategies

Table 4.7: Percentage of test cases classified differently by the original and transformed
classifier after reversing the rows of the dataset

Classifiers Test cases

k-NN 0.41
SVM 19.99
Neural Network 2.35
Logistic Regression 0.48
Random Forest 11.35
Bagging Classifier 11.59
Gradient Boosting 0.86

maximal values corresponding to this figure are coming from the bagging classifier,
which matches the highest relative sensitivity for the row permutations as shown by
the algorithm.

We further investigate the relative unbalancedness of different classification algo-
rithms when we apply the ‘Reversing’ rows permutation on the training dataset, the
results of which are depicted in Table 4.7. The results show the percentage of test in-
stances that are classified differently by the original and the transformed models after
applying the permutation ‘Reversing’. To this end, we find the SVM algorithm to be
more sensitive to this transformation compared to any other ML algorithms.

RQ4. In evaluating this research question, we construct non-equivalent models by
applying the metamorphic transformation flipping. For this, we randomly select some
instances and flip their class labels.

Selecting just a single instance and then flipping its class label might not change the
model, since such a tiny change can often be regarded as an outlier and therefore, might
be ignored in the learning process, specifically when the number of training instances
is really high. Hence, to this end, we consider a 2% flip applied on the dataset (as this
would do the slightest yet detectable changes). For this experiment, we consider five
classification algorithms: k-NN, decision tree, SVM, naive Bayes, and neural network.
The reason we choose these algorithms is because they would give a good variation

76

4.3 Evaluation

20% 30% 40% 50% 60%

10%
20%
30%
40%
50%
60%
70%
80%
90%

TRAIN-RATIO

IN
PU

T
-R

AT
IO

k-NN
Decision tree
SVM
Naive Bayes
Neural Network

Figure 4.5: Relation between TRAIN-RATIO and INPUT-RATIO

over different learning techniques.

Our testing approach is driven by the generation of test cases which in turn is
dependent on two important parameters TRAIN-RATIO and INPUT-RATIO. These two
parameters dictate how many test instances should be generated for testing (see algo-
rithm 4). Thus, to evaluate the effectiveness of our equivalence testing approach we
look at how the values of these two parameters affect non-equivalency detection. Fig-
ure 4.5 shows the results of our evaluation. On the x-axis different TRAIN-RATIO values
are given and the y-axis gives the corresponding minimal INPUT-RATIO needed to de-
tect non-equivalence. For example, if we take the decision tree, then for a TRAIN-RATIO
of 20%, we require an approximately 16% of the randomly generated test data to find
out the non-equivalence caused due to the 2% class labels flipping. Here we see that
non-equivalence detection requires larger randomly generated test inputs initially, how-
ever, this number reduces as we take more training instances for testing. The k-NN
algorithm learns by storing the training dataset and therefore, is highly dependent
on the training dataset. Hence, the drastic drop in requiring the randomly generated
test data in the case of k-NN is in line with its dependency on the training dataset.
For all the other classification algorithms TRAIN-RATIO of 30% and INPUT-RATIO of
20% are good choices for detecting non-equivalence. We furthermore used a 1% flip to
construct non-equivalent predictive models and then compared these two testing pa-
rameters. The results suggest a similar sort of trend as presented in Figure 4.5. Thus,
in our evaluations, we see that our equivalence testing approach is effective enough
to detect the non-equivalency. However, this result cannot easily be generalized since
we only considered a single transformation to generate non-equivalent models. In the
future, this can be extensively evaluated by generating non-equivalent models, consid-
ering different types of such transformations.

77

4 Balancedness Testing of ML Algorithms

4.4 Threats to Validity

There exist several threats to the validity of the results presented here. First of all,
there are several randomnesses involved in our experiments, since we perform random
row or column permutations on the training data. Moreover, the ML algorithms con-
sidered involve random computations. As a result, the runs of TiLe cannot simply be
repeated. However, this does not have an effect on the results of Table 4.2, since we
report the sensitivity to any of the transformations whenever we found a run (amongst
20 runs) showing non-equivalence between the two models. The results reported in
Tables 4.7,or 4.4 can vary, as these numbers indicate the relative unbalancedness com-
puted based on the randomly generated test instances. We tried to minimize variances
in these numbers by performing each experiment 20 times and taking an average of
them. The results reported in these tables give an average over all these 20 different
values of relative sensitivities.

Next, the choice of training data could also be a potential threat to validity as
the unbalancedness we find can occur only on these particular sets of training data.
However, to mitigate this effect we consider a number of diverse real-world datasets
with varying numbers of rows and columns.

Finally, the correctness of our implementation is another threat to validity. We
have performed an extensive evaluation of our testing approach in testing 29 different
types of ML algorithms belonging to 5 different machine learning libraries. However,
the results of our experiments show some inconsistent behaviours which in some cases
cannot be explained and therefore, might be difficult to detect in a large code base.
For instance, the unbalancedness might be caused because of simply using an off-the-
shelf library which is part of a different package written in a different programming
language. In fact, to foster fast computations in the learning phase, scikit-learn
uses several packages written in the C programming language. Testing of inherently
unbalanced algorithms such as fair-aware or monotonicity-aware and using flipping to
get expected non-equivalent models in some ways improve on this situation, however,
do not represent all the cases.

4.5 Related Work

The work described in this chapter is in line with the existing works described in
Section 2.3 of Chapter 2 about using metamorphic testing to test the machine learning
based software systems. There we discussed the related works in using metamorphic
testing technique in general. In this chapter, however, we keep our focus only on
discussing the works of testing the implementation of ML algorithms.

A series of works are done by Murphy et al.[MKA07, MKHW08, MSK09] consid-
ering metamorphic testing technique to test the implementations of several machine
learning algorithms. In their works, they considered testing SVM, naive Bayes, deci-
sion tree, and k-NN algorithms implemented in WEKA [WFH11] library, with respect
to several types of metamorphic transformations. To perform these transformations
they considered some artificially generated training datasets. On the contrary, in this
chapter, we defined a property of the learning phase namely balanced data usage which
requires any ML algorithm to be invariant under the row, column permutations, and
feature name shuffling. To apply the transformations we constructed a training data
repository containing a number of datasets- artificial as well as real-world. We then

78

4.5 Related Work

tested the balancedness property on the implementations of a number of classification
algorithms (29 in total), taken from 5 different machine learning libraries, while the
works by Murphy et al. [MSK09] considered only four classification algorithms taken
from WEKA.

Nakajima et al. [NB16] proposed a systematic way to look into an ML algorithm
and derive the desired metamorphic transformations. To this end, they only considered
the SVM classification algorithm and focus on finding out appropriate transformations.
Moreover, they proposed a testing technique that derives test data based on the trans-
formations, which is also limited to SVM. Dwarakanath et el. [DAS+18] proposed some
specific metamorphic transformations for SVM and deep learning networks. These are
however also specific to the two classification algorithms they evaluated. The meta-
morphic transformations we consider, as part of the balanced data usage property,
are domain independent and not specific to any algorithm. Moreover, our testing
mechanism can also be used for testing any classification algorithms.

Pham et al. [PQW+20] in their works reported the generation of two different models
in two runs with the same training data for a single deep learning (DL) algorithm.
They identified several types of non-determinism in DL tasks such as random seed
generation, weights and biases initialization, and the random shuffling of data during
learning. Since modern deep learning libraries attempt to give faster results even
with a complicated architecture, parallel processing and the Graphics processing unit
(GPU) are employed during the learning process. This also results in generating two
models in two runs. They reported that DL libraries like PyTorch and TensorFlow
deliberately use non-determinism in order to generate more accurate models. However,
some of them, for instance, caused by arithmetic operations in the GPU programming
are not deliberate and cannot be controlled, unless tasks are performed in a fully
serialized manner incurring a huge runtime to train a model. Such changes in models
with the same training data with different runs are surprising to many researchers and
practitioners, as is found as a result of their survey.

In recent years, there have been some more works on testing only the deep learning
libraries [WYC+20, GXL+20, WLQ+22]. These works focus on finding the implemen-
tation bugs such as crash bugs, NaN value bugs, and inconsistency bugs. In these
works, they used sophisticated testing techniques, specific to DL algorithms in order
to find such buggy behaviours. For instance, in [WYC+20], the authors used model
mutation testing specifically designed for DL algorithms or in [GXL+20], the authors
used a variation of the causal testing approach to find the implementation bugs in DL
libraries.

There exist some approaches using metamorphic relations like the permutation of
features and class labels, in order to study the accuracy of the classifier and even im-
prove them later on. For example, in [OG10], Ojala et al. evaluated the effect of such
permutation strategies on the training data, and on the performance of the classifi-
cation. Ding et al. [ZDMR17] used metamorphic relations like inclusion, exclusion,
or duplicating training instances on the training dataset to inspect the effect of such
transformations on the accuracy of the generated model.

Finally, a balancedness like property is studied by Urban et al. [UM18] where they
used static analysis approach to find out whether some specific data are unused in a
program. This sort of behaviour, for instance, ignoring certain feature values during
the learning phase is another sort of unbalancedness of the ML algorithms. To this end,
Urban et al. only gave a theoretical framework based on the abstract interpretation

79

4 Balancedness Testing of ML Algorithms

approach, however, did not perform any experimental evaluation.
To conclude, in this chapter of the thesis, we defined the balanced data usage as

a property of the learning phase which requires any ML algorithm to use the entire
training data in its learning phase. To this end, we developed a metamorphic testing
tool TiLe which could be used to test this property. We furthermore tested 29 different
classification algorithms taken from five machine learning libraries with respect to the
balancedness property. The results of our evaluation indicate a number of machine
learning algorithms are not balanced.

80

5 Verification-based Testing

In the white-box testing approach, we assume that the internals of the machine learning
model is known. Thus, a testing technique can be developed considering the structure
of the model. However, such a technique would be specific to that model. More often
the existing works focus on using this testing approach to test a specific type of model,
namely a neural network model, such as in the works of [PCYJ17, SWR+18, HYL+22].
Now, in some cases, it might happen that we need to test different types of ML models,
the types of which are not known beforehand. Such a black-box nature of the model
poses much more challenges in generating test cases that can potentially reveal errors in
the model. Apart from a few works (such as [Agg18, ASH+21, XW20]) which consider
checking only a specific type of property, a black-box testing technique for testing any
type of ML model is largely missing.

To solve this problem, we propose the verification-based testing technique in this
chapter which enables us to perform testing of machine learning models without con-
sidering the types of them. Our approach systematically explores the input space of
the given model under test (MUT) by generating effective test inputs with respect to
a specific property. This is done by (1) inferring a known white-box model through
the machine learning process, which approximates the MUT, and then (2) computing
the property on the generated white-box model using the verification technique we
described in Chapter 3. If the verification results in ‘failure’, implying the violation of
the property, we would get a counter-example to the property. The counter-example
in this case, is the set of values corresponding to an input instance that resulted in the
violation of the output. We can further generate multiple numbers of such counter-
examples by employing a technique called pruning. Next, these are confirmed with the
MUT, since the counter-examples are essentially generated on the inferred white-box
model and not on the MUT we are testing. If confirmed, they are returned as the
violated test cases with respect to the specified property, otherwise, they are used to
improve the quality of the inferred white-box model. This process goes on until we
find the violation of the property or a user-defined timeout occurs. However, if no
counter-example is found, then the testing process could either stop or proceed further
by generating a new white-box model and then repeating the entire process.

We start with the formalization required to describe our testing technique in Sec-
tion 5.1. Then we describe different steps involved in the verification-based testing in
Section 5.2.

5.1 Formalization

We begin by revisiting some of the formalizations we introduced in Chapter 2. For-
mally, we represent the machine learning model as a predictive function of the following
form:

M : X1 × . . .×Xn → Y

81

5 Verification-based Testing

n
(0)
1

n
(1)
1

no

income<1000

yes

income≥1000

gender==male

n
(1)
2

n
(2)
1

no

income<1000

yes

income≥1000

age<40

n
(2)
2

no
income<5000

yes
income≥5000

age≥40

gender==female

Figure 5.1: A decision tree for predicting loan

where Xi is the value set of feature i, and Y is the set of classes 1. We define X⃗ to
write X1 × . . . × Xn. We furthermore write x⃗ ∈ X⃗, and x⃗ = x⃗(1), . . . , x⃗(n) denotes a
feature vector with n features, and y ∈ Y denotes a class.

In the learning phase, the learning algorithm gets the training data of the form
X⃗ × Y , i.e., a set of data instances with known associated classes (a set of (x⃗, y)
pairs), which is then used by the algorithm to generalize the relationship between the
instances and the corresponding classes, and thus, a model is generated which is said
to have learned the relationship. The model is then further used to predict classes for
unknown data instances.

Next, for the sake of explaining our testing technique, we consider a specific property
to test in this chapter. To this end, we take a type of fairness property called individual
discrimination which can be formally defined as follows:
Definition 5.1 A machine learning model M is fair with respect to a sensitive feature
i, if for any two data instances, x⃗1, x⃗2 ∈ X⃗ we have (∀j : j ̸= i.x⃗1(j) = x⃗2(j)) imply
M(x⃗1) = M(x⃗2).

This definition of fairness is introduced by Galhotra et al. [GBM17] and requires the
ML model to be invariant to the changes of the sensitive feature i. In other words, the
ML model should give the same prediction even if the feature values of the sensitive
feature i are different in x⃗1 and x⃗2 instances. For example, consider the decision tree
depicted in Figure 5.1 which works as a predictive model to decide whether a person
should be given a loan based on the income, age, and gender 2. Clearly, this tree is
not fair with respect to the feature gender. For instance, consider the following pair
of instances:

x⃗1 = income=4500, age=50, gender=female
x⃗2 = income=4500, age=50, gender=male

For the first instance x⃗1, we get a prediction of ‘no’ and for x⃗2 we get the prediction
as ‘yes’, and thus, the tree gives different predictions to the male and female applicants.

We further use this property and the tree model to illustrate the working of our
verification-based testing approach.

1Note that, for the simplicity of describing our testing approach, we consider here the single-label
classification, extending to other types of learning problems is merely a technical work and not
related to the concepts of the approach.

2This tree is taken from one of our previous work [SW20a] on fairness testing.

82

5.2 Testing Methodology

5.2 Testing Methodology

Our testing approach is a form of learning-based testing technique where a model is
being ‘learned’ and then it is used to generate test cases. The model in this context
can be a finite state automaton [PVY99], or a Markov decision process [TAB+19], or a
piece-wise linear function [MN10]. The idea of using an inferred model for the sake of
analysing a given black-box system was first introduced by Angluin in her pioneering
work in [Ang87]. Later, Peled et al. [PVY99] extended this idea to apply the model-
checking technique to analyze specific properties on the learned model. We already
gave a detailed discussion of such related works in Section 2.3 of Chapter 2.

Our work is in a spirit similar to this idea of learning-based testing where we use
machine learning techniques to learn an ML model and then use a verification technique
to analyze the model for a specific property. Thus, we term our testing technique
verification-based testing. Since in our work, we primarily focus on testing ML models,
therefore, we approximate the model under test by using another ML model, rather
than using a finite state automaton model. To this end, we can learn two types of ML
models, either a decision tree or a neural network model to approximate the MUT,
and then apply a known analysis technique to generate test cases on them. Our testing
approach is essentially composed of four main steps: (a) white-box model learning, (b)
computing property, (c) pruning, and (d) cross-checking and retraining. We discuss in
detail each of these steps below.

5.2.1 White-box Model Learning

Our first step in this testing approach is to learn a known ML model which approx-
imates the model under test (MUT). Since the internals of this model are available
to us, we term this as a white-box model 3. To this end, the learning process follows
the traditional machine learning techniques for which we, first of all, need a training
dataset.

The dataset in this case is essentially generated by querying the MUT by using
a number of input instances. More specifically, we randomly generate a number of
instances as the input vectors to the MUT and then we execute all these randomly
generated instances on the MUT to get a set of output predictions. Thus, we get a
set of (x⃗, y) pairs which represents the functional behaviour of the MUT. Furthermore,
this set of instance-class value pairs takes the form of a typical training dataset X⃗×Y .
We term this dataset as the oracle data and use this to train our desired learning
algorithm.

To this end, we can use either a decision tree or a neural network algorithm to be
trained on the oracle data to generate the inferred model. The choice of using either
of those ML models is driven by the intention of being able to apply a verification
technique on the inferred model. Let us denote the MUT as M and the inferred model
as M ′. Once we learn the model M ′ approximating the MUT M , in the next step we
compute the property on the inferred model.

There are a number of works in the area of explainable machine learning, where such
an approach is used to learn a so called interpretable model from a black-box machine
learning model [KW17, TSHL17, TSHW20]. This kind of explanation approach is
model agnostic since this technique can be applied to any type of ML model. Essen-

3Note that, this terminology is consistent with the jargon used in testing domain.

83

5 Verification-based Testing

tially, this step in our verification-based testing technique is in a spirit similar to these
works. However, in our case, we utilize this concept to learn a model on which we can
apply an analysis technique to compute a specific property, the method for which we
describe next.

5.2.2 Property Computation

Once we learn an ML model, next we compute the specified property on that model
by using the technique described in Chapter 3. To this end, we translate the model
and the property into logical formulas and then apply satisfiability solving technique
to it. More specifically, first of all, by using the encoding mechanism introduced in
Section 3.2 of Chapter 3, we encode the inferred model M ′ into the logical formula φM ′ .
Then we also get the logical formula describing the property as φprop. Since in this
step, we aim to find out whether a violation of the property in the form of a counter-
example exists, we essentially conjoin the logical formula φM ′ with the negation of the
property formula φ¬prop to get the final formula as φM ′ ∧φ¬prop which is then given to
an SMT solver. Essentially, we aim to find out, given the conjoined formula whether
there exists a satisfiable example to that formula. In other words, we see whether we
can find a counter-example, showing the violation of the property on the model M ′.

For example, let us consider after the white-box model learning step, we get the
decision tree model as in Figure 5.1 for M ′, and we aim to compute the fairness
property (defined in Definition 5.1) on this model. Firstly, we encode this model into
the logical formula, and then we also get the logical formula describing the property 4.
Figure 5.2 shows the entire logical formula describing the decision tree model with the
conjunction of the negation of the property 5. Since the property we consider here
require two instances x⃗1 and x⃗2 to define, we thus need to encode the tree model twice
and differentiate between them by using a simple variable renaming approach.

Herein, the variables gender1, income1, and age1 correspond to the input feature
vector x⃗1 and gender2, income2, and age2 correspond to x⃗2. Similarly, class1 and
class2 are defined as the outputs for x⃗1 and x⃗2 respectively. After the model encoding
step (described in Figure 5.2 in Lines 3-12 and 15-24), next, we add the logical formula
describing the negation of the property. Now, with respect to the input and the output
of the model we consider in our example tree, the fairness property can be written as
follows:

((income1 = income2) ∧ (age1 = age2) ∧ ¬(gender1 = gender2)) ⇒ (class1 = class2)

The first part of the formula described on the left side of the operator ⇒ gives
the pre-condition on the inputs and (class1 = class2) defines the post-condition on the
output. However, since in the property computation step our aim is to find out whether
there exists a counter-example to the property, we essentially take the negation of the
formula describing the property which can be deduced as follows:

((income1 = income2) ∧ (age1 = age2) ∧ ¬(gender1 = gender2)) ∧ ¬(class1 = class2)

4Note that, the property translation mechanism is in detailed described in Chapter 6, and for this
Chapter the reader does not need to understand this translation technique.

5In this formula each of the lines are conjoined and for brevity we omit the conjunction symbol
between the lines.

84

5.2 Testing Methodology

1 ; male=1, female=0, no=0, yes=1
2 ; Encoding of the tree for instance x⃗1

3 (true ∧ (gender1 = 1) ∧ n
(1)
11) ∨ ((false ∨ ¬(gender1 = 1)) ∧ ¬n

(1)
11)

4 (n(1)
11 ∧ (income1 < 1000) ∧ n

(2)
11) ∨ ((¬n

(1)
11 ∨ ¬(income1 < 1000)) ∧ ¬n

(2)
11) ∧ (n(2)

11 ⇒ class1 = 0)
5 (n(1)

11 ∧ (income1 ≥ 1000) ∧ n
(2)
21) ∨ ((¬n

(1)
11 ∨ ¬(income1 ≥ 1000)) ∧ ¬n

(2)
21) ∧ (n(2)

21 ⇒ class1 = 1)
6 (true ∧ (gender1 = 0) ∧ n

(1)
21) ∨ ((false ∨ ¬(gender1 = 0)) ∧ ¬n

(1)
21)

7 (n(1)
21 ∧ (age1 < 40) ∧ n

(2)
31) ∨ ((¬n

(1)
21 ∨ ¬(age1 < 40)) ∧ ¬n

(2)
31)

8 (n(2)
31 ∧ (income1 < 1000) ∧ n

(3)
11) ∨ ((¬n

(2)
31 ∨ ¬(income1 < 1000)) ∧ ¬n

(3)
11) ∧ (n32)

11 ⇒ class1 = 0)
9 (n(2)

31 ∧ (income1 ≥ 1000) ∧ n
(3)
21) ∨ ((¬n

(2)
31 ∨ ¬(income1 < 1000)) ∧ ¬n

(3)
21) ∧ (n32)

11 ⇒ class1 = 1)
10 (n(1)

21 ∧ (age1 ≥ 40) ∧ n
(2)
41) ∨ ((¬n

(1)
21 ∨ ¬(age1 ≥ 40)) ∧ ¬n

(2)
41)

11 (n(2)
41 ∧ (income1 < 5000) ∧ n

(3)
31) ∨ ((¬n

(2)
41 ∨ ¬(income1 < 5000)) ∧ ¬n

(3)
31) ∧ (n32)

31 ⇒ class1 = 0)
12 (n(2)

41 ∧ (income1 ≥ 5000) ∧ n
(3)
41) ∨ ((¬n

(2)
41 ∨ ¬(income1 ≥ 5000)) ∧ ¬n

(3)
41) ∧ (n32)

41 ⇒ class1 = 1)
13
14 ; Encoding of the tree for x⃗2

15 (true ∧ (gender2 = 1) ∧ n
(1)
12) ∨ ((false ∨ ¬(gender2 = 1)) ∧ ¬n

(1)
21)

16 (n(1)
12 ∧ (income2 < 1000) ∧ n

(2)
12) ∨ ((¬n

(1)
12 ∨ ¬(income2 < 1000)) ∧ ¬n

(2)
12) ∧ (n(2)

12 ⇒ class2 = 0)
17 (n(1)

12 ∧ (income2 ≥ 1000) ∧ n
(2)
22) ∨ ((¬n

(1)
12 ∨ ¬(income2 ≥ 1000)) ∧ ¬n

(2)
22) ∧ (n(2)

22 ⇒ class2 = 1)
18 (true ∧ (gender2 = 0) ∧ n

(1)
22) ∨ ((false ∨ ¬(gender2 = 0)) ∧ ¬n

(1)
22)

19 (n(1)
22 ∧ (age2 < 40) ∧ n

(2)
32) ∨ ((¬n

(1)
22 ∨ ¬(age2 < 40)) ∧ ¬n

(2)
32)

20 (n(2)
32 ∧ (income2 < 1000) ∧ n

(3)
12) ∨ ((¬n

(2)
32 ∨ ¬(income2 < 1000)) ∧ ¬n

(3)
12) ∧ (n32)

12 ⇒ class2 = 0)
21 (n(2)

32 ∧ (income2 ≥ 1000) ∧ n
(3)
22) ∨ ((¬n

(2)
32 ∨ ¬(income2 < 1000)) ∧ ¬n

(3)
22) ∧ (n32)

12 ⇒ class2 = 1)
22 (n(1)

22 ∧ (age2 ≥ 40) ∧ n
(2)
42) ∨ ((¬n

(1)
22 ∨ ¬(age2 ≥ 40)) ∧ ¬n

(2)
42)

23 (n(2)
42 ∧ (income2 < 5000) ∧ n

(3)
32) ∨ ((¬n

(2)
42 ∨ ¬(income2 < 5000)) ∧ ¬n

(3)
32) ∧ (n32)

32 ⇒ class2 = 0)
24 (n(2)

42 ∧ (income2 ≥ 5000) ∧ n
(3)
42) ∨ ((¬n

(2)
42 ∨ ¬(income2 ≥ 5000)) ∧ ¬n

(3)
42) ∧ (n32)

42 ⇒ class2 = 1)
25
26 ;Encoding of the property
27 (income1 = income2) ∧ (age1 = age2) ∧ ¬(gender1 = gender2)
28 ¬(class1 = class2)

Figure 5.2: Logical encoding of the fairness property and the decision tree model

The idea is to find an input to the model which satisfies the pre-condition, however,
the output corresponding to which fails to satisfy the post-condition, thus violating the
property. We conjoin this constraint to the model formula in Lines 27-28 of Figure 5.2.
For solving the entire formula we use the SMT solver by giving the formula to the
solver in the appropriate form (i.e., in SMTLib format 6). Given this formula to the
solver, we indeed could find a counter-example which is returned as a logical model of
the formula giving the values of the features corresponding to the instances (x⃗1 and
x⃗2) for which the decision tree model violates the fairness property. Figure 5.3 shows
the logical model of the formula as returned by the SMT solver Z3 [MB08] which
essentially matches with the counter-example we showed for Definition 5.1.

As we can see, the counter-example in this case is a pair of the form ((x⃗1, y1), (x⃗2, y2))
where y1 and y2 are the classes as predicted by the decision tree for the instances x⃗1 and
x⃗2 respectively. We can basically consider y1 as M ′(x⃗1) and y2 as M ′(x⃗2). Since the
white-box model learning step (described in Section 5.2.1) is imprecise, the counter-
example thus generated on the inferred model might not be valid for the MUT. Hence,
we next check the validity of the counter-example on the MUT and find out whether
M(x⃗1) = y1 and M(x⃗2) = y2, i.e., if we get the same prediction for the x⃗1 and x⃗2

6http://smtlib.cs.uiowa.edu

85

5 Verification-based Testing

sat (model
(define−fun age1 () Int 50)
(define−fun income1 () Real 4500.0)
(define−fun gender1 () Int 0)
(define−fun class1 () Int 0)
(define−fun age2 () Int 50)
(define−fun income2 () Real 4500.0)
(define−fun gender2 () Int 1)
(define−fun class1 () Int 1)

Figure 5.3: Logical model corresponding to the formula of Fig. 5.2

from the MUT as we got from the inferred decision tree model. If yes, then we return
this as a valid counter-example to the property, otherwise, we add (x⃗1,M(x⃗1)) and
(x⃗2,M(x⃗2)) to the oracle data in order to improve the white-box model by retraining.
However, just by adding such a single counter-example to the oracle data and retraining
to generate a new white-box model again is an ineffective process and thus, we next
propose a technique called pruning in order to generate a number of counter-examples.

If the SMT solver does not return any counter-example, we conclude that the gen-
erated white-box model satisfies the corresponding property, however not necessarily
the MUT and thus, our verification-based testing technique is unable to find any test
cases with respect to the property we are checking.

5.2.3 Pruning

In this step, we essentially aim to generate a number of counter-examples given an
initial counter-example and retrain the white-box model by including them in the oracle
data. The generation of a number of such instances as counter-examples requires to
use the SMT solver in a specific way. More specifically, we need several logical models
to be returned by the solver for the same satisfiable query. For this, we propose two
pruning techniques and the idea herein is to find out more counter-examples by (a)
repeatedly negating the interpretation (i.e., the values) of the instance variables for the
current one and (b) searching for counter-examples in different regions of the input
space. Next, we describe these two techniques in more detail.

Pruning data instance. We start by using the feature values as returned by the
SMT solver as a counter-example. The idea herein is to simply negate the feature
values which are currently returned by the SMT solver as a logical model and conjunct
it to the original logical formula. For instance, in our running example, by using the
logical model depicted in Figure 5.3, we can negate the feature value for age1, by
simply adding the constraint (¬(age1 = 50)) to the logical formula in Figure 5.2 and
giving it to the SMT solver. As a result, the solver would then return a different
satisfiable example to the formula with the age1 variable assigned to 51. In this way,
we can generate a large number of counter-examples by simply disallowing a feature
value in the previously generated counter-example. Furthermore, we can do this for
all the other features as well (except for the gender feature since this is binary). A
similar sort of approach is used by Udeshi et al. [UAC18] where they used a searching
algorithm to generate more counter-examples as violated test cases from an initial set
of test cases. In our case, the search is performed by the SMT solver on the logical
formula.

In Algorithm 5, we describe this pruning approach which sort of prunes the search

86

5.2 Testing Methodology

Algorithm 5 prunInst (Pruning data instances)
Input: x⃗ ▷ candidate instance

φ ▷ Logical formula
Output: set of candidate instances

1: cand-set:= ∅;
2: for i := 1 to n do ▷ n: number of features
3: ψ := φ ∧ ¬(namei = x⃗(i));
4: if SAT(ψ) then
5: cand-set := cand-set ∪ get-model(ψ);
6: return cand-set;

Algorithm 6 prunBranch (Pruning branches)
Input: x⃗ ▷ candidate instance

tree ▷ Decision tree
φ ▷ Logical formula

Output: set of candidate instances
1: cand-set:= ∅;
2: (c1, . . . , cm) := getPath(tree,x⃗); ▷ Path of x⃗ in tree
3: for i := 1 to m do ▷ toggle path conditions
4: ψ := φ ∧ ¬ci;
5: if SAT(ψ) then
6: cand-set := cand-set ∪ get-model(ψ);
7: return cand-set;

space. As inputs, the algorithm gets the candidate instance x⃗ which is the initial
counter-example, and the logical formula φ describing the conjunction of the model
and the (negated) property. Next, we negate the feature values as returned by the
SMT solver in x⃗, by performing ¬(namei=x⃗(i)) and conjunct it to the formula φ in
line 3, where, namei denotes the name of the i-th feature, for e.g., age1. If we find a
satisfiable example for this formula, we add it to the candidate set of test instances
(Line 5) 7. This process is then repeated for all the feature values of instance x⃗ and
finally the algorithm returns a set of candidate instances. Note that, in our running
example, instead of a single instance we get a pair of instances as counter-example,
and thus, we extend the loop from lines 2-5 to repeat the process for the instance x⃗2
as well.

The disadvantage of this pruning approach is that the SMT solver would give
counter-examples only considering a specific region of the input space. Therefore, we
might not be able to find counter-examples that reside in different regions of the input
space of the MUT. To solve this problem, we consider a different pruning approach
which we describe next.

Pruning branches. This strategy can only be used for the tree-based algorithms
and therefore, we can apply this pruning mechanism only when the chosen white-
box model approximating the MUT is the decision tree. Unlike the previous pruning
approach which attempts to find the counter-examples locally, here we search for more

7Note that, we call these set of instances as candidate set, since we do not know at this point whether
they are valid or invalid counter-examples on the MUT.

87

5 Verification-based Testing

c3

c2

c1

¬c3

c2

c1

¬c2

c1

Figure 5.4: Illustration of condition toggling

counter-examples globally, by traversing as many paths of the decision tree as possible.
Algorithm 6 describes this pruning approach. To this end, the algorithm is first called
with the initial counter-example as the instance x⃗, the tree model (tree) and the
logical formula φ describing the tree model and the conjunction of (the negation of)
the property. Next, we identify the path in the tree which is taken by the instance x⃗
(Line 2). Such a path in the tree is essentially a collection of conditions on the feature
values denoted as (c1, . . . , cm), where each ci is of the form x⃗(i) ∼ di, and ∼ is a
conditional operator from the set {<,≤,≥, >,=}, and di ∈ Xi. Next, we toggle each of
these conditions, one after the other. Essentially, we take the negation of a condition
and conjunct it to the formula φ, and thus, at iteration i, we have the formula as, φ∧¬ci

which is then given to the SMT solver (Lines 3-5). If we find a satisfiable example to
the formula, we add it to the set of candidate instances as potential counter-examples.
Furthermore, in our running example property, we essentially get two branches for x⃗1
and x⃗2, and thus, we execute the loop from lines 3-6 in Algorithm 6 twice.

Let us consider Figure 5.4 (taken from a previous work of ours [SW20b]) where
we illustrate the workings of the condition toggling approach. Suppose, we get the
decision path corresponding to the instance x⃗1 as depicted in the leftmost branch of the
Figure 5.4. Here we have three conditions c1, c2, and c3 (in a top-down manner) which
denote the conditions gender1 =female, age1 ≥ 40, and income1 < 5000 respectively,
corresponding to the tree in Figure 5.1. We get this branch corresponding to the
counter-example x⃗1 as gender1=0,age1=50, income1=4500.0 8. We start with the
bottommost constraint c3, which we negate and conjunct to the formula φ as, φ ∧
¬c3. This formula is then given to an SMT solver which then attempts to find a
counter-example considering a different path of the tree (depicted as the second path
in Figure 5.4), and if a counter-example is found, we add it to the set of candidate-
instances.

In this way, we further generate the formula φ∧¬c2, and perform satisfiability solving
in order to find a new counter-example. We then repeat the same procedure (loop
from Lines 3-6 of Algorithm 6) for the instance x⃗2 as well. It is possible to use several
other strategies to perform toggling and moreover, such condition toggling approach is
already used in a well-established testing technique, called concolic testing [SMA05].
The idea therein is to use the condition toggling to traverse a new path in the program.
The branch pruning approach we describe here, however, is in a spirit similar to the
approach proposed by Aggarwal et al. [Agg18] where they used such toggling technique
on a decision path (learned through machine learning techniques) to generate test cases.

In summary, while the instance pruning approach works locally by generating counter-
examples negating the feature values of an instance, the branch pruning technique
works globally by negating the branch conditions of the tree. Hence, these local and

8As mentioned beforehand, here the gender value 0 means female.

88

5.2 Testing Methodology

Algorithm 7 veriTest (Verification-based testing)
Input: M ▷ Model under test

φprop ▷ Property in logical formula
Output: counter example to the property or unknown

1: orcl_data := ∅; ts := ∅; cs := ∅;
2: while |orcl_data| < MAX_ORCL do
3: x⃗:= random(X⃗);
4: if (x⃗,M(x⃗)) /∈ orcl_data then
5: orcl_data := orcl_data ∪ {(x⃗,M(x⃗))};
6: while not TIMEOUT do
7: model := trainModel(orcl_data);
8: φ := model2Logic(model);
9: φ := φ ∧ ¬φprop;

10: if UNSAT(φ) then
11: return Unknown;
12: (x⃗, y) := getModel(φ);
13: if (x⃗,M(x⃗)) ⊭ prop then ▷ A valid CEX is found
14: return (x⃗,M(x⃗));
15: cs := {(x⃗,M(x⃗)};
16: if type(model) = tree then
17: cs := cs ∪ prunBranch(x⃗, φ);
18: cs := cs ∪ prunInst(x⃗, φ);
19: for (x⃗,M(x⃗)) ∈ cs do
20: if (x⃗,M(x⃗)) ⊭ prop then
21: return (x⃗,M(x⃗));
22: orcl_data := orcl_data ∪ {(x⃗,M(x⃗))};
23: return Unknown;

global approaches of counter-example generation techniques in combination comple-
ment each other and thereby give an effective approach to generating a number of
counter-examples from a single SMT formula.

5.2.4 Cross Checking and Retraining

After generating a set of counter-examples as test inputs by using two pruning strate-
gies, we need to check the validity of those on the MUT. Since we get the counter-
examples on the inferred white-box model, it might happen that the MUT does not
conform to these test cases. Therefore, we perform cross-checking of the test inputs
and to this end, we can have two different scenarios.

Property violated. If any of the generated test instances on the white-box model also
conforms to be a counter-example to the property under test on the MUT, we are
done with the testing and return the violated instance as a proof of the property
violation.

Property not violated. Since the white-box model is a mere approximation of the
MUT, it might happen that none of the generated counter-examples shows the

89

5 Verification-based Testing

violation on the MUT even though the MUT might not guarantee the property.
Therefore, we need to improve the approximation quality by retraining the white-
box model with the invalid set of counter-examples.

5.2.5 Overall Algorithm
Algorithm 7 summarizes all the steps of our testing mechanism we have discussed so
far. First of all, in Lines 2-5 we randomly generate a number of data instances based
on a user-controllable parameter MAX_ORCL to construct our oracle data. Then we
train an ML algorithm (either a decision tree or a neural network) on the oracle data
(Line 7) to generate the model inferring the MUT. After that, the model is converted to
the logical formula φ, and the negation of the property under test ¬φprop is conjoined
to that formula (Lines 8-9). We then check for the satisfiability of the entire formula
and if we find it to be unsatisfiable we return UNKNOWN, since we cannot say for
sure whether the MUT satisfies the property. However, if we find a satisfiable example
of the formula as (x⃗, y), we return it as a candidate counter-example to the property
on the MUT. Next, we check it with the MUT and if it is valid, we return it as the
counter-example to the property, and our job is done (Lines 13-14). However, in case
it is not a valid counter-example on the MUT, we store it, and proceed to generate
more counter-examples by using the two pruning approaches.

Since the branch pruning strategy can only be applied to the tree-based models,
next we check the type of the inferred white-box model, and if it is a decision tree,
then we apply the branch pruning to generate a number of counter-examples from the
initial one (Lines 16-18). However, regardless of the model type, we can always apply
the instance pruning strategy, and thus, we next generate more test inputs as counter-
examples by applying this technique. After collecting a set of such instances in the
candidate set cs, we check if any of the instances in this set is also a counter-example
to the MUT and if so, we return it, otherwise, we add that instance to the oracle data
(Lines 19-22). This process repeats until we find a violation of the property on the
MUT or a user-defined TIMEOUT occurs.

To conclude, in this chapter, we have described the verification-based testing tech-
nique which can be used as the test case generation technique for the ML models. To
this end, we have described the steps involved in this testing process with the neces-
sary algorithms. Next, we extend this approach by including a property specification
mechanism that would allow the tester to specify any property to develop the property-
driven testing approach. The property would then be used by the verification-based
testing technique to generate test cases automatically.

90

6 Property-driven Testing

There is a growing importance to ensuring the quality of machine learning-based soft-
ware or more specifically the ML models. To this end, a number of properties exist in
various application domains which need to be satisfied by these models. Researchers
are trying to mitigate this issue either by designing a specific property-guaranteed al-
gorithm, such as the fairness-aware algorithms [ZVGG17, JSW22], or by developing
verification or testing mechanisms to validate properties on the models already trained
on the training datasets [OBK22, BSS+19, ALN+19]. The latter techniques, however,
either focus on a specific type of property or on a specific type of model. Therefore,
in a scenario when we do not have any knowledge about the model under test and
furthermore, we need to test several types of properties on the given model, we need
a testing mechanism irrespective of the model and properties.

To this end, there already is a well-known testing approach called property-based
testing [CH00] (PBT) which can be used for testing programs with respect to user-
specified properties. It was initially designed to perform unit testing of programs
written in the Haskell programming language and later adopted for other programming
languages (such as Java and Python) as well. A property in this testing approach is
specified typically over the inputs and the outputs of the program under test. Given a
specific input constraint, in this case, the program must satisfy the output constraint.
Based on this specification, PBT then automatically generates test cases satisfying
the input constraint, which are then executed on the program under test. For each
execution, the output is recorded and checked to find out whether a violation of the
output constraint has occurred, if yes, the violated test case is returned as the counter-
example to the specified property.

The generation of the test cases based on the given input constraint is however
performed randomly in this approach and the property as a whole is not taken into
consideration. To alleviate the problem of random data generation in property-based
testing, there are some works that propose alternative approaches to generating test
inputs, such as coverage guided fuzzing [LHP19] or search-based approaches [LS18].
However, they either require white-box access to the program under test, for instance,
to get information about specific paths in order to evaluate path coverage or, do not
consider the property while generating the test cases.

We propose the property-driven testing (PDT) approach which tackles this issue by
using the property to generate test cases in a targeted manner, thereby allowing for
a more systematic test generation process compared to random test input generation.
Here, given the property specified in a particular format, we adapt our verification-
based testing approach (described in Chapter 5) to use the property to generate test
cases in order to find a violation. Essentially, we employ a form of learning-based
testing to learn an ML model approximating the model under test and then applying
the satisfiability solving technique by taking into account the property to generate
test cases. Since our approach does not depend on the input model, we can apply
our approach to test any machine learning model as well as programmed functions

91

6 Property-driven Testing

(see Section 7.2.3 of Chapter 7 for more details). Furthermore, the employment of a
property specification mechanism allows us to test the models (or even functions) with
respect to user-specified properties, provided in a novel, domain-specific specification
language.

In this chapter, we start with some basic formalizations and then describe our prop-
erty specification language (Section 6.1). We furthermore give details about how we
use the property to generate test cases (Section 6.2) and then finally end the chapter
by discussing some related works (Section 6.3).

6.1 Property Specification Language
First, we revisit 1 the basic formalizations that are needed to describe the concepts of
this Chapter. To this end, we first define the machine learning model to be a predictive
function taking the following form:

M : X1 × . . . Xn → Y

The Xi is defined as the value set of the feature i and 1 ≤ i ≤ n, and Y is defined
the set of classes. We denote X⃗ for X1 × . . . × Xn and x⃗ as an input feature vector
to M and x⃗ ∈ X⃗, y ∈ Y . Assuming the input feature vector x⃗ consisting of n number
of elements, then each of these is denoted as x⃗(1), . . . , x⃗(n). An element x⃗(i) is also
called the i-th argument (or i-th feature) of the input instance x⃗.

In property-based testing, the property to check on a program is specified using a
specification language that has the assume-assert form. The assume part specifies
the conditions on the inputs of the program and the assert part specifies a condition
to be satisfied by the outputs of the program for the inputs generated by satisfying
the condition in the assume statement. We follow a similar style of specifying prop-
erties in our property-driven testing approach. However, unlike the property-based
testing approach, we do not use the specification as executable predicate 2, rather, the
constraints corresponding to the specification of the property are used to generate a
logical formula describing the property. This logical formula is then conjoined with the
logical formula of the white-box model (approximating the model under test). Then a
solver is applied to the entire formula to find a violation of the property.

To this end, we require the property specification to be composed of two parts: (a)
the condition specifying the constraint on the input and the output of the model, and
(b) the numerical values (if required) corresponding to the conditions in order of their
syntactical occurrence. In a more technical sense, we use two functions Assume and
Assert for specifying a property that takes the following form:

Assume(‘<condition>’,<arg1>, ...)
Assert(‘<condition>’,<arg1>, ...)

The Assume part specifies the conditions on the input of the program and the Assert
specifies the condition on the outputs. The first parameter <condition> corresponds to
a string describing the logical condition specified on the input (in Assume) or the output

1Note that, we only describe the formalization here which is needed to explain our testing concepts
and further details can be found in Section 2.1 of Chapter 2.

2An executable predicate is a predicate that is used to determine the validity of some condition in a
program and is able to be executed directly by the program.

92

6.1 Property Specification Language

(in Assert) of the model, whereas the rest of the parameters are values corresponding
to the variables associated in the logical condition, in order of their first occurrences.
Thus, we connect the condition specified as a string with the values to derive a logical
formula specifying the property to check. Next, we define the syntax and the semantics
of the specification language which is used to specify the logical conditions on the inputs
and the outputs of the model under test (MUT).

6.1.1 Syntax and Semantics
The syntax of our specification language defines the rules for constructing valid state-
ments and expressions. We specify these rules via a grammar G, termed as Backus-
Naur Form (BNF). Along with the syntax, we also informally describe the semantics of
this language which describe the meaning of different statements and the expressions
of the language. More specifically, semantics give the rules for interpreting and as-
signing meaning to different elements of our specification language such as statements,
variables, and conditions.

We start with the initial template of our specification language. As mentioned before,
our specification language allows specifying conditions on the input of the MUT (using
Assume()) and on the output (using Assert()). Let us take ⟨assume⟩ and ⟨assert⟩
to denote the conditions specified in our Assume and Assert functions respectively.
The property specification condition ⟨Prop⟩ (starting symbol of our grammar G) in
our approach can be described using the following basic form:

⟨Prop⟩ ::= [∀x⃗1, . . . , x⃗m] [∀c ∈ R] ⟨assume⟩ ⇒ ⟨assert⟩

In the grammar [..] refers to optional parts, | stands for alternatives, and ⟨..⟩ are
used for non-terminal symbols. Note that, the properties we consider might need a
single input instance and the corresponding output value to compute the property or
in the case of hyper-properties [CS10], we might require multiple input instances and
their corresponding output values to compute the property. A typical example for the
latter is the monotonicity property where we require a pair of input instances x⃗1, x⃗2
and their corresponding output values M(x⃗1),M(x⃗2) to define the property.

To take care of such kind of hyper-properties, we allow writing the universal quan-
tifiers ∀x⃗1, . . . , x⃗m specifying the number of inputs required for a property to check, in
front of the property specification. Moreover, we might want a property to be valid
for all the values c (integer or real) in a specific range R and this is denoted as ∀c ∈ R.
The final part of the specification contains conditions on the inputs of the MUT as
⟨assume⟩ and the output condition as ⟨assert⟩. The implication operator (⇒) in be-
tween these two defines if the ⟨assume⟩ condition is evaluated to be true, then the
condition in ⟨assert⟩ must hold too. Next, we describe the production rules of G to
further derive these two conditions.

⟨assume⟩ ::= ⟨assume⟩ ⟨bool-op⟩ ⟨assume⟩ | [⟨arg-quant⟩] ⟨cond⟩

⟨bool-op⟩ ::= ∧ | ∨ | ⇒ | ⇔

⟨assert⟩ ::= ⟨cond⟩

The specification in ⟨assume⟩ can be derived to a single condition prefixed with the
optional part defining the number of input arguments ([⟨arg-quant⟩]) or, it can be

93

6 Property-driven Testing

further connected to more ⟨assume⟩ conditions through a Boolean operator (denoted
as ⟨bool-op⟩). For this, we allow the use of standard Boolean operators ∧, ∨, ⇒, and
⇔ to connect two assume conditions.

Note that, certain properties might require specifying conditions only on specific
elements of the input instance x⃗ and thus, we use [⟨arg-quant⟩] to define the set of
such elements. We write it as:

⟨arg-quant⟩ ::= ∀i ∈ I | ∃i ∈ I

where I defines a fixed set of input elements. For instance, we formally write the
monotonicity property we currently take as a running example as:

∀x⃗1, x⃗2 ∈ X⃗ : ∀i ∈ {1, . . . , n} : x⃗1(i) ≤ x⃗2(i) ⇒ M(x⃗1) ≤ M(x⃗2)

To define this property we need a conjunction of a number of ⟨assume⟩ conditions
defined on each of the input arguments as x⃗1(i) ≤ x⃗2(i) and the set of input elements
I, which in this case are all the elements {1, . . . , n} of the input. The quantification
over the input elements, along with the conjunction of several ⟨assume⟩ conditions
thus allow us to define such kind of properties.

We define the atomic part (⟨cond⟩) of the ⟨assume⟩ and the ⟨assert⟩ conditions as
follows:

⟨cond⟩ ::= ⟨cond⟩ ⟨bool-op⟩ ⟨cond⟩ | ¬ (⟨cond⟩) | ⟨pred⟩

⟨pred⟩ ::= true | false | ⟨term⟩ ⟨comp-op⟩ ⟨term⟩

⟨comp-op⟩ ::= < | > | = | ≤ | ≥ | ̸=

Essentially, the conditions in ⟨assume⟩ and ⟨assert⟩ are predicates defined on the
inputs and the outputs of the MUT respectively, hence, a single such condition can
be connected to another by using different Boolean operators (⟨bool-op⟩) which we
described beforehand. Along with that, we allow a single condition to be negated
¬(⟨cond⟩) as well.

The predicates in the specification condition (⟨pred⟩) can be of various types de-
pending on the condition required to be specified. For instance, it can be simply ‘true’
or ‘false’, or a logical constraint defined over two terms (⟨term⟩) connected via a com-
parison operator (⟨comp-op⟩). The comparison operators we use here have their usual
meanings, for instance, a predicate involving two terms connected via the less than or
equal to operator (≤) should be evaluated to be true if the left side of this operator is
essentially having a lesser or equal value compared to the term on the right side.

The terms in the predicate can be of different types which are described as follows:

⟨term⟩ ::= z | r | x⃗j(i) | M(x⃗j) | ⟨term⟩ ⟨bin-op⟩ ⟨term⟩
| ⟨una-op⟩ ⟨term⟩ | ⟨vec-op⟩ x⃗j

Accordingly, each term in the predicate can be an integer (z) or, a real (r), valued
number, an input argument of a specific (j-th) input instance x⃗j(i) or denoting the
output corresponding to that instance, M(x⃗j) 3. The term M(x⃗j) can however only

3Note that, if we have more than one output, then we can use M(x⃗j)(k) to denote the k-th output
variable. For brevity, here we discuss the syntax assuming that the model has a single output.

94

6.2 Test Input Generation

occur in ⟨assert⟩ condition. Moreover, each term can further be combined with other
terms through arithmetic operators ⟨bin-op⟩, described as follows:

⟨bin-op⟩ ::= + | - | * | \

Thereby, we allow deriving a complex expression as a specific term in the predicate
involving these arithmetic operators. Apart from these operations, our specification
also takes care of specific unary operations on the elements of the input instance. For
instance, we allow writing absolute value or the modulus operation. This is defined by
using the unary operator symbol ⟨una-op⟩.

As an example, let us consider the Lipschitz property [CMN+19] which requires that
the (Manhattan) distance between any two input vectors to the model must be greater
than or equal to the difference of the outputs for two corresponding vectors. Formally,
this property has the following form:

∀x⃗1, x⃗2 : true ⇒ c ∗
n∑

i=1
abs(x⃗1(i) − x⃗2(i)) ≥ abs(M(x⃗1) −M(x⃗2))

The constant c is specific with respect to the MUT. The abs operator denotes the
absolute value operation. On the left side of the ≥ operator, we specify the distance
measure between two input instances x⃗1 and x⃗2 . The possibility of using a combi-
nation of several arithmetic operators and the unary operator abs in our specification
mechanism therefore, allows specifying such a complex property.

Finally, some specific properties require to specify conditions on the minimum or
maximum input argument value of the input instance. For this, we use ⟨vec-op⟩ to be
applied on the input instance which can be derived as follows:

⟨vec-op⟩ ::= min | max

For instance, when min(x⃗) is specified on the input instance x⃗, the minimum value
of all the arguments of x⃗ is considered. The maximum value operation max refers to
the maximum of all the input arguments in the input vector. To exemplify such a
case, some specific regression models (see details about such models in Section 7.2.3 of
Chapter 7) require to satisfy the disjunctive property which requires the model output
to be greater or equal to the maximum value of the input arguments. It can formally
be described as:

∀x⃗ : true ⇒ max(x⃗) ≤ M(x⃗)

Thus, the ⟨vec-op⟩ operations on the input vector allow to specifying such kind of
properties by using our specification language.

6.2 Test Input Generation
Once we have the property specified in the appropriate format, the next step in our
property-driven testing approach is to employ our verification-based testing technique
to generate test cases on the given MUT. Figure 6.1 gives an overview of our test data
generation approach. In step 1 , first of all, a known ML model (either a decision
tree or a neural network) is learned from the given MUT. Since the internals of the
model are known to us, we call it a white-box model. This in the next step (step 2)

95

6 Property-driven Testing

MUT

Prop. Property
Translation

White-Box Model
(Re)Training

Model
Translation

Formula
Generation

SMT Solving
& Augmentation

Test
Suite

1 2 4 5

3

Figure 6.1: Workflow of Test Data Generation Approach in Property-driven Testing

is translated to a logical formula. To compute the property on the learned white-box
model, we however also need the property in the form of a logical constraint.

In the previous section, we described how our property specification language can be
used to specify properties. However, to check the property on the learned white-box
model and thereby on the MUT, we still need to perform two steps: (step 3) translating
the property specification into a logical formula, and (step 4) connecting this formula
to the logical formula describing the model and thus generating a conjoined formula.
Once, we are done with these two steps, we apply the satisfiability modulo theory
(SMT) solving technique to generate test cases on this conjoined formula (step 5).

Next, we describe the method for translating the specified property into the logical
formula and furthermore the method to connect it to the logical formula of the model.

6.2.1 Connecting to Model Encoding

Before describing the mechanism for translating the property in logical constraints,
we describe how we connect the translated property to the logical formula describing
the white-box model φmodel. More specifically, we describe how to adapt the encoding
of the white-box model based on the property specification, in order to analyze the
property on the model. To this end, if a property requires a single call to the MUT,
thereby requiring a single input instance and the corresponding output value to check
the property, a singly encoded model suffices. However, for hyper-properties, we require
more than one input instance and output value pairs to compute the property.

In our specification language, we allow for the specification of hyper-properties by
defining universal quantification over several input instances (i.e., ∀x⃗1, . . . , x⃗m). To
connect such property to the logical formula of the model φmodel, we create one instance
of this formula for each input instance defined in the given property specification
(indicated by ∀x⃗i). To do so, we create φmodel as φ1

model, . . . , φ
m
model formulas with

respect to each input x⃗ in ∀x⃗1, . . . , x⃗m. As described beforehand (see Chapter 3), the
encoded formula of the model φmodel contains constraints over the input arguments
x⃗(i) of the input instance as well as over the variables describing the outputs of the
model. Hence, to create m copies of the model encoding, we simply name the input
arguments and the output variables based on the copy j. For instance, we define the
i-th input argument of the j-th instance x⃗j as xj

i and analogously for output variables.
This process is furthermore repeated for all the other variables used in the logical
formula of the model. Thus, we create m copies of the model encodings. Finally,
the conjunction of all these model encodings gives us the final formula describing the

96

6.2 Test Input Generation

a)
⟨bool-op⟩

⟨assume⟩ ⟨assume⟩

b)
⟨bool-op⟩

⟨cond⟩ ⟨cond⟩

c)
⟨comp-op⟩

⟨term⟩ ⟨term⟩

d)
⟨bin-op⟩

⟨term⟩ ⟨term⟩

Figure 6.2: Parse trees for parsing expressions describing specification conditions

model as follows:

φmodel ≡ φ1
model ∧ . . . ∧ φm

model

Once the model encoding is done, we encode the property into logical formula. To
this end, our property encoding consists of two parts, the logical formula describing
the assume condition φassume, and the logical formula describing the assert condition
φassert

4. Thus we can write the property specification using the following logical
formula:

φprop ≡ φassume ⇒ φassert

However, since our aim is to find a counter-example falsifying the property, we take
the negation of the specification. Thus, we derive the negation of the logical formula
of the property φ¬prop as follows:

φ¬prop ≡ ¬(φassume ⇒ φassert) ≡ ¬(¬φassume ∨ φassert) ≡ φassume ∧ ¬φassert

Thus, we conjoin the logical formula describing the assume and the negation of
the assert conditions. Using this constraint allows us to find a counter-example to
the property on the white-box model. We next describe the translation mechanism of
these two conditions in logical formulas.

6.2.2 Property Translation

Given the property specification in the assume and assert form following the grammar
described beforehand (Section 6.1.1), we next translate the property into logical formu-
las (or more specifically into SMTLIB 5 format). The translation of the specification
conditions is done by breaking down the predicates of the conditions and then rebuild-
ing it using the valid operators in SMTLIB. In our specification language, we have
predicates involving standard arithmetic, Boolean, and logical comparison operators
which are directly available in the SMTLIB and, specific operators such as minimum,
maximum, or absolute value functions for which we employ customized functions.

We start with the method of converting simple specification conditions written in
assume or assert. Since we require the expression to be in prefix notation (also termed
as Polish notation) for the SMTLIB format, we use regular expressions to parse the
expression of the specification condition and convert it to prefix form. This allows
breaking expressions into its atomic components. Hence, we can use it to convert our
property specification into the desired format. Precisely, the parsing of the regular
expression generates an output as a tree with the stack of operations. The depth-first

4For brevity, instead of ⟨assume⟩ and ⟨assert⟩, we now call them assume and assert respectively.
5http://smtlib.cs.uiowa.edu

97

6 Property-driven Testing

search (DFS) of such a tree would then give us the prefix expression we require, while
preserving the order of the operations.

The Figure 6.2 a–d, shows different parse trees for parsing different types of specifi-
cation conditions.

a) On the highest level, we have different assume statements which get connected via
Boolean operators.

b) Each assume condition can be a single predicate (⟨cond⟩) or a combination of
predicates, which can be further connected through different Boolean operators
(⟨bool-op⟩).

c,d) The basic components of each condition are then terms that can be either con-
nected by using comparison operators (⟨comp-op⟩) or be combined using arith-
metic operators such as +,−, ∗.

Note that, a specification condition can be really complex, for instance, a term
can further be a large arithmetic expression of the form ⟨term⟩⟨bin-op⟩⟨term⟩⟨bin-
op⟩ . . . ⟨term⟩. We can first take each atomic part of this expression of the form ⟨term⟩
⟨bin-op⟩ ⟨term⟩ and create a parse tree similar to the one in Figure 6.2 and then
proceed on to generate a large tree with a number of nested basic parse trees. For
brevity, we just give here the sketch of the process for translating the specification
condition into our desired format by using the atomic cases.

While parsing any of the trees, we first visit the root node and then the left sub-tree
and the right sub-tree, thereby generating an expression in prefix notation (which we
require for applying the SMT solver). For instance, in the case of the rightmost parse
tree in Figure 6.2, by following such a traversal we generate an expression of the form:

⟨bin-op⟩⟨term⟩⟨term⟩

Specific Cases. The terms (⟨term⟩) corresponding to the the pre-condition assume
can either be an integer or a real number or a specific input argument i for the j-th
input instance 6 x⃗j , defined as x⃗j(i). A specification condition might further depend
on one or more of these input arguments (∀i ∈ I, ∃i ∈ I). Hence, we need to translate
such quantification defined over the set I (containing a number of input elements), to
give a valid formula for the specified condition. As explained above (in Section 6.1),
for each input argument, the second parameter of the Assume function provides the
values of it, and therefore the translation of the universal quantification ∀i ∈ I for
some finite set I describing the argument positions, can be translated as follows:∧

n∈I

φassume ∧ ¬φassert[i 7→ n]

Therefore, i is replaced in the translated formula with the fixed values of n from
I. Similarly, in case of the existential quantification over some input elements, the
formula can be derived as, ∨

n∈I

φassume ∧ ¬φassert[i 7→ n]

6Note that, we can have more than one input instances based on the type of property we consider.

98

6.2 Test Input Generation

Apart from the input arguments, our property specification mechanism further al-
lows to define a free variable with a specific range (if required). For instance, such
a specification can be written in form ∀c ∈ R : assume ⇒ assert where R = [a, b].
The ∀c ∈ R part with the range [a, b] can be then translated to logical formula as
(a ≤ c) ∧ (b ≥ c).

A single term in our specification condition might also have unary operators applied
to it, such as absolute value operation, or vector operations min or max applied on
the input as a whole. Since there do not exist any operators to be used directly in
SMTLIB, we implement customized functions for them, as described below:

• The absolute value operator is applied to a specific input element and for this
we define a custom function in SMTLIB, which can be called when needed and
defined as follows:

(declare-fun abs ((x Real)) Real
(ite (>= x 0) x (- x)))

The ite operator here works as the traditional if-then-else approach which for
the above function states, if the value of the variable x is greater than or equal to
0, then the returned value of the function would be the value of x itself, otherwise,
the returned value would be the one with the minus (-) operator applied, which
then is simply the positive value of x.

• The specification condition might contain min or max operations to describe
the condition on the minimum or maximum values of the input instance. These
two operations are also not available in SMTLIB. Therefore, we write individual
functions implementing them. For instance, the min function in SMTLIB is
implemented as follows:

(declare-fun min ((x Real) (y Real)) Real
(ite (<= x y) x (y)))

If the input value x is lesser or equal to the input value of y, then x is returned,
otherwise, y. The function implementing the max operation works similarly
using ≥ instead of ≤ operation. For brevity, we only show the function for
these operations involving two inputs. However, in reality, we have often a high
number of arguments in the input instance x⃗. Thus, we write an extension of the
function described above implementing the complete min operation (and max
operation).

Next we exemplify our property translation mechanism.

6.2.3 Property Translation Example

Again we use the monotonicity property as an example. First, we translate the assume
part of this property to generate the formula φassume. The assume condition in this
property is specified as,

∀x⃗1, x⃗2 ∈ X⃗ : ∀i ∈ {1, . . . , n} : x⃗1(i) ≤ x⃗2(i)

Here, we have two instances x⃗1 and x⃗2 of size n which can be denoted in the logical
formula by using a simple numbering scheme to rename the input instances as x1 and

99

6 Property-driven Testing

∧

≤

x1
1 x1

2

∧

≤

x2
1 x2

2

≤

x3
1 x3

2

Figure 6.3: Parse tree for parsing the assume condition in monotonicity property

x2 and the i-th elements of the instances as xi
1 and xi

2 respectively. Next, since the
specified condition is over all the input elements, we generate n number of correspond-
ing logical constraints for x⃗1(i) ≤ x⃗2(i), which are connected via the Boolean logical
conjunction operator (∧). Assuming, n = 3, we have three conditions in the assume,
which are logically conjoined as:

(x1
1 ≤ x1

2) ∧ (x2
1 ≤ x2

2) ∧ (x3
1 ≤ x3

2)

This forms the logical constraint φassume. A parse tree for this is depicted in Figure 6.3.
By visiting this tree in dfs manner, we generate the expression in SMTLIB format (in a
prefix notation) thereby replacing the operators with the appropriate symbols (which
are mostly simple keywords) as follows:

(and (<= x11 x12) (<= x21 x22) (<= x31 x32))

The and corresponds to the logical conjunction ∧, and xji is the i-th element of the
j-th instance (x⃗j(i)).

After generating the logical constraint for assume, we translate the assert part of
the property which can be written as: out1 = out2, where out1 is the variable denoting
the output of the MUT for the instance x⃗1 (denoted as M(x⃗1)), and similarly out2
denotes the output corresponding to the instance x⃗2 (denoted as M(x⃗2)) 7. However,
since our aim in testing is to find a counter-example to the property, we take the
negation of the assert condition, and we write the formula as ¬(out1 = out2) which in
SMTLIB is,

(not (= out1 out2))

Finally, we conjunct the formula φassume and φ¬assert to create the final formula
specifying the negation of the property.

6.2.4 SMT Solving
After translating the property specification into the logical formula, next we conjoin
this formula to the logical encoding of the model as φmodel ∧ φassume ∧ ¬φassert to
generate the final SMT formula φ (in Step 4 of Figure 6.1). This is then checked
for satisfiability by using the SMT solver Z3 [MB08]. If a satisfiable example to the
formula φ is found, we call it the counter-example to the property, and we store this

7Note that, we do not give the parse tree for the assert condition, since this is quite trivial, containing
a node with the ̸= operator and two leaf nodes pertaining to M(x⃗1) and M(x⃗2).

100

6.3 Related Work

and generate more such counter-examples by using the pruning technique (described
in Section 5.2.3 of Chapter 5). Next, we check the validity of these counter-examples
by executing them on the actual model under test (MUT) and if any one of them is
found to be valid, we have found a counter-example to the property (in Step 5 of
Figure 6.1) and therefore, we stop by returning the counter-example. Otherwise, we
further retrain a new model using the invalid counter-examples to generate a model
which better approximates the MUT, thus going back to Step 1) and repeating the
subsequent steps. The entire process goes on until a user defined timeout occurs or
the SMT solver does not find any counter-example to the property.

6.3 Related Work
In this chapter of our thesis, we gave an approach to test a black-box model with respect
to any property, specifiable in a particular format. To this end, we combine verification-
based testing (described in Chapter 5) and a property specification mechanism to
develop a property-driven testing approach. The idea of verification-based testing
approach is closely related to the learning-based testing approach [Ang87, PVY99,
MN10], whereas generating test cases based on a given specification stems from the idea
of property-based testing [CH00]. Therefore, we discuss the related works published
in these two research areas.

Learning-based testing. This is a specific type of testing technique where a model
is learned from the given function under test and then the learned model is used
for the test generation process. The model that is being learned can be an au-
tomaton [KNR+21, CHJS16], a piece-wise function [MN10], or a machine learning
model [PW15]. Note that, the automaton models are more frequently used in the
literature and there exists a large body of works to this end. We do not mention them
here since we already discussed them in detail in Chapter 2. Here, we mainly focus on
the works where a machine learning model is learned in the context of testing.

To this end, our work is probably closest to the work of Meinke et al. [MN10] where
given a black-box numeric function, they first learn a piece-wise polynomial function
using a set of input-output pairs, obtained by executing a randomly generated set of
inputs on the function under test. Once the polynomial function is learned, this is
then converted to a logical formula and moreover, the property described in first order
logic is conjoined to the former formula. Next, the Hoon-Collins cylindric algebraic
decomposition (CAD) algorithm [CJ12] is applied to check the satisfiability of the
entire formula. If a satisfiable example as a counter-example to the property is found,
it is validated on the original function under test. If valid, the counter-example is
returned as a proof of violation to the property, otherwise, it is added to the set of
input-output pairs (which was generated initially to learn the polynomial model) and
used to modify the inferred model.

The basic methodology of our approach is the same as in the approach of Meinke et
al., however, we follow a more systematic method compared to their approach. First,
we learn a sophisticated (machine learning) model (from one of the two models) approx-
imating the given model (or a function) under test. To this end, we have the possibility
to learn either of the two ML models (decision tree or neural network) which are taken
from the state-of-the-art machine learning library scikit-learn [PVG+11]. Second,
the learned model is checked for satisfiability by using the SMT solver Z3 [MB08]
which has been shown to be much more effective and efficient than the CAD algo-

101

6 Property-driven Testing

rithm. We moreover use the pruning technique (see Chapter 5) to generate a number
of counter-examples to the property under test which allows us to retrain the learned
model with not just a single instance, but with a number of instances. Finally and
most importantly, we have a property specification approach that allows us to check
the given model with respect to any property (as long as it could be specified using
our domain-specific language, see Section 6.1).

The work of Briand et al. [BLBS09] proposed the learning of a decision tree from
a given function under test. The tree is learned to evaluate the existing test cases
(which are already available to test the program) and update them if necessary. They
convert the concrete test cases into abstract cases by using the behavioural specification
available for the function and then use these abstract test cases to train a decision tree
algorithm. The generated tree model is then manually analyzed to find out whether
the existing test cases suffice or whether more test cases are needed. In short, they
manually analyze the learned decision tree model to extract the coverage information
of the existing test cases and add more test cases if required. In contrast, we do not
intend to evaluate a set of test cases, rather we learn a decision tree model to analyze
the property on the model automatically by using an SMT solver, in order to find a
violation.

The work of Papadopoulos et al. [PW15] proposed an approach to learn a decision
tree in order to generate test cases. They first learn a decision tree using a set of
random input-output pairs (generated using an approach similar to ours) and then
apply the Z3 solver to generate test cases covering each branch of the tree. Thus, after
this step a list of k inputs (which corresponds to the number of branches in the tree)
and their corresponding outputs (based on the decision tree) are generated. Then the
outputs are checked with the function under test, if all of them match or a bug is found
they stop the process. Note that, the idea herein is to generate test cases by using the
inferred model, and each time such test inputs are generated, they execute the test
cases on the actual function under test in order to find undesired behaviour. Their
experimental evaluation suggests that their test generation process has more coverage
than the randomly generated test cases. Our approach, on the other hand, uses the
inferred model to analyze the property by using the SMT solver Z3. If a counter-
example to the property is found we use a novel technique (pruning) to generate more
test cases and all of which are then validated on the original model under test.

Property-based testing. In this testing approach, the tester specifies a property in
pre- and post-condition format. Then a test generation process is used to generate test
cases (satisfying the pre-conditions), which are then executed on the function under
test in order to find a violation of the post-condition specified on the output. The
rationale behind this approach is to use the specification to guide the test generation
process and automate the testing. To this end, in the literature, we found a number
of works that we present next.

Gourley [Gou83] proposed the idea of using a formal specification to guide the test
generation process. He discussed the need for using formal language with well de-
fined semantics to define the specification with respect to which the function would
be tested. Later, Richardson et al. proposed to use a specification for several tasks in
testing [ROT89], such as using the specification to partition the input space and then
finding out faults, generating inputs based on a specification, and then checking for
faults manually, attempting to force a violation of the oracle as embodied in the spec-
ification. Stocks et al. [SC93] proposed to use the Z specification [Spi89] to define test

102

6.3 Related Work

templates to be used for specification. They discussed the usage of such specifications
beyond testing, e.g. for maintenance, refinement of software, and so on.

Khurshid et al. [KM04] proposed TestEra, an automated testing technique for Java
programs. The idea therein is that the tester can provide the specification using
the specification language framework Alloy [JV00] and then the Alloy-alpha ana-
lyzer [JV00] is used to generate a number of test cases (with a bound given by the
tester) matching the pre-condition of the specification. Each of these test cases is then
executed on the given function to find out the violation specified as post-condition.
However, the property specification capability of Alloy is limited and the tester needs
to, first of all, understand the specification mechanism (which is a non-trivial task as
mentioned by the authors) to specify properties. In a similar sort of approach, Tan et
al. [TSL04] proposed to use linear temporal logic (LTL) formula to specify properties
and then the usage of the model checking tool to generate test cases. Along with
the type of properties that can be specified, in this case, the approach is also limited
to testing specific programs. In a recent work, Schumi et al. [SS21] proposed the K
framework [RS10] to specify properties to be tested for compilers. Essentially, they
combined the K framework and a fuzzer [NPS+20] to generate test cases. However,
this framework is much more suitable for testing programs pertaining to interpreters,
and compilers.

The property specification framework of our approach allows the tester to specify a
large variety of properties including hyper-properties which none of the above works are
capable of. Our specification language is relatively simple and intuitive since it adheres
to the syntax and semantics of any standard programming language. The idea of using
such a specification language was first given by Claessen et al. [CH00]. They proposed
QuickCheck 8, a tool to test programs written in Haskell. In their work, they proposed
a simple domain-specific language that allows the tester to specify properties on the
input and output variables directly, considering standard Boolean, conditional, and
arithmetic operators. Since then, a number of property-based testing tools have been
developed for several other programming languages such as in Python [hyp23], or in
Java [jqu23]. The main idea behind property-based testing is to use the specification to
generate test cases, by executing the predicates defined in the property specification,
and thereby finding a violation of the property. Usually, the test case generation
method is done either randomly or based on the test generator (defined as a probability
distribution of the input). Hence, this method generates test cases without taking the
property into consideration. In contrast, in our property-driven testing approach, we
use the property to generate test cases in a targeted manner. In the next Chapter,
we show the superiority of our testing mechanism over property-based testing, by
validating several types of models and functions with respect to a large variety of
properties.

To summarize, in this chapter, we described the specification language which we
use to specify properties in our testing mechanism. We gave the syntax and the
semantics of the language along with the description of how we translate the property
into the logical formulas and then connect it with the constraints defining the inferred
model. We then use the verification-based testing technique (described in Chapter 5)
to generate test cases in a targeted manner using the SMT solving technique. In the
next chapter, we empirically evaluate our approach and compare it to the existing
approaches while validating several types of properties.

8https://hackage.haskell.org/package/QuickCheck

103

7 Evaluation of MLcheck

In this chapter, we present the tool MLcheck which implements the idea of property-
driven testing (see Chapter 6) and consequently verification-based testing (see Chap-
ter 5). After giving a brief description of the tool, we describe the evaluation of
MLcheck in testing diverse properties on several types of ML models. To this end,
we perform external and internal evaluations of our tool. In external evaluation, we
perform experiments to find out the effectiveness and efficiency of MLcheck in com-
parison to the other baseline tools 1. We furthermore perform experiments as part of
the internal evaluation of MLcheck comparing different options within our tools to
find out which settings give superior performance.

We start by giving a short description of the implementation of MLcheck in Sec-
tion 7.1. Next, we present the experimental setup in Section 7.2 where we describe the
properties, datasets, ML models, and the baseline tools we considered for the evalua-
tions. In Section 7.3, we present the results of testing different properties comparing
the effectiveness and efficiency of MLcheck to the baseline tools. We furthermore
also present the results of the internal evaluation of our tool. Finally, in Section 7.5
we describe the limitations of MLcheck and the existing literature in Section 7.6.

7.1 Implementation of MLcheck

We implemented our property-driven testing approach in a testing tool called MLcheck.
The generic workflow diagram of our tool is depicted in Figure 6.1 (see Page 96) which
consists of several modules. In general, MLcheck is modular and extensible, and
hence, re-purposing our tool by extending or modifying a specific module can be done
without being forced to adapt the other modules of the workflow. However, such an
extension can only be performed as long as it is consistent with the overall approach.
Next, we take a brief look at the implementation details for each of these steps in our
workflow.

The implementation of the tool is done using the Python programming language
(v3.10.5) and consists of approximately 3500 lines of code 2. Since our property-driven
testing approach requires learning an ML model approximating the given model under
test (MUT), we use scikit-learn (v1.1.2) [PVG+11] library, as a default choice,
for taking the decision tree and neural network algorithms for generating the models.
Note that, if the tester chooses neural network as the underlying white-box model
the library to be used for loading the corresponding learning algorithm can also be
PyTorch (v1.5.1). Once the white-box model is learned, it must be translated into the
logical formula.

1These are basically the existing tools which are known to be the best performing in testing corre-
sponding properties.

2https://github.com/arnabsharma91/MlCheck

105

7 Evaluation of MLcheck

For the logical formula, that is describing the learned model, we use the SMTLIB
format 3. SMTLIB is a standard format that is supported by most SMT solvers. Af-
ter generating the SMTLIB formula, we forward it to an SMT solver. To this end,
MLcheck allows to use one of the following three solvers: Z3 [MB08], CVC [BCD+11],
and yices [Dut14]. The reason for choosing these solvers is because of their top per-
formance in SMTComp 4.

All options described above (model and solver) as well as any other configuration
option can be selected in MLcheck with the designated input parameters. More
details on how to configure MLcheck are provided in Section A.2 of Appendix A.

7.2 Experimental Setup

We evaluated MLcheck on 202 machine learning models generated using 26 datasets
to validate 20 properties on them. Based on the properties we consider, the datasets
that are used to generate the models and also the generated models vary. To present
the experimental setup we considered for the evaluation of MLcheck, in Section 7.2.1
we first formally define the properties which we have validated on the ML models.
Then we describe the datasets which are used to generate the MUTs (based on the
properties) in Section 7.2.2. We trained several types of classification and regression
learning algorithms on these datasets to generate models for evaluations which we
describe in Section 7.2.3. Finally, in Section 7.2.4 we describe the baseline tools which
we used for comparing the effectiveness and efficiency of our tool.

7.2.1 Properties

For the evaluation of MLcheck we have considered diverse properties to test on
classification and regression models. We first define the properties– fairness, secu-
rity, concept relationship which we test on the classification models. Then we define
the properties we check on the regression models. Note that, to formally define the
properties here, we use the formalization from Section 2.1 of Chapter 2.

Fairness

A number of fairness definitions exist in the literature, as summarized by Verma et
al. in a survey [VR18]. However, the basic idea behind all these definitions mostly is
the same. An ML model is discriminating or unfair against some specific individuals
in society if it gives different predictions based on specific feature values of the given
input instances. The specific features in this context are called protected or sensitive
features. In other words, an ML model is deemed fair, if it gives prediction irrespective
of the values of the sensitive features. In this case, the MUT we consider is a classifier,
more specifically a binary classifier that only predicts two classes, 0 and 1. Formally,
the MUT we consider for this property is defined as a predictive function of the form:
M : X1 × . . .×Xn → Y , where Y ∈ {0, 1} 5. We consider X⃗ to denote X1 × . . .×Xn.
The fairness properties we considered testing can be defined as follows:

3http://smtlib.cs.uiowa.edu
4https://smt-comp.github.io/2022/results.html
5Note that if the classifier is not binary then Y ∈ Z+, which we term as multi-class classifier.

106

7.2 Experimental Setup

Individual discrimination. A classification model is said to be fair with respect to this
definition if it predicts the same outcome for any two input instances, which have
the same values for all the features except for the sensitive ones. Formally this
can be defined as,

Definition 7.1 A classification model M is fair with respect to a sensitive feature
i, if for any two data instances, x⃗1, x⃗2 ∈ X⃗ we have (x⃗1(i) ̸= x⃗2(i)) ∧ ∀j , j ̸=
i.x⃗1(j) = x⃗2(j) implying M(x⃗1) = M(x⃗2).

This definition is first introduced by Galhotra et al. [GBM17] who termed it
causal fairness. For example, consider the tree model depicted in Figure 5.1 from
Chapter 5 (page 82). As we described before, this decision tree is not fair with
respect to the sensitive feature ‘gender’, based on this fairness definition. For
instance, the tree gives two different predictions for the following pair of data
instances:

x⃗1 = income=4500, age=50, gender=female
x⃗2 = income=4500, age=50, gender=male

For the first instance, the tree model gives the prediction as ‘no’ and for the
second instance it predicts ‘yes’, thus, the model is individually discriminating
based on the gender of a given person.

Fairness through awareness. This definition relaxes the previous definition of fair-
ness. It requires the ML model to give similar predictions for similar individ-
uals [DHP+12]. The similarity is captured by using a distance metric between
two input instances, d : X⃗ × X⃗ → R. This definition can be formally defined as
follows:

Definition 7.2 Let d : X⃗× X⃗ → R be a distance metric and ε be a threshold. A
classification model M is said to be fair with respect to a set of sensitive features
F = {i1, i2, . . . , im} ⊆ {1, . . . , n} if for any two data instances x⃗1, x⃗2 ∈ X⃗ we
have d(x⃗1, x⃗2) ≤ ε implies M(x⃗1) = M(x⃗2).

Thus, for any two individuals who are similar with respect to the distance metric
d, the ML model must predict the same output. However, unlike the related
works [DHP+12, VR18], we consider this definition by not taking the probability
distributions of outcomes into account, rather, we directly define the definition
on the output prediction. Nonetheless, this change does not alter the meaning
of this definition.

Security

We apply our tool MLcheck on a security property called trojan attacks. This prop-
erty pertains to multi-class classification models, or more specifically the image clas-
sifiers, requiring a classifier to predict a certain class if a specific pattern is present in
the input instance. The attacker aims to attack an ML model by obtaining the model
from an open source repository and then using specific training techniques to poison
the model [LMA+18]. The model is trained in a way such that it will predict a desired
class (for the attacker) only when some specific feature values are present in the input,
however, otherwise it will always predict normally. This poisoned model is then again

107

7 Evaluation of MLcheck

Table 7.1: Characteristics of the properties validated on the classifiers
Properties Hyper-property Binary Multi-class Multi-label

Individual discrimination ✔ ✔ ✘ ✘

Fairness through awareness ✔ ✔ ✘ ✘

Monotonicity ✔ ✘ ✔ ✘

Subsumption ✘ ✘ ✘ ✔

Disjointness ✘ ✘ ✘ ✔

Trojan attack ✘ ✘ ✔ ✘

uploaded to the repository where it was obtained from. The property can be formally
defined as follows:
Definition 7.3 Let T ⊆ {i1, . . . , iℓ} be a set of trigger features, t⃗ ∈ X⃗ a trigger vector
and z ∈ Y a target prediction. A predictive model M is vulnerable to attack (T, t, z)
if for any data instance x⃗ ∈ X⃗ the following holds:

∀t⃗ ∈ T⃗ : x⃗(t) = t⃗t ⇒ M(x⃗) = z .

The training technique followed by Liu et al. [LMA+18] to poison a model by ac-
cessing its internal parameters is beyond the scope of this thesis and thus, we do not
describe them here. The training method we follow to generate such poisoned models
is described in Section 7.2.2. Alike Baluta et al. [BSS+19], given a model and the
trigger feature values, we aim to find out whether there is an instance for which the
trojan attack fails, i.e., even if the trigger values are present in the instance, the output
is not the desired class value. Note that, this property is however different from the
adversarial attacks which utilize the inherent non-robustness of the model to find out
dissimilar predictions for two instances lying within a specific distance [MFF16].

Concept Relationship

This property is specific to multi-label classification models. To give a short revisit of
a multi-label classification model, formally this is defined as, M : X⃗ → Y⃗ , where Y⃗ is
the set of classes. Thus, in case of multi-label classification, instead of a single class
we get a set of class values as the output prediction (see Section 2.1 of Chapter 2 for
more details).

This property is required to be satisfied in an application area called knowledge
graphs [EW16], where the multi-label classifiers are learned to categorize entities 6

according to a given concept stated in an ontology and described using the ontology
specification language (such as OWL 7). The ontology does not just define the concepts
but also defines their relationships which the classifiers should adhere to. For example,
a multi-label classifier can be taught to categorize entities into three different concepts
(i.e., in three classes): Animal, Dog, and Cat. The classifier should not classify an
instance as Dog and Cat at the same time. Moreover, if the entity is categorized as
Dog, it should also be categorized as an Animal. Below, we formally define the concept
relationship.

6Note that, in case of a knowledge graph an entity can be a node or an edge of the graph.
7https://www.w3.org/2001/sw/owl

108

7.2 Experimental Setup

Definition 7.4 A concept relationship is a Boolean expression over the label names
L. A multi-label classification model M is respecting concept relationship φ if for any
data instance x⃗ the formula

φ[Li := M(x⃗)i, 1 ≤ i ≤ m]

is true.
In this case, the formula φ[Li := M(x⃗)i, 1 ≤ i ≤ m] is representing the constraint

where the label names are replaced by the corresponding Boolean values as predicted
by the classifier. To this end, we consider two specific sorts of concept relationships:
subsumption and disjointness. As these are highly context dependent, we explain these
with the help of our current example of Animal, Dog, and Cat labels. For instance, the
subsumption relationship is defined as ‘is a’ relationship such as φ1 : Dog ⇒ Animal
(every dog is also an animal) and φ2 : Cat ⇒ Animal (every cat is also an animal).
On the other hand, a disjoint relationship can be defined as ‘is not a’ relationship such
as φ3 : Dog ⇒ ¬Cat (A dog is not a cat).

In Table 7.1 we categorize the properties we tested on the classification models
based on their types 8. The first three properties are basically hyper-properties (see
Section 2.2.2) which we also termed as metamorphic properties. For such a property,
we need two instances and their corresponding two outputs to define it. We also
categorize the properties based on the type of classification models on which they are
tested.

Properties of Regression Models

Now we define the properties we validated on specific regression models and a type
of programmed numeric function called aggregation functions (see Section 7.2.3). A
regression model can be formally defined as M : X⃗ → R. Thus, the model in this case
takes an input vector and outputs a real-valued number. The aggregation functions
we validated can also be defined in this way, with the only difference being that these
functions are programmed, whereas the regression models are learned. For uniformity,
we also denote the aggregations functions as the model under test (MUT). The prop-
erties we describe below pertain to the aggregation functions as well as the regression
models we tested.

Monotonicity. The montonicity property in this case requires the output of the model
to be increasing or staying the same if all the input elements (i.e., features) are
also increasing or staying the same. More formally,

Definition 7.5 The model M : X⃗ → R is monotone if for any two inputs x⃗1,
x⃗2 ∈ X⃗ we have,

∀i ∈ {1, . . . , n} : x⃗1(i) ≤ x⃗2(i) ⇒ M(x⃗1) ≤ M(x⃗2)

Apart from checking monotonicity on the regression models, we also check mono-
tonicity on the single-label classification model. However, for the classifiers we
test the monotonicity with respect a specific feature i, and furthermore we as-
sume the set of feature values X⃗i and the set of class values Y have total order ⪯i

8Note that, the monotonicity property for the classification models is defined in Definition 7.6.

109

7 Evaluation of MLcheck

and ⪯Y respectively. The feature with respect to which we check monotonicity
is called monotonic or monotone feature. Using this, we define the monotonicity
property we check on the classification model as follows:

Definition 7.6 A classification model M is monotone with respect to a fea-
ture i if for any two data instances x⃗1, x⃗2 ∈ X⃗, we have (x⃗1(i) ⪯i x⃗2(i)) ∧
(∀j : j ̸= i.x⃗1(j) = x⃗2(j)) implies M(x⃗1) ⪯Y M(x⃗2).

Boundary conditions. The regression models and all of the aggregation functions we
check have a specific real interval I within which they operate. The lower bound-
ary value of the interval is termed as infimum, denoted as inf I, and the upper
boundary value is termed as supremum, denoted as sup I. This property dictates,
if all the input elements of an input vector have the boundary values correspond-
ing to that interval, then the output should also be that boundary value. Thus,
we have two boundary conditions properties which are defined as,

Definition 7.7 A model fulfills the infimum and supremum boundary conditions
if,

∀x⃗ ∈ X⃗ : ∀i ∈ {1, . . . , n} : x⃗(i) = inf I ⇒ M(x⃗) = inf I

∀x⃗ ∈ X⃗ : ∀i ∈ {1, . . . , n} : x⃗(i) = sup I ⇒ M(x⃗) = sup I

Strict montonicity. A model is said to be strictly monotone if the model’s output is
increasing only when one or several input elements are also increasing. Formally,

Definition 7.8 The model M : X⃗ → R is strictly monotone if for any two inputs
x⃗1, x⃗2 ∈ X⃗ we have,

∀i ∈ {1, . . . , n} : x⃗1(i) ≤ x⃗2(i)∧∃i ∈ {1, . . . , n} : x⃗1(i) ̸= x⃗2(i) ⇒ M(x⃗1) < M(x⃗2)

Lipschitz. This property requires the differences between the outputs of the model to
be bounded by the distance between the input vectors and a constant which is
termed as Lipschitz constant. For the distance between two input vectors we
consider Manhattan distance [Cra17]. Formally,

Definition 7.9 For any two input vectors x⃗1, x⃗2 ∈ X⃗, the model is called c-
Lipschitzian if the following inequality holds:

∀x⃗1, x⃗2 : true ⇒ c ∗
n∑

i=1
abs(x⃗1(i) − x⃗2(i)) ≥ abs(M(x⃗1) −M(x⃗2))

Note that, the values of the Lipschitz constants are different across different
aggregation functions and regression models. There are many ways to get the
Lipschitz constant for a model, such as analytical, experimental, numerical, or
using the known results from the literature. In our experimental evaluation, the
Lipschitz constants we have considered, some of which are taken based on the
known values and some are derived using numerical estimations.

Symmetry. A model is said to be symmetric if the output of the model does not depend
on the order of the inputs. Thus, a symmetric model should be invariant of any
of the permutations of the input elements.

110

7.2 Experimental Setup

Definition 7.10 A model is called symmetric if for every permutation π :
{1, . . . , n} → {1, . . . , n} of the input elements, the output of the model remains
the same M(x⃗) = M(x⃗π)

To check the symmetry property, we do not need to check whether for every
permutation the output of the function remains the same. Based on the proof
given in [Rah18], we can check symmetry by just checking two hyper-properties
which can be defined as follows:

Definition 7.11 A model is called symmetric if for any two inputs x⃗1, x⃗2 ∈ X⃗,
the following holds:

∀i ∈ {3, . . . , n} : (x⃗2(1) = x⃗1(2))∧(x⃗2(2) = x⃗1(1))∧(x⃗2(i) = x⃗1(i)) ⇒ M(x⃗1) = M(x⃗2)

∀i ∈ {2, . . . , n− 1} : (x⃗2(i− 1) = x⃗1(i)) ∧ (x⃗2(n) = x⃗1(1)) ⇒ M(x⃗1) = M(x⃗2)

Idempotency. This property requires that if all the elements of the input vector have
the same values, then the output should also be that value. Formally this can
be defined as,

Definition 7.12 A model is idempotent if for any x⃗ ∈ X⃗:∧
i∈{2,...,n}

(x⃗(i) = x⃗(1)) ⇒ M(x⃗) = x⃗(1)

Averaging. The averaging property combines three different properties–conjunction,
disjunction, and internality. These three properties define specific relationships
between the output of a model and the elements of an input vector.

Definition 7.13 A model is conjunctive, if,

∀x⃗ : true ⇒ min(x⃗) ≥ M(x⃗)

Definition 7.14 A model is disjunctive, if,

∀x⃗ : true ⇒ max(x⃗) ≤ M(x⃗)

Definition 7.15 A model is internal, if,

∀x⃗ : true ⇒ min(x⃗) ≤ M(x⃗) ≤ max(x⃗)

Invariance. This property checks the scale type or variable type of the input elements.
An element of the input can also be considered as a variable and there exist four
major categories of scales for the variables: nominal, ordinal, interval, and ratio.
The invariance property exists for each of these scales, however, in this thesis,
we consider only ratio scale invariance.

Definition 7.16 A model is called as ratio scale invariant if,

∀x⃗ : ∀c ∈ R : true ⇒ M(c ∗ x⃗) = c ∗M(x⃗)

111

7 Evaluation of MLcheck

Table 7.2: Monotonicity datasets and their characteristics
Name #Features #Group #Instances Descirption

Adult 13 4 32561 Income detection
Diabetes 8 5 768 Diabetes prediction
Mammographic 6 3 961 Cancer prediction
Car-evaluation 6 4 1728 Car quality evaluation
ESL 4 2 488 Student grade evaluation
Housing 13 3 506 House price prediction
Automobile 24 10 205 Car price prediction
Auto-MPG 7 5 392 Car mileage evaluation
ERA 4 2 1000 Student grade evaluation
CPU 6 5 209 CPU run-time prediction

Table 7.3: Fairness datasets and their characteristics
Name #Features Sensitive features #Instances Description

Adult 13 Gender 32561 Income prediction
Bank 16 Age 30488 Term deposit subscription
Credit 20 Gender 1000 Credit risk prediction
Titanic 9 Gender 891 Survival prediction

Additivity. This property requires the sum of the elements of two input vectors to be
equal to the sum of the outputs given the model. Formally,

Definition 7.17 A model is additive if for any two inputs, x⃗1, x⃗2 ∈ X⃗ we have,

∀i ∈ {1, . . . , n} : true ⇒ x⃗1(i) + x⃗2(i) = M(x⃗1) +M(x⃗2)

Next, we describe the datasets which we used to generate the MUTs.

7.2.2 Datasets

The datasets that we have used in generating different models depend on the properties
we have validated in this thesis. For instance, the dataset that we used to generate ML
models to check the security property is an image dataset. The ML models on which
we checked the fairness properties are generated using some specific datasets which
have been previously considered in the related works. Below we give the descriptions
of the datasets categorized based on the properties we have considered.

Fairness. We have taken four datasets as described in Table 7.3 to generate ML models
for testing fairness. These datasets were taken in the existing works of validat-
ing fairness [Agg18, UAC18, ZWS+20] to generate ML models. Hence, these
are considered to be standard datasets in the domain of fairness validation. In
Table 7.3 we give the datasets along with their characteristics, such as the num-
ber of features (#Features), the sensitive features with respect to which we test
fairness, the number of instances (#Instances), and a short description of the
dataset. Note that the sensitive features with respect to which we test fairness
are also considered in the aforementioned related works.

112

7.2 Experimental Setup

0 2 4 6 8

0

2

4

6

8

(a) Trigger 1

0 2 4 6 8

0

2

4

6

8

(b) Trigger 2

0 2 4 6 8

0

2

4

6

8

(c) Trigger 3

0 2 4 6 8

0

2

4

6

8

(d) Trigger 4

Figure 7.1: Examples of images with triggers

Monotonicity. The 10 datasets that are taken for generating classification models on
which we test the monotonicity property –defined in Definition 7.6– are described
in Table 7.2. These datasets are collected from the UCI machine learning repos-
itory 9 and the OpenML data repository 10, and are also used in the existing
works on monotonicity [KS09, TCDH11]. Apart from giving the datasets, we
also present some of the characteristics of the datasets, such as the number of
features and instances, and a short description of the datasets in Table 7.2. Along
with that, we give the number of features with respect to which we tested mono-
tonicity in the #Group column. These features are chosen based on the existing
works and also on our assumption about the application domain. For example, in
case of the adult dataset–containing predictions regarding whether the income
of a person is greater than 50,000–we check monotonicity with respect to the
features age, weekly working hours, capital gain and education level. The idea
herein is, if these values are increasing then the chances of having an income
greater than 50,000 must also be increasing. A detailed list of features with re-
spect to which we test monotonicity for each dataset is given in Section A.4 of
Appendix A.

Security. For testing the security property trojan attack, we used the MNIST 11

dataset containing images of hand-written digits to generate the ML models.
Note that the original dataset contains images with a pixel size of 28 × 28. How-
ever, alike Baluta et al. [BSS+19], we scaled down the images into 10 × 10 pixel
sizes. Furthermore, since we aimed to find out whether the trojan attacks have al-
ready been performed on a given ML model, we included poisoned data instances
to the original dataset and generated ML models which are trained on such a ma-
nipulated dataset. These poisoned instances essentially contain a specific trigger
(specific values pertaining to some specific features) and the corresponding target
prediction. Figure 7.1 shows the images containing four triggers that we have
considered in our evaluation. The trigger features in this case are two pixels, set
to some randomly chosen colors as shown in the image.
For each of these triggers, we considered the target class labels as 4 and 5. We
wanted the model learned on the poisoned dataset to predict, for instance, 4,
whenever the trigger values were present in the corresponding pixels. The idea is

9https://archive.ics.uci.edu/ml
10https://www.openml.org
11http://yann.lecun.com/exdb/mnist/

113

7 Evaluation of MLcheck

Table 7.4: Concept relationship datasets and their characteristics
Name #Features #Instances #NoClasses

CR1 50 450 3
CR2 50 450 3
CR3 50 450 3
CR4 50 450 3
CR5 50 450 3
CR6 50 450 3

if we add a number of such poisoned instances to the training set, the likelihood
of successfully attacking the model (i.e., getting the desired prediction by giving
an instance containing the trigger values) gets higher and it becomes difficult to
generate test cases that violate the attack property (i.e., even though the trigger
values are present in the instance the desired label is not predicted by the model).
Note that, the trojaned model can also be obtained by using specific trojaning
algorithms as given by Liu et al. [LMA+18], however, requires manipulating the
model, thereby a white-box access to the model itself. Since we consider the
MUT to be black-box, we generate the trojaned model by using the training
techniques used by Baluta et al [BSS+19].

Concept relationship. To generate the six datasets we considered for generating ML
models to check concept relationship, we have employed PYKE embedding ap-
proach [DN19]. This approach works by first mapping the entities from the
DBpedia knowledge graph (version 3.6) 12 to real vectors of size 50. The PYKE
approach is used in this case since it has been observed this approach achieves the
best results in generating data instances suited for classification tasks. Thus, we
used this approach to generate 6 datasets from the DBpedia graph, containing
embeddings of 3 classes. Table 7.4 gives the datasets and their characteristics.
Since the datasets contain three class labels associated with each data instance,
we train multi-label classification algorithms on them. The experimental results
in [DN19] suggest that finding counter-examples–violating the concept relation-
ship in this context–in classifiers trained on these embeddings is essentially a
difficult task and thus, these classifiers provide us with a good set of MUTs for
evaluating our tool.

Properties of regression models. In our work, we considered some specific type of
regression models which are learned to approximate some specific aggregation
functions. To learn such regression models we take a dataset from the existing
work [MH19]. Note that this dataset was originally taken from the OpenML
data repository 13 and later modified in the context of aggregation learning. We
train four regression algorithms on this dataset to generate four models.

7.2.3 Models Under Test
Since our approach is independent of the type of model under test (MUT), we can
basically apply MLcheck on any type of model. To this end, we categorize our MUTs
12http://dbpedia.org
13https://www.openml.org

114

7.2 Experimental Setup

in two categories, (a) ML models, and (b) aggregation functions. Note that the latter
MUT is not a learned model, however a programmed function which is programmed
by a programmer to perform a specific task.

The ML models we considered can be further categorized into two types: clas-
sification and regression models. The classification models (or classifiers) can fur-
ther be divided into single and multi-label models. In case of single-label model,
depending on the properties to validate, we considered naive Bayes, logistic regres-
sion, support vector machine (SVM), random forest, gradient boosting, and neural
network models. We chose these for the evaluations because of their frequent usage by
the practitioners in the corresponding application domains. Moreover, in the related
works [Agg18, UAC18, BSS+19, GBM17] these models are used for experimental eval-
uations. Thus, we also used them to evaluate our tool. For multi-label classification
models, we considered random forest and neural network models.

Apart from these classifiers, we have also considered some specific learning algo-
rithms to generate property-specific ML models. To this end, we could acquire clas-
sification algorithms for two specific properties: fairness and monotonicity. For fair-
ness, we considered the classification algorithms proposed by Zafar et al. [ZVGG17]
and Calders et al. [CKP09]. Let us refer the first algorithm as Fair-Aware1 and the
second one as Fair-Aware2. For Fair-Aware1, we took an implementation from the
github 14. For Fair-Aware2, since there was no implementation publicly available, we
implemented the corresponding approach from scratch based on the steps provided
in the corresponding publication [CKP09]. These two algorithms are called fairness-
aware algorithms and are designed to be guaranteed to generate fair models with
respect to a given protected feature (for example, gender or race) adhering to a spe-
cific fairness definition. Similarly, for the monotonicity property of the classifiers, we
considered monotonicity-aware learning algorithms taken from the XGBoost [Che19]
and LightGBM [lig19] libraries. Using these classification algorithms, monotonicity
can be enforced with respect to a set of features during the training process, thereby
generating monotone models.

We believe such kind of property-specific algorithms to generate property-specific
models to be excellent cases for our evaluations, because they should minimize the
number of violations for the corresponding property or completely eliminate them dur-
ing the process of generating the models. Thus, finding a violation on these generated
models would be a hard task for any testing approach.

Apart from classifiers, we also evaluated our approach on four regression models and
10 aggregation functions. Note that for uniformity we also call such an aggregation
function as an MUT. The regression models we considered are learned to approximate
some of these aggregation functions. Table 7.5 shows the list of programmed aggrega-
tion functions that we have considered for the evaluations. There are three columns in
this table, the first one gives the name of each of the aggregation functions, the second
column gives their formal definitions and the last column gives the Lipschitz constant
(L. const.) for each of the aggregation functions, as well as the experimental Lipschitz
constant (exp. L. const.) which is used while testing the Lipschitz property of each of
the functions (see in Section 7.2.1 for more information about the Lipshcitz property).

The first aggregation function arithmetic mean (AM) simply gives the mean of n
elements for a given input x⃗, whereas the weighted arithmetic mean (WAM) gives the
weighted mean of n elements based on a weight vector defining the weights for each
14https://github.com/mbilalzafar/fair-classification

115

7 Evaluation of MLcheck

Aggregation function Definition L. const./exp. L. const.

Arithmetic Mean (AM) 1
n

∑n
i=1 xi 1/n/(1/n− 0.001)

Weighted Arithmetic Mean (WAM)
∑n

i=1 wixi 1/0.99
Ordered Weighted Arithmetic Mean (OWA)

∑n
i=1 wix(i) 1/0.99

Geometric Mean (GM) (
∏n

i=1 xi)1/n -/0.99
k−order statistic (OSk) x(k) 1/0.99
Minimum (Min) x⃗(1) 1/0.99
Maximum (Max) x⃗(n) 1/0.99
Median with 2k elements (Med) x(k)+x(k+1)

2 1/0.99
Probabilistic Sum (Sp) 1 −

∏n
i=1(1 − xi) 1/0.99

Uninorm (3Π)
∏n

i=1
xi∏n

i=1
xi+

∏n

i=1
(1−xi)

-/0.99

Table 7.5: Aggregation function definition (n = number of arguments to function)

of the input elements. For such, we require a weight vector w⃗ = {w1, . . . , wn}, the
elements of this should be summing up to 1, i.e., ∑n

i=1wi = 1. The ordered weighted
arithmetic mean (OWA), along with the weight vector, also requires a specific order
on the elements of the input x⃗. For an input vector x⃗ = {x1, . . . , xn} we define x(k)
as the k-th element of the sorted vector x⃗. In other words, we use (.) to denote the
permutation sorting of the elements of the input vector from smallest to largest, and
thus, x(1) ≤, . . . ,≤ x(k), . . . ,≤ x(n), where x(k) denotes the k-th largest element. Note
that, the function k-order statistic (OSk) in Table 7.5 returns such an order given an
input x⃗. Then the minimum (Min) and maximum (Max) function returns the first
and the last elements of this order x(1) ≤, . . . ,≤ x(k), . . . ,≤ x(n). The geometric mean
(GM), as the name suggests gives the geometric mean and the Med function returns the
median of the elements of the given input vector. The probabilistic sum function (Sp)
which is also known as t-conorms is used to represent logical disjunction in fuzzy logic
and set union in fuzzy set theory [KM05]. The uninorm (3Π) function similar to the
previous function is also used in fuzzy logic, where the function acts as a conjunction
when receiving low inputs and works as a disjunction when receiving high ones.

These functions are important in the machine learning community [MH19, PTF+21]
and there is a growing interest in the community to have these functions satisfying
specific properties. Thus, it gives us the possibility to evaluate our tool in testing
several types of non-trivial properties as well as different types of MUTs. Currently,
instead of using such programmed aggregation functions, researchers are aiming at
using regression models to learn these functions [MH19, PTF+21, MH16]. Along with
the programmed aggregation functions we also aimed at validating the ML models
learned to approximate some of these aggregation functions.

With respect to the learned aggregation functions which are basically regression
models approximating a specific function, we have considered a number of learning
algorithms from the literature of existing works to generate such models. To this end,
we considered two types of models: (a) models only learning the parameters of the
aggregation functions, (b) models learned to completely approximate the aggregation
functions.

For (a), we have considered two algorithms from the related works. First, we consid-

116

7.2 Experimental Setup

ered the OWA algorithm from the works of Melnikov et al. [MH19] which is the OWA
function where the parameters (i.e., the weight vector) are learned from the train-
ing data, and we call the learned model L-OWA. We have also considered a specific
type of learning algorithm to learn uninorm function from [MH16], and we denote the
learned model as L-Uni. Note that in case of L-OWA and L-Uni, the internals of the
models are the corresponding aggregation functions and only some specific parameters
are learned. In consequence, the corresponding properties for the OWA and Uninorm
must be satisfied by these two models.

For (b), we also took two models from the related works. To this end, we considered
DeepSet [ZKR+17] which is a neural network algorithm designed to learn a model ap-
proximating only symmetric aggregation function. DeepSet is not based on an internal
aggregation function (unlike L-OWA and L-Uni) and thus, the algorithm can learn to
completely approximate an aggregation function. In consequence, the specific proper-
ties which are guaranteed for the programmed aggregation functions 15, might not be
present in this model. We also considered a similar type of learning algorithm called
LAF [PTF+21]. LAF is said to be outperforming DeepSet in terms of effectiveness.
The idea behind the usage of these two types of models is to determine whether or
to which extent these two models can approximate an aggregation function. Thus,
by considering these two types of models, we basically aimed to check the so-called
goodness of approximation, which is considered to be an important criterion for these
types of models.

In summary, for the evaluation of MLcheck we considered 202 learned models
including 10 aggregation functions.

7.2.4 Baseline Tools

We compared MLcheck to different baseline tools, described in more detail in the
following, depending on the property to be validated. In general, we always aimed
to compare our approach to the state-of-the-art approaches for testing the respective
properties if publicly available. Note that, we did not compare our approach against
the testing techniques designed for a specific machine learning model, for instance,
deep neural networks [ZWS+20], because white-box testing techniques use knowledge
that is unavailable to black-box approaches which would hinder comparability. For the
same reason we do not compare our approach to e.g., verification techniques.

Furthermore, 15 properties we have considered in this thesis have never been vali-
dated before, and hence, there are no testing tools in case of those properties. We con-
sider adaptive random testing (adapted to test the individual properties) and property-
based testing tool Hypothesis [hyp23] as our baseline tools in these cases. Next, we
start with the description of the baseline tools for fairness testing.

While evaluating our tool on the individual discrimination property (see Defini-
tion 7.1), we used SG and AEQUITAS approaches as the baseline tools. We have
not considered the testing tool THEMIS from the works of Galhotra et al. [GBM17]
since it has already been shown to be ineffective compared to the aforementioned two
approaches [Agg18].

SG. The symbolic generation algorithm as proposed by Aggarwal et al. [Agg18] works
by adapting the dynamic symbolic generation technique [SMA05]. Note that,

15Assuming the programmed aggregation functions are error free.

117

7 Evaluation of MLcheck

the implementation of SG was not open source, but we could obtain it from the
works of Zhang et al. [ZWG+21].

AEQUITAS. We have taken the implementation of AEQUITAS from the Github
repository 16 as given by Udeshi et al. in their work [UAC18]. Note that, this
approach was hard-coded only for the Adult dataset and thus, we had to adapt
the approach to work for arbitrary datasets. The developers of AEQUITAS pro-
vided three different modes: random, semi-directed, and fully-directed. Based
on their evaluations, the fully-directed mode outperforms the others and thus in
our experiments we only consider this mode.

Adaptive random testing. SG and AEQUITAS approaches can only be used to test
individual discrimination property, and hence, we cannot use them to check
any other fairness properties. We thus use adaptive random testing (ART) as
the baseline approach for fairness through awareness property. The detail of
this approach is described in Chapter 2 by using Algorithm 1. We needed to
adapt this algorithm to be used for generating test cases for fairness through
awareness. For this, first, we adapted the test case generation mechanism since
the original algorithm is not designed for hyper-properties like fairness which
requires two instances x⃗1 and x⃗2 to check the property. Based on the idea of
ART, the generation of different test instances should be some distance apart
to cover the input space as much as possible and this is generally defined by
using the Euclidean distance metric. However, since we use ART for generating
not a single, but a pair of instances, we needed a specific distance measure to
compute the distance between two pairs of instances. We describe below about
this distance measure.

Distance metric. To define the distance metric, let us assume we are given two
pairs of instances, (x⃗1, x⃗2) and (z⃗1, z⃗2), and we want to compute how far away they
are from each other. Each of these instances is considered to be points in the n-
dimensional space and we assume each element of these instances is numerical. We
define Euc(x⃗1, x⃗2) be the Euclidean distance between two instances x⃗1 and x⃗2. We
denote mx⃗1,x⃗2 to be the middle point lying between x⃗1 and x⃗2. Herein we consider
the distance between two pairs of instances by considering two aspects: 1) we consider
(x⃗1, x⃗2) and (z⃗1, z⃗2) to be distant if the Euclidean distance between the corresponding
instances is large. For instance, Euc(x⃗1, x⃗2) might be large, although Euc(z⃗1, z⃗2) might
be small, or vice-versa, or if both are large. 2) Two pairs of instances are said to be
distant if the Euclidean distance between the middle points Euc(mx⃗1,x⃗2 ,mz⃗1,z⃗2) is large.
By combining these two aspects, we can define the distance metric as follows:

dist
(
(x⃗1, x⃗2), (z⃗1, z⃗2)

)
= |Euc(x⃗1, x⃗2) − Euc(z⃗1, z⃗2)|

2 + Euc(mx⃗1,x⃗2 ,mz⃗1,z⃗2)
2

Since fairness is a hyper-property we need this distance metric that indulges to this kind
of property. None of the existing publications on ART proposed a distance metric
tailored to hyper-properties. Thus, to solve this, we proposed this novel distance
metric to compute the distance between pairs of instances, specifically designed for
hyper-properties.
16https://github.com/sakshiudeshi/Aequitas

118

7.3 External Evaluation

Table 7.6: Baseline tools used for different properties
Properties Baseline tools

Fairness SG, AEQUITAS, ART
Monotonicity ART, Hypothesis
Security ART, Hypothesis
Concept ART, Hypothesis
Properties of aggregation functions Hypothesis

Apart from using ART for fairness testing, we also use this as a baseline tool for some
other properties. More specifically, We employ ART as a baseline tool while testing
monotonicity for classification models, concept relationships, and security properties
since no other approaches exist which test these properties.

Hypothesis. Finally, we use Hypothesis [hyp23], a property-based testing (PBT)
tool implemented in Python as a baseline tool for testing properties such as mono-
tonicity, security, concept relationship, and furthermore all the properties we check for
aggregation functions and regression models. There are two reasons for choosing Hy-
pothesis as a baseline tool for testing these properties. First, there does not exist any
other testing tool for testing these properties. Second, the idea of our property-driven
testing tool MLcheck of specifying a property and testing a given model based on the
specification is similar to the idea of PBT. For instance, in both cases, the property
is specified in pre-, post-condition format and the function or the model under test
is considered to be a black-box. However, the main difference between our technique
and the PBT lies in the test data generation process. Our approach uses the property
to generate the test cases in a targeted manner whereas the PBT randomly generates
test cases in order to find a violation of the property. Thus, using the PBT tool as a
baseline approach gives us the opportunity to perform a fair comparison to an existing
state-of-the-art tool that works analogously to ours.

Table 7.6 summarizes different properties and the corresponding baseline tools we
used to compare our approach.

7.3 External Evaluation
In this section, we describe the results of our experimental evaluations. More specif-
ically, here we give the results of MLcheck in performing the external evaluations.
In doing so we compared the effectiveness and efficiency of MLcheck to the baseline
tools. To this end, we considered 21 different properties (see Section 7.2.1) and tested
them by using MLcheck and the baseline tools. Below we give the results of our
external evaluations in testing those properties.

7.3.1 Fairness
For evaluating the fairness property, we have taken six classification algorithms from
the scikit-learn library [PVG+11] (non fairness-aware) and two fairness-aware al-
gorithms to generate the models to be evaluated. The algorithms that we have taken
from scikit-learn library are logistic regression, decision tree, naive Bayes, ran-
dom forest, gradient boosting, and neural networks. These algorithms are consid-
ered frequently in the related works to generate models to perform fairness valida-

119

7 Evaluation of MLcheck

tions [GBM17, UAC18, Agg18]. As mentioned beforehand, the fairness-aware algo-
rithms Fair-Aware1 [ZVGG17] and Fair-Aware2 [CKP09] are specifically designed to
generate fair models with respect to a specific feature and a fairness definition. Thus,
technically any testing approaches should not be able to find unfair test cases cor-
responding to that fairness property. Hence, taking such models to perform fairness
testing would definitely pose challenges to our evaluations. In summary, we considered
30 models for individual discrimination and 24 models for fairness through awareness
properties.

We have evaluated our tool MLcheck considering both of the white-box models,
decision tree (MLC_DT), and neural networks (MLC_NN) in testing the fairness
properties. As baseline tools SG and AEQUITAS are used in the context of individual
discrimination, and adaptive random testing (ART) tool in the context of fairness
through awareness (see Section 7.2.4 above for more details). Furthermore, note that,
in fairness testing, the effectiveness of a testing approach is measured by how many
unfair test cases are found. Since the Hypothesis cannot be configured to generate
multiple violating test cases we only could use ART as the baseline approach.

To generate test cases for fairness through awareness property using ART, we need to
solve an inequality. As mentioned beforehand, in case of the fairness through awareness
property, we require: if the feature values (apart from the binary ones) of two instances
have a certain distance to each other, then the output prediction of these two instances
must not change. In this case we have an inequality of the form d(x⃗1, x⃗2) ≤ ε. Thus,
after generating x⃗1, we generate the other instance x⃗2 by solving the inequality along
with the fixed distance measure d with a constant value of ε. For solving the inequality,
we use the symbolic mathematical Python library SymPy 17.

Finally, for the evaluation of the approaches we have set 1,000 test cases as the
stopping criteria, meaning that any approach would execute until this specific number
of test cases is explored.

Results

Effectiveness. Tables 7.7 and 7.8 show the results of testing individual discrimination
and fairness through awareness properties comparing the results of MLcheck with
the baseline tools. The experimental results shown give the average number of unfair
cases generated (computed over 10 runs) for each of the approaches along with their
standard error of the mean (SEM) values. The SEM is computed by first computing
the standard deviation and then dividing that value by the number of samples, which
in our case is the number of times we have performed the experiments (10). This value
gives an idea of how much the unfair counts vary across different runs. For the three
datatsets adult, credit, and titanic we validated fairness with respect to the feature
gender and for the bank dataset with respect to age. Since the two fairness-aware
algorithms could only work with binary features, we could not use them to train on
the bank dataset.

As results reveal, in case of both properties, MLcheck (either with a decision tree
or neural network) performs better than the baseline tools for most of the models.
For instance, in testing individual discrimination property (reported in Table. 7.7) on
the classification models trained on the adult dataset, in six out of eight cases our
approach performs better than SG and AEQUITAS. We also see similar trends on the
17https://www.sympy.org/en/index.html

120

7.3 External Evaluation

Table 7.7: Mean (± SEM) number of unfair cases for individual discrimination
Datasets Classifiers MLC_DT MLC_NN SG AEQUITAS
Adult Logistic Regress. 102.30 (±16.36) 65.21 (±7.78) 30.20 (±3.27) 90.80 (±31.46)

Decision Tree 214.00 (±20.16) 64.30 (±1.36) 225.48 (±4.23) 112.00 (±25.14)
Naive Bayes 38.40 (±5.53) 69.6 (±3.93) 23.83 (±1.68) 0.00 (±0.00)
Random Forest 166.14 (±22.12) 50.60 (±2.47) 19.82 (±5.59) 158.00 (±4.35)
Gradient Boosting 86.14 (±2.12) 35.60 (±2.47) 92.82 (±5.59) 21.00 (±4.35)
Neural Network 121.14 (±12.12) 150.60 (±2.97) 19.82 (±1.19) 128.00 (±4.35)
Fair-Aware1 0.00 5.70 (±1.38) 0.00 0.00
Fair-Aware2 80.91 (±2.67) 1.25 (±0.76) 3.87 (±0.56) 0.89 (±0.50)

Credit Logistic Regress. 144.71 (±13.62) 78.60 (±7.97) 63.43 (±2.27) 63.00 (±18.65)
Decision Tree 396.17 (±28.16) 17.75 (±1.36) 239.25 (±4.71) 18.72 (±8.98)
Naive Bayes 3.00 (±1.03) 39.40 (±8.76) 3.00 (±0.00) 0.00
Random Forest 154.57 (±22.12) 69.43 (±5.91) 251.42 (±9.74) 10.20 (±9.12)
Gradient Boosting 123.14 (±12.12) 85.60 (±22.47) 102.82 (±8.52) 100.02 (±3.98)
Neural Network 51.14 (±4.81) 83.60 (±8.97) 80.73 (±8.19) 0.00 (±0.00)
Fair-Aware1 0.00 19.89 (±1.38) 0.00 0.00
Fair-Aware2 120.87 (±7.98) 0.00 2.54 (±0.56) 1.78 (±0.50)

Titanic Logistic Regress. 746.56 (±13.16) 488.53 (±8.96) 411.13 (±2.16) 378.64 (±18.16)
Decision Tree 682.52 (±11.23) 328.55 (±3.16) 273.10 (±3.25) 626.37 (±23.85)
Naive Bayes 10.75 (±1.23) 64.28 (±4.60) 0.00 (±0.00) 0.00 (±0.00)
Random Forest 730.52 (±15.73) 380.53 (±5.69) 682.28 (±6.68) 701.54 (±13.16)
Gradient Boosting 551.29 (±14.98) 423.77 (±5.85) 458.93 (±2.40) 623.71 (±12.76)
Neural Network 679.83 (±16.86) 613.54 (±21.69) 601.82 (±16.32) 621.11 (±22.16)
Fair-Aware1 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)
Fair-Aware2 7.87 (±2.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

Bank Logistic Regress. 132.41 (±22.12) 58.73 (±24.12) 23.00 (±5.06) 12.21 (±1.02)
Decision Tree 239.26 (±18.44) 209.81 (±14.14) 200.42 (±5.29) 17.00 (±1.11)
Naive Bayes 61.64 (±7.34) 174.41 (±8.33) 85.63 (±2.18) 43.12 (±8.78)
Random Forest 328.71 (±22.02) 256.00 (±8.96) 98.47 (±4.76) 30.67 (±1.71)
Gradient Boosting 254.48 (±4.54) 162.22 (±14.44) 112.27 (±5.02) 0.00 (±0.00)
Neural Network 257.20 (±21.92) 129.57 (±3.5) 122.86 (±5.28) 239.12 (±36.81)

models trained on the credit, titanic, and bank datasets, where we see 7, 7, and 8
cases our approach generates more unfair cases. Further, we can make one important
observation. We could find unfair cases in both of the two fair-aware models. In
conclusion, these two fair-aware algorithms might in some cases generate unfair models.

In evaluating fairness through awareness property, we see in all the cases our ap-
proach outperforms ART in terms of finding unfair cases. Since there are no other
approaches available for testing this fairness property, we could only compare our re-
sults with ART. Compared to MLcheck, we have given a larger timeout for ART,
however, even with that, ART could not find more unfair cases. We can conclude
that our approach, with respect to our experimental setup, is the best to validate the
fairness-through awareness property.

Finally, we also see that in some cases our approach with the neural network performs
better than with a decision tree. For instance, in case of the model generated using
the Fair-Aware1 algorithm, MLcheck with decision tree could not find unfair cases,
whereas with the neural network it could find in average 5.70 and 19.89 number of
unfair cases for adult and credit datasets respectively. We could also see for most
of the datasets trained on the naive Bayes model, MLcheck with neural network
generates more unfair cases than the others. This shows that the use of a neural
network as the white-box model in our approach in fact pays off.

Efficiency. Figures. 7.2 and 7.3 show the runtime comparisons while checking

121

7 Evaluation of MLcheck

Table 7.8: Mean (± SEM) number of unfair cases for fairness through awareness
Datasets Classifiers MLC_DT MLC_NN ART
Adult Logistic Regress. 155.63 (±14.03) 65.21 (±11.74) 30.20 (±1.21)

Decision Tree 146.00 (±8.28) 42.80 (±4.87) 37.99 (±1.31)
Naive Bayes 105.40 (±8.93) 67.4 (±3.93) 55.83 (±2.19)
Random Forest 96.41 (±12.83) 60.00 (±5.88) 20.73 (±2.94)
Gradient Boosting 113.23 (±7.24) 88.25 (±7.88) 39.19 (±2.01)
Neural Network 352.8 (±17.75) 167.40 (±11.27) 23.5 (±1.2)

Credit Logistic Regress. 124.23 (±27.93) 218.95 (±23.25) 56.10 (±10.11)
Decision Tree 655.47 (±24.66) 571.72 (±21.85) 79.98 (±18.23)
Naive Bayes 51.23 (±8.11) 234.50 (±27.77) 20.87 (±3.33)
Random Forest 224.97 (±12.31) 400.00 (±15.12) 55.78 (±6.76)
Gradient Boosting 307.87 (±21.00) 287.99 (±18.83) 78.62 (±9.19)
Neural Network 410.91 (±22.54) 441.52 (±17.73) 88.89 (±16.61)

Bank Logistic Regress. 461.26 (±13.20) 221.62 (±11.48) 51.87 (±4.76)
Decision Tree 243.62 (±11.54) 129.75 (±14.84) 89.27 (±4.18)
Naive Bayes 313.76 (±16.83) 203.39 (±17.54) 28.95 (±7.37)
Random Forest 301.48 (±5.55) 146.55 (±12.97) 40.72 (±3.83)
Gradient Boosting 162.49 (±7.88) 141.28 (±11.37) 38.88 (±6.40)
Neural Network 203.45 (±19.45) 141.87 (±16.87) 44.12 (±3.98)

Titanic Logistic Regress. 364.66 (±4.87) 117.52 (±5.63) 88.81 (±3.45)
Decision Tree 550.63 (±8.53) 481.93 (±9.12) 87.36 (±3.64)
Naive Bayes 309.73 (±13.84) 228.65 (±11.72) 40.42 (±8.88)
Random Forest 380.77 (±3.83) 127.54 (±11.95) 82.91 (±2.22)
Gradient Boosting 322.65 (±12.73) 100.85 (±14.86) 74.87 (±9.53)
Neural Network 213.85 (±12.56) 131.53 (±13.88) 77.20 (±5.76)

individual discrimination and fairness through awareness properties respectively. The
x-axis here gives the number of solved tasks, ordered by the runtime for each tool from
the fastest to slowest. Thus, we only considered the models on which the corresponding
testing tool found a violation. Since SG and AEQUITAS could not be configured to
apply on one of the fair-aware models (Fair-Aware1), their curves end at 26 tasks.

We can see in evaluating individual discrimination property, for a number of tasks,
our approach has higher runtimes compared to SG and AEQUITAS. However, the
differences are not significantly large and we have already seen that we could generate
more unfair cases at the cost of a slightly higher runtime. Moreover, AEQUITAS al-
though initially for some test cases shows lower runtimes, for the rest, has the highest
runtimes compared to all other approaches. This contributes to the usage of initial
random search for finding unfair test cases by AEQUITAS. SG on the other hand,
learns a decision tree path (but not an entire decision tree), and thus shows a bit lower
runtime than our approach. On the other hand, in evaluating fairness-through aware-
ness property, we see the runtimes of ART are much higher compared to our approach.
This is again due to the random generation of test cases by solving inequalities.

122

7.3 External Evaluation

1 5 10 15 20 25 30100

500

1,000

Solved tasks

ru
nt

im
e

(in
se

co
nd

s)
MLC_dt

MLC_nn

SG

AQ

Figure 7.2: Runtime for checking fairness
(Def. 7.1)

1 4 8 12 16 20 24100

500

1,000

1,300

Solved tasks

ru
nt

im
e

(in
se

co
nd

s)

MLC_dt

MLC_nn

ART

Figure 7.3: Runtime for checking fairness
(Def. 7.2)

7.3.2 Monotonicity

For testing the monotonicity property (Definition 7.6) on the classification models, we
took 8 algorithms from the scikit-learn library and 2 monotonicity-aware algorithms
from LightGBM[lig19] and XGBoost[CG16] libraries. The algorithms we have taken
from scikit-learn are k-NN, logistic regression (Log), naive Bayes (NB), support
vector machine (SVM), neural network (NN), random forest (RF), Ada boost (AB),
and gradient boosting (GB). These algorithms belong to the most basic family of clas-
sification algorithms and the others are derived from these. The monotonicity-aware
algorithms taken from LightGBM and XGBoost libraries are specifically designed to
learn monotone models with respect to a given set of features from the training dataset.
Thus, they are excellent benchmarks for evaluating any monotonicity testing approach.
This is due to the fact that, if such a classifier performs as intended there would be no
non-monotonicity cases and, even if there are such cases, the number of them would be
very few and thus, poses a challenge for the testing approach to detect such cases. In
summary, we considered 100 classification models to test the monotonicity property.

As the baseline tools for testing this property, we considered the adaptive random
testing (ART) approach and the property-based testing (PBT) tool Hypothesis. Since
there are no testing approaches available for testing the monotonicity property of the
black-box machine learning models, we used these two as the baseline tools. Moreover,
since monotonicity is a hyper-property, as part of ART we implemented the distance
metric we proposed in Section 7.2.4.

Results

Effectiveness. Table A.4 shows the results of the monotonicity violations over 10 clas-
sification models, for 10 datasets, comparing the three testing tools, MLcheck with
decision tree (MLC_DT) and neural network (MLC_NN), adaptive random testing
(ART) [CLM04], and the property-based testing (PBT) tool Hypothesis [hyp23]. In
this table, the ✓ indicates that a non-monotonicity case is found for that corresponding
dataset and the classifier, and ✗ indicates that such a case is not found. For instance,
in the first row of Table A.4 the ✓ corresponding to the classifier k-NN and the adult
dataset represents that a non-monotonicity case has been found by MLcheck (MLC)
on the k-NN model trained on the adult dataset. We further summarize the overall

123

7 Evaluation of MLcheck

Table 7.9: Overall non-monotonicity detection
Classifiers MLC ART PBT

k-NN 9 9 7
Logistic Regression 8 8 6
Naive Bayes 7 4 5
SVM 9 8 5
Neural Network 8 6 4
Random Forest 9 9 5
AdaBoost 8 7 5
GradientBoost 8 7 5
LightGbm 2 0 0
XGBoost 0 0 0
Overall 68 58 42

number of non-monotonicity detections in Table 7.9. Note that the ground truth defin-
ing which models are non-monotone is unknown. However, the results reported here
with the non-monotonicity cases found in all the models are all true positives.

The results in Table 7.9 show that MLcheck could find violations in overall 68
cases, whereas baseline tools ART and PBT could find 58 and 42 such cases. Thus, we
see that ART with our proposed distance metric achieves better results than the PBT
tool Hypothesis. One interesting observation we have from Table A.4 is that there
are some cases where monotonicity violations are not detected by MLcheck (neither
with decision tree nor with neural network), however, are detected by ART and PBT.
To take a closer look at these cases and to find out how many of such cases are there,
we plot a Venn diagram in Figure 7.4 to show the distribution of all the violated cases
found by all three tools.

In this figure, we see that there are 26 models for which monotonicity violations
are detected by all three tools. Then there are 24 models for which non-monotonicity
cases are detected by both MLC and ART and for 8 models MLC and PBT both
could find out non-monotonicity. More importantly, the diagram further shows that
there are 9 models for which the monotonicity violations cannot be detected by our
approach MLC, and can only be detected by either ART or PBT or, both. These are
the models trained on ERA (6 models) and ESL datasets. The models generated on
these two datasets have extremely low accuracy rates. For instance, the models trained
on the ERA dataset have accuracy rates of around 0.5 and for the ESL dataset, the
models have accuracies around 0.6. Thus, learning from these two datasets, in general,
are difficult, and when our white-box model (either decision tree or neural network)
approximates a model generated on either of these two datasets, the learned model
barely approximates the MUT and thus we get poor performance.

Finally, the models generated by the monotonicity-aware algorithm LightGBM were
found to be violating the property for two models. This was only found by MLcheck
which none of the other tools could find. This furthermore shows the effectiveness of
our tool.

Efficiency. We compare the efficiency of our approach with ART and PBT tools
by comparing the runtimes in Figure 7.5. Here, the x-axis enumerates the solved tasks
which in this case are 100 MUTs that we considered for checking monotonicity and
these are sorted in ascending order of their runtimes. The y-axis gives the runtimes for

124

7.3 External Evaluation

ART PBT

MLC

26
24 8

10

1
7

1

Figure 7.4: Venn diagram

1 20 30 40 50 60 70 80 90 100101

102

103

104

Solved tasks

ru
nt

im
e

(in
se

co
nd

s)

ART

PBT

MLC_DT

MLC_NN

Figure 7.5: Runtime in checking mono-
tonicity

testing the corresponding task. The figure shows that for most of the tasks the PBT
tool Hypothesis has the lowest runtime, followed by MLC_DT, MLC_NN, and ART.
However, for some MUTs, PBT shows a high runtime and thus, we see a sudden rise
of the curve. These are the cases for which the monotonicity violation is not found
by the tool even after executing for a long time. In case of ART, it requires the most
amount of time in finding non-monotonicity cases because of the cost of generating
test inputs which are the furthest away from each other. With respect to MLcheck,
we get a lower runtime with the decision tree compared to the neural network model.

7.3.3 Security

For testing the security property trojan attacks, we generated models on the poi-
soned dataset which is generated by adding the poisoned data instances to the original
MNIST hand-written recognition image data. To this end, we considered two neural
network models considering two different architectures, NN1 and NN2. The NN1 neu-
ral network contains 3 layers with each layer containing 50 neurons and thus having
50×50×50 neurons. The NN2 network contains 4 layers with each layer containing 50
neurons and thus having 50×50×50×50 neurons in total. Both of these networks were
then trained on two MNIST datasets elevated by 1,000 and 10,000 poisoned training
instances containing specific triggers with the corresponding target labels.

For instance, first, we added 1,000 poisoned instances to the original dataset con-
sidering a specific trigger T1 and its corresponding target label as 4. We then trained
two different neural network algorithms to generate two models NN1 and NN2 on this
poisoned training dataset. Then we added 1,000 instances to the original datasets
with the trigger T1, however, this time with the target label as 5. We then similarly
generated two models NN1 and NN2 on this dataset. This process is then repeated
for all the other triggers T2, T3, and T4 (as shown in Figure. 7.1 on page 113) con-
sidering the target predictions for each of the triggers as 4 and 5. Thus, in total, in
case of 1,000 poisoned instances, we got 16 different poisoned models. We furthermore
repeated this entire process by considering 10,000 poisoned instances to be added to
the original dataset. Thus, in total, we test the trojan attack property on 32 different
poisoned models.

125

7 Evaluation of MLcheck

Table 7.10: Detected violations of trojan attacks (✓ = violation, ✗ = no violation)
(data set with 1,000 poisoned instances)

Trigger Classifiers MLC_DT MLC_NN PBT ART
T1-4 NN1 ✗ ✓ err ✓

NN2 ✗ ✗ err ✓
T1-5 NN1 ✓ ✓ err ✓

NN2 ✗ ✗ err ✓
T2-4 NN1 ✓ ✓ err ✗

NN2 ✗ ✓ err ✓
T2-5 NN1 ✓ ✓ err ✗

NN2 ✗ ✓ err ✓
T3-4 NN1 ✗ ✓ err ✓

NN2 ✗ ✓ err ✓
T3-5 NN1 ✓ ✓ err ✓

NN2 ✗ ✗ err ✓
T4-4 NN1 ✗ ✓ err ✓

NN2 ✗ ✓ err ✓
T4-5 NN1 ✗ ✓ err ✓

NN2 ✗ ✓ err ✓

Overall 4 13 - 14

The idea is to find out when the trigger values are present in a given instance
whether the output given by the poisoned model corresponding to that instance is not
the desired label. In other words, we aimed to find out cases where the trojan attack
on the poisoned model failed. Furthermore, since there does not exist a testing tool for
validating this property, we use adaptive random testing (ART) and property-based
testing tools (PBT) as our baseline tools.

Results

Effectiveness. Tables 7.10 and 7.11 show the results of our experiments for trojan
attacks with 1,000 and 10,000 poisoned instances respectively. We considered four
triggers T1, T2, T3, and T4, and for each of them, we considered the target labels
as 4 and 5. For example, trigger 1 with target labels 4 and 5 are denoted as T1-
4 and T1-5 respectively. The PBT tool Hypothesis was not able to generate any
test cases, and after running for a long time, it ended up with the error message
“hypothesis.errors.Unsatisfiable: Unable to satisfy assumptions of hypothesis”. We
suspect, since we have 100 features as inputs and thereby 100 pre-conditions on the
feature values, this caused the tool to crash. The developer of the PBT tool possibly
could not envisage the use of 100 inputs for a MUT.

Our baseline approach ART turned out to be performing quite well in comparison
to our approach MLC_DT and MLC_NN. We see that ART performs better than
MLC_DT, however, shows comparable performance to MLC_NN on the models gen-
erated on the training dataset containing 1,000 poisoned instances. In case of models
generated on 10,000 poisoned data instances (where finding the violations to the Tro-
jan attack property is difficult), our approach with the neural network model could
find out overall 6 violations whereas ART could find 5.

Efficiency. Figure 7.6 shows the runtimes comparing MLcheck with decision tree
and neural network to ART approaches in finding out a single violation of the trojan

126

7.3 External Evaluation

Table 7.11: Detected violations of trojan attacks (✓ = violation, ✗ = no violation)
(data set with 10,000 poisoned instances)

Trigger Classifiers MLC_DT MLC_NN PBT ART
T1-4 NN1 ✗ ✓ err ✓

NN2 ✗ ✓ err ✓
T1-5 NN1 ✗ ✓ err ✓

NN2 ✗ ✗ err ✗
T2-4 NN1 ✗ ✓ err ✓

NN2 ✗ ✗ err ✗
T2-5 NN1 ✗ ✗ err ✓

NN2 ✗ ✗ err ✗
T3-4 NN1 ✗ ✗ err ✗

NN2 ✗ ✓ err ✗
T3-5 NN1 ✗ ✗ err ✗

NN2 ✗ ✗ err ✗
T4-4 NN1 ✗ ✗ err ✗

NN2 ✗ ✓ err ✗
T4-5 NN1 ✗ ✗ err ✗

NN2 ✗ ✗ err ✗

Overall 0 6 - 5

attack. X-axis shows the number of models tested for violation (i.e., solved tasks)
in ascending order of the runtimes needed to test the corresponding task. Y-axis
gives the corresponding runtimes. In this case, we show the runtimes considering the
1,000 poisoned instances (based on the results from Table 7.10). It shows that the
performance of ART comes with the cost of high runtimes. Furthermore, as we have
also seen previously, MLcheck with the decision tree gives lower runtimes compared to
neural network model. This is again attributed to the high runtimes in SMT solving
of the neural network. However, in this case, MLcheck with neural network gives
superior performance at the cost of a higher runtime.

7.3.4 Concept Relationship

For validating this property, we first collected 6 datasets (CR1-CR6) by using the
PYKE embedding approach [DN19] from the DBpedia knowledge graph. Then we used
these datasets to train multi-label random forest and neural network algorithms. For
random forest, we used the default hyper-parameter settings from the scikit-learn
library and for the neural network we considered the architecture containing 3 layers,
with each layer containing 50 neurons and thus in total 50×50×50 neurons. Thus, with
6 datasets and 2 multi-label classification algorithms, we generated in total 12 models.
Based on the datasets generated using the DBpedia knowledge graph, we considered
3 different concept relationships, one of which is a subsumption relationship (S1) and
the other two are disjoint relationships (D1, D2) which can be defined as:

• Every actor is a person (S1)

• A planet is not a person (D1)

• A celestial body is not a person (D2)

127

7 Evaluation of MLcheck

Table 7.12: Detected violations of concept relationship (✓ = violation, ✗ = no viola-
tion)

Dataset Classifiers MLC_DT MLC_NN PBT
S1/D1/D2 S1/D1/D2 S1/D1/D2

CR1 Neural network ✓/✗/✓ ✓/✗/✓ ✗/✗/✗
Random forest ✗/✗/✗ ✗/✗/✗ ✗/✗/✗

CR2 Neural network ✓/✓/✓ ✓/✓/✓ ✓/✓/✓
Random forest ✗/✗/✗ ✗/✗/✗ ✗/✗/✗

CR3 Neural network ✓/✓/✓ ✓/✓/✓ ✓/✓/✓
Random forest ✗/✗/✗ ✗/✗/✗ ✗/✗/✗

CR4 Neural network ✓/✗/ ✓ ✓/✗/✓ ✗/✗/✗
Random forest ✗/✗/✗ ✗/✗/✗ ✗/✗/✗

CR5 Neural network ✓/✓/✓ ✓/✓/✓ ✓/✓/✓
Random forest ✗/✗/✗ ✗/✗/✗ ✗/✗/✗

CR6 Neural network ✓/✓/✓ ✓/✓/✓ ✓/✓/✓
Random forest ✗/✗/✗ ✗/✗/✓ ✗/✗/✗

Overall 6/4/6 6/4/7 4/4/4

In this case, the datasets (CR1-CR3) contain three classes (i.e., three concepts):
actor, planet person and the datasets (CR4-CR6) contain three classes: actor, per-
son, celestial body. Since this property is not tested before, we used the PBT tool
Hypothesis as the baseline tool for this.

Results

Effectiveness. Table 7.12 shows the results of evaluating one subsumption and two
disjoint relationship properties. For each dataset, we give the results corresponding to
the neural network and the random forest model trained on the corresponding dataset.
The results show that our approach with both neural networks and decision tree models
perform mostly the same for S1 and the D1 properties in finding out 6 and 4 violations
respectively, whereas the PBT tool could find 4 violations for S1 and 4 for D1. In
case of the D2 property, MLcheck with decision tree could find 6 violations and with
neural network 7 violations, whereas PBT tool could find 4 such cases. Furthermore,
there are no unique cases of violations found by the PBT which could not be found by
our tool.

Efficiency. Figure 7.7 shows the runtimes for testing the concept relationship. Here
on the x-axis, we have 36 tasks, which come from 2 classifiers trained on 6 datasets and
testing 3 different relationship properties and thus 2 × 6 × 3. These tasks are ordered
based on the increasing runtimes of the three tools used for testing. As can be seen,
MLcheck with decision tree requires the least amount of time in testing while PBT
and MLcheck with neural network have comparable runtimes.

7.3.5 Properties of Regression Models and Aggregation Functions

We have described the regression models and the aggregation functions in Section 7.2.3
and their properties in Section 7.2.1. To generate the regression models, we used the
ecoli dataset taken from [MH19] and trained four regression algorithms (described in
Section 7.2.3) to generate four regression models. Apart from the regression models,

128

7.3 External Evaluation

1 2 4 6 8 10 12 14 16
100

500

1,000

1,500

Solved tasks

ru
nt

im
e

(in
se

co
nd

s)
MLC_dt

MLC_nn

ART

Figure 7.6: Runtime for trojan attacks

1 6 12 18 24 30 361
100

500

1,000

Solved tasks

ru
nt

im
e

(in
se

co
nd

s)

MLC_dt

MLC_nn

PBT

Figure 7.7: Runtime for concept

we also evaluated MLcheck in testing 10 aggregation functions. In summary, we
tested 12 different properties on 4 regression models and 10 aggregation functions.
Note that the results reported here are obtained using MLcheck with decision tree.
Since MLcheck with neural network does not give notably different results, we omit
this case.

Results

Effectiveness. Tables A.5 (in page 153) and 7.13 show the results of our evalua-
tions in testing 12 different properties on 10 aggregation functions and four regression
models respectively. For all the aggregation functions we know the ground truth,
meaning we could say whether a property is present in the function. We indicate this
by marking a cell as blue. Thus, a blue-shaded cell indicates that the property is
present in that aggregation function and a cell without color indicates the absence of
the property. For example, the aggregation function AM satisfies the strong mono-
tonicity (str. mon.), symmetry (symm.), idempotency (idemp.), internality (intern.),
invariance (invar.) and additivity (addit.) properties and does not satisfy Lipschitz
(Lipsch.), conjunctivity (conjun.), and disjunctivity (disjun.) properties. Furthermore,
the two regression models L-OWA [MH19] and L-Uni [MH16] are designed with the
corresponding aggregation functions as their core and thus, we know the ground truth
for them also. However, we do not know the ground truth for the learned aggregation
functions LAF [PTF+21] and DeepSet [ZKR+17] models since they are purely learned
to approximate the aggregation function OWA.

The results show the effectiveness of MLcheck (MLC) compared to the PBT tool
Hypothesis for both the aggregation functions and the regression models. For the
aggregation functions, MLcheck could find a test input violating the corresponding
property in 51 cases, whereas the PBT tool could find 41 such cases. Note that, all
these violations generated by both of these approaches are true positives, i.e., in all of
these cases the property is not satisfied by the corresponding aggregation functions.
Furthermore, MLcheck could find all those cases where the property is not present
in the aggregation functions.

We report the results for the learned aggregation functions or the regression models
in Table 7.13 where MLcheck could find 32 violations and the PBT tool could find 24
such cases. As mentioned beforehand, for 2 of the regression models, LAF and DeepSet,

129

7 Evaluation of MLcheck

Table 7.13: Detected violations for learned (aggregation) functions (✓ = violation,
✗ = no violation)

L-OWA L-Uni LAF DeepSet Total
MLC/PBT MLC/PBT MLC/PBT MLC/PBT MLC/PBT

mon. ✗/✗ ✗/✗ ✓/✓ ✓/✓ 2/2
infi. ✗/✗ ✗/✗ ✓/✓ ✓/✓ 2/2
supr. ✗/✗ ✗/✗ ✓/✓ ✓/✓ 2/2
str. mon. ✓/✓ ✓/✗ ✓/✓ ✓/✓ 4/3
Lipsch. ✓/✓ ✓/✓ ✓/✓ ✓/✗ 4/3
symm. ✗/✗ ✗/✗ ✗/✗ ✗/✗ 0/0
idemp. ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
conjunc. ✓/✓ ✗/✗ ✓/✓ ✓/✓ 3/3
disjunc. ✓/✓ ✓/✓ ✓/✓ ✓/✗ 4/3
intern. ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
invar. ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
addit. ✓/✓ ✗/✗ ✓/✗ ✓/✗ 3/1
total 5/5 6/2 11/10 10/7 32/24

10 20 30 40 510
100
200
300
400
500
600

k-th fastest test task

ru
nt

im
e

(in
se

co
nd

s) MLC

PBT

Figure 7.8: Run-time in sorted order

10 20 30 40 511
200
400
600
800

1,000
1,200
1,400

Tasks

ru
nt

im
e

(in
se

co
nd

s) MLC

PBT

Figure 7.9: Comparison for each task

the ground truths are not known, and hence, we cannot say for sure whether our tool
was able to find all the cases where the property was not present. Most importantly,
as can be seen in the Table 7.13, we could find LAF and DeepSet not satisfying the
mandatory properties, i.e., monotonicity (mon.), infimum (inf.), and supremum (sup.),
required to be satisfied by any aggregation function. This gives an important result
that these two learned models cannot be considered as aggregation functions. This is
a valuable outcome and shows the applicability of MLcheck in finding out whether a
learned model can be used as an aggregation function. This information can be further
used by the ML community to better develop such models.

Efficiency. We report the efficiency of MLcheck (MLC) in comparison to PBT in
Figures 7.8 and 7.9 in finding out the violations of only the aggregation functions. We
have only considered the cases where a function does not satisfy a property. Therefore,
in x-axis we have 51 tasks in total and the curve for MLC is extended till 51 and for PBT
it ends in 41 (in Figure 7.8). This figure suggests that PBT has lower average runtimes

130

7.3 External Evaluation

for its k fastest tasks and there are 10 tasks for which PBT times out. Thus, we made
another comparison which shows the task by task comparisons between MLC and
PBT, depicted in Figure 7.9. It shows the cases with high spikes for PBT where it times
out. For the rest of the cases we see comparable runtimes between two approaches.

7.3.6 Discussions

In summary, we have applied our approach to 202 different models (including 10 ag-
gregation functions) while validating 20 different properties. We have found that in
most of those cases our approach performs better than the baseline tools we have con-
sidered in this thesis. Having said that, since our approach is generic, it might not
perform as well as a specific technique designed to test a specific type of model or a
specific property. For instance, the fairness testing tool specifically designed for deep
neural networks by Zhang et al. [ZWS+20] would definitely generate more unfair test
cases on a given deep neural network model, compared to our approach. Similarly,
the quantitative verification approach proposed to check trojan attacks on binarized
neural networks by Baluta et al. [BSS+19] would give better results in finding attack
violations than ours. However, since our aim was to build a testing tool that could be
used for testing any ML models, and for any specifiable properties, we compromise the
specialization–focusing on a specific ML model or a property–with the generalization
in our testing tool. Although despite being a generic testing framework, our tool was
able to outperform state-of-the-art fairness testing tools such as AEQUITAS and SG.
Moreover, MLcheck has been shown to be performing better than adaptive random
testing and the existing property-based testing tool Hypothesis.

Soundness. MLcheck can be considered sound since it only generates true posi-
tives, meaning that the counter-examples generated by our tool are all valid ones. More
specifically, since our approach involves learning a white-box model from the MUT and
then applying SMT solving technique to it, we first generate the counter-examples on
the learned white-box model and not on the MUT. However, the counter-examples
that are generated are then validated on the MUT, and only those which are found to
be valid with respect to the property are returned. Furthermore, using the bound_cex
parameter, we can include the range of permissible values for the input features (as
described in the XML configuration file, see Appendix A in page 149) while generating
counter-examples. This is added as constraints to the logical formula describing the
model and thus, the SMT solver generates counter-examples satisfying the constraints
defined for the range of values for individual features. For example, the value of gender
can only be 0 or 1, and just by activating bound-cex, we could add this as a constraint
to the SMT formula and include it during the process of counter-example generation.

Scalability. As mentioned beforehand, our approach involves an SMT solving ap-
proach to generate counter-examples as violations to the property on the MUT. Since
the satisfiability solving problem is considered to be NP-complete problem, our ap-
proach requires a large runtime if the input vector size is large or if the input values
consist of rational numbers. For instance, our approach can probably not be applied
to the image classifiers which take input images containing thousands of pixels. We
have seen in the experiments involving trojan attacks that even with 10 × 10 pixels as
input, our approach became quite slow (see Figure 7.6). However, we did not intend
to build MLcheck for image classifiers, for which a number of specialized tools are
available (such as [PCYJ17, TZO+20]), rather we aimed to develop a testing tool that

131

7 Evaluation of MLcheck

could be used for testing any classifiers or regression models. As mentioned before, we
compromise specializations for generality.

7.4 Internal Evaluation
Apart from evaluating MLcheck in validating a number of properties on the MUTs,
we have also performed some internal evaluations. To this end, we give here the ex-
perimental evaluations comparing two aspects of MLcheck: (a) comparing the per-
formance of the white-box models in validating different properties on the MUTs, (b)
comparison of two pruning approaches to find out their test case generation abilities.
Below we describe them in more detail.

7.4.1 Model Comparison
Since our approach allows to use of two types of white-box models to learn from the
MUT, we are interested to find out which one performs better than the other in finding
out the violations of the properties. In our external evaluation, we have already shown
this comparison between decision trees and neural network models. We now discuss
these results here by taking another look at those tables and figures.

In case of fairness properties where we intend to find out a number of unfair cases,
the decision tree performs better than the neural network (NN) in most of the cases.
For instance, MLcheck with decision tree was able to find out the most number of
unfair instances in 38 MUTs whereas, MLcheck with NN was able to find out the
most unfair instances for 11 MUTs, as can be seen in Tables 7.7 and 7.8 for two
fairness properties. The difference in these numbers is due to the fact that the SMT
solving of the neural network model requires a larger runtime compared to decision
tree model which is attributed to the large number of arithmetic operations required
in NN to generate the output prediction for a given input. Moreover, these operations
involve floating point numbers. Thus, a combination of both of these two slows down
MLcheck while using neural networks. We can also see this when we compare the
runtimes in finding violations for monotonicity in Figure 7.5, concept relationship in
Figure 7.7, and trojan attack in Figure 7.6.

After seeing these high runtimes in comparison to the decision tree, one might ask
whether it is required to use neural network at all as an alternative option for the
white-box model. This can be answered by considering two cases. First, although we
got a low number of unfair instances when we used NN, for the Fair-Aware1 model, for
which the decision tree was unable to generate any unfair instances, MLcheck with
NN was able to generate some, as shown in Table 7.7. Secondly, in case of trojan attack
property, we can see that MLcheck with NN performs better than the decision tree
in case of both 1,000 and 10,000 poisoned instances as can be seen in Tables 7.10 and
7.11. The performance gain over decision tree by neural network does not come with
the cost of a really high runtime. Thus, we can say that usage of NN as the secondary
white-box model is an added advantage and two models in combination makes our
approach much more effective rather than using a single one.

7.4.2 Pruning Comparison
To generate a number of counter-examples instead of a single one from a single SMT
query, we have employed two techniques in MLcheck, instance and branch pruning.

132

7.4 Internal Evaluation

LR DT NB RF GB NN
0.0

0.50

1.0
de

te
ct

io
n

ra
te

Feature-prune Branch-prune

(a) Individual discrimination

LR DT NB RF GB NN
0.0

0.50

1.0

Feature-prune Branch-prune

(b) Fairness through awareness

Figure 7.10: Performance comparison of branch and feature pruning

This basically serves us with two purposes: (a) retrain the white-box model more
effectively with a number of counter-examples, (b) if multiple violating test cases (such
as in fairness) are required to generate for a property, we could use pruning. In this
evaluation, we aimed to find out which pruning strategy performs better compared to
the other in terms of generating violated test cases. For the evaluation, we have only
considered the decision tree as the white-box model since on the neural network model
the branch pruning technique cannot be applied. Furthermore, we have considered
here 4 properties: 2 fairness properties, individual discrimination and fairness through
awareness (Definition 7.1, 7.2), and 2 monotonicity properties. In Definition 7.6,
we defined a monotonicity property for the classification models. We term this as
weak monotonicity and furthermore consider a stronger definition of this property
taken from [SW20b] for the evaluation of pruning comparison. We term this as strong
monotonicity which is defined as follows:
Definition 7.18 A classification model M is strongly monotone18 with respect to a
feature i if for any two data instances x⃗1, x⃗2 ∈ X⃗ we have x⃗1(i) ⪯i x⃗2(i) implies
M(x⃗1) ⪯Y M(x⃗2).

In comparison to the Definition 7.6, this definition does not require the features
except i to have the same or increasing values.

To compare the two pruning approaches, we have used detection rate, which is
defined as the number of violations detected, divided by the total number of test cases
generated, i.e., #violations

#test cases . Finally, as it is clear from the properties we mentioned, we
performed this evaluation only on the classification models. For this, we considered 14
classification models.

Figures 7.10 and 7.11 show the detection rates of two pruning strategies for fairness
and monotonicity properties respectively. We see in Figure 7.10 that for individual dis-
crimination property, on a majority of the classifiers, instance pruning performs better
than the branch pruning. On the other hand, in case of fairness through awareness,
we see an opposite trend. In case of monotonicity, we found that for strong mono-
tonicity, branch pruning performs better than instance pruning, and instance pruning
performs better in case of weak monotonicity. Thus, we can see a sort of pattern be-
18Note that “strong” here does not refer to a strong increase in values, i.e., a definition with ≺ instead

of ⪯.

133

7 Evaluation of MLcheck

kNN NN RF SVM NB AB GB LR
0.0

0.25

0.50

de
te

ct
io

n
ra

te

(a) Weak monotonicity

kNN NN RF SVM NB AB GB LR
0.0

0.50

1.0

Feature-prune Branch-prune

(b) strong monotonicity

Figure 7.11: Performance comparison of branch and feature pruning

tween these two results of two different properties. Since individual discrimination, or
strong monotonicity requires most of the feature values in the instance pair to be the
same, branch pruning cannot really explore different parts of the decision tree easily.
Thus, the full potential of branch pruning cannot be utilized in these cases and hence,
instance pruning outperforms the branch pruning. When the features values are not
needed to be equal, such as in fairness through awareness and strong monotonicity
properties, branch pruning shows better performance. Thus, we can conclude that we
require both of these pruning approaches to be performing in combination in order to
achieve the best results out of our approach.

7.5 Limitations and Threats to Validity
Our approach requires learning a white-box model from a given model under test
(MUT) and for this process, we require training data. Since our aim is to learn
the behavior of the MUT, to this end, we query the MUT using instances generated
randomly and for each of the queries, we store the result. Thereby, we get a data set
containing input-output pairs which form the required training data. The set of such
instances and their corresponding outputs are later used to train either a decision tree
or a neural network algorithm to generate the corresponding model which is said to
be approximating the MUT. Thus, we can capture the behavior or approximate the
MUT only if the randomly generated data instances cover most of the input region
of the MUT. However, since this process is random, we cannot guarantee to generate

134

7.5 Limitations and Threats to Validity

instances that are spread out well in the input space of the MUT and give us a good
approximation of the space. To mitigate this, we have set the number of randomly
generated instances high enough, such that the input space should be covered assuming
that it can be covered uniformly—this number can of course be (re-)configured by the
the user. For instance, if the user does not find any counter-example for a specified
property, a counter-example might be found in another try for which this number
has been increased. This offers potential for future improvements of the technique, for
example, by raising the question: how to minimize the number of instances to generate
while approximating a model accurate enough to argue about certain properties?

Furthermore, the solver cannot take into consideration the input distribution of the
MUT and generates test inputs as counter-examples by considering a uniform distribu-
tion of the input. However, in reality, this might not be the case, since any ML model
which is learned on the specific dataset might have a specific input distribution. Thus,
while operating in the use case scenario the model might expect the data coming only
from that specific data distribution. Hence, it would be more meaningful to check ML
models considering the input data only coming from a specific distribution and discard
out-of-distribution data. However, this is a difficult requirement to specify in the SMT
formula while generating counter-examples as test cases. With respect to MLcheck,
we allow to set the parameter bound_cex, which would then be used to generate test
inputs from a specific range of values. A more sophisticated approach would be to
incorporate auto-encoder [XKN22] to detect out-of-distribution data, which could be
considered as a potential future work.

In our approach, one core part is embodied in the usage of an SMT solver. Since
SMT solvers are limited to deal with integers and real numbers, our approach shares
this limitation. However, this can be mitigated by replacing categorical values with
numerical ones, e.g., a category such as gender can be converted by using an enumer-
ation: 0. male, 1. female. In the ML domain this is frequently done by using methods
like label, binary, one hot or count encoding techniques which are generally performed
as data pre-processing steps, before the training of the model. In our evaluation, we
have applied the label encoding approach to the datasets to convert categorical features
into numerical ones before generating the MUTs.

The specification language we have proposed to specify the properties is a simple
domain-specific language that could only be used to specify non-stochastic properties.
Even if we could modify our specification language to allow to specify stochastic prop-
erties, since our approach uses an SMT solving technique to generate test cases, we
cannot check such properties. For instance, the statistical fairness definitions such as
statistical parity [RT16] require to have equal probabilities to have the same predictions
for two specific feature values of a protected attribute (for example male and female).
This cannot be checked with our approach.

An internal threat to validity could be the high degree of randomness involved in
our approach. For instance, first, we generate a number of data instances randomly
to generate the training dataset which is then used to get the white-box model. Even
if this training dataset remains the same in 2 runs, the learned white-box model can
still be different. Thus, properties, for which we need to generate multiple violated
test cases (for example in case of fairness properties), the two runs of the tool might
give different numbers of violations, or in cases where we return after finding a single
violation, we might get two completely different outcomes (property violated and not
violated). To mitigate these threats, we have performed each experiment 10 times and

135

7 Evaluation of MLcheck

the results reported here give the mean over these 10 runs.
The threats to validity of our experimental evaluation could be the choice of the

training datasets and the ML algorithms we trained on them. To this end, the datasets
we considered were taken from the standard cases which were also considered in the
related works. Furthermore, we have taken a number of ML algorithms in our exper-
imental evaluations to generate the models to test. These include simple algorithms
like naive Bayes, k-NN, to tree-based algorithms random forest, decision tree, to neu-
ral networks. Since we have taken a large number of standard datasets and a variety
of ML models in our evaluations we can say that these are diverse enough to reflect
real-world cases.

7.6 Related Work
We have already discussed a number of related works in the previous Chapter (Chap-
ter 6), related to the property-driven testing technique (the underlying approach of
the MLcheck) we introduced in this thesis. We have stated their limitations and de-
scribed how our approach can help to bridge the gap. Since in this chapter, we focus on
validating different properties on different types of ML models, we first briefly discuss
some approaches related to the validation of the properties we have considered in our
evaluation. There does not exist a work validating the properties of the aggregation
functions we considered. However, these functions are essentially numeric functions
and thus, we then describe some related works concerning the testing of such functions.

Fairness. There are a number of works in the literature considering the testing of the
fairness property of ML models. Galhotra et al. [GBM17] first proposed a black-box
random test generation technique called THEMIS for testing individual discrimination
and statistical parity properties. Later Udeshi et al. [UAC18] combined random test
generation and exploit the inherent non-robustness property of the ML models to
develop AEQUITAS. This could generate a number of failed test cases outperforming
THEMIS. Our approach is closest to the work of Aggarwal et al. [ALN+19] and a
very recent work by Xiao et al. [XLLL23]. In the former work, first, they employ
LIME [RSG16] tool to generate a partial decision tree, basically a path of the tree.
Then the dynamic symbolic execution technique is applied to generate multiple test
cases on the tree. In our work instead of learning a path of the tree, we learn an entire
decision tree approximating the MUT. Then we use the specified property by the tester
to generate test cases falsifying the property. Xiao et al. [XLLL23] use generative
adversarial networks (GAN) [CWD+18] to generate a dataset approximating the data
distribution of the original one (i.e., the dataset which was used to train the MUT).
After that, they train a support vector machine (SVM) model with linear kernel on the
generated dataset. The SVM model is then said to be approximating the model under
test (MUT). The data points that lie near the decision boundary of the SVM model are
extracted and used to generate test cases violating individual discrimination property.
Using GAN to generate a dataset although effective since it reflects the actual input
distribution of the MUT, however really costly, and thus, we abstain from using this
step. However, as a future work, this could be used as a preliminary step in MLcheck.

There exist other fairness testing approaches focusing on specific types of ML models,
ADF [ZWG+21], FairNeuron [ZCD+22], ASTRAEA [SUC22], MT-NLP [MWL20].
ADF and FairNeuron can only be used to test individual discrimination property
for deep neural network models. ASTRAEA and MT-NLP on the other hand are

136

7.6 Related Work

used to test fairness in natural language processing (NLP) models. In a more recent
work, Perera et al. [PAT+22] proposed fairness degree as the fairness definition for the
regression models and gave a search-based technique for testing the property on such
models. All these works either focus on a specific category of fairness property or a
specific type of ML model and hence, cannot be used for any other types of models
and in testing any specified fairness property. Apart from the fairness testing works
we discussed here, there exist more of such works. For a detailed survey of fairness
testing, we refer the interested readers to look here [CZH+22].

Montonicity. The existing works on monotonicity focus on specific ML models with
the aim of making them monotone. For instance, Archer et al. [AW93] first proposed
to build monotone neural network models by controlling the number of instances in
the training dataset. Dugas et al. [DBB+09] later improved this technique for neural
network models by constraining the weights of the model to be non-negative while
employing a monotonic activation function. You et al. [YDC+17] proposed to build
deep neural networks with multiple layers of lattice in order to build a model which
is guaranteed to satisfy monotonicity with respect to a set of features. Later, Liu et
al. [LHZL20] proposed to use a regularizer in the learning process of neural networks
to enforce monotonicity. Apart from neural networks, some existing works also focus
on building monotone models considering some other types of models. For instance,
Lauer et al. [LB08] proposed to build a monotone support vector machine with linear
kernels by constraining the gradients of the corresponding feature to be positive within
a specific range. We found the work of detecting whether a model is monotone only for
the Gaussian model where Siivola et al. [SPV16] proposed to use the virtual derivative
observations to detect monotonicity. However, this approach can only be used if the
ML model to be tested for monotonicity is linear.

Trojan attacks. There have been several works on performing trojan attacks on
neural network models by using specific learning strategies (see [LDS+22] for a detailed
survey) after Liu et al. [LMA+18] proposed the idea of performing trojan attacks on
deep neural network models. Since then, only the work of Baluta et al. [BSS+19]
proposed a technique to check trojan attacks on a given model. To this end, they gave
a quantitative verification technique to verify trojan attacks on the binarized neural
networks (BNN). They first encode the BNN into logical formula and then instead of
using SMT solving technique, they apply ApproxMC3 [YM21] a specific SAT solver
to perform model counting. However, their approach is limited to the BNN model and
the property needs to be provided manually to check.

The concept relationships in the domain of knowledge graph embeddings [DN19,
DN21] occur frequently however, previously not been considered to validate. Since
there does not exist any related literature to this end, we do not discuss them.

Black-box ML testing. There is a black-box testing framework which is developed by
Aggarwal et al. [ASH+21] for testing ML models with respect to three different prop-
erties: fairness, robustness, and model accuracy. Much like ours, they also consider a
similar setting, where they assume to have an ML model to test, the internals of which
is unknown. In their work, they developed a testing technique considering ML models
generated on different types of datasets such as tabular, text, audio and time series
data. For testing models generated on the tabular dataset, they use the approach as
proposed in [ALN+19] where they learn a path of a decision tree and then apply dy-
namic symbolic generation method to generate test cases. For other kinds of datasets,
they use a metamorphic testing approach to check the model. Thus, depending on

137

7 Evaluation of MLcheck

the property to check, they incorporate a specific test generation technique and this
process is somehow hard-coded with the associated property.

In contrast, our approach is more generic and we allow the tester to specify properties
for which the test case generation technique is not hard-coded into our approach.
Although our approach can be used to check ML models generated only on the tabular
dataset, it can be still used to check a number of properties. Moreover, as we have
shown before, the approach used for tabular datasets by Aggawal et al. [Agg18] (called
as SG in Table 7.7) is less effective in generating unfair test cases compared to our
approach.

Properties of numeric functions. Cox et al. [CHJ+04] proposed a black-box testing
technique to validate arithmetic mean, standard deviation, and polynomial regression
functions implemented in well-known libraries and software such as Microsoft Excel,
Matlab, and some other Java libraries. A web-based facility in this case is used to
first generate the oracle dataset defining the test inputs and their actual outputs. The
test inputs are then executed on the software under test and the produced result is
then compared with the result of the oracle. Further works by kempf et al. [KK17]
provided a regression testing technique to test such functions of the numerical library
DUNE [BHM10] where the test inputs are generated by involving a human expert in
that domain.

The work closest to us to this end is the work by Meinke et al. [MN10], where
they first learn a number of piece-wise polynomial models from the set of test-input
and program output pairs, thus approximating the program under test. Then they
apply the CAD algorithm [CJ12] to check the satisfiability of the learned polynomial
model. However, the properties they checked on the numerical functions are needed
to be provided manually and furthermore, satisfiability checking of such a polynomial
function is highly inefficient. Thus, in our work, we take advantage of the state-of-the-
art machine learning techniques to learn an ML model approximating the MUT and
then use an SMT solving technique to generate test cases.

Regression models. There are works on testing regression models which focus on
prioritising generated test inputs [FSG+20], minimising the test inputs [WKRL17],
and selecting the test inputs [GKZ+14] for deep learning regressors. For instance, the
work by Feng et al. [FSG+20] proposed to prioritize test cases generated beforehand in
order to minimise the effort of humans to label whether a test instance is failing or not.
The test instances are first generated in this case to check the robustness property of a
deep learning regression model. Wolschke et al. [WKRL17] proposed to compare two
sets of test inputs to remove the redundant cases for the regression model and thus
minimising the test inputs.

The work on verifying gradient boosted regression trees by Einziger et al. [EGSS08]
is probably the closest to our work. They proposed a verification technique for the
boosted trees model by using SMT solving technique. To this end, they first convert
the ensemble of decision trees into SMT formula. To encode each decision tree into the
logical formula, they use an encoding technique similar to ours. Then they conjoin the
negation of the robustness property to the SMT formula of the boosted trees. Finally,
the entire formula is given to the SMT solver to find counter-example to the property.
A similar verification technique for neural network regression model is given by Venzke
et al. [VC21] where they used the mixed integer linear programming (MILP) approach
to encode the model into logical formula and then apply SMT solving technique to
check the robustness property on it.

138

8 Conclusion & Future Work

In this thesis, we presented approaches for testing learning algorithms and the learned
models. We subsequently implemented our corresponding approaches; for testing the
ML algorithms we developed TiLe and then for testing ML models we developed
MLcheck. Essentially in this thesis, we aimed to develop testing tools that could be
used to test the ML algorithms before they enter into the learning phase and then test
the learned models with respect to specified properties, before deploying the models
into the real world.

In this Chapter, we summarize the works done in this thesis. We first give a brief
summary of the approaches we presented in this thesis in Section 8.1. Then in Sec-
tion 8.2, we discuss the results obtained by evaluating our approaches (implemented
in the corresponding tools) on ML algorithms and models. Finally, we end this chap-
ter by giving some possible future extensions of the tools we developed: TiLe and
MLcheck in Section 8.3.

8.1 Summary

Testing of ML algorithms. With respect to the validation of the ML algorithms,
there are no specific requirements. The main reason behind this is that, the expected
outcome by a learning algorithm which in this case is a learned model cannot be
specified by any requirements, since it is not clear beforehand what the correct learned
model is. Thus, in testing terminology, we say the ground truth as a kind of oracle
defining the correct output of the learning algorithm is missing. To mitigate this
gap, we first defined a property that we termed as balanced data usage or in short
balancedness as an essential property of the learning phase. The property requires if
we apply row, and column permutations, and feature name shuffling on the training
dataset, the generated models before and after applying these transformations should
be the same.

We consider the balancedness to be a reasonable requirement that any learning
algorithm should guarantee, specifically if we consider how any learning algorithm
learns from the data. For instance, in the learning phase, the learning algorithm
considers each of the training instances and its corresponding class labels and in the
end, it attempts to generate a model which has a low error in predicting the class
labels of the corresponding training instances. Now, depending on the type of ML
algorithms, the process of minimizing the error would be different. For example, in
case of the decision tree, this is done by splitting the input space, or in the case of the
neural network through using the gradient descent and adjusting the weights and the
biases of the network (see Chapter 2 for more details). However, the order of the data
instances in any way should not influence this learning process.

We then developed a testing tool TiLe based on the idea of the metamorphic testing
approach to test the ML algorithms with respect to the balancedness property. Our
approach has two important steps: applying the transformations and checking that

139

8 Conclusion & Future Work

the models are equivalent (i.e., the same). For the latter, we proposed a constraint-
based technique to compute the equivalency for decision tree models. In case of some
other algorithms, we checked the equivalency by comparing the learned parameters
(before and after applying the transformations). Then, for the rest, we gave a testing
approach to test the equivalency between models. As discussed in Chapter 4, although
we expected the ML algorithms to be generating equivalent models before and after
applying the transformations we considered, we found a number of algorithms to be
actually sensitive to such changes in the training data.

Testing of ML models. Apart from testing the learning algorithms, there is
a need to validate the ML models with respect to several types of properties. The
existing testing approaches either focus on a specific type of model or on validating a
specific type of property. Thus, we aimed to develop a testing technique that allows
model agnostic testing with respect to the specified property. Our contributions to this
end are two folds: developing a testing approach irrespective of the model under test
(MUT), and giving a specification language for specifying the property to be checked
on the model.

In our thesis, we allow the given MUT to be black-box in nature and we believe
this is a realistic assumption. For instance, it might happen that someone wants to
use an already trained model for a specific task, however does not want to know the
internals (or might not have any access to it), and is only interested in the inputs and
outputs. From the testing perspective, this is also a viable scenario where the tester
has been asked to validate the given model without being given much knowledge about
the model to be tested. This is stated in an industry scenario by the works of Aggarwal
et al. [ASH+21] which we mentioned in the related work. In IBM, for instance, they
have developed a black-box testing approach to test ML models, the internals of which
are unknown beforehand and only the information of the training dataset is available.
Moreover, in some cases, the internals of the model if known, can allow the attacker
to attack the model or the learned parameters of the model might disclose sensitive
information. Thus, in those cases, the information regarding the model might not be
available to us and our approach can be a perfect tool to be used in such cases for
validating the model.

We first developed the verification-based testing approach which is model agnostic
and renders the idea of learning-based testing. In this testing approach, generally, an
automaton model is learned and then used to generate test cases. However, unlike
the existing approaches, the model in our case is a machine learning model and not
an automaton. We believe the use of an ML model to learn the MUT (which is also
an ML model), instead of an automaton, is a better choice. This is partly because
the input space of the MUT might consist of higher dimensional real-valued vectors as
input. Moreover, an ML model might better capture another ML model rather than
an automaton. Once we learn the model, we translate the model into logical formulas
and use the conjunction of the model formula and the negation of the property to
generate test cases on the MUT.

Apart from the model agnostic testing approach, we also aimed to develop an ap-
proach that could be used to test any specified properties on the MUT. Thus, we
developed a domain-specific language tailored to specify properties that frequently oc-
cur in the domain of machine learning and hence, are necessary to validate. Since an
ML model might need to be validated with respect to several properties before be-
ing deployed in a specific domain, the use of a testing approach that allows specifying

140

8.2 Discussion

properties by the tester can be of real importance. Although our specification language
is expressive enough to be used to specify several types of properties, this certainly
cannot be used for stochastic properties. Of course, we could have extended the lan-
guage to allow for specifying such properties, however, the underlying technology for
test case generation by using SMT solver would still be a hindrance to generating test
cases with respect to such properties. In future work part, we describe it a bit detail
how this still could be achieved by appropriately extending our work.

We have combined the idea of property specification language with the verification-
based testing to develop the property-driven testing approach for testing ML models.
This testing approach is essentially implemented in a tool called MLcheck. To show
the applicability of our approach, we evaluated it on different types of ML models, in
testing a number of different properties.

8.2 Discussion
We briefly summarize the findings of our experimental evaluations in evaluating our
approaches of testing ML algorithms and models.

Evaluation of TiLe. We have evaluated our approach of ML algorithm testing
tool TiLe on 23 classification algorithms taken from scikit-learn, WEKA, XGBoost,
LightGBM, CatBoost libraries in testing balancedness property. Surprisingly, we have
found many of them to be sensitive to simple row or column permutations and thus
violate the balancedness property. In Chapter 4, we have given a detailed discussion
of our findings and reported the causes that we have identified for the ML algorithms
being unbalanced.

As we mentioned earlier, looking at the learning algorithm itself, we assume that it
cannot be that the algorithm outputs differently when applying some specific metamor-
phic transformations to the training data. However, as we found out in our evaluation,
the main reason for unbalancedness lies not in the learning algorithm, but rather in
how they are implemented. For instance, since the learning algorithm needs to be
really fast even for a high dimensional input dataset, in ML libraries, often specific
optimization algorithms are being used. The use of such optimization techniques often
makes the learning algorithms to be sensitive to row or column permutations on the
training data. There can be other factors too, like tie-breaking, large floating point
number calculations, and more. A later work [PLQT19] has shown that the gener-
ation of different models by the learning algorithms because of the above-mentioned
reasons is unknown to many non-ML persons and industry practitioners. Thus, our
work in this aspect can be helpful, and we believe such unbalancedness would then be
considered before using the ML algorithms.

Evaluation of MLcheck. We have evaluated MLcheck in testing 20 different
properties on 202 single and multi-label classification and regression models as well as
some specific numeric functions. While doing so, we have also compared our tool to
the existing state-of-the-art tools. For instance, we have tested the fairness property
individual discrimination and compared MLcheck with respect to generating unfair
test cases with the state-of-the-art black-box fairness testing tools. For many of the
properties we considered, such as monotonicity, concept relationship, security, and the
properties for programmed and learned aggregation functions, there are no testing
tools available. Hence, we considered adaptive random testing and the property-based
testing as the baseline tools to compare with MLcheck. The overall results of the

141

8 Conclusion & Future Work

evaluation have shown promising results in using MLcheck for testing such properties.
More specifically, in evaluating fairness properties, we found our tool to be performing
better than the existing fairness testing tools, in finding more failed test cases for
most of the ML models. In case of monotonicity and security properties, MLcheck
performs better than the adaptive random testing (for which we also contributed with
a distance measure) and the property-based testing tools. We have found a similar
sort of a trend while testing multi-label classifiers with respect to concept relationship
and testing the properties of the regression models and the numeric functions.

However, since our property-driven testing approach is generic, it probably will not
be comparable to the validation or verification technique designed specifically for an
ML model or for a specific property. For example, there exist testing techniques de-
signed for validating deep neural networks with respect to individual discrimination
property. However, we did not consider comparing our technique with this approach
since our testing tool MLcheck would not be able to outperform such a specific ap-
proach. Moreover, the comparison with model- or property-specific approaches would
not have been a fair evaluation. In this thesis, with respect to the ML model testing,
we did not intend to build a testing approach that is specific to a model or a property,
rather, we aimed to build an approach that can be used as a general-purpose tool
to test any ML models and with respect to the properties that the tester intends to
test. In Chapter 7, we saw that, without changing anything, and just by activating
some parameters in MLcheck, we could check 20 different properties for testing 202
different models. Moreover, in most of those cases, our approach has shown superior
performance.

8.3 Future Work
For both of our testing approaches, we have a number of improvements and future
research directions we can think of. We again categorize our future work in these two
parts below.

Future direction of TiLe. We have so far implemented TiLe to test for balanced
data usage property. That means with our approach we could only check whether an
ML algorithm generates non-equivalent models when three specific transformations
are applied to the training data. The transformations we have considered are domain-
independent, meaning, we assumed that any ML algorithms should not be sensitive to
such transformations. However, depending on the ML algorithm at hand, there can
be specific metamorphic transformations for the training data for which the generated
models might exhibit some specific relationships. Since there does not exist an oracle
with respect to which the implementations of the ML algorithms could be tested, we
have to rely on performing such transformations on the training dataset to find out
whether we could detect any bug in the implementations.

For example, in case of the random forest algorithm, if we scale up the training
dataset by adding a constant value to all the instances along with their labels, the
generated model should also be scaled up. Now, this is already considered for some
algorithms like naive Bayes, k-NN, and SVM with linear kernel. However, the imple-
mentations of tree-based or boosted algorithms in several libraries are not considered
for testing with respect to such transformations. Hence, to this end, we could think
of extending TiLe to incorporate several of such metamorphic transformations to be
applied to the training data. In fact, we could even find out new types of metamor-

142

8.3 Future Work

phic transformations for such algorithms. There are now techniques available (such
as [ATA+21]) that could find out metamorphic transformations based on the given
program. We could even employ such strategies to discover new transformations to be
used for testing ML algorithms.

Equivalency checking. So far we can only check the equivalency between the two
models, however, this is not enough if we intend to check some specific relationships
between the generated models. Thus, to this end, our equivalence checking technique
could be extended to incorporate mechanisms to check specific relationships between
two models. For instance, if we allow to apply scaling transformation on the training
data, we need to extend our equivalency checking mechanism to check a specific rela-
tionship between the generated models. Furthermore, to perform equivalency check-
ing, we mostly perform simple random testing (except for some specific algorithms)
and this definitely could be improved by employing more advanced techniques such
as search-based technique or we could even think of using our own property-driven
testing technique MLcheck for this purpose.

Other types of ML algorithms. Finally, while testing ML algorithms, we only con-
sidered the algorithms trained on the tabular dataset. Our approach could further be
extended to be used for testing algorithms considering different types of datasets as
well, such as image, audio, text, or time series datasets. There have been some works
regarding the testing of image-based classification algorithms, however, to the best of
our knowledge not many works exist on testing ML algorithms trained on other kinds
of datasets. We could check such algorithms by adapting and applying the transfor-
mations we had for our balancedness property, and at the same time we could find
out other appropriate metamorphic transformations for these kinds of algorithms and
datasets and further incorporate those in TiLe.

Future direction of MLcheck. We have proposed a new form of testing approach–
property-driven testing and then developed MLcheck based on this approach. To this
end, we could again think of numerous extensions of our approach and further future
works. We do not describe them all, however, just briefly mention some of them.

Property-specification language. In our approach, we proposed a property specifi-
cation language that could be used to specify properties. However, currently, this
could only be used to specify non-stochastic properties and there are some stochastic
properties that are often of importance and need to be checked on the ML models.
For example, there exist stochastic properties in the fairness domain such as statisti-
cal parity or equal opportunity rate [VR18] which are important to validate in some
specific application areas. Thus, an extension of our property specification language
allowing to specify such properties could be a useful extension. However, it does not
suffice to have specification language which would allow for such properties to specify,
we also need a way to check them on the given model, which we describe next.

Verification-based testing. In this testing approach, so far, we could learn a white-box
ML model, either a decision tree or a neural network approximating the model under
test, and to this end, we have two choices. The choice of these two types of models
come from the fact that these can be translated into logical formulas and therefore, we
can apply an SMT solving technique to generate test cases on them. The choice of the
white-box model could further be extended by considering other types of models such
as random-forest, or boosted tree models which are basically ensembles of decision
trees, and could be also realised using the SMT formulas. However, since the size of
the formula to this end could be quite big (as the number of ensemble trees is typically

143

8 Conclusion & Future Work

of large number), we would then need a way to efficiently solve the formula by using
some sort of reduction techniques. To this end, we could probably split up the input
values in specific ranges and then keep the ensemble that is required for that range and
discard the rest. In this way, we could reduce the size of the ensembles and then apply
the SMT solving technique parallelly to different ensembles corresponding to different
input ranges and obtain the counter-examples, and finally collect them to be used as
test cases on the MUT.

There have been already some works [SKT22, ZTK22] on the extension of our pro-
posed verification-based testing technique to make it more efficient in generating test
cases. These works consider the encoding of a decision tree as a white-box model into
the SAT formula instead of SMT. This basically opens up a whole lot of new possibil-
ities for our testing approach. Usage of SAT solving process instead of SMT solving
could make our approach much faster in generating test cases, which is already shown
by Zhao et al. [SKT22]. This process could further enable us to consider ensemble
tree models as the white-box model since there exist already some works that give
the SAT encoding of such models. Apart from that, we could also use model counting
techniques (for example ApproxMC4 [SGM20]). The model counting technique would
then be used to generate multiple counter-examples for a single SAT query and replace
our pruning technique with more advanced techniques. Furthermore, a stochastic SAT
solver [GBM21] could also be used which could then allow us to perform the validation
of the stochastic properties we mentioned before.

Evaluation. The basic idea of our test generation technique renders the idea from
the learning-based testing approach where traditionally an automaton is learned to
approximate a given function and then test cases are generated on the automaton
for the function under test. There exists numerous literature to this end and one
of the most prominent approaches is the AALPy library [MAP+22]. An interesting
evaluation could be comparing our MLcheck approach to the AALPy and seeing how
our approach performs. To this end, we could think of evaluating our framework on
the benchmark cases on which AALPy is typically applied.

144

Appendix A

Technical Details & Extra Results

In this Appendix, we give the implementation details of the tools we developed corre-
sponding to our approaches. To this end, first, we describe the technical details of the
tool TiLe in Section A.1 which was developed to test the balancedness property of the
ML algorithms. Apart from giving the implementation details we also describe how to
configure this tool. Next, we present the details of the tool MLcheck in Section A.2
which we developed with respect to the testing of ML models and corresponding to
the property-driven testing approach (described in Chapter 6). Since to use the tool,
the tester needs to configure some parameters, here we give details on how to configure
the tool to be used for testing ML models. Next, we provide the link of the aforemen-
tioned tools in Section A.3. Finally, in Section A.4 we give the features–corresponding
to the datasets–with respect to which we tested monotonicity. We also present the
large results table corresponding to the monotonicity testing and aggregation function
testing.

A.1 Tool Implementation of TiLe

In this section, we describe the technical details of the tool TiLe. This is implemented
as the testing tool for balancedness testing as described in Section 4.2 of Chapter 4.
The implementation of the tool follows the workflow diagram depicted in Figure 4.1 1.
We have different parts in our testing tool which we describe next.

Input configuration. First of all, we start with the input required in our testing
tool. Figure A.1 gives an example of a typical XML specification file required by TiLe.
As part of the parameters describing the input learning algorithm, we first require the
library name from where the algorithm is taken. This is specified by the <library>
tag. Along with that, we need the package to be loaded in order to get the classifi-
cation algorithm under test, which can be set using the <package> tag. Finally, in
our running example, we test a gradient boosting classifier with the hyper-parameter
random_state set to 1, which corresponds to the <classifier> tag. Hence, the el-
ement corresponding to this tag describes the classification algorithm along with the
hyper-parameter setting for the classifier.

Next, the desired metamorphic transformation to be applied to the training data
is specified using <metaTrans> tag, which in this example is–permuting the columns
or the feature values randomly. We use simple natural language ‘permute-column’ to
specify the column permutation transformation since it is quite intuitive and simple
to specify. Similarly, for example, the metamorphic transformations, permuting rows

1While checking the ML algorithms of the WEKA library, we extend some parts of the tool in Java.
However, this is a minor implementation detail and therefore we omit them.

145

A Technical Details & Extra Results

<Configuration>
<algoInfo>

<library>scikit-learn</library>
<package>sklearn.ensemble</package>
<classifier>GradientBoostingClassifier(random_state=1)</classifier>

</algoInfo>
<metaTrans>permute-column</metaTrans>
<testingParameter>

<inputRatio>10</inputRatio>
<trainRatio>50</trainRatio>

</testingParameter>
<outputRelation>model-before = model-after</outputRelation>

</Configuration>

Figure A.1: An XML specification example of TiLe

randomly and shuffling feature names, are specified using ‘permute-row’ and ‘shuffle-
feature’ respectively2.

After specifying the algorithm and the metamorphic transformation to check, we
also allow the tester to specify some of the testing parameters corresponding to the
equivalence testing part of our framework. Note that, this part of the XML specification
file is optional and if the tester does not specify any values to these testing parameters,
some default values will be automatically set. For instance, the value corresponding
to the <inputRatio> tag (corresponds to the INPUT-RATIO parameter of Algorithm 3)
dictates how much percentage of the total possible input instances (derived from X⃗)
will be randomly generated as test inputs. Similarly, the value of the <trainRatio>
tag (corresponds to the TRAIN-RATIO of Algorithm 3) indicates how much percentages
of the total training instances would be selected as test inputs randomly.

Finally, the <outputRelation> tag allows the tester to specify whether the models
generated before (model-before) and after (model-after) applying the transforma-
tion are expected to be equivalent or not equivalent. This tag essentially allows us to
check for a more complex relationship between the output models, however, so far we
do not have methods for checking relationships apart from model equivalency and can
be considered as a possible future extension of our work.

Training data repository. We consider several training datasets as part of our
training data repository. To this end, we take the real-world datasets as well as syn-
thetic datasets. As the real-world datasets we consider 9 different training sets which
are shown in Table A.1. Apart from the datasets, the table also gives the size of the
datasets in terms of the number of features and the instances. All of them are fre-
quently used in the ML domain and taken from the well known online data repository
of UCI 3. These datasets are chosen based on the variation in a number of instances
and features. For example, we consider Census-Income dataset because it contains a
high number of instances (48,842), whereas, the voice-recognition dataset contains a
high number of columns (309). We could see in our evaluation (Section 4.3), indeed

2Note that we have a list of such keywords for each of the metamorphic transformations we consider.
However, we do not describe all of them here, rather a user interested to use our tool can find it
on the tool’s GitHub page:https://github.com/arnabsharma91/TiLe.

3https://archive.ics.uci.edu/

146

A.2 Configuration of MLcheck

Table A.1: Real-world datasets taken for training data repository
Name #Features #Instances

Immuno-Therapy 8 90
Breast-Cancer 10 699
Occupancy 7 20560
Lung-Cancer 56 32
German-Credit 20 1000
Census-Income 14 48842
SE Data 102 74
Voice-Recognition 309 126
Crime Data 128 1994

such a varying number of rows and columns was helpful to find out whether an ML
algorithm is sensitive to a metamorphic transformation.

Metamorphic transformation. For each of the metamorphic transformations,
we write a function implementing that transformation. Hence, when a metamorphic
transformation is specified in the XML configuration file, the corresponding function
would then be executed to apply the transformation to the training data.

Training. Essentially, there are two training phases, before and after applying
the transformations on the dataset. However, both of them follow a similar approach
where the last column of the dataset is considered to be the class values for the training
instances and the rest of the columns are feature values. The training process is then
performed following the typical approach taken in machine learning. Since, so far we
do not consider any Deep learning models, we train all the instances of the dataset on
the given learning algorithm once 4.

Equivalence checker. The equivalence checking approach in our framework con-
sists of two parts, computing, and testing equivalence (see Section 4.2.3). For the
equivalence computation, we implement approaches based on the types of the models.
For instance, in case of the decision tree, we implement a translation mechanism that
translates a decision tree model to Z3 [MB08] code. Using this mechanism, we trans-
late two tree models (which are required to be computed for equivalence) into their
corresponding logical forms, and then we add the translated equivalency constraint to
it. To compute the equivalency of two neural network models, we essentially compare
the learned parameters, or more specifically the weights and biases of the two models
(with the same architecture). To this end, we compute the Euclidean distances be-
tween the two sets of parameters to find out whether the two network models are not
equivalent. We follow a similar approach while computing the equivalency of the two
SVM models and logistic regression models.

For the testing part, we simply implement the Algorithm 3, and then combine both
the computation and testing approach using the implementation of Algorithm 2.

A.2 Configuration of MLcheck
To run MLcheck, the tester can set several parameters, however, most are optional
and thus, default values are assumed if the respective parameters are not set. To this

4Note that, it is often the case in case of Deep learning to train the dataset on the learner multiple
times before generating the final model.

147

A Technical Details & Extra Results

Table A.2: Parameters of MLcheck
Parameter (req.) Type Purpose

model M : X⃗ → Y⃗ model under test
XML_file XML data format
instance_list X⃗∗ sequence of instance variables
Parameter (opt.) Type Purpose

train_avail boolean availability of training data of the MUT
train_path string path to the training data
train_ratio float percentage of training data to be selected
init_oracl integer initial training dataset size
wbm {dt, nn} white-box model to be used
nn_library {torch, scikit} ML library to be used when nn is chosen
dt_hyp_param XML hyper-parameter values of decision tree
nn_hyp_param XML hyper-parameter values of neural network
solver {cvc, z3, yices} SMT solver to be used
multi boolean single or multiple CEX
bound_cex boolean constrain the values of CEX
max_samples integer size of test suite
deadline float time limit of running mlcheck

end, there are two types of parameters in MLcheck, required and optional parame-
ters. Table A.2 summarizes all these parameters along with their types and a short
description of their purposes. Below we describe these parameters amongst which the
first three are the required parameters that must be set by the tester in order to start
the testing process.

MUT. First, the MUT must be provided by the tester in the appropriate form. It could
be provided as an executable format (loaded directly by calling a function), or
in a serialized compressed format, for which we use the pickle 5 format. For
the latter, the tester must provide the specific file location to load the model
from, for example, model=’../Documents/mut.joblib’ where mut.joblib is
the compressed MUT file.

Input-output schema. Next, we require the input-output format of the MUT given as
an XML file. Figure A.2 shows an example of such an XML file. In this example, the
input vector to the model contains 3 features namely age, income, and gender
and the model predicts the loan as the output. For each of the features, the
tester can furthermore specify the type and the minimum and maximum values.
We only allow numerical value types (integer and rational) for the features.
Depending on the type tag of the output, the MUT can be considered to be
either a classifier or a regressor. In the example schema, the type of the output
is Binary, thus, the MUT is considered to be a Binary classifier. Alternatively,
if the value corresponding to the type is float for the output, the MUT is
considered to be a regression model. This information is used to decide which

5https://docs.python.org/2/library/pickle.html.

148

A.2 Configuration of MLcheck

<Schema>
<input>
<feature name="age">

<type>integer</type>
<min-value>18</min-value>
<max-value>70</max-value>

</feature>
<feature name="income">

<type>float</type>
<min-value>500.00</min-value>
<max-value>50,000.00</max-value>

</feature>
<feature name="gender">

<type>Boolean</type>
<min-value>0</min-value>
<max-value>1</max-value>

</feature>
</input>
<output>
<feature name="loan">

<type>Binary</type>
<min-value>0</min-value>
<max-value>1</max-value>

</feature>
</output>

</Schema>

Figure A.2: Example input-output schema in XML

type of white-box model (i.e., classification or regression) has to be learned to
approximate the MUT. Moreover, when the MUT is a multi-label classifier, then
the number of elements corresponding to the <output> tag would be more than
1, and thus, in this case, a multi-label classifier would be learned based on the
number of outputs.

List of instances. Apart from the input-output format and the MUT, we further need
to have the instance variables that would be used in the specification of the
property. For example, if the tester wants to specify a property like monotonicity,
two instance variables (e.g., x1, x2) are required which could be provided as
instance_list=’x1, x2’.

Optional parameters. Along with the three required parameters described above, we
have a number of optional parameters that if not set by the tester, would be set to
default values. For instance, if the training data which was used for training the
MUT is available, then this dataset along with the randomly generated data could
be used for the training of the underlying white-box model which approximates
the MUT. The tester could set the option train_avail to true and give the
location of the training data by using the parameter train_path to include the
original training dataset of MUT. Furthermore, the size of this training dataset,

149

A Technical Details & Extra Results

Table A.3: Features to test monotonicity
Name Montonicity Features

Adult {age, weekly-working-hours, capital-gain, education}
Diabetes {PlasmaGlucose, BP, weight, age, Pregnancies}
Mammographic {Shape, Density, severity}
Car-evaluation {No.ofDoors, No.ofPersons, LugBootSize, YearofProduction}
ESL {in1,in2,in3,in4}
Housing {bedrooms, bathrooms, stories }
Automobile {FuelType, Aspiration, Doors, power, Cylinders,

size, wheels, length, width, height}
Auto-MPG {Cylinders, Horsepower, Weight, Acceleration, Displacement}
ERA {in1,in2,in3,in4}
CPU {CycleTime, MinMemory, MaxMemory, CacheMemory, MaxChannel}

i.e., the percentage of instances to be taken from the original training data,
and the number of randomly generated instances can be specified by using the
parameters train_ratio and init_oracl respectively.

The parameter for choosing the underlying white-box model (wbm) to be learned,
by default is set to the decision tree (dt), which could also be set to the neural
network (nn). If the chosen white-box model is set to nn, then the library to
fetch it from could be either set as PyTorch (torch) or scikit-learn (scikit), as
default it is set to the latter. The hyper-parameters of the two white-box mod-
els can also be set by the tester using XML files, an example for decision tree is
partially shown in Figure A.3 6. The tester in this case could specify all the pos-
sible hyper-parameters of the decision tree model available in the scikit-learn
library. We have <possible-values> tag denoting all the possible values for a
hyper-parameter as allowed in the library, and <default-value> tag denoting
the default values set initially. Testers could give their choice corresponding to
the <your-value> tag.

The parameter solver can be used to choose one of the following three solvers:
Z3 [MB08] (z3), CVC [BCD+11] (cvc), and Yieces [Dut14] (yieces), by default z3
is used. If we find a violation of the specified property in the form of a counter-
example on the learned model and also on the MUT, then we can either stop
and return the counter-example or, we can generate a number of such counter-
examples. For the latter, the parameter multi needs to be set True. Moreover,
based on the minimum and maximum values given in the input schema file (as
shown in Figure A.2) for each of the features, we can furthermore bound the
feature values for a counter-example. This is often required since the counter-
example generated by the solver might be outside their actual range, thus, using
the parameter bound_cex the values of the generated test cases can be bounded
within the specified range 7.

6Note that, for brevity we do not give here all the hyper-parameters that could be set by the tester
for the decision tree.

7Note, if the minimum and maximum values are not provided for any feature, then the counter-
example bounding parameter will have no affect.

150

Finally, our tool MLcheck can run until a certain timeout, defined using the
deadline parameter (default is 1000 seconds) or, until generating a specific num-
ber of test samples, defined by max_samples. In the latter case, MLcheck stops after
exploring the given number of instances in order to find a property violation.

A.3 Artifact
In this thesis, we proposed two approaches, (a) an approach for testing machine learn-
ing algorithms, and (b) an approach for testing machine learning models. These two
approaches are implemented in TiLe and MLcheck respectively. The links to all the
code and the necessary datasets used in this thesis are as follows:

• TiLe: https://github.com/arnabsharma91/TiLe

• MLcheck: https://github.com/arnabsharma91/MlCheck

Note that, in the repository of MLcheck, all the necessary datasets, models, and
code that are needed to replicate the results mentioned in the paper are given. Fur-
thermore, we have also given a separate link to the repository which would lead to the
final version of the tool.

A.4 Monotonicity Features & Extra Results
In Table A.3, we give the list of features for each of the datasets with respect to which
we tested monotonicity on the ML models generated on these datasets. The features
considered here are based on the existing works [KS09, TCDH11] where they have also
considered these features to validate the monotonicity. Note that, the ESL and ERA
datasets are based on the grades given to the students based on four specific subjects
(in1, in2, in3, and in4). However, in the original datasets, they have not specified the
name of these.

In Table A.4 we give the results of the monotonicity testing on 10 different models
generated on 10 different datasets, thus, generating 100 different models.

Table A.5 gives the results of the validation of 9 properties on 10 different aggregation
functions.

A Technical Details & Extra Results

Table A.4: Non-monotonicity detections for each classifier per dataset
Model Tool Adult Diab. Mam. Car ESL Ho. Auto MPG ERA CPU
k-NN MLC_DT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

MLC_NN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
ART ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
PBT ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Log MLC_DT ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
MLC_NN ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

ART ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
PBT ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓

NB MLC_DT ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓
MLC_NN ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓

ART ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓
PBT ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓

SVM MLC_DT ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
MLC_NN ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

ART ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
PBT ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓

NN MLC_DT ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓
MLC_NN ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

ART ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓
PBT ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗

RF MLC_DT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
MLC_NN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

ART ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PBT ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

AB MLC_DT ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
MLC_NN ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

ART ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓
PBT ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓

GB MLC_DT ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓
MLC_NN ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

ART ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓
PBT ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

LGB MLC_DT ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
MLC_NN ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ART ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
PBT ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

XGB MLC_DT ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
MLC_NN ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ART ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
PBT ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

152

A.4 Monotonicity Features & Extra Results

Ta
bl

e
A

.5
:R

es
ul

ts
of

de
te

ct
ed

vi
ol

at
io

ns
fo

r
ag

gr
eg

at
io

n
fu

nc
tio

ns
(✓

=
vi

ol
at

io
n

de
te

ct
ed

,✗
=

no
vi

ol
at

io
n

de
te

ct
ed

)
A

M
W

A
M

O
W

A
G

M
O

S k
M

in
M

ax
M

ed
S p

3Π
T

ot
al

M
LC

/P
T

M
LC

/P
T

M
LC

/P
T

M
LC

/P
T

M
LC

/P
T

M
LC

/P
T

M
LC

/P
T

M
LC

/P
T

M
LC

/P
T

M
LC

/P
T

M
LC

/P
T

st
r.

m
on

.
✗

/✗
✓

/✗
✓

/✗
✓

/✓
✓

/✓
✓

/✓
✓

/✗
✓

/✓
✓

/✗
✓

/✓
9/

6
Li

ps
ch

.
✓

/✓
✓

/✓
✓

/✓
✓

/✗
✓

/✓
✓

/✓
✓

/✓
✓

/✗
✓

/✓
✓

/✓
10

/8
sy

m
m

.
✗

/✗
✓

/✗
✗

/✗
✗

/✗
✗

/✗
✗

/✗
✗

/✗
✗

/✗
✗

/✗
✗

/✗
1/

0
id

em
p.

✗
/✗

✗
/✗

✗
/✗

✗
/✗

✗
/✗

✗
/✗

✗
/✗

✗
/✗

✓
/✗

✓
/✗

2/
0

co
nj

un
.

✓
/✓

✓
/✓

✓
/✓

✓
/✓

✓
/✓

✗
/✗

✓
/✓

✓
/✓

✓
/✓

✓
/✓

9/
9

di
sju

n.
✓

/✓
✓

/✓
✓

/✓
✓

/✓
✓

/✓
✓

/✓
✗

/✗
✓

/✓
✗

/✗
✓

/✓
8/

8
in

te
rn

.
✗

/✗
✗

/✗
✗

/✗
✗

/✗
✗

/✗
✗

/✗
✗

/✗
✗

/✗
✓

/✓
✓

/✓
2/

2
in

va
r.

✗
/✗

✗
/✗

✗
/✗

✗
/✗

✗
/✗

✗
/✗

✗
/✗

✗
/✗

✓
/✗

✓
/✗

2/
0

ad
di

t.
✗

/✗
✗

/✗
✓

/✓
✓

/✓
✓

/✓
✓

/✓
✓

/✓
✓

/✓
✓

/✓
✓

/✓
8/

8
to

ta
l

3/
3

5/
3

5/
4

5/
4

5/
5

4/
3

4/
4

5/
4

7/
5

8/
6

51
/4

1

153

A Technical Details & Extra Results

<Hyper-parameters>
<parameter name="criterion">

<possible-values>gini,entropy,log_loss</possible-values>
<default-value>gini</default-value>
<your-value> </your-value>
</parameter>

<parameter name="splitter">
<possible-values>best,random</possible-values>
<default-value>best</default-value>
<your-value> </your-value>

</parameter>
<parameter name="max_depth">

<possible-values>int, None</possible-values>
<default-value>None</default-value>
<your-value> </your-value>

</parameter>
<parameter name="min_samples_split">

<possible-values>int, float</possible-values>
<default-value>2</default-value>
<your-value> </your-value>

</parameter>
<parameter name="min_samples_leaf">

<possible-values>int, float</possible-values>
<default-value>1</default-value>
<your-value> </your-value>

</parameter>
. . .
. . .

</Hyper-parameters>

Figure A.3: Hyper-parameter values to be set for decision tree

154

Index
accuracy, 27
adaptive random testing, 30, 118
aggregation function, 115
aggregation functions, 109, 129

balanced data usage, 57
balancedness, 57, 59
balancedness indicator, 61
baseline tool, 117
batch flipping, 63
bias, 22
black-box, 29
black-box ML testing, 137
black-box testing, 81
boosted trees, 24
boundary consitions, 110
branch pruning, 134

classification, 19
concept relationship, 108, 127
concolic testing, 88
conjunctive normal form, 38
constraint-based verification, 53
correctness, 27
coverage, 29
cross validation, 27

decision tree, 21, 41, 64
disjointness, 109
distance function, 30
distance metric, 107, 118

embedding, 114
ensemble, 23
equivalence checking, 67
equivalence computing, 64
equivalence relationship, 63
equivalency, 56
executable predicate, 92
explainable machine learning, 83

fairness, 106, 112, 119, 136

fairness through awareness, 107, 120, 121
fairness-aware algorithm, 70, 115, 120
feature shuffling, 58
feed-forward, 22
flipping, 71
functional properties, 26

hidden layers, 22, 46
hyper-properties, 32, 93, 96, 109
hyper-rectangles, 21
hyperplane, 26, 66
Hypothesis, 119, 123, 126, 129

idempotency, 111
individual discrimination, 28, 82, 120
inferred model, 83
input layer, 22
instance pruning, 133
internal node, 42
interpretation, 38

k-NN, 20
kernel, 26
knowledge graph, 29, 108

leaf node, 43
learning-based testing, 33, 83, 101
linear real arithmatic, 39
Lipschitz, 95, 110
Lipschitz constant, 115
logical encoding, 40
logical formula, 41
logical model, 85

machine learning testing, 35
metamorphic properties, 32
metamorphic relation, 31
metamorphic testing, 31, 60
metamorphic transformation, 57
ML model, 19
model relevance, 27
model-based testing, 32

155

INDEX

monotonicity, 28, 94, 109, 113, 123
monotonicity-aware algorithm, 70, 115
multi-class, 20, 107
multi-label, 20, 43, 49
multi-label classification, 108

neural network, 22, 45, 65
neuron, 22
node constraint, 42
non-equivalent models, 76
non-functional properties, 27
numerical calculations, 74

off-the-shelf library, 78
oracle, 31
oracle data, 83
output layer, 22, 48
overfitting, 27

parse tree, 100
parse trees, 98
permutation of features, 58
permutation of instances, 58
permutation strategies, 62, 75
poisoned data instances, 113
poisoned model, 107
prediction constraint, 43
predictive function, 19
property computation, 84
property translation, 97, 99
property-based testing, 34, 92, 102
property-driven testing, 34, 91, 95, 105
property-specific algorithm, 115
pruning, 86, 101
pruning branches, 87
pruning data instance, 86

random forest, 23
ratio scale invariant, 111
regression, 20, 43, 49, 128
regular expression, 97
relative unbalancedness, 61, 76
ReLU, 22
root node, 42
row permutations, 71

satisfiability checking, 38
satisfiability modulo theories, 39
sigmoid, 22
similarity-based measures, 28

single-label, 20, 43, 48
SMT solving, 51, 100
softmax, 22
software testing, 29
specification language, 92, 93
statistical fairness, 28
strong monotonicity, 133
subsumption, 109
supervised, 19
support vector machine, 26
symmetry, 111

tie breaking, 73
toggle, 88
trigger feature values, 108
trigger features, 113
trojan attack, 29
trojan attacks, 107, 125, 137
trojaned model, 114

unbalanced, 72, 75
unbalanced algorithms, 70
unbalancedness, 78
underfitting, 27

validation data, 27
verification-based testing, 81, 95

white-box, 29
white-box model, 81, 83, 92, 96
window size, 71

156

Bibliography
[AAH] Dara Kerr Abrar Al-Heeti. Uber’s fatal self-driving crash report-

edly caused by software. https://www.cnet.com/roadshow/news/
uber-reportedly-finds-false-positive-self-driving-car-accident/.
Accessed: May 7, 2018.

[ABC+13] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John A. Clark,
Myra B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold,
and Phil McMinn. An orchestrated survey of methodologies for automated
software test case generation. J. Syst. Softw., 86(8):1978–2001, 2013.
doi:10.1016/j.jss.2013.02.061.

[AEG18] Stéphane Ayache, Rémi Eyraud, and Noé Goudian. Explaining black
boxes on sequential data using weighted automata. In Olgierd Un-
old, Witold Dyrka, and Wojciech Wieczorek, editors, Proceedings of the
14th International Conference on Grammatical Inference, ICGI 2018,
Wrocław, Poland, September 5-7, 2018, volume 93 of Proceedings of
Machine Learning Research, pages 81–103. PMLR, 2018. URL: http:
//proceedings.mlr.press/v93/ayache19a.html.

[Agg18] Charu C. Aggarwal. Neural Networks and Deep Learning - A Textbook.
Springer, 2018. doi:10.1007/978-3-319-94463-0.

[ALN+19] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Dip-
tikalyan Saha. Black box fairness testing of machine learning models. In
Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo, editors,
Proceedings of the ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, pages
625–635. ACM, 2019. doi:10.1145/3338906.3338937.

[AMM+18] Bernhard K. Aichernig, Wojciech Mostowski, Mohammad Reza Mousavi,
Martin Tappler, and Masoumeh Taromirad. Model learning and model-
based testing. In Amel Bennaceur, Reiner Hähnle, and Karl Meinke,
editors, Machine Learning for Dynamic Software Analysis: Potentials
and Limits - International Dagstuhl Seminar 16172, Dagstuhl Castle,
Germany, April 24-27, 2016, Revised Papers, volume 11026 of Lec-
ture Notes in Computer Science, pages 74–100. Springer, 2018. doi:
10.1007/978-3-319-96562-8_3.

[AMMIL12] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learn-
ing From Data. AMLBook, 2012.

[Ang87] Dana Angluin. Learning regular sets from queries and counterexam-
ples. Inf. Comput., 75(2):87–106, 1987. doi:10.1016/0890-5401(87)
90052-6.

157

https://www.cnet.com/roadshow/news/uber-reportedly-finds-false-positive-self-driving-car-accident/
https://www.cnet.com/roadshow/news/uber-reportedly-finds-false-positive-self-driving-car-accident/
https://doi.org/10.1016/j.jss.2013.02.061
http://proceedings.mlr.press/v93/ayache19a.html
http://proceedings.mlr.press/v93/ayache19a.html
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1145/3338906.3338937
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6

BIBLIOGRAPHY

[ASH+21] Aniya Aggarwal, Samiulla Shaikh, Sandeep Hans, Swastik Haldar, Rema
Ananthanarayanan, and Diptikalyan Saha. Testing framework for black-
box AI models. In 43rd IEEE/ACM International Conference on Software
Engineering: Companion Proceedings, ICSE Companion 2021, Madrid,
Spain, May 25-28, 2021, pages 81–84. IEEE, 2021. doi:10.1109/
ICSE-Companion52605.2021.00041.

[ATA+21] Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagar-
dui, and Maite Arratibel. Generating metamorphic relations for cyber-
physical systems with genetic programming: an industrial case study.
In Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and Massi-
miliano Di Penta, editors, ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021, pages 1264–
1274. ACM, 2021. doi:10.1145/3468264.3473920.

[AW93] Norman P Archer and Shouhong Wang. Application of the back propa-
gation neural network algorithm with monotonicity constraints for two-
group classification problems. Decision Sciences, 24(1):60–75, 1993.

[BCD+11] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare
Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer, edi-
tors, Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806
of Lecture Notes in Computer Science, pages 171–177. Springer, 2011.
doi:10.1007/978-3-642-22110-1_14.

[BCR21] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. Fuzzing: Chal-
lenges and reflections. IEEE Softw., 38(3):79–86, 2021. doi:10.1109/MS.
2020.3016773.

[BF22] Raven Beutner and Bernd Finkbeiner. Software verification of hyper-
properties beyond k-safety. In Sharon Shoham and Yakir Vizel, edi-
tors, Computer Aided Verification - 34th International Conference, CAV
2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I, volume 13371
of Lecture Notes in Computer Science, pages 341–362. Springer, 2022.
doi:10.1007/978-3-031-13185-1_17.

[BHM10] Peter Bastian, Felix Heimann, and Sven Marnach. Generic implemen-
tation of finite element methods in the distributed and unified numer-
ics environment (DUNE). Kybernetika, 46(2):294–315, 2010. URL:
http://www.kybernetika.cz/content/2010/2/294.

[BIL+16] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vy-
tiniotis, Aditya V. Nori, and Antonio Criminisi. Measuring neu-
ral net robustness with constraints. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages 2613–2621,

158

https://doi.org/10.1109/ICSE-Companion52605.2021.00041
https://doi.org/10.1109/ICSE-Companion52605.2021.00041
https://doi.org/10.1145/3468264.3473920
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1007/978-3-031-13185-1_17
http://www.kybernetika.cz/content/2010/2/294

BIBLIOGRAPHY

2016. URL: https://proceedings.neurips.cc/paper/2016/hash/
980ecd059122ce2e50136bda65c25e07-Abstract.html.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

[BLBS09] Lionel C. Briand, Yvan Labiche, Zaheer Bawar, and Nadia Traldi Spido.
Using machine learning to refine category-partition test specifications and
test suites. Inf. Softw. Technol., 51(11):1551–1564, 2009. doi:10.1016/
j.infsof.2009.06.006.

[Bre96] Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, 1996.
doi:10.1007/BF00058655.

[BSS+19] Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, and Pra-
teek Saxena. Quantitative verification of neural networks and its security
applications. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2019, Lon-
don, UK, November 11-15, 2019, pages 1249–1264. ACM, 2019. doi:
10.1145/3319535.3354245.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. Satisfiability modulo theories. In Armin Biere, Marijn Heule,
Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications, pages
825–885. IOS Press, 2009. doi:10.3233/978-1-58603-929-5-825.

[cat21] catboost. https://github.com/catboost, 2021.

[CEH+22] Maria Christakis, Hasan Ferit Eniser, Jörg Hoffmann, Adish Singla,
and Valentin Wüstholz. Specifying and testing k-safety properties for
machine-learning models. CoRR, abs/2206.06054, 2022. arXiv:2206.
06054, doi:10.48550/arXiv.2206.06054.

[CG16] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794,
New York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/
2939672.2939785, doi:10.1145/2939672.2939785.

[CH00] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for ran-
dom testing of haskell programs. In Martin Odersky and Philip Wadler,
editors, Proceedings of the Fifth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’00), Montreal, Canada, Septem-
ber 18-21, 2000, pages 268–279. ACM, 2000. doi:10.1145/351240.
351266.

[Che] Angela Chen. Ibm’s watson gave unsafe recommendations for treating
cancer. Accessed: July 26, 2018.

[Che19] Tianqi Chen. xgboost. https://github.com/tqchen/xgboost, 2019.

159

https://proceedings.neurips.cc/paper/2016/hash/980ecd059122ce2e50136bda65c25e07-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/980ecd059122ce2e50136bda65c25e07-Abstract.html
https://doi.org/10.1016/j.infsof.2009.06.006
https://doi.org/10.1016/j.infsof.2009.06.006
https://doi.org/10.1007/BF00058655
https://doi.org/10.1145/3319535.3354245
https://doi.org/10.1145/3319535.3354245
https://doi.org/10.3233/978-1-58603-929-5-825
https://github.com/catboost
https://arxiv.org/abs/2206.06054
https://arxiv.org/abs/2206.06054
https://doi.org/10.48550/arXiv.2206.06054
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://github.com/tqchen/xgboost

BIBLIOGRAPHY

[CHJ+04] MG Cox, PM Harris, EG Johnson, PD Kenward, and GI Parkin. Testing
the numerical correctness of software. Technical Report CMSC, 34/04,
2004.

[CHJS16] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Active
learning for extended finite state machines. Formal Aspects Comput.,
28(2):233–263, 2016. doi:10.1007/s00165-016-0355-5.

[CJ12] Bob F Caviness and Jeremy R Johnson. Quantifier elimination and cylin-
drical algebraic decomposition. Springer Science & Business Media, 2012.

[CKL+18] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey,
T. H. Tse, and Zhi Quan Zhou. Metamorphic testing: A review of chal-
lenges and opportunities. ACM Comput. Surv., 51(1):4:1–4:27, 2018.
doi:10.1145/3143561.

[CKP09] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building clas-
sifiers with independency constraints. In Yücel Saygin, Jeffrey Xu Yu,
Hillol Kargupta, Wei Wang, Sanjay Ranka, Philip S. Yu, and Xindong
Wu, editors, ICDM Workshops 2009, IEEE International Conference on
Data Mining Workshops, Miami, Florida, USA, 6 December 2009, pages
13–18. IEEE Computer Society, 2009. doi:10.1109/ICDMW.2009.83.

[CLM04] Tsong Yueh Chen, Hing Leung, and I. K. Mak. Adaptive random test-
ing. In Michael J. Maher, editor, Advances in Computer Science - ASIAN
2004, Higher-Level Decision Making, 9th Asian Computing Science Con-
ference, Dedicated to Jean-Louis Lassez on the Occasion of His 5th Cycle
Birthday, Chiang Mai, Thailand, December 8-10, 2004, Proceedings, vol-
ume 3321 of Lecture Notes in Computer Science, pages 320–329. Springer,
2004. doi:10.1007/978-3-540-30502-6_23.

[CMN+19] Ştefan Cobzaş, Radu Miculescu, Adriana Nicolae, et al. Lipschitz func-
tions. Springer, 2019.

[Cra17] Susan Craw. Manhattan Distance, pages 790–791. Springer US, Boston,
MA, 2017. doi:10.1007/978-1-4899-7687-1_511.

[CS10] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput.
Secur., 18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
three decades later. Commun. ACM, 56(2):82–90, 2013. doi:10.1145/
2408776.2408795.

[Cur63] Haskell Brooks Curry. Foundations of Mathematical Logic. New York,
NY, USA: Dover Publications, 1963.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach.
Learn., 20(3):273–297, 1995. doi:10.1007/BF00994018.

[CWD+18] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran,
Biswa Sengupta, and Anil A. Bharath. Generative adversarial net-
works: An overview. IEEE Signal Process. Mag., 35(1):53–65, 2018.
doi:10.1109/MSP.2017.2765202.

160

https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1145/3143561
https://doi.org/10.1109/ICDMW.2009.83
https://doi.org/10.1007/978-3-540-30502-6_23
https://doi.org/10.1007/978-1-4899-7687-1_511
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/MSP.2017.2765202

BIBLIOGRAPHY

[CZH+22] Zhenpeng Chen, Jie M. Zhang, Max Hort, Federica Sarro, and Mark
Harman. Fairness testing: A comprehensive survey and analysis of
trends. CoRR, abs/2207.10223, 2022. arXiv:2207.10223, doi:10.
48550/arXiv.2207.10223.

[Das] Jeffrey Dastin. Amazon scraps secret ai recruiting tool that showed bias
against women. Accessed: October 11, 2018.

[DAS+18] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M.
Rao, R. P. Jagadeesh Chandra Bose, Neville Dubash, and Sanjay Pod-
der. Identifying implementation bugs in machine learning based im-
age classifiers using metamorphic testing. In Frank Tip and Eric Bod-
den, editors, Proceedings of the 27th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2018, Amsterdam,
The Netherlands, July 16-21, 2018, pages 118–128. ACM, 2018. doi:
10.1145/3213846.3213858.

[DBB+09] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and
René Garcia. Incorporating functional knowledge in neural networks. J.
Mach. Learn. Res., 10:1239–1262, 2009. URL: https://dl.acm.org/
citation.cfm?id=1577111.

[DHB20] Matthew F Dixon, Igor Halperin, and Paul Bilokon. Machine learning in
Finance, volume 1406. Springer, 2020.

[DHP+12] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Richard S. Zemel. Fairness through awareness. In Shafi Goldwasser,
editor, Innovations in Theoretical Computer Science 2012, Cambridge,
MA, USA, January 8-10, 2012, pages 214–226. ACM, 2012. doi:
10.1145/2090236.2090255.

[DKH17] Junhua Ding, Xiaojun Kang, and Xin-Hua Hu. Validating a deep learn-
ing framework by metamorphic testing. In 2nd IEEE/ACM International
Workshop on Metamorphic Testing, MET@ICSE 2017, Buenos Aires,
Argentina, May 22, 2017, pages 28–34. IEEE Computer Society, 2017.
doi:10.1109/MET.2017.2.

[DMBT17] Mike Daily, Swarup Medasani, Reinhold Behringer, and Mohan M.
Trivedi. Self-driving cars. Computer, 50(12):18–23, 2017. doi:10.1109/
MC.2017.4451204.

[DN19] Caglar Demir and Axel-Cyrille Ngonga Ngomo. A physical embedding
model for knowledge graphs. In Xin Wang, Francesca Alessandra Lisi,
Guohui Xiao, and Elena Botoeva, editors, Semantic Technology - 9th Joint
International Conference, JIST 2019, Hangzhou, China, November 25-27,
2019, Proceedings, volume 12032 of Lecture Notes in Computer Science,
pages 192–209. Springer, 2019. doi:10.1007/978-3-030-41407-8_13.

[DN21] Caglar Demir and Axel-Cyrille Ngonga Ngomo. Convolutional complex
knowledge graph embeddings. In Ruben Verborgh, Katja Hose, Heiko
Paulheim, Pierre-Antoine Champin, Maria Maleshkova, Óscar Corcho,

161

https://arxiv.org/abs/2207.10223
https://doi.org/10.48550/arXiv.2207.10223
https://doi.org/10.48550/arXiv.2207.10223
https://doi.org/10.1145/3213846.3213858
https://doi.org/10.1145/3213846.3213858
https://dl.acm.org/citation.cfm?id=1577111
https://dl.acm.org/citation.cfm?id=1577111
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1109/MET.2017.2
https://doi.org/10.1109/MC.2017.4451204
https://doi.org/10.1109/MC.2017.4451204
https://doi.org/10.1007/978-3-030-41407-8_13

BIBLIOGRAPHY

Petar Ristoski, and Mehwish Alam, editors, The Semantic Web - 18th
International Conference, ESWC 2021, Virtual Event, June 6-10, 2021,
Proceedings, volume 12731 of Lecture Notes in Computer Science, pages
409–424. Springer, 2021. doi:10.1007/978-3-030-77385-4_24.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. J. ACM, 7(3):201–215, 1960. URL: http://doi.acm.org/
10.1145/321033.321034, doi:10.1145/321033.321034.

[Dut14] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors,
Computer-Aided Verification (CAV’2014), volume 8559 of Lecture Notes
in Computer Science, pages 737–744. Springer, July 2014.

[EGSS08] Gil Einziger, Maayan Goldstein, Yaniv Sa’ar, and Itai Segall. Verify-
ing robustness of gradient boosted models. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI, EAAI 2019, Hawaii, USA,
2019, pages 2446–2453. AAAI Press, 2008. doi:10.1609/aaai.v33i01.
33012446.

[Ehl17] Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neu-
ral networks. In Deepak D’Souza and K. Narayan Kumar, editors, Auto-
mated Technology for Verification and Analysis - 15th International Sym-
posium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings, volume
10482 of Lecture Notes in Computer Science, pages 269–286. Springer,
2017. doi:10.1007/978-3-319-68167-2_19.

[EW16] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge
graphs. In Michael Martin, Martí Cuquet, and Erwin Folmer, editors,
Joint Proceedings of the Posters and Demos Track of the 12th Inter-
national Conference on Semantic Systems - SEMANTiCS2016 and the
1st International Workshop on Semantic Change & Evolving Semantics
(SuCCESS’16) co-located with the 12th International Conference on Se-
mantic Systems (SEMANTiCS 2016), Leipzig, Germany, September 12-
15, 2016, volume 1695 of CEUR Workshop Proceedings. CEUR-WS.org,
2016. URL: https://ceur-ws.org/Vol-1695/paper4.pdf.

[FJ18] Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer
linear optimization. Constraints An Int. J., 23(3):296–309, 2018. doi:
10.1007/s10601-018-9285-6.

[FSG+20] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and
Zhenyu Chen. Deepgini: prioritizing massive tests to enhance the robust-
ness of deep neural networks. In Sarfraz Khurshid and Corina S. Pasare-
anu, editors, ISSTA: 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, USA, 2020, pages 177–188. ACM, 2020.
doi:10.1145/3395363.3397357.

[FWJ+22] Ming Fan, JiaLi Wei, Wuxia Jin, Zhou Xu, Wenying Wei, and Ting Liu.
One step further: evaluating interpreters using metamorphic testing. In
Sukyoung Ryu and Yannis Smaragdakis, editors, ISSTA ’22: 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,

162

https://doi.org/10.1007/978-3-030-77385-4_24
http://doi.acm.org/10.1145/321033.321034
http://doi.acm.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1609/aaai.v33i01.33012446
https://doi.org/10.1609/aaai.v33i01.33012446
https://doi.org/10.1007/978-3-319-68167-2_19
https://ceur-ws.org/Vol-1695/paper4.pdf
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1145/3395363.3397357

BIBLIOGRAPHY

Virtual Event, South Korea, July 18 - 22, 2022, pages 327–339. ACM,
2022. doi:10.1145/3533767.3534225.

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learn-
ing. Adaptive computation and machine learning. MIT Press, 2016. URL:
http://www.deeplearningbook.org/.

[GBM17] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing:
testing software for discrimination. In Eric Bodden, Wilhelm Schäfer,
Arie van Deursen, and Andrea Zisman, editors, Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, pages 498–510. ACM,
2017. doi:10.1145/3106237.3106277.

[GBM21] Bishwamittra Ghosh, Debabrota Basu, and Kuldeep S. Meel. Justicia: A
stochastic SAT approach to formally verify fairness. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, pages 7554–7563. AAAI
Press, 2021. URL: https://ojs.aaai.org/index.php/AAAI/article/
view/16925.

[GKZ+14] Alex Groce, Todd Kulesza, Chaoqiang Zhang, Shalini Shamasunder, Mar-
garet M. Burnett, Weng-Keen Wong, Simone Stumpf, Shubhomoy Das,
Amber Shinsel, Forrest Bice, and Kevin McIntosh. You are the only
possible oracle: Effective test selection for end users of interactive ma-
chine learning systems. IEEE Trans. Software Eng., 40(3):307–323, 2014.
doi:10.1109/TSE.2013.59.

[Gou83] John S. Gourlay. A mathematical framework for the investigation of
testing. IEEE Trans. Software Eng., 9(6):686–709, 1983. doi:10.1109/
TSE.1983.235433.

[GPKB20] Anshika Gupta, Vinay Pant, Sudhanshu Kumar, and Pravesh Kumar
Bansal. Bank loan prediction system using machine learning. In 2020 9th
International Conference System Modeling and Advancement in Research
Trends (SMART), pages 423–426. IEEE, 2020.

[GXL+20] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li,
and Chao Shen. Audee: Automated testing for deep learning frameworks.
In 35th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2020, Melbourne, Australia, September 21-25, 2020, pages
486–498. IEEE, 2020. doi:10.1145/3324884.3416571.

[GZW+19] Divya Gopinath, Mengshi Zhang, Kaiyuan Wang, Ismet Burak Kadron,
Corina S. Pasareanu, and Sarfraz Khurshid. Symbolic execution for
importance analysis and adversarial generation in neural networks. In
Katinka Wolter, Ina Schieferdecker, Barbara Gallina, Michel Cukier,

163

https://doi.org/10.1145/3533767.3534225
http://www.deeplearningbook.org/
https://doi.org/10.1145/3106237.3106277
https://ojs.aaai.org/index.php/AAAI/article/view/16925
https://ojs.aaai.org/index.php/AAAI/article/view/16925
https://doi.org/10.1109/TSE.2013.59
https://doi.org/10.1109/TSE.1983.235433
https://doi.org/10.1109/TSE.1983.235433
https://doi.org/10.1145/3324884.3416571

BIBLIOGRAPHY

Roberto Natella, Naghmeh Ramezani Ivaki, and Nuno Laranjeiro, ed-
itors, 30th IEEE International Symposium on Software Reliability En-
gineering, ISSRE 2019, Berlin, Germany, October 28-31, 2019, pages
313–322. IEEE, 2019. doi:10.1109/ISSRE.2019.00039.

[Har07] Mark Harman. The current state and future of search based software
engineering. In Lionel C. Briand and Alexander L. Wolf, editors, In-
ternational Conference on Software Engineering, ISCE 2007, Workshop
on the Future of Software Engineering, FOSE 2007, May 23-25, 2007,
Minneapolis, MN, USA, pages 342–357. IEEE Computer Society, 2007.
doi:10.1109/FOSE.2007.29.

[HH19] Reiner Hähnle and Marieke Huisman. Deductive software verification:
From pen-and-paper proofs to industrial tools. In Bernhard Steffen and
Gerhard J. Woeginger, editors, Computing and Software Science - State of
the Art and Perspectives, volume 10000 of Lecture Notes in Computer Sci-
ence, pages 345–373. Springer, 2019. doi:10.1007/978-3-319-91908-9\
_18.

[HNS03] Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-specific op-
timization in automata learning. In Warren A. Hunt Jr. and Fabio
Somenzi, editors, Computer Aided Verification, 15th International Con-
ference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, vol-
ume 2725 of Lecture Notes in Computer Science, pages 315–327. Springer,
2003. doi:10.1007/978-3-540-45069-6_31.

[HSX+21] Rubing Huang, Weifeng Sun, Yinyin Xu, Haibo Chen, Dave Towey, and
Xin Xia. A survey on adaptive random testing. IEEE Trans. Software
Eng., 47(10):2052–2083, 2021. doi:10.1109/TSE.2019.2942921.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The El-
ements of Statistical Learning: Data Mining, Inference, and Predic-
tion, 2nd Edition. Springer Series in Statistics. Springer, 2009. doi:
10.1007/978-0-387-84858-7.

[HYL+22] Pei Huang, Yuting Yang, Minghao Liu, Fuqi Jia, Feifei Ma, and Jian
Zhang. ε-weakened robustness of deep neural networks. In Sukyoung
Ryu and Yannis Smaragdakis, editors, ISSTA ’22: 31st ACM SIG-
SOFT International Symposium on Software Testing and Analysis, Vir-
tual Event, South Korea, July 18 - 22, 2022, pages 126–138. ACM, 2022.
doi:10.1145/3533767.3534373.

[hyp23] Hypothesis. https://github.com/HypothesisWorks/hypothesis, 2023.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 770–778. IEEE Computer Society, 2016. doi:10.
1109/CVPR.2016.90.

164

https://doi.org/10.1109/ISSRE.2019.00039
https://doi.org/10.1109/FOSE.2007.29
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1109/TSE.2019.2942921
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1145/3533767.3534373
https://github.com/HypothesisWorks/hypothesis
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

BIBLIOGRAPHY

[IIM22] Yacine Izza, Alexey Ignatiev, and João Marques-Silva. On tackling ex-
planation redundancy in decision trees. J. Artif. Intell. Res., 75:261–321,
2022. doi:10.1613/jair.1.13575.

[IISM22] Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, and João Marques-Silva.
Using maxsat for efficient explanations of tree ensembles. In Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Artificial Intelligence,
IAAI 2022, The Twelveth Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1,
2022, pages 3776–3785. AAAI Press, 2022. URL: https://ojs.aaai.
org/index.php/AAAI/article/view/20292.

[INM19] Alexey Ignatiev, Nina Narodytska, and João Marques-Silva. Abduction-
based explanations for machine learning models. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019, pages 1511–1519. AAAI Press, 2019. doi:10.1609/aaai.v33i01.
33011511.

[Jac05] Henrik Jacobsson. Rule extraction from recurrent neural networks: A
taxonomy and review. Neural Comput., 17(6):1223–1263, 2005. doi:
10.1162/0899766053630350.

[JFL+22] Pin Ji, Yang Feng, Jia Liu, Zhihong Zhao, and Zhenyu Chen. Asrtest:
automated testing for deep-neural-network-driven speech recognition sys-
tems. In Sukyoung Ryu and Yannis Smaragdakis, editors, ISSTA ’22:
31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, South Korea, July 18 - 22, 2022, pages 189–201.
ACM, 2022. doi:10.1145/3533767.3534391.

[jqu23] jqwik. https://jqwik.net/, 2023.

[JSW22] Taeuk Jang, Pengyi Shi, and Xiaoqian Wang. Group-aware threshold
adaptation for fair classification. In Thirty-Sixth AAAI Conference on Ar-
tificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2022, The Twelveth Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022, pages 6988–6995. AAAI
Press, 2022. URL: https://ojs.aaai.org/index.php/AAAI/article/
view/20657.

[JV00] Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint
solver. In Debra J. Richardson and Mary Jean Harold, editors, Proceedings
of the International Symposium on Software Testing and Analysis, ISSTA
2000, Portland, OR, USA, August 21-24, 2000, pages 14–25. ACM, 2000.
doi:10.1145/347324.383378.

165

https://doi.org/10.1613/jair.1.13575
https://ojs.aaai.org/index.php/AAAI/article/view/20292
https://ojs.aaai.org/index.php/AAAI/article/view/20292
https://doi.org/10.1609/aaai.v33i01.33011511
https://doi.org/10.1609/aaai.v33i01.33011511
https://doi.org/10.1162/0899766053630350
https://doi.org/10.1162/0899766053630350
https://doi.org/10.1145/3533767.3534391
https://jqwik.net/
https://ojs.aaai.org/index.php/AAAI/article/view/20657
https://ojs.aaai.org/index.php/AAAI/article/view/20657
https://doi.org/10.1145/347324.383378

BIBLIOGRAPHY

[KBD+17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. Reluplex: An efficient SMT solver for verifying deep neural
networks. In Rupak Majumdar and Viktor Kuncak, editors, Computer
Aided Verification - 29th International Conference, CAV 2017, Heidel-
berg, Germany, July 24-28, 2017, Proceedings, Part I, volume 10426
of Lecture Notes in Computer Science, pages 97–117. Springer, 2017.
doi:10.1007/978-3-319-63387-9_5.

[KHI+19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher
Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Alek-
sandar Zeljic, David L. Dill, Mykel J. Kochenderfer, and Clark W.
Barrett. The marabou framework for verification and analysis of deep
neural networks. In Isil Dillig and Serdar Tasiran, editors, Computer
Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561
of Lecture Notes in Computer Science, pages 443–452. Springer, 2019.
doi:10.1007/978-3-030-25540-4_26.

[KK17] Dominic Kempf and Timo Koch. System testing in scientific numerical
software frameworks using the example of dune. Archive of Numerical
Software, 5(1):151–168, 2017.

[KM04] Sarfraz Khurshid and Darko Marinov. Testera: Specification-based test-
ing of java programs using SAT. Autom. Softw. Eng., 11(4):403–434, 2004.
doi:10.1023/B:AUSE.0000038938.10589.b9.

[KM05] Erich Peter Klement and Radko Mesiar. Logical, algebraic, analytic and
probabilistic aspects of triangular norms. Elsevier, 2005.

[KNR+21] Igor Khmelnitsky, Daniel Neider, Rajarshi Roy, Xuan Xie, Benoît Barbot,
Benedikt Bollig, Alain Finkel, Serge Haddad, Martin Leucker, and Lina
Ye. Property-directed verification and robustness certification of recur-
rent neural networks. In Zhe Hou and Vijay Ganesh, editors, Automated
Technology for Verification and Analysis - 19th International Symposium,
ATVA 2021, Gold Coast, QLD, Australia, October 18-22, 2021, Proceed-
ings, volume 12971 of Lecture Notes in Computer Science, pages 364–380.
Springer, 2021. doi:10.1007/978-3-030-88885-5_24.

[KS09] Wojciech Kotlowski and Roman Slowinski. Rule learning with mono-
tonicity constraints. In Andrea Pohoreckyj Danyluk, Léon Bottou, and
Michael L. Littman, editors, Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML 2009, Montreal, Quebec,
Canada, June 14-18, 2009, volume 382 of ACM International Conference
Proceeding Series, pages 537–544. ACM, 2009. doi:10.1145/1553374.
1553444.

[KW17] Sanjay Krishnan and Eugene Wu. PALM: machine learning explana-
tions for iterative debugging. In Carsten Binnig, Joseph M. Hellerstein,
and Aditya G. Parameswaran, editors, Proceedings of the 2nd Work-
shop on Human-In-the-Loop Data Analytics, HILDA@SIGMOD 2017,

166

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1023/B:AUSE.0000038938.10589.b9
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1145/1553374.1553444
https://doi.org/10.1145/1553374.1553444

BIBLIOGRAPHY

Chicago, IL, USA, May 14, 2017, pages 4:1–4:6. ACM, 2017. doi:
10.1145/3077257.3077271.

[LB08] Fabien Lauer and Gérard Bloch. Incorporating prior knowledge in support
vector regression. Machine Learning, 70(1):89–118, 2008. doi:10.1007/
s10994-007-5035-5.

[LBM+18] Konstantinos G Liakos, Patrizia Busato, Dimitrios Moshou, Simon Pear-
son, and Dionysis Bochtis. Machine learning in agriculture: A review.
Sensors, 18(8):2674, 2018.

[LDS+22] Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and
Zihuai Lin. When machine learning meets privacy: A survey and outlook.
ACM Comput. Surv., 54(2):31:1–31:36, 2022. doi:10.1145/3436755.

[LHP19] Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. Cov-
erage guided, property based testing. Proc. ACM Program. Lang.,
3(OOPSLA):181:1–181:29, 2019. doi:10.1145/3360607.

[LHZL20] Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified mono-
tonic neural networks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL: https://proceedings.neurips.cc/paper/
2020/hash/b139aeda1c2914e3b579aafd3ceeb1bd-Abstract.html.

[lig19] Lightgbm. https://github.com/Microsoft/LightGBM, 2019.

[LMA+18] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan
Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning at-
tack on neural networks. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, Cal-
ifornia, USA, February 18-21, 2018. The Internet Society, 2018.
URL: http://wp.internetsociety.org/ndss/wp-content/uploads/
sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf.

[LS18] Andreas Löscher and Konstantinos Sagonas. Automating targeted
property-based testing. In 11th IEEE International Conference on Soft-
ware Testing, Verification and Validation, ICST 2018, Västerås, Swe-
den, April 9-13, 2018, pages 70–80. IEEE Computer Society, 2018.
doi:10.1109/ICST.2018.00017.

[MAP+22] Edi Muskardin, Bernhard K. Aichernig, Ingo Pill, Andrea Pferscher, and
Martin Tappler. Aalpy: an active automata learning library. Innov. Syst.
Softw. Eng., 18(3):417–426, 2022. doi:10.1007/s11334-022-00449-3.

[MB08] Leonardo Mendonça De Moura and Nikolaj S. Bjørner. Z3: an effi-
cient SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors,
Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008,

167

https://doi.org/10.1145/3077257.3077271
https://doi.org/10.1145/3077257.3077271
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1007/s10994-007-5035-5
https://doi.org/10.1145/3436755
https://doi.org/10.1145/3360607
https://proceedings.neurips.cc/paper/2020/hash/b139aeda1c2914e3b579aafd3ceeb1bd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b139aeda1c2914e3b579aafd3ceeb1bd-Abstract.html
https://github.com/Microsoft/LightGBM
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf
https://doi.org/10.1109/ICST.2018.00017
https://doi.org/10.1007/s11334-022-00449-3

BIBLIOGRAPHY

Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963
of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.
doi:10.1007/978-3-540-78800-3_24.

[McK20] Carolyn McKay. Predicting risk in criminal procedure: actuarial tools,
algorithms, ai and judicial decision-making. Current Issues in Criminal
Justice, 32(1):22–39, 2020.

[MFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.
Deepfool: A simple and accurate method to fool deep neural networks.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2574–2582.
IEEE Computer Society, 2016. doi:10.1109/CVPR.2016.282.

[MH16] Vitalik Melnikov and Eyke Hüllermeier. Learning to aggregate using
uninorms. In Paolo Frasconi, Niels Landwehr, Giuseppe Manco, and
Jilles Vreeken, editors, Machine Learning and Knowledge Discovery in
Databases, pages 756–771, Cham, 2016. Springer International Publish-
ing. doi:10.1007/978-3-319-46227-1_47.

[MH19] Vitalik Melnikov and Eyke Hüllermeier. Learning to aggregate: Tackling
the aggregation/disaggregation problem for owa. In Wee Sun Lee and
Taiji Suzuki, editors, Proceedings of The Eleventh Asian Conference on
Machine Learning, volume 101 of Proceedings of Machine Learning Re-
search, pages 1110–1125, Nagoya, Japan, 17–19 Nov 2019. PMLR. URL:
http://proceedings.mlr.press/v101/melnikov19a.html.

[MK01] L. I. Manolache and Derrick G. Kourie. Software testing using model
programs. Softw. Pract. Exp., 31(13):1211–1236, 2001. doi:10.1002/
spe.409.

[MKA07] Chris Murphy, Gail E. Kaiser, and Marta Arias. An approach to soft-
ware testing of machine learning applications. In Proceedings of the Nine-
teenth International Conference on Software Engineering & Knowledge
Engineering (SEKE’2007), Boston, Massachusetts, USA, July 9-11, 2007,
page 167. Knowledge Systems Institute Graduate School, 2007.

[MKHW08] Christian Murphy, Gail E. Kaiser, Lifeng Hu, and Leon Wu. Properties of
machine learning applications for use in metamorphic testing. In Proceed-
ings of the Twentieth International Conference on Software Engineering
& Knowledge Engineering (SEKE’2008), San Francisco, CA, USA, July
1-3, 2008, pages 867–872. Knowledge Systems Institute Graduate School,
2008.

[MLL+18] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth
Grama. MODE: automated neural network model debugging via state
differential analysis and input selection. In Gary T. Leavens, Alessandro
Garcia, and Corina S. Pasareanu, editors, Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, pages
175–186. ACM, 2018. doi:10.1145/3236024.3236082.

168

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1007/978-3-319-46227-1_47
http://proceedings.mlr.press/v101/melnikov19a.html
https://doi.org/10.1002/spe.409
https://doi.org/10.1002/spe.409
https://doi.org/10.1145/3236024.3236082

BIBLIOGRAPHY

[MN10] Karl Meinke and Fei Niu. A learning-based approach to unit testing of
numerical software. In Alexandre Petrenko, Adenilso da Silva Simão,
and José Carlos Maldonado, editors, Testing Software and Systems
- 22nd IFIP WG 6.1 International Conference, ICTSS 2010, Natal,
Brazil, November 8-10, 2010. Proceedings, volume 6435 of Lecture Notes
in Computer Science, pages 221–235. Springer, 2010. doi:10.1007/
978-3-642-16573-3_16.

[MSB11] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software
Testing. Wiley Publishing, 3rd edition, 2011.

[MSK09] Christian Murphy, Kuang Shen, and Gail E. Kaiser. Using JML run-
time assertion checking to automate metamorphic testing in applica-
tions without test oracles. In Second International Conference on Soft-
ware Testing Verification and Validation, ICST 2009, Denver, Colorado,
USA, April 1-4, 2009, pages 436–445. IEEE Computer Society, 2009.
doi:10.1109/ICST.2009.19.

[MVY20] Franz Mayr, Ramiro Visca, and Sergio Yovine. On-the-fly black-box prob-
ably approximately correct checking of recurrent neural networks. In An-
dreas Holzinger, Peter Kieseberg, A Min Tjoa, and Edgar R. Weippl,
editors, Machine Learning and Knowledge Extraction - 4th IFIP TC 5,
TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Con-
ference, CD-MAKE 2020, Dublin, Ireland, August 25-28, 2020, Proceed-
ings, volume 12279 of Lecture Notes in Computer Science, pages 343–363.
Springer, 2020. doi:10.1007/978-3-030-57321-8_19.

[MWL20] Pingchuan Ma, Shuai Wang, and Jin Liu. Metamorphic testing and certi-
fied mitigation of fairness violations in NLP models. In Christian Bessiere,
editor, Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pages 458–465. ijcai.org, 2020.
doi:10.24963/ijcai.2020/64.

[MWYY20] Yifang Ma, Zhenyu Wang, Hong Yang, and Lin Yang. Artificial intelli-
gence applications in the development of autonomous vehicles: a survey.
IEEE CAA J. Autom. Sinica, 7(2):315–329, 2020. doi:10.1109/jas.
2020.1003021.

[NB16] Shin Nakajima and Hai Ngoc Bui. Dataset coverage for testing ma-
chine learning computer programs. In Alex Potanin, Gail C. Murphy,
Steve Reeves, and Jens Dietrich, editors, 23rd Asia-Pacific Software En-
gineering Conference, APSEC 2016, Hamilton, New Zealand, Decem-
ber 6-9, 2016, pages 297–304. IEEE Computer Society, 2016. doi:
10.1109/APSEC.2016.049.

[NH10] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Johannes Fürnkranz and Thorsten
Joachims, editors, Proceedings of the 27th International Conference on
Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages
807–814. Omnipress, 2010. URL: https://icml.cc/Conferences/2010/
papers/432.pdf.

169

https://doi.org/10.1007/978-3-642-16573-3_16
https://doi.org/10.1007/978-3-642-16573-3_16
https://doi.org/10.1109/ICST.2009.19
https://doi.org/10.1007/978-3-030-57321-8_19
https://doi.org/10.24963/ijcai.2020/64
https://doi.org/10.1109/jas.2020.1003021
https://doi.org/10.1109/jas.2020.1003021
https://doi.org/10.1109/APSEC.2016.049
https://doi.org/10.1109/APSEC.2016.049
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf

BIBLIOGRAPHY

[Nie15] Michael A Nielsen. Neural networks and deep learning, volume 25. De-
termination press San Francisco, CA, USA, 2015.

[NPS+20] Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Quang Tran Minh.
sfuzz: an efficient adaptive fuzzer for solidity smart contracts. In Gregg
Rothermel and Doo-Hwan Bae, editors, ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19
July, 2020, pages 778–788. ACM, 2020. doi:10.1145/3377811.3380334.

[NZK+20] Manan Binth Taj Noor, Nusrat Zerin Zenia, M. Shamim Kaiser,
Shamim Al Mamun, and Mufti Mahmud. Application of deep learn-
ing in detecting neurological disorders from magnetic resonance images:
a survey on the detection of alzheimer’s disease, parkinson’s disease
and schizophrenia. Brain Informatics, 7(1):11, 2020. doi:10.1186/
s40708-020-00112-2.

[OBK22] Matan Ostrovsky, Clark W. Barrett, and Guy Katz. An abstraction-
refinement approach to verifying convolutional neural networks. In Ahmed
Bouajjani, Lukás Holík, and Zhilin Wu, editors, Automated Technology
for Verification and Analysis - 20th International Symposium, ATVA
2022, Virtual Event, October 25-28, 2022, Proceedings, volume 13505
of Lecture Notes in Computer Science, pages 391–396. Springer, 2022.
doi:10.1007/978-3-031-19992-9_25.

[OG96] Christian W. Omlin and C. Lee Giles. Extraction of rules from discrete-
time recurrent neural networks. Neural Networks, 9(1):41–52, 1996. doi:
10.1016/0893-6080(95)00086-0.

[OG10] Markus Ojala and Gemma C. Garriga. Permutation tests for study-
ing classifier performance. J. Mach. Learn. Res., 11:1833–1863, 2010.
URL: https://dl.acm.org/doi/10.5555/1756006.1859913, doi:10.
5555/1756006.1859913.

[OWSH20] Takamasa Okudono, Masaki Waga, Taro Sekiyama, and Ichiro Hasuo.
Weighted automata extraction from recurrent neural networks via regres-
sion on state spaces. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 5306–5314. AAAI Press,
2020. URL: https://ojs.aaai.org/index.php/AAAI/article/view/
5977.

[PAT+22] Anjana Perera, Aldeida Aleti, Chakkrit Tantithamthavorn, Jirayus
Jiarpakdee, Burak Turhan, Lisa Kuhn, and Katie Walker. Search-based
fairness testing for regression-based machine learning systems. Empir.
Softw. Eng., 27(3):79, 2022. doi:10.1007/s10664-022-10116-7.

[PCYJ17] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In Proceedings of
the 26th Symposium on Operating Systems Principles, Shanghai, China,

170

https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1186/s40708-020-00112-2
https://doi.org/10.1186/s40708-020-00112-2
https://doi.org/10.1007/978-3-031-19992-9_25
https://doi.org/10.1016/0893-6080(95)00086-0
https://doi.org/10.1016/0893-6080(95)00086-0
https://dl.acm.org/doi/10.5555/1756006.1859913
https://doi.org/10.5555/1756006.1859913
https://doi.org/10.5555/1756006.1859913
https://ojs.aaai.org/index.php/AAAI/article/view/5977
https://ojs.aaai.org/index.php/AAAI/article/view/5977
https://doi.org/10.1007/s10664-022-10116-7

BIBLIOGRAPHY

October 28-31, 2017, pages 1–18. ACM, 2017. doi:10.1145/3132747.
3132785.

[PGV+18] Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin. Catboost: unbiased boost-
ing with categorical features. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 6639–
6649, 2018. URL: https://proceedings.neurips.cc/paper/2018/
hash/14491b756b3a51daac41c24863285549-Abstract.html.

[PLQT19] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. CRA-
DLE: cross-backend validation to detect and localize bugs in deep learning
libraries. In Joanne M. Atlee, Tevfik Bultan, and Jon Whittle, editors,
Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 1027–1038.
IEEE / ACM, 2019. doi:10.1109/ICSE.2019.00107.

[PLS20] Long H. Pham, Jiaying Li, and Jun Sun. SOCRATES: towards a unified
platform for neural network verification. CoRR, abs/2007.11206, 2020.
URL: https://arxiv.org/abs/2007.11206, arXiv:2007.11206.

[PQW+20] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier,
Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagap-
pan. Problems and opportunities in training deep learning software
systems: An analysis of variance. In 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne,
Australia, September 21-25, 2020, pages 771–783. IEEE, 2020. doi:
10.1145/3324884.3416545.

[PTF+21] Giovanni Pellegrini, Alessandro Tibo, Paolo Frasconi, Andrea Passerini,
and Manfred Jaeger. Learning aggregation functions. In Zhi-Hua Zhou,
editor, Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI, Virtual Event / Montreal, Canada, 19-27
August 2021, pages 2892–2898. ijcai.org, 2021. doi:10.24963/ijcai.
2021/398.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[PVY99] Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box
checking. In Jianping Wu, Samuel T. Chanson, and Qiang Gao, edi-
tors, Formal Methods for Protocol Engineering and Distributed Systems,
FORTE XII / PSTV XIX’99, IFIP TC6 WG6.1 Joint International Con-
ference on Formal Description Techniques for Distributed Systems and

171

https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://doi.org/10.1109/ICSE.2019.00107
https://arxiv.org/abs/2007.11206
https://arxiv.org/abs/2007.11206
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.24963/ijcai.2021/398
https://doi.org/10.24963/ijcai.2021/398

BIBLIOGRAPHY

Communication Protocols (FORTE XII) and Protocol Specification, Test-
ing and Verification (PSTV XIX), October 5-8, 1999, Beijing, China,
volume 156 of IFIP Conference Proceedings, pages 225–240. Kluwer, 1999.

[PW15] Petros Papadopoulos and Neil Walkinshaw. Black-box test generation
from inferred models. In Rachel Harrison, Ayse Basar Bener, and Burak
Turhan, editors, 4th IEEE/ACM International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering, RAISE 2015,
Florence, Italy, May 17, 2015, pages 19–24. IEEE Computer Society,
2015. doi:10.1109/RAISE.2015.11.

[Qui97] J. Ross Quinlan. Decision trees and instance-based classifiers. In Allen B.
Tucker, editor, The Computer Science and Engineering Handbook, pages
521–535. CRC Press, 1997.

[Rah18] N. A. Rahman. Symmetric Function and Allied Tables. Royal
Statistical Society. Journal. Series A: General, 130(2):256–257, 12
2018. arXiv:https://academic.oup.com/jrsssa/article-pdf/130/
2/256/49745013/jrsssa_130_2_256.pdf, doi:10.2307/2343415.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536,
1986.

[Ros02] Kenneth H. Rosen. Discrete Mathematics and Its Applications. McGraw-
Hill Higher Education, 5th edition, 2002.

[ROT89] Debra J. Richardson, T. Owen O’Malley, and C. Tittle. Approaches to
specification-based testing. In Richard A. Kemmerer, editor, Proceedings
of the ACM SIGSOFT ’89 Third Symposium on Testing, Analysis, and
Verification, TAV 1989, Key West, Florida, USA, December 13-15, 1989,
pages 86–96. ACM, 1989. doi:10.1145/75308.75319.

[RS10] Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic
framework. J. Log. Algebraic Methods Program., 79(6):397–434, 2010.
doi:10.1016/j.jlap.2010.03.012.

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should
I trust you?": Explaining the predictions of any classifier. In Balaji Kr-
ishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou
Shen, and Rajeev Rastogi, editors, Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, pages 1135–1144. ACM, 2016.
doi:10.1145/2939672.2939778.

[RT16] Julia Rubin and Thomas Thüm, editors. Proceedings 7th International
Workshop on Formal Methods and Analysis in Software Product Line En-
gineering, FMSPLE@ETAPS 2016, Eindhoven, The Netherlands, April
3, 2016, volume 206 of EPTCS, 2016. doi:10.4204/EPTCS.206.

[SC93] Phil Stocks and David A. Carrington. Test templates: A specification-
based testing framework. In Victor R. Basili, Richard A. DeMillo, and

172

https://doi.org/10.1109/RAISE.2015.11
https://arxiv.org/abs/https://academic.oup.com/jrsssa/article-pdf/130/2/256/49745013/jrsssa_130_2_256.pdf
https://arxiv.org/abs/https://academic.oup.com/jrsssa/article-pdf/130/2/256/49745013/jrsssa_130_2_256.pdf
https://doi.org/10.2307/2343415
https://doi.org/10.1145/75308.75319
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.4204/EPTCS.206

BIBLIOGRAPHY

Takuya Katayama, editors, Proceedings of the 15th International Confer-
ence on Software Engineering, Baltimore, Maryland, USA, May 17-21,
1993, pages 405–414. IEEE Computer Society / ACM Press, 1993. URL:
http://portal.acm.org/citation.cfm?id=257572.257664.

[SCDG] Avi Feller Sam Corbett-Davies, Emma Pierson and Sharad
Goel. A computer program used for bail and sentencing deci-
sions was labeled biased against blacks. it’s actually not that
clear. https://www.washingtonpost.com/news/monkey-cage/
wp/2016/10/17/can-an-algorithm-be-racist-our-analysis\
-is-more-cautious-than-propublicas/. Accessed: October 17,
2016.

[Sch90] Robert E. Schapire. The strength of weak learnability. Mach. Learn.,
5:197–227, 1990. doi:10.1007/BF00116037.

[Sch12] Ina Schieferdecker. Model-based testing. IEEE Softw., 29(1):14–18, 2012.
doi:10.1109/MS.2012.13.

[SG09] Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In Ana
Cavalcanti and Dennis Dams, editors, FM 2009: Formal Methods, Sec-
ond World Congress, Eindhoven, The Netherlands, November 2-6, 2009.
Proceedings, volume 5850 of Lecture Notes in Computer Science, pages
207–222. Springer, 2009. doi:10.1007/978-3-642-05089-3_14.

[SGM20] Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, detached,
and lazy CNF-XOR solving and its applications to counting and sam-
pling. In Shuvendu K. Lahiri and Chao Wang, editors, Computer
Aided Verification - 32nd International Conference, CAV 2020, Los An-
geles, CA, USA, July 21-24, 2020, Proceedings, Part I, volume 12224
of Lecture Notes in Computer Science, pages 463–484. Springer, 2020.
doi:10.1007/978-3-030-53288-8_22.

[SGSG19] Jenni AM Sidey-Gibbons and Chris J Sidey-Gibbons. Machine learning in
medicine: a practical introduction. BMC medical research methodology,
19:1–18, 2019.

[SKT22] Shinya Sano, Takashi Kitamura, and Shingo Takada. An efficient discrim-
ination discovery method for fairness testing. In Rong Peng, Carlos Ed-
uardo Pantoja, and Pankaj Kamthan, editors, The 34th International
Conference on Software Engineering and Knowledge Engineering, SEKE
2022, KSIR Virtual Conference Center, USA, July 1 - July 10, 2022,
pages 200–205. KSI Research Inc., 2022. doi:10.18293/SEKE2022-064.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit
testing engine for C. In Michel Wermelinger and Harald C. Gall, editors,
Proceedings of the 10th European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, 2005, Lisbon, Portugal, September 5-9,
2005, pages 263–272. ACM, 2005. doi:10.1145/1081706.1081750.

173

http://portal.acm.org/citation.cfm?id=257572.257664
https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis\-is-more-cautious-than-propublicas/
https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis\-is-more-cautious-than-propublicas/
https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis\-is-more-cautious-than-propublicas/
https://doi.org/10.1007/BF00116037
https://doi.org/10.1109/MS.2012.13
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.18293/SEKE2022-064
https://doi.org/10.1145/1081706.1081750

BIBLIOGRAPHY

[Spi89] J. Michael Spivey. An introduction to Z and formal specifications. Softw.
Eng. J., 4(1):40–50, 1989. doi:10.1049/sej.1989.0006.

[SPV16] Eero Siivola, Juho Piironen, and Aki Vehtari. Automatic monotonicity
detection for gaussian processes. arXiv preprint arXiv:1610.05440, 2016.

[SS21] Richard Schumi and Jun Sun. Spectest: Specification-based compiler
testing. In Esther Guerra and Mariëlle Stoelinga, editors, Fundamen-
tal Approaches to Software Engineering - 24th International Conference,
FASE 2021, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2021, Luxembourg City, Luxem-
bourg, March 27 - April 1, 2021, Proceedings, volume 12649 of Lec-
ture Notes in Computer Science, pages 269–291. Springer, 2021. doi:
10.1007/978-3-030-71500-7_14.

[SUC22] Ezekiel O. Soremekun, Sakshi Udeshi, and Sudipta Chattopadhyay. As-
traea: Grammar-based fairness testing. IEEE Trans. Software Eng.,
48(12):5188–5211, 2022. doi:10.1109/TSE.2022.3141758.

[SW19] Arnab Sharma and Heike Wehrheim. Testing machine learning algorithms
for balanced data usage. In 12th IEEE Conference on Software Testing,
Validation and Verification, ICST 2019, Xi’an, China, April 22-27, 2019,
pages 125–135. IEEE, 2019. doi:10.1109/ICST.2019.00022.

[SW20a] Arnab Sharma and Heike Wehrheim. Automatic fairness testing of ma-
chine learning models. In Valentina Casola, Alessandra De Benedictis, and
Massimiliano Rak, editors, Testing Software and Systems - 32nd IFIP WG
6.1 International Conference, ICTSS 2020, Naples, Italy, December 9-11,
2020, Proceedings, volume 12543 of Lecture Notes in Computer Science,
pages 255–271. Springer, 2020. doi:10.1007/978-3-030-64881-7_16.

[SW20b] Arnab Sharma and Heike Wehrheim. Higher income, larger loan? mono-
tonicity testing of machine learning models. In Sarfraz Khurshid and
Corina S. Pasareanu, editors, ISSTA ’20: 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, Virtual Event, USA,
July 18-22, 2020, pages 200–210. ACM, 2020. doi:10.1145/3395363.
3397352.

[SWR+18] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta
Kwiatkowska, and Daniel Kroening. Concolic testing for deep neural net-
works. In Marianne Huchard, Christian Kästner, and Gordon Fraser, edi-
tors, Proceedings of the 33rd ACM/IEEE International Conference on Au-
tomated Software Engineering, ASE 2018, Montpellier, France, September
3-7, 2018, pages 109–119. ACM, 2018. doi:10.1145/3238147.3238172.

[TAB+19] Martin Tappler, Bernhard K. Aichernig, Giovanni Bacci, Maria
Eichlseder, and Kim G. Larsen. L*-based learning of markov decision pro-
cesses. In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira,
editors, Formal Methods - The Next 30 Years - Third World Congress, FM
2019, Porto, Portugal, October 7-11, 2019, Proceedings, volume 11800
of Lecture Notes in Computer Science, pages 651–669. Springer, 2019.
doi:10.1007/978-3-030-30942-8_38.

174

https://doi.org/10.1049/sej.1989.0006
https://doi.org/10.1007/978-3-030-71500-7_14
https://doi.org/10.1007/978-3-030-71500-7_14
https://doi.org/10.1109/TSE.2022.3141758
https://doi.org/10.1109/ICST.2019.00022
https://doi.org/10.1007/978-3-030-64881-7_16
https://doi.org/10.1145/3395363.3397352
https://doi.org/10.1145/3395363.3397352
https://doi.org/10.1145/3238147.3238172
https://doi.org/10.1007/978-3-030-30942-8_38

BIBLIOGRAPHY

[TCDH11] Ali Fallah Tehrani, Weiwei Cheng, Krzysztof Dembczynski, and Eyke
Hüllermeier. Learning monotone nonlinear models using the choquet
integral. In Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba,
and Michalis Vazirgiannis, editors, Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD 2011,
Athens, Greece, September 5-9, 2011, Proceedings, Part III, volume 6913
of Lecture Notes in Computer Science, pages 414–429. Springer, 2011.
doi:10.1007/978-3-642-23808-6_27.

[TN20] John Törnblom and Simin Nadjm-Tehrani. Formal verification of input-
output mappings of tree ensembles. Sci. Comput. Program., 194:102450,
2020. doi:10.1016/j.scico.2020.102450.

[Tse83] Grigori S Tseitin. On the complexity of derivation in propositional calcu-
lus. In Automation of reasoning, pages 466–483. Springer, 1983.

[TSHL17] Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and Mounia Lal-
mas. Interpretable predictions of tree-based ensembles via actionable
feature tweaking. In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, Hali-
fax, NS, Canada, August 13 - 17, 2017, pages 465–474. ACM, 2017.
doi:10.1145/3097983.3098039.

[TSHW20] Sarah Tan, Matvey Soloviev, Giles Hooker, and Martin T. Wells. Tree
space prototypes: Another look at making tree ensembles interpretable. In
Jeannette M. Wing and David Madigan, editors, FODS ’20: ACM-IMS
Foundations of Data Science Conference, Virtual Event, USA, October
19-20, 2020, pages 23–34. ACM, 2020. doi:10.1145/3412815.3416893.

[TSL04] Li Tan, Oleg Sokolsky, and Insup Lee. Specification-based testing with
linear temporal logic. In Du Zhang, Éric Grégoire, and Doug DeGroot,
editors, Proceedings of the 2004 IEEE International Conference on In-
formation Reuse and Integration, IRI - 2004, November 8-10, 2004, Las
Vegas Hilton, Las Vegas, NV, USA, pages 493–498. IEEE Systems, Man,
and Cybernetics Society, 2004. doi:10.1109/IRI.2004.1431509.

[TZO+20] Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail E. Kaiser, and
Baishakhi Ray. Testing DNN image classifiers for confusion & bias
errors. In Gregg Rothermel and Doo-Hwan Bae, editors, ICSE ’20:
42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020, pages 1122–1134. ACM, 2020. doi:
10.1145/3377811.3380400.

[UAC18] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. Automated
directed fairness testing. In Marianne Huchard, Christian Kästner, and
Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, pages 98–108. ACM, 2018. doi:10.1145/
3238147.3238165.

175

https://doi.org/10.1007/978-3-642-23808-6_27
https://doi.org/10.1016/j.scico.2020.102450
https://doi.org/10.1145/3097983.3098039
https://doi.org/10.1145/3412815.3416893
https://doi.org/10.1109/IRI.2004.1431509
https://doi.org/10.1145/3377811.3380400
https://doi.org/10.1145/3377811.3380400
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3238147.3238165

BIBLIOGRAPHY

[UM18] Caterina Urban and Peter Müller. An abstract interpretation framework
for input data usage. In Amal Ahmed, editor, Programming Languages
and Systems - 27th European Symposium on Programming, ESOP 2018,
Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, volume 10801 of Lecture Notes in Computer Science, pages
683–710. Springer, 2018. doi:10.1007/978-3-319-89884-1_24.

[VC21] Andreas Venzke and Spyros Chatzivasileiadis. Verification of neural
network behaviour: Formal guarantees for power system applications.
IEEE Trans. Smart Grid, 12(1):383–397, 2021. doi:10.1109/TSG.2020.
3009401.

[VDO+19] Michael Veale, S Delacroix, S Olhede, C Blacklaws, and S Adams Bhatti.
Algorithms in the criminal justice system. 2019.

[VLL94] Vladimir Vapnik, Esther Levin, and Yann LeCun. Measuring the vc-
dimension of a learning machine. Neural Comput., 6(5):851–876, 1994.
doi:10.1162/neco.1994.6.5.851.

[VR18] Sahil Verma and Julia Rubin. Fairness definitions explained. In Yuriy
Brun, Brittany Johnson, and Alexandra Meliou, editors, Proceedings of
the International Workshop on Software Fairness, FairWare@ICSE 2018,
Gothenburg, Sweden, May 29, 2018, pages 1–7. ACM, 2018. doi:10.
1145/3194770.3194776.

[Wal18] Neil Walkinshaw. Testing functional black-box programs without a spec-
ification. In Amel Bennaceur, Reiner Hähnle, and Karl Meinke, edi-
tors, Machine Learning for Dynamic Software Analysis: Potentials and
Limits - International Dagstuhl Seminar 16172, Dagstuhl Castle, Ger-
many, April 24-27, 2016, Revised Papers, volume 11026 of Lecture Notes
in Computer Science, pages 101–120. Springer, 2018. doi:10.1007/
978-3-319-96562-8_4.

[Wey82] Elaine J. Weyuker. On testing non-testable programs. Comput. J.,
25(4):465–470, 1982. doi:10.1093/comjnl/25.4.465.

[WFH11] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data mining: practical
machine learning tools and techniques, 3rd Edition. Morgan Kaufmann,
Elsevier, 2011. URL: https://www.worldcat.org/oclc/262433473.

[WGS19] Roman Werpachowski, András György, and Csaba Szepesvári. De-
tecting overfitting via adversarial examples. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neu-
ral Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages 7856–7866,
2019. URL: https://proceedings.neurips.cc/paper/2019/hash/
28f7241796510e838db4a1384ae1279d-Abstract.html.

176

https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1109/TSG.2020.3009401
https://doi.org/10.1109/TSG.2020.3009401
https://doi.org/10.1162/neco.1994.6.5.851
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1007/978-3-319-96562-8_4
https://doi.org/10.1007/978-3-319-96562-8_4
https://doi.org/10.1093/comjnl/25.4.465
https://www.worldcat.org/oclc/262433473
https://proceedings.neurips.cc/paper/2019/hash/28f7241796510e838db4a1384ae1279d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/28f7241796510e838db4a1384ae1279d-Abstract.html

BIBLIOGRAPHY

[WGY18] Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from
recurrent neural networks using queries and counterexamples. In Jen-
nifer G. Dy and Andreas Krause, editors, Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pages 5244–5253. PMLR, 2018. URL:
http://proceedings.mlr.press/v80/weiss18a.html.

[WKQ+08] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang
Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus F. M. Ng, Bing
Liu, Philip S. Yu, Zhi-Hua Zhou, Michael S. Steinbach, David J. Hand,
and Dan Steinberg. Top 10 algorithms in data mining. Knowl. Inf. Syst.,
14(1):1–37, 2008. doi:10.1007/s10115-007-0114-2.

[WKRL17] Christian Wolschke, Thomas Kuhn, H. Dieter Rombach, and Peter Ligges-
meyer. Observation based creation of minimal test suites for autonomous
vehicles. In 2017 IEEE International Symposium on Software Reliabil-
ity Engineering Workshops, ISSRE, France, 2017, pages 294–301. IEEE,
2017. doi:10.1109/ISSREW.2017.46.

[WLQ+22] Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and
Lin Tan. EAGLE: creating equivalent graphs to test deep learning li-
braries. In 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages
798–810. ACM, 2022. doi:10.1145/3510003.3510165.

[WYC+20] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang.
Deep learning library testing via effective model generation. In Prem
Devanbu, Myra B. Cohen, and Thomas Zimmermann, editors, ES-
EC/FSE ’20: 28th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, Vir-
tual Event, USA, November 8-13, 2020, pages 788–799. ACM, 2020.
doi:10.1145/3368089.3409761.

[XKN22] Xuan Xie, Kristian Kersting, and Daniel Neider. Neuro-symbolic verifica-
tion of deep neural networks. In Luc De Raedt, editor, Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJ-
CAI 2022, Vienna, Austria, 23-29 July 2022, pages 3622–3628. ijcai.org,
2022. doi:10.24963/ijcai.2022/503.

[XLLL23] Yisong Xiao, Aishan Liu, Tianlin Li, and Xianglong Liu. Latent imi-
tator: Generating natural individual discriminatory instances for black-
box fairness testing. CoRR, abs/2305.11602, 2023. arXiv:2305.11602,
doi:10.48550/arXiv.2305.11602.

[XLY+22] Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang, and Shuai Wang.
Metamorphic testing of deep learning compilers. Proc. ACM Meas. Anal.
Comput. Syst., 6(1):15:1–15:28, 2022. doi:10.1145/3508035.

[XW20] Wentao Xie and Peng Wu. Fairness testing of machine learning models
using deep reinforcement learning. In 2020 IEEE 19th International Con-

177

http://proceedings.mlr.press/v80/weiss18a.html
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1109/ISSREW.2017.46
https://doi.org/10.1145/3510003.3510165
https://doi.org/10.1145/3368089.3409761
https://doi.org/10.24963/ijcai.2022/503
https://arxiv.org/abs/2305.11602
https://doi.org/10.48550/arXiv.2305.11602
https://doi.org/10.1145/3508035

BIBLIOGRAPHY

ference on Trust, Security and Privacy in Computing and Communica-
tions (TrustCom), pages 121–128, 2020. doi:10.1109/TrustCom50675.
2020.00029.

[YBK18] Kun-Hsing Yu, Andrew L Beam, and Isaac S Kohane. Artificial intelli-
gence in healthcare. Nature biomedical engineering, 2(10):719–731, 2018.

[YDC+17] Seungil You, David Ding, Kevin Robert Canini, Jan Pfeifer, and
Maya R. Gupta. Deep lattice networks and partial monotonic
functions. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett, editors, Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 2981–
2989, 2017. URL: https://proceedings.neurips.cc/paper/2017/
hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html.

[YM21] Jiong Yang and Kuldeep S. Meel. Engineering an efficient PB-XOR
solver. In Laurent D. Michel, editor, 27th International Conference on
Principles and Practice of Constraint Programming, CP 2021, Montpel-
lier, France (Virtual Conference), October 25-29, 2021, volume 210 of
LIPIcs, pages 58:1–58:20. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021. doi:10.4230/LIPIcs.CP.2021.58.

[ZCD+22] Haibin Zheng, Zhiqing Chen, Tianyu Du, Xuhong Zhang, Yao Cheng,
Shouling Ji, Jingyi Wang, Yue Yu, and Jinyin Chen. Neuronfair: Inter-
pretable white-box fairness testing through biased neuron identification.
In 44th IEEE/ACM 44th International Conference on Software Engineer-
ing, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 1519–1531.
ACM, 2022. doi:10.1145/3510003.3510123.

[ZDMR17] Hong Zhu, Junhua Ding, Patrícia D. L. Machado, and Marc Roper. AST
2017 workshop summary. In 12th IEEE/ACM International Workshop
on Automation of Software Testing, AST@ICSE 2017, Buenos Aires,
Argentina, May 20-21, 2017, page 1. IEEE Computer Society, 2017.
doi:10.1109/AST.2017.19.

[ZHML22] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning
testing: Survey, landscapes and horizons. IEEE Trans. Software Eng.,
48(2):1–36, 2022. doi:10.1109/TSE.2019.2962027.

[ZKR+17] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póc-
zos, Ruslan Salakhutdinov, and Alexander J. Smola. Deep sets.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 3391–3401,
2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
f22e4747da1aa27e363d86d40ff442fe-Abstract.html.

178

https://doi.org/10.1109/TrustCom50675.2020.00029
https://doi.org/10.1109/TrustCom50675.2020.00029
https://proceedings.neurips.cc/paper/2017/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://doi.org/10.4230/LIPIcs.CP.2021.58
https://doi.org/10.1145/3510003.3510123
https://doi.org/10.1109/AST.2017.19
https://doi.org/10.1109/TSE.2019.2962027
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html

BIBLIOGRAPHY

[ZS18] Zhi Quan Zhou and Liqun Sun. Metamorphic testing for machine trans-
lations: MT4MT. In 25th Australasian Software Engineering Conference,
ASWEC 2018, Adelaide, Australia, November 26-30, 2018, pages 96–100.
IEEE Computer Society, 2018. doi:10.1109/ASWEC.2018.00021.

[ZTK22] Zhenjiang Zhao, Takahisa Toda, and Takashi Kitamura. Efficient fair-
ness testing through hash-based sampling. In Mike Papadakis and Sil-
via Regina Vergilio, editors, Search-Based Software Engineering - 14th In-
ternational Symposium, SSBSE 2022, Singapore, November 17-18, 2022,
Proceedings, volume 13711 of Lecture Notes in Computer Science, pages
35–50. Springer, 2022. doi:10.1007/978-3-031-21251-2_3.

[ZVGG17] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and
Krishna P. Gummadi. Fairness constraints: Mechanisms for fair classifi-
cation. In Aarti Singh and Xiaojin (Jerry) Zhu, editors, Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, volume 54
of Proceedings of Machine Learning Research, pages 962–970. PMLR,
2017. URL: http://proceedings.mlr.press/v54/zafar17a.html.

[ZWG+21] Zhiyi Zhang, Pu Wang, Hongjing Guo, Ziyuan Wang, Yuqian Zhou, and
Zhiqiu Huang. Deepbackground: Metamorphic testing for deep-learning-
driven image recognition systems accompanied by background-relevance.
Inf. Softw. Technol., 140:106701, 2021. doi:10.1016/j.infsof.2021.
106701.

[ZWS+20] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xin-
gen Wang, Jin Song Dong, and Ting Dai. White-box fairness testing
through adversarial sampling. In Gregg Rothermel and Doo-Hwan Bae,
editors, ICSE ’20: 42nd International Conference on Software Engineer-
ing, Seoul, South Korea, 27 June - 19 July, 2020, pages 949–960. ACM,
2020. doi:10.1145/3377811.3380331.

179

https://doi.org/10.1109/ASWEC.2018.00021
https://doi.org/10.1007/978-3-031-21251-2_3
http://proceedings.mlr.press/v54/zafar17a.html
https://doi.org/10.1016/j.infsof.2021.106701
https://doi.org/10.1016/j.infsof.2021.106701
https://doi.org/10.1145/3377811.3380331

Erklärung

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Hilfsmittel benutzt habe. Außerdem versichere ich, dass ich die Leitlinien guter
wissenschaftlicher Praxis der Carl von Ossietzky Universität Oldenburg befolgt habe.

Ort: Oldenburg Datum: 12.12.2023

Unterschrift:

	Introduction
	Motivation and Problem Statement
	Contributions and Structure of Thesis
	Publications

	Background
	Machine Learning Fundamentals
	ML Algorithms and Models
	Properties

	Software Testing
	Adaptive Random Testing
	Metamorphic Testing
	Model-Based Testing
	Property-Based Testing
	Property-Driven Testing

	Machine Learning Testing

	Logical Encoding
	Logic and Theories
	Encoding
	Decision Tree
	Neural Network

	Computation of Property

	Balancedness Testing of ML Algorithms
	Balanced Data Usage
	Testing Approach
	Overview
	Permutation Strategies
	Checking Equivalence

	Evaluation
	Experimental Setup
	Results and Discussions

	Threats to Validity
	Related Work

	Verification-based Testing
	Formalization
	Testing Methodology
	White-box Model Learning
	Property Computation
	Pruning
	Cross Checking and Retraining
	Overall Algorithm

	Property-driven Testing
	Property Specification Language
	Syntax and Semantics

	Test Input Generation
	Connecting to Model Encoding
	Property Translation
	Property Translation Example
	SMT Solving

	Related Work

	Evaluation of MLcheck
	Implementation of MLcheck
	Experimental Setup
	Properties
	Datasets
	Models Under Test
	Baseline Tools

	External Evaluation
	Fairness
	Monotonicity
	Security
	Concept Relationship
	Properties of Regression Models and Aggregation Functions
	Discussions

	Internal Evaluation
	Model Comparison
	Pruning Comparison

	Limitations and Threats to Validity
	Related Work

	Conclusion & Future Work
	Summary
	Discussion
	Future Work

	Technical Details & Extra Results
	Tool Implementation of TiLe
	Configuration of MLcheck
	Artifact
	Monotonicity Features & Extra Results

	Index
	Bibliography

