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Abstract
English
Highly available services can be implemented by means of so-called quorum pro-
tocols. Unfortunately, applying quorum protocols in real-world physical networks
turns out to be difficult since efficient quorum protocols often depend on a partic-
ular graph structure imposed on the replicas managed by it. In this work, we show
that the cost and availability predictions of the operations provided by quorum
protocols are often not accurate when they are executed in a real-world physi-
cal network. We present the mapping approach, the mapping approach increases
the accuracy of the cost and availability predictions of most quorum protocols on
real-world networks. The mapping approach is used to analyze multiple existing
quorum protocols when applied on real-world networks. As the mapping approach
is computational expensive, the k-nearest neighbors algorithm is novelly employed
to predict availability of the services facilitated by the quorum protocols when used
on a real-world network. As even this technique is infeasible at certain network
sizes two new quorum protocol, namely the Circle Protocol and the Crossing Pro-
tocol, are presented that directly work on the real-world network of arbitrary size.
All these different techniques are extensively analyzed and compared. Concluding,
an algorithm is presented that uses all these techniques to find the best quorum
protocol for a given real-world network.

German
Hochverfügbare Dienste können mit Hilfe von sogenannten Quorum Protokollen
realisiert werden. Leider gestaltet sich die Anwendung von Quorum-Protokollen
in realen Netzwerken als schwierig, da effiziente Quorum-Protokolle oft von einer
bestimmten Graphenstruktur abhängen, die den von ihnen verwalteten Replikaten
auferlegt sind. In dieser Arbeit zeigen wir, dass die Kosten- und Verfügbarkeits-
vorhersagen von Quorum-Protokollen oft ungenau sind, wenn sie in einem realen
Netzwerk eingesetzt werden. Wir stellen den Mapping-Ansatz vor. Der Mapping-
Ansatz erhöht die Genauigkeit der der Kosten- und Verfügbarkeitsvorhersagen der
meisten Quorum-Protokolle in realen Netzwerken. Da der Mapping-Ansatz sehr
rechenintensiv ist, wird das k-nearest neighbors Verfahren benutzt, um die Ver-
fügbarkeit der durch die Quoren Protokolle erbrachten Dienste vorherzusagen. Da
selbst diese Technik bei bestimmten Netzwerkgrößen nicht praktikabel ist, werden
zwei neue Quorum-Protokoll, namentlich das Circle-Protokoll und das Crossing-
Protokoll, vorgestellt. Diese beiden Protokolle arbeiten direkt auf einem realen
Netzwerk. Alle diese verschiedenen Techniken werden ausführlich analysiert und



verglichen. Abschließend wird ein Algorithmus vorgestellt, der alle diese Techniken
verwendet um das beste Quorum-Protokoll für ein gegebenes reales Netzwerk zu
finden.
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1 Introduction
Computer fail from time to time. If a piece of data is stored on this failed computer,
the stored data is no longer accessible. To increase the availability of that data, it
can be replicated to multiple computers. As long as one of the computers, storing
a replica, is available the data is accessible. Another advantage of replication is
the locality of the accessed data. Assuming the computers, storing the replicas,
are networked. Then accessing the data from a computer near the user is likely
faster or cheaper, due to the physical proximity, than accessing the data from a
further away located computer.

These replicas need to be managed. Quorum protocols (QPs) are one way to
manage these replicas. Generally, QPs offer a read and a write operation. One
of the things to manage is the synchronization between the replicas and between
the operations. Let the piece of data or data object (DO) be replicated on five
replicas, as shown in Figure 1.1. If the DO located on replica 1 is written with a

0 1 2 3 4

Figure 1.1: Five replicas storing a DO.

new value, then reading the DO from replica 4 does not yield the last written value.
For most applications, this is not the intended behavior [1]. Additionally, without
synchronization two write-operation could potentially write different values at the
same time. For example, the value a is written to the DO on replica 2 and the
value b is written to the DO on replica 3. In the absence of synchronization, it is
unclear whether a or b is the last written value. Usually, the goal is that both read
and write operations behave as they would do on a non-replicated DO. This means
that even though possible executed in parallel, the history of the data will appear
as it would after being executing in a serial manner. This non-replicated behavior
can be achieved by control protocols that guarantees the one-copy serializability
(1SR) property [2]. Many QPs implement such a control protocol.
The QPs presented in this work manage a static number of replicas. For each

operation, a set of replicas is identified that executes the operation. These sets of
replicas are called quorums and consist of a subset of the replicas managed by the
QP. Often, two kinds of quorums exist. One kind of quorum read operations called
read quorum (RQ), and another kind for write operations called write quorum
(WQ).
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1 Introduction

Quorums have a wide range of applicability. They have been used, for example,
for managing data replication (DR) and mutual exclusion [3, 4, 5]. This work will
focus on QPs used for data replication.
A common way for QPs to achieve 1SR is to construct the WQs in a way that

they have at least one replica in common with every other WQ:

∀q,q′ ∈ QW,q ̸= q′ : q∩q′ ̸= /0. (1.1)

This way, e.g. locking a WQ for writing, prevents every other write operation
from locking an additional WQ, as a replica has only one write lock. Additionally,
replicas contained in a RQ are locked for reading. Furthermore, every RQ is
constructed in a way such that at least one replica of the RQ is also part of every
WQ:

∀q ∈ QR,q′ ∈ QW : q∩q′ ̸= /0 (1.2)

To execute a read (write) operation, all replicas in the RQ (WQ) have to be locked
for the desired operation and any replica can only be locked for one operation at
a time. This requirement allows a RQ to always read the most recently written
data, identified by timestamps or version numbers (VNs), as at least one replica
of every RQ has been part of the last written WQ.
As an example, consider a WQ consisting of three out-of five replicas of Figure

1.1. A write operation writes the value c with a VN of 5 to a WQ consisting of
the three replicas 0,1, and 3. Figure 1.2 shows the three selected replicas enclosed
in a red circle. The lower index represents the VN and the character above the
VN represents the DO. Figure 1.3 shows the replicas after the write operation has

0a
3 1a

3 2a
3 3x

1 4y
2

Figure 1.2: Three replicas being selected to form a WQ to execute a write opera-
tion.

been executed. It can be seen that the values, of the three selected replicas, have
changed to c and that their VN is set to 4. Following that, a read operation is

0c
4 1c

4 2c
4 3x

1 4y
2

Figure 1.3: Five replicas after writing the value c with VN 4 to the replicas 0,1,
and 2.
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executed that uses the three encircled replicas, as shown in Figure 1.4, as a RQ.
It can be seen that the one replica that took part in the write operation also takes

0c
4 1c

4 2c
4 3x

1 4y
2

Figure 1.4: Three replias being selected to execute a read operation.

part in the read operation. Figure 1.5 displays this visually. The VNs of the three

0c
4 1c

4 2c
4 3x

1 4y
2

Figure 1.5: Showing the intersection between a RQ and a WQ.

read replicas are compared. By definition, the DO with the highest VN is the
last written data. This example is mostly equivalent with the Majority Consensus
Protocol (MCS). The MCS is presented in more detail in Section 4.1 on page 25.
So far, it has not been discussed how the replicas communicate. In the shown

example, it is assumed that every replica can directly1 communicate with every
other replica used in the QP as shown in Figure 1.6. If a classical network topol-
ogy, as shown in Figure 1.7, would be used for the communication between the five
replicas, the problem becomes obvious. When the replica with ID 2 becomes un-
available, no RQ or WQ can be formed anymore, as two unconnected partitions of
two replicas remain. The assumption that every replica can directly communicate
with ever other replicas is implicitly taken by most QPs.
This is a very strong assumption, as the QP usually has no influence on the

network topology it uses. This work will show that the actual communication
structure, which is called physical network topology (PNT) in this work, has to
be considered in the availability and cost analysis of a QP.
To do that, a system model is presented in Chapter 2 on page 7 that is used

throughout this work. After that, a more rigorous introduction to data replication
and QPs is given in Chapter 3 on page 11. Chapter 4 on page 25 presents three
common and well-known QPs that will be used later for in-depth analysis. In
Chapter 5 on page 45 a technique is presented that can be used to analyze the
impact any specific PNT has on the availability and costs measurements of any
QP. Here, it is shown that the PNT used, is an important factor to consider
during the analysis of a QP. Based on the insights gained during these analyses
two new QPs are developed and presented in this work, that directly use a given

1By directly, a point-to-point connection between two replicas is assumed.
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0

1

2

3

4

Figure 1.6: The graph structure (GS) used by the MCS in the example with five
replicas.

0 1 2 3 4

Figure 1.7: A GS that is easy to partition.
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PNT, at thereby try to avoid the overhead of an additional indirection. Both
new QPs directly use the provided PNT as means for the communication. The
first new QP is called Circle Protocol (CIP) and is presented in Chapter 6 on
page 131. The second new QP, named Crossing Protocol (CP), is presented in
Chapter 7 on page 165. In Chapter 8 on page 193 an algorithm is presented that
allows to decide which QP to use on a given PNT to achieve the highest operation
availability or the lowest operation costs. Many of the analyses presented in this
work are so computationally complex that even with modern computers their
straightforward analysis would take an unreasonable amount of time, in the order
of years. Therefore, a significant effort was invested to optimize the execution
performance of the developed analysis tools. Some of this work is presented in
Chapter 9 on page 197. A conclusion of this work is given in Chapter 10 on
page 231. In Chapter 11 on page 233, ideas for future works are presented.
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2 System Model
Before the different QPs and research questions can be discussed a common lan-
guage and notation needs to be established, this is one in this chapter.

2.1 Set
A set is a collection of unique elements. S = {1,2,3} shows a set S containing the
numbers 1,2, and 3. The elements of a set are not ordered in any way. Let S be
set, then the notation |S| states the number of elements in it. Let S = {1,2,3} be
a set, then the notation 1 ∈ S states that the number 1 is an element of the set S.
The expression S′ = {x|x ∈ N∧ x mod 2 = 0∧ x > 0∧ x < 10} defines a set S′ with

the help of the so called set-builder notation. The set-builder notation consists of
four parts. The first part is the variable. In the shown example, the variable has
the name x. The variable is followed by | which separates the variable and the
restrictions imposed on the values that make up the set. The first restriction in
the example is the domain of the values. The domain of the example is N. The
domain is sometimes omitted, but this may lead to a problem known as the Russell
paradox [6]. Therefore, the domain for all set-builder expressions will always be
stated. The last part is the logical predicate. If the predicate is true for the value
held by the variable, then the value is added to the constructed set. The above
expression is read as follows: From all values in N create a set where each element
is greater than 0, smaller than 10, and even. The set S′ consists of the elements
{2,4,6,8}.

Let S be a set, then an expression such as x ∈ S states that x is an element of
the set S. Let S be a set, then an expression such as x ̸∈ S states that x is not an
element of the set S. The symbol /0 denotes the empty set.
Let S1 and S2 be two sets, then S1∪S2 = {x|x ∈ S1∨x ∈ S2}, where the operator

∪ is called the set union operator [7].
Let S1 and S2 again be two sets then ∩ is known as the set intersection operator

where S1∩S2 = {x|x ∈ S1∧ x ∈ S2} [7].

2.2 Tuple
A tuple is an ordered finite sequence of elements. T = (a,b) is a tuple of two
elements named a, and b. H = () is an empty tuple, which contains no elements.
If the elements of the tuple are named, then the elements of the tuple can be
accessed by the Tname notation. For example, Ta accesses the element a of the

7



2 System Model

tuple T . If the elements of the tuple are unnamed, the elements of the tuple are
accessed by an index. The first element of a tuple is indexed by 1, the second by 2
and so on. For example, consider T ′ = ({a,b,c},{1,2,3}), the first element of the
tuple {a,b,c} is accessed with the notation T ′

1. Let T be a tuple, then the notation
|T | states the number of elements in it.

2.3 Graph Structure
A GS G = (V,E) is a two-tuple of a set of vertices V and a set of edges E. One
edge connects two vertices. GV gives the set of vertices of a GS. GE gives the set
of edges of a GS. A vertex v ∈ V is a three tuple v = (i,cx,cy), where i ∈ N is the
ID of the vertex and cx and cy are the coordinates (i. e. its position/location in a
plane) of the vertex in the corresponding dimensions. Vertex IDs are unique for a
given GS G, therefore:

∀x,y ∈ GV : xi ̸= y j (2.1)

is true. The shorthand notation vi gives a vertex with ID i.
An edge ei, j ∈ GE is defined as ei, j := (vi,v j), where (vi,v j) ∈ GV : i ̸= j.
A tuple a = (v1,v2, . . . ,vn) is a path between v1 and vn in graph G, iff:

∀i,1 ≤ i ≤ n : ∃vi ∈ GV and (2.2)
∀i,1 ≤ i < n : ∃e = (vi,vi+1) ∈ GE (2.3)

If a path exists, then the two vertices v1 and vn are called connected. V(v1,v2, . . . ,vn)
denotes the set of vertices of a path such that:

V(v1,v2, . . . ,vn) :={v1,v2, . . . ,vn}. (2.4)

E(v1,v2, . . . ,vn) denotes the set of the edges of a path such that:

E(v1,v2, . . . ,vn) :={e1,2 . . . ,en−1,n}. (2.5)

The shorthand notation Ω(vi,v j) ∈ G test if there exists a path between vertices
vi and v j in GS G. Ψ(vi,v j) ∈ G is the shorthand notation to get a tuple that
represents the shortest path between the vertices vi and v j in GS G. If the vertices
vi and v j are not connected in G, then an empty tuple () is obtained.

A path p = ⟨vi, . . .v j⟩ |= Ω(i, j)∈GS is considered to partition a GS into two GSs
GS1 = (V1,E1),GS2 = (V2,E2) iff, given p:

∄ p′ :Ω(v,v′) ∈GS |= p′∧ p ̸= p′

∧ v ∈V1 ∧ v′ ∈V2

∧V(p′)∩V(p) = /0. (2.6)

8



2.3 Graph Structure

This basically states that a path partitions a GS, if there is no path from GS1 to
GS2 whose vertices do not intersect with the vertices of the partitioning path.

9





3 Data Replication
The idea behind DR is to increase the availability of the stored DOs by creating
multiple replicas of it. If one replica is no longer available, another replica might
still be accessible. The goal of a data replication system (DRS) is to provide
highly available and low cost read and write access to the DO. DR is a branch of
distributed system (DS).
DRS are often classified into four subcategories as shown in Table 3.1. Syntactic

syntactic pessimistic syntactic DRS optimistic syntactic DRS
semantic pessimistic semantic DRS optimistic semantic DRS

pessimistic optimistic

Table 3.1: Classification of Data Replication Systems.

DRS treats all data the same, which means that syntactic DRS do not use specific
properties of the stored data to increase the availability or to decrease the costs of
the operations accessing the DO. Semantic DRS on the other hand exploit specific
properties of the stored data to increase availability or to decrease costs. This
work only considers syntactic DRS [8].

Pessimistic DRS provide strict consistency properties, such as the 1SR prop-
erty. Optimistic DRS provide less strict consistency properties than pessimistic
DRS, generally allows for operations with higher availability but may lead to in-
consistencies in the stored data. This work only considers pessimistic syntactic
DRS.

3.1 Data Replication System Model
A DRS consists of one or more replicas. A replica stores a DO. The replicas of a
DRS are independent of each other. This means, replicas may fail independently
of each other. Replicas, in this work, exhibit fail-stop behavior [9]. Replicas can
use messages to communicate with each other. The availability of a replica is
given by p, where

p ∈ R : p ∈ [0,1]. (3.1)

The higher the value p, the higher the availability of the replica. Availability is
the probability that the replica has not failed. All replicas of a DRS are assumed
to have the same p-value.

11



3 Data Replication

One replica is hosted by one vertex of this GS. The edges of the GS serve
as communication channels between the replicas. The topology of the commu-
nication channels between the replicas is defined by a GS. The communication
channels between replicas are always available and are modeled by the edges of
a GS. The presumed strength of this assumption, is diminished by the fact that

1 2

3 4

5

Figure 3.1: An example of a GS serving as a communication network in a DRS
consisting of five replicas.

communication channel availabilities other than 1 can be at least approximated by
decreasing the replica availability accordingly. I.e. consider the GS in Figure 3.2.
Assuming, that communication channel has an availability of 0.8, and the replicas

0 1

Figure 3.2: An example to justify always available communication channels/edges.

0 and 1 have a p value of 0.9 the probability that the replicas can communicate,
or system availability, is 0.92 ·0.8 = 0.648. The approximately same system avail-
ability, under the assumption that the communication channel is available, can
be achieved by by decreasing the replica availability to p = 0.805. This results
in 0.8052 · 1 ≈ 0.648. The second reason, that communication channel/edge are
assumed to have an availability of p = 1, is that the complexity of the analyses of
QPs increases rapidly with in increase in the number of replicas. Such much so,
that a complete chapter of this work was dedicated to manage this complexity.
Also considering communication channel availability in the analyses would very
likely make the problem unmanageable.

3.2 One-copy serializability
Using multiple replicas increases the availability of the DO as it can often be
accessed using different replicas. But replicating the DO introduces the need for
synchronization as demonstrated in the introduction. Let the DO be replicated
on five replicas, as shown in Figure 3.3. If the DO located on replica 0 is updated
with a new value, followed by a read of the DO stored on replica 4, replica 4 does

12



3.2 One-copy serializability

0 1 2 3 4

Figure 3.3: Five replicas of a DO.

not yield the up-to-date value. Usually, this is not the intended behavior of a read
operation. An additional problem is that two concurrent write operations can be
executed on different replicas of the same DO at the same time. For example, value
a is written to the DO on replica 2 and value b is written to the DO on replica 3.
This raises the following question: Which value is the correct one? Both examples
show that simply creating multiple replicas of a DO does not necessarily lead to
the expected behavior. Usually, the goal is that all operations behave as they
would do on a non-replicated DO. More formally, this non-replicated behavior can
be achieved by a control protocol that guarantees 1SR [2].

3.2.1 Version numbers (VNs) and Locking
VNs are an effective way to identify up-to-date DOs stored on replicas. Given a
set of DOs, the DOs with the highest VN is considered up-to-date.
Each replica allows the execution of multiple read or a single write operation on

its stored DO, as read and write operation on the same DO cannot be executed
simultaneously. Therefore, replicas offer two kinds of locks. A read-lock and a
write-lock. If a replica is locked for reading, it cannot be locked for writing. If it
is locked for writing, it cannot be locked for reading. Many processes can lock a
replica for reading, but only one process can lock a replica for writing.

3.2.2 1SR Example
The following example shows how VNs and locks can be used to specify a read and
write protocol that adheres to 1SR. To demonstrate that, the example will first
show how a write operation is executed. After that, a read operation is executed
that will show how the last written data is read.
Figure 3.4 shows the initial state of the DS consisting of five replicas. The task

of the DRS only handles a single DO. The replicas are named 0,1,2,3, and 4. The
lower case letter next to the ID is the VN of the DO stored on the replica. E. g.
the DO stored by replica 0 has the VN 3. In Figure 3.5 on the next page, three

03 13 23 31 42

Figure 3.4: Five replicas of a DO with VNs.

replicas are identified, known as the WQ, to execute the write operation. These

13



3 Data Replication

three replicas 0,1, and 3 are encircled in the red circle. These three replicas are
then locked for writing. The DO is then written onto the replicas and the VN is
incremented. The new VN nv is calculated as:

vn = maxVN +1 (3.2)

where maxV N is the highest VN of the replicas locked for writing. As shown in
Figure 3.6 the new highest VN is 4. The last part of this example is to show a

03 13 23 31 42

Figure 3.5: Three out of five replicas are selected for a write operation.

read operation. The three replicas locked for reading are shown in Figure 3.7. The
replicas 2,3, and 4 are encircled in the blue circle are the replicas used for reading.
The read operation identifies that replica 2 has the highest VN. Therefore, the DO

04 14 24 31 42

Figure 3.6: Three out of Five replicas after the execution of the write operation.

stored by replica 2 is the last written one, which in turn is then read. The strategy

04 14 24 31 42

Figure 3.7: Three out of Five replicas selected for a read operation.

implicitly described in this example is one-copy serializable. As a majority of the
replicas are locked by any write operation, no two concurrent write operations
are executable. Also, a majority of the replicas need to be locked for reading,
this prevents read operations to be executed concurrently with write operations.
Additionally, the described use of the VN ensures that the last written data is
read.
This example, partially describes the strategy used by the MCS to achieve 1SR.

A more detailed description of the MCS is given in Section 4.1.
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3.3 Quorum Protocols

3.3 Quorum Protocols
The QPs covered in this work implement a control protocol that provides a read
and a write operation on a DO. The QPs covered are pessimistic-syntactic DRSs
and provide 1SR for their operations.
QPs have a set of N replicas assigned to them. QPs use quorum to execute their

read and write operations. A quorum is a subset of the N replicas of the QP. A
RQ execute a read operation. A WQ execute a write operation.

3.4 Read- and Write-Availability and Costs
The performance of QPs is commonly measured by four criteria. These four
criteria are the:

ar(p): the read operation availability of a for a QP when the availability of its
replicas is defined by p,

aw(p): the write operation availability of a for a QP when the availability of its
replicas is defined by p,

cr(p): the read operation costs of a for a QP when the availability of its replicas
is defined by p,

cw(p): the write operation costs of a for a QP when the availability of its replicas
is defined by p.

The availability of an operation is measured by a p∈ [0,1]. The higher the p-value,
the higher the availability of the operation. The cost of an operation is measured
by the average minimal number of replicas required to execute the operation. An
operation that requires fewer replicas is cheaper than those that require more
replicas. This work only considers the number of replicas in the cost analyses. It
does not consider the number of messages send between the replicas, which would
be needed if a commit protocol, like the two-phase commit protocol [8, 2], is to
be analyzed.
Some QPs have a closed formula to compute these values. But unfortunately,

this is not the case for all QPs.
The semantic-pessimistic QPs considered in this work all use a set of replicas to

execute their operations. All of these QPs have a read and a write operation. It
is assumed that QPs, and this is true for the QP presented in this work, allow to
test whether a subset of replicas managed by them is a RQ, or a WQ which can
be used to execute the read or write operation of the Grid Protocol (GP). The
expressions

isReadQuorum(q,Q) and (3.3)
isWriteQuorum(q,Q) (3.4)
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are used to donate these tests. q is a quorum that is tested and Q is the QP. If
q is a RQ under Q isReadQuorum(q,Q) evaluates to true. If q is a WQ under Q
isWriteQuorum(q,Q) evaluates to true. Otherwise, both evaluate to false.

Let the notation |Q| donate the set of replicas of a QP Q. P describes the
power-set of a given set [10].

The following equations shows how isReadQuorum and isWriteQuorum can be
used to construct the read operation availability (ar(p)), the write operation avail-
ability (aw(p)), the read operation cost (cr(p)), and write operation cost (cw(p))for
a given QP.

RQS={(q1,{sq1,1, . . . ,sq1,m}), . . . ,(qn,{sqn,1, . . . ,sqn,z}) (3.5)
| qi ∈P(|Q|) (3.6)
∧ sqi ∈P(|Q|) (3.7)
∧ isReadQuorum(qi,Q) (3.8)
∧ (qi,sqi, j) : sqi, j ⊃ qi (3.9)
∧qi,q j : qi ̸⊇ q j (3.10)
∧ (qi,sqi,n),(q j,sq j,m) : sqi,n ̸= sq j,m (3.11)
∧∄(qi,sqi, j),q j : sqi, j ⊃ q j ∧|qi|> |q j| (3.12)

}
ar(p) = ∑

∀(q,sq)∈RQS
p|q|(1− p)N−|q|+ ∑

∀t∈sq
p|t|(1− p)N−|t| (3.13)

cr(p) =
∑∀(q,sq)∈RQS |q|(p|q|(1− p)N−|q|)+∑∀t∈sq |q|(p|t|(1− p)N−|t|)

ar(p)
(3.14)

WQS={(q1,{sq1,1, . . . ,sq1,m}), . . . ,(qn,{sqn,1, . . . ,sqn,z}) (3.15)
| qi ∈P(|Q|) (3.16)
∧ sqi ∈P(|Q|) (3.17)
∧ isWriteQuorum(qi,Q) (3.18)
∧ (qi,sqi, j) : sqi, j ⊃ qi (3.19)
∧qi,q j : qi ̸⊇ q j (3.20)
∧ (qi,sqi,n),(q j,sq j,m) : sqi,n ̸= sq j,m (3.21)
∧∄(qi,sqi, j),q j : sqi, j ⊃ q j ∧|qi|> |q j| (3.22)

}
aw(p) = ∑

∀(q,sq)∈WQS
p|q|(1− p)N−|q|+ ∑

∀t∈sq
p|t|(1− p)N−|t| (3.23)

cw(p) =
∑∀(q,sq)∈WQS |q|(p|q|(1− p)N−|q|)+∑∀t∈sq |q|(p|t|(1− p)N−|t|)

aw(p)
(3.24)
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A read quorum set (RQS) and write quorum set (WQS) are used to evaluate the
ar(p) , the aw(p) , the cr(p) , and cw(p) . RQS and WQS are sets of two element
tuples each. Equation 3.6 on the facing page states that all qi elements in the
RQS are subsets of set of replicas of the QP Q. Equation 3.7 also states that all
sqi, j are subsets of the set of replicas of the QP Q. The . . . in Equation 3.5 and
Equation 3.15 indicate that there can be many tuple of quorum and subsets of
replicas of that quorum. The next restriction posed on the elements of the RQS is
shown in Equation 3.8. It states that qi is a RQ of QP Q. Equation 3.9 states that
for all tuples (qi,sqi,m) sqi,m must be supersets of qi. This is so, when evaluating
the cost of an operation, the minimal quorum is used such that we evaluate the
minimal average costs. No quorum must be represented more than once in the
RQS, this is stated in Equation 3.10. Otherwise, the RQS would not be a set and
it would be impossible to evaluate the ar(p)and cr(p) expressions. Equation 3.11
stats that no superset of any quorum must be part of any other set of supersets
of any other quorum, such that no set of replicas is represented twice in the RQS.
Finally, Equation 3.12 requires that all sqi, j are supersets of the qi that consists of
the fewest number of replicas. This guarantees that the smallest quorum is chosen
for execution of the operation.
The read operation availability ar(p) is then calculated as shown in Equation 3.13

on the preceding page. The term p|q|(1− p)N−|q| gives the probability that a set of
replicas |q|, a RQ, out of the set of all replicas N is available when each replicas has
the given p-value. The same is true for the term p|t|(1− p)N−|t|, the only difference
being that t is a superset to a quorum. All these availabilities are totaled, the
result is the ar(p) for the given QP for the given p-value.

The read costs cr(p) is then calculated as shown in Equation 3.13. For the
calculation of cr(p) it is necessary to divide by ar(p)as otherwise the resulting costs
would be scaled by the availability mass. The probabilities that q is availability
is multiplied by the number of replicas the quorum consists of. The probabilities
that t is availability is multiplied by the number of replicas the q consists of. This
is because QPs will only use the minimum number of replicas required to create
a RQ. In Section 4.1 it will be shown why this is an important requirement.
WQSs differs from RQSs in that the elements qi must be a WQs instead of a

RQs, as shown in Equation 3.18 on the facing page. The calculations for aw(p)and
cw(p)are otherwise equal to the calculations for ar(p)and cr(p) .

3.4.1 Example
To better illustrate the construction and use of the RQS and WQS we use the
previously used QP as an example. Let Q be a QP that is using 5 replicas. The
replicas are named 0,1,2,3, and 4. A RQ has to read the majority of the replicas
and a WQ also has to write the majority of the replicas.
This is enough information to construct the RQS and the WQS for this QP. The

RQS is shown in Table 3.2 on the next page and the WQS is shown in Table 3.3
on the following page.
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3 Data Replication

RQS={
({0,1,2},{{0,1,2,3},{0,1,2,4},{0,1,2,3,4}})
({0,1,3},{{0,1,3,4}})
({0,1,4},{})
({0,2,3},{{0,2,3,4}})
({0,2,4},{})
({0,3,4},{})
({1,2,3},{{1,2,3,4}})
({1,2,4},{})
({1,3,4},{})
({2,3,4},{})
}

Table 3.2: RQS of example the QP.

WQS={
({0,1,2},{{0,1,2,3},{0,1,2,4},{0,1,2,3,4}})
({0,1,3},{{0,1,3,4}})
({0,1,4},{})
({0,2,3},{{0,2,3,4}})
({0,2,4},{})
({0,3,4},{})
({1,2,3},{{1,2,3,4}})
({1,2,4},{})
({1,3,4},{})
({2,3,4},{})
}

Table 3.3: WQS of example the QP.
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The RQS shown in Table 3.2 and the WQS shown in Table 3.3 are identical as
both read and write operation require a majority of the replicas to function.
Inserting the RQS and the WQS in the equations for ar(p)and aw(p) yields the

intermediate step as shown in Table 3.4 and Table 3.5. Inserting the RQS and
the WQS in equations for cr(p) and cw(p) yields the intermediate step as shown
in Table 3.6 on the next page and Table 3.7 on the following page.

ar(p) =p3(1− p)5−3 + p4(1− p)5−4 + p4(1− p)5−4 + p5(1− p)5−5

+p3(1− p)5−3 + p4(1− p)5−4

+p3(1− p)5−3

+p3(1− p)5−3 + p4(1− p)5−4

+p3(1− p)5−3

+p3(1− p)5−3

+p3(1− p)5−3 + p4(1− p)5−4

+p3(1− p)5−3

+p3(1− p)5−3

+p3(1− p)5−3

Table 3.4: Intermediate step of preparing the RQS for the read availability ar(p) .

aw(p) =p3(1− p)5−3 + p4(1− p)5−4 + p4(1− p)5−4 + p5(1− p)5−5

+p3(1− p)5−3 + p4(1− p)5−4

+p3(1− p)5−3

+p3(1− p)5−3 + p4(1− p)5−4

+p3(1− p)5−3

+p3(1− p)5−3

+p3(1− p)5−3 + p4(1− p)5−4

+p3(1− p)5−3

+p3(1− p)5−3

+p3(1− p)5−3

Table 3.5: Intermediate step of preparing the WQS for the read availability aw(p) .
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cr(p) =(3(p3(1− p)5−3)+3(p4(1− p)5−4)+3(p4(1− p)5−4)+3(p5(1− p)5−5)

+3(p3(1− p)5−3)+3(p4(1− p)5−4)

+3(p3(1− p)5−3)

+3(p3(1− p)5−3)+3(p4(1− p)5−4)

+3(p3(1− p)5−3)

+3(p3(1− p)5−3)

+3(p3(1− p)5−3)+3(p4(1− p)5−4)

+3(p3(1− p)5−3)

+3(p3(1− p)5−3)

+3(p3(1− p)5−3))/ar(p)

Table 3.6: Intermediate step of preparing the RQS for the read availability cr(p) .

cw(p) =(3(p3(1− p)5−3)+3(p4(1− p)5−4)+3(p4(1− p)5−4)+3(p5(1− p)5−5)

+3(p3(1− p)5−3)+3(p4(1− p)5−4)

+3(p3(1− p)5−3)

+3(p3(1− p)5−3)+3(p4(1− p)5−4)

+3(p3(1− p)5−3)

+3(p3(1− p)5−3)

+3(p3(1− p)5−3)+3(p4(1− p)5−4)

+3(p3(1− p)5−3)

+3(p3(1− p)5−3)

+3(p3(1− p)5−3))/aw(p)

Table 3.7: Intermediate step of preparing the WQS for the read availability cw(p) .
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Figure 3.8: The ar(p) for the given example with p-values iterated from 0.0 to 1.0
in 0.01 steps.
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Figure 3.9: The aw(p) for the given example with p-values iterated from 0.0 to 1.0
in 0.01 steps.
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Figure 3.10: The cr(p) for the given example with p-values iterated from 0.0 to 1.0
in 0.01 steps.
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Figure 3.11: The cw(p) for the given example with p-values iterated from 0.0 to
1.0 in 0.01 steps.
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Figure 3.8 on page 21 shows the ar(p)and Figure 3.9 on page 21 shows the aw(p)
of the example with p ∈ [0,1]. In both plots the x axis represents the p value of all
replicas, the y axis shows the availability of the read or write operation. The cr(p)
of the example is shown in Figure 3.10 on the preceding page and cw(p) of the
example is shown in Figure 3.11 on the facing page. The cost for both operation is
3 independent of the replica availability. Considering the definition of the QP used
in this example, this result is obvious, as the defined QP should use 3 replicas, the
majority of the replicas, for reading and writing. Both plots, and all consecutive
plots in this work, increment the p values in 0.01 steps between 0 and 1.
This approach to calculate the ar(p) the aw(p) , the cr(p) , and the cw(p) is used

in all following chapters of this work unless stated otherwise.
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4 Existing Quorum Protocols
QPs provide highly available access to data by means of replication and at the
same time maintain the 1SR property. In this work only pessimistic syntactic DRS
QPs are considered. Pessimistic syntactic DRS QPs can be further classified into
unstructured quorum protocols (UQPs) and structured quorum protocols (SQPs).
SQPs arrange the individual replicas in a GS, and use this GS to formulate rules
how to construct quorums. UQPs use no such GS. In order for read and write
operations to work, the data of the operations needs to be communicated to and
from the replicas of the quorum used. Implicitly, most UQP and SQP rely on a
completely connected GS as a communication medium between its replicas. The
GS used for communication is called the logical network topology (LNT) in this
work. A PNT is a GS that actually arranges and connects the replicas in the
real-world. This is because usually, QPs are used on already existing network
topologies.
In this chapter three existing QPs are presented. Many more QPs exist, but

the presented three are interesting for multiple reasons. The MCS was one of the
first QPs, and lends itself as an easily understood introduction into QPs [11]. The
GP is a SQP that uses a completely connected GS as a communication network
[12]. Finally, the Triangular Lattice Protocol (TLP) is a SQP where the LNT is
also used as the PNT [4, 13]. These QPs will later be used as a benchmark to the
newly developed QPs and as QPs that will be used in the analysis of the mapping
approach that makes it possible to analyze QPs on PNTs.

4.1 Majority Consensus Protocol (MCS)
The MCS is an UQP. The MCS reads a RQ of ⌈N/2⌉ replicas and writes a WQ
of ⌈(N +1)/2⌉ replicas, where N is the total number of replicas [11]. For a given
set of replicas N , QR and QW both are subsets of P(N ) for which the following

∀qr ∈ QR,qw ∈ QW : |qr|+ |qw|= N +1 (4.1)
∀qw1,qw2 ∈ QW : |qw1|+ |qw2| ≥ N +1 (4.2)

is true. The MCS uses the intersection of RQs and WQs, and of WQ to maintain
1SR in the previously described manner.
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The read availability ar(p)of the MCS is

ar(p) =
N

∑
k=⌈N/2⌉

(
N
k

)
pk(1− p)N−k (4.3)

and the write availability aw(p) is

aw(p) =
N

∑
k=⌈(N+1)/2⌉

(
N
k

)
pk(1− p)N−k. (4.4)

The read costs cr(p)are ⌈N/2⌉. The write costs cw(p)are ⌈(N +1)/2⌉ [11, 14]
Algorithm 1 and Algorithm 2 give the specific implementations of the proce-

dures isReadQuorum, and isWriteQuorum for the MCS, so the MCS can be used in
conjunction with the RQS and the WQS.

Algorithm 1: Procedure isReadQuorum(replicas) of the MCS
Input: replicas = a set of replicas that is to be tested whether or not it is

a RQ for the given MCS
Result: true if |replicas| ≥ ⌈N/2⌉, false otherwise

Algorithm 2: Procedure isWriteQuorum(replicas) of the MCS
Input: replicas = a set of replicas that is to be tested whether or not it is

a WQ for the given MCS
Result: true if |replicas| ≥ ⌈(N +1)/2⌉, false otherwise

Figures 4.1a and 4.1b on the next page show the read and write availability of the
MCS with different numbers of replicas. Note that the read and write availabilities
are the same for the MCS with an odd number of replicas and therefore the lines
in the Figures overlap. In these figures it can be seen that the more replicas the
MCS uses the higher the availability is when p ≥ 0.5. This is especially visible
when the MCS uses 63 replicas 1. In the close-up figure, the difference between
the MCS with 3 and 63 is particularly obvious. The 63 replicas variant has an
availability of basically 1 and the 3 replicas variant starts out at a availability
of < 0.9. The drawback of the MCS is that costs per operation increase linearly
with the number of replicas used by the MCS. This can be seen in Figure 4.2 on
page 28.

1Indicated by label MCS-63 in the Figures
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Figure 4.2: The read (R) and write (W) operation cost of the MCS with different
numbers of replicas.
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4.2 Grid Protocol (GP)
The GP is a SQP. The GP was presented by Kumar in [12]. The read and write
operation of the QP is proven to have the 1SR property. A grid used by the GP is
shown in Figure 4.3. RQs are constructed by selecting one replicas of each column.
For a grid with R rows and C column the read availability is:

ar(p) = (1− (1− p)C)R (4.5)

[14]. The read costs for the GP is equal to the number of columns of the grid
used. As an example for a valid RQ for the GP in Figure 4.4 on the following page
consider the replicas {0,5,6,15}. WQs are constructed by selecting one replica of
each column and one complete column. A example of a WQ is given in Figure 4.5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4.3: GS used by the Grid Protocol.

on the next page. The WQ consists of the replicas {2,3,4,6,9,10,14}. The replicas
of the RQ and the replicas of the WQ intersect in replica 6. The write availability
of the GP is:

aw(p) = (1− (1− p)C)R − (1− pC − (1− p)C)R (4.6)

[14]. The write costs for the GP is equal to C+R−1 [15]. Figure 4.6a on page 31
gives examples of the read and write availability of the GP with 4 to 64 replicas.
The grids used in this example are all square. It can be seen that with more
replicas the read availability increases significantly. The write availability on the
other hand increases slowly until a high p value is reached, this can be seen in
Figure 4.6b on page 31. Figure 4.7a on page 33 shows examples of the read and
write availability, of the QP, when the grid used is not square. For the 8×1 grid
the read availability is very good as there is a very high chance of finding one
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4.4: An example of a RQ used by the Grid Protocol. The red colored
replicas are the elements of the RQ.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4.5: An example of a WQ used by the Grid Protocol. The red colored
replicas are the elements of the WQ.
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4 Existing Quorum Protocols

available replica in eight. The write availability on the other hand is very poor.
In the example the write availability of the 8×1, and 4×2 GP exceeds the write
availability of the nonreplicated case only when p ≥ 0.92. This is because finding
one complete column is very unlikely in these cases as shown in Figure 4.7b on
the next page. Therefore, using the GP in such a configuration only would make
sense if writing data would be the exception.
Even though there are formulas to compute ar(p) , aw(p) , cr(p) , and cw(p) , for

a later step an algorithm is needed to construct the RQS and the WQS for a GP.
Algorithm 3 on page 34 and Algorithm 4 on page 34 give the specific implemen-
tations of the procedures isReadQuorum, and isWriteQuorum for the GP. In such
a way that the RQS and WQS can be constructed for the GP. The procedure
isReadQuorum for the QP simply tests if there is an available replica in each col-
umn of the grid. If the procedure finds a column where this is not the case, then
false is returned. If all columns have available replicas, true is returned. The pro-
cedure isWriteQuorum for the QP returns true, if the available replicas replicas2

are a superset of a column and if the replicas are also sufficient to constitute a
RQ. Otherwise, false is returned.

2replica being the parameter passed to the isWriteQuorum and isReadQuorum procedure
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4 Existing Quorum Protocols

Algorithm 3: Procedure isReadQuorum(replicas) of the GP
Input: replicas = a set of replicas that is to be tested whether or not it is

a RQ for the given GP
Data: C = the set of sets of replicas defining the columns of the grid
Result: true if replicas contains a replica of each column

1 for c ∈ C do
2 if c ∩ replicas = /0 then
3 return false
4 end
5 end
6 return true

Algorithm 4: Procedure isWriteQuorum(replicas) of the GP
Input: replicas = a set of available replicas that is to be tested whether

or not it is a RQ for the given GP
Data: C = the set of sets of replicas defining the columns of the grid
Result: true if replicas contains a replica of each column and replicas

contains all replicas of one column
1 for c ∈ C do
2 if replicas ⊇ c ∧ isReadQuorum(replicas) then
3 return true
4 end
5 end
6 return false
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4.3 Triangular Lattice Protocol

4.3 Triangular Lattice Protocol (TLP)
The TLP is a SQP based on the GP. It provides 1SR consistency as proven in [13].
The grid arrangement of the replicas of the GP is extended to a triangulated grid.
Figure 4.8 shows an example of a GS used by the TLP. Every RQ of the TLP
consists of a complete vertical or a horizontal path through the GS. Every WQ of
the TLP consists of a complete vertical and a complete horizontal path through
the GS. An example of a horizontal path is (4,5,9,10,11) as shown in Figure 4.9 on
the following page. Figure 4.10 on the next page shows an example for a vertical
path consisting of the replicas (1,5,6,10,14). In Figure 4.11, the diagonal path

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4.8: A GS used by the Triangular Lattice Protocol.

(0,5,10,15) connecting the replicas creates a minimal path that crosses the GS
vertically and horizontally. The minimal path is a connected replicas that crosses
a GS vertically and horizontally.

This diagonal path can be used as a very efficient WQ. Given the three example
it can be seen how read and WQs intersect.
As quorums for the TLP are created by finding paths through a GS, no sim-

ple closed formula exists that calculates the read and write availability or costs.
Therefore, the RQS, and WQS are used in combination with Algorithm 7 on
page 38 and Algorithm 8 on page 38 to calculate the read and write availability,
and the operation cost for the TLP [13]. The procedure isWriteQuorum tests if a
set of replicas is a vertical and a horizontal path in a given GS. These to checked
by the two procedures isVerticalPath shown in Algorithm 5 on page 37 and isHor-
izontalPath shown in Algorithm 6 on page 38. Both procedures follow the same
idea, in that they iterate two sets of replicas and see if there is a path between
them.
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4.9: A horizontal path through the GS used by the TLP.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4.10: A vertical path through the GS used by the TLP.
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4.11: A diagonal path through the GS used by the TLP.

Algorithm 5: Procedure isVerticalPath(replicas)
Input: replicas = a set of replicas that is to be tested whether or not they

form a vertical path
Data : top = Set of replicas that are elements of the top row of the GS

used by the TLP
bottom = Set of replicas that are elements of the bottom row of
the GS used by the TLP

Result: true if replicas form a vertical path
1 for t ∈ top∩ replicas do
2 for b ∈ bottom∩ replicas do
3 if Ω(t,b) ∈ replicas then
4 return true
5 end
6 end
7 end
8 return false
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4 Existing Quorum Protocols

Algorithm 6: Procedure isHorizontalPath(replicas)
Input: replicas = a set of replicas that is to be tested whether or not they

form a horizontal path
Data : le f t = Set of replicas that are elements of the left column of the

GS used by the TLP
right = Set of replicas that are elements of the right column of the
GS used by the TLP

Result: true if replicas form a horizontal path
1 for t ∈ left∩ replicas do
2 for b ∈ right∩ replicas do
3 if Ω(t,b) ∈ replicas then
4 return true
5 end
6 end
7 end
8 return false

Algorithm 7: Procedure isReadQuorum(replicas) of the TLP
Input: replicas = a set of replicas that is to be tested whether or not it is

a RQ for the given TLP
Result: true if replicas form a RQ, false otherwise

1 return isHorizontalPath(replicas)∨ isVerticalPath(replicas)

Algorithm 8: Procedure isWriteQuorum(replicas) of the TLP
Input: replicas = a set of replicas that is to be tested whether or not it is

a WQ for the given TLP
Result: true if replicas form a WQ, false otherwise

1 return isHorizontalPath(replicas)∧ isVerticalPath(replicas)
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4.3 Triangular Lattice Protocol

Figure 4.12a on the following page shows the ar(p) and the aw(p) of the TLP
on various x× x triangular lattice GSs. It can be seen that the TLP on the 4×4
GS has a higher ar(p) the other TLPs as soon as p > 0.5. The write availability
aw(p) of the TLP on the 4×4 GS becomes the highest write availability as soon
as p > 0.57. Figure 4.12b on the next page shows a close-up of Figure 4.12a where
p ≥ 0.8. Here again, it can be seen that the TLP on a 4× 4 GS has the highest
ar(p) and aw(p) . Figure 4.13 on page 41 shows the cr(p) and cw(p) of the four
tests x×x TLP variants. Here it can be seen that if the GS has fewer vertices the
costs per operation decreases. Various x× y GSs were tested with the TLP. The
ar(p)and the aw(p)of these GSs are shown in Figure 4.14a on page 42. Especially
the 8× 1 GS is notable. Its ar(p) is extremely good as the minimal RQ consists
of only a single replica. The minimal WQ on the other hand, requires all eight
replicas. This can also be seen in the cost analysis shown in Figure 4.14b on
page 42.
Figure 4.15a on page 43, Figure 4.15b, and Figure 4.16 show the comparison of

the GP and the TLP on a 5×5 GS. Here the ar(p)of the GP is higher than the
ar(p) of the TLP. The aw(p) of the TLP is higher than the aw(p) of the GP. The
costs analyses shows little differences between the cr(p) of both protocols. The
cw(p)of the TLP is a lot cheaper than the cw(p)of the GP.

The increased write costs of the TLP with p not close to 1 nor to 0 has the
following explanation. With very low p values it is most likely that the only vertical
and horizontal path available is the diagonal, as this path consists of the least
amount of replicas. With very high p values many vertical and horizontal paths
are available, including the diagonal path, as the minimal vertical and horizontal
path is chosen by TLP the diagonal is selected again. In between more WQs
are available, but these consist of more replicas than the diagonal, explaining the
higher costs. This effect is not as pronounced for the read operation of the TLP.

Concluding, it can be said that the TLP provides a write operation that has
a higher availability than the write operation of the GP. For p ≥ 0.8 the read
operation availability of the two protocols are nearly identical, especially for GSs
consisting of more than 16 replicas.
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5 Mappings of Quorum Protocols to
Physical Network Topologies

This chapter is based on the work published, by the author, in [rsot17long, 16].

5.1 Logical Network Topologies vs. Physical Network
Topologies

Previously, it was explained that QPs use replicas to create RQ and WQs that
execute read and write operations. It was not explained how the data required to
execute these operations is communicated to the replicas of these quorums. This
section will show that the GS used to communicate the data has to be considered
in the analyses of the ar(p) , the aw(p) , the cr(p) , and the cw(p) .

Consider the MCS. The MCS is an UQP where each quorum is a subset of
all the replicas used by the QP. It is not specified how the data that is read or
written is communicated to or between the replicas. Implicitly, it is assumed that
all replicas can directly communicate with each other or the outside world over
some media. When someone or something wants the QP to perform an operation
on the replicas, this intent has to be communicated to all replicas that should be
involved in this operation. In this work, it is assumed that replicas communicate
which each other to perform the desired operation. GSs are used to model the
communication structure between the replicas. Where the vertices of the GS
are the replicas and the edges are the communication links. To replicas 0,1 can
communicate in an GS G when they are connected as defined in Section 2.3 and
all the vertices of the connecting path are available. This implicitly or explicitly
assumed communication structure, used by a QP, is called its logical network
topology (LNT) in this work. The MCS with five replicas would have a LNT as
shown in Figure 1.6 on page 4. In this figure, it can be seen that each replica
has a directly link to every other replica of the LNT. It is unlikely that existing
communication structures are equal to the LNT required by the QP. The GS
that is actually used to communicate the data between the replicas, is called the
physical network topology (PNT). For example, consider the PNT in Figure 5.1 on
the next page. It can be seen that the GS in Figure 1.6 is not isomorphic to the GS
in Figure 5.2 on the following page [17]. This means that some mapping between
the LNT and PNT has to take place when communication between replicas during
an operation execution is required.
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Figure 5.1: A communication structure found in the real world.

a b

c d

e

Figure 5.2: GS used by as a PNT.
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5.2 Mapping Definition

In the following, it is shown why the PNT has to be considered in the availability
and cost analysis of a QP.
Let s = 0,3,4 be a RQ used by the MCS. In Figure 5.2 replace 0 is donated a, 1

by b, and so forth. On the GS in Figure 5.2 these three replicas are not connected
and can therefore not communicate with each other. This is a problem, as the cost
and availability analysis of the MCS assumes that these replicas of the quorum
can communicate. But in this example, this assumption does not hold. Only if
the replica with ID 1 is added to s, such that s = 0,1,3,4, then the replicas of the
RQ s can communicate with each other. But this means that this quorum is now
less likely to be available, because it now consists of four instead of three replicas,
and four replicas are less likely to be simultaneously available than three replicas
with p < 1.0.

In order to increase the precision of the ar(p), aw(p), cr(p), and the cw(p)analysis
of the QP analyzed, the PNT that is used as a communication network has to be
considered. The mapping approach presents one possibility to increase the pre-
cision of the analysis, by considering a given PNT as a communication network
that is used by during the analysis of the QP and not the LNT assumed by the
QP.

No other work could be found that considers the PNT or any similar concept.

5.2 Mapping Definition
A mapping is an injection from one GS, the LNT, to another GS, the PNT. This
requires that the number of vertices in the codomain structure is at least equal to
the number of the vertices of the GS. Let G and G′ be two GSs, then a mapping
M(G,G′), is an bijection, as defined:

M(G,G′) = {(vi,v′i)| (5.1)
vi ∈ GV (5.2)
∧ v′i ∈ G′

V (5.3)
∧∀(v,v′),(v,v′′) ∈ M : v′ = v′′ (5.4)
∧∀(v′,v),(v′′,v) ∈ M : v′ = v′′}

As an example, let G be the GS from Figure 1.6, let G′ be the GS from Figure 5.2,
and let {(0,e),(1,d),(2,c),(3,b),(4,a)}=M(G,G′) be a mapping. Figure 5.3 on the
next page shows this mapping graphically, where the arrows show which vertex is
mapped to which vertex in the other GS. Function I is uses the mapping M(G,G′)
to determine the vertex in G′ the vertex v of G is mapped to.

I(v,M(G,G′)) = v′ where (v,v′) ∈ M(G,G′) (5.5)
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0
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Figure 5.3: A mapping from of a LNT in Figure 1.6 to the GS in Figure 5.2.

For example, given the above shown mapping I(2,{(0,e),(1,d),(2,c),(3,b),(4,a)})=
c. The function M maps all replicas of the set q of the vertices in G′, where
q = V(G).

M(q,M(G,G′)) = {I(v,M(G,G′))|v ∈ q} (5.6)

For example, given the above shown mappingM({2,4},{(0,e),(1,d),(2,c),(3,b),(4,a)})=
{c,a}. The function M maps all replicas of the set q of the vertices in G′, where
q = V(G). After the QP has selected all necessary replicas to construct a quorum
based on its LNT, it is tested if the selected replicas are connected in the PNT.
As mappings are usually not between isomorphic GSs, in the general case, it can
be assumed that the replicas of the quorum are not connected directly with each
other in the PNT [18]. Consequently, the function R adds the minimal number of
additional replicas required to reestablish the communication between the replicas
of the quorum.

R(q′,PNT) = {minimal set of replicas that connects the replicas of q′ including q′}
(5.7)

The minimal set means the set with the fewest number of replicas.
Assuming the mapping shown in Figure 5.3 and a quorum of {0,2,4}, the func-

tion R constructs a new set of replicas that includes these three replicas plus, a
certian number of additional replicas such that:

∀(v,v′) ∈R({0,3,4},GS) | Ω(v,v′) ∈GS (5.8)
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is true. In this case the resulting set is {a,b,c,e}. This new set is then used to
execute the operation the original quorum was meant to be used for.
So far only one mapping has been considered, but given a PNT with N vertices

there are N! possible mappings.
The question becomes, which of the N! mappings should be used? The best

mapping should be used, but in order to determine the best mapping, a comparison
criteria has to be established. Which comparison criteria is chosen depends on the
use case. Generally, the user can define their own comparison criterion. This
allows the comparison criterion to be tailored to the requirements imposed on the
mapping.
In this work the average read and write availability value (ARW) criterion is

used, which was first presented by the author in [1]. The ARW accumulates the
discretized, weighted averages of the ar(p)and the aw(p)as shown below:

wor ∈ {a|a ∈ R∧0 ≤ a < 1} (5.9)

ARW= wor ∗ ∑100
i=1 ar(i/100)

100
+(1−wor)∗ ∑100

i=1 aw(i/100)
100

. (5.10)

The value wor weighs the average ar(p) against the average aw(p) . This can be
used to favor either read or write operations in the selection of the mapping. If
not stated differently a wor of 0.5 is assumed.

Given the ARW as a comparison criteria, the best mapping can by found by
computing the ARW of all mappings and then choosing the mapping with the
highest ARW.
To calculate the ARW for a mapping the ar(p) and the aw(p) of the mapping

need to be computed. As shown in Section 3.3 on page 15 the RQS and the WQS
are used to calculate the ar(p)and the aw(p) . The RQS for the mapping is based
on the RQS of the QP that is to be mapped. The same is true for the WQS of the
mapping. After a mapping has been applied to RQS or a WQS they are called
RQS′ and WQS′. The basic relationship of RQS to the RQS′ is that the mapping
turns the RQS used on the LNT into the RQS′ of the used PNT. The RQS′ and
the WQS′ are then used to calculate the ARW. This is done for each of the N!
mappings. The mapping with the highest ARW is the best mapping.
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RQS′ is defined as:

RQS′ :={(q1,{sq1,1, . . . ,sq1,m}), . . . ,(qn,{sqn,1, . . . ,sqn,z}) | (5.11)
∧qi =R(M(qk,M(G,G′)),PNT),qk ∈ RQS (5.12)
∧ sqi, j =R(M(sqo,l,M(G,G′)),PNT),sqo,l ∈ RQS (5.13)
∧ (qi,sqi, j) : sqi, j ⊃ qi (5.14)
∧qi,q j : qi ̸⊇ q j (5.15)
∧ (qi,sqi,n),(q j,sq j,m) : sqi,n ̸= sq j,m (5.16)
∧∄(qi,sqi, j),q j : sqi, j ⊃ q j ∧|qi|> |q j| (5.17)

}. (5.18)

The WQS′ is defined as:

WQS′ :={(q1,{sq1,1, . . . ,sq1,m}), . . . ,(qn,{sqn,1, . . . ,sqn,z}) | (5.19)
∧qi =R(M(qk,M(G,G′)),PNT),qk ∈WQS (5.20)
∧ sqi, j =R(M(sqo,l,M(G,G′)),PNT),sqo,l ∈WQS (5.21)
∧ (qi,sqi, j) : sqi, j ⊃ qi (5.22)
∧qi,q j : qi ̸⊇ q j (5.23)
∧ (qi,sqi,n),(q j,sq j,m) : sqi,n ̸= sq j,m (5.24)
∧∄(qi,sqi, j),q j : sqi, j ⊃ q j ∧|qi|> |q j| (5.25)

}. (5.26)

In contrast to the original RQS definition, the definition of the RQS′ consists of
mapped elements of the original RQS not the power set of the replicas of the QP.
This is shown in Equation 5.12 and Equation 5.13. In both cases, M(qk,M(G,G′))
and M(sqo,l,M(G,G′)), the function M maps the replicas of the quorums qk and
sqo,l according to the given mapping M(G,G′). Let q′k = M(qk,M(G,G′)) and
sq′o,l =M(sqo,l,M(G,G′)). As explained earlier, the replicas of q′k must no longer
be connected in the given PNT. The same is true for the replicas of sq′o,l. There-
fore, the function R reconnects the replicas in q′k as well as in sq′o,l. The re-
connected quorums qi and sqi, j are then stored in a RQS’. The Equation 5.14
– Equation 5.17 as well as Equation 5.22 – Equation 5.25 have the same pur-
pose as in the original constructor of the RQS and WQS. The make sure that no
quorum and there super-sets are sorted correctly, such that the costs and availabil-
ity of the read and write operations are calculated correctly. Let (RQS′,WQS′) =
MAP(M(G,G′),RQS,WQS,PNG) be the function that calculates the RQS′ andWQS′

given a mapping M(G,G′), an RQS, WQS, and a PNT.
Algorithm 9 on the facing page shows how the best mapping is found. As

mentioned earlier, the original QP is no longer of importance. what is needed
instead is the RQS and the WQS constructed by the QP. This is reflected in
the inputs of the algorithm. Additionally, the algorithm requires a comparison
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Algorithm 9: Procedure bestMapping
Input: pnt = the PNT to find the best QP for

rqs = the RQS of the QP to map
wqs = the WQS of the QP to map
cmp = the comparison criterion used to compare two QPs

Result: the best mapping according to the criterion
1 curBestMapping = /0
2 perm = (pntV )
3 for it ∈ {all permutations of perm} do
4 M = /0
5 for i ∈ [0, |it|) do
6 M = M∪ (i, iti)
7 end
8 (rqs′,wqs′) = MAP(M,rqs,wqs, pnt)
9 if curBestMapping = /0∨ cmp(rqs′,wqs′)>

cmp(curBestMappingrqs′ ,curBestMappingwqs′) then
10 curBestMapping = (rqs′,wqs′,M)
11 end
12 end
13 return curBestMapping

criterion, named cmp, that is able to order two pairs of a RQS’ and a WQS’. If
not mentioned otherwise, the previously introduced ARW is used. The algorithm
begins, as shown on line 1 in Algorithm 9, by creating a temporary variable to
store the currently best mapping. As no mapping has been tested yet, it is the
/0. As it is unknown which of the N! possible mappings is the under the given
comparison criterion, all have to be tested and compared. As the PNT is a GS
and it vertices are stored in a set, and sets have no notion of ordering for their
elements, an ordering notion has to be created for the permutations. This is done
on line 2 in Algorithm 9 where the set of vertices of the PNT is transformed
into a tuple. On line 3 in Algorithm 9 the algorithm starts to iterate over all
possible permutations of the tuple elements in perm. The variable it is used as
in iteration variable. Next, a mapping called M is constructed. This is easiest
explained by an example. Let the GS shown inFigure 5.2 be used as the PNT
and it = (e,b,c,d,a). Then the loop shown on line 5 in Algorithm 9 constructs
a set M = {(0,e),(1,b),(2,c),(3,d),(4,a)} The variable i iterates the values from
zero to, but not including, the number of elements in it. In each iteration a new
tuple gets attached to M On the following two lines, M constructs the RQS′ and
WQS′. The RQS′ and the WQS′ are constructed adhering to the rules established
in Equation 5.11 on the preceding page and Equation 5.19. This RQS′ and the
WQS′ is then compared, using cmp, with the currently best mapping. If it is better
or if it is the first tested mapping then it gets assigned to the curBestMapping
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variable, as shown in line 10 in Algorithm 9. This process is repeated for all N!
mappings. Finally, the best mapping is returned.

5.3 Example Analysis
In the following, this process, with the example from Section 5.2 on page 47, is
illustrated. The RQS of the MCS with five replicas is shown in Table 5.1 on the
next page. Starting with the RQ {0,1,2}, this RQ gets mapped by function M to
the replicas {c,d,e} and the mapping {(0,e),(1,d),(2,c),(3,b),(4,a)}. The MCS
was purposefully chosen for this example as ARW for N1 mappings are equal.
Therefore, only one mapping has to be considered for the MCS and it does not
matter which. This allows, to show how the process works and also have the
best possible mapping as the result of the process. In the given PNT, as shown
in Figure 5.2, the replica with ID e is not connected to the other two replicas.
Therefore, function R has to add the replicas with ID 3 in the LNT and ID b in
the PNT to the set of mapped replicas, to reconnect the replicas. The resulting RQ
{b,c,d,e} is inserted in the RQS′. Repeating the same steps for the RQ {0,1,3}
the same RQ {b,c,d,e} is obtained. As all sets of replicas in the RQS′ have to be
unique, this second instance of this set of replicas is discarded. After repeating this
for all the qi and sqo,l elements of the original RQS, the RQS′ as shown in Table 5.2
on the facing page is obtained. The original RQS consists of 10 qi elements and 6
sqo,l elements. The RQS′ construct by the mapping consists of 6 qi elements and 6
sqo,l elements. This reduction is due to the fact that reconnecting replicas in the
PNT adds replicas to the quorum which in turn leads duplications. But as the
equations for the RQS, WQS, RQS′, and WQS′ show duplicates are not allowed.
This leads to a reduction of the ar(p)of the mapped MCS as shown in Figure 5.4
on page 54, even though the mapping shown has the highest ARW of all possible
mappings. For N = 5 the read and write operation of the MCS uses the same
quorums. Therefore, only the read operation is plotted in Figure 5.4, Figure 5.5.
Figure 5.5 on page 54 shows a close-up of Figure 5.4 where p ≥ 0.8. As mentioned
earlier, this view of the analysis is important as empirical evidence suggests that
usually replicas have an availability of more than 80%. Especially, the close-up
shows the difference in the ar(p) the mapping makes. For p = 0.8 there is nearly
a 10% difference. It is important to note here that the mapping does not worsen
the QP, but strengths the assumptions about the overall system. Therefore, the
mapping ar(p) , the aw(p)are lower, but the results are more accurate.
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RQS={
({0,1,2},{{0,1,2,3},{0,1,2,4},{0,1,2,3,4}}),
({0,1,3},{{0,1,3,4}}),
({0,1,4},{}),
({0,2,3},{{0,2,3,4}}),
({0,2,4},{}),
({0,3,4},{}),
({1,2,3},{{1,2,3,4}}),
({1,2,4},{}),
({1,3,4},{}),
({2,3,4},{})
}

Table 5.1: The RQS of the MCS that is to be mapped to the PNT in Figure 5.2.

RQS′ ={
({a,b,c},{{a,b,c,d},{a,b,c,e},{a,b,c,d,e}}),
({a,b,d},{{a,b,d,e},}),
({a,b,e},{}),
({a,c,d},{{a,c,d,e},}),
({b,c,d},{{b,c,d,e},}),
({b,d,e},{})
}

Table 5.2: The RQS′ of the MCS after it is mapped to the PNT in Figure 5.2.
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Figure 5.4: The read (R) operation availability of the mapped and unmapped
MCS.
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Figure 5.5: The read (R) operation availability of the mapped and unmapped
MCSwith p ≥ 0.8.
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5.4 Evalutation
To evaluate the impact of the mapping on the availability and the costs measures
in a more general case, then the in the previous section, the GSs used as a PNTs
have to be analyzed. For instance, the GS in Figure 5.7 on the next page will
yield mappings whose availability and cost measurements equal to those one’s of
the QP mapped to it, because all of the vertices are connected to each other. The
Figure 5.6 on the other hand will have significantly lower availability and higher
cost measurements, than the original QP, because the removal of one vertex could
partition the GS.
Therefore, the idea behind this analysis is to generate many non-isomorphic

graphs with the same number of vertices and then use these as PNTs. The ar(p) ,
the aw(p) , the cr(p) , and the cw(p)values are then used within statistical methods
to analyze the impact of the mapping. The idea is that many randomly generated
PNTs will give a good indication of what the influence of the mapping process on
the cost and availability of the read and write operation is.

Assuming, the QPs require nine replicas, an ideal analysis would test the map-
pings to all possible GSs with nine vertices. This is impossible as the number of
possible GSs that are non-isomorphic is infinite even with a single vertex, the GSs
used for the evaluation have to be restricted. Figure 5.8 on the next page shows
how to construct an infinite amount of GSs with one replica. Each new GS is
constructed by adding a new self loop. In Figure 5.8 adding an infinite amount of
self loops is represented by the three dots.
The first restriction is to only allow simple connected GSs. Figure 5.9 on the

following page shows a non-simple, non-connected GS. The GS in Figure 5.9 is a
non-simple GS, because it has a self loop on vertex a and multiple edges between
vertices b and c. Additionally, is a non-connected GS, as there is no edge between
vertex d and any other vertex of the GS. Figure 5.10 on page 57 shows the GS from
Figure 5.9 transformed into a simple, connected GS. For simple, connected GSs the
number of possible GSs can be computed given the number of vertices. Table 5.3
on page 57 shows the number of non-isomorphic, simple, connected GS based on
the number of vertices in a GS. These values were computed for this work as
no reference could be found in the literature. From the rapidly growing number
of GSs it can be concluded that evaluating the complete state space becomes
infeasible quickly. For instance, evaluating all mappings for the 29337 GSs with
seven nodes would require to test 147858480 = 29337 ·7! mappings.
Therefore, sampling is used to draw conclusions on the complete population. For

GSs with eight and nine vertices 255 simple, randomly connected, non-isomorphic
graphs are created. For all the GSs with eight vertices, the mapping with the

0 1 2 3 4 5 6 7 8

Figure 5.6: A GS not well used to serve as a PNT.
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Figure 5.7: A GS well used to serve as a PNT.
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Figure 5.8: An example of creating an infinite amount of GSs with on vertex.
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Figure 5.9: A non-simple, non-connected GS
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a b

cd

Figure 5.10: A simple connected GS

Number of vertices Number of GSs
1 1
2 1
3 2
4 6
5 35
6 603
7 29337

Table 5.3: The number of non-isomorphic, simple, connected GS based on the
number of vertices in the GS.
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highest ARW for the MCS with eight replicas, the GP with a 2× 4 LNT and a
4×2 LNT, as well as for the TLP with a 2×4 LNT and a 4×2 LNT is found. For
all the GSs with nine vertices, the mapping with the highest ARW for the MCS
with nine replicas, the GP with a 3×3 LNT, as well as for the TLP with a 3×3
LNT is found. PNTs with eight and nine replicas were chosen as mappings with
nine replicas is the practical limit that could be analyzed in reasonable time 1. The
next square LNT would be 4×4 for which a mapping is ≈ 60∗106 more complex
to analysis. Table 5.4 shows an exemplary result of the ar(p)of the mappings with
the highest ARW of a QP mapped to 255 different graphs. Each column labeled
0 to 254 represents one mapping. Each row shows the operation availabilities of
each mapping given the replicas have a p-value as shown in the first column. Each
cell shows the availability of the operation. From such a tables the minimum,
the average, the median, the 0.25 quantile, the 0.75 quantile and the maximum
operation availability are computed. Each following figure either shows the ar(p) ,
the aw(p) , the cr(p) , or the cw(p)property of a specific QP. In each figure 101
boxplots are shown. The boxplots are aligned to the p-values. The p-values start
at 0.0 and are incremented to 1.0 in 0.01 steps. The p-value of 1.0 is included in
the figure. A boxplot as shown in Figure 5.11 on the facing page represents six
values. The bottom whisker of the boxplot represents the minimum value of the
measured property. The bottom line of the box represents the 0.25 quantil value
of the measured property. The black line represents the median of the measured
property. The red line represents the average of the measured property. The top
line of the box represents the 0.75 quantil value of the measured property. The top
whisker of the boxplot represents the maximum value of the measured property.
These values are aggregated from the mappings of the tested QPs to the 255 GSs
as shown in Table 5.4. The light blue line in each figure shows the original value
before the mapping as a reference for comparison. Additionally, to the box plots

1Reasonable in this case is days.

p
Ids 0 1 2 . . . 254

0.00 0.0000000 0.0000000 0.0000000 . . . 0.0000000
0.01 0.0004969 0.0004989 0.0004963 . . . 0.0005069
0.02 0.0019750 0.0019750 0.0019750 . . . 0.0019750
0.03 0.0044203 0.0044140 0.0044723 . . . 0.0044001
. . . . . . . . . . . . . . . . . .
0.97 0.9999099 0.9999179 0.9999183 . . . 0.9999181
0.98 0.9999759 0.9999758 0.9999698 . . . 0.9999778
0.99 0.9999969 0.9999968 0.9999968 . . . 0.9999979
1.00 1.0000000 1.0000000 1.0000000 . . . 1.0000000

Table 5.4: Table showing the ar(p)of a QP mapped to 255 graphs.

58



5.4 Evalutation

Maximum
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0.25 Quantil
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Figure 5.11: A boxplot

the standard deviation (SD) and the median absolute deviation (MAD) for the
availabilities are shown. Where SD is defined as:

SD =

√
1

N −1

N

∑
i=1

(xi − x̄)2 (5.27)

, x̄ is the average, and N is the number of mappings. The MAD is defined as:

MAD =
1
N

N

∑
i=0

|xi − x̃| (5.28)

where x̃ is the median, and x1, . . . ,xN are elements in a tuple were the elements
are sorted. The MAD was also evaluated as its value is on skewed by outliers as
easily as the SD, but when plotted the MAD sometimes appears jerky.

Mapping evaluation of the MCS with eight replicas: Figure 5.13 on page 64
to Figure 5.18 on page 69 show the ar(p) , the aw(p) , the cr(p) , and the cw(p)of
the MCS, with eight replicas, mapped to 255 different GSs. In Figure 5.13 and
Figure 5.14 on page 65 it can be seen that the operation availability of the bulk
of the mappings is about five to ten percent below that of the unmapped MCS
QP. For small p < 0.4 and big p > 0.8 values the difference shrinks. This is also
reflected in Figure 5.15 on page 66 and Figure 5.16 on page 67. There, the SD
and the MAD of the mapped read and write availability is shown. These figures
show how read and write availabilities of the 255 mapping deviate. They confirm
the higher spread around 0.4 < p < 0.8. Figure 5.17 on page 68 and Figure 5.18
show the cr(p)and the cw(p)of the mapped MCS. The cr(p)of the mapped MCS
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is always four, the same cost as for the unmapped MCS 2. The cw(p) is also the
same between the mappings and the original MCS.

Mapping evaluation of the GP with 2× 4 replicas: Figure 5.19 on page 70 to
Figure 5.24 on page 75 show the ar(p) , the aw(p) , the cr(p) , and the cw(p)of the
GP, with 2×4 replicas, mapped to 255 different GSs. The difference between the
mapped GS and the unmapped GS are less severe in comparison to the MCS. The
bulk of the mappings are close to the original read and write availability of the
GP, which can be seen in Figure 5.19 and Figure 5.20 on page 71. This is also
shown in the SD and the MAD of the ar(p)and the aw(p)as shown in Figure 5.21
on page 72 and Figure 5.22 on page 73. Their values are much lower than those
of the MCS with eight replicas. The cr(p)and the cw(p)are shown in Figure 5.23
on page 74 and Figure 5.24. The cr(p) is always 2, also for the mapping. The
cw(p) is more interesting. The original QP has a cw(p)of 5, as can be derived from
its operation. The worst mapping has a cw(p)of six3.

Mapping evaluation of the GP with 4× 2 replicas: Figure 5.25 on page 76 to
Figure 5.30 on page 81 show the ar(p) , the aw(p) , the cr(p) , and the cw(p)of the
GP, with 2×4 replicas, mapped to 255 different GSs. The unmapped QP with its
replicas arranged in a 4×2 grid are even more closely mirrored by its mappings.
The ar(p) shown in Figure 5.25 is similar to the ar(p)of the QP with a 2×4 grid.
The same is true for the aw(p) shown in Figure 5.26 on page 77. The SD and the
MAD of the ar(p)and the aw(p)of the GP with a 4×2 grid is shown in Figure 5.27
on page 78 and Figure 5.28 on page 79. In comparison to the GP with a 2× 4
grid, the SD and MAD is lower. Interestingly, the MAD is 0 for all p. This is
due to the density of the results as well as the construction of the MAD itself.
Figure 5.23 and Figure 5.24 show the cr(p) and the cw(p) . The cr(p) is basically
four with some small outliers. The cw(p) is five for all mappings and for all p.

Mapping evaluation of the TLP with 2×4 replicas: Figure 5.31 on page 82 to
Figure 5.36 on page 87 show the ar(p) , the aw(p) , the cr(p) , and the cw(p)of the
TLP, with 2× 4 replicas, mapped to 255 different GSs. In the Figure 5.31 the
ar(p) of the mappings is very close to the ar(p) of the original TLP. The spread
of the mapped aw(p) is bigger than that of the original TLP, as can be seen in
Figure 5.32 on page 83. The bulk of the mappings are still close to the original TLP
aw(p) . The SD and the MAD of the ar(p) and the aw(p) of the TLP is shown in
Figure 5.33 on page 84 and Figure 5.34 on page 85. Again, the MAD is zero and the
SD is rather low, as most mappings have the same ar(p)and the same aw(p) . The
cr(p) is shown in Figure 5.35 on page 86. The difference between the unmapped

2The light blue line overlaps with the lines of the boxplot. The blue line is drawn last and,
therefore, overlays the different colored lines.

3For p = 0.0 in Figure 5.24, the cost is zero, the value shown is an error due to floating point
math inaccuracies.
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TLP and the mapped TLP is small. Especially the difference between the mapped
and unmapped read operation is very small, this is because is comparatively easy
to find a vertical or horizontal path of two elements. For some mappings the
cr(p) is lower than that of the original TLP. This is due to the restrictions of the
triangular lattice grid used by the TLP as shown in Figure 5.12a on the following
page. If replica with ID 4 is not available in Figure 5.12a the cheapest quorum
{0,4,8} is no longer available, leading to increased costs. In Figure 5.12b on the
next page there is another path between replicas 0 and 8 that requires only one
more replica. This path is (0,3,8). The same phenomena appears for the cw(p)as
shown in Figure 5.36. But overall, the cost per operation of the mapped TLP for
both the cr(p)and the cw(p)does not change much in comparison to the original
TLP.

Mapping evaluation of the TLP with 4×2 replicas: Figure 5.37 on page 88 to
Figure 5.42 on page 93 show the ar(p) , the aw(p) , the cr(p) , and the cw(p)of the
TLP, with 4× 2 replicas, mapped to 255 different GSs. The difference between
the ar(p) of the mapped TLP and the unmapped TLP is again very small. This
observation is strengthened by the very small SD and MAD shown in Figure 5.39
on page 90. The aw(p)as shown in Figure 5.38 on page 89 has some more outliers
in comparison to the ar(p) , but overall shows a similar picture, as confirmed by the
SD and MAD shown in Figure 5.40 on page 91. The cr(p)as shown in Figure 5.35
and the cw(p)as shown in Figure 5.35 behave pretty much the same as for the TLP
with the 2×4 triangular lattice. The difference can be reduced to the change in
LNT geometry.

Mapping evaluation of the MCS with nine replicas: Figure 5.43 on page 94 to
Figure 5.46 on page 97 show the ar(p) , the aw(p) , the cr(p) , and the cw(p)of the
MCS, with nine replicas, mapped to 255 different GSs. The ar(p)of the mapped
MCS, as shown in Figure 5.43, with nine replicas behaves similar to the ar(p) of
the MCS with eight replicas. But the majority of the ar(p)of the mapping is closer
to the unmapped ar(p) . The mapped aw(p) , displayed in Figure 5.43, shows the
same availabilities as the ar(p) , due to the symmetric nature of the MCS. This
symmetry of the read and write operation is also reflected in the SD and MAD
plots, as shown in Figure 5.44 on page 95 and Figure 5.45 on page 96, making
them equal for the two operations. As the MCS with nine replicas uses the same
RQs and WQs, the cost measurements shown in Figure 5.46 and Figure 5.46 are
equally set to five.

Mapping evaluation of the GP with nine replicas: Figure 5.47 on page 98 to
Figure 5.52 on page 103 show the ar(p) , the aw(p) , the cr(p) , and the cw(p) of
the GP, with 3×3 replicas, mapped to 255 different GSs. The difference between
the ar(p)of the bulk of the mapping and the original QPs ar(p) is relatively small,
especially for 0.2 < p < 0.6 as shown in Figure 5.47. Figure 5.48 on page 99 shows
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(a) GS used by the TLP with 9 replicas.
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(b) GS used by a mapped TLP with 9 repli-
cas.

Figure 5.12: GSs where the mapped QP has smaller costs per operation.

the aw(p) of the mapped QP in comparison to the unmapped QP. As with the
ar(p) the differences in the aw(p) are small, especially for 0.2 < p < 0.6. The SD
and the MAD of both the ar(p)and the aw(p)are relative big in comparison to the
other tests. The cr(p) , displayed in Figure 5.51 on page 102, shows little difference
between the mappings and the original GP. The same holds for the cw(p)as shown
in Figure 5.52.

Mapping evaluation of the TLP with nine replicas: Figure 5.53 on page 104 to
Figure 5.58 on page 109 show the ar(p) , the aw(p) , the cr(p) , and the cw(p)of the
TLP, with 3× 3 replicas, mapped to 255 different GSs. The difference between
the ar(p)of the mapped TLP and the unmapped TLP is rather small with some
exceptions. The ar(p) is shown in Figure 5.53. The difference between the aw(p)of
the mapped TLP and the unmapped TLP is also small, similar to the ar(p)result.
The aw(p) is shown in Figure 5.54 on page 105. The spread between the mapped
ar(p)and mapped aw(p)values is small as shown in Figure 5.55 on page 106 and
Figure 5.56 on page 107. Most of the mapped cr(p)and cw(p)values are close to
the value unmapped TLP, as shown in Figure 5.57 on page 108 and Figure 5.58.

Mapping evaluation conclusion: Looking at the evaluation, it can be said that
there is a difference between the operation availabilities, the operation costs of the
QPs in their unmapped state in comparison to their mapped state. In the general
case, the ar(p)and the aw(p)of the QPs decreases when mapped. This difference
highly depends on the LNT and the PNT, as well as the QP that is mapped.
LNTs with less edges are more easily mapped to a PNT as shown for the GP. The
MCS, with its complete graph as LNT, is not as easily mapped.
As said in the introduction, by evaluating the PNT and not the LNT as a

communications network, it is shown in this analysis the operation availability
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decreases and the operation cost raise. Using the presented mapping approach on
the other hand decreases the strength of the assumptions made by QPs.
No analyses with ten or more replicas were carried out, due to the computational

complexity of these analyses. PNTs with ten vertices are already ten times more
complex to analysis, PNTs with eleven vertices are 110 times as complex.
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5.5 K-Nearest-Neighbors
The main problem with the evaluation of the mapping approach is that it is
computationally expensive: For a given PNT with N vertices N! mappings have to
tested. After testing these N! mappings the result can show that the given PNT
is not well suited to be for a mapping. This is unfortunate as the computational
power to find the best mapping will have already being invested, just to find out
that the best mapping is not good enough.

Therefore, the novel approach to use the K-nearest neighbor (kNN) technique
to predict the ar(p) , the aw(p) , the cr(p)and the cw(p)based on historical results
is introduced. This kNN approach is computational less costly in comparison to
the mapping approach. If the predicted values are not as good as required, the GS
can be discarded as a PNT candidate, thereby saving the computational power
required to find the best mapping.

5.5.1 Idea
K-nearest neighbor is a supervised learning classification and regression technique.
The term supervised indicates that for the training phase the target value is known.
The idea behind the kNN approach is that given existing results, future results
can be predicted [19, 20].

The kNN approach is best explained by presenting an example. Let the function
f (x) in Figure 5.59 be the system to be predicted. f (x) is unknown. Assuming
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Figure 5.59: The function f (x) shows the behavior of a system. f (x) is unknown.

the historical data for the system is shown in Figure 5.60 on the facing page.
The historical data is represented by the red crosses marked on the f (x) function.
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Table 5.5 shows the values of the red crosses in Figure 5.60. The goal is now to
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Historial Data

Figure 5.60: Historical data, represented by the red crosses, obtained from the
system as shown in Figure 5.59.

x y = f (x)
0.1 1.4926983542521324
0.15 1.9248655564138277
0.2 2.4458290199722015
0.7 0.3442419620570349
0.8 0.2668421585649119

Table 5.5: x and y values of the red crosses in Figure 5.60.

predict the y value for the x value represented by the blue square in Figure 5.61
on the following page4. The x value of the blue spuare is 0.24. The idea here is
to take the known x values of the historical values and put them in relation to
the x of value to predict. Instead of evaluating all x values the k nearest x values
are considered. This k is where the k in kNN stems from. The distance measure
in this kNN context is the euclidean distance. Therefore, nearest values means,
values where the euclidean distance is minimal. As the x values build relations
between the data points, x is the feature compared Let k = 3 in this example.
Table 5.6 on the next page shows the euclidean distances of the x-feature of the
historical values in relation to the x-feature of the value that is to be predicted. In
this example only one feature is compared. The kNN-approach allows to use an

4Even though the blue square is positioned on y = 0 the y is not actual 0. The y value is just a
stylistic device.
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arbitrary amount of features for determining the nearest neighbors. In Table 5.6

x Euclidean distance to x = 0.24
0.1 0.14
0.15 0.09
0.2 0.04
0.7 0.46
0.8 0.56

Table 5.6: Euclidean distances of the x-feature of the historical values.

it can be seen that the x-features 0.1,0.15, and 0.2 have the smallest euclidean
distance to x = 0.24. Therefore, these are the three neighbors that are used to
predict the y value of x = 0.24. For this example the following is not relevant,
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Prediction Target

Figure 5.61: The blue square represented the x value of the data that is to be
predicted using the kNN approach.

but it is important to gain an understanding of the overall kNN process it is. If
more than one feature is used, an additional step is required. This step is called
normalization, normalization normalizes the value ranges of the features against
each other. Consider the distribution of the two features X and Y in Figure 5.62
on the facing page. The values of the Y -feature are all very close together. The
values of the X-feature on the other hand are spread over a much wider value
range. When finding the nearest neighbors, the Y -feature plays a much smaller
role, as they have, in comparison with the X-feature, much more similar values.
To remove this effect the features have to be scaled evenly against each other.
This is achieved by dividing all values of a feature by the maximum value of that
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Figure 5.62: A scatterplot of two features X and Y .
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Figure 5.63: A scatterplot of two features X and Y after normalization.
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feature5. This results in the features being scaled [21, 22]. Figure 5.63 on the
previous page shows the result.
As a single prediction value is required the three values have to be aggregated.

In this work these aggregation functions are called aggregation functions (AGFs).
In the example, shown in Figure 5.64, the prediction is done with four different

AGFs. Eventually, one function has to be chosen to do the prediction, but for
analysis purposes looking at different predictions may lead to some more insight
into what function is best suited for this purpose. The four AGFs are the min-
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Figure 5.64: Predictions based on the three nearest neighbors. The four AGFs
used are the minimum, the maximum, the median, and the average
function.

imum function, the maximum function, the median function, and the maximum
function. The prediction of the minimum function is shown by the orange box in
Figure 5.64. The prediction of the maximum function is shown by the blue circle.
The prediction of the median function is shown by the yellow square. Finally, the
prediction of the average function is shown by the red dot. The y-value prediction
are listed in Table 5.7 on the next page. Figure 5.65 on the facing page shows
the predictions as well as the actual y-value. As said before kNN is a supervised
method so that in the training phase the value of the prediction target, aka. actual

5Here the resulting value of that division is multiplied by 10 to get better readable labels for
the axes.
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Aggregation function y-value of prediction
minimum 1.4926983542521324
average 1.9544643102127204
median 1.9248655564138277
maximum 2.4458290199722015

Table 5.7: y-value prediction based on the four used aggregation functions.

y-value is known. The y-value is 2.691686334286658 and is marked by the black
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Figure 5.65: Predictions and the actual y-value drawn together. The actual y-value
is marked by the black triangle.

triangle. The prediction made of the maximum-function is closed to the black
triangle.

The last step is to evaluate the quality of the predictions. The mean squared
error (MSE) is a common tool to evaluate predictions. It is calculated as shown
below:

MSE=
1
n

n

∑
i=1

(Yi − Ŷi)
2 (5.29)
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Where Y is the vector of observed values and Ŷ is the vector of predicted values.
The MSE has two useful properties. The resulting MSE is always a positive
number which simplifies comparison of different MSEs. The other property is that
the MSE penalizes larger errors more than smaller errors. Therefore, the smaller
the MSE, the better the prediction. Table 5.8 shows the MSEs of the different

Aggregation function MSE of the prediction
minimum 1.4375721762672724
average 0.5434963127796737
median 0.5880141053774928
maximum 0.0604458190019175

Table 5.8: The MSE of the predictions of the y-value for the x = 0.24 value.

aggregation functions used. The maximum-function has the smallest MSE making
it the best prediction function in this case. This is in line with the observations
from Figure 5.65.

5.5.2 Graph structure (GS) Features
Now, that the prediction approach has been presented, the features used in it have
to be defined. As GSs are used as PNTs for the mappings, and their influence on
the availability and cost measurements have been shown previously, it is obvious to
derive the needed features from the GSs. Not all GS features can be considered as
there are just too many. Therefore, the list of investigated GS feature is restricted
to those ones that are considered to have merit for the prediction purposes. To

a b

c d

e

Figure 5.66: The GS used to illustrate the extracted features for the kNN ap-
proach.

illustrate the investigated features the GS shown in Figure 5.66 is used. The first
feature that was investigated is the order of a GS. The order is equal to |GSV |
where GS is a GS. In short, the order is the number of vertices in a GS. The
GS in Figure 5.66 has an order of five [17]. As seen in Section 5.4 on page 55
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GSs with different number of vertices will lead to different cost and availability
measurements, therefore only use GSs with the same number of vertices are for
the predictions. In other words, features of GSs with order N are used to predict
the cost and availability measurements of GSs with order N.

The next feature is connectivity. There are two variants of connectivity; ver-
tix connectivity, and edge connectivity. Vertex connectivity defines the minimal
number of vertices whose removal partitions the GS [17]. The vertex connectivity
of the GS in Figure 5.66 is one, as the removal of vertex b partitions the GS. Edge
connectivity defines the minimal number of edges whose removal partition the GS.
The GS in Figure 5.66 has an edge connectivity of one. The removal of edge eb,e
again partitions the GS. As it is assumed in this work that edges are always avail-
able only vertex connectivity are considered. Therefore, the term connectivity is
used as a synonym for vertex connectivity.
The following features do not describe the complete GS, but yield individual

values for each of the vertices of the GS. As GSs and not vertices of GSs are
compared, these vertex features have to be aggregated into GS features. These
vertices features aggregated into a GS feature by computing the minimum, the
average, the median, the mode, and the maximum of the vertex feature. That
means for each of the vertex feature described in the follow five GS features are
obtained.
The first vertex feature evaluated is the degree. The degree describes to how

many edges a vertex is connected to[17]. Table 5.9 shows the degree of each of
the vertices of the GS in Figure 5.66. The information of the Table 5.9 gets

ID Degree
a 2
b 3
c 2
d 2
e 1

Table 5.9: The degrees of the vertices of the GS shown in Figure 5.66.

transformed into the five GS features shown in Table 5.10.

Feature value
Minimum Degree 1
Average Degree 2
Median Degree 2
Mode Degree 2

Maximum Degree 3

Table 5.10: The degrees of the vertices of the GS shown in Figure 5.66.
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The next vertex feature is the distance between all vertices of the GS. The
distance feature described the shortest path between vertices of the GS. The dis-
tance counts the number of edges[17]. Let z = ⟨a,b,c⟩ be a path then the E(z) is
its distance. Table 5.11 shows the length of the shortest path between each pair
of vertices in the GS shown in Figure 5.66. From Table 5.11 five GS features are

ID a b c d e
a 1 1 2 2
b 2 1 1
c 1 3
d 2
e

Table 5.11: Triangle matrix showing the distances between all vertices of the GS
in Figure 5.66.

easily computable, as listed in Table 5.12. The distance feature allows to describe

Feature value
Minimum Distance 1.0
Average Distance 1.7
Median Distance 1.5
Mode Distance 1.0

Maximum Distance 3.0

Table 5.12: The distances of the vertices of the GS shown in Figure 5.66.

how close vertices are to each other in a GS. Especially the distancemax measure
is interesting. The higher the distancemax measurement the more a graph equals a
line. A line is easily partitioned, by the removal of a single vertex. Therefore, the
distancemax measurement is a good indicator how easy a GS can be partitioned.
The shorthand distancemax symbolizes the Maximum distance. The other short-
hands are min for the minimum, avg for the average, md for the mode, mdn for the
median, and max for the maximum.
The last vertex feature transformed into a GS feature is the betweenness cen-

trality (BC) measure [23]. The BC feature makes a statement about how often a
particular vertex is part of all shortest paths through a graph. The BC of a vertex
v is defined by the function g(v) as shown below.

g(v) = ∑
s̸=v ̸=t

σst(v)
σst

(5.30)

Where σst(v) donates the number of shortest paths between the vertices s and t
where the vertex v is a part of. The divisor σst represents the number of shortest
paths between the vertices s and t. σst is a list of all shortest paths between all
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pairs of vertices. There can be more than one shortest path, for example the path
(c,a,b) has the same length as the path (c,d,b). Therefore, both are part of the
set of shortest paths between the vertices c and b [24]. Table 5.13 lists all shortest
paths between all the vertices in GS in Figure 5.66. Table 5.14 shows the number

from to shortest paths
a b ⟨a,b⟩
a c ⟨a,c⟩
a d ⟨a,c,d⟩

⟨a,b,d⟩
a e ⟨a,b,e⟩
b c ⟨b,a,c⟩

⟨b,d,c⟩
b d ⟨b,d⟩
b e ⟨b,e⟩
c d ⟨c,d⟩
c e ⟨c,a,b,e⟩

⟨c,d,b,e⟩
d e ⟨d,b,e⟩

Table 5.13: All shortest path between all pairs of vertices of the GS shown in
Figure 5.66.

of occurrences of each of the vertex in GS in all shortest path, as well as their BC
value based on the Table 5.13. Table 5.15 on the following page shows the five GS

s t σst σst(a) σst(b) σst(c) σst(d) σst(e)
a b 1
a c 1
a d 2 1 1
a e 1 1
b c 2 1 1
b d 1
b e 1
c d 1
c e 2 1 2 1
d e 1 1
∑σst / σst(x) 1.0 3.5 0.5 1.0 0.0

Table 5.14: The number of occurrences of each vertex of the GS in Figure 5.66
in all shortest paths. The number 0 is omitted for better readability,
except in the result row.

features extracted from the vertex feature shown in Table 5.14.
The following Table 5.16 shows all the different features evaluated. Testing
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Feature value
Minimum BC 0.0
Average BC 1.2
Median BC 1.0
Mode BC 1.0

Maximum BC 3.5

Table 5.15: The BCs of the vertices of the GS shown in Figure 5.66.

Feature
Minimum Degree
Average Degree
Median Degree
Mode Degree

Maximum Degree
Minimum Distance
Average Distance
Median Distance
Mode Distance

Maximum Distance
Minimum BC
Average BC
Median BC
Mode BC

Maximum BC
Connectivity

Table 5.16: All evaluated features.
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5.5 K-Nearest-Neighbors

each feature individual might not result in the best possible prediction, therefore
also sets of different features are tested together. The question arises, which
combinations of features should be tested, as testing all combinations is practically
impossible. It is impossible, as there are 16 individual features resulting in a 16! =
20922789888000 combinations to test. Two reduce the number of combinations
features are grouped into classes. Classes are based on the underlying GS feature
that they represent. This leaves the following four classes of features:

• Degree class

• Distance class

• BC class

• Connectivity class.

Now only one feature of each group is allowed to appear in any set of features used
for the prediction. This leaves 5 ·5 ·5 ·1 = 125 combinations of features to test.

5.5.3 Cross Validation
One of the problems with machine learning approaches is what is known as over-
fitting. Overfitting basically describes a state where the given trainings data is so
similar to testing data that the resulting prediction model is unable to predicate
data items that has different characteristic in comparison to the trainings data
[25].
A common approach to mitigate this problem is to use a technique called cross-

validation (CV) [26]. The idea of CV is to partition the available data into a
number of N equal sized distinct sets and then use N−1 sets as training data, and
use the remaining set to test the prediction quality. This is repeated N times and
the prediction results are aggregated. Figure 5.67 shows an example, where the

a b c d e

a b c d e

a b c d e

a b c d e

a b c d e

Figure 5.67: Training and test data sequence of the CV approach. Each line rep-
resents one test run. Blue circles represent test data sets, red circles
represent training data sets.

available data is separated into five sets. In each row the four red circles represent
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the data sets that are used for the training of the kNN approach and the blue
circle represents the test data that evaluates the prediction based on the training
data. The individual MSEs of each the tests get summarized, producing the final
MSE.

5.5.4 Evaluation
In the evaluation of the predictions done with the kNN approach different factors
are considered. The kNN approach is tested with k ∈ 2,3,5,7. As input to the CV
the mapping resulting from the evaluation of Section 5.4 are used. Table 5.17 . . .
Table 5.20 show the MSE of the predictions of the kNN approach of the mapping
of the ar(p) , the aw(p) , the cr(p) , the cw(p) based on two neighbors.

The header of each table shows the AGFs used. Below each AGF, a column
shows the MSEs and the other column shows an ID. Each row shows the results
for one GP for all the AGFs. The table Subsection 5.5.4 is used as an example
to explain interpretation of the results. In this table, only highlighted parts are

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 4×2 7.62 (1) 0.00 (2) 0.00 (2) 0.77 (3) 8.81 (4)
GP 2×4 46.55 (5) 0.00 (2) 0.00 (2) 3.40 (6) 61.46 (7)
MCS 130.92 (1) 0.00 (2) 0.00 (2) 3.66 (3) 149.22 (8)

TLP 2×4 0.68 (9) 0.00 (2) 0.00 (2) 0.68 (9) 0.45 (10)
TLP 4×2 0.23 (11) 0.00 (2) 0.00 (2) 0.23 (11) 0.23 (12)

considered. The value 3.40 is the MSE of the prediction by the kNN approach for
the QP on a 2×4 grid LNT. The value 6 is the ID of the feature set used in this
prediction. The AGF used is the mode function. The number of neighbors, and
the number of replicas is listed in each caption of each result table.
As the four tables show, the MSE for the AGFs average, and median is 0.00.

That means, the predictions are 100% correct. Table 5.22 on page 124 shows
the sets of features that lead to at least one best prediction. The ID field in
this table corresponds to the ID field of the four Tables 5.17, 5.18, 5.19, and
5.20. The column Occurrences lists how often a set of features made the best
prediction. The feature BCMax was able to perfectly predict the ar(p) , the aw(p) ,
the cr(p) , and the cw(p) of all five tested QPs. BC is also part of most of the
other feature sets shown in Table 5.22. The results of the predictions for QPs with
eight replicas with three, and five neighbors are omitted as they show the same
MSEs and use the same feature sets. The same is true for the test with seven
neighbors. For completeness, the ar(p) , and the aw(p) of that test are shown in
Table 5.23 on page 125 and Table 5.24 on page 125. The feature sets leading to
the best predictions with seven neighbors is shown in Table 5.26 on page 126. The
shown results are equal to Table 5.22. QPs with nine replicas were
also tested. Table 5.27 on page 127 to Table 5.30 on page 127 show the MSE of
these predictions. Again, first the predictions based on two neighbors are shown.
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5.5 K-Nearest-Neighbors

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 4×2 7.62 (1) 0.00 (2) 0.00 (2) 0.77 (3) 8.81 (4)
GP 2×4 46.55 (5) 0.00 (2) 0.00 (2) 3.40 (6) 61.46 (7)
MCS 130.92 (1) 0.00 (2) 0.00 (2) 3.66 (3) 149.22 (8)

TLP 2×4 0.68 (9) 0.00 (2) 0.00 (2) 0.68 (9) 0.45 (10)
TLP 4×2 0.23 (11) 0.00 (2) 0.00 (2) 0.23 (11) 0.23 (12)

Table 5.17: The MSE of the ar(p) predictions by the kNN approach with eight
replicas and k = 2.

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 4×2 9.09 (13) 0.00 (2) 0.00 (2) 0.89 (14) 17.12 (12)
GP 2×4 52.59 (15) 0.00 (2) 0.00 (2) 1.09 (16) 114.04 (1)
MCS 41.12 (17) 0.00 (2) 0.00 (2) 2.00 (18) 69.21 (12)

TLP 2×4 69.97 (16) 0.00 (2) 0.00 (2) 1.05 (19) 209.22 (20)
TLP 4×2 42.93 (21) 0.00 (2) 0.00 (2) 0.67 (22) 103.20 (4)

Table 5.18: The MSE of the aw(p) predictions by the kNN approach with eight
replicas and k = 2.

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 4×2 0.00 (23) 0.00 (24) 0.00 (24) 0.00 (23) 0.00 (25)
GP 2×4 0.00 (24) 0.00 (24) 0.00 (24) 0.00 (24) 0.00 (24)
MCS 0.00 (24) 0.00 (24) 0.00 (24) 0.00 (24) 0.00 (24)

TLP 2×4 0.00 (18) 0.00 (2) 0.00 (2) 0.00 (18) 0.00 (10)
TLP 4×2 0.00 (11) 0.00 (24) 0.00 (24) 0.00 (11) 0.00 (26)

Table 5.19: The MSE of the cr(p) predictions by the kNN approach with eight
replicas and k = 2.

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 4×2 0.00 (19) 0.00 (2) 0.00 (2) 0.00 (19) 0.00 (19)
GP 2×4 0.99 (27) 0.00 (2) 0.00 (2) 0.01 (28) 0.59 (29)
MCS 0.00 (4) 0.00 (2) 0.00 (2) 0.00 (4) 0.00 (30)

TLP 2×4 0.79 (31) 0.00 (2) 0.00 (2) 0.02 (32) 0.31 (33)
TLP 4×2 1.56 (34) 0.00 (2) 0.00 (2) 0.01 (14) 0.39 (18)

Table 5.20: The MSE of the cw(p) predictions by the kNN approach with eight
replicas and k = 2.
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5 Mappings of Quorum Protocols to Physical Network Topologies

ID Set of features Occurrences
(1) { BetweenneesAverage, DegreeMix } 3
(2) { BetweenneesMax } 32
(3) { BetweenneesMax, Connectivity, DegreeMax } 2
(4) { BetweenneesAverage, DiameterMedian, DegreeMix } 4
(5) { BetweenneesMode, DiameterAverage, Connectivity, DegreeMedian } 1
(6) { BetweenneesMedian, DiameterAverage, DegreeMax } 1
(7) { BetweenneesMax, DiameterAverage, Connectivity, DegreeAverage } 1
(8) { BetweenneesMix, DiameterAverage, DegreeMedian } 1
(9) { BetweenneesAverage, DiameterAverage, Connectivity, DegreeAverage } 2
(10) { BetweenneesMax, DiameterAverage } 2
(11) { BetweenneesAverage, Connectivity } 4
(12) { BetweenneesMax, DiameterMax, Connectivity, DegreeMode } 3
(13) { DiameterAverage, DegreeMix } 1
(14) { BetweenneesMedian, Connectivity, DegreeAverage } 2
(15) { BetweenneesAverage, DiameterMax, Connectivity, DegreeMix } 1
(16) { BetweenneesMode, DiameterAverage, Connectivity, DegreeMode } 2
(17) { BetweenneesMode, DiameterAverage, Connectivity, DegreeAverage } 1
(18) { BetweenneesMedian, DiameterAverage, DegreeMix } 4
(19) { DiameterAverage, Connectivity, DegreeAverage } 4
(20) { BetweenneesMedian, Connectivity } 1
(21) { BetweenneesMedian, DiameterAverage, DegreeAverage } 1
(22) { BetweenneesMedian, DegreeAverage } 1
(23) { DegreeAverage } 2
(24) { BetweenneesMedian } 14
(25) { BetweenneesMedian, DiameterAverage } 1
(26) { BetweenneesMax, DiameterMax, DegreeMode } 1
(27) { BetweenneesMix, DiameterAverage, Connectivity, DegreeMedian } 1
(28) { BetweenneesMedian, DiameterMax, DegreeMode } 1
(29) { BetweenneesMix, DiameterMax, DegreeAverage } 1
(30) { BetweenneesAverage, DiameterMedian, Connectivity, DegreeMix } 1
(31) { BetweenneesMax, DiameterMax, DegreeMedian } 1
(32) { BetweenneesMax, DiameterMax, Connectivity, DegreeMedian } 1
(33) { BetweenneesMedian, DiameterAverage, Connectivity } 1
(34) { BetweenneesAverage, DiameterMax, Connectivity, DegreeMode } 1

Table 5.22: The graph properties and graph property combinations used in the
kNN where k = 2 predictions that lead to the best predictions in at
least one instance with eight replicas.

124



5.5 K-Nearest-Neighbors

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 4×2 7.62 (1) 0.00 (2) 0.00 (2) 0.77 (3) 8.81 (4)
GP 2×4 46.55 (5) 0.00 (2) 0.00 (2) 3.40 (6) 61.46 (7)
MCS 130.92 (1) 0.00 (2) 0.00 (2) 3.66 (3) 149.22 (8)

TLP 2×4 0.68 (9) 0.00 (2) 0.00 (2) 0.68 (9) 0.45 (10)
TLP 4×2 0.23 (11) 0.00 (2) 0.00 (2) 0.23 (11) 0.23 (12)

Table 5.23: The MSE of the ar(p) predictions by the kNN approach with eight
replicas and k = 7.

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 4×2 9.09 (13) 0.00 (2) 0.00 (2) 0.89 (14) 17.12 (12)
GP 2×4 52.59 (15) 0.00 (2) 0.00 (2) 1.09 (16) 114.04 (1)
MCS 41.12 (17) 0.00 (2) 0.00 (2) 2.00 (18) 69.21 (12)

TLP 2×4 69.97 (16) 0.00 (2) 0.00 (2) 1.05 (19) 209.22 (20)
TLP 4×2 42.93 (21) 0.00 (2) 0.00 (2) 0.67 (22) 103.20 (4)

Table 5.24: The MSE of the aw(p) predictions by the kNN approach with eight
replicas and k = 7.

Interestingly, the predictions are already perfect. The AGFs average and median
have a MSE of 0.00. Table 5.32 on page 128 shows the feature sets that lead to
the best predictions. BCMax is again dominant. Again the results of the tests with
three, and five neighbors are omitted as they are equal to the test results with
two neighbors. To emphasize this fact, the results of the test with seven neighbors
are shown. The results are shown in Table 5.33 on page 128 and Table 5.34 on
page 129.
BC, especially BCMax is the dominant feature in the analysis. The dominance

of the BetweennessMax can be explained by looking into its meaning. If quorums
are no longer connected after they have been mapped to a PNT, the mapping
approach will reconnect the replicas of the quorum with as little additional replicas
as possible. These replicas are found by finding the shortest paths between not
connect vertices in the PNT. The BC property makes a statement about how often
a particular replica is part of all shortest paths through a graph. BetweennessMax
expresses how often the replica/vertex that is part of the most shortest paths in
a graph is part of a shortest path. Therefore, BetweennessMax basically states
the BC value of the most important replica in the graph in regards to quorums
mappings. As graphs with the same number of replicas for each kNN iteration are
used, BetweennessMax turns out to be a very good estimator for the quality of
the mapping, that can be expected from a graph. This is because graphs with the
same BetweennessMax value have a very similar structure.
For example, consider all shortest path of the GS in Figure 5.66 as shown in

Table 5.13 leading to the BC values as shown in Table 5.14. Replica b is part of
nine of the 13 shortest paths, leading to a BC value of 3.5. It is also the highest
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5 Mappings of Quorum Protocols to Physical Network Topologies

ID Set of features Occurrences
(1) { BetweenneesAverage, DegreeMix } 3
(2) { BetweenneesMax } 32
(3) { BetweenneesMax, Connectivity, DegreeMax } 2
(4) { BetweenneesAverage, DiameterMedian, DegreeMix } 4
(5) { BetweenneesMode, DiameterAverage, Connectivity, DegreeMedian } 1
(6) { BetweenneesMedian, DiameterAverage, DegreeMax } 1
(7) { BetweenneesMax, DiameterAverage, Connectivity, DegreeAverage } 1
(8) { BetweenneesMix, DiameterAverage, DegreeMedian } 1
(9) { BetweenneesAverage, DiameterAverage, Connectivity, DegreeAverage } 2
(10) { BetweenneesMax, DiameterAverage } 2
(11) { BetweenneesAverage, Connectivity } 4
(12) { BetweenneesMax, DiameterMax, Connectivity, DegreeMode } 3
(13) { DiameterAverage, DegreeMix } 1
(14) { BetweenneesMedian, Connectivity, DegreeAverage } 2
(15) { BetweenneesAverage, DiameterMax, Connectivity, DegreeMix } 1
(16) { BetweenneesMode, DiameterAverage, Connectivity, DegreeMode } 2
(17) { BetweenneesMode, DiameterAverage, Connectivity, DegreeAverage } 1
(18) { BetweenneesMedian, DiameterAverage, DegreeMix } 4
(19) { DiameterAverage, Connectivity, DegreeAverage } 4
(20) { BetweenneesMedian, Connectivity } 1
(21) { BetweenneesMedian, DiameterAverage, DegreeAverage } 1
(22) { BetweenneesMedian, DegreeAverage } 1
(23) { DegreeAverage } 2
(24) { BetweenneesMedian } 14
(25) { BetweenneesMedian, DiameterAverage } 1
(26) { BetweenneesMax, DiameterMax, DegreeMode } 1
(27) { BetweenneesMix, DiameterAverage, Connectivity, DegreeMedian } 1
(28) { BetweenneesMedian, DiameterMax, DegreeMode } 1
(29) { BetweenneesMix, DiameterMax, DegreeAverage } 1
(30) { BetweenneesAverage, DiameterMedian, Connectivity, DegreeMix } 1
(31) { BetweenneesMax, DiameterMax, DegreeMedian } 1
(32) { BetweenneesMax, DiameterMax, Connectivity, DegreeMedian } 1
(33) { BetweenneesMedian, DiameterAverage, Connectivity } 1
(34) { BetweenneesAverage, DiameterMax, Connectivity, DegreeMode } 1

Table 5.26: The graph properties and graph property combinations used in the
kNN where k = 7 predictions that lead to the best predictions in at
least one instance with eight replicas.
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5.5 K-Nearest-Neighbors

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 3×3 27.29 (1) 0.00 (2) 0.00 (2) 2.70 (3) 62.76 (4)
MCS 84.17 (1) 0.00 (2) 0.00 (2) 2.99 (5) 175.70 (4)

TLP 3×3 8.34 (6) 0.00 (2) 0.00 (2) 1.07 (7) 66.49 (8)

Table 5.27: The MSE of the ar(p) predictions by the kNN approach with nine
replicas and k = 2.

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 3×3 47.34 (1) 0.00 (2) 0.00 (2) 2.25 (9) 276.35 (10)
MCS 84.17 (1) 0.00 (2) 0.00 (2) 2.99 (5) 175.70 (4)

TLP 3×3 8.66 (11) 0.00 (2) 0.00 (2) 0.86 (7) 138.32 (12)

Table 5.28: The MSE of the aw(p) predictions by the kNN approach with nine
replicas and k = 2.

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 3×3 0.00 (13) 0.00 (2) 0.00 (2) 0.00 (13) 0.00 (14)
MCS 0.00 (4) 0.00 (2) 0.00 (2) 0.00 (4) 0.00 (15)

TLP 3×3 0.01 (16) 0.00 (2) 0.00 (2) 0.00 (17) 0.01 (18)

Table 5.29: The MSE of the cr(p) predictions by the kNN approach with nine
replicas and k = 2.

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 3×3 0.02 (8) 0.00 (2) 0.00 (2) 0.01 (19) 0.01 (20)
MCS 0.00 (4) 0.00 (2) 0.00 (2) 0.00 (4) 0.00 (15)

TLP 3×3 3.55 (21) 0.00 (2) 0.00 (2) 0.00 (22) 1.71 (23)

Table 5.30: The MSE of the cw(p) predictions by the kNN approach with nine
replicas and k = 2.
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5 Mappings of Quorum Protocols to Physical Network Topologies

ID Set of features Occurrences
(1) { BetweenneesAverage, DiameterMax, Connectivity, DegreeMedian } 4
(2) { BetweenneesMax } 24
(3) { BetweenneesAverage, DiameterAverage, Connectivity, DegreeAverage } 1
(4) { BetweenneesMode, DiameterAverage, DegreeAverage } 7
(5) { BetweenneesMedian, DiameterMax, Connectivity, DegreeMax } 2
(6) { BetweenneesMode, DiameterAverage, DegreeMedian } 1
(7) { BetweenneesMedian, DiameterAverage, Connectivity } 2
(8) { BetweenneesMedian, DiameterMax, DegreeAverage } 2
(9) { BetweenneesMax, DiameterAverage, Connectivity, DegreeMode } 1
(10) { BetweenneesMix, DiameterAverage, DegreeMedian } 1
(11) { BetweenneesMedian, DiameterAverage, Connectivity, DegreeMedian } 1
(12) { BetweenneesMix, DiameterMax, DegreeAverage } 1
(13) { BetweenneesAverage, DiameterMax, Connectivity, DegreeMax } 2
(14) { BetweenneesMax, Connectivity, DegreeMedian } 1
(15) { BetweenneesMode, DiameterAverage, Connectivity, DegreeMix } 2
(16) { BetweenneesMedian, DegreeMedian } 1
(17) { BetweenneesAverage, DiameterMax, DegreeMode } 1
(18) { BetweenneesMode, DegreeAverage } 1
(19) { BetweenneesMedian, DiameterAverage, Connectivity, DegreeMode } 1
(20) { BetweenneesAverage, Connectivity, DegreeMedian } 1
(21) { BetweenneesMedian, DegreeAverage } 1
(22) { BetweenneesMax, DiameterMax, Connectivity, DegreeAverage } 1
(23) { BetweenneesMedian, DiameterAverage, DegreeMode } 1

Table 5.32: The graph properties and graph property combinations used in the
kNN where k = 2 predictions that lead to the best predictions in at
least one instance with nine replicas.

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 3×3 27.29 (1) 0.00 (2) 0.00 (2) 2.70 (3) 62.76 (4)
MCS 84.17 (1) 0.00 (2) 0.00 (2) 2.99 (5) 175.70 (4)

TLP 3×3 8.34 (6) 0.00 (2) 0.00 (2) 1.07 (7) 66.49 (8)

Table 5.33: The MSE of the ar(p) predictions by the kNN approach with nine
replicas and k = 7.
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5.5 K-Nearest-Neighbors

QPs
AGFs Min Average Median Mode Max

MSE ID MSE ID MSE ID MSE ID MSE ID
GP 3×3 47.34 (1) 0.00 (2) 0.00 (2) 2.25 (9) 276.35 (10)
MCS 84.17 (1) 0.00 (2) 0.00 (2) 2.99 (5) 175.70 (4)

TLP 3×3 8.66 (11) 0.00 (2) 0.00 (2) 0.86 (7) 138.32 (12)

Table 5.34: The MSE of the aw(p) predictions by the kNN approach with nine
replicas and k = 7.

ID Set of features Occurrences
(1) { BetweenneesAverage, DiameterMax, Connectivity, DegreeMedian } 4
(2) { BetweenneesMax } 24
(3) { BetweenneesAverage, DiameterAverage, Connectivity, DegreeAverage } 1
(4) { BetweenneesMode, DiameterAverage, DegreeAverage } 7
(5) { BetweenneesMedian, DiameterMax, Connectivity, DegreeMax } 2
(6) { BetweenneesMode, DiameterAverage, DegreeMedian } 1
(7) { BetweenneesMedian, DiameterAverage, Connectivity } 2
(8) { BetweenneesMedian, DiameterMax, DegreeAverage } 2
(9) { BetweenneesMax, DiameterAverage, Connectivity, DegreeMode } 1
(10) { BetweenneesMix, DiameterAverage, DegreeMedian } 1
(11) { BetweenneesMedian, DiameterAverage, Connectivity, DegreeMedian } 1
(12) { BetweenneesMix, DiameterMax, DegreeAverage } 1
(13) { BetweenneesAverage, DiameterMax, Connectivity, DegreeMax } 2
(14) { BetweenneesMax, Connectivity, DegreeMedian } 1
(15) { BetweenneesMode, DiameterAverage, Connectivity, DegreeMix } 2
(16) { BetweenneesMedian, DegreeMedian } 1
(17) { BetweenneesAverage, DiameterMax, DegreeMode } 1
(18) { BetweenneesMode, DegreeAverage } 1
(19) { BetweenneesMedian, DiameterAverage, Connectivity, DegreeMode } 1
(20) { BetweenneesAverage, Connectivity, DegreeMedian } 1
(21) { BetweenneesMedian, DegreeAverage } 1
(22) { BetweenneesMax, DiameterMax, Connectivity, DegreeAverage } 1
(23) { BetweenneesMedian, DiameterAverage, DegreeMode } 1

Table 5.36: The graph properties and graph property combinations used in the
kNN where k = 7 predictions that lead to the best predictions in at
least one instance with nine replicas.
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5 Mappings of Quorum Protocols to Physical Network Topologies

BC value of every replica, or in other words BC-Max is 3.5. BC-Max basically
stats that replica b is by far the most important replica in the GS. Consider the
RQS′ of the MCS when mapped to the GS in Figure 5.66 as shown in Table 5.2.
Here the replica b is part of five of the six qi elements of the RQS′. This shows
how the BC-Max value is a good indicator for the ar(p) , and the aw(p) resulting
in a very successful feature in the applied kNN approach.

With GSs with more than nine replicas the accuracy of the predictions will likely
decrease, but in order to train for these scenarios first a few mappings for these
GSs have to be computed. As shown previously, this is currently computational
to complex.

5.5.5 Conclusion
Overall it can be said that the predictions done with the kNN-approach are very
good.
Especially, the BC-Max is very good at predicting the cr(p) , the cw(p) , the

ar(p) , and the aw(p) .
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6 The Circle Protocol
This chapter is based on the work published, by the author, in [27, 28].
Mappings have the general problem that they introduce a layer of indirection in
order to use a given PNT. As shown in Section 5.4, this indirection decreases the
availability of the read and write operation and/or increases their costs. Addition-
ally, finding the best mapping has a N! complexity. The Circle Protocol (CIP)
was developed to use a PNT as is, without requiring an indirection. The CIP does
not add any edges or vertices to the PNT. The CIP only requires the GS to be
planar and connected. Figure 6.1 shows the idea behind the CIP. Two circles that

•

Figure 6.1: The idea behind the CIP-protocol is that two circles that embed the
middle and touch the outside will always intersect.

enclosed the blue, middle dot and that touches the black, outside circle (outside)
will always intersect. This is shown by the red and green circle. These circles
are used to execute read and write operations. It is now a matter of projecting
these structures on the vertices and edges of a GS to use them as RQs or WQs.
The GS in Figure 6.2 shows such a projection. The vertices in green represent the
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Figure 6.2: Example of the CIP.

outside. The red vertex is the so called middle. Figure 6.3 on the next page shows
an orange path that touches the outside and enclosed the middle. This orange
path is a circle that can be used as a quorum for either a read or write operation.
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6 Circle Protocol
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Figure 6.3: A circle that touches the outside and encloses the middle.

Any other circle that can be formed on this GS will intersect in at least one vertex
with this path. Formally, a circle is a path as described in Section 2.3 on page 8
with the addition that the first and last element of the path are connected. Let m
be the selected middle vertex and O a set of vertices making up the outside of a
GS. Then, c is a circle that is used as a RQ or a WQ if

∀o ∈ O there ̸ ∃ a path p = (m, . . . ,o) such p∩ c ̸= /0 (6.1)

is true. The orange path connecting the replicas 2,3,4,5,6,7, and 9 form the
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Figure 6.4: A minimized circle that touches the middle and touches the outside.
The orange outlined replicas are used in the quorum. The orange edges
between them represent the path through the graph to combine them.

quorum in this example. Tightening the circle around the middle and the replica
4 will eventually lead to the path shown in Figure 6.4. This process can be
understood as a rubber band tightening around two points. The shortest paths,
from the outside to the middle are the most cost-efficient quorum in the general
case1. A path q = (t, . . . ,s) can be used as a RQ or a WQ if t is the middle vertex
and s is a vertex part of the outside. If, for example, the vertices 4 and 8 are not
available, no quorum can be formed. This is because, there is no possible path
available that leads around the middle and no path that leads from an outside
vertex to the middle.
Previously, it was stated that it is required that the GS used is planar. To

demonstrate the need for this requirement, consider the GS in Figure 6.5 on the
1They can be cost inefficient if the created path takes a bulk of all replicas. For instance, an

inefficient path from the outside to the middle in Figure 6.4 would be 4,7,6,9,2,5,1,3,8.
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6.1 Planarization of a Graph Structure

facing page. In the GS in Figure 6.5 two circles can be constructed that do
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Figure 6.5: A non-planar GS used to demonstrate the need for a planar GSs when
used with the CIP.

not intersect. The first circle consists of the vertices {4,8} and the second circle
considers of the vertices {3,7,6,9,2,5}. With such a GS 1SR is not given, as for
example two concurrent write operation can be executed. Figure 6.6 shows a red
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Figure 6.6: Two non intersecting circles.

and a green circle surrounding a blue middle vertex. This figure demonstrates
why a circle of the CIP needs to touch the outside. If both circles were to be used
as quorums, the 1SR property would not be upheld. This is because there is no
intersection of the set of vertices making up the two circles.

6.1 Planarization of a Graph Structure
Previously, it was shown that non-planar graph can be used to create quorums
that invalidate the 1SR criteria. As it cannot be guaranteed that the given PNT
is planar and the CIP should adhere to 1SR, the PNT has to be made planar.
Sometimes, a non-planar GS can be transformed into a planar GS. Consider the
GS being non-planar GS in Figure 6.7 on the following page. This GS can be easily
transformed into a planar GS as shown in This approach has the drawback that
there is an infinite amount of possible transformations. Finding transformations
that make the given GS planar and well suited for the CIP is therefore very
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6 Circle Protocol
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Figure 6.7: A non-planar GS.
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Figure 6.8: A planar GS.

complex as an infinite amount of transformation have to be tested. Additionally,
not all non-planar GS can be made planar in such a way. If a subgraph of a
GS is isomorph to one of the GSs shown in Figure 6.9, then the complete GS
cannot be planar [29]. Another approach is to remove intersection edges for the
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(a) K3,3

1 2

3 4
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(b) K5

Figure 6.9: Two GSs that are not planar.

GS until the GS is planar. This process is shown in Figure 6.10 on the facing
page. Edge removals are not considered to be not changing the PNT, as ignoring
a communication link can be achieved without the need for additional hardware.
Removing edges is an iterative process, as seen in Figure 6.10 and may result in
multiple planar GSs. The algorithm is shown in Algorithm 10 on page 136. In
line 1 in Algorithm 10 the passed GS g is put into a set of GSs. As long as this
set is not empty, as shown in line 4 in Algorithm 10, the algorithm continues to
process the GSs in the set. At the beginning of the while-loop, a GS named t is
removed from the set s. If t is a planar GS, it is placed in the eventually returned
set r, as shown in the true-branch in line 8 in Algorithm 10. If t is not planar,
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Figure 6.10: One possible transforming of a non-planar GS into a planar GSs by
removing intersection edges.
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Algorithm 10: Procedure makePlanar(g)
Input: g = the GS to make planar
Result: a set of planar GS

1 s = {g}
2 r = /0
3 d = /0
4 while s ̸= /0 do
5 t ∈ s
6 s = s\ t

/* isPlanar is a function evaluating to true if no two
edges of the GS given as input intersect */

7 if isConnected(t) then
8 if isPlanar(t) then
9 r = r∪ t

10 else
/* intersectingEdges is a function returning a set of

tuples of two intersecting edges of the passed GS
*/

11 forall (ei, j,en,m) ∈ intersectingEdges(t) do
12 g′ = (tV , tE \ ei, j)
13 g′′ = (tV , tE \ en,m)
14 if g′ ̸∈ d then
15 s = s∪g′

16 end
17 if g′′ ̸∈ d then
18 s = s∪g′′

19 end
20 end
21 end
22 else
23 d = d ∪ t
24 end
25 end
26 return r
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two intersecting edges are identified, as shown in line 11 in Algorithm 10. The GS
t and these two edges are then used to create two new GSs. Each of these GSs is a
copy of t minus one of the identified edges. These two new GSs are then inserted
into s, as shown in line 15 in Algorithm 10.
Figure 6.10 shows an example execution of Algorithm 10. The GS labeled tmp1

is the original non-planar GS that gets passed to the algorithm. Let t be equal to
tmp1 then intersectingEdges(t) while yield the set {(e1,3,e2,4),(e1,3,e2,5),(e1,5,e2,4)}.
Let ei, j = e1,3 and en,m = e2,4, then g′ will equal the GS labeled tmp2 and g′′ will be
equal unconnected1. The next pair of intersecting edges (e1,3,e2,5) only yields on the
new element that gets inserted into s. This is the GS labeled tmp3. The last pair
of intersecting edges is (e1,5,e2,4). Removal of the edge e1,5 of the GS labeled tmp1
results in the GS labeled tmp4. Removing edge e2,4 does not result in a GS not al-
ready present in s. As s initially contains only one element, the original non-planar
GS, the first iteration of the while-loop is done. Let t be tmp2, then (e1,5,e2,4)
is the set of intersection edges constructed by the call to intersectingEdges. Re-
moving the edge e1,5 results in the GS labeled planar1. Removing the edge e2,4
results in the GS labeled unconnected2. Both of these GSs get inserted into the
set s. In the next increment of the loop t = unconnected1. This GS gets discarded,
as shown in line 7 in Algorithm 10, as the GS is no longer connected. If t = tmp3
then {(e1,3,e2,4),(e1,5,e2,4)} is the set of intersecting edges. Removing the edge e1,3
results in the GS labeled tmp5. Removing the edge e2,4 results in the GS labeled
unconnected3. For the second pair of intersecting edges (e1,5,e2,4) the resulting
GSs are unconnected4 and unconnected5. {(e1,3,e2,4),(e2,5,e1,3)} is the set of inter-
secting edges for the GS tmp4. The removal of these edges results in only one
new GS, which is labeled unconnected6. The set s now contains the GSs planar1,
unconnected2, unconnected3, unconnected4, unconnected5, unconnected6, and tmp5.
The GS planar1 gets inserted into the result set r. All GSs labeled as unconnected
are discarded. The remaining GS tmp5 only has one pair of intersecting edges.
Removal of these edges results in the GSs unconnected7 and unconnected8. These
two GSs are eventually discarded and the while-loop in line 4 in Algorithm 10
terminates. Finally, the set of the planar GSs r is returned by Algorithm 10.

6.2 The Outside Replicas
Defining the outside of a given GS is an important step in the CP. In order for
this to work, the replicas must have static positions. This means that the position
vector of each replica must have the same dimension as the dimension in the given
topology. Two-dimensional topologies are easy to present in a two-dimensional
medium and, more importantly, can be found in nearly all real-world networks.
The trivial cases are GSs with zero and one vertex. For zero vertices the outside

is empty, for one vertex it is that one vertex.
That means the CIP will not work on such a GS as the middle vertex must not

part of the outside. For one replica, the outside is this one replica. Again, the
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Algorithm 11: Procedure angle(Ea,b,Eb,c)

Input: Ea,b = the first edge
Result: the angle between the two edges

1 Eb,c = the second edge
2 A = (b.x−a.x,b.y−a.y)
3 O = (c.x−b.x,c.y−b.y)
4 divident = a.x∗o.x+a.y∗o.y

5 divisor =
√

A2
1 +A2

2 ·
√

O2
1 +O2

1

6 tmp = acos(divident/divisor) · (180/PI)
7 if A1 ·O2 −A2 ·O1 < 0 then
8 tmp =−tmp
9 end

10 return tmp

0 1

2

90◦

180◦

270◦

α

Figure 6.11: Example for the angle-Function described in Algorithm 11.
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Algorithm 12: Procedure nextVertex(c, j,{ad j1, . . . ,ad jn})
Input: c = a vertex of the edge ec, j

j = a vertex of the edge ec, j

{ad j1, . . . ,ad jn} = a set of vertices for which an edge e j,ad j exists
Result: the vertex ad ji ∈ {ad j1, . . . ,ad jn} for which the angle between ec, j

and e j,ad ji is greatest
1 A := ⟨ad j1, . . . ,ad jn⟩
2 B := ⟨⟩
3 C := ec, j

4 for a ∈ A do
5 B = B∪⟨a,angle(C,e j,a)⟩
6 end
7 sortByAngleDecending(B)
8 if |B|> 1 then
9 return B21

10 end
11 return B11

Algorithm 13: Procedure outside(g)
Input: g = the GS to find the outside for
Result: a set of all the vertices of the outside

1 s = v ∈ V(g) where min(vx)
2 n = (sx −1,sy)
3 cur = enid ,sid

4 o = /0
5 while cur ̸= esid ,nid do
6 ei, j = cur
7 o = o∪ e j

8 f = {ek|ek ∈ ek,l ∈ E(g)∧ ek = e j}
9 p = nextVertex(ei,e j, f )

10 cur = ee j,p

11 end
12 return o
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CIP will not work on such a GS. With more than one replica the current approach
takes multiple steps. The GS in Figure 6.12 is used as an example to demonstrate
the algorithm shown in Algorithm 13 on the previous page. The first step is to find
the leftmost vertex of the GS, as shown in line 1 in Algorithm 13. The leftmost
vertex has the ID 1 as shown in Figure 6.13. The next step is to create a new
edge called cur in the algorithm, short for current. The lines 2 and 3 show the
construction of this edge in Algorithm 13. The variable o declared on the next
line stores the vertices that are identified to be on the outside. Vertices which are
elements of o are colored green in the following figures. The idea of the algorithm
is to follow the adjacent edge with the largest angle. The angle between two edges
is defined as illustrated in Figure 6.11 on page 138. The edge with the largest
edge in relation to the current edge is considered to be the current edge of the
next step in the algorithm. The loop started on line 5 in Algorithm 13 is executed
until the edge cur is reached again. So far, it was implicitly assumed that the two
edges ei, j and e j,i are equal. For the execution of Algorithm 13, it is imperative to
consider these two edges to be distinct. In the current state of the execution of the
algorithm edge e0,1 is the edge cur. In Figure 6.14 on the facing page, the edge cur
is represented by the red line. Vertex 1 is inserted into the set o. The edge cur is
adjacent to the edges e1,2, e1,5, e1,3, and e1,0. On line 8 in Algorithm 13, a set f is
constructed from these edges. During this execution of the while-loop f contains
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5 6
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Figure 6.12: The GS, the outside replicas should be found for.
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Figure 6.13: The GS the outside replicas, after step 1.
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Figure 6.14: The GS the outside replicas, after step 2.

the vertices {2,5,3,0}. The vertices of the edge cur as well as the set f are then
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Figure 6.15: The GS the outside replicas, after step 3.

passed to Algorithm 12 on page 139. Algorithm 12 determines the adjacent edge
with the largest angle. Even more specifically, Algorithm 12 determines the vertex
v ∈ f which is part of an edge ez,v where eq,z is the current edge cur.
The algorithm nextVertec used the algorithm angle to calculate the angle be-

tween all edges. Interestingly, given an edge ei, j, the adjacent edge e j,i always has
an angle of 360◦, the largest possible angle. Intuitively, nextVertex would there-
fore always i to be the next vertex. This would always, erroneously, terminate the
whole algorithm after the first iteration of the while-loop of the outside algorithm.
To circumvent this problem, line 8 in Algorithm 12 is required. This part of the
algorithm makes sure to only return this vertex if there is no other adjacent edge.
If there is another edge, the vertex being part of the edge with the second largest
angle, is returned. This leads to the vertex with ID 3 being returned and used in
the construction of the edge cur as shown in line 10 in Algorithm 13. Figure 6.15
shows the state after step 3 of the algorithm when the loop-body begins execution
again. The edge cur is again marked in red. Vertex 3 is connected to four ver-
tices {1,5,8,4}. Passing the current edge and those four vertices to the nextVertex
algorithm, yields the vertex with ID 4 as the next vertex. Repeating this step as
before, leads to the state as shown in Figure 6.16 on the next page. The same
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Figure 6.16: The GS the outside replicas, after step 4.
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Figure 6.17: The GS the outside replicas, after step 5.

procedure is repeated for the steps shown in Figures 6.17 to 6.21. In step 9, the
algorithm has reached a dead-end and has no other choice but to return through
the edge he reached vertex with ID 10 in the first place. Here the if-branch in
line 8 in Algorithm 12 is taken. The remainder of the execution of the algorithm
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Figure 6.18: The GS the outside replicas, after step 6.

proceeds as before. This is shown in the Figures 6.22 to 6.23. Eventually, the
edge e1,0 is reached and the while-loop in line 5 in Algorithm 13 is left. The set
o is returned, containing the vertices making up the outside of the GS.
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Figure 6.19: The GS the outside replicas, after step 7.
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Figure 6.20: The GS the outside replicas, after step 8.
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Figure 6.21: The GS the outside replicas, after step 9.
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Figure 6.22: The GS the outside replicas, after step 10.
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Figure 6.23: The GS the outside replicas, after step 11.

6.3 Selecting the middle
Selecting the middle has great influence on the availability and on the costs of the
operations. The middle can be any vertex in the GS that is not part of the outside.
Again, considering the GS of Figure 6.13 and the previously constructed outside
consisting of the vertices {1,2,3,4,6,7,9,10}, vertices 5 and 8 are candidates for
the middle. As the performance of the CIP depends on the GS, evaluating all
possible middle vertices and comparing their performance, based on the ARW
measure, guarantees to yield the best possible performance of the CIP.
Let b be the set of border vertices of a GS g, then V (g) \ b gives the set of

potential middle vertices.

6.4 Read Quorum and Write Quorum Construction
As the RQs and WQs of the CIP are constructed in the same way, the algo-
rithm isWriteQuorum, shown in Algorithm 14 on the facing page, simply uses the
isReadQuorum algorithm shown in Algorithm 15 on the next page. Both functions
require the same inputs. The set of replicas that is to be tested to be a RQ or a
WQ is called replicas. The middle is passed as mid. The PNT is passed with the
name pnt. Finally, the set of outside replicas is named outside. The isReadQuorum
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Algorithm 14: Procedure isWriteQuorum() of the CIP
Input: replicas = a set of replicas that is to be tested whether or not it is

a RQ for the given CIP
pnt = the PNT used by the CIP
mid = the selected middle
outside = the set of replicas making up the outside

Result: true if replicas form a WQ, false otherwise
1 return isReadQuorum(replicas, pnt,mid,outside)

Algorithm 15: Procedure isReadQuorum() of the CIP
Input: replicas = a set of replicas that is to be tested whether or not it is

a RQ for the given CIP
pnt = the PNT used by the CIP
mid = the selected middle
outside = the set of replicas making up the outside

Result: true if replicas form a RQ, false otherwise
1 shortestPathToOutside = f indPathOutside(mid,outside,replicas, pnt)
2 if shortestPathToOutside ̸= /0 then
3 return true
4 end
5 surroundsMiddle = testSurroundMiddle(mid,outside,replicas, pnt)
6 if surroundsMiddle ̸= /0 then
7 return true
8 end
9 return f alse
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algorithm shown in Algorithm 15 is straightforward. The idea of the algorithm is
to either see if a path from the middle to the outside exists or if a path surrounding
the middle that touches the outside exists. The first part is straight forward path
computation, the second condition is done by testing the inverse property: Does a
path exist that starts at the middle and reaches the outside without intersecting
with the possible RQ. On line 1 in Algorithm 15, the shortest path between the
middle and any of the outside replicas is constructed. If such a path can be found,
replicas is a RQ. The procedure f indPathOutside is presented in Algorithm 16. If
no such path exists, it is tested if the middle replica is enclosed by the replicas
part of replicas. This test is shown on line 6 in Algorithm 15. If the value re-
turned by testSurroundMiddle is not the /0, the test is considered to be successful
and replicas is a RQ. The procedure testSurroundMiddle is shown in Algorithm 17
on the next page. The f indPathOutside procedure, shown in Algorithm 16, tests

Algorithm 16: Procedure f indPathOutside() of the CIP
Input: replicas = a set of available replicas

pnt = the PNT used by the CIP
mid = the selected middle
outside = the set of replicas of the outside

Result: a smallest set of replicas that is a path from the middle to an
outside replica

1 if mid ∈ replicas then
2 for it ∈ outside do
3 if it ∈ replicas then
4 tmp = shortestPath(mid, it,replicas, pnt)
5 if tmp ̸= /0 then
6 return tmp
7 end
8 end
9 end

10 end
11 return /0

whether there is a path from the middle to an replica on the outside in the PNT
that only consists of the currently available replicas. On line 1 in Algorithm 16
tests whether the middle is available. If the middle is not available, than no path
to the outside starting at the middle can exist. If the middle is available, all
outside replicas are iterated as shown on line 2 in Algorithm 16. On line line 3
in Algorithm 16 it is tested whether the outside replica it is an element of the
currently available replicas. If that is the case, it is tested whether there is a path
connecting it and the middle, as shown on line 5 in Algorithm 16. The procedure
shortestPath finds the shortest path between two replicas in a PNT where only the
available replicas/vertices are considered in the path finding procedure. If such
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a path exists, it is returned from the f indPathOutside procedure. If no path ex-
ists between the middle and an outside replica, the /0 is returned. The procedure

Algorithm 17: Procedure testSurroundMiddle() of the CIP
Input: replicas = a set of available replicas

pnt = the PNT used by the CIP
mid = the selected middle
outside = the set of replicas of the outside

Result: a set of replicas that encloses the middle and shares a replica
with the outside

1 t = {r|r ∈ pntV ∧ r ̸∈ replicas}
2 t = t ∪{mid}
3 for it ∈ outside do
4 s = shortestPath(mid, it,replicas, pnt)
5 if s ̸= /0 then
6 return /0
7 end
8 end
9 if replicas∩outside = /0 then

10 return /0
11 end
12 return replicas

testSurroundMiddle, shown in Algorithm 17 is a complex than the f indPathOutside
procedure. As shown in line 1 in Algorithm 17 and line 2 in Algorithm 17, at first
a set of replicas has to be constructed that contains all currently not available
replicas plus the middle replica. As shown in the loop starting on line 3 in Al-
gorithm 17, it is tested whether there is a path from the middle of any of the
outside replicas. If that is the case, there is no enclosing circle constructed by the
currently available replicas, as shown by the fact that there is a path from the
middle to the outside. If no such path is found, it is finally tested whether there is
an intersection between the available replicas and the outside replicas. If that is
the case, a non empty set is returned. If there is no intersection the /0 is returned.

6.5 Evaluation
The initial analyses of the ar(p) , the aw(p) , the cr(p) , and the cw(p) was done
on the GS shown in Figure 6.24 on the following page. For that GS, there are six
possible middle vertices. These vertices are 4,7,10,11,13,14.
For this evaluation, the same 255 GS with eight replicas were used that were also

used for the evaluation of the mapping approach. Only 20 of the 255 tested GSs
with eight replicas were usable with the CIP, because the planarization approach
was unable to create a planar GS. Of the 255 GSs with nine replicas only 20 were
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Figure 6.24: A planar GS used to do some testing with the CIP.
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Figure 6.25: The ar(p) and the aw(p) of the CIP for the GS shown in Figure 6.24.
Vertex 13 is the middle.
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Figure 6.26: The cr(p) and the cw(p) of the CIP for the GS shown in Figure 6.24.
Vertex 13 is the middle.
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Figure 6.27: The ar(p) and the aw(p) with p ≥ 0.8 of the CIP for the GS shown
in Figure 6.24. Vertex 13 is the middle.
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usable with the CIP. There are only few GSs tested because the CIP requires
that the middle replica is not also part of the outside replicas. As the GSs tested
are randomly generated, this is not guaranteed to be the case. For each GS all
possible middle vertices where tested. Only the middle vertex with the highest
ARW is included in the below shown results.

Technically, this is not so much a requirement, but a sane restriction. When
the middle is part of the outside replicas ar(p) and aw(p) will always be less equal
to p. This is because without the middle no outside path is going to be available.
The set {0,1,2} is the outside of the GS shown in Figure 6.28. Let replica 1 be
the middle. The shortest path from the middle to the outside is therefore consists
of the replicas in set {1}. If the replicas of this set are not available no quorum
can be found for this GS, because otherwise the 1SR property would be violated.
Figures 6.29 to 6.30 shows the ar(p) , the aw(p) , the cr(p) , and the cw(p)of the

CIP on GSs with eight vertices. These are the same GSs used for the analyses of
the mapping. The thick blue lines in the figures shows the non replicated ar(p)and
aw(p) . Of the 255 GSs tested only 20 were suitable for the CIP. The availability
of the read and write operation is always below the non replicated case for p < 0.8.
Only for p≥ 0.8, can the CIP converge on the non replicated operation availability,
making it a bad QP for the test GS. The cr(p)and cw(p) , as shown in Figure 6.30,
converges on two from above. This gives insight into the topology of the tested
GSs. The cheapest quorum consists of two replicas. This can only be a path from
the middle to an outside replica. This is a big disadvantage for the CIP, because
if these two replicas are not available no operation is possible.
A similar situation is shown for the 255 GSs with nine replicas previously tested

with the mapping approach. Here the CIP converges faster towards the non repli-
cated operation availability, but still never exceeds it.
For these 310 GSs, there is no value in applying the CIP, especially in compar-

ison with mapped QPs.
Due to the limited number of test cases, the amount of tested GSs was expanded.

The Figures 6.33 to 6.36 shows the ar(p) , the aw(p) , the cr(p) , and the cw(p)of
the CIP on GSs with eight and nine vertices For this test, 50000 GSs with eight
and 50000 GSs with nine vertices were created. For the eight vertices GSs, 3547
were usable by the CIP. The operation availability was significantly higher in
comparison to the previous tests, but still not as good as some of the mapped
GPs. These results indicate that choosing an existing QP and mapping it a given
PNT will likely yield better results than the CIP.

The operation availability improved further for the GSs with nine replicas, but
still not reaching the mapped QPs.

0 1 2

Figure 6.28: An example why the middle replica should not also be an outside
replica.
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Figure 6.37 on page 161 shows the operation availability of the CIP for GSs
with ten vertices. Here only 131 of the 50000 tested GSs were usable by the CIP.
These are mixed results: on the one hand it is currently not possible, in reasonable
time, to find optimal mappings for other existing QP for GSs with ten vertices.
On the other hand, only a fraction of the tested GSs catered to the CIP. The CIP
has been shown to work for larger GS, but only a limited few. The significance of
this problem is further shown in Figure 6.39 on page 163. Of the 50000 GSs tested
with eleven vertices, only five were suitable for the CIP. The 50000 GSs tested of
course only represent a fraction of the possible GSs with eleven vertices.
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7 The Crossing Protocol
This chapter is based on the work published, by the author, in [30, 31, 28]. The
Crossing Protocol (CP) can be considered to be a combination of the TLP and the
CIP. From the CIP, it inherits the ability to directly work on a PNT. Actually,
the first two steps of the CIP, namely making the PNT planar and selecting the
outside replica, are directly carried over to the CP. From the TLP, the way of the
RQs and the WQ construction is borrowed. The CP takes those two assets and
combines them efficiently.

7.1 Idea and Specification
The idea behind the CP is to create intersecting paths that cross a given PNT.
These paths cross the PNT vertically or horizontally. A path crosses a GS if it
partitions the GS, as discussed in Section 2.3 This is heavily influenced by the
TLP. The difference is that the TLP requires a particular form of GS and the CP
does not.

These paths are called crossings. The vertices of the crossings are used as
quorums in the CP. A WQ has to cross the PNT vertically and horizontally. A RQ
has to cross the PNT vertically or horizontally. Vertical crossings must intersect
with horizontal crossings. In a planar graph, every vertical crossing intersects with
every horizontal crossing1.
This results in the intersection of every RQ with every WQ, and the intersection

of every WQ with every other WQ, resulting in the 1SR property. Crossings are
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Figure 7.1: The non-planar version of the GS used to explain the CP.

1Compare with Figure 6.5 to see the problem with non-planar GS
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Figure 7.2: The GS used to explain the CP.

paths between specific vertices. These specific vertices lie on the outside of the
GS. The outside vertices are identified in the same way as described in Section 6.2
on page 137. Figure 7.3 shows the outside vertices marked in red for the GS shown
in Figure 7.2. The next step is to divide the outside vertices into four sets. These
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Figure 7.3: The outside replicas.

sets are called the top set (T), the bottom set (B), the left set (L) and the right
set (R). Together, these four sets make up the so-called TBLR sets. All elements
of the TBLR sets must be on the outside as defined in Section 6.2. Let O be the
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7.1 Idea and Specification

outside. The TBLR sets are defined as follows: let U be a placeholder for any of
the sets T,B,L and R.

U ̸= /0 (7.1)
∀v,v′ ∈U : Ω(v,v′) ∈U (7.2)

∀v ∈ O (7.3)
T ∩L ̸= /0 (7.4)
T ∩R ̸= /0 (7.5)
B∩L ̸= /0 (7.6)
B∩R ̸= /0 (7.7)
|T ∩L|= 1 (7.8)
|T ∩R|= 1 (7.9)
|B∩L|= 1 (7.10)
|B∩R|= 1 (7.11)
T ∩B = /0 (7.12)
L∩R = /0 (7.13)

As seen in the above Equation 7.4 – Equation 7.13, four pairs of outside sets
intersect. These intersections are called corner-sets. The corners are named CT L,
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Figure 7.4: The outside replicas split into four sets.
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CT R, CBL, CBR and are defined as:

CT L = T ∩L, (7.14)
CT R = T ∩R, (7.15)
CBL = B∩L, (7.16)
CBR = B∩R. (7.17)

A corner CT L describes the set of vertices that are part of the T and the L set. As
an example for of TBLR set, consider the topology in Figure 7.4 on the preceding
page. In this figure the T set consists of the vertices {3,6,9,15}. The B set consists
of the vertices {0,1,12}. The L set consists of the vertices {0,2,15}. And finally
the R set consists of the vertices {5,6,8,12}. The corner are CT L = 15, CT R = 6,
CBL = 0, CBR = 12.

7.1.1 Definitions of Read Quorums
A RQ is a path that partitions a GS vertical or horizontal. A vertical RQ V R for
a GS G is defined as:

∃v,v′ ∈V R : v ∈ T ∧ v′ ∈ B∧Ω(v,v′) ∈ G. (7.18)

A horizontal RQ HR for a given GS G is defined as:

∃v,v′ ∈ HR : v ∈ L∧ v′ ∈ R∧Ω(v,v′) ∈ G. (7.19)

To construct a RQ, a path in G must be found that connects the two vertices v
and v′. Figure 7.5 shows a RQ. The RQ is highlighted in green and consists of the
vertices {0,4,8,11}. Algorithm 18 on the facing page shows the isReadQuorum
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Figure 7.5: A RQ visualized by the green, thick line.

procedure of the CP. The procedure tests two properties. The first property is
the existence of a path from a vertex of the T set to a vertex of the B set, which
is only using the replicas in input variable replicas. If such a path exists, the set
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7.1 Idea and Specification

Algorithm 18: Procedure isReadQuorum() of the CP
Input: replicas = a set of replicas that is to be tested whether or not it is

a RQ for the given CP
pnt = the PNT used by the CP
tblr = the TBLR set of sets

Result: true if replicas form a WQ, false otherwise
1 for t ∈ tblrt do
2 for b ∈ tblrb do
3 a = shortestPath(t,b,replicas, pnt)
4 if a ̸= /0 then
5 return true
6 end
7 end
8 end
9 for l ∈ tblrl do

10 for r ∈ tblrr do
11 a = shortestPath(l,r,replicas, pnt)
12 if a ̸= /0 then
13 return true
14 end
15 end
16 end
17 return f alse
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7 Crossing Protocol

of replicas replicas is a RQ. The other property tests the existence of a path from
a vertex of the L set to a vertex of the R set. If a path exists, the set of replicas
replicas is also a RQ.

7.1.2 Definition of Write Quorums
A WQ is defined as:

QW :=V R∪HR. (7.20)

By this definition, every union of a vertical and horizontal crossing is a WQ.
Figure 7.6a shows such a WQ. The WQ is highlighted in pink and consists of the
vertices {1,2,3,4,7,8,11,14}. In Section 7.1 on page 165, CT L, CT R, CBL, and CBR

are defined. These corners can be used to construct a WQ. To construct a WQ
from these corner-sets, a single path must be found that either connects the CT L

corner with the CBR corner or a path that connects the CBL corner with the CT R

corner. This single path is a WQ, as it connects all four sides, the same way a
horizontal path combined with a vertical path does. Figure 7.6b shows such a
WQ. The WQ is highlighted in pink and consists of the vertices {0,4,6,7,10}.
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(a) A WQ visualized by the pink, thick line.
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(b) A WQ visualized by the pink, thick line.

Figure 7.6: WQ visualization of the CP.

In contrast to isReadQuorum the isWriteQuorum procedure, shown in Algo-
rithm 19 on the facing page, needs to test whether replicas yield a horizontal
and vertical path through the PNT. If a vertical path is found, it is saved in the
variable vert as shown on line line 7 in Algorithm 19. The same is done for a
horizontal path as shown on line line 15 in Algorithm 19. Finally, it is tested
whether both vert and hori are not empty. Should both sets be non empty, then
the replicas in replicas form a WQ.
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7.1 Idea and Specification

Algorithm 19: Procedure isWriteQuorum() of the CP
Input: replicas = a set of replicas that is to be tested whether or not it is

a WQ for the given CP
pnt = the PNT used by the CP
tblr = the TBLR set of sets

Result: true if replicas form a WQ, false otherwise
1 vert = /0
2 hori = /0
3 for t ∈ tblrt do
4 for b ∈ tblrb do
5 a = shortestPath(t,b,replicas, pnt)
6 if a ̸= /0 then
7 vert = a
8 end
9 end

10 end
11 for l ∈ tblrl do
12 for r ∈ tblrr do
13 a = shortestPath(l,r,replicas, pnt)
14 if a ̸= /0 then
15 hori = a
16 end
17 end
18 end
19 return vert ̸= /0∧hori ̸= /0
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7 Crossing Protocol

7.2 Correctness Argument
To prove the correctness of the CP in regard to the 1SR property, it is shown that
every vertical crossing intersects with every horizontal crossing. Furthermore, it
is shown that every WQ intersects with every other WQ and every RQ.

Two crossings (respectively: “paths”) P1,P2 ∈ G intersect, if GE(P1)∩GE(P2) ̸= /0.
Hypothesis: Not every horizontal crossing intersects with every vertical crossing.
If P1 is a vertical crossing, then a horizontal crossing P2 connects a vertex of both
partitions V1, V2 created by crossing P1. This contradicts Equation 2.6 on page 8,
that states that a crossing must partition the graph. Therefore, every vertical
crossing intersects with every horizontal crossing.
Every WQ consists of a vertical and a horizontal crossing. As shown earlier,

every vertical and horizontal crossing intersect. Therefore, the combination of a
vertical and horizontal crossing must intersect with every other WQ and every
RQ.

7.3 Evaluation
To get a rough idea for the ar(p) , the aw(p) , the cr(p) , and the cw(p) at first
the GS shown in Figure 7.2 is analyzed. The first step is to identify the out-
side replicas. The outside replicas are identified by the previously described
method. The result of this method is shown in Figure 7.3. The outside vertices
{0,2,15,9,3,6,5,8,12,1} can be transformed into 1680 TBLR sets. The question
arises, which of these TBLR sets should be used for this GS. The ARW is used to
compare TBLR sets. The TBLR set with the highest ARW is used. After testing
all 1680 possible TBLR sets, the TBLR set T = {0,2}, B = {15,9}, and L = {2,15},
R = {9,3,6,5,8,12,1,0} was identified to yield the highest ARW. Figure 7.8a on
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Figure 7.7: The TBLR T = {0,2}, B = {15,9}, and L = {2,15}, R =
{9,3,6,5,8,12,1,0} with the highest ARW.

page 174 shows the ar(p) and the aw(p) of the CP for the GS shown in Figure 7.2.
Figure 7.9 on page 175 shows a close-up of Figure 7.8a with p≥ 0.8. The cr(p) and
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7.3 Evaluation

the cw(p) of the CP for the same GS is shown in Figure 7.8b on the following page.
The availability of the read and write are worse than the operations availability of
the TLP on a 4×4 GS2, but this is expected as the GS used is not optimized for
the CP. This is the point of the CP, given a random PNT it should just works.
The TLP on the other hand, requires a very specific PNT. If that PNT is not
available, the TLP is not available. Therefore, comparing the CP with the not
mapped TLP is not worthwhile. Comparing the CP with the CIP on the other
hand is much more noteworthy, as both QPs do not require any specific PNT.
Given a non-planar PNT, they use the same algorithm to transform the PNT into
a planar GS and then also use the same algorithm to find the outside vertices.
Figure 7.10b on page 176 shows the ar(p) and the aw(p) of the CP and the CIP
for the GS shown in Figure 7.2. Figure 7.10a on page 176 shows a close-up of
Figure 7.10b with p ≥ 0.8. The cr(p) and the cw(p) of the CP and the CIP for
the same GS is shown Figure 7.11a on page 177. The TBLR-set of the CP is the
same as in the previous example. It was calculated that the vertex with ID 11
yields the highest ARW for the CIP. Figure 7.10b shows that the ar(p) of the CP
has a higher availability than the ar(p) of the CIP, but the aw(p) of the CP is
lower than that of the CIP. The ARW of the CIP is 50.49 and the ARW of the
CP is 69.85. The same behavior is seen for the cr(p) and the cw(p) as shown in
Figure 7.10a. For high p-values (p > 0.96) the ar(p) and the aw(p) of the CIP are
nearly identical to the ar(p) of the CP. If both, read and write operations, are
equally weighted, it can be said that the CIP is better suited for the GS shown in
Figure 6.24 than the CP.

Figure 7.11b on page 177 shows the ar(p) and the aw(p) of the CIP, the CP,
and the TLP on a 4×4 triangular lattice as shown in Figure 4.8 on page 35. Here,
the CIP is hardly better than the unreplicated case, for the most part. In the
close-up, shown in Figure 7.12a on page 178, it is seen that the aw(p) of the CP
catches up to the aw(p) of the CIP. With the ar(p) of the CP being higher, for
the most part, than that of the CIP, it can be said that this GS is more suitable
for the CP. Figure 7.12b on page 178 shows the cr(p) and the cw(p) of the three
QPs. The CIP selected the vertex with the ID 6 as the middle. The ARW of the
CIP is 50.49, the ARW of the CP is 71.61, and the ARW of the TLP is 73.16.

Figure 7.13 on page 180 shows the ar(p) of the CP tested with 50000 randomly
generated GSs. Of those 50000 tested GSs 6169 were usable by the CP. This bad
result gets somewhat relativated, considering that the CP rejects GSs where the
absence of one vertex would yield the GS unusable for the QP. The bulk of the
ar(p)values for those 6169 usable GSs are comparatively high. The aw(p)values,
as shown in Figure 7.14 on page 181, only regularly exceed the non replicated
availability with p > 0.9. The cr(p) are close to two as shown in Figure 7.15 on
page 182. This is an indication for the structure of the GSs tested. It can be
derived from this result that most GSs tested had a path that, is a RQ, only
consisting of two vertices. The cw(p) on the other hand, requires between 2 and

2even though both GS consists of 16 vertices
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3.5 vertices, with the bulk between 2 and 3 vertices. Concluding, it can be said
that the CP works for GSs with eight vertices.
Figure 7.16 on page 183 shows the ar(p) of the CP on GSs with nine replicas.

Again, 50000 random GSs were created. Of those the CP was able to use 1555
GSs. The ar(p) for most of them is comparable with the MCS, also with nine
replicas. The aw(p) , as shown in Figure 7.17 on page 184, is much worse than
the aw(p) of the MCS with nine replicas. This can be seen in Figure 7.18 on
page 185. Only a few GSs offer a aw(p) higher than the non replicated case. The
cr(p) , shown in Figure 7.19 on page 186, and the cw(p) , shown in Figure 7.20
on page 187, show a similar picture as with eight vertices. The cr(p) is around
2 and the majority of the cw(p) is between 2 and 3. This indicates that similar
GSs, compared with the GSs with eight vertices from the previous tests, where
constructed, but with nine instead of eight vertices.
The last presented results are of GSs with ten vertices. Of the 50000 GSs

only 200 were usable by the CP. Figure 7.21 on page 188 shows the ar(p) and
Figure 7.22 on page 189 shows the aw(p) . The ar(p) is again comparable with
the ar(p) of the MCS. The aw(p) on the other hand, is falling behind even more.
Looking at the cr(p) and the cw(p) , as shown in Figure 7.23 on page 190 and
Figure 7.24 on page 191, shows why. The majority of the WQs still only consists
of three vertices. But now, there are more combinations of three vertices WQs in
any particular GS that can be unavailable, thus decreasing the ar(p) .
Tests were conducted with 50000 GSs with eleven and 50000 GSs with twelve

vertices, but the CP was unable to use any of those GSs. By checking a random
selection of generated GSs it was be concluded that the problem is with the GS
generation not the CP. Most graphs had many intersecting edges. After their
removal often the resulting graphs approached a GS similar to a line, and lines
often easily partitioned by a failure of a single vertex. After many of the GSs were
made planar, only a single edge remained connecting two parts of the GS. If the
outside of such a GS is constructed, often a vertex is part of both the T- and the B-
or the L- and the R-set. The GS generator could be made to only generate planar
GSs that were favorable to the CP, but then, the evaluation would be biased.
Overall, it can be said the performance of the CP depends heavily on the GS

used. If the GS used is planar and has many edges the CP will yield good results.
On the other hand, if the GS is not planar and/or poorly connected by ony few
edges the CP will not work well. This is also true for mappings as shown in
Section 5.4.
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8 Putting it all Together
So far, multiple ways of bridging the gap between the LNTs and the PNTs have
been presented. The mapping approach maps existing QPs to PNTs. The CIP
and the CP work directly on a given PNT, but are not always applicable or might
not be performing well enough.
The question arises, how to choose which approach to find the best QP for a

given PNT.
Algorithm 20 on the following page shows how the best QP can be chosen for a

given PNT. The algorithm requires three inputs. The first input is the PNT that
should be used as the communication medium. The input cmp is a user defined
function that yields a value based on the RQS′ and WQS′ of a QP. The value
returned by this function is then used to order different QPs when applied to
the given PNT. An obvious candidate for such a function is the ARW. The last
input is a set of QPs that should be tested as possible candidates for the best QP.
Again, what is the best QP is based on the comparison criterion passed into the
algorithm. The idea is to applicability of the CIP, the CP, and different QP when
mapped on the specified PNT. As mapping are computational expensive, the kNN
is first used to determine if finding the best mapping for a given QP is worth it.

On line 1 in Algorithm 20 the best mapping for the MCS is found. This is a
not too costly operation, as shown in Subsection 9.4.2 on page 221, as only one
of the N! mappings has to be tested for the MCS. The next two lines apply the
CIP and the CP to the given PNT. For those three QPs, the cmp criterion is
used in the comparison. The outcome of these three QPs is then compared with
the help of cmp as shown on line 4 in Algorithm 20, line 6 in Algorithm 20, and
line 8 in Algorithm 20. The next part of the algorithm is only executed if the PNT
consists of less than nine vertices. Currently nine vertices is the upper end of what
is computational possible with the given mapping implementation. This limit may
change in the future. Starting on line 11 in Algorithm 20 all other QP candidates
are tested how they compare given the cmp criterion. As has seen before, finding
the best mapping has a O(N!) complexity and should be avoided as possible.
Therefore, the result of the mapping is predicted on line 12 in Algorithm 20 with
the presented kNN approach shown in Section 5.5 on page 110. If the prediction
is within one epsilon of the currently best QP we continue working with this QP.
Where epsilon is a user defined value that represents a trade-off between investing
computation power and ignoring possible candidates. The algorithm also continues
with this protocol if no prediction was possible, for instance, because no historical
data was available. Both cases are shown on line 13 in Algorithm 20. This allows
to discard QPs, for which the prediction indicate that the they will not perform
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8 Putting it all Together

Algorithm 20: The process of finding the best QP for a given PNT
Input: pnt = the PNT to find the best QP for
cmp = the comparison criterion for QPs
qps = a set of available QPs
epsilon = cutoff value for knn
Result: the best QP

1 mcs = bestMapping(pnt,cmp,MCS)
2 cip = circleProtocol(pnt,cmp)
3 cp = crossingProtocol(pnt,cmp)
4 best = mcs
5 if cmp(cip)> cmp(cp)∧ cmp(cip)> cmp(mcs) then
6 best = cip
7 else if cmp(cp)> cmp(cip)∧ cmp(cp)> cmp(mcs) then
8 best = cp
9 end

10 if |pnt| ≤ 9 then
11 foreach qp ∈ qps do
12 knn = predict(qp, pnt,cmp)
13 if |(cmp(knn)− cmp(best)|< epsilon∨ knn = /0 then
14 qpMapped = map(qp, pnt,cmp)
15 storeMappingResult(qpMapped,qp, pnt)
16 if cmp(qpMapped,best) then
17 best = qpMapped
18 end
19 end
20 end
21 end
22 return best
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well on the given PNT. The BCmax feature will be used for the predictions. This
feature was selected based on its good results as shown in Subsection 5.5.4 on
page 121. If a QP is tested further, the best mapping for it is computed and then
it is compared with the current best QP. This is done for all the QPs part of qps.
To build up a store of historical results, the kNN predictions can build upon, the
mapping results are stored as shown on line 15 in Algorithm 20. Finally, best is
returned as the best possible QP for the given PNT under the given comparison
criterion cmp. line 22 on the facing page represents a practical approach for finding
the best QP for a given PNT. In an ideal world the algorithm would continue to
test all QPs even with PNTs with a growing number of vertices. If and when fast
mapping implementation become available this algorithm can be easily adapted
to make use of them and thereby expand its applicability.

195





9 Performance Optimization of the
Analysis Program

To analyze the present QPs, and techniques, two options exist. The first possibility
is to do the computation by hand. This is possible for QPs with a closed formula
but becomes increasingly error prone and extremely time consuming for mappings.
The second approach is to write a program to do these analyses. This approach is
also error prone and time consuming. But the place of error is moved. Assuming
the used formulas are correct, the “by hand” approach usually leads to errors, made
by the computer1 during the computation. If the error is spotted, the computer
has to recompute the analyses. This is again error prone and maybe even more
important, frustrating. This frustration, then likely leads to more errors.
If there is an error with the implemented program, the error is fixed and the

program is run again. The biggest benefit of creating a program to facilitate these
analyses, is to use it on different inputs. For instance, in the analyses of the
mapping-approach many different QPs are mapped to many different PNTs. It
would be silly to create a new program for each analysis. Creating a program
that takes the PNT and the GS as input is not that much more complex, but
dramatically decreases the number of programs that have to be created.
Sometimes, programs that naively implement the formulas, required in the anal-

yses, still execute too slow. In case of this thesis, the original C++ implementation
would have required about seven months to analyze the ar(p) , the aw(p) , the
cr(p) , and the cw(p) for the TLP with nine replicas mapped to a PNT also with
nine replicas. This runtime would have made testing many QPs mapped to many
PNTs impossible. Therefore, optimizations to decrease the analysis time had to
be developed.

In this chapter the different techniques, guidelines and tools used to increase the
performance of the program developed for the analyzes in this work are presented.

9.1 Preliminaries
The original program, called middcir, was written in C++. It was superseded
by middcir2, which in turn was written in D. The C++ version was dropped as
compilation of this version took multiple times longer than running its integrated
tests and benchmarks. The compile-time (CT) of the D version is negligible. An
Intel x86-64 central processing units (CPUs) are used to execute middcir2 (MC).

1Computer in this case refers to the person doing the computation
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9 Performance Optimization of the Analysis Program

Therefore, D and asm in the Intel-syntax for listings and demonstration purposes
are used in this chapter. It is refrained from giving a general introduction into
both languages, as this is out of the scope of this work, and only a limited subset
of both languages is required which will be explain on first appearance.
The performance of a program depends on many parameters. Some of the

parameters are known, some are kept secret by the CPU vendors, and others have
been partially re-engineered. On top of that, those parameters interact with each
other. As some information are just not obtainable, no precise statement can be
made of how the fastest program for a given purpose looks like.
Therefore, the goal is to create a program that is fast enough to compute the

wanted result in the available time. Figure 9.1 shows the optimization approach

Start

Algorithm-
selection

Decision
Algorithm

Performance
measurement

Terminate
optimization

Decision
optimization

Optimization
selection

Performance
measurement

Figure 9.1: Optimization approach used for this work.

used in this work. For each computational task, this approach is followed. Initially,
an algorithm is chosen that solves the given problem. Then, the performance of
that algorithm is measured. The step labeled Decision Algorithm follows. There
are three possible decision options in this step. The first is to terminate the
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9.1 Preliminaries

optimization. This path is taken if the current implementation of the chosen
algorithm is fast enough for the particular use case. The second option is to choose
another algorithm. This path is usually taken when the performance measurement
shows that the performance of the chosen algorithm is nowhere near the required
performance. The performance measurement step is a very important step and
must not be overlooked. Due to the complexity of the process, the rule of thumb
is that performance predictions, made by humans, are almost always wrong. The
only way to spot performance problems is therefore to measure the performance.
A common method of measuring is taking the time a function takes to finish a
unit of work. As measuring accurately is more difficult than it might appear,
Subsection 9.1.1 explains the used method of measuring in more detail. The
last option to take, is going to the node Optimization selection. This choice
starts a new cycle, in which lower level optimization techniques are applied to the
previously chosen algorithm. Again, this cycle can be iterated many times over.
The chosen performance optimizations highly depend on the chosen algorithm
and its data structures. Not all optimizations, which are presented later, can
always be applied. Additionally, their impact on the performance may vary and
sometimes its impact also may be negative [32]. This is where Subsection 9.1.1
becomes important. The only way to know if an optimization was successful is to
benchmark the performance of the program with and without it.

9.1.1 Benchmarking
In Figure 9.1 the task Performance measurement appears twice. Performance
measuring is an important part of the optimization process. Without good data,
it is hard to make the correct decision regarding the optimization process.

All benchmarking has to be done with programs that where optimized by the
compiler.

Likely, the first used tool is the unix time command. It returns how long it took
a program to execute from start to finish. Usually, this execution time does not
only depended on the performance of the program, but also on factors like how
often the operating system schedules the program to be executed. To mitigate
this scheduling influence, the program can be executed multiple times and the
individual execution times aggregated and averaged. This might be unfeasible if
the program has a very long execution time.
Instead of executing the complete program, it might be faster to measure the

performance of functions individually. Using the time command for this purpose
becomes tedious, fast. It is easier to measure the execution time from inside
the program. The first question to answer is which function should be bench-
marked. This can be answered by tools like valgrind [33] or perf [34]. These
tools allow to monitor and visualize how long and how often each function of
a program is executed. Figure 9.2 on the next page shows a part of a call-
graph of a benchmarked program. Each box represents a function. Not all
called functions are visualized as they may have been inlined into other func-
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9 Performance Optimization of the Analysis Program

Figure 9.2: Part of the visualization of the call graph of an execution of a bench-
marked program.

tions calling them. The arrows show, which functions call which other function.
The tool only shows the names of the functions in their mangled form, for in-
stance _D9protocols9pathbased171_T22calcACforPathBasedFastTS12bitsetrbtree24_. A
demanagle tool reveals the function name calcACforPathBasedFast. The figure shows
that 85% of the execution time is spent in this function and that it is called 532071
times. The number of calls to it in combination with the time spent in it make it
a good candidate to investigate possible performance improvements.
This is sometimes called the hot spot analysis [35]. The identified function is

therefore called a hot spot.
For the sake of example, let the function shown in Listing 9.1 to be an identified

hot spot.
1 int fun(int a, uint b) {
2 int ret = 0;
3 for(uint i = 0; i < b; ++i) {
4 ret += a;
5 }
6 return ret;
7 }

Listing 9.1: A function identified to be a hot spot.

Function test1 shown in Listing 9.2 shows how the function fun is benchmarked.
1 void test1() {
2 enum numRuns = 3001;
3 auto rnd = Random(numRuns);
4 Duration[numRuns] durs;
5 StopWatch sw;
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9.1 Preliminaries

6

7 for(int i = 0; i < numRuns; ++i) {
8 sw.reset();
9 int a = uniform!int(rnd);

10 uint b = uniform(0U, 10000U, rnd);
11

12 sw.start();
13 int t = fun(a, b);
14 sw.stop();
15

16 durs[i] = sw.peek();
17 }
18

19 sort(durs[]);
20

21 writefln("min: %15d | avg: %15.4f | median: %15d | max: %15d",
22 durs.front.total!"hnsecs"(),
23 sum(durs[], Duration.init).total!"hnsecs"() / cast(double)

numRuns,
24 durs[numRuns / 2].total!"hnsecs"(),
25 durs.back.total!"hnsecs"());
26 }

Listing 9.2: The function test1 is a function which is benchmarking the function
fun shown in Listing 9.1.

In line 2 in Listing 9.2 the number of iterations is set to 3001. This means that
function fun will be run 3001 times. The number 3001 is chosen for two reasons.
The first is to run the benchmark often enough that meaningful impression of
the performance of the function are obtained. The second reason is not to spend
too much time benchmarking a single function. There are usually many functions
that make up a program and many of them might require optimization to make
the program as a whole performant. So, the time spend optimizing has to be
distributed among all hot spots. An uneven number is choose to simplify the
median computation, in this example, on line 24 in Listing 9.2. The type StopWatch
allows to measure the time between a call to start and stop as shown in line 12
in Listing 9.2 and line 14 in Listing 9.2. Starting on line 9 in Listing 9.2 the
function uniform is used to generate a random int and a random uint. These
values depend on the state of the random number generator created on line 3 in
Listing 9.2. The random number generated needs a specified seed value, such that
it can reproducibly generate the same test data. If the test data is not the same
between different runs of the benchmark, comparing benchmark results would be
pointless, as it cannot be known if the performance optimizations were successful
or the test data was simply favorable. After the function fun has returned, the
method peek of the StopWatch is used type to record the duration fun took to execute,
as shown on line 16 in Listing 9.2. Eventually, the minimum, the average, the
median, and the maximum execution time are printed. The times are printed
as hecto-nanoseconds. From experience, hecto-nanoseconds are the maximum
resolution that is reliably measurable with modern Intel CPUs. When looking at
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9 Performance Optimization of the Analysis Program

benchmarks and the benchmark functions, it is seen that function result is not
used nor does the benchmarked function produce any side effect. This leads to a
severe problem. When this benchmark is compiled, the compiler might consider
the call to the function fun as dead code and, in turn, removes it. This only
happens when the compiler is told to optimize the program. Consequently, the
benchmark has to make sure that the compiler cannot remove the call to fun.
The easiest way to achieve this is to print the result of the function call. But
printing to an output device is slow and quickly becomes unhandy when multiple
benchmarks are compiled into the same program.

1 void doNotOptimizeAway(T)(auto ref T t) {
2 if(thisProcessID() == 0) {
3 writefln("%X", cast(ulong)(cast(void*)(&t)));
4 }
5 }

Listing 9.3: The function doNotOptimizeAwaymakes sure that if the passed parameter
t is a return value of a function a, then the compiler cannot remove a
call to function a that produced the passed value.

To trick the compiler into thinking that the computed value is printed, and requir-
ing its computation, the function doNotOptimizeAway shown in Listing 9.3 is used.
The function doNotOptimizeAway will print the address of the passed value if the
process ID of the benchmark program is zero. At least on Linux, BSD, and Win-
dows this process ID is not used for user processes. As long as the binary resulting
for the benchmark is run as a user process, the address of the value will never be
printed. This information about the return value of the function thisProcessID is
unknown to the compiler, therefore it cannot remove the call to the function that
produces the value and in turn, the call to the benchmarked function can not be
removed either.

1 void test2() {
2 enum numRuns = 3001;
3 auto rnd = Random(numRuns);
4 Duration[numRuns] durs;
5

6 StopWatch sw;
7

8 for(int i = 0; i < numRuns; ++i) {
9 sw.reset();

10 int a = uniform!int(rnd);
11 uint b = uniform(0U, 10000U, rnd);
12

13 sw.start();
14 int t = fun(a, b);
15 sw.stop();
16

17 durs[i] = sw.peek();
18

19 doNotOptimizeAway(t);
20 }
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21

22 sort(durs[]);
23

24 writefln("min: %15d | avg: %15.4f | median: %15d | max: %15d",
25 durs.front.total!"hnsecs"(),
26 sum(durs[], Duration.init).total!"hnsecs"() / cast(double)

numRuns,
27 durs[numRuns / 2].total!"hnsecs"(),
28 durs.back.total!"hnsecs"());
29 }

Listing 9.4: The function test2 is a function which is benchmarking the function
fun shown in Listing 9.1 and that uses the function doNotOptimizeAway
to force the compiler to not remove the function call to fun.

9.4 finally shows the exemplary use of the benchmarking code.

9.2 Modern CPU Architectures
Modern CPU architectures (> 2006) have many features that increase the per-
formance of a given program. Most of these features are not directly accessible
through the programming language used. Those features are only indirectly ac-
cessible by writing programs in such a way that the compiler used can generate
assembly code that allows the CPU to execute that assembly code in a way that
facilitates the CPU features in an optimal way. Figure 9.3 on the next page shows
a simplified version of the Intel Broadwell architecture. It shows only a single core
of the multicore architecture. The blue, dashed rectangle in Figure 9.3 shows the
boundary of a core. The red, dotted rectangle encloses the ports, also known as
the execution units of a core. To better understand the architecture in Figure 9.3
some terms need to introduced. The L1 instruction cache (L1IC) is a so-called
level 1 instruction cache. Lower cache level are faster to access by a port. The
L1IC has 32KiB of memory that is organized in lines of 64 Bytes. Therefore,
the L1IC is organized into 512 lines. CPU caches usually are not able to store
individual bytes, but rather store x consecutive bytes. The L1IC is an 8-way-
associative cache. This means that each 64Byte block of memory, identified by
a unique address, can be stored in one of eight different lines of the cache. In a
completely associative cache each block of memory could be stored in any cache
line, this would decrease contention but makes the cache lookup slower. Such
a 8-way-associative cache is therefore a trade-off between lookup speed and con-
tention avoidance. The L1 data cache (L1DC) is similar to the L1IC, except that
it caches data and not instructions. Both the L1IC as well as the L1DC get their
data from the L2 cache. In the broadwell architecture, this is a 256KiB big cache.
Both caches are able to load one cache-line per cycle. The L2 cache is fed by
the L3 cache. This cache is shared between each core of the CPU. The L2 cache
can move 32 Bytes per cycle from and to the L3 cache. The L3 cache stores and
loads its data from memory. Both operations have a latency of 46 up to 65 cycles,
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Figure 9.3: A simplified Intel Broadwell architecture overview [36, 37, 38].
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depending on the platform, and are able to achieve a bandwidth of about 76GiB/s
[39].
The red, dotted box encloses the ports. Each has one or more possible types of

instructions it can execute. The ports are executing their operations in parallel
to each other. Which instruction is to be executed by which port is scheduled
by the Scheduler. The operations in Figure 9.3 are abbreviated. The following
descriptions give an explanation of these abbreviations.

INT-ALU Integer arithmetic logical unit. These are instructions like plus, minus,
cmp, etc. working on integer types.

INT-MUL Integer multiplication. This instruction multiplies integer values.

INT-DIV Integer division. This instruction executes integer division.

INT-VEC-ALU Integer vector arithmetic logical unit. The single instruction mul-
tiple data (SIMD) variant of the INT-ALU instruction.

FP-Vec-Add Floating point vector addition. This set of instruction adds floating
point vectors.

FP-Vec-FMA Floating point vector fused multiply and add. This set of instruc-
tion adds and multiplies floating point vectors.

FP-Vec-MUL Floating point vector multiplication. This set of instruction multi-
plies floating point vectors.

FP-Vec-DIV Floating point vector division. This set of instruction executing
division on floating point vectors.

Vec-Shuffle Vector shuffle. These instructions allow to change the position of the
individual members of integer vectors as well as floating point vectors.

Bit-Scan These instructions are able to scan bits for certain properties.

AGU Address generation unit. The Intel x86 based architectures are capable of
complex address calculations. These are done by the AGU.

Branch These instructions are conditional jump instruction.

Load Data These are instruction that load data from memory addresses.

Store Data These are instruction that store data from memory addresses.

All ports share 168 integer and 168 floating point registers. The integer registers
store 8 bytes and the floating point register store 32 bytes each. The floating point
registers are also used by the INT-VEC instructions. The Instruction Fetch, Pre-
Decoder, Instruction Quere, Decoder, and Allocation Queue translate assembly
instruction into so-called µ-operations.
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The Branch Prediction tries to predict µ-operations that will be executed in
future cycles. This helps to keep all ports and other resources busy. The premise
here is, that un-utilized ports are to be avoided, even when the outcome of spec-
ulatively executed operations might not be needed after all. This speculative exe-
cution of instruction was exploited in the infamous spectre and meltdown security
vulnerabilities [40, 41].

Therefore, the low-level optimization target is to keep all data as well as all
code in their respective L1 caches. This allows all ports to have code and data to
execute. This is done by avoiding branching operations and by easily predictable
memory accesses. The most predictable memory access is the iteration of an array
from front to back.

Now that the used CPU-Architecture is known, the different stages of the com-
pilation and execution can be inspected as well how influence on these stages can
alter the performance of the program.

9.3 Places for Contact
Figure 9.4 shows a simplified process that explains how source code is eventually
executed on a CPU. Some of the nodes in that figure are labeled with letters. For
each of these letters, possible optimizations are presented. Starting with e), the

a) File a.dFile b.d

b) Compile a.d
to IR

Compile b.d
to IR

Compile a.d IR
to ASM

c) Compile b.d IR
to ASM

d) Link ASM e) Translate ASM into
Microcode

f) Reorder Microcode
instructions

g) Execute
Microcode

instructions

h) Retire Microcode
instructions

Figure 9.4: Simplified process that describes the steps from a source file to execu-
tion on an CPU.

CPU starts executing the compiled program.
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9.3.1 a) Precompilation Optimizations
A simple approach to increase runtime performance is to move computation to
CT. Listing 9.5 shows an example of this approach. The function gcd computes
the greatest common divisor.

1 int gcd(int a, int b) {
2 int temp;
3 while(b != 0) {
4 temp = a % b;
5 a = b;
6 b = temp;
7 }
8 return a;
9 }

10

11 unittest {
12 int gcd1 = gcd(32, 8);
13 enum gcd2 = gcd(32, 8);
14

15 assert(gcd1 == 8);
16 assert(gcd2 == 8);
17 }

Listing 9.5: Example of moving computation to CT.

On line 12 in Listing 9.5 the function is executed at runtime. On line 13 in
Listing 9.5 the function is executed at CT. In D the keyword enum evaluates an
expression at CT if possible [42].

As this is an idealized example, such an optimization is not always possible to
such an extend, but in middcir2 (middcir2) there are examples where this idea is
used. During a profiling session, it was found that about 50% of the runtime was
spent on the power function. The power function was called extremely often during
the evaluation of Equation 3.13. Looking closer revealed that the expression

p|q|(1− p)N−|q| (9.1)

was the source of these frequent calls. Ideally, the computation of this expression
can be avoided at runtime or at least move parts of it to CT. This was be done by
creating a lookup-table for this expression. This expression has three inputs p,q,
and N. Mathematically, 0.0 ≤ p ≤ 1.0, but in order to plot the results p ∈ {x ∈
N0|0 ≤ x ≤ 100∧ x

100} are needed. This set shows that 101 p values are evaluated.
N is the number of replicas used by the QP. From practical experience, it is known
that QP with more than 32 replicas will not be analyzed, therefore 1 ≤ N ≤ 32.
With N given |q| ≤ N.

1 enum ps = 101;
2 enum N = 32;
3 enum q = 32;
4
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5 double[ps][q][N] p_lookup = { ... };

Listing 9.6: Availability lookup-table

Listing 9.6 on the preceding page shows the structure of the resulting lookup-
table. The array with the name p_lookup is the resulting lookup-table2. The
array declaration is read from right to left, meaning the elements of double[ps] are
aligned next to each other in memory. When using this array, it is made sure that
the sub-arrays are iterated from right to left. This way, the chance for cache-hits
is improved.
The result of this optimization was that the calculation of the ar(p) , the aw(p) ,

the cr(p) , and the cw(p) required less than 1% of the total runtime. Originally, it
was above 50%.

9.3.2 b) Compile to intermediate representation (IR)
Most modern compilers transform the source code of a program into an interme-
diate representation (IR) [43, 44]. In the case of the used D compiler LDC, which
is using the LLVM backend, this IR is a static single assignment (SSA) [45]. If the
compiler is set to optimize, the compiler in-build optimizations are applied to the
IR [46]. Similar to branch prediction, which will be explained in Subsection 9.3.6
on page 215, it is helpful for the compiler to have programs with as few branch
statements as possible. This is because for many of the optimizations, the compiler
uses a control flow graph (CFG). The size of the CFG the compiler inspects for
optimizations, is limited. The compiler therefore only inspects a moving window
of the CFG while optimizing. Having less branch statements decreases the size of
the CFG, and thereby allowing the compiler to view a larger part of the complete
program leading to potentially better optimizations. Influencing the compiler’s
in-build optimizations is an extremely complex topic only touch briefly in this
work.

Function inlining (FI) describes a process where the body of a called function
is basically duplicated at every place of call. This has the advantage that the
code of the inlined function is right next to the caller function in the binary. This
increases the chance of a cache hit for the instructions of the inlined function.
Listing 9.7 and Listing 9.8 on the next page show the function gcdXGcd before and
after inlining the function gcd.

1 int gcd(int a, int b) {
2 int temp;
3 while(b != 0) {
4 temp = a % b;
5 a = b;
6 b = temp;
7 }
8 return a;

2The three dots represent the values calculated at CT.
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9 }
10

11 int gcdXGcd(int a, int b) {
12 return gcd(a,b) * gcd(a,b);
13 }

Listing 9.7: Before function inlining (FI)

1 int gcdXGcd(int a, int b) {
2 int ret;
3 int temp;
4 int a_copy = a;
5 int b_copy = b;
6 while(b_copy != 0) {
7 temp = a_copy % b_copy;
8 a_copy = b_copy;
9 b_copy = temp;

10 }
11

12 ret = a_copy;
13

14 a_copy = a;
15 b_copy = b;
16 while(b_copy != 0) {
17 temp = a_copy % b_copy;
18 a_copy = b_copy;
19 b_copy = temp;
20 }
21

22 ret *= a_copy;
23 return ret;
24 }

Listing 9.8: After function inlining (FI)

This in itself seems like a deoptimization. There is more code, which can be
identified as bad. There are more branch statements, and more variables. But
there are a few crucial differences. The two function calls to gcd were removed.
Therefore, the ints do not have to be pushed on the stack, resulting in less memory
usage. The stack currently stored in the L1 cache may or may not have enough
free space to store these ints, but this cannot be known in the general case. FI
allows to avoid this risk. A bigger problem is that the assembly of the gcd function
may currently not be stored in any of the caches. Loading the machine code of
this function from RAM is likely going to take longer than executing the function
itself.

FI is used based on some heuristic. Sometimes these heuristics do not yield
the intended result. To force FI, D allows functions to be attributed with pragma(
inline, true). This forces the inlining of the following function. Sometimes, when
the inlining of a function is counterproductive for the performance, the attribute
pragma(inline, false) disables the FI for the following function.
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9.3.3 c) Compile IR to ASM
In this stage, the IR is transformed into a platform specific assembly. In the case
of MC, the target platform is Intel x86-64 with the advanced vector extensions
(AVX2) instruction set. Specifying the exact target platform is relevant to the
performance as the compiler may choose different instruction depending on the
platform. It is also possible to compile against x86 as the target platform. The
resulting executable will be able to execute on a x86-64 (AVX2) platform, but it
will only use eight of the 16 available registers and only use 32 of their 64-bits
registers. Also, AVX2 provides 16 additional 256-bit registers. AVX2 instructions
belong to the family of SIMD instructions. These SIMD instructions allow to
execute the same instruction on multiple items of data, and in the same time, it
would require to execute the instruction on a singular data item.
Listing 9.9 shows a simple function. Listing 9.10 and Listing 9.11 on the facing

page show the assemble of that function once with a SIMD instructions and once
without.

1 void multiply(double[] a, double[] b) {
2 for(size_t i = 0; i < a.length; ++i) {
3 a[i] += b[i];
4 }
5 }

Listing 9.9: Example function for explaining SIMD instructions

Both functions are truncated to the important parts. The asm in Listing 9.10
uses the addsd and movsd operations to add one element of the array b to the
corresponding element in the array a. The compiler already unrolled the loop to
do four of these steps add a time. Unrolling describes the transformation of a loop
into the series of statements that would have been executed by the loop. This
will help in the branch prediction as explained in Subsection 9.3.6. Listing 9.11 is
different: it uses the movupd operation to load four doubles into the xmm0 register.
movupd translate to move unaligned packed double.

1 .L1:
2 movsd xmm0, qword ptr [rcx - 24]
3 addsd xmm0, qword ptr [rax - 24]
4 movsd qword ptr [rax - 24], xmm0
5 movsd xmm0, qword ptr [rcx - 16]
6 addsd xmm0, qword ptr [rax - 16]
7 movsd qword ptr [rax - 16], xmm0
8 movsd xmm0, qword ptr [rcx - 8]
9 addsd xmm0, qword ptr [rax - 8]

10 movsd qword ptr [rax - 8], xmm0
11 movsd xmm0, qword ptr [rcx]
12 addsd xmm0, qword ptr [rax]
13 movsd qword ptr [rax], xmm0
14 add rcx, 32
15 add rax, 32
16 add rdi, -4
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17 jne .LBB0_17

Listing 9.10: Assembler for the multiply function from Listing 9.9 without SIMD
instructions.

This means as much as: “move four doubles from an memory address a that must
not be a mod 16 = 0 to a given register”. The addpd is then used to add the four
doubles behind the address [r10+rcx] to the four doubles in xmm0. movaps is then
finally used to move the result back into memory. Here, the a in movaps stands
for aligned. This works as the asm that was truncated from above label .L1 made
sure that the address stored in r10 is 16 byte aligned. The offset stored in rcx is
also always incremented by 16, making each successive address aligned.

1 .L1:
2 movupd xmm0, XMMWORD PTR [rax+rcx]
3 add r8, 1
4 addpd xmm0, XMMWORD PTR [r10+rcx]
5 movaps XMMWORD PTR [r10+rcx], xmm0
6 add rcx, 16
7 cmp r8, r9
8 jb .L1

Listing 9.11: Assembler for the multiply function from Listing 9.9 with SIMD
instructions.

The asm in Listing 9.10 needs eight move instructions and four add instructions
to add four doubles and the asm shown in Listing 9.11 needs two move one add
instructions. Intel no longer publishes cycle-count-information for the available
instructions, but from benchmarks, it can be inferred that single and packed in-
structions require the same amount of cycles. Therefore, it is to assume that the
asm in Listing 9.11 takes one forth the time to add the two arrays than the asm
in Listing 9.10 [36]. This process is sometimes called vectorization.
Sometimes, the compiler will not be able to vectorize loops. It may fail to vec-

torize loops when the loop contains control-flow statements like the if-statement.
Sometimes, the logic build into the compiler is just not smart enough to vectorize
certain loops. If a loop cannot be vectorized, or the emitted asm is simply not
fast enough, inline-assembler can be used to bypass the compiler. Inline-assembler
is asm written by the programmer. It is inserted into a high-level-language, like
D, and gets directly passed to the linker. Another option is to create a dedicated
asm file to store the handcrafted functions. This is usually not required to write
high performing programs. If functions appear to have too long runtimes, even
though the programmer thought it should be vectorized or have negligible impact
on the performance, it is helpful to look at the assembler output. Often, small
changes to the high-level language can mitigate these problems. This is usually a
trial-and-error process, as it is practically impossible or at least impractical, for
the user, to understand the applied optimizations and to make educated decision
how to change the high-level-code in such a way that the compiler emits better
performing asm. A rule-of-thumb is to try replace the control-flow statements
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with mathematical expression and to avoid loop statements where the number of
loop iterations is influenced by the statements executed by the loop [47].

9.3.4 d) Link ASM
In this step, the asm generated from the different high-level language file gets
linked into a single asm file and translated into binary. Modern compilers executes
so called link-time-optimizations (LTO) [48]. These optimizations are done at the
linking stage of the program compilation. One possible optimizations is cross-file-
function-inlining. Thereby, yielding the same benefit as regular FI. FI is usually
restricted to the function-definitions seen by the compiler when it compiles a
particular function. For instance, let a function fun being defined in the file a.d,
function fun calls function bar, and bar is defined in file b.d. Now, if the compiler
compiles files a.b and b.d separately, it cannot inline bar in fun, simply because
the compiler does not have access to the source code of bar. LTO makes inlining
bar into fun possible as the linker sees the assembly created from bar. LTO is not
such an important step for D in general. This is because the D compilers are
fast enough that it is possible to pass all source files, belonging to a program,
to the compiler at once. This allows the compiler to see function definitions and
perform function-inlining before it comes to linking the asm. D of course comes
with a standard-library. These libraries contain many functions that implement
recurring tasks faced in programming. Usually, these functions can not be inlined,
as only their declarations are known. As D makes heavy use of templates, nearly
all functions declared in the standard-library are template-functions. This requires
that their definition is visible to the compiler which allows it to inline the functions.
Another common optimization at link-time is to remove unused code from the
resulting binary. This results in smaller binaries which increases the cache-hit-
probability. When compiling files separately, it cannot be known which symbols3

will actually be used in the resulting binary. At link-time, this is known and can
be exploited.

9.3.5 e) Translate ASM into Microcode
Intel CPU starting with the Pentium Pro in 1995 no longer execute asm directly
[49]. Instead, Intel CPUs translate asm into so called micro-operations (µ-ops).
These µ-ops are generally more low-level operations. For example, the add assem-
bly instruction allows to directly add two values, where one of the operands can
be a memory address. µ-op would translate this add into a mov and an add of two
registers. This is represented by the Decode step in Figure 9.3. Additionally, the
Pentium Pro introduced speculative execution of instructions and transparently
duplicated the set of registers. The speculative execution is controlled by the
scheduler as shown in Figure 9.3. The scheduler in conjunction with the Register-
Alias-Table keeps track of which instruction, on which port, is currently using

3A symbol in this case means a label in the asm.
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which register. Furthermore, the Pentium Pro gained the ability to reorder the
µ-ops. These features combined is what is called out-of-order-execution. Unfortu-
nately, Intel never published any form of notation for the µ-ops. Therefore regular
asm notation is used to describe µ-ops and appropriate comments are given on the
notation when required. Even though only the effects of the µ-ops are seen, an
understanding of their workings helps to improve the performance of a programs.
It was shown how keeping data in the L1 caches is paramount to keeping the CPU
executing a program efficiently. If µ-ops can be approximated, better hypothesis
of data dependencies of a program can be made, this allows to structure the pro-
gram in a way such that the caches have the right data at the right time, which
in turn keeps the CPU ports loaded which in turn execute the program faster.

1 void fun(int a, int b, int c, int* d) {
2 if(a == 0) {
3 *d = *d * (b + c);
4 } else {
5 *d = *d * (b - c);
6 }
7 }

Listing 9.12: A example D function.

Listing 9.12 shows a short example that will be used to demonstrate a possible
execution of these instructions. The three int values must be unknown as otherwise
the compiler might remove the if-statement or compute parts of the statements
at CT. The pointer *d points to read- and write-able memory.

1 ; int a in [rbp+16]
2 ; int b in [rbp+12]
3 ; int c in [rbp+8]
4 ; int d in [rbp+4]
5

6 mov eax, [rbp+16]
7 cmp eax, 0
8 jne .L1
9

10 mov eax, [rbp+12]
11 add eax, [rbp+8] ; b + c
12 imul [rbp+4] ; * *d
13 jmp .L2
14

15 .L1
16 mov eax, [rbp+12]
17 sub eax, [rbp+8] ; b - c
18 imul [rbp+4] ; * *d
19

20 .L2
21 mov rcx, [rbp+4]
22 mov [rcx], eax ; write *d back to memory

Listing 9.13: The example D function shown in Listing 9.12 compiled to assembler.
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Listing 9.13 on the preceding page shows an possible assembler output after com-
pilation. For the purpose of this example, the parameters are passed via the stack.

1 ; int a in [rbp+16]
2 ; int b in [rbp+12]
3 ; int c in [rbp+8]
4 ; int d in [rbp+4]
5

6 mov eax, [rbp+16]
7 cmp eax, 0
8 jne .L1
9

10 mov eax, [rbp+12]
11 mov ebx, [rbp+8]
12 add eax, ebx ; b + c
13 mov rcx, [rbp+4]
14 mov edx, [rcx]
15 imul edx ; * *d
16 jmp .L2
17

18 .L1
19 mov eax, [rbp+12]
20 mov ebx, [rbp+8]
21 sub eax, ebx ; b + c
22 mov rcx, [rbp+4]
23 mov edx, [rcx]
24 imul edx ; * *d
25

26 jmp .L2
27 mov rcx, [rbp+4]
28 mov [rcx], eax ; write *d back to memory

Listing 9.14: The assemble of the example function being transformed into µ-op.

After the binary file has been loaded by the CPU, it transforms the binary into
µ-ops. One attribute of µ-op is that other than load and store operations all
operations exclusively work on registers. That means that operations like add eax
, [rbp+16] are no longer possible and have to be translated into a mov and add. In
order to visualize this process, the transformation in asm is shown in Listing 9.14.

1 ; int a in [rbp+16]
2 ; int b in [rbp+12]
3 ; int c in [rbp+8]
4 ; int d in [rbp+4]
5

6 mov eax_1, [rbp+16]
7 cmp eax_1, 0
8 jne .L1
9

10 mov eax_2, [rbp+12]
11 mov ebx_2, [rbp+8]
12 add eax_2, ebx_2 ; b + c
13 mov rcx_2, [rbp+4]
14 mov edx_2, [rcx_2]
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15 imul eax_2, edx_2 ; * *d
16 jmp .L2
17

18 .L1
19 mov eax_3, [rbp+12]
20 mov ebx_3, [rbp+8]
21 sub eax_3, ebx_3 ; b + c
22 mov rcx_3, [rbp+4]
23 mov edx_3, [rcx_3]
24 imul eax_3, edx_3 ; * *d
25

26 .L2
27 mov rcx_4, [rbp+4]
28 mov [rcx_4], eax_? ; write *d back to memory

Listing 9.15: µ-op allowed to use multi-register-sets.

As mentioned earlier, modern CPUs have multiple sets of registers. This simplifies
the use of the multiple arithmetic-logical-units (ALUs) present in modern CPUs.
In this example, the utilization of these multiple-register sets is also done in this
stage. The different register sets are distinguished by the suffix. The suffix _1
points to the first register set, the suffix _2 points to the second and so on.
The goal here is to use as many of the register sets as possible. The result of
this transformation is shown in Listing 9.15 on the facing page. The last line
of Listing 9.15 reveals a problem. Writing back a value to memory does make it
potentially visible4 by other programs, but the two competing results are stored in
eax_2 and eax_3. The question becomes, which of those values needs to be written
to the memory location [rcx_4]. This is solved in Subsection 9.3.8 on page 218.

9.3.6 f) Reorder Microcode Instructions
As mentioned earlier, the goal of the microcode is to utilize all the CPU resources
as much as possible. For that to work, the CPU needs data, but communicating
date from and to memory is slow, too slow to fully utilize the CPU. Even with
caches, getting data may be too slow. To combat that, the CPU reorders the
µ-ops such that all load instruction happens as soon as possible.

1 ; int a in [rbp+16]
2 ; int b in [rbp+12]
3 ; int c in [rbp+8]
4 ; int d in [rbp+4]
5

6 mov eax_1, [rbp+16]
7 mov eax_2, [rbp+12]
8 mov ebx_2, [rbp+8]
9 mov eax_3, [rbp+12]

10 mov ebx_3, [rbp+8]
11 mov rcx_2, [rbp+4]

4Visible, in this case means, another process could read the value if they had access to the
memory location.
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12 mov edx_2, [rcx_2]
13 mov rcx_3, [rbp+4]
14 mov edx_3, [rcx_3]
15 mov rcx_4, [rbp+4]
16

17 cmp eax_1, 0
18 jne .L1
19

20 add eax_2, ebx_2 ; b + c
21 imul eax_2, edx_2 ; * *d
22 jmp .L2
23

24 .L1
25 sub eax_3, ebx_3 ; b + c
26 imul eax_3, edx_3 ; * *d
27

28 .L2
29 mov [rcx_4], eax_? ; write *d back to memory

Listing 9.16: The assemble of the example function reordered.

Listing 9.16 on the preceding page shows this transformation. All memory loads
operations are at the beginning of the shown listing.
µ-ops are also allowed to rewrite the binary, this is shown in Listing 9.17.

1 ; int a in [rbp+16]
2 ; int b in [rbp+12]
3 ; int c in [rbp+8]
4 ; int d in [rbp+4]
5

6 mov eax_1, [rbp+16]
7 mov eax_2, [rbp+12]
8 mov ebx_2, [rbp+8]
9 mov eax_3, [rbp+12]

10 mov ebx_3, [rbp+8]
11 mov rcx_2, [rbp+4]
12 mov edx_2, [rcx_2]
13 mov rcx_3, [rbp+4]
14 mov edx_3, [rcx_3]
15 mov rcx_4, [rbp+4]
16

17 cmp eax_1, 0
18

19 add eax_2, ebx_2 ; b + c
20 imul eax_2, edx_2 ; * *d
21 cmove eax_4, eax_2
22

23 sub eax_3, ebx_3 ; b + c
24 imul eax_3, edx_3 ; * *d
25 cmovne eax_5, eax_3
26

27 mov [rcx_4], eax_? ; write *d back to memory

Listing 9.17: The assemble of the example function reordered continued.
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The cmp and jmp control-flow is replaced with cmove and cmovne operations. cmove
stands for conditional-mov-equal and only moves the right operand to the left
operand if the previous compare-operation yielded the value true. cmovne stands
for conditional-mov-not-equal and only moves the right operand to the left operand
if the previous compare yielded the value false. This transformation will help
significantly in the following step. Sometimes, the compiler is not able to create
asm that is conducive to these kinds of reorderings. The µ-ops cannot be seen
directly, but the program perf can be used to observe stall cycles. Stall cycles
give information how often the CPU doesn’t have µ-ops ready to execute or is
missing resources. Stall cycles are used to spot problems in the µ-ops programs.
Reordering the D-code and replacing if-statements with tenary-operations showed
good results in reducing the stall cycle count and thereby improve CPU utilization.

9.3.7 g) Execute Microcode instructions
For the example, execution of the µ-ops as shown in Listing 9.17, the following
state of the CPU, memory, and caches is assumed. The memory of the addresses
rbp+12, rbp+8, rbp+4, and [rbp+4] are in the L1 cache of the CPU. The memory of
the variable int a is currently not cached. For the purposes of demonstration, the
ALUs are currently not used. Additionally, it is assumed that moving data from
the L1 cache to a register takes one time unit, moving data from memory to a
cache or vice-versa takes five time units, the CPU can start the execution of four
lines of µ-op per time unit, the CPU can start one move from memory to the cache
in each time unit, all other operations take one time unit to execute. The eight
time units below show the start and the finish time of each instruction.

1. mov eax_1, [rbp+16] started
mov eax_2, [rbp+12] completed
mov ebx_2, [rbp+8] completed
mov eax_3, [rbp+12] completed

2. mov ebx_3, [rbp+8] completed
mov rcx_2, [rbp+4] completed
mov edx_2, [rcx_2] completed
mov rcx_3, [rbp+4] completed

3. mov edx_3, [rcx_3] completed
mov rcx_4, [rbp+4] completed
add eax_2, ebx_2 completed
sub eax_3, ebx_3 completed

4. imul eax_2, edx_2 completed
imul eax_3, edx_3 completed

5. mov eax_1, [rbp+16] completed
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6. cmp eax_1, 0 completed

7. cmove eax_4, eax_2 completed
cmovne eax_5, eax_3 completed

8. mov [rcx_4], eax_? started

9.3.8 h) Retire Microcode Instructions
In the last stage, the CPU figures out which of the eax values it needs to write to
memory or to the permanent register file. This is where the out-of-order execution
is made “in-order” again, in the sense that the observable effect done by the out-
of-order execution is the same as the effect that would have been observed by in
an in-order execution [36].

9.4 Optimizations
Now that the CPU used to execute the analysis program has been introduced,
concrete optimizations will be presented.

9.4.1 The graph structure Data structure
As mentioned before, the caches are an important factor when it comes to program
performance. The data-structures (DSTs) used to store the data of a program
directly influence how data is stored in RAM and, therefore, indirectly influence
how data is stored in the caches. DSTs are therefore very important, when it
comes to cache utilization. At the core of MC are GSs. GSs are used to represent
LNTs and PNTs. LNTs and PNTs are used in the mapping approach (MA), the
CIP, and the CP. There are two common ways for DSTs to store GSs. The first
one is shown in Listing 9.18.

1 class Vertex {
2 int id;
3 vec2f position;
4 Vertex[] adjacent;
5 }
6

7 struct GS {
8 Vertex[] vertices;
9 }

Listing 9.18: A DST to store a GS.

This DST has several disadvantages. The class Vertex is heap-allocated. There-
fore, the program has no control where in memory a vertex is stored. This de-
creases the chance of cache-hits. As mentioned previously, cache-hits play a im-
portant role for the performance of a program. Additionally, the class Vertex
stores its adjacent vertices in a dynamic array. This means for each access to any
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of the adjacent vertices of a Vertex the CPU has to follow two pointers. One for
the memory of the array and one for the Vertex. This introduces two chances of
cache-misses. The size of one instance of the class Vertex is 28 bytes, ignoring
default class members like the vtable [50]. The struct GS has a size of 16 bytes.
Another problem is that removing edges is computational complex. One of the
vertices creating the edges has to be found in their vertices array of the struct GS.
As it cannot guaranteed that the vertices are sorted by their id in this array the
complete array needs to be searched. This entails a O(N) complexity where N
is the number of vertices in the GS. Then, the second vertices in the array called
adjacent has to be found. Again, this has a O(N) complexity. As it cannot be
assumed that the Vertex to remove is at the end of the array, the program might
have to remove the Vertex from an arbitrary position in the array. This again,
entails a O(N) complexity. As the GS is not a directed GS, this procedure has
to be repeated for the second vertex.
Testing whether there is an edge between two vertices is also unnecessarily

complex. For this procedure, the program has to find the first Vertex in the
vertices array and then the second Vertex in the adjacent array. Both searches
have a O(N) complexity.

The DSTs shown in Listing 9.19 mitigates some of the previous problems. The
shown DSTs are another common way of representing the GS.

1 class Vertex {
2 int id;
3 vec2f position;
4 }
5

6 struct GS {
7 Vertex[] vertices;
8 int[][] edges;
9 }

Listing 9.19: A optimized DST to store a GS.

There are still performance problems and inefficacies with this design. Due to
experiments, it is known that no tests with more than 32 vertices are run. That
means, if an int encodes the vertex IDs, the program wastes at least 27 bits of each
int. The edge lookup and removal still requires multiple, linear searches through
the array storing the edges.

Ideally, inserting, removing, and testing edges should have constant runtime
complexity. Additionally, the DSTs used to store the GS should be as cache
friendly as possible. Looking closer at the hot spots of MC, revealed that the path
finding procedure was highly critical. That means, the edge data is required to be
rapidly accessible, the position data of the vertices on the other hand was not as
important.
Listing 9.20 shows a simplified template struct of the used GS.

1 struct GS(T) {
2 T[T.sizeof * 8] edges;
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3 ubyte numberVertices;
4

5 vec2f[T.sizeof * 8] positions;
6 }

Listing 9.20: A template struct used to store the GSs in MC.

T is the template type of the struct. The statement GS!ubyte will create a struct
where each occurrence of T is replaced with ubyte. The type ubyte is an unsigned
int type.

1 struct GS!(ubyte) {
2 ubyte[8] edges;
3 ubyte numberVertices;
4

5 vec2f[8] positions;
6 }

Listing 9.21: The template shown in Listing 9.20 instantiated with the type ubyte.

The DST in Listing 9.21 can, of course, store GSs with less than nine vertices but
for some analyses this is sufficient. All the data of the DST is aligned consecutively
in memory and can be accessed in constant time without following pointers. At
first glance, the edges array looks insufficient to store all the edges, but it is not.
Now it is made sure that the ID of a vertex is equal to its position in the array.
Meaning IDs start with the number zero, and all IDs are consecutively. The
adjacency list is stored as a bit-mask. For the analyses done in this work, it is
only required to know whether an edge exists or not. The length of the edge is
not relevant. Therefore, a boolean type is sufficient to store it. D offers a boolean
type in the form of bool, but this type requires one byte to store it. This would
mean that always 7 bits are wasted. With bit operations, in case of the template
instantiation shown in Listing 9.21, the eight bits of each element of edges can
be addressed individually. A bit set to 1 means the edge exists, a bit set to 0
means no edge exists. To test if an edge e1,3 exists, MC just has to evaluate
the expression edges[1] & (1U << 3)5. If this expression evaluates to true the edge
exists, otherwise it does not. Testing the existence of the edge, starting from the
other direction, is equally as easy. Creating a new edge is not much harder as
shown below. Creating the edge e2,4 is done by the two statements:

1 edges[2] = edges[2] | (1U << 4);
2 edges[4] = edges[4] | (1U << 2);

The size of GS!(ubyte) is 73 byte, which the compiler extends to 80 to make it
align better into memory. Compared to the 28 bytes for a single vertex, without
any edges, for the class shown in Listing 9.18 this is an substantial reduction of
required memory. This means the complete GS!(ubyte) DST will not fit into one
L1 cache-line. Luckily, the adjacency array in combinations with the size of the

51U is D shorthand to create an uint with value 1.
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GS fits comfortably, as it only requires nine bytes and data is loaded in cache-
line sized blocks. This means when a GS DST specialized to ubyte is loaded, the
complete adjacency array, the length, and part of the position vectors are loaded
6. Such a DST limits the size of the analyzed GS to eight vertices as an ubyte can
only represent eight boolean values.

1 struct GS!(ushort) {
2 ubyte[16] edges;
3 ubyte numberVertices;
4

5 vec2f[16] positions;
6 }

Listing 9.22: The template shown in Listing 9.20 instantiated with the type ushort.

Listing 9.22 shows the template shown in Listing 9.20 instantiated with a ushort.
Such a DST limits the size of the stored GS to 16 vertices, which is enough for
most of the analyses conducted in this work. In D ushorts are always stored in
two bytes. The resulting size of the struct shown in Listing 9.22 is therefore, 168
bytes. The adjacency array and length of the GS DST is 40 byte. This still fits
into a single L1 cache-line.
This reduction in size played an important role in decreasing the runtime of

each analysis, as this optimization drop the time a mapping required from months
to many weeks.

9.4.2 Quorum Protocol Based Optimizations
For a mapping of a QP with N replicas N! mappings have to be calculated. With
growing N such analyses quickly become infeasible. Reducing the number of map-
pings required for the analysis of a mapping would allow to greatly increase the
scope of the possible analyses. Ideally, testing only a single mapping would lead
to the optimal mapping. For the MCS, this is possible. Due to the symmetric
structure of the resulting RQS and WQS, all mappings will result in mapped RQS
and mapped WQS. Consider the RQS of the MCS with four replias as shown in
Table 9.1 on the next page. Given the PNT shown in Figure 9.5 and the mapping
a = {(0,a),(1,b),(2,c),(3,d)}, the result is mapped RQS as shown in Table 9.2 on
the next page. If a mapping a = {(0,b),(1,a),(2,d),(3,c)} is used the result is the

a b c d

Figure 9.5: A PNT used to show the symmetric nature of mappings of the MCS.

RQS as shown in Table 9.3 on the following page. Comparing the two mapped
RQSs shown in Table 9.2 and Table 9.3, shows that the two mapped RQSs have
the same structures and only the individual qi and sqi, j elements are only named

6This is also the reason why ordering the elements of a struct or class by their access frequency
can have significant performance implications.
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RQS={
({0,1},{{0,1,2},{0,1,3},{0,1,2,3}}),
({0,2},{{0,2,3}}),
({0,3},{}),
({1,2},{{1,2,3}}),
({1,3},{}),
({2,3},{}),
}

Table 9.1: RQS of the MCS with four replicas.

RQS={
({a,b},{{a,b,c},{a,b,c,d}}),
({b,c},{{b,c,d}}),
({c,d},{})
}

Table 9.2: The mapped RQS of the MCS with four replicas with the mapping
{(0,a),(1,b),(2,c),(3,d)}.

RQS={
({b,a},{{b,a,c},{b,a,c,d}}),
({b,c},{{b,c,d}}),
({c,d},{})
}

Table 9.3: The mapped RQS of the MCS with four replicas with the mapping
{(0,b),(1,a),(2,d),(3,c)}.
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differently. Realizing this, allows to MC to test only one MCS mapping to find
the optimal mapping.

9.4.3 Read Quorum Set and Write Quorum Set Construction
During analyses of the mapping approach implementation it became clear that
the use of the floyd-warshall path finding algorithm (FWA) [51] had significant,
negative impact on the performance. Path finding is at the heard of reconstructing
communication paths for mappings. Even though the FWA was significantly more
efficient in this use-case than, for instance the Dijkstra’s algorithm [52] or the A*
[53], it was still too expensive to call. The goal was therefore to reduce the amount
of executions of the FWA.

The definitions of the RQS Equation 3.5 on page 16 and the WQS Equation 3.15
on page 16 contain some interesting insights. Originally, each combination of
vertices was tested whether they are a RQ or a WQ. This is true for some QPs
and for all mapped QPs.
The qi elements always contain less vertices than their sqi, j elements and addi-

tionally they are supersets of the qi elements. If a set of vertices a is a superset of
qi and qi is a RQ (or a WQ), then a is also a RQ (or a WQ). Testing whether a
is a superset is a lot faster than testing whether a is a RQ or a WQ. Listing 9.23
shows a function testing if b is a superset of a.

1 bool isSuperSet(int[] a, int[] b) {
2 outer: foreach(it; a) {
3 foreach(jt; b) {
4 if(it == jt) {
5 continue outer;
6 }
7 }
8 return false;
9 }

10 return true;
11 }

Listing 9.23: A function that checks if b is a superset of a.

A implementation of such a test can be seen in function isSuperSet in Listing 9.23.
This function tests whether all the elements of the array a are in b. This function
has a runtime complexity of O(N) .
In order to build the complete RQS (and WQS) the program has to iterate all

combinations of vertices assumed to be available. If the program starts with the
one-element sets, continue with the two element sets and so on, it can first test for
the superset property and see whether the current set is a superset to an already
found RQ or WQ. If there is a matching quorum it simply stores the current set
as a superset. If it does not find a matching subset it tests whether the current set
is a RQ (or WQ respectively). If it is, it is stored as a qi element. If it is assumed
the DS used to build the RQS and WQS is shown in Listing 9.26 on page 225, the
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function shown in Listing 9.25 on the next page can be used to build the RQS or
the WQS.

1 struct Q_SQ {
2 int[] qi;
3 int[][] sqij;
4 }
5

6 struct RQS {
7 Q_SQ[] elements;
8 }

Listing 9.24: A example DS to build a RQS

1 RQS buildRQS(int n) {
2 RQS rqs;
3 for(int i = 0; i <= n; ++i) {
4 outer: foreach(int[] it; nElementSets(i, n)) {
5 // test if `it` is a superset to any of the elements in

the
6 // currently build rqs
7 foreach(Q_SQ qsq; rqs.elements) {
8 if(isSuperSet(qsq.qi, it)) {
9 qsq.sqij ~= it;

10 continue outer;
11 }
12 }
13 }
14

15 // test if `it` is a read quorum
16 if(isReadQuorum(it, n)) {
17 Q_SQ tmp;
18 tmp.qi = it;
19 rqs.elements ~= tmp;
20 }
21 }
22 return rqs;
23 }

Listing 9.25: The function used to build the RQS.

The variable rqs is DS used to store the RQS. The loop in line 3 in Listing 9.25
iterates the variable i from 1 to including |V (g)| in order where g is a GS used by the
QP. The following foreach loop in line 4 uses a helper function called nElementsSets,
that creates all sets with i elements out of a set of g.length elements. On line 7 in
Listing 9.25 the search for the superset condition is started, qsq is the iterator that
walks front to back through the (qi,{sqi,0, . . .sqi, j}) elements of the rqs. If it is a
superset of qsq.qi, it is appended to the set of supersets of qsq as shown in line 9.
The operator ~= of D appends an element to an array. As there is nothing more to
do with it, the program can continue with the next set. This is accomplished by
the continue outer in line 10. The statement continue outer has the same semantic
as the know continue statement in all other C-based languages, expect that it
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continues the labeled loop and not the enclosing loop. If no superset relation can
be found, then the function tests whether it is a RQ as shown in line 16. If that is
the case a new Q_SQ element is created and stored in rqs. After all sets of elements
have been tested, rqs is returned, thereby concluding the RQS construction. This
function exploits a little different mechanism to decrease the construction time
of the RQS. As the sets are tested from few to many elements, the function can
often skip the, possible expensive, QP logic and solely depend on set operations
to determine if a set is a RQ. This works, because it is assumed that a QP will
always use the smallest possible quorum, even if additional replicas are available,
as shown in Equation 3.14 on page 16. Due to the construction of the elements
array in RQS RQs with few elements are stored at the beginning of the array. The
search for a superset is also started at the beginning of the array. It is therefore
likely that for most RQs a superset relation is found early in the search. This has
been tested by instrumenting code to count how often what path has been taken.
For most QPs the process of calling the buildRQS function executed as follows:
Initially, the actual isReadQuorum function is executed multiple times to build few
minimal quorums. After these changes, most new quorums were inserted without
resorting to the expensive isReadQuorum function.
This can be illustrated by the MCS. Let buildRQS be called with n equal to five.

After the ten distinct three element RQs have been inserted into the rqs, the six
additionally tested sets will be successfully evaluated by the superset branch of
the function.
The function buildRQS shown in Listing 9.25 still has some potential for improve-

ment. The foreach in line 4 in Listing 9.25 creates a new array for each iteration.
As it has been previously discussed, arrays are to be avoided to increase the num-
ber of cache hits. As the program has control over how replicas are identified, MC
identifies N replicas with the IDs from 0 to N − 1. This way, MC can store the
available replicas of a QP with up to 32 as a bit mask inside a single uint. As the
extent of the analyses is known a priori, the user can select an appropriate type
at CT. This allows MC to use an improved GS as shown in Listing 9.26. The int
array previously used to store the RQ was replaced by a uint. The subsets are
now stored in a one-dimensional uint array.

1 struct Q_SQ {
2 uint qi;
3 uint[] sqij;
4 }
5

6 struct RQS {
7 Q_SQ[] elements;
8 }

Listing 9.26: A improved DS used to build a RQS

This allows MC to make some significant improvements in the improved buildRQS
function shown in Listing 9.27.

1 RQS buildRQS(int n) {
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2 RQS rqs;
3 for(int i = 0; i <= n; ++i) {
4 outer: foreach(uint it; nElementSets(i, n)) {
5 // test if `it` is a superset to any of the elements in

the
6 // currently build rqs
7 foreach(Q_SQ qsq; rqs.elements) {
8 if((qsq.qi & it) == qsq.qi) {
9 qsq.sqij ~= it;

10 continue outer;
11 }
12 }
13 }
14

15 // test if `it` is a read quorum
16 if(isReadQuorum(it, n)) {
17 Q_SQ tmp;
18 tmp.qi = it;
19 tmp.sqil.reserve(16);
20 rqs.elements ~= tmp;
21 }
22 }
23 return rqs;
24 }

Listing 9.27: A improved function used to build the RQS.

The first improvement is shown in line 4 in Listing 9.27. Instead of returning
an array for each iteration, nElementsSets returns a single uint. This removed the
need for memory allocation and the values can be stored on the stack, increasing
the cache-hit change further.
The largest improvement comes from the changed superset test. Instead of

potentially comparing all elements of two elements, a single bitwise and operation
combined with a comparison is used. Consider the set a = {0,2,3,5} and the set
b = {0,2,3,4,5,7}. Table 9.4 shows the result of the bitwise and operation of these
two sets represented as bitmasks and the following comparison. The example

{0,2,3,5} = 0 0 1 0 1 1 0 1
{0,2,3,4,5,7} = 1 0 1 1 1 1 0 1

& = 0 0 1 0 1 1 0 1 = {0,2,3,5}

Table 9.4: Example of a successful superset test with two sets with the bitwise and
operation.

shows how the IDs stored in the set are used to set the bits in the bitmask and
how the binary and operation combines the two bitmasks. The result is then
transformed into a regular set again for easy comparison between sets. As the
example shows, the result of the bitwise and is equal to the set a. Table 9.5 on
the facing page shows an example where b = {0,2,3,4,5,7} is not a superset of
a = {0,2,3,5}. Here the result is not equal to a.
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{0,2,3,5} = 0 0 1 0 1 1 0 1
{0,2,4,5,7} = 1 0 1 1 0 1 0 1

& = 0 0 1 0 0 1 0 1 = {0,2,5}

Table 9.5: Example of an unsuccessful superset test with two sets using the bitwise
and operation.

The last small, notable improvement was in the memory management for the
superset array. In line 19 in Listing 9.27 a 16 element is allocated for the superset
array. This is done to reduce the number of expected allocations of the span of
the execution of the function. The first few RQs will likely have many supersets.
This way the first 16 can be stored without any memory management overhead.
The size of 16 was chosen, because 16 uints fill exactly one L1-cache-line, further
increasing the chance for cache hits. This superset search is used for all QPs
discussed in this work.

The construction of the WQS is analogous to the RQS construction shown.
The RQS of the QP mapped, and a DS representing the PNT is used as input

into the function. The superset test is also applied, but instead of testing whether
some set is a RQ, it is tested by the elements of the set are connected in the given
PNT.

With these performance optimizations the execution time for a mapping with
nine replicas was down to several hours and therefore the termination criterion of
the optimization process shown in Figure 9.1 was reached.

9.5 Conclusion
This chapter showed the overall process used to optimize MC.

Additionally, a very quick overview was given how modern CPU actual work.
This knowledge was then exploited to increase the performance of MC to make
the analysis of the mapping approach, as well as the CIP and the CP, feasible.

Furthermore, two rather low level optimizations were explored to give an im-
pression of the depth of the required optimizations.
Due to the work presented in this chapter, the analysis time of mapping of the

TLP with nine replicas to a PNT was reduced from seven month to about seven
hours7.

9.6 Future Work
Currently, the performance of MC is restricting the analyses of the mapping ap-
proach to QPs with nine replicas. The next target would be to test the mappings

7The seven month timespan is an extrapolation based on a seven day execution of the MC
program that had to be interrupted due to obvious reasons.
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of QPs with 12 replicas. This would allow to analyze the TLP with a 3×4 LNT
or the GP with a similar LNT. A mapping of 12 replicas is 1320 more complex a
mapping with nine replicas, due to the factorial runtime complexity of the map-
ping approach. Assuming no process loss and enough memory, this would require
about a year of computing, making it infeasible for the scope of this work. PNT
with ten or eleven vertices are not that interesting as the possible LNT for the
TLP and the GP either 2× 5 or 1× 11 which are heavily unbalanced towards
read operation. The 1× 11 grid would even result in the QP and TLP into the
Read-One/Write-All (ROWA) QPs.

9.6.1 Multithreading
Currently, all analyses are executed on a single CPU core. The utilization of
multiple CPU cores are achieved by executing MC multiple instances per CPU.
This allows the different instances of MC to work independently, without the need
for synchronization.
If no optimization like the one shown in Subsection 9.4.2 are found for the

analyzed QPs a multithreaded analysis will be a logical next step. This means
that the analysis is spread among multiple CPU-cores. This introduces the need
for synchronization between the executed threads.
Creating the RQS and the WQS multithreaded requires extensive synchroniza-

tion. The synchronization would likely be inside the DST used to store the RQS
or the WQS, respectively. The problem with multithreading is the performance of
the synchronization primitives offered by the CPUs. Atomic writes operations are
up to 30 times slower than regular writes, and additionally the mutations of the
shared DS have to be done in a synchronized manner [54]. This requires locking,
which might stop the execution of other threads.
Parallelizing the mapping approach is easy as most computation can be done

without interaction between threads. Such a parallelization would likely map one
mapping to one thread. After the ARW of a mapping has been finally computed, it
is tested whether this mapping has the currently highest ARW. If that is the case,
this mapping is stored as the currently best mapping. This ARW comparison,
and the possible storage of the mapping has to be done in a synchronized manner.
Depending on the number of available CPUs, this could reduce the computation
time significantly. Such a approach is known as a map-reduce process [55].

9.6.2 Rule based RQS and WQS construction
The RQS and the WQS are constructed in the same way for each tested QP. The
only difference is the test used to determine whether a set of replicas is a RQ or a
WQ. This is not optimal in the general case. Optimal, here means that it requires
the least possible amount of computation.
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Consider an MCS with five replicas. No set with less than three replicas can
form a RQ or a WQ. With this knowledge, the program can exclude 15 of the 31
sets that would normally tested.
Such optimization might exists for other QPs as well. Searching for these opti-

mizations might be a worthwhile task.
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10 Conclusion
This work has shown how strong some of the assumptions of existing QPs are,
and what big difference weaker, and therefore more realistic, assumptions make
when analyzing QPs. This was done be the introduction of the LNT, PNT, and
the mapping approach. This approach was used to extensively analyze different
QPs and PNT combinations.

Due to the computational complexity of the mapping approach, the kNNmethod
was successfully used to predict the influence of a mapping based on features
extracted from the used PNT. Here, it was shown that the BCmax feature is a
good indicator to predict the cost and availability measurements of a given PNT.
Additionally, a was found to reduce the number of mappings that have to analyzed
for the MCS from N! to 1, where N is the number of replicas used by the MCS.

As the existing QPs where not meant to mapped to more realistic GSs, the
read and write availability, and the cost measures degenerated so much that QPs
had to be introduced that directly applied to a given PNT. Therefore, the CIP,
a new QP, was introduced. The main advantage of the CIP is that it does not
require any specific LNT, instead it directly works on the given PNT. This allows
it to be applied to PNTs with much more vertices than what is currently feasible
using the mapping approach. It was shown how the CIP can use many PNTs, and
how PNTs need to be prepared in order to be used by the CIP. As the structure
of the PNT is considered unchangeable by this work, it was explained why those
preparations, required by the CIP, do not undermine this requirement.
Based on the experiences and results of the CIP, another QP, called CP, was

developed. Similarly to the CIP, the CP directly works on a given PNT. It was
developed to combine the best properties of the CIP and the TLP. This worked
for the most part, but unfavorable PNTs still showed limits to this new QPs.
With larger QP the CIP results became better as the planarization step no longer
resulted in GS that mirrored lines.

As it became clear that no one QP was always the best, a new algorithm was
developed that given a PNT and a set of QPs, finds the best possible QP for a
given PNT. This algorithm works for all QPs for which a RQS, and WQS can be
constructed. These two concepts where introduced and used throughout this work
to analyze all QPs.

Many of the analyses performed were computational extremely complex, so
much so that computing even partial results would have taken weeks or months.
To make any meaningful statement about the various QPs as well as the presented
approaches and algorithms, the execution speed of MC used for the analyses had
to be improved significantly. An excursion, into some of the used optimizations
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techniques was present as well as introduction into modern CPU architectures and
there implication for software performance.
Finally, some ideas for possible future works building on concepts introduced in

this week are presented.
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11 Future Work
During this work more ideas were had and more research was done. This chapter
is an overview of the most promising ones.

11.1 Evaluation of more Quorum Protocols
In this work, three known QPs, and two new QPs where evaluated, but there are
many more QPs. Some of the better known are the Generalized Tree QP [56] and
the Crumbling Walls QP [57]. Adding these QPs to MC and evaluating their cost
and availability measurements, when mapped to different PNTs, would give an
even deeper insight into the performance of the mapping approach. Additionally,
these additions would allow to choose from a greater set of QPs in Algorithm 20.
This was not done as it would not have added something conceptually new.

11.2 Evaluation of Additional Graph Structure Features
Even though the prediction accuracy of the kNN approach is already very good,
many GS features remain untested. The prediction accuracy of the BC feature
works notably good, but it is also the computationally most complex GS fea-
ture analyzed. Analyzing more features might yield features that are even better
suitable for predictions.
One possible candidate is the Circuit rank [58]. The Circuit rank describes how

many edges of a GS need to be removed to transform it into a tree. Another
candidate that might be worth analyzing is what is known as cliques [59]. Clique
describes how many vertices form completely connected subgraphs of a GS.
As the BCmax already had a MSE of 0, the optimal MSE, this work was not

deemed necessary.

11.3 Decreasing the Analysis Time
Analyzing the ar(p) , the aw(p) , the cr(p) , and the cw(p) of a mapping of the
TLP with nine replicas mapped to a PNT, also with nine replicas, takes about
seven hours on a somewhat modern CPUs. Increasing the number of vertices of
the analyzed LNT and PNT to even only ten replicas would increase the analysis
time to about 70 hours. Decreasing the time required for an analysis, or even
developing an analysis technique with less than factorial complexity, would allow
to study the mapping approach in more detail.
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11.4 Consider Edge Availability
Currently, edges are assumed to have a p-value of 1.0, meaning they are always
available. Obviously, this is a simplification whose removal would decrease the dif-
ference between analysis and the real-world behavior. This would in turn increase
the analysis time in an unreasonable about, which for even very small GSs, less
than five replicas, would likely exceed many weeks. This is because the complexity
would grow factorial.

11.5 Consider Vertices without Replicas
In this work all vertices of a GS host exactly one replica. Allowing vertices to
host zero or more replicas would allow to further decrease the gap between LNTs
and PNTs. For instance, having a star like GS, as shown in Figure 11.1, with
the center vertex 0 not hosting a replica would allow to evaluate very common
real-world network structures.
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Figure 11.1: Star like GS.

11.6 Individual p-Values
The p-value of all replicas are currently considered equal. This is mostly a simpli-
fication to make analyses feasible. Lifting this assumption would allow to create
evaluations of QPs and mappings that more closely model real-world scenarios.
Again, the increase in analysis time would make such an approach infeasible.

11.7 Graph Structure Planarization
The way GSs are currently planarizied leaves many GSs unusable for the CIP as
well as the CP. If possible, this should be avoided. One possibility to remove many
non-planar structures from a GS is to move the vertices to different positions in
the plane. An instance of this is shown in Figure 6.7 and Figure 6.8 on page 134.

234



11.8 Approximating Mappings

Planarizing such a GS by exhaustively searching for the best move operations
becomes extremely computational complex, if not infeasible. To make it feasible,
applying heuristics, such as the ones presented in [60] and [61], could be used.

11.8 Approximating Mappings
Testing all O(N!) possible mappings, where N is the number of replicas, to find
the optimal mapping does not scale well. Figuring out which replica of a given
LNT should be mapped to which replica of the PNT is the central question of the
mapping approach. To find the optimal mapping, currently, all possible mappings
have to be evaluated. One idea to find not necessarily the optimal, but a good
mapping might be to assume replicas hosted by specific vertices of the LNT to
be mapped to vertices that have similar features on the PNT. Therefore, all the
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(a) The LNT used the experiment to ap-
proximate the optimal mapping
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(b) The LNT used the experiment to ap-
proximate the optimal mapping

Figure 11.2: GS used in an experiment to approximate the optimal mapping

vertices of, both, the LNT as well as the PNT are sorted by some feature or
tuple of features. Table 11.1 shows the sorting of the vertices of the GSs in
Figure 11.2b and Figure 11.2b sorted by the (DiaAvg, BC) features. Now that

LNT PNT
ID (DiaAvg, BC) ID (DiaAvg, BC)
4 (2.25,8) 4 (2.5,5)
8 (2.625,0) 6 (2.5,6)
7 (2.625,1) 7 (2.625,2)
5 (2.625,1) 1 (2.625,7)
0 (2.625,4) 2 (2.75,4)
1 (2.625,6) 3 (2.75,4)
3 (2.625,6) 5 (3,0)
2 (3.25,0) 0 (3.125,0)
6 (3.25,0) 8 (3.125,0)

Table 11.1: Sorting of the vertices of GSs in Figure 11.2b and Figure 11.2b by the
BC feature.
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the vertices are sorted, a mapping can be constructed as follows. The vertex of
the LNT with ID 1 is mapped to the vertex of the PNT with ID 1. The vertex
with ID 3 is mapped to the vertex with ID 6, and so forth. This results in the
mapping {(1,1),(3,6),(4,7),(5,4),(7,0),(0,2),(2,3),(6,5),(8,8)}. Figure 11.3a on
the next page shows the ar(p) and aw(p) of the TLP (TLP-3x3), the best mapping
(BestMap), and the mapping resulting from the sorting of the vertices (SortMap).
The ar(p) of SortMap is by no means comparable to the ar(p) of BestMap, the
aw(p) on the other hand is extremely similar to the aw(p) of BestMap, even
surpassing it in the low p-value range. Figure 11.3b on the facing page shows
the cr(p) and the cw(p) . Here the SortMap mapping performs similar to the
BestMap mapping. So far, only the above shown LNT and PNT where tested
with the features, Minimum Diameter, Maximum Diameter, Average Diameter,
Mode Diameter, Median Diameter, Degree, BC, and all two element combinations
of the previously mentioned features. From these tests, the combination ( Average
Diameter, BC ) had the highest ARW with 90.92, which is close to the ARW of
the best mapping with 94.65 [rsot17long].
Investigating more feature combinations with more QPs and PNTs might allow

to build a heuristic to approximate the best mapping with significant less com-
putational complexity. This approach is especially promising with larger GSs,
but in order to achieved operation availabilities and costs comparable the optimal
mappings still would have to be found, which is again computational extremely
expensive.

Concluding this work, it is obvious that the assumptions about the analyzed
systems are extremely important, but with the approaches presented in this work
theory and practice has moved a bit closer together.
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