
Carl von Ossietzky Universität Oldenburg
Fakultät II - Informatik, Wirtschafts- und Rechtswissenschaften

Departement für Informatik

A Theory on Graph Generation and Graph Repair

with Application to Meta-Modeling

Dissertation zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

im Fach Informatik

vorgelegt von

Christian Sandmann, M. Sc.

Oldenburg, 27. Juni 2021

Prüfungskommision

Gutachterin: Prof. Dr. Annegret Habel
Gutachterin: Prof. Dr. Gabriele Taentzer

Datum der Disputation: 01. Oktober 2021

2

Abstract

In meta-modeling, a general problem is to generate instances of a meta-model con-
forming to a given constraint. Our approach to model generation is rule-based:
translate the structure of the meta-model into a graph grammar, translate con-
straints in the Object Constraint Language into graph constraints, and integrate
the graph constraints into the grammar yielding a graph grammar, to generate
graphs satisfying the constraints directly. Given a graph grammar and a graph
constraint, a graph grammar is constructed that generates some/all graphs of the
given grammar that satisfy the constraint. Moreover, for specific graph gram-
mars and constraints, the resulting grammar generates all graphs satisfying the
constraint.

We investigate the generation of instances by grammar-based repair: with a graph
grammar generate an instance, which has to be transformed to an instance satis-
fying a given constraint. Given a specific constraint, a “repair” program is con-
structed, i.e., a program such that every application of the program to a graph
yields a graph satisfying the constraint. The constructed repair programs are sta-
ble (nothing happens, if the constraint is satisfied), maximally preserving (items
are preserved whenever possible), and terminating.

A model graph based on the Eclipse Modeling Framework (EMF) is a typed graph
satisfying some structural EMF-constraints. Application of the repair results to
the EMF-world yields model repair for EMF constraints.

3

4

Zusammenfassung

In der Meta-Modellierung ist ein allgemeines Problem, Instanzen eines Meta-Mo-
dells zu erzeugen, die einer gegebenen Bedingung entsprechen. Unser Ansatz zur
Modellgenerierung ist regelbasiert: Übersetze die Struktur des Meta-Modells in
eine Graphgrammatik, übersetze Bedingungen in der Object Constraint Language
in Graphbedingungen und integriere die Graphbedingungen in eine Grammatik,
was eine Graphgrammatik ergibt, um die Graphen, die die Bedingungen erfüllen,
direkt zu erzeugen. Gegeben sei eine Graphgrammatik und eine Graphbedin-
gung, konstruiere eine Graphgrammatik, die einige/alle Graphen der Grammatik
generiert, die die Bedingung erfüllen. Für bestimmte Graphgrammatiken und bes-
timmte Graphbedingungen generiert die Ergebnis-Graphgrammatik alle Graphen,
die die Bedingung erfüllen.

Wir untersuchen die Generierung von Instanzen mit Grammatik-basierter Repara-
tur: Generiere mit der Graph Grammatik eine Instanz, die in eine Instanz trans-
formiert werden soll, die eine gegebene Bedinung erfüllt. Gegeben sei eine spezielle
Bedingung, dann wird ein “Reparatur” Programm extrahiert, das heißt, ein Pro-
gramm, sodass jede Anwendung des Programms auf einen Graphen einen Graphen
ergibt, der die Bedingung erfüllt. Die Reparatur Programme sind stabil (nichts
passiert, wenn die Bedingung erfüllt ist), maximal bewahrend (Elemente werden
nach Möglichkeit bewahrt) und terminierend.

Ein auf dem Eclipse Modeling Framework (EMF) basierender Modellgraph ist ein
getypter Graph, der einige strukturelle EMF Bedingungen erfüllt. Die Anwendung
der Ergebnisse zur Reparatur auf die EMF-Welt ergibt Modell Reparatur für EMF
Bedingungen.

5

6

Acknowledgements

My work was mainly supported by the German Research Foundation (DFG),
Grants HA 2936/4-2 and TA 2941/3-2 (Meta-Modeling and Graph Grammars:
Generating Development Environments for Modeling Languages) directed by my
supervisors Annegret Habel and Gabriele Taentzer.

Writing this thesis was a challenge I could not have mastered without the help
of many people, who provided me guidance and support. First and foremost, I
thank my supervisor Annegret Habel for her continuous support and guidance
during my time as a Ph.D. student. Her knowledge, advice and support advanced
my research skills significantly. Another thank you goes to my second supervisor
Gabriele Taentzer for a lot of discussions, a lot of comments to my thesis and
helpful feedback. I also want to thank the members of the PhD committee Ernst-
Rüdiger Olderog and Maike Schwammberger for many interesting questions on my
topic.

My gratitude also goes to the people, who provided me helpful comments and
advice. First, I want to thank all my colleagues from the theoretical computer
science group, for the pleasant working atmosphere. In particular, Marius Hu-
batschek, who worked with me on the implementation of the repair concepts and
for discussing a lot on the implementation, Okan Oekzan, Berthold Hofmann (Uni
Bremen), and the colleagues Jens Kosiol and Nebras Nassar (Uni Marburg) for
their helpful comments to my papers and the PhD thesis. Finally, I want to thank
Sarah Blum and Okan Oekzan for proofreading various parts of my thesis.

7

8

Contents

1 Introduction 11

2 Preliminaries 19

2.1 Typed graphs . 19

2.2 Typed graph conditions . 24

2.3 Typed graph programs . 28

2.4 Basic transformations . 34

3 Graph generation 41

3.1 Existential weakest liberal preconditions 43

3.2 Filtering through constraints . 46

3.3 Related work . 63

3.4 Conclusion . 66

4 Graph repair 69

4.1 Repair programs . 71

4.2 Basic conditions . 74

4.3 Proper conditions . 78

4.4 Conjunctive and disjunctive conditions 84

4.5 Legit conditions . 95

4.6 Properties of the repair programs 98

4.7 Grammar-based repair . 109

4.8 Related work . 119

4.9 Conclusion . 124

9

5 Application to meta-modeling 127

5.1 Meta-modeling . 128

5.2 EMF-model graphs . 129

5.3 EMF-model repair . 133

5.4 Related work . 136

5.5 Conclusion . 142

6 An implementation in ENFORCE+ 145

6.1 ENFORCE+ . 146

6.2 Design decisions . 146

6.3 Graph repair in ENFORCE+ . 149

6.4 Related systems . 159

6.5 Conclusion . 162

7 Conclusion 163

7.1 Summary . 163

7.2 Further work . 164

A Categories 165

Bibliography 171

List of symbols 182

Index 185

10

Chapter 1

Introduction

Graphs and graph transformation are an intuitive and mathematical precise for-
malism in computer science. Graphs are a natural way of describing complex situ-
ations on an intuitive level. The states of a system are modelled as graphs. More-
over, the transformations of graphs into other graphs bring dynamic behaviour
into such a system. This yields a wide area of applications of graph transforma-
tion systems in computer science, such as graph parsing (Drewes et al. [DHM20]),
database design (Bergmann et al. [BHH12], Varró et al. [VFV06]), in the de-
sign of concurrent and distributed systems, and software engineering (Heckel and
Taentzer [HT20]).

Model-driven engineering (MDE) (Sendall et al. [SK03]) is a development process
where the primary artefacts are models. A model is an abstract representation
of a system. MDE has gained increased popularity in various engineering disci-
plines and is used in many industrially relevant engineering disciplines, such as
automotive and aerospace domains as well as software development to capture the
structure and behaviour of complex systems.

An essential topic of model-driven engineering is the generation of consistent mod-
els of meta-models. A meta-model is a model specifying the abstract syntax of
modeling languages. The consistency of a model may be specified through a set
of constraints, which specify, for example, structural properties on the model.
A model is said to be consistent if it satisfies the given set of constraints. Since
software systems become larger and more complex and models are modified by
different stakeholders, it is very likely that inconsistencies arise during the devel-
opment process.

Structural properties of models have been commonly specified with textual logical
formulas. Another alternative is an approach where properties are specified as
graph constraints [HW95, HHT96, HP09]. Graph constraints may be seen as a
tree of graph mappings equipped with logical quantifiers. This has the advantage

11

that they provide an intuitive and mathematical precise formalism to describe the
properties. Many correctness problems for conditions have already been solved, the
construction of weakest liberal preconditions, to ensure, that a system is correct
under any application of a program. Additionally, it comes with constructions,
which preserve or guarantee the correctness of a system under the application of
rules changing the system states.

In software engineering, a common approach is to use graphs to represent the
structure and behaviour of a system, for example, software architectures, class
and object structures, and control flow (Heckel and Taentzer [HT20]). This has
the advantage that the mathematical precision of graphs can be used for the formal
verification, and the intuitive level provided by graphs is excellent for the visual
modeling.

In Taentzer [Tae12], an approach for the translation of the structure of the meta-
model into a rule-based system, a so-called typed graph grammar, has been pre-
sented. The meta-model is a type graph and the models, i.e., the instances of
a meta-model, are represented by graphs that are typed over the type graph. Fur-
thermore, in Radke et al. [RAB+18], an approach for the translation of constraints
in the Object Constraint Language (OCL) into graph constraints has been pre-
sented. The graph constraints are typed over the meta-model and it is shown
that a model satisfies an “Essential” OCL invariant iff its typed graph satisfies the
corresponding graph constraint.

In this thesis, we investigate how the rule-based approach can be used for the gen-
eration of instances conforming to the meta-model and the repair of inconsistent
instances into instances conforming to the meta-model. In more detail, the first
step is to translate the structure and the typing of the meta-model into a typed
graph grammar as described in Taentzer [Tae12]. Additionally, we translate OCL
constraints from the meta-model into graph constraints as described in Radke et
al [RAB+18].

Following this rule-based approach, we investigate two main ideas:

(1) Generation. Integrate a graph constraint into a graph grammar yielding a
graph grammar generating the graphs satisfying the graph constraints. The
resulting graph grammar, equipped with application conditions, is able to gen-
erate instances conforming to the meta-model directly.

(2) Repair & grammar-based repair. With the original graph grammar, gen-
erate instances, which may not satisfy the constraints at some time (drawn in
red in Figure 1.1). From the graph constraints, construct a graph program di-
rectly from the graph constraint and apply the graph program to the instance.
Moreover, if the resulting instance shall belong to the language of the grammar,
we use the rules of the graph grammar, construct a grammar-based graph pro-

12

Structure
& typing

OCL
constraints

Graph
grammar

ac

Graph
grammar

Graph
constraints

Instances

Instances

Graph
program

integratetranslate

[Tae12]

translate

[RAB+18]

induce

generate

generate

repa
ir

apply
input

construct

M
et

a-
m

o
d

el

conform to

Figure 1.1: Instance generation and repair

gram, and apply it to the instance. This way, repair the instances to instances
conforming to the meta-model.

We illustrate the problem with Petri nets as the modeling language. We consider
a (typed) graph grammar for generating Petri nets and graph constraints for re-
stricting Petri nets. The example is a simplification of the one in Radke et al.
[RAB+18] for typed attributed graphs.

Example 1. Consider, as an example, a meta-model for modeling a Petri net.
The Petri-net grammar is given below.

Start graph S = PN

Insert a new place: AddPl = PN ⇒ PN Pl
place

Insert a new transition: AddTra = PN ⇒ PN Trtrans

Insert a token in a given place: AddTok = Pl ⇒ Pl Tktok

Connect a transition to a place: AddTP = Tr Pl ⇒ TPArc PlTr
tgt
in

out
src

Connect a place to a transition: AddPT = Pl Tr ⇒ PTArcPl Tr
tgt
in

src
out

Additionally, the user wants to have a Petri net (PN)

1. consisting of at least one transition (Tr),

2. and, for each place, there exists a token (Tk),

The constraints of the user have been specified as a set of graph constraints,
displayed on the left-hand side of each screen in Figure 1.2.

Generation. The instance, presented to the user on the right-hand side of the
left screen, consists of only a Petri-net node. The instance does not satisfy the

13

first constraint because a transition is missing. The second constraint is satisfied
because there is not an occurrence of a place. The approach to instance generation
adds the missing transition directly.

The right screen of Figure 1.2 shows a result: the Petri net and the transition.
Consequently, all constraints are satisfied.

X
user constraints

∃ (Tr)

∀(Pl ,∃ Pl Tk
tok)

instances

×
√

PN

X
user constraints

∃ (Tr)

∀(Pl ,∃ Pl Tk
tok)

instances

√

√

PN

Tr

trans

Figure 1.2: Instance generation

Repair. Violations of the constraints may arise. Consider, as an example, the
illustration in Figure 1.3. By the rules of the graph grammar, a new violation
of the second constraint is introduced: there is an occurrence of a place, but the
place does not have a token.

X
user constraints

∃ (Tr)

∀(Pl ,∃ Pl Tk
tok)

instances

√

×

PN

Tr Pl

trans place

X
user constraints

∃ (Tr)

∀(Pl ,∃ Pl Tk
tok)

instances

√

√

PN

Tr Pl

Tk

trans place

tok

Figure 1.3: Instance repair

This violation can be resolved by adding a new token. The violation of the second
constraint has been successfully resolved, the instance satisfies the first constraint.

14

This repair process has preserved the first constraint, i.e., the transition is still exis-
tent. Consequently, this has yielded an instance, which satisfies all the constraints.
The result is on the right screen in Figure 1.3.

State of the art. The concepts of graph transformation and graph grammars
have been studied since the early 1970s (Ehrig et al. [EPS73]). The main idea
was to generalize well-known rewriting techniques from strings to graphs. This
has yielded to the two main concepts: the double-pushout approach (Ehrig et
al. [EEPT06b]) and the single-pushout approach (Löwe [Löw93]). This has been
generalized to graph programs, which are minimal and computationally complete
(Habel and Plump [HP01]). They have been modified to allow more control mech-
anisms such as the handing over transformation steps (Pennemann [Pen09]). To
describe consistency properties on graphs, graph conditions have been introduced.
They are expressively equivalent to first-order constraints on graphs. Addition-
ally, the basic transformations, which guarantee the correctness of rule applications
have been presented (Habel and Pennemann [HP09]).

Contributions

In this thesis, we develop a new theory on graph generation and graph repair (see
Figure 1.4). To do so, we extend a theory on graph conditions and a theory on
graph programs, to a theory on graph generation and graph repair. We show that,
for arbitrary graph grammars and arbitrary constraints, there is an integration
of graph constraints into graph grammars using a backward construction. For
specific graph grammars and specific constraints, the backward construction ter-
minates. For specific graph constraints, we construct a graph program, such that
the application to any (typed) graph yields a (typed) graph satisfying the (typed)
graph constraint. Additionally, we prove some properties of the programs, needed
for the application to meta-modeling. A model graph based on the Eclipse Model-
ing Framework (EMF), short EMF-model graph, is a typed graph satisfying some
structural EMF-constraints. Application of the results to the EMF-world yields
model-repair programs for EMFk constraints, a first-order variant of EMF con-
straints; application to any typed graph yields an EMFk model graph. Moreover,
there is a model-repair for EMF constraints, i.e., for each input graph, there is a
program such that the application to any typed graph yields a graph satisfying
the EMF constraints. Figure 1.4 summarizes the contributions of this thesis.

15

Theory on graph conditions

expressiveness [Ren04, HP09]
≡ FO graph formulas
basic transformations [HP09]
(Shift,Left,pres, gua,wlp, . . .)

Theory on graph programs

computational completeness [HP01]
correctness [Pen09, PP14]
handing over information

Theory on graph generation and graph repair

Filter Theorem [HST18]
closure results

termination for

specific grammars and constraints

Repair Theorems
[HS18, SH19, San20]

stable
max preserving

terminating

graph generation graph repair

Meta-modeling

EMF models [BET12]

Theory on Graph Transformation [Roz97, EEKR99, EKMR99]

double-pushout approach [EEPT06a]
singe-pushout approach [Löw93]

Application

EMF-model repair [San20]
stable

max preserving

terminating

Figure 1.4: Overview of this thesis

Thesis structure

In Chapter 2, we recall the notions of typed graphs (with containment), graph
conditions, rules, grammars and transformations, graph programs with interface,
and the basic transformations. In Chapter 3, we investigate the integration of
graph constraints into graph grammar and consider the filter problem: Given a
graph grammar and a graph constraint, does there exist a grammar that gener-
ates all graphs of the original graph language satisfying the constraint. We solve
the filter problem for specific graph grammars and specific graph constraints. In
Chapter 4, we consider the problem of graph repair: Given a specific graph con-
straint, does there exist a graph program that “repairs” each input graph, i.e., such
that the application to any graph yields a graph satisfying the graph constraint.
Additionally, we consider properties of the programs. In Chapter 5, we apply the
results on graph repair to the EMF-world and yield model repair programs for
EMFk constraints, a first-order variant of EMF constraints; application to any
typed graph yields an EMFk model graph. From these results, we derive results
for EMF model repair. In Chapter 6, we describe an implementation of the graph
repair approach and its usage in ENFORCE+. In Chapter 7, we summarize the
results in this thesis and mention some further work. In Appendix A, we provide
some details on category theory.

16

List of publications

In the following, we list the papers which were published during the doctoral
project by the author (in chronological order).

� Annegret Habel, Christian Sandmann, and Tilman Teusch. Integration of
graph constraints into graph grammars. In Graph Transformation, Specifica-
tions, and Nets, volume 10800 of LNCS, pages 19 – 36, 2018. =⇒ Chapter 3
is based on this paper.

� Annegret Habel and Christian Sandmann. Graph repair by graph programs.
In Graph Computation Models (GCM 2018), volume 11176 of LNCS, pages
431 – 446, 2018. =⇒ Chapter 4 is based on this paper.

� Christian Sandmann and Annegret Habel. Rule-based graph repair. In
Graph Computation Models (GCM 2019), volume 309 of EPTCS, pages
87 – 104, 2019. =⇒ Chapter 4 and Section 4.7 is based on this paper.

� Christian Sandmann. Graph repair and its application to meta-modeling.
In Graph Computation Models (GCM 2020), volume 330 of EPTCS, pages
13 – 34, Open Publishing Association, 2020. =⇒ Chapter 5 and Section 4.4
is based on this paper.

� Marius Hubatschek and Christian Sandmann. Implementing graph repair in
ENFORCE+. Technical Report, University of Oldenburg, https://uol.de/
f/2/dept/informatik/ag/fs/fs-pub/Repair2020_11_25.pdf, 2020.
=⇒ Chapter 6 is based on this paper.

17

https://uol.de/f/2/dept/informatik/ag/fs/fs-pub/Repair2020_11_25.pdf
https://uol.de/f/2/dept/informatik/ag/fs/fs-pub/Repair2020_11_25.pdf

18

Chapter 2

Preliminaries

In this chapter, we recall the notions of typed graphs (with containment), graph
conditions, rules and transformations, graph programs, and basic transformations
[BET12, HP09, Pen09]. Our concepts are based on Biermann et al. [BET12].
They introduce type graphs with inheritance (and containment).1 For simplifying
the concepts, we ignore the inheritance. It would be interesting to extend our
theory to typed graphs with containment and inheritance (see further topics).

We assume that the reader is familiar with the basic notions of graph transfor-
mation and the basic concepts of category theory. For a detailed introduction, we
refer the reader to [Ehr79, AM75, AHS90].

Decision (inheritance). In Biermann et al. [BET12], type graphs with inher-
itance (and containment) are introduced. For our application, we only introduce
typed graphs (with containment). The reason for this, is that our application to
meta-modeling (see Chapter 5) considers the EMF constraints, which are formu-
lated on the set of containment edges.

2.1 Typed graphs

In the following, we introduce so-called typed graphs based on the paper by Bier-
mann et al. [BET12]. For our application to meta-modeling in mind, we only use
typed graphs with containment. Thus, for simplicity, we restrict to typed graphs
with containment.

1In a preliminary version of [San20], we took typed graphs with containment and inheritance
as basis. By a comment of a referee, we simplified our considerations to typed graphs (with
containment).

19

A directed graph consists of a set of nodes and a set of edges where each edge is
equipped with a source and a target node.

Definition 1 (graphs & morphisms). A (directed) graph G = (VG, EG, sG, tG)
consists of a set VG of nodes and a set EG of edges , as well as source and target
functions sG, tG : EG → VG. Given graphsG andH, a (graph) morphism g : G→ H
consists of total functions gV : VG → VH and gE : EG → EH that preserve sources
and targets, that is, gV ◦ sG = sH ◦ gE and gV ◦ tG = tH ◦ gE. The morphism g is
injective (surjective) if gV and gE are injective (surjective), and an isomorphism if
it is injective and surjective. In the latter case, G and H are isomorphic, denoted
by G ∼= H. A partial morphism G ⇀ H is an inclusion S ↪→ H such that S ⊆ G.

Convention. In drawing graphs, nodes are drawn as circles and edges as arrows.
Arbitrary morphisms are drawn by usual arrows→, injective ones by ↪→. An edge
is said to be real if it is not a loop.

A type graph (with containment) is a graph with a distinguished set of containment
edges, and a relation of opposite edges.

Definition 2 (Type graph). A type graph TG = (T,C,O) consists of a graph T ,
a set C ⊆ ET of containment edges , and a relation O ⊆ ET × ET of opposite
edges . The relation O is required to be anti-reflexive, symmetric, functional, i.e.,
∀(e1, e2), (e1, e3) ∈ O, e2 = e3, and opposite direction, i.e., ∀(e1, e2) ∈ O, s(e1) =
t(e2) and s(e2) = t(e1).

Convention. In drawing of type graphs, nodes are drawn as black circles and
the name or “type” of the nodes is drawn inside. Edges are drawn as arrows and
the name or “type” of the edge is drawn beside the arrow. The drawing of a type
graph is obtained from the underlying graph by marking every containment edge
() with a black diamond at the source, and adding, for every pair (e1, e2) of
opposite edges, a bidirectional edge () between the source and the target of
the first edge with two edge type names, one at each end.

Example 2. A type graph for Petri nets is given in Figure 2.1.

The type graph consists of the (“type”) nodes PetriNet (PN), Place (Pl), Transi-
tion (Tr), Token (Tk), Place-to-Transition Arcs (PTArc), and Transition-to-Place
Arcs (TPArc), written inside the nodes, and the (“type”) edges places, trans, tok,
in, out, src, tgt, tparcs and ptarcs. The containment edges from the PetriNet to
the Place (Transition, PTArc, and TPArc)-node are marked in the graph by a
black diamond � at the source of the edge. The opposite edge relation relates
the edges from the PTArc (TPArc)-node to the Place (Transition)-node of type
src and the Place (Transition)-node to the PTArc (TPArc)-node of type out.

20

PetriNet

PTArc
TPArc Place

Transition

Token

trans places

tok

out
src

in
tgtsrc

out

tgt
in

ptarcs
tparcs

Figure 2.1: Type graph for Petri nets, adapted from [Wac07]

Assumption 1. In the following, let TG = (T,C,O) be a fixed type graph.

A typed graph over a type graph is a graph together with a typing morphism. The
typing itself is done by a graph morphism between the graph and the type graph.

Definition 3 (typed graphs). Given a type graph TG, a typed graph (G, type)
is a graph G together with a typing morphism type : G→ T . Given typed graphs
(G, typeG), (H, typeH), a (typed) (graph) morphism g : G → H is a (graph) mor-
phism such that typeH,V ◦ gV = typeG,V and typeH,E ◦ gE = typeG,E. For a node v
(an edge e) in G, typeV (v) (typeE(e)) is the node (edge) type.

G

TG

H
g

typeG typeH
=

Convention. Given a typed graph (G, type), we draw the graph G and put in
type information: For a node v in G, we depict the node type typeV (v) inside
the node; for an edge e in G, we depict the edge type typeE(e) near the target
node of the edge e. Each edge with edge type containment edge is marked as a
containment edge. For every pair of nodes whose type nodes are connected by an
opposite edge, an opposite edge is added. For each pair (v1, v2) of nodes in G for

21

which typeV (v1), typeV (v2) are connected by an opposite edge, a bidirectional edge
between the nodes with two edge type names, one at each end, is added. In the
remainder of the thesis, a node (edge) of type X is called X-node (edge).

Example 3. The Petri net consists of two places, and one
transition. The left place has exactly one token, the right one has none. One place
is connected to the transition via a PTArc, where the place is the source and the
transition is the target, and the other place is connected to the transition via a
TPArc, where the transition is the source and the place is the target.

The graph G in Figure 2.2 together with the typing morphism type is a typed
graph, typed over the type graph from Figure 2.1.

PetriNet

TPArc
PTArc Place

Place

Token
Token

Transition

places places

tok

trans

ptarcs
tparcs

in
tgt

src
out

in
tgt

out
src

G

Figure 2.2: Typed graph for Petri nets

The Petri net is related to the typed graph in Figure 2.2 as follows: The typed
nodes represent the elements of the Petri net, i.e., a node representing the Petri
net, two nodes representing the places, a node representing the Token, and a node
representing the Transition. Furthermore, there are nodes representing the edges
from the left place to the transition (PTArc) and from the transition to the place
(TPArc). The PTArc-node is related with the Place-node by a bidirectional edge
typed by src (for source) and out (for outgoing), and with the Transition-node by
a bidirectional edge typed by tgt (for target) and in (for incoming). The TPArc is
related similar. The Token-node is related with the left Place-ode by a tok-typed
edge. Finally, the Place-, Transtion-, PTArc-, and TPArc-node are related with
the PetriNet-node by containment edges typed by places, trans, ptarc, and tparc.

22

Standard graph transformation systems have been studied extensively and applied
to several areas of computer science [Roz97, EEKR99, EKMR99]. To cope with the
different varieties of graphical structures, they were, first, generalized to high-level
replacement (HLR) systems [EHKP91] and then, based on the notion of adhesive
categories [LS05], to weak adhesive HLR systems in [EEHP06, EEPT06b] and
recently to M-adhesive systems [EGH10], i.e., an M-adhesive category and a set
of rules over the category. There is a proper hierarchy of categories: graph ⇒
high-level ⇒ weak adh(esive) HLR ⇒M-adhesive; categories that show that the
implications are proper are given in [EEPT06b, EGH10].

Given a type graph TG, all graphs are typed over TG and all morphisms are injec-
tive. Typed graphs over TG and injective morphisms form a category GraphsTG.
IfM denotes the class of injective morphisms and E ′ the class of pairs of jointly sur-
jective morphisms (Ehrig et al. [EEPT06a]), then the category GraphsTG turns
out to be M-adhesive and has a E ′-M pair factorization. As a consequence, we
are sure that the category has pushouts (used for the definition of transformations)
and there exists a Shift construction (see Lemma 3). The definitions ofM-adhesive
categories and E ′-M pair factorization can be found in the Appendix A.

The following lemma is the basis for the concepts in the preliminaries.

Lemma 1. GraphsTG is M-adhesive and has E ′-M pair factorization.

Sketch of proof. The proof of M-adhesiveness is done by constructing a slice
category to the category of typed graphs. By [EEPT06a, Remark 5.26], we show
that the category has binary coproducts and E ′0-M0 pair factorization. From this
it follows, that it has E ′-M pair factorization. For the full proof, see the proof in
the Appendix A.

Bibliographic Notes. There are many graph-like structures in the literature.
In Ehrig et al. [EEPT06a], typed graphs (Definition 2.6) over a type graph, at-
tributed graphs (Definition 8.4) over a data signature, and typed attributed graphs
(Definition 8.7) over an attributed type graph are introduced. It is shown that
these graphs, together with the corresponding morphisms form categories. In
[EEPT06a, Chapter 13] and de Lara et al. [dLBE+07], the concepts of typed
attributed graphs with node type inheritance are introduced. Typed attributed
graphs with node type inheritances do not form a category. It is shown that they
are fully compatible with the existing concept of typed attributed graph trans-
formation. In Golas et al. [GLEO12], a new category of typed attributed graphs
with inheritance is introduced. In Löwe et al. [LKSS15], the inheritance concept is
introduced for typed graphs, and it is shown that the considered graphs form a cat-
egory. In Biermann et al. [BET12], typed graphs with inheritance and containment

23

are introduced. It is shown that a direct transformation step applied at an EMF
model graph yields an EMF model graph again. In Köhler et al. [KLT07], graphs
with containment edges, and homomorphisms between them are introduced. It is
shown that the pushout result in the category of graphs forms a valid pushout in
the category of graphs with containment, if and only if the so-called containment
condition holds. The containment condition intuitively specifies under which con-
ditions a pushout result violates the EMF constraints “At most one container” and
“No containment cycle”. For an overview of the different graph-like structures, see
Figure 2.3.

typed graphs
Ehrig et al. [EEPT06a]

with inheritance
Ehrig et al. [EEPT06a]

de Lara et al. [dLBE+07]

with containment
Köhler et al. [KLT07]

this thesis

with
inheritance & containment
Biermann et al. [BET12]

Figure 2.3: Overview of different graph-like structures

2.2 Typed graph conditions

In this section, we introduce the concept of typed graph conditions based on the
papers by Habel and Pennemann [HP09, Pen09] and present a transformation into
a (conjunctive) normal form. For our application, we introduce the concept of
conditions with alternating quantifiers. Additionally, we show that every so-called
linear condition can be effectively transformed into a condition with alternating
quantifiers.

Typed graph conditions allow the formulation of properties for graphs. In partic-
ular, a condition can be formulated that a graph must contain (or not contain) a
certain subgraph. They are a graphical formalism to specify sets of typed graphs
or more formally typed morphisms. Typed graph conditions, also called typed
nested graph conditions, are nested constructs that can be represented as trees of
morphisms equipped with quantifiers and Boolean connectives. Graph conditions
and first-order graph formulas are expressively equivalent.

24

Definition 4 (typed graph conditions). Given a type graph TG, a (typed)
(graph) condition2 over a graph A is of the form (a) true or ∃(a, c) where a : A ↪→ C
is a real inclusion morphism, i.e., A ⊂ C, and c is a condition over C. (b) For a
condition c over A, ¬c is a condition over A. (c) For conditions ci (i ∈ I for some
finite index set I) over A, ∧i∈Ici is a condition over A. Conditions built by (a) and
(b) are called linear , conditions built by (c) are conjunctive. Conditions over the
empty graph ∅ are called constraints . In the context of rules, conditions are called
application conditions . Any morphism p : A ↪→ G satisfies true. A morphism p
satisfies ∃ (a, c) with a : A ↪→ C if there exists an morphism q : C ↪→ G such that
q ◦ a = p and q satisfies c.

A

G

C,a

p q
=

c

|=
)∃ (

TG

A morphism p satisfies ¬c if p does not satisfy c, and p satisfies ∧i∈Ici if p satisfies
each ci (i ∈ I). We write p |= c if p satisfies the condition c (over A). A graph G
satisfies a constraint c, G |= c, if the morphism p : ∅ ↪→ G satisfies c. A condition c
is satisfiable if there is a morphism p that satisfies c. A constraint c is satisfiable if
there is a graph G that satisfies c. JcK denotes the class of all graphs satisfying c.

Two conditions c and c′ over A are equivalent , denoted by c ≡ c′, if for all graphs G
and all morphisms p : A ↪→ G, p |= c iff p |= c′. A condition c implies a condition c′,
denoted by c ⇒ c′, if for all graphs and all morphisms p : A ↪→ G, p |= c implies
p |= c′.

Notation. Conditions may be written in a more compact form: ∃ a := ∃ (a, true),
false := ¬true, @ := ¬∃ , and ∀(a, c) := @ (a,¬c). For a morphism a : A ↪→C in
a condition, we just depict the codomain C, if the domain A can be unambiguously
inferred. The expression ∨i∈Ici is a disjunction and c ⇒ c′ an implication. Both
expressions are defined as usual.

Example 4. The expression

∀(∅ ↪→ Pl ,∃ Pl ↪→ Pl Tktok , true)

is a constraint, written in compact form as ∀(Pl ,∃ Pl Tktok) meaning that for
each node of type Pl, there exists a real containment edge of type tok to a node

2Whenever we have a word in brackets followed by a word, we allow to use the words in
combination or neglect the word in brackets, e.g., (graph) conditions stands for graph conditions
and, short, conditions.

25

of type Tk. All graphs are typed over the type graph given in Example 2, where
the typing morphism can be unambiguously inferred.

∀(Pl ,∃ Pl Tktok) For all Pl-nodes, there exists a Tk-node and a con-
tainment tok-edge.

@ (Tk PlPl toktok) There are no two incoming containment tok-edges to
a Tk-node.

@ (Pl Tk
tok

tok
) There does not exist two tok-edges between a Pl-node

and a Tk-node.

Fact 1 (Expressiveness [HP09]). Graph conditions, also called first-order
graph conditions, are expressively equivalent to first-order graph formulas in the
sense of Courcelle [Cou97].

Decision (first-order graph conditions). In the following, we consider first-
order graph conditions for which a number of basic transformations are known and
which have a full graphical representation. Besides first-order graph conditions
there are monadic second-order conditions (see the references in the bibliographic
notes at the end of this subsection). The monadic second-order conditions in
Poskitt and Plump [PP14] have a textual, but not a full graphical representation as
first-order conditions. One may restrict on monadic-second order conditions with
so-called path conditions. In Lambers and Orejas [OPNL18], they are represented
by special edges, i.e., in a graphical way. For path conditions, one would have to
extend the basic transformations to this type of conditions.

To simplify our reasoning, the repair program operates on a subset of conditions
in normal form, so-called conditions with alternating quantifiers.

Definition 5 (alternating quantifiers). A linear condition of the form

Q(a1,Q(a2,Q(a3, . . .))) with Q ∈ {∀, ∃ }, ∀ = ∃ ,∃ = ∀

ending with true or false is a condition with alternating quantifiers .

Example 5. The linear conditions ∀(Pl ,∃ (Pl Tktok , true)) and
∀(Pl ,∃ (Pl Tktok , false)) are conditions with alternating quantifiers.

26

Fact 2 (equivalences [Pen09]). There are the following equivalences:

∃ (x, true) ≡ ∃x ∀(x, true) ≡ true

∃ (x, false) ≡ false ∀(x, false) ≡ @x
∀(x,∃ (y, false)) ≡ ∀(x, false) ≡ @x ∃ (x, ∀(y, false)) ≡ ∃ (x, @ y)

By a conjunctive normal form result for conditions from Pennemann [Pen09], every
linear condition effectively3 can be transformed into an equivalent condition with
alternating quantifiers.

Lemma 2 (alternating quantifiers). For every linear condition, an equivalent
condition with alternating quantifiers can be constructed.

Proof. By Pennemann [Pen04], every condition d can be transformed into a
normal form, where the following conditions (1) - (3) are satisfied:

(1) Every negation symbol is innermost, i.e., every negated subcondition is of the
form ∃ a.

(2) Every Boolean subcondition is in disjunctive (conjunctive) normal form.

(3) There is no subcondition true or false in d, unless d is true or false.

The condition d is transformed into this normal form by:

(1) Moving ¬ inwards.

(2) Transformation in disjunctive normal form.

(3) Elimination of true and false.

The normal form is transformed into a normal form with alternating quantifiers:

(4) Apply the equivalence @ (a,¬c) ≡ ∀(a, c) strictly read from left to right as
long as possible.

By the equivalences for conditions, this yields an equivalent condition with alter-
nating quantifiers. 2

In Chapter 3, we also use conditions in disjunctive normal form. A condition is in
disjunctive normal form (DNF) if it is a Boolean formula over positive conditions
in disjunctive normal form. In general, for a condition in normal form, there need
not exist an equivalent condition in disjunctive normal form, e.g., the condition
∀(A,∨i∈I∃Ci) is in normal form, but there is no equivalent condition in disjunctive
normal form.

3In mathematics, an effective construction means that it is algorithmically computable.

27

Bibliographic notes. Many formalisms for expressing graph properties as con-
straints or application conditions have been proposed in the literature. In Orejas
and Lambers [OL10], symbolic graph conditions are introduced, which consist of
an E-graph (see Ehrig et al. [EEPT06a]) whose labels are variables, together
with a set of formulas that constraint the possible values of these variables. In
Poskitt and Plump [PP14], graph conditions are extended to a monadic-second
order logic on graphs. New quantifiers for node- and edge-set variables are intro-
duced and morphisms are equipped with constraints about set membership. In
Radke [Rad16], HR* conditions are introduced. They extend graph conditions in
the sense that variables may be replaced by a hyperedge replacement system (see
Habel [Hab92]). This provides a finite way to express structures of arbitrary size.
In Flick [Fli16], conditions are extended by recursive definitions. By Pennemann
[Pen09], there is a well-developed theory of graph conditions. This is the reason,
we have chosen this setting.

2.3 Typed graph programs

In this section, we recall typed rules, typed graph grammars, and typed graph
programs with interface based on the thesis of Pennemann [Pen09]. The advantage
of programs with interface is the explicit control over marking and unmarking of
graph elements.

Typed graphs and injective morphisms form an M-adhesive category (see Lem-
ma 1). Rules are specified by a pair of morphisms, interface morphisms, and
an application condition. By the interfaces, it becomes possible to hand over
information between the transformation steps. For restricting the applicability of
the rule, the rules are equipped with an application condition. An illustration
of a rule with interface, application condition, and a transformation is given in
Figure 2.4.

Definition 6 (typed rules & transformations). Given a category GraphsTG,
a (typed) rule % = 〈x, p, ac, y〉 (with interfaces X and Y) consists of a plain rule
p = 〈L ←↩ K ↪→ R〉 of morphisms l : K ↪→ L, r : K ↪→ R, with (typed) graphs
L,K, and R, called left-hand side, gluing graph, and right-hand side, respectively,
morphisms x : X ↪→ L, y : Y ↪→ R, the (left and right) interface morphisms, and
a left application condition ac over L. The partial morphism i : X ↪⇀ Y with
i = y−1 ◦ r ◦ l−1 ◦ x is the interface morphism of the rule %. If the domain of
an interface morphism is empty or the application condition ac is true, then the
component may not be written.

A direct transformation from G to H applying % at g : X ↪→ G consists of the
following steps:

28

(1) Mark a morphism g′ : L ↪→ G, called match, satisfying the dangling condition
(see below), such that g = g′ ◦ x and g′ |= ac.

(2) Apply the plain rule p at g′ yielding a morphism h′ : R ↪→ H.

(3) Unmark h : Y ↪→ H, i.e., define h = h′ ◦ y.

X L K R Y

DG H

TG

x l r y

l∗ r∗

g g′ h′
h

(1) (2)
= =i

ac

Figure 2.4: A direct transformation

The application of a plain rule is as in the double-pushout approach [EEPT06b]
in the category of typed graphs. A plain rule p = 〈L ←↩ K ↪→ R〉 is applicable
to a graph G w.r.t. a morphism g′ : L ↪→ G, iff g′ satisfies the dangling condition:
“No edge in G− g′(L) is incident to a node in g′(L−K).”

The semantics of the rule % is the set J%K of all triples 〈g, h, i〉 of a morphism
g : X ↪→ G, a morphism h : Y ↪→ H, and a partial interface morphism i : X ↪⇀ Y
with i = y−1 ◦ r ◦ l−1 ◦ x. Instead of 〈g, h, i〉 ∈ J%K, we write g ⇒%,i h or short
g ⇒% h, or G⇒%,g,h,i H or short G⇒% H if the domain of g is empty.

Given graphs G,H and a finite set R of rules, G derives H by R if G ∼= H
or there is a sequence of direct transformations G = G0 ⇒%1,g1,h1 G1 ⇒%2,h1,h2

. . . ⇒%n,hn−1,hn Gn
∼= H with %1, . . . , %n ∈ R. In this case, we write G ⇒∗R H

or just G ⇒∗ H. Two transformations t, t′ from G to H are equivalent , denoted
t ≡ t′, if for each extension (see Ehrig et al. [EEPT06a]) from G∗ to H∗ there is
an extension of t′ from G∗ to H∗.

Example 6. In Figure 2.5, a rule with interface Pl is shown, typed over the
type graph from Example 2. For the graph, the aim is to construct a Petri net
where each Pl-node has a tok-edge to a Tk-node. The rule consists of a plain
rule, an application condition and interface. The glueing graph consists of the
elements, which have to be preserved, i.e., the Pl-node and the Tk-node; the plain
rule adds a tok-edge between a Pl-node and Tk-node. The rule is equipped with
an application condition ac = @ (Pl Tk ↪→ Pl Tktok). By the application

29

condition, the rule is applicable if the marked Pl-node does not possess a tok-edge
to the Tk-node. The left interface restricts the application to a previously marked
place, i.e., the right place in the graph (drawn in sky-blue). By the left interface
morphism, the rule can only be applied at that position. The right interface
restricts the application of the next rule: By the morphism h, the next rule can
only be applied at the right place.

Pl Pl Tk Pl Tk Pl Tk
tok Pl

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places
PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

to
k

x l r y

l∗ r∗

g
g′ h′

h

i

Pl Tk
tok

@
interfaces

Figure 2.5: A direct transformation

Intuitively, the rule requires a Pl-node and Tk-node, and at a marked Pl-node,
i.e., the right-most Pl-node in the graph, the rule adds a containment tok-edge,
provided it does not exist one.

In the following, a plain rule 〈L←↩ K ↪→ R〉 sometimes is abbreviated by L⇒ R
where the nodes in L and R, related by the gluing graph K, are indexed with the
same index.4 In a similar way, the match of a rule can be marked by indexing
corresponding nodes or using, e.g., the blue color.

Decision (DPO / SPO). In the following, we use the single-pushout (SPO)
approach by Löwe [Löw93]. Since the SPO approach is not so well-known, we
use the double-pushout (DPO) approach plus a so-called dangling-edges operator.
Given a rule equipped with the dangling-edges operator and a match, first, the
dangling edges are deleted such that the dangling condition becomes satisfied, and,
afterwards, the rule is applied as in the DPO approach.

4Without loss of generality, the gluing graph K is discrete (otherwise, the edges in K are
deleted). For rules with discrete gluing graph K, the long version 〈L ←↩ K ↪→ R〉 can be
uniquely inferred from the short version).

30

For node-decreasing rules with plain rule 〈L ←↩ K ↪→ R〉 satisfying |VL| > |VK |,
the dangling condition may not be satisfied. In this case, %′ means that the rule
shall be applied in the single-pushout (SPO)-style of replacement [Löw93], i.e.,
first to remove the dangling edges, and, afterwards application of the rule in the
DPO-style. Note that this style of replacement also can be described by a DPO
program that fixes a match for the rule, deletes the dangling edges, and afterwards
applies the rule at the match. The proceeding can be extended to sets of rules:
For a rule set S, S ′ = {%′ | % ∈ S}.

Example 7. For the rule p = 〈 Pl Pl ⇒ Pl 〉, p′ denotes that the rule shall be
applied in the single-pushout style of replacement, i.e., first, mark an occurrence
of the Pl-node and delete the dangling edges, afterwards, apply the rule as in the
double-pushout approach.

Decision (Interface & markings). Rules with interfaces enable the control
over marking and unmarking (see, e.g., Poskitt and Plump [PP13]) of elements
in a typed graph and are capable of handling the markings over transformation
steps. The left interface restricts the application of the rule to a previously marked
context: Given a morphism g : X ↪→ G, the application is restricted to those
morphisms g′ : L ↪→ G that fit to g, i.e., g = g′ ◦x. The right interface restricts the
application of the next rule: By the morphism h : Y ↪→ H, the next rule can only
be applied at Y . We use the interface (or marking) to restrict the applicability of a
program to a previously marked morphism. Instead of rules with interfaces in the
sense of [Pen09], we could use markings as, e.g., in [PP13]. Rules with interfaces
may be seen as rules with markings: Whenever there is a marking of a graph A
in a graph G, i.e., a morphism from A to G, choose an extended marking of C
in G, i.e., a morphism from C to G, apply the marked program at that marked
position, and, finally, unmark the occurrence. Rules with interfaces may be seen as
a formal morphism-based version of the idea of markings combined with rules. We
have decided to use the interfaces instead of markings because we have multiple
markings and the description of markings by morphisms makes transparent what
happens.

Rules may be collected to transformation systems and grammars.

Definition 7 (graph grammars). Let TG = (T,C,O) be a type graph. A
graph grammar GG = (N ,R, S) over TG consists of a finite set N ⊆ TV ∪ TE of
nonterminal symbols, a finite set R of rules over TG, and a typed start graph S
over TG. In the case of N = ∅, we write GG = (R, S) instead of GG = (∅,R, S).

31

The graph language generated by GG consists of all typed graphs without non-
terminal types derivable from S by R: L(GG) = {G ∈ G | S ⇒∗R G} where G
denotes the class of all typed graphs without nonterminal symbols.

Typed graph programs are made of sets of typed rules with interface, non-determin-
istic choice {P,Q}, sequential composition 〈P ;Q〉, “as long as possible” itera-
tion P↓, and the try statement try P . The definition follows mainly the existing
approach of Pennemann [Pen09], and the try statement is adapted from Poskitt
and Plump [PP13].

Definition 8 (typed graph programs). The set of (typed) (graph) programs
with interface X , Prog(X), is defined inductively:

(1) Every typed rule % with interface X (and Y) is in Prog(X).
(2) If P,Q ∈ Prog(X), then {P,Q} is in Prog(X).
(3) If P ∈ Prog(X) and Q ∈ Prog(Y), then 〈P ;Q〉 ∈ Prog(X).
(4) If P,Q ∈ Prog(X), then try P and P ↓ are in Prog(X).

The statement Skip denotes the identity rule idX = 〈X ←↩ X ↪→ X〉. Programs of
the form 〈〈P1;P2〉;P3〉 and 〈P1; 〈P2;P3〉〉 are considered equal and can be written
as 〈P1;P2;P3〉.

Programs with interface transform morphisms. The semantics of a program P
consists of triples 〈g, h, i〉 where the first two morphisms g and h represent the
input and result, respectively, while the last partial morphism is an “interface
relation” from the domain of the input to the domain of the result morphism. The
input interface represents a number of elements that are assumed to be present in
the input graph at the beginning of a computation.

Definition 9 (semantics). The semantics of a program P with interface X,
denoted by JP K, is a set of triples such that, for all 〈g, h, i〉 ∈ JP K, i ∈ M, the
domain of g and i is X and the domain of h is equal to the codomain of i:

(1) J%K as in Definition 6,
(2) J{P,Q}K = JP K ∪ JQK,
(3) J〈P ;Q〉K = {〈g1, h2, i2◦i1〉 | 〈g1, h1, i1〉∈JP K, 〈g2, h2, i2〉∈JQK, h1 = g2},
(4) Jtry P K = {〈g, h, i〉 | 〈g, h, i〉 ∈ JP K} ∪ {〈g, g, id〉 | @h.〈g, h, i〉 ∈ JP K},

JP ↓K = {〈g, h, id〉 ∈ P ∗ | @h′.〈h, h′, id〉 ∈ JFix(P)K},

where P ∗ =
⋃∞

j=0 P
j with P 0 = Skip, P j = 〈Fix(P);P j−1〉 for j > 0 and

JFix(P)K = {〈g, h ◦ i, id〉 | 〈g, h, i〉 ∈ JP K, i ∈ M}. Two programs P, P ′ are
equivalent , denoted P ≡ P ′, if JP K = JP ′K. Instead of 〈g, h, i〉 ∈ JP K, we write
g ⇒P,i h or short g ⇒P h and G ⇒P,g,h,i H or short G ⇒P H if the domain of g
is empty. A program is terminating, if the relation ⇒ is terminating.

32

The semantics of the sequential composition implies that a program with inter-
face X may only be iterated if the output interface of the previous computation
equals the (input) interface X. The iteration as long as possible depends on the
reflexive, transitive closure of a program. The statement Fix is a generic way of
making programs iteratable that do not delete or unmark elements of their inter-
face. It ensures that every possible computation ends with the output interface X
by finally unmarking all elements additionally marked during a run of the pro-
gram. The semantics of Fix corresponds to a specific Unmark statement at the end
of each program branch. The try statement try P depends on the “successful”
application of the program P . If the application of P yields a result, this result
is kept. Otherwise, if the program does not yield a result, the changes of P are
discarded.

Example 8. The program try %, where the rule

% = 〈 x, Pl Tk ⇒ Pl Tktok ,@ Pl Tktok , y 〉

is the rule from Example 6, is a program with interface. It adds a tok-edge,
provided that there is no containment tok-edge from the Pl-node to the Tk-node.
If the rule is not applicable, the input morphism is returned.

The program

P = 〈 Pl Tk
tok

tok
⇒ Pl Tktok 〉↓

deletes one of the tok-edges between a Pl-node and a Tk-node as long as possible.

Bibliographic notes. In Habel and Plump [HP01], a programming language
based on the nondeterministic application of a set of graph transformation rules,
sequential composition, and iteration is introduced. It is shown that this language
is minimal in the sense that neither the sequential composition nor the iteration can
be omitted to compute every computable partial function on labelled graphs. In
Pennemann [Pen09], programs with interface are introduced. The programs with
interface are based on four constructs, that is, the selection, deletion, addition,
and unselection of elements. The main extension is the explicit control over the
selection and unselection of graph elements and the capability of handing over
this information between computation steps. It is shown that each program in
the sense of Habel and Plump can be seen as a program with the empty graph
as interface, i.e., 〈G,H〉 ∈ JP KHP01 if and only if 〈iG, iH , idI〉 ∈ JP K, where iG, iH
denote the morphism from the empty graph to the graph G,H, respectively, I is
the empty interface, and JP KHP01 is the input and output semantics, defined as in
Habel and Plump [HP01]. In Poskitt and Plump [PP14], the language of Habel
and Plump has been extended, most significantly with conditional branching, i.e.,

33

the if-then-else and try-then-else statements. The semantics of try in Poskitt and
Plump [PP13] and this thesis coincide. In this thesis, the programs with interface
of Pennemann [Pen09] are extended by the try statement as in Poskitt and Plump
[PP13].

In [EEdL+05, Tae12], layered rule sets are introduced that possess a rule layer
function rl : R → N. The generated language consists of all graphs that can be
obtained from a given start graph by applying the rules in the first layer as first,
the rules in the second layer as second, and so on. Since the operator “arbitrary
often” can be simulated with the help of the operator “as long as possible”, a
layered rule set may be seen as a special graph program in the sense of Habel and
Plump [HP01].

computational

complete programs

Habel and Plump [HP01]

programs with interface

Pennemann [Pen09]

conditional branching

Poskitt and Plump [PP13]

programs with interface

with try statement

this thesis

Figure 2.6: Overview of graph programs

2.4 Basic transformations

In the following, we consider a number of transformations of conditions, summa-
rized as basic transformations [HP09]. The most important transformations are
the shift of conditions over morphisms and rules (see Lemma 3 and 4). Moreover,
there are transformations of rules into condition-guaranteeing or -preserving rules.
All these transformations can be done because the category of typed graphs is
M-adhesive and has an E ′-M pair factorization (Lemma 1).

The construction Shift “shifts” existential conditions over morphisms into a dis-
junction of existential application conditions.

34

Lemma 3 (Shift [HP09]). There is a construction Shift, such that for each
condition d over P and every morphism b : P ↪→ R, n : R ↪→ H,

n ◦ b |= d ⇐⇒ n |= Shift(b, d).

P

H

R
b

n ◦ b n

Shift(b, d)d
=

The relationship between the condition d and the condition Shift(b, d) is depicted
above: The gray triangles left and right to the graph P andR, respectively, indicate
the conditions d over P and Shift(b, d) over R. The combined morphism n ◦ b
satisfies the condition d iff the morphism n satisfies the condition Shift(b, d), the
condition d shifted over the morphism b.

Construction 1. The construction Shift is as follows.

P

C

R

R′

a a′(0)

b

b′

c

Shift(b, true) := true.
Shift(b, ∃ (a, c)) :=

∨
(a′,b′)∈F ∃ (a′, Shift(b′, c)) where

F = {(a′, b′) | b′ ◦ a = a′ ◦ b, a′, b′ injective, (a′, b′) jointly surjective}
Shift(b,¬d) := ¬Shift(b, d),
Shift(b,∧i∈Idi) := ∧i∈IShift(b, di),

where a pair (a′, b′) is jointly surjective if for each x ∈ R′ there is a preimage y ∈ R
with a′(y) = x or z ∈ C with b′(z) = x.

Example 9. Consider the condition

d = @ (Pl
1

↪→ Tk PlPl
1

toktok
)

and the morphism y : Pl ↪→ Pl Tktok
. Shifting the condition @ a over the

morphism y yields the application condition acR = Shift(y, d) = Shift(y,¬∃ a) =
¬Shift(y,∃ a) = ¬(

∨3
i=1 ∃ (a′i, Shift(b′i, true))) = ¬(

∨3
i=1 ∃ (a′i, true)) =

∧3
i=1 @ (a′i).

where the morphisms a′1, a
′
2, and a′3 are in Figure 2.7. In the following, for simplic-

ity, we only the condition @ a′3 and indicate the other conditions (@ a′1 and @ a′2) by

dots. For the morphism x : Pl ↪→ Pl Tk and the condition d, the construction

Shift(x, d) yields the application condition @ (Tk
2

PlPl
1

toktok
) ∧

35

Pl
1

Tk
2

PlPl
1

toktok

Pl
1

Tk
3

tok

Tk
2

PlPl1

Tk
3

toktok

tok Tk
2=3

PlPl
1

tok

tok

tok

Tk
2=3

PlPl
1

toktok

@ a

y

a′1 a′2 a′3

b′1

b′2

b′3

Figure 2.7: Shift of the condition @ a over the morphism y

The construction Left “shifts” a right application condition over a rule into a left
application condition.

Lemma 4 (Left [HP09]). There is a construction Left, such that for each rule %
with plain rule p = 〈L ←↩ K ↪→ R〉 and each condition ac over R, for each
G⇒%,g,h H, g |= Left(%, ac) ⇐⇒ h |= ac.

Construction 2. The construction Left is as follows.

R K L

K ′R′ L′

a a′(1) (2)

ac

Left(%, true) := true.
Left(%, ∃ (a, ac)) := ∃ (a′,Left(p′, ac)) if p−1 is appli-
cable w.r.t. the morphism a, p′ := 〈L′ ←↩ K ′ ↪→ R′〉
is the derived rule, and false, otherwise.
Left(%,¬ac):=¬Left(%, ac).
Left(%,∧i∈Iaci) := ∧i∈ILeft(%, aci).

where, for a plain rule p = 〈L ←↩ K ↪→ R〉, p−1 = 〈R ←↩ K ↪→ L〉 denotes the
inverse rule. For L′ ⇒p R

′ with intermediate graph K ′, 〈L′ ←↩ K ′ ↪→ R′〉 is the
derived rule.

Example 10. Consider the plain rule p = 〈 Pl Tk ←↩ Pl Tk ↪→ Pl Tktok 〉
and the application condition acR = @ (Tk PlPl toktok) ∧ . . . from Exam-
ple 9. The construction Left yields the application condition acL = Left(p, acR) =

@ (Pl Tk Pltok
) ∧ . . . over the left-hand side of the rule p.

36

Conditions can be integrated into left application conditions of a rule such that
every transformation is “condition-preserving”. The statement on Pres, in Habel
and Pennemann [HP09], is proven for the case that the domain of the morphism
is the empty graph. It can be generalized to rules with left and right interface
morphisms and conditions over the same domain as the morphisms.

Idea. The construction of condition-preserving rules shifts the condition d over
the left interface morphism to the left-hand side of the rule (see Figure below).
Furthermore, the condition is shifted over the right interface morphism y to the
right-hand side of the rule, the resulting right application condition is shifted
over the rule to the left-hand side. The implications of the conditions yield the
condition-preserving application condition. An illustration is given in Figure 2.8.

L K RA A
x y

ShiftLeftShift

d dShift(y, d)Shift(x, d)⇒
Left(%,Shift(x, d))

Figure 2.8: Illustration of condition-preserving application conditions

Lemma 5 (Pres). For each rule % with interfaces A and each condition d over A,
a condition acpres = Pres(%, d) can be constructed such that all transformations
g ⇒〈%,ac〉 h are d-preserving, i.e., g |= d implies h |= d.

Construction 3. Pres(%, d) := Shift(x, d)⇒ Left(%, Shift(y, d)).

Proof. For every transformation g ⇒〈%,Pres(%,d)〉 h, (g |= d impl. h |= d) iff
(g |= d impl. h′ |= Shift(y, d)) iff (g |= d impl. g′ |= Left(p, Shift(y, d)) iff (g′ |=
Shift(x, d) impl. g′ |= Left(p, Shift(y, d)) iff g′ |= Pres(%, d). 2

Example 11. Given a rule % = 〈 x, Pl Tk ⇒ Pl Tktok , y 〉 with interface
morphisms x : Pl ↪→ Pl Tk , y : Pl ↪→ Pl Tktok , and a condition

d = @ (Pl ↪→ Tk PlPl toktok).

Then we have the following (see Examples 9 and 10).

37

Shift(y, d) = @ (Tk
2

PlPl
1

toktok
) ∧ . . .

Shift(x, d) = @ (Tk
2

PlPl
1

toktok
) ∧ . . .

Left(%, Shift(y, d)) = @ (Pl
1

Tk
2

Pltok
) ∧ . . .

Pres(%, d) = @ (Tk
2

PlPl
1

toktok
) ∧ . . .⇒ @ (Pl

1
Tk
2

Pltok
) ∧ . . .

If the rule % is equipped with the application condition Pres(%, d), we obtain the
rule %′ = 〈%,Pres(%, d)〉, restricting the applicability of the rule to those matches
satisfying the application condition and preserving the constraint d. The applica-
tion condition is satisfied if the rule is applied to an occurrence of a graph with
Tk-node that does not have incoming containment edges from different Pl-nodes.
(A node of type Tk is said to be Tk-node.)

Lemma 6 (Gua). For each rule % with interfaces A and each condition d over A,
a condition acgua = Gua(%, d) can be constructed such that all transformations
g ⇒〈%,ac〉 h are d-guaranteeing, i.e., h |= d.

Construction 4. The construction Gua is as follows. For an rule % with inter-
faces A and a condition d over A, let Gua(%, d) := Left(%, Shift(y, d)).

Proof. For every transformation g ⇒〈%,Gua(%,d)〉 h, (h |= d) iff (h′ |= Shift(y, d)) iff
(g′ |= Left(p, Shift(y, d)) iff g′ |= Gua(%, d). 2

By Lemma 6, for every rule %, we can construct the rule gua(%, d) = 〈%,Gua(%, d)〉.
The rule is d-guaranteeing, i.e., for all transformations g ⇒gua(%,d) h, h |= d.

Bibliographic notes. The basic transformations were first stated and proven for
high-level transformations systems [HP09] and extensively used to prove correct-
ness relative to conditions. The transformations are implemented in ENFORCE
[AHPZ06] and Henshin [SBG+17]. In Nassar et al. [NKAT20], a method to sim-
plify constraint-preserving application conditions is presented. Their simplifica-
tions of the application conditions are based on three main concepts: (1) If the
elements which are deleted (or added) by a rule are type-disjoint with the types
of the constraint, i.e., they share no types, the application condition simplifies
to true, (2) For increasing (or decreasing) rules, and positive (or negative) con-
straints, the application is true, (3) For negative constraints @C one may omit the
cases where C and the elements created by the rule overlap in at least one element.
The simplified application conditions are proven to be logically equivalent to the

38

original application condition. The results are proven to be correct forM-adhesive
categories and can be used to simplify the application conditions needed for our
construction of condition-preserving application conditions (Lemma 5), as well.

39

40

Chapter 3

Graph generation

In meta-modelling, a general problem is how to generate instances of a meta-model.
There are several approaches to instance generation: most of them are logic-
oriented, some are rule-based (for an overview see, e.g., Radke et al. [RAB+15,
RAB+18]). Our approach to instance generation is rule-based.

Structure
& typing

OCL
constraints

Graph
grammar

ac
Graph
grammar

Graph
constraints

Instances

translate

[Tae12]

translate

[RAB+18] [RAB+18, HST18]

generate

in
te

gr
at

e

M
et

a-
m

o
d
el

conform to

1

Figure 3.1: Instance generation of meta-models

(1) Translate the structure of the meta-model without OCL constraints and its typ-
ing into a (typed) graph grammar GG (Taentzer [Tae12]) and OCL constraints
into graph constraints c (Radke et al. [RAB+18]).

(2) Integrate the graph constraint c into the graph grammar GG yielding a graph
grammar GGc generating the graphs satisfying the graph constraints.

(3) Generate instances I ∈ L(GGc).

1The illustration shows the main components of a meta-model: the structure and the typing
as well as OCL constraints. Of course, there are relations between the components. The OCL
constraints are typed over the meta-model. The relations between the structure and typing of
the meta-model and the OCL constraints are not drawn. For a definition of a meta-model, see
Section 5.1.

41

In Radke et al. [RAB+18], the integration of a graph constraint c into a graph
grammar GG is done by replacing the rules % of the grammar by the correspond-
ing c-guaranteeing rules. Unfortunately, this yields a grammar GGc generating a
subset of all graphs satisfying the constraint c, i.e., L(GGc) ⊆ L(GG) ∩ JcK, and
the inclusion is usually proper.

In this chapter, we look for a construction of a graph grammar GGc that generates
exactly the set of all graphs of the original graph grammar that satisfy the con-
straint c: L(GGc) = L(GG) ∩ JcK. We look for a grammar that “filters” exactly
those graphs of the graph language that satisfy the constraint. In the following,
we talk about the filter problem.

Filter Problem

Given: A graph grammar GG and a graph constraint c.
Question: Does there exist a graph grammar GGc such that

L(GGc) = L(GG) ∩ JcK?

Moreover, we look for a “goal-oriented” (see Section 3.2) grammar that “filters”
a subset of those graphs of the graph language that satisfy the constraint c:
L(GGc) ⊆ L(GG) ∩ JcK. In the following, we talk about the weak filter prob-
lem.

Weak Filter Problem

Given: A graph grammar GG and a graph constraint c.
Question: Does there exist a “goal-oriented” graph grammar GGc

such that L(GGc)⊆L(GG) ∩ JcK?

grammar
constructionconstraint c

graph grammar GG
“goal-oriented”

graph grammar GGc

We solve the (weak) filter problem for specific graph grammars GG and specific
graph constraints c. The construction is done in two steps (see below).

(1) Construct a “goal-oriented constraint automaton” Ac with L(Ac)⊆L(GG)∩JcK.
(2) Construct a “goal-oriented” graph grammar GGc with L(GGc) = L(Ac).

grammar GG

constraint c
(1)

automaton Ac [Bec16]
grammar GGc

42

We illustrate our approach with Petri nets as the modeling language. We consider
a (typed) graph grammar for generating Petri nets and graph constraints for re-
stricting Petri nets. The example is a simplification of the one in Radke et al.
[RAB+18] for typed attributed graphs.

In Section 3.1, we sketch some basics on existential weakest liberal preconditions,
containments, and minimizations. In Section 3.2, we introduce so-called constraint
automata, present a backward construction, sketch some closure properties, con-
sider the termination of the backward construction, and derive a goal-oriented
graph grammar from the constraint automaton. In Section 3.3, we present some
related concepts. In Section 3.4, we give a conclusion.

3.1 Existential weakest liberal preconditions

In this section, we sketch the prerequisites for our backward construction in Sec-
tion 3.2: existential weakest liberal preconditions, similar to (universal) weakest
liberal preconditions. Moreover, we introduce the syntactic operations contain-
ment and minimization which imply implication and equivalence, respectively.

The notion of (universal) weakest liberal preconditions is well-known (see, e.g.,
Apt and Olderog [AO91]).2 In Habel and Pennemann [HP09], it is shown that a
condition c is a (universal) weakest liberal precondition of a rule relative to d if, for
all graphs G, G |= c iff, for all transformations G⇒ H through the rule, H |= d.

We introduce existential weakest liberal preconditions and obtain a corresponding
result. We use existential weakest liberal preconditions in the construction of a
“constraint” automaton (Definition 15) and guarantee that, for each path in the
automaton, there exists a derivation in the given graph grammar.

Definition 10 (existential weakest liberal precondition). Given a con-
straint d and a rule %, a condition c is an (existential) liberal precondition of a
rule % relative to a condition d, if, for all G satisfying c, there exists some G⇒% H
such that H |= d and an (existential) weakest liberal precondition of % relative
to d, if any (existential) liberal precondition of % relative to d implies c.

The following characterization points out a simple proof scheme for (existential)
weakest liberal preconditions.

Fact 3 (characterization). A condition c is an existential weakest liberal pre-
condition of % relative to d if, for all G, G |= c iff there exists some G⇒% H such
that H |= d.

2In [AO91], the term weakest liberal preconditions is used to ensure partial correctness, the
term weakest preconditions for ensuring total correctness.

43

Proof. Analogously to (universal) weakest liberal preconditions [HP09]: Assume,
for all graphs G, G |= c iff there exists some G ⇒% H such that H |= d. By
Definition 10, c is an existential liberal precondition. It remains to show that for
any other existential liberal precondition c′, c′ implies c. Let G be an arbitrary
graph and assume G |= c′. According to Definition 10, there is some G⇒% H such
that H |= d. Using the assumption, we have G |= c. For all graphs G, G |= c′

implies G |= c, i.e., c′ =⇒ c. Thus, c is a existential weakest liberal precondition.
2

Similar to the weakest liberal preconditions of Habel and Pennemann [HP09], we
construct an existential weakest liberal precondition.

Lemma 7 (Wlp∃). There is a construction Wlp∃ such that, for every rule % and
every constraint d, Wlp∃(%, d) is an existential weakest liberal precondition of %
relative to d.

Proof. Analogously to the corresponding proof for weakest liberal precondition
in Habel and Pennemann [HP09]. 2

The existential weakest liberal precondition of a rule and a constraint is constructed
by the basic transformations from graph constraints to right application conditions
(Shift), right to left application conditions (Left), and application conditions to
constraints (C∃).

Construction 5. For a rule % = 〈p, ac〉, Wlp∃(%, d) := C∃(Left(%, Shift(b, d) ∧
Appl(%)) where b : ∅ ↪→ Rhs(%), and C∃ and Appl are defined as follows. For
application conditions ac over L, C∃(ac) := ∃ (∅ ↪→ L, ac). Appl(%) = Dang(p)∧ac
and Dang(p) = ∧a∈A@ a where A ranges over all minimal morphisms a : L ↪→ L′

such that 〈K ↪→ L, a〉 has no pushout complement. The latter condition expresses
the dangling condition (e.g., see Habel and Pennemann [HP09]).

Example 12. For the rule AddTok = Pl ⇒ Pl Tktok and the constraint
2tok = ∃ (Pl TkTk toktok), the constraint Wlp∃(AddTok, 2tok) is constructed
as follows: Shift the constraint 2tok over the morphism b from the empty graph
to the right-hand side of AddTok, shift the obtained right application condition
over the rule 2tok to the left (Left), and transform the obtained left application
condition to a constraint (C∃) where the match of the rule is marked in blue.

(1) Shift(b, 2tok) = ∃ (Pl Tktok Pl TkTk toktok) ∨ . . .

∨∃ (Pl TkTk toktok)=acR

(2) Left(AddTok, acR) = ∃ (Pl Tktok) = acL

(3) C∃(acL) = ∃ (Pl ,∃ (Pl Tktok) ≡ ∃ (Pl Tktok)

44

The conditions mean that (1) there exists a place with a token (the comatch of
the rule) and a place with two tokens or . . . or a place with two tokens, (2) there
exists a place (the match of the rule) with one token, and (3) there exists a place
with one token, respectively.

Containment of conditions is based on the existence of an injective morphism. The
existence of an injective morphism between two conditions guarantees the impli-
cation of the conditions. Later on, we use containment to simplify the existential
weakest liberal preconditions.

Definition 11 (containment). The containment of conditions d1 and d2 over A,
denoted d1 v d2, is defined as follows. For every condition d2, true v d2. For

di = ∃ (A
ai
↪→Ci, ci) (i = 1, 2), d1 v d2 if there is an injective morphism b : C1 ↪→ C2

such that b ◦ a1 = a2 and Shift(b, c1) v c2.

A

C1

C2

a1

a2

b

c1

c2

=

For negative conditions di = ¬ci (i = 1, 2), d1 v d2 if c2 v c1. For conjunctive
conditions di = ∧j∈Iicij (i = 1, 2), d1 v d2 if there is an injective function f : I1 ↪→
I2 such that c1j v c2f(j) for all j ∈ I1. A constraint c2 subsumes c1, c2 w c1, if
c1 contains c2. A constraint c1 properly contains in c2 (c2 properly subsumes c1),
c1 < c2 (c2 = c1), if the injective morphism is not an isomorphism.

Example 13. Consider the constraint d = d1∨d2 with d1 = ∃ (Pl TkTk toktok)
and d2 = ∃ (Pl Tktok) meaning there exists a Pl-node with two Tk-nodes and
the connecting containment edges or there exists a Pl-node with one Tk-node and
the connecting containment edge. There is an injective, non-isomorphic morphism
from the graph of d2 to the graph of d1, i.e., d2 < d1, and the condition d2

contains d1 (d1 subsumes d2).

Lemma 8. For conditions d1, d2, if d1 v d2, then d2 ⇒ d1.

Proof. By induction over the size of graph conditions. Let d1 v d2.

If d1 = true, for every injective morphism p : A ↪→ G, p |= d2 implies that
p |= true, i.e., d2 ⇒ true. If di = ∃ (ai, ci) with ai : A ↪→ Ci (i = 1, 2), then there
is an injective morphism b : C1 ↪→ C2 such that b ◦ a1 = a2 and Shift(b, c1) v c2.
If p : A ↪→ G |= d2, then there is an injective morphism q2 : C2 ↪→ G such that

45

q2 ◦ a2 = p and q2 |= c2. Define now q1 = q2 ◦ b. Then q1 is injective and
q1 ◦ a1 = q2 ◦ b ◦ a1 = q2 ◦ a2 = p. By induction hypothesis, c2 ⇒ Shift(b, c1). Since
q2 |= c, q2 |= Shift(d, c1). By the Shift Lemma 3, q1 |= c1. By definition of |=,
p |= ∃ (a1, c1) = d1. Thus, d2 ⇒ d1.

AG

C1

C2

a1

a2

b
p

q1

q2

c1

c2

=
=

=

For negation and conjunction, the statement follows directly from the definitions
and the inductive hypothesis. If di = ¬ci (i = 1, 2), then c2 v c1. By induction
hypothesis, c1 ⇒ c2. Hence, d2 = ¬c2 ⇒ ¬c1 = d1. If di = ∧j∈Iicij (i = 1, 2), then
there is an injective function f : I1 ↪→ I2 such that c1j v c2f(j) for all j ∈ I1. By
induction hypothesis, c2f(j) ⇒ c1j for all j ∈ I1. Then ∧j∈I1c2f(j) ⇒ ∧j∈I1c1j and,
by f(I1) ⊆ I2, d2 ⇒ d1. 2

Definition 12 (minimization). Let d =
∨

i∈I di be a finite disjunction of condi-
tions. Then Min(d) =

∨
i∈I′ di where I ′ = {i ∈ I | @ dj. dj v di for all j ∈ I}.

Lemma 9. For disjunctive conditions d, Min(d) ≡ d.

Example 14. We continue with Example 13. Since d2 contains d1 (d1 sub-
sumes d2), the disjunction can be minimized. This yields the constraint d′ =

∨
d2.

The constraint is equivalent to the original constraint d from Example 13: each
graph consisting of at least one Pl-node, a Tk-node and the connecting contain-
ment edge, satisfies d2 and consequently d. Vice versa, each graph, which does not
satisfy d2, i.e., which does not consist of at least on Pl-node, a Tk-node and the
connecting containment edge, does not satisfy d1.

Proof. “⇒”. Let p |= Min(d) = ∨i∈I′di. Then p |= ∨i∈Idi since I ′ ⊆ I.

“⇐”. Let p |= ¬Min(d) = ∧i∈I′¬di. By definition of the semantics, p |= ¬di for
all i ∈ I ′. It remains to show p |= ¬di for all i 6∈ I ′. For i 6∈ I ′, there is some
index j ∈ I ′ such that dj v di. By Lemma 8, we have di ⇒ dj ≡ ¬dj ⇒ ¬di. Now
p |= ¬dj implies p |= ¬di. Thus, p |= ¬di for all i ∈ I. Consequently, Min(d) ≡ d.

2

3.2 Filtering through constraints

In this section, we investigate the filter problem for graph grammars and con-
straints. We introduce so-called constraint automata, present a backward con-

46

struction for constraint automata, sketch some closure properties closely related
to the ones in formal language theory, consider the termination of the backward
construction, and derive a goal-oriented graph grammar from the constraint au-
tomaton. The section is concluded by a Filter Theorem, summarizing the result.

Goal-oriented grammars. Our aim is to construct a “goal-oriented” graph
grammar without dead end, i.e., a grammar with a terminating rule set, a subset
of the given one, such that, for each reachable graph, there exists a derivation to
a graph satisfying a constraint using the terminating rule set (see Figure below)
The advantage is that the application of the rules is backtracking-free.

S G H in L(GG)*
Rt

Definition 13 (goal-oriented graph grammar). Let GG = (N ,R, S) be
a graph grammar. The grammar GG is goal-oriented if there is a terminating3

rule set Rt ⊆ R such that, for all derivable graphs, there is a transformation to a
terminal graph using rules form Rt.

Example 15. Consider the graph grammar for Petri nets from Example 1
equipped with the nonterminal symbols net, pl, tok, 2tok and the following set of
rules, where pl abbreviates place.

PN =⇒ PN net

PN net =⇒ PN Pl
place

pl

Pl pl =⇒ Pl Tktok
tok

〈 Pl tok =⇒ Pl Tktok
tok ,¬gtoks〉

〈 Pl tok =⇒ Pl Tktok
2tok , gtoks〉

2tok =⇒ ∅

The grammar shall generate a graph consisting of a place with at least two tokens.
The grammar is goal-oriented: starting from the start graph PN , the grammar
adds a nonterminal net. There is a derivation via the grammar, which adds a
place to the net, then a token to the place, afterwards a token, provided that
the place already has a token. The latter is ensured by the application condition
gtoks = ∃ (Pl Pl TkTk toktok) ∨ ∃ (Pl Tktok). Finally, the non-terminal
2tok is deleted, yielding a terminal graph.

3A rule set R is terminating if there is no infinite transformation G0⇒
R
G1⇒
R
G2 . . .

47

Constraint automata

In the following, we introduce constraint automata based on finite automata having
constraints as states. Given a graph grammar, a constraint automaton consists
of a finite automaton (see Hopcroft and Ullman [HU79]), with constraints as states
and “restricting” rules as input symbols. The graph language of the automaton
is the set of all graphs derived from the start graph by applying the sequences of
rules accepted by the finite automaton.

Definition 14 (restricting rule). Given a rule % = 〈p, ac〉 with application
condition and an application condition ac′, then the rule 〈p, ac ∧ ac′〉 is said to be
%-restricting . A rule % is R-restricting if %′ is %-restricting for some % ∈ R.

Example 16. In Figure 3.2, the rules 〈AddTok, gtoks〉 and 〈AddTok,¬gtoks〉 are
AddTok-restricting.

Definition 15 (constraint automaton). The (constraint) automaton for a
graph grammar GG = (R, S) is a tuple A = (A, S) where A = (C,R′,→, C0, F)
is a (finite) automaton, C a set of states (constraints),R′ a finite set ofR-restricting
rules,→ a transition relation, C0, F ⊆ C sets of initial and final states, respectively,
and S a start graph. The automaton is goal-oriented if there is a terminating
transition relation→t ⊆ → such that, for all initial states and all reachable states,
a final state is reachable using transitions from →t. The graph language of A
is L(A) = {G | ∃S ⇒w G for some w ∈ L(A)} where L(A) is the set of all
strings accepted by the finite automaton A. An automaton A1 = (A1, S) is a sub-
automaton of an automaton A2 = (A2, S) with Ai = (Ci,R′i,→i, C0i, Fi), written
A1 ⊆ A2, iff C1 ⊆ C2, R′1 ⊆ R′2, →1⊆→2, F1 ⊆ F2, and C01 ⊆ C02.

Convention. When drawing a constraint automaton, we draw the states with the
names written inside a circle, transitions are drawn by arrows and are labelled by
the rules (with application conditions). The start state is indicated by the arrow
and the label start. The final state is drawn by double lines around the circle.

Example 17. Figure 3.2 shows a constraint automaton. The automaton shall
generate all graphs consisting of a place with at least two tokens. The states
are the constraints net, place, tok, 2tok written inside a circle. The transitions are
drawn by arrows and are labelled by the rules (with application conditions) of the
grammar for Petri nets from Example 1. E.g., the labels AddTok and gtoks denote
the rule AddTok with application condition gtoks = ∃ (Pl Pl TkTk toktok) ∨
∃ (Pl Tktok)4, meaning that outside of the match of AddTok, there is a Pl-node

4The match of the rule is marked in a blue color.

48

with two Tk-nodes or at the Pl-node in consideration, there is one Tk-node and
the containment tok-edge. The start state is the state net. The final state is the
state 2tok.

netstart place tok 2tok
AddPl

AddTra AddPl, AddTra

AddTok

AddPl, AddTra
AddTok,¬gtoks

AddTok
gtoks

AddPl, AddTra
AddTok

Figure 3.2: Constraint automaton

The automaton is goal-oriented: for all reachable states in the automaton there
exists a terminating transition relation to the final state 2tok using this transition
relation. Every path from the state net to state 2tok determines a transformation
from a graph satisfying net to a graph satisfying 2tok.

Backward construction

We construct a constraint automaton based on the construction of existential weak-
est liberal preconditions. Intuitively, the constraint automaton is constructed as
follows (see Figure 3.3). Starting with a constraint c, for every rule %, we construct
the existential weakest liberal precondition Wlp∃(%, c), bring it into normal form
(which may be seen as a disjunction of constraints), minimize it, and, for each
constraint b in the disjunction, add b to the constraint (and state) set and b→%′ c
with %′ = gua(%, c) to the transition relation. We ignore constraints b subsuming
some constraint in C. The constructed constraints become the states of the au-
tomaton, the constraint c the final state, and the constraints which are satisfied
for the start graph S become the initial states.

Assumption 2. By Lemma 9, we may assume that the existential weakest liberal
preconditions are in normal form and are minimized.

For a constraint set C, Max(C) denotes the set of constraints b in C that are
maximal with respect to →, i.e., there is no constraint b′ ∈ C such that b→ b′.

Construction 6 (backward construction with containment test). Given a
grammarGG and a constraint c, we construct constraint automata as follows.

49

a1

...

am

b1

b2

...

bn

c

d

gua(%1 , b1)

gua(%m
, b1) gua(%

1 , c)

gua(%2, c)

w

gu
a(
%
n
,c

)

gu
a(
% n
, c

)

\

Figure 3.3: Overview of the idea for the backward construction

(1) Construct a sequence C0, C1, . . . of constraint or state sets by C0 = {c} and
Ci+1 = Ci∪{b in Wlp∃(%, c

′) | % ∈ R, c′ ∈ Max(Ci)∧@ b′ ∈ Ci.b w b′} where for a
disjunction c′ = ∨i∈Ici, b in c′ abbreviates b ∈ {ci | i ∈ I}. (For a rule and a
maximal constraint of the set Ci, we construct the existential weakest liberal
precondition, bring it into normal form, minimize it, and add the components
of the disjunction to the set Ci+1 provided that they do not subsume another
constraint of Ci.)

(2a) For i ≥ 0, let Ac,i = (Ai, S) be the automaton with Ai = (Ci,R′,→, C0, {c}),
R′ = {gua(%, b) | % ∈ R, b ∈ Ci}. For % ∈ R, c′ ∈ Ci, if b in Wlp∃(%, c

′) and
b w b′ ∈ Max(Ci), b′ →gua(%,c′) c

′ is in →. C0 = Max({c0 ∈ C | S |= c0}) and
{c} are the sets of initial and final states, respectively. (If the constraint b is
a component of the existential weakest liberal precondition of a rule % relative
to the constraint c′ and b subsumes a maximal constraint of Ci, then there is a
transition from b′ to c′ labelled with gua(%, c′).)

(2b) If Ci = Ci+1 for some i ≥ 0, let C = Ci and Ac = Ac,i.

Remark. 1. A constraint b ∈ C represents the class JbK of all graphs satisfying b.

2. By the Wlp∃(%, c)-construction, we obtain the existence of a direct transforma-
tion G ⇒% H such that H |= c. By the gua(%, c)-construction, we filter all those
direct transformations that guarantee c: G ⇒gua(%,c) H such that H |= c. In this
way, for all direct transformations G⇒gua(%,c) H ∧H |= c.

50

3. An essential step for restricting the state exploration is the following. Whenever
a constraint c′ is in the constraint set and b ∈Wlp∃(%, c

′) is a constraint such that b
subsumes a maximal constraint b′ in the constraint set, then the constraint b and
an edge from b to c′ with label gua(%, c′) is not inserted (denoted by the dotted
arrow below); instead an edge from b′ to c′ with label gua(%, c′) is inserted.

b

b′

c′

gua(%, c ′)/

v
gua(%, c

′)

4. The set of initial states may be empty; in this case, L(Ac,0), L(Ac) are empty.

5. For i ≥ 0, Ac,i ⊆ Ac,i+1 and L(Ac,i) ⊆ L(Ac,i+1).

6. In general, the sequence C0, C1, . . . need not become stationary, hence the pro-
cedure need not terminate, but we can show that it terminates for our specific
cases.

Example 18. Consider the grammar with the rules AddPl, AddTra, and AddTok in
Example 1 and the positive constraint 2tok = ∃ (Pl TkTk toktok) meaning that
there exists a Pl-node and two Tk-nodes together with connecting containment
tok-edges. Then the backward construction with containment test yields a finite
automaton A2tok given in Figure 3.4.

netstart place tok 2tok

AddPl

AddTra

AddPl

AddTok

AddTra

AddTok
AddPl

AddTra

AddPl

AddTra

AddTok AddTok
gtoks

A2tok

Figure 3.4: The automaton A2tok, simplified.

The automaton A2tok is constructed as follows. Start with the constraint 2tok,
construct, for every rule p in the grammar and every constraint b′, the weak-
est liberal precondition Wlp∃(p, b

′), and subsume constraints. Continue with
the new constraints in the constraint set. The construction terminates. The
components of the weakest liberal preconditions in Figure 3.7 build the state
set C = {net, place, tok, 2tok} where net = ∃ (PN), place = ∃ (Pl), and
tok = ∃ (Pl Tktok). The constraint Wlp∃(AddTok, net) = ∃ (PN Pl) is ig-
nored because it is subsumed by place.

51

The construction of the guaranteeing application condition Gua(AddTok, 2tok)
yields gtoks = ∃ (Pl Pl TkTk toktok)∨∃ (Pl Tktok)5, meaning that outside
of the match of AddTok, there is a Pl-node with two Tk-nodes or at the Pl-node
in consideration, there is one Tk-node and the containment tok-edge. All other
application conditions are given in Figure 3.6. The initial state is net because

PN |= net and the final state is 2tok. The constraint automaton A2tok is shown
in Figure 3.5.

netstart place tok 2tok

AddPl, acnet
AddTra, acnet

AddPl, acnet

AddTok, acplace

AddTok, acplace
AddTra, acnplace

AddTok
acplace

AddPl, acntok
AddTra, acntok
AddTok,¬gtoks

AddTok
gtoks

AddPl, acn2tok
AddTra, acn2tok

A2tok

Figure 3.5: The constraint automaton A2tok.

By the following simplification rules, the automaton may be simplified: Minimize
the application condition Gua(p, b′) according to containment (see Lemma 8). If
Gua(p, b′) ≡ true, write p instead of 〈p,Gua(p, b′)〉. If Gua(p, b′) is a positive
application condition, then it can be ignored. By these rules one may obtain the
constraint automaton presented in Figure 3.4.

From the structure, the constraint automata in Figure 3.5 and 3.4 look very similar.
The one in Figure 3.4 is obtained from the one in Figure 3.5 by simplification: all
gray application conditions are omitted, the red application conditions remain.
They are essential: Whenever the application ¬gtoks is satisfied, the application
of the rule AddTok does not create a second token on a place. Whenever the
application condition gtoks is satisfied, the application of the rule AddTok creates
a second token at a place.

Lemma 10. For arbitrary graph grammars GG and arbitrary constraints c, the
constraint automata Ac,i and Ac are goal-oriented and

1. L(Ac,i) ⊆ L(GG) ∩ JcK (i ≥ 0) and

2. L(Ac) = L(GG) ∩ JcK in case of termination.

The proof is based on the following lemma which relates paths in the constraint
automaton Ac,i and transformations in the graph grammar GG.

5The match of the rule is marked in a blue color.

52

Gua(AddPl, 2tok) = ∃ (PN Pl TkTk toktok) = acn2tok

Gua(AddTra, 2tok) = ∃ (PN Pl TkTk toktok) = acn2tok

Gua(AddTok, 2tok) = ∃ (Pl Pl TkTk toktok) = acp2tok

∨∃ Pl Tktok) ∨actok

Gua(AddPl, tok) = ∃ (PN Pl Tktok) = acntok

Gua(AddTra, tok) = ∃ (PN Pl Tktok) = acntok

Gua(AddTok, tok) = ∃ (Pl Pl Tktok) ∨ ∃ (Pl) ≡ ∃ (Pl) = acplace

Gua(AddPl, place) = ∃ (PN Pl) ∨ ∃ (PN) ≡ ∃ (PN) = acnet

Gua(AddTra, place) = ∃ (PN Pl) = acnplace

Gua(AddTok, place) = ∃ (Pl Pl) ∨ ∃ (Pl) ≡ ∃ (Pl) = acplace

Gua(AddTra, net) = ∃ (PN PN) ∨ ∃ (PN) ≡ ∃ (PN) = acnet

Gua(AddPl, net) = ∃ (PN PN) ∨ ∃ (PN) ≡ ∃ (PN) = acnet

Gua(AddTok, net) = ∃ (PN Pl) = acplacen

Figure 3.6: Guaranteeing application conditions.

Wlp∃(AddPl, 2tok) = ∃ (PN Pl TkTk toktok) w 2tok

Wlp∃(AddTra, 2tok) = ∃ (PN Pl TkTk toktok) w 2tok

Wlp∃(AddTok, 2tok) = ∃ (Pl Pl TkTk toktok)

∨∃ (Pl TkTk toktok) ∨ ∃ (Pl Tktok) ≡ tok

Wlp∃(AddPl, tok) = ∃ (PN Pl Tktok) w tok

Wlp∃(AddTra, tok) = ∃ (PN Pl Tktok) w tok

Wlp∃(AddTok, tok) = ∃ (Pl Pl Tktok)∨∃ (Pl Tktok)∨∃ (Pl) ≡ place

Wlp∃(AddPl, place) = ∃ (PN Pl) ∨ ∃ (PN) ≡ net

Wlp∃(AddTra, place) = ∃ (PN Pl) w place

Wlp∃(AddTok, place) = ∃ (Pl Pl) ∨ ∃ (Pl) ≡ place

Wlp∃(AddTra, net) = ∃ (PN PN) ∨ ∃ (PN) ≡ net

Wlp∃(AddPl, net) = ∃ (PN PN) ∨ ∃ (PN) ≡ net

Wlp∃(AddTok, net) = ∃ (PN Pl) w place

Figure 3.7: Existential weakest liberal preconditions.

53

Lemma 11 (correctness & completeness). Let GG be a graph grammar, c a
graph constraint, and Ac,i the constructed automaton. Let w′ ∈ R′∗ and w ∈ R∗
be the sequences of restricted and underlying rules, respectively.

1. For all paths g →w′ h in Ac,i (i ≥ 0) and all graphs G |= g, there is a graph H
and a transformation G⇒w H in GG such that H |= h.

2. In the terminating case, for all transformations G ⇒w H in GG such that
H |= h ∈ Max(C), there is a path g →w′ h in Ac such that G |= g ∈ Max(C).

Proof (By induction on the length of the path/transformation).

1. By induction on the structure of w′. Let f →w′ h and F |= f .
Induction basis. For w′ = ε, let h = f . Then F ⇒0 H |= h.
Induction step. For w′ = v′%′, f →v′%′ h can be decomposed into f →v′ g →%′ h
where %′ = gua(%, h). By induction hypothesis, there is a transformation F ⇒v G
such that G |= g. By g ∈ Wlp∃(%, h), we have G |= Wlp∃(%, h). By Fact 3,
there is a direct transformation G ⇒% H such that H |= h. Composing the
transformations, we obtain a transformation F ⇒v% H such that H |= h.

2. By induction on the structure of w. Let Construction 6 be terminating and Ac

the resulting constraint automaton. Let F ⇒w H and H |= h ∈ Max(C).
Induction basis. For w = ε, F ∼= H, F ⇒ε H and F |= f = h ∈ Max(C).
Induction step. For w = v%, the transformation F ⇒v% H can be decom-
posed into F ⇒v G ⇒% H. By Fact 3 and Lemma 9, G ⇒% H.H |= h implies
G |= Wlp∃(%, h). Consequently, there is some g′ ∈ Wlp∃(%, h).G |= g′. By Con-
struction 6, there is some g ∈ Max(C).g′ w g and, by Lemma 8, g′ ⇒ g. By the
definition of ⇒, G |= g′ implies G |= g. By Construction 6 and g ∈ Max(C), there
is a transition g →%′ h in Ac. By F ⇒v G.G |= g ∈ Max(C), the induction hy-
pothesis can be applied yielding a path f →v′ g in Ac such that F |= f ∈ Max(C).
Composing the paths, we obtain a path f →w′ h such that F |= f ∈ Max(C).

f g h

F G H

v′ %′

v %

|= |= |=IH Wlp∃

F G H

f g h
v′ %′

v %

|= |= |=

IH Wlp∃

2

Proof (of Lemma 10). The statements follow immediately from Lemma 11:

1. If G ∈ L(Ac,i), then S ⇒w G for some w′ ∈ L(Ai). Then there is a path
c0 →w′ c from c0 ∈ C0,i to c. Since w′ = ε (S ∼= G and c0 = c) or the last rule in
w is c-guaranteeing, we have G |= c. Thus, G ∈ L(GG) ∩ JcK.

54

2. In case Construction 6 terminates, the first inclusion follows from the first
statement. The second inclusion is as follows. If G ∈ L(GG)∩ JcK, then there is a
transformation S ⇒w G in GG such that G |= c. By Lemma 11, there is a path
c0 →w′ c in Ac such that S |= c0. By construction, c0 ∈ C0. Thus, w ∈ L(A) and
G ∈ L(Ac).

3. The constraint automata are goal-oriented: By the backward construction, the
automata are connected and all directed paths end in the final state. Let now T be
a spanning tree, i.e., a subautomaton which is both a tree and which contains all
the states of the automaton. Then the transition relation→t:=→T is terminating
and, for all reachable states, there is a path to the final state. 2

Termination

The question remains, under which assumptions the backward construction ter-
minates. Unfortunately, in general, for non-deleting graph grammars and positive
constraints, the construction does not terminate. The reason for this, is that the
construction of the existential weakest liberal preconditions may yield an infinite
sequence of new states (see Example 19). Adding the requirement “n-bounded
path”, a slightly modified backward construction terminates.

Definition 16 (increasing, n-bounded graph grammar). A graph grammar
is increasing if all underlying plain rules are increasing, i.e., for 〈L ←↩ K ↪→ R〉,
L ∼= K ⊂ R. A graph grammar is n-bounded path if all generated graphs are
n-bounded path, i.e., all paths have length less than or equal to n. A graph
constraint of the form ∃C is n-bounded path, if C is n-bounded path.

Lemma 12 (termination).

1. For increasing graph grammars and positive constraints, the backward construc-
tion, in general, does not terminate.

2. If, additionally, the graph grammar is n-bounded path, there exists a terminat-
ing, slightly modified backward construction.

Construction 7 (backward construction with bounded-path test).
Modify Construction 6 by replacing step (1) by step (1’): Construct a sequence
C0, C1, . . . of constraint or state sets by C0 = {c} and Ci+1 = Ci ∪ {b ∈Wlp∃(%, c

′) |
% ∈ R, c′ ∈ Ci ∧ @b′ ∈ Ci.b w b′, b is n-bounded path}.

Example 19. For the 1-bounded path grammar with the rule AddEdge =

〈 ◦ ◦ ◦ ⇒ ◦ ◦ ◦ 〉 and the constraint c = ∃ ◦ ◦ , Construction 6

55

does not terminate:

Wlp∃(AddEdge, c) = ∃ ◦ ◦ ◦ =: c1

Wlp∃(AddEdge, c1) = ∃ ◦ ◦ ◦ ◦ ∨ c1 =: c2

Wlp∃(AddEdge, c2) = ∃ ◦ ◦ ◦ ◦ ◦ ∨ c2 =: c3

...
...

Starting with the constraint c, it produces an infinite sequence

...→ ∃ ◦ ◦ ◦ ◦ ◦ → ∃ ◦ ◦ ◦ ◦ → ∃ ◦ ◦ ◦ → ∃ ◦ ◦

of positive constraints ∃Cn requiring the existence of a path of length n with two
loops at the start and end node. Since there does not exist an injective morphism
from Cn to Cn+1, the constraint ∃Cn+1 is not contained in ∃Cn. In contrast,
Construction 7 terminates: by the containment operator w, each state b′, whose
length is not n-bounded, is subsumed, and therefore not added to the state set.

The proof of Lemma 12 makes use of the notions of well-quasi-ordering and
monotony. A binary relation � defined on a set Q is a quasi-ordering (Ding
[Din92]) if it is reflexive and transitive. A sequence q1, q2, . . . of members of Q is
called a good sequence (with respect to �) if there exist i < j such that qi � qj. It
is a bad sequence if otherwise. We call (Q,�) a well-quasi-ordering (or a wqo) if
there is no infinite bad sequence. Let T be a transition system with a preorder �
defined on its states. T is monotone w.r.t. to � if, for any states c1, c2 and c3,
with c1 � c2 and c1 → c3, there exists a state c4 such that c3 � c4 and c2 → c4.

Proof (of Lemma 12). 1. The statement follows immediately from the undecid-
ability of the coverability problem for non-deleting graph grammars (Bertrand et
al. [BDK+12]6). The Coverability Problem is as follows. Given a graph grammar
GG = (R, S) and a graph C, is there a graph H such that S ⇒∗R H and C v H,
i.e., there is an injective morphism from C to H. Assume the automaton con-
struction terminates for increasing graph grammars GG and positive constraints
c = ∃C with automaton Ac. Then, the coverability problem for GG and final
graph C is decidable: If in Ac, there is a path from an initial state to the fi-
nal state c, then the output is yes, and no, otherwise. Contradiction [BDK+12,
Proposition 13].

2. Correctness and completeness of Construction 7 follows from the correctness
and completeness of Construction 6. Termination follows from the well-known

6In Bertrand et al. [BDK+12], a slight extension of the single-pushout approach is considered,
but the simulation of a deterministic Turing machine is done by a non-deleting double-pushout
graph transformation system, see, e.g., [EHK+97].

56

fact, that the subgraph relation for n-bounded path graphs is a well-quasi-order
for n-bounded path graphs (Ding [Din92]) and the constraint system is monotone
with respect to the subgraph relation (Abdulla and Jonsson [AJ01]). We use the
subgraph relation v on graphs with C1 v C2 if there exists an injective morphism
from C1 to C2. This corresponds directly to the containment relation on positive
constraints. Since the subgraph relation is a well-quasi-order for n-bounded path
graphs, the containment relation is also a well-quasi-order.
Let G,H be graphs, p be a rule, and G be a subgraph of H. Let p be applicable
on G, then there exists an injective morphism g : L ↪→ G from the left-hand
side of p to G. Since G is a subgraph of H there exists an injective morphism
m : G ↪→ H. Composing g and m, we obtain the morphism h from L to H.
The application of p replaces L by R in both graphs G and H resulting in G′

and H ′, respectively. Since p is increasing, it follows that G′ is a subgraph of H ′,
thus the constraint system is monotone w.r.t. the subgraph relation. Suppose
Construction 7 would not terminate for n-bounded path grammars. Then there
would exist an infinite path · · · →→ c2 → c1 → c0 where each ci is n-bounded path
(i ≥ 0). By Construction 7, each ci is n-bounded path. Moreover, @i < j. ci v cj,
because otherwise cj would immediately be subsumed. Since the v is a well-
quasi-order, there must exist i < j. ci v cj. This is a contradiction. Thus, the
construction terminates. 2

Closure properties

Similar to formal language theory, we define deterministic constraint automata and
transform nondeterministic constraint automata into deterministic ones. More-
over, it is shown that constraint automata are closed under the Boolean operations
complementation and product construction.

Definition 17 (deterministic automata). A constraint automaton A = (A, S)
is deterministic if for each constraint b ∈ C and each rule % in the automaton, the
application conditions in b →〈%,aci〉 bi are disjoint. Two application conditions ac
and ac′ are disjoint if the sets JacK and Jac′K are disjoint.

Example 20. Examples of deterministic automata are given in Figures 3.9
and 3.10.

Lemma 13. For every constraint automaton A, a deterministic automaton A′
can be effectively constructed such that L(A) = L(A′).

Construction 8. By a refined power-set construction (see, e.g., Hopcroft and
Ullman [HU79]). Let AC be the set of application conditions occurring in the

57

automaton and AC′ the refined set such that all application conditions are disjoint.
Refine each transition b →〈%,ac〉 b

′ by the transitions b →〈%,aci〉 b
′ with ac =

∧
aci,

aci ∈ AC′ and apply the power-set construction.

Remark. In most of our examples, we have an unrestricted rule and a rule
restricted by an application condition ac. By the refined power-set construction,
we get the simplification illustrated in Figure 3.8.

b b′

%

〈%, ac〉
Refine
=⇒

b b′

〈%, ac〉
〈%,¬ac〉

〈%, ac〉

Power set
=⇒

{b} {b, b′}

〈%,¬ac〉 %

〈%, ac〉

Figure 3.8: Illustration of the refined power-set construction

Different transitions between the same constraints are drawn by one line.

Example 21 (power-set construction). By the power-set construction, the au-
tomaton A2tok in Example 18 can be transformed into an equivalent deterministic
automaton A′2tok given in Figure 3.9.

netstart place tok 2tok
AddPl

AddTra AddPl, AddTra
AddPl, AddTra
AddTok,¬gtoks

AddTok AddTok
gtoks

AddPl, AddTra
AddTok

A′2tok

Figure 3.9: The deterministic automaton A′2tok.

The automation A′2tok is deterministic: the restricted rules 〈AddTok, gtoks〉 and
〈AddTok,¬gtoks〉 are distinct because the application conditions gtoks and ¬gtoks
are distinct. The sets {net}, {net, place}, {net, place, tok}, {net, place, tok, 2tok}
are represented by their maximum, i.e., net, place, tok and 2tok, respectively. Note
that we draw only states accessible from the initial state. Moreover, we do not
draw the transitions to the empty state.

58

Proof. The refinement step and the power-set construction do not change the
semantics of the constraint automaton. By the power-set construction, the au-
tomaton is deterministic. 2

Example 22 (deterministic automaton). The deterministic automaton A′tok

may be obtained from automaton A′2tok of Example 21 by deleting the state 2tok
and all incident edges (see Figure 3.10).

netstart place tok

AddTra

AddPl

AddPl, AddTra

AddTok

AddPl, AddTra
AddTok

A′tok

Figure 3.10: The deterministic automaton A′tok.

Lemma 14. The languages of constraint automata are closed under complement,
intersection, and union.

Idea. The construction makes use of the complement and a slightly modified
product construction.

Construction 9 (complement & product construction).

1. For finite positive constraints, see Construction 6.

2. For finite negative constraints, the constraint automaton is constructed from the
deterministic automaton for c by complement construction. For Ac = (A, S),
let A¬c = (A′, S) be the constraint automaton where A′ is the complement of A.

3. For finite conjunctive (disjunctive) constraints, the constraint automaton is
constructed from the deterministic automata for the components by product
construction. For simplicity, we describe the construction for the case of two
constraints.

For constraint automata Ac,i = (Ai, S) for a graph grammar (R, S) with under-
lying finite automata Ai = (Ci,R′i, δi, C0i, Fi), let Ac = (A, S) be the constraint
automaton with A = (C,R′, δ, C0, F) where C = C1 × C2 is the product of C1 and
C2, R′ = {〈p, ac1 ∧ ac2〉 | 〈p, aci〉 ∈ Ri}, C0 = {(c01, c02) | c0i ∈ C0i} is the set of
initial states, and F = {(f1, f2) | fi ∈ Fi} is the set of final states in the case of
conjunction and F = {(f1, f2) | f1 ∈ F1 ∨ f2 ∈ F2} in the case of disjunction. The
transition function is given by δ((b1, b2), %) = (δ1(b1, %1), δ2(b2, %2)) where bi ∈ Ci,
%i = 〈p, aci〉, and % = 〈p, ac1 ∧ ac2〉.

59

Example 23 (complement construction). For the constraint ¬2tok, the con-
straint automaton A¬2tok is constructed from the deterministic automaton A′2tok

according to the complement construction. The result is given in Figure 3.11.

netstart place tok 2tok
AddPl

AddTra

AddPl

AddTra
AddPl, AddTra
AddTok,¬gtoks

AddTok AddTok
gtoks

AddPl, AddTra
AddTok

A¬2tok

Figure 3.11: The complement automaton A¬2tok.

Example 24 (product construction). Let A′tok be the deterministic automa-
ton obtained from the automaton A′2tok of Example 21 by deleting the state 2tok
and all incident edges (see Figure 3.10). For the constraint rtok = tok∧¬2tok, the
automaton Artok is constructed from the automata A′tok and A′¬2tok in Figures 3.10
and 3.11 according to the product construction. The result is given in Figure 3.12.

netstart place tok 2tok
AddPl

AddTra

AddPl

AddTra

AddTok

AddPl, AddTra
AddTok,¬gtoks

AddTok
gtoks

AddPl, AddTra
AddTok

Artok

Figure 3.12: The product automaton Artok.

Pairs (b, b′) with b v b′ are represented by b′. Only states accessible from the initial
state are drawn.

Proof (of Lemma 14). The statements follow immediately from Lemma 10
and the results on complement and product automata in formal language theory.
1. See the proof of Lemma 10.
2. Let Ac = (A, S) with deterministic automaton A = (C,R′,→, C0, F) and
A¬c = (A′, S) be the complement automaton with A′ = (C,R′,→, C0, C − F). By

60

construction, b→∗ b′ is a path in A′ iff b→∗ b′ is a path in A. As a consequence,
we obtain the language equality.

G ∈ L(A¬c)
⇔ ∃ w ∈ L(A′).S ⇒∗w G (Def L(A¬c))
⇔ ∃ path c0 →w f ∈ C−F.S ⇒∗w G (Def L(A′))
⇔ ∃ path c0 →w f ∈ F.S ⇒∗w G (Def L(A))

⇔ ∃ w′ ∈ L(A).S ⇒∗w G (Def L(Ac))

⇔ G ∈ L(GG) ∩ J¬cK (Lemma 11)

where c0 ∈ C0. Thus, L(A¬c) = L(GG) ∩ J¬cK.
3. Let Aci = (Ai, S) with Ai = (C,R′,→i, C0i, Fi) be deterministic automata and
Ac = (A, S) with A = (C,R′,→, C0, F) the product automaton. By construction
(*) ∃(b1, b2)→% (b′1, b

′
2) in Ac iff ∃bi →%i b

′
i in Aci (i = 1, 2). As a consequence, we

obtain the language equality.

G ∈ L(Ac)

⇔ ∃ w ∈ L(A).S ⇒∗w G (Def L(Ac))

⇔ ∃ path (c01, c02)→w (c1, c2) ∈ F.S ⇒∗w G (Def L(A))

⇔ ∃ paths c0i →wi
ci ∈ Fi.S ⇒∗w G (Const 9, (*))

⇔ G ∈ L(GG) ∩ Jc1K and G ∈ L(GG) ∩ Jc2K (Lemma 11)

⇔ G ∈ L(GG) ∩ Jc1 ∧ c2K (Logic)

where (c01, c02) ∈ C0, c0i ∈ C0i (i = 1, 2). Thus, L(Ac1∧c2)=L(GG) ∩ Jc1 ∧ c2K. 2

Filtering

We construct a graph grammar from a constraint automaton and derive our main
theorem: the Filter Theorem for graph grammars and constraints.

Lemma 15 (from constraint automata to graph grammars [Bec16]).
For every (goal-oriented) constraint automaton Ac, a (goal-oriented) graph gram-
mar GGc can be constructed effectively such that L(GGc) = L(Ac).

Construction 10. For simplicity, we give the construction for deterministic
automata. For non-deterministic automata, the construction is similar.
Let Ac = (A, S) be a deterministic constraint automaton with the underlying
automaton A = (C,R′, δ, C0, {c}). Then the graph grammar GGc = (C,R′c, S) is
constructed as follows. The nonterminals of the grammar are the constraints in C.

61

The rule set R′c is induced by the transition function δ: for instruction δ(c1, %) = c2

with rule % = 〈L⇒ R, ac〉, we create a new rule 〈L′ ⇒ R′, ac′〉 where the states c1

and c2 are integrated into the left- and the right-hand side, respectively, and the

constraint ac is shifted to L′. In more detail, let R′c = {S ⇒ S + c0 | c0 ∈
C0} ∪ {〈c1, %, c2〉 | δ(c1, %) = c2} ∪ { c ⇒ ∅} where the start rules add an

initial state c0, the simulating rules 〈c1, %, c2〉 = 〈L + c1 ⇒ R + c2 , ac′〉 with

ac′ = Shift(L ↪→ L + c1 , ac) simulate the working in the automaton, and the

deleting rule allows to terminate.

Example 25 (from automaton to grammar). The graph grammar GGrtok

can be derived from Artok in Figure 3.12. The states net, pl, tok, 2tok become the
“nonterminal symbols” of the grammar, pl abbreviates place. The rules are as in
Figure 3.13.

PN =⇒ PN net

PN net =⇒ PN Trtrans
net

PN net =⇒ PN Pl
place

pl

PN pl =⇒ PN Trtrans pl

PN pl =⇒ PN Pl
place

pl

Pl pl =⇒ Pl Tktok
tok

PN tok =⇒ PN Trtrans
tok

PN tok =⇒ PN Pl
place

tok

〈 Pl tok =⇒ Pl Tktok
tok ,¬gtoks〉

〈 Pl tok =⇒ Pl Tktok
2tok , gtoks〉

PN 2tok =⇒ PN Trtrans
2tok

PN 2tok =⇒ PN Pl
place

2tok

Pl 2tok =⇒ Pl Tktok
2tok

2tok =⇒ ∅

Figure 3.13: The graph grammar GGrtok

Remark. Since Ac is a goal-oriented automaton, the resulting grammar is.

Theorem 1 (Filter Theorem). For arbitrary graph grammars GG, arbitrary
graph constraints c, and for an index i ≥ 0, goal-oriented graph grammars GGc,i

(GGc) can be constructed such that

1. L(GGc,i) ⊆ L(GG) ∩ JcK and

2. in case of termination, L(GGc) = L(GG) ∩ JcK.

62

Example 26. For the graph grammar for Petri nets (Example 1) and the con-
straint rtok, the goal-oriented grammar GGrtok is shown in Figure 3.13.

Proof. The theorem follows immediately from Lemmata 10, 12, and 15. 2

Remark (typed graphs with containment). All results in this chapter
can be obtained for typed graphs with containment (see Definition 3): For the
construction of existential weakest liberal preconditions, E ′-M pair factorization
and the existence of M-pushout is used. Typed graphs with containment and
morphisms form a category (Lemma 1), that has these properties where E ′ andM
are the classes of all jointly surjective pairs of all injective morphisms, respectively.

3.3 Related work

In this section, we present some related concepts on model generation and the
integration of constraints in chronological order. For logic-based approaches and
a comparison with the graph-based approaches, see Radke et al. [RAB+18].

Model generation

Most approaches to instance generation are logic-oriented, e.g., Cabot et al.
[CCR07], Kuhlmann and Gogolla [KG12]. They translate class models with OCL
constraints into logical facts and formulas, such as Alloy [Jac12]. Then, an instance
can be generated or it can be shown that no instances exist.

Alternatively, graph grammars have been shown to be suitable and natural to
specify (domain-specific) visual languages in a constructive way. For an overview,
see Bardohl et al. [BMST99].

In Pennemann [Pen09], an algorithm is given that generates for each graph con-
dition c a non-deterministic program SeekSat(c), which finds a valid graph for
every satisfiable condition. Starting from the empty graph, the algorithm adds
items, progressing to a valid graph that satisfies the constraint. Since negative
conditions are refuted, the program needs backtracking. The algorithm is correct
and complete, but it is not guaranteed to terminate in general. For conditions of
the form ∃ (a, c) where c = true, SeekSat is guaranteed to terminate.

constraint c program
construction

program
SeekSat(c)

In Arendt et al. [AHRT14], Radke et al. [RAB+15, RAB+18], a translation of
OCL constraints to graph patterns or graph constraints is presented and therefore

63

bridge between both approaches. To formally treat models and meta-models (with-
out OCL constraints) they are translated to instance and type graphs. Hence, they
follow the graph-based approach keeping the graph structure of models as units
of abstraction where graph axioms are satisfied by default. Meanwhile, Bergmann
[Ber14] has implemented a translator of OCL constraints to graph patterns, which
is rather an efficient implementation, than a formal translation.

In Schneider et al. [SLO17, SLO18], a parallelizable symbolic model generation
approach for attributed graphs is presented. Firstly, a new logic for attributed
graph properties is introduced, where the graph and the attribution part are sep-
arated. The graph part is equivalent to first-order logic on graphs, the attribution
part is added to this graph part by reverting to the symbolic approach to graph
attribution, where attributes are represented symbolically by variables whose pos-
sible values are specified by a set of constraints making use of algebraic speci-
fications. Secondly, the parallelizable algorithm gradually generates a finite set
of so-called symbolic models, where each symbolic model describes a set of finite
graphs satisfying the graph property. The set of symbolic models jointly describes
all finite models for the graph property and does not describe any finite graph
violating the property. The attribution part uses an oracle, allowing for flexible
adoption of different SMT (Satisfiability Modulo Theories) solvers, in particular,
the SMT solver Z3. The algorithm is implemented in the tool AutoGraph.

In Semeráth et al. 2018 [SNV18] and Varró et al. 2018, [VSSH18], instances
of meta-models are generated with a graph solver by refining a general model
with a finite sequence of graph transformation rules along a refinement relation,
yielding a concrete instance. Partial instance models are defined, where a 3-valued
logical value is assigned to each element of the graph, extending a boolean value by
uncertainty. In each refinement step, it is checked, if the constraint is violated. In
Semeráth et al. 2020 [SBL+20], this approach is extended to generate models
with structural and attribute constraints. They combine the structural graph
solver with an SMT (Satisfiability Modulo Theories) solver. The numerical part
of the constraints is constructed as a conjunction of numerical clauses and solved
by the SMT-solver.

In Nassar et al. [NKAT20], a rule-based, configurable approach to automate
model generation, which produces instance models of meta-models with multiplic-
ity constraints conforming to the Eclipse Modeling Framework, is presented. The
repair approach by the author [NKR17] is used for the generation of large EMF
models, with up to half a million graph elements.

64

Integration of constraints

In the following, for positive constraints, we compare the construction by Radke
et al. [RAB+15, RAB+18] with the backward construction. It turns out that the
backward construction is finer that the construction of Radke et al. [RAB+18].

In Radke et al. [RAB+15, RAB+18], given a positive constraint, the integration
of constraints is done by replacing all rules by the corresponding guaranteeing
rules gua(%, c). This guarantees that for all derivations via c-guaranteeing rules,
the result satisfies the constraint c.

The application-condition-based approach of Radke et al. is very simple. The
problem is that in several cases, the language L(GGc) is empty (see, e.g., Exam-
ple 27). In practical applications, no output is only acceptable if the set of graphs
satisfying c in the language L(GG) is empty.

Fact 4 (refining construction). For positive constraint, the backward con-
struction is finer than the one of Radke et al., i.e., for each solution of the weak
filter problem by Radke et al. there is a solution by the backward construction.
The converse direction does not hold.

Sketch of proof. For positive constraints c, b in Wlp∃(%, c) implies b contains c,
the application condition Gua(%, b) contains Gua(%, c) (in the sense of Defini-
tion 11), and whenever the rule gua(%, c) is applicable, then the rule gua(%, b)
is applicable. Thus, every solution by Radke et al. implies a solution by the
backward construction.

Example 27 shows, that the converse does not hold.

Example 27 (Refining construction). Consider the graph grammar GG in

Example 1 with the start graph S = PN Pl
place . For the constraint c = tok,

meaning there is a place with one token, the language L(GGc) of Radke et al. is
infinite. For the constraint c = 2tok, meaning there is a place with two tokens, the
language L(GGc) of Radke et al. is empty. The reason is that the start graph S
has a place without token and the c-guaranteeing rule of AddTok is not applicable
to S because AddTok adds only one token.

In contrast, the backward construction terminates and leads the to constraint
automaton A2tok from Figure 3.5 and, from that, to a graph grammar GGc with
L(GGc) = L(GG) ∩ JcK.

In Becker [Bec16, Thm 1], it is shown that the filter problem is solvable for ar-
bitrary graph grammars GG and arbitrary graph constraints: The used method
is generate & test: first, generate a graph and, then, test whether the constraint

65

is satisfied. Unfortunately, the grammar is not goal-oriented. If the final graph
does not satisfy the constraint, the construction tries to find a graph satisfying the
constraint again. In Becker [Bec16, Thm 2 & 3], it is shown that the filter problem
is solvable by a goal-oriented grammar. The statement is based on a backward
construction similar to ours. [Bec16, Algorithm 1] assumes the existence of a “dis-
junctive normal form” for constraints. In general, for arbitrary constraints, there
is only a normal form. Algorithm 1 makes use of equivalence and implication, i.e.,
it is not effective. In this chapter, we use minimization and containment which
can be easily constructed and checked and implies equivalence and implication,
respectively.

grammar constraint rel method uses
Becker arbitrary arbitrary = generate & test gua
Radke et al. arbitrary arbitrary ⊆ appl conditions gua
this chapter arbitrary arbitrary ⊆ automata-based Wlp∃, gua
this chapter non-del & bp positive = automata-based Wlp∃, gua

where non-del stands for plain, non-deleting and bp for bounded path

� The application-condition-based constructions of Becker and Radke et al.
are simple: Becker uses only one c-guaranteeing rule for the final test; Radke
et al. equip all rules with a c-guaranteeing application condition.

� The automata-based construction is more difficult: One has to construct the
least weakest preconditions (Wlp∃) as well as c-guaranteeing rules (gua).

In Hildebrandt et al. [HLBG12], an approach to integrate constraints into
model transformations based on triple graph grammars is presented. In addition
to the integration, the approach can check if the grammar is “forward (backward)
valid”, meaning that a transformation always produces a model satisfying the
constraints, provided that the input model satisfies the constraints. The invariant
checker either reports that a constraint is preserved for a given set of rules, or
it automatically calculates all minimal situations indicating why rules might be
applied to a constraint-satisfying graph leading to a graph, violating the constraint.

3.4 Conclusion

The backward construction works for arbitrary graph grammars and arbitrary
constraints. If the existential weakest liberal precondition Wlp∃(%, c) = ∨i∈Ibi is a

66

disjunction of several constraints, there is a proper decomposition into the smaller
components bi which can be handled in the same way. For plain, increasing gram-
mars and positive constraints, Wlp∃(p, d) is a disjunction of positive constraints
and the states in constraint automata are positive constraints. If Wlp∃(%, c) is not
a disjunction of several constraints, e.g., ∧i∈Ibi, then the complex constraint ∧i∈Ibi
has to be handled.

b1

...

bn

c

Gua(p, c)

Gua(p,
c)

b1∧. . .∧bn c
Gua(p, c)

backward
construction

termination for specific
grammars & constraints

based on ex. wlp
and guaranteeing rules

works for arb. (typed attributed) grammars
& arb. constraints

automata-theoretic
closure results

Figure 3.14: Advantages and disadvantages of the backward construction

To summarize (see Figure 3.14), the backward construction

(1) works for arbitrary graph grammars and constraints. the backward
construction is based on the construction of existential weakest liberal precon-
ditions and guaranteeing rules. These constructions can be done for arbitrary
(typed attributed) graph grammars and constraints.

(2) has automata-theoretic closure results. Similar to formal language theory,
there is a transformation of (nondeterministic) constraint automata into deter-
ministic ones. Moreover, constraint automata are closed under the Boolean op-
erations complementation and product. In this way, we can construct constraint
automata for more complex constraints. (We construct constraint automata for
the basic constraints, use the Boolean operations for the constraint automata
and obtain a constraint automaton for the more complex constraint.)

The drawback of the construction is the termination for specific grammars and
constraints.

67

Further topics

Program automata. For constraints of the form ∀(a, c), e.g., the constraint
alltok = ∀(Pl ,∃ Pl Tktok), meaning that all Pl-nodes have a tok-edge to a
Tk-node, the constraint automata can be generalized to program automata, where
the transitions of the automata are decorated by graph programs instead of rules
equipped with application conditions. This way, a finite program automaton may
be obtained instead of an “infinite” constraint automaton. This may be seen as
the motivation for the next chapter, where we consider so-called repair programs.

68

Chapter 4

Graph repair

In model-driven software engineering, the primary artifacts are models (Sendall
et al. [SK03], Heckel and Taentzer [HT20]). Models have to be consistent with
respect to a set of constraints, specified for example in the Object Constraint
Language (OCL) [Obj14]. To increase the productivity of software development,
it is necessary to automatically detect and resolve inconsistencies arising during
the development process, called model repair (see, e.g., Nentwich et al. [NEF03],
Macedo et al. [MTC17], Nassar et al. [NRA17]). Our approach to model repair is
the following.

Structure
& typing

OCL
constraints

Graph
grammar

Graph
constraints

Instances Instances

Graph
Program

1

translate

[Tae12]

translate

[RAB+18]

generate repair

induce

construct

input

[HS18, SH19, San20]M
et

a-
m

o
d

el

conform to

Figure 4.1: Instance repair of meta-models

(1) Translate the structure of the meta-model and its typing into a (typed) graph
grammar GG (Taentzer [Tae12]) and OCL constraints into graph constraints c
(Radke et al. [RAB+18]).

(2) Generate instances I ∈ L(GG) in the language of the constructed grammar,
possibly violating the constraint (drawn in red in Figure 4.1).

(3) Repair instances to instances I ′ ∈ L(GG) satisfying graph constraints c.

1The illustration shows the main components of a meta-model: the structure and the typing
as well as OCL constraints. The OCL constraints are typed over the meta-model. The relations
between the structure and typing of the meta-model and the OCL constraints are not drawn.
For a definition of a meta-model, see Section 5.1.

69

Up to now, a well-founded theory to repair arbitrary instances into instances con-
forming to the constraints is missing.

Bibliographic notes. In Taentzer [Tae12], a (restricted) form of meta-models
is formalized by type graphs with multiplicities. From these meta-models, an
instance-generating (typed) graph grammar is introduced for creating typed graphs
representing the structures of the models. It is shown that for each type graph
with inheritance and multiplicities an instance-generating (typed) graph grammar
can be constructed, such that the languages are equal. In Radke et al. [RAB+18],
a meta-model is translated to a type graph and so-called Essential OCL invariants
are translated to graph constraints. It is shown that a model satisfies an Essential
OCL invariant iff its corresponding typed graph satisfies the typed graph condition.

Since instances can be modelled as graphs, in this chapter, we consider the problem
of graph repair : Given a graph and a constraint, try to construct a graph, satisfying
the constraint. To get a graph repair for a graph and a constraint, we construct
repair programs. A repair program is a graph program with the property that for
every graph and every constraint,

(1) Existence. There exists a transformation with the program and

(2) Correctness. All transformations via the program yield a graph satisfying the
constraint.

This has the advantage, that we may create a repair program only once and can
reuse it for every graph, provided that the constraints do not change.

Repair problem

Given: A graph constraint d.
Task: Try to find a repair program P : ∀G∃G⇒P H and ∀G⇒P H. H |= d.

constraint d program
construction

repair program P
for d

We solve the repair problem for suitable constraints. The construction is done in
two steps.

(1) Construct a repair program P directly from the constraint such that for all
graphs, there exists a transformation with the program and, for each applica-
tion, the resulting graph satisfies the constraint.

(2) Apply the program P to a graph G to get a graph repair, that is, the resulting
graph satisfies the constraint.

70

In Section 4.1, we introduce repair programs. In Section 4.2, we start with ba-
sic conditions, requiring the existence (non-existence) of a real morphism. In
Section 4.3, we present repair programs for proper conditions. In Section 4.4,
we show that there are repair programs for several conjunctive conditions. In
Section 4.4, we show that there are repair programs for disjunctive conditions,
provided that there exist repair programs for the subconditions. In Section 4.5,
the repair results of the previous sections are summarized to a repair result for
so-called legit conditions. The class of legit conditions are all proper or generalized
proper2 ones, preserving conjunctions of conditions, and all disjunctive conditions.
In Section 4.6, we show that the constructed repair programs are stable, maximally
preserving, and terminating. In Section 4.7, we consider grammar-based programs,
i.e., programs which are based on a set of rules of a grammar, and grammar-based
graph repair. In Section 4.8, we present some related concepts and compare them
with our approach. In Section 4.9, we give a conclusion.

Bibliographic notes. The notion of repair programs is oriented at other no-
tions of correct programs, as in Apt and Olderog [AO91]: A program is correct,
if the application of the program yields a graph satisfying the constraint. A pro-
gram is weak total correct if, additionally, there is no infinite transformation with
transformation. It is total correct, if there exists a transformation with program.
For repair programs, we require the correctness and the existence. In Nassar et
al. [NRA17] a rule-based approach is presented, which is specialized for models,
which are based on the Eclipse Modeling Framework, and works with restrictions
on constraints and the input instances.

4.1 Repair programs

In this section, we define repair programs and sketch some desirable properties
for these repair programs, which are highly relevant for our application to meta-
modeling and are based on the paper of Macedo et al. 2017 [MTC17].

A repair program for a constraint is a program such that for all graphs there exists
a transformation and for every application to a graph, the resulting graph satisfies
the constraint. More generally, a repair program for a condition over a graph A is
a program P with interface A such that for every triple 〈g, h, i〉 in the semantics
of P , the composition of the interface relation i and the morphism h satisfies the
condition. Similar to Schneider et al. [SLO19], one may construct a repair with
respect to one graph: Given a constraint and a graph, construct a graph, satisfying

2Generalized proper: conditions obtained by a proper condition by replacing a subcondition
with a condition possessing a repair program for the subcondition.

71

the constraint, based on the input graph. In contrast, the repair programs, have
the properties for every graph. We have chosen this approach, because we may
create a repair program only once and can reuse it for every graph. For a more
detailed comparison with the approach of Schneider et al., we refer to Section 4.8.

Definition 18 (repair programs). A (typed) program P is a (typed) repair
program for a constraint d if, for all (typed) graphs G, ∃G⇒P H and ∀G⇒P H,
H |= d.

condition d program
construction

repair program P
for ac

A (typed) program with interface A is an A-program if the interface relation i
of the (typed) program is total, and the codomain of i is A. An A-program P
is a repair program for a condition ac over A, if for all morphisms g : A ↪→ G,
∃ g ⇒P,i h and ∀ g ⇒P,i h, h ◦ i |= ac.

A A

G H

i

P

g h

d

Example 28. For the constraint d = @ (Pl Tk
tok

tok
), meaning there do not

exist two tok-edges between a Pl-node and a Tk-node, the program

Pd = 〈 Pl Tk
tok

tok
⇒ Pl Tktok 〉↓

is a repair program for d. Given an input graph, whenever there are two parallel
tok-edges, the program deletes one. This deletion of one of the edges is done as
long as possible. Since d is a constraint, i.e., the domain is the empty graph, the
interfaces of the program are empty.

Given a condition, there may be several different repair programs for it. A pro-
gram for a condition is destructive, if it deletes the input graph and creates a
graph satisfying the condition from the empty graph. In Pennemann [Pen08], a
non-deterministic, increasing algorithm SeekSat for the solution of the satisfia-
bility problem is presented. The algorithm returns a graph for every satisfiable
condition. The algorithm is correct and complete but is in general not guaranteed
to terminate.

72

Lemma 16. For every satisfiable3 condition, there exists a destructive repair
program.

Proof. For a satisfiable condition d, the program Pd = 〈Delete↓; SeekSat(d)〉,
where Delete denotes the program to delete an arbitrary graph (with arbitrary
types), is a destructive repair program for d. 2

We are interested in so-called stable, maximally preserving, and terminating repair
programs. Informally, a repair program is

(1) stable, if it does nothing whenever the condition is already satisfied.

(2) maximally preserving , if, informally, items are preserved whenever possible,

(3) terminating , if there is no infinite transformation with the repair program.

Formal definitions are given in Section 4.6.

Example 29. The repair program from Example 28 is (1) stable, (2) maximally
preserving, and terminating. (1) The program Pd for d can only delete one of
the two parallel tok-edges. This is done as long as possible. Whenever all occur-
rences of the two parallel tok-edges are deleted, the program cannot be applied.
Consequently, it does not change the input graph, provided that the condition
is satisfied, i.e., it is stable. (2) Whenever the graph does not satisfy the con-
straint d, the constraint cannot be repaired without deleting at least one of the
two parallel tok-edges, for each occurrence in the graph. The repair program Pd

for d deletes only one of the tok-edges, as long as possible. For an input graph, the
program preserves as much of the edges, as possible, i.e., the program is maximally
preserving. (3) The program is decreasing, and, consequently there is no infinite
transformation, i.e., it is terminating,

In the remainder of the chapter, we construct repair programs for different kinds of
constraints or - more generally - conditions. For this purpose, we start with small
conditions, so-called basic conditions, requiring the existence (non-existence) of a
real morphism. For larger conditions, the repair program is composed of basic
repair programs.

Bibliographic notes. One may require termination for all the repair programs.
In contrast, we have shown it as a special requirement. The reason for this, is
that the construction of terminating repair programs is very difficult, and we only
get terminating repair programs, for specific constraints and specific rule sets. For
example, the destructive repair program may not be terminating, in general.

3A condition c is satisfiable if there is a morphism p that satisfies c.

73

4.2 Basic conditions

In the following, we construct repair programs for “smallest” conditions. For this
purpose, we start with basic conditions, i.e., conditions of the form ∃ a or @ a with
real morphism a : A ↪→ C requiring the existence or non-existence of a morphism.

Definition 19 (basic condition). Given a real morphism a : A ↪→ C with
A ⊂ C, a condition is basic if it is of the form ∃ a or @ a. A basic condition of the
form ∃ a (@ a) is positive (negative).

For basic conditions, we construct so-called (1) repairing sets from the morphism
of the condition and (2) repair programs based on the repairing sets using the try
statement and the “as long as possible” iteration, respectively.

Lemma 17 (basic repair). For basic conditions, there are repair programs.

Proof. For the proof, see the proof of Theorem 2. 2

In the following, we present a so-called ad hoc construction and a solid construc-
tion. Both constructions are based on the same idea. For basic conditions, we de-
compose a real morphism a : A ↪→ C into subgraphsB of C, such that A ↪→ B ⊂ C.
These subgraphs form the building blocks of the resulting rules: for positive con-
ditions ∃ a, we construct the rules B ⇒ C, for negative conditions @ a, the rules
C ⇒ B. For positive conditions, both constructions require that the condition ∃ a
shifted to the left-hand side of the rule, is not satisfied. This guarantees stability.
These rule sets are equipped with interfaces. The ad hoc construction allows tak-
ing a superset of C as the right-hand side of the rule. This allows us to be more
flexible with the repairs. The superset may be the result of an arbitrary applica-
tion of rule sets for adding nodes and edges. The solid construction requires an
additional application condition, which guarantees that the rule with the maximal
subgraph B of C is applied. This guarantees termination. For negative condi-
tions, the solid construction requires that the rule only deletes one edge, if this is
possible, or one node, otherwise. This guarantees maximal preservation.

Given an input morphism g : A ↪→ G, and a condition ∃ a that is not satisfied, the
construction extends any occurrence of B in the graph G to an occurrence of C.
For a condition @ a that is not satisfied, the construction removes any occurrence
of C in the graph G to an occurrence of B. By choosing the maximal B, application
of the rule B ⇒ C (C ⇒ B) yields minimal additions (deletions).

74

A

B C

G H

ab
g h

g′ h′=

We will start with the ad hoc construction, which is easier to construct than the
solid construction.

Construction 11 (ad hoc repair). For a real morphism a : A ↪→ C with
A ⊂ C, the programs are as follows.

P∃ a = try R̂a with R̂a = {〈b, B ⇒ Ĉ, ac, â〉 | A ↪→b B ⊂ C ⊆ Ĉ}, and

P@ a = Ŝa
′
↓ with Ŝa = {〈a, C ⇒ B, b〉 | A ↪→b B ⊂ C},

where â : A ↪→ Ĉ, ac = Shift(b, @ a), and ′ denotes the dangling-edges operator.

Example 30. Consider the constraint d = ∃ a with a : ∅ ↪→ Pl meaning,
that there exists Pl-node. There is one graph B = ∅ such that ∅ ⊆ B ⊂ Pl .

Application of the ad hoc construction may yield a rule set R̂a with the rules

〈∅ ⇒ Pl ,@ Pl 〉

The application conditions are constructed by shifting the condition @ a to the
left-hand side of the rule. Since the ad hoc construction allows for a super set of
the Pl-node, the ad hoc construction may extend the rule set R̂a by a second rule:

〈∅ ⇒ Pl Pl ,@ Pl 〉

The application of the first rule yields a graph with one Pl-node, the second one
with two Pl-nodes. The program Pd = try R̂a is a repair program for d.

Example 31. Consider the condition @ a with a : Pl ↪→ Pl TkTk toktok . By
the ad hoc construction, the rule set

Ŝa = {〈a, Pl TkTk toktok ⇒ Pl Tktok , b〉}

with b : Pl ↪→ Pl Tktok constitutes the repairing set for @ a. The rule is node-
deleting, i.e., it deletes a Tk-node with an incident edge. For the application of
the rule to a graph, it may be necessary to delete the dangling edges: Application
of the rule deletes a Tk-node and a tok-edge. If the occurrence of this Tk-node in
the application graph possesses dangling edges, the dangling edges are deleted, as

well. The program Pd = Ŝa
′
↓ is a repair program for d.

75

The ad hoc is easy to construct, but may be, in general, not terminating or max-
imally preserving. The solid construction is more restrictive, but is stable, maxi-
mally preserving, and terminating.

Construction 12 (solid repair). For a real morphism a : A ↪→ C, the programs
are as follows.

P∃ a = try Ra with Ra = {〈b, B ⇒ C, ac ∧ acB, a〉 | A ↪→b B ⊂ C} and

P@ a = S ′a↓ with Sa = {〈a, C ⇒ B, b〉 | A ↪→b B ⊂ C and (mp)}

where ac = Shift(A ↪→ B, @ a), acB =
∧

B′ @B′,
∧

B′ ranges over B′ with B ⊂
B′ ⊆ C, (mp)4 if EC ⊃ EA then |VC | = |VB|, |EC | = |EB| + 1 else |VC | =
|VB|+ 1, and ′ denotes the dangling-edges operator.

Convention. In the following, repair programs based on the solid (ad hoc) con-
struction are said to be solid (ad hoc) repair programs.

Informal Description. The rules in Ra are of the form B ⇒ C equipped
with interfaces. They possess an application condition requiring the condition @ a,
shifted from A to B. By the application condition, each rule can only be applied
iff the condition is not satisfied. The rules in Sa are decreasing and of the form
C ⇒ B where A ⊆ B ⊂ C. By B ⊂ C, both rule sets do not contain identical
rules. The rules in Ra are equipped with an application condition requiring that
no larger subgraph B′ of C occurs. This yields termination: by the application
condition, each rule can only be applied if no other rule whose left-hand side
includes B and is larger can be applied. The rules in Sa are restricted, such that,
if the number of edges in C is larger than the one in A, they delete one edge and
no node, and delete a node, otherwise. We delete edges instead of nodes, whenever
possible since it is more costly to delete nodes than edges.

Fact 5. Each solid repair program is an ad hoc repair program. The converse does
not hold. The ad hoc repair programs are stable, but, in general, not maximally
preserving and terminating (see Facts 14 and 15). The solid repair programs turn
out to be stable, maximally preserving, and terminating (see Lemmata 23, 24,
and 26).

A morphism a : A ↪→ C is edge-increasing if the number of edges in the codomain
is larger than the number of edges in the domain, i.e., |EC | > |EA|. For edge-
increasing morphisms, the rule set Sa and the program S ′a are equivalent.

4This requirement guarantees, that the resulting repair programs are maximally preserving.
Therefore, we name it (mp).

76

Fact 6. For edge-increasing morphisms a, Sa ≡ S ′a.

Example 32. Consider the condition d = ∃ a with a : Pl ↪→ Pl Tktok ,
meaning that whenever there is a Pl-node there exists a Tk-node and a connecting
containment tok-edge. There are two graphs B1 = Pl and B2 = Pl Tk , such
that Pl ⊆ Bi ⊂ Pl Tktok . Application of the solid construction yields a rule
set Ra with two rules.

Ra =

{
〈 b1, Pl ⇒ Pl Tktok ,@ Pl Tk , a 〉
〈 b2, Pl Tk ⇒ Pl Tktok ,@ Pl Tktok ∧ @ Tk Pl Tktok , a 〉

where the left interface morphisms are b1 : Pl ↪→ Pl and b2 : Pl ↪→ Pl Tk

and the right interface morphisms are the morphism a of the condition. The
application condition is constructed by shifting the condition @ a over the left
interface morphisms bi of the rule. For the first rule, there is a larger graph
B′1 = Pl Tk such that Pl ⊂ B′1 ⊆ Pl Tktok . The first rule is equipped
by a left application condition forbidding the existence of the graph B′1. This
yields termination, by the application condition, the rule is only applicable if the
input graph does not have a Tk-node. The rule %1 requires a Pl-node and attaches
a Tk-node and a connecting containment tok-edge, provided that there do not
exist a Pl-node and a Tk-node. The second rule %2 requires an occurrence of a
Pl- and a Tk-node and inserts a connecting containment tok-edge, provided there
is no containment tok-edge from the occurrence of the Pl-node to the image of
Tk-node, and there is no containment tok-edge to another Tk-node. The program
Pd = try Ra is a repair program for d.

Example 33. Consider the condition @ a with a : Pl ↪→ Pl TkTk toktok . The
morphism is edge-increasing and there is a graph B1 = Tk Pl Tktok resulting
in a rule which deletes exactly one edge. By the solid construction, the rule set

Sa = {〈a, Pl TkTk toktok ⇒ Tk Pl Tktok , b〉}

with b : Pl ↪→ Tk Pl Tktok constitutes the repairing set for @ a. The program
Pd = S ′a↓ is a repair program for d = @ a.

Bibliographic notes. The repair programs are partial correct, in the sense of
Apt and Olderog [AO91], w.r.t. true and d. We will show, that the solid repair
programs are terminating (see Lemma 26). From this it follows, that the solid
repair programs are weak partial correct w.r.t. true, d. For all repair programs
there exists a transformation with the program. Consequently, the solid repair
programs are total correct w.r.t true, d.

77

4.3 Proper conditions

In this section, we construct repair programs for so-called proper conditions. They
are more general than basic condition, i.e., proper conditions extend the basic con-
ditions to the nesting structure of conditions without conjunctions and disjunc-
tions.

A proper condition is a linear condition with alternating quantifiers ending with
true. Additionally, some specific linear conditions with alternating quantifiers
ending with false are said to be proper: conditions of the form ∀(b, false) equiv-
alent to @ b, and conditions of the form ∃ (a,∀(b, false)) equivalent to ∃ (a,@ b).

Definition 20 (proper conditions). A linear condition in alternating normal
form is proper if that ends with true or it is a condition of the form ∃ (a,@ b)
or @ b. A proper condition of the form ∀(a, c) (and ∃ (a, c)) that ends with true is
universal (and existential), respectively.

∃ (a1,∀(a2,∃ (a3, . . . , true) ∃ (a1,∀(a2,∃ (a3, . . . , false)

∀(a1,∃ (a2,∀(a3, . . . , false)∀(a1,∃ (a2,∀(a3, . . . , true)

@ a1

∃ (a1,@ a2) −∃ (a1,@ a2)

−@ a1

universal

negative

existential

proper non-proper

Figure 4.2: Illustration of proper conditions5

Example 34. The linear constraints

∀(Pl ,∃ Pl Tktok)

∀(Tk PlPl toktok , false) ≡ @ Tk PlPl toktok

∃ (Pl ,∀ Pl TkTk toktok , false) ≡ ∃ (Pl , @ Pl TkTk toktok)

are proper. The linear constraint

∀(Pl ,∃ Pl Tktok ,∀ Pl Tk
tok

tok
, false) ≡ ∀(Pl ,∃ Pl Tktok , @ Pl Tk

tok

tok
)

is non-proper.

5In the figure, the minus symbol means, that the conditions are excluded from this side.

78

Proper conditions turn out to be satisfiable.

Lemma 18. Every proper condition is satisfiable.

Proof (By induction along the nesting structure of the condition).

By the equivalence rules from Fact 2, proper conditions are satisfiable: For con-
ditions of nesting depth n = 0, the proper condition is true, which is satisfiable.
For conditions of nesting depth n = 1, the proper conditions are ∃ (x, true) ≡
∃x, ∀(x, true) ≡ true, which are both satisfiable. For the proper condition
∀(x, false) ≡ @x, x is a real morphism. Consequently, it is satisfiable. For
conditions of nesting depth n→ n+ 1, there are two cases.

(1) Let d = ∀(x, c), then, by Definition 20, d ends with true, by induction hy-
pothesis, c is satisfiable, and consequently, d is satisfiable.

(2) Let d = ∃ (x, c). Since d is a condition with alternating quantifiers, there are
two cases: 1. c has a ∀-quantifier, by induction hypothesis, c is satisfiable, d ends
with true, and consequently, d is satisfiable. 2. c has a @ -quantifier, then, by
Definition 20, d is of the form ∃ (x, @ b), and b is a real morphism, consequently, it
is satisfiable. 2

Note that also some non-proper conditions may be satisfiable, e.g.,
∀(◦1 ◦

2 , ∃ (◦1 ◦
2 ,∀(◦1 ◦

2 , false))) (see the remark at the end of the section).

For proper conditions, repair programs based on the solid (ad hoc) construction
can be constructed.

Theorem 2 (Repair I). There is a repair program for proper conditions based
on the solid (ad hoc) construction.

For the construction of repair programs for proper conditions, it is crucial to
hand over information between the transformation steps. To do so, we make
use of the statements Mark and Unmark to restrict the applicability of a program
to a marked context. Mark(a) = 〈a, idC〉 is the rule with left interface a and
identical plain rule idC = 〈C ←↩ C ↪→ C〉. Given an occurrence of A, it is used
for a marking of an occurrence of C, extending the occurrence of A. Similar,
Mark(a, ac) = 〈a, idC , ac〉 is used for marking an occurrence of C satisfying the
condition ac. Unmark(a) = 〈idC , a〉 is the identical plain rule with right interface a,
used for unmarking the occurrence of C.

79

Construction 13. For proper conditions d, the solid (ad hoc) repair programs
are constructed inductively as follows.

(1) For d = true, Pd = Skip.

(2) For d = ∃ a, Pd = try Ra.

(3) For d = @ a, Pd = S ′a↓.

(4) For d = ∃ (a, c), Pd = 〈P∃ a; 〈Mark(a);Pc; Unmark(a)〉〉.

(5) For d = ∀(a, c), Pd = 〈Mark(a,¬c);Pc; Unmark(a)〉↓

where a : A ↪→ C is real, Ra and S ′a are the sets according to the solid (ad hoc)
construction, and Pc is a repair program for c with interface C.

Remark. The constructions for the condition ∃ (a, c) and ∀(a, c) make use of the
existence of a repair program for c, not the properness of c. In the same way, one
can construct a repair program for condition ∃ (a, c) and ∀(a, c) with non-proper c,
but existing repair program.

Informal Description. The repair programs work as follows. (1) For the condi-
tion true, there is nothing to do. (2) For positive conditions ∃ a, for an occurrence
of A, we try to complete it to an occurrence of C, via the set Ra. Otherwise, the
condition is satisfied and we do nothing. (3) For negative conditions @ a, for each
occurrence of C, we delete as least as possible of it via the program S ′a↓. To do so,
we delete edges, whenever possible, and only delete nodes, if the morphism is not
edge-increasing. For the deletion of nodes, we have to delete the dangling edges
first, then apply the rule as in the double-pushout approach. (4) For existential
conditions ∃ (a, c), we try to repair ∃ a, then we mark one occurrence of C, apply
the program for c, and finally unmark. To do so, we make use of the interfaces.
(5) For universal conditions ∀(a, c), we mark each occurrence of C for which the
condition c is not satisfied, then we apply the repair program Pc for the condi-
tion c, and unmark. By the application of the rules as long as possible, we repair
each occurrence of C. By Mark(a,¬c), we fix one occurrence of C by making use
of the interfaces. If Mark(a,¬c) cannot be applied any more, each occurrence of C
satisfies c. This guarantees termination: each occurrence of C can only be marked
at most once.

Example 35. 1. Given the constraint d = ∃ (Pl , @ Pl TkTk toktok) meaning
there exists a Pl-node which does not possess two Tk-nodes and the connecting
containment tok-edges. The constraint is of the form ∃ (a, c), with a : ∅ ↪→ Pl ,

80

c = @ b, and b : Pl ↪→ Pl TkTk toktok . By Theorem 2(4), the repair program
for d is Pd = 〈try Ra; 〈Mark(a);Pc; Unmark(a)〉〉. The condition c is negative, and
by Theorem 2(3), Pc = S ′b↓, and Sb is the repairing set from Example 33. The
program tries to add a Pl-node. It marks a Pl-node and, if there are two tokens
and connecting containment tok-edges, it deletes one edge (see Figure 4.3). The
Pl-node is added at most one time, the deletion is done as long as possible.

PN

Pl Pl

Tk TkTk Tk

to
k

to
k

to
k

to
k

pl
ac
es

places

PN

Pl Pl

Tk TkTk Tk

to
k

to
k

to
k

to
k

pl
ac
es

places

PN

Pl Pl

Tk TkTk Tk

to
k

to
kto

k

pl
ac
es

places

PN

Pl Pl

Tk TkTk Tk

to
k

to
kto

k

pl
ac
es

places

Mark(a) S′b↓ Unmark(a)

Figure 4.3: Transformation via the repair program

2. Given the constraint d = ∀(Pl , ∃ Pl Tktok), meaning that for each
Pl-node, there exists a Tk-node and the tok-edge, a repair program for d can
be constructed according to Theorem 2. The constraint d is of the form ∀(a, c)
with morphism a : ∅ ↪→ Pl and condition c = ∃ Pl ↪→ Pl Tktok . By
Theorem 2(5), the repair program for d is Pd = 〈Mark(a,¬c);Pc; Unmark(a)〉↓.
The condition c is of the form ∃ b. By Repair Theorem 2(2), the repair program
for c is Pc = try Rb, where Rb is the rule set Ra from Example 32. The core
program 〈Mark(a,¬c);Pc; Unmark(a)〉 marks an occurrence of a Pl-node without
connecting containment edge to a Tk-node (see Figure 4.4). The program Pc tries
to add a Tk-node and the containment edge, provided there do not exist a Pl-
node and a Tk-node, and to add a containment edge between a Pl- and Tk-node,
provided that there does not exist such an edge to another Tk-node. Finally, the
marked part is unmarked. The core program is applied as long as possible. For the
left graph in Figure 4.4, after one application of the core program, the constraint d
is satisfied.

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

to
k

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

to
k

Pc

Figure 4.4: Transformation via the repair program

81

The proof of Theorem 2 makes use of the fact the rules in Ra are increasing and
the rules in Sa are decreasing.

A rule % = 〈L ←↩ K ↪→ R, ac〉 is decreasing (increasing) if L ⊃ K ∼= R (L ∼=
K ⊂ R). A program P is decreasing (increasing) if all rules in P are.

Fact 7. For negative conditions, the solid (ad hoc) repair program is decreasing.
For positive, existential, and universal conditions, the solid (ad hoc) repair program
is increasing.

Proof (of Theorem 2). By induction on the structure of the condition.

We show the correctness and existence of the solid repair programs for graphs, the
ad hoc repair programs for graphs, and typed graphs.

1. Solid repair programs.

Correctness. Let d be a proper condition. Let (1) Pd be the program based on

the solid construction and (2) P̂d be the program based on the ad hoc construction.

(1) Let d = true. For all triples 〈g, h, i〉 ∈ JSkipK, h ◦ i |= true, i.e., Skip is a
repair program for true.

(2) Let d = ∃ a, Pd = try Ra with Ra as in Construction 12, and g ⇒try Ra,i h.

(a) If g |= @ a, then there is a decomposition of the morphism g into morphisms
b : A ↪→ B and g′ : B ↪→ G such that g′ |= Shift(b,@ a). Then the rule % = 〈b, B ⇒
C, ac, a〉 in Ra is applicable yielding morphisms h′ and h = h′ ◦ a (see below). By
construction, h′ |= Shift(b,∃ a) and, by the Shift Lemma, h ◦ i |= ∃ a.

A

B C

G H

ab
g h

g′ h′=

(b) If g |= ∃ a, then, by the semantics of try, g ⇒Ra,i g = h ◦ i |= ∃ a.

(3) Let d = @ a and g ⇒S′a↓,i h. By the semantics of ↓, the program S ′a is not
applicable to h. Then, for every injective morphism h : A ↪→ H and every rule
〈a, C ⇒ B, b〉 in Sa, there is no injective morphism h′ : C ↪→ H, such that h′◦a = h,
i.e., h |= @ a (see Figure below).

H

C A
a

h
—

h′
=

∃ a
|=

82

(4) Let d = ∃ (a, c) and g ⇒Pd
h. By Definition of Pd the transformation is

of the form g =⇒
P∃ a,i1

h1 =⇒
Mark(a),a

h2 =⇒
P (c),i2

h2 =⇒
Unmark(a),a−1

h where i1, i2 are identities (see

Figure below).

G

A A

H1

C C

H

A
i1 a i2

P∃ a

g h1 h2 h3

a

h

Pc

= =

By induction hypothesis, P∃ a is a repair program for ∃ a and Pc is a repair program
for c, i.e., h1 ◦ i1 |= ∃ a and h3 ◦ i2 |= c. By the semantics of Mark and Unmark,
h1 = h2 ◦ a and h = h3 ◦ a. Consequently, there is some injective morphism
h3 : C ↪→ H with h = h3 ◦ a and h3 |= c, i.e., h ◦ i |= ∃ (a, c) where i is the identity.

(5) Let d = ∀(a, c) and g ⇒Pd
h. Let Pd = P ′d↓ with subprogram P ′d =

〈Mark(a,¬c);Pc; Unmark(a)〉. By Definition of Pd, the transformation is of the
form g ⇒Mark h0 ⇒Pc h1 ⇒Unmark h.

H

A C
a

h h′
—=

¬c
|=

By induction hypothesis, Pc is a repair program for c. By the semantics of ↓, the
program P ′d is not applicable to h, i.e., Mark(a,¬c) is not applicable, and there is
no morphism h′ such that h = h′ ◦ a and h′ |= ¬c, i.e., h |= ¬∃ (a,¬c) ≡ ∀(a, c).
This completes the inductive proof for graphs.

Existence. By assumption, the condition d over A is proper. By Lemma 18, d
is satisfiable, thus, there is a morphism g : A ↪→ G the satisfies d. By Construc-
tion, Pd is a program with interfaces A and the domain of g and i is A. Conse-
quently, the program is applicable to every g yielding a transformation g ⇒ h, i.e.,
∀g∃ g ⇒Pd,i h.

2. Ad hoc repair programs. Replacing Ra and Sa by R̂a and Ŝa, respectively,
we obtain the proof for the ad hoc repair programs. For positive conditions, if
g |= @ a, then the rule 〈b, B ⇒ C ′, ac, a′〉 in R̂a is applicable, 〈g, h, i〉 ∈ Jtry R̂aK
and h ◦ i |= ∃ a. For negative conditions let 〈g, h, i〉 ∈ JŜa

′
↓K, by the semantics

of ↓, Ŝa
′

is not applicable to h ◦ i, i.e., h ◦ i |= @ a.

3. Typed graphs: For every morphism a : A ↪→ C, and every proper subgraph
B of C, define typeB = typeC ◦ incB, where for B ⊆ C, incB denotes the inclusion
of B in C. Then typeA = typeB ◦ incA and the rules 〈b, B ⇒ C, a〉 ∈ Ra and
〈a, C ⇒ B, b〉 ∈ Sa consist of typed graph morphisms. In this way the graphs in
the rules in Ra and Sa become typed. The typing of the conditions is a direct
consequence. 2

83

Remark. Theorem 2 can be formulated for a larger class of conditions:

1. Beside proper conditions, for all conditions equivalent to a proper condition,
there is a repair program. The condition d below is equivalent to a proper one d′:

d = ∀(◦1 ◦
2 ,∃ (◦1 ◦

2 ,∀(◦1 ◦
2 , false)))

≡ ∀(◦1 ◦
2 ,∃ (◦1 ◦

2 ,@ (◦1 ◦
2)))

≡ ∀(◦1 ◦
2 , false)

≡ @ ◦1 ◦
2 = d′.

2. The construction of a repair program for a condition of the form ∃ (a, c) (or
∀(a, c)) can be done, provided that there exists a repair program for c. Properness
only guarantees the existence of a repair program6.

4.4 Conjunctive and disjunctive conditions

In the following, we consider conjunctions and disjunctive of conditions with repair
programs. A condition is a condition with repair program if there is a repair
program for the condition, i.e., conditions for which a repair program exists.

Conjunctive conditions

For conjunctive conditions, our aim is to construct a repair program from the
repair programs of the conditions in the conjunction with the divide and conquer
method:

Idea. Given a conjunction of conditions and the corresponding repair programs.

(1) Decompose the conjunction into subconditions.

(2) Try to find a so-called preserving sequentialization of the subconditions.

(3) Compose the repair programs for the subconditions to a sequential repair
program for the conjunctive condition.

An essential topic is the preservation of conditions: Let P1 and P2 be repair pro-
grams for d1 and d2, respectively. If the repair program P2 does not preserve the
condition d1, the application of P2 to a graph, which has previously been repaired
by P1, may yield a graph that does not satisfy d1 ∧ d2. To solve this problem, we
consider condition-preserving programs and condition-preserving repair programs.

6We have focused on the syntactical construction of repair program for proper conditions.

84

In Habel and Pennemann [HP09], the preservation of conditions by a rule is consid-
ered. We generalize this definition to the preservation of conditions by programs.

Definition 21 (preservation). A program P is d-preserving if every rule in P
is d-preserving.

By [HP09, Corollary 5], for every rule % and every condition d, an application
condition Pres(%, d) can be constructed, such that the rule together with the ap-
plication condition is d-preserving (see Section 2.4). This result can be generalized
to conditions and programs: the replacement of every rule in the program by the
corresponding d-preserving rule yields a d-preserving program.

Lemma 19 (preservation). For every program P and every condition d, there
is a d-preserving program P d.

Construction 14. The program P d is constructed from the program P by replac-
ing all rules % in P by the condition-preserving rule. In more detail, the program
is constructed inductively: For rules %, the d-preserving rule is 〈%,Pres(%, d)〉,
where Pres(%, d) is according to Construction 3. For programs with interface,
the d-preserving programs are obtained by integrating the condition d into each
subprogram, i.e., {P,Q}d = {P d, Qd}, 〈P ;Q〉d = 〈P d;Qd〉, P↓d = P d↓, and
(try P)d = try P d.

Proof. By Construction 3, all rules in P d are d-preserving, thus, the program is
d-preserving. 2

If the program P is already d-preserving, the d-preserving program P d is equivalent
to the program P .

Fact 8. P d ≡ P provided that P is d-preserving.

Remark. In special cases, the application conditions in the program may be so
restrictive, such that the program cannot be applied to any graph, i.e., P d ≡ ⊥,
and the program does nothing.

Example 36. Consider the constraint d = @ (Tk TkPl toktok) and the
program P = 〈Mark(a,¬c); try Rb; Unmark(a)〉↓ with a : ∅ ↪→ Pl , c = ∃ (Pl ↪→

Pl Tktok), and Rb the rule set from Example 32. By Construction 14, the d-
preserving program P d is constructed by replacing every rule %i ∈ Rb with the

85

rule %′i, where %′i = 〈%i, aci〉, and aci is the application condition aci = Pres(%i, d)
(see Example 11), i.e.,

ac1 = Pres(%1, d) = @ (Tk
2

PlPl
1

toktok
) ∧ . . . ⇒ @ (Tk

2
PlPl

1

toktok
) ∧ . . .

ac2 = Pres(%2, d) = @ (Tk
2

PlPl
1

toktok
) ∧ . . . ⇒ @ (Pl

1
Tk
2

Pltok
) ∧

By the d-preserving application condition, the program is not applicable, provided
it introduces a new violation of d. This may be seen at the transformation in
Figure 4.5: the right-most Pl-node cannot be connected with the Tk-node because
this is forbidden by the application condition ac2.

PN

Pl

Tk

Pl
tok

pl
ac
es

places

PN

Pl

Tk

Pl
tok

pl
ac
es

places

PN

Pl

Tk

Pl
tok

XXXXX

pl
ac
es

places

Figure 4.5: The condition-preserving program may be not a repair program

Remark (ad hoc construction). In Example 36, the program uses the present
Tk-node to add the required tok-edge. The ad hoc repair program is based on the
repairing set

R̂b ⊇
{
〈 b1, Pl ⇒ Pl Tktok ,@ Pl Tktok , a 〉
〈 b2, Pl Tk ⇒ Pl Tktok ,@ Pl Tktok ∧ @ Tk Pl Tktok , a 〉

which allows to add a new Tk-node and the required tok-edge (where the left
interface morphisms are b1 : Pl ↪→ Pl and b2 : Pl ↪→ Pl Tk and the right
interface morphisms are the morphism a of the condition).

The difference to Rb from Example 32 is the application condition of the first
rule: by the ad hoc construction, the application condition of the first rule is ac =
Shift(b1,@ a) = @ Pl Tktok . This makes the first rule applicable at the Pl-node
in consideration, and adds a Tk-node together with a tok-edge (see Figure 4.6). In
general, this construction may not terminate. The solid repair program is designed
to be terminating; the ad hoc repair program might be not terminating.

Beside of conjunctions of conditions (with repair programs) we consider sequences
of conditions.

86

PN

Pl

Tk

Pl
tok

pl
ac
es

places

PN

Pl

Tk

Pl
tok

pl
ac
es

places

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

to
k

PN

Pl

Tk

Pl

Tk
to

k

pl
ac
es

places

to
k

Figure 4.6: The condition-preserving ad hoc program may be used for repair

Convention. In the following, let ds = d1, . . . , dn and Ps = P1, . . . , Pn be a se-
quence of conditions and programs, respectively, Pi be a repair program for di, and
ds1 = d1, . . . , dk, ds2 = dk+1, . . . , dn be sequences of conditions with conjunctions
e1 = ∧ki=1di and e2 = ∧ni=k+1di.

A sequence of programs is preserving if for each natural number k, the respective
repair program Pk preserves all preceding conditions, i.e., P1 is a repair program
for d1, P2 is a repair program for d2 and d1-preserving, P3 is a repair program
for d3 and d1 ∧ d2-preserving, and so on (see Figure 4.7).

g h m . . .

d1 d1 ∧ d2 d1 ∧ d2 ∧ d3

. . .

P2 P3

|= |= |= |=

d1-preserving d1 ∧ d2-preserving

Figure 4.7: Preservation of sequences of conditions

Definition 22 (preservation). A sequence Ps is ds-preserving (and ds is pre-
serving) if, for k = 2, . . . , n, Pk is ∧k−1

i=1 di-preserving. A conjunction is preserving
if there is a preserving sequentialization.

Example 37. Consider the constraints

d1 = ∀(Pl ,∃ Pl Tktok) and

d2 = ∀(a, c) = ∀(TPArc Trsrc
out

src

, ∃ TPArc Trsrc
out

src

out

)

87

meaning that for all Pl-nodes, there exists a Tk-node, and, for all src-edges from
a TPArc-node to a Tr-node in the opposite edge relation, there exists an out-edge
in opposite direction from a Tr-node to a TPArc-node. The repair program P1 for
d1 is given in Example 35. The repair program P2 for d2 is

P2 = 〈Mark(a,¬c); 〈 TPArc Trsrc
out

src

⇒ TPArc Trsrc
out

src

out

,¬c〉; Unmark(a)〉↓.

The sequence P1, P2 is d1, d2-preserving, after the application of P1, each Pl-node
possesses a Tk-node. Afterwards, for each the src-edges between a TPArc-node
and a Tr-node, an out-edge in opposite direction is added, while all Tk-nodes are
preserved.

The construction of repair programs relies on finding a preserving sequentialization
of a given condition (see Figure 4.8).Unfortunately, this does not work for arbitrary
sequences of conditions (see Fact 10 and Fact 11).

Requirement. A sequence of conditions has to be preserving.

conjunction d d1, . . . , dn preserving

conjunction d 〈P1; . . . ;Pn〉

sequentialization

repair

Figure 4.8: Sequentialization of conjunctive conditions

For a conjunction of negative (positive) conditions, we can take any sequentializa-
tion of the conditions and consider the sequential composition of the corresponding
repair programs. This works because, for negative (positive) conditions, the repair
programs are decreasing (increasing), and every sequence of decreasing (increasing)
repair programs “preserves” the preceding negative (positive) conditions.

A sequence ds of conditions is negative (or positive, or existential, or universal)
if all conditions in it have the property. For a sequence of negative (or positive)
conditions, the sequence Ps of repair programs is ds-preserving.

Fact 9. If ds is negative (or positive), then ds is ds-preserving.

88

In general, for a repair program of a conjunction, the programs for the conditions
in the conjunction cannot be applied in arbitrary order and sometimes cannot be
ordered.

Fact 10. In general, not every sequentialization ds of conditions is ds-preserving.

Example 38 (not every sequentialization is preserving). Consider, e.g.,

the constraints d1 = ∀(◦ , ∃ ◦) and d2 = ∀(◦ ,∃ ◦ ◦) with the repair
programs P1 and P2 constructed according to Construction 13. For the sequen-
tialization d1, d2, the program P2 does not preserve the constraint d1: For a node
with loop satisfying d1 the program P2 adds a new node and a connecting edge.
The new node does not have a loop, i.e., the resulting graph does not satisfy d1.
For the sequentialization d2, d1, the program P1 preserves the constraint d2.

Fact 11. There are conditions without a preserving sequentialization.

Example 39 (no preserving sequentialization). Consider, e.g., the con-

straints d1 = ∀(◦ ,∃ ◦ ◦) and d2 = ∀(◦ ◦ ,∃ ◦ ◦ ◦) with the repair
programs P1 and P2 constructed according to the solid construction. The condition
d1 ∧ d2 is satisfiable: the graph ◦ ◦ ◦ satisfies d1 ∧ d2. The program P2 does

not preserve d1 and P1 does not preserve d2: Application of P2 to ◦ ◦ |= d1

yields to ◦ ◦ ◦ 6|= d1 and application of P1 to ◦ |= d2 yields to ◦ ◦ 6|= d2.

Sequences of repair programs for sequences of conditions can be sequentially com-
posed to a repair program for the conjunction, provided that the sequences of
conditions are preserving.

Lemma 20 (preserving repair). If d1, . . . , dn is preserving, then 〈P1; . . . ;Pn〉
is a repair program for ∧ni=1di.

Proof. By induction on the number n of conditions with the repair programs.
For n=1, by Theorem 2, P1 is a repair program for d1. Inductive hypothesis:
If P2, . . . , Pn is d1, . . . , dn-preserving, then P = 〈P1; . . . ;Pn〉 is a repair program
for the conjunction ∧ni=1di. Inductive step: For n→n + 1, let P2, . . . , Pn+1 be
d1, . . . , dn+1-preserving. Then P2, . . . , Pn is d1, . . . dn-preserving and, by induction
hypothesis, the program P = 〈P1; . . . ;Pn〉 is a repair program for the conjunction
d = ∧ni=1di. Moreover, Pn+1 is a d-preserving repair program for dn+1. Conse-
quently, for every transformation g ⇒P gn ⇒Pn+1 h, gn |= d and h |= ∧n+1

i=1 di.
Thus, 〈P1; . . . ;Pn+1〉 is a repair program for ∧n+1

i=1 di. 2

89

Example 40. We continue with Example 37. The repair program P2 for d2 is
d1-preserving. Consequently, 〈P1;P2〉 is a repair program for d1 ∧ d2.

Assumption 3. In the following, we try to construct solid repair programs (if
not stated otherwise). The presented constructions (Lemma 21, Theorem 3) also
hold for ad hoc repair programs. The reason for this is that all proofs rely on the
fact, that the repair programs are increasing (or decreasing).

In the following, we consider a conjunction of negative and universal conditions
and try to construct solid repair programs. Let e1 be the conjunction of nega-
tive and e2 the conjunction of universal conditions. By Fact 9, every sequence of
negative conditions is preserving and, by Lemma 20, the sequential composition
Q1 = 〈P1; . . . ;Pk〉 (k ∈ N) of the repair programs forms a repair program for the
conjunction of negative conditions e1. In general, not every sequentialization of
universal conditions is preserving. We have to require preservation. In the case
of preservation, the sequential composition Q2 = 〈Pk+1; . . . ;Pn〉 of the repair pro-
grams forms a repair program for the conjunction of universal conditions e2. But
the repair program Q2 may be not e1-preserving (see Figure 4.9). By Lemma 19,
we can replace each rule % in Q2 by the corresponding e1-preserving ones. The
resulting program Qe1

2 may be no repair program for e2.

program Q2

program Q2

a repair program

e1-preserving program Qe1
2

program Qe1
2

in general no repair program

e1-preserving repair program Q′e12

% 7→ pres(%, e1)

Figure 4.9: Construction of an e1-preserving repair program

By Lemma 21 below, Q2 can be modified to an e1-preserving repair program Q′e12

for e2. The idea is to delete all occurrences of the morphism a of the universal
condition ∀(a, c), which violate the condition c. Given a universal condition, we
mark an occurrence of the morphism violating the condition, then the occurrence
of the morphism at that position is deleted. To mark the morphism at that posi-
tion, we modify the left interface to the identity of the codomain of the morphism.
For a conjunction of universal conditions, an e1-preserving repair program can be

90

constructed from the e1-preserving program by destroying all non-repaired occur-
rences of all the universal conditions. By Fact 13 below, the sequential composition
〈Q1; Q′e12 〉 becomes a repair program for the conjunction e1 ∧ e2.

A conjunction is negative (universal) if all conditions in the conjunction are neg-
ative (universal).

Lemma 21 (preserving repair program). If e1 is a negative conjunction
and Q2 is a repair program for a preserving universal conjunction e2, then there is
an e1-preserving repair program Q′e12 for e2.

Construction 15. For a conjunction e1 of negative conditions and a single uni-
versal condition e2 = ∀(a, c) with repair program P , let

P ′e1 = 〈P e1 ;P id
@ a〉

where P id
@ a = 〈Mark(a,¬c);S ′ida 〉↓ where S ′ida is obtained from S ′a by replacing the

left interface morphism a : A ↪→ C by the identity id : C ↪→ C. For a preserving
conjunction e2 of universal conditions with sequentialization d1, . . . , dn and repair
program Q2 = 〈P1; . . . ;Pn〉, let

Q′e12 = 〈P ′e11 ; . . . ;P ′e1n 〉.

Example 41. We continue with Example 36. Consider the constraints e1 =
@ (Tk PlPl toktok) and e2 = ∀(Pl ,∃ (Pl Tktok)). By Theorem 2,
there are repair programs

P1 = 〈 Tk PlPl toktok ⇒ Tk PlPl tok 〉↓

and P2, which is the program P from Example 36. Since P2 is not e1-preserving, we
construct the e1-preserving application conditions, given in Example 36. The e1-
preserving program for e2 is not a repair program for e2. Recall the transformation
in Figure 4.5: by the application condition, the right-most Pl-node cannot be
connected with the Tk-node. Consequently, e2 is not satisfied, and the program
P e1

2 is not a repair program. In this situation we can add or delete information to
get a repair program. Addition would yield to a program that is not minimally
adding. We decide to delete information.

By Lemma 21, there is an e1-preserving repair program Q′e12 = 〈P e1
2 ;P id

@ a〉 for e2

where P id
@ a is a slightly modified version of the repair program P@ a for the condi-

tion @ a. In more detail, the program looks as follows:

P id
@ a = 〈Mark(Pl ,@ Pl Tktok); 〈id, Pl ⇒ ∅〉′〉↓

91

PN

Pl

Tk

Pl
tok

pl
ac
es

places

PN

Pl

Tk

Pl
tok

pl
ac
es PN

Pl

Tk

tok

pl
ac
es

Mark(a, c) P@ a

Figure 4.10: Transformation by the e1-preserving repair program

where id is the identity id : Pl ↪→ Pl . The program marks an occurrence of a
Pl-node without incoming containment edge from a Tk-node and deletes (in SPO-
style) the occurrence of the Pl-node; this is done as long as possible. This may be
seen at the transformation in Figure 4.10.

The rightmost Pl-node does not possess a Tk-node and the connecting containment
tok-edge. By the program P id

@ a the Pl-node is marked, the dangling edges are
deleted, and the Pl-node is deleted. Afterwards, all Pl-nodes in the graph possess
a Tk-node and the connecting containment tok-edge, i.e., the graph satisfies the
conjunction e1∧e2 and we obtain a repair program for e1∧e2. The program deletes
a Pl-node, and thus, does not preserve all informations of the modelled Petri net.

Remark (ad hoc repair). In Lemma 21, we have constructed preserving solid
repair programs. Instead of the solid repair program, we could use an ad hoc
repair program, which adds another Tk-node and the tok-edge instead of deleting
the Pl-node and the edge. The reason we have chosen a decreasing program for
the repairing step in Lemma 21 is (1) that there exist conditions for which the
deletion is necessary to satisfy the condition (see Example 47), and (2) that, in
general, the ad hoc repair program is not terminating. In practice, the increasing
program is often preferred as it does not delete information.

Proof. 1. For a universal condition d = ∀(a, c) with a : A ↪→ C, the repair
program P and the program P e1 are increasing. By the e1-preserving applica-
tion condition, whenever the increasing program P e1 is not a repair program, the
condition c is not satisfied, and the decreasing program P id

@ a becomes applicable
and destroys all occurrences that do not satisfy the condition c. Since e1 is a
conjunction of negative conditions, P id

@ a is e1-preserving. Consequently, P ′e1 is e1-
preserving. Then P ′e1 is a repair program for d: For every occurrence of a, the
occurrence is either (1) repaired by P e1 or (2) destroyed by P id

@ a.

2. Let d1, . . . , dn be a sequence of conditions. By assumption, d1, . . . , dn is preserv-
ing. Moreover, for i = 1, . . . , n, Pi is a repair program for di and, by Lemma 21.1,
P ′e1i is an e1-preserving repair program for di. Since d1, . . . , dn is preserving, for
k = 2, . . . , n, P ′e1k is ∧k−1

i=1 di-preserving, and, by Lemma 20, Q′e12 = 〈P ′e11 ; . . . ;P ′e1n 〉

92

is a repair program for ∧ni=1di = e2. Since all programs in the sequential compo-
sition are e1-preserving, the program Q′e12 is e1-preserving. Consequently, every
transformation g ⇒Q m is of the form g ⇒Q1 h ⇒Q

′e2
2

m. Since Q1 is a repair

program for e1, h |= e1. Since Q′e22 is the e1-preserving repair program for e2,
m |= e1 ∧ e2. Thus, 〈Q1;Q′e12 〉 is a repair program for e1 ∧ e2. 2

Note that the helper program P id
@ a in the e1-preserving repair program is decreasing.

As a consequence, the e1-preserving repair program may be not increasing.

Fact 12. In general, for conjunctions of negative conditions e1 and preserving
conjunctions e2, the e1-preserving repair program Q2 for e2 is not increasing.

Given two conditions with repair programs, then, the first program and the
condition-preserving repair program of the second program can be sequentially
composed to a repair program for the whole conjunction.

Fact 13 (composition). For arbitrary conditions e1, e2, the following holds.
If Q1 is a repair program for e1 and Q′e12 is an e1-preserving repair program for e2,
then 〈Q1;Q′e12 〉 is a repair program for e1 ∧ e2.

The following theorem says under which prerequisites a repair program for a con-
junction of conditions can be constructed from the repair programs of its compo-
nents.

Theorem 3 (Repair II). There is a solid (ad hoc) repair program P for a
conjunction d of conditions provided that d is satisfiable, there are solid (ad hoc)
repair programs P1, . . . , Pn for d1, . . . , dn, respectively, there is a sequentialization
ds = d1, . . . , dn, and

1. ds is negative, or positive, or preserving,

2. ds1 is positive, and ds2 is existential (or universal) & preserving.

3. ds1 is negative, and ds2 is universal & preserving.

where the composition of the sequences ds1 and ds2 yields the sequence ds.

Construction 16.

1. For negative (or positive, or preserving) ds, let P = 〈P1; . . . ;Pn〉.
2. For positive ds1, universal (or existential) & preserving ds2, let P = 〈Q1;Q2〉.
3. For negative ds1, universal & preserving ds2, let P = 〈Q1;Q′e12 〉.

93

where P1, . . . , Pn are repair programs for d1, . . . , dn, respectively, ds1 = d1, . . . , dk,
ds2 = dk+1, . . . , dn be sequences of conditions, Q1=〈P1; . . . ;Pk〉, Q2 = 〈Pk+1; . . . ;Pn〉
are the repair programs for e1= ∧ki=1 di and e2 = ∧ni=k+1di, respectively, and
Q′e12 = 〈P ′e1k+1; . . . ;P ′e1n 〉 is the e1-preserving repair program for e2.

Proof. 1. Let d1, . . . , dn be negative (positive). Then the repair programs
P1, . . . , Pn are decreasing (increasing) and d1, . . . , dn is preserving. By Lemma 20,
〈P1; . . . ;Pn〉 is a repair program for ∧ni=1di.

2. Let d1, . . . , dk be positive and dk+1, . . . , dn universal (or existential) and pre-
serving. By Theorem 3.1 there are repair programs Q1 = 〈P1; . . . ;Pk〉 and Q2 =
〈Pk+1; . . . ;Pn〉 for e1 = ∧ki=1di and e2 = ∧n

i=k+1di, respectively. Since Q2 is in-
creasing, it is e1-preserving. By Lemma 20, 〈Q1;Q2〉 is a repair program for
e1 ∧ e2 =

∧n
i=1 di.

3. Let d1, . . . , dk be negative and dk+1, . . . , dn universal and preserving. By The-
orem 3.1 there are repair programs Q1 = 〈P1; . . . ;Pk〉 and Q2 = 〈Pk+1; . . . ;Pn〉
for e1 = ∧ki=1di and e2 = ∧ni=k+1di, respectively. By Lemma 21, Q′e12 is the e1-
preserving repair program for e2. By Fact 13, 〈Q1;Q′e12 〉 is a repair program for
e1∧ e2 =

∧n
i=1 di. An illustration of this part of the proof is given in Figure 4.11.2

e1

d1 dk

P1 Pk

〈P1; . . . ;Pk〉︸ ︷︷ ︸
Q1

Thm 2

composition
Thm 3.1

e2

dk+1 dn

Pk+1 Pn

〈Pk+1; . . . ;Pn〉︸ ︷︷ ︸
Q2

negative
(preservation)

universal
preservation

conjunction conjunction

Q′e12

〈Q1;Q′e12 〉

Thm 2

composition
Thm 3.1

e1-pres repair
Lem 21

repair program
Fact 13

Figure 4.11: Illustration of the proof of Theorem 3.3

Disjunctive conditions

In the following, we consider disjunctive conditions, i.e., disjunctions of conditions.
Whenever there exists a repair program for a condition in the disjunction, this

94

repair program can be used for the disjunctive conditions as well. Every repair
program for a condition is also a repair program for every disjunctive condition
containing the condition.

Theorem 4 (Repair III).

1. If P is a solid (ad hoc) repair program for d and d ⇒ d′, then P is a solid
(ad hoc) repair program for d′.

2. Every solid (ad hoc) repair program for di is solid (ad hoc) repair program
for
∨n

i=1 di.

3. If P1, . . . , Pn are solid (ad hoc) repair programs for d1, . . . , dn, then {P1, . . . , Pn}
is a solid (ad hoc) repair program for

∨n
i=1 di.

Example 42. Consider the constraint d = d1 ∨ d2 = ∃ Pl ∨ @ Pl Tk
tok

tok

meaning there exists a Pl-node or there do not exists two parallel containment
tok-edges. By Theorem 2, there are repair programs P1 = try 〈∅ ⇒ Pl ,@ Pl 〉
and P2 = 〈 Pl Tk

tok

tok
⇒ Pl Tktok 〉↓. By Theorem 4, the program Pd =

{P1, P2} is a repair program for d. It either adds a Pl-node, provided that there
does not exist one or it deletes one of the parallel tok-edges, as long as possible.

Proof. 1. If P is a repair program for d and d⇒ d′, then for every transformation
g ⇒P h, h |= d⇒ d′, i.e., P is a repair program for d′.

2. By di ⇒
∨n

i=1 di and statement 1, Pi is a repair program for
∨n

i=1 di.

3. Since di ⇒
∨n

i=1 di and by statement 1 and 2, {P1, . . . , Pn} is a repair program
for
∨n

i=1 di 2

4.5 Legit conditions

There are repair programs for a large class of conditions. By Theorem 2, proper
conditions possess a repair program. Similarly, we may obtain a repair program for
conditions that are obtained from a proper one by replacing a subcondition with
an arbitrary condition possessing a repair program. In this context, a condition
is said to be generalized proper . The reason we consider this, is that we can
construct solid (ad hoc) repair programs for conditions of the form ∃ (a, c) (or
∀(a, c)), provided that there exists a repair program for c. Properness guarantees
the existence of a repair program.

The class of legit conditions are all proper or generalized proper ones, preserving
conjunctions of conditions, and all disjunctive conditions.

95

Definition 23 (legit conditions). The class of syntactically legit (legit) condi-
tions is defined inductively as follows.

(a) If d is proper (generalized proper), then d is syntactically legit (legit).

(b) If ds = d1, . . . , dn is a sequence negative or positive conditions, then
∧n

i=1 di
is syntactically legit. If ds = d1, . . . , dn is a sequence of legit conditions and
ds is preserving, then

∧n
i=1 di is legit.

(c) If di is syntactically legit (legit) for some i, then
∨n

i=1 di is syntactically legit
(legit).

satisfiable

basic

proper

preserving
conjunctions &

disjunctions

legit

Figure 4.12: Hierarchy of classes of conditions

In Figure 4.12, all legit conditions (basic and proper conditions, preserving con-
junctions and disjunctions) are marked in a green color. Satisfiable conditions that
are not legit, are marked in red color.

Remark. The class of legit conditions properly includes the class of all syntacti-
cally legit conditions (see Example 43).

For legit conditions, repair programs can be constructed.

Theorem 5. For every legit condition, there is a solid (ad hoc) repair program.

Example 43. Consider the constraint d = ∀(Pl , c1 ∧ c2) with the conditions
c1 = @ (Pl ↪→ Pl TkTk toktok) and c2 = ∃ (Pl ↪→ Pl Tktok) meaning
that for all Pl-nodes there do not exist two Tk-nodes with connecting containment

96

tok-edges and there exists a Tk-node and a connecting containment tok-edge.
The condition c = c1 ∧ c2 contains a conjunction. Consequently, it is not linear
and by definition not proper. The condition c is a generalized proper condition
and there is a repair program for c, and thus, for the whole constraint d. The
repair program Pd for d is constructed as follows: the constraint is of the form
∀(a, c), with a : ∅ ↪→ Pl , and by Theorem 2 Pd = 〈Mark(a,¬c);Pc; Unmark(a)〉↓.
The condition c is a generalized proper condition and there is a repair program
〈Pc1 ;Pc2〉 for c with interface Pl : by Lemma 17, there are repair programs S ′↓ for
c1 and try R for c2, where S = 〈 Pl TkTk toktok ⇒ Tk Pl Tktok 〉 and R is
given in Example 32. Since the condition c is conjunctive, it is a requirement that
the program Pc2 is c1 preserving: first, all super numerous tok-edges are deleted at
a marked Pl-node, afterwards, a tok-edge (together with a Tk-node if necessary)
is added to the marked Pl-node. This is done for each Pl-node in a graph.

PN

Pl

Tk

Pl

Tk

to
k

tok

pl
ac
es

places

PN

Pl

Tk

Pl

Tk
to

k

tok

pl
ac
es

places

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

to
k

PN

Pl

Tk

Pl

Tk

to
k

pl
ac
es

places

to
k

S ′↓

R

Figure 4.13: Transformation of the repair program for the legit condition

For the input graph in Figure 4.13, the program works as follows: the left Pl-
node is marked because the Pl-node violates the condition c1, i.e., the Pl-node has
two tok-edges to the Tk-nodes. One of these two edges is deleted by S ′↓. The
Pl-node has exactly one tok-edge and satisfies the condition c, consequently, it is
unmarked. The right Pl-node does not have a tok-edge, consequently, it is marked,
the rule set R is applicable, and adds the missing tok-edge, finally it is unmarked.
Afterwards, all Pl-nodes have exactly one tok-edge to a Tk-node, and the graph
satisfies the constraint d.

Proof. By induction of the structure of conditions. Let d be legit.

97

(a) If d is proper, then, by Theorem 2, there is a repair program for d. If d is
generalized proper, then d is of the form Q(a, c) where c is legit. By induction
hypothesis, there is a repair program for c. By a generalized Theorem 2, there is a
repair program for d. (b) Let ds = d1, . . . , dn be a sequence of legit conditions and
ds preserving. By induction hypothesis, there are repair programs for d1, . . . , dn.
By Theorem 3, there is a repair program for the conjunction

∧n
i=1 di. (c) Let di be

legit. By induction hypothesis, there is a repair program for di. By Theorem 4,
there is a repair program for

∨n
i=1 di. This completes the inductive proof. 2

It turns out, that it is semi-decidable if a condition is generalized proper. For
sequences of conditions, it is semi-decidable whether they are preserving, and it is
semi-decidable whether a condition is legit.

Lemma 22 (decidability/semi-decidability).

(1) For conditions, it is decidable whether they are proper.
For conditions, is is semi-decidable whether they are generalized proper.

(2) Sequences of negative (positive) conditions are preserving.
For sequences of conditions it is semi-decidable whether they are preserving.

(3) For conditions, it is decidable whether they are syntactically legit.
For conditions, it is semi-decidable whether they are legit.

Proof. (1) Follows from the definition of proper conditions and the fact that it
is semi-decidable whether a repair program can be constructed for an arbitrary
satisfiable condition. (2) Follows from Fact 9 and the fact that for some sequences
a preserving sequence can be found. (3) Follows from (1) and (2). 2

4.6 Properties of the repair programs

We look for properties of the constructed repair programs. In more detail, we
show that the solid repair programs for proper conditions are stable, maximally
preserving, and terminating. Additionally, we show that the solid repair programs
for legit conditions are stable and terminating. The proofs are based on induction
over the structure of proper (legit) conditions.

Stability

Given a graph satisfying the condition, the user may be interested that the repair
program should not change the graph. A repair program that does not change the
input graph, if the condition is already satisfied, is said to be stable.

98

Definition 24. A repair program P for a condition d is stable if, for all transfor-
mations g ⇒P h, g |= d implies g = h.

The solid (ad hoc) repair programs are stable.

Lemma 23 (stability). Solid (ad hoc) repair programs for legit conditions are
stable.

Example 44. Consider the constraint ∃ Pl and the repair programs try 〈∅ ⇒
Pl ,@ Pl 〉 or try 〈∅ ⇒ Pl Pl ,@ Pl 〉. By the application condition @ Pl ,

both programs only change the graph, provided there does not exist a Pl-node.

Proof. Pd is stable. By induction on the structure of legit conditions, we show
that the repair programs are stable.

Let d be a proper condition and g |= d.

(1) For d = true, Skip is applicable with result g.

(2) For d = ∃ a, by the application condition ac = Shift(A ↪→ B, @ a), Ra is not
applicable and the application of try Ra yields g.

(3) For d = @ a, S ′a is applicable zero times, i.e., by the semantics of ↓ the result
is g (up to isomorphism).

(4) For d = ∃ (a, c), Pd = 〈P∃ a; Mark(a);Pc; Unmark(a)〉. By induction hypothesis,
P∃ a and Pc are stable. Moreover, Mark(a) and Unmark(a) are stable. As a
consequence, Pd is stable.

(5) For d = ∀(a, c), Pd = 〈Mark(a,¬c);Pc; Unmark(a)〉↓. By induction hypothesis,
Pc is stable. Moreover, Mark(a,¬c) and Unmark(a) are stable. By the application
condition ¬c and the semantics of ↓, Pd is stable.

If d is generalized proper, then, by induction hypothesis, Pd is stable.

For d =
∧n

i di, Pd = 〈P ′1; . . . ;P ′n〉 according to Theorem 3.3 where P ′i = 〈Pi;P
id
@ a,i〉

and P id
@ a,i = 〈Mark(ai,¬ci);S

′id
a,i 〉↓. By induction hypothesis, Pi is stable, and, by

Construction, P id
@ a,i is only applicable, iff the condition is not satisfied. By the

semantics of ↓, it is stable. For d =
∨n

i di, then, by induction hypothesis, each Pi

is stable. Consequently, the programs Pi and {P1, . . . , Pn} are stable.

2

Maximal Preservation

In the following, we look for a “maximally preserving” repair program, meaning,
that the program preserves an input graph as long as there is no requirement for the

99

non-existence of items. The resulting graph is a graph, that is “as close as possible”
to the input graph. Whenever a condition requires the non-existence (existence) of
a certain subgraph, there is no increasing (decreasing) repair program that repairs
all graphs. Therefore, we look for maximally preserving repair programs. We start
with maximally preserving repair programs for proper conditions and show that the
solid repair programs for proper conditions are maximally preserving. Afterwards,
we consider maximally preserving repair programs for conjunctive and disjunctive
conditions. We give an approximation of the deleted number of graph elements
for our repair programs.

For maximally preserving repair programs, we count the maximal number of ele-
ments that have to be deleted to satisfy a constraint for a given input graph. More
general, we count the elements to be deleted for a morphism and a condition. A
repair program is maximally preserving if for all transformation with the repair
program, for which the number of preserved elements is greater than or equal to
the number of size of the input morphism minus the maximal number of elements
that have to be deleted. For that, we consider all transformations with the repair
program and look for the preserved elements.

Formally, the definition of maximally preserving repair programs relies on the so-
called track morphism. With every transformation t : g ⇒∗ h a partial morphism
can be associated that “follows” the items of G through the transformation: this
morphism is undefined for all items in G that are removed by t, and maps all other
items to the corresponding items in H.

Definition 25 (track morphism). The track morphism trg⇒h from g : A ↪→ G
to h : A ↪→ H is the partial morphism defined by trg⇒h(x) = incH(inc−1

G (x)) if x ∈
D and undefined otherwise, where incG = inc ◦ incG′ and inc−1

G : incG(D) ↪→ D is
the inverse of incG. Given a transformation g ⇒∗ h, trg⇒∗h is defined by induction
on the length of the transformation: trg⇒∗h = iso for an isomorphism iso : G→ H
from G to H, and trg⇒∗h = trg′⇒h ◦ trg⇒∗g′ for g ⇒∗ h = g ⇒∗ g′ ⇒ h.

Definition 26 (maximally preserving repair for proper conditions). A re-
pair program Pd for a proper condition d over A is maximally preserving, if, for all
transformations t : g ⇒Pd

h,

pres(Pd, t) ≥ size(G)−∆(g, d)

where, for a transformation t via Pd, pres(Pd, t) denotes the number of preserved
items by t, i.e., the items in the domain of the track morphism of t, and ∆(g, d)
denotes the maximal number of necessary deletions.

100

Given an injective morphism g : A ↪→ G and a proper condition d over A, ∆(g, d)
is defined inductively as follows: ∆(g, true) = 0, ∆(g,∃ a) = 0,

(1) ∆(g,@ a) =
∑

g′∈Ext(g)(1 + dang(g′))

(2) ∆(g,∃ (a, c)) = maxg′∈Ext(g) ∆(g′, c)
(3) ∆(g,∀(a, c)) =

∑
g′∈Ext(g)(∆(g′, c))

where Ext(g) = {g′ : C → G | g′ ◦ a = g} denotes the extended morphisms, and
dang(g′) denotes the maximal number of dangling edges at g′, i.e., dang(g′) = 0
if there is some edge in g′(C−A) and maxv∈(C−A) inc(v), otherwise, where, for a
node v, inc(v) denotes the number of edges incident to v.

Informal Description. Given a morphism g : A ↪→ G and a proper condition d
over A, we determine the maximal number of necessary deletions ∆(g, d). This
is zero if the condition is true or of the form ∃ a. For a condition of the form
@ a, we consider all morphisms g′ ∈ Ext(g), and sum up the number of deletions.
For a condition of the form ∃ (a, c), we consider all morphisms g′ ∈ Ext(g) and
build the maximum of all ∆(g′, c). For a condition of the form ∀(a, c), we consider
all morphisms g′ ∈ Ext(g) and sum up the number of necessary deletions for the
condition c at that position, i.e., ∆(g′, c).

Example 45. Consider the constraints d = ∃ (a,@ b) with a : ∅ ↪→ Pl and
b : Pl ↪→ Pl Tktok , intuitively meaning there exists a Pl-node without a Tk-
node and an edge between, and the input graph given in Figure 4.14. The condition
d is of the form ∃ (a, c), consequently, ∆(∅ ↪→g G, d) = min(g′i, @ b), where g′i with
i ∈ {1, 2} are the morphisms Pl ↪→ G. There are two places in G. Since @ b is a
negative condition, we sum up the elements, which have to be deleted, i.e., the tok-
edge. For the left occurrence of the Pl-node, there is one tok-edge, i.e., Ext(g′1) = 1,
for the right one, there are two. Consequently, ∆(g, d) = min(1, 2) = 1.

PN

PlExt(g′1) = 1

Tk

Pl Ext(g′2) = 2

TkTk

tok tok tok

place place

∆(G, d) = 1

G d = ∃ (Pl ,@ Pl Tktok)

Figure 4.14: ∆(G, d)

101

There are two transformations via the repair program Pd, the first one t1 marks the
left place, and deletes one tok-edge, i.e., pres(Pd, t1) = size(G)−1 = size(G)−∆(G, d),
the other transformation t2 marks the right place, and deletes two tok-edges, i.e.,
pres(Pd, t1) = size(G)−2. By Definition, the transformation t1 is maximally pre-
serving.

There are cases, where there exists a transformation with the repair program for
proper conditions, which preserves more elements, than the counted least number
of elements, which have to be deleted. This may be seen in the following example.

Example 46 (pres(Pd, t) > ∆(G, d)). Let d = ∃ (◦1 ,@ ◦
1
◦). Consider

the input graph G = ◦ ◦ , more formally, the input morphism g : ∅ ↪→

G. Since d is of the form ∃ (a, c), with a : ∅ ↪→ ◦
1 , c = @ b, and b : ◦1 ↪→

◦
1
◦ , ∆(g, d) = ming′∈Ext(g). For both morphisms g′i from ◦

1 to one of the

nodes in G, i.e., g′1 : ◦1 ↪→ ◦
1

◦ and g′2 : ◦1 ↪→ ◦ ◦
1

there are two

extensions g′′ from b to g′, such that g′′ ◦ b = g′, thus ∆(g′i,@ b) = 2 and ∆(g, d) =
min(2, 2) = 2. There are transformations t : g ⇒Pd

h to a morphism h satisfying d
with pres(Pd, t) = size(g)−2 as well as one with pres(Pd, t

′) = size(g)−1, i.e.,
pres(Pd, t) = size(g)−1 > size(g)−∆(g, d).

Lemma 24 (maximal preservation). The solid repair programs for proper
conditions are maximally preserving.

Informal Description. Intuitively, the solid repair programs for proper condi-
tions are maximally preserving because of the following.

(1) For the condition true, nothing is to do.

(2) For positive conditions ∃ a, we only add nodes and edges.

(3) For negative conditions @ a, we count the number of elements that have to be
deleted. In more detail, for an occurrence of the condition, we count the number of
violations at that position. For that, we count all edges which have to be deleted
and, if the morphism a is not edge-increasing, we count the number of nodes,
which have to be deleted and the dangling edges for each of the nodes. We choose
the maximal number of dangling edges, which have to be deleted. The negative
condition cannot be satisfied otherwise.

(4) For existential conditions ∃ (a, c), we select the occurrence, where we have to
delete the maximal number of violations of the subcondition c.

(5) For universal condition ∀(a, c), we consider each violation of the subcondition c
and build the sum of all of them. If the proper condition ends with true, this sums
up to 0.

102

Proof (of Lemma 24). The maximal preservation of the repair program Pd

is shown by induction of the length of transformations: We show that for all
transformations t : g ⇒Pd

h,

pres(Pd, t) ≥ size(G)−∆(g, d).

using the fact that, if P is maximally preserving, then P ′ = 〈Mark(a);P ; Unmark(a)〉
is maximally preserving.

Let d be a proper condition over A, Pd the solid repair program for d, and
t : g ⇒Pd

h be a transformation.

(1) For d = true, Pd = Skip, and pres(Skip, t) = size(G).

(2) For d = ∃ a, Pd = try Ra, and pres(try Ra, t) = size(G).

(3) For d = @ a, Pd = S ′a↓. (a) If g |= d, then pres(S ′a↓, t) = size(G). (b) If
g 6|= d, then the transformation g ⇒+

S′a↓ h is of the form g ⇒S′a g1 ⇒S′a↓ h
where t1 denotes the transformation starting with g1. For a one-step trans-
formation, the number of repairs is bounded by the number of extensions g′

of g, added with the number of dangling edges at that position, i.e., (*)
size(G1) = size(G)−∆(g′, d) with ∆(g′, d) = 1+dang(g′). By definition of ∆,
(**) ∆(g, d) = ∆(g′, d)+∆(g1, d). Applying this for arbitrary finite transfor-
mations, the deletions are bounded by the number g′ of extensions of g, i.e.,
(**)

∑
g′∈Ext(g)(1+dang(g′)). The solid repair program deletes for each exten-

sion g′ ∈ Ext(g) exactly one edge, if the morphism is edge-increasing, and one
node plus the number of dangling edges, i.e., (***)

∑
g′∈Ext(g)(1 + dang(g′)).

pres(Pd, t) ≥ size(G)−
∑

g′∈Ext(g)(1 + dang(g′)) (***)

≥ size(G)−
∑

g′∈Ext(g)(1 + dang(g′)) (**)

= size(G)−∆(g, d) (Def. of ∆)

(4) For d = ∃ (a, c), Pd = 〈P∃ a; 〈Mark(a);Pc; Unmark(a)〉〉. (a) If g |= d, then
pres(Pd, t) = size(G). (b) If g 6|= d, then g ⇒Pd

h is of the form g ⇒P∃ a

g1 ⇒P ′c h. Then, since P∃ a is increasing (*) size(G1) ≥ size(G). For all
g′ ∈ Ext(g), the number of deletions is bounded by the maximal number of
deletions of the program Pc, i.e.,
(**) ∆(g, d) = maxg′∈Ext(g)(∆(g′, c)). By induction hypothesis, the program
Pc is maximally preserving, i.e, ∆(g′, c) is maximal.

pres(Pd, t) = pres(P ′c, t1) (*)
≥ size(G1)−maxg′∈Ext(g)(∆(g′, c)) (ind hyp)
= size(G)−∆(g, d) (**)

103

(5) For d = ∀(a, c), Pd = 〈Mark(a,¬c);Pc; Unmark(a)〉 ↓. (a) If g |= d, then
pres(Pd, t) = size(G). (b) If g 6|= d, then g ⇒Pd

h is of the form g ⇒P ′c

g1 ⇒Pd
h where P ′c denotes the program without iteration. If c is of the form

∃ (a′, c′), then, size(g1) ≥ size(g) and, for every g′ ∈ Ext(g), ∆(g′, c) = 0. If
c is of the form @ a′, then, for every g′ ∈ Ext(g), size(g1) = size(g)−∆(g′, c)
as in Case (3). Thus, (*) size(g1) ≥ size(g)−∆(g′, c). By definition of ∆,
(**) ∆(g, d) = ∆(g1, d) + ∆(g′, c).

pres(Pd, t) ≥ pres(Pd, t1)
≥ size(G1)−∆(g1, d) (induction hypothesis)
≥ size(G)−∆(g, d) ((*), (**))

This completes the inductive proof. 2

It remains the question, how maximal preservation for conjunctive and disjunctive
conditions can be defined. One may assume, that for a conjunctive condition,
the number of deleted elements can be added, i.e., for d = d1 ∧ d2 define ∆ as
∆(g, d1) + ∆(g, d2). Unfortunately, this is not so easy. There are cases, where the
condition cannot be satisfied without deleting more elements. There are conditions,
where we have to delete the whole input graph in the worst case. This may be
seen in the following Example 47.

Example 47 (deleting repair program). Consider the conjunction d =

d1 ∧ d2 = @ ◦ ∧ ∀(◦ ,∃ ◦), intuitively meaning, there does not exist a
node with a loop, and for all nodes, there exists a loop. The conjunction d is
equivalent to @ ◦ .

In the following, we consider the conjunction d and not the equivalence. By
the Repair Theorem II, there are repair programs P1 = 〈 ◦ ⇒ ◦ 〉↓ for d1

and P2 = 〈Mark(a,¬c); try Rd1 ; Unmark(a)〉↓ for d2, where a : ∅ ↪→ ◦ , c =

∃ (◦1 ↪→ ◦
1

), and R = 〈 ◦1 ⇒ ◦
1
,@ ◦

1
〉 (note that, for simplicity,

the interfaces of the rules are omitted). The program P2 is not d1-preserving.
Consequently we construct the d1-preserving version of P2, where the rule in R
is equipped by the application condition @ ◦1 . In general, the d1-preserving
version of P2 is not a repair program for d2, consequently we consider the d1-
preserving repair program P ′d12 = 〈P d1

2 ;P id
@ a〉, followed by the decreasing repair

program P id
@ a = 〈Mark(a,¬c); 〈 ◦1 ⇒ ∅〉′〉↓.

The program intuitively works as follows: By P1, all loops in a graph are deleted.
Then, P d1

2 selects a node without a loop. By the d1-preserving application con-
dition @ ◦1 , the rule (set) R is not applicable. Consequently, the program P id

@ a
deletes all nodes, which do not have a loop, i.e., all nodes.

104

For an input graph G, or more formally the input morphism g : ∅ ↪→ G, ∆(g, d1)
depends on the number of occurrences of nodes with a loop in G. For each input
graph g, ∆(g, d2) = 0 because we do not have to delete any loops to satisfy d2.
However, the repair program cannot repair the whole conjunction without deleting
the whole input graph, i.e., ∆(g, d) = size(g).

For a disjunctive condition, the number of deleted elements depends on the input
graph and the chosen program. This may be seen in the following Example 48.

Example 48 (repair for disjunctive conditions). Consider the disjunction

d = d1 ∨ d2 = @ ◦ ∨@ ◦ ◦ , intuitively meaning, there does not exist a node
with a loop or there does not exist two nodes and a real edge, i.e., not a loop.
in between. By the Repair Theorem I, there are repair programs P1 = 〈 ◦ ⇒
◦ 〉↓ and P2 = 〈 ◦ ◦ ⇒ ◦ ◦ 〉↓ for d1 and d2, respectively. By the Repair

Theorem III, the programs P1, P2 and Pd = {P1;P2} are repair programs for d.

The number of deleted elements depends on the input graph and the chosen repair
program: if the input graph contains more loops than edges, then the program P2

can be applied to delete the edges instead of loops. Vice versa, if the graph contains
more edges than loops, the program P1 can be applied to delete the loops instead
of the edges.

However, we can give a worst-case approximation of the number of graph elements,
which are deleted by the solid repair programs for conjunctive and disjunctive
conditions. For conjunctions of negative (or universal and preserving) conditions,
we can simply add the number of deleted elements for each of the subconditions.
For conjunctive conditions, where the first condition is negative, and the second
condition is universal, i.e., d2 = ∀(a, c), in general, there are cases where we have
to delete occurrences of the morphism a violating the condition c. Consequently,
for the program P id

@ a we approximate the number of deletions for the worst case,
where the minimal number of all occurrences of the morphism a are deleted, i.e.,
∆(g,@ a). For disjunctive conditions, we choose the maximal number of elements
for the subprograms.

Lemma 25. The maximal number of deleted elements of the solid repair programs
for conjunctive conditions is

∆(g, d1 ∧ d2) = ∆(g, d1) +

{
∆(g, d2) if d1, d2 negative (universal & preserving)
∆(g,@ a) if d1 negative, d2 = ∀(a, c)

∆(g, d1 ∨ d2) = max{∆(g, d1),∆(g, d2)}

105

Proof. For simplicity, we proof the statement for n = 2. For n := n+ 1 the proof
is similar. 1. Let d = d1 ∧ d2 be a conjunctive condition, Pd = 〈P1;P d1

2 ;P id
@ a〉 the

repair program according to Theorem 3, and g ⇒Pd
h be a transformation.

(a) If g |= d, then pres(Pd, t) = size(g). (b) If g 6|= d, then g ⇒Pd
h is of the

form g ⇒P1 g1 ⇒P
d1
2
g2 ⇒P id

@ a
h, where ti is the transformation starting at gi (i =

1, 2). By induction hypothesis, P1 is maximally preserving, i.e., pres(P1, t) ≥
size(g)−∆(g, d1). If g1 6|= d2, there are three cases:

If d2 is negative, then, by induction hypothesis, P2 is maximally preserving, and
pres(P2, t1) ≥ size(g1)−∆(g1, d2). (Since d1, d2 are negative, P id

@ a is empty.) If
d1, d2 are universal, then, by induction hypothesis, P2 is maximally preserving,
i.e., ∆(g1, d2) = 0, and pres(P2, t1) ≥ size(g1)−∆(g1, d2). By assumption, P2 is
d1-preserving. Consequently, P id

@ a is not applicable, g2
∼= h, size(g2) = size(h),

and pres(P id
@ a, t2) ≥ size(g2)−∆(g2, d2). If d2 is universal, P d1

2 is increasing, and
by induction hypothesis, ∆(g1, d2) = 0, pres(P d1

2 , t1) ≥ size(g1)−∆(g1, d2). By
induction hypothesis, P id

@ a is maximally preserving, i.e., ∆(g2,@ a) =
∑

g′2∈Ext(g2)

(dang(g′2) + 1) | g′2 6|= c, and pres(P id
@ a, t2) ≥ size(g2)−∆(g2,@ a).

2. Let d = d1∨d2 be a disjunctive condition, the programs P1, P2, or Pd = {P1, P2}
be the repair programs according to Theorem 4, and g ⇒Pd

h be a transformation.
(a) If g |= d, then pres(Pd, t) = size(g). (b) If g 6|= d, then g ⇒Pd

h is of the form
h1 ⇐P1 g ⇒P2 h2. By induction hypothesis, P1 and P2 are maximally preserving,
i.e., pres(Pd, t) ≥ size(g)−max{∆(g, d1),∆(g, d2)}. 2

To get maximally preserving repair programs, we have to make sure that the
underlying repairing sets are maximally preserving. If a rule set is maximally
preserving, then the number of deleted items for negative conditions @ (A ↪→ C)
is minimal. If a rule set is decreasing, edges are deleted instead of nodes, whenever
possible, since it is more costly to delete nodes than edges. For the ad hoc repair
programs this does not hold: A rule C ⇒ A deletes [size(C)−size(A)] items,
although only one item has to be deleted, i.e., in general, it is not maximally
preserving.

Fact 14. In general, the ad hoc repair programs are not maximally preserving.

Remark. Often, deletions can be avoided when edges are redirected to some other
node (see, e.g. Nassar [Nas20]). This is a further topic of investigation.

Termination

The repair program is terminating, if the relation ⇒ (see Definition 8) is termi-
nating, i.e., there is no infinite transformation with the program. The solid repair
programs for legit conditions are terminating.

106

Lemma 26 (termination). The solid repair programs for legit conditions are
terminating.

Informal Description. The solid repair programs for legit conditions are termi-
nating because of the following.

For positive conditions ∃ a, we only add nodes and edges, provided that they do
not exist. Consequently, the number of added nodes and edges is bounded by the
size of the input or the condition.

For universal conditions ∀(a, c), the number of nodes and edges is bounded, and by
the Mark(a,¬c) statement, each non-repaired occurrence of a can only be marked
at most once. Contradiction to the assumption of an infinite transformation.

The solid repair programs for conjunctive conditions are terminating because, by
induction hypothesis, each subprogram is terminating and the preserving repair
program is decreasing.

The solid repair programs for disjunctive conditions are terminating, provided that
the repair program for the subconditions is terminating.

The following example shows that it may be not enough to repair all violations
in a given graph, because new violations may occur when applying repair rules.
Thus, termination is not trivial.

Example 49. Let d = ∀(
◦

◦ ◦ , ∃
◦

◦ ◦)7, with a : ∅ ↪→
◦

◦ ◦ and

c = ∃ (
◦

◦ ◦ ↪→
◦

◦ ◦). Then, the solid repair program

Pd = 〈Mark(a,¬c); try R; Unmark(a)〉 ↓

contains the rule

% = 〈
◦

◦ ◦ ⇒
◦

◦ ◦ ,@
◦

◦ ◦ ∧ @
◦

◦ ◦ 〉.

Applying the program to the graph below, we obtain the following transformation:8

◦
◦ ◦

◦ ◦

◦
◦ ◦

◦ ◦

◦
◦ ◦

◦ ◦
G =

% %

7Undirected edges represent two directed edges in opposite direction.
8For simplicity, we omit the marking and unmarking of elements, in the transformation.

107

There are two matches for the rule % in the graph G. Applying the rule % twice,
yields a new match for %, not already in G.

Proof. Pd is terminating. By induction on the structure of d using some ele-
mentary rules for concluding termination.

1. Finite rule sets are terminating.

2. If P is terminating, then P ′ = 〈Mark(a);P ; Unmark(a)〉 is terminating.

3. If programs P,Q are terminating, then 〈P ;Q〉 is terminating.

4. If a rule set S is decreasing, then S↓ is terminating.

Let d be a proper condition, Pd be the corresponding program, g ⇒Pd
h, g : A ↪→ G,

h : A ↪→ H. Let m denote the number of nodes of the largest graph of d,
n = max(m, |VG|) the maximal number of nodes in d or G, and k be the max-
imal number of parallel edges in d. Let Kk

n denote the complete graph over A
with n nodes and, for each pair of nodes 〈v1, v2〉, there are k parallel edges from
v1 to v2. We show: H v Kk

n (i.e., there is an injective morphism from H into Kk
n.)

From this it follows that Pd is terminating because the existence of a finite graph
contradicts the assumption of the existence of an infinite transformation.

(1) For d = true, Pd = Skip is terminating, and H ∼= G v Kk
n.

(2) For d = ∃ a, Pd = try Ra is terminating, and H v Kk
n. This may be seen

as follows: Let g ⇒% h, be a direct transformation through the rule % = 〈b, B ⇒
C, acB ∧ ac, a〉 in Ra. If |VG| < |VC |, then |VB| = |VG| and, by the application
condition acB (there is no larger B′ with B ⊂ B′ v C), |VH | = |VC |. If |VG| ≥
|VC |, then |VB| ≤ |VC | and |VH | = |VG|. Thus |VH | = max(m, |VG|) = n.
Moreover, by the application condition acB, |EH | ≤ k · |VH | × |VH | where k is the
maximal k parallel edges in Ra.

(3) For d = @ a, Sa is decreasing, Pd = S ′a↓ is terminating, and H v Kk
n.

(4) For d = ∃ (a, c), Pd = P∃ a; 〈Mark(a);Pc; Unmark(a)〉 is terminating, andH v Kk
n.

By induction hypothesis, P∃ a, Pc, and, thus, Pd is terminating. (The application
of Mark(a) and Unmark(a) do not change the size.) Then, for g ⇒P∃ a g

′, G′ v Kk
n,

and for g′ ⇒Pc h, H v Kk
n. Consequently, for g ⇒Pd

h, H v Kk
n.

(5) For d = ∀(a, c), Pd = 〈Mark(a,¬c);Pc; Unmark(a)〉 is terminating, andH v Kk
n.

By induction hypothesis, Pc is terminating and, since the application of Mark(a,¬c)
and Unmark(a) do not change the size, the program
P ′c = 〈Mark(a,¬c);Pc; Unmark(a)〉 is terminating. Moreover, for all transformations
gi ⇒P ′c gi+1 ⇒P ′c . . . ⇒P ′c h, H v Kk

n. Since the condition d is universal, d ends
with true and the program Pd is increasing. Suppose⇒ is not terminating. Then,

108

there must be a graph with infinite number of nodes or edges. Contradiction to
H v Kk

n. By Mark(a,¬c), it is not possible to apply Pc at a repaired position.
Consequently, for proper conditions, the solid repair program Pd is terminating.

For generalized proper conditions, the proof is similar: If d is generalized proper,
then, by induction hypothesis, Pd is terminating.

For d =
∧n

i=1 di, Pd = 〈Q1;Q′e12 〉, withQ1 = 〈P1; . . . ;Pk〉 andQ′e12 = 〈P ′e1k+1; . . . ;P ′e1n 〉,
where P ′e1j = 〈P e1

j ;P id
@ a,j〉. By induction hypothesis, Pi is terminating, conse-

quently, Q1 = 〈P1; . . . ;Pk〉 is terminating. Furthermore, P ′e1j is terminating: By

induction hypothesis, P e1
j is terminating. By Construction, P id

@ a,j is decreasing,
consequently it is terminating. By the termination of the programs, the se-
quential composition is terminating, consequently, P ′e1j is terminating. Finally
Q′e12 = 〈P ′e1k+1; . . . ;P ′e1n 〉 is terminating: by the termination of each P ′e1j , the se-
quential composition is terminating. Consequently, 〈Q1;Q′e12 〉 is terminating.

For d =
∨n

i=1 di, by induction hypothesis, some Pi is terminating. Consequently,
{P1, . . . , Pn} is terminating.

This completes the inductive proof. 2

To get terminating repair programs, we have to make sure that the underlying
repairing sets do not introduce new occurrences. If a program is terminating, then
the number of added items for universal conditions is minimal. If a rule set is
increasing, new occurrences of violation may be introduced. For the ad hoc repair
programs this does not hold: A rule A ⇒ C adds [size(C)−size(A)] items. This
rule, applied as long as possible, may yield to non-terminating repair programs.

Fact 15. In general, the ad hoc repair programs are not terminating.

Example 50. For the constraint d = ∀(◦1 ,∃ ◦1 ◦), the program Pd = 〈 ◦1 ⇒
◦
1
◦ ,@ ◦1 ◦ 〉↓ is an ad hoc repair program which does not create cycles. The

program is not terminating: For each node without an edge it adds a node together
with an edge. The newly created node does not possess an edge and the program
is applicable at that node again. Consequently, it is not terminating.

4.7 Grammar-based repair

In this section, we consider the problem of grammar-based graph repair 9, i.e., pro-
grams which are based on a given set of rules. Consider the main idea of our

9In [SH19], this is called rule-based repair because the rule set R is given. On the other hand,
every repair program may be seen as rule-based because they are composed by rules. Thus, in
the following, we call the repair as grammar-based.

109

approach again, shown in Figure 4.1. The first step is to translate the structure
of the meta-model and its typing into a (typed) graph grammar. This has the ad-
vantage that the grammar generates exactly those (typed) graphs representing the
structure of the models. Up to now, there was a problem: in general, the resulting
(typed) graphs might not be in the language of the grammar, and consequently,
do not correspond to the structure of the meta-model. This is the motivation for
the next section, in which we consider repair programs that are based on a set of
rules. This has the advantage that for each transformation via a grammar-based
program, there is a transformation via the rules of the grammar. If a graph is gen-
erated by a grammar with rule set R, then, after the application of an GG-based
program, the result can be generated by the grammar, too. Each transformation
with the program corresponds to the structure of the meta-model. This is inter-
esting in contexts where the language is defined by a grammar, like triple graph
grammars in the sense of Schürr [Sch94].

The problem of grammar-based graph repair is as follows: Given a set of rules R
and a constraint d, try to construct a repair program P based on the rule setR, i.e.,
we allow to equip the rules ofR with the dangling-edges operator (see Section 2.3),
context (see Definition 28), application conditions [HP09], and interfaces [Pen09].

Grammar-based repair problem

Given: A grammar GG = (R, S) and a graph constraint d.
Task: Try to find an “GG-based” repair program P for d.

program
constructionconstraint d

grammar GG
GG-based

repair program for d

Figure 4.15: Idea of a grammar-based repair program

A grammar-based program is a program based on a set of rules equipped with the
dangling-edges operator, context (see Definition 28), application condition, and
interface.

Definition 27 (grammar-based programs). Given a graph grammar with
rule set R, a program is GG-based, if all rules in the program are rules in R
equipped with dangling-edges operator, context (see Definition 28), application
condition, and interface. Additionally, the program Skip is GG-based. In more
detail, a program is GG-based , if all rules in the program belong to the set ggb(R),

110

inductively defined as follows.

(1) All rules in R are in ggb(R).

(2) If % ∈ ggb(R) with application condition ac, then 〈%, ac〉 is in ggb(R).

(3) If % ∈ ggb(R) with kontext morphism k : K ↪→ K ′, then %k is in ggb(R).

(4) If % ∈ ggb(R) with interfaces x and y, then 〈x, %, y〉 is in ggb(R).

(5) If % ∈ ggb(R), then %′ is in ggb(R).

Example 51. The rule AddTok = 〈 Pl ⇒ Pl Tktok 〉 equipped with interface
morphisms x1 : Pl ↪→ Pl and y1 : Pl ↪→ Pl Tktok , and equipped with the
application condition ac = @ (Pl ↪→ Pl Tktok) yields the {AddTok}-based
program try AddTok′, where AddTok′ = 〈x1, AddTok, ac, y1〉. At a marked Pl-node,
the program tries to add a Tk-node together with a connecting containment tok-
edge, provided it does not exist one. The rule AddTok′ can be used as part of the
grammar-based repair program for the constraint ∀(Pl ,∃ Pl Tktok).

To get a grammar-based repair program for a condition (see Definition 27), we
sometimes have to equip the rules with a morphism, called context. The reason
for this are the interfaces of the rules: by construction, each rule has interfaces A.
In general, there are rules, which might be used to repair a condition but does not
have an occurrence of the graph A in the left-hand side. In that case, we equip the
rule with a context morphism. A rule equipped with context morphism describes
how a smaller rule can be extended to a larger rule, the rule with context.

Definition 28 (rules with context). For a rule % = 〈x, p, ac, y〉 and a morphism
k : K ↪→ K ′, %k = 〈x′, p′, ac′, y′〉 denotes the rule equipped with context where
p′ = 〈L′ ←↩ K ′ ↪→ R′〉 is the derived rule, L′ and R′ are the pushout objects
of L ←↩ K ↪→ K ′ and R ←↩ K ↪→ K ′ (see (1) and (2) in the diagrams below),
respectively, l : L ↪→ L′ and r : R ↪→ R′ are the corresponding morphisms, ac′ =
Shift(l, ac), x′ = l ◦ x, and y′ = r ◦ y.

L K R

K ′L′ R′

l k r(1) (2)

ac

ac′

111

Example 52. The rule Build = 〈 1 2 ←↩ 1 2 ↪→ 1 2 〉
equipped with

� context k′ : ↪→ ,

� application condition ac = @ (↪→), and

� interface morphisms x : ↪→ and y : ↪→

yields the rule

Build2 = 〈x, ←↩ ↪→ , ac, y〉.

At a marked train, the rule adds a piece of track, provided there does not exist
one. The rule Build2 can be used as part of the grammar-based repair program

for the constraint ∀(,∃).

Remark. To restrict the applicability of the grammar-based program to previ-
ously marked elements, the rules are equipped with interface. For this, we some-
times have to equip the rules with a morphism, called context. The reason for
this are the interfaces of the rules: by construction, each rule has interfaces A. In
general, there are rules, which might be used to repair a condition, but does not
have an occurrence of the graph A in the left-hand side. In that case, we equip
the rule by a context morphism.

Fact 16. The equipment of the rules with a context or an application condi-
tion does not influence the result: Whenever a rule with context or application
condition is applied, then the corresponding underlying rule in R can be applied.

1. For all rules %k, G⇒%k H implies G⇒% H.

2. For all rules 〈%, ac〉, G⇒〈%,ac〉 H implies G⇒% H.

where %k denotes the rule % equipped with context k : K ↪→ K ′, and 〈%, ac〉 the
rule % equipped with application condition ac.

112

Idea. Given a graph grammar GG = (R, S), the construction of an GG-based
repair program for a condition d is based on the following idea.

(1) Try to construct a repair program for the condition d.

(2) Try to refine the rules of the repair program (for d) by equivalent transfor-
mations via the given rule set of GG

(3) Transform the transformations into equivalent GG-based programs.

(4) Replace each repairing set in Pd by an equivalent GG-based program.

The proceeding is illustrated in Figure 4.16. The first step (1), is to construct a
repair program for the condition. For illustration, the condition in the figure is a
proper condition. This yields a repair program, which contains for each existential
subcondition the corresponding rule sets (Ra1 and Ra3). The second step (2), is
the refinement of these rule sets, by equivalent transformations via the rules of the
input graph grammar. In the third step (3), we transform these transformations
into equivalent programs (Pa1 and Pa3), which are based on the graph grammar.
In the fourth step (4), we replace each of the repairing sets of the repair program
by the equivalent graph grammar based programs, i.e., we replace Ra1 and Ra3 by
Pa1 and Pa3 , respectively. This way, we obtained a grammar-based repair program.

∃ (a1 : A ↪→ B, ∀(a2 : B ↪→ C, ∃ (a3 : C ↪→ D)))d =

Ra1 ;try Mark(a1); 〈Mark(a2,¬∃ a3); Ra3 ;try UnM(a2)〉↓;Pd = UnM(a1)〉

P (a1)
P (a3)

(3)
(3)

(2) (2)

(1) (1)

(4) (4)

Figure 4.16: Construction of an GG-based repair program 10

In the following, we introduce the notion of compatibility, saying that, for all rules
of the repairing sets of the repair program for d, there are equivalent transforma-
tions via the rule set.

10In the figure, Unmark is abbreviated by UnM.

113

Definition 29 (compatibility). Let Pd be a repair program for a condition d.
A set of rules R is d-compatible (w.r.t. Pd) if, for all rules in the repairing sets of
Pd, there are equivalent transformations via R. In particular, if R = {%}, we also
say that % is d-compatible.

Example 53. The rule AddTok from Example 51 is compatible with the condition
c = (Pl ↪→ Pl Tktok).

Remark. Instead of equivalent transformations, one may consider approximat-
ing transformations: Two transformations t, t′ starting from the same graph are
replaceable if for each extension of t, there is one for t′, and vice versa. A trans-
formation t′ approximates t w.r.t. ac, denoted by t ≤ac t

′, if the transformations
t, t′ are replaceable and, for all the triples 〈g1, h1, i1〉 ∈ Jt1K and 〈g2, h2, i2〉 ∈ Jt2K,
h1 ◦ i1 |= ac⇔ h2 ◦ i2 |= ac.

If a rule set R is d-compatible w.r.t. the repair program P for d, for all rules in
the repair program, there are transformations via R. These transformations via R
can be transformed into GG-based programs. A transformation t is equivalent to
a program, denoted t ≡ P (t), if for t : g ⇒ h, there exists a t′ : g ⇒P (t) h

′ via P (t),
such that h′ = h.

Theorem 6 (from transformations to grammar-based programs). For
every transformation t : g ⇒∗R h, there is an GG-based program P (t) such that
t ≡ P (t).

Informal Description. To get an GG-based program for a given transformation
with a rule set R, we intuitively do the following: for a one-step transformation
t : g ⇒% h via a rule % with interface X, the result is another rule %. The left
interface of the rule % is equal to the domain of the input morphism g of the
transformation, and the right interface of the rule is equal to the domain of the
result morphism h. The application condition is the shifted application condition
of the rule %, shifted to the left-hand side G of the resulting rule. Furthermore,
node-deleting rules are equipped with the dangling-edges operator. For arbitrary
transformations, we inductively apply the construction along the transformation.

Construction 17. Let t : g ⇒∗R h be a transformation with g : X ↪→ G and
h : Y ↪→ H. For direct transformations t : g ⇒% h via a rule % = 〈x, p, ac, y〉 with
interfaces X and Y , let P (t) := 〈Mark(g′ ◦ x, ac′); %′; Unmark(h′ ◦ y)〉 be the rule
with left interface g′ ◦ x, % = G ⇒ H be the rule % equipped with context, ac′ =
Shift(g′, ac) the left application condition for %, and h′ ◦ y the right interface. For
transformations t : g = g0 ⇒n+1

R gn+1 = h, with t1 : g0 ⇒n
R gn, and t2 : gn ⇒% gn+1,

let P (t) := 〈P (t1);P (t2)〉.

114

Example 54. For the grammar GG with the rule 〈AddTok,@ Pl Tktok 〉 and
the transformation t : Pl ⇒ Pl Tktok , the GG-based program is

P (t) = 〈Mark(Pl); 〈 Pl ⇒ Pl Tktok ,@ Pl Tktok 〉; Unmark(Pl)〉.

The program intuitively marks a Pl-node, at that position a tok-edge is added.
Afterwards, the Pl-node is unmarked.

Proof. Let t : g ⇒∗R h be a transformation. By construction, P (t) is GG-based.
We show that there is a transformation g ⇒P (t) h. For one-step transformations,
by construction, t ≡ P (t). For n+1-step transformations, by induction hypothesis,
t1 ≡ P (t1) and t2 ≡ P (t2). Then P (t) := 〈P (t1);P (t2)〉 is a program with t ≡
P (t). 2

A (graph) program consisting of rules of a graph grammar GG is said to be a
GG-based program.

Corollary 1 (from grammar-based programs to transformations). For
every terminating GG-based program P there is a transformation t : g ⇒∗R h such
that P (t) ≡ t.

Proof. The Theorem is a consequence of Theorem 6 and Fact 16. 2

If a rule set is d-compatible, there is a grammar-based repair program for d. The
mapping repl replaces the repairing sets by equivalent GG-based programs.

Theorem 7 (grammar-based repair). Let Pd be a repair program for a condi-
tion d. If R is d-compatible (w.r.t. Pd), then there is an GG-based repair program
for d.

Construction 18. Let P ′d = Pd[repl] where the mapping repl replaces the repair-
ing sets by equivalent GG-based programs.

Proof. By assumption, for all rules in the repairing sets with interfaces A of Pd,
there are equivalent transformations via the rules of the graph grammar. By
Theorem 6, the transformations can be transformed into equivalent GG-based
repair programs. This yields a mapping repl which replaces the repairing sets
with interfaces A by equivalent GG-based programs with interface A. By the
Leibniz’s replacement principle, the repair programs Pd and Pd[repl] are equivalent.
Thus, Pd[repl] is an GG-based repair program for d. An illustration is given in
Figure 4.17. 2

115

∃ repair program for d
GG is d-compatible

∀ rules % : A⇒ C in Pd

∃ equiv trans t(%) via R

∀ transformations t(%) via R
∃ GG-based program P (t(%))

∃ GG-based repair
program for d

Def. 29

Thm 6

Thm 7

Figure 4.17: Illustration of the proof for grammar-based repair programs

Whenever the given rule set R coincides with the rule set of the repair program
for a constraint, then the GG-based repair program for the constraint coincides
with the repair program for the constraint.

Corollary 2 (grammar-based repair). Let R be a rule set, Pd be a repair
program for d, Rd the repairing set of Pd, and R = Rd. Then the GG-based
repair program PR,d for d is equivalent the repair program Pd: PR,d ≡ Pd.

Proof. The statement follows directly from Construction 18. 2

In the following, we consider graph grammars as in Taentzer [Tae12]. Let R be
the rule set of a graph grammar GG and P be an GG-based repair program for d.
Then, for each transformation G⇒P H via the program, we have: If the graph G
belongs to the language of the grammar GG, then each resulting graph H belongs
to the language of the grammar GG and satisfies the constraint d.

Corollary 3 (grammar based repair). Let GG = (R, S) be graph gram-
mar and P be an GG-based repair program for d. Then, for all transformations
G⇒P H via P , G ∈ L(GG) implies H ∈ L(GG) ∩ JdK.

G ∈ L(GG) Apply GG-based
repair program P for d

H ∈ L(GG) ∩ JdK

Proof. The statement follows from Fact 16: Let P be GG-based for d. Then for
every transformation G ⇒P H, H |= d, and, since P is GG-based, there exists
G⇒∗R H, H |= d. By Fact 16, for every G ∈ L(GG) there exists a transformation
G⇒∗R H such that H |= d. Thus, H ∈ L(GG) ∩ JdK. 2

116

The compatibility problem turns out to be undecidable. This follows immediately
from the undecidability of the coverability problem for increasing rule sets and
positive conditions (see Bertrand et al. [BDK+12]). The coverability problem is as
follows. Given a graph grammar GG = (R, S) and a graph C, is there a graph H
such that S ⇒∗R H and C v H, i.e., there is an injective morphism from C to H.

Lemma 27 (undecidability of compatibility). The following problem is un-
decidable:

Instance: An increasing rule set R and a basic condition ∃ (A ↪→ C).
Question: Is R d-compatible, i.e., ∃ t : A⇒∗R C ′. C ′ |= ∃ (A ↪→ C)?

Proof. The statement follows immediately from the undecidability of the cover-
ability problem for increasing rule sets (Bertrand et al. [BDK+12]). Assume the
compatibility problem for increasing rule sets R and basic conditions ∃ (A ↪→ C)
is decidable. Then, the coverability problem for increasing rule sets R, the start
graph A and final graph C is decidable: By definition of compatibility and covering,
R is ∃ (A ↪→ C)-compatible iff there is a transformation A⇒∗R C ′.C ′|=∃ (A ↪→ C)
iff there is a transformation A⇒∗R C ′.C ′ w C, i.e., there is an injective morphism
from C to C ′. Obviously, C ′ w C ⇔ C ′ |= ∃ (A ↪→ C), i.e., there is a covering. 2

The compatibility problem is semi-decidable for arbitrary rule sets and arbitrary
conditions. Let R be an arbitrary rule set and d be a condition (with the corre-
sponding repair program Pd for d). For each repairing set in the repair program
for d, we construct the set of all transformations which are equivalent to a trans-
formation with the rule in the repairing set. If this yields a graph satisfying the
condition, the algorithm terminates and returns true. In that case, the rule set is
d-compatible. In general, this construction may not terminate. If the termination
is requested, the construction aborts and cannot decide if there is an equivalent
transformation. Consequently, it is semi-decidable.

Lemma 28 (semi-decidability of compatibility). For every finite rule set R
and every condition d, R-compatibility of d is semi-decidable.

Proof. The algorithm in Figure 4.18 returns true, provided R is d-compatible or
terminates with an exception, i.e., it is semi-decidable. 2

Informal Description. The algorithm in Figure 4.18 constructs for each repair-
ing set Ra or Sa in the condition d an equivalent transformation, which is added
to the set of equivalent transformations. This is done, up to a certain length.
If we have found a graph, satisfying the constraint, we have found an equivalent
transformation. If this is not the case, we may increase the length of transforma-
tion. If the termination is requested, we cannot decide, because there may be a
transformation of a larger length.

117

Input: rule set R, legit condition d, maxRound ∈ N ∪ {∞}
Output: true, R is d-compatible throws UndecidedException;

T (a, 0)← ∅, i, j ← 1 ; // initialize

/* Ra(d) (Sa(d)) repairing sets in d behind (non)-existential

quantifier. */

for % ∈ Ra(d) do
repeat

/* Construct set of equivalent transformations A⇒ C ′ of length i

*/

t(a, i)← constructTrafo(a,R, i);
T (a, i)← T (a, i− 1) ∪ t(a, i);
i← i+ 1;
if i ≥ maxRound then

return throws UndecidedException;

/* If termination is requested, we cannot decide */

end

until C ′ |= ∃ a;
/* until an equivalent transformation is found */

end
for % ∈ Sa(d) do

repeat
/* */

until A′ |= @ a;

end
return true;
/* for all % ∈ Ra(d),Sa(d) an equivalent transformation is

found */

Figure 4.18: Algorithm for semi-decidability of compatibility in pseudocode

118

4.8 Related work

In this section, we present some related concepts on graph repair. The most sig-
nificant one is the one of Schneider et al. [SLO19]. We compare our approach with
the one of Schneider et al. in detail: first, we give an introduction to the approach
of Schneider, then, we show that repair programs induce (graph) repairs, after-
wards, we compare the termination of the approaches and compare the notion of
maximal preservation and “least-changing” graph repairs, i.e., we conjecture, that
solid repair programs induce “least-changing” graph repairs. Another approach is
the one of Cheng et al. [CCYW18]. The related work to model repair is presented
at the end of the next chapter.

Approach of Cheng et al.

In Cheng et al. [CCYW18], a rule-based approach for graph repair is presented.
Given a set of rules, and a graph, they use this set of rules, to handle different kinds
of conditions, i.e., incompleteness, conflicts and redundancies. The rules are based
on seven different operations not defined in the framework of the DPO-approach.
They look for the “best” repair based on the “graph edit distance”.

Approach of Schneider et al.

In Schneider et al. [SLO19], a logic-based incremental approach to graph re-
pair is presented, generating a sound and complete (upon termination) overview
of least changing repairs. They formalize consistency by graph conditions being
equivalent to first-order graphs formulas in the sense of Courcelle [Cou97]. They
present several repair algorithms: Two state-based repair algorithms which re-
store consistency independent of the graph update history, whereas delta-based
(or incremental) repair algorithms take the history explicitly into account.

The algorithms rely on an existing model generation algorithm for graph condi-
tions implemented in AutoGraph [SLO18]. The tool AutoGraph determines the
operation A that constructs a finite set of all minimal graphs satisfying a given
constraint ψ.

A(ψ ∧ ∃ (iG, true)constraint ψ

graph G
minimal graphs

satisfying ψ
include a copy of G

119

The first state-based graph repair algorithm takes a graph and a graph constraint
as inputs and returns a set of graph repairs. Given a condition and a graph, they
compute a set of symbolic models, which cover the semantics of a graph condition.
The first state-based algorithm is sound, i.e., all results are least changing repairs,
and complete (upon termination) with respect to non-deleting repairs.

The second state-based algorithm computes all least changing repairs. The algo-
rithm uses the approach of the first state-based algorithm, but computes A(ψ ∧
∃ (iG, true)) whenever an inclusion l : Gc ↪→ G describes how G can be restricted
to one of its subgraphs Gc. Every graph G′ obtained from the application of A for
some of these graphs Gc then results in one graph repair returned by the algorithm.
The algorithm is sound and complete whenever the call to Autograph terminates.

For the delta-based approach, the repair algorithms may contain, in addition to
the graph as in the state-based algorithms, an additional satisfaction tree (ST) for
encoding if and how a graph satisfies a graph condition.

All approaches are proven to be correct, i.e., the repair programs yield a graph
satisfying the condition. The delta-based repair algorithm takes the graph update
history explicitly into account, i.e., the approach is dynamic. In contrast, our
approach is static, i.e., we first construct a repair program, then apply this program
to an arbitrary graph. The repair algorithm does not terminate if the repair
updates trigger each other ad infinitum. Here, we have constructed terminating
repair programs.

Similarities and differences
In Schneider et al. [SLO19], the notions of update, graph repair, and least changing
graph repair are introduced.

An update of a graph G resulting in a graph H can be represented by a pair of
injective morphisms with the same domain, denoted by 〈G ←↩ D ↪→ H〉. The
domain D of the morphisms represents the part of G that is preserved by the
update. An update u1 is a sub-update of u whenever the modifications defined
by u1 are fully contained in the modifications defined by u. Intuitively, this is
the case when u1 can be composed with another update u2 such that the resulting
update has the same effect as u and u2 does not delete any element that was added
before by u1. This is stated by requiring that D is the intersection (pullback) and
that the graph H is its union (pushout), i.e., by requiring that the diagram (1) in
Figure4.19 is a pullback and a pushout.

Definition 30 (update & sub-update [SLO19]). An update 〈G←↩ D ↪→ H〉
is a pair of injective morphisms. An update u1 = 〈G←↩ D1 ↪→ H〉 is a sub-update
of u = 〈G←↩ D ↪→M〉, written u1 ≤ u, if there is an update u2 = 〈H ←↩ D2 ↪→M〉
such that diagram (1) in Figure 4.19 is a pullback and pushout and the triangles

120

commute. Moreover, we write u1 < u if u1 ≤ u and not u ≤ u1. For an update
〈G←↩ D ↪→ H〉 with G ∼= D, we shortly write G⇒ H.

G D1 H D2 M

D

l1 r1 l2 r2

(1)
= =

Figure 4.19: A sub-update of an update

Example 55. Given the constraint d = @ (Pl Tk
tok

tok
) meaning there do

not exist two tok-edges between a Pl-node and a Tk-node, and the graph G =

PN Pl Tk
tok

tokplace
, there is an update

u = PN Pl Tk
tok

tokplace ⇒ PN Pl Tktokplace .

It is also canonical, since the morphism r is an isomorphism. The update u is a
graph repair for G: the graph H = PN Pl Tktokplace satisfies the constraint d.

Given a constraint, an update is a (graph) repair if the resulting graph satisfies
the constraint. It is least changing if it cannot be decomposed into repairing
sub-updates.

Definition 31 (repair & least changing repair [SLO19]). Given a con-
straint d, an update u = 〈G←↩ D ↪→ H〉 is a (graph) repair for G, if H satisfies d.
A repair u for G and d is least changing if there is no repair u′ for G and d such
that u′ < u. The class of all (least changing) repairs of G with respect to d is
denoted by U(G, d) (Ulc(G, d)).

Example 56. Consider the graph G = ◦ ◦ and the constraint

d = ∀(◦1 ,∃ ◦1 ◦) meaning that for each node there is a real outgoing edge.
By Definition 31, the updates below are repairs for G with respect to d.

u1 = ◦
1
◦
2 ⇒ ◦

1
◦
2

u = ◦
1
◦
2 ⇒

◦
◦
1

◦
2

There is an infinite set of repairs for G with respect to d, e.g., those containing a
directed cycle on the right-hand side. The repairs are not in ≤ relation: u1 6≤ u

121

Choosing D2
∼= H, diagram (1) becomes a pushout and a pullback, but there is

no injective morphism D2 ↪→ M . If we take a graph D2 with morphisms to H
and M as shown in Figure 4.20, then the diagram (1) does not become a pushout.
Analogously, one can show that u 6≤ u1. The repairs u1 and u are least changing.

◦
1

◦
2

G

◦
1

◦
2

D1

◦ ◦
H

◦ ◦
D2

◦
◦
1

◦
2

M

◦
1

◦
2

D

/

(1)
= =

Figure 4.20: The update u1 is no sub-update of u

There is a close relationship between the repair programs and the graph repair
of Schneider et al.: By the definitions of repair programs and repairs, repair pro-
grams induce repairs. Maximally preserving repair programs induce maximally-
preserving repairs.

Corollary 4 (repair programs induce repairs). Let G be a graph, d be a
constraint, and P be a repair program for d. Then P induces a non-empty set of
repairs for G with respect to d.

U(G,P) = {〈G←↩ dom(tr(t)) ↪→ H〉 | t : G⇒P H}

where tr(t) denotes the partial track morphism tr(t) : G ⇀ H (see, e.g., [Plu05]).

Proof. By the existence requirement in the definition of repair programs, there
exists transformation G⇒P,i H. By the correctness requirement in the definition
of repair programs, u = 〈G ←↩ dom(tr(t)) ↪→ H〉 ∈ U(G,P) . H |= d, i.e., u is a
repair for G with respect to d. 2

We conjecture that all repairs induced by the solid repair program Pd for a con-
straint d are least changing.

Conjecture (solid repair programs induce least changing repairs). Let
G be a graph, d be a constraint, and Pd be a solid repair program for d. Then
Pd induces a non-empty set of least changing repairs for G with respect to d, i.e.,
U(G,Pd) ⊂ Ulc(G, d).

122

The solid construction gets a legit condition as input and returns a maximally
preserving repair program. The state-based algorithms of Schneider et al. get an
arbitrary constraint as input and return a set of least changing repairs. All ap-
proaches are proven to be sound, i.e., every repair of a graph w.r.t. a constraint is
least changing (maximally preserving). The first state-based algorithm (Repairsb1)
is complete (upon termination) with respect to non-deleting, least changing repairs.
The second state-based algorithm (Repairsb2) is complete (upon termination) with
respect to least changing repairs. There is a finite set of maximally preserving re-
pairs up to isomorphism for a graph and a constraint. The solid repair programs
induce the complete set of maximally preserving repairs. Consequently, we think,
that the notion of maximally preserving repair programs is a more suitable notion
than the least-changing repairs. The algorithms of Schneider et al. do not termi-
nate, the solid repair programs in this thesis are terminating for a subclass of all
conditions. The results are summarized in Table 4.1.

condition property soundness completeness termination

Repairsb1 arbitrary least

constraint changing + -∗ -

Repairsb2 arbitrary least

constraint changing + (+)] -

solid legit maximally

construction condition preserving + + +

where ∗ w.r.t non-deleting repairs,] complete (upon termination)

Table 4.1: Comparison with the approach of Schneider et al.

(1) Input. The main difference is that Schneider et al. allow arbitrary con-
straints as input and may get non-termination while in this thesis, we restrict
on constraints (conditions) with repair program guaranteeing termination.
However, it is not clear, under which prerequisites the approach of Schneider
et al. terminates.

(2) Least changing & maximally preserving. Example 56 shows that a
maximally preserving repair program yields one maximally-preserving repair
while there is an infinite number of least changing repairs. The notion of
least changing repair seems to be coarse. The least changing repair u in
Example 56 is not induced by a solid repair program.

123

Remark. It would be important to investigate how the conditions, for which the
algorithms of Schneider et al. terminate, are related with legit conditions.

Bibliographic notes. Graph repair was first investigated by [HS18]. The notion
of a repair program is defined first in [HS18, SH19, San20]. For constraints, the
notions update and repair and defined first in Schneider et al. [SLO19].

4.9 Conclusion

In this chapter, we have presented the theory of typed repair programs. Appli-
cation of the typed repair programs to an arbitrary typed graph yields a typed
graph satisfying the condition. The repair programs are derived directly from the
given condition.

conditions

not satisfiable
conditions

satisfiable
conditions

conj. & disj.
of proper
conditions

ad hoc
repair program

destructive
repair program

solid
repair program

no repair
program

Figure 4.21: Overview of different repair programs for conditions

Figure 4.21 provides an overview of the conditions and the corresponding repair
programs. For conditions, which are not satisfiable, there cannot exist a repair
program. For satisfiable conditions, there exists a destructive repair program,
which deletes an input graph and creates a new graph satisfying the condition.
For conjunctions and disjunctions of proper conditions there exists the destructive

124

repair program, the ad hoc repair program and the solid repair program. The
ad hoc repair programs are stable. The solid repair programs were constructed
to be stable, maximally preserving, and terminating. Additionally, we have con-
sidered grammar-based repair where the repair programs are constructed from a
given set of rules and a given condition. Based on the repair program for legit
conditions, we have constructed a grammar-based repair program for legit condi-
tions, provided that the given rule set is compatible with the repairing sets of the
original program.

Summarizing, we have constructed typed

1. Destructive repair programs for all satisfiable conditions (Lemma 16).

2. Solid & ad hoc repair programs for a large class of satisfiable conditions:
proper conditions, preserving conjunctions and disjunctions of proper conditions
(Theorems 2, 3, 4, and 5). The program properties are summarized in Table 4.2.

repair program stable max pres terminating

destructive - - -

ad hoc + - -

solid + + +

Table 4.2: Program properties for repair programs

3. Grammar-based repair programs may be seen as a refinement of the pro-
grams above, which guarantee that whenever the input belongs to the language
of a grammar, the result is in the language of a given grammar.

125

126

Chapter 5

Application to meta-modeling

In this chapter, we apply the theory on typed graph repair to meta-modeling.

To enable automated model repair or model completion, we look for an algorithm
that - given a meta-model with two constraints and any model satisfying one of
the constraints - creates another model satisfying the old as well as a new one (see
Figure 5.1).

model repairmodel M
M |= d

model M ′

M ′ |= d ∧ d′

M := M ′d := d ∧ d′,

meta-model MM
with constraints d, d′, . . .

Figure 5.1: General idea to model repair

If we have such an algorithm, the process can be iterated: Using the model satisfy-
ing two constraints, and a new constraint as input, the algorithm creates a model
satisfying the conjunction of three constraints, and so on. This iterative approach
is necessary in handling large conditions. In each step, one condition is handled.
If all steps terminate and in all steps, the preceding conditions remain preserved,
we can be sure that, after the consideration of all (finitely many) conditions, the
conjunction of the conditions is satisfied.

A model graph based on the Eclipse Modeling Framework (EMF) [SBMP08], short
EMF-model graph, is a typed graph satisfying some structural EMF constraints.
Application of the results for typed graphs to the EMF world yields model repair
and completions, i.e., the resulting typed graph satisfies all EMF constraints. To

127

do so, we construct model repair and completion programs for EMFk constraints,
a first-order version of the EMF constraints, where a natural number k restricts
the constraints to that size k, such that the application to a typed graph yields an
EMFk -model graph. The results known from typed graph repair are applied to
EMFk -model repair and EMF-model repair.

In Section 5.1, we introduce meta-models. In Section 5.2, we introduce EMF-
model graphs, represent EMFk constraints as graph conditions, and show that
the constraints on so-called “opposite edges” are preserving. In Section 5.3, we
show that there are model repair and model completion programs for the EMFk
constraints, and EMF constraints. In Section 5.4, we present some related concepts
on model repair.

5.1 Meta-modeling

The following introduction is oriented at Heckel and Taentzer [HT20], Jeusfeld
[Jeu18], and the Object Management Group (OMG) Model Driven Architecture
(MDA) Guide [Gro03], and the thesis by Rutle [Rut10].

Models are used in software development as abstract representations of systems.
Models may be represented as graphical or textual forms, depending on their
purpose. A textual representation is the Object Constraint Language, while class
diagrams based on the Unified Modeling Language (UML) are visual. In the OMG
specification, a meta-model is defined as a “model of models, where a model of
a system is a description or specification of that system and its environment for
some certain purpose”. We give a more precise definition from Jeusfeld [Jeu18].

A meta-model is a model that consists of statements about models. Hence, a meta-
model is also a model but its universe of discourse is a set of models, namely, those
models that are of interest to the creator of the meta-model. The statements in a
meta-model can define the constructs or can express true and desired properties
of the constructs. Like models are abstractions of some reality, meta-models are
abstractions of models. The continuation of the abstraction leads to meta-meta-
models, being models of meta-models containing statements about meta-models
(see Figure 5.2).

This means, that a model at a certain level of abstraction conforms to a meta-model
at the abstraction level above, and acts as a meta-model for models at the level
below. Theoretically, this may continue ad infinitum. According to the OMG’s
vision of MDE,. models, modeling languages, and meta-modeling languagues are
oganized in four levels, M0 − M3, in the so-called OMG’s 4-layered hierarchy
[BG01] . The most agreed interpretation of the OMG’s four layered hierarchy is
summarized as follows (see Figure 5.2)

128

M3 meta-meta-model

M2 meta-model

M1 model

M0 reality

conforms to

conforms to

conforms to

conforms to

Figure 5.2: Illustration of (meta)-modeling languages and their corresponding
meta-models

� Level M0 contains the reality (e.g., in this thesis, the Petri-net world)

� Level M1 contains models (in this thesis, formalized as typed graphs, see
Example 3)

� Level M2 contains meta-models (in this thesis, formalized as type graphs
(with containment), see Example 2)

� Level M3 contains meta-meta-models.

Remark. In newer papers, only the levels M1 to M3 are considered. While the
upper two “conforms to” relations are “instance of” relations, the lower one is a
“models” relation.

5.2 EMF-model graphs

The standard tool for model-driven engineering is the Eclipse Modeling Framework
(EMF). In [BET12], an EMF-model graph is defined as a typed graph, represent-
ing the model, satisfying the following conditions: No node has more than one
container. There are no two parallel edges of the same type. No cycles of contain-
ment occur. For all edges in the opposite edges relation, there exists an edge in
opposite direction.

129

Definition 32 (EMF-model graph). Given a type graph TG, a typed graph G
is an EMF-model graph, if it satisfies the following conditions:

1. At most one container: ∀e1, e2 ∈ CG. tG(e1) = tG(e2) implies e1 = e2.

2. No containment cycle: ∀v ∈ VG. (v, v) 6∈ contG.

3. No parallel edges: ∀e1, e2 ∈ EG. sG(e1) = sG(e2), tG(e1) = tG(e2), and
typeEG

(e1) = typeEG
(e2) implies e1 = e2.

4. All opposite edges: ∀(e1, e2) ∈ O. ∀e′1 ∈ EG.typeG(e′1) = e1. ∃e′2 ∈ EG.
typeG(e′2) = e2, sG(e′1) = tG(e′2) and sG(e′2) = tG(e′1).

The set CG denotes the set of edges in G which are typed by a containment edge.
contG ⊆ VG×VG is the containment relation induced by the set C ⊆ ET : If e ∈ C
and v1 ≤ s(e), v2 ≤ t(e), then (v1, v2) ∈ contG. If (v1, v2), (v2, v3) ∈ contG, then
(v1, v3) ∈ contG.

The conditions are said to be EMF constraints.

Remark. The EMF-model graphs in Biermann et al. [BET12] also contains
inheritance. It would be important to extend the approach to typed graphs with
containment and inheritance (see further topics)

The second constraint is a monadic second-order constraint. Instead of it, we
consider the constraint “No containment cycle of length ≤ k” for a fixed natural
number k. The resulting constraints, called EMFk constraints, are first-order
constraints and can be expressed by typed graph constraints [HP09].

Fact 17 (EMFk constraints). For the EMFk constraints, there is a schema of
typed graph constraints:

1. At most one container @ A BC

2. No containment cycle of length ≤ k @ A ∧
∧k−1

i=1 @ A B
i

3. No parallel edges @ A B
t

t

4. All opposite edges ∀(A B
t1

t2

t1

t2

,∃ A B
t1

t2

t1

t2

)1

where A,B,C,t,t1,t2 are node and edge types, respectively, edges without type
are arbitrary typed, and i denotes a path of containment edges of length i.

1The bidirectional edge indicates, that the edges are in the opposite-edge relation. The
presentation slightly differs from the presentation in the literature (e.g., Nassar [Nas20], Wang
[Wan16]) (see remark below).

130

The first constraint requires that there are no two different containment edges with
a common target. The second constraint requires that there are no loops and no
cycles of length ≤ k. The third constraint requires that there are no parallel edges
of the same type. The fourth constraint requires that, if there is an opposite-edge
marking between an A-typed and a B-typed node with type requirement t1,t2,
there exists already one edge e1 with the type t1, then an opposite edge with
type t2 in opposite direction should exist.

Remark. The presentation of the fourth constraint slightly differs from the pre-
sentation in the literature (Nassar [Nas20], Wang [Wan16]). In graphs, opposite
edges are not represented explicitly. A type graph (with containment) consists of
a graph with a distinguished set of containment edges and a relation of opposite
edges. Since a type graph is not a graph, we have integrated all information on
opposite edges and containment edges into the type graph, i.e., the edges in the
opposite edges relation are represented by bidirectional edges and containment
edges are marked with a black diamond. On the instance level, we cannot decide
whether an edge is in the opposite edge relation or not. Consequently, we add a
bidirectional edge between the A-node and the B-node if the edge is in the op-

posite edge relation, i.e., A B
t1

t2

t1

t2
into the typed graph. If we would not add

this information, we could not distinguish between the edges in the opposite edge
relation and those which are not.

Fact 18. The instances of EMFk constraints are negative or universal. Every
conjunction of EMFk constraints instances is satisfiable.

Lemma 29 (preservation of EMFk constraints). Every conjunction of EMFk
constraint instances is preserving.

Proof. The instances of the first three EMFk constraints are negative; thus,
the sequences are preserving. The instances of the forth EMFk constraint are
universal; by induction on the number of constraints, we show that the sequences
are preserving.

Let di be an instance of the “All opposite edge” constraint.

di = ∀(Ai Bi
ti1

ti2

ti1

ti2

, ∃ Ai Bi
ti1

ti2

ti1

ti2

)

The “All opposite edge” requirement in di is abbreviated by 〈Ai,Bi, ti1, ti2〉. The
edges in di are called 〈Ai,Bi, ti1〉 and 〈Bi,Ai, ti2〉-edges, respectively.

131

The repair program for di according to Theorem 3 is P ′i = 〈Pi;P
id
@ a,i〉, with

Pi = 〈Mark(a,¬c); Ai Bi
ti1

ti2

ti1

ti2

⇒ Ai Bi
ti1

ti2

ti1

ti2

,@ Ai Bi
ti1

ti2

ti1

ti2

; Unmark(a)〉↓.

P id
@ a,i = 〈Mark(a,¬c); Ai Bi

ti1
ti2

ti1

ti2

⇒ Ai Bi
ti1

ti2

ti1

ti2
〉↓

Let n = 1 and G⇒P ′1
H with G |= true. Then P ′1 is true-preserving.

Let n → n + 1 and G ⇒〈P ′1;...;P ′n+1〉 M be an arbitrary transformation. Then the
transformation is of the form G⇒〈P ′1;...;P ′n〉 H ⇒P ′n+1

M . By induction hypothesis,
P ′1, . . . , P

′
n is d0, . . . , dn-preserving, i.e., for k = 1, . . . , n, Pk is ∧ni=0di-preserving.

Consider now the transformation step H ⇒P ′n+1
M . Then M consists of edges

from H as well as edges created by the program Pn+1, or of the edges from H
and the edge 〈An+1,Bn+1, tn+1,1〉 deleted by the program P id

@ a,n+1. If we can show
that P ′1, . . . , P

′
n does not change the graph M , then the graph M |= ∧ni=1di, and,

since P ′n+1 is a repair program for dn+1, M |= dn+1. This holds for arbitrary
transformations. In the following, let o := n+ 1.

Ao Bo
to1

to2

to1

to2

Bm Am
tm2

tm1

tm1

Consider a 〈Bo,Ao, to2〉-edge created in the last transformation step. Then there
exist a 〈Ao,Bo, to1〉-edge in M with opposite-edge requirement
〈Ao,Bo, to1, to2〉. If there is a match for the plain rule of the program Pm (m < o)
using the created edge, then a Am = Bo, Bm = Ao, tm1 = to2.

Assume to2 = tm1, i.e., the created edge has the same type as another edge in
the typed graph, with the same source and target node. By the definition of type
graphs (Definition 2), the relation O is functional, i.e., there is only one opposite-
edge requirement between the nodes in consideration. Consequently, tm2 = to1.
Thus, there is an opposite-edge for the edge in consideration, i.e., the application
condition of the rule in Pm is not satisfied and Pm cannot be applied. Thus,
P1. . . . , Pn+1 is d0, . . . , dn+1-preserving.

It remains to show that the decreasing program P id
@ a,i is not applicable. Consider

a 〈Ao,Bo, to1〉-edge deleted in the last transformation step. Then there exist a
〈Bo,Ao, to2〉-edge in M with opposite-edge requirement, but the 〈Bo,Ao, to2〉-edge

132

cannot be added because it would introduce a new violation of the “At most one
container” or “No containment cycle of length ≤ k” constraints (see below).

Bm Ao Bo
tm2

tm1

to2
to1

tm2

tm1

to1

to2

Assume to1 = tmi, i.e., the deleted has the same type as another edge in the typed
graph, with the same source and target node. By the definition of type graphs
(Definition 2), the relation O is opposite direction, i.e., ∀(e1, e2) ∈ O, s(e1) = t(e2)
and s(e2) = t(e1). Consequently, for each edge with type tm1, there exists an
edge tm2 and for all m, (m < o), the application condition ¬c of the program
P id
@ a,m is not satisfied, and P id

@ a,m cannot be applied and the opposite edge pair is

repaired. Thus, P id
@ a,1. . . . , P

id
@ a,n+1 is d0, . . . , dn+1-preserving. Since P1. . . . , Pn+1

and P id
@ a,1. . . . , P

id
@ a,n+1 are d0, . . . , dn+1-preserving, it follows that P ′1. . . . , P

′
n+1 is

d0, . . . , dn+1-preserving.

This completes the inductive proof. 2

5.3 EMF-model repair

Let emfk1, emfk2 and emf1, emf2 be conjunctions of EMFk and EMF constraints,
respectively. An EMFk -model repair program for 〈emfk1, emfk2〉 is an emfk1-
preserving repair program for emfk2. An EMF-model repair program for a typed
graph L |= emf1 and emf2 is a program P such that, for all transformations
L ⇒P M , M |= emf1 ∧ emf2. An EMFk -model completion program is an EMF-
model repair program for true and the conjunction of all EMFk -constraints.
An EMF-model completion for a typed graph L is a program P such that, for
all transformations L ⇒P M , M is an EMF-model graph. A model repair or
completion program P for a constraint e is stable if, for all transformations L⇒P

M , and all typed graphs L |= e implies L ∼= M , i.e., they do not change the typed
graph, provided the constraint e is satisfied.

133

Theorem 8 (EMFk -model repair & completion). Let emfk1 be a conjunc-
tion of negative EMFk constraints, emfk2 a conjunction of negative or universal
and preserving EMFk constraints, and emfk the conjunction of all EMFk con-
straints.

1. There is a model repair program for 〈emfk1, emfk2〉.

2. There is a model completion program.

3. The EMFk -model repair and completion programs are stable.

typed graph
L |= emfk1

EMFk -model repair

constraint emfk2

typed graph
M |= emfk1 ∧ emfk2

Figure 5.3: Illustration of EMFk -model repair

Proof. 1. By Theorem 2, there are repair program Q1, Q2 for emfk1, emfk2,
respectively. By Lemma 29, every conjunction emfk1 and emfk2 is preserving.
Consequently, Lemma 20 can be applied and there is an emfk1-preserving repair
program Q′ emfk1

2 for emfk2, and by Fact 13, 〈Q1, Q
′ emfk1
2 〉 is a repair program for

emfk1 ∧ emfk2. 2. The statement is an immediate consequence of Theorem 8.1. 3.
The statement follows immediately from Construction 13. 2

Remark ((OCL-)Constraints). By the repair results on typed graphs, (model)
repair and completion can be done for other constraints satisfying the requirements
in Theorem 3, e.g., for first-order (OCL-)constraints.

Inspecting the EMFk -model repair (completion) program, it turns out that the
program deletes and adds an edge, but it does not change the number of nodes.

Fact 19. The application of the EMFk -model repair (completion) program does
not change the number of nodes.

There is a close relationship between EMFk and EMF (see Figure 5.4). For an
EMFk constraint emfk, emf denotes the more rigorous EMF constraint requiring
no containment cycles and, for an EMF constraint emf, emfk denotes the weaker
EMFk constraint emf requiring no containment cycles of length ≤ k.

134

emf1

|=L

emfk1

|=

L M |= emfk1 ∧ emfk2

M |= emf1 ∧ emf2

if |VL| ≤ k

P

P

if |VM | ≤ k

Figure 5.4: Relation on emf and emfk

Fact 20. For typed graphs L of node size ≤ k, L |= emfk iff L |= emf.

As a consequence, we obtain the following statement for EMF-model repair and
completion.

Theorem 9 (EMF-model repair & completion). Let emf1 be a conjunction
of negative EMF constraints, emf2 a conjunction of negative or universal and
preserving EMF constraints.

1. There is an EMF-model repair for emf1 ∧ emf2.

2. There is an EMF-model completion.

3. The EMF-model repair and completion are stable for all typed graphs L.

typed graph
L |= emf1

EMF-model repair

constraint emf2

typed graph
M |= emf1 ∧ emf2

Figure 5.5: Illustration of EMF-model repair

Remark. This proceeding also works in practice: In practice, the graphs can
have huge sets of nodes. Theorem 9(2) yields an EMF-model completion: For an
input graph of node size k, construct the EMFk -completion program and apply
it to the input graph. This yields an EMF-model completion.

Proof. 1. For a typed graph L of node size k satisfying emf1, we take the EMFk
-repair program P for 〈emfk1, emfk2〉 and apply it to L. By Fact 20, L |= emf1

implies L |= emfk1. By Theorem 3, the application of P to L yields a typed

135

graph M satisfying emfk1 ∧ emfk2. The program does not change the number of
nodes, i.e., M is a typed graph with k nodes. By Fact 20, M satisfies emf1∧ emf2.

2. For a typed graph L of node size k, we take the EMFk -completion program and
apply it to L yielding an EMFk -model graph M , i.e, a typed graph M satisfying
all EMFk constraints. The program does not change the number of nodes, i.e., M
is a typed graph with k nodes. By Fact 20, M satisfies emf1 ∧ emf2.

3. By Theorem 8, the EMFk -model repair and completion programs are stable,
i.e., for all transformations L ⇒P M , L |= e implies L ∼= M . Applying the
programs to a typed graph, the property remains preserved. 2

Remark (Repair of other structures). The results in Chapter 4 are applied to
meta-modeling: typed graphs are repair w.r.t. EMF constraints. Obviously, typed
graphs can also repaired w.r.t. other constraints, e.g., OCL-graph constraints as
considered in [RAB+18]. The presented results hold in everyM-adhesive category
with E ′-M pair factorization. As a consequence, we can do repair for high-level
structures and high-level constraints [EGH+14].

Remark (Model generation). In model generation, given a meta-model, one
tries to find some (all) instances of the meta-model. Model generation may be seen
as a special case of model completion applying the program: For a fixed k, the
application of the EMFk -model completion program to the empty typed graph
yields EMFk -model graphs. By Fact 19, every EMFk -model graph with node
size ≤ k is an EMF-model graph. In this way, we obtain some instances of the
meta-model.

5.4 Related work

We present some related concepts on model repair, for which there is a wide
variety of different approaches. The most significant paper on different model
repair techniques and a feature-based classification of these approaches is given by
Macedo et al. [MTC17].

We start with model repair approaches, which are based on the Eclipse Modeling
Framework. The most significant approach is the one by Nassar et al. [NRA17,
NKR17]. Another framework is the so-called Diagrammic Predicate Framework
(DPF), which is based on the thesis by Rutle [Rut10]. Based on this framework,
the model completion approach by Rabbi et al. [RLYK15] and the model repair
approach by Wang [Wan16] have been developed, which we present thereafter.
Afterwards, we compare some approaches based on the Unified Modeling Language
(UML). Finally, we classify our approach according to the features by Macedo et
al. [MTC17].

136

Eclipse Modeling Framework

In Nassar et al. [NKR17, Nas20], a rule-based approach to support a modeler in
automatically trimming and completing EMF models and thereby resolving their
cardinality violations is proposed. Repair rules are automatically generated from
multiplicity constraints imposed by a given meta-model. The rule schemes are
carefully designed to preserve the EMF model constraints.

The control flow of the algorithm consists of two main phases:

(1) Model trimming eliminates supernumerous model elements.

(2) Model completion adds required model elements.

It is shown that both of the algorithms are correct, and, for fully finitely instan-
tiable type graphs, the model completion algorithm terminates.

One can use the approach in this paper to transform a typed graph to an EMF
model graph, then, one can use the approach of [NKR17], to transform an EMF
model graph to an EMF model graph, satisfying additional multiplicity constraints
(see Figure 5.6).

trimming & completion
EMF model graph

+ multiplicities

EMF model graph

Figure 5.6: EMF model repair in [NKR17]

We compare the approaches in more detail. Both approaches have two phases for
the repair steps: they first delete all violating constraints, afterwards, the graph is
completed. In Nassar et al. [NKR17], it is shown that both the model trimming
and completion algorithms are correct, and the completion algorithm is termi-
nating, provided that for each graph G satisfying the lower bound multiplicity
constraints, there exists a graph G′, such that G is a subgraph of G′, and the type
graph meets the “critical edge condition”. Both approaches are stable [NKR17,
Corollary 2] and Lemma 23. Furthermore, in EMF it is a desired property for
models to be rooted, i.e., that (at least all non-abstract) nodes are transitively
contained in one root node. At the instance level, this enables the creation of a
tree structure that can be persisted conveniently. The approach of Nassar et al.
is designed to preserve the rootedness ability, i.e., under the assumption that
the input EMF model graph is rooted, the algorithm yields a rooted EMF model
graph again. In our approach, rootedness has not been considered. The reason
for this is, that rootedness is not a first-order property. One difference is the kind
of constraints, which are considered. The approach of Nassar et al. was designed

137

to preserve the EMF constraints and then repair the multiplicity constraints. In
our approach, we used the repair programs to repair the EMF constraints. Fur-
thermore, we have not considered multiplicity constraints explicitly. Our approach
can be applied to repair multiplicity constraints, provided that they meet the re-
quirement for Theorem 3. It is up to future work to see if this is feasible for
practical applications. It would be interesting to know whether the repair rules
and algorithms by Nassar et al. are special cases of our approach in some form.

In Biermann et al. [BET12], for EMF-model transformations, consistent trans-
formations are defined. Given a set of rules, the rules are slightly modified, to
so-called consistent transformation rules. This way, a direct transformation step
applied at an EMF-model graph yields an EMF-model graph again. In our ap-
proach, a direct transformation step leads to typed graphs. We use the repair
program to complete the typed graph to an EMF model graph.

In Köhler et al. [KLT07], graphs with containment edges, and homomorphisms
between them are introduced (see end of Section 2.1). The containment condition
ensures that a rule can only be applied to an EMF-model graph if the result does
not violate any containment constraints. If the first-order containment constraints
would be integrated into the rules (as in our approach), a rule with application con-
ditions would be applicable to a typed graph if and only if the typed graph does not
violate any first-order containment constraints. We use repair programs (based on
rules with application conditions) to repair typed graphs into EMF-model graphs.
The main difference is the handling of the non-first-order containment constraint.

In Taentzer et al. [TOLR17], a designer can specify a set of so-called change-
preserving rules and a set of edit rules. Each edit rule, which yields an incon-
sistency, is then repaired by a set of repair rules. The construction of the repair
rules is based on the complement construction. It is shown that a consistent graph
is obtained by the repair program, provided that each repair step is sequentially
independent of each following edit step, and each edit step can be repaired. The
repaired models are not necessarily as close as possible to the original model.

In Barriga et al. [BRH19], an algorithm for model repair based on EMF is
presented, which relies on reinforcement learning. For each error in the model, a
so-called Q-table is constructed, storing a weight for each error, and repair action.
This weight indicates how good a repair action is, depending on the repair action
and regarding the user’s preferences. The approach can repair errors provided by
the EMF diagnostician. The results are evaluated using mutation testing.

In Kosiol et al. [KSTZ20] two notions of consistency as a graduated property are
introduced: consistency-sustaining rules do not change the number of violations
of a constraint in a graph, and consistency-improving rules reduce the number
of violations in a graph. The definition is based on the so-called consistency

138

index, given by the number of constraint violations in a graph, divided by the
number of “relevant occurrences” of the constraints in a graph. A transformation
is consistency sustaining, if the consistency index for the input graph is equal to
or less than the resulting graph, and consistency improving if the number of the
violations in the resulting graph is smaller than in the input graph. A rule is
consistency sustaining if all transformations are. A rule is consistency improving,
if all applications of the rule are consistency sustaining, there exists a graph with
constraint violations, and a transformation, such that the number of the violations
in the resulting graph is smaller than in the input graph. A rule is strongly
consistency improving if all its applications to a graph with constraints violating
is consistency improving. In their setting, the rules derived from our approach are
strongly consistency improving.

In Hubatschek [Hub21], a meta-model is formalized as a loop-free type graph
with so-called multiplicity constraints, which demand that the number of outgo-
ing edges of the same type for nodes in a model is within certain bounds. It is
investigated how the approach to graph repair in this thesis can be used for the
repair of multiplicity constraints. It is shown that a repair program for multiplic-
ity constraints of a meta-model exists, if and only if the meta-model has no cycles
whose edges all have multiplicity lower bounds of zero.

Diagrammic Predicate Framework

In Rutle [Rut10], the Diagrammic Predicate Framework (DPF) is presented.
Models are represented by diagrammatic specifications. A diagrammatic speci-
fication consists of an underlying typed graph together with a set of atomic con-
straints. The typed graph represents the structure of the model and predicates
from a predefined diagrammic predicate signature are used to add constraints to
the structure. Each predicate has a name, shape, visualisation and semantic inter-
pretation. Additionally, DPF models are built on a stack of typed graphs, where
each layer is typed by the previous one.

In Rabbi et al. [RLYK15], a model completion approach for predicates specified
in the Diagrammic Predicate Framework is introduced. For every predicate in the
model, they derive a set of completion rules, by constructing the pullback of the
instance, the meta-model and the graph of the condition. These rules, applied as
long as possible, yield a model which conforms to the predicate. In our approach,
the rules are derived from the constraint and the meta-model. In both approaches,
the meta-model remains unchanged.

In Wang [Wan16], the semantics of the predicates in the DPF is specified as graph
constraints, and a model repair approach for these graph constraints is introduced.
For constraints of the form ∀(L,∃R) or ∀(L,@R), repair rules are directly derived

139

from the constraints. The construction is based on the construction of subgraphs
of L and R. For the constraint ∀(L,∃R), for each subgraph B, they derive rules
〈B ⇒ R, @R〉 and 〈L ⇒ B, @R〉. For the constraint ∀(L,@R), rules of the form
〈L ⇒ B〉 are derived. The performance of the approach has been optimized for
practical application scenarios. In this work, we have combined the programs for
proper conditions to a repair program for conjunctions of proper conditions. The
properties of the repaired conditions remain preserved, whenever possible. If this
is not possible, we delete the occurrence. As far as we can see, the approach in
[Wan16] does not handle conjunctive constraints.

In Sager [Sag19], a meta-modeling framework based on the DPF with formal
constraint semantics and the ability to repair models by existing graph repair
approaches, is introduced. They provide constructions for the transformation of
models into an equivalent model, where each constraint is on the lowest level (the
instance level). They have shown that it is undecidable in general if a program is
constraint-preserving.

Unified Modeling Language

In Nentwich et al. [NEF03] a repair framework for inconsistent distributed UML
documents is presented. Given a first-order formula, the algorithm automatically
creates a set of repair actions from which the user can choose when an inconsistency
occurs. These repair actions can either delete, add or change a model document.
It can be shown that the repair actions are correct and complete. The problem
of repair cycles is left for future work. Since, in general, it is undecidable, if a
constraint is satisfiable, the algorithm may not terminate.

In Puissant et al. [PSM15], a regression planner is used to automatically generate
sequences of repair actions that transform a model with inconsistencies into a
valid model. The initial state of the planner is the invalid model, represented
as logical formula, the accepting state is a condition specifying the absence of
inconsistencies. Then, a recursive best-first search is used to find the best suitable
plan for resolving the inconsistencies. The correctness of the algorithm is not
proven, but the approach is evaluated through tests on different UML models.
The algorithm takes the decision of the user into account and uses backtracking,
to find “the best” suitable plan to repair the inconsistencies. In contrast, our
approach is purely automatic.

In Meier and Winter [MW18], an approach to synchronize models by integrating
models with their meta-models into one integrated (meta)-model is presented.
Both approaches formalize consistency rules. Special operators are introduced,
which are used to keep all models consistent to each other. These are special
operators that take a meta-model and a model as input and returns another meta-

140

model and model. These operators form a chain of operations, which subsequently
yield the desired meta-model. In our approach, these operators may be formalized
as double-pushout rules. In Meyer and Winter, the consistency rule may be given
by a stakeholder.

In Meyer et al. [MKW20], an approach to define new viewpoints and views by
using operators is introduced. These operators split the whole transformation be-
tween one integrated (meta)-model and view(point) into parts. They are designed
to be generic and reusable by using meta-model and model decisions. The exem-
plary chains which are presented show their reusability for different viewpoints on
top of the already existing integrated meta-model.

Feature-based classification

In Macedo et al. 2017, the model repair approaches are classified into the main
features (1) domain, the (2) constraint, the (3) update of a user, the (4) check, and
the (5) repair. In the following, we classify the mandatory features from Macedo
et al. for our approach.

(1) Domain. In our approach, the domain, i.e., the model domain space, is for-
malized as graph. The technical space of our graph repair approach from Chapter 4
is independent of any domain. In this chapter, we have applied the theory to meta-
models specified in the Eclipse Modeling Framework. Following the graph-based
approach, our repair programs are meta-model independent, i.e., we can represent
any meta-model as a typed graph, and repair it to a typed graph satisfying the
constraints.

(2) Constraint. Model repair approaches may optionally expect a constraint to
be accompanied with repair hints on how to generate repair updates. Techniques
where the repair procedures automatically derive the repair updates from the con-
straint (for example rule-based approaches) do not have this kind of repair hints.
The shape of our constraints may be seen as pattern matching, equipped with
negative application conditions.

(3) Update. The user updates may either be state-based where the repair proce-
dure only considers the post-state of the user update, or delta-based, which require
information regarding the user actions that led to the current state of the envi-
ronment. Our approach considers only the condition d, which may be seen as the
post-state of the user-update. Thus, our approach may be seen as a state-based
approach.

(4) Check. In our approach, we do not have a check-only mode, i.e., we use a
coupled grammar-based approach, that is, we use repair rules and the checking
procedure of the violations is coupled to the repair rules as a precondition. These

141

rules cannot be applied in check-only mode.

(5) Repair. The core of our approach is rule-based, i.e., we apply a set of rules,
whenever a condition is violated. Syntactic techniques automatically derive repair
plans by syntactic analysis of the constraints. These repair plans are calculated at
static time and then instantiated to concrete model instances at run-time. This ap-
plies to our approach: we derive a repair program syntactically from the constraint,
afterwards, we apply the program to a typed graph representing the instance. In-
cremental approaches reuse data from previous checking of repair procedures. This
does not apply to our approach. For repair procedures, one important research
question is the kind of semantic properties, which are guaranteed by the repair
procedure. A technique is total if, for every user update that results in an incon-
sistent state, it is able to produce a repair update. The solid (destructive) repair
programs for legit (satisfiable) conditions are applicable to any input graph, and
thus, may be seen as total. A repair procedure is fully consistent if it guarantees
that the number of inconsistencies is at a minimum. We have proven that the re-
pair programs are correct (Theorem 5), that is, after the application of the program
the graph satisfies the constraint, i.e., it is fully consistent. A repair procedure is
stable if it does not change the input if the constraint is already satisfied. The
solid repair programs are stable (Lemma 23). A repair procedure is least-changing
if the repaired models are as close as possible to the original. The solid repair
programs are maximally preserving (Lemma 24).

5.5 Conclusion

In this chapter, we have applied the theory of typed repair programs to EMFk -
and EMF-model repair. The aim is to apply the theory, developed for first-order
graph formulas, to get EMF-model repair. We have considered EMFk constraints,
a first-order variant of EMF constraints, as a helper construction. Finally, we have
used the results on EMFk -model repair to get EMF-model repair. An illustration
is given in Figure 5.7.

Summarizing, we have

(1) EMFk -model repair. For EMFk constraints, a first-order variant of EMF
constraints, we present stable EMFk -model repair and completion programs.
Application of these programs to any typed graph yields a repaired typed graph
and an EMFk -model graph, respectively,

(2) EMF-model repair. These results are applied to the EMF world and yield
to EMF-model repair and completion results.

142

Theory on graph repair

first-order graph constraints

EMF-model repair

monadic second-order graph formulas

EMFk -model repair

EMFk
first-order graph constraints

Aim

Use

Figure 5.7: Application of the theory on graph to EMF-model repair

Further work

It remains the question, how far this approach is applicable in practice. Interesting
aspects may include the kind of constraints that are needed (e.g. multiplicity
constraint as in Nassar et al. [Nas20]), the complexity of the algorithms.

143

144

Chapter 6

An implementation
in ENFORCE+

ENFORCE is a system to ensure formal correctness of graph programs (Azab
et al. [AHPZ06]). It implements many of the needed tools, such as graph con-
ditions, graph programs, and those to verify correctness of graph programs. In
this chapter, we extend ENFORCE by a component for graph repair, calling the
result ENFORCE+ (see Figure 6.1), give an overview of the implemented repair
component and show some implementation details.

ENFORCE [AHPZ06]

graph conditions
graph programs
correctness

ENFORCE+ [this work]

graph repair

Figure 6.1: ENFORCE and ENFORCE+

The idea of the system ENFORCE+ is to automatically construct a repair program
and check whether the repair program constructed per hand is correct. For this
purpose, we restrict to directed, labelled graphs. It would be nice to have full
implementation of typed graph repair (see Further Topics).

The structure of the chapter is as follows. In Section 6.1, we describe the tool
ENFORCE+, while in Section 6.3 we describe the implementation of graph repair
in ENFORCE+, give some details on its structure and implementation and show
an example of its usage. An overview of related concepts and implementations is
given in Section 6.4. In Section 6.5, we draw some conclusions.

145

6.1 ENFORCE+

ENFORCE is a framework for verifying graph program specifications. It was
originally written in Java 6 and provides suitable data structures, for instance,
graphs, categories, morphisms, conditions, rules, programs, as well as operations
on these structures, such as enumeration of all epimorphisms for a given domain,
a construction of weakest liberal preconditions, and so forth. The basic design of
ENFORCE is presented in Azab et al. [AHPZ06].

The system ENFORCE+, an extension of ENFORCE, is a framework for graph
repair. In the system, there are two main components:

1. Construction of repair programs

2. Application of a repair program to a graph (called “repair”).

To implement graph repair in ENFORCE+, we enhanced ENFORCE with some
additional features. Table 6.1 gives an overview of features of ENFORCE and
features in ENFORCE+.

Table 6.1: Features of ENFORCE and additional features for graph repair

Features in ENFORCE Extensions and additions

Graph conditions
Shift-construction
Programs with left partial interface Programs with interfaces
Application of programs with left par-
tial interface

Application of programs with inter-
faces
try statement
Check for proper conditions

6.2 Design decisions

The construction of a repair program takes a graph condition as input and creates
a repair program for the condition if possible. Otherwise, if the shape of the
condition is not one of those specified in Theorems 2 and 3, an exception is thrown
since it is undecidable if a sequence of conditions is preserving [Sag19]. The input
is given in a textual form while the output may be graphical (or textual).

Input. The input is a graph condition specified in Java.
Output. The output (a repair program or repaired graph) may be rendered to
PDF via LATEX (see Example 57), or given in textual form.

146

The following simplifications are made in the output:

1. Rules % = 〈x, p, ac, y〉 (with interfaces X, Y). If both interfaces X, Y are
empty, we write % = 〈p, ac〉. If additionally ac = true, we write % = 〈p〉 or
short p.

2. Programs. Every rule % with interface X (and Y) is in Prog(X) (no brackets)

The repair programs are composed of rules with interface morphisms. Internally,
repair programs are represented with their interface morphisms. As output, one
may get the full version with interface morphisms, as well as a more readable
version without interfaces (instead of the interface morphisms). For our purposes,
the long form of graph programs can be inferred from the short form since the
left interface usually coincides with the left graph of rules and the right interface
usually coincides with the left interface (to enable iteration). Thus, no information
is lost.

Notation. Given a rule % = 〈x, p, ac, y〉 with plain rule p = 〈L ←↩ K ↪→ R〉, the
short form of % is obtained as follows:

1. Abbreviate p, i.e., p = 〈L←↩ K ↪→ R〉 becomes p = 〈L⇒ R〉.

2. Abbreviate negations, i.e., write ¬Q in ac as 6Q, where Q ∈ {∀,∃}.

3. If ac = true, remove ac.

Remark (interfaces not drawn). The interfaces of a rule are represented and
used by the system. In the short version of a rule 〈x, p, ac, y〉, the interfaces x and
y are not shown. For better understanding of the graphical output, it would be
nice, to represent the interfaces x : X ↪→ L and y : Y ↪→ R in the output, e.g., by
marking or coloring the nodes of X and Y in the graphs L and R, respectively.

Example 57 (graphical output). In the following, we show the long and short
form of the graphical output of ENFORCE+. The long form of the rule, shown
in Figure 6.2a, shows both interfaces of the rule and uses ¬∃ in the application
condition of the rule. In the short form of the output shown in Figure 6.2b, the
left and right interfaces are omitted (but can be inferred) and ¬∃ is abbreviated
to @.

147

〈 ◦1 ↪→ ◦
1 , 〈 ◦1 ←↩ ◦1 ↪→ ◦

1
◦ 〉, ◦1 ◦ ←↩ ◦1 ,¬∃ ◦1 ◦ 〉

(a) Long form

〈 ◦1 ⇒ ◦
1
◦ ,@ ◦1 ◦ 〉

(b) Short form

Figure 6.2: ENFORCE+’s graphical output modes

The following design decisions have been made with regard to the implementation.

Decision (Directed, labelled graphs). By [EEPT06a, Fact 2.9], labelled
graphs can be seen as special typed graphs. The implementation considers repair
programs for directed, labelled graphs instead of typed graphs. The reason for this
is that ENFORCE is implemented for directed, labelled graphs.

Decision (Properness check). There is an algorithm to check properness
of a condition which returns true if the condition is proper, and false otherwise.
The check is used before constructing a repair program. If the input condition is
proper, a repair program is created according to Construction 13. Otherwise, an
IllegalArgumentException is thrown, informing the user why the condition is
not proper, and no repair program is created.

Decision (Preservation check). Checking whether a conjunctive condition
is preserving is in general undecidable (see Theorem 6, [Sag19]); decidable cases
(apart from all subconditions negative (positive)) have not yet been identified.
The question is deferred to the user (but has to be answered a priori), they can
specify whether preservation is known or unknown. In the first case, the system
constructs a program and creates a message “Assuming preservation (requested
by user)”, in the second case a warning “Preservation status unknown, program
may not be a repair program” is emitted.

Decision (Dangling edges). The dangling-edges operator instructs to apply
a rule as in the SPO-approach, i.e., if a node is to be deleted, to delete dangling
edges attached to the node and then remove the node itself. Since ENFORCE
supports only the DPO-approach, we simulate the SPO-approach via a program
that marks the nodes to be deleted, removes dangling edges, removes the nodes
and finally performs the unmarking.

Decision (Invariant approximation). ENFORCE+ implements as long
as possible iteration of a program P as 〈P ∗; Mark(idC ,Wlp(P, false))〉, where

148

Wlp(P, c) for a program P and condition c denotes the weakest liberal precondi-
tion [Pen09]; this guarantees the existence of results (see Fact 2, [HPR06]). Since
in general, the weakest liberal precondition is unbounded, the computation may
not terminate. We use invariant overapproximation to compute an approximation
of a finite representation of the weakest liberal precondition (cf. [Pen09]) during
the execution of programs to obtain termination of the computation.

6.3 Graph repair in ENFORCE+

In this section, we outline how graph repair has been implemented in ENFORCE+

and provide some examples of the application of ENFORCE+. The section is
divided into three parts: first, the handling of proper conditions (without conjunc-
tions and disjunctions) is described and second the handling of conjunctions in
graph repair is described. Finally, we summarise the features of our implementa-
tion.

Graph repair for proper conditions

Graph repair is supported in ENFORCE+ as a repair component in its
transformations package (see Figure 6.3).

Application

Correctness tools

Transformations

E
n
gin

es

Core

Repair
Transformer

Figure 6.3: Integration of graph repair in ENFORCE+

Figure 6.4 shows the structure of our graph repair implementation in a UML class
diagram. The main part of the repair component is the class
ProperRepairTransformer, which contains a method transform(Condition d) re-
turning a repair program for the condition according to Construction 13, or throw-
ing an IllegalArgumentException if the condition is not proper. The imple-

149

mentation of Theorem 2 in ProperRepairTransformer is straightforward due to
ENFORCE+’s simple and highly readable graph program implementation, and
the inductive definition of Theorem 2.

Uses engines, core, transformations

enforce.transformations.repair

SaPrimeTransformer

+transform(condition: Condition): Program
+transformJustSa(a: Morphism): Program

RaTransformer

+transform(condition: Condition): Program

ProperRepairTransformer

+transform(condition: Condition): Program

1
-raTransformer

1
-saTransformer

Figure 6.4: Class diagram of our repair component for proper conditions in
ENFORCE+

To construct a repair program, the construction of repairing sets Ra and Sa for
morphisms a : A ↪→ C is essential.

Repairing sets Ra and Sa as well as the program S ′a are implemented in
RaTransformer and SaPrimeTransformer, respectively. RaTransformer has a meth-
od transform(Condition d) which returns Ra, SaPrimeTransformer has a method
transform(Condition d) which returns S ′a, and a method
transformJustSa(Morphism a), which returns Sa. The latter rule set plays a part
in the implementation of Theorem 3.3.

Figure 6.5 shows the implementation of the RaTransformer.transform method in
pseudocode form. The loop in line 4 iterates over all subgraphs between A and C.
Line 5 ensures that the repairing set does not contain identity rules. Line 7 creates
the application condition of the rule under creation, while lines 8 and 9 define the
rule’s left, right morphisms and left, right interface morphisms, respectively. Lines
10 and 11 create the rule instance from the morphisms and add it to the repairing
set. The repairing set is returned in line 13.

For the creation of application conditions (line 15), a conjunction is created. The
shifted @ a condition is computed in line 17, while lines 18 through 22 imple-
ment the termination condition acB, i.e., the conjunction of @(B ↪→ B′) for all

150

subgraphs B′ between B and C, unless B′ is isomorphic to B. The resulting
conjunction is returned at the end of the procedure.

function transform(Condition d)
ruleSet = {}
A := dom(d.morphism), C := codom(d.morphism)
foreach B in graphsBetween(A, C) do

if B ∼= C then continue

applCond := createApplCond(d.morphism, A, B, C)

right := B ↪→ C, left := B ↪→ B
leftInterface := A ↪→ B, rightInterface := d.morphism
rule = Rule(leftInterface, left, right, rightInterface, applCond)
ruleSet.add(rule)

end
return ruleSet

function createApplCond(Morphism a, Graph A, B, C)

condition = new Conjunction
condition.add(Shift(A ↪→ B, @a))
foreach B’ in graphsBetween(B, C) do

if B’ ∼= B then continue

condition.add(@(B ↪→ B′))
end
return condition

Figure 6.5: Pseudocode for repairing set Ra

Example 58 (application of ENFORCE+). In the following examples, we
use ENFORCE+ to generate repair programs for several conditions. The code
snippet in Java below is used to generate a PDF representation of the repair
programs. Line 1 defines the condition d in each case, line 2 instantiates a
ProperRepairTransformer, line 3 constructs the repair program for d, and finally
line 4 renders the repair program to PDF via LATEX.

1 Condition d = ... // construct input condition;

2 ProperRepairTransformer repairTransformer = new

ProperRepairTransformer ();

3 Program program = repairTransformer.transform(d);

4 TeXScreenRenderer.renderTeX(program , "example");

151

1. For the constraint d = true, the repair program is

Skip

2. For the constraint d = ∃ ◦ , the repair program is

try ∅ ⇒
1
,@

1

The program works by creating a node, provided that there does not exists
one.

3. For the constraint d = @ ◦ , the repair program is1

Mark
1

; 1

l

⇒
1

,

1 2
3 ⇒

1 2
,

1 2
3 ⇒

1 2

y ;
1
⇒ ∅ ; Unmark ∅

y
The program deletes a node by simulating the SPO-approach, i.e., it marks
a node, removes dangling edges from the node as long as possible, removes
the node and finally unmarks it.

Remark. Instead of presenting the program for deleting dangling edges,
one can use the dangling edges operator to indicate it.

4. For the constraint d = ∃(◦ ,@ ◦), the repair program is

try ∅ ⇒
1
,@

1
; Mark

1
;

1

l

⇒
1

y ; Unmark
1

The program creates a node, provided that there does not exist one, marks
a node, as long as possible removes loops from the marked node, and finally
unmarks the node.

5. For the constraint d = ∀(◦1 ,∃ ◦1 ◦), the repair program is

Mark
1
, @

1 2
3 ; try

1
⇒

1 2
3 ,@

1 2
,

1 2
⇒

1 2
3 ,

@
1 2 34

∧ @
1 2

3

; Unmark
1

y
1The program for deleting dangling edges seems to have isomorphic rules. However, this is

due to the short version of the rule, where the interfaces are not shown (see Remark (interfaces
not drawn) in Section 6.2).

152

6. For the condition ∃(◦1 ↪→ ◦
1
◦
2 ,∀(◦1 ◦

2 ,∃ ◦
1
◦
2

)), the repair pro-
gram is

try
1
⇒

1 2
,@

1 2
;

Mark
1 2

;

Mark
1 2

3 , @
1 23

4
; try

1 2
3 ⇒

1 23

4
,@

1 23

4
; Unmark

1 2
3

y ;

Unmark
1 2

The program works by adding another node, provided that there is none
and then marks two nodes. As long as possible, two nodes and an edge
between them are marked, provided that there is no opposite edge, then the
opposite edge is added, provided that it does not exist yet, and the previously
marked nodes and the edge are unmarked. Finally, the two nodes marked in
the beginning are unmarked.

This program cannot be applied to a graph where the domain of the input
morphism is empty, because it is a program with a node as the interface.
The program contains application conditions, which are checked twice in the
Mark statement, and in the application condition of the rule. This is a very
special case, due to the simplicity of the condition, and can, in general, not
be omitted.

Remark. In very special cases, conditions are checked twice: for the condition
d = ∀(o, ∃ a), the repair program is Pd = 〈Mark(o,@ a); try Ra; Unmark(o)〉↓. The
first rule in Ra is the rule with left-hand side A and application condition con-
taining Shift(idA,@ a) ≡ @ a. Thus, the condition @ a is checked by Mark(o,@ a)
as well as in the application of the first rule in Ra. (Construction 13 can be
modified in the way that, for d = ∀(o,∃ a), the subprogram P∃ a = try Ra is
replaced by the program P−∃ a = try R−a where R−a is obtained from Ra by re-
placing the first rule by the rule without the application condition @ a.) For a
condition d = ∀(o, c) with c = ∃ (a, c′), the repair program is similar: Pd =
〈Mark(o,¬c); try Ra; . . . ; Unmark(o)〉↓. Then the condition ¬c = @ (a, c′) as well
as the application condition @ a of the first rule in Ra is checked. Since, generally,
@ (a, c′) 6=⇒ @ a, both conditions have to be checked. We do not consider these
simplifications further since they provide only insignificant runtime improvements.

Conjunctive repair

Repair of conjunctive constraints according to Theorem 3 is implemented in a class
ConjunctionRepairer (see Figure 6.6) which has a function

transform(Conjunction conjunction, PreservationMode mode), where the sec-
ond parameter is optional, defaulting to UNKNOWN. It makes use of the component

153

ProperRepairTransformer to generate the repair programs needed to construct
repair programs for supported conjunctions.

ProperRepairTransformer

+transform(condition: Condition): Program

«enumeration»
PreservationMode

PRESERVING
UNKNOWN

ConjunctionRepairer

+transform(conjunction: Conjunction): Program
+transform(conjunction: Conjunction, mode: PreservationMode): Program
-doPresRepairProgram(d1: Condition, d2: Condition)

enforce.transformations.repair

«uses»

Figure 6.6: Class diagram of the conjunction repairer

Algorithm 6.7 shows the pseudocode for the implementation of repair programs
for conjunctive conditions. Line 2 first flattens2 the conjunction if necessary, and
then decomposes the conjunction into lists of positive, negative and universal
conditions, respectively. Lines 3 through 18 make use of the different condi-
tion shapes which are available in the previously decomposed conjunction, and
calls the relevant subroutines to create repair programs in each case. If no spe-
cific pattern could be discerned in the conjunction, then the preservation mode
provided by the user is taken into account, a warning is printed to the con-
sole, and the condition is handled as if it consisted of a preserving sequence of
subconditions, i.e., the repair programs for each subcondition are sequentially
composed. Conjunctions of positive or negative conditions are handled simi-
larly, but no warning is printed to the user because the subconditions are pre-
serving in those cases. This is different for conjunctions of negative and uni-
versal & preserving conditions, where the warning about the preservation mode
is printed and the subroutine doNegativeAndUniversal (see Algorithm 6.8) is
called, which uses the ProperRepairTransformer to construct the repair pro-
grams for negative conditions, and then constructs the negation-preserving repair
program for the universal & preserving conditions, according to Construction 16.

2Flattening a conjunction pulls any conjunctive subconditions of it up a level.

154

function transform(Conjunction conjunction, PreservationMode mode)
checkResults := checkShape(conjunction) // flatten,

sequentialize, separate

switch checkResults.shape do
case NEGATIVE do

return doNegative(checkResults.negativeConditions)
end
case POSITIVE do

return doPositive(checkResults.positiveConditions)
end
case NEGATIVE AND UNIVERSAL do

printPreservationMode(mode)
return
doNegativeAndUniversal(checkResults.negativeConditions,
checkResults.universalConditions)

end
otherwise do

printPreservationMode(mode)
return doPreserving(checkResults.allConditions)

end

end

Figure 6.7: Pseudocode for conjunctive repair

Algorithm 6.8 line 10 shows the pseudocode for the function
doPresRepairProgram(Condition d1, Condition d2). Lines 11 and 12 construct
the repair program for d2 and the d1-preserving version of the repair program
for d2, respectively. The repairing set Sa and the set S id

a are created in lines 13
and 14, respectively, where a function constructSaId is used to construct S id

a . To
construct the version of S id

a which deletes dangling edges, the SaPrimeTransformer

is used in line 15. The lines 16 to 18 construct the sequential composition of
the selection of elements which violate d2’s inner subcondition and S ′ ida . The
program P id

@ a is created in line 19, by the as-long-as-possible iteration of S id
a ,

and in line 20, the result of the whole construction (the sequential composi-
tion of P2d1 and P_nexists_a_id) is returned. The preservation check for uni-
versal and preserving sequences of conditions is up to the user (see Section 6.2).

155

function doNegativeAndUniversal(Conjunction negatives, Conjunction
universals)

seq = Sequence()

foreach negative in negatives do
seq.add(ProperRepairTransformer.transform(negative))

end
foreach universal in universals do

seq.add(doPresRepairProgram(negatives, universal))
end
return seq

function doPresRepairProgram(Condition d1, Condition d2)
P2 := ProperRepairTransformer.transform(d2)
P2d1 := HlrcTransformations.transformPres(P2, d1)
Sa := SaPrimeTransformer.transformJustSa(d2)
Sa id := constructSaId(Sa)

Sa id prime := SaPrimeTransformer.transformSaPrime(S a id)
seq := Sequence()

seq.add(Sel(d2.morphism, ¬d2.innerCondition))
seq.add(Sa id prime)
P nexists a id := AsLong(seq)
return Sequence(P2d1, P nexists a id)

Figure 6.8: Pseudocode for preserving repair program

Remark. The order of the conditions is implicitly changed during the prepro-
cessing unless the conditions are assumed to be preserving. This is because Theo-
rem 3.3 needs to handle negative conditions before the universal conditions. The
order of the conditions within their groups, however, is unchanged.

General Remark. The following Examples are constructed to illustrate the
constructions of the programs. They were designed to be as small as possible,
meaning that they contain few rules and that the application conditions only
contain very few graphs. The consequence of this is, that conditions may further
be optimized (see Example 59.3) and that the programs are simple and may be
further optimized: many of the programs contain multiple isomorphic rules and
application conditions, which are checked twice, and programs, which may never

156

be applied (see Example 59.4). In a further version, one can optimize the programs
such that several conditions do not have to be checked twice. In general, these
problems cannot be avoided since, in general, it cannot be decided if two rules are
semantically equivalent or if two conditions are semantically equivalent.

Example 59 (conjunctive repair). We apply ENFORCE+ to generate repair
programs via the following Java code.

1 Conjunction d = // construct input conjunction;

2 PreservationMode mode = PreservationMode.PRESERVING;

3 ConjunctionRepairer conjunctionRepairer = new

ConjunctionRepairer ();

4 Program program = conjunctionRepairer.transform(d,

mode);

5 TeXScreenRenderer.renderTeX(program , "example");

Line 1 creates the condition d and line 2 defines the preservation mode as
PRESERVING. Line 3 instantiates the ConjunctionRepairer, which is used in line 4,
to create the repair program for d, and in line 4, the PDF output for the generated
program is printed.

1. Consider the condition d = d1 ∧ d2, where d1 = @ ◦ and d2 = @ ◦ ◦ .
Then the repair program is

1

1

⇒
1

y ;
1 2

3 ⇒
1 2

y
The program removes a loop from a node as long as possible. Afterwards,
any edge between two nodes is deleted as long as possible.

2. Consider the condition d = d1 ∧ d2, where d1 = ∃ ◦ and d2 = ∃ ◦ ◦ .
Then d2 is d1-preserving and the repair program is

try

∅ ⇒
1

1

, @
1

,

1
⇒

1

1

,
@

1 2

3

∧ @
1

1

; try

∅ ⇒
1 2

,@
1

,

1
⇒

1 2
,@

1 2
,

1
⇒

2 1
,@

1 2

The program first tries to add a loop by adding a loop or node with a
loop, provided there does not exist one. Afterwards, it tries to add two
nodes, provided there does not exist one, or adds a node, provided that
there exists one but not two nodes. In the repair program for d2, there are
two rules containing isomorphic graphs because one rule is created for each

157

of the nodes, which has to be added. The reason is the consideration of
all subgraphs in the construction, and the simplicity of the Example. This
cannot be avoided since, in general, it cannot be decided if two rules are
semantically equivalent.

3. Consider the condition d = ∀(◦ ,∃ ◦) ∧ ∀(◦ , ∃ ◦). This con-

dition is equivalent to the linear condition ∀(◦ ,∃ ◦) and the repair
program contains application conditions, which are checked multiple times.
We have chosen this condition to illustrate the construction of the repair
programs for universal and preserving sequences of conditions. Then the
repair program is

Mark
1
, @

1

1
; try

1
⇒

1

1

,@
1

1
; Unmark

1

y ;

Mark
1

1

, @
1

1

1

; try
1

1

⇒
1

1

1

,@
1

1

1

; Unmark
1

1

y
The program first creates a loop at every node, provided that the node does
not have a loop and then creates another loop at every node with a loop,
provided that it does not have two yet.

4. Consider the condition d = @ ◦ ∧ ∀(◦ ,∃ ◦). Then the repair
program is

1

1

1

⇒
1

1

,

1

1

1

⇒
1

1

y
;

Mark
1
, @

1

1
; try

1
⇒

1

1

,

∃
1 2

1

1

∨ ∃
1

1

∨ @
1 2

1

1

∧ @
1

1

; Unmark
1

y
;

Mark
1
, @

1

1
;

Mark
1

; 1

1

⇒
1

,

1 2
3 ⇒

1 2
,

1 2
3 ⇒

1 2

y ;
1
⇒ ∅ ; Unmark ∅

y
158

The program first as long as possible removes a loop from each node that
has two loops. Then, as long as possible, it attaches a loop to a node, pro-
vided that it does not have a loop. Finally, any node without a loop is
removed by simulating the SPO-approach via a subprogram to delete dan-
gling edges. This example is constructed, to illustrate the construction of
the repair programs for negative and universal and preserving sequences of
conditions. Thus, the program contains two isomorphic rules. The reason
is the consideration of all subgraphs in the construction, and the simplicity
of the Example. Since the universal condition preserves the negation, the
decreasing program may never be applied.

Remark. For the implementation, our aim was to construct the correct repair
programs. Of course, there are some optimizations for future work. These may
include checks for isomorphic rules, and further simplification of the application
conditions, e.g., as in Nassar et al. [NKAT20].

Feature summary

Based on the above examples, the features of our implementation can be sum-
marised as follows. ENFORCE+’s graph repair component can be used to auto-
matically repair proper conditions and some conjunctive conditions according to
the theory. Hence, the implementation generates graph programs that are stable,
maximally preserving and terminating. User interaction is limited to providing
the conditions to construct repair programs for, and the preservation mode for
conjunctive constraints. At the moment, it is not possible for the user to pause
the repair process and, for instance, select specific matches at runtime.

6.4 Related systems

In this section, we give an overview of some closely related systems as well as some
general graph transformation tools. A sophisticated survey and a feature-based
classification of model repair approaches can be found in [MTC17].

Henshin/EMF Model Repair

Henshin is a transformation language and tool environment for attributed graph
transformation for the Eclipse Modeling Framework (EMF). Among its features
are mixing of the double and single pushout approach to graph transformation,

159

a graphical editor, and critical pair analysis. It supports various editors, exe-
cution engines and toolchains (see Strüber et al. [SBG+17]). At the moment,
ENFORCE+ does not support EMF or attributed typed graphs. In Nassar et al.
[NRA17, NKR17], a rule-based approach to guide modelers in an automated, in-
teractive way in the setting of model repair in EMF is presented. The authors
give a rule-based algorithm that works in two steps, model trimming and model
completion. The algorithm assumes the existence of a rule-based model transfor-
mation system, which the authors describe how to derive from a given meta-model.
The approach is implemented in two Eclipse plug-ins based on Henshin, where
the resolution strategy is semi-interactive, and the tool guides modellers to valid
models. In contrast, ENFORCE+ only interacts with the user when preservation
of conjunctive constraints cannot be handled directly due to unknown preserva-
tion status, where the user is warned and asked to provide the status. Another
difference is that the Henshin implementation allows moving actions, i.e., vio-
lation of upper bounds of multiplicities may be resolved by moving items to a
compatible node without exceeded multiplicity constraint, or such a node may be
created first and then the items moved [NKR17]. This is currently not supported
in ENFORCE+. Since our tool focuses on graph repair instead of model repair,
the implementation does not depend on a given meta-model, but the conditions
to repair are supplied by the user directly as graph conditions.

AutoGraph

In Schneider et al. [SLO18], a logic of attributed graph properties, where the
graph and attribution part are separated, is introduced. This is accompanied by
a dedicated implementation called Autograph, written in Java. In Schneider
et al. [SLO19], a logic-based incremental approach to graph repair is presented,
generating a sound and upon termination complete overview of least changing re-
pairs. The graph repair algorithm takes a graph and a first-order graph constraint
as inputs and returns a set of graph repairs. Given a condition and a graph, they
compute a set of symbolic models, which cover the semantics of a graph condition.
Both approaches are proven to be correct, i.e., the repair (programs) yield to a
graph satisfying the condition. The delta-based repair algorithm in [SLO19] is
a dynamic approach since it takes the graph update history into account. This
is in contrast to our approach which statically generates a repair program for a
given graph condition, upon which ENFORCE+’s repair component is based. The
approach implemented in ENFORCE+ is furthermore guaranteed to terminate,
whereas the approach in [SLO19] may not terminate if repair updates influence
each other.

160

VIATRA-Solver

The VIATRA-Solver of Semaráth et al. [SNV18], is an open-source tool and
graph solver for the automated generation of consistent, domain-specific models,
which is available as an Eclipse plugin, a standalone Java application or an API.
The basis of the approach are partial models. Formally, an initial partial model is
refined via so-called decision- and unit-propagation rules (which are derived in a
pre-processing step from a given meta-model), reducing the number of uncertain-
ties and violations, to converge to a valid model. Thus, our approach is different
in that labelled, directed graphs are the underlying structure and that the actual
repair process is encoded directly via graph programs; no exploration is used to
find valid models. In contrast to ENFORCE+, VIATRA-Solver used a meta-model
to extract constraints, whereas the constraints must be supplied to ENFORCE+

manually.

Further Systems

Some further systems for graph transformation are:

AGG, AGG2.0. AGG (attributed graph grammar system) is a development
environment for attributed graph transformation systems with an extensible ar-
chitecture. It aims at specifying and rapid prototyping of applications dealing with
complex, graph structured data [Tae04]. As of AGG 2.0, it supports the creation
of inverse, concurrent, amalgamated and minimal rules, as well as critical pair
analysis [RET11]. The latter are not supported by ENFORCE+ as of yet since its
focus is on ensuring correctness of graph programs and performing graph repair.

Progres. Progres is a hybrid visual/textual language that supports program-
ming with graph rewriting systems and also comes with a development environ-
ment. It is based on attributed graph transformation, rule oriented and imperative
in nature and supports type checking, compiling and debugging graph transfor-
mation specifications via its internal tools [SWZ96].

Groove. groove, which started as a state space generation tool, is a graph
transformation tool of which some supported features are modelling via attributed
typed graphs, regular expressions, priority control of transformation rules and
model checking via LTL- and CTL-formulas [GdMR+12]. As far as we know,
graph repair is not supported in groove.

Java-Graph. Java-Graph is a programming library for rapid development of
graph tools currently in alpha stage, featuring graphs and morphisms, basic cate-
gorical constructions and application of graph transformation steps. It also offers
a graphical interface for visualization and manipulation of graphs [BKM+20]. As
far as we know, no support for graph repair is included in the library as of yet.

161

6.5 Conclusion

In this chapter, we have summarised the capabilities of our graph repair tool
ENFORCE+ and shown how graph repair has been implemented in it. We have
shown that our system generates not only equivalent, but also structurally almost
equal repair programs to those obtained by hand according to the theory in all
considered cases. The repair programs created by ENFORCE+ are more or less
equal to the repair programs created by hand. The small differences occur because
- up to now - there is no component for optimizations included in the system. In
the construction per hand, we use some optimizations rules, which are done by
hand. Hence, simple generation of repair programs for graph conditions is a core
feature of ENFORCE+.

Further topics .

1. Extension of ENFORCE+ to typed graphs.

2. Representation of the interfaces in the output. e.g., by marking the
images of the interface morphisms.

3. Optimization of the repair programs in the output. The programs can
be further optimized, by checking for isomorphic rules and further simplification
of the application conditions, e.g., as in Nassar et al. [NKAT20].

162

Chapter 7

Conclusion

In this chapter, we summarize the results of the thesis and mention some further
work.

7.1 Summary

In this thesis, we have presented approaches to graph generation and graph repair
and an application to meta-modeling.

Graph generation. The main construction is a backward construction to in-
stance generation, yielding an automaton with constraints as states. The con-
struction is based on the construction of existential weakest liberal preconditions
and constraint-guaranteeing rules. The backward construction works for arbitrary
graph grammars and arbitrary constraints. The automata are closed with respect
to Boolean operations complementation and product construction. The results
can be easily generalized to typed attributed graph grammars. The construction
terminates for specific graph grammars and graph constraints.

Graph repair. We have presented the theory of repair programs. The repair
programs are derived directly from the given condition. We have shown that
there are repair programs for legit conditions. The repair programs are stable,
maximally preserving, and terminating. Based on the repair program for legit
conditions, there is a grammar-based repair program for legit conditions, provided
that the given rule set is compatible with the repairing sets of the original program.

Application to meta-modeling. Application of the repair results to the EMF-
world yielded model repair for EMF constraints.

163

7.2 Further work

(1) Generalization to type graphs, e.g., type graph with inheritance [BET12]
and arbitrary multiplicities [Tae12].

(2) Generalization to a larger class of conditions. Currently, we do not have
a solid (ad hoc) repair program for all (satisfiable) conditions. The problem
is, that not all conjunctions are preserving. Is there a solution, to get a solid
(ad hoc) repair program?

(3) Generalization of repair program with preconditions. Similar to other
notions of correct programs, the investigation of repair programs with precon-
dition c and postcondition d, where the correctness of the repair programs is
only guaranteed for graphs, satisfying c.

(4) Graph repair allowing redirection of edges. Our repair programs try
to preserve items; if this is not possible, they delete items. In Nassar et al.
[NRA17], multiplicity constraints are considered. In this context, they use the
idea, to redirect an edge instead of deleting it. How can the ideas of preserving
graph repair and repair by redirection of edges be combined?

(5) Complexity. The construction of repair programs is based on the construction
of repairing sets. For the repairing set of a morphism a : A ↪→ C we have to
consider (at most) all subgraphs of the graph C. This gives an impression on
the complexity for constructing the repair program of a constraint.

(6) Implementation. The implementation works on directed, labelled graphs. It
would be important to extend the implementation to typed graphs. For better
understanding of the output, the interfaces of the rules should be marked and
the repair programs should be equipped with an optimization component.

(7) Monadic second-order constraints. A generalization of the repair programs
to monadic second-order constraints (see, e.g., Courcelle [Cou97], Poskitt and
Plump [PP14]), or at least path constraints [OL10] in the sense of a reflexive,
transitive closure. Monadic second-order logic is more expressive than first-
order logic, and many properties for practical applications require path expres-
sions. For example, a common assumption in EMF is that there is a root node,
which directly or transitively contains every other node, such that models can
be edited in a tree-based editor [NRA17, Nas20].

164

Appendix A

Categories

In this appendix, we give a short introduction of the categorical terms used in
this thesis. We introduce categories, show how to construct them, introduce E ′-M
pair factorization, and present some basic constructions such as pushouts. The
presentation is oriented at Ehrig et al. [EEPT06a].

In general, a category is a mathematical structure that has objects and morphisms,
with a composition operation on the morphisms and an identity morphism for each
object.

Definition 33 (category). A category C = (ObC ,MorC , ◦, id) is defined by

– a class ObC of objects,

– for each pair of objects A,B ∈ ObC , a set MorC(A,B) of morphisms,

– for all objects A,B,C ∈ ObC , a composition operation ◦(A,B,C) : MorC(B,C)×
MorC(A,B)→MorC(A,C), and

– for each object A ∈ ObC , an identity morphism idA ∈MorC(A,A),

such that the following conditions hold:

1. Associativity. For all objects A,B,C,D ∈ ObC and morphisms f : A → B,
g : B → C, h : C → D, it holds that (h ◦ g) ◦ f = h ◦ (g ◦ f),

2. Identity. For all objects A,B ∈ ObC and morphisms f : A → B, it holds that
f ◦ idA = f and idB ◦ f = f .

Remark. Instead of f ∈ MorC(A,B) we write f : A → B and leave out the
index for the composition operation ◦, since it is clear which one to use. For such
morphisms f , A is called domain and B is called codomain.

165

There are various ways to construct new categories from given existing ones. The
first way is the Cartesian product of two categories, which is defined by the Carte-
sian product of the class of objects and the set of morphisms with componentwise
compositions and identities.

Definition 34 (product category). Given two categories C and D, the product
category C×D is defined by

– ObC×D = ObC ×ObD,

– MorC×D((A,A′), (B,B′)) = MorC(A,B)×MorD(A′, B′),

– for morphisms f : A→ X, g : B → X ∈ MorC and f ′ : A′ → X ′, g′ : B′ → X ′ ∈
MorD, we define (g, g′) ◦ (f, f ′) = (g ◦ f, g′ ◦ f ′),

– id(A,A′) = (idA, idA′).

Another construction is that of a slice category. Here, the objects are morphisms
of a category C, to a distinguished object X. The morphisms are morphisms in
C that connect the object morphisms so as to lead to commutative diagrams.

Definition 35 (slice category). Given a category C and an object X ∈ ObC ,
then the slice category C \X is defined as follows:

– ObC\X = {f : A→ X | A ∈ ObC , f ∈MorC(A,X)},
– MorC\X(f : A→ X, g : B → X) = {m : A→ B | g ◦m = f},
– for morphismsm ∈MorC\X(f : A→ X, g : B → X) and n ∈MorC\X(g : B → X,
h : C → X), we have n ◦m as defined in C for m : A→ B and n : B → C:

A B C

X

m n

f h
g

= =

– idf : A→X = idA ∈MorC .

Intuitively, a pushout is an object that emerges from gluing two objects along a
common subobject.

Definition 36 (pushout). Given morphism f : A→ B and g : A→ C ∈ MorC ,
a pushout (D, f ′, g′) over f and g is defined by

– a pushout object D and

166

– morphisms f ′ : C → D and g′ : B → D with f ′ ◦ g = g′ ◦ f ,

such that the following universal property is fulfilled: for all objects X with mor-
phisms h : B → X and k : C → X with k ◦ g = h ◦ f , there is a unique morphism
x : D → X such that x ◦ g′ = h and x ◦ f ′ = k:

A B

C D

X

f

g

f ′

g′

h

k

x=

=

(1)

Binary coproducts can be seen as a generalization of the disjoint union of sets and
graphs in a categorical framework.

Definition 37 (binary coproduct). Given two objects A,B ∈ ObC , the binary
coproduct (A+B, iA, iB) is given by

� a coproduct object A+B and

� morphism iA : A→ A+B and iB : B → A+B,

such that the following universal property is fulfilled: for all objects X with mor-
phisms f : A → X and g : B → X, there is a morphism [f, g] : A + B → X such
that [f, g] ◦ iA = f and [f, g] ◦ iB = g:

A A+B B

X

iA iB

f
[f, g] g

= =

Definition 38 (jointly epimorphic). A morphism pair (e1, e2) with ei : Ai → B
(i = 1, 2) is called jointly epimorphic if, for all g, h : B → C with g ◦ ei = h ◦ ei for
i = 1, 2, we have g = h.

We use the E ′-M pair factorization for the Shift construction (see Lemma 3).

167

Definition 39 (E ′-M pair factorization). Given a class of morphism pairs E ′
with the same codomain, a (weak) adhesive high-level replacement category C
has an E ′-M pair factorization if, for each pair of morphisms f1 : A1 → C and
f2 : A2 → C, there exists an object K and morphisms e1 : A1 → K, e2 : A2 → K,
and m : K → C with (e1, e2) ∈ E ′ and m ∈M such that m◦e1 = f1 and m◦e2 = f2.

K

A1

A2

C

e1

e2

m

f1

f2

=

=

The idea of a van Kampen square is that of a pushout which is stable under
pullbacks, and, vice versa, where pullbacks are stable under combined pushouts
and pullbacks.

Definition 40 (van Kampen square). A pushout (1) is a van Kampen square
if, for any commutative cube (2) with (1) in the bottom and where the back faces
are pullbacks, the following statement holds: the top face is a pushout iff the front
faces are pullbacks.

A B

C D

f

g

f ′

g′(1)
C ′

D′

A′

B′
n′

m′f ′

g′

C

D

A

B
n

mf

g

a

bc

d

(2)

Definition 41 (M-adhesive category). A category C with a morphism class
M is called an M-adhesive category if

– M is a class of monomorphisms closed under isomorphism, composition
(f : A→ B ∈M, g : B → C ∈M⇒ g ◦ f ∈M), and decomposition
(g ◦ f ∈M, g ∈M⇒ f ∈M).

– C has pushouts and pullbacks along M-morphisms, and M-morphisms are
closed under pushouts and pullbacks.

– Pushouts in C along M-morphisms are M-van Kampen squares.

168

Lemma 30. GraphsTG is M-adhesive and has E ′-M pair factorization.

Proof. M-adhesiveness. The proof is done by constructing a slice category to
typed graphs (without containment). The category of typed graph with contain-
ment, is isomorphic to the slice category to typed graphs (without containment).
Let TG = (T,C,O), with T = (V,E, s, t) be a type graph. Consider the slice
category GraphsTG\O. Each typed graph in this slice category is isomorphic to
the graph in GraphsTG, where each edge, e ∈ O is in E, and the typed graph
morphisms are exactly the morphisms in this slice category. Consider a graph
LTG, i.e., a labelled type graph, where each (typed) containment edge e ∈ C
is represented by a (typed) labelled edge with the special label symbol for the
containment edges, i.e., lE(e) = � . By Ehrig et al. [EEPT06a] labelled graphs
form a category GraphsLG. By [EEPT06a, Theorem 4.15], the product category
GraphsLTG is a category.

By [EEPT06a, Fact 4.16], typed graphs (without containment) are adhesive cat-
egories and, by the hierarchy of adhesive categories in [EGH10], M-adhesive. By
[EEPT06a, Theorem 4.15], if C is a category, so is the slice category. Consequently,
typed graphs with containment are an M-adhesive category.

E ′-M pair factorization. By [EEPT06a, Remark 5.26], The intuitive idea of mor-
phism pairs (e1, e2) ∈ E ′ is that of jointly epimorphic morphisms (see Defini-
tion 38). This can be established in categories with binary coproducts and an
E0-M0 pair factorization of morphisms, where E0 is a class of epimorphisms and
M0 a class of monomorphisms. Binary coproducts : By Ehrig et al. [EEPT06a,
Example A.28], the category of typed graphs, and the category of labelled graphs
have binary coproducts, and, in a product or slice category, coproducts can be con-
structed componentwise if the underlying categories have coproducts. Since the
category of typed graphs (with containment) is constructed as a product category
(see Definition 34), it has binary coproducts. E0-M0 pair factorization: Given
A1 →f1 C ←f2 A2, we take an E0-M0 pair factorization f = m ◦ e of the induced
morphism f : A1 + A2 → C and define e1 = e ◦ ι1 and e2 = e ◦ ι2, where ι1, ι2 are
the coproduct injections:

A1 + A2A1 A2

C

K

ι1 ι2

mf1 f2
f

ee1 e2

An E0-M0 pair factorization in the category of typed graphs (with containment)
is given by the classes E0 of surjective morphisms and M0 of injective mor-

169

phisms. Let fi : Ai → C with typing typei : Ai → LTG, type : C → LTG. Com-
pute the E ′-M pair factorization in the category of labelled GraphsLG - ig-
noring the typing - and choose the typing morphism typeK = typeC ◦ m, i.e.,
typeK(x) = typeC(m(x)) for x ∈ K, The morphisms e1, e2 respect the typing since
typeK(ei(x)) = typeC(fi(x)) = typei(x). 2

170

Bibliography

[AHPZ06] Karl Azab, Annegret Habel, Karl-Heinz Pennemann, and Christian
Zuckschwerdt. ENFORCe: A system for ensuring formal correctness
of high-level programs. Electron. Commun. Eur. Assoc. Softw. Sci.
Technol., 1, 2006.

[AHRT14] Thorsten Arendt, Annegret Habel, Hendrik Radke, and Gabriele
Taentzer. From core OCL invariants to nested graph constraints. In
Graph Transformations (ICGT 2014), volume 8571 of Lecture Notes
in Computer Science, pages 97–112, 2014.

[AHS90] Jǐŕı Adámek, Horst Herrlich, and George Strecker. Abstract and Con-
crete Categories. John Wiley, 1990.

[AJ01] Parosh Aziz Abdulla and Bengt Jonsson. Ensuring completeness of
symbolic verification methods for infinite-state systems. TCS, 256(1-
2):145–167, 2001.

[AM75] Michael A. Arbib and Ernest G. Manes. Arrows, Structures, and
Functors. Academic Press, 1975.

[AO91] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Verification of Sequen-
tial and Concurrent Programs. Texts and Monographs in Computer
Science. Springer, 1991.

[BDK+12] Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud Sang-
nier, and Jan Stückrath. On the decidability status of reachability
and coverability in graph transformation systems. In RTA, volume 15
of LIPIcs, pages 101–116, 2012. Long version: Technical Report DISI-
TR-11-04, Università di Genova, 2012.

[Bec16] Jan Steffen Becker. An automata-theoretic approach to instance gen-
eration. In Graph Computation Models (GCM 2016), Electronic Pre-
Proceedings, 2016.

171

[Ber14] Gábor Bergmann. Translating OCL to graph patterns. In Model-
Driven Engineering Languages and Systems (MODELS 2014), LNCS,
pages 670–686, 2014.

[BET12] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal
foundation of consistent EMF model transformations by algebraic
graph transformation. Software and System Modeling, 11(2):227–250,
2012.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the
OMG/MDA framework. In 16th IEEE International Conference on
Automated Software Engineering, pages 273–280. IEEE Computer So-
ciety, 2001.

[BHH12] Gábor Bergmann, Dóra Horváth, and Ákos Horváth. Applying
incremental graph transformation to existing models in relational
databases. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski,
and Grzegorz Rozenberg, editors, Graph Transformations - 6th Inter-
national Conference, ICGT, volume 7562 of Lecture Notes in Com-
puter Science, pages 371–385. Springer, 2012.

[BKM+20] H. J. Sander Bruggink, Barbara König, Marleen Matjeka, Dennis
Nolte, and Lars Stoltenow. A flexible and easy-to-use library for
the rapid development of graph tools in java. In Fabio Gadducci
and Timo Kehrer, editors, Graph Transformation - 13th International
Conference, ICGT 2020, Held as Part of STAF, volume 12150 of
Lecture Notes in Computer Science, pages 297–306. Springer, 2020.

[BMST99] Roswitha Bardohl, Mark Minas, Andy Schürr, and Gabriele Taentzer.
Application of graph transformation to visual languages. In Hand-
book of Graph Grammars and Computing by Graph Transformation,
volume 2, pages 105–180. World Scientific, 1999.

[BRH19] Angela Barriga, Adrian Rutle, and Rogardt Heldal. Personalized
and automatic model repairing using reinforcement learning. In 22nd
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion, MODELS Companion, pages
175–181. IEEE, 2019.

[CCR07] Jordi Cabot, Robert Clarisó, and Daniel Riera. UMLtoCSP: A Tool
for the Formal Verification of UML/OCL Models using Constraint
Programming. In 22nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 547–548, 2007.

172

[CCYW18] Yurong Cheng, Lei Chen, Ye Yuan, and Guoren Wang. Rule-based
graph repairing: Semantic and efficient repairing methods. In 34th
IEEE International Conference on Data Engineering, ICDE 2018,,
pages 773–784, 2018.

[Cou97] Bruno Courcelle. The expression of graph properties and graph trans-
formations in monadic second-order logic. In Handbook of Graph
Grammars and Computing by Graph Transformation, volume 1, pages
313–400. World Scientific, 1997.

[DHM20] Frank Drewes, Berthold Hoffmann, and Mark Minas. Graph parsing
as graph transformation - correctness of predictive top-down parsers.
In Fabio Gadducci and Timo Kehrer, editors, Graph Transformation -
13th International Conference, ICGT, volume 12150 of Lecture Notes
in Computer Science, pages 221–238. Springer, 2020.

[Din92] Guoli Ding. Subgraphs and well-quasi-ordering. Journal of Graph
Theory, 16(5):489–502, 1992.

[dLBE+07] Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ul-
rike Prange, and Gabriele Taentzer. Attributed graph transformation
with node type inheritance. Theor. Comput. Sci., 376(3):139–163,
2007.

[EEdL+05] Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer,
Dániel Varró, and Szilvia Varró-Gyapay. Termination criteria for
model transformation. In Maura Cerioli, editor, Fundamental Ap-
proaches to Software Engineering, 8th International Conference,
FASE, volume 3442 of Lecture Notes in Computer Science, pages
49–63. Springer, 2005.

[EEHP06] Hartmut Ehrig, Karsten Ehrig, Annegret Habel, and Karl-Heinz Pen-
nemann. Theory of constraints and application conditions: From
graphs to high-level structures. Fundamenta Informaticae, 74(1):135–
166, 2006.

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing
by Graph Transformation, volume 2: Applications, Languages and
Tools. World Scientific, 1999.

[EEPT06a] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamental theory of typed attributed graph transformation based

173

on adhesive HLR categories. Fundamenta Informaticae, 74(1):31–61,
2006.

[EEPT06b] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. EATCS Mono-
graphs of Theoretical Computer Science. Springer, 2006.

[EGH10] Hartmut Ehrig, Ulrike Golas, and Frank Hermann. Categorical frame-
works for graph transformation and HLR systems based on the DPO
approach. Bulletin of the EATCS, 112:111–121, 2010.

[EGH+14] Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and
Fernando Orejas. M-adhesive transformation systems with nested
application conditions. Part 1: Parallelism, concurrency and amalga-
mation. Mathematical Structures in Computer Science, 24, 2014.

[EHK+97] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila
Ribeiro, Annika Wagner, and Andrea Corradini. Algebraic ap-
proaches to graph transformation. Part II: Single-pushout approach
and comparison with double pushout approach. In Handbook of Graph
Grammars and Computing by Graph Transformation, volume 1, pages
247–312. World Scientific, 1997.

[EHKP91] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and Francesco
Parisi-Presicce. Parallelism and concurrency in high level replacement
systems. Mathematical Structures in Computer Science, 1:361–404,
1991.

[Ehr79] Hartmut Ehrig. Introduction to the algebraic theory of graph gram-
mars. In Graph-Grammars and Their Application to Computer Sci-
ence and Biology, volume 73 of Lecture Notes in Computer Science,
pages 1–69, 1979.

[EKMR99] Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing
by Graph Transformation, volume 3: Concurrency, Parallelism, and
Distribution. World Scientific, 1999.

[EPS73] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph
grammars: An algebraic approach. In Proc. 14th Annual IEEE Sym-
posium on Switching and Automata Theory, pages 167–180, Iowa City,
1973.

174

[Fli16] Nils Erik Flick. Correctness of Structure-Changing Systems under
Adverse Conditions. PhD thesis, Universität Oldenburg, 2016. http:
//oops.uni-oldenburg.de/2895.

[GdMR+12] Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Ed-
uardo Zambon, and Maria Zimakova. Modelling and analysis using
GROOVE. Int. J. Softw. Tools Technol. Transf., 14(1):15–40, 2012.

[GLEO12] Ulrike Golas, Leen Lambers, Hartmut Ehrig, and Fernando Orejas.
Attributed graph transformation with inheritance: Efficient conflict
detection and local confluence analysis using abstract critical pairs.
Theor. Comput. Sci., 424:46–68, 2012.

[Gro03] Object Management Group. Mda guide, 2003. http://www.omg.

org/cgi-bin/doc?omg/03-06-01.

[Hab92] Annegret Habel. Hyperedge Replacement: Grammars and Languages,
volume 643 of Lecture Notes in Computer Science. Springer, 1992.

[HHT96] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph gram-
mars with negative application conditions. Fundamenta Informaticae,
26:287–313, 1996.

[HLBG12] Stephan Hildebrandt, Leen Lambers, Basil Becker, and Holger Giese.
Integration of triple graph grammars and constraints. Electron. Com-
mun. Eur. Assoc. Softw. Sci. Technol., 54, 2012.

[HP01] Annegret Habel and Detlef Plump. Computational completeness of
programming languages based on graph transformation. In Foun-
dations of Software Science and Computation Structures (FOSSACS
2001), volume 2030 of Lecture Notes in Computer Science, pages 230–
245, 2001.

[HP09] Annegret Habel and Karl-Heinz Pennemann. Correctness of high-
level transformation systems relative to nested conditions. Mathe-
matical Structures in Computer Science, 19:245–296, 2009.

[HPR06] Annegret Habel, Karl-Heinz Pennemann, and Arend Rensink. Weak-
est preconditions for high-level programs. In Graph Transformations
(ICGT 2006), volume 4178 of Lecture Notes in Computer Science,
pages 445–460, 2006.

[HS18] Annegret Habel and Christian Sandmann. Graph repair by graph
programs. In Graph Computation Models (GCM 2018), volume 11176
of Lecture Notes in Computer Science, pages 431–446, 2018.

175

http://oops.uni-oldenburg.de/2895
http://oops.uni-oldenburg.de/2895
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01

[HST18] Annegret Habel, Christian Sandmann, and Tilman Teusch. Integra-
tion of graph constraints into graph grammars. In Graph Transfor-
mation, Specifications, and Nets, volume 10800 of Lecture Notes in
Computer Science, pages 19–36, 2018.

[HT20] Reiko Heckel and Gabriele Taentzer. Graph Transformation for Soft-
ware Engineers - With Applications to Model-Based Development and
Domain-Specific Language Engineering. Springer, 2020.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Compuation. Addison-Wesley, 1979.

[Hub21] Marius Hubatschek. Graph repair of multiplicity constraints. Master
thesis, University of Oldenburg, 2021. Submitted.

[HW95] Reiko Heckel and Annika Wagner. Ensuring consistency of conditional
graph grammars — a constructive approach. In SEGRAGRA ’95,
volume 2 of Electronic Notes in Theoretical Computer Science, pages
95–104, 1995.

[Jac12] Daniel Jackson. Alloy Analyzer website, 2012. http://alloy.mit.

edu/.

[Jeu18] Manfred A. Jeusfeld. Metamodel. In Encyclopedia of Database Sys-
tems, Second Edition. Springer, 2018. https://doi.org/10.1007/

978-1-4614-8265-9_898.

[KG12] Mirco Kuhlmann and Martin Gogolla. From UML and OCL to Rela-
tional Logic and Back. In Model Driven Engineering Languages and
Systems (MODELS 2012), volume 7590 of LNCS, pages 415–431,
2012.

[KLT07] Christian Köhler, Holger Lewin, and Gabriele Taentzer. Ensuring
containment constraints in graph-based model transformation ap-
proaches. Electron. Commun. Eur. Assoc. Softw. Sci. Technol., 6,
2007.

[KSTZ20] Jens Kosiol, Daniel Strüber, Gabriele Taentzer, and Steffen Zschaler.
Graph consistency as a graduated property - consistency-sustaining
and -improving graph transformations. In Fabio Gadducci and Timo
Kehrer, editors, Graph Transformation - 13th International Confer-
ence, ICGT, volume 12150 of Lecture Notes in Computer Science,
pages 239–256. Springer, 2020.

176

http://alloy.mit.edu/
http://alloy.mit.edu/
https://doi.org/10.1007/978-1-4614-8265-9_898
https://doi.org/10.1007/978-1-4614-8265-9_898

[LKSS15] Michael Löwe, Harald König, Christoph Schulz, and Marius
Schultchen. Algebraic graph transformations with inheritance and
abstraction. Sci. Comput. Program., 107-108:2–18, 2015.

[Löw93] Michael Löwe. Algebraic approach to single-pushout graph transfor-
mation. Theoretical Computer Science, 109:181–224, 1993.

[LS05] Stephen Lack and Pawe l Sobociński. Adhesive and quasiadhesive
categories. Theoretical Informatics and Application, 39(2):511–546,
2005.

[MKW20] Johannes Meier, Ruthbetha Kateule, and Andreas Winter. Operator-
based viewpoint definition. In Slimane Hammoudi, Lúıs Ferreira
Pires, and Bran Selic, editors, Proceedings of the 8th International
Conference on Model-Driven Engineering and Software Development,
MODELSWARD, pages 401–408. SCITEPRESS, 2020.

[MTC17] Nuno Macedo, Jorge Tiago, and Alcino Cunha. A feature-based clas-
sification of model repair approaches. IEEE Trans. Software Eng.,
43(7):615–640, 2017.

[MW18] Johannes Meier and Andreas Winter. Model consistency ensured by
metamodel integration. In Proceedings of MODELS, volume 2245 of
CEUR Workshop Proceedings, pages 408–415. CEUR-WS.org, 2018.

[Nas20] Nebras Nassar. Consistency-by-Construction Techniques for Software
Models and Model Transformations. PhD thesis, University Marburg,
2020.

[NEF03] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein.
Consistency management with repair actions. In Software Engineer-
ing, pages 455–464. IEEE Computer Society, 2003.

[NKAT20] Nebras Nassar, Jens Kosiol, Thorsten Arendt, and Gabriele Taentzer.
Constructing optimized constraint-preserving application conditions
for model transformation rules. J. Log. Algebraic Methods Program.,
114:100564, 2020.

[NKR17] Nebras Nassar, Jens Kosiol, and Hendrik Radke. Rule-
based repair of emf models: Formalization and correctness
proof. In Graph Computation Models (GCM 2017), 2017.
http://pages.di.unipi.it/corradini/Workshops/GCM2017/

papers/Nassar-Kosiol-Radke-GCM2017.pdf.

177

http://pages.di.unipi.it/corradini/Workshops/GCM2017/papers/Nassar-Kosiol-Radke-GCM2017.pdf
http://pages.di.unipi.it/corradini/Workshops/GCM2017/papers/Nassar-Kosiol-Radke-GCM2017.pdf

[NRA17] Nebras Nassar, Hendrik Radke, and Thorsten Arendt. Rule-based
repair of EMF models: An automated interactive approach. In Theory
and Practice of Model Transformation (ICMT 2017), volume 10374
of Lecture Notes in Computer Science, pages 171–181, 2017.

[Obj14] Object Management Group. Object constraint language, version 2.4,
OCL (february 2014). https://www.omg.org/spec/OCL/2.4/, 2014.

[OL10] Fernando Orejas and Leen Lambers. Symbolic attributed graphs for
attributed graph transformation. Electronic Communications of the
EASST, 30, 2010.

[OPNL18] Fernando Orejas, Elvira Pino, Marisa Navarro, and Leen Lambers.
Institutions for navigational logics for graphical structures. Theor.
Comput. Sci., 741:19–24, 2018.

[Pen04] Karl-Heinz Pennemann. Generalized constraints and application con-
ditions for graph transformation systems. Diploma thesis, University
of Oldenburg, 2004.

[Pen08] Karl-Heinz Pennemann. An algorithm for approximating the satis-
fiability problem of high-level conditions. In Proc. Int. Workshop
on Graph Transformation for Verification and Concurrency (GT-
VC’07), volume 213 of Electronic Notes in Theoretical Computer Sci-
ence, pages 75–94, 2008.

[Pen09] Karl-Heinz Pennemann. Development of Correct Graph Transforma-
tion Systems. PhD thesis, Universität Oldenburg, 2009.

[Plu05] Detlef Plump. Confluence of graph transformation revisited. In Pro-
cesses, Terms and Cycles: Steps on the Road to Infinity, volume 3838
of Lecture Notes in Computer Science, pages 280–308, 2005.

[PP13] Christopher M. Poskitt and Detlef Plump. Verifying total correctness
of graph programs. Electronic Communications of the EASST, 61,
2013.

[PP14] Christopher M. Poskitt and Detlef Plump. Verifying monadic second-
order properties of graph programs. In Graph Transformation (ICGT
2014), volume 8571 of Lecture Notes in Computer Science, pages 33–
48, 2014.

[PSM15] Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens.
Resolving model inconsistencies using automated regression planning.
Software and System Modeling, 14(1):461–481, 2015.

178

[RAB+15] Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret Ha-
bel, and Grabriele Taentzer. Translating essential ocl invariants to
nested graph constraints focusing on set operations. In Graph Trans-
formation (ICGT 2015), volume 155-170 of Lecture Notes in Com-
puter Science, page 9151, 2015.

[RAB+18] Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret Ha-
bel, and Grabriele Taentzer. Translating essential OCL invariants
to nested graph constraints for generating instances of meta-models.
Science of Computer Programming, 152:38–62, 2018.

[Rad16] Hendrik Radke. A Theory of HR∗ Graph Conditions and their Appli-
cation to Meta Modeling. PhD thesis, Universität Oldenburg, 2016.

[Ren04] Arend Rensink. Representing first-order logic by graphs. In Graph
Transformations (ICGT’04), volume 3256 of Lecture Notes in Com-
puter Science, pages 319–335, 2004.

[RET11] Olga Runge, Claudia Ermel, and Gabriele Taentzer. AGG 2.0 - new
features for specifying and analyzing algebraic graph transformations.
In Andy Schürr, Dániel Varró, and Gergely Varró, editors, Applica-
tions of Graph Transformations with Industrial Relevance - 4th In-
ternational Symposium, AGTIVE, volume 7233 of Lecture Notes in
Computer Science, pages 81–88. Springer, 2011.

[RLYK15] Fazle Rabbi, Yngve Lamo, Ingrid Chieh Yu, and Lars Michael Kris-
tensen. A diagrammatic approach to model completion. In Analysis
of Model Transformations, volume 1500 of CEUR Workshop Proceed-
ings, pages 56–65. CEUR-WS.org, 2015.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Com-
puting by Graph Transformation, volume 1: Foundations. World Sci-
entific, 1997.

[Rut10] Adrian Rutle. Diagram Predicate Framework. PhD thesis, University
of Bergen, 2010.

[Sag19] Jens Sager. A modeling framework with model repair by graph
programs. Master thesis, University of Oldenburg, 2019. https:

//uol.de/f/2/dept/informatik/ag/fs/Sager19.pdf.

[San20] Christian Sandmann. Graph repair and its application to meta-
modelling. In Graph Computation Models (GCM 2020), volume 330

179

https://uol.de/f/2/dept/informatik/ag/fs/Sager19.pdf
https://uol.de/f/2/dept/informatik/ag/fs/Sager19.pdf

of Electronic Proceedings in Theoretical Computer Science, pages 13
– 34. Open Publishing Association, 2020.

[SBG+17] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner,
Timo Kehrer, Manuel Ohrndorf, and Matthias Tichy. Henshin: A
usability-focused framework for EMF model transformation devel-
opment. In Graph Transformation - 10th International Conference,
ICGT, volume 10373 of Lecture Notes in Computer Science, pages
196–208. Springer, 2017.

[SBL+20] Oszkár Semeráth, Aren A. Babikian, Anqi Li, Kristóf Marussy, and
Dániel Varró. Automated generation of consistent models with
structural and attribute constraints. In Eugene Syriani, Houari A.
Sahraoui, Juan de Lara, and Silvia Abrahão, editors, MoDELS ’20:
ACM/IEEE 23rd International Conference on Model Driven Engi-
neering Languages and Systems, pages 187–199. ACM, 2020.

[SBMP08] David Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternos-
tro. Eclipse Modeling Framework (The Eclipse Series). Addison-
Wesley Professional, 2008.

[Sch94] Andy Schürr. Specification of graph translators with triple graph
grammars. In Graph-Theoretic Concepts in Computer Science, 20th
International Workshop, Proceedings, volume 903 of Lecture Notes in
Computer Science, pages 151–163. Springer, 1994.

[SH19] Christian Sandmann and Annegret Habel. Rule-based graph repair.
In Proceedings Tenth International Workshop on Graph Computation
Models, GCM@STAF 2019, volume 309 of Electronic Proceedings in
Theoretical Computer Science, pages 87–104, 2019.

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE Software,
20(5):42–45, 2003.

[SLO17] Sven Schneider, Leen Lambers, and Fernando Orejas. Symbolic model
generation for graph properties. In Fundamental Approaches to Soft-
ware Engineering (FASE 2017), volume 10202 of Lecture Notes in
Computer Science, pages 226–243, 2017.

[SLO18] Sven Schneider, Leen Lambers, and Fernando Orejas. Automated rea-
soning for attributed graph properties. Int. J. Softw. Tools Technol.
Transf., 20(6):705–737, 2018.

180

[SLO19] Sven Schneider, Leen Lambers, and Fernando Orejas. A logic-based
incremental approach to graph repair. In Fundamental Approaches to
Software Engineering - (FASE 2019), volume 11424 of Lecture Notes
in Computer Science, pages 151–167, 2019.

[SNV18] Oszkár Semeráth, András Szabolcs Nagy, and Dániel Varró. A graph
solver for the automated generation of consistent domain-specific
models. In Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and
Mark Harman, editors, Proceedings of the 40th International Confer-
ence on Software Engineering, ICSE, pages 969–980. ACM, 2018.

[SWZ96] Andy Schürr, Andreas J. Winter, and Albert Zündorf. Develop-
ing tools with the PROGRES environment. In Manfred Nagl, edi-
tor, Building Tightly Integrated Software Development Environments:
The IPSEN Approach, volume 1170 of Lecture Notes in Computer
Science, pages 356–369. Springer, 1996.

[Tae04] Gabriele Taentzer. AGG: A graph transformation environment for
modeling and validation of software. In Proc. Application of Graph
Transformations with Industrial Relevance (AGTIVE’03), volume
3062 of Lecture Notes in Computer Science, pages 446–453, 2004.

[Tae12] Gabriele Taentzer. Instance generation from type graphs with arbi-
trary multiplicities. Electronic Communications of the EASST, 47,
2012.

[TOLR17] Gabriele Taentzer, Manuel Ohrndorf, Yngve Lamo, and Adrian Rutle.
Change-preserving model repair. In Fundamental Approaches to Soft-
ware Engineering (ETAPS 2017), volume 10202 of Lecture Notes in
Computer Science, pages 283–299, 2017.

[VFV06] Gergely Varró, Katalin Friedl, and Dániel Varró. Implementing a
graph transformation engine in relational databases. Softw. Syst.
Model., 5(3):313–341, 2006.

[VSSH18] Dániel Varró, Oszkár Semeráth, Gábor Szárnyas, and Ákos Horváth.
Towards the automated generation of consistent, diverse, scalable and
realistic graph models. In Graph Transformation, Specifications, and
Nets - In Memory of Hartmut Ehrig, volume 10800 of Lecture Notes
in Computer Science, pages 285–312. Springer, 2018.

[Wac07] Guido Wachsmuth. Metamodel adaptation and model co-adaptation.
In Erik Ernst, editor, ECOOP 2007 - Object-Oriented Programming,

181

21st European Conference, volume 4609 of Lecture Notes in Computer
Science, pages 600–624. Springer, 2007.

[Wan16] Xiaoliang Wang. Towards Correct Modelling and Model Transforma-
tion in DPF. PhD thesis, University of Bergen, 6 2016.

182

List of Symbols

symbol meaning
a : A ↪→ C morphism in conditions from A to C
ac application condition
acL left application condition
A automaton
A constraint automaton
c, d conditions
C set of containment edges
JcK class of all graphs satisfying c.
ds = d1, . . . , dn sequence of conditions
di condition
⇒ transformation
δ(g, d) maximal number of necessary deletions
e1 conjunction of negative conditions
e2 conjunction of universal conditions
EG set of edges of a graph G
EMF constraints At most one container, no containment cycles,

no parallel edges, all opposite edges
EMFk constraints first-order version of EMFk constraints
EMF-model graph graph satisfying EMF constraints
emf conjunction of EMF constraints
emfk conjunction of EMFk constraints
Ext(g) extended morphisms of g
g : A ↪→ G morphism from A to G
g′ : L ↪→ G morphism from L to G
G (input) graph
GG graph grammar
GG-based program program consisting of rules of a grammar GG
GraphsTG category of typed graphs
Gua(%, d) d-guaranteeing application condition

183

gua(%, d) = 〈%,Gua(%, d)〉 d-guaranteeing rule
h : A ↪→ H morphism from A to H
h′ : R ↪→ H morphism from R to H
H (resulting) graph
i interface relation
↪→ injective morphism
L left-hand side of a rule
L(GG) language of a graph grammar
L(GG) ∩ JcK language of a graph grammar satisfying constraint c
Left shift over rules (from right to left)
N set of nonterminal symbols
n-bounded graph path in graph has length ≤ n
n-bounded graph grammar all generated graph by grammar are n-bounded
O relation of opposite edges
p plain rule
% rule (with interface and application condition)
%k rule equipped with context
P program (with interface)
Ps = P1, . . . Pn sequence of programs
Pd solid repair program for d
P d d-preserving program of P
Pres(%, d) d-preserving application condition
Q1 repair program for e1

Q2 repair program for e2

Q′e12 e1-preserving repair program for e2

R right-hand side of a rule
R rule set
Ra increasing repairing set for ∃ a
S start graph of a graph grammar
Sa decreasing repairing set for @ a
Shift shift over morphisms
v containment of conditions
t transformation
TG type graph
tr track morphism
typeG : G→ T typing morphism
VG set of nodes in a graph G
Wlp∃ construction for existential weakest liberal precondition
x, y left and right interface morphisms

184

Index

backward construction, 49
with bounded-path test, 55

condition
alternating quantifiers, 26
application condition

disjoint, 57
constraint, 25
linear, 25

constraint automation
deterministic, 57

constraint automaton, 48
goal-oriented, 48

containment operator, 45
Coverability problem, 56

dangling condition, 29
derivable graphs, 32
derivation, 29
direct transformation, 28
double-pushout approach (DPO), 29

edge, 20
containment, 20
opposite, 20
real, 20

EMF constraints, 130
EMF-model graph, 130
equivalence

condition, 25
program, 32

transformation, 29
existential liberal precondition, 43

existential weakest liberal
precondition, 43

grammar-based programs, 110
graph, 20

type, 20
typed, 21

graph grammar, 31
n-bounded path, 55
goal-oriented, 47
increasing, 55

graph language, 32, 48
graph repair, 121
Gua, 38
gua, 38

implication, 25

match, 29
maximally preserving, 73
meta-model, 128
meta-modeling, 128
morphism, 20

injective, 20
isomorphism, 20
partial, 20
real, 25
surjective, 20
typed, 21

185

node, 20

Pres, 37
preserving

conjunction, 87
sequence, 87

repair program
ad hoc, 76
destructive, 72
solid, 76

satisfiability, 25
sequence of conditions, 87
sequence of programs, 87
single-pushout approach (SPO), 30,

31
stability, 73
sub-automaton, 48

termination, 73
typed condition, 25

application condition, 25
basic, 74
basic condition

negative, 74

positive, 74
conjunction, 84
conjunctive, 25
disjunction, 25
disjunctive, 94
generalized proper, 95
implication, 25
legit, 96
proper, 78
syntactically legit, 96

typed program, 32
decreasing, 82
increasing, 82
repair program, 72

ad hoc, 75
solid, 76

typed rule, 28
decreasing, 82
guaranteeing, 38
preserving, 37
restricting, 48
semantics, 29
with context, 111

well-quasi-order, 56

186

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Außerdem
versichere ich, dass ich die allgemeinen Prinzipien wissenschaftlicher Arbeit und
Veröffentlichung, wie sie in den Leitlinien guter wissenschaftlicher Praxis der Carl
von Ossietzky Universität Oldenburg festgelegt sind, befolgt habe. Ich versichere,
dass ich im Zusammenhang mit dem Promotionsvorhaben keine kommerziellen
Vermittlungs- oder Beratungsdienste (Promotionsberatung) in Anspruch genom-
men habe.

I hereby confirm that I completed the work independently and used only the in-
dicated resources. Furthermore, I confirm that I am aware of the guidelines of
good scientific practice of the Carl von Ossietzky University Oldenburg and that
I observed them while writing this dissertation. I did not use any commercial
dispatching or counseling services concerning the dissertation.

Unterschrift

187

	Introduction
	Preliminaries
	Typed graphs
	Typed graph conditions
	Typed graph programs
	Basic transformations

	Graph generation
	Existential weakest liberal preconditions
	Filtering through constraints
	Related work
	Conclusion

	Graph repair
	Repair programs
	Basic conditions
	Proper conditions
	Conjunctive and disjunctive conditions
	Legit conditions
	Properties of the repair programs
	Grammar-based repair
	Related work
	Conclusion

	Application to meta-modeling
	Meta-modeling
	EMF-model graphs
	EMF-model repair
	Related work
	Conclusion

	An implementation in ENFORCE+
	ENFORCE+
	Design decisions
	Graph repair in ENFORCE+
	Related systems
	Conclusion

	Conclusion
	Summary
	Further work

	Categories
	Bibliography
	List of symbols
	Index

