
Fakultät II - Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Neural Bug Detection

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften der Carl von
Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation von

Cedric Richter
geboren am 04.01.1996 in Duisburg

Gutachter
Prof. Dr. Heike Wehrheim,
Prof. Dr. Lars Grunske
Tag der Disputation:
16.05.2025

Abstract

Software bugs, especially small mistakes that manifest in code, cost developers and
companies a lot of time and money. If they make it into production code, software bugs
can have a serious impact on our daily software-driven lives. Therefore, to mitigate the
risks of bugs in code, software developers are often interested in finding and fixing software
bugs as early as possible in the development process.

Neural bug detectors have been recently proposed as a way to automatically support
software developers in their debugging efforts. The idea is to learn from millions of exam-
ples consisting of buggy and bug-free programs to detect novel bugs in code. Neural bug
detectors are already effective in detecting simple bugs such as wrong binary operators
or variables that are mistakenly used. However, existing neural bug detectors have still
many limitations that make them difficult to employ in the practice. For example, recent
studies have found that neural bug detectors miss a significant amount of real bugs while
producing a high number of false alarms. Therefore, currently, software developers have
to sift through many false alarms before they find an alarm corresponding to a real bug.

The goal of this thesis is to address the current limitations of existing neural bug
detectors. We hypothesize that existing neural bug detectors are limited by two factors:
(1) the training process and (2) the task design. To be able to train neural bug detectors
on millions of examples, existing work often relies on artificially generated mutants for
training. The mutants are generated by performing random replacements. We hypothesize
that the generated mutants are not representative for real bugs which could explain the
low performance of neural bug detectors on real bugs. To evaluate this hypothesis, we
employ two strategies. First, we propose a novel contextual mutation operator that can
generate more realistic mutants. Second, we mine public repositories for real bug fixes that
represent real bugs found in open source projects. We show that training both on more
realistic mutants and on real bug fixes can significantly improve the performance of neural
bug detectors on real bugs. Our second hypothesis is that neural bug detectors are limited
by their task design. Existing neural bug detectors are often designed for function-level
bug detection. We hypothesize that because of the missing context neural bug detector
make mistakes that would have been otherwise preventable. To collect first evidence for
this hypothesis, we developed and evaluated an LLM-based validator that can make use
of extra context typically not available to a neural bug detector. Based on our research
results, we end up with a neural bug detector design that is significantly more effective in
detecting real bugs and in avoiding false alarms.

Zusammenfassung

Software Bugs, vor allem kleine Fehler in Programmen, kosten Entwickler und Un-
ternehmen viel Zeit und Geld. Wenn sie es in den Code der Computersysteme schaffen,
die wir täglich benutzen, dann können Softwarefehler auch ernsthafte Auswirkungen auf
unser tägliches Leben haben. Daher sind Softwareentwickler häufig daran interessiert,
Softwarefehler so früh wie möglich im Entwicklungsprozess zu finden und zu beheben.

Neural Bug Detectors wurden vor kurzem vorgeschlagen, um Softwareentwickler die
Fehlersuche zu erleichtern. Die Idee ist, aus Millionen von Beispielen fehlerhafter und
fehlerfreier Programme zu lernen, wie man neue Softwarefehler in Programmen erkennt.
Existierende Neural Bug Detectors sind bereits jetzt schon sehr effektiv bei der Erkennung
von einfachen Fehlern, wie zum Beispiel bei der Erkennung von fälschlich verwendeten
binären Operatoren oder Variablen. Allerdings haben existierende Neural Bug Detectors
noch viele Einschränkungen, die Ihren Einsatz in der Praxis erschweren. Zum Beispiel
zeigen jüngere Studien, dass Neural Bug Detectors noch viele echte Fehler übersehen und
gleichzeitig ein hohe Anzahl von Fehlalarmen produzieren.

In dieser Dissertation stellen wir die Hypothese auf, dass Neural Bug Detectors (1)
durch das Design des Trainingsprozesses und (2) durch die Definition der Aufgabenstellung
beschränkt sind. Um genügend Trainingsdaten für das Training von Neural Bug Detectors
zu haben, benutzen aktuelle Arbeiten noch künstlich erzeugte Fehler. Die Fehler werden
dadurch erzeugt, dass der Programmcode zufällig mutiert wird. In den meisten Fällen sind
die daraus resultierenden Fehler nicht repräsentativ für die tatsächlichen echten Fehler,
die in der Praxis beobachtet werden. Da die Neural Bug Detectors häufig nur die Fehler
findet, die sie auch im Training sehen, könnte der Einsatz von künstlichen Fehlern im
Training dazu führen, dass echte Fehler nicht erkannt werden. Um diese Hypothese zu
überprüfen, wenden wir zwei Strategien an. Unsere erste Strategie ist die Entwicklung
eines neuen kontextbezogenen Mutationsoperators, welcher in der Lage ist, realistischere
Mutationen in Programmen zu erzeugen. Unsere zweite Strategie ist das Durchsuchen
von öffentlichen Repositories nach echten “Bug Fixes”, welche echte Fehler (Bugs) und
deren Fixes darstellen. Wir zeigen, dass das Training mit realistischeren Mutanten und
echten Fehlern die Effektivität von Neural Bug Detectors bei der Erkennung von echten
Fehlern deutlich erhöht. Unsere zweite Hypothese ist, dass Neural Bug Detectors durch
ihr eigenes Aufgabendesign begrenzt sind. Bestehende Neural Bug Detectors werden oft
für das Erkennen von Fehlern in Funktionen entwickelt. Es könnte aber sein, dass Neural
Bug Detectors aufgrund des fehlenden Kontextes Fehler machen, die ansonsten vermeidbar
gewesen wären. Um erste Hinweise zum Beweisen der Hypothese zu sammeln, haben wir
einen LLM-basierten Validator entwickelt und evaluiert, der zusätzlichen Kontext nutzen
kann, der einem Neural Bug Detectors normalerweise nicht zur Verfügung steht. Basierend
auf unseren Forschungsergebnissen dieser Dissertation war es uns möglich, ein neues Design
für Neural Bug Detectors zu entwickeln, das wesentlich effektiver bei der Erkennung echter
Fehler und der Vermeidung von Fehlalarmen ist.

Acknowledgment

As the journey of my PhD comes to an end, I would like to express my deepest gratitude
and appreciation to all those that have supported and guided me along the way.

First of all, I am profoundly thankful for my supervisor Heike Wehrheim. I am extremely
grateful for all your support, advice and for allowing me to pursue my unconventional
research interests. You always made time for me, always listened with patience to the
many ideas I shared over the years, and offered valuable feedback and new insights when
needed. You helped me grow as a researcher, scientist and person.
I also want to thank the members of my thesis committee, Andreas Peter and Friederike
Bruns, for their valuable insights. Their feedback and insightful comments have greatly en-
riched the quality of my thesis. I am deeply grateful for my second reviewer Lars Grunske.
His support and genuine interest in my work over the years has helped me stay motivated
and his valuable feedback has helped me shape my thesis. Lars is always someone who I
am looking forward to see at software engineering conferences.

I would also like to thank my co-authors, collaborators and student assistants which worked
with me on so many fascinating projects. I am particularly grateful to Jan Haltermann,
Marie-Christine Jakobs, Felix Pauck, Stefan Schott, Dirk Beyer, Sudeep Kanav, Florian
Dyck, Christian Janßen, and Marek Chalupa.

I am also grateful to my colleagues Arnab, Jan, Felix, Jürgen, Lara, Manuel and Nicola.
Thank you for the great discussions and also for the many opportunities to look at com-
puter science research from a completely different perspective. You made my time in
Oldenburg and Paderborn much more enjoyable. In addition, you provided excellent feed-
back to the initial draft version of this thesis, which helped me a lot to improve its quality.
A special thanks to Sven Walther, who introduced me to the research group in 2016.
Without you, I might never have discovered the joy of academic research.

Finally, I would like to thank my family, my parents and my two brothers Robin and John,
for supporting me throughout my whole life. You encourage and motivate me everyday to
pursue my dreams and helped me a lot through difficult times. Thank you for supporting
me throughout this experience.

Contents

1 Introduction 1
1.1 From Static to Neural Bug Detection . 2
1.2 Central Hypotheses of this Thesis . 3
1.3 Contribution and Outline . 6
1.4 Publication Details . 7

2 Background 9
2.1 Software Bugs . 9

2.1.1 Real and Artificial Software Bugs 10
2.1.2 Categorizing Software Bugs into Patterns 11

2.2 Neural Models of Code . 12
2.2.1 Deep Neural Networks . 12
2.2.2 Important Applications of Code Models 16

2.3 Neural Bug Detection . 18
2.3.1 Neural Bug Detection and Repair 19
2.3.2 Neural Architecture for Bug Detection and Repair 20
2.3.3 Generating Training Data by Mutating Programs 22

3 Mutations for Neural Bug Detection 25
3.1 Motivation . 25
3.2 Mutation Operators . 27
3.3 Contextual Mutations . 28

3.3.1 Contextual Mutation Operator 29
3.3.2 Generating Mutation Candidates with a Mask Mutator 30
3.3.3 Contextual Mutant Selection with Language Models 31
3.3.4 Implementation . 33

3.4 Evaluation . 34
3.4.1 Evaluation Tasks . 34
3.4.2 Mutation Operator Types . 36
3.4.3 Mutation Operator Baselines . 37

ix

3.5 Results . 38
3.5.1 RQ1 - Are contextual mutants more realistic? 38
3.5.2 RQ2 - Impact on the training of Neural Bug Detectors 39
3.5.3 RQ3 - Transfer to other languages and bug types 42

3.6 Threats to Validity . 44
3.7 Related Work . 45
3.8 Conclusion . 47

4 Mining Realistic Bugs 49
4.1 Motivation . 49
4.2 Single Statement Bug Fixes in the Wild 50
4.3 Mining Real Bug Fixes at Massive Scale 52

4.3.1 Mining Single Statement Changes in Python Projects 53
4.3.2 True Single Statement Bug Fixes 55
4.3.3 Characterizing Bug Fixing Edits 56

4.4 Dataset Analysis . 56
4.4.1 RQ1 - Does the distribution of bug fixes change? 57
4.4.2 RQ2 - How different are bugs that do not classify as SStuBs? . . 58

4.5 Threats to Validity . 60
4.6 Related Work . 61
4.7 Conclusion . 63

5 Learning from Real Bug Fixes 65
5.1 Motivation . 65
5.2 Neural Bug Detection of Single Token Bugs 66
5.3 Studying the Impact of Real Bug Fixes and Mutants at Scale 67

5.3.1 Training with Code Mutants and Real Bug Fixes 68
5.3.2 Scaling Factors in the Training of Neural Bug Detectors 69
5.3.3 Implementation . 70

5.4 Evaluation . 70
5.4.1 Evaluation Tasks . 71
5.4.2 Neural Bug Detector Baseline . 72
5.4.3 Datasets . 72

5.5 Results . 73
5.5.1 RQ1 - Impact of Real Bug Fixes at Scale 73
5.5.2 RQ2 - Impact of Mutants at Scale 75
5.5.3 RQ3 - Comparison with State of the Art 79

5.6 Discussion . 82
5.7 Threats to Validity . 84
5.8 Related Work . 86
5.9 Contributions and Conclusion . 88

x

6 False Alarm Reduction 91
6.1 Motivation . 91
6.2 Validation for Neural Bug Detection . 93
6.3 An LLM-based Validator for Neural Bug Detection 94

6.3.1 Patch Validation with Large Language Models 95
6.3.2 Patch Validation as Selective Code Infilling 96
6.3.3 Adjusting the Validator to Different Contexts 97
6.3.4 Implementation . 99

6.4 Evaluation . 99
6.4.1 Evaluation Tasks . 100
6.4.2 Baselines . 101

6.5 Results . 102
6.5.1 RQ1 - Validating Bug Fixes and False Alarms 102
6.5.2 RQ2 - Impact of Context . 105
6.5.3 RQ3 - Impact on Neural Bug Detection 106
6.5.4 RQ4 - Finding Novel Bugs in Public Projects 108

6.6 Discussion . 110
6.7 Threats to Validity . 113
6.8 Related Work . 115
6.9 Contributions and Conclusions . 116

7 Conclusion 119
7.1 Summary . 119
7.2 Discussion and Outlook . 120

A Appendix 123
A.1 Simple Stupid Bug Patterns . 123
A.2 Alternative Contextual Mutation Operators 126

A.2.1 Contextual Mutation Operators 126
A.2.2 Evaluation . 128
A.2.3 Which mutation strategy is more effective? 128

A.3 Scanning Open Source Projects for Real Bugs 130
A.3.1 Scanned Projects . 130
A.3.2 Found Bugs and Quality Issues 131

Bibliography 131

List of Figures 159

List of Tables 160

xi

xii

Introduction
1

Software influences many aspects of our daily lives. We use software to communicate
with each other, to carry out financial transactions and it even influences the safety
of the vehicles we use to commute every day. Due to its widespread use, even simple
mistakes in the implementation of software systems can have enormous consequences.
A simple example of an implementation mistake that impacted the security of nearly
1 billion Apple devices in 2014 is the ’goto fail;’ bug [vD14]. The bug impacted
the implementation of SSL/TLS and it made many devices susceptible to man-in-the-
middle attacks, i.e. the attacker can intercept the communication and steal valuable
information. The mistake itself is simple and an abbreviated version of it is shown
below.

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

Here, the second goto which is not affected by the if condition completely bypasses the
signature check and the surrounding function returns with err = 0 (“no error”). As
a result, all signatures – both good and bad ones – would be accepted. Although this
bug seems to be easy to find in hindsight, it took nearly two years to be identified and
fixed [Art].

There are many examples where simple bugs that seem obvious upon reading the
code have made it into production code. For example, a Twitter outage in 2016 was
caused by simple date formatting mistake [Twi] and the more recent CrowdStrike out-
age that crashed nearly 8.5 million Windows devices was caused by a simple bug in an
out-of-bounds check [Cro]. Although these examples represent extreme cases, they also
demonstrate that we need tools and techniques that support developers in the debug-
ging process and help them to identify bugs earlier – before they go into production
and impact our lives.

In practice, numerous approaches have been proposed to support developers in
finding bugs. For example, automated testing [BB84] helps to identify bugs by running

1

1.1 From Static to Neural Bug Detection

the software against a set of user-defined test cases. Static analyses over-approximate
the behavior of programs and then check the behavior against a set of hand-crafted
rules [HP04]. Formal verification proves that a given implementation adheres to a user-
provided specification [JM09]. To be able to detect bugs, many of these approaches
require some form of correctness specification as input from the developer. This can be
given either in the form of a test suite or by an explicit formal specification. In any case,
the developer has to encode the intended behavior of their programs in some explicit
form. Unfortunately, developers often have difficulties in providing precise and complete
program specifications. Therefore, a developer might have problems with encoding the
constraint “the signature should always be checked” as a formal specification. Or, the
developer might only test parts of the software that do not trigger the bug. As a
result, some bugs – such as the ’goto fail;’ bug or the CrowdStrike bug – remain
undetected as the program behavior is under-specified.

1.1 From Static to Neural Bug Detection

In 2004, Hovemeyer and Pugh [HP04] noticed that some bugs can be easily detected
without requiring an explicit correctness specification. For example, let us consider
our initial example again. Even without knowing the correct intended behavior of
the program, it is highly unlikely that a developer would use the same goto twice in
succession. Therefore, with a simple analysis that checks for double gotos, we could
already warn the developer about potential mistakes in their code. This observation
has led to the development of static bug detectors [HP04, ASPK12, CDD+15]. Static
bug detectors do not directly check the correctness of programs, but they scan the code
for common bug patterns that developers likely want to avoid. As a result, static bug
detectors can be easily integrated in the development process to warn the developer
early about potential mistakes in their code.

Static bug detectors have gained a lot of popularity with tools such as Spot-
Bugs [HP04], Google’s ErrorProne [ASPK12] and Facebook’s Infer [CDD+15]. These
tools have been integrated in the workflows of large companies such as Google [SAE+18],
Facebook [CDD+15], Spotify [Inf] and Mozilla [Inf]. Despite their successes, static bug
detectors have many known limitations. Because the rules implemented to check for
bugs are often very general, they miss a large fraction of bugs that do not fit a bug
pattern [HP18, KS20]. In addition, they also produce a large quantity of false alarms.
Developers hence have to sift through false alarms that indicate incorrect program be-
havior, but that are not valid [SFZ11]. These limitations are likely caused by the lack
of correctness specifications. Without a specification, static bug detectors have to make
very general assumptions about the intended behavior of a given program which leads
to both false alarms and missed bugs.

Neural Bug Detection. Neural bug detection [ABK17, PS18, HSS+19, VKM+19,
KMBS20, AJFB21, RW22b, HBV22] has been recently proposed as data-driven al-

2

Chapter 1. Introduction

ternative to static bug detection. Pradel and Sen [PS18] noticed that developers often
encode the intended behavior of functions and variables in function and variable names.
For example, consider the pow function below.

def pow(array, k = 2):
for i in range(len(array)):

array[i] *= k

Without having an explicit correctness specification, we can infer from the identifier
names that the function should likely compute the k-th power over the elements of a
given array. And, if we look closely, we will find that the implementer likely made
a mistake: The implementer mistakenly used the multiplication operator * instead of
the power operator ** to compute the k-th power (two operators that are easy to
confuse). Pradel and Sen found that neural bug detectors can be trained on examples
of buggy and non-buggy code to detect these types of name-based bugs. Since then,
many neural bug detectors [HSS+19, VKM+19, KMBS20, AJFB21, RW22b, HBV22]
have been proposed that exploit identifier names and code comments to detect bugs
in code. These approaches exploit the observation that developers tend to encode the
intended behavior of code implicitly in the program as a way to make programs more
readable and maintainable [ABDS18].

Despite this conceptual advantage, existing neural bug detectors share a lot in
common with static bug detectors. Recent studies [HSS+19] have found that existing
neural bug detectors often miss a large fraction of real bugs. In addition, they often
report a high number of false alarms [AJFB21] on bug-free code. Because neural bug
detectors can in principle infer the intended program behavior, we expect them to
overcome limitations of existing static bug detectors. Therefore, in this thesis, we aim
to answer the following high-level research question:

What limits neural bug detectors to be effective for real-world code?

1.2 Central Hypotheses of this Thesis

In the following, we present the central hypotheses that have guided our research. The
hypotheses are based on a recent study [RHJ+22] we conducted with over 100 software
developers. The goal of this study was to compare the performance of neural bug
detectors with the performance of software developers on the task of variable misuse
detection [ABK17]. We start by shortly introducing the study design. We then present
our findings and the resulting hypotheses.

Study Design. The goal of our study is to compare the performance of software
developers and neural bug detectors under the similar constraints. Neural bug detectors
are often trained to detect simple bugs in function implementations. Therefore, we chose
the task of variable misuse detection [ABK17] in Java functions to evaluate both neural
bug detector and software developer. Variable misuse bugs are common in practice

3

1.2 Central Hypotheses of this Thesis

Figure 1.1: User interface of our study with an example of a variable misuse bug

and often occur when the implementer confuses two different variables. An example is
shown in Fig. 1.1. The task of variable misuse detection is supported by most neural
bug detectors and Allamanis et al. [ABK17] argued that software developers can easily
detect this type of bug from experience. To perform our study, we conducted an online
survey with over 100 participants. In the survey, software developers were confronted
with up to eight Java function implementations and their goal was to decide whether
the implementation contains a variable misuse bug and where the bug is located. Out
of 310 tasks used in our survey, 134 tasks contained a variable misuse bug which we
obtained by mining public Java projects. In total, we collected 1 016 answers from 111
participants for 134 buggy and 176 bug-free functions.

Findings. When the task of variable misuse detection was originally introduced [ABK17],
it was believed that software developers can easily detect this type of bug. We however
find that:

The task of variable misuse detection is challenging for software developers. We find
that the task of finding variable misuse bugs in Java functions is challenging for software
developers. On average, the software developers miss more than one third of all variable
misuses. Even if they detect a variable misuse, the participants fail on average in more
than 50% of all cases to localize the bug. Software developers are better in identifying
bug-free functions. However, the participants also report a false alarm in around 10%
of all cases.

Under the same constraints software developers perform comparably. We find that under
same constraints, i.e. the detection of variable misuses in the implementation of a single
function, software developers perform comparably to neural bug detectors. The neural
bug detectors often detect and localize a similar number of variable misuses as the
participants. However, the neural bug detectors are significantly worse in identifying
bug-free functions with a false alarm rate of nearly 32%.

Hypotheses. We believe that our findings have several implications for neural bug

4

Chapter 1. Introduction

1 protected static FrequencySet<String> combineMax(FrequencySet<String> a,
→ FrequencySet<String> b)
{

2 FrequencySet<String> result = combineAndClip(a, b, 1);
3 for (Map.Entry<String, MutableInt> entry : a.entrySet()) {
4 result.get(entry.getKey()).v = entry.getValue().v;
5 }
6
7 for (Map.Entry<String, MutableInt> entry : a.entrySet()) {
8 // BUG: a instead of b (Line 7)
9 MutableInt slot = result.get(entry.getKey());

10 slot.v = Math.max(slot.v, entry.getValue().v);
11 }
12
13 return result;
14 }

Listing 1.1: Example of copy-and-paste bug missed by neural bug detectors

detection beyond variable misuse detection in Java. In particular, in our study, we
investigated the commonalties and differences in the decisions of software developers
and neural bug detectors. Based on our investigation, we hypothesize that:

Hypothesis 1: Neural Bug Detectors are limited by their Training Process. Although
there is a great overlap of bugs found by software developers and neural bug detectors,
there still exists some bugs only the developer could identify. An example is shown in
Listing 1.1. As this bug remains undetected by all evaluated neural bug detectors, we
suspected that this bug type does not appear often in their common training process.
In fact, an analysis of the training corpus showed that less than 1% of all training
examples represent copy-and-paste bugs, i.e. where the code contains a line that is
almost duplicate to the line that contains the bug. Although this specific problem can
potentially be resolved by incorporating more examples of this specific bug type, we
hypothesize that the occurrence of this training problem hints at a more fundamental
problem in the training of neural bug detectors: There exist some bugs that are frequent
in reality but that the neural bug detectors do not see (often) during training.

Hypothesis 2: Neural Bug Detectors are limited by their Task Design. During our
study, we found that there are some bugs that neither the developers nor the neural
bug detectors could detect. We hypothesize that these bugs are not detected due to
limitations in the task design. There are two potential limitations of the current task
design: (1) a natural limitation and (2) a technical limitation. Neural bug detectors and
developers are naturally limited by the information provided by the code implementer.
If the implementer does not provide enough information to detect a bug, both neural
bug detector and developer will fail. The second potential limitation is a technical
limitation which we could likely resolve by adapting the task design. In our study, both
neural bug detectors and software developers are restricted to the implementation of
a single function in a foreign code base. For software developers, this is however an
artificial limitation. In practice, software developers that review code are often familiar
with the code base, have access to related code and can review runtime information.

5

1.3 Contribution and Outline

Having access to this type of information would potentially boost the performance of
both developers and neural bug detectors.

1.3 Contribution and Outline

With the goal of answering our overarching research question, we evaluate and collect
evidence for our two main hypotheses. In this thesis, we mainly address shortcomings
of existing neural bug detectors in the training process (Hypothesis 1). In addition, we
also identify and address some potential shortcomings of the task design (Hypothesis 2).
As a result of our research, we found that we can significantly improve the performance
of neural bug detectors by improving their training process and adapting their task
design.

As a starting point, we introduce in Chapter 2 the fundamental concepts needed
for neural bug detection and we provide a brief overview over state-of-the-art methods
for automatic bug detection.

A key problem when training neural bug detectors is to obtain a sufficient number
of realistic training examples. Therefore, in Chapter 3, we propose a novel contextual
mutation operator which we use to generate training examples for neural bug detectors.
The contextual mutation operator can utilize the surrounding context to inject more
realistic mutants. We evaluate whether our contextual mutator generates more realistic
training examples than traditional mutation operators used in the training of neural
bug detectors. Then, based on our findings, we were able to evaluate the impact of more
realistic training examples on the performance of neural bug detectors. We found that
neural bug detectors trained on more realistic examples are more effective in finding
real bugs (which is the first evidence for Hypothesis 1).

Motivated by this finding, we mined public code repositories for real bug fixes in
Chapter 4. Real bug fixes represent real bugs discovered by developers together with
a corresponding bug fix. They seem to be a perfect resource for training neural bug
detectors. However, because we found that real bugs are scarce in existing open source
repositories, we had to mine over 500K projects to obtain a sufficient amount of real
bug fixes that can be used for the training of neural bug detectors.

With the help of the mined real bug fixes, we were able to fully evaluate the impact of
the training process on the performance of neural bug detectors in Chapter 5. We found
that previous neural bug detectors are severely limited by their training process (which
confirms Hypothesis 1). The performance of neural bug detectors can be significantly
improved by training them on more realistic mutants and on real bug fixes. As a result,
we were able to train a neural bug detector that is significantly more effective in finding
real bugs.

In Chapter 6, we noticed that neural bug detectors still produce a significant amount
of false alarms. We therefore developed a validation approach that uses large language
models to validate the output of neural bug detectors. We found that additional file

6

Chapter 1. Introduction

context which is not available to function-level neural bug detectors significantly im-
proves the performance of the validator to reject false alarms. Providing neural bug
detectors with file-level access might significantly improve their performance in distin-
guishing buggy from bug-free code. We see this finding as one of the first evidence
that neural bug detectors are limited by their task design (Hypothesis 2). We conclude
this thesis by summarizing and discussing the results and by providing an outlook for
future work in Chapter 7.

1.4 Publication Details

The ideas presented throughout this thesis are based on several publications. We
presented our initial study on the comparison of neural bug detectors and software
developers in 2022 at ASE [RHJ+22]. Our idea to use contextual mutation operators
for training neural bug detectors, as discussed in Chapter 3, was published in 2022 at
ICST [RW22b]. An article on the real bug fix collections which we describe in Chapter 4
was published in the same year at MSR [RW22c]. The study presented in Chapter 5
on the impact of training examples on the performance of neural bug detectors was
published at ASE 2023 [RW23]. Our ideas and results presented in Chapter 6 are
completely novel and have not yet been published.

7

1.4 Publication Details

8

Background
2

In this chapter, we provide a brief overview over state-of-the-art methods for automatic
bug detection and introduce several background topics that we use throughout this
thesis. Additional background will be introduced where necessary in later chapters. In
the following, we introduce basic terminology in Section 2.1, we provide an introduction
to neural models of code in Section 2.2 and we introduce state-of-art methods for neural
bug detection in Section 2.3.

2.1 Software Bugs

The IEEE Standard Glossary of Software Engineering Terminology [C+90] defines the
term software bug (sometimes also differentiated into software error and fault) as (1) the
difference between a computed, observed, or measured value or condition and the true,
specified, or theoretically correct value or condition, (2) an incorrect step, process, or
data definition, (3) an incorrect result or (4) a human action that produces an incorrect
result. In the context of this thesis1, we are mostly interested in the way software bugs
materialize (Definition 2). In the following, we will use the term software bug, bug or
error interchangeably to refer to programming mistakes that lead to unintended behav-
ior. In other words, a software bug materializes as a mistake in the implementation
where the actual runtime behavior deviates from the behavior intended by the software
developer. The intended behavior can be explicitly defined by formal specifications or
test suites. Software is however rarely accompanied by complete (formal) specifications.
We therefore often rely on implicit specifications given through natural hints in code
such as variable names, function signatures or code comments.

1The term "bug" is by definition ambiguous and what contributes to a bug is often subjective [WG24].
We still stick to this terminology as it is widely adopted in static bug detection. In our experiments,
we often rely on the judgement of the project developers to decide whether something is a bug or not.

9

2.1 Software Bugs

2.1.1 Real and Artificial Software Bugs

Throughout this thesis, we often distinguish between real software bugs that appear
naturally during the coding process and artificial bugs that are artificially generated
(e.g. for testing purposes [PKZ+19]). Real bugs appear in public repositories in form of
bug fixes where the bug is identified by one of the project developers and fixed. Artificial
bugs or mutants, in contrast, are artificially generated by mutating existing (likely
correct) source code with the help of so-called mutation operators [PKZ+19, Jus14].

Mutation Operators. Mutation operators can be seen as functions that randomly
mutate source code. Assuming that we are given a program P , a mutation operator M
is a random function that maps P to a randomly mutated program PM :

P
M−→ PM

The goal of the mutation process is to produce buggy variants of P that should be
detected by an existing bug detector. Mutation operators have a long history in the
context of mutation testing where the goal is the evaluation of test suite [PKZ+19]. In
this thesis, we will often borrow mutation operators from mutation testing, but with
the goal of training neural bug detectors. In the following, we introduce the mutation
operators that are most relevant for our work:

• Binary Operator Replacement. We employ a wide range of mutation operators for
replacing binary operators. This includes mutation operator for arithmetic opera-
tor replacement (AOR), conditional operator replacement (COR), logical operator
replacement (LOR), relational operator replacement (ROR) and shift operator re-
placement (SOR). A binary operator replacement often replaces a binary operator
with another random type-compatible operator. For example, the AOR operator
and ROR operator might randomly mutate the given code snippets as follows:

a + b AOR−−−−→ a − b a <= b ROR−−−−→ a > b

• Unary Operator Insertion, Deletion and Replacement. A popular mutation strat-
egy is to mutate unary operators randomly by inserting (UOI), deleting (UOD) or
replacing unary operators (ORU). Operator replacements are always type-safe. To
provide an example, ORU and UOD would replace and delete unary operators as
follows:

−a ORU−−−−→ ~a !a UOD−−−−→ a

• Literal Value Replacement. A literal value replacement (LVR) operator replaces a
random literal with another random literal of the same type. For example, LVR
replaces numeric and boolean literals as follows:

1 LV R−−−−→ 2 True LV R−−−−→ False

10

Chapter 2. Background

In practice, LVR does not replace literals completely randomly. It is more common
to replace literals with default values [Jus14] (such as −1, 0, 1 for numeric literals).

In addition to the operators mentioned above, we also employ mutation operators
less common in mutation testing such as operators for modifying variable names or
function calls.

2.1.2 Categorizing Software Bugs into Patterns

For the evaluation of bug detectors or the design of new bug detection tasks, it is often
beneficial to group software bugs into bug patterns. In the context of this thesis, we
define bug patterns syntactically based on the location of the bug and its bug fix. On the
highest level, we differentiate between single token, single statement and multi statement
bugs. Single token and single statement bugs can be fixed by modifying a single token
or a single statement respectively. Multi statement bugs require modification of at least
two statements to be fixed. To further categorize single token and single statement bugs,
we follow (with a few exceptions) the categorization of "simple stupid bug" (SStuB)
patterns proposed by Karampatsis and Sutton [KS20]. In the following, we highlight the
bug patterns that are most relevant for our work. Examples are provided in Table 2.1.

• Change Identifier Bugs: The developer uses the wrong identifier to access a mem-
ory location or to call a function. The bug patterns includes the wrong usage of
variable names, parameter names or function names. It is easy for the developer
to utilize the wrong identifier with the same type. Similar identifier names (e.g.
patch and patches) that appear in the same code might further contribute to the
occurrence of this bug type.

• Variable Misuse Bugs: The developer uses the wrong variable name different from
the intended one. This bug pattern is not a classical SStuB pattern but still im-
portant for this thesis as many neural bug detectors target this bug type [ABK18].
In most instantiations, it is assumed that a variable misuse bug can be fixed with
a variable name defined in the same scope (e.g. in the function signature or as a
local variable).

• Wrong Function Name Bug (or API Misuse Bug): The developer uses a function
name different from the intended function name with the same parameter list.
While this pattern can also be considered as a part of change identifier bugs,
it is often interesting to consider this bug pattern distinctly. The bug pattern
is particularly challenging to detect and fix since it requires access to the API
defined for the project.

• Change Operator Bug: The developer confuses a binary or unary operator. For
example, the developer confuses <= with < in a loop condition resulting in an off-
by-one error [BSS+20]. Bugs that fall in this bug pattern can be easily generated
with mutation operators.

11

2.2 Neural Models of Code

Table 2.1: Examples of Software Bugs found in Python projects [AJFB21]

Example Description

1 # Variable Misuse Bug
2 applied = self.db.applied_patches()
3 for patch in applied:
4 if patch in patches:
5 patches.remove(applied)

All applied patches should be removed from the
patches list. However, the developer mistakenly
tries to remove applied instead of a single patch.
Fix: replace applied in Line 5 by patch defined in
Line 3.

1 # Wrong Function Name Bug
2 def _size(self):
3 return len(self.file.readline())

The function _size computes the size of the stored
self.file. However, the standard API method
readline only retrieves the first line of the file.
Fix: replace readline in Line 3 by readlines.

1 # Change Binary Operator Bug
2 def updateRefractionParameters(self):
3 ...
4 if self.checkRefracNoTrack.isChecked():
5 if self.app.mount.status != 0:
6 return False
7 ...

The function updateRefractionParameters per-
forms an update and returns true if the update was
successful. Prior to the update, the function checks
if the mount is ready and aborts if not. We can con-
ventionally expect that we abort if the status is zero.
However, the function checks whether the status is
not zero.
Fix: replace != in Line 5 by ==.

1 # Boolean Literal Bug
2 def isNoneOrEmpty(obj):
3 if obj is None: return False
4 if isinstance(obj, list): ...

The function isNoneOrEmpyt checks if the given obj
is None or empty. However, it returns False when
the obj is None .
Fix: replace False in Line 3 by True.

• Change Literal Bug: The developer uses the wrong numeric or boolean literal. For
example, the developer returns accidentally False after successfully validating the
input to the program.

A full list of all bug patterns together with their description is given in Appendix A.1.

2.2 Neural Models of Code

In this section, we discuss neural models that have been successfully adopted into the
coding domain and which we employ to build neural bug detectors. Neural models are
neural network-based architectures that are designed to model some aspect of code. In
Section 2.2.1, we review neural architectures that are most relevant for this thesis and,
in Section 2.2.2, we discuss important applications. A conceptual overview over the
considered architectures used are given in Fig. 2.1 and in Fig. 2.2.

2.2.1 Deep Neural Networks

For the purpose of this work, we view deep neural networks (NN) as a composition of
linear transformations f1, . . . , fL interwoven with non-linear transformations σ:

NNφ = fL ◦ σ ◦ · · · ◦ σ ◦ f1,

where ◦ denotes the functional composition. Deep neural networks are typically used as
function approximators with a large number of tunable parameters φ. Neural networks

12

Chapter 2. Background

if var1 == var1

RNN RNN RNN RNN

E

Ë Ë Ë

R

(a) Recurrent Neural Network (RNN)

if var1 == var1

GNN

co
nt

ro
l-

de
p

pr
ev

-u
se

pr
ev

-a
st

E

R

(b) Graph Neural Network (GNN)

Figure 2.1: Conceptual Overview of Neural Architectures

can be composed in larger neural architectures where the neural network is a basic
building block that can be composed with other components. A common configuration
for a neural network is the multi-layered perceptron (MLP) [R+62]. In an MLP, the
linear transformation fi is defined by:

fi(x) = Wix + bi,

where x ∈ Rn is the input to the function, Wi ∈ Rm×n is the weight matrix of the l’s
layer and bl ∈ Rm is the bias vector. A common non-linear transformation for ReLU-
based MLPs is the ReLU function: σ(x) = max(0,x). To optimize the parameters φ
(which includes Wi and bi), we will make use of backpropagation [Wer82] and different
variants of stochastic gradient descent (e.g. the Adam optimizer [KB15]) to optimize
the neural network NNφ with respect to some loss function L.

Sequence Representations. To be able to process source code with neural net-
work based architectures, we mainly view source code as a sequence of tokens T =
t1, t2, . . . , tn. To obtain the tokenized version of source code, we apply both common
language-specific tokenizers (e.g. the Python tokenizer) and language-agnostic learned
subword tokenizers [SHB16]. In some cases, we also view source code as graphs G.
In these cases, the representation is often based on tokens augmented with additional
graph relations. Therefore, we mainly focus here on processing token sequences. To be
able to process token sequences with neural models, we utilize an embedding function E
and a readout function R that maps tokens to embedding vectors xi = E(ti) and hidden
vectors hi to usable results yi = R(hi) respectively. Both E and R are often configured
as NNs and jointly optimized with the neural architecture to map a sequence of tokens
t1, t2, . . . , tn to a sequence of predictions y1, y2, . . . , yn.

Recurrent Neural Networks. A popular architecture that is specifically designed for
sequence based tasks (such as language or code modeling) are recurrent neural networks
(RNN) [RHW86]. An RNN takes in a sequence of vectors x1,x2, . . . ,xn (obtained

13

2.2 Neural Models of Code

through the embedding function) and processes them via a recurrent function:

fRNN (xi,hi−1) = hi,

where xi is the i-th input and hi−1,hi are hidden states. It is important to note
that fRNN is the same neural network in each step and how fRNN reacts to xi is
mainly a function of hi−1. For processing code, an RNN is typically combined with an
embedding function E with xi = E(ti) and a readout function R with yi = R(hi). The
neural networks fRNN , E and R are then jointly optimized to map an input sequence
t1, t2, . . . , tn to predictions y1, y2, . . . , yn. Fig. 2.1a depicts a conceptual overview over
the prediction process for the task of bug detection.

Graph Neural Networks. Graph neural networks (GNNs) [KW17] assume that
code can be represented as a labelled graph G = (V,E, lV , lE) with a set of nodes V ,
edges E ⊆ V × V and labelling functions lV : V → L and lE : V × V → L. Nodes are
identified by unique identifiers i ∈ V ranging from 1 to |V | and directed edges i → j are
represented by tuples (i, j) ∈ V ×V . A common choice is to define V = {1, 2, . . . , n} as
the set of token indices with lV (i) = ti. Edges are often defined with the help of common
graph representations of code. Popular choices are abstract syntax trees [Cho14], control
flow graphs [All70], program dependence graphs [FOW87] and combinations thereof.
Now, given a graph G = (V,E, lV , lE), a graph neural network often associates nodes
with feature vectors xi = EV ◦ lV (i) via a node embedding function EV and edges
with feature vectors xi,j = EE ◦ lE(i, j) via an edge embedding function EE . A GNN
then computes hidden representations hi and hi,j for nodes and edges iteratively via
a message passing system: Let hi = xi be the initial hidden representation, the GNN
then computes:

hi,j = fedge(hi,hj ,xi,j),

h′
i = fnode

hi,
∑

j∈Ni

hj,i,xi

 ,

where Ni = {j | (j, i) ∈ E} is the neighborhood surrounding i. fedge and fnode are
typically configured to be small neural networks. Multiple message passing rounds are
performed by updating hi with h′

i. fedge and fnode are not necessarily shared across
rounds and it is often more common to define dedicate GNN layers for each message
passing round. To compute the final prediction, a readout function R with yi = R(hi)
is used. fedge, fnode, EV , EE and R are often jointly optimized. Fig. 2.1b depicts a
conceptual overview of one message passing round together with the prediction process
for GNNs.

Transformers. Transformers [VSP+17] represent a class of non-recurrent neural
networks that process sequences of vectors via an attention mechanism. On a very
high level, a Transformer can be described as follows: Given a sequence of vectors

14

Chapter 2. Background

if var1 == var1

Transformer

E

R

Figure 2.2: High-Level Overview over the Transformer architecture. A Transformer
might learn that if is less relevant for detecting the variable misuse bug.

x1,x2, . . . ,xn, a Transformer processes them iteratively to compute hidden representa-
tion h1,h2, . . . ,hn. Let hi = xi be the initial hidden representation, the Transformer
computes:

hattn,i = hi + fO ◦ Attn(hi, {h1,h2, . . . ,hn}),

h′
i = hi + fNN (hattn,i),

where Attn is an attention mechanism and fNN , fO are neural networks. The atten-
tion mechanism computes an aggregate representation of all hidden representations
dependent on hi:

Attn(hi, {h1, . . . ,hn}) = 1
Z(hi)

n∑
j=1

sim(fQ(hi), fK(hj))fV (hj),

where Z(hi) =
∑n

j=1 sim(fQ(hi), fK(hj)), sim(x,y) = exp(x · y/
√
d) with x,y ∈ Rd

and fK , fQ, fV are neural networks. The Transformer iteratively computes a hidden
representation hi by setting hi = h′

i. Finally, a readout function R with yi = R(hi)
can be used to compute a result yi. With the attention mechanism, the Transformer can
actively learn which inputs are important to compute the next hidden representation
hi. If an input is unimportant, it will assign a low similarity between fQ(hi) and
fK(hj). A higher similarity means that the input is more relevant for computing the
hidden representation hi. Fig. 2.2 provides an example for the attention mechanism
used by the Transformer.

Note that we omit a significant amount of technical details for brevity here. Please
refer to Vaswani et al. [VSP+17] for a more complete description.

Statistical Optimization. Throughout this work, our goal will often be to fit a
statistical model to a given dataset D = {(Xi, Yi)}N

i=0. Xi are observations which in
our case are representations of code snippets. Yi is the prediction target which could
be, for example, whether the given code Xi is buggy or not. It is also feasible that Yi

15

2.2 Neural Models of Code

is a more complex target such as a text sequence. To fit the statistical model, we often
parametrize a neural network NN to approximate a probability distribution P (Y | X)
which is the probability of observing Y given a code snippet X. A common strategy is
to fit the distribution by minimizing the cross-entropy over the given dataset:

L = E(X,Y)∼D [− log Pφ(Y | X)] ,

where E(X,Y)∼D is the expectation over the dataset and Pφ is a neural network architec-
ture parametrized by φ. As described before, we will use backpropagation and stochas-
tic gradient descent to approximate the optimal parametrization φ∗ = argminφL.

2.2.2 Important Applications of Code Models

In the following, we review some important applications of neural models of code.

Code Classification. The goal of code classification is to classify a given code snip-
pet X in one of k classes C(1), C(2), . . . , C(k). In a binary classification problem, a code
classifier has to distinguish between two classes. A multi-class classification problem
distinguishes between more classes (k > 2). To solve a binary or multi-class code clas-
sification problem, we often assume that we have access to a dataset D = {(Xi, Ci)}N

i=1
consisting of programs Xi labelled with a class Ci. Then, we can use a neural model of
code to model the probability P (C | X) of classifying a code snippet X as belonging
to class C. The neural model is trained by minimizing the following cross-entropy loss:

Ltarget = E(X,C)∼D

[
−

k∑
i=1

[[C = C(i)]] log Pφ(C(i) | X))
]
,

where Pφ is a neural network that approximates the probability distribution P (C | X).
To then classify a new example Xnew, we select the class C∗ greedily to be the most
likely class for Xnew according to Pφ:

C∗ = argmaxC Pφ(C | Xnew)

Language Modeling. Language Models (LM) [JM00] are probabilistic models that
model the probability of observing a given text, code or token sequence in a given
language. Formally, we can represent both text and code as sequence of (program)
tokens T = t1, t2, . . . , tn. Then, a language model models the probability of observing
T as follows:

P (T) = P (t1, t2, . . . , tn) =
n∏

i=1
P (ti | T<i),

where P (ti | T<i) is the probability of seeing token ti given that we already observed
T<i = t1, t2, . . . , ti−1. Note that any function that can approximate P (ti | T<i), which
does not necessitate the use of neural networks, can be seen as a language model.

16

Chapter 2. Background

Neural language models (based on neural networks) however have been empirically
shown to be highly effective in language modeling [HD17, KBR+20]. Most notably are
large language models (LLMs) [BMR+20] which are neural language models with highly
parametrized neural networks. To train a language model for code, large corpora of
source code C = {Ti}N

i=1 are often used with the goal of minimizing the cross-entropy
of the collected code:

LLM = ET =t1,...,tn∼C

[
−

n∑
i=1

log Pφ(ti | T<i)
]
,

where ET =t1,...,tn∼C is the expectation over the code corpus C and Pφ is a neural net-
work parametrized by φ. Language Models (and especially LLMs) have been largely
adopted for the coding domain. Existing approaches have utilized LLMs for code gener-
ation [CTJ+21], test case generation [CZN+23] and automatic program repair [JLLT23].

Language models can be used to generate code. It is possible to sample a code
sequence T ∼ Pφ(·) by iteratively sampling individual tokens (e.g. ti ∼ Pφ(· | T<i)).
Sometimes we are interested in generating the most likely continuation of T<i which
can be done by generating tokens greedily (ti = argmaxtPφ(t | T<i)). Generating code
based on language models has become its own research field and many methods have
been proposed [CTJ+21].

Language models can also be used as a scoring function which assigns a probability
to every possible code snippet. The score is sometimes referred to as "naturalness" of
code [HBS+12] and it suggests how likely it is to observe the given code snippet under
the learned model. A code snippet is more natural if it is assigned a higher likelihood
by a given language model.

Masked Language Modeling. Masked Language Modeling (MLM) [DCLT19] can
be seen as variant of language modeling with the goal of modeling the probability:

P (tm, tm+1, . . . , tm+k | t1, t2, . . . , tm−1 [M] tm+k+1 . . . tn),

where [M] is a mask in the sequence. These models are typically trained by masking
one or multiple tokens in the input. It is also not necessary to mask continuous chunks,
but sometimes multiple independent chunks of tokens are masked. The optimization is
very similar to language modeling:

LMLM = ET =t1,...,tn∼C [− log Pφ(tm, . . . , tm+k | t1 . . . [M] . . . tn)] .

MLM have been successfully utilized for code problems in the context of transfer learn-
ing [KB19]: It can be beneficial to first train Pφ with LMLM resulting in φMLM and
then fine-tune the resulting model PφMLM on the target task with Ltarget. Furthermore,
and similar to an LM, MLMs can be used to generate likely infilling for the masked
token and we can use MLMs to score the "naturalness" of a given infilling [BJT+22].

17

2.3 Neural Bug Detection

Neural Bug Detector
Vocabulary (V):

+ − ∗ / and or . . .

Program:

NOOP # No Bug Token
def compute_area(width, height):

return width + height

NOOP def compute_area (width , . . .

Neural
Encoder

Ploc Prep

+

tokenize

Figure 2.3: Joint Architecture for the Detection, Localization and Repair of Single
Token Bugs.

2.3 Neural Bug Detection

Finding and fixing software bugs is a central problem of software development [AL21].
Software developers often spend a significant amount of their time in the debugging
process. To mitigate the human effort, many automated approaches based on unit
testing, static analysis and formal verification have been developed to assist the devel-
oper during debugging. Recently, static bug detectors have gained a lot of popularity
with bug detection tools such as SpotBugs [HP04], Google’s ErrorProne [ASPK12] and
Facebook’s Infer [CDD+15]. To detect bugs, static bug detectors often implement a
wide range of hand-crafted rules for detecting common bug patterns. Then, the im-
plemented rules are checked statically to alert the developer as early as possible about
potential mistakes in their implementation.

A key problem of static bug detectors is their low recall paired with a high amount
of false alarms. Habib and Pradel [HP18] found that the three static bug detectors
SpotBugs, ErrorProne and Infer detect less than 4.5% of all bugs. Karampatsis and
Sutton [KS20] found in a subsequent study that SpotBugs identified less than 12%
of the bugs found in public repositories while reporting more than 200 million rule
violations. Further improving the rules of static bug detectors is however often highly
difficult: To increase recall, new rules have to be implemented. However, new rules
also risk raising more false alarms. Reducing the false alarms might require to increase
the specificity of existing rules which in turn might reduce the number of real bugs
detected.

Neural bug detectors [ABK17, PS18, HSS+19, VKM+19, KMBS20, AJFB21, RW22b,
HBV22] have been recently introduced as a data-driven alternative to static bug de-

18

Chapter 2. Background

tection. Instead of relying on hand-crafted rules, neural bug detectors employ neural
model of code that are specifically trained for the task of bug detection. These neural
models are trained on millions of examples of buggy and non-buggy code.

Existing approaches to neural bug detection can be classified into broadly two cat-
egories: (1) pure bug detection approaches [ABK17, PS18, BSS+20] and (2) joint ap-
proaches [HSS+19, VKM+19, KMBS20, AJFB21, RW22b, HBV22] that combine bug
detection with automatic repair. While both approaches have their advantages, we
mainly focus in this thesis on joint approaches for bug detection and repair.

2.3.1 Neural Bug Detection and Repair

Joint approaches for neural bug detection and repair commonly address the task of
bug detection as three joint prediction tasks: Given a potentially buggy program P ,
the bug detector has to first (1) classify the program as buggy or not, (2) localize the
bug location (if any) and then (3) propose a repairing patch. Since patching a buggy
program can become arbitrarily complex, most existing works on neural bug detection
and repair have focused on the detection and repair of single token bugs. Single token
bugs are frequent [KS20, ABK17] and can often be easily patched by replacing a single
program token. Still, software developers tend to overlook these bugs due to their size,
making them a great target for neural bug detection.

Single Token Bug Detection. To better understand the goal of single token bug
detection, we can formalize the task as follows: Given a program P tokenized to a
sequence of tokens T = t1, t2, . . . , tn, the goal of single token bug detection is to detect
and repair single token bugs that can be fixed by replacing a token tl with another
token r defined in the same scope (r ∈ {t1, . . . , tn}) or in an external vocabulary V
(i.e. r ∈ V). To effectively detect and repair single token bugs, neural bug detectors
commonly perform the following three tasks: (1) the program represented by T has to
be classified as buggy, (2) the bug location tl has to be localized and (3) a repair r has
to be proposed. In practice, neural bug detectors often model these three tasks jointly
as token replacement operations. Let T be the buggy version of program and T ′ the
fixed bug-free version, then the neural bug detector is trained to perform the following
operations:

T
replace(tl,r)−−−−−−−→ T ′ T ′ noop()−−−−→ T ′

Here, the buggy version T is fixed by replacing tl with r (replace(tl, r)) translating
it to T ′. Since T ′ is bug-free, a change is not required (noop()).

Probabilistic Model. To be able to learn the detection and repair of single token
bugs, a common approach is to model detection, localization and repair as a joint prob-
ability distribution over all possible token replacements {⟨l, r⟩ | tl ∈ T ∪{NOOP} and r ∈
T ∪ V } :

P (⟨l, r⟩ | T) = Ploc(l | T) · Prep(r | l, T), (2.1)

19

2.3 Neural Bug Detection

where P (⟨l, r⟩ | T) is the probability that T contains a bug that can be fixed by replacing
tl with r (replace(tl, r)). We include a specific NOOP location which indicates that the
T is bug-free (noop()). Note that detection, localization and repair is in our case
factorized into first localizing the bug location Ploc(l | T) (including the NOOP location
for bug-free code) and then finding a patch dependent on the bug location Prep(r |
l, T). In practice, there also exist other forms of factorization which have been applied
successfully for neural bug detection. For example, Vasic et al. [VKM+19] modeled
the probability distribution independently (P (⟨l, r⟩ | T) ≈ Ploc(l | T) · Prep(r | T)).
He et al. [HBV22] proposed a task hierarchy by modeling the detection, localization
and repair independently. If not stated otherwise, we mainly stick to the factorization
shown in Eq. (2.1).

Inference. Given the distribution P (⟨l, r⟩ | T), single token bugs can be easily localized
and repaired, e.g. by computing the most likely repair for a given task as follows:

replace(tl′ , r′) with ⟨l′, r′⟩ = argmaxl,rP (⟨l, r⟩ | T)

In practice, P (⟨l, r⟩ | T) is unknown. Therefore, our goal is to approximate P (⟨l, r⟩ | T)
by approximating Ploc(l | T) and Prep(r | l, T) with neural network-based architectures.

2.3.2 Neural Architecture for Bug Detection and Repair

In this section, we review a common neural architecture often used by existing works2

for approximating P (⟨l, r⟩ | T). A conceptual overview is provided in Fig. 2.3. The
architecture mainly consists of two pointer networks [VFJ15] for localizing bugs in the
input program and for identifying repairs found in the same program or coming from
an external vocabulary. Both pointer networks share a common neural encoder which
computes a vector representation of the input program tokens. The architecture is
modular and it is possible to swap out the neural encoder with any neural model that is
able to process code. Existing works have exploited this modularity to evaluate various
neural encoders based on RNNs [VKM+19], GNNs [AJFB21], Transformers [KMBS20]
and hybrid models [HSS+19].

Pointer Networks for Bug Localization. Pointer networks model the probability
of selecting (pointing to) certain elements in the neural network’s input. For a given
program P that is tokenized to T = t1, . . . , tn, a pointer network can model the prob-
ability of selecting ti from the input token sequence. To be able to process T with a
pointer network, the token sequence has to be first encoded by a neural encoder that
maps t1, . . . , tn to a sequence of hidden vector representations h1, . . . ,hn ∈ Rh. Then,
the pointer network models the probability of selecting ti as a softmax distribution over

2The neural architectures slightly differ between different research projects. We review in this section
an architecture that summarizes most of the advances made by previous works including our work in
[RW23].

20

Chapter 2. Background

all hidden vectors:
Pptr(ti | T) = exp(ψ(ti))∑n

j=1 exp(ψ(tj)) ,

where ψ(ti) is a learnable scoring function (e.g. ψ(ti) = W⊺hi with W ∈ R1×h). ψ(ti)
computes a scalar for each token ti that indicates how likely ti is selected. If ψ(ti)
is higher than any other ψ(tj), ti is more likely to be selected. There exists several
variants of pointer networks [VKM+19, SLM17, GLLL16] that apply transformations
on the hidden vectors to incorporate more context or that mask out certain elements
from the input. In the end, most existing pointer techniques use the same pointing
mechanism.

Copy Mechanism for Bug Repair. A copy mechanism [GLLL16] can be used to
copy a certain word or token from the input. Let T = t1, . . . , tn be the input token
sequence and T = {t1, . . . , tn} the set of unique tokens in the input, the goal of the copy
mechanism is to model the probability of copying a token y ∈ T . We can model the
copy probability with pointer networks. However, since y might occur multiple times
in the input, we need to aggregate the probabilities of selecting a token ti with y = ti:

Pcpy(y | T) =
∑

j:tj=y

Pptr(tj | T),

The copy mechanism on its own can only model the probability of copying from
the input. In some cases, we might however be interested in modeling the probability
of selecting a token y that might not occur in the input. For this task, we can use a
mechanism similar to CopyNet [GLLL16]: Assume that we have an external vocabulary
V = {v1, . . . , vm} in addition to the input program T , the probability of predicting
y ∈ T ∪ V can be modeled as follows:

Pvcpy(y | T) = PV (y | T) + P ˆcpy(y | T),

where PV (y | T) and P ˆcpy(y | T) are defined as:

PV (y | T) =

1
Z exp(ψg(y)) if y ∈ V

0 else

PV (y | T) =

∑

j:tj=y
1
Z exp(ψc(tj)) if y ∈ T

0 else

The functions ψg(y) and ψc(tj) are scoring functions for selecting y ∈ V or y = tj ∈ T

respectively. The term Z =
∑

v∈V exp(ψg(y))+
∑

tj∈T exp(ψc(tj)) is a shared normaliza-
tion term. In practice, we can use this copy mechanism directly to model Prep(r | l, T)
where r ∈ V or r ∈ T . However, the computation of the repair would be indepen-
dent of the bug location (except for information provided through the shared encoder).

21

2.3 Neural Bug Detection

Program (P):
def compute_area(width, height):

return width ∗ height

Mutated Program (PM):
def compute_area(width, height):

return width + height

mutate(tl,+)

replace(tl, ∗)

noop()

Figure 2.4: Generating Artificial Training Data for Neural Bug Detection. Green op-
erations are operations used for training neural bug detectors. The operation noop
indicates that no change is required. The operation replace(tl, r−1) inverts the muta-
tion process.

To incorporate the bug location for predicting the repair, we can modify the scoring
functions as follows:

ψg(y | tl) = W⊺
yhl and ψc(tj | tl) = hlWhj ,

where Wy ∈ R1×h is a linear projection specific to y and ψc is a bilinear projection
dependent on tj and tl with projection matrix W ∈ Rh×h. We define Pvcpy(r | l, T) to
be Pvcpy(r | T) using the modified scoring functions during its computation.

Training. Given a dataset D = {Ti, ⟨li, ri⟩}N
i=1 of token sequences annotated with bug

locations and repairs, a neural bug detector is trained to minimize:

Lloc+rep = ET,⟨l,r⟩∼D [−log Pφ(⟨l, r⟩ | T)] ,

where Pφ(⟨l, r⟩ | T) = Pptr(tl | T) · Pvcpy(r | l, T) is a neural bug detector parametrized
by φ.

2.3.3 Generating Training Data by Mutating Programs

Obtaining a dataset D of token sequences annotated with bug locations and repairs at
a sufficient scale is often a challenging problem. Real bugs are scarce in open source
projects [KS20] and mining real bugs from commits can only find bugs that made
their way into the project. As a result, many existing works have employed mutants
for training neural bug detectors. Mutants can be easily obtained at large scale by
mutating existing source code.

Training with Mutants. Given a program P tokenized to T = t1, . . . , tn, the goal of
training with mutants is to learn to invert the mutation process:

T
mutate(tl,r)−−−−−−−−→ TM

replace(tl,r
−1)−−−−−−−−−→ T,

22

Chapter 2. Background

where TM is the mutated token sequence which can be obtained by mutating T with
mutate(tl, r). The neural bug detector is trained to repair mutants (TM

replace(tl,r
−1)−−−−−−−−−→

T) and detect the absence of mutations (T noop()−−−−→ T). Fig. 2.4 depicts an example
of the mutation process used for generating training data. Ultimately, given a corpus
of tokenized code C = {T1, . . . , TN }, we generate training examples of mutated code
(TM , ⟨l, r−1⟩) ∈ D by mutating existing source code (T mutate(tl,r)−−−−−−−−→ TM) and we gen-
erate examples of unmutated code (T, ⟨0, r⟩) ∈ D with t0 = NOOP. In practice, the
mutation operator is often applied multiple times for generating up to k mutants. In
this case, a common strategy is to balance the dataset by introducing k copies of the
unmutated code (where k is the number of generated mutants).

23

2.3 Neural Bug Detection

24

Mutations for
Neural Bug Detection

3
As we have seen in the last chapter, existing neural bug detectors are often trained
on artificially generated mutants. These mutants are generated by randomly mutating
existing source code. Because of the random process, we hypothesize in this chapter
that mutants used for training of neural bug detectors are often not representative for
real bugs. To test this hypothesis, we propose a contextual mutation operator that is
able to generate more realistic mutants based on the surrounding context. We show that
the contextual mutation operator is significantly more effective in generating realistic
bugs. With the help of the new mutator, we are able to train neural bug detectors that
are significantly more effective in detecting real bugs.

3.1 Motivation

Artificial bugs, in the form of code mutants, have long been studied in the field of
software testing, especially within the context of mutation testing [PKZ+19, Jus14].
The key idea is that a bug detector sensitive enough to detect code mutants is also
sensitive enough to detect more complex real bugs. This phenomenon, also called
coupling effect [Off92, JJI+14], was empirically observed in multiple studies and the
mutation score, a metric that measures how many mutants can be detected, has since
then become a standard metric to measure the quality of test suites. Code mutants
have also been used to create benchmarks for bug finding tools [DHK+16, RPDH18].
Here, a tool is identified as more effective if it catches more mutants.

Recent studies [HSS+19, VKM+19] on neural bug detectors have observed a similar
coupling effect: Neural bug detectors that are more effective in detecting mutants
generally tend to be more effective in finding real bugs. However, this effect is limited.
In comparison to their performance on artificial benchmarks, neural bug detectors often
significantly underperform when evaluated on real bugs [VKM+19, HSS+19, AJFB21].

In this chapter and in Richter and Wehrheim [RW22b], we hypothesize that this gap

25

3.1 Motivation

(a) Source

if (dataset == null) return result;

(b) Loose mutant

if (dataset / null) return result;

(c) Strict mutant

if (dataset <= null) return result;

(d) Contextual mutant

if (dataset != null) return result;

Figure 3.1: Code snippet taken from Defects4J/Chart#1.

in performance is due to a lack of realistic bugs in the training set. Contrary to other
bug-related techniques such as test suites or static bug finders, neural bug detectors fit
the distribution of bugs seen during training. Therefore, if the bugs in the training set
do not closely resemble real programming mistakes, a neural bug detector will not be
able to perform well on real bugs.

An alternative approach which would likely mitigate this problem would be to
directly train on real bugs obtained from mining public repositories [KS20, JJE14,
SLL+18, GVS+19, WSL+20]. However, since bugs are rare and mining can only find
the bugs that have found their way into the repositories, existing collections (such as
Defects4J [JJE14], bugs.jar [SLL+18] in Java, BugsJS [GVS+19] in JavaScript and
BugsInPy [WSL+20] in Python) often contain only a few hundred examples, which are
too few for proper generalization.

To still be able to evaluate the impact of more realistic training examples on the
training of neural bug detectors, we introduce in this chapter a novel contextual muta-
tion operator. The key idea is to employ a masked language model (MLM) [DCLT19]
to evaluate – based on the surrounding context – how likely a mutant would appear
in a real project. The MLM employed in our work is trained on millions of programs
(including buggy ones) with the objective of predicting the replaced token at a masked
location. To generate code mutants, our mutation operator first masks out a random
mutation location and then samples a single token mutation according to the distribu-
tion computed by the MLM. As a result, our contextual mutation operator can be used
to seed various single token bugs including variable misuse bugs [ABK17] and binary
operator bugs [PS18] which are often studied in the context of neural bug detection.

Example. To further motivate the use of contextual mutation operators for the train-
ing of neural bug detectors, we consider the example code snippets depicted in Fig. 3.1.
The example depicts one line of a code taken from the Defects4J [JJE14] benchmark and
three variants that are obtained by applying different form of mutations. The first loose
mutant is generated by arbitrarily replacing a binary operator == with another binary
operator /. Mutations of this type without any restriction are often employed to gen-

26

Chapter 3. Mutations for Neural Bug Detection

erate training examples for neural bug detectors [PS18, VKM+19, BSS+20, HSS+19].
The second strict mutant is generated by following a stricter mutation process. Here, we
replace a relational operator == with another relational operator <=. While this stricter
form of mutation is more common in mutation testing, it still generates mutants solely
on non-contextual information, thereby ignoring that == is used for a comparison with
a null literal. Our contextual mutation operator takes the context of the source code
into consideration. By having learned that == and != are common in this context, it
injects != as a replacement for ==. Such a contextual mutation is often more realistic
than the loose or strict one, and for this example actually has been the original bug
which was present in the code snippet.

3.2 Mutation Operators

We start with a more general view on mutation operators commonly used in the training
of neural bug detectors. The following definitions will then help us for the description
of our contextual mutation operator in Section 3.3.

Single Token Mutations. As our goal is the generation of training data for neural
bug detectors, we focus on the generation of single token bugs. To generate single
token bugs, we mutate existing code by introducing single token mutations: Given
a program P tokenized1 to T = t1, . . . , tn, a single token mutation is introduced by
replacing a single token tl with another token r. The token r can be a token defined
in the same scope (r ∈ {t1, . . . , tn}) or coming from an external vocabulary (r ∈ V).
Single token mutations are randomly introduced via a mutation operator M. This is
typically done by sampling from a probability distribution2 PM over all possible single
token mutations {⟨l, r⟩ | tl ∈ T, r ∈ T ∪ V and tl ̸= r}:

mutate(tl, r) with ⟨l, r⟩ ∼ PM(· | T),

which is then applied to T to generate a mutant TM (T mutate(tl,r)−−−−−−−−→ TM).

Mutation Operator Types. In this work, we consider different types of mutation
operators. The operator type is determined by the set of mutations MT = {⟨l, r⟩ |
PM(⟨l, r⟩ | T) > 0} that a mutation operator M can generate for a given program T .
Let OpT be the set of valid mutations for a specific mutation operator type Op, then a
mutation operator M is of type Op iff MT ⊆ OpT for all programs T . For example, a
given mutation operator M is a binary operator replacement (BOR) mutation operator

1For simplicity, we will use in the rest of this chapter program, implementation and their tokenized
version interchangeably. Formally, we use T to denote the tokenized version of program or implemen-
tation.

2We mainly focus here on single token replacements such AOR, COR, and LVR. Insertions and
deletions are therefore also handled as token replacements, e.g. by replacing a token with an empty
token (deletion) or by replacing a token with a prefixed token (insertion).

27

3.3 Contextual Mutations

Program (P):
if (dataset == null)

return result;
Mask Mutation

Masked Program (Pmasked):
if (dataset [M] null)

return result;

mutate(==, [M])

Options: {!=, >=, <, +, -}

MLM

Mutated Program (PM):
if (dataset != null)

return result;

mutate([M], !=)

replace(!=, ==)

noop()

Figure 3.2: Overview over our contextual mutation process

iff MT ⊆ BORT for all T and BORT is defined as follows:

BORT = {⟨l, r⟩ | tl, r ∈ BOP, tl ̸= r} with BOP = {==, !=, +, -, . . . }

Operator Strictness. In our initial example, we distinguished between two different
levels of operator strictness: loose and strict. To formalize this categorization, we define
the operator strictness of a mutation operator M as the way in which the operator re-
stricts the mutation process. A mutation operator M1 is stricter than another operator
M2 for a given program T iff M1 considers a smaller set of mutations than M2, i.e.
M1 ⊆ M2 where M1,M2 are mutations generated for T by M1 and M2 respectively.
Furthermore, an operator M1 is generally stricter than another operator M2 if it is
stricter for all possible programs T . Now, let OpT be the set of valid mutations for a
specific operator type Op, then we say that a mutation operator M is a loose mutation
operator of type Op iff MT = OpT for all T . A strict mutation operator of type Op
is a mutation operator M of type Op that further restricts the mutation process, i.e.
MT ⊂ OpT for all T . Note that a strict mutation operator M1 is always stricter than
a loose mutation operator M2 of the same Op.

3.3 Contextual Mutations

In this section, we introduce our contextual mutation operator. The operator consists of
two components: (1) a mask mutation operator that both masks out a token from the
input and computes the set of potential mutation candidates and (2) a masked language
model (MLM) that selects mutation candidates according to the given context. An
overview of our method is provided in Fig. 3.2. Here, the masked mutation operator
first selects a random location to be mutated, e.g. the == operator in our example.
Then, it generates a masked program by masking out the mutation location. The
masked mutation operator also computes a set of mutation options which represent

28

Chapter 3. Mutations for Neural Bug Detection

all valid replacements of the mask that produce valid mutations, e.g. BOR mutations.
Finally, the MLM assigns a probability to each mutation option which we use to sample
a contextual mutation. In the following, we describe our method in more detail. In
Section 3.3.2, we start with a formal description of a contextual mutation operator.
The mask mutation operator is introduced in Section 3.3.2. In Section 3.3.3, we discuss
how (masked) language models can be utilized to select mutation candidates.

3.3.1 Contextual Mutation Operator

Our goal is a contextual mutation operator that generates mutations based on the given
mutation context. A mutation context is defined by the implementation T that should
be mutated together with the mutation location l that describes where the code is
mutated. Based on this definition, we characterize a contextual mutation operator as
follows:

Definition 3.1 (Contextual Mutation Operator). A mutation operator M is a con-
textual mutation operator iff the sampling distribution PM is different for at least one
pair of two different contexts (l1, T) and (l2, T ′) with (l1, T) ̸= (l2, T ′) and tl1 = t′l2. In
other words, there exists a replacement r such that:

PM(⟨l1, r⟩ | T) ̸= PM(⟨l2, r⟩ | T ′)

Note that our definition requires that a contextual mutation operator considers the
context surrounding the mutation location. If a mutation operator only considers the
token to be mutated, e.g. the distribution is only different because tl1 ̸= t′l2 , then this
mutation operator is not contextual.

Example. To provide a concrete example, let us slightly adapt the code snippet from
Fig. 3.1 to include another mutation location:

if (dataset ==1 null || dataset.size() ==2 0) return result;

In this example, there exists three locations to perform a binary operator replace-
ment mutation. To highlight the impact of the mutation context, we focus on the two
mutation locations that modify the ==-operator which are highlighted in this example.
Since we are mutating the same operator, how we mutate the operator to achieve a
realistic mutant mainly depends on the surrounding context. The first operator ==1 is
used for a comparison with a null literal. As == and != are the only valid operators for
null comparisons, a developer might confuse these two operators. Confusing == with
another operator is less likely for an experienced developer. In contrast, the second op-
erator ==2 compares with an integer literal. In this context, replacing the ==2-operator
with operators like >, >= or != are all equally valid replacements.

Decomposition. To derive a contextual mutation operator Mctx, we decompose the

29

3.3 Contextual Mutations

sampling distribution PMctx :

PMctx(⟨l, r⟩ | T) = PMctx(l | T) · PMctx(r | l, T)

In the following, we model PMctx(l | T) indirectly with a mask mutation operator that
randomly masks a mutation location l in T . To obtain a contextual mutation operator,
we employ a language model to approximate PMctx(r | l, T) dependent on the context
(l, T).

3.3.2 Generating Mutation Candidates with a Mask Mutator

For selecting a mutation context together with a set of valid mutations, we employ a
mask mutation operator. The mask mutation operator randomly samples a location
to be mutated and then masks the token in the sampled location with a special mask
token ([M]). The result of this masking mutation is a masked program Tmasked and a
set of mutation candidates that lead to valid mutations of the original program.

Mask Mutation Operator. Let MT be a set of valid mutation candidates for a
program T and LocT = {l | ⟨l, r⟩ ∈ MT } be the set of mutation locations, then we
define the mask mutation operator Mmask based on the following sampling distribution
PMmask

:
PMmask

(⟨l, [M]⟩ | T) = 1
|LocT |

which we use to mask out a certain token in T at location l ∈ LocT . To generate a
masked program Tmasked, we sample a random replacement ⟨l, [M]⟩ ∼ PMmask

(· | T)
and replace the token tl with [M] (mutate(tl, [M])). Now, let Reptl

= {r | tl ∈ T, ⟨l, r⟩ ∈
MT } be the set of valid replacements for tl, we define the set of valid mutations MTmasked

for Tmasked as follows:

MTmasked
= {⟨l, r⟩ | tl = [M], r ∈ Reptl

}

Example. To provide a concrete example how our mask mutation operator works,
we consider again the example from Section 3.3.1 with the goal of injecting a bi-
nary operator mutation. Given the set of valid mutations MT = {⟨l, r⟩ | tl, r ∈
{==, !=, +, -, . . . }, tl ̸= r} for a BOR mutation operator, the mask mutation opera-
tor randomly selects a location in {l | ⟨l, r⟩ ∈ MT } and replaces it with a special mask
token, e.g.:

if (dataset [M] null || dataset.size() == 0) return result;

In addition, the mask mutation operator generates a new set of valid mutationsMTmasked
=

{⟨l, r⟩ | tl = [M], r ∈ BOP \ {==}}, i.e. all binary operators excluding the equality op-
erator.

30

Chapter 3. Mutations for Neural Bug Detection

3.3.3 Contextual Mutant Selection with Language Models

Before we describe the integration of language models in the mutation process, we
want to again motivate why language models are feasible choice for generating realistic
mutations with an example:

for (int i = 0; i [M] length; i++)

Let us assume for a moment that we want to find the most likely or correct replace-
ment of the mask in the given context of the program snippet. Even though only the
loop head is provided, an experienced developer can still make an educated guess: As
the loop starts at index 0 and increments the counter after each iteration, the use of
a less (<) or less equal (<=) operator is most likely. Other operators {==, !=, >, >=} are
unlikely since their use is either uncommon in this context, would terminate the loop
from the beginning or yield an infinite loop. A language model would come to the same
conclusion, simply because it has learned that the less operators are more frequent in
this context. For our contextual mutation operator, we exploit the same judgement for
mutation. For example, assuming that the original operator was in fact a less operator,
selecting the next likely operator (<=) according to a language model would result into
an off-by-one error [BSS+20]. Because we observed that language models frequently
rank realistic mutants highest, we propose to exploit language models as an automatic
way for generating contextual mutations.

Masked Language Models. Masked Language Models (MLM) [DCLT19] model
the probability of masked out tokens given the rest of the program as context. In
the context of this work, we employ MLMs trained for single token replacement like
BERT [DCLT19] and CodeBERT [FGT+20]. Given a program T = t0 . . . tn, these
MLMs are trained to predict the probability:

PLM(tm | Tmasked),

where Tmasked = t0 . . . tm−1[M]tm+1 . . . tn is equal to T at all locations i ̸= m and uses
a special mask token [M] for tm. In our case, we generate Tmasked with the help of
our mask mutation operator. To our advantage, the probability distribution is defined
over a large set of program tokens. Hence, it is possible to apply MLMs for all kinds of
single token mutations including mutations of binary operators but also mutations of
identifiers variable usages and function calls. These mutations are traditionally difficult
to address with classical mutation operators.

Mutation re-weighting. The goal of an MLM is to reproduce the original masked
out token given its surrounding context. To force the MLM to generate mutants of T
instead of reproducing the original implementation, we have to restrict the probability
distribution PLM to the set of valid mutants MTmasked

. For this, we employ the following

31

3.3 Contextual Mutations

if(dataset [M] null)MLM:

==

!=

<=

>=

>
+

75%0%
97%

1%
1%
<1%

0%
(a) Comparison with null

if(dataset == null || dataset.size() [M] 0)MLM:

==

!=

<=

>=

>
+

98%0%
12%

62%
<1%

17%
0%

(b) Comparison with integer

Figure 3.3: Re-weighted probability distribution PLM for two different contexts.

re-weighting method for all t ∈ MTmasked
:

PLM(t | tm, T) = PLM(t | tm = [M], Tmasked)∑
v∈MTmasked

PLM(v | tm = [M], Tmasked)

The probability of all other tokens in V are set to zero. Assuming that PLM is a softmax
distribution, re-weighting is equivalent to reducing the vocabulary V to MTmasked

. An
example for our re-weighting method is shown in Fig. 3.3a. Here, the MLM originally
assigned a high probability to ==. By re-weighting, the likelihood of sampling a realistic
mutant (!=) significantly increases.

Sampling distribution. By combining the mask mutation operator with the MLM-
based mutation re-weighting, we can construct PMctx of our contextual mutation op-
erator Mctx:

PMctx(⟨l, r⟩ | T) = PMmask
(⟨l, [M]⟩ | T) · PLM(r | tl, T)

Our construction allows us to construct contextual mutation operators for mutation
operator type Op considered in this chapter. In addition, it is also possible to derive a
contextual mutation operator based on any existing single token mutation operator M
(by computing the mutation set MT). In our experiments, we utilize this property to
construct contextual mutation operators for several bug types.

Example. Whether Mctx is in fact a contextual mutation operator highly depends
on the distribution PLM. To provide an example for an MLM that can be used to
construct contextual mutation operators, we consider CodeBERT [FGT+20] and eval-
uate it for our example in Fig. 3.1 and in Section 3.3.1. In Fig. 3.3, the probability
distribution PLM for two contexts are depicted. In the first case in Fig. 3.3a, the MLM-
based contextual mutation assigns a high probability to replacing == with !=. Since we
are replacing in Fig. 3.3b a comparison operator with an integer, the contextual mu-
tation operator assigns a higher probability to operators that are common for integer

32

Chapter 3. Mutations for Neural Bug Detection

Table 3.1: Syntactic roles distinguished by the syntactic tagger. Colors are used for
visualizing the roles of tokens throughout the paper.

Type Description

Syntax Syntactic elements such as brackets
Keyword Language keywords
Func_Def Name of function in signature
Func_Call Name of function in function call
Var_Def Name of variable during definition
Var_Use Name of variable in a loading context
Unary Unary operator, e.g. boolean negation
Binary Binary operator, e.g. float division
Assign Assignment operator
Type Name of type used in typed languages
Attr Object attribute
String String literal
Number Number literal
Name Name which is no variable, function or attribute

comparisons.

3.3.4 Implementation

To evaluate the impact of different mutation operators on the training of neural bug
detectors, we implemented all employed mutation operators in a common mutation
framework. To simplify the identification of mutation candidates, we developed a syn-
tactic tagger. The tagger analyzes the structure of the program in form of the abstract
syntax tree (AST) and assigns each individual token a syntactic role. We implemented
the syntactic tagger on top of commonly available parsers3 for AST parsing. Formally,
the syntactic tagger computes a function roles : {t1, . . . , tn} → S that assigns each
token in T = t1, . . . , tn a role in S. In total, our syntactic tagger distinguish between
14 different roles (see Table 3.1).

To define a mutation operator type Op with the help of the syntactic tagger, it is
sufficient to define a role R ∈ S (e.g. Binary) and a set of replacement candidates
CT (e.g. the set of binary operators). Potential mutation candidates are identified
by scanning the given program T for tokens with role R and by computing all valid
replacements of the found token based on CT . The contextual mutant selection is built
upon the official BERT implementation from the transformer library [WDS+19]. Since
BERT uses a subtoken vocabulary, it can happen that a token is split into multiple
subtokens. In this case, we average the subtoken log probabilities to obtain the sampling
probability PLM of a single token. In our experiments, we use CodeBERT which is a
variant of BERT specifically trained for code.

3e.g javalang for Java, libcst for Python and esprima for JavaScript

33

3.4 Evaluation

if(target.length == 0) {
// Operates on elements in target

}

(a) Binary operator replacement

Object o1 = stack.pop();
Object o2 = stack.pop();
if(o1 instanceof Integer){...}
if(o1 instanceof Integer){...}

(b) Variable misuse

public void stopTest() {
//...
mRMClient. start ();

}

(c) Function misuse

Figure 3.4: Examples of all studied bug types taken from our real world benchmark.
Reformatted and abbreviated for visualization.

3.4 Evaluation

In our evaluation, we investigate the impact of mutant realism on the training of neural
bug detectors. For this, we compare the impact of three types of mutation operators:

loose ⊒ strict ⊒ contextual

Our goal is to show that the mutants generated by loose, strict and contextual (strict)
mutation operators are increasingly realistic. Then, we investigate the impact of these
mutation operators on the training of neural bug detectors. In the process, the following
research question have guided our evaluation:

RQ1 Are contextual mutants more realistic than loose and strict mutants?

RQ2 Can training on realistic mutants improve the effectiveness of neural bug detec-
tors in Java?

RQ3 Does the effect of more realistic mutants transfer to other programming languages
and other bug types?

In RQ1 and RQ2 we focus our evaluation on real bugs found in public Java reposito-
ries. To explore the effect of our mutation operator on neural bug detectors in other
languages, we evaluate neural bug detectors for Python and JavaScript bugs in RQ3.

3.4.1 Evaluation Tasks

To answer our research questions, we evaluate mutation operators on two types of tasks:
(1) the reproduction of real bugs and (2) the generation of training data for neural bug
detectors. All evaluation tasks, datasets and evaluated bug types together with dataset
statistics are summarized in Table 3.2.

Reproduction. To assess the ability of mutation operators to generate realistic bugs,
we evaluate them on the task of reproduction. The goal of the reproduction task
is to reproduce realistic bugs found in real world projects. In RQ1, we focus on the
reproduction of three common types of Java bugs including binary operator replacement
(BOR) bugs [PS18], variable misuse (VarMisuse) bugs [ABK17] and function misuses
(FuncMisuse) bugs [KBR+20]. Examples of these bug types found in real projects
are shown in Fig. 3.4. To evaluate the ability of the mutation operators to reproduce

34

Chapter 3. Mutations for Neural Bug Detection

Table 3.2: Overview for all evaluation tasks, datasets and bug types individually for
each research question. For brevity, we omit the dataset statistics for individual mutator
types in the same bug category, since this is shared.

Task Datasets Lang Bug Type Train Test

Reproduction (RQ1) ManySStuBs4J [KBR+20] Java
BOR - 1888

VarMisuse - 1898
FuncMisuse - 2436

Detect & Repair (RQ2)
Java

BOR 837K 1888
- Train CodeSearchNet [HWG+19] VarMisuse 2M 1898
- Test ManySStubs4J [KBR+20] FuncMisuse 2M 2436

Detect & Repair (RQ3)
Python VarMisuse 2M 882- Train ETH Py150 [RBV16]

- Test PySStuBs [KPBH21]

Detect & Repair (RQ3)
JavaScript BOp 1.16M 377- Train ETH Js150 [RBV16]

- Test SemSeed-Eval [PP21]

these bug types, we derive a real world benchmark based on bug fixes collected in the
ManySStuBs4J dataset [KBR+20].

To measure the effectiveness of a mutation operator on the reproduction task, we
employ the inverse Brier score [Bri50]. The inverse Brier score measures the likelihood
of a mutation operator to reintroduce a real bug into a repaired program. Given a set
of bug fixes {(Xi, Yi)}n

i=1 each containing a buggy program Yi and its fixed variant Xi,
the inverse Brier score is computed by:

1 − 1
n

n∑
i=1

(1 − P (Yi | Xi))2,

where P (Yi | Xi) is the probability of reproducing the bug Yi given Xi. The inverse
Brier score is a strictly proper scoring rule for probability distributions [GR07] with a
natural interpretation in our context: A mutation operator is scored between 0 and 1,
where 0 indicates that the operator never reproduces a real bug while 1 indicates that
the mutation operator perfectly replicates all bugs. When employing the score with our
mutation framework, we compute the reproduction probability based on the sampling
distribution (i.e. the likelihood of resampling the original bug token).

Training Neural Bug Detectors. In RQ2 and RQ3, we evaluate the impact of
the mutation operator on the training of neural bug detectors. We hypothesize that
training a neural bug detector on more realistic mutants also increases their ability to
detect and repair real bugs. To test this hypothesis, we construct several experiments
that consider the impact of different mutation operators on the training and evaluation
of neural bug detectors for various bug types. In RQ2, we focus on neural bug detectors
for Java bugs and in RQ3 we extend our evaluation setup to neural bug detectors for
Python and JavaScript. In our experiments, we replicate original training setup of the

35

3.4 Evaluation

neural bug detectors as close as possible, while replacing the mutation operator used
for generating mutants. All neural bug detectors are trained on mutants while being
evaluated on real bugs. To evaluate the ability of the neural bug detectors to detect and
repair real bugs, we measure the localization accuracy (the percentage of buggy tokens
correctly identified), the repair accuracy (the percentage of buggy tokens successfully
repaired) together with the joint localization and repair accuracy (the percentage of
buggy tokens correctly localized and repaired). For bug detectors that only classify
individual tokens without repairing them, we instead employ precision and recall.

3.4.2 Mutation Operator Types

In our experiments, we consider three mutation operator types for generating binary
operator replacement bugs, variable misuse bugs and function misuse bugs. In the
following, we define the considered operator types in terms of a syntactic role R and
a set of replacement targets CT . Mutants are generated by replacing a token that is
assigned to role R with a token defined in CT .

Binary operator replacements (BOR) include bugs related to binary operators. To seed
a BOR bug, we replace a random binary operator (R = Binary) with another operator
from the set of binary operators:

CT = {==, !=, <=, >, +, -, . . . }

Variable Misuse bugs (VarMisuse) occur when a developer mistakenly uses one variable
while meaning another variable defined in scope [ABK17]. To seed a VarMisuse bug,
we replace a random variable usage (R = Var_Use) with another defined variable:

CT = {tj | role(tj) = Var_Def}

Function misuse bugs (FunctionMisuse) occur when a developer accidentally calls the
wrong function, which does not fit its use case. To introduce a function misuse bug,
the mutator selects a function call (R = Func_Call), while replacing it with another
function name:

CT = F1000 ∪ {tj | role(tj) = Func_Call}

Following Patra and Pradel [PP21], the mutation operator can select locally occurring
functions or one of the 1000 most common function names (F1000).

Valid Mutations. Finally, to derive the set of valid mutations for each operator type,
we define the set of valid mutations for a given program T as follows:

MT = {⟨l, r⟩ | role(tl) = R, r ∈ CT , tl ̸= r}

36

Chapter 3. Mutations for Neural Bug Detection

3.4.3 Mutation Operator Baselines

To study the effect of mutation realism on the training of neural bug detectors, we
employ several mutation operator baselines.

Loose mutation operators represent the current best practice for training neural bug
detectors [PS18, VKM+19, HSS+19]. To mutate a token at a given location, a loose
mutator uniformly samples a replacement independent of the mutation context. The
sampling process is unrestricted, i.e. each valid mutation can be sampled with equal
probability. This would for example allow mutations that replace a conditional operator
== with an arithmetic operator +.

Strict mutation operators are more inline with mutation operators found in mutation
testing. For example, a strict mutation operator for binary operator bugs might restrict
mutations of relational operators to replacements with other relational operators. In
our experiments, we seed binary operator bugs by arithmetic (AOR), relational (ROR),
conditional (COR) and bitwise (BIT) operator replacements [Jus14]. Identifier bugs
are less common in mutation testing. Therefore, we construct a strict mutation op-
erator baseline for VarMisuse and FunctionMisuse by defining the following sampling
distribution:

P (t | tm, T) = exp(c(tm, t))∑
v∈CT

exp(c(tm, v)) ,

where c(tm, t) is a cosine similarity between learned word vector representations for tm
and t. For learning word vectors, we employ fasttext-cbow since the cosine similarity
between these word vectors have been shown to correlate the best with human sense of
identifier similarity [WRP21].

Contextual mutation operators are generated context-dependently through our proposed
framework. We employ CodeBert [FGT+20] as our masked language model. CodeBert
is a pre-trained 125M parameter Transformer-based masked language model trained on
six programming languages including Java, Python and JavaScript. We also experi-
mented with unidirectional language models [LGR+21] and expert models specifically
trained for a mutation task, but found that CodeBert is generally better suited for find-
ing contextual replacements. Contextual mutators are conditioned on the code context
surrounding the mutation location (limited to maximally 512 tokens by the employed
language model).

Generating mutants. For training the neural bug detectors, we populate code cor-
pora of likely correct code with artificial bugs produced by our evaluated mutators. For
example, for generating mutants in Java, we consider the Java portion of the Code-
SearchNet corpus (as shown in Table 3.2) consisting of more than 500K functions split
into train, test and validation sets. To avoid future train-test duplicates with our real
world benchmark, we employ the deduplication method by Allamanis et al. [All19] and
remove all examples that appear in the test benchmark. The code corpora employed for

37

3.5 Results

loose strict contextual
Mutation Operator

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

rs
e

Br
ie

r S
co

re

(a) Binary operator replacement

loose strict contextual
Mutation Operator

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

rs
e

Br
ie

r S
co

re

(b) Variable misuse

loose strict contextual
Mutation Operator

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

rs
e

Br
ie

r S
co

re

(c) Function misuse

Figure 3.5: Effect of the mutator on the reproducibility of real world bugs.

Python and JavaScript can be found in Table 3.2. Based on this cleaned code corpus,
we construct multiple variants of the dataset by varying the injected bug type and the
employed mutator. Following previous work [HSS+19], we only consider functions with
at least two locations for mutations and mutate each function maximally three times
at different locations. To train the mutator to distinguish correct examples from mu-
tants, we pair each mutant with its unmutated counterpart. This results in a balanced
dataset of likely correct code and mutants.

3.5 Results

In the following, we present our experimental results to answer our research questions.

3.5.1 RQ1 - Are contextual mutants more realistic?

To evaluate whether mutants generated by our contextual mutation operator are more
realistic, we test the evaluated mutation operators on our reproduction task using our
real world benchmark.

Experimental setup. To measure how likely a mutation operator reproduces real
bugs, we employ the real bug fixes from our benchmark. As a starting point for the
mutation process, we employ the fixed variant of the program after the bug fix. Then,
we measure the probability of reproducing the original bug before the bug fix given the
bug location. We report the inverse Brier score for reproducing the original bug. To
answer our research question, we assume that mutation operators that are more likely
to reproduce real bugs also generate more realistic mutants.

Results. Our experimental results are depicted in Fig. 3.5. The compared mutation
operators are listed on the X-axis, while the blue bars represent the inverse Brier score.
If we compare the inverse Brier score for the different mutation operators, we can make
the following observations.

Contextual mutation operators are more likely to reproduce real bugs. For all evaluated
bug types and operator types, the contextual mutation operator is most likely to repro-

38

Chapter 3. Mutations for Neural Bug Detection

duce the real bug given the bug location. The magnitude of improvement depends on
the tested bug type and ranges between 1.5 for variable misuses to over 191 for function
misuses in comparison with the loose mutation operator baseline. In addition, we find
that our experiments confirm our intuition: The loose, strict and contextual mutation
operators are increasingly more likely to reproduce real bugs (with the exception of
function misuse, where the strict mutator achieves comparable results).

Context is important for reproducing identifier bugs. While context is important for all
evaluated bug types, we observe a large performance gap between strict and contextual
mutation operators for identifier-related bugs. Motivated by this observation, we man-
ually investigated the mutation that are most likely generated for our identifier-related
benchmark tasks. A typical example can be found in the second row of Table 3.3.
The identifier names of bug and bug fix are unrelated, which makes it difficult for our
strict mutator. The contextual mutator, in contrast, ranks s high as a replacement for
disables likely because both types String and List support the contains operation.

Although the contextual mutation operator is most effective in reproducing real
bugs, there exists examples where the contextual mutation operator fails. Some ex-
amples for which the contextual mutation operator fails are shown in rows 4 to 6 in
Table 3.3. For example in row 5, both file and alluxiUri are both valid replacements
to generate a variable misuse bug. The contextual mutation operator however prefers
to replace alluxiUriToLoad with file as it is more common in this context (i.e. it is
more common to use a file object with getPath). The strict mutation operator is more
likely to reproduce the original bug as the identifiers alluxiUriToLoad and alluxiUri

are more closely related.
It is important to note that the shown failure cases all represent realistic bugs that

could have appeared in a real code base. In other words, our analysis shows that there
exists a variety of possibilities to generate realistic bugs. In addition, our quantitative
analysis has shown that our contextual mutation operator is more likely in reproducing
the real bug in most cases. This also indicates that a contextual mutation operator is
more likely to generate realistic mutants.

Based on these observations, we arrive at the following conclusion:

Contextual mutation operators are on average more likely to reproduce real bugs.
Thus, we can expect that mutants generated by contextual mutation operators are on
average more realistic than mutants generated by non-contextual mutation operators.

3.5.2 RQ2 - Impact on the training of Neural Bug Detectors

Since we have established in RQ1 that contextual mutants are on average more realistic
than non-contextual mutants, we can now evaluate whether training on more realistic
mutants leads to bug detectors that are more effective on real bugs.

39

3.5 Results

Table 3.3: Examples for real world bugs compared with bugs produced by our contex-
tual mutation operator. The first three are examples for a successful reproduction of
the real bug. This is followed by three cases where the mutation operator fails (real
bug in comments).

Correct code Mutant

if(contentLength >= 0) //Real bug: >
if(contentLength > 0)

String s = ...
List<String> disables = ...
...
if(! disables

.contains(a.getName()))

String s = ...
List<String> disables = ...
...
//Real bug: s
if(! s

.contains(a.getName()))

results = connector. apply (
context

);

//Real bug: execute
results = connector. execute (

context
);

if(media.getDuration() <= 0) //Real bug: ==
if(media.getDuration() > 0)

alluxioUriToLoad =
alluxioUri.join(file);

...
new AlluxioURI(

alluxioUriToLoad .getPath()
);

alluxioUriToLoad =
alluxioUri.join(file);

...
//Real bug: alluxioUri
new AlluxioURI(

file .getPath()
);

if(... &&
bulkInsertableMap
. containsKey (...)

//Real bug: get
if(... &&

bulkInsertableMap
. contains (...)

40

Chapter 3. Mutations for Neural Bug Detection

Table 3.4: Results on the Java real world benchmark for detection and repair (Best
results marked in bold).

Mutator
Java

BOR VarMisuse FunctionMisuse

Joint Loc Repair Joint Loc Repair Joint Loc Repair

Loose 9.00 14.67 44.90 28.51 29.74 69.62 1.09 2.79 21.53
Strict 15.37 27.01 45.75 28.99 31.68 68.20 1.50 2.52 22.70
Contextual 16.97 25.89 48.28 33.85 36.67 72.90 5.49 8.68 26.08

Experimental setup. To measure the impact of the mutation operator, we require
a neural bug detector that supports the detection and repair of all bug types consid-
ered in this work. We therefore employ the joint architecture proposed by Vasic et
al. [VKM+19]. During our experiments, we follow the extensions and training setup
proposed by Hellendoorn et al. [HSS+19] as close as possible. In particular, we report
results for a six-layer Transformer architecture [VSP+17]. As this neural bug detector
was originally designed for the detection and repair of variable misuse bugs, we adapt
the architecture to support single token bugs in general. More precisely, we extend
the model (similar to CopyNet [GLLL16]) to include an external vocabulary into its
prediction (which is helpful for repairing binary operator bugs). More details on the
final neural bug detector architecture can be found in Section 2.3.

Results. Our results on the real world benchmarks for bugs found in Java projects
can be found in Table 3.4. We report the key metrics in percent for each approach and
highlight the best results in bold. Overall, we make the following observations.

Training on contextual mutants outperforms alternative mutation strategies. Compared
to the training on strict mutants, the performance when trained on contextual mutants
increases by up to 6% on all metrics and bug types, except for the localization accuracy
of BOR bugs. For BOR bugs, we observe a slight tradeoff between the localization
performance and repair performance (which increases by 2.5%). Still, the neural bug
detector trained on contextual mutants is more effective in the detection and repair of
real BOR bugs. In other words, by training on contextual mutants it is now possible
to detect and repair more than 30 new BOR bugs that we were previously deemed
impossible.

Reproduction performance correlates with neural bug detector’s effectiveness. If we
compare the performance of the neural bug detectors trained with different mutation
operators and the reproduction performance of these mutation operators, we find that
the reproduction performance correlates with the effectiveness of a neural bug detector
to detect and repair real bugs. On average, switching from a loose mutation operator to
a strict mutation operator and from a strict mutation operator to a contextual mutation
operator improves the performance each time (up to 6% in joint localization accuracy
between loose and strict mutation operator and again up to 5% further improvement

41

3.5 Results

Table 3.5: Results on the real world benchmark for detection and repair (Best results
marked in bold).

Mutator
Python JS

VarMisuse BOP

Joint Loc Repair Prec Rec

Loose 12.58 19.40 24.96 45.45 7.95
Strict - - - - -
Contextual 14.69 19.02 26.24 54.31 38.46

when using contextual mutation operators).
Overall, we find that training on more realistic mutants (i.e. with a mutation

operator that is more effective in reproducing real bugs) improves the bug localization
and repair performance. Interestingly, since our contextual mutation operator produces
the most realistic mutants (according to our metrics), the neural bug detectors trained
on contextual mutants also achieve the highest performance. As a consequence, we
conclude:

Training on more realistic mutants can significantly improve the real bug detection
and repair performance of neural bug detectors.

3.5.3 RQ3 - Transfer to other languages and bug types

In RQ1 and RQ2, we mainly focused on Java bugs. To evaluate whether our results also
generalize to other bug types and programming languages, we explore two additional
neural bug detection approaches for Python and JavaScript. For JavaScript, we addi-
tionally compare with SemSeed which is a bug seeding technique specifically trained to
invert bug fixes [PP21].

Experimental setup. For Python, we employ the same type of neural bug detector
that we used for Java bugs. However, this time we train the neural bug detector on
the original task of detecting variable misuse bugs in Python. To achieve comparable
results with previous studies, we do not employ our extensions for general bug detection
but also facilitate the more specialized two-pointer architecture used by Hellendoorn et
al. [HSS+19]. For JavaScript bugs, we employ DeepBugs [PS18] which was trained for
detecting binary operand bugs (BOp). The original version of DeepBugs was trained on
randomly seeded bugs [PS18]. In addition, we also compare with a version of DeepBugs
trained on semantically seeded bugs which are introduced by SemSeed [PP21]. Our
contextual mutation operator employs the same set of mutation candidates as proposed
by SemSeed. Finally, since DeepBugs classifies individual operands, we report precision
and recall for detecting individual buggy operands.

Results. Our main results for Python and JavaScript bugs are reported in Table 3.5.

42

Chapter 3. Mutations for Neural Bug Detection

0.0 0.2 0.4 0.6 0.8 1.0
Threshold for classifying a bug

0.0

0.2

0.4

0.6

0.8

1.0
P

re
ci

si
on

DeepBugs
DeepBugs + SemSeed
DeepBugs + Contextual

(a) Precision

0.0 0.2 0.4 0.6 0.8 1.0
Threshold for classifying a bug

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

DeepBugs
DeepBugs + SemSeed
DeepBugs + Contextual

(b) Recall

Figure 3.6: Precision and Recall for DeepBugs trained on random bugs (grey dotted),
bugs introduced by SemSeed (red dashed) or contextual mutants (blue).

We again report key metrics in percent, while highlighting the best results in bold. For
JavaScript, we additionally compare the precision and recall curves of different versions
of DeepBugs in Fig. 3.6 at varying decision thresholds used to identify a buggy operand.
Overall, we observe the following.

Training on more realistic mutants can improve the performance on real Python and
JavaScript bugs. The training on contextual mutants improves all metrics, except the
localization of VarMisuse bugs (with a decrease of 0.38%). For JavaScript, using con-
textual mutants clearly improved the precision and recall. Using the default threshold
of 0.5, the number of bug detected increases from 7.83% to 38.46%.

Contextual mutants that explicitly imitate real bugs can further improve the bug de-
tection performance. Under the precondition that sufficiently many bugs for training
SemSeed are available, we find that DeepBugs trained on bugs seeded by SemSeed fur-
ther improves the recall rate (up to 15% at a threshold of 0.5). A key assumption of
our work is however that bug fix collections of a sufficient size do not exist for every
bug type. In this case, where bug fix datasets of a sufficient size are not available,
our contextual mutation operator can significantly improve the detection of real bugs
without access to real bugs.

To summarize our observations, we find that contextual mutations can improve the
performance in various languages, without requiring any additional real bugs as training
examples. However, as seen by SemSeed, integrating real bugs into our contextual
mutation framework might further improve the generation of mutants. We leave this
open for future research.

We observe that the impact of training on more realistic mutants on the bug de-
tection performance on real bugs can transfer between bug types and programming
languages.

43

3.6 Threats to Validity

3.6 Threats to Validity

In this section, we discuss potential threats to the validity of our experiments. In our
discussion, we differentiate between threats to external, internal and construct validity.

External validity. Our experiments focused on neural bug detectors for single token
bugs in Java, Python and JavaScript. Therefore, our experimental results might not
generalize to other bug types, programming languages or even other types of neural
bug detectors.

Applicability to Other Bug Types. Since our evaluation is limited to certain bug types
and available data, our results might not generalize to other bug types or other eval-
uation sets. To still achieve representative results, we evaluated our methodology in
various different experimental setup by varying the bug type injected and by employing
specialized evaluation benchmarks for each bug type. In addition, all our studied bug
types are frequent for the respective language (they belong to the most frequent bug
types found in the top 1000 most popular Github projects in the respective language)
and are commonly explored by previous studies in neural bug detection. Still, our ex-
perimental results might not generalize to other bug types that are not considered in
this work or other set of evaluation tasks.

Impact in Different Programming Languages. In our experiments, we considered muta-
tion operators for different bug types in three different languages. Even when consider-
ing the same bug type, the mutation operator might impact the training of neural bug
detectors differently in other programming languages (e.g. see VarMisuse in Java in
Table 3.4 and in Python in Table 3.5). Although our experiments show that that our
experimental results are transferable between languages, there may be programming
languages for which our results are not transferable.

Design of Neural Bug Detector. The design of the neural bug detector might have
significantly influenced our experimental results. While we considered three different
types of neural bug detectors that are commonly used for detecting bugs in Java,
JavaScript and Python, there might exist (future) neural bug detection architectures
for which our results do not generalize.

Internal validity. The goal of experiments is to isolate the effect of mutation operators
on the training of neural bug detectors. The following characteristics of our experiment
design might still have influenced our experimental outcome.

Randomness of the Mutation Process. While mutation is an effective method for gen-
erating training examples at a large scale, the process of mutation is still inherently
random. Therefore, applying the same mutator on the same code base might result in
a different training dataset. To mitigate this problem and its impact on the validity of
our evaluation, we specifically designed our experiments to be as deterministic as pos-
sible. In the evaluation of RQ1, we directly evaluate the sampling distribution of each

44

Chapter 3. Mutations for Neural Bug Detection

mutator without requiring a random sample. In experiments where a random sample
is necessary, e.g. for dataset generation in RQ2 and RQ3, we fix the random seed for
mutation and publish all random samples (training datasets) for replication. Even with
a fixed seed, the initial process of generating the training datasets requires some form
of simulated randomness. To account for statistical variance during this process, we
generate large scale datasets with up to 2M examples employed for training neural bug
detectors.

Randomness of the Training Process. Training neural network based bug detectors often
requires the application of some variant of stochastic gradient descent. Therefore, the
training process is partially random and training the same neural bug detector twice
(with the same hyperparameters on the same dataset) might result in two different
neural bug detectors with different evaluation results. To mitigate this issue, we also
fix the seed during the training of the neural bug detectors. We publish all trained
neural bug detectors to ensure that our experimental results can be replicated.

Implementation bias. The precise details of our implementation choices could have
influenced our experimental results. To mitigate the impact of our implementation
choices on the experimental outcome, we choose to implement all mutation operators
and all neural bug detectors used in RQ1 and RQ2 in a joint framework. For RQ3, we
partially used pre-existing neural bug detector implementations. To isolate the effect
of the mutation operator, we only compared neural bug detectors that used the same
implementation trained on same bug type. However, the implementation itself is still
a research prototype. Therefore, undiscovered implementation mistakes might have
influenced our experimental results.

Construct validity. A key assumption of our work is that the ability of reproducing
real bugs correlates with the ability of generating realistic mutants. To ensure that this
assumption holds, we performed extensive manual inspections of the mutants gener-
ated by the individual mutation operators. In addition, our experiments indicate that
mutation operators that are more effective in reproducing real bugs also produce better
training examples for the training of neural bug detectors. Although there exist several
indicators that our assumption is true, the ability of reproducing bugs might still not
directly correlate with the ability of producing realistic mutants in different setups.

3.7 Related Work

In this chapter, we introduced a novel contextual mutation operator and evaluated
the impact of the mutation operator on the training of neural bug detectors. In the
following, we discuss closely related works that also address the design of more effective
mutation operator and that target the training of neural bug detection and automatic
repair models.

45

3.7 Related Work

Artificial bugs in the training of neural bug detectors. Artificial bugs are common in
the training of neural bug detectors [PS18, ABK17, VKM+19, HSS+19, PP21, RW22a,
AHO24]. DeepBugs [PS18], for example, have been trained to detect bugs in binary
operator expression or function calls in popular JavaScript projects by training on ar-
tificially generated examples. Allamanis et al. [ABK17] introduced the task of variable
misuse detection and trained graph neural networks on artificially modified programs
to identify variable misuses. Vasic et al. [VKM+19] addressed variable misuse bugs
in Python functions by introducing a joint architecture for detection and repair. Hel-
lendoorn et al. [HSS+19] explored different neural architectures for the detection and
repair of variable misuse bugs. While it seems that the main advances in neural bug
detection are achieved by exploring new neural bug detection models, we found that the
training data used during training has as well a significant effect on the performance
of neural bug detectors. By training on more realistic mutants, we achieved signifi-
cant performance gains for all evaluated neural bug detectors that are either based on
DeepBugs or based on the models explored by Hellendoorn et al.

Even though most existing collection of real bugs are too small to be useful for
training, approaches that induce bug patterns from real bug fixes [PP21, AHO24] can
also be a promising strategy for generating realistic mutants. In fact, our experiments
have shown that techniques that imitate real bugs can further improve the ability
of a neural bug detectors to detect real bugs. These techniques however require the
availability of sufficiently many real bugs for training, which is in practice often difficult
to achieve (especially for more infrequent bug types) [KS20]. Our contextual mutation
operator can be used as a direct alternative for existing mutation operators without
requiring real bug fixes for training. Since obtaining real bug fixes at a sufficient scale
for all possible bug types is a significant problem, concurrent work [AJFB21] have also
explored unsupervised methods for generating realistic training examples. For example,
Allamanis et al. [AJFB21] showed that training a mutator that generates hard to detect
bugs can improve the performance of a neural bug detector. They however found that
the introduced mutations are indeed hard to find, but often less realistic. Kanade et
al. [KMBS20] and Bui et al. [BWH22b] tried to pre-train on coding tasks that are not
directly related to bug detection to improve the performance of neural bug detectors.
Dinh et al. [DZT+23] experimented with using large language models directly (without
training) as neural bug detectors for detecting bugs in partial incomplete code.

Artificial bugs in the training of automatic program repair techniques. While neural
network based approaches for automatic program repair (APR) are traditionally trained
on real bug fixes [CKT+21, JLT21a], recent work has explored the effect of training with
artificial bugs [YML+22, SFYM23, YM24]. For example, Ye et al. [YML+22] trained
an APR system solely on randomly generated mutants which they found also to be
useful for training iterative repair strategies [YM24]. Silva et al. [SFYM23] used back-
translation to imitate real bug fixes. In contrast, our contextual mutation operator uses

46

Chapter 3. Mutations for Neural Bug Detection

masked language model to generate training examples for neural bug detectors. Since
our experiments showed that training on contextual mutations also boost the repair
performance of neural bug detectors, it could be interesting to apply our technique for
APR systems in future work.

Context-dependent mutation operator in mutation testing. Although most existing mu-
tation frameworks use mutation operators based on pre-defined mutation rules [Jus14,
ABJS16], the use of contextual information in the mutation process has been explored
in mutation testing [JKA17]. Just et al. [JKA17] inferred the mutant utility based
on parent and child AST nodes. Allamanis et al. [ABJS16] used an n-gram language
model to select mutants that appear unlikely in the context. Instead of exploiting the
AST structure, our method can directly exploit natural hints in the code to produce
contextual-dependent mutants. In addition, our contextual mutation operator uses a
masked language model to select likely replacements in the given context. Our experi-
ments indicate that this can effectively lead to more realistic mutants.

Generating realistic mutants can also be useful for mutation testing. In fact, subse-
quent work [KDPT23, DP22, GDPT24] found that generating mutants with the help of
a masked language model can significantly boost the effectiveness of mutation testing
frameworks. In other words, they showed that a test suite that is more effective in
detecting contextual mutants is often more effective in detecting real bugs. This result
suggests that our evaluation result might generalize across disciplines, and it would be
interesting to evaluate our contextual mutation operator in other disciplines in future
work.

3.8 Conclusion

This chapter explored the impact of training on more realistic mutants on the perfor-
mance of neural bug detectors. For generating more realistic mutants, we proposed a
novel contextual mutation operator that uses masked language model to inject more
realistic contextual mutations. Our evaluation on thousands of real world bugs showed
that our contextual mutation operator is indeed more effective in reproducing real bugs
than non-contextual variants. As a result, we found that training on mutants gener-
ated by our contextual mutation operator can significantly improve the performance of
existing neural bug detector in the detection and repair of real bugs.

Beyond the training of neural bug detectors, we believe that contextual mutation
operators can also complement existing mutation operators in mutation testing (which
was partially confirmed in subsequent works [DP22]). Our contextual mutation oper-
ator cannot only provide novel but also more fine-tuned mutations. We further see
potential in the mutation of identifiers, which – with notable exceptions [MDF+01] –
have so far only been sparsely investigated in mutation testing.

Limitation. Although we achieved promising results by training on contextual mu-

47

3.8 Conclusion

tants, there exists several limitations of our contextual mutation operator that could
have limited its ability to generate realistic bugs. For example, our contextual muta-
tion operator selects mutation locations randomly. Although we have shown that this
can lead to realistic mutants, recent works [JLZ+22] suggest that there exists mutation
contexts where real bugs appear more frequently. Therefore, by sampling the wrong
mutation location, the resulting mutant might be determined to be non-realistic even
before we select a mutant. While we could have built upon previous work and learn
likely mutation locations from real bug fixes, we would still be limited by the size of
existing bug fix collections. Instead, in the following chapters, we focus on mining
massively large collections of real bug fixes. These collections could then be used for
training mutation operators, but are also large enough to train neural bug detectors
directly.

48

Mining Realistic Bugs
4

Having explored the impact of more realistic training examples on the performance of
neural bug detectors in the previous chapter, we now turn to the underlying problem
which we believe is the main reason for the limited performance of neural bug detectors:
the lack of realistic bugs at a sufficient scale. While there exist several collections of
realistic bugs mined from public repositories, they are often limited in size, making them
difficult to use for the training of neural bug detectors. In this chapter, we investigate
an alternative mining approach that allows us to mine realistic bugs from more than
500K Python Git projects. As a result, we obtain collections of real bugs in the order
of millions of examples.

4.1 Motivation

Software bugs come in many forms. Some can easily be fixed by modifying a single line
or statement. Others are so complex that they require complete rewrites. Especially
those smaller bugs that appear in a single line or statement can be easily overlooked by
a developer. Therefore, to relieve the developer from the burden of manually finding
and fixing these simple, small bugs, many approaches have been proposed that target
the automatic detection [ABK18, PS18, HSS+19, PC22, RW22b] and repair [CKT+21,
LPP+20a, VKM+19] of these bug types.

However, a key problem in the development of these methods is the need for
large collections of known bugs. Existing collections such as Defects4J [JJE14] or
BugsInPy [WSL+20] only contain a few hundred examples. The subset of bugs that
relate to specific bug types is often significantly smaller. Therefore, techniques that are
more specialized to particular types of bugs often require custom datasets for evalua-
tion [HP18] or have to rely on artificial benchmarks [DHK+16].

With the rise of data-driven methods [ABK18, PS18, HSS+19, VKM+19, LPP+20a,
CKT+21, RW22b] for automatic bug detection and repair, the problem of obtaining a

49

4.2 Single Statement Bug Fixes in the Wild

sufficient number of real bugs has become even more dire. These methods often require
huge datasets with millions of known bugs for training. Collecting single statement bugs
at the required scale is however difficult as they rarely occur in open source projects.
Therefore, existing methods (including ours in Chapter 3) have to rely on artificial bugs
for training.

In this chapter, we address the lack of available training examples for Python by
creating two ultra large collections of single statement bug fixes. For this, we mined
over 500K Python Git repositories for bug-fixing code changes that modify only a single
statement. By following a mining process close to previous work [KPBH21], we obtained
a dataset of over 2.3M single statement bug fixes which we call CSSB-2.3M1. Since not
all collected patches fix a bug in isolation, i.e. the bug fix might be entangled [HZ13]
with unrelated code changes, we also explored a more restrictive definition of single
statement bug fixes. More precisely, we filtered our datasets for bugs that can be fully
patched by modifying a single statement. This process lead to our second collection of
nearly 0.9M “true” single statement bug fixes called CTSSB-0.9M.

Relation to TSSB-3M [RW22c]. Both CTSSB-0.9M and CSSB-2.3M are derived
using a mining method that is very similar to the method used to create TSSB-3M and
SSB-9M. We however noticed after publishing TSSB-3M and SSB-9M that the datasets
still contained a significant amount of duplicate commits. To obtain CTSSB-0.9M and
CSSB-2.3M, we therefore employed a more aggressive deduplication scheme on top of
TSSB-3M and SSB-9M to obtain their cleaned variants. We discuss our improved
deduplication process in Section 4.3.1.

4.2 Single Statement Bug Fixes in the Wild

Before we describe our mining process in Section 4.3, we want to provide some charac-
terization of the bug fixes we are interested in. In the process, we also introduce some
techniques that we employed in our mining process.

Single Statement Bug Fixes. Our goal in this section is to crawl the commit history
of Python projects for single statement bug fixes. For this, we view the commit history
of a Python project as sequence of commits C1, . . . , Cn. For simplicity, we assume that
each commit Ci modifies a single program Pi

2:

Ci = Pi
Di−−−−−−−−−→ Pi+1 (Mi),

where Pi represents the program before the commit, Pi+1 the program after the commit
and Mi represents the commit message indicating the commit intent of Ci, e.g. to fix
a bug. We use Di to denote the difference between Pi and Pi+1.

1CSSB-2.3M and CTSSB-0.9M are “cleaned” variants of our previously published datasets SBB-9M
and TSSB-3M in [RW22c].

2In practice, we can handle commits that modify multiple programs (e.g consisting of multiple files)
as multiple commits that modify a single program.

50

Chapter 4. Mining Realistic Bugs

Single Statement Changes. Since our goal are single statement bug fixes, we are mostly
interested in single statement changes, i.e. code changes that modify a single statement.
To identify single statement changes, we represent both the program before the change
Pi and the program after the change Pi+1 with their abstract syntax trees (ASTs). For
example, we view the following single statement change as a modification of ASTs:

result = x / 2
ID ID INT

DIV

ASSIGN
1

2

3 4 5

Pi:

result = x - half
ID ID ID

SUB

ASSIGN
1

6

3 4 7

Pi+1:

Here, we modify a single assignment statement 1 by replacing the division operation
2 with a subtraction 6 :

Di = replace(2 , 6),

where replace(2 , 6) replaces the complete subtree 2 rooted at the division with the
subtree 6 rooted at the subtraction. We define that an AST modification Di is a single
statement change iff the replaced subtrees (2 and 6) have each at least one ancestor or
are itself a node that represents a single statement (1) and there does not exist another
node in the replaced subtrees that represents a statement.

Bug-Fixing Changes. It is non-trivial to decide whether a code change represents a
bug-fixing change. To still decide whether a code change is potentially bug-fixing, we
rely on a keyword-based heuristic. Similar to previous work [KS20], we define a set of
keywords Kbug which occurrence in a commit message Mi indicate a bug-fixing change:

Kbug = { “error”,“bug”, “fix”, “issue”, “mistake”,

“incorrect”, “fault”, “defect”, “flaw”, “type”}

We assume that a commit contains a bug-fixing change if at least one keyword k ∈ Kbug

is contained in the commit message Mi. Note that this heuristic to determine the bug-
fixing intent of a code change has been used in previous works [TWB+19c, KS20,
KPBH21, CKT+21] and has been shown to be highly precise (with a precision of at
least 90%). Finally, we define a single statement bug fix as a code change that is both
a single statement change and a bug-fixing change.

Tangled Commits. A key problem when mining software repositories for bug fixes
is the existence of tangled commits [HZ13]. A tangled commit is a (bug fixing) code
change that modifies more code than necessary to fix a bug. Tangled commits are often
difficult to detect as irrelevant code changes are often not indicated by the developers.
One way to distinguish bug fixing changes from irrelevant code changes is to use a

51

4.3 Mining Real Bug Fixes at Massive Scale

test oracle [HZ13]. However, this is often not available in our setup. Therefore, we
try to identify bug fixing commits that isolate the bug fixing code. For this, we track
the changes made by a commit and we focus on commits that only change a single
statement (without further modifications).

AST Differencing. Throughout this chapter, we differentiate bug fixes into different
bug fix patterns. In the process, we mainly follow the SStuB bug patterns proposed
by Karampatsis and Sutton [KS20] and later extended to Python by Kamienski et
al. [KPBH21] (see Section 2.1.2). For this, we annotate each bug-fixing code change Di

with a unique SStuB pattern (if possible). During this process, we will notice that a
majority of bug fixes cannot be assigned to a SStuB pattern. To have a more generic way
to describe bug fixes, we also characterize code changes via AST differencing [FMB+14].
The key idea of AST differencing is to describe the change to the AST via so-called
AST edit scripts. The AST edit script contains a list of the following four types of
operations:

• INSERT: inserts a new AST node at a given location,

• MOVE: moves an existing AST node to a different location,

• UPDATE: updates the value of an AST node,

• DELETE: deletes a single AST node.

The edit operations are sequentially applied to transform the AST before the fix to the
AST after the fix. A key advantage of AST differencing is that resulting edit script can
accurately describe the syntactic changes needed for fixing a bug. In our analysis, we
compare different bug fixes based on the AST edit operation needed to fix a given bug.

Example. If we consider again the single statement change from the beginning of this
section, we can represent the code change Di by the following AST edit script:

INSERT (,),16 INSERT (,),67 MOVE (,),64 DELETE (),5 DELETE ()2

Here, we start by inserting the new subtraction operation 6 without its children as a
child of 1 . Then, we build the children of 6 by inserting a new identifier 7 and moving
the old identifier 4 to 6 . Finally, we delete the old subtree by removing 5 and 2 .

4.3 Mining Real Bug Fixes at Massive Scale

In the following, we describe our process for mining single statement bug fixes in Python
Git projects in more detail. An overview can be found in Fig. 4.1. Since mining single
statement changes that relate to bug fixes can become easily computationally infeasible
for a large number of projects, we start by mining the commit history of Git projects for
single line edits. Single line edits can be easily identified without requiring expensive
AST based source code analyses. Afterwards, we filter and deduplicate the resulting

52

Chapter 4. Mining Realistic Bugs

Libraries.io

ü
Mine

s
Filter & Deduplicate

$
Annotate

2M
Git projects

66M
Single Line Edits

> 1M
Single Statement Bug Fixes

Figure 4.1: Overview over our mining process

dataset for obtaining a set of unique single statement changes. To obtain a dataset
of real bug fixes, we further filter the dataset for commits where the commit message
indicates a bug fixing change. To be able to navigate our datasets more easily, we
annotate each bug fix with a distinct bug pattern. In Section 4.3.1, we describe the
initial mining process. The different filters that we apply to obtain a dataset of real
bug fixes are described in Section 4.3.2. Finally, our annotation process is described in
Section 4.3.3.

4.3.1 Mining Single Statement Changes in Python Projects

To effectively mine single statement bug fixes at a massive scale, we start with a cheap
approximate process to mine single statement bug fix candidates. Afterwards, we apply
several filters to identify single statement bug fixes among the mined bug fix candidates.

Starting point: Git Repository Index. As the starting point of our mining pro-
cess, we use the Libraries.io 1.6 [Kat20] package index. Libraries.io indexes over 2M
Python Git repositories related to Python packages published for PyPI3, conda4 and
other package managers. We deliberately chose not to exclude repositories based on
their popularity, as was the case in previous work [KPBH21]. Although mining popular
projects might ensure a well-maintained codebase, our goal is to capture real bugs that
frequently occur during the development process. Some of them might only occur in
less popular, less well-maintained projects, as they would be caught before arriving in
better-maintained projects. In addition, we also included fork projects as they might
contain bug fixes that do not appear in the original project. To avoid commit duplica-
tion due to forks, we later remove all duplicate commits from our final datasets. Note
that our datasets do not include commits from all indexed Python projects since not
all projects are publicly accessible or contain a single statement bug fix.

Mining Single Line Edits. Mining single statement bug fixes at the scale of millions
of repositories can easily become computationally infeasible. For this reason, we decided
to crawl the commit history of Python projects for single line edits first. A single line
edit is a code change that modifies exactly one line in the program. In contrast to single
statement changes, a single line edit can be easily determined at a textual level without
requiring to parse the AST of the complete file. Still, in Python, single line edits and

3https://pypi.org
4https://anaconda.com

53

4.3 Mining Real Bug Fixes at Massive Scale

single statement changes are closely related: A single statement or a single statement
header for a compound statement often corresponds to a single logical line in Python.
Even if the logical line spans over multiple physical lines, we still capture changes to
multi-line statements that modify the statement at a single location. However, we miss
code changes that modify a multi-line statement at multiple locations, e.g. the change
spans across multiple physical lines.

To determine whether a commit contains a single line edit, we compute the textual
difference between the code before the commit and after the commit. Similar to the
Unix diff algorithm, we view textual code modifications as removing old lines and
adding new lines. We compute the number of modifications by comparing the removed
and added lines. To reduce the number of false positives, we tokenize each line with
a Python tokenizer5 and compare the token sequences before and after the commit.
By employing a tokenizer, we automatically ignore changes to the code formatting.
In addition, we configure the tokenizer to ignore changes to code comments. During
the mining process, we store all commits that modify a single line together with all
computed file differences. We ignore all commits that either add or remove complete
files since we are only interested in single line modifications.

For the mining process, we distribute the workload on a cluster with over 1000
workers. Each worker is assigned a set of Git repositories. The worker iteratively
clones a given repository and crawls the commit history for single line edits. The
complete mining process took around two weeks and produced a total of over 66M
single line edits from more than 500K Git repositories.

Filtering for Single Statement Changes. The resulting dataset of single line edits
might still contain many false positives, e.g. multi statement changes that are located
in a single line. To filter out these false positives, we now employ a more precise
AST based analysis to identify single statement changes. For this, we iterate over
all collected commits, while analyzing the computed file differences to identify single
statement changes. During this process, we excluded all commits that either (1) do not
contain a single parseable statement or (2) modify more than a single statement. For
identifying single statement changes, we compute the AST difference Di based on the
computed file differences. The file difference typically contains the modified code lines
together with some context code lines. Although this is not sufficient to compute the
complete AST of the modified files, the context is still sufficient for the identification
of single statement changes. We employ a best-effort AST parser6 to compute the
(partial) AST of the code before and after the code commit. To locate the difference,
we perform a simultaneous depth-first search, similar to Kampastsis and Sutton [KS20],
until we find the first node where the two ASTs differ. We exclude all commits where
the computed AST node is not located inside a statement or is a root for multiple
statements.

5We use the tokenizer package from the Python standard library.
6We use the tree-sitter library to parse partial code.

54

Chapter 4. Mining Realistic Bugs

Deduplication. Our initial assumption for the deduplication process was that (1)
duplicate commits in fork projects share the same commit hash7 as the original com-
mit and (2) that fork projects have the same name as the original projects (but with
different project owners). After our initial round of deduplication, we found that both
assumptions (1) and (2) do not hold in practice. For example, we found that duplicate
commits with different commit hash can occur due to commit squashing8. We also
found that it is not uncommon to change the project name of a fork project. Therefore,
to remove these duplicates, we additionally employed a more aggressive deduplication
scheme: We identify duplicate commits solely based on previously computed file differ-
ences that contain the added and removed line together with some surrounding context
lines. For the deduplication, we then remove all duplicate commit that have the exact
same file difference (independent of the commit hash and the name of the fork project).

Result of the Mining Process. After completing our mining process and filtering
the collected dataset for single statement changes, we now remain with a set of nearly
9M single statement changes from over 448K projects. Note that most of the single line
edits are removed due to the deduplication process. Since not every single statement
change relates to a bug-fixing change, we further filter the dataset in the following for
single statement bug fixes.

4.3.2 True Single Statement Bug Fixes

We consider two types of bug fixes: single statement bug fixes and true single statement
bug fixes. Single statement bug fixes are single statement changes with a bug-fixing
intent. To decide whether a single statement change has a bug-fixing intent, we employ
the keyword based heuristic described in Section 4.2.

While this heuristic is effective in identifying commits with a bug-fixing intent, it
also assumes that the commit message and the code changes are related. In practice,
however, bug-fixing code commits are often entangled with code changes unrelated to
the bug fix [HZ13]. As a result, the commit message might indicate a bug fixing intent,
but the single statement change might not be related to the bug fix, e.g. because it
is part of a commit with multiple changes. To address this problem, we additionally
filter our dataset for true single statement bug fixes. True single statement bug fixes
are single statement bug fixes that fully patch a bug with exactly one single statement
change. For the same reason we filter for true single statement bug fixes, we also
avoid commit unrolling [KS20], which would split a single multi statement bug fix into
multiple partial single statement fixes.

Result of the Filtering Process. After filtering our dataset for single statement bug
fixes and true single statement bug fixes, we end up with two datasets CSSB-2.3M and

7A Git commit hash is a unique identifier for a single commit in a Git project.
8Commit squashing summarizes multiple commits with a single new commit. See https://git-

scm.com/docs/git-rebase

55

4.4 Dataset Analysis

CTSSB-0.9M, which contain respectively nearly 2.3M single statement and more than
0.9M true single statement bug fixes from more than 160K Python Git repositories.

4.3.3 Characterizing Bug Fixing Edits

After collecting single statement bug fixes in our datasets CSSB-2.3M and CTSSB-0.9M,
we annotate each bug fix with information that will later help us to analyze our datasets.
In the process, we employ two ways to characterize a single statement bug fix: (1) a
SStuB pattern and (2) an AST edit script. SStuB patterns [KS20] are used to categorize
single statement bugs into frequently occurring bug types. In total, we distinguish
between 20 typical SStuB patterns for Python [FMB+14]. To categorize the individual
bug fixes into SStuB patterns, we assign each bug fix to a unique bug pattern. If there
exists multiple patterns that would fit a given bug fix, we assign the bug fix to the
most specific pattern. Bug fixes that do not fit into a SStuB pattern are assigned to
a generic single token or single statement pattern (depending on whether the bug fix
modifies one or multiple tokens).

To be able to analyze the difference between the code before and after the bug
fix more effectively, we employ AST differencing and compute an AST edit script be-
tween the AST of the code before the fix and the code after the fix. An AST edit
script [FMB+14] describes the changes that need to be applied to the AST of the
buggy code to arrive at the fixed code. For computing the AST edit script, we use a
reimplementation of the GumTree [FMB+14] algorithm. GumTree computes for each
bug fix a sequence of AST operations that consists of insertion, deletion, move and
update operations.

Result of the Annotation Process. After annotating each bug fix in CSSB-2.3M

and CTSSB-0.9M with a SStuB pattern and an AST edit script, we found that around
50% to 60% of all bug fixes cannot be assigned to a SStuB pattern. In addition, we
found that the AST edit scripts needed to fix a single statement bug are often quite
short with an average of four to five AST operations needed to fix a bug.

4.4 Dataset Analysis

Having access to single statement bug fixes from over 100K Git projects, we are now
interested to gain new insights on how programmers make simple mistakes and how
they fix them. For this, we analyze the bug fixes collected in our datasets CTSSB-0.9M

and CSSB-2.3M. Our analysis was guided by the following research questions:

RQ1 Does the distribution of SStuBs in our datasets correlate with the distribution
of SStuBs in previously collected datasets?

RQ2 How different are single statement bugs from those identified by SStuB patterns?

56

Chapter 4. Mining Realistic Bugs

Table 4.1: SStub pattern statistics for CTSSB-0.9M, CSSB-2.3M, and PySStuBs

SStuB Pattern CTSSB-0.9M CSSB-2.3M PySStuBs

Count % Count % Count %

Change Identifier Used 61K 16 158K 17 9K 12
Change Binary Operand 42K 11 81K 9 4K 6
Same Function More Args 37K 10 110K 12 10K 14
Wrong Function Name 34K 9 92K 10 9K 12
Change Numeric Literal 30K 8 87K 9 5K 7
Add Function Around Expression 28K 8 56K 6 6K 9
Change Attribute Used 26K 7 70K 8 5K 7
Add Method Call 16K 4 31K 3 3K 5
More Specific If 13K 4 24K 3 2K 3
Add Elements To Iterable 13K 4 43K 5 2.5K 3
Same Function Less Args 13K 4 42K 4 3.4K 5
Change Boolean Literal 11K 3 24K 3 1.5K 2
Add Attribute Access 9K 2 18K 2 1.5K 2
Change Binary Operator 8K 2 16K 2 <1K 1
Same Function Wrong Caller 7K 2 11K 1 1.2K 2
Change Keyword Argument Used 6K 2 15K 2 1.5K 2
Less Specific If 5K 1 9K 1 <1K 1
Change Unary Operator 4K 1 6K <1 2K 3
Same Function Swap Args 2K <1 19K 2 <1K 1
Change Constant Type 2K <1 3K <1 2K 3

NoSStuB - Single Statement 295K - 791K - - -
NoSStuB - Single Token 195K - 580K - - -

Total SStubs 0.37M 100 0.92M 100 73K 100
Total 0.86M - 2.29M - - -

During our analysis in RQ1, we mainly compare our datasets CTSSB-0.9M and CSSB-2.3M

with a collection of Python SStuBs collected in previous studies [KPBH21]. RQ2 should
provide a more general view on the bugs contained in our datasets.

4.4.1 RQ1 - Does the distribution of bug fixes change?

Since previous work [KPBH21] mostly focused on mining SStuBs on popular Python
projects, we are interested how the bug distribution changes if we include a different
population of Python projects in our mining process.

Experimental setup. We measure the frequency of SStuBs in our datasets CTSSB-0.9M

and CSSB-2.3M and in PySStuBs [KPBH21], a previously explored collection of Python
SStuBs. For comparing the distribution of SStuBs in the three datasets, we employ the
Spearman rank correlation coefficient [Spe61]. For this, we assign each SStuB pattern
i to a rank R(Xi) according to its frequency Xi in the dataset. Let Xi and Yi be
the frequency of SStuB pattern in two compared datasets, then the Spearman rank

57

4.4 Dataset Analysis

correlation coefficient r is computed for n different SStuB patterns as follows:

r = 1 − 6
∑
d2

i

n(n2 − 1) ,

where di = R(Xi) − R(Yi) is the difference between the two rankings of Xi and Yi.
We say that the ranks of SStuBs in two datasets are correlated iff they have a rank
correlation close to 1.

Results. The number of occurrences of each pattern in the three datasets are reported
in Table 4.1. We additionally report the number of single statement bug fixes that
cannot be classified as a SStuB (NoSStuB). Since PySStuBs only collects SStuBs, we
report only the number of SStuBs for PySStuBs. In general, we find that the distri-
bution of SStuBs changes slightly between datasets. The rankings of pattern frequen-
cies are however highly correlated with a Spearmann rank correlation of 0.82 between
CSSB-2.3M and PySStuBs and 0.84 between CTSSB-0.9M and PySStuBs. As expected,
the two datasets CSSB-2.3M and CTSSB-0.9M show a significantly higher correlation
with a Spearmann correlation coefficient of 0.94. Interestingly, we find that high fre-
quency patterns such as Change Identifier Used, Same Function More Args and Wrong
Function Name remain highly frequent across datasets. Change Binary Operand bugs
become more dominant in the CTSSB-0.9M dataset. This could indicate that these
types of bugs are harder to identify by a developer and, hence, are more likely to be
fixed after the main development phase in an independent fix. Finally, we find that
only 40% - 43% of all Python single statement bugs fit a SStuB pattern.

In total, we find that:

The distribution of bugs shifts slightly between datasets. The rankings of pattern
frequencies are however highly correlated such that high frequency patterns remain
highly frequent across bug collections.

4.4.2 RQ2 - How different are bugs that do not classify as SStuBs?

During our analysis, we observed that most of all single statement bugs do not classify
as a SStuB (NoSStuB - Single Statement and NoSStuB - Single Token in Table 4.1).
With RQ2, our goal is to gain some insights in how single statement bugs that does not
classify as a SStuB – which we call NoSStuBs here – relate to existing SStuB patterns.

Experimental setup. To analyze the similarity between SStuBs and NoSStuBs, we
compare the edit operations needed to fix a SStuB and operations needed to fix a
NoSStuB. For this, we abstract the concrete edit operation needed to fix a bug, e.g. we
abstract the operation INSERT(6 , 1) from our example in Section 4.2 by representing
it as an INSERT_SUB_IN_ASSIGN operation. Then, we compute for each edit script E a

58

Chapter 4. Mining Realistic Bugs

0.0 0.2 0.4 0.6 0.8 1.0

10
0

10
1

10
2

10
3

10
4

10
5

Histogram Distance

SStuB-alike

SStuB-related

SStuB-unrelated

Figure 4.2: Similarity of NoSStuBs with SStuBs given as the Jaccard distance between
edit operations. The x-axis corresponds to the binned distance to the most similar
SStuB bug and the y-axis corresponds to observed frequencies.

set of abstract edit operations AE , e.g. for our example:

AE = {INSERT_SUB_IN_ASSIGN, INSERT_ID_IN_SUB,

MOVE_ID_TO_SUB, DELETE_ID, DELETE_DIV}

To then compare the similarity of NoSStuBs and SStuBs, we employ the minimal
Jaccard distance Jδ [Jac12] between the sets of abstract edit operation:

Jδ(AEN
) = minS∈SStuBs

|AEN
∪AES

| − |AEN
∩AES

|
|AEN

∪AES
|

,

which represents the minimal distance of set of abstract edit operations AEN
for a

NoSStuB N to the closest set of abstract edit operations of a SStuB S in the dataset.
Note that a distance of 0 (Jδ(AEN

) = 0) indicates that there exist a SStuB in the
dataset that uses the exact same (abstract) edit operations as the NoSStuB. A distance
of 1 indicates that the NoSStuB does not share any edit operations with a SStuB in
the dataset. In the following, we focus on NoSStuBs in CTSSB-0.9M. The results for
CSSB-2.3M are similar.

Results. A histogram of all Jaccard distances between NoSStuBs and SStuBs in
CTSSB-0.9M are shown in Fig. 4.2. The distances allow us to categorize NoSStuBs into
approximately three classes: SStuB-alike (distance of 0), SStuB-related (distance of
around 0.5) and SStuB-unrelated (distance of 1). We find that SStuBs and SStuB-
alike bugs make up around 73% of the dataset and can hence be fixed by the same type
of edit operations. Another frequent class are SStuB-related bugs. SStuB-related bugs
are related to existing SStuB-patterns but are not classified as SStuBs. An example

59

4.5 Threats to Validity

are inline if-conditions. While being fixed similar to regular if-statements, they are
not covered by any actual SStuB pattern. We find that around 2% of all collected
bugs are SStuB-unrelated. SStuB-unrelated bugs require edit operations that are not
covered by any SStuB pattern. This are often edit operations that are highly specific
to the Python language. For example, developers commonly forget to add the self

argument to a Python method definition. The fact that this class of bugs is infrequent
is however very promising for automatic repair methods, i.e. methods that support the
edit operations needed to fix SStuBs are also well suited to repair a wide range of single
statement bugs.

Overall, we find that:

Most of the bugs that are not classified as SStuBs are at least SStuB-alike or SStuB-
related. Only around 2% of all single statement changes require (abstract) edit
operations which do not occur during fixing SStuBs.

4.5 Threats to Validity

In this section, we discuss potential threats to the validity of our mining process and
the outcomes of our dataset analysis.

External validity. During our mining process, we focused on single statement bug
fixes in Python Git repositories. Since our analysis is based on the real bug fixes found
during the mining process, our analysis result might not generalize to other bug types,
other programming languages or other types of projects than those considered during
our mining process.

Other Types of Bugs. During our analysis, we mostly focused on properties that are
related to existing SStuB patterns. SStuB pattern relate to frequently occurring bug
types in the respective programming language and are commonly explored by previous
studies in bug detection and automatic repair. Still, our analysis results might not gen-
eralize to different types of bug patterns. In particular, our results might not generalize
to multi-statement bugs which might require different types of edit operations to be
fixed.

Other Programming Languages and Projects. During our mining process, we restrict
ourselves to real bug fixes found in public Python projects. The concrete instantiation
and frequency of bugs might vary for other programming languages and projects. For
example, our analysis showed that around 2% of the dataset are SStuB-unrelated and
often highly specific to Python. Therefore, it is likely other programming languages en-
courage other types of bugs that are more specific to the respective language. Although
we already mined a large portion of the publicly available Python projects, we were
restricted to Python projects that are publicly accessible. The distribution of simple
bugs in private projects or projects that do not have version control might be different.

60

Chapter 4. Mining Realistic Bugs

Internal validity. The goal of our analysis is to gain some insights in the distribution
of single statement bug fixes in Python projects. However, the following characteristics
of our mining process might have influenced the outcome of our analysis process.

Identification of Real Bug Fixes. Even though the employed heuristics for identifying
bug fixing commits has been repeatedly shown to be highly precise, there is still a
chance for false positives in our datasets. To reduce the risk of false positives, we have
designed our mining process to be as precise as possible (in our setup) by avoiding
commit unrolling and by filtering for isolated bug fixes in CTSSB-0.9M. The latter does
not only guarantee that the causal relationship between commit message indicating a
bug fix and code change persists, but also avoids the mining of entangled code changes.
Still, our datasets might include code changes that are flagged as real bug fixes while
they do not relate to a bug fix.

Inaccuracies of the Mining Process. To scale our mining process to thousands of repos-
itories, we used several strategies to reduce the cost of mining. Some strategies such as
employing a best-effort AST parser might have introduced inaccuracies in the mining,
filtering or annotation process. In addition, our implementation itself is still a research
prototype. Therefore, undiscovered implementation mistakes might have influenced our
analytical results.

Construct validity. A key assumption of our work is that bugs that appear frequently
in the commit history of public projects are representative for bugs that appear fre-
quently during the development process. However, to appear in the commit history of
a project, a bug has to first be identified as such and a fix to the identified bug has to be
committed. Therefore, our datasets might be biased towards bugs that (1) are difficult
to detect during the initial development process while (2) being detectable later in the
project cycle. Although we tried to address this by mining projects with varying pop-
ularity and including both well- and less well-maintained projects, the mined projects
might still include bugs that are not yet discovered. In addition, there might still exist
classes of bugs that appear more frequently during the development than they appear
as bug fixes in the commit history of public projects.

4.6 Related Work

In this chapter, we introduced a mining process that scales to thousands of repositories
which allowed us to mine two large scale bug fix datasets. In the following, we discuss
related work that focuses on mining public repositories for real bug fixes.

Single Statement Bugs. Single Statement Bugs in form of SStuBs have been explored
in previous work [KS20, KPBH21]. Karampatsis and Sutton [KS20] collected around
63 thousand Java single statement bugs from 1000 popular projects that fit at least
one of 16 different SStuB patterns. They found that around 33% of single statement
bug fixes fit at least one SStuB pattern. Kamienski et al. [KPBH21] explored similar

61

4.6 Related Work

types of bug patterns for the 1000 most popular Python projects. During this process,
they identified seven new SStuB patterns typical for Python. Their collection of bugs
contains around 73K examples. Similar to Kamienski et al., we also explored bugs
that fit SStuB patterns in Python. However, our mining process allowed us to collect
SStuBs from more than 500K projects resulting in a SStuB dataset that is up to 13x
larger. In addition and in contrast to previous bug collections, we also analyze edit
operations needed to fix a bug. Therefore, we were able to explore bug types that are
not covered by SStuB patterns.

Commit histories of public projects are not only a great source for mining bug
fixes but can also be used for obtaining general code changes. For example, Megad-
iff [MMY+21], a large scale dataset around 663K code changes in Java, was mined
from the commit history of 101K Git repositories. As the focus of Megadiff are gen-
eral code changes, the number of potential bug fixes contained in the dataset might
be significantly smaller. Recently, CommitPack [MLZ+23] was introduced which is a
collection of 4 terabyte of code commits across 350 programming languages. Although
the dataset is also not focused on bug fixes, due to its size it could be an interesting
starting point to evaluate our filtering and annotation process for other programming
languages than Python. We leave this open for future work.

Finally, subsequent works [PR23, MSC+23] has found that coding competitions
such as Project CodeNet [PKJ+21] can also be a great source for mining simple bugs
and their fixes.

Learning from Single Statement Bug Fixes. Collections of single statement bug fixes
have already been used for training data-driven automatic repair approaches. For
example, with the objective of machine-learning based program repair for single line
bugs, Tufano et al. [CKT+21] collected a set of 787 thousand bug-fixing single line
commits in Java. They used the same heuristics we employed for identifying bug-fixing
code changes. In addition, their method is trained to translate buggy code lines into its
fixed version. Bader et al. [BSPC19a] showed that AST edit scripts can be effectively
employed for automatic program repair by predicting bug fixes based on previously
seen AST transformations. Not only does our dataset provide almost 3x more training
data (CSSB-2.3M), which has the potential to improve the performance of existing
methods [HNP09], but also by annotating each bug fix with an AST script our dataset
can directly be employed in various training setups.

That large scale datasets are a necessity for training data-driven methods has also
been confirmed by subsequent works [BWH22a, PR24]. Bui et al. [BWH22a] collected
a dataset of 132K and 53K bug fixes for Python and Java respectively to train a bug
detection and repair system. Prenner and Robbes [PR24] used TSSB-3M (a less filtered
variant of CTSSB-0.9M) to evaluate the impact of the surrounding context on automatic
repair methods. We ourselves used CTSSB-0.9M and CSSB-2.3M as a starting point for
creating a real bug fix dataset for training neural bug detectors as we further discuss

62

Chapter 4. Mining Realistic Bugs

in Chapter 5.
Interestingly, recent works [HV23, HVKV24] have shown that datasets of code with

known vulnerabilities [WNV+22] can be used to train large language models to generate
more secure code. The authors mainly focused on common software vulnerabilities.
Since large language models also tend to generate simple stupid bugs [JADM23], we
believe that real bug fix datasets like CTSSB-0.9M and CSSB-2.3M could be used in the
future to train large language models to generate less buggy code.

4.7 Conclusion

This chapter explored a mining process to obtain single statement bug fixes at a massive
scale by mining the commits of over 500K Git repositories. As a result of our mining
process, we created two new datasets called CSSB-2.3M and CTSSB-0.9M. CSSB-2.3M

collects almost 2.3 million single statement bug fixes and CTSSB-0.9M focuses on nearly
900K true single statement bug fixes. CTSSB-0.9M guarantees that the included bug
fixes are not entangled and that every collected bug can be fixed by modifying exactly
one statement. We believe that datasets of this size could facilitate future research
in data-driven bug detection and automatic repair – which was already confirmed by
subsequent works [BWH22a, PR24, RW23].

Limitation. Our goal is to employ the real bug fix datasets in the training of existing
neural bug detectors. However, there exist challenges when using the collected datasets
for the training of existing neural bug detectors. Most existing neural bug detectors are
specialized to specific types of single statement bugs such as variable misuses or binary
operator bugs. As a consequence, only those real bug fixes that resemble bug types
supported by neural bug detectors can be used for training. Therefore, in the next
chapter, we are interested whether we can use the real bug fixes collected in CSSB-2.3M

and CTSSB-0.9M for the training of existing specialized neural bug detectors.

63

4.7 Conclusion

64

Learning from Real Bug Fixes
5

In Chapter 3 and Chapter 4, we explored ways to obtain realistic bugs via mutation
and mining. In this chapter, we are now interested how these bugs (and their fixes)
can be used in the training of neural bug detectors. For this, we perform a systematic
study to compare neural bug detectors trained on real bug fixes, mutants, and mix-
tures of mutants and real bug fixes at various dataset scales and with varying training
techniques. As a result of this study, we are able to identify a training configuration
that significantly improves the bug detection and repair capabilities of existing neural
bug detectors.

5.1 Motivation

Real bug fixes seem to be the perfect source for learning to detect real bugs. They
not only show how bugs typically occur in open source projects, but also how they
are fixed by software developers. Yet, they are rarely utilized in the training of neural
bug detectors. A key problem is that obtaining real bug fixes at a sufficient size for
the training of neural bug detectors has been challenging in the past. Therefore, to
obtain the necessary amount of data needed, neural bug detectors are often trained
on code mutants instead of real bug fixes. These code mutants are generated by in-
jecting small code mutations into existing code. As this process is fully automated,
mutants can easily be generated at a scale that is large enough for the training of neu-
ral bug detectors. However, as we have seen in Chapter 3, mutants are not necessarily
representative for real bugs that appear in real projects. Therefore, neural bug detec-
tors that are trained purely on mutants usually underperform when evaluated on real
bugs [AJFB21, HSS+19].

In contrast, in this chapter, our goal is to evaluate the impact of real bug fixes
(at a large scale) on the training of neural bug detectors. Previous work [HBV22]
has already shown that neural bug detectors significantly suffer from a distributional

65

5.2 Neural Bug Detection of Single Token Bugs

shift between the distribution of artificial bugs (mutants) seen during training and
the real bug distribution found in open source projects. While adapting the training
distribution can significantly improve the precision of neural bug detectors, existing
neural bug detectors remain severely limited in their ability to detect and repair real
bugs. We hypothesize that – because of the scale of the employed datasets – the bug
patterns needed to find and fix real bugs lack support in the training distribution.
Therefore, it is unclear (1) how real bug fixes would impact the training process at a
larger scale, (2) whether the size of the datasets (of mutants or bug fixes) employed
in previous studies limited the performance of neural bug detectors and (3) whether
neural bug detectors would benefit from mutants at all when a larger set of real bug
fixes is available for training.

To answer these questions, we performed a systematic study comparing neural bug
detectors trained on real bug fixes, mutants and mixtures of real bug fixes and mutants
at various dataset scales. To evaluate the impact of real bug fixes at a large scale,
we constructed a novel dataset of 33K real world Python bug fixes representing four
common types of single token bugs typically addressed by neural bug detectors. For
evaluating the impact of scale, we evaluate several neural bug detectors trained on
subsets of the real bug fix dataset ranging from a few hundred examples to the full
dataset size. To evaluate the impact of mutants at different dataset scales, we vary
(1) the type of mutation operator used, (2) the number of mutants generated per
code snippet and (3) the number of code snippets used in the mutation process. For
evaluating the joint impact of training on real bug fixes and mutants, we employ a joint
training framework for training the neural bug detector. For this, we train the neural
bug detectors in two phases by first pre-training on mutants and then fine-tuning the
pre-trained neural bug detector on real bug fixes. This allows us to not only evaluate
the joint impact of mutants and real bug fixes at scale, but also individually in the same
training framework. Altogether, with the help of our study, we are able to identify a
training setting that significantly improved the ability of existing neural bug detectors
to detect and repair real bugs.

5.2 Neural Bug Detection of Single Token Bugs

In this chapter, we investigate the impact of mutants and real bug fixes at a large scale
on the performance of neural bug detectors for single token bugs. Therefore, before we
describe our study design in Section 5.3, we provide in the following an overview of the
most relevant concepts for the training of single token bug detectors.

Single Token Bug Detectors. As we have seen in Section 2.3, neural bug detectors
for single token bugs are designed to (1) detect bugs in programs that can be represented
as a sequence of program tokens T = t1, t2, . . . , tn, (2) localize the location of a single
token tl that likely causes the bug (if any) and (3) find a replacement r that fixes the
single token bug. As in the previous chapters, we also focus here on neural bug detectors

66

Chapter 5. Learning from Real Bug Fixes

for specific types of bugs such as variable misuse [ABK17], binary operator [PS18],
unary operator [AJFB21] and literal bugs [AJFB21]. During our evaluation, we evaluate
both graph based neural bug detectors [HSS+19] that learn from graph representations
of the program and Transformer based neural bug detectors [VSP+17] that directly
operate on the token sequence.

Mutation. To train neural bug detectors for single token bugs, previous work has
mainly focused on training on mutants. Mutants are artificially generated by introduc-
ing an artificial bug into an otherwise bug-free program via mutation operator. As we
have seen in Section 2.3.3, the mutation operator can be seen as a token replacement
operation that can be inverted by the neural bug detector:

T
mutate(tl,r)−−−−−−−−→ TM

replace(tl,r
−1)−−−−−−−−−→ T.

For a dataset of bug-free programs, mutants are generated by randomly replacing a
token with another token of the same type. The token types (e.g. binary operators)
are specified such that the mutants remain interpretable after mutation. While most
existing neural bug detectors are trained on mutants that are generated purely ran-
domly, we found in Chapter 3 that neural bug detectors can become more effective
when trained on more realistic contextual mutations. Therefore, we consider also in
this study the impact of using a more advanced mutation operator. See Appendix A.2
for more details on the design of the contextual mutator used in our study.

Real Bug Fixes. For training neural bug detectors on real bug fixes, we also consider
real single token bug fixes. Here, a bug in version Ti is fixed by replacing a single token:

Ti
replace(tl,r)−−−−−−−−→ Ti+1.

Note that real bug fixes are not necessarily complete. Therefore, while Ti contains a
bug that can be fixed by replacing tl with r, the version after the bug fix Ti+1 is not
necessarily bug-free.

5.3 Studying the Impact of Real Bug Fixes and Mutants
at Scale

In the following, we introduce our study design. The goal of our study is to investigate
the impact of (1) learning from real bug fixes and (2) learning from mutants at different
dataset scales on the performance of neural bug detectors. In the process, we explore
different training strategies that allow us to measure the impact of training on real bug
fixes, mutants and mixtures of real bug fixes and mutants. In Section 5.3.1, we discuss
the training strategies employed in our study. We discuss ways to scale up the training
datasets in Section 5.3.2. The implementation of our training strategies and neural bug
detectors used in our work are discussed in Section 5.3.3.

67

5.3 Studying the Impact of Real Bug Fixes and Mutants at Scale

Github Code Real Bug Fixes
Datasets

Correct

supersample

Mutants

pre-train

(1) Train on mutants

mutate×k

Correct

supersample

Bugs

supersample

fine-tune

(2) Fine-tune on real bugs

Figure 5.1: Overview of the training process

5.3.1 Training with Code Mutants and Real Bug Fixes

To isolate the impact of training with mutants and real bug fixes, we perform our
training process in two phases: (1) a pre-training and (2) a fine-tuning phase. During
pre-training, we train the neural bug detectors on artificially generated code mutants.
The code mutants are generated by mutating existing code mined from public reposito-
ries. Then, in the fine-tuning phase, we either continue the training of the pre-trained
neural bug detectors on real bug fixes (to investigate the impact of training on mutants
and real bug fixes) or start the training from scratch. An overview of the training
process can be found in Fig. 5.1.

Pre-training with code mutants. During the pre-training phase, we largely follow
the training process of existing neural bug detectors [HSS+19]. Therefore, our training
objective is not to identify real bugs but rather to identify and transform mutated code
back to its original form. For this, we start with a general corpus of code snippets (e.g.
function implementations) that are obtained by mining public Git repositories. Then,
we randomly mutate each code snippet in our corpus up to k times which produces
a dataset of at max k unique1 mutants per code snippet. During our experiments,
we both vary the number of mutants generated per code snippet and the employed
mutation operator. To obtain examples of unmutated (likely bug-free) code, we employ
the original code corpus. Based on the two datasets, the neural bug detector is then
trained to (1) distinguish mutated from the real unmutated code, (2) identify the
mutation location (if any), and (3) find the code replacements needed to revert the
code mutation. As the dataset of mutants is up to k times larger than the original code

1We ensure that each generated mutant is unique. As the number of possible single token mutations
is limited by the number of tokens and token replacements for a given code snippet, we might generate
less than k unique mutants.

68

Chapter 5. Learning from Real Bug Fixes

corpus, we additionally supersample the correct code snippets during training to match
their frequency with the mutants. In practice, to achieve this, we implemented a two-
stream training process that samples correct code snippets at the same frequency as
mutants seen during the training. This avoids biasing the model towards the dominant
class (e.g. correct code or mutants).

Fine-tuning with real bug fixes. During the fine-tuning phase, we continue (or
restart) our training on real bugs and realistic bug-free code. To obtain code containing
real bugs, we employ the code related to a real bug fix before the fix is applied. For
realistic (likely) bug-free code, we again utilize the Github code corpus. During our
experiments, we vary the number of real bug fixes employed during training and the
size of the code corpus. With the help of real bug fixes, the neural bug detectors is
then trained to (1) distinguish real buggy code from likely bug-free code, (2) identify
the bug location (if necessary) and (3) imitate the original bug fix. To again obtain a
balanced distribution during training, we supersample the buggy programs to match
the frequency of the bug-free code.

5.3.2 Scaling Factors in the Training of Neural Bug Detectors

There are mainly two scaling factors that might influence the training of neural bug
detectors: (1) the scale of the real bug fix dataset used during fine-tuning, (2) the scale
of the mutant dataset used during pre-training and (3) the scale of the Github code
corpus used both during pre-training and fine-tuning.

Real Bug Fixes. Real bug fixes are typically hard to obtain at a large-scale which
has influenced the design and evaluation of existing neural bug detectors [VKM+19,
HSS+19, AJFB21]. With CTSSB-0.9M and CSSB-2.3M, we now have access to two large-
scale collections of real bug fixes which we utilize in our study. Still, we are interested
whether smaller collections would have been sufficient to boost the performance of
neural bug detectors. For this reason, we take several subsamples of our real bug
fix dataset ranging from a few hundred examples to a large-scale dataset of multiple
thousands real bug fixes. During our study, we evaluate the impact of scaling up the
real bug fix dataset during training on the performance of existing neural bug detectors.

Mutants. To scale up the mutant dataset during pre-training, we can either (1)
increase the mutation frequency (number k of mutants generated per code snippet) or
(2) increase the number of code snippets used for mutation.

Mutation frequency. Existing works often limit themselves to generate k = 1 [HBV22],
k = 3 [HSS+19] or k = 5 [AJFB21] mutants per code snippet in the Github code
corpus. Hellendoorn et al. [HSS+19] motivated this limitation to avoid biasing the
generated dataset too strongly towards longer functions. It is however unclear whether
this would hurt the performance of neural bug detectors. Therefore, we are interested

69

5.4 Evaluation

how increasing the number of mutants beyond what is evaluated in previous work
during training impacts the performance of neural bug detectors.

Code snippets. Even if we fix the number k of mutants generated per code snippet, we
can increase the total number of mutants by increasing the number of code snippets
mutated. Although code in open source projects has become abundant, existing work
often only focuses on a relatively small subset of what is available online.

Github code corpus. The number of code snippets in the Github code corpus can
both impact the pre-training and fine-tuning phase. During pre-training, it both im-
pacts the number of different bug-free code snippets and mutants seen during training.
During fine-tuning, the code corpus is used to further train the neural bug detector
on bug-free code. Therefore, we investigate the impact of scaling up the Github code
corpus on the performance of neural bug detectors.

5.3.3 Implementation

To effectively measure the impact of real bug fixes and mutants at scale on different
neural bug detectors, we implemented several neural bug detector baselines in a uni-
fied framework. During this process, we largely followed the design of Hellendoorn
et al. [HSS+19]: We implemented a common neural bug detector architecture with
exchangeable components (e.g. the token encoder, the neural encoder and the local-
ization and repair heads are freely exchangeable). The token encoder encodes each
token as a set of subtokens and it averages the subtoken embeddings to obtain a token
encoding. The token encodings are processed by different types of neural encoders. For
this, we reimplemented or reused state-of-the-art components. The Transformer based
neural encoders are built upon the official BERT [DCLT19] implementation from the
transformer library [WDS+20]. The graph-based neural encoders are implemented
closely to the implementation of the PyBugLab model [AJFB21]. For preprocessing
the code, we reimplemented the code preprocessing pipelines for tokenization [HSS+19]
and graph construction [AJFB21].

5.4 Evaluation

In our experiments, we evaluate the impact of real bug fixes and mutants at different
dataset scales on the performance of neural bug detectors for single token bugs in
Python. In the process, we aim to answer the following research questions:

RQ1 How does training on real bug fixes at different dataset scales impact the local-
ization and repair performance of neural bug detectors on real bugs?

RQ2 How does training on mutants at different dataset scales and with different types
of mutators impact the localization and repair performance of neural bug detec-
tors on real bugs?

70

Chapter 5. Learning from Real Bug Fixes

RQ3 How do neural bug detectors trained on large scale datasets compare to state-of-
the-art neural bug detectors?

For answering the research questions, we investigate the correlation between dataset
scale and the performance of neural bug detectors by varying the number of mutants
and real bug fixes available during training. As a part of scaling up the mutant dataset
in RQ2, we also vary the size of the Github code corpus.

5.4.1 Evaluation Tasks

To answer our research questions, we evaluate the neural bug detectors using the fol-
lowing two tasks: (1) real bug detection and repair and (2) correct code identification.
In the first task, we evaluate the ability of neural bug detectors to detect, localize and
repair real bugs found in open source projects. The second task serves to evaluate the
ability of neural bug detectors to identify bug-free code.

Real bug detection and repair. For evaluating the ability to detect, localize and
repair real bugs, we employ the PyPIBugs benchmark [AJFB21]. PyPIBugs consists
of 2374 real world Python bugs and their fixes derived from open source projects.
The benchmark is hand-filtered and hence is likely to include bugs that represent real
world bugs. During our evaluation, we only consider single token bugs (which excludes
argument swaps) in functions where the implementation is still publicly available2. This
resulted in a real world benchmark consisting of 2028 real world bugs.

Correct code identification. We employ the test split of ETH Py150K [RBV16] for
evaluating the ability of the neural bug detector to identify bug-free code. The test split
consists of 50K Python files. We extracted all top-level functions and removed all near-
duplicates [All19] in the resulting dataset. This process led to a benchmark of more than
200K Python functions. We assume that all the gathered function implementations are
bug-free and that any alarm reported by the neural bug detectors are false alarms.

Metrics. To evaluate the effectiveness of the neural bug detectors on the real bug
detection and repair task, we measure the joint recall of detecting, localizing and re-
pairing real bugs. In addition, we also report the localization recall of identifying the
bug fix location and the repair recall of finding the correct repair. For quantifying the
precision of our bug detectors on the correct code identification task, we measure the
false positive rate (FPR). The false positive rate is the ratio of reported false positives
(false alarms) and the number of bug-free code examples.

2The benchmark only references the original bug fixing commit. We found that not all commits
were publicly available at the time of mining them.

71

5.4 Evaluation

5.4.2 Neural Bug Detector Baseline

We train and evaluate three types of neural bug detectors based on (1) transform-
ers [VSP+17] (with relative attention [SUV18]), (2) graph neural networks (GNN3)
[AJFB21] and (3) graph relational transformers (GREAT) [HSS+19]. The transformer
learns to detect and repair single token bugs directly on the function implementation.
The graph based models (GNN and GREAT) learn to localize and repair single token
bugs based on structural-, control flow- and data flow information. For a fair com-
parison, none of the models considered in our experiments are pre-trained, all models
share a similar size (25M - 34M parameters) and see the same number of training
examples. The models are trained to support code snippets up to 1024 program to-
kens. During our evaluation, we consider all bugs in larger functions as undetected. To
support the four bug types, we initialize the vocabulary V to the set of unary and bi-
nary operators defined in Python together with the set of boolean and numeric literals
(x ∈ {−2,−1, 0, 1, 2}).

Training baseline. For evaluating the impact of real bug fixes and mutants, we train
the neural bug detectors in different training setups. As a baseline for the training
process, we adopt the setup of Hellendoorn et al. [HSS+19]. The neural bug detectors
are trained on a training dataset purely consisting of mutants (with k = 5) for 300
epochs (a 200K examples per epoch) with early-stopping on the validation set. In our
experiments, we vary the number of mutants injected and the number of real bug fixes
seen during training.

5.4.3 Datasets

For training the neural bug detectors, we employ two types of datasets: a general
Github code corpus and a dataset of real bug fixes. To achieve comparable results, we
focus here also on bugs in Python function implementations.

Github code corpus. As a general corpus of Python code, we consider the train
split of the Py150K dataset [RBV16]. The train split consists of around 100K files.
We hold out 10K files which we use as a validation set for validating our neural bug
detectors. We extract all top level functions and deduplicate the dataset such that
functions that do occur in the training process do not occur in our validation and test
benchmarks. In total, our training corpus consists of more than 360K Python function
implementations.

To train the neural bug detectors, we randomly inject up to k mutants that represent
one of our four bug types. For this, we considered two types of mutation operators:
(1) traditional random and (2) contextual mutation operators. The main difference
between these mutation operators is that the former injects mutations purely randomly,

3Our evaluation setup slightly differs from [AJFB21] in that only function level information are
considered. Therefore, any relation that requires access to an implementation outside the scope of a
single function cannot be computed.

72

Chapter 5. Learning from Real Bug Fixes

while the later injects mutations dependent on the surrounding mutation context (see
Chapter 3). For our experiments, we evaluated several different types of contextual
mutation operators (see Appendix A.2) and selected the contextual mutation operator
that is most effective in reproducing real bugs.

Real bug fixes. For obtaining real bug fixes at a sufficient scale, we constructed a
novel dataset of 33K real Python bugs for training. As a starting point, we used our
CSSB-2.3M dataset. We started by pre-filtering the dataset for bug fixes that likely fall
into one of our bug categories. We then mined the original repositories for the function
implementation corresponding to the bug-fixing code commit. Since not all bug types
can be identified purely on the code commit (e.g. a variable misuse requires that all
variables are defined in scope), we filtered and deduplicated4 the dataset of buggy
Python functions for a second time. This process has led to around 35K examples of
real world Python bugs and their fixes that match at least one of our bug types. During
training, we use 33K examples for training and hold out 2K examples for validation.

Scaling Up. To evaluate the impact of scaling, we evaluate neural bug detectors
trained on datasets at different sizes. For real bug fixes, we consider several subsets
ranging from a few hundred examples to the complete dataset. For mutants, we scale
the dataset by increasing the number k of mutants injected. In addition, we also
experimented with scaling up the Github corpus used for the mutation process. For
this, we collected examples from the Python part of CodeSearchNet [HWG+19] which
we deduplicated with respect to our train and test sets. This resulted in an additional
384K examples that we can use to scale up our Github code corpus and our mutant
datasets.

5.5 Results

In the following, we discuss our experimental results with the goal of answering our
research questions.

5.5.1 RQ1 - Impact of Real Bug Fixes at Scale

To evaluate the impact of real bug fixes at different dataset scales on the training
process, we use our real bug fix dataset for training the neural bug detector baselines.

Experimental setup. In our experiments, we both consider neural bug detectors
trained purely on real bug fixes and bug detectors fine-tuned from our baseline setup.
During this process, we consider subsamples of 0% (no fine-tuning), 1% (334), 3% (996),
5% (1.658), 10% (3.314), 30% (9.936), 50% (16.559), 70% (23.180), 90% (29.802), 100%
(33.113) of the real bug fix dataset. We train and evaluate bug detectors for each
sample size. To obtain more unbiased results, we train our neural bug detectors on

4I.e. we removed all bug fixes that appear in our test sets.

73

5.5 Results

0% 1% 3% 5% 10% 30% 50% 70% 90% 100%
Percentage of real bug fix dataset

0%

5%

10%

15%

20%

25%

30%

35%

jo
in

t l
oc

 &
 re

pa
ir

re
ca

ll
on

 v
al

id
at

io
n

se
t

Transformer (BASE)
GNN (BASE)
GREAT (BASE)

1k 10k

Transformer (Fine-tuned)
GNN (Fine-tuned)
GREAT (Fine-tuned)

Transformer (Real only)
GNN (Real only)
GREAT (Real only)

Figure 5.2: Effect of real bug fixes at different dataset scales on the performance on the
validation set. The x-axis is the percentage of real bug fixes used during fine-tuning.

three subsamples for each sample size and report the averaged results on our validation
set.

Results. The averaged results are shown in Fig. 5.2. We report the joint localization
and repair performance on the validation set for both the neural bug detectors trained
from scratch (solid line) and the neural bug detectors fine-tuned from our baselines
(dashed line). For comparison, we also report the validation performance of neural bug
detectors purely trained on mutants (dashed horizontal line). The vertical gray dashed
lines mark datasets that exceed 1K and 10K examples, respectively.

Training purely on real bug fixes. We find that neural bug detectors trained purely
on real bug fixes underperform in comparison to our baselines. The GNN is the only
model that achieves comparable performance when trained on the complete real bug
fix dataset. Interestingly, we still find that scaling up the number of real bug fixes has
a significant impact on the performance of neural bug detectors.

Fine-tuning from baselines. When fine-tuning our neural bug detector baselines with
real bug fixes (dashed lines), the performance of the neural bug detectors continues
to improve as the size of the real bug fix dataset increases. Even training on small
datasets of 1K real bug fixes (less than 5% of the dataset) can significantly improve the
performance of neural bug detectors. This is encouraging as datasets of these sizes are
often available [KS20]. Still, by scaling up the dataset by a factor of 20 (i.e. from 5%
to 100%) can further improve the bug detector performance by up to 152%.

Benchmark performance. To evaluate the impact of training on real bug fixes on our
benchmark tasks, we evaluate the best performing neural bug detectors, i.e. those
fine-tuned from our baselines on 100% of our dataset, on real bug detection and repair

74

Chapter 5. Learning from Real Bug Fixes

Table 5.1: Impact of training with real bug fixes on the performance of neural bug
detectors on our tasks of real bug detection and correct code identification

Transformer GNN GREAT

FPR↓ Joint↑ Loc.↑ Repair↑ FPR↓ Joint↑ Loc.↑ Repair ↑ FPR↓ Joint↑ Loc.↑ Repair↑

Only real bugs 12.1 10.9 14.1 40.4 14.8 15.4 22.4 42.7 10.0 12.9 16.5 50.1
Only mutants 25.2 21.4 25.8 59.9 26.2 18.4 24.2 53.3 27.2 19.1 23.7 56.2
Mixed 27.0 24.5 29.6 65.5 20.9 18.9 24.6 56.7 27.6 21.7 25.6 60.5
Fine-tuned 26.7 32.2 37.5 68.6 17.4 24.1 29.9 59.3 21.3 27.0 31.7 64.4

and on correct code identification. For comparison, we consider neural bug detectors
trained purely on mutants and neural bug detectors trained purely on real bug fixes.
In addition, we also consider a neural bug detector that is trained on a mix of real bug
fixes and mutants (Mixed). Our evaluation results are shown in Table 5.1. We find that
the fine-tuned neural bug detectors significantly outperform all other variants in terms
of localization (Loc.), repair (Repair) and joint localization and repair (Joint.) recall.
In addition, training on real bug fixes can improve the false positive rate. However, the
lowest false positive rate is achieved by the neural bug detectors trained solely on real
bug fixes. Training on mutants (in all variants) can increase the false positive rate but
more importantly it also boosts the ability of neural bug detectors to detect and repair
real bugs significantly.

We conclude for RQ1:

Scaling up the number of real bug fixes seen during training can significantly boost
the performance of neural bug detectors. In comparison to neural bug detectors
purely trained on mutants, the fine-tuned neural bug detectors improve the ability
to detect and repair real bugs by up to 150%. They still maintain a comparable false
positive rate on correct programs.

5.5.2 RQ2 - Impact of Mutants at Scale

While scaling up the real bug fix dataset is often challenging, the number of mutants
seen during training can be scaled up more easily. For this, we employ two strategies: we
either (1) increase the number k of mutants generated for each code snippet (mutation
frequency) or (2) we increasing the size of the code corpus used for mutation.

Experimental setup. To evaluate the impact of mutants at different dataset scales,
we trained and evaluated several different neural bug detectors that mainly differ in
the number of distinct5 mutants seen during pre-training. For this, we performed two
types of experiments: First, we vary the mutation frequency between 1, 3, 5, 10, 100
and 1000 unique mutants generated per code snippets. Second, we increase the number

5As we fix the training to 300 epochs (a 200K examples per epoch), the number of mutants in each
training run is the same (60M mutants and bug-free code snippets). However, the number of distinct
training examples might be significantly less and therefore the same mutant might be repeatably seen
during training. We can mitigate this by increasing the number of distinct mutants in our training
dataset.

75

5.5 Results

0x 1x 3x 5x 10x 100x 1000x
Mutation frequency in training set

0%

5%

10%

15%

20%

25%

30%

35%

40%

jo
in

t l
oc

 &
 re

pa
ir

re
ca

ll

1.7 x

Transformer (Fine-tuned) Transformer (Mutant only)

Figure 5.3: Effect of mutation frequency during training on the performance of
Transformer-based neural bug detector on the validation set. The gray dashed line
represents the average number of unique mutants that can be generated per code snip-
pet.

of distinct mutants by increasing the Github code corpus. For this, we include more
than 384K function implementation from CodeSearchNet in our general Github corpus
and use this as starting point for mutation. During mutant generation, we vary the
type of mutation operator used for mutation. For each generated dataset, we pre-train
the neural bug detectors and evaluate their performance before and after fine-tuning
on real bug fixes.

Results. Fig. 5.3 and Fig. 5.4 present overviews of our results for the first set of
our experiments. Here, we measure the joint localization and repair recall on our
validation set for the neural bug detectors trained with different mutation frequencies.
The configuration 0x represents a version of the neural bug detector trained only on
real bug fixes.

Impact of higher mutation frequencies. For all evaluated neural bug detectors, we
observe that increasing the mutation frequency (up to a critical point of 100x mutants
per code snippet) leads to a performance improvement for both localization and repair.
This is surprising as the number of unique mutants per code snippet is limited (with
an average of 85 unique mutants per code snippet) and hence longer functions with
more mutant candidates are oversampled. However, increasing the mutation frequency
beyond 100x does not always lead to improvements.

Impact on fine-tuning performance. We find that fine-tuning on real bug fixes has an
orthogonal effect on the localization and repair performance of the neural bug detectors.
By fine-tuning on real bug fixes, we can boost the performance of the neural bug
detectors by 1.5x up to 1.7x. The effect of scaling up the mutant dataset also transfers
to the performance of the fine-tuned neural bug detectors. By scaling up the mutation
frequency from 5x to 100x, we can increase the performance of the fine-tuned models

76

Chapter 5. Learning from Real Bug Fixes

0x 1x 3x 5x 10x 100x 1000x
Mutation frequency in training set

0%

5%

10%

15%

20%

25%

30%

35%

40%
jo

in
t l

oc
 &

 re
pa

ir
re

ca
ll

1.5 x

GNN (Fine-tuned) GNN (Mutant only)

(a) GNN

0x 1x 3x 5x 10x 100x 1000x
Mutation frequency in training set

0%

5%

10%

15%

20%

25%

30%

35%

40%

jo
in

t l
oc

 &
 re

pa
ir

re
ca

ll

1.6 x

GREAT (Fine-tuned) GREAT (Mutant only)

(b) GREAT

Figure 5.4: Effect of mutation frequency during training on the performance of the
graph-based neural bug detectors on the validation set. The gray dashed line represents
the average number of unique mutants that can be generated per code snippet.

1x 3x 5x 10x 100x
mutant frequency in training set

10%

15%

20%

25%

30%

jo
in

t l
oc

. &
 re

pa
ir

re
ca

ll

1.5 x

Random Mutation Contextual Mutation

(a) Before Fine-tuning

1x 3x 5x 10x 100x
mutant frequency in training set

25%

30%

35%

40%

45%

jo
in

t l
oc

. &
 re

pa
ir

re
ca

ll

1.1 x

Random Mutation Contextual Mutation

(b) After Fine-tuning

Figure 5.5: Effect of using a more realistic mutator on the performance of the
Transformer-based neural bug detector on the validation set.

by 1.16x (Transformer) up to 1.4x (GREAT).

Impact of more realistic mutations. We evaluate the impact of scaling up the number
of mutants with a more realistic mutator. For this, we employ a contextual mutator at
different mutation frequencies. We compare the performance of neural bug detectors
trained on more realistic mutations to those trained on traditional random mutations.
Our results for the Transformer based neural bug detector are shown in Fig. 5.5. We
find that our results are consistent with our findings in Chapter 3: Training on more
realistic mutants can significantly boost the (joint) performance of a Transformer-based
neural bug detector (by up to 1.5x). Scaling up the mutation frequency can further
boost the performance of a Transformer-based neural bug detector (even when using
more realistic mutations). Interestingly, we find that using more realistic mutations has
a significantly smaller effect on the fine-tuning performance (from around 1.5x before
fine-tuning to 1.1x after fine-tuning).

77

5.5 Results

Table 5.2: Evaluation results for the improved neural bug detectors on our benchmark
tasks.

Transformer GNN GREAT

FPR↓ Joint↑ Loc.↑ Repair↑ FPR↓ Joint↑ Loc.↑ Repair ↑ FPR↓ Joint↑ Loc.↑ Repair↑

Baseline 25.2 21.4 25.8 59.9 26.2 18.4 24.2 53.3 27.2 19.1 23.7 56.2
+ 100x Mutants 30.0 24.9 30.4 65.6 20.4 18.7 24.2 58.3 28.2 23.8 29.0 63.9
+ Improved Mutator 25.7 27.6 33.5 64.1 24.6 19.1 24.7 57.8 26.6 23.5 29.7 61.1
+ Real Bug Fixes 20.7 37.6 42.9 73.4 19.9 26.5 31.9 65.9 21.7 34.4 38.7 71.7

+ Larger Corpus 16.1 38.6 43.2 75.1 15.2 26.2 30.6 67.8 16.2 35.1 39.1 74.9

Benchmark performance. We evaluate the impact of increasing the mutation frequency
(to 100x) and employing the improved mutation operator during training on the bench-
mark performance. Results are shown in Table 5.2. We find that pre-training on a larger
set of mutants significantly improves the detection and repair of real bugs across all
neural bug detectors. However, increasing the mutation frequency comes also at a cost
of increasing the false positive rate (for Transformer-based and GREAT-based neural
bug detectors). Pre-training on mutants generated by our improved contextual muta-
tion operator can mitigate the problem while boosting the ability of the neural bug
detector to detect real bugs. However, the repair performance also slightly decreases
across all neural bug detectors when switching to the improved contextual mutation
operator. Interestingly, we find that improving the pre-training process also transfers
to the performance after fine-tuning: When pre-training on a higher number of more
realistic mutants, the joint localization and repair recall of the fine-tuned neural bug
detectors increases by up to 1.27x (in comparison to the baseline fine-tuned on real bug
fixes; see Table 5.1) and the false positive rate decreases by a factor of up to 0.78x.

Impact of larger Github corpora. As the improvement in performance due to an increase
in mutation frequency is limited (and stops after 100x), we also consider increasing the
Github code corpus. For this, we included the Python part of the CodeSearchNet
corpus in our Github code corpus and used the joint corpus as a starting point for
the mutation process. We again generate up to 100 mutants per code snippet and
pre-trained the neural bug detectors on the new datasets. Our results are shown in
the lower part of Table 5.2. We find that increasing the size of the Github code corpus
can slightly improve the ability of the neural bug detectors to detect and fix real bugs.
Interestingly, the size of the Github code corpus has a significant impact on the false
positive rate which further decreases by a factor of up to 0.75x. We expect that further
scaling up the Github code corpus can yield further improvements6. We leave this
evaluation open for future work.

Finally, we conclude for RQ2:

6We already experimented with a larger code corpus containing more than 90M function imple-
mentations. However, first experiments on the code corpus did not yield significant improvements.
Therefore, we believe that advanced data filtering and novel ways to balance corpus size and mutation
frequency are needed to fully exploit code corpora of this size.

78

Chapter 5. Learning from Real Bug Fixes

Table 5.3: Comparison with PyBugLab on the PyPIBugs benchmark.

Bug type PyBugLab [AJFB21] Transformer (ours) – Real Bug Fixes

Loc. Repair Loc. Repair Loc. Repair

Wrong Assign Op 20.0 68.9 43.2 77.3 36.4 77.3
Wrong Binary Op 27.2 54.3 43.6 83.1 16.9 64.8
Wrong Boolean Op 27.6 96.9 34.1 95.6 4.9 76.4
Wrong Comparison Op 33.7 66.1 42.6 65.3 22.7 60.3
Wrong Literal 21.6 78.4 33.7 78.0 17.4 83.7
Variable Misuse 35.3 70.5 45.4 74.7 42.0 75.0

Pre-training on mutants can significantly boost the ability of neural bug detectors to
detect and repair real bugs. Increasing the number and realism of the mutants seen
during training are both effective strategies to further boost the performance (by up
to 130%). However, a side effect of pre-training on mutants is a higher false positive
rate which can only be partly mitigated by training on more realistic mutants and
by increasing the size of the code corpus.

5.5.3 RQ3 - Comparison with State of the Art

After having evaluated the impact of real bug fixes and mutants on the performance
of neural bug detectors, we are now interested how our best performing neural bug
detector7 compares with state-of-the-art approaches.

Comparison to PyBugLab [AJFB21]. We evaluate the best performing neural
bug detector against PyBugLab [AJFB21] on our real bugs benchmark (PyPIBugs).
In comparison to our neural bug detectors, PyBugLab employs a different (adversial)
mutation operator for training and uses additional augmentations of the training data.
PyBugLab does not employ real bug fixes during training. Unfortunately, the Py-
BugLab neural bug detectors are not publicly available. Therefore, for our comparison,
we rely on the numbers reported for each bug type of the original author. The eval-
uation results are shown in Table 5.3. We additionally report the performance of our
neural bug detector before being fine-tuned on real bug fixes. Overall, we find that:

Training on real bug fixes significantly improves the bug localization performance. We
find that our neural bug detector has a significantly higher bug localization performance
(Loc.) than PyBugLab. Across nearly all bug types, our neural bug detectors localizes
(and repairs) more than 10% more real bugs. At the same time, our neural bug detectors
achieves a similar or significantly higher repair performance (Repair) for the individual
bug types. Key to this performance improvement is the access to a large real bug
fix dataset that we can use to fine-tune the neural bug detectors. By fine-tuning the
neural bug detector on real bug fixes, the neural bug detector becomes significantly more

7According to our results, the best performing neural bug detector is a Transformer-based neural
bug detector trained with a larger corpus with 100x improved mutants injected and fine-tuned on real
bug fixes.

79

5.5 Results

Correct Alarm3

False Alarm
12

No Alarm
85

(a) CuBERT

Correct Alarm

32

False Alarm

60
No Alarm

8

(b) Transformer (ours)

Figure 5.6: Comparison of CuBERT and our neural bug detector on Real Python
projects with variable misuse bugs.

effective in localizing and repairing real bugs for all bug types. Fine-tuning PyBugLab
with real bug fixes could further boost its performance and PyBugLab trained on real
bug fixes might be more effective for Wrong Binary Op, Wrong Boolean Op, Wrong
Comparison Op and Wrong Literal bugs.

Comparison to He et al. [HBV22]. We also compare our neural bug detector with
CuBERT [KMBS20], a recent 340M parameters masked language model, fine-tuned by
He et al. [HBV22] for the detection and repair of simple bugs. CuBERT comes in three
variants, each fine-tuned specifically for variable misuse, binary operator and argument
swap bug detection. We focus here on the variants fine-tuned for variable misuses and
binary operator bugs as these objectives overlap with ours. For the comparison, we
employ our 28M parameters Transformer-based neural bug detector. We configure our
neural bug detector so that it only reports variable misuses or binary operator bugs,
depending on which variant of CuBERT we are comparing with.

Comparison on PyPIBugs. We compare the two neural bug detectors on subsets of
PyPIBugs that tackle variable misuses and binary operator bugs respectively. Despite
the size difference, we find that our neural bug detector significantly outperforms Cu-
BERT on PyPIBugs: Here, CuBERT detects and repairs around 2.82% of all variable
misuses and 2.23% of all binary operator bugs. Our neural bug detector detects 16x
more variable misuses and 14x more binary operator bugs. We however have to note
that CuBERT is tuned for precision and we expect8 that CuBERT performs signifi-
cantly better on the task of correct code identification.

Comparison on Real Python Projects. To get a better understanding of how the two
neural bug detectors compare in a more realistic setting, we evaluate them on the task
of finding and fixing real bugs in real Python projects. For this, we sampled around

8We cannot make a meaningful comparison between our neural bug detectors and CuBERT as the
training set of CuBERT and our test set for evaluating correct code identification significantly overlap.

80

Chapter 5. Learning from Real Bug Fixes

Correct Alarm
9

False Alarm

24

No Alarm

67

(a) CuBERT

Correct Alarm
17

False Alarm
78 No Alarm5

(b) Transformer (ours)

Figure 5.7: Comparison of CuBERT and our neural bug detector on Real Python
projects with binary operator bugs.

100 variable misuse and 100 binary operator bug fixes collected in PyPIBugs. Each
bug fix corresponds to a bug and its fix found in a Python project. Therefore, to create
our benchmark, we downloaded the original project and reinserted the original bug.
The goal of the neural bug detector is then to rediscover and fix the original bug by
scanning all top-level functions of the given project. During this process, the neural bug
detector might report multiple functions as buggy. As in practice a developer might
not be willing to review all raised alarms [KXLL16], we sort them by the confidence of
the neural bug detector, i.e. we sort by Pφ(⟨l, r⟩ | T), and only report the top-5 alarms
per project.

Results. Our experimental results for variable misuse bugs are shown in Fig. 5.6 and
for binary operator bugs are shown in Fig. 5.7. The figures show the number of projects
with at least one (1) Correct Alarm: the original bug is discovered and fixed, (2) False
Alarm: an alarm is raised but the original bug is not detected and (3) No Alarm: the
rest. Overall, we find that:

CuBERT is significantly more precise but finds fewer bugs. In comparison to our neu-
ral bug detector, CuBERT is significantly more precise. In total, CuBERT reports 22
potential variable misuses and 110 potential binary operator bugs across all projects.
CuBERT detects and fixes 3 historic variable misuses and 9 binary operator bugs re-
spectively. In contrast, our neural bug detector fixes 29 additional variable misuses and
8 additional binary operator bugs9 which CuBERT does not detect but also produces
thousands of false alarms more across all projects. At project level, CuBERT reports
no alarm for 85 and 67 projects with a known variable misuse or binary operator bug
respectively. Even though CuBERT is more precise, it reports a false alarm for 12
projects with a known variable misuse and 24 projects with a known binary operator

9In fact, the neural bug detector finds and fixes in total 21 additional binary operator bugs that
CuBERT does not detect. However, 13 correct alarms are not considered here as they do not appear
in the top-5 alarms per project.

81

5.6 Discussion

Table 5.4: Example of a Software Bug only found after training on Real Bugs. Code is
reformatted to fit the figure.

Example Description

1 # Assignment Operator Bug
2 if event == ’highstate-start’:
3 minions += set(data[’minions’])
4 elif event == ’highstate’:
5 minions.discard(data[’minion’])

The set union in Python is typically computed via
the |= operator. However, the developer mistakenly
uses the += to compute the union of two sets.
Fix: replace += in Line 3 by |=.

Table 5.5: Example of a Software Bug that is not found by any neural bug detector.
Code is reformatted to fit the figure.

Example Description

1 # Variable Misuse
2 def _find_completion(fuser, relation):
3 for fuser_relation in fuser.fusion_graph.

→ get_relations([...]):
4 if fuser_relation._id == relation._id:
5 return fuser.complete(fuser_relation)
6 return None

A variable misuse bug where the developer uses the variable
fuser_relation instead of relation. The context is insuffi-
cient to decide that the developer intends to use the relation
variable.
Fix: replace fuser_relation in Line 5 by relation.

bug.

In the end, it is highly dependent on the application scenario whether a low false positive
rate (CuBERT) or a high bug detection and repair performance (ours) is preferred. We
can for example envision that our neural bug detectors are highly useful in scenarios
where false repairs can be easily rejected via patch validation techniques [YZLT17a]
or by elimination techniques for false positives [KMJ+22a, BFHORQ10]. In fact, in
Chapter 6, we develop a validation approach that allows us to increase the precision
of our neural bug detectors. In this case, having access to a high-recall neural bug
detector that detects and repairs a significant number of real bugs can be beneficial.

Overall, we conclude for RQ3:

In comparison to previous neural bug detectors, our neural bug detector can detect
and repair significantly more real bugs. In comparison to neural bug detectors tuned
for precision, our neural bug detector produces a significantly higher number of false
alarms. However, this could be addressed in future work by employing post hoc
validation strategies.

5.6 Discussion

We now take a more qualitative look on our experimental results. For this, we manually
reviewed the raised warnings on our real bugs benchmark.

Impact of Real Bug Fixes. While neural bug detectors trained on mutants can only
exploit how developers implement code (and find deviations), neural bug detectors fine-
tuned on real bug fixes can also exploit how developers make mistakes and how they fix
them. As a result, as we have seen in RQ1 and RQ2, neural bug detectors trained on

82

Chapter 5. Learning from Real Bug Fixes

real bug fixes are often more effective in finding and fixing real bugs. When analyzing
the bugs that can only be detected and fixed by neural bug detectors trained on real bug
fixes, we find that the difference is most visible in the following two cases: for (1) type-
related bugs and (2) for bugs occurring in code snippets with multiple weaknesses (e.g. a
real bug that co-occurs with other bugs in the same code snippet and code quality issues
at multiple locations). An example of a type-related bug that can only be detected and
fixed by neural bug detectors trained on real bug fixes is shown in Table 5.4. Here,
the developer confuses the |= operator with the += operator to compute a set union.
The neural bug detectors catches the bug after being fine-tuned on real bug fixes as it
appears more frequently in our real bug fix dataset.

Impact of Real Bug Fixes at a Larger Scale. Some real bugs that occur often
during development are less likely to appear in code repositories. For example, the
type-related bug in Table 5.4 is less likely to appear in a real code repository. The
reason is not that it appears less likely in practice, but because it is a type-related
bug, it is more likely to be detected during execution. Still, a good neural bug detector
should warn the implementer before it is submitted to a code repository. We believe
that our neural bug detectors are able to detect these bugs because they have sufficient
support in our large scale bug fix collections. Smaller bug fix collections such as the 872
wrong binary operator bugs used in previous work [HBV22] do not include this type
of bug. Even larger collections such as PySStuBs [KPBH21] only collect two instances
related to set operator bugs. Our training dataset includes more than 20x more bug
fixes that match the same bug pattern. Therefore, by increasing the scale of the real
bug fix dataset, we can capture unique bug types that appear less frequently in code
repositories.

Impact of Mutants at a Larger Scale. Complementary to real bug fixes, our
evaluation results suggest that training on mutants at a larger scale can have a signif-
icant impact on the ability of neural bug detectors to detect and fix real bugs. While
mutants are often not representative for real bugs, a (random) mutation operator can
still increase the support of real bugs in the training distribution that are otherwise
infrequent in code repositories. To demonstrate this, we analyze which real bugs in
our PyPIBugs benchmark can be reproduced by our mutation strategies. For this, we
mutate the code after the bug fix and check whether the original bug can be repro-
duced within the first k mutations. For traditional random mutations, we report the
worst-case performance (i.e. the original bug is always sampled last) as a lower bound
and, for the improved contextual mutation operator, we order mutants according to
likelihood of generating them. Results are shown in Fig. 5.8. We find that almost all
real bugs can be reproduced when we reach a mutation frequency of 1000x mutants
(even if we are "unlucky" and sample the original bug last). Therefore, if a real bug can
be reproduced by mutation, increasing the mutation frequency is enough to ensure that
the bug is generated via mutation. However, increasing the mutation frequency also

83

5.7 Threats to Validity

1x 3x 5x 10x 100x 1000x
Number of mutants generated per code snippet

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge
 o

f P
yP

IB
ug

s r
ep

ro
du

ce
d

Random (worst-case) Improved

Figure 5.8: Inversion test on PyPIBugs for reproducing real bugs via mutation. The
x-axis is the number of mutants generated and the y-axis is the percentage of real bugs
reproduced within k mutations. For the traditional random mutation, we report worst-
case performance (i.e. the original bug is always sampled last) and for the improved
contextual mutator we rank the mutation according to the likelihood of generating
them.

has the side effect of a lower signal-to-noise ratio (i.e. the number of real bugs to the
number of uninformative mutants). Therefore, as our experiments suggest, fine-tuning
on real bug fixes is necessary to utilize the learned bug patterns to detect real bugs.

Failure cases. While our improved training process significantly improved the bug
detection capabilities of the neural bug detectors, they still fail to recognize a sig-
nificant portion of real bugs. To understand why this happens, we analyze common
failure cases. A key problem is that the neural bug detectors considered in this work
are limited by the available context (consisting of the implementation of a single func-
tion). Therefore, bugs that require knowledge about implementations which are not
available in context can often not be detected. An example is shown in Table 5.5.
Here, the developer intends to complete a given relation but instead uses the variable
fuser_relation. The context is insufficient to determine that completing relation is
preferred over fuser_relation. While this can be partly mitigated by incorporating
further context, the detection of bugs requires explicit knowledge about the functional-
ity of the implementation which is not always provided by the developer. Therefore, we
find that neural bug detectors are most effective for well-documented, idiomatic code.

5.7 Threats to Validity

In the following, we discuss potential threats to the validity of our experiments. We
differentiate between external and internal validity.

External validity. In our experiments, we focused on neural bug detectors for single

84

Chapter 5. Learning from Real Bug Fixes

token bugs in Python. While our training approach is general enough to be applied
in various setups, the impact of training with real bug fixes and mutants might not
generalize to other programming languages, bug types or neural bug detectors.

Other Bug Types and Programming Languages. As we focus on our experiments on
four common bug types in Python, our evaluation results might not generalize to other
bug types or other programming languages. To still achieve representative results, we
selected bug types that are frequent for Python and are commonly explored by previous
studies on neural bug detectors. Still, our experimental results might not generalize to
other bug types that are more frequent in other programming languages.

Generalization to Other Benchmarks. We evaluated our neural bug detectors on one of
the largest benchmark for real bug detection and repair, PyPIBugs. The benchmark
is manually validated and collects bug fixes from thousands of repositories. Still, the
performance of the neural bug detectors might not generalize to other bugs that are
collected in different (smaller) benchmarks or do not occur in benchmarks at all.

Design of Neural Bug Detectors. The design of our neural bug detectors baseline
might have significantly influenced the evaluation results. While we considered three
different types of neural bug detectors (based on Transformers, GNNs and GREAT),
our experimental results might not generalize to future neural bug detectors that utilize
different architectures.

Internal validity. Although a variety of neural bug detectors have been developed in
recent years, there does not exist a universally accepted setup for training and bench-
marking. Therefore, even though we implemented our baselines as close as possible to
the reference implementations, the resulting neural bug detectors might behave differ-
ently than in the setup they are originally developed for.

Procedural Bias. To achieve comparable results, we designed our evaluation to match
the design of prior studies [HSS+19] on neural bug detectors as close as possible. For
example, in our main experiments, we adopted the same publicly accessible Github
corpus ETH Py150K, a similar architectural design and similar baselines as employed
by Hellendoorn et al. [HSS+19]. To further support a wider range of bug types, we
adjusted the architecture and mutation process similar to Allamanis et al. [AJFB21].
Still, our evaluation results for the baseline algorithms are slightly different than in
previous studies. For example, we found that in contrast to Allamanis et al. [AJFB21]
the graph-based neural bug detectors (GNN and GREAT) underperform in our evalu-
ation setup. We attribute this to two main differences in our evaluation setup: First,
for a fair comparison, all models are limited to the function implementation without
having access to other inter-procedural implementation details. This also prohibits
the computation of type related or call structure related information exploited by the
graph-based neural bug detectors in Allamanis et al. [AJFB21]. Second, all neural bug
detectors were trained on a different (potentially smaller) dataset. Although integrat-

85

5.8 Related Work

ing this type of information and training on larger datasets would potentially benefit
all bug detector baselines, the performance ranking between bug detectors might differ.

Implementation Bias. A second reason for the difference in performance might lie in the
implementation details of the neural bug detectors. Even though we implemented the
neural bug detectors as close as possible to the original design, there still exist differences
in implementation details that might have led to different evaluation outcomes. For
example, we found that while graph-based neural bug detectors still perform better in a
low data regime (e.g. when trained on real bug fixes), Transformers show a surprisingly
strong performance when pre-trained on mutants. We mainly attribute this difference in
performance to our choice of a relative attention mechanism over an absolute attention
mechanism used in prior works. In our preliminary experiments, this led to a boost of
up to 20% on our validation dataset. Note however that Hellendoorn et al. [HSS+19]
already anticipated this result when the models are trained for longer durations. In our
experiments, we train on approximately 2.4x more training examples than Hellendoorn
et al.

Impact of Randomness. While we designed our experiments to be replicable, there still
exists two sources of (simulated) randomness that might have impacted our evaluation
results. To evaluate the impact of real bug fixes at scale on the training process, we
randomly sampled several subsets from our real bug fix datasets. Therefore, training
the neural bug detectors on different subsets might lead to different evaluation results.
To mitigate this problem, we trained all neural bug detectors on different subsamples
and reported the average results across subsamples of the same size. A second source
of randomness is the mutation process. While mutation is an effective way for generat-
ing training examples for neural bug detectors, the mutation process itself is inherently
random. Therefore, applying the same mutation operator on the same code bases twice
might result in two completely different training datasets. To still enable the replication
of our experiments, we fix the random seed during mutation which allows to (determin-
istically) reproduce our training datasets. Still, employing a different randomization
process or a different random seed might generate a different training set which in turn
might impact the performance of the neural bug detectors.

5.8 Related Work

In this chapter, we have systematically investigated the impact of the size of mutant and
real bug fix datasets used during training on the performance of neural bug detectors. In
the following, we discuss the most closest related work that also addresses the training
of neural bug detectors. In addition, we also compare with approaches that exploit
real bug fixes for the training of automatic repair or code mutations and we consider
alternative pre-train-and-fine-tune techniques.

Training Neural Bug Detectors. Neural bug detectors for detecting and repairing single

86

Chapter 5. Learning from Real Bug Fixes

token bugs have been explored in previous work [ABK17, VKM+19, HSS+19, AJFB21].
Allamanis et al. [ABK17] addressed the detection and repair of variable misuse bugs
by modeling programs as graphs. Vasic et al. [VKM+19] proposed a joint model for
the same task and Hellendoorn et al. [HSS+19] explored alternative neural bug de-
tector architectures. All these techniques share a very similar training recipe: they
are trained solely on artificially generated mutants which are introduced by mutating
existing source code. In contrast, we showed that the integration of real bug fixes (es-
pecially at a large scale) in the training process can significantly boost the performance
of neural bug detectors. More recent works [AJFB21, PP21, AHO24] have investigated
the effect of training data quality on the performance of neural bug detectors. For ex-
ample, both employing more realistic mutations (as we have shown in Chapter 3) and
mutations that are hard to detect [AJFB21] during training can boost the localization
and repair performance of neural bug detectors. However, integrating these approaches
often increases the complexity of the training process by learning the mutator either
prior or concurrently to the training. We found that the integration of real bug fixes
in the training process while relying on simpler and easier-to-implement mutation op-
erators that we employ at a large scale can already be sufficient to achieve a significant
improvement in the real bug detection and repair performance. However, our experi-
ments also provide evidence that training on more realistic mutations can still boost
the performance (even if real bug fixes are available during training). He et al. [HBV22]
investigated the effects of training neural bug detectors with a more realistic training
distribution. Although their method significantly improved the precision of existing
neural bug detectors, the resulting neural bug detectors are still limited in their ability
to detect and repair real bugs. We found that increasing the scale of the real bug fix and
mutant dataset can significantly improve the performance of neural bug detectors while
training on real bug fixes can also decrease the false positive rate. Bui et al. [BWH22b]
found in a subsequent study that pre-trained large language models can be turned into
effective neural bug detectors by fine-tuning directly on real bug fixes (without first
pre-training on mutants). As our study shows that training on mutants can signifi-
cantly boost the real bug detection and repair performance, it would be interesting to
investigate whether mutants have the same effect on pre-trained language models. We
leave this open for future work.

Real bug fixes in the training of automatic program repair techniques. While code
mutants have been predominantly used in the training of neural bug detectors, real
bug fixes have a long history in the training of automatic program repair (APR) sys-
tems [TWB+19b, CKT+21, LWN20, LPP+20b, BSPC19b, CDAR20, GPKS17, LAR17,
TPW+19, YMM22, ZSX+21, JLT21b, SFM23, YM24]. For example, SequenceR [CKT+21]
learns from thousands of real bug fixes to predict one-line patches. Dlfix [LWN20] and
CoCoNuT [LPP+20b] improved the repair performance by proposing a learning strat-
egy that better exploits real bug fixes. In contrast, in our experiments, we evaluated

87

5.9 Contributions and Conclusion

the impact of training on real bug fixes on the bug detection and repair performance.
We found that training on real bug fixes significantly improve the ability of neural bug
detectors to detect and repair real bugs. Interestingly, existing APR systems seldomly
utilize code mutants during training. We however found that training on code mutants
can significantly improve the repair performance. This observation is also supported
by DrRepair [YL20], SelfAPR [YML+22] and ITER [YM24] which use artificially gen-
erated mutants to pre-train APR systems.

Real bug fixes in the training of code mutation operators. Code mutation addresses
the inverse problem of injecting realistic bugs into correct code. While most existing
code mutation operators are heuristically defined, Tufano et al. [TWB+19a], Patra and
Pradel [PP21], and Nong et al. [NOP+23] showed that real bug fixes can be effectively
utilized to train code mutation operators. Yasunga et al. [YL21] showed that real bug
fixes can be used to train a breaker and fixer that then teach each other to inject and
fix realistic syntactic bugs. While our experiments mainly showed that real bug fixes
are crucial for bug detection, we found in Appendix A.2 that real bug fixes can be
effectively exploited in the mutation process.

Pre-training and fine-tuning. Pre-training on a large corpora and then fine-tuning for
a specific task at hand with a smaller dataset has been shown to be highly effective
in domains such as natural language processing [DCLT19], image processing [KBZ+20]
and mostly recently in programming language processing [FGT+20, KMBS20]. Existing
works often pre-train on a generic unrelated task where data is available at a large
scale before fine-tuning the model on a specific task. In our evaluation, we directly
pre-train the neural bug detectors on the task of identifying and repairing (mutated)
code. Kanade et al. [KMBS20] showed that a general pre-training on Python code can
improve the detection performance on variable misuses. The model is however fine-
tuned on code mutants instead of real bug fixes. In our evaluation, we however found
that real bug fixes in the training are crucial for high performing neural bug detectors.
Therefore, a combination of these two approaches could be interesting and we leave
this open for future work.

5.9 Contributions and Conclusion

In this chapter, we investigated the impact of real bug fixes and mutants at scale
during training on the performance of existing neural bug detectors. For this, we
systematically evaluated and compared neural bug detectors trained on mutants, real
bug fixes and mixtures thereof at different dataset scales. We found that existing neural
bug detectors can both utilize mutants and real bug fixes when we first pre-train the
neural bug detector on a large set of mutants and then fine-tune it on real bug fixes. Our
evaluation on thousands of real Python bugs shows that existing neural bug detectors
were limited by the available training data. Scaling up both the number of real bug

88

Chapter 5. Learning from Real Bug Fixes

fixes and mutants seen during training can significantly boost the ability of neural bug
detectors to detect and repair real bugs. We believe that our neural bug detectors can
be highly useful in scenarios where detecting and fixing real bugs has a higher priority
than avoiding false alarms. For example, Dinh et al. [DZT+23] showed that our neural
bug detectors can be used to improve the performance of large language models on
tasks of code completion with potential bugs.

Limitation. Although we achieved promising results on the task of real bug detection
and repair by training on large scale datasets of real bug fixes and mutants, the usability
of the resulting neural bug detectors might still be limited by their high false alarm rate.
Studies on the usability of static analyzers [JSMB13, SAE+18] suggest that while static
analyzers can be useful they are only effective if they do not flood the user with false
alarms. We believe that this could also be a potential limitation for the application of
neural bug detectors. To mitigate this problem, we investigate in the following chapter
whether the output of neural bug detectors can be validated with the help of large
language models. Our goal is to reduce the number of false alarms while maintaining
high bug detection and repair performance.

89

5.9 Contributions and Conclusion

90

False Alarm Reduction
6

While in the previous chapters we mainly focused on increasing the ability of neural bug
detectors to detect and repair real bugs, we now turn to another problem that might
limit the usability of neural bug detectors in practice: the high number of false alarms.
Recent studies [JSMB13, SAE+18] have shown that even the most effective analyses
become quickly impractical if they overwhelm the user with too many false alarms.
Therefore, to mitigate this problem for neural bug detection, we propose a post-hoc
validation strategy that utilizes existing large language models and additional context
typically not available to the neural bug detector to detect and reject false alarms. As a
result, we are able to significantly reduce the number of false alarms while maintaining
the ability of neural bug detectors to detect and repair real bugs.

6.1 Motivation

Finding and fixing software bugs remains to be one of the central challenges of soft-
ware development [AL21]. Software developers often spent a considerable part of
their time debugging. Static bug detectors such as SpotBugs [HP04] but also exist-
ing neural bug detectors could significantly speed up the debugging process by find-
ing bugs faster and earlier in the development process where they are still easy to
fix [AHM+08]. However, existing tools are seldom used in practice [AHM+08]. Recent
studies [JSMB13, BBC+10, SAE+18] on static bug detectors suggest that a key reason
against their adoption is the fact that they raise too many false alarms. Users are often
easily overwhelmed by the sheer number of alarms raised. As only a few of the alarms
relate to real bugs [SFZ11], users are often more likely to ignore the raised alarms even
if this means that they miss potential bugs.

Motivated by this finding, we aim to address the problem of false alarms in the
context of neural bug detection. Neural bug detectors have become increasingly effective
in finding and fixing real bugs [ABK17, VKM+19, HSS+19, AJFB21] (as we have seen in

91

6.1 Motivation

Chapter 5). However, similar to existing static bug detectors, most neural bug detectors
suffer from a high false alarm rate [AJFB21] which might limit their usability. One
solution [HBV22] is to train the neural bug detector explicitly to avoid false alarms.
While this significantly reduces the number of false alarms raised by the neural bug
detector, it also significantly impairs its ability to detect and fix real bugs.

Therefore, our goal in this chapter is to reduce the number of false alarms while
maintaining the ability of the neural bug detector to detect real bugs as well as possible.
For this, we hypothesize that existing neural bug detectors are limited by the available
context as they are often trained for function-level neural bug detection [AJFB21]. As a
result, they might make mistakes that would have been otherwise avoidable with more
context.

An approach that would likely mitigate this problem would be to directly train on a
longer file-level context. However, training neural models (which are the key component
of neural bug detectors) on longer contexts is often prohibitively expensive [CQT+24]
and an active area of research [LLH+24]. In particular, training neural bug detectors
beyond a certain context length might require specialized architectures or training
techniques that are designed for longer context training [LLH+24, MFG24].

Therefore, to still be able to evaluate our hypothesis without extra training, we
propose to employ an external validator that can make use of additional context for
validating the alarms raised by a neural bug detector. The key idea of our validation
strategy is to view the problem of validating the output of a neural bug detector as a
patch validation problem [QLAR15]: As neural bug detectors often relate each raised
alarm with a potential bug-fixing patch, we can validate the corresponding patch to
detect false alarms. We adopt a technique that already has been proven effective in
the context of automatic program repair [YKH+24]: We employ the entropy computed
by existing large language models (LLM) [BMR+20] to score potential patches. LLMs
are trained on millions of programs with the objective of completing partial code. As
bugs are scarce, they often learn to assign a higher probability to fixed code than
to its buggy variants [RHG+16]. We exploit this observation to only accept patches
where the code after applying the patch is assigned a higher probability than the code
before applying the patch. We consider all other patches as potential false alarms.
During our experiments, we evaluate our validation strategy in the context of neural
bug detection, and we specifically evaluate the impact of using extra file-level context
(which is supported by the considered LLMs) for validation. Based on our results, we
are able to significantly reduce the number of false alarms while maintaining the ability
of neural bug detectors to detect and repair real bugs.

Example. To further motivate our hypothesis, we review an example where the neural
bug detector reports a false alarm because the available context is insufficient. The
example together with the proposed patch is shown in Table 6.1. Here, we executed
the Transformer based neural bug detector from Chapter 5 on the recently proposed

92

Chapter 6. False Alarm Reduction

Table 6.1: Example of a false alarm raised for projects in DyPyBench [BKP24]

Example Description

1 def __gt__(self, other: str) -> bool:
2 return prec(self) < prec(other)
3 ...
4 def __lt__(self, other: str) -> bool:
5 - return prec(self) > prec(other)
6 + return prec(self) < prec(other)
7 ...
8 ...
9 ...

A false alarm that seems reasonable if only
the function implementation is given. Re-
stricted to the implementation of __lt__
function, the neural bug detector wrongly
infers that a lesser operator (<) to compare
objects is more likely in the context of the
function. While this seems reasonable at
first sight, it becomes clear from the sur-
rounding context (gray lines) that a greater
operator is indeed needed (>). Existing neu-
ral bug detectors typically do not have ac-
cess to this type of context.

DyPyBench benchmark [BKP24] and collected all false alarms. DyPyBench collects
around 50 Python projects with available test suites. We used the available tests to
identify faulty patches corresponding to false alarms. In this example, we find that the
prediction of the neural bug detector seems reasonable at first if we only consider the
function implementation. However, as soon as we review the remaining context (given
by the gray lines), we find that this patch actually corresponds to a false alarm (which
is confirmed by the test suite). In the following, we aim to employ LLMs to perform a
similar type of review, which will then help us to reject false alarms based on additional
context not available to the neural bug detector.

6.2 Validation for Neural Bug Detection

We start with a more general view on neural bug detection and we introduce the task
of validation for neural bug detection. The following definitions will then help us for
the description of our validation approach in Section 6.3

Neural Bug Detectors. Our goal in this chapter is a validation approach that can
validate the output of neural bug detectors. As in the previous chapters, we specifically
focus on neural bug detectors that are designed to (1) classify a program T as buggy
or not, (2) localize the bug location (if any) and (3) propose a repairing patch D. As
these three tasks are modeled jointly, we can view a neural bug detector as a function
f : T → D that maps any program T ∈ T to a patch f(T) = D ∈ D which transforms
T into a less buggy variant T ′:

T
f(T)−−−−−−−−−−→ T ′

Here, the neural bug detector should map T to a patch D = ∅ if T is already bug-free
(and a change is not necessary). We denote σD : T → T as the patch operation that

93

6.3 An LLM-based Validator for Neural Bug Detection

applies D to map T to T ′ (i.e. σD(T) = T ′). In practice, neural bug detectors are
often trained to detect simple bugs at function-level [AJFB21]. Therefore, they might
produce false alarms and non bug-fixing patches D = f(T) ̸= ∅ because they do not
have access to the remaining file context.

Validation for Neural Bug Detection. By relating each raised alarm to a potential
patch D ̸= ∅, we find that the problem of validating the output of a neural bug detector
becomes a patch validation problem [QLAR15]: Given a neural bug detector f : T → D,
our goal is a patch validator V : T × D → {0, 1} that accepts bug-fixing patches D =
f(T) ̸= ∅ of T and rejects any other patch corresponding to a false alarm. Note that in
practice patch validation is commonly addressed via test-based execution [QLAR15]:
Given a set of tests, a patch D is considered bug-fixing if T fails at least one test and
σD(T) does not. We however find that a test-based validation is rather limiting in the
context of neural bug detection: neural bug detectors are often designed to statically
analyze the code in scenarios where a complete (test-based) specification might not be
available. Therefore, to not restrict the generality of neural bug detectors, we aim to
employ large language models trained on code to validate the patches and false alarms
generated by a neural bug detector without code execution.

Large Language Models. For validating the output of neural bug detectors without
code execution, we employ Large Language Models of Code (LLM) [BMR+20]. LLMs
model the probability of seeing a given program T = t1, t2, . . . , tn:

PLM (T) =
n∏

i=1
PLM (ti | T<i),

where PLM (ti | T<i) is the probability of seeing token ti given the code prefix T<i.
As the probability tends towards zero for longer sequences, recent work [RHG+16] has
used the entropy HLM (T) of a given program to judge its probability:

HLM (T) = −log PLM (T).

A lower entropy indicates that the LLM assigns a higher probability to a given code
snippet. Recent LLMs [FAL+23] support longer file contexts which we aim to exploit in
the following. For this, we condition the LLM on an extra context C which we denote
by HLM (T | C) and PLM (T | C).

6.3 An LLM-based Validator for Neural Bug Detection

In the following, we investigate the application of large language models for validating
the output of neural bug detectors. For this, we aim to exploit the longer context
processing capabilities of recent LLMs to validate patches generated by function-level
neural bug detectors. An overview of our approach can be found in Fig. 6.1. Here, the

94

Chapter 6. False Alarm Reduction

Program (T):
def __lt__(self, other: str) -> bool:

return prec(self) > prec(other)

Neural Bug
Detector

Patch (D):
def __lt__(self, other: str) -> bool:
- return prec(self) > prec(other)
+ return prec(self) < prec(other)

Python Project

σD

LLM
Validator

PLM

+ Extra Context C

Entropy (before)
−log PLM (T | C)

Entropy (after)
−log PLM (σD(T) | C)

Acceptance condition
log P (σD(T) | C) − log P (T | C) > τ

Figure 6.1: Overview of the validation strategy

neural bug detector wrongly detects a bug in the given function implementation and
proposes a faulty patch. In order to identify the false alarm, we employ an LLM to score
the code before and after applying the patch. If the LLM assigns a higher probability
to the patched code, we accept the patch and otherwise reject it. To achieve a more
precise prediction, we experiment with retrieving extra context from the source project.
In Section 6.3.1, we describe our LLM-based patch validation strategy in more detail.
We employ two strategies to increase the precision of our validation approach: (1) we
formulate the task of patch validation as a selective infilling problem in Section 6.3.2
and (2) we retrieve extra context from the code project as described in Section 6.3.3.
Finally, we provide further implementation details in Section 6.3.4.

6.3.1 Patch Validation with Large Language Models

To validate patches generated by a neural bug detector, we built upon the observation
that (large) language models often assign a higher probability (lower entropy) to the
fixed code than to its buggy variants [RHG+16]. To exploit this observation, we employ
the following validation strategy: Given an LLM that models the probability PLM (T)
of seeing a program T , our validator accepts patches D ̸= ∅ of T only if that increases
the probability score of T (as computed by the LLM) significantly:

VLM (T,D) = [[log PLM (σD(T)) − log PLM (T) > τ]],

with τ ≥ 0 is an acceptance threshold. Optionally, we can condition on an extra
context C denoted by VLM (T,D | C) where we replace the probabilities PLM (T) with
the conditioned probabilities PLM (T | C). VLM (T,D) is a special case with an empty
extra context.

Relation to Entropy. To further motivate the design of our validation strategy, we
relate our strategy to existing research in the (un-)naturalness of buggy code [RHG+16,
KBR+20, YKH+24]. For example, Ray et al. [RHG+16] explored how applying a real

95

6.3 An LLM-based Validator for Neural Bug Detection

bug fix impacts the entropy computed by a language model. They found that the
entropy often drops after applying a bug fix, i.e. in many cases:

H(σD(T)) −H(T) < 0,

where D is a real bug fix and that the entropy of buggy code is often higher than
the entropy of non-buggy code. This finding was later extended to neural language
models [KBR+20] and recently to large language models [YKH+24]. Motivated by this
finding, we employ the entropy to validate the output of neural bug detectors. In fact,
our validation strategy measures the drop in entropy (which is equivalent to the increase
in log probability) to accept or reject patches generated by the neural bug detector.

6.3.2 Patch Validation as Selective Code Infilling

Although we can use our validation strategy as described before, we found that the
entropy for small code changes, e.g. a single token or statement, over large inputs can
become unreliable. Therefore, we propose to exploit the code infilling capabilities of
recent LLMs for code [FAL+23].

Infilling Language Modeling. Infilling language models [FAL+23] are trained to
model the probability of a code infilling given the surrounding context, i.e.: Assume
that we can decompose a program T = [prefix; infill; suffix], then an infilling
language model computes the probability:

PLM (infill | prefix; [M]; suffix),

where [M] indicates the position where the code should be infilled1. Existing LLMs for
code are often trained jointly to model both the probability PLM (T) and the probability
of seeing an infill PLM (infill | prefix; [M]; suffix).

Patch Validation via Selective Infilling. We exploit the fact that neural bug
detectors often generate small patches D ̸= ∅ that only change a single statement or
token. Therefore, we can decompose any program T and its patched variant σD(T)
into

T = [prefix;M∅; suffix] and σD(T) = [prefix;MD; suffix],

with M∅ ̸= MD. We achieve this by running a simultaneous depth first search on the
AST of the code before and after applying the patch D (see Section 4.3.1) until we find
the first non-leaf AST node where the two code snippets differ. M∅ and MD therefore
often consists of relatively small expression, e.g. a changed binary operator with its

1Note that infilling language modeling is equivalent to masked language modeling. However, as
masked language modeling is traditionally used for infilling a single token and infilling is the general-
ization of this, we stick to the terminology.

96

Chapter 6. False Alarm Reduction

Selective Infilling Task (T,D)
def __gt__(self, other: str) -> bool:

return prec(self) < prec(other)
...
def __lt__(self, other: str) -> bool:

return <INFILL>
...
...
... A. prec(self) > prec(other)

B. prec(self) < prec(other)

Figure 6.2: A selective infilling problem based on our example program T and the
faulty patch D. The LLM has to select between the changed code before (A.) and after
(B.) applying the patch. Extra context (gray code) can be provided.

operands. Then, we use the language model to estimate:

PLM (T) ≈ PLM (M∅ | T[M]) and PLM (σD(T)) ≈ PLM (MD | T[M]),

with T[M] = [prefix; [M]; suffix]. We find that in this case patch validation becomes a
selective infilling problem where the language model has to select between the infilling
M∅ before applying the patch and the infilling MD after applying the patch D.

Example. We provide an example for a selective infilling task in Fig. 6.2. For this, we
employ our transformation to transform the faulty patch provided by our neural bug
detector into a selective infilling problem. Here, the example consists of a single __lt__

function where we masked out the comparison between prec(self) and prec(other).
The language model has to then select which infilling fits the given context better. Note
that infilling does not exclude the use of extra context. Hence, the LLM can use the
information provided by surrounding context to select the correct infilling A. Because
of this, our validator would correctly reject the given faulty patch.

6.3.3 Adjusting the Validator to Different Contexts

Existing neural bug detectors often perform bug detection at function-level [AJFB21].
The key advantage of using LLMs as a post-hoc validation strategy is that we can adjust
the context provided to the LLM. Therefore, during our experiments, we consider
five different types of context: (1) no context, (2) line-level context, (3) function-
level context, (4) class-level context and (5) file-level context and their impact on the
validation performance. We describe the different context types in the following. An
overview of the different context types for our example is given in Fig. 6.3.

No context. As a baseline, we experiment with providing no context at all. Given
our decomposition in [prefix;MD; suffix], we approximate the LM probabilities as

97

6.3 An LLM-based Validator for Neural Bug Detection

1 def prec(state: str) -> int:
2 """Get the precedence index for state.
3
4 Lower index means higher precedence.
5 """
6 try:
7 return PRECEDENCE_LOOKUP[state]
8 except KeyError:
9 return NONE_PRECEDENCE

10
11 # START OF CLASS CONTEXT --
12 class state(str):
13 """Task state.
14
15 State is a subclass of :class:‘str‘, implementing comparison
16 methods adhering to state precedence rules::
17
18 >>> from celery.states import state, PENDING, SUCCESS
19
20 >>> state(PENDING) < state(SUCCESS)
21 True
22 ...
23 """
24
25 def __gt__(self, other: str) -> bool:
26 return prec(self) < prec(other)
27 ...
28 def __lt__(self, other: str) -> bool:
29 return prec(self) > prec(other)

Figure 6.3: Example context taken from Celery for our example of a false alarm gen-
erated by a neural bug detector. The example is slightly adapted to fit the figure.

follows:
PLM (T) = PLM (M∅) and PLM (σD(T)) = PLM (MD)

In our example, we would only use the changed part that is marked in the darker red
in Fig. 6.3. We include this option to evaluate the impact of the local context (e.g.
variable names used in the changed code) without the larger context (e.g. the function
signature or documentation).

Line-level context. Ray et al. [RHG+16] originally proposed to compute the entropy
of code at a line-level. We therefore estimate the entropy of the changed part con-
ditioned on the rest of the line where the change occurs. For multi-line changes, we
employ the line prefix of the start line and the line suffix of the end line of the change
as context.

Function-level context. This is the default context provided to a neural bug detector.
We consider this setting to evaluate the effectiveness of our validation strategy if it only
provided the same context as the neural bug detector. In our example, we hence would
include the complete definition of the __lt__ function, but we omit any other context
that appears in the same file.

Class-level context. For functions that occur as a member of a class definition, we
consider a class-level context. Here, we include anything that is defined in the class
of the changed function. For standalone functions, class-level context is equivalent to

98

https://github.com/celery/celery/blob/main/celery/states.py

Chapter 6. False Alarm Reduction

function-level context. In our example, the class-level context (starting in Line 12)
would already be sufficient to detect the false alarm.

File-level context. For this context type, we include everything that appears in
the same file of the changed function. This includes for example definitions and con-
stants that are used by the considered function. In our example, we hence include the
definition of the prec function which could also help in identifying the false alarm.

Beyond file-level context. While we could increase the context beyond file-level,
we found that most of the considered LLMs are restricted to predictions at file level.
Therefore, we leave the integration of further context that goes beyond the context of
single file open for future work.

6.3.4 Implementation

To evaluate the impact of using different LLMs with different context types on the
validation of patches provided by a neural bug detector, we implemented our vali-
dation strategies in a common framework. Our framework mainly builds upon the
transformer library [WDS+20]. We implemented the inference code to compute the
entropy for different LLMs on our examples. For this, we employed three types of
LLMs: (1) auto-regressive LLMs, (2) infilling LLMs in PSM mode and (3) infilling
LLMs in SPM mode [FAL+23]. Auto-regressive LLMs do not support infilling and
hence we compute the entropy based on PLM (T) of the full-sequence. For the infilling
models, we found that existing models support one (or both) of two different modes
for infilling: (1) prefix-suffix-middle (PSM) mode and (2) suffix-prefix-middle (SPM)
mode. In PSM mode, the LLM models the probability:

PLM (infill | [PRE]prefix; [SUF]; suffix; [MID]),

where [PRE], [SUF], [MID] are special tokens to indicate the start of the prefix, suffix
and the infilling respectively. The SPM mode uses the suffix first:

PLM (infill | [SUF]; suffix; [PRE]prefix).

In this case, the infill is a natural continuation of the prefix while the LLM can
utilize information from the suffix. We found that for the task of patch validation, the
SPM mode often works better. Therefore, if the SPM mode is available, we use the
SPM mode, and otherwise we use the PSM mode.

6.4 Evaluation

In our evaluation, we investigate the effectiveness of large language models to validate
patches generated by a neural bug detector. Our goal is to show that language models
can effectively utilize file-level context to validate the false alarms produced by a neural

99

6.4 Evaluation

bug detector while maintaining its ability to detect and repair real bugs. In the process,
the following research question have guided our evaluation:

RQ1 How effective are large language models in validating the output of neural bug
detectors?

RQ2 How does the extra file-level context impact the validation performance?

RQ3 How does validation impact the performance of the neural bug detector?

RQ4 Can validation help in finding novel bugs in existing code projects?

For answering the research questions, we collected raised alarms and patches generated
by an existing neural bug detector2. The neural bug detector is tuned for single to-
ken bugs in Python. Therefore, all generated patches address variable misuse, binary
operator, unary operator or literal bugs in Python functions.

6.4.1 Evaluation Tasks

To answer our research questions, we evaluate our LLM-based validation strategy on
the following two tasks: (1) real bug fix validation and (2) false alarm reduction.

Real Bug Fix Validation. For evaluating the ability of our validation strategy to
detect real bug-fixing patches, we employ the PyPIBugs benchmark [AJFB21]. PyP-
IBugs consists of 2374 real-world Python bugs and their patches derived from open
source projects. The patches are validated via manual inspection and hence each patch
likely correspond to a real bug that is fixed by the given patch. After filtering for
bug types that our neural bug detector supports, we employ a subset of 2028 real bug
fixes that address variable misuses, operator bugs and literal bugs in Python. On this
benchmark, the neural bug detector detects 1274 bugs from which it fixes 736 bugs3 in
the same way as the original developer. As we cannot evaluate the correctness of the
remaining 538 generated patches, we assume that they are false repairs. During our
experiments, we evaluate the validator on the task of detecting real bug-fixing patches
while rejecting false repairs produced by the neural bug detector (even if this means
that we revert to a buggy version of the program).

False Alarm Reduction. To evaluate the ability of our validation strategy to reduce
false alarms, we employ the DyPyBench benchmark [BKP24]. DyPyBench collects
around 50 open source Python projects with available test suites. We excluded 4
projects where we could not set up the testing process due to dependency problems.
As the remaining projects are all highly tested and well-maintained, we assume that
they are all bug-free and that any alarm reported by a neural bug detector is a false
alarm. For our evaluation, we run the neural bug detector on all considered projects

2We employ the best-performing Transformer-based neural bug detector from Chapter 5
3We filtered out some bug fixes where the patch produced by the neural bug detector could not be

parsed.

100

Chapter 6. False Alarm Reduction

and collect all raised alarms and patches. The neural bug detector traversed around
12357 functions and flagged 2505 functions from 33 out of 46 projects as potentially
buggy (a false alarm rate of 20.3%). We run the available tests on the code before and
after applying the generated patches to confirm the false alarms. We found that 1788
of the 2505 raised alarms (71.4%) can be confirmed by the tests to be false alarms.
The remaining 28.6% of code changes are not detected during test execution and hence
remain unconfirmed. For our experiments, we consider both confirmed and unconfirmed
false alarms.

Additional context. Key to our validation strategy is that we have access to addi-
tional context provided in the original code repositories. For this, we retrieved the file
context for each function in our benchmarks. For DyPyBench, we simply gathered the
file context from the file where the original function appears. For PyPIBugs, we had
to crawl the commit history of the original repositories. We collected the version of
the modified files before applying the respective real bug fix. During this process, we
found that the file context for 65 out of 736 detected and fixed real bugs and for 46
out of 538 false repairs a file context is no longer available. In these cases, we use the
function-level context as the maximal context used for validation. In total, we mined
over 900 repositories to obtain the original file contexts.

Metrics. To evaluate the effectiveness of our validation strategy on the real bug fix
validation task, we report precision and recall. For this, we consider patches generated
by the neural bug detector that reproduce real bug fixes as correct patches. Further,
the patches generated by the neural bug detector (either correct or incorrect) can be
accepted or rejected by the validator. Based on this definition, we can define precision
and recall in this context as follows:

precision = #correct accepted patches
#accepted patches recall = #correct accepted patches

#correct patches

For the task of false alarm reduction, we report the false positive rate (FPR) which is
in this context the percentage of false alarms accepted by the validator. We report the
FPR for both confirmed and unconfirmed false alarms.

6.4.2 Baselines

We employ several baselines for evaluating the effectiveness of our LLM-based validation
strategy.

Thresholding. As a baseline, we consider thresholding, which was recently suggested
by Dinh et al. [DZT+23] for neural bug detection. For this, we exploit the fact that a
neural bug detector f often models the probability Pf (D | T) that D fixes a bug in T .
The main idea of thresholding is then to only accept D ̸= ∅ where Pf (D | T) exceeds
a certain threshold (i.e. Pf (D | T) > ρ).

101

6.5 Results

Test-Based Patch Validation. A test-based patch validation strategy can be an
effective way to reduce the number of patches related to false alarms (if user-specified
tests are available). For example, assume that we have access to a test suite and all
tests pass for the existing code base. If we assume that the test suite represents a
form of ground truth, we can reject all raised alarms and patches that lead to failing
tests. As we have seen before, this would automatically lead to a substantial reduction
in false alarms generated by the neural bug detector. We compare our LLM-based
validation strategy with a test-based patch validation strategy to better understand
the similarities and differences between those two approaches.

Large Language Models. During our experiments, we employ eight different LLMs.
As a baseline LLM that supports file-level code infilling in Python, we employ InCoder-
1B and InCoder-6B [FAL+23] with one and six billion parameters respectively. To eval-
uate the effectiveness of our infilling-based strategy, we also evaluate against CodeGen-
350M and CodeGen-2B (mono) [NPH+23] which are 350M and 2B parameter mod-
els that are trained for auto-regressive code completion in Python. As they do not
support code infilling, we compute the entropy of the full code sequence. We also con-
sider Qwen2.5-Coder [HYC+24]. Qwen2.5-Coder is a more recent large language model
trained on a variety of programming languages that also supports file-level code infill-
ing. At the same time of writing, Qwen2.5-Coder comes in two variants: a 1.5B variant
and a 7B variant. To further evaluate the impact of scale, we consider CodeLlama-7B
and CodeLlama-13B [RGG+23], a 7B and 13B variant trained on the popular Llama
2 architecture [TMS+23].

6.5 Results

In the following, we present our experimental results to answer our research questions.

6.5.1 RQ1 - Validating Bug Fixes and False Alarms

To answer RQ1, we evaluate our validation strategy on patches and false alarms gen-
erated by our neural bug detector.

Experimental setup. We evaluate our LLM-based validation strategy against our
baselines on the tasks of real bug fix validation and false alarm reduction. We group
LLMs according to their size: LLMs with fewer than 2B parameters are considered
small and large otherwise. For the LLM-based validation strategies, we default to
an acceptance threshold τ = 0. For the comparison with thresholding, we plot the
performance of the LLM-based strategies as a ROC curve that measures the trade-off
between FPR and recall of the different strategies at different threshold. To measure the
effectiveness, we also report the area under the curve (AUC) of the different strategies.
A higher AUC indicates a better trade-off between FPR and recall. All evaluated LLMs
have access to the full file context.

102

Chapter 6. False Alarm Reduction

Table 6.2: Comparison between different LLMs as Validators at τ = 0

Real Bug Fixes False Alarms

Validator Confirmed Unconfirmed

Precision↑ Recall↑ FPR↓ FPR↓

Small
CodeGen-350M 73.3 72.4 18.8 18.8
InCoder-1B 69.2 78.9 21.5 35.3
Qwen2.5-Coder-1.5B 76.2 81.8 17.8 27.9
CodeGen-2B 75.7 70.5 13.1 12.6

Large
InCoder-6B 73.5 80.0 17.0 21.1
Qwen2.5-Coder-7B 77.8 82.3 16.1 22.7
CodeLlama-7B 79.6 89.0 8.9 20.6

CodeLlama-13B 80.9 89.0 8.1 17.3

Results. The results of our comparison between LLM-based validation strategies are
shown in Table 6.2. We report precision and recall on the real bug fix validation task
and FPR on the false alarm reduction task in percent.

Small LLM-based validators are already effective. We find that already small LLM-
based validators (up to 2B parameters) are effective in reducing the number of patches
related to false alarms. They reduce the number of confirmed false alarms by up to
86.9% (to an FPR of 13.1% for CodeGen-2B) and the number of unconfirmed false
alarms by up to 87.4%. The most effective small LLM for real bug fix validation is
Qwen2.5-Coder-1.5B with a recall of 81.8% and a precision of 76.2%.

Detecting unconfirmed false alarms is significantly harder. We find that across all LLM-
based patch validators (except for the CodeGen models) detecting unconfirmed false
alarms is significantly harder. The FPR increases by up to 13.8% for small LLMs and
by up to 11.7% for larger LLMs. This could indicate that unconfirmed false alarms are
harder to detect or that the set of unconfirmed false alarms in fact include real bug
fixes. We discuss this further in Section 6.6.

Impact of Scale. We find that the scale of LLMs is the most important factor for
false alarm reduction. In a direct comparison between InCoder-1B and InCoder-6B
and Qwen2.5-Coder-1.5B and Qwen2.5-Coder-7B, we find that the scale difference has
negligible impact on recall. At the same, precision and FPR improves significantly
(with a precision improvement of up to 4.3% and an FPR reduction of up to 14.2% on
unconfirmed false alarms). The same holds true if we compare CodeLlama-7B and
CodeLlama-13B. Here, the recall does not change while the FPR reduces by up 3.3%
(on unconfirmed false alarms). In total, the most effective large LLM is CodeLlama-
13B.

Impact of LLM Choice. We find that even at the same size the difference between LLMs

103

6.5 Results

0 20 40 60 80 100
False Positive Rate

0

20

40

60

80

100

Re
ca

ll
on

 re
al

 b
ug

 fi
xe

s

-26%

Thresholding (AUC = 0.78)
Qwen2.5-Coder-1.5B (AUC = 0.88)

(a) Small Validator

0 20 40 60 80 100
False Positive Rate

0

20

40

60

80

100

Re
ca

ll
on

 re
al

 b
ug

 fi
xe

s

-39%

Thresholding (AUC = 0.78)
CodeLlama-13B (AUC = 0.96)

(b) Large Validator

Figure 6.4: Comparison with Thresholding

(e.g. Qwen2.5-Coder-7B and CodeLlama-7B) can be significant. Although they have
approximately the same number of parameters, CodeLlama-7B is significantly more
effective in detecting real bug fixes and in reducing the number of false alarms.

Comparison with Thresholding. We compare the best-performing small LLM-based
validation strategy (Qwen2.5-Coder-1.5B) and the best-performing large LLM-based
validation strategy (CodeLlama-13B) against a simple thresholding approach. Our
results are shown in Fig. 6.7. We plot the false positive rate (on all false alarms)
against the recall on real bug fixes for both thresholding and the validator at various
thresholds. We report area under curve (AUC) and the reduction in false alarms at a
recall of 80% (approximately the recall achievable with τ = 0). We find that applying
a validator leads to a better trade-off between recall and FPR. Already the small LLM-
based validator reduces the number of false alarms by 26% by maintaining the same
recall. Employing a larger validator can reduce the number of false alarms further by
another 13% at a recall of 80%. We note that we can a significantly higher improvement
at higher recall level by up to 33% at a recall of 90% for the small validator and by up
to 59% at a recall of 95% for the larger validator.

Comparison with Test-based Patch Validation. We are interested how the LLM-based
patch validation compares to a test-based patch validation. While we already have
seen that the LLM-based patch validation can detect unconfirmed false alarms, we aim
to provide concrete numbers for the comparison. Therefore, in Fig. 6.5, we report the
number false alarms that both tests and LLM discovered and the alarms that only one
of the technique discovered in a Venn diagram. Additionally, we report the number of
false alarms that no validation technique detected. We find that for both small and
large LLM-based validator, there is a significant overlap of false alarms that both tests
and LLM detected. The LLM-based strategy is able to detect between 517 and 593
more false alarms generated by the neural bug detector than the test-based strategy.
However, there are also between 144 and 318 false alarms that are only detected via

104

Chapter 6. False Alarm Reduction

318 5171470

Tests

Qwen2.5-Coder-1.5B

Undetected
200

(a) Small Validator

144 5931644

Tests

CodeLlama-13B

Undetected
124

(b) Large Validator

Figure 6.5: Comparison to Test-based Patch Validation at τ = 0

tests. Between 124 and 200 false alarms remain undetected even if we combine testing
and LLM-based patch validation.

Based on these observations, we conclude for RQ1:

LLM-based patch validation strategies are effective in validating the output of neu-
ral bug detectors. In comparison to thresholding, employing an LLM-based patch
validator can significantly reduce the number of false alarms at the same recall level.
In addition, it can detect false alarms missed by a test-based patch validation.

6.5.2 RQ2 - Impact of Context

We hypothesized that a crucial part of our validation strategy is the ability to incorpo-
rate extra context not available to the neural bug detector. Therefore, to evaluate our
hypothesis and at the same time answer RQ2, we evaluate the impact of the context
on the different validation strategies.

Experimental setup. We evaluate the best performing small and large LLM-based
validation strategy on the task of real bug fix validation and false alarm reduction.
We focus here on the ability to detect real bug fixes (recall) and the overall false posi-
tive rate. During our experiments, we evaluate the impact of restricting the available
context. Therefore, we restrict the context to file-level, class-level, function-level and
line-level context. In addition, we also experiment with no context where the validator
has to decide solely based on the changed code.

Results. Our results are shown in Table 6.3. We report both recall on real bug fixes
and the FPR across all false alarms for each context type.

Additional context can help for rejecting false alarms. We find that increasing the
available context can help in decreasing the FPR (with the exception for the small
validator when switching to a file-level context). For CodeLlama-13B, we find that
the FPR significantly decreases by up to 4.8% when switching from a function-level to

105

6.5 Results

Table 6.3: Impact of Different Context Types on Validator at τ = 0

Validator

Small Large

Context
Qwen2.5-Coder-1.5B CodeLlama-13B

Recall↑ FPR↓ Recall↑ FPR↓

No Context 43.2 36.0 48.6 32.7
Line Context 57.3 32.3 62.9 30.9
Function Context 88.5 21.5 90.6 15.5
Class Context 85.6 18.2 89.5 11.9
File Context 81.8 20.7 89.0 10.7

a file-level context. The FPR of Qwen2.5-Coder-1.5B improves by 3.3% when switching
to the larger class-level context. There is still a small decrease of 0.8% for Qwen2.5-
Coder-1.5B when switching from a function-level context to a file-level context.

Increasing the available context beyond function-level does not improve recall. We find
that increasing the context beyond function-level can have a negligible (in the case of
CodeLlama-13B) or negative impact (in the case of Qwen2.5-Coder-1.5B) on the recall
performance. This could indicate (1) that larger LLMs better utilize the additional
context and (2) that the function-level context is in most cases sufficient to confirm
the bug detected at function-level. We believe that a decrease in recall is acceptable in
favor of a significantly improved FPR.

Context is important. We find that decreasing the context below function-level signifi-
cantly decreases the performance. At a recall close to 50%, the LLM-based validation
strategy becomes worse or equivalent to a random strategy (that tosses a coin to accept
real bug fixes). The validation is still relatively effective in rejecting patches related to
false alarms. This could indicate that patches related to false alarms are often easy to
reject while to accept real bug fixes a larger context is necessary.

Overall, we conclude for RQ2:

Incorporating extra file-level context which is often not available to the neural bug
detector can significantly boost the ability of the LLM based validator to reject false
alarms. For the smaller validator, incorporating larger contexts (beyond function-
level) can result into a trade-off between recall and FPR.

6.5.3 RQ3 - Impact on Neural Bug Detection

For answering the previous research questions, we evaluated the effectiveness of the
LLM-based validator to validate the output of a neural bug detector. Now, for answer-
ing RQ3, we are interested how employing a validator impacts the overall performance
of the neural bug detector.

106

Chapter 6. False Alarm Reduction

Table 6.4: Evaluation results for the validated neural bug detectors on our benchmark
tasks.

All VM Ops Literal

Joint.↑ FAR↓ Joint.↑ FAR↓ Joint.↑ FAR↓ Joint.↑ FAR↓

Neural Bug Detector 36.3 20.3 40.1 3.3 30.8 12.5 26.7 4.5

+ Thresholding 21.2 3.3 28.7 0.5 9.2 2.3 10.5 0.5
+ Small Validator 29.6 4.2 35.0 0.7 20.7 2.3 24.4 1.1
+ Larger Validator 32.2 2.2 38.2 0.5 23.1 1.1 22.1 0.6

Experimental setup. We evaluate the impact of the best-performing small validator
and best-performing large validator on the performance of the neural bug detector. For
this, we evaluate the neural bug detector on the 2028 real bugs from PyPIBugs and the
12357 likely bug-free functions from DyPyBench. We measure the performance of the
neural bug detector before and after applying our validation strategy. As a baseline, we
employ thresholding with a threshold of 0.9. For the validator, we keep the acceptance
threshold of τ = 0. The LLM-based validators have access to the file-level context.

Results. Our experimental results are shown in Table 6.4. We report the joint recall
(Joint.) of detecting and fixing a real bug before and after validation on the over-
all benchmark (All) and for variable misuse (VM), operator (Ops) and literal bugs
(Literal). In addition, we also report the false alarm rate (FAR) over the complete
benchmark and per bug type. The FAR measures the ratio of false alarms over the
total number of likely bug-free functions. For the evaluation per bug type, we group
the false alarms according to the bug type the corresponding patch aims to fix.

Validation can reduce the false alarm rate by up to a factor of 11x. We find that by
applying a validator to the output of a neural bug detector helps us to significantly
reduce the false alarm rate. Over all benchmark tasks, applying the large validator can
reduce the false alarm rate by a factor up to 9x. For the individual bug types, we find
that bigger gains can be achieved (by a factor of up to 11x for operator bugs). The
small validator achieves a reduction of 4.8x for a bug types and a reduction of up to
5.4x on the individual bug types.

Validation hurts joint recall slightly. As expected, applying a validator decreases the
number of real bugs found by the neural bug detector slightly. The joint recall drops
by 1.9% (VM) up to 7.7% (Ops) when employing the large validator. For the small
validator, the joint recall drops by 6.7% on all bug types and by up to 10.1% on the
individual bug types.

Comparison to Thresholding. In comparison to thresholding, we find that our validation
strategies can significantly improve the joint recall while maintaining a similar or lower
false alarm rate. Across all bug types, the large validator can improve the joint recall
by up to 13.9% while maintaining or even reducing the FAR (e.g. by 1.1% for the All
category and 1.2% for the Ops category). The small validator also boosts the joint

107

6.5 Results

Correct Alarm

13

Quality Issue

8

False Alarm

29

(a) Without Validation

Correct Alarm

16
Quality Issue

8

False Alarm

25

No Alarm1

(b) With Validation

Figure 6.6: Impact of validation on the ability of the neural bug detector to detect
novel bugs in Python projects.

recall significantly (by up to 11.5% on Ops). However, employing the small validator
might not always result in a decrease in FAR.

Finally, to conclude for RQ3, we find that:

External validation with LLMs can significantly reduce the false alarm rate of neural
bug detectors while maintaining their performance on real bugs. In comparison
to thresholding, external validation achieves a better trade-off between joint bug
detection and repair recall and false alarm rate.

6.5.4 RQ4 - Finding Novel Bugs in Public Projects

To get a better understanding of how the combination of neural bug detector and
validator works in practice and to answer RQ4, we evaluate the combination on the
task of scanning recent open source projects for real bugs.

Experimental setup. We evaluate the impact of validation on the ability of the
neural bug detector to detect novel bugs in recent open source projects. For this, we
employ the neural bug detector to scan the 50 most popular Github projects that were
created after September 20224. An overview of all projects that we scanned is provided
in Appendix A.3.1. For each project, we sort the raised alarms by the probability
that the code contains a real bug (as computed by the neural bug detector). We
then manually inspect the top 5 alarms (before and after validation) per project and
categorize them into (1) Bugs that cause the wrong program behavior, (2) Quality
Issues that are not bugs but impair code quality (e.g. unused variables or code that
does not conform to code conventions), and (3) False Alarms.

4Both the training data for the neural bug detector and the validator consists of data mined before
September 2022. We used the Github API to retrieve the names of the top 50 Python repositories
sorted by the number of stars that were created after September 2022.

108

Chapter 6. False Alarm Reduction

Correct Alarm

13

Quality Issue

8

False Alarm

27

No Alarm2

(a) Thresholding

Correct Alarm

16
Quality Issue

7

False Alarm

16

No Alarm

11

(b) Thresholding + Validation

Figure 6.7: Impact of post-hoc validation strategies on the ability of the neural bug
detector to detect novel bugs in Python projects.

Results. Our results are shown in Fig. 6.6. We report the number of projects with
at least one correctly reported bug (Correct Alarm). The remaining projects are cate-
gorized in projects with quality issues (Quality Issue), false alarms (False Alarm) and
projects where no alarm is raised (No Alarm). An overview of all bugs and quality
issues that we found in the process of our manual review is given in Appendix A.3.2.
Overall, we find that:

The neural bug detector alone reports (false) alarms on all projects. We find that the
neural bug detector alone produces an excessive amount of alarms. In total, across all
projects, the neural bug detector reports more than 17K alarms which corresponds to
354 alarms per project on average. The sheer number of raised alarms might overwhelm
a software developer. Reviewing a subset of the raised alarms can however still help to
find novel bugs. For example, by reviewing the top-5 alarms we find a novel bug in 13
projects and a quality issue in 8 projects.

Validation can help focusing the reviewing efforts. By employing our LLM-based val-
idator, the number of raised alarms reduces significantly: After validation, the combi-
nation of neural bug detector and validator only reports around 1.7K alarms (10% of all
alarms) across all projects which reduces the number of alarms per project to 35 alarms
on average. Interestingly, we find that validation helps us to focus our reviewing efforts.
The validator filters a high number of false alarms that are assigned a high confidence
by the neural bug detector. When we remove these alarms with the help of validation,
we focus our reviewing efforts on alarms that more likely indicate a real bug. In fact,
by reviewing the top-5 alarms per project after validation, we were able to find novel
bugs in three new projects.

Impact of Thresholding. We additionally experiment with applying thresholding (with
a threshold of 0.9) to filter out alarms for which the neural bug detector is less certain.
Our results for applying thresholding before and after validation is shown in Fig. 6.7. By

109

6.6 Discussion

False Alarm (T,D)
def __gt__(self, other: str) -> bool:

return prec(self) < prec(other)
...
def __lt__(self, other: str) -> bool:
- return prec(self) > prec(other)
+ return prec(self) < prec(other)
...
...
... Without Context: 0.3 →

With Context: -0.7 →

Figure 6.8: Impact of file-level context on our example false alarm. The validator
correctly rejects (with a score of -0.7) the false alarm after the file-level context is
available.

employing a threshold, we find that the number of alarms already reduces significantly
– from 17K alarms to 2K alarms (reducing the average number of alarms per project
from 354 to 45). Combining thresholding and validation reduces the number of alarms
further to 304 alarms which averages to around 6 alarms per project. Interestingly,
we find that most alarms that we confirm to be correct alarms are assigned a high
confidence by the neural bug detector. As a consequence, we find that even after
applying thresholding and validation a bug can still be discovered in all 16 projects (as
shown in Fig. 6.7).

We conclude for RQ4:

Validation can help in finding novel in recent code projects. By filtering out false
alarms that are assigned a high confidence by the neural bug detector, the developer
can focus more on alarms that help find and fix real bugs. Combing thresholding
and validation helps to reduce the number of alarms significantly.

6.6 Discussion

In this section, we now take a more qualitative look at our experimental results. In
particular, we are interested in the cases where the LLM-based validator works and
where it fails.

File context helps in rejecting false alarms. Our experimental results suggest
that the additional file context can help in rejecting false alarms. Therefore, we again
consider our initial example of a false alarm that cannot be detected without extra
context. The example is shown again in Fig. 6.8. We find that in fact the extra file-
level context helps in rejecting the patch and the corresponding false alarm. Before the
(large) validator has access to the file-level context, it accepts the patch with a score
of 0.3 (for τ = 0). After having access to the remaining context (e.g. the code in the

110

Chapter 6. False Alarm Reduction

Table 6.5: Example of Potential Software Bug found in DyPyBench [BKP24]. Code is
reformatted to fit the figure.

Example Description
Potential bug in Zulko/MoviePy
1 - quantizer = 0 if opt != 0 else "nq"
2 + quantizer = 0 if opt == 0 else "nq"
3 writer = imageio.save(
4 filename, duration=1.0 / fps, quantizer=

→ quantizer,
→ palettesize=colors,
→ loop=loop

5)

imageio has two options for quantization ’wu’ and
’nq’ for image quantization (also selectable via 0
and 1). By using the !=, the quantizer ’nq’ is not
selectable. This bug is detected by our neural bug
detector, but missed by the existing tests.
Fix: Replace != with ==.

Table 6.6: Example of Confirmed Software Bug found in run-llama/llama_index.
Code is reformatted to fit the figure.

Example Description
Confirmed bug in run-llama/llama_index
1 client = None
2 if provided_client is not None:
3 - client = client
4 + client = provided_client

The implementation checks if a client is provided but
does not use the provided client. The bug causes a
NoneType exception when a client is provided. See
Bug Report (Issue #16173).
Fix: Replace client with provided_client.

gray part), the validator correctly identifies the false alarm and rejects the given patch
with a score of -0.7. This showcases the importance of file-context for validating false
alarms.

Not all False Alarms are False. We reviewed the 124 raised alarms and patches
that are not detected by the test suite and that are accepted by our large validator. As
the projects in DyPyBench are all highly popular projects that are extensively tested
both via test suites and in practice, we assumed in our evaluation that all raised alarms
on these projects correspond to false alarms. Therefore, we were quite surprised to find
some raised alarms actually relate to potential software bugs in critical parts of the
software. An example is shown in Table 6.5. Here, the neural bug detector detected a
potential bug in Zulko/MoviePy which was later confirmed by our validator. MoviePy
is a popular video editing package for Python, and it provides utilities to process and
save video files. The example shows a potential bug in the write_gif_with_image_io

function. The user of the function can choose between two quantization options for
encoding the video as a gif. However, due to the way the if-condition is constructed
it is not possible to select the second quantization method. This behavior is likely
unintended and – as testing for quantization methods used in the image encoding is
difficult – it is also missed by the test suite.

Novel Bugs in Open Source Projects. During our manual inspection in Sec-
tion 6.5.4, we found in total 20 bugs across 16 projects that are confirmed by our
validator. A complete list of all found bugs is given in Appendix A.3.2. While most
of the found bugs are completely novel, we found that one bug was discovered shortly
after we scanned the project. The bug and its fix is shown in Table 6.6. Here, the
neural bug detector detected a potential bug in run-llama/llama_index. LlamaIndex

111

https://github.com/Zulko/moviepy/blob/0f6f6d4d9b96c69d109975549fe6293931f1a19d/moviepy/video/io/gif_writers.py#L439
https://github.com/run-llama/llama_index/pull/16174
https://github.com/run-llama/llama_index/issues/16173
https://github.com/Zulko/moviepy/
https://github.com/run-llama/llama_index/pull/16174

6.6 Discussion

Table 6.7: Example of Unconfirmed False Alarm found in DyPyBench [BKP24]. Code
is reformatted to fit the figure.

Example Description
Unconfirmed False Alarm in
mwaskom/seaborn
1 def __call__(self, data, var):
2 """Aggregate over ‘var‘ column ..."""
3 vals = data[var]
4 ...
5 if self.error_method is None:
6 err_min = err_max = np.nan
7 - elif len(data) <= 1:
8 + elif len(vals) <= 1:
9 err_min = err_max = np.nan

10 ...

The function aggregates over all values in the column
var to estimate an error bound. For a table with one
or zero entries, an error bound cannot be computed.
Typically, one would check the number of elements
in the column which is detected by the neural bug
detector and confirmed by the validator. However,
in this specific case, len(data) == len(vals) and
hence using data is not a functional bug.

is a popular framework for augmenting LLMs with additional knowledge stores, and
it provides utilities to connect to existing databases. The example shows a bug in the
create_neptune_database_client function. The user can provide a client implemen-
tation when connecting to a Neptune database. However, the implementation ignores
the provided client which causes a NoneType exception. Surprisingly, even though the
developers of the project employed a set of tests to validate the code, the bug was
first discovered by a user of LlamaIndex and reported in Issue #16173. Therefore, the
neural bug detector (in combination with our validator) could have been used to detect
and fix the bug earlier, before it became a part of the production code.

Failure cases. While our combination of neural bug detector and validator allowed
us to detect some real bugs, our validator still accepts some false alarms that are
real false alarms. For example on DyPyBench, we found that most of them that are
missed by the test suite as well as by the validator are related to semantics-preserving
changes. An example in the mwaskom/seaborn project is shown in Table 6.7. While
the proposed patch improves the implementation by making size check more explicit,
it does not fix a bug. The change is not detected by the test-suite as the change is
semantics-preserving. Our LLM-based validator likely accepts the change as using the
variable vals instead of data is more natural in this context. The remaining false
alarms that are accepted by the validator often correspond to uncommon coding styles.
An example for this is shown in Table 6.8. The neural bug detector detects a bug
which is later confirmed by the validator. However, as the validator only processes the
file context, it is not aware that code change leads to a type error. This false alarm
is rejected by executing the test suite on the changed code. Ultimately, we find in our
experiments that both testing and file-level LLM-based patch validation complement
each other well. Therefore, we believe that the most effective strategy for validating the
output of neural bug detectors is likely a strategy that both utilizes an execution-based
and LLM-based patch validation.

112

https://github.com/mwaskom/seaborn/blob/b4e5f8d261d6d5524a00b7dd35e00a40e4855872/seaborn/_statistics.py#L497
https://github.com/run-llama/llama_index/issues/16173
https://github.com/mwaskom/seaborn

Chapter 6. False Alarm Reduction

Table 6.8: Example of a Confirmed False Alarm that is still accepted by the validators
found in DyPyBench [BKP24]. Code is reformatted to fit the figure.

Example Description

Confirmed False Alarm in PyFilesystem/py-
filesystem2
1 # validate individual paths
2 _src_path = self.validatepath(src_path)
3 _dst_path = self.validatepath(dst_path)
4 ...
5 # check dst_path does not exist if we are not

→ overwriting
6 - if not overwrite and self.exists(_dst_path):
7 + if not overwrite and self.exists(dst_path):
8 raise errors.DestinationExists(dst_path)

The related function checks whether it is valid to
copy a file from src_path to dst_path. src_path
and dst_path are both path objects. _src_path and
_dst_path are normalized string representations of
the two paths. As indicated by the comments, the
intention is to check if dst_path exists and throw
an error if it exists. However, the code checks for
the normalized path _dst_path which is not equal
to dst_path. Therefore, the neural bug detector
wrongly reports an error and the fix is accepted by
the validator. The test suite detects the change as
exists (defined in the parent class in a different file)
expects a string as the inputs and therefore crashes
if provided with a path object.

6.7 Threats to Validity

We discuss potential threats to validity of our experiments. As a part of the discussion,
we distinguish between external, internal and construct validity.

External validity. In our experiments, we focused on raised alarms and patches gen-
erated by a neural bug detector for single token bugs in Python. Although our method
is general enough to be applied to any type of neural bug detector (that generates
patches as part of the detection process), our experimental results may not generalize
to other neural bug detectors which support different types of bugs or programming
languages.

Other Bug Types. The entropy computed by language models is often significantly
impacted by the size of the program. Existing strategies [ZYH+23] to circumvent this
problem often over- or under-correct. For validating single token patches generated
by neural bug detectors, this is typically not a problem as the size of the patched
program does not change significantly. However, our findings might not generalize to
bug detectors that generate larger patches. One way to address this in the future is
by training a sequence classifier that computes the score (nearly) independently of the
size of the program.

Other Programming Languages. The choice of programming languages might signif-
icantly impact the effectiveness of our validation approach. In our experiments, we
focused on Python programs. Although existing LLMs are often trained on a variety
of programming languages and their performance often generalize effectively to differ-
ent languages, the overall effectiveness of our validation method might vary between
programming languages.

Selection Bias. Another threat to validity might be our choice of LLMs. We chose
representative LLMs at a range of 350M to 13B parameters. However, there exists

113

https://github.com/PyFilesystem/pyfilesystem2/blob/8ed9dc495d8ba2f83fbb2a1145d34d92e13644be/fs/osfs.py#L412
https://github.com/PyFilesystem/pyfilesystem2/blob/8ed9dc495d8ba2f83fbb2a1145d34d92e13644be/fs/osfs.py#L412

6.7 Threats to Validity

much larger LLMs of code that might have different performance statistics. We decided
to limit ourselves to LLMs of these sizes because we are limited by our hardware. It is
more likely that regular users of neural bug detectors have similar constraints. Large
LLMs might still be more effective in detecting faulty patches and reducing the number
of false alarms.

Memorization. The precise details of the training data used for training LLMs is often
not available. As existing LLMs are trained on large parts of existing Git repositories,
it is likely that there is at least a small overlap with the benchmark tasks considered in
our experiments. Our experimental results still suggest that our validation approach
can help to reject new false alarms generated by a neural bug detector (which cannot
be part of the training set) and with the help of the validator we were able to identify
novel bugs. However, our results might still not generalize to truly novel code or code
that does not appear in public repositories.

Internal validity. We discuss potential threats to the internal validity of our experi-
ments.

Labeling bias. During our experiments, we assumed the patches that do not replicate
real bug fixes or that are generated for projects in DyPyBench are incorrect. However,
as we already discussed in Section 6.6, we found that not all false alarms are false
and some fix real bugs. In addition, our examples of real buggy code might contain
multiple types of real bugs and hence the patches that are different from the human
provided patches might still be bug-fixing. Therefore, our experimental results might
only represent a lower bound on the performance of the respective techniques.

Implementation bias. As a part of our evaluation, we developed several tools to au-
tomate the evaluation process. Even though we built upon highly tested libraries for
LLM inference, our implementation is still a research prototype and might contain
bugs. In addition, the LLMs are often highly sensitive to the way they are prompted.
Therefore, even small mistakes in the implementation of our validation strategies could
impact their performance significantly. For this reason, we manually inspected the gen-
erated inputs to the LLM and confirmed that they are similar to those generated by
the reference implementation provided by the original authors.

Construct validity. A key assumption of our work is that (large) language models
assign a higher probability to fixed code than to buggy variants of the code. We
implicitly assume that there is a causal relationship between the probability computed
by an LLM and the buggyness of the code. Hence, we reject all patches that do not
increase the probability. Although our experiments show that this validation strategy
is highly effective for rejecting false alarms, recent work [JLZ+22] suggests that real
bugs alone are not the cause for a lower probability (higher entropy). Still, we find that
using entropy can be used as an effective heuristic for reducing false alarms in neural
bug detection.

114

Chapter 6. False Alarm Reduction

6.8 Related Work

In this chapter, we have investigated the application of large language models for val-
idating the output of neural bug detectors. Our main goal was to reduce the number
of false alarms produced by a neural bug detector by integrating further context. In
the following, we discuss the most closely related work that address the problem of
false alarms in static and neural bug detection. Furthermore, we also compare with
techniques used in automatic program repair that address the correctness of patches.

False Alarms in Bug Detection. False alarms in (static) bug detection is a well-known
and well-studied problem [AP10, SFZ11, JSMB13, SAE+18, BBC+10, CDD+15]. For
example, Johnson et al. [JSMB13] studied why developers do not use a static bug
detector like FindBugs [HP04]. They found that false alarms is one of the key reasons
why users dislike using them. A more recent study at Google [SAE+18] confirmed
that Google engineers easily loose trust in the tool output if most of the reported
alarms are false alarms. Therefore, false alarms in static bug detectors is a serious
risk that might limit the usability of existing bug detection tools. Because of this,
previous work have tried to address the problem of false alarms with techniques to rank
and validate alarms raised by static bug detectors [SFZ11, YJJ14, KMJ+22b, KAL22,
YWG+24]. However, as most static bug detectors only raise alarms but do provide a
patch5, they had to rely on features of the raised alarm, e.g. the type of warning, and
the characteristics of the code for which the alarm is raised. In contrast, we exploit
the fact that neural bug detectors often relate alarms to patches. This has allowed us
to reject false alarms effectively based on the provided patch. False alarms are also a
well-known problem in neural bug detection [VKM+19, AJFB21, HBV22]. Allamanis
et al. [AJFB21] found that only a small fraction of the reported alarms of a neural bug
detector are related to real bugs. He et al. [HBV22] suggested that the high false alarm
rate is due to distribution shift between training and testing. By training on a more
realistic distribution, they achieved a significantly higher precision at the cost of a lower
recall. We hypothesized in this chapter that this trade-off happens because existing
neural bug detectors are limited to a function-level context. Therefore, we proposed
a post-hoc validation approach based on large language models which allowed us to
significantly reduce the number of false alarms while maintaining the ability of the
neural bug detectors to detect and fix bugs with the help of extra file-level context.

False Positives in Automatic Program Repair. False positives, in the form of patches
that are not bug-fixing, are also a problem in automatic program repair (APR) [SBLB15].
Existing APR tools [TWB+19b, CKT+21, LWN20, LPP+20b, BSPC19b, CDAR20,
GPKS17, LAR17, TPW+19, YMM22, ZSX+21, JLT21b] often employ test-based ex-
ecution to first detect and localize a bug and then to validate the generated patches.

5Some static bug detectors offer ‘quick fixes‘ [HP04]. However, as they only provide fixes for some
bugs and not all static bug detectors propose them, most techniques have to rely on the tool output.

115

6.9 Contributions and Conclusions

However, a key problem in APR is the fact that this process can result in over-fitting
patches or false positives. These over-fitting patches are patches that pass the test
suite but do not fix the bug. A common solution to address this problem is auto-
mated patch correctness assessment (APCA) [XLZ+18, YZLT17b, TLK+20, YGM+22,
TTH+22, LWWM22]. APCA ranks or validates patches generated by an APR tool
according to its likelihood to be a real bug-fixing patch. Most APCA techniques uti-
lize the fact that they are part of or are applied subsequently to a test-based patch
validation. For example, PATCH-SIM [XLZ+18] executes the test suite both on the
code before and after applying the potential patch and compares the execution traces.
Opad [YZLT17b] employed a fuzz tester to generate further test cases. There also
exists APCA methods that use static features of code [TLK+20, YGM+22, TTH+22,
LWWM22]. PatchZero [ZXK+23, ZXK+24] is one of the most recent method that uses
large language models provided with examples of over-fitting patches and test execu-
tion results to detect new over-fitting patches. While some existing APCA methods
are in principle applicable for validating patches in the context of neural bug detection,
our experimental results show that there are unique challenges. For example, APCA
methods are seldom confronted with semantics-preserving code changes as a semantic
change is prerequisite for passing test-based patch validation. In addition, most meth-
ods assume the existence of a test suite which is often not available in the context of
neural bug detection. We still believe that the patches generated by a neural bug de-
tector could be an interesting target for evaluating existing APCA methods. We leave
this open for future work.

Finally, concurrent to us, Yang et al. [YKH+24] explored the application of entropy
of LLMs in context of APR. They also employed the entropy of LLMs for APCA and
found the difference in entropy can be an effective metric for identifying over-fitting
patches. We confirmed in this work that the entropy of large language model can be
effectively used for validating patches generated by neural bug detectors. In addition,
we compared our validation method against a test-based patch validation and evaluated
the impact of different context types on the validation performance. Therefore, this
chapter can be seen as an extension of the work of Yang et al. [YKH+24] to the setting
of neural bug detection.

6.9 Contributions and Conclusions

In this chapter, we explored the application of large language models for validating the
output of neural bug detectors. Our key idea was to formulate the task of validating
the output of neural bug detectors as a patch validation problem. As a result, we could
use large language models to estimate the probability of seeing a program before and
after applying a patch. We only accept patches that increase the probability. A key
advantage of using LLMs is that we can use additional context not available to existing
neural bug detectors. As a result, our evaluation showed that our LLM-based validation

116

Chapter 6. False Alarm Reduction

strategy with the help of extra file-level context can significantly reduce the false alarm
rate of a neural bug detector while nearly maintaining its ability to detect and fix
bugs. We believe that our validation approach can significantly improve the usability
of existing neural bug detectors and thereby help developers to find bugs faster.

Recommendation. Based on our experimental results, we believe that in practice a
hybrid strategy of testing and LLM-based validation might be the most effective for
validating the output of neural bug detectors. Therefore, we recommend that devel-
opers use fast high-recall neural bug detectors to quickly identify potential bugs and
their patches in the code base. Because testing is often costly for a large quantity of
patches, we recommend using an LLM-based validator first and then execute tests on
the remaining alarms and patches. We expect that alarms and patches that pass the
validation and all tests likely indicate a real bug. To further increase the precision,
equivalence checking [CPSA19] could be used in the future to filter out all semantics-
preserving code changes.

117

6.9 Contributions and Conclusions

118

Conclusion
7

The goal of this thesis was to systematically analyze and address potential limitations
of neural bug detectors in (1) the training process and (2) the task design. To improve
the training process, we developed a novel mutation strategy to generate more realistic
training examples and we mined realistic bugs from public repositories. We systemati-
cally evaluated how more realistic mutants and real bug fixes impact the performance
of neural bug detectors. To evaluate the impact of the task design, we proposed a
validation strategy which can make use of context typically not available to a neural
bug detector. In the following, we conclude this thesis by summarizing central contri-
butions in Section 7.1. We further discuss them and provide an outlook for future work
in Section 7.2.

7.1 Summary

This thesis builds upon two central hypotheses that have guided our research. We
hypothesized that neural bug detectors that are historically only trained on mutated
code are limited by their training process. To confirm this hypothesis and address this
limitation, we developed two strategies.

Our first strategy and contribution of this thesis is to improve the mutation process
with the help of a mutation operator that produces more realistic bugs. For this, we
developed a novel contextual mutation operator that employs a masked language model
to select more realistic mutations. We provided evidence that the mutants generated
by our contextual mutation operator are more realistic than traditional mutations. Our
experimental results showed that neural bug detectors trained on more realistic mutants
are more effective in detecting and repairing real bugs.

Our second strategy that was motivated by this finding is to train neural bug
detectors directly on real bug fixes. Real bug fixes represent previous bugs and their
fixes provided by a developer. Real bug fixes are often difficult to obtain at larger

119

7.2 Discussion and Outlook

scales by mining open source repositories. Therefore, our second contribution is a
mining process that we scaled to over 500K Git projects and the resulting collections
of real bug fixes, CTSSB-0.9M and CSSB-2.3M. Our third contribution is a systematic
evaluation of the impact of mutants and real bug fixes on the performance of neural
bug detectors at different dataset scales. We found that neural bug detectors can still
benefit from training on mutants even if real bug fixes are available. Furthermore, we
showed that existing neural bug detectors are limited by their training process. By
training neural bug detectors on significantly larger datasets of both mutants and real
bug fixes, the performance of neural bug detectors on real bugs can be significantly
improved. This confirms our first hypothesis.

Our second hypothesis is that neural bug detectors are limited by their task design.
Existing neural bug detectors are often restricted to function-level neural bug detection.
We hypothesized that this restriction is one of the key reason for the false alarms
generated by a neural bug detector. Therefore, our fourth contribution is a validator
that can validate the output of neural bug detectors based on extra file-level context not
available to the neural bug detector. For this, we formulated the problem of validating
the output of a neural bug detector as a patch validation problem and used large
language models to validate the generated patches. The large language models can
effectively utilize different contexts in this process. Therefore, when restricting the
LLM-based validator to a function-level context, we found that this restriction mainly
impacted the ability of the validator to identify false alarms. We see this finding as the
first evidence to confirm our second hypothesis.

Based on these results, we conclude for our main research question:

Existing neural bug detectors were limited by their training process and are limited
by their task design. By training on more realistic examples, neural bug detectors
can become significantly more effective in detecting and repairing real bugs. By
using an external validator with extra context, the number of false alarms can be
reduced significantly.

7.2 Discussion and Outlook

Finding and fixing software bugs is ongoing research problem in software engineering.
Applying machine learning to learn from previous human mistakes and using validation
to validate the output of bug detection tools are both likely interesting directions for
future work. Our thesis reveals several ideas and lessons learned along the line which
we discuss and highlight in the following.

Neural Bug Detectors as Hypothesis Generators. Our findings in Chapter 6
have motivated us to think a bit differently about neural bug detection. Instead of
viewing existing neural bug detectors as an end-to-end solution, it can be beneficial to
view them as a kind of hypothesis generator. Therefore, instead of directly relying on

120

Chapter 7. Conclusion

the output of the neural bug detector, we could view the output as a hypothesis that
the program contains a bug (or not) which could be fixed by the given patch. A central
outcome of our results in Chapter 6 is that proving or disproving this hypothesis can
be significantly easier than the original problem of bug detection. For example, while
it is hard to show that a given program is bug-free via testing, it is significantly easier
to show that a given patch is not bug-fixing (if it for example fails some tests). We
believe that this slightly different view on the problem could open up new possibilities
to address the problem of neural bug detection.

Learning from Bug Detection Models. By training on real bug fixes in Chapter 5,
the neural bug detectors have become increasingly effective in detecting real bugs.
However, the learned bug detection models lack any form of interpretability. Therefore,
it is often unclear what the neural bug detectors have learned to become more effective
at the task of bug detection. We believe that a better understanding of the learned
behavior of neural bug detectors could potentially lead to new insights in how developers
make mistakes and how they can be detected and fixed.

Cooperation with Formal Methods. Neural bug detectors learn to detect bugs by
inferring an implicit correctness specification of code. For example, they can detect
bugs in a square(x) function if the function does not compute the square of its input.
However, because neural bug detectors are often based on probabilistic models, they
cannot provide any formal guarantees over their output. Formal guarantees – especially
in a security-critical context – can be highly important for trusting the output of the
bug detection tool. Therefore, we could envision a cooperation between neural bug de-
tector and formal software verifiers [JM09]. In contrast to neural bug detectors, formal
software verifiers provide strong formal guarantees over their output. Software veri-
fiers formally prove the correctness of software with respect to an explicit correctness
specification. However, their application is limited by the need of an explicit formal
specification. Therefore, we believe that a technology similar to neural bug detectors
can be used to extract explicit formal specification from implicit correctness specifica-
tions provided in the program. As a result, we could use formal verification methods
to detect bugs in programs without formal specifications.

We already performed a preliminary investigation on this topic in [JRW24]. Here,
we investigated whether LLMs can infer formal properties (loop invariants) of code.
In the future, it could be interesting to use LLMs for inferring formal specifications
(program invariants) from code.

Implications for Software Engineering. By training on more advanced mutants
and real bug fixes in Chapter 5, neural bug detectors have become significantly more
effective in detecting (and repairing) real bugs. With the help of external validators in
Chapter 6, the number of false alarms can be significantly reduced. For these reasons,
we believe that neural bug detectors (among many other tools) can already be helpful
for software developers to detect bugs earlier in the development process. In fact,

121

7.2 Discussion and Outlook

during our evaluation in Section 6.5.4, we discovered 20 new bugs in 16 popular Python
projects with the help of a neural bug detector. However, to fully utilize the capabilities
of neural bug detectors in the development process, there are several challenges that
we should overcome in the future. For example, Sadowski et al. [SAE+18] reports
that software developers often expect that bug detectors are deeply integrated in their
workflow. Therefore, existing static bug detectors are often integrated into existing
compiler toolchains. Because of the higher demand of computing resources and the
demand for specialized hardware, e.g. GPUs, to run more efficiently, we believe that
a similar integration of neural bug detectors might be more challenging. However, we
can envision to run neural bug detectors as a pre-commit hook. Here, the neural bug
detector is executed on the changed code before it goes into production code. The
execution can be done on external server with specialized hardware.

Overall, we believe that neural bug detection represents an exciting research di-
rection in software engineering which could make automated debugging methods more
accessible for a wider audience of software developers.

122

Appendix
A

A.1 Simple Stupid Bug Patterns

In the following, we provide a list of all “simple stupid bug” (SStuB) patterns as pro-
posed by Karampatsis and Sutton [KS20] and later extended for Python by Kamienski
et al. [KPBH21]:

• Change Identifier Bugs: The developer uses the wrong identifier to access a mem-
ory location or to call a function. The bug patterns includes the wrong usage of
variable names, parameter names or function names. It is easy for the developer
to utilize the wrong identifier with the same type. Similar identifier names (e.g.
patch and patches) that appear in the same code might further contribute to the
occurrence of this bug type.

• Change Numeric Literal Bug: The developer uses the wrong numeric literal. For
example, the developer uses accidentally the second index of an array (1) even
though she meant the first (0).

• Change Boolean Literal Bug: The developer uses the wrong boolean literal. For
example, the developer returns accidentally False after successfully validating
the input to the program.

• Change Modifier Bug: The developer uses the wrong modifier for variable, func-
tion, or class. This bug pattern is specific to Java.

• Wrong Function Name Bug (or API Misuse Bug): The developer uses a function
name different from the intended function name with the same parameter list.
While this pattern can also be considered as a part of change identifier bugs,
it is often interesting to consider this bug pattern distinctly. The bug pattern
is particularly challenging to detect and fix since it requires access to the API
defined for the project.

123

A.1 Simple Stupid Bug Patterns

• Same Function More Args: The developer uses too many arguments in the func-
tion call. This can for example occur when a function is overloaded with multiple
definitions.

• Same Function Less Args: The developer forgets to define an argument of a func-
tion. This can also occur when a function is overloaded with multiple definitions.

• Same Function Change Caller Bug: The developer might confuse two different
variables with the same type when calling a function. Therefore, functions might
be executed on the wrong object.

• Same Function Swap Args Bug: The software developer accidentally uses the
function arguments in the wrong order. This can for example happen if there
exist multiple variables with the same type that used in the function call.

• Change Binary Operator Bug: The developer confuses a binary operator. For
example, the developer confuses <= with < in a loop condition resulting in an off-
by-one error [BSS+20]. Bugs that fall in this bug pattern can be easily generated
with mutation operators.

• Change Unary Operator Bug: The developer confuses a binary operator. For
example, the developer might forget to use a negation operator (! in Java or not

in Python).

• Change Operand Bug: The developer uses the wrong operand in a binary expres-
sion.

• More Specific If: The developer forgets to add an extra condition (with && in
Java or and in Python) to an if-condition.

• Less Specific If: The developer forgets a case where the if-condition should hold
and adds an alternative condition (with || in Java or or in Python) to an if-
condition.

• Missing Throws Exception: The developer forgets to add a throws clause to a
Java method. This pattern is specific to Java.

• Delete Throws Exception: The developer uses too many throws clauses for a Java
method. This pattern is specific to Java.

Kamienski et al. [KPBH21] found that some patterns are very specific to Java and
that there are frequent bug patterns in Python that are not covered by these SStuBs.
Therefore, they extended the list of SStuBs with following definitions specific to Python:

• Change Attribute Used: The developer uses the wrong attribute from an object.
For example, car.type is used although car.name was meant.

124

Chapter A. Appendix

• Add Function Around Expression: The developer forgets to put a function around
a given expression. Since Python uses functions for type casts, it is more common
to forget a function around an expression, i.e. int_size = 5 / 3 instead of
int_size = int(5 / 3).

• Add Elements to Iterable: The developer forgets to add elements to a hard-coded
iterable.

• Change Keyword Argument Used: The developer uses the wrong keyword argu-
ment when calling a function. For example, instead of calling Car(type=bmw) the
call Car(name=bmw) is used.

• Add Method Call: The developer forgets to add a method call to a given expres-
sion. For example, instead of using car.color() == ’red’ the expression car

== ’red’ is used.

• Change Constant Type: The developer uses the wrong constant type. For exam-
ple, the construction year is defined by car.year = 1987 although a string might
be preferred, i.e car.year = ’1987’.

• Add Attribute Access: The developer forgets an attribute access. For example,
car = 1987 instead of car.year = 1987 is used.

125

A.2 Alternative Contextual Mutation Operators

A.2 Alternative Contextual Mutation Operators

For our evaluation in Section 5.4, we explore and compare different variants of contextual
mutation operators. These mutation operators all utilize the surrounding context to
infer mutations that likely generate realistic bugs. The main difference is the way how
they identify realistic mutations.

A.2.1 Contextual Mutation Operators

We consider different types of contextual mutation operators that are based on recent
studies on realistic mutation generation.

Generate and Rank. While we used a sampling distribution to define our contextual
mutation operator in Chapter 3, we found that not all mutation operators utilize a well-
defined sampling distribution. Therefore, to represent all considered mutation operators
in a common framework, we employ a generate-and-rank based strategy [ABJS16] for
generating mutants. For this, we first generate a list of mutation candidates and then
rank them according to some (contextual) ranking function. Selected are those mutants
that are ranked highest.

Generating Mutation Candidates. We generate mutation candidates with the
help of traditional mutation operators. Since we focus in Section 5.4 on single token
bug detection, we also focus here on single token mutation. Therefore, to generate a
mutation candidate for a given program represented by T = t1, . . . , tn, we (randomly)
replace a single token tl with another token r. Here, the token r is either defined
in the scope (r ∈ {t, . . . , tn}) or coming from an external vocabulary (r ∈ V). For
our evaluation, we exhaustively generate the set of all possible single token mutations
(considered in Section 5.4):

MT ⊆ { ⟨l, r⟩ | tl ∈ T, r ∈ T ∪ V and tl ̸= r}

Hence, all mutations in MT represent variable misuses, binary operator, unary operator
or literal bugs. Note that the set of single token mutation is always finite and limited
by the number of tokens and the size of the vocabulary V .

Contextual Ranking Strategies. We consider four different contextual ranking
strategies: (1) naturalness, (2) unnaturalness, (3) adversial and (4) backtranslation
based ranking strategies.

Naturalness [RW22b]. This ranking strategy is based on the operator we proposed in
Chapter 3. Here, we employ a masked language model (MLM) to rank all mutation
candidates based on the surrounding mutation context. For this, we mask out the
location l to be mutated and score r according to the masked language model (i.e.
we score r with respect to PMLM (r | t1 . . . [M]tm+1 . . . tn)). Therefore, mutations are
higher ranked if they are assigned a higher likelihood by the language model. These

126

Chapter A. Appendix

mutations are considered more natural than others. The main difference of our natural-
ness mutation operator as compared to Chapter 3 is that we train a masked language
model specific for this task from scratch.

Unnaturalness [ABJS16]. Allamanis et al. [ABJS16] proposed to select the least likely
mutation (according to a language model) to generate realistic mutations. Therefore,
we use the same construction as for our naturalness based ranking strategy, but invert
the ranking. Mutations are ranked higher if they are considered less natural according
to our MLM.

Adversial [AJFB21]. Alternatively, Allamanis et al. [AJFB21] proposed to generate
mutations that are hard to detect for a given neural bug detector. Therefore, we rank
mutations Y of a given example X according to the loss Lloc+rep (see Section 2.3.2).
The loss Lloc+rep measures to likelihood of a given neural bug detector to detect and
repair the mutation in Yi. We employ RealiT [RW22a] as the neural bug detectors used
to compute the loss function. Mutations that are harder to detect by the neural bug
detector are ranked higher.

Backtranslation [PP21]. Since we now have access to a large collection of real bug fixes
for training (see Section 5.4), we can also utilize them for training a mutation operator.
For this, we invert the set of real bug fixes and fine-tune our masked language model
(MLM) on the inverted real bug fixes. We rank mutations according to the likelihood
of the mutation assigned by our backtranslation model.

Training. A key part of our ranking strategies is an effective masked language model
(MLM). As existing MLMs [DCLT19] are often large scale models trained for (sub-)
token replacements, they are difficult to apply for single token mutation at a large
scale (which is our goal in Section 5.4). Therefore, we train a significantly smaller
MLM (28M parameters) specialized for our single token mutations. For this, the MLM
employs the same Transformer based architecture as our neural bug detectors (see
Section 2.3). During training, we mainly train the repair head to model the probability
PMLM (tm | t1 . . . [M]tm+1 . . . tn), i.e. the probability that [M] can be replaced by tm.
We use a large scale Github corpus containing around 90M function implementations1

for training and we mask out tokens that correspond to one of our bug types (e.g.
variables, literals or operators). During this process, we mutate 15% of the data (similar
to Devlin et al. [DCLT19]) with a regular mutation operator to also train the localization
head. This allows us to fine-tune the MLM more effectively on inverted real bug fixes
(for creating our backtranslation based ranking strategy).

1We downloaded all Python repositories from Google BigQuery (https://console.cloud.google.
com/marketplace/details/github/github-repos). We then parsed all Python files and extracted all
top-level functions. We deduplicated the dataset with respect to our test and validation sets.

127

https://console.cloud.google.com/marketplace/details/github/github- repos
https://console.cloud.google.com/marketplace/details/github/github- repos

A.2 Alternative Contextual Mutation Operators

A.2.2 Evaluation

For our evaluation, we implemented the different mutation strategies, i.e. the different
combinations of mutant generation and ranking strategy, for generating variable misuse,
binary operator, unary operator and literal bugs in Python. We performed several
experiments to answer the following research question:

Which mutation strategy produces the most realistic mutants?

Based on our evaluation, we then select the mutation strategy that produces the most
realistic mutants for our evaluation in Section 5.4.

Evaluation Task

To compare the different mutation strategies, we consider the task of reproducing real
bugs.

Real Bug Reproduction. To assess the ability of a mutation strategy to reproduce
real bugs, we employ the validation set of real bug fixes from our experiments in Sec-
tion 5.4. The validation set contains around 2K real bug fixes derived from open source
projects. For our experiments, we invert the real bug fixes which leaves us with a
dataset D = {(Xi, Yi)}n

i=1 mapping a fixed variant Xi to a buggy program Yi. During
our experiments, we are interested whether a given mutation operator M is able to
reproduce the buggy program Yi given the repaired program Xi.

Metric. To measure the effectiveness of the mutation strategies, we report the average
recall at k (AR@k). Given a set D = {(Xi, Yi)}n

i=1 of fixed variants Xi and buggy
programs Yi, we measure AR@k as follows:

AR@k = 1
n

n∑
i=1

[[ranki ≤ k]],

where ranki is the rank of Yi (according to some ranking function) among all mutations
of Xi generated by M. To compute AR@k, we exhaustively generate mutation can-
didates of Xi and then rank them according to the different mutation strategies. We
set ranki = ∞ if Yi cannot be generated via mutation. Note that AR@k measure the
likelihood that the real buggy version Yi of Xi is contained within the top-k mutants.

A.2.3 Which mutation strategy is more effective?

During our evaluation, we are interested which mutation strategy produces the most
realistic mutations. For this, we assume that a mutation strategy that is most likely to
reproduce real bugs also produces the most realistic mutations.

Experimental Setup. During our experiments, we consider the top-k mutants as
generated by each mutation strategy. Based on these selection of mutants, we compute

128

Chapter A. Appendix

1 3 5 10 100 1000
k

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AR
@

k
worst-case
natural

unnatural
adversial

backtranslation

(a) Mutation Strategies

1 3 5 10 100 1000
k

20%

30%

40%

50%

60%

70%

80%

90%

AR
@

k

backtranslation (G&R) backtranslation (greedy)

(b) Generation Strategies

Figure A.1: Effect of mutation and generation strategy on the ability to reproduce real
bugs on our validation set.

the AR@k score. Similar to our experiments in Section 5.4, we compute the AR@k
score at k ∈ {1, 3, 5, 10, 100, 1000}. We prefer a mutation operator over another if its
AR@k score is consistently higher across all k’s.

Results. Our results are shown in Fig. A.1a. The x-axis reports the number k of
mutants that are selected and the y-axis shows the respective AR@k score. As a
baseline, we also report the worst-case AR@k performance which considers a mutation
operator that always ranks Yi last among all mutants of Xi.

Backtranslation works best for reproducing real bugs. Unsurprisingly, we find that the
backtranslation based mutation strategy which is trained to reproduce real bugs is
also most effective in reproducing real bugs. More surprising is the relatively small gap
between the backtranslation based and the naturalness based mutation strategy. There-
fore, especially in this comparison, the naturalness based mutation strategy seems to be
quite effective in mutation generation when real bug fixes for training are not available.
The adversial and the unnaturalness based mutation strategies perform significantly
worse.

Around 15% of the real bugs cannot be reproduced. We find that there is an upper limit
on the effectiveness of the mutation strategies. As a result, around 15% of the real bugs
cannot be generated by any of the mutation strategies. After closer inspection, we find
that the mutants are not generated by our traditional mutation operators: As the tra-
ditional mutation operators are designed to produce syntactically correct mutants, the
mutation operator often exclude transformation that might lead to syntactical errors.
An example is provided in Table A.1. Here, the developer confuses the assignment
operator = with the equal comparison operator ==. This type of mutation might trigger
in some contexts a syntactical error. Therefore, traditional mutation operators often
exclude this type of mutation.

129

A.3 Scanning Open Source Projects for Real Bugs

Table A.1: Example of a software bug that cannot be reproduced via traditional mu-
tation. Code is reformatted to fit the figure.

Example Description

1 # Assignment Operator Bug
2 writer = None
3 if file_format.lower() == ’ply’:
4 writer == vtk.vtkPLYWriter()
5 else:
6 writer = vtk.vtkPolyDataWriter()

The developer confuses = with a comparison opera-
tor ==. The Python interpreter does not warn the
developer as the use of == is syntactically correct.
Fix: replace == in Line 4 by =.

To overcome this limitation, we experiment with greedily generated mutants di-
rectly based on the backtranslation model. As the backtranslation model assigns a
probability to every possible single token mutation, it can in theory generate muta-
tions not covered by traditional mutation operators. We compare greedy generation
with the generate-and-rank based solution. The results of the comparison are shown in
Fig. A.1b. Although greedy generation does not significantly improve the reproduction
performance over generate-and-rank, we find that the backtranslation based mutation
strategy with greedy generation is able to reproduce real bugs that traditional mutation
operator typically cannot.

Based on our observations, we conclude:

The backtranslation based mutation strategy is most effective in reproduce real bugs
within k mutations (based on AR@k). As we expect (based on our results in Chap-
ter 3) that neural bug detectors trained on more realistic mutants are more effective
on detecting and repairing real bugs, we will utilize the backtranslation based mu-
tation operator with a greedy generation strategy in our experiments in Section 5.4.

A.3 Scanning Open Source Projects for Real Bugs

In this section, we provide more details on the projects that we scanned in our evaluation
in Section 6.5.4 and on the bugs and quality issues that we found in the process.

A.3.1 Scanned Projects

In the following, we provide an overview of all open source projects that we scanned for
our evaluation in Section 6.5.4. We report in Table A.2 the project name, the creation
time (in format of days/month/year), the number of stars (at the time of scanning the
repository), the number of functions in the project and the number of alarms raised by
our neural bug detector (before validation).

130

Chapter A. Appendix

Table A.2: List of all Open Source Projects scanned by our neural bug detector.

Project Creation Time # Stars # Functions # Alarms

Significant-Gravitas/AutoGPT 16/03/2023 169K 2K 468
abi/screenshot-to-code 14/11/2023 63K 60 22
xtekky/gpt4free 29/03/2023 62K 717 220
OpenInterpreter/open-interpreter 14/07/2023 57K 515 142
meta-llama/llama 14/02/2023 57K 27 7
zylon-ai/private-gpt 02/05/2023 54K 252 55
gpt-engineer-org/gpt-engineer 29/04/2023 53K 370 71
xai-org/grok-1 17/03/2024 50K 86 33
geekan/MetaGPT 30/06/2023 46K 3K 880
oobabooga/text-generation-webui 21/12/2022 41K 967 319
THUDM/ChatGLM-6B 13/03/2023 41K 110 36
Stability-AI/stablediffusion 23/11/2022 39K 698 276
lm-sys/FastChat 19/03/2023 37K 1K 441
run-llama/llama_index 02/11/2022 37K 14K 2K
QuivrHQ/quivr 12/05/2023 37K 287 69
RVC-Boss/GPT-SoVITS 14/01/2024 36K 1K 457
XingangPan/DragGAN 18/05/2023 36K 1K 487
microsoft/autogen 18/08/2023 35K 2K 446
chenfei-wu/TaskMatrix 02/03/2023 35K 109 40
2noise/ChatTTS 27/05/2024 33K 423 156
Pythagora-io/gpt-pilot 16/08/2023 32K 761 160
vllm-project/vllm 09/02/2023 31K 9K 3K
lllyasviel/ControlNet 01/02/2023 31K 2K 754
tatsu-lab/stanford_alpaca 10/03/2023 30K 22 6
s0md3v/roop 28/05/2023 29K 86 34
meta-llama/llama3 15/03/2024 27K 38 15
svc-develop-team/so-vits-svc 10/03/2023 26K 1K 479
Vision-CAIR/MiniGPT-4 15/04/2023 25K 603 193
Stability-AI/generative-models 22/06/2023 25K 658 287
roboflow/supervision 28/11/2022 24K 785 188
infiniflow/ragflow 12/12/2023 24K 2K 461
microsoft/JARVIS 30/03/2023 24K 171 80
Aider-AI/aider 09/05/2023 23K 947 227
AIHawk-FOSS/Auto_Jobs_Applier_AI_Agent 04/08/2024 23K 203 49
crewAIInc/crewAI 27/10/2023 22K 1K 225
facebookresearch/audiocraft 08/06/2023 21K 1K 394
yoheinakajima/babyagi 03/04/2023 20K 243 37
facefusion/facefusion 17/08/2023 20K 979 330
microsoft/graphrag 27/03/2024 20K 1K 161
mlc-ai/mlc-llm 29/04/2023 19K 2K 789
opendatalab/MinerU 29/02/2024 19K 800 232
unslothai/unsloth 29/11/2023 19K 285 114
ymcui/Chinese-LLaMA-Alpaca 15/03/2023 18K 84 34
NanmiCoder/MediaCrawler 09/06/2023 18K 639 80
VikParuchuri/marker 30/10/2023 18K 283 90
black-forest-labs/flux 01/08/2024 18K 122 53
Mikubill/sd-webui-controlnet 12/02/2023 17K 6K 2K
apple/ml-stable-diffusion 16/11/2022 17K 177 78
huggingface/peft 25/11/2022 17K 2K 746
openai/swarm 22/02/2024 16K 157 34

A.3.2 Found Bugs and Quality Issues

In the following, we provide an overview of the found bugs and quality issues we found
in open source projects. The code is abbreviated to fit the figures. We omit bugs and
quality issues that we found multiple times across projects (i.e. == comparisons with
None).

131

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/abi/screenshot-to-code
https://github.com/xtekky/gpt4free
https://github.com/OpenInterpreter/open-interpreter
https://github.com/meta-llama/llama
https://github.com/zylon-ai/private-gpt
https://github.com/gpt-engineer-org/gpt-engineer
https://github.com/xai-org/grok-1
https://github.com/geekan/MetaGPT
https://github.com/oobabooga/text-generation-webui
https://github.com/THUDM/ChatGLM-6B
https://github.com/Stability-AI/stablediffusion
https://github.com/lm-sys/FastChat
https://github.com/run-llama/llama_index
https://github.com/QuivrHQ/quivr
https://github.com/RVC-Boss/GPT-SoVITS
https://github.com/XingangPan/DragGAN
https://github.com/microsoft/autogen
https://github.com/chenfei-wu/TaskMatrix
https://github.com/2noise/ChatTTS
https://github.com/Pythagora-io/gpt-pilot
https://github.com/vllm-project/vllm
https://github.com/lllyasviel/ControlNet
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/s0md3v/roop
https://github.com/meta-llama/llama3
https://github.com/svc-develop-team/so-vits-svc
https://github.com/Vision-CAIR/MiniGPT-4
https://github.com/Stability-AI/generative-models
https://github.com/roboflow/supervision
https://github.com/infiniflow/ragflow
https://github.com/microsoft/JARVIS
https://github.com/Aider-AI/aider
https://github.com/AIHawk-FOSS/Auto_Jobs_Applier_AI_Agent
https://github.com/crewAIInc/crewAI
https://github.com/facebookresearch/audiocraft
https://github.com/yoheinakajima/babyagi
https://github.com/facefusion/facefusion
https://github.com/microsoft/graphrag
https://github.com/mlc-ai/mlc-llm
https://github.com/opendatalab/MinerU
https://github.com/unslothai/unsloth
https://github.com/ymcui/Chinese-LLaMA-Alpaca
https://github.com/NanmiCoder/MediaCrawler
https://github.com/VikParuchuri/marker
https://github.com/black-forest-labs/flux
https://github.com/Mikubill/sd-webui-controlnet
https://github.com/apple/ml-stable-diffusion
https://github.com/huggingface/peft
https://github.com/openai/swarm

A.3 Scanning Open Source Projects for Real Bugs

Example Description
Confirmed bug in run-llama/llama_index
1 client = None
2 if provided_client is not None:
3 - client = client
4 + client = provided_client

The implementation checks if a client is provided but
does not use the provided client.
Fix: Replace client with provided_client.

Example Description
Potential bug in oobabooga/text-generation-
webui
1 metadata = body.get(’metadata’)
2 - if corpus is None:
3 + if metadata is None:
4 self._send_412_error("Missing parameter ’

→ metadata’")
5 return

Copy paste bug. The code should check whether
metadata is defined but checks for the corpus.
Fix: Replace corpus with metadata.

Example Description
Potential bug in run-llama/llama_index
1 odata_filter = None
2 # NOTE: users can provide odata_filters

→ directly to the query
3 odata_filters = kwargs.get("odata_filters")
4 if odata_filters is not None:
5 - odata_filter = odata_filter
6 + odata_filter = odata_filters
7 else:
8 if query.filters is not None:
9 odata_filter = self._create_odata_filter(

→ query.filters)

If odata_filters is given, the current
odata_filter should be overwritten. How-
ever, the developer uses odata_filter accidentally.
Hence, defining odata_filters has no effect on the
implementation.
Fix: Replace odata_filter with odata_filters.

Example Description
Potential bug in THUDM/ChatGLM-6B
1 if isinstance(unwrap_model(self.model),

→ PreTrainedModel):
2 if state_dict is None:
3 state_dict = self.model.state_dict()
4 unwrap_model(self.model).save_pretrained(
5 - output_dir, state_dict=filtered_state_dict)
6 unwrap_model(self.model).save_pretrained(
7 + output_dir, state_dict=state_dict)
8 else:

Copy paste bug. filtered_state_dict is defined
in a different branch and hence undefined here. As
the developer loads the state_dict shortly before
saving, state_dict should likely be saved.
Fix: Replace filtered_state_dict with
state_dict.

Example Description
Potential bug in run-llama/llama_index
1 guidance_llm: Optional["GuidanceLLM"] = None,
2 verbose: bool = False,
3):
4 - if not guidance_llm:
5 + if guidance_llm:
6 llm = guidance_llm
7 else:
8 llm = OpenAI("gpt-3.5-turbo")

The guidance LLM is never used because the condi-
tion checks if guidance_llm is not given.
Fix: Replace not guidance_llm with
guidance_llm.

Example Description
Potential bug in huggingface/peft
1 if inference:
2 config["inference_mode"] = True
3 config_dict[key] = config
4 - return config
5 + return config_dict

The function should generate a config_dict. How-
ever, the function returns a config. config_dict
is defined but not used.
Fix: Replace config with config_dict.

132

https://github.com/run-llama/llama_index/blob/main/llama-index-integrations/graph_stores/llama-index-graph-stores-neptune/llama_index/graph_stores/neptune/neptune.py
https://github.com/oobabooga/text-generation-webui/blob/main/extensions/superboogav2/api.py
https://github.com/oobabooga/text-generation-webui/blob/main/extensions/superboogav2/api.py
https://github.com/run-llama/llama_index/blob/main/llama-index-integrations/vector_stores/llama-index-vector-stores-azureaisearch/llama_index/vector_stores/azureaisearch/base.py
https://github.com/THUDM/ChatGLM-6B/blob/main/ptuning/trainer.py
https://github.com/run-llama/llama_index/blob/main/llama-index-integrations/program/llama-index-program-guidance/llama_index/program/guidance/base.py
https://github.com/huggingface/peft/blob/main/src/peft/tuners/bone/model.py

Chapter A. Appendix

Example Description
Potential bug in microsoft/JARVIS
1 while True:
2 try:
3 result = chain.run(question=question,
4 - Too_list=Tool_dic)
5 + Too_list=Tool_list)
6 clean_answer = eval(result.split("(")[0].

→ strip())

The function formats a set of tools that can be used
by an LLM. However, the tool list is never provided
to the LLM.
Fix: Replace Tool_dic with Tool_list.

Example Description
Potential bug in vllm-project/vllm
1 chunk_ids = prompt[idx:idx + chunk_size]
2 - data = SequenceData.from_seqs(prompt)
3 + data = SequenceData.from_seqs(chunk_ids)
4 data.update_num_computed_tokens(idx)
5 seq_data = {i: data}
6 seq_group_metadata_list.append(

The function prepares a chunk of prompts, but then
uses the complete sequence of prompts.
Fix: Replace prompt with chunk_ids.

Example Description
Potential bug in microsoft/graphrag
1 attributes = covariates[0].attributes or {}
2 if len(covariates) > 0 else {}
3 attribute_cols = list(attributes.keys())
4 - if len(covariates) > 0 else []
5 attribute_cols = list(attributes.keys())
6 + if len(attributes) > 0 else []

Copy paste bug. The code should likely check
if attributes is non-empty to then compute the
attribute_cols. However, covariates is used in-
stead.
Fix: Replace covariates with attributes.

Example Description
Potential bug in lm-sys/FastChat
1 nsfw_flag, csam_flag = image_moderation_filter

→ (img)
2 self.assertFalse(nsfw_flag)
3 - self.assertFalse(nsfw_flag)
4 + self.assertFalse(csam_flag)

Copy paste bug. The test checks the nsfw_flag
twice. Likely the csam_flag should be checked in-
stead.
Fix: Replace nsfw_flag with csam_flag.

Example Description
Potential bug in QuivrHQ/quivr
1 list_files = [file.file_name or file.url for
2 file in list_files_array]
3 files = list(filter(lambda n: n is not None,
4 list_files))
5 files = files[:max_files]
6
7 files_str = "\n".join(files)
8 - if list_files_array else "None"
9 files_str = "\n".join(files)

10 + if files else "None"
11 return files_str

Even if list_files_array is not empty, files
might be empty. Therefore, the developer likely
wants to check for the emptiness of files.
Fix: Replace list_files_array with files.

Example Description

Potential bug in xtekky/gpt4free
1 system_message = "\n".join(...)
2 - if system_message:
3 + if not system_message:
4 system_message = "A chat between ..."

The system_message is always overridden if
a system_message is provided. Likely, the
system_message should only be overridden with a
default message if no system_message is provided.
Fix: Replace system_message with not
system_message.

133

https://github.com/microsoft/JARVIS/blob/main/easytool/easytool/funcQA.py
https://github.com/vllm-project/vllm/blob/main/tests/spec_decode/utils.py
https://github.com/microsoft/graphrag/blob/main/graphrag/query/input/retrieval/covariates.py
https://github.com/lm-sys/FastChat/blob/main/tests/test_image_utils.py
https://github.com/QuivrHQ/quivr/blob/main/core/quivr_core/rag/utils.py
https://github.com/xtekky/gpt4free/blob/main/g4f/locals/provider.py

A.3 Scanning Open Source Projects for Real Bugs

Example Description
Potential bug in zylon-ai/private-gpt
1 result = subprocess.run(...)
2 - assert result.returncode != 0, f"Script

→ failed with error: {
→ result.stderr}"

3 + assert result.returncode == 0, f"Script
→ failed with error: {
→ result.stderr}"

If we check the error message, it becomes clear that
the subprocess should succeed. However, the assert
fails only if the subprocess succeeds
(returncode != 0).
Fix: Replace != with ==.

Example Description

Potential bug in microsoft/graphrag
1 - return self._parse_claim_tuples(results,

→ prompt_args)
2 + return self._parse_claim_tuples(claims,

→ prompt_args)

The code preprocesses results to add additional
claims. However, the function that processes the
generated claims is only provided with the unpro-
cessed results.
Fix: Replace results with claims.

Example Description
Potential bug in infiniflow/ragflow
1 - while len(long_string) <= NAME_LIMIT:
2 + while len(long_string) < NAME_LIMIT:
3 long_string += random.choice(string.

→ ascii_letters +
→ string.digits)

The code should likely generate a name with
NAME_LIMIT characters. However, the code guar-
antees that the name is always longer than the
NAME_LIMIT.
Fix: Replace <= with <.

Example Description
Potential bug in lllyasviel/ControlNet
1 output_height_i=out_h,
2 - output_width_i=out_h,
3 + output_width_i=out_w,
4 spatial_scale_f=spatial_scale,

In most cases it holds that out_h == out_w. How-
ever, there exists cases where out_h != out_w
which is not covered by the code.
Fix: Replace out_h with out_w.

Example Description
Potential bug in mlc-ai/mlc-llm
1 engine_config=EngineConfig(
2 - max_num_sequence=max_history_size,
3 + max_num_sequence=max_num_sequence,
4 max_total_sequence_length=

→ max_total_sequence_length
→ ,

5 prefill_chunk_size=prefill_chunk_size,
6 max_history_size=max_history_size,

The user can specify max_num_sequence. How-
ever, the code currently ignores the value of
max_num_sequence.
Fix: Replace max_history_size with
max_num_sequence.

Example Description
Potential bug in svc-develop-team/so-vits-svc
1 temp = torch.arange(src_len+1) * target_len
2 - / src_len
3 temp = torch.arange(src_len+1) * target_len
4 + // src_len
5 current_pos = 0

In earlier version of PyTorch, the / operator would
perform a floor division which is correct here. How-
ever, in newer version / might generate a floating
point number which is not expected here.
Fix: Replace / with //.

Example Description
Potential bug in svc-develop-team/so-vits-svc
1 postfix=’’,
2 device=’cpu’):
3 - if postfix == ’’:
4 + if postfix != ’’:
5 postfix = ’_’ + postfix
6 path = os.path.join(expdir, name+postfix)

The separator _ should likely be used to separate the
name from the postfix. However, the separator is
only used when the postfix is empty.
Fix: Replace == with !=.

134

https://github.com/zylon-ai/private-gpt/blob/main/tests/server/ingest/test_local_ingest.py
https://github.com/microsoft/graphrag/blob/main/graphrag/index/graph/extractors/claims/claim_extractor.py
https://github.com/infiniflow/ragflow/blob/main/sdk/python/test/test_frontend_api/test_dataset.py
https://github.com/lllyasviel/ControlNet/blob/main/annotator/uniformer/mmcv/ops/roi_align_rotated.py
https://github.com/mlc-ai/mlc-llm/blob/main/python/mlc_llm/interface/calibrate.py
https://github.com/svc-develop-team/so-vits-svc/blob/main/utils.py
https://github.com/svc-develop-team/so-vits-svc/blob/main/diffusion/logger/utils.py

Chapter A. Appendix

Example Description
Potential bug in Stability-AI/generative-models
1 state = dict()
2 - if not "model" in state:
3 + if not "model" in version_dict:
4 config = version_dict["config"]
5 ckpt = version_dict["ckpt"]

The check always succeeds since state is defined to
be empty.
Fix: Replace state with version_dict.

Example Description
Potential quality issue in
OpenInterpreter/open-interpreter
1 async def output(self):
2 - if self.output_queue == None:
3 + if self.output_queue is None:
4 self.output_queue = janus.Queue()
5 return await self.output_queue.async_q.get()

The comparison with None using the == operator can
have unwanted consequences. The Python standard
recommends to use is always when comparing with
None.
Fix: Replace == with is.

Example Description
Potential quality issue in chenfei-
wu/TaskMatrix
1 merged_mask_image = Image.fromarray(

→ merged_mask)
2 - return merged_mask

The variable merged_mask_image is unused which
might indicate a quality issue. The neural bug de-
tector flags the return statement which is incorrect
here. However, an alarm here might still be useful.

Example Description
Potential quality issue in RVC-Boss/GPT-
SoVITS
1 reject_y = torch.stack(reject_y, dim = 0)
2 reject_y_lens = torch.tensor(reject_y_lens,
3 - device=y_lens.device)
4 reject_y_lens = torch.tensor(reject_y_lens,
5 + device=y_o.device)
6 return reject_y, reject_y_lens

In most cases, y_lens.device == y_o.device.
However, to be more consistent with the previous
code, it can make sense to use y_o here.
Fix: Replace y_lens with y_o.

Example Description
Potential quality issue in Stability-
AI/generative-models
1 - if "fps" not in ukeys:
2 + if "fps" not in value_dict:
3 value_dict["fps"] = 6
4 value_dict["is_image"] = 0

There exists an implicit dependency between ukeys
and value_dict: If fps is defined in ukeys, then it is
also defined in value_dict. Therefore, the change
is semantics-preserving. However, applying the fix
could still improve the coding style.
Fix: Replace ukeys with value_dict.

Example Description
Potential quality issue in
OpenInterpreter/open-interpreter
1 matches = [match.group() for match in ...]
2 - matches += [match.replace("\\", "")
3 for match in matches if match]
4 + matches = [match.replace("\\", "")
5 for match in matches if match]
6 existing_paths = [match for match in matches

→ if os.path.exists(match)
→]

7 return max(existing_paths, key=len) if
→ existing_paths else None

The code should likely preprocess the matches. How-
ever, it actually adds the preprocessed matches to
the original patches. Due to the way matches are
processed, it might not matter for the implementa-
tion.
Fix: Replace += with =.

135

https://github.com/Stability-AI/generative-models/blob/main/scripts/demo/streamlit_helpers.py
https://github.com/OpenInterpreter/open-interpreter/blob/main/interpreter/core/async_core.py
https://github.com/chenfei-wu/TaskMatrix/blob/main/visual_chatgpt.py
https://github.com/chenfei-wu/TaskMatrix/blob/main/visual_chatgpt.py
https://github.com/RVC-Boss/GPT-SoVITS/blob/main/GPT_SoVITS/AR/models/utils.py
https://github.com/RVC-Boss/GPT-SoVITS/blob/main/GPT_SoVITS/AR/models/utils.py
https://github.com/Stability-AI/generative-models/blob/main/scripts/demo/sv4d_helpers.py
https://github.com/Stability-AI/generative-models/blob/main/scripts/demo/sv4d_helpers.py
https://github.com/OpenInterpreter/open-interpreter/blob/main/interpreter/terminal_interface/utils/find_image_path.py

A.3 Scanning Open Source Projects for Real Bugs

136

Bibliography

[ABDS18] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles
Sutton. A Survey of Machine Learning for Big Code and Naturalness.
ACM Comput. Surv., 51(4):81:1–81:37, 2018.

[ABJS16] Miltiadis Allamanis, Earl T. Barr, René Just, and Charles Sutton. Tai-
lored Mutants Fit Bugs Better. CoRR, abs/1611.02516, 2016.

[ABK17] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.
Learning to represent programs with graphs. arXiv preprint
arXiv:1711.00740, 2017.

[ABK18] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.
Learning to Represent Programs with Graphs. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. Open-
Review.net, 2018.

[AHM+08] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John
Penix, and William W. Pugh. Using Static Analysis to Find Bugs. IEEE
Softw., 25(5):22–29, 2008.

[AHO24] Kamel Alrashedy, Vincent J. Hellendoorn, and Alessandro Orso. Learn-
ing Defect Prediction from Unrealistic Data. In IEEE International
Conference on Software Analysis, Evolution and Reengineering, SANER
2024, Rovaniemi, Finland, March 12-15, 2024, pages 556–567. IEEE,
2024.

[AJFB21] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-
supervised bug detection and repair. Advances in Neural Information
Processing Systems, 34:27865–27876, 2021.

[AL21] Abdulaziz Alaboudi and Thomas D. LaToza. An Exploratory Study of
Debugging Episodes. CoRR, abs/2105.02162, 2021.

137

A.3 Scanning Open Source Projects for Real Bugs

[All70] Frances E. Allen. Control flow analysis. In Robert S. Northcote, ed-
itor, Proceedings of a Symposium on Compiler Optimization, Urbana-
Champaign, Illinois, USA, July 27-28, 1970, pages 1–19. ACM, 1970.

[All19] Miltiadis Allamanis. The adverse effects of code duplication in machine
learning models of code. In Hidehiko Masuhara and Tomas Petricek, edi-
tors, Proceedings of the 2019 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2019, Athens, Greece, October 23-24, 2019, pages
143–153. ACM, 2019.

[AP10] Nathaniel Ayewah and William W. Pugh. The Google FindBugs fixit.
In Paolo Tonella and Alessandro Orso, editors, Proceedings of the Nine-
teenth International Symposium on Software Testing and Analysis, IS-
STA 2010, Trento, Italy, July 12-16, 2010, pages 241–252. ACM, 2010.

[Art] Charles Arthur. Apple’s SSL iPhone vulnerabil-
ity: how did it happen, and what next? https:

//www.theguardian.com/technology/2014/feb/25/

apples-ssl-iphone-vulnerability-how-did-it-happen-and-what-next.
Accessed: 2024-11-20.

[ASPK12] Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan
Krishnan. Building Useful Program Analysis Tools Using an Extensi-
ble Java Compiler. In 12th IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2012, Riva del Garda,
Italy, September 23-24, 2012, pages 14–23. IEEE Computer Society,
2012.

[BB84] D Bartram and R Bayliss. Automated testing: Past, present and future.
Journal of Occupational Psychology, 57(3):221–237, 1984.

[BBC+10] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles-Henri Gros, Asya Kamsky, Scott McPeak, and Daw-
son R. Engler. A few billion lines of code later: using static analysis to
find bugs in the real world. Commun. ACM, 53(2):66–75, 2010.

[BFHORQ10] Antonio Bella, Cèsar Ferri, José Hernández-Orallo, and María José
Ramírez-Quintana. Calibration of machine learning models. In Handbook
of Research on Machine Learning Applications and Trends: Algorithms,
Methods, and Techniques, pages 128–146. IGI Global, 2010.

[BJT+22] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman,
Christine McLeavey, Jerry Tworek, and Mark Chen. Efficient Train-

138

https://www.theguardian.com/technology/2014/feb/25/apples-ssl-iphone-vulnerability-how-did-it-happen-and-what-next
https://www.theguardian.com/technology/2014/feb/25/apples-ssl-iphone-vulnerability-how-did-it-happen-and-what-next
https://www.theguardian.com/technology/2014/feb/25/apples-ssl-iphone-vulnerability-how-did-it-happen-and-what-next

Chapter A. Appendix

ing of Language Models to Fill in the Middle. CoRR, abs/2207.14255,
2022.

[BKP24] Islem Bouzenia, Bajaj Piyush Krishan, and Michael Pradel. DyPyBench:
A Benchmark of Executable Python Software. Proc. ACM Softw. Eng.,
1(FSE):338–358, 2024.

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot Learners. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[Bri50] Glenn W Brier. Verification of forecasts expressed in terms of probabil-
ity. Monthly weather review, 78(1):1–3, 1950.

[BSPC19a] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra.
Getafix: learning to fix bugs automatically. Proc. ACM Program. Lang.,
3(OOPSLA):159:1–159:27, 2019.

[BSPC19b] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra.
Getafix: Learning to fix bugs automatically. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):1–27, 2019.

[BSS+20] Jón Arnar Briem, Jordi Smit, Hendrig Sellik, Pavel Rapoport, Georgios
Gousios, and Maurício Aniche. OffSide: Learning to Identify Mistakes
in Boundary Conditions. In Proceedings of the IEEE/ACM 42nd In-
ternational Conference on Software Engineering Workshops, ICSEW’20,
page 203–208, New York, NY, USA, 2020. Association for Computing
Machinery.

[BWH22a] Nghi Bui, Yue Wang, and Steven C. H. Hoi. Detect-localize-repair: A
unified framework for learning to debug with codet5. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang, editors, Findings of the Association
for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 812–823. Association for Compu-
tational Linguistics, 2022.

139

A.3 Scanning Open Source Projects for Real Bugs

[BWH22b] Nghi DQ Bui, Yue Wang, and Steven Hoi. Detect-localize-repair: A
unified framework for learning to debug with codet5. arXiv preprint
arXiv:2211.14875, 2022.

[C+90] IEEE Standards Committee et al. IEEE standard glossary of software
engineering terminology. IEEE Std, 610:12, 1990.

[CDAR20] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and
Baishakhi Ray. Codit: Code editing with tree-based neural models.
IEEE Transactions on Software Engineering, 2020.

[CDD+15] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi,
Pieter Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakon-
stantinou, Jim Purbrick, and Dulma Rodriguez. Moving Fast with Soft-
ware Verification. In Klaus Havelund, Gerard J. Holzmann, and Rajeev
Joshi, editors, NASA Formal Methods - 7th International Symposium,
NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings, vol-
ume 9058 of Lecture Notes in Computer Science, pages 3–11. Springer,
2015.

[Cho14] Noam Chomsky. Aspects of the Theory of Syntax. Number 11. MIT
press, 2014.

[CKT+21] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet,
Denys Poshyvanyk, and Martin Monperrus. SequenceR: Sequence-to-
Sequence Learning for End-to-End Program Repair. IEEE Trans. Soft-
ware Eng., 47(9):1943–1959, 2021.

[CPSA19] Berkeley R. Churchill, Oded Padon, Rahul Sharma, and Alex Aiken.
Semantic program alignment for equivalence checking. In Kathryn S.
McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages
1027–1040. ACM, 2019.

[CQT+24] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu,
Song Han, and Jiaya Jia. LongLoRA: Efficient Fine-tuning of Long-
Context Large Language Models. In The Twelfth International Confer-
ence on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net, 2024.

[Cro] External Technical Root Cause Analysis — Channel File 291.
https://www.crowdstrike.com/wp-content/uploads/2024/08/

Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.

pdf. Accessed: 2024-11-20.

140

https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf

Chapter A. Appendix

[CTJ+21] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé
de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda,
Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power,
Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, An-
drew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. Evaluating Large Language Mod-
els Trained on Code. CoRR, abs/2107.03374, 2021.

[CZN+23] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-
Guang Lou, and Weizhu Chen. CodeT: Code Generation with Generated
Tests. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language un-
derstanding. In Jill Burstein, Christy Doran, and Thamar Solorio, edi-
tors, Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[DHK+16] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea
Mambretti, William K. Robertson, Frederick Ulrich, and Ryan Whelan.
LAVA: Large-Scale Automated Vulnerability Addition. In IEEE Sym-
posium on Security and Privacy, SP 2016, San Jose, CA, USA, May
22-26, 2016, pages 110–121. IEEE Computer Society, 2016.

[DP22] Renzo Degiovanni and Mike Papadakis. µbert: Mutation testing using
pre-trained language models. In 15th IEEE International Conference on
Software Testing, Verification and Validation Workshops ICST Work-
shops 2022, Valencia, Spain, April 4-13, 2022, pages 160–169. IEEE,
2022.

141

A.3 Scanning Open Source Projects for Real Bugs

[DZT+23] Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, Leonard
Lausen, Sheng Zha, and George Karypis. Large Language Models of
Code Fail at Completing Code with Potential Bugs. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine, editors, Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

[FAL+23] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace,
Freda Shi, Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis.
InCoder: A Generative Model for Code Infilling and Synthesis. In The
Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[FGT+20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. CodeBERT: A Pre-Trained Model for Programming and Natural
Languages. In Trevor Cohn, Yulan He, and Yang Liu, editors, Findings
of the Association for Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020 of Findings of ACL,
pages 1536–1547. Association for Computational Linguistics, 2020.

[FMB+14] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Monperrus. Fine-grained and accurate source code differenc-
ing. In Ivica Crnkovic, Marsha Chechik, and Paul Grünbacher, editors,
ACM/IEEE International Conference on Automated Software Engineer-
ing, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, pages 313–
324. ACM, 2014.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program
Dependence Graph and Its Use in Optimization. ACM Trans. Program.
Lang. Syst., 9(3):319–349, 1987.

[GDPT24] Aayush Garg, Renzo Degiovanni, Mike Papadakis, and Yves Le Traon.
On the coupling between vulnerabilities and llm-generated mutants: A
study on vul4j dataset. In IEEE Conference on Software Testing, Veri-
fication and Validation, ICST 2024, Toronto, ON, Canada, May 27-31,
2024, pages 305–316. IEEE, 2024.

[GLLL16] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. Incorporating
Copying Mechanism in Sequence-to-Sequence Learning. In Proceedings
of the 54th Annual Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1:
Long Papers. The Association for Computer Linguistics, 2016.

142

Chapter A. Appendix

[GPKS17] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix:
Fixing common C language errors by deep learning. In Thirty-First
AAAI conference on artificial intelligence, 2017.

[GR07] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules,
prediction, and estimation. Journal of the American statistical Associa-
tion, 102(477):359–378, 2007.

[GVS+19] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Ár-
pád Beszédes, Rudolf Ferenc, and Ali Mesbah. BugsJS: a Benchmark
of JavaScript Bugs. In 12th IEEE Conference on Software Testing, Val-
idation and Verification, ICST 2019, Xi’an, China, April 22-27, 2019,
pages 90–101. IEEE, 2019.

[HBS+12] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premku-
mar T. Devanbu. On the naturalness of software. In Martin Glinz,
Gail C. Murphy, and Mauro Pezzè, editors, 34th International Con-
ference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich,
Switzerland, pages 837–847. IEEE Computer Society, 2012.

[HBV22] Jingxuan He, Luca Beurer-Kellner, and Martin T. Vechev. On Dis-
tribution Shift in Learning-based Bug Detectors. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan
Sabato, editors, International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Pro-
ceedings of Machine Learning Research, pages 8559–8580. PMLR, 2022.

[HD17] Vincent J. Hellendoorn and Premkumar T. Devanbu. Are deep neural
networks the best choice for modeling source code? In Eric Bodden,
Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman, editors, Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software En-
gineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017,
pages 763–773. ACM, 2017.

[HNP09] Alon Y. Halevy, Peter Norvig, and Fernando Pereira. The Unreasonable
Effectiveness of Data. IEEE Intell. Syst., 24(2):8–12, 2009.

[HP04] David Hovemeyer and William W. Pugh. Finding bugs is easy. ACM
SIGPLAN Notices, 39(12):92–106, 2004.

[HP18] Andrew Habib and Michael Pradel. How many of all bugs do we find? a
study of static bug detectors. In Marianne Huchard, Christian Kästner,
and Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE In-
ternational Conference on Automated Software Engineering, ASE 2018,
Montpellier, France, September 3-7, 2018, pages 317–328. ACM, 2018.

143

A.3 Scanning Open Source Projects for Real Bugs

[HSS+19] Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Mani-
atis, and David Bieber. Global relational models of source code. In
International conference on learning representations, 2019.

[HV23] Jingxuan He and Martin T. Vechev. Large language models for code:
Security hardening and adversarial testing. In Weizhi Meng, Chris-
tian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2023, Copenhagen, Denmark, November 26-
30, 2023, pages 1865–1879. ACM, 2023.

[HVKV24] Jingxuan He, Mark Vero, Gabriela Krasnopolska, and Martin T. Vechev.
Instruction Tuning for Secure Code Generation. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024.

[HWG+19] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and
Marc Brockschmidt. CodeSearchNet Challenge: Evaluating the State of
Semantic Code Search. CoRR, abs/1909.09436, 2019.

[HYC+24] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang,
Tianyu Liu, Jiajun Zhang, Bowen Yu, Kai Dang, An Yang, Rui Men,
Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and Junyang
Lin. Qwen2.5-Coder Technical Report. CoRR, abs/2409.12186, 2024.

[HZ13] Kim Herzig and Andreas Zeller. The impact of tangled code changes.
In Thomas Zimmermann, Massimiliano Di Penta, and Sunghun Kim,
editors, Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013,
pages 121–130. IEEE Computer Society, 2013.

[Inf] Website of Infer. https://fbinfer.com. Accessed: 2024-11-20.

[Jac12] Paul Jaccard. The distribution of the flora in the alpine zone. 1. New
phytologist, 11(2):37–50, 1912.

[JADM23] Kevin Jesse, Toufique Ahmed, Premkumar T. Devanbu, and Emily
Morgan. Large Language Models and Simple, Stupid Bugs. In 20th
IEEE/ACM International Conference on Mining Software Repositories,
MSR 2023, Melbourne, Australia, May 15-16, 2023, pages 563–575.
IEEE, 2023.

[JJE14] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database
of existing faults to enable controlled testing studies for java programs.

144

https://fbinfer.com

Chapter A. Appendix

In Corina S. Pasareanu and Darko Marinov, editors, International Sym-
posium on Software Testing and Analysis, ISSTA ’14, San Jose, CA,
USA - July 21 - 26, 2014, pages 437–440. ACM, 2014.

[JJI+14] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid
Holmes, and Gordon Fraser. Are mutants a valid substitute for real
faults in software testing? In Shing-Chi Cheung, Alessandro Orso,
and Margaret-Anne D. Storey, editors, Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, pages
654–665. ACM, 2014.

[JKA17] René Just, Bob Kurtz, and Paul Ammann. Inferring mutant utility from
program context. In Tevfik Bultan and Koushik Sen, editors, Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017,
pages 284–294. ACM, 2017.

[JLLT23] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of Code
Language Models on Automated Program Repair. In 45th IEEE/ACM
International Conference on Software Engineering, ICSE 2023, Mel-
bourne, Australia, May 14-20, 2023, pages 1430–1442. IEEE, 2023.

[JLT21a] Nan Jiang, Thibaud Lutellier, and Lin Tan. CURE: code-aware neural
machine translation for automatic program repair. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021, pages 1161–1173. IEEE, 2021.

[JLT21b] Nan Jiang, Thibaud Lutellier, and Lin Tan. Cure: Code-aware neural
machine translation for automatic program repair. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pages
1161–1173. IEEE, 2021.

[JLZ+22] Yanjie Jiang, Hui Liu, Yuxia Zhang, Weixing Ji, Hao Zhong, and
Lu Zhang. Do bugs lead to unnaturalness of source code? In Abhik
Roychoudhury, Cristian Cadar, and Miryung Kim, editors, Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2022, Singapore, Singapore, November 14-18, 2022, pages 1085–1096.
ACM, 2022.

[JM00] Daniel Jurafsky and James H. Martin. Speech and language processing
- an introduction to natural language processing, computational linguis-
tics, and speech recognition. Prentice Hall series in artificial intelligence.
Prentice Hall, 2000.

145

A.3 Scanning Open Source Projects for Real Bugs

[JM09] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM
Comput. Surv., 41(4):21:1–21:54, 2009.

[JRW24] Christian Janßen, Cedric Richter, and Heike Wehrheim. Can Chat-
GPT support software verification? In Dirk Beyer and Ana Cavalcanti,
editors, Fundamental Approaches to Software Engineering - 27th Inter-
national Conference, FASE 2024, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2024, Luxem-
bourg City, Luxembourg, April 6-11, 2024, Proceedings, volume 14573 of
Lecture Notes in Computer Science, pages 266–279. Springer, 2024.

[JSMB13] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and
Robert W. Bowdidge. Why don’t software developers use static analysis
tools to find bugs? In David Notkin, Betty H. C. Cheng, and Klaus
Pohl, editors, 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages 672–681.
IEEE Computer Society, 2013.

[Jus14] René Just. The major mutation framework: efficient and scalable mu-
tation analysis for java. In Corina S. Pasareanu and Darko Marinov,
editors, International Symposium on Software Testing and Analysis, IS-
STA ’14, San Jose, CA, USA - July 21 - 26, 2014, pages 433–436. ACM,
2014.

[KAL22] Hong Jin Kang, Khai Loong Aw, and David Lo. Detecting false
alarms from automatic static analysis tools: How far are we? In
44th IEEE/ACM 44th International Conference on Software Engineer-
ing, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 698–709.
ACM, 2022.

[Kat20] Jeremy Katz. Libraries.io Open Source Repository and Dependency
Metadata, 2020.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[KB19] Thommen George Karimpanal and Roland Bouffanais. Self-organizing
maps for storage and transfer of knowledge in reinforcement learning.
Adapt. Behav., 27(2), 2019.

[KBR+20] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sut-
ton, and Andrea Janes. Big code != big vocabulary: open-vocabulary

146

Chapter A. Appendix

models for source code. In Gregg Rothermel and Doo-Hwan Bae, edi-
tors, ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, pages 1073–1085. ACM,
2020.

[KBZ+20] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jes-
sica Yung, Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General
visual representation learning. In European conference on computer vi-
sion, pages 491–507. Springer, 2020.

[KDPT23] Ahmed Khanfir, Renzo Degiovanni, Mike Papadakis, and Yves Le Traon.
Efficient Mutation Testing via Pre-Trained Language Models. CoRR,
abs/2301.03543, 2023.

[KMBS20] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen
Shi. Pre-trained Contextual Embedding of Source Code. CoRR,
abs/2001.00059, 2020.

[KMJ+22a] Anant Kharkar, Roshanak Zilouchian Moghaddam, Matthew Jin, Xi-
aoyu Liu, Xin Shi, Colin Clement, and Neel Sundaresan. Learning
to Reduce False Positives in Analytic Bug Detectors. arXiv preprint
arXiv:2203.09907, 2022.

[KMJ+22b] Anant Kharkar, Roshanak Zilouchian Moghaddam, Matthew Jin, Xi-
aoyu Liu, Xin Shi, Colin B. Clement, and Neel Sundaresan. Learning to
Reduce False Positives in Analytic Bug Detectors. In 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022, pages 1307–1316. ACM, 2022.

[KPBH21] Arthur V. Kamienski, Luisa Palechor, Cor-Paul Bezemer, and Abram
Hindle. Pysstubs: Characterizing single-statement bugs in popular open-
source python projects. In 18th IEEE/ACM International Conference on
Mining Software Repositories, MSR 2021, Madrid, Spain, May 17-19,
2021, pages 520–524. IEEE, 2021.

[KS20] Rafael-Michael Karampatsis and Charles Sutton. How Often Do Single-
Statement Bugs Occur?: The ManySStuBs4J Dataset. In Sunghun Kim,
Georgios Gousios, Sarah Nadi, and Joseph Hejderup, editors, MSR ’20:
17th International Conference on Mining Software Repositories, Seoul,
Republic of Korea, 29-30 June, 2020, pages 573–577. ACM, 2020.

[KW17] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

147

A.3 Scanning Open Source Projects for Real Bugs

[KXLL16] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. Prac-
titioners’ expectations on automated fault localization. In Andreas
Zeller and Abhik Roychoudhury, editors, Proceedings of the 25th In-
ternational Symposium on Software Testing and Analysis, ISSTA 2016,
Saarbrücken, Germany, July 18-20, 2016, pages 165–176. ACM, 2016.

[LAR17] Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of
code transforms for patch generation. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, pages 727–739,
2017.

[LGR+21] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,
Ambrosio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu
Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie Liu. Codexglue: A machine learning bench-
mark dataset for code understanding and generation. In Joaquin Van-
schoren and Sai-Kit Yeung, editors, Proceedings of the Neural Informa-
tion Processing Systems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, December 2021, virtual, 2021.

[LLH+24] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele
Bevilacqua, Fabio Petroni, and Percy Liang. Lost in the Middle: How
Language Models Use Long Contexts. Trans. Assoc. Comput. Linguis-
tics, 12:157–173, 2024.

[LPP+20a] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi
Wei, and Lin Tan. Coconut: combining context-aware neural transla-
tion models using ensemble for program repair. In Sarfraz Khurshid and
Corina S. Pasareanu, editors, ISSTA ’20: 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, Virtual Event,
USA, July 18-22, 2020, pages 101–114. ACM, 2020.

[LPP+20b] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi
Wei, and Lin Tan. Coconut: combining context-aware neural transla-
tion models using ensemble for program repair. In Proceedings of the
29th ACM SIGSOFT international symposium on software testing and
analysis, pages 101–114, 2020.

[LWN20] Yi Li, Shaohua Wang, and Tien N Nguyen. Dlfix: Context-based code
transformation learning for automated program repair. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
pages 602–614, 2020.

148

Chapter A. Appendix

[LWWM22] Bo Lin, Shangwen Wang, Ming Wen, and Xiaoguang Mao. Context-
Aware Code Change Embedding for Better Patch Correctness Assess-
ment. ACM Trans. Softw. Eng. Methodol., 31(3):51:1–51:29, 2022.

[MDF+01] José Carlos Maldonado, Márcio Eduardo Delamaro, Sandra CPF Fabbri,
Adenilso da Silva Simão, Tatiana Sugeta, Auri Marcelo Rizzo Vincenzi,
and Paulo Cesar Masiero. Proteum: A family of tools to support speci-
fication and program testing based on mutation. In Mutation testing for
the new century, pages 113–116. Springer, 2001.

[MFG24] Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave
no context behind: Efficient infinite context transformers with infini-
attention. CoRR, abs/2404.07143, 2024.

[MLZ+23] Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan
Hui, Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro von Werra,
and Shayne Longpre. OctoPack: Instruction Tuning Code Large Lan-
guage Models. CoRR, abs/2308.07124, 2023.

[MMY+21] Martin Monperrus, Matias Martinez, He Ye, Fernanda Madeiral,
Thomas Durieux, and Zhongxing Yu. Megadiff: A dataset of 600k java
source code changes categorized by diff size. CoRR, abs/2108.04631,
2021.

[MSC+23] Seungjun Moon, Yongho Song, Hyungjoo Chae, Dongjin Kang, Taey-
oon Kwon, Kai Tzu-iunn Ong, Seung-won Hwang, and Jinyoung Yeo.
Coffee: Boost Your Code LLMs by Fixing Bugs with Feedback. CoRR,
abs/2311.07215, 2023.

[NOP+23] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai.
VULGEN: realistic vulnerability generation via pattern mining and deep
learning. In 45th IEEE/ACM International Conference on Software En-
gineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages
2527–2539. IEEE, 2023.

[NPH+23] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo
Zhou, Silvio Savarese, and Caiming Xiong. Codegen: An open large
language model for code with multi-turn program synthesis. In The
Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[Off92] A. Jefferson Offutt. Investigations of the Software Testing Coupling
Effect. ACM Trans. Softw. Eng. Methodol., 1(1):5–20, 1992.

[PC22] Michael Pradel and Satish Chandra. Neural software analysis. Commun.
ACM, 65(1):86–96, 2022.

149

A.3 Scanning Open Source Projects for Real Bugs

[PKJ+21] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo
Domeniconi, Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir R. Choud-
hury, Lindsey Decker, Veronika Thost, Luca Buratti, Saurabh Pujar,
Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. Co-
denet: A large-scale AI for code dataset for learning a diversity of cod-
ing tasks. In Joaquin Vanschoren and Sai-Kit Yeung, editors, Proceed-
ings of the Neural Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December
2021, virtual, 2021.

[PKZ+19] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and
Mark Harman. Chapter Six - Mutation Testing Advances: An Analysis
and Survey. Adv. Comput., 112:275–378, 2019.

[PP21] Jibesh Patra and Michael Pradel. Semantic bug seeding: a learning-
based approach for creating realistic bugs. In Diomidis Spinellis, Geor-
gios Gousios, Marsha Chechik, and Massimiliano Di Penta, editors, ES-
EC/FSE ’21: 29th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, pages 906–918. ACM, 2021.

[PR23] Julian Aron Prenner and Romain Robbes. RunBugRun - An Executable
Dataset for Automated Program Repair. CoRR, abs/2304.01102, 2023.

[PR24] Julian Aron Prenner and Romain Robbes. Out of Context: How im-
portant is Local Context in Neural Program Repair? In Proceedings
of the 46th IEEE/ACM International Conference on Software Engineer-
ing, ICSE 2024, Lisbon, Portugal, April 14-20, 2024, pages 83:1–83:13.
ACM, 2024.

[PS18] Michael Pradel and Koushik Sen. Deepbugs: A learning approach to
name-based bug detection. Proceedings of the ACM on Programming
Languages, 2(OOPSLA):1–25, 2018.

[QLAR15] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of
patch plausibility and correctness for generate-and-validate patch gener-
ation systems. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pages 24–36, 2015.

[R+62] Frank Rosenblatt et al. Principles of neurodynamics: Perceptrons and
the theory of brain mechanisms, volume 55. Spartan books Washington,
DC, 1962.

[RBV16] Veselin Raychev, Pavol Bielik, and Martin T. Vechev. Probabilistic
model for code with decision trees. In Eelco Visser and Yannis Smarag-

150

Chapter A. Appendix

dakis, editors, Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The
Netherlands, October 30 - November 4, 2016, pages 731–747. ACM, 2016.

[RGG+23] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt,
Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve. Code Llama: Open
Foundation Models for Code. CoRR, abs/2308.12950, 2023.

[RHG+16] Baishakhi Ray, Vincent J. Hellendoorn, Saheel Godhane, Zhaopeng Tu,
Alberto Bacchelli, and Premkumar T. Devanbu. On the "naturalness" of
buggy code. In Laura K. Dillon, Willem Visser, and Laurie A. Williams,
editors, Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages
428–439. ACM, 2016.

[RHJ+22] Cedric Richter, Jan Haltermann, Marie-Christine Jakobs, Felix Pauck,
Stefan Schott, and Heike Wehrheim. Are neural bug detectors com-
parable to software developers on variable misuse bugs? In 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2022, Rochester, MI, USA, October 10-14, 2022, pages 9:1–
9:12. ACM, 2022.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. nature, 323(6088):533–
536, 1986.

[RPDH18] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. Bug
synthesis: challenging bug-finding tools with deep faults. In Gary T.
Leavens, Alessandro Garcia, and Corina S. Pasareanu, editors, Proceed-
ings of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-
09, 2018, pages 224–234. ACM, 2018.

[RW22a] Cedric Richter and Heike Wehrheim. Can we learn from developer mis-
takes? learning to localize and repair real bugs from real bug fixes.
CoRR, abs/2207.00301, 2022.

[RW22b] Cedric Richter and Heike Wehrheim. Learning Realistic Mutations: Bug
Creation for Neural Bug Detectors. In 2022 IEEE Conference on Soft-

151

A.3 Scanning Open Source Projects for Real Bugs

ware Testing, Verification and Validation (ICST), pages 162–173. IEEE,
2022.

[RW22c] Cedric Richter and Heike Wehrheim. TSSB-3M: Mining single statement
bugs at massive scale. In 19th IEEE/ACM International Conference on
Mining Software Repositories, MSR 2022, Pittsburgh, PA, USA, May
23-24, 2022, pages 418–422. ACM, 2022.

[RW23] Cedric Richter and Heike Wehrheim. How to Train Your Neural Bug De-
tector: Artificial vs Real Bugs. In 38th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2023, Luxembourg,
September 11-15, 2023, pages 1036–1048. IEEE, 2023.

[SAE+18] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon,
and Ciera Jaspan. Lessons from building static analysis tools at Google.
Commun. ACM, 61(4):58–66, 2018.

[SBLB15] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. Is the
cure worse than the disease? overfitting in automated program repair.
In Elisabetta Di Nitto, Mark Harman, and Patrick Heymans, editors,
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September
4, 2015, pages 532–543. ACM, 2015.

[SFM23] André Silva, Sen Fang, and Martin Monperrus. Repairllama: Efficient
representations and fine-tuned adapters for program repair. CoRR,
abs/2312.15698, 2023.

[SFYM23] André Silva, João F. Ferreira, He Ye, and Martin Monperrus. MUFIN:
Improving Neural Repair Models with Back-Translation. CoRR,
abs/2304.02301, 2023.

[SFZ11] Haihao Shen, Jianhong Fang, and Jianjun Zhao. EFindBugs: Effective
Error Ranking for FindBugs. In Fourth IEEE International Conference
on Software Testing, Verification and Validation, ICST 2011, Berlin,
Germany, March 21-25, 2011, pages 299–308. IEEE Computer Society,
2011.

[SHB16] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics,
ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Pa-
pers. The Association for Computer Linguistics, 2016.

[SLL+18] Ripon K. Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R.
Prasad. Bugs.jar: a large-scale, diverse dataset of real-world Java bugs.

152

Chapter A. Appendix

In Andy Zaidman, Yasutaka Kamei, and Emily Hill, editors, Proceedings
of the 15th International Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018, pages 10–13. ACM,
2018.

[SLM17] Abigail See, Peter J. Liu, and Christopher D. Manning. Get To The
Point: Summarization with Pointer-Generator Networks. In Regina
Barzilay and Min-Yen Kan, editors, Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages
1073–1083. Association for Computational Linguistics, 2017.

[Spe61] Charles Spearman. The proof and measurement of association between
two things. 1961.

[SUV18] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with
Relative Position Representations. In Marilyn A. Walker, Heng Ji, and
Amanda Stent, editors, Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 2 (Short Papers), pages 464–468. As-
sociation for Computational Linguistics, 2018.

[TLK+20] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li,
Jacques Klein, and Tegawendé F. Bissyandé. Evaluating representation
learning of code changes for predicting patch correctness in program re-
pair. In 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2020, Melbourne, Australia, September 21-25,
2020, pages 981–992. IEEE, 2020.

[TMS+23] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,
Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xi-
ang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela

153

A.3 Scanning Open Source Projects for Real Bugs

Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open Founda-
tion and Fine-Tuned Chat Models. CoRR, abs/2307.09288, 2023.

[TPW+19] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota,
and Denys Poshyvanyk. On learning meaningful code changes via neural
machine translation. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pages 25–36. IEEE, 2019.

[TTH+22] Haoye Tian, Xunzhu Tang, Andrew Habib, Shangwen Wang, Kui Liu,
Xin Xia, Jacques Klein, and Tegawendé F. Bissyandé. Is this change
the answer to that problem?: Correlating descriptions of bug and code
changes for evaluating patch correctness. In 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10-14, 2022, pages 59:1–59:13. ACM, 2022.

[TWB+19a] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. Learning how to mutate source
code from bug-fixes. In 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 301–312. IEEE, 2019.

[TWB+19b] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di
Penta, Martin White, and Denys Poshyvanyk. An empirical study
on learning bug-fixing patches in the wild via neural machine trans-
lation. ACM Transactions on Software Engineering and Methodology
(TOSEM), 28(4):1–29, 2019.

[TWB+19c] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. An empirical study on learning
bug-fixing patches in the wild via neural machine translation. ACM
Trans. Softw. Eng. Methodol., 28(4):19:1–19:29, 2019.

[Twi] Twitter outage due to Formatting bug. https://news.ycombinator.

com/item?id=8810157. Accessed: 2024-11-20.

[vD14] Arie van Deursen. Learning from Apple’s# gotofail security bug. Arie
van Deursen: Software Engineering in Theory and Practice, 2014.

[VFJ15] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks.
In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,
and Roman Garnett, editors, Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages
2692–2700, 2015.

154

https://news.ycombinator.com/item?id=8810157
https://news.ycombinator.com/item?id=8810157

Chapter A. Appendix

[VKM+19] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and
Rishabh Singh. Neural program repair by jointly learning to localize
and repair. arXiv preprint arXiv:1904.01720, 2019.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is All you Need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

[WDS+19] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, and Jamie Brew. HuggingFace’s Transformers: State-of-the-
art Natural Language Processing. CoRR, abs/1910.03771, 2019.

[WDS+20] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transform-
ers: State-of-the-art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online, October 2020. Association
for Computational Linguistics.

[Wer82] P J Werbos. Applications of advances in nonlinear sensitivity analysis,
Jan 1982.

[WG24] David Gray Widder and Claire Le Goues. What is a" bug"? On sub-
jectivity, epistemic power, and implications for software research. arXiv
preprint arXiv:2402.08165, 2024.

[WNV+22] Laura Wartschinski, Yannic Noller, Thomas Vogel, Timo Kehrer, and
Lars Grunske. VUDENC: vulnerability detection with deep learning on
a natural codebase for python. Inf. Softw. Technol., 144:106809, 2022.

[WRP21] Yaza Wainakh, Moiz Rauf, and Michael Pradel. Idbench: Evaluating
semantic representations of identifier names in source code. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021, pages 562–573. IEEE, 2021.

[WSL+20] Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack
Phan, Qijin Tay, Constance Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng

155

A.3 Scanning Open Source Projects for Real Bugs

Yieh, Brian Goh, Ferdian Thung, Hong Jin Kang, Thong Hoang, David
Lo, and Eng Lieh Ouh. Bugsinpy: a database of existing bugs in
python programs to enable controlled testing and debugging studies.
In Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann, edi-
tors, ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, Virtual Event, USA, November 8-13, 2020, pages 1556–1560. ACM,
2020.

[XLZ+18] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang.
Identifying patch correctness in test-based program repair. In Michel
Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman, editors,
Proceedings of the 40th International Conference on Software Engineer-
ing, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages
789–799. ACM, 2018.

[YGM+22] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Mon-
perrus. Automated classification of overfitting patches with statically
extracted code features. IEEE Trans. Software Eng., 48(8):2920–2938,
2022.

[YJJ14] Jongwon Yoon, Minsik Jin, and Yungbum Jung. Reducing false alarms
from an industrial-strength static analyzer by SVM. In Sungdeok (Steve)
Cha, Yann-Gaël Guéhéneuc, and Gihwon Kwon, editors, 21st Asia-
Pacific Software Engineering Conference, APSEC 2014, Jeju, South Ko-
rea, December 1-4, 2014. Volume 2: Industry, Short, and QuASoQ Pa-
pers, pages 3–6. IEEE, 2014.

[YKH+24] Aidan ZH Yang, Sophia Kolak, Vincent J Hellendoorn, Ruben Mar-
tins, and Claire Le Goues. Revisiting Unnaturalness for Automated
Program Repair in the Era of Large Language Models. arXiv preprint
arXiv:2404.15236, 2024.

[YL20] Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised pro-
gram repair from diagnostic feedback. In International Conference on
Machine Learning, pages 10799–10808. PMLR, 2020.

[YL21] Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised
learning for program repair. In International Conference on Machine
Learning, pages 11941–11952. PMLR, 2021.

[YM24] He Ye and Martin Monperrus. ITER: Iterative Neural Repair for Multi-
Location Patches. In Proceedings of the 46th IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE 2024, Lisbon, Por-
tugal, April 14-20, 2024, pages 10:1–10:13. ACM, 2024.

156

Chapter A. Appendix

[YML+22] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monper-
rus. SelfAPR: Self-supervised Program Repair with Test Execution Di-
agnostics. In 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2022, Rochester, MI, USA, October 10-14,
2022, pages 92:1–92:13. ACM, 2022.

[YMM22] He Ye, Matias Martinez, and Martin Monperrus. Neural program repair
with execution-based backpropagation. In 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering (ICSE), pages 1506–1518.
IEEE, 2022.

[YWG+24] Yixin Yang, Ming Wen, Xiang Gao, Yuting Zhang, and Hailong Sun.
Reducing false positives of static bug detectors through code represen-
tation learning. In IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2024, Rovaniemi, Finland, March
12-15, 2024, pages 681–692. IEEE, 2024.

[YZLT17a] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better test
cases for better automated program repair. In Proceedings of the 2017
11th joint meeting on foundations of software engineering, pages 831–
841, 2017.

[YZLT17b] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better test
cases for better automated program repair. In Eric Bodden, Wilhelm
Schäfer, Arie van Deursen, and Andrea Zisman, editors, Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages
831–841. ACM, 2017.

[ZSX+21] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei
Xiong, and Lu Zhang. A syntax-guided edit decoder for neural program
repair. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 341–353, 2021.

[ZXK+23] Xin Zhou, Bowen Xu, Kisub Kim, DongGyun Han, Thanh Le-Cong,
Junda He, Bach Le, and David Lo. PatchZero: Zero-shot automatic
patch correctness assessment. arXiv preprint arXiv:2303.00202, 2023.

[ZXK+24] Xin Zhou, Bowen Xu, Kisub Kim, DongGyun Han, Hung Huu Nguyen,
Thanh Le-Cong, Junda He, Bach Le, and David Lo. Leveraging large lan-
guage model for automatic patch correctness assessment. IEEE Trans-
actions on Software Engineering, 2024.

157

A.3 Scanning Open Source Projects for Real Bugs

[ZYH+23] Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike Lewis, Wen-Tau Yih,
Daniel Fried, and Sida Wang. Coder Reviewer Reranking for Code Gen-
eration. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Hon-
olulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pages 41832–41846. PMLR, 2023.

158

List of Figures

1.1 User interface of our study with an example of a variable misuse bug . 4

2.1 Conceptual Overview of Neural Architectures 13
2.2 High-Level Overview over the Transformer architecture. A Transformer

might learn that if is less relevant for detecting the variable misuse bug. 15
2.3 Joint Architecture for the Detection, Localization and Repair of Single

Token Bugs. 18
2.4 Generating Artificial Training Data for Neural Bug Detection. Green

operations are operations used for training neural bug detectors. The
operation noop indicates that no change is required. The operation
replace(tl, r−1) inverts the mutation process. 22

3.1 Code snippet taken from Defects4J/Chart#1. 26
3.2 Overview over our contextual mutation process 28
3.3 Re-weighted probability distribution PLM for two different contexts. . . 32
3.4 Examples of all studied bug types taken from our real world benchmark.

Reformatted and abbreviated for visualization. 34
3.5 Effect of the mutator on the reproducibility of real world bugs. 38
3.6 Precision and Recall for DeepBugs trained on random bugs (grey dotted),

bugs introduced by SemSeed (red dashed) or contextual mutants (blue). 43

4.1 Overview over our mining process . 53
4.2 Similarity of NoSStuBs with SStuBs given as the Jaccard distance be-

tween edit operations. The x-axis corresponds to the binned distance
to the most similar SStuB bug and the y-axis corresponds to observed
frequencies. 59

5.1 Overview of the training process . 68
5.2 Effect of real bug fixes at different dataset scales on the performance on

the validation set. The x-axis is the percentage of real bug fixes used
during fine-tuning. 74

159

A.3 Scanning Open Source Projects for Real Bugs

5.3 Effect of mutation frequency during training on the performance of
Transformer-based neural bug detector on the validation set. The gray
dashed line represents the average number of unique mutants that can
be generated per code snippet. 76

5.4 Effect of mutation frequency during training on the performance of the
graph-based neural bug detectors on the validation set. The gray dashed
line represents the average number of unique mutants that can be gen-
erated per code snippet. 77

5.5 Effect of using a more realistic mutator on the performance of the Transformer-
based neural bug detector on the validation set. 77

5.6 Comparison of CuBERT and our neural bug detector on Real Python
projects with variable misuse bugs. 80

5.7 Comparison of CuBERT and our neural bug detector on Real Python
projects with binary operator bugs. 81

5.8 Inversion test on PyPIBugs for reproducing real bugs via mutation. The
x-axis is the number of mutants generated and the y-axis is the per-
centage of real bugs reproduced within k mutations. For the traditional
random mutation, we report worst-case performance (i.e. the original
bug is always sampled last) and for the improved contextual mutator we
rank the mutation according to the likelihood of generating them. . . . 84

6.1 Overview of the validation strategy . 95
6.2 A selective infilling problem based on our example program T and the

faulty patch D. The LLM has to select between the changed code before
(A.) and after (B.) applying the patch. Extra context (gray code) can
be provided. 97

6.3 Example context taken from Celery for our example of a false alarm
generated by a neural bug detector. The example is slightly adapted to
fit the figure. 98

6.4 Comparison with Thresholding . 104
6.5 Comparison to Test-based Patch Validation at τ = 0 105
6.6 Impact of validation on the ability of the neural bug detector to detect

novel bugs in Python projects. 108
6.7 Impact of post-hoc validation strategies on the ability of the neural bug

detector to detect novel bugs in Python projects. 109
6.8 Impact of file-level context on our example false alarm. The validator

correctly rejects (with a score of -0.7) the false alarm after the file-level
context is available. 110

A.1 Effect of mutation and generation strategy on the ability to reproduce
real bugs on our validation set. 129

160

https://github.com/celery/celery/blob/main/celery/states.py

List of Tables

2.1 Examples of Software Bugs found in Python projects [AJFB21] 12

3.1 Syntactic roles distinguished by the syntactic tagger. Colors are used for
visualizing the roles of tokens throughout the paper. 33

3.2 Overview for all evaluation tasks, datasets and bug types individually
for each research question. For brevity, we omit the dataset statistics for
individual mutator types in the same bug category, since this is shared. 35

3.3 Examples for real world bugs compared with bugs produced by our con-
textual mutation operator. The first three are examples for a successful
reproduction of the real bug. This is followed by three cases where the
mutation operator fails (real bug in comments). 40

3.4 Results on the Java real world benchmark for detection and repair (Best
results marked in bold). 41

3.5 Results on the real world benchmark for detection and repair (Best re-
sults marked in bold). 42

4.1 SStub pattern statistics for CTSSB-0.9M, CSSB-2.3M, and PySStuBs . 57

5.1 Impact of training with real bug fixes on the performance of neural bug
detectors on our tasks of real bug detection and correct code identification 75

5.2 Evaluation results for the improved neural bug detectors on our bench-
mark tasks. 78

5.3 Comparison with PyBugLab on the PyPIBugs benchmark. 79
5.4 Example of a Software Bug only found after training on Real Bugs. Code

is reformatted to fit the figure. 82
5.5 Example of a Software Bug that is not found by any neural bug detector.

Code is reformatted to fit the figure. 82

6.1 Example of a false alarm raised for projects in DyPyBench [BKP24] . . 93
6.2 Comparison between different LLMs as Validators at τ = 0 103
6.3 Impact of Different Context Types on Validator at τ = 0 106

161

A.3 Scanning Open Source Projects for Real Bugs

6.4 Evaluation results for the validated neural bug detectors on our bench-
mark tasks. 107

6.5 Example of Potential Software Bug found in DyPyBench [BKP24]. Code
is reformatted to fit the figure. 111

6.6 Example of Confirmed Software Bug found in run-llama/llama_index.
Code is reformatted to fit the figure. 111

6.7 Example of Unconfirmed False Alarm found in DyPyBench [BKP24].
Code is reformatted to fit the figure. 112

6.8 Example of a Confirmed False Alarm that is still accepted by the val-
idators found in DyPyBench [BKP24]. Code is reformatted to fit the
figure. 113

A.1 Example of a software bug that cannot be reproduced via traditional
mutation. Code is reformatted to fit the figure. 130

A.2 List of all Open Source Projects scanned by our neural bug detector. . . 131

162

Erklärung

Hiermit versichere ich an Eides statt, dass ich diese Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Außerdem
versichere ich, dass ich die allgemeinen Prinzipien wissenschaftlicher Arbeit und Veröf-
fentlichung, wie sie in den Leitlinien guter wissenschaftlicher Praxis der Carl von Ossi-
etzky Universität Oldenburg festgelegt sind, befolgt habe.

Ort, Datum Unterschrift

	Introduction
	From Static to Neural Bug Detection
	Central Hypotheses of this Thesis
	Contribution and Outline
	Publication Details

	Background
	Software Bugs
	Real and Artificial Software Bugs
	Categorizing Software Bugs into Patterns

	Neural Models of Code
	Deep Neural Networks
	Important Applications of Code Models

	Neural Bug Detection
	Neural Bug Detection and Repair
	Neural Architecture for Bug Detection and Repair
	Generating Training Data by Mutating Programs

	Mutations for Neural Bug Detection
	Motivation
	Mutation Operators
	Contextual Mutations
	Contextual Mutation Operator
	Generating Mutation Candidates with a Mask Mutator
	Contextual Mutant Selection with Language Models
	Implementation

	Evaluation
	Evaluation Tasks
	Mutation Operator Types
	Mutation Operator Baselines

	Results
	RQ1 - Are contextual mutants more realistic?
	RQ2 - Impact on the training of Neural Bug Detectors
	RQ3 - Transfer to other languages and bug types

	Threats to Validity
	Related Work
	Conclusion

	Mining Realistic Bugs
	Motivation
	Single Statement Bug Fixes in the Wild
	Mining Real Bug Fixes at Massive Scale
	Mining Single Statement Changes in Python Projects
	True Single Statement Bug Fixes
	Characterizing Bug Fixing Edits

	Dataset Analysis
	RQ1 - Does the distribution of bug fixes change?
	RQ2 - How different are bugs that do not classify as SStuBs?

	Threats to Validity
	Related Work
	Conclusion

	Learning from Real Bug Fixes
	Motivation
	Neural Bug Detection of Single Token Bugs
	Studying the Impact of Real Bug Fixes and Mutants at Scale
	Training with Code Mutants and Real Bug Fixes
	Scaling Factors in the Training of Neural Bug Detectors
	Implementation

	Evaluation
	Evaluation Tasks
	Neural Bug Detector Baseline
	Datasets

	Results
	RQ1 - Impact of Real Bug Fixes at Scale
	RQ2 - Impact of Mutants at Scale
	RQ3 - Comparison with State of the Art

	Discussion
	Threats to Validity
	Related Work
	Contributions and Conclusion

	False Alarm Reduction
	Motivation
	Validation for Neural Bug Detection
	An LLM-based Validator for Neural Bug Detection
	Patch Validation with Large Language Models
	Patch Validation as Selective Code Infilling
	Adjusting the Validator to Different Contexts
	Implementation

	Evaluation
	Evaluation Tasks
	Baselines

	Results
	RQ1 - Validating Bug Fixes and False Alarms
	RQ2 - Impact of Context
	RQ3 - Impact on Neural Bug Detection
	RQ4 - Finding Novel Bugs in Public Projects

	Discussion
	Threats to Validity
	Related Work
	Contributions and Conclusions

	Conclusion
	Summary
	Discussion and Outlook

	Appendix
	Simple Stupid Bug Patterns
	Alternative Contextual Mutation Operators
	Contextual Mutation Operators
	Evaluation
	Which mutation strategy is more effective?

	Scanning Open Source Projects for Real Bugs
	Scanned Projects
	Found Bugs and Quality Issues

	Bibliography
	List of Figures
	List of Tables

