
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Evolving Deep Neural Networks:
Optimization of Weights and Architectures

Dissertation zur Erlangung des Grades eines Doktors der
Naturwissenschaften (Dr. rer. nat.) vorgelegt von

Jonas Prellberg

Tag der Disputation
08.07.2020

Gutachter
Prof. Dr. Oliver Kramer
Jun.-Prof. Dr. Paul Kaufmann

Zusammenfassung

Deep neural networks sind flexible statistische Modelle, welche eine Vielzahl von

Funktionen darstellen können. Im Kontext von überwachtem Lernen ist es möglich,

die Netze anhand von Daten zu trainieren, so dass sie die zugrunde liegende Funktion

zwischen Eingaben und Ausgaben annähern. In vielen Fällen generalisieren die Netze

gut für unbekannte Eingaben, womit sie zu mächtigen Vorhersagemodellen werden,

die in verschiedenen Disziplinen sehr erfolgreich angewendet werden. Jedoch ist

es eine schwierige Aufgabe ein gut generalisierendes Modell zu trainieren, da viel

Rechenleistung, große Datensätze und die korrekte Wahl einer großen Anzahl an

Hyperparametern erforderlich sind.

Da es keine theoretische Grundlage für den Einfluss vieler Hyperparameter gibt,

können gute Einstellungen nur durch Experimente gefunden werden. Auf Grund des

großen Hyperparametersuchraums und dem rechenaufwändigen Training kann nur ein

winziger Teil des Suchraums manuell untersucht werden. Konsequenterweise werden

Hyperparameter häufig durch Erfahrungswerte und eine geringe Anzahl an Experi-

menten bestimmt. In dieser Dissertation werden wir die Rolle der Netzwerkarchitektur

als besonders wichtigen Hyperparameter herausstellen und automatische Methoden

zu ihrer Optimierung entwickeln. Die Gewichte und Architektur neuronaler Netze

sind eng miteinander verbunden und es existieren verschiedene Ansätze, um beide zu

optimieren.

Zuerst werden wir Ideen aus dem Forschungsgebiet der Neuroevolution untersu-

chen und sie auf deep neural networks hochskalieren. Dies wird ermöglicht durch

eine GPU-beschleunigte Implementierung eines evolutionären Algorithmus für das

Training neuronaler Netze. Wir untersuchen seine Leistungsfähigkeit auf überwachten

Lernproblemen und ziehen Vergleiche zu stochastischen Gradientenabstiegsverfahren.

Ein ähnlicher evolutionärer Algorithmus für das Training neuronaler Netze wird im

Kontext von bestärkendem Lernen demonstriert. Beide Ansätze zeigen die Fähigkeit

evolutionärer Algorithmen auf, große neuronale Netze zu trainieren, aber der Algo-

rithmus zum überwachten Lernen ist ineffizient, da er den zur Verfügung stehenden

Gradienten ignoriert.

Weil wir unseren Fokus auf das überwachte Lernen setzen, wenden wir uns dem

Forschungsgebiet der neuronalen Architektursuche zu, in welchem Gradientenab-

stiegsverfahren für das Gewichtstraining verwendet werden. Unser erster evolutionärer

black-box Architektursuchalgorithmus verwendet eine Gewichtsvererbungsstrategie,

die die benötigte Rechenzeit für den Suchprozess signifikant verringert. Das ist eine

i

wichtige Errungenschaft, da neuronale Architektursuche ungeheure Mengen an Re-

chenzeit benötigen kann. In unserem zweiten neuronalen Architektursuchalgorithmus

entfernen wir die black-box-Annahme und verringern die Rechenzeit weiter, indem

Gewichte und Architektur zusammen in einem einzigen Durchlauf optimiert werden.

In dem Bemühen die Anzahl der benötigten Trainingsbeispiele zu verringern, nut-

zen wir unseren Algorithmus um multi-task Lernen durchzuführen und zeigen gute

Ergebnisse im Vergleich mit anderen multi-task Lernalgorithmen.

ii

Abstract

Deep neural networks are flexible statistical models that can represent a large number

of different functions. In a supervised learning setting, they can be trained from data

to approximate the underlying function between inputs and outputs. In many cases,

they generalize well to unseen inputs, which makes them powerful predictive models

that are applied in many different fields of study to great success. However, training a

model that generalizes well is a difficult task that requires much computational power,

large datasets, and a correct choice of a vast number of hyperparameters.

As there is no underlying theory for the influence of many hyperparameters, good

settings can only be found by experimentation. Due to the large hyperparameter

design space and computationally expensive training, only a tiny fraction of the search

space can be explored manually. In consequence, hyperparameters are often set from

experience and some limited experimentation. In this thesis, we will highlight the

influence of the network architecture as an especially important hyperparameter and

develop automated methods to optimize it. Neural network weights and architecture

are strongly tied to each other, and there are different approaches to optimizing both.

We will first explore ideas stemming from neuroevolution research and scale them

up to large-scale neural networks. This becomes possible through a GPU-accelerated

implementation of an evolutionary algorithm for neural network training. We explore

its performance on supervised learning problems and compare it to stochastic gra-

dient descent. A similar evolutionary algorithm for neural network training is also

demonstrated in a reinforcement learning setting. Both approaches show the ability

of evolutionary algorithms to train large-scale neural networks, but disregarding the

gradient in a supervised learning setting results in an inefficient algorithm.

Since we focus on supervised learning problems, we turn our attention to the

field of neural architecture search, which employs stochastic gradient descent for the

weight training. Our first evolutionary black-box neural architecture search algorithm

incorporates a weight inheritance strategy that significantly reduces the amount of

computation time that is necessary for the search process. This is an important

achievement, as neural architecture search can take a prohibitive amount of time. In

our second neural architecture search algorithm, we remove the black-box assumption

and reduce computation time even further by optimizing weights and architecture

simultaneously in a single pass. In an effort to reduce the required amount of training

examples, we use this algorithm to perform multi-task learning and show strong

performance compared to other multi-task learning algorithms.

iii

Mathematical Notation

We will commonly need to refer to the set of integers up to a specific number and

define the following notation for natural numbers n ∈ N: JnK = {1, . . . , n}.
Deep learning makes extensive use of tensors, which can be understood as multi-

dimensional arrays for our purposes. They are necessary, because vectors and matrices

cannot properly express the structure of our data in many cases. Whether one-, two-,

or high-dimensional, we will denote these objects with a straight bold typeface like

a or A. In some cases, we will also use Greek symbols for vectors, matrices, or

tensors. Similar to how a matrix with d1 rows and d2 columns is commonly denoted

as A ∈ Rd1×d2 , we will denote an n-dimensional tensor as B ∈ Rd1×...×dn , where

the dimensions have d1, . . . , dn components respectively.

Components of a tensor will be indexed by subscript just like for matrices, i.e. Ai,j

is scalar if A is a matrix, and Bi1,i2,i3 is scalar if B is a three-dimensional tensor. If

the number of indices is less than the number of dimensions, a slice is returned. For

example, a = Ai ∈ Rd2 refers to the i-th row vector in A ∈ Rd1×d2 . Indexing the

resulting vector at j returns the scalar aj = Ai,j . The process is analogous for tensors

so that b = Bi ∈ Rd2×...×dn refers to the (n− 1)-dimensional tensor that has the first

dimension of B ∈ Rd1×...×dn fixed to index i, i.e. bj1,...,jn−1 = Bi,j1,...,jn−1 .

We will also sometimes define sequences of tensors a1,a2, . . . ,an using subscripts.

Whether a subscript indexes the tensor or refers to different tensors of the same

sequence is made clear from context.

v

Contents

Zusammenfassung . i

Abstract . iii

Mathematical Notation . v

1 Introduction 1
1.1 Neuroevolution . 3

1.2 Neural Architecture Search . 4

1.3 Thesis Overview . 6

1.4 Contributions . 9

I Foundations of Deep Learning 11

2 Deep Neural Networks 13
2.1 Function Approximation . 14

2.2 Parameter Optimization . 15

2.3 Building Blocks . 17

2.4 Modern Architectures . 23

3 Application to Blood Cancer Detection 29
3.1 C-NMC Challenge . 30

3.2 Dataset Description . 31

3.3 Network Architecture . 32

3.4 Experiments . 33

3.5 Conclusion . 37

II Evolutionary Weight Optimization 39

4 Population-based Evolutionary Algorithms 41
4.1 Stochastic Black-Box Optimization 42

4.2 Evolutionary Algorithm . 42

4.3 Representation of Solutions . 43

4.4 Variation Operators . 44

4.5 Selection . 45

vii

Contents

5 Application to Deep Supervised Learning 47
5.1 Evolutionary DNN Weight Optimization 48

5.2 Accelerating Evolutionary DNN Weight Optimization with GPUs . 49

5.3 Experiments . 53

5.4 Conclusion . 60

6 Application to Deep Reinforcement Learning 61
6.1 Atari Environment . 62

6.2 Evolutionary Deep Reinforcement Learning 63

6.3 Experiments . 65

6.4 Conclusion . 67

III Evolutionary Neural Architecture Search 69

7 Lamarckian Evolution of Convolutional Neural Networks 71
7.1 Evolutionary Neural Architecture Search 72

7.2 Weight Inheritance . 73

7.3 Lamarckian Neural Architecture Search 74

7.4 Experiments . 80

7.5 Conclusion . 86

8 Learned Weight Sharing for Deep Multi-Task Learning 87
8.1 Deep Multi-Task Learning . 88

8.2 Neural Architecture Search for Deep Multi-Task Learning 89

8.3 Natural Evolution Strategy . 91

8.4 Learned Weight Sharing . 94

8.5 Experiments . 99

8.6 Conclusion . 105

9 Conclusion 107

IV Appendix 111

List of Algorithms 113

List of Figures 115

List of Tables 117

Bibliography 119

viii

Chapter 1

Introduction

Deep learning has significantly advanced the state-of-the-art in many difficult learning

problems. For example, large improvements over traditional computer vision algo-

rithms have been achieved on the ImageNet image classification benchmark [106]

using deep neural networks (DNN). In the domain of game playing, the deep rein-

forcement learning system AlphaZero [115] can play the perfect-information games

Go, Chess, and Shogi at super-human level. AlphaStar [136] is competitive with

professional players in the real-time computer strategy game StarCraft 2, and OpenAI

Five [10] is competitive with professional players in the computer game Dota 2, which

requires a team of five agents to cooperate. In natural language processing, significant

advances in subfields like language modeling, translation, and speech recognition have

been driven by deep learning as well. Many of these advances are due to new DNN

architectures like the Transformer [134], and unsupervised pre-training methods like

BERT [24]. As a final example, generative image modeling has become good enough

to produce photo-realistic high-resolution images of human faces through the use of

DNNs, for example with StyleGAN [55, 56] or PG-SWGAN [143].

Thanks to mature deep learning frameworks such as PyTorch [89] or TensorFlow [1],

it has become easier than ever to experiment with deep learning models. This allows

deep learning to be utilized in other fields of study, e.g. medicine. There is an increas-

ing amount of applied research on medical applications that use deep learning for tasks

like detecting diseases in various modalities, such as x-ray images [48], CT scans [90],

MR scans [91], or histological samples [35]. Other uses include segmentation of

cells [133], organs [57], and more, or providing information about surgical procedures

from video [3, 37] that can be used in real-time computer assistance systems for

surgeons. However, despite the barrier of entry being quite low, it is still difficult to

take advantage of deep learning in real-world settings for a variety of reasons.

First, training a DNN requires comparatively expensive computational resources.

Graphics processing units (GPU) are a necessity to train modern networks in a reason-

able timeframe, because DNN models make extensive use of the parallel processing

capabilities provided by GPUs. Due to the ever increasing amount of weights in

DNNs, GPUs with enough memory to hold these weights are especially important.

For this reason, many large models can only be trained on very expensive GPUs or

1

Chapter 1 Introduction

even specialized neural network hardware such as TPUs [53]. Inference, i.e. running a

model just to get its outputs, is computationally cheaper but still difficult on low-end

machines. This is a concern especially for edge computing, such as on mobile devices,

and can only be achieved with specialized architectures that take such constraints into

account. Nevertheless, because of the continued progress on hardware development,

these problems will become less significant over time.

Next, DNNs require large amounts of data for training in order to achieve strong

generalization. This is a consequence of the large amount of weights in DNNs. In

general, increasing the size of a DNN leads to better results but only if enough data

is available as well [86]. The supervised learning approach, which requires manu-

ally labeling training examples, is still the most useful for many practical problems.

Consequently, it becomes work-intensive and costly to collect a big enough dataset to

apply deep learning. We will see in Chapter 3 how transfer learning can be leveraged,

and in Chapter 8 how multi-task learning can be leveraged to reduce the amount of

labeled data that is necessary to train a DNN.

How well a DNN model performs will strongly depend on the many hyperparam-

eters of deep learning systems, such as network architecture, weight initialization,

optimizer, learning rate or learning rate schedule, regularization method and its hyper-

parameters, data augmentation, and many more. A hyperparameter of special interest

is the network architecture because it is arguably among the most important factors

that influence the final performance of a model. As we will see in Section 2.4, new

architectures have continued to push the state-of-the-art in image classification, and

the same is true in other domains as well, e.g. natural language processing where

the Transformer [134] architecture is currently extremely prevalent and has mostly

replaced older architectures.

It is difficult to experiment with hyperparameters to find a good configuration

because the design space is extremely large and the training of DNNs is so expensive

and time-consuming. To illustrate, consider the network architecture, which is a

directed acyclic graph (DAG) with a number of nodes that depends on the granularity

of the search. If the search happens on the coarse level of network layers, a small

network architecture might contain 10 layers, i.e. nodes. There are already more than

4× 1018 different DAGs with 10 nodes [46], and this is not yet considering the fact

that network architectures contain different kinds of nodes, many of which also have

their own hyperparameters. Accordingly, the search is rarely performed in the space of

all DAGs and instead focuses on subspaces that are known to perform well. However,

even these reduced search spaces are combinatorial and extremely large.

Therefore, hyperparameters are usually set from experience, and experiments are

performed for a few limited configurations. This often amounts to re-using the most

popular or recent architecture from literature and running a few experiments with

different learning rate schedules. The result is very likely to be a sub-optimal config-

uration for any given problem. It would be desirable to have automated techniques

2

1.1 Neuroevolution

that search for hyperparameters (among them the architecture), which achieve the best

possible training results. Such a system would lower the required level of expertise

to employ deep learning systems, and make deep learning accessible even to people

unfamiliar with cutting edge machine learning research. However, due to the afore-

mentioned large size of the search space and the computational requirements of DNN

training, hyperparameter optimization for DNNs is a difficult problem. We will tackle

it in Part III of this thesis.

In summary, we have identified three problematic areas that can be addressed to

further lower the barrier of entry to the deployment of deep learning based systems.

We will outline three goals and identify them as (G1), (G2), and (G3) in order to refer

back to them in the further text of the thesis and relate our work to these goals. The

main goal is to automate the hyperparameter selection process in order to avoid this

time-consuming, manual work that needs to be performed by machine learning experts

(G1). We are only concerned with the architecture as a hyperparameter, since it has

strong influence on the result and is difficult to select manually due to the graph-based

structure and consequently large search space. With the use of automated search

techniques to select the architecture, the computational requirements rise even further.

Therefore, another goal is to reduce the amount of computation required during such

a search process (G2). Finally, even with automated architecture selection, large

amounts of labeled data are still essential. We make it our third goal to reduce the

amount of training data necessary (G3).

Outline. In Sections 1.1 and 1.2 we introduce the fields of neuroevolution and

neural architecture search respectively. They represent important work towards our

main goal (G1) and form the basis of our own approaches. Then, in Section 1.3, we

present an overview of the whole thesis.

1.1 Neuroevolution

Automatically learning neural network architectures is a long-standing goal that

sparked the field of neuroevolution. Earlier neuroevolution works optimize network

architectures together with the network weights using some form of evolutionary

algorithm. The approaches can be divided into those that apply an existing general

evolutionary method to the problem of concurrent weight and architecture optimiza-

tion for neural networks, and those that developed specialized algorithms based on

evolutionary principles. Publications from the first category include using a genetic

algorithm [141], evolutionary programming [109], or covariance matrix adaptation

evolution strategy [45] for neuroevolution. The main issue here is developing a

good representation for the architecture in the framework of the chosen optimization

method. Examples from the second category of specialized approaches are SANE [84],

ESP [33], CoSyNE [32], and NEAT [123] among others. NEAT is a well-known neu-

roevolution algorithm that allows to grow neural networks starting with a minimal

3

Chapter 1 Introduction

network and expanding it through mutation and principled crossover between network

graphs.

What all these approaches have in common is that they have predominantly been

applied in small-scale reinforcement learning domains with low-dimensional inputs

and outputs. This is understandable, because these algorithms operate on single graph

nodes or edges and therefore do not scale very well. For example, NEAT has been

most successful on problems that can be solved with very small neural networks on

the order of tens of nodes and with a similar amount of inputs [122, 124, 140, 120]. In

contrast, consider the ImageNet benchmark where current DNN methods use millions

of nodes and work on images of 331× 331 pixels, i.e. around five orders of magnitude

more nodes and four orders of magnitude more inputs. Consequently, directly applying

NEAT to neural architecture search on problems that are commonly solved by deep

learning today is bound to fail. Methods based on individual nodes and weights will

not be able to explore any significant part of the extremely large search space and will

generate small, suboptimal solutions.

HyperNEAT [121] is a neuroevolution method building on NEAT that is supposed

to alleviate this problem. However, the method fails to deliver good results even when

applying it to easy high-dimensional supervised learning problems. Verbancsics and

Harguess [135] test if HyperNEAT can evolve a DNN for image classification on

MNIST. In theory, HyperNEAT should be well suited to re-discover a convolutional

architecture, as the genotype is structured so that symmetries and repeated patterns

are easy to express. However, HyperNEAT merely achieves 23.9 % test accuracy on

MNIST (compared to around 99.9 % for gradient-based DNN methods) and does not

rediscover convolutional structures. Even when the convolutional structure is enforced

externally, it still only achieves 27.7 % test accuracy. Clearly, a different approach is

necessary to bring the ideas of neuroevolution into the field of deep learning with its

large-scale problems and networks.

1.2 Neural Architecture Search

Research in the field of neural architecture search (NAS) is the modern equivalent to

neuroevolution. The main difference to neuroevolution is that the weights correspond-

ing to a DNN architecture are trained with stochastic gradient descent (SGD) to exploit

its efficiency on supervised learning problems. We will see in more detail in Chapter 5

how well SGD performs at weight training on supervised problems compared to evolu-

tionary algorithms. In NAS, the method to optimize the architecture is independent of

the gradient-based weight optimization, and there are many different approaches using

reinforcement learning [154, 155, 12], evolutionary algorithms [70, 92, 5, 80, 117],

Bayesian methods [69, 54, 51], or even random search [145]. Random search works

surprisingly well if the search space is biased to contain many good solutions, which

is usually the case with current NAS approaches, as the search spaces are informed

4

1.2 Neural Architecture Search

by hand-crafted architectures from recent machine learning research. In fact, there

is research pointing out that many NAS algorithms on average perform the same as

random search on such search spaces [149]. NAS algorithms are able to automatically

find very strong architectures as we will see in Section 2.4, but the listed approaches

have considerable downsides as well.

The typical approach is to treat NAS as a black-box optimization problem, i.e. the

architecture optimization procedure creates candidate architectures, they are trained

by SGD, and return a validation loss or similar measure, which is used to guide the

optimization. This requires the training of many DNNs and is computationally very

expensive. For example, Zoph and Le [154] use 800 GPUs for 28 days (22,400 GPU-

hours) to perform neural architecture search on CIFAR-10, while Zoph et al. [155]

are able to reduce these requirements to 500 GPUs for 4 days (2,000 GPU-hours).

Understandably, an important goal is reducing these still enormous computational

requirements.

This is one of the reasons why many recent approaches have shifted their perspective

on the problem and do not try to perform black-box optimization any longer. Weight

inheritance is one possible fix that speeds up training, and we will examine this idea

in Chapter 7. Another important line of research deals with one-shot NAS algorithms

that learn weights and architecture concurrently in a single training process. Thereby,

they avoid the repeated training of DNNs that black-box NAS algorithms have to

perform. We will work with such an algorithm based on natural evolution strategies in

Chapter 8.

A prominent example of one-shot NAS that has spawned a lot of follow-up work is

DARTS [71]. DARTS makes architecture search differentiable with a deterministic

attention mechanism. It searches in the space of complete DAGs with four nodes,

which represent input values for the operations that are represented as edges. The goal

is to select between a number of different operations from a given set for each edge

(including no operation, i.e. the edge is not supposed to exist) in order to determine the

network architecture. The choice between operations on an edge connecting node i to

node j is made differentiable by expressing it as a weighted sum over the outputs of

all possible operations applied to the same input from node i:

v (j) =
∑
f∈Ω

wi,j,ff (v (i)) , (1.1)

where v (i) is the value at node i,Ω is the set of operations, andwi,j,f is the normalized

coefficient for operation f on the edge between nodes i and j. By adjusting the

coefficients, individual operations can be made more or less important for the result,

effectively changing the architecture represented by the DAG.

The network architecture, i.e. coefficients for the weighted sum on every edge, and

the network weights are both trained by SGD but in two different passes. First, weights

are trained using a loss on the training set as usual, while the architecture coefficients

5

Chapter 1 Introduction

are kept fixed. Then, the architecture coefficients are trained by minimizing a loss on

the validation set after a single virtual SGD step on the weights. This single SGD step

stands as a proxy for a complete training with SGD, as the authors want to select the

architecture that has the lowest validation loss after training with SGD. After training,

each edge in the DAG can be assigned the operation with the highest coefficient.

However, during training all operations are active at all times. This results in increased

computational cost and GPU memory requirements but, at 36 GPU-hours for a search

on CIFAR-10, is still vastly more efficient than black-box NAS algorithms.

AtomNAS [78] uses the same idea of a deterministic attention mechanism but

modifies the search space. Instead of selecting which operation to apply to a whole

input tensor, this method searches operations for each channel of the input, making it

a lot more fine-grained than before but still more coarse than the older neuroevolution

approaches. By pruning operations whose learned coefficients are almost zero during

the training instead of after the training, the whole process gets accelerated as well.

ProxylessNAS [13] uses the same search space as DARTS and is mainly concerned

with reducing GPU memory consumption and computation. This is achieved by

sampling operations from a probability distribution instead of performing a weighted

sum. The coefficients are learned using a method called BinaryConnect [21], which is

a training method originally invented to train neural networks with binary weights.

In a similar vein, SNAS [146] also samples its operations from the so-called concrete

distribution which allows to analytically derive the gradient w.r.t. the distribution

parameters. “This renders SNAS a differentiable version of evolutionary-strategy-

based NAS” [146].

Indeed, there are also one-shot NAS algorithms building on evolutionary strategies.

Shirakawa et al. [114] define a probability distribution over the network architecture

and perform an alternating optimization of weights using SGD and distribution pa-

rameters using natural evolutionary strategies. In their publication, the architecture

is modeled by a Bernoulli distribution, i.e. they can express binary choices such as

whether or not to skip a layer in a predefined architecture, which of two activation

functions to use, or turning connections between layers on or off. This approach

was extended to a more complete architecture search by Akimoto et al. [2] with a

categorical distribution to model the architecture choices and a DAG-based search

space like previous NAS approaches.

1.3 Thesis Overview

This thesis is split into three parts. In the first part we introduce the foundations of

deep learning and demonstrate the concepts using an application to cancer detection

from microscopic images. The second part deals with evolutionary DNN weight

optimization on supervised and reinforcement learning problems. This is motivated

by the goal to connect neuroevolution methods to modern, large network architectures.

6

1.3 Thesis Overview

Finally, the third part presents two NAS approaches. First, we reduce required

computation using an evolutionary NAS algorithm with Lamarckian properties and

second, we reduce both required computation and data using an evolutionary one-shot

NAS algorithm in combination with multi-task learning.

We generally test our methods on image classification problems because they are a

great test bed for deep learning. Images are high-dimensional data that pose difficult

learning problems. Furthermore, many practical deep learning applications learn from

supervised or semi-supervised image data, e.g. all the previously mentioned medical

applications [48, 90, 91, 35, 133, 57, 3, 37].

1.3.1 Foundations of Deep Learning

The first part of this thesis introduces deep learning. After a general discussion of

function approximation with DNNs, we focus on building blocks and architectures,

since they are essential to the understanding of NAS methods. We then showcase a

successful application of DNNs to cancer detection that resulted in third place in an

international competition.

1.3.2 Evolutionary Weight Optimization

Literature has shown that applying classical neuroevolution methods like NEAT or

HyperNEAT to large DNNs does not produce results competitive even with simple

hand-designed DNNs. However, there has not been much research into connecting

other evolutionary algorithms (EA) with modern DNNs. It is an interesting question if

neuroevolution, i.e. architecture search without using SGD for weight training, is still

possible with large architectures. Like other architecture search methods, this would

tackle the main goal (G1) that we identified earlier. However, unlike existing NAS

approaches, having a unified algorithm that trains weights and architectures using

the same means would be an elegant approach that lends itself to easier analysis than

systems that have multiple interacting optimization procedures.

Such a unified algorithm would have unique advantages stemming from properties

of EAs as well. First of all, they are extremely easy to parallelize, which allows to

reduce the wall-clock optimization time by exploiting parallel computational resources.

Then, the black-box nature of EAs allows DNNs and their objective functions to be

non-differentiable. This allows, e.g. for direct optimization of objectives like the

F1-score. In contrast, SGD depends on the whole system being differentiable and can

only optimize proxy loss functions such as the weighted cross-entropy instead of the

F1-score itself. Finally, the different optimization behavior of EAs might find different

kinds of optima than SGD. This can result in different properties, e.g. more robust

reinforcement learning agents as hinted in [66].

As a preliminary step to neuroevolution, we aim to answer the simpler question:

Can we train a large DNN with fixed architecture with an EA and achieve competitive

7

Chapter 1 Introduction

results to SGD? If this is not possible in a satisfactory manner, training DNNs with

an EA while also simultaneously optimizing their architecture is unlikely to work.

Therefore, to start out we look at weight training in isolation from an evolutionary

optimization perspective.

In Chapter 5, we use a population-based EA to train a DNN on a supervised

image classification problem. We build on previous work that created the limited

evaluation EA [85] and massively scale up their approach, identify problems, and

propose fixes. Our test problem is the MNIST image classification dataset, which

is significantly more challenging than the datasets other publications have used to

evaluate evolutionary approaches, despite being regarded as a very easy problem in

the machine learning community. Our EA optimizes a DNN with around 100,000

weights, which is also significantly more than usually tackled with EAs. We find that

it is indeed possible to achieve good training results with our EA, but disregarding the

gradient in a supervised learning setting results in an inefficient algorithm compared

to SGD.

Reinforcement learning is a problem setting where it is more difficult to exploit

gradient information, and we demonstrate another EA approach on a benchmark

of Atari games. In Chapter 6, we build on work by Such et al. [125] who train a

DNN agent to play Atari games. We identify fitness noise as a significant problem

and increase the algorithms robustness with more suitable parameter choices and a

re-evaluation procedure for elites. This leads to improved scores and outperforms

gradient-based approaches in some games.

In summary, EAs are definitely applicable to large-scale problems like the training

of DNNs and can bring unique advantages. However, in a supervised learning setting,

it does not seem worth it to disregard the gradient information as training with SGD is

vastly more efficient. Since we are concerned with exactly these kinds of problems, we

will turn our attention to NAS approaches that train weights by SGD while optimizing

the architecture with EAs.

1.3.3 Evolutionary Neural Architecture Search

Despite the high efficiency of SGD compared to EAs for weight training, NAS

algorithms that train weights with SGD are still extremely expensive. They either

need to train thousands of networks or perform computationally expensive tricks to

cast NAS as a differentiable problem. A natural question to ask is: Can we make NAS

more computationally efficient? A more efficient NAS algorithm tackles the goals of

automatic architecture search (G1) and reduced computational requirements (G2) that

we identified earlier.

In Chapter 7, we use a standard NAS approach that performs black-box architecture

optimization with an EA to find convolutional DNN architectures on image classi-

fication problems (G1). As a black-box approach, every fitness evaluation requires

8

1.4 Contributions

the training of a DNN which makes the approach expensive to run. This is especially

true for image classification problems, as the networks have increased computational

requirements with increasing image size. To combat this, we use a weight inheri-

tance scheme that can be regarded as an implementation of Lamarckian evolution,

i.e. the inheritance of acquired traits. Instead of starting the training from random

weights for every network architecture, the weights of a parent solution are used as

a starting point to reduce training time. This results in a strong acceleration of the

evolutionary architecture search process while keeping accuracy the same as without

the weight inheritance process (G2). These claims are validated on four different

image classification datasets.

In Chapter 8, we want to tackle all three goals of architecture search (G1), compu-

tational efficiency (G2), and data efficiency (G3) in a single algorithm. We present

a one-shot NAS algorithm based on natural evolution strategies that concurrently

optimizes weights and architecture. This means it is not necessary to train thousands

of networks and therefore improves computational efficiency (G2). The approach is

combined with deep multi-task learning, i.e. multiple supervised learning problems are

learned at once in order to share knowledge and improve results on each task. When

data for other similar tasks is already available, which is often the case, this tackles

goal (G3), as good results can be achieved with less data for the target task. Our

approach significantly improves upon previous deep multi-task learning algorithms on

standard multi-task learning image classification benchmarks.

1.4 Contributions

This thesis connects evolutionary approaches to modern, large-scale deep learning

in a resource-constrained setting. In this section, we list important contributions to

scientific progress that stem from our EA applications to weight training, architecture

search, and multi-task learning.

For weight training, we advance the scale of networks that can be optimized by

an EA on a single machine with a single GPU to around 100,000 weights compared

to 1,500 in our LEEA [85] baseline. Using our framework, we achieve the highest

MNIST accuracy to date (to the best of our knowledge) for a neural network trained

with an EA on a single machine and GPU. This demonstrates that EAs can be a viable

alternative to SGD for neural network training even without enormous computational

resources, and our open-source implementation opens the door for further research on

this topic to find and exploit unique advantages that EAs offer for this problem.

For architecture search, we design an EA and search space to create an evolutionary

NAS algorithm that finds architectures with high accuracy on image classification

benchmark datasets while using only a single GPU and multiple orders of magnitude

less computation than similar [80, 98] approaches. This is realized by integrating

weight inheritance into the EA mutation operators and demonstrates that NAS with

9

Chapter 1 Introduction

large-scale networks is possible even in resource-constrained settings.

For multi-task learning, we provide a new perspective on configuring a deep MTL

system by formulating the process as a multi-task architecture search in which weight

sharing between task-specific networks is optimized. Using a hybrid NES and SGD

optimization, our LWS algorithm can perform deep MTL without manually choosing

an MTL architecture and achieves significantly improved accuracy over recent MTL

algorithms [81, 102, 79] on the CIFAR-100 and Omniglot benchmark datasets.

10

Part I

Foundations of Deep Learning

Deep neural networks are a class of statistical models that are used extensively in this

thesis. Good introductory books such as [34] exist already; therefore, we will focus

on the aspects of DNNs that are important to the further work in this thesis. Chapter 2

will explain how DNNs are used and trained but places special emphasis on their

building blocks and architecture. This will be useful for later parts of the thesis that

deal with neural architecture search. Furthermore, the purely theoretical description

of DNNs is supported by Chapter 3 with an exemplary application to blood cancer

detection.

11

Chapter 2

Deep Neural Networks

The research on artificial neural networks begins in 1943 with the seminal work of

McCulloch and Pitts [77] who develop a first computational model of neurons that

can be connected in graphs to create neural networks. There are two main lines of

research; one that strives for biological plausibility and explaining the human brain,

and one that strives to use them as a tool for artificial intelligence. Note that these

goals are not mutually exclusive, and this divide is merely a question of research focus.

Research into the latter direction eventually creates Rosenblatt’s perceptron [103] in

1958 along with a first algorithm that can actually learn the weights of the perceptron

from data. In 1986, Rumelhart et al. [105] present the multilayer perceptron model

along with the generalized delta rule for learning from data.

The multilayer perceptron is already very similar in concept to today’s deep neural

networks, and the learning algorithms in use today still build on the ideas presented

by Rumelhart et al. [105]. Both types of artificial neural networks are graphs with

weighted edges where each node performs some kind of operation on its inputs. In

the classical multilayer perceptron model and its derivatives, this is a weighted sum

over its inputs followed by the application of a non-linear activation function. Since

then, the field has evolved, and now DNNs contain many different kinds of nodes with

specialized functions. Since we make extensive use of DNNs throughout this thesis, it

is important to have a solid understanding of their basic concepts.

Outline. In Section 2.1, we introduce DNNs as a class of models with very

strong function approximation capabilities and discuss issues regarding supervised

learning with DNNs. Next, we touch on the optimization process that is used to train

networks in Section 2.2, as it is important to understand it to appreciate the differences

between the standard gradient descent based training and evolutionary approaches. In

Section 2.3, we give an overview of modern building blocks that are used to create

network architectures. We review network architectures that achieved state-of-the-art

results on the ImageNet benchmark in Section 2.4. This will show how network

architectures created from the previously introduced building blocks evolved over

time. The more recent instances of these architectures are in common use today to

solve a wide variety of problems.

13

Chapter 2 Deep Neural Networks

2.1 Function Approximation

Deep neural networks are a powerful class of statistical models for function approx-

imation. Such a model is defined by its network architecture and network weights.

The architecture is a directed acyclic graph of operations applied to a network input,

and each operation may involve (usually real-valued) weights that determine the

operation’s output. Conceptually, there is no difference between deep and shallow

neural networks, but DNN is the term used for the modern network instances whose

architectures are made up from many different computational layers so that there is a

long computational path from input to output.

Neural networks can approximate any continuous function on a compact1 domain to

any desired accuracy, given that an appropriate architecture is chosen and the weights

are set correctly. This fact was proven early on for two-layer dense networks by

Hornik et al. [42]. More recently, similar proofs have been developed for Lebesgue

integrable functions using modern architectures, such as residual networks [68] or

ReLU-networks with different width and depth bounds [74]. This so-called universal

function approximation property of neural networks can be used in various ways. In

this thesis, we are mostly concerned with supervised learning, i.e. we use the network

to approximate a given mapping between data and labels as best as possible.

Thanks to the universal function approximation property [42, 68, 74], any finite

training dataset can be perfectly interpolated by DNNs, given that the network’s model

complexity is high enough and follows the restrictions outlined by the referenced

proofs. For example, an interesting demonstration of this fact by Zhang et al. [151]

shows that large DNNs with sufficiently high model complexity are able to perfectly

fit random datasets.

Model complexity is difficult to formally define for DNNs, but it depends on the

network architecture, which, among other things, determines the amount of weights.

Recent research suggests that the training process and dataset labeling also play a

role in characterizing model complexity of DNNs [86]. However, rather than finding

weights that perfectly interpolate the training set, we are actually interested in weights

that generalize well to an unknown test set that follows the same distribution as the

training set. Only this property makes DNNs useful in practical predictive applications.

The generalization error of statistical models has been studied extensively and can

be decomposed into model variance and bias [50]. The model variance quantifies

how much its predictions change if the dataset changes, and it increases with model

complexity. The model bias quantifies how much error is introduced by the model

being too simple to represent the true data distribution and decreases with model

complexity. Depending on the relative change between variance and bias as the model

complexity increases, the total generalization error changes as well. It usually follows

a U-shaped curve, decreasing first and then increasing again, i.e. additional model

1e.g. any finite topological space, or closed and bounded subsets of n-dim. Euclidean space.

14

2.2 Parameter Optimization

complexity hurts generalization after some point, which is known as overfitting.

This is in contrast with empirical observations about DNNs, which can contain vast

numbers of weights and still achieve very good generalization. This phenomenon was

investigated by [118, 8, 86] and has been named deep double descent. The observation

is that the classical U-shaped error curve is observed initially, but when the model

complexity is increased even further, the generalization error begins to decrease again.

Since extremely large models are preferred according to these results, classical

neuroevolution on the basis of single nodes is hardly applicable anymore. Modern

DNNs often operate in this regime of high model complexity, which in practice means

that the networks have a high number of weights and an appropriate architecture

so that they achieve nearly zero training error. As a consequence of these massive

model complexities, it seems more appropriate to describe DNN architectures in terms

of building blocks that each already contain a large number of weights instead of

individual neurons. This is the same view that modern NAS approaches have adopted

as well.

2.2 Parameter Optimization

After defining a network architecture, the DNN model has to be trained on a dataset by

optimizing its weight values. As mentioned earlier, we focus on supervised learning

from a labeled dataset. More formally, we have a dataset{(
x(i),y(i)

)}
i=1...N

⊆ X × Y (2.1)

of tuples with datapoints x(i) and their associated ground truth label y(i). We define a

DNN model f (θ,x) : Θ× X → Y that uses weights θ from the weight space Θ to

map from the input space X to the label space Y .

For a formal description we will assume that x(i) ∈ X and y(i) ∈ Y , but this

assumption is violated in practice. In actual DNN implementations, all calculations

are performed on batches of data for efficiency reasons. Therefore, both input and

label tensors would be expanded with a batch-dimension on their first axis before

being used as input and target for the DNN. Furthermore, the labels y(i) must not

necessarily be in the same format as the network output. See for example Equation 2.7

for a loss function that expects labels to be integers while the network output is a

vector.

The goal is to set the DNN weights θ so that a loss function L (θ) : Θ → R is

minimized. The loss function expresses the approximation error between network

outputs f
(
θ,x(i)

)
and ground truth labels y(i) as a function of the network weights θ.

The goal of training the DNN can now be expressed as the optimization problem

θ∗ = arg min
θ
L (θ) , (2.2)

15

Chapter 2 Deep Neural Networks

i.e. finding weights θ∗ that minimize the approximation error on the dataset. Note that

we assume the network architecture to be fixed beforehand. Therefore, the error L (θ)

is solely determined by the network weights. However, as we will see in Section 2.4,

the architecture has significant influence on the network error and should be chosen

to fit the dataset. Nevertheless, the optimization of architecture as well as weights is

much more difficult and completely avoided in the standard training setting that we

explain now. We will later see in Part III how we can extend the optimization problem

to included the network architecture as well.

Loss functions aggregate the loss over a batch of B examples. The batch size B

can in theory be chosen equal to N , i.e. the aggregation would be performed over

the whole dataset, but this is prohibitively expensive in terms of computation. Let us

define

L (θ) =
1

B

B∑
i=1

`
(
f
(
θ,x(i)

)
,y(i)

)
, (2.3)

where ` (ŷ,y) : Y × Y → R returns the error between the network output ŷ and the

label y. Its definition depends on the structure of the label space Y and the problem

that needs to be solved. For example, the mean-squared error could be expressed as

`2 (ŷ,y) = ‖ŷ − y‖22 (2.4)

and is used for various regression problems with real-valued label spaces of arbitrary

dimensionality. Since we concern ourselves mostly with image classification in this

thesis, the negative log-likelihood or cross-entropy loss

`pr.xent (ŷ,y) = −
C∑
i=1

yi log (ŷi) (2.5)

will be used very often. In this case, C is the total number of classes and the label

space

Y =

{(
p1 . . . pC

) ∣∣∣∣∣ pi ∈ [0, 1] ∧
C∑
i=1

pi = 1

}
(2.6)

contains vectors of class probabilities. Since all but one component in the ground

truth label vectors are zero (one-hot encoding), the sum always has just a single

non-zero summand. However, in implementation, DNNs for classification are built to

output real-valued class scores instead of probabilities and trained with the following

equivalent formulation of the cross-entropy loss

`xent (ŷ, c) = − log

(
exp (ŷc)∑C
j=1 exp (ŷj)

)
= −ŷc + log

C∑
j=1

exp (ŷj) , (2.7)

where c is the index of the target class. Equation 2.7 is the negative log-likelihood

loss combined with a softmax function to be able to treat the model output as class

16

2.3 Building Blocks

probabilities. In this formulation, network output and label space are encoded dif-

ferently, i.e. `xent : RC × JCK → R, but it is more numerically stable and therefore

preferred. Furthermore, it is always possible to convert between the integer class

index and one-hot encoding of labels. It is easy to see that `xent is minimized when the

network output for the target class c is large compared to all remaining outputs.

In order to minimize L (θ), it is differentiated w.r.t. θ and then stochastic gradient

descent is performed. Given that modern datasets are very big, it would be very

costly to use the whole dataset to calculate both L (θ) and∇θL (θ). Instead, a random

batch of data is sampled and used for both calculations. The difficulty then lies in

the efficient computation of ∇θL (θ), even for a small batch of data, due to the large

number of gradients that have to be calculated. This is achieved by the backpropagation

algorithm [105], which is a special case of reverse-mode automatic differentiation [7].

Using the chain-rule and by caching intermediate results, the derivative w.r.t. every

component of θ can be efficiently determined. With it, the weights can be updated in

the direction of lower loss by setting

θ ← θ − η∇θL (θ) , (2.8)

where η is a small real number called the learning rate. This process of repeatedly

sampling a batch of data, propagating the data through the network to get the loss,

performing reverse-mode differentiation to get the derivative, and then updating the

weights is the essence of training a DNN.

However, many improvements to the simple stochastic gradient descent step can

be made. This has led to the development of numerous so-called optimizers. An

extremely popular optimizer with good empirical performance is Adam [59]. Similar

to the way batch normalization layers (see Subsection 2.3.5) keep running statistics

about the first and second moment of the data flowing through the network, Adam

keeps running statistics about the gradients’ first and second moments. Using this

information, the learning rate is scaled individually per weight, increasing with either

large first moments or small second moments. This leads to accelerated convergence

compared to standard SGD.

2.3 Building Blocks

Classical multilayer perceptrons consist of nodes that have weighted connections to

and from other nodes and compute functions of their scalar inputs. This effectively is

a computational graph where each graph node corresponds to a node in the multilayer

perceptron. We could describe DNNs in the same way, but this approach is not

well suited to effectively describe the massive DNN models that are in use today.

Instead of operating on scalar values, the computational graph is expressed in terms of

building blocks that operate on tensors. In addition to being easier to handle, such a

17

Chapter 2 Deep Neural Networks

representation matches the computational model of GPUs that are used to accelerate

DNN computations.

Figure 2.1 shows a simple DNN architecture (computational graph) for image

classification that consists of convolutional layers, batch normalization layers, ReLU

activation functions, average-pooling layers, and dense layers. In our example, the

input to the network is a 32× 32 pixel RGB image. In order to use an image as the

input for a DNN, it is represented as a real-valued three-dimensional tensor, here

x ∈ R3×32×32, with the first axis indexing the color channels and the remaining two

axes indexing the spatial position. If the image was grayscale instead of RGB, we

would have an input tensor x ∈ R1×32×32 .

The input data flows through the computational graph and is transformed by each

of the layers before being output after the final layer. Notice how its spatial structure

is preserved throughout the first part of the network, because all of the layers there are

equipped to deal with spatial data. However, the dense layers accept vector-valued

inputs only, so that the tensor has to be reshaped, and the spatial structure is lost.

Looking at the graph as a whole, it defines a function that transforms an image to a

real-valued vector that can be interpreted as scores for a classification problem. We

will now go over each of the contained building blocks in detail in the next sections.

2.3.1 Dense Layer

The dense layer, also called fully connected or linear layer, is a conceptually very

simple block that takes an input vector u ∈ Rd1 and applies a linear function to create

its output

v = Wu + b (2.9)

with weights W ∈ Rd2×d1 and bias b ∈ Rd2 . Since it is a linear function of its

inputs, a neural network made only from dense layers can only fit linear functions.

To approximate arbitrary functions, it is necessary to intersperse the network with

non-linear activation functions.

2.3.2 Activation Functions

Activation functions are applied element-wise to tensors of arbitrary dimensionality in

between linear layers to provide the non-linearity that is necessary for universal func-

tion approximation. Traditionally, the sigmoid and hyperbolic tangent functions have

been used, but both have problems related to vanishing gradients during optimization,

because their gradients approach zero for large positive or negative values. Instead,

rectified linear units

ReLU (x) = max (0, x) , (2.10)

which have been shown in [31] to improve DNN training, are now the activation

function commonly found in literature.

18

2.3 Building Blocks

Input image
3× 32× 32

Conv2D
16× 32× 32

BatchNorm2D
16× 32× 32

ReLU
16× 32× 32

AvgPool2D
16× 16× 16

Conv2D
32× 16× 16

BatchNorm2D
32× 16× 16

ReLU
32× 16× 16

Flatten
8192

Dense
256

ReLU
256

Dense
10

Figure 2.1: A simple convolutional neural network architecture for classification of
32 × 32 pixel three-channel images into 10 classes. For the first four
nodes in the graph, the data has spatial structure with a height and width
of 32 pixels. For the next four nodes in the graph, the data still has spatial
structure but has been downsampled to a height and width of 16 pixels.
Finally, in the last part of the graph, the data has lost its spatial dimensions
and is now a vector. The colored building blocks contain trainable weights,
while the rest of the blocks perform fixed functions.

19

Chapter 2 Deep Neural Networks

2.3.3 Convolutional Layer

To motivate the use of convolutional layers, consider the case of applying a dense

layer to an image input. Even moderately sized images of e.g. 100× 100 pixels with

a single color channel result in an input vector with 10,000 elements when flattened.

This leads to an extremely high number of weights in the linear layer and consequently

high resource requirements and higher model complexity, for which more data is

necessary to achieve a good generalization error.

However, this situation can be improved by considering desired invariance prop-

erties. Imagine the input image to be embedded in a larger black image. Ideally, a

classification network would output the same scores, no matter at which position the

image is embedded in the larger image. Exactly this translation invariance is exploited

by convolutional layers.

The convolutional layer can be understood as a special case of the dense layer that is

applied to local chunks of structured inputs while sharing weights between applications

at different chunks. Even though it can be expressed in arbitrary dimensionality, we

will now describe the spatial (two-dimensional) convolution, which accepts a three-

dimensional input tensor u ∈ Rc1×h1×w1 with one channel dimension and two spatial

dimensions. Such an input could represent a c1-channel image of h1 × w1 pixels, but

generally c1 will be much larger than the typical three channels for a color image.

These tensors are also called a feature map, because the values ua in each channel a

can be understood as indicators for the presence or absence of a channel-dependent

feature at each spatial position.

The output will be another three-dimensional tensor v ∈ Rc2×h2×w2 and is created

by first performing a valid cross-correlation of u with a kernel k ∈ Rc2×c1×hk×wk ,

and then adding a bias b ∈ Rc2 to all elements in each output channel. The number of

output channels c2 and kernel size hk × wk are hyperparameters of the convolutional

layer. The cross-correlation, also called sliding dot-product, is used in practice instead

of a true convolution. Since cross-correlation and convolution are interchangeable if

the kernel is appropriately transformed, there is no functional difference for DNNs as

kernels are learned from data anyways.

The kernel k expresses a multi-channel cross-correlation with c2 output channels

that are calculated independently. For each output channel with index b ∈ Jc2K, u is

convolved with kb by sliding a three-dimensional window of size c1×hk×wk over the

spatial dimensions of u. The stepsizes hs and ws with that the volume is moved along

the spatial axes are called stride and are hyperparameters. In the simplest case, both

are set to one. This sliding window process results in a number of chunks arranged

in a grid that are of the same size as the kernel kb. For every chunk, an elementwise

multiplication between it and the kernel kb is performed before summing all elements.

By performing this dot product for every chunk and collecting the resulting scalar

values, we create a grid of values that make up vb. Finally, the bias bb is added to

20

2.3 Building Blocks

every element of vb. More formally, the output elements are given by

vb,i,j =

c1∑
a=1

hk∑
m=1

wk∑
n=1

ua,ihs+m−1,jws+n−1kb,a,m,n + bb, (2.11)

where i, j must be chosen so that all indices remain valid. As a consequence, the

spatial extent of the output will be smaller than the spatial extent of the input, i.e.

h2 < h1 and w2 < w1. To preserve the spatial dimensions of the input, we can use a

padded input tensor with spatial dimensions of size h1 + hk − 1 and w1 + wk − 1.

Zero padding is very common and can be easily formalized by assuming u to be

zero-valued at all invalid indices.

Preserving the spatial extent is not always necessary or even desired. In fact,

convolutions can also be used to explicitly downsample the spatial dimension by

choosing a stride larger than one. Using hs = ws = 2 and zero padding, as described

before, results in an output of spatial extent h2 = h1
2 and w2 = w1

2 , independent of

the chosen kernel size hk × wk.

As mentioned before, the convolutional layer and dense layer are very similar. In

fact, a convolutional layer with a kernel as big as its input (hk = h1, wk = w1)

is equivalent to a dense layer, whereas a convolutional layer with a 1 × 1 kernel

applies the same linear transformation at each spatial position in the input. This

can easily be verified using Equation 2.11. Just like with dense layers, non-linear

activation functions are necessary to fit non-linear functions with networks made from

convolutional layers.

2.3.4 Pooling

Pooling layers are employed to aggregate data and, just as for convolutional layers, we

describe spatial (two-dimensional) pooling, which accepts a three-dimensional input

tensor u ∈ Rc×h×w. There are different types of pooling layers that use different

aggregation functions. Most commonly, average- and maximum-pooling are found,

which apply the respective function to chunks of the input data. The process is very

similar to the convolutional layer in that a window with a specified kernel size hk×wk
and strides hs, ws is slid over the input tensor u. However, the window is now two-

dimensional and applied to each channel separately. Naturally, instead of performing

a dot product, the aggregation function is applied. More formally, the output elements

are given by

va,i,j = aggregation
{
ua,ihs+m−1,jws+n−1

∣∣∣m ∈ JhkK , n ∈ JwkK
}
, (2.12)

where i, j must be chosen so that all indices remain valid.

The reason to apply pooling is two-fold. First of all, the effective receptive field of

following convolutional layers is increased because a single element of v now contains

21

Chapter 2 Deep Neural Networks

aggregated information about a hk × wk region of its input u, even if this aggregation

is lossy. Secondly, the smaller spatial extent reduces the amount of computation and

memory required for following convolutional layers.

2.3.5 Batch Normalization

Batch normalization [47] is a layer that reduces the difficulty of training DNNs that

have many sequential layers by controlling the first and second moment of its output

distribution. It can be defined for arbitrary dimensions, but again we focus on the case

with a three-dimensional input and output tensors u,v ∈ Rc×h×w. In contrast to the

other layers that have been introduced so far, batch normalization layers not only have

learned weights but also keep running statistics that are directly estimated from their

input data. In particular, the mean µa and variance σ2a of each input channel ua are

tracked independently for all a ∈ JcK. Every time that data is passed through the layer,

the mean and variance for each channel in the current batch are calculated:

µa =
1

hw

h∑
i=1

w∑
j=1

ua,i,j (2.13)

σ2a =
1

hw

h∑
i=1

w∑
j=1

(ua,i,j − µa)2 . (2.14)

If the batch normalization layer works in batch mode, these estimates are used

directly in the following calculations. Otherwise, an exponential moving average is

calculated from the previous estimate and the batch estimate. The resulting values are

used to normalize the layer input u to have a mean of zero and variance of one:

v̂a =
ua − µa√
σ2a + ε

, (2.15)

where ε is a small constant for numerical stability. In order to allow the batch

normalization layer to represent an identity transform, a linear function with weights

γ, β ∈ Rc is applied to the normalized result to get the final output:

va = γav̂a + βa. (2.16)

There are strong empirical results showing the effectiveness of batch normalization

to improve DNN training and it has become a standard component in DNNs. Gener-

alization is improved compared to DNNs without batch normalization, and a wider

range of learning rates can be employed.

Originally, Ioffe and Szegedy [47] related its success to the phenomenon of internal

covariate shift. During training of a DNN, the input distribution to each layer constantly

shifts as a result of the weights of all previous layers changing. This complicates the

training process and is supposedly avoided by batch normalization.

22

2.4 Modern Architectures

Table 2.1: Error rates on the ImageNet dataset for different DNN architectures.
1Results are achieved using ensembles of DNNs. 2Results are achieved
using a single DNN model.

Year Method Top-5 test err.1 Top-5 val. err.2 Top-1 val. err.2

2012 AlexNet [61] 16.4
2014 ZFNet [150] 14.8
2015 VGGNet [116] 6.8
2015 GoogLeNet [128] 6.7
2016 ResNet [39] 3.6 4.5
2017 ResNeXt [144] 3.0 4.4 19.1
2018 NASNet [155] 3.8 17.3
2018 PNASNet [69] 3.8 17.1
2019 EfficientNet [129] 2.9 15.6

This explanation has been recently called into question by Santurkar et al. [108],

because it is possible to inject noise in such a way into batch-normalized DNNs that

they exhibit strong internal covariate shift and yet still perform just as well. The

authors instead observe that batch normalization affects the smoothness of the loss

landscape, effectively making gradients more predictive and explaining the empirically

observed performance gains.

2.4 Modern Architectures

Having discussed the building blocks that are used to create neural networks, we

now shift the focus on their assembly in a computational graph. Neural network

architectures are a very important driver of progress in the field of deep learning, and

this section will present substantial milestones. To measure how well an architecture

performs, a difficult benchmark is necessary. This role is filled by the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) that has been held annually from 2010

to 2017 [106]. It poses a difficult image classification task on a dataset of about 1.2

million large RGB images from 1000 different classes. Demonstrating state-of-the-art

performance on this dataset is a good indicator for the general applicability of a

network architecture to other visual tasks. Table 2.1 lists the network architectures

that we will examine in this section and their best result on the ImageNet dataset. Note

that over time, the metric of choice changed from top-5 to top-1 error. When using the

top-5 error, an image is counted as classified correctly if its target class is among the

top-5 predictions of the model. This metric got too easy as networks improved, and

now top-1 error is usually reported.

One of the most influential publications that led to a resurgence of interest in

DNNs is arguably the AlexNet paper [61] from 2012. From today’s point of view,

their network architecture is simplistic, but the paper popularized many ideas, such

23

Chapter 2 Deep Neural Networks

as the ReLU activation function, which is still widely used today. The AlexNet

architecture consists of a linear stack of 5 convolutional layers and 3 dense layers.

Convolutional and dense layers (except for the last one) are followed by ReLU

activations, and the convolutional layers are interspersed with max-pooling and local

response normalization. The normalization layer is of their own design, and they do

not use the previously described batch normalization layer, because it had not been

invented yet. Using this architecture and an ensemble of five models, they achieve

16.4 % top-5 test error on the ILSVRC-2012 dataset. This DNN approach represents a

significant improvement over the previous state-of-the-art approach, which achieved

26.2 % top-5 test error using classical computer vision techniques.

In 2013, ZFNet [150] is published. The authors visualize the convolutional kernels

of AlexNet and slightly change the network design according to their observations. By

changing the kernel sizes and strides of some convolutional layers, the top-5 test error

of their DNN ensemble reaches 14.8 %. Even though the architectural differences to

AlexNet are rather minor, a significant decrease in error is observed.

In 2015, VGGNet [116] is published. It still uses the same building blocks as

AlexNet but significantly changes network depth and hyperparameters of each block.

There are now 16 trainable layers in total, 13 of them convolutional and 3 dense, and

the network is up to 512 channels wide. This yields a strongly improved top-5 test

error of 6.8 % using an ensemble. An absolute improvement of almost 10 % compared

to AlexNet was possible without any fundamental changes to the network but just by

arranging existing components differently, increasing network depth, and setting layer

hyperparameters like channel count appropriately. This illustrates how important the

network architecture is.

Also in 2015, GoogLeNet [128] is published. Its main innovation are the so-called

inception modules. The network consists of 3 convolutional layers, 9 inception

modules, and 1 dense layer but has a total depth of 22 layers because of the inception

modules. Each inception module contains four branches of differently parameterized

convolutional layers that are shown in Figure 2.2. This presents a stark contrast to

the previous architectures that only had a single path from input to output, whereas

GoogLeNet has multiple. This new concept achieves 6.7 % top-5 test error using an

ensemble and, while this isn’t much of an improvement over the single path VGGNet,

the concept of branching computation paths is found in all newer architectural designs.

The next major innovation happens in 2016 with the release of ResNet [39]. With

the introduction of residual blocks, shown in Figure 2.3, it becomes possible to train

extremely deep networks with hundreds of layers. A residual block (without the

final activation function) computes the mapping g (u) = f (u) + u, where f (u) is

a trainable mapping represented by three convolutional layers. In other words, the

learning problem is modified so that the convolutional layers only have to approximate

the difference between their input and a desired output. This also results in a multi-

branch network architecture, although the second branch is just an identity function in

24

2.4 Modern Architectures

Layer input

1× 1 Conv2D1× 1 Conv2D 1× 1 Conv2D 3× 3 MaxPool2D

3× 3 Conv2D 5× 5 Conv2D 1× 1 Conv2D

Channel-wise
concatenation

Figure 2.2: The branching micro-architecture of an inception module. Convolutions
of different kernel sizes and a max-pooling layer are employed in parallel,
and 1×1 convolutions are used for dimensionality reduction in the channel
dimension.

most cases. Only when the number of input and output channels of the residual block

differ is the identity function replaced with a 1× 1 convolution to match the number

of channels between u and f (u). A residual network with 152 trainable layers is

able to significantly beat the GoogLeNet architecture, achieving 3.6 % top-5 test error

using an ensemble. Since ensembles of huge DNN models are not very practical,

and the DNNs have improved so much over time, it has become common practice to

report single model results on the ImageNet validation set. In the single model setting,

ResNet-152 achieves 4.5 % top-5 validation error.

In 2017, ResNeXt [144] improves upon ResNet by re-using their general architec-

ture but introducing grouped convolutions. Grouped convolutions split the input tensor

into groups along the channel dimension and perform a convolution separately for each

group. This is equivalent to many parallel convolutions in a branched architecture, as

shown in Figure 2.4. Instead of only two branches per residual block, there are now

many more, e.g. 32 convolutional branches and one identity branch in the ResNeXt

instances proposed by the original publication. These networks achieve 3.0 % top-5

test error in an ensemble and 4.4 % top-5 validation error as a single model.

In 2018, the first architectures designed by algorithms beat human-designed archi-

tectures. NASNet [155] is created by performing neural architecture search on the

much smaller CIFAR-10 dataset and transferring the design to ImageNet by scaling it

up. The method searches for the design of two building blocks, called normal cell and

reduction cell. The reduction cell always downsamples the input’s spatial dimensions

by applying operations with a stride of two, while the normal cell leaves the spatial

dimensions unchanged. Both cells have a predefined graph structure, but the opera-

tions inside this structure are chosen by a reinforcement learning algorithm. The cells

are then stacked to create architectures for different problems. This allows to search

for well-performing cells on easier problems and then, by including more reduction

cells, extending the architecture so that larger image inputs of other problems can be

handled. When applied to ImageNet, NASNet achieves 3.8 % top-5 validation error

with a single model. This is a significant improvement over ResNeXt, and at the same

25

Chapter 2 Deep Neural Networks

Layer input
256

Conv2D
256→ 64, 1× 1

BatchNorm2D

ReLU

Conv2D
64→ 64, 3× 3

BatchNorm2D

ReLU

Conv2D
64→ 256, 1× 1

BatchNorm2D

⊕
ReLU

Figure 2.3: The branching micro-architecture of a residual block, here shown with 256
input channels and a 64 channel bottleneck. There is a skip-connection
from the input of the residual layer to right before the final ReLU function.
The input data is added element-wise to the output of the main convolu-
tional branch. This particular residual block is the “bottleneck” variant
that first downsamples the channel dimension with a 1 × 1 convolution
before upsampling it again at the end with another 1× 1 convolution. This
approach is similarly found in inception modules.

26

2.4 Modern Architectures

Layer input
256

Conv2D
256→ 4, 1× 1

BatchNorm2D

ReLU

Conv2D
4→ 4, 3× 3

BatchNorm2D

ReLU

Conv2D
4→ 256, 1× 1

BatchNorm2D

Conv2D
256→ 4, 1× 1

BatchNorm2D

ReLU

Conv2D
4→ 4, 3× 3

BatchNorm2D

ReLU

Conv2D
4→ 256, 1× 1

BatchNorm2D

· · ·

· · ·

· · ·

Conv2D
256→ 4, 1× 1

BatchNorm2D

ReLU

Conv2D
4→ 4, 3× 3

BatchNorm2D

ReLU

Conv2D
4→ 256, 1× 1

BatchNorm2D

⊕
ReLU

Figure 2.4: The branching micro-architecture of a residual block with grouped convo-
lutions as used in ResNeXt. Just like for ResNet, the channel dimension
is first downsampled and later upsampled again. However, differently
from ResNet, there are a number of parallel paths with convolutions. This
particular ResNeXt block shown here splits its 256 channel input into
many groups of 4 channels using the 1× 1 convolutions. For efficiency
reasons actual implementations use grouped convolutions which perform
an equivalent computation to what is shown here in a single operation.

27

Chapter 2 Deep Neural Networks

time the network is computationally more efficient, because it performs about 25 %

less multiply-accumulate operations. However, the downside is that the search process

is extremely expensive, as it took 500 GPUs over 4 days to find these cells.

Still in 2018, PNASNet [69] is released. This model is also found by neural archi-

tecture search but uses sequential model-based optimization instead of reinforcement

learning for the search. Their approach uses about five times less compute for the

search process, and the resulting network performs just as well on ImageNet, also

achieving 3.8 % top-5 validation error with a single model.

Finally, in 2019, an architecture named EfficientNet [129] is published. The authors

investigate how network architectures should best be scaled up for more difficult prob-

lems. Many previous articles, both about hand-designed and automatically searched

architectures, build their models on a small dataset and later scale it up for difficult

problems like ImageNet by increasing the depth (number of layers), width (number

of channels), or (spatial) resolution. However, usually this scaling happens in one of

these dimensions only, whereas [129] argues that it is important to scale all of them in

the right ratio to each other. This makes intuitive sense, as higher resolution images

will need more depth and width to be processed. Using neural architecture search,

they create a baseline architecture that they then scale up with their new approach. On

ImageNet, the largest EfficientNet achieves 2.9 % top-5 validation error with a single

model.

Seeing how neural architecture search helps push the state-of-the-art on the difficult

ImageNet benchmark showcases its usefulness. The methods are generic so that they

can also be applied in other domains, and this has already been done, e.g. for natural

language processing [154, 117, 71]. The biggest downside of NAS algorithms so far

is that they are still extremely resource intensive, even if this aspect has already been

improved a lot since the field’s inception. This can somewhat be alleviated by cleverly

combining neural architecture search with other ideas and restricting the search space.

We will look at two ideas for resource efficient neural architecture search in Part III.

For now, we hope that the discussion of different models in this section highlights

how much of an impact the network architecture has on the model’s error and that it is

worthwhile to optimize it.

28

Chapter 3

Application to Blood Cancer
Detection

In this chapter, we apply a DNN model to a real-world image classification problem to

showcase the concepts that have been discussed on a theoretical level in the previous

chapter. We will also work with fine-tuning to reduce the amount of data necessary

for training. In the machine learning field, it is common to see public challenges that

provide a real-world dataset and problem setting for competitors to solve. The IEEE

International Symposium on Biomedical Imaging 2019 challenge on “Classification of

Normal versus Malignant Cells in B-ALL White Blood Cancer Microscopic Images”1

posed the problem of examining blood cell microscopic images for acute lymphoblastic

leukemia (ALL).

Examining blood microscopic images for leukemia is necessary when expensive

equipment for flow cytometry is unavailable. Automated systems can ease the burden

on medical experts for performing this examination and may be especially helpful

to quickly screen a large number of patients. We present a simple, yet effective

classification approach using a ResNeXt convolutional neural network with squeeze-

and-excitation modules. The approach was developed for the IEEE C-NMC challenge

and achieved the third place in this international competition with a weighted F1-score

of 88.91 % on the test set.

The results presented in this chapter are based on the following publication with

accompanying source code:

• Jonas Prellberg and Oliver Kramer. Acute lymphoblastic leukemia classification

from microscopic images using convolutional neural networks. In Anubha

Gupta and Ritu Gupta, editors, ISBI 2019 C-NMC Challenge: Classification in

Cancer Cell Imaging, pages 53–61, Singapore, 2019. Springer Singapore

• https://github.com/jprellberg/isbi2019cancer

Outline. In Section 3.1, we introduce the challenge, explain its significance, and

present related work on ALL classification from microscopic images. Section 3.2

describes the dataset. The convolutional neural network, a ResNeXt-variant with
1https://biomedicalimaging.org/2019/challenges/

29

https://github.com/jprellberg/isbi2019cancer
https://biomedicalimaging.org/2019/challenges/

Chapter 3 Application to Blood Cancer Detection

squeeze-and-excitation modules, that our approach is based on is presented in Sec-

tion 3.3. In Section 3.4, we describe the data augmentation strategy, outline the

training process, and show experimental results. Section 3.5 summarizes the chapter.

3.1 C-NMC Challenge

Acute lymphoblastic leukemia is a blood cancer that is characterized by the prolif-

eration of abnormal lymphoblast cells, eventually leading to the accumulation of a

lethal number of leukemia cells [96]. If ALL is diagnosed in an early stage, treat-

ment is possible. Diagnosis is typically performed using a complete blood count

and morphological analysis of cells under a microscope by a medical expert. Flow

cytometry can replace this manual work but requires expensive equipment, which is

not available everywhere. Therefore, automated systems that can perform diagnosis

using comparatively low-cost microscopic images provide a great advantage. Bringing

down the cost and labor required for such a test allows to have this test done for many

more patients than before.

Previous work on automated ALL diagnosis from images can roughly be divided

into more recent approaches that use convolutional neural networks (CNN), either as

feature extractors or in a fine-tuning setting, and older approaches that use handcrafted

features.

In the latter category, Putzu and Ruberto [97] work with the ALL-IDB [63] dataset

and classify a number of hand-crafted features like area, compactness, roundness, and

area ratio between cytoplasm and nucleus with a support vector machine. Mohapatra

et al. [83] use an ensemble of naive Bayes, k-nearest neighbors, multilayer perceptron,

and support vector machine for cell classification, while Madhloom et al. [76] rely on

a k-nearest neighbors classifier alone. Both publications work with different private

blood cell image datasets.

Publications working with CNNs include Rehman et al. [100], who classify ALL

subtypes on a private dataset of 330 images using a pre-trained AlexNet and fine-

tuning. Shafique and Tehsin [113] classify ALL subtypes on ALL-IDB augmented

with 50 private images, also using a pre-trained AlexNet and fine-tuning. Vogado et

al. [137] classify ALL on ALL-IDB using a number of different pre-trained CNNs

as fixed feature extractors. From these CNN features, the most informative ones are

selected using principal component analysis, and finally classification is performed

with an ensemble of support vector machine, multilayer perceptron, and random forest.

In these cases, pre-training and fine-tuning refer to the process of first training the

CNN on the ImageNet dataset and using the resulting trained weights as the starting

point for training on the much smaller cell dataset. Due to the pre-training, many

generally applicable kernels will develop in the first few convolutional layers, e.g.

kernels that react to edges or certain colors [148]. These can be re-used on the target

dataset, even if it is quite different from ImageNet. When the target dataset is small,

30

3.2 Dataset Description

Table 3.1: Composition of the CNM-C dataset. The test set is unreleased and can only
be evaluated against using an online service, so its composition is unknown.

Dataset part ALL subjects Normal subjects ALL cells Normal cells

Train 47 26 7272 3389
Prelim. test 13 15 1219 648
Final test 9 8 ? ?

this process works best with carefully tuned learning rates or by excluding the first

few convolutional layers from optimization (also called freezing) in order to mostly

preserve the kernels from the pre-training step.

All mentioned publications about ALL classification report good results, but it is

hardly possible to compare them, because the private datasets are unavailable and, even

on the public ALL-IDB dataset, researchers employ their own evaluation procedures.

Furthermore, the employed datasets are small in all cases, containing a couple hundred

images at most. For example, ALL-IDB2 [63] contains only 260 images of white

blood cells, which makes the dataset too small to properly take advantage of recent

deep learning approaches, as can be seen by the ubiquitous use of pre-training.

To further research on ALL detection or classification, large public datasets are

necessary to compare different approaches and track the state-of-the-art. In 2018, the

C-NMC challenge dataset with more than 10,000 training images and a separate test

set of normal B-lymphoid precursors and malignant B-lymphoblasts has been released

as a challenge open to the public [35]. The large size of this new dataset allows to

create improved classifiers based on deep neural networks and also provides a more

reliable comparison of competing approaches.

3.2 Dataset Description

The C-NMC dataset contains images of white blood cells taken with a microscope

from blood samples of 154 individual subjects, 84 of which exhibit ALL. Blood cells

from different people will have slightly different characteristics so it is important to

achieve generalization over subjects. Table 3.1 provides a detailed breakdown of the

number of subjects and cells in three splits of the dataset. The dataset is imbalanced

with about twice as many ALL cells as normal cells, which needs to be considered

during the training of a DNN. It has been split into training set, preliminary test set,

and final test set, because the competition featured an elimination stage using the

preliminary test set. After this point, labels for the preliminary test set were released,

and the examples became additional training data.

Figure 3.1 shows four example images from the dataset. Each image has a resolution

of 450× 450 pixels and contains only a single cell as a consequence of preprocessing

31

Chapter 3 Application to Blood Cancer Detection

(a) (b) (c) (d)

Figure 3.1: Example images taken from the C-NMC training set. The black back-
ground has been made transparent for these figures. (a) ALL cell. (b) Nor-
mal cell. (c) ALL cell with part of the cell cut off due to an imperfect
segmentation. (d) Normal cell with superfluous background due to an
imperfect segmentation.

steps applied by the dataset authors: An automated segmentation algorithm has been

used to separate the cells from the background. Each pixel that was determined not

to be part of the cell is colored completely black. However, since the segmentation

algorithm is not perfect, there are instances where parts of the cell are inadvertently

colored black or superfluous background is included. Additionally, all images have

been preprocessed with a stain-normalization procedure that performs white-balancing

and fixes errors introduced due to variations in the staining chemical [36].

Distinguishing the cells is extremely difficult, as they appear similar morphologi-

cally. Instead of looking at individual cells, medical experts rely on domain knowledge

for the identification of cancer in microscopic images, such as that cancer cells pro-

liferate in an unrestricted fashion and therefore appear in large numbers. Machine

learning techniques, however, are able to pick up on the slight differences between

cells to identify them even in early stages when very few cells are abnormal.

3.3 Network Architecture

As we have seen in Section 2.4, image classification benchmarks have driven the

creation of many powerful convolutional neural network architectures. We pick one

of the recent top-performing networks, a ResNeXt-50 [144], as our base model.

The network consists of five convolutional stages with spatial downsampling by a

factor of two in between stages, followed by global average-pooling and a dense layer.

Each stage is made from stacked building blocks, each of which computes a function

of the form

v = u +

K∑
i=1

fi (u) , (3.1)

where K is called the cardinality that controls the number of parallel paths in a block.

The complete layout of such a block is depicted in Figure 2.4. Its parallel paths are com-

32

3.4 Experiments

puted by functions fi (u), which project the input tensor u into a lower-dimensional

space, transform it, and project back into a space of the original dimensionality. They

are implemented using a sequence of 1 × 1, 3 × 3, and 1 × 1 convolutional layers

which are interspersed with ReLU functions and batch normalization layers.

The ResNeXt architecture can be augmented with the squeeze-and-excitation op-

eration introduced in [43], which has been shown to improve performance on image

classification benchmarks. In order to do so, the block function is modified to

v = u + s

(
K∑
i=1

fi (u)

)
, (3.2)

where s : Rc×h×w → Rc×h×w is the squeeze-and-excitation operation. It learns a

channel-wise rescaling

s (u)a = h (g (u))a ua (3.3)

of each channel a ∈ JcK by first aggregating spatial information and then com-

puting scaling factors for each channel. The spatial aggregation is performed by

g : Rc×h×w → Rc which is implemented through global average-pooling, i.e. taking

the average of each channel a ∈ JcK as follows:

g (x)a =
1

hw

h∑
i=1

w∑
j=1

xa,i,j . (3.4)

The resulting vector is fed into a subnetwork h : Rc → Rc. It consists of two

sequential dense layers with a ReLU non-linearity in between. The output is a vector

of scaling factors

h (x) = σ (W2ReLU (W1x + b1) + b2) , (3.5)

where σ is the sigmoid function to keep outputs between zero and one. This way,

the factors can be used to scale each channel of the original input feature map, effec-

tively re-weighting the importance of features. More details on the SE-ResNeXt50

architecture can be found in [43].

3.4 Experiments

The previously described network architecture is used to classify the C-NMC dataset.

Since the dataset is imbalanced, the overall accuracy can be misleading, and we report

accuracy, sensitivity, and specificity, as well as weighted F1-scores, weighted precision,

and weighted recall. For sensitivity and specificity, the ALL-class is regarded as the

positive class. Furthermore, because the data is from multiple subjects, we report

subject-level accuracies.

Hyperparameters for the training procedure have been chosen by validating on the

33

Chapter 3 Application to Blood Cancer Detection

preliminary test set. The chosen hyperparameters are used for multiple training runs

with different random seeds, and the best model according to the F1-score on the

preliminary test set is selected for our competition entry. Final results on the test set

are taken from the online challenge leaderboard.

3.4.1 Data Augmentation

Even though the dataset contains more than 10,000 images, several data augmentation

techniques can be applied to increase the amount of training data further and improve

the training of our convolutional neural network.

Since microscopic images are invariant to flips and rotations, we perform horizontal

and vertical flips with 50 % probability each and rotations with an angle chosen

uniformly at random from [0, 360) degrees. Since convolutional neural networks with

pooling operations or strides larger than one are not perfectly translation invariant, we

also perform random translations of up to 20 % of each side-length in horizontal and

vertical directions.

We do not randomly scale the images, because cell size may be a diagnostic

factor to differentiate between ALL and normal cells [15]. Furthermore, we do not

apply any brightness or color augmentation due to this dataset’s stain-normalization

preprocessing. Both data augmentation methods are commonly used but would lead to

an unnecessary distribution shift between training and test set on this specific dataset.

Additionally, the images are center-cropped to 300 × 300 pixels to decrease the

dimensionality of the input data. This will generally make learning a classifier faster

and easier. Even though the cropping discards large parts of the image, it has no effect

on the classification accuracy, because only very few cells are actually larger than

this crop. In many cases, images that are not completely black outside of the crop are

segmentation failures that include parts of the background.

3.4.2 Training and Testing

The network is pre-trained on ImageNet and then fine-tuned on the C-NMC training

set. Because there are only two classes, the network output is a single value that

indicates the class with its sign. The loss function is the weighted binary cross-entropy

`bin.xent (ŷ, y) = −wy log (σ (ŷ))− (1− y) log (1− σ (ŷ)) , (3.6)

where σ is the sigmoid function, ŷ ∈ R is the network output, y ∈ {0, 1} is the true

label, and w = negative
positive is the ratio of negative to positive examples in the training set.

The weight w helps to deal with the class imbalance present in the dataset by scaling

the gradient for positive examples with a coefficient larger than one.

The network is fine-tuned for 6 epochs using Adam [59] with a batch size of 16.

The learning rate is decayed using a step function that starts at ηbase = 1 and is divided

34

3.4 Experiments

Table 3.2: Results on the preliminary test set over 24 training runs using the best
model among the checkpoints of each run, measured by F1-score.

Minimum Mean ± Stddev. Maximum

Accuracy 86.40 87.96 ± 0.90 89.88
Sensitivity 88.43 92.01 ± 1.44 94.50
Specificity 75.31 80.36 ± 2.39 84.72
F1-score 86.28 87.89 ± 0.90 89.81
Precision 86.27 87.91 ± 0.90 89.81
Recall 86.40 87.96 ± 0.90 89.88

by 10 every 2 epochs. Every stage of the network, i.e. a stack of building blocks that

operate on the same spatial resolution as described in Section 3.3 and [144], uses its

own learning rate derived from ηbase with a stage-specific factor. The first and second

stages have an effective learning rate of η12 = 10−6ηbase, the third to fifth stages use

η345 = 10−4ηbase, and the last dense layer uses η6 = 10−2ηbase.

This results in lower effective learning rates in the earlier layers of the network

and is desirable, because the network is initialized with weights from ImageNet pre-

training. These have been shown to contain generally useful image filters in the lowest

layers [148], and continuing to optimize these weights on a small dataset with large

learning rates will degrade these general filters.

During inference, we present 8 rotated versions of each image and average the

network output to further improve classification results.

3.4.3 Model Selection

We find that results are sensitive to the random seed, despite all networks starting

from the same weight initialization due to the pre-training. Therefore, we conduct 24

training runs with different random seeds and measure the F1-score on the preliminary

test set over the course of the training. The F1-score includes both precision and recall

and is a better choice than the plain accuracy on this dataset, since it is insensitive to

the strong class imbalance. It is also the metric that is used to judge submissions for

the competition. We collect the 24 model checkpoints that have the highest F1-scores

in their respective training run and report results in Table 3.2.

The best model by F1-score achieves 89.81 % on the preliminary test set. Figure 3.2

shows the evolution of loss and F1-score during its training process, while Figure 3.3

shows cell classification accuracy grouped by subject. Due to the pre-training and

comparatively small target dataset, accuracy quickly stagnates. Increasing the amount

of training epochs leads to worse results as the pre-trained weights are distorted more

and more.

Overall, classification for healthy subjects is worse, because the specificity (true

35

Chapter 3 Application to Blood Cancer Detection

1 2 3 4 5 6
Epochs

0.05

0.10

0.15

Training set loss

1 2 3 4 5 6
Epochs

0.2

0.4

0.6
Prelim. test set loss

1 2 3 4 5 6
Epochs

80%

85%

90%
Prelim. test set F1-score

Figure 3.2: Training and validation curves of the best model after each training epoch.
The model achieves the maximum F1-score after the 5th training epoch.

53 54 55 57 58 59 60 61 62 63 64 65 66 H25H26H27H28H29H30H31H32H33H34H35H36H39H49H50
Subjects

0%

50%

100%

Figure 3.3: Subject-level cell classification accuracy on preliminary test set using the
best model. Subjects with the prefix H are healthy.

negatives divided by total negatives in the dataset) is comparatively low. Consequently,

false positives can be expected when using the network for diagnosis of patients. Still,

false positives are preferable to false negatives when trying to diagnose cancer with an

automated method. While such a diagnosis is stressful for the patient, it would be far

worse to misdiagnose when cancer is actually present.

3.4.4 Results on the Final Test Set

We select the best model according to F1-score and use it to classify the final test set

and submit the result to the online evaluation service. The model achieves a weighted

F1-score of 88.91 % and third place on the final leaderboard.

3.4.5 Ablation Studies

Our main design choices for the training and testing procedures are layer-specific

learning rates and test-time rotations. In order to show their impact we perform two

ablation studies:

• NOROT: The training procedure is unchanged, but during testing the images

are only presented in their original orientation.

• NOSPECLR: During training, every layer has an effective learning rate of

ηallηbase while still using the scheduled decay for ηbase as described previ-

ously. We test ηall ∈
{

10−3, 10−4, 10−5
}

and report results for the best setting

ηall = 10−4. The testing procedure is unchanged.

36

3.5 Conclusion

1 2 3 4 5 6
80%

82%

84%

86%

88%
Accuracy

1 2 3 4 5 6

86%

88%

90%

92%

94%

Sensitivity

1 2 3 4 5 6

70%

75%

80%

Specificity

1 2 3 4 5 6
Epochs

80%

82%

84%

86%

88%
F1 score

1 2 3 4 5 6
Epochs

80%

82%

84%

86%

88%
Precision

1 2 3 4 5 6
Epochs

80%

82%

84%

86%

88%
Recall

PROPOSAL NOSPECLR NOROT

Figure 3.4: Metrics on the preliminary test set measured after each training epoch for
the proposed setting and the two ablation studies. Lines display the mean
over 24 training runs and the shaded area marks one standard deviation.

Figure 3.4 shows results on the preliminary test set for 24 repetitions of our pro-

posed setting and the two ablation studies. As expected, both ablations decrease

performance in terms of all considered metrics. Not using test-time rotations signif-

icantly (p < 0.001, one-sided Mann-Whitney U test) decreases the mean F1-score

from 87.89 ± 0.90 % to 86.92 ± 0.81 %. The influence of layer-wise learning rates is

significant (p < 0.002) but smaller: A constant learning rate for all layers decreases

the mean F1-score to 87.20 ± 0.70 %. In summary, both the test-time rotations and

layer specific learning rates lead to a statistically significant improvement.

3.5 Conclusion

We present a simple, yet effective method to automatically classify white blood cell mi-

croscopic images into normal B-lymphoid precursors and malignant B-lymphoblasts.

It is powered by a ResNeXt convolutional neural network with squeeze-and-excitation

modules. Even though the chosen network is large and there is little training data,

good results can be achieved with pre-training and carefully tuned hyperparameters.

While pre-training achieves goal (G3) by allowing training with small datasets, the

system becomes even more sensitive to hyperparameters such as the learning rate

and the number of training iterations. This further highlights the need for automatic

hyperparameter search methods. We observe significant variance in final performance

due to non-determinism in the training procedure. This will also be an issue in later

chapters that deal with NAS, because these noisy performance measurements make it

difficult to compare architectures fairly.

37

Part II

Evolutionary Weight
Optimization

Evolutionary algorithms are the second important concept next to deep neural networks

that this thesis makes extensive use of. Chapter 4 introduces EAs that use a population

of solutions to solve black-box optimization problems. The introduced algorithm

is then showcased with applications to weight training for DNNs in the context of

supervised learning and reinforcement learning in Chapter 5 and 6 respectively. This

exploration of EAs in the context of DNN training serves to answer the question if

large DNNs with fixed architectures can be trained by EAs and achieve competitive

results to SGD. This would be a requirement for successful neuroevolution methods

for large-scale DNNs that do not use SGD.

39

Chapter 4

Population-based Evolutionary
Algorithms

During the sixties, the ideas that are now subsumed under the term evolutionary

algorithm are developed independently at first [52]. Evolution strategies [99, 112]

are developed by Rechenberg and Schwefel as a method for numerical optimization,

evolutionary programming [27] is developed by Fogel et al. as a method to automati-

cally design agents powered by finite state machines, and the genetic algorithm [40]

is developed by Holland as a general adaptive system. Today, there exists a wealth

of related algorithms that stem from these roots. All have in common that they are

inspired by evolution in nature but do not try to faithfully reproduce it. Instead, the

goal is to create reduced computational models that have all components that are

necessary for evolution to progress.

While evolutionary algorithms are not exclusively used for optimization, viewing

them as a class of nature-inspired black-box optimization algorithms is common. In

this chapter, we focus on evolutionary algorithms that maintain a set of solutions,

called a population, and continually improve it in a process inspired by the evolutionary

process in nature. This is in contrast to natural evolution strategies, which work with

probability distributions to represent solutions instead of a population and are quite

far removed from any natural analogies. They will be introduced later in Section 8.3.

In contrast to numerical optimization methods stemming from mathematics, such

as line search, Newton’s method, gradient descent, etc. that work with real-valued

solutions, EAs are additionally applicable to more exotic solution spaces like graphs.

This makes them attractive for problems like architecture optimization that have a

natural graph representation.

Outline. First, Section 4.1 introduces the notion of a stochastic black-box opti-

mization problem and how it relates to the problems discussed in this thesis. Then,

Section 4.2 gives a birds-eye view of a population-based generational EA. The fol-

lowing sections describe different parts of the EA in more detail. Section 4.3 deals

with representation of solutions, Section 4.4 deals with variation operators, and finally

Section 4.5 describes the selection process.

41

Chapter 4 Population-based Evolutionary Algorithms

4.1 Stochastic Black-Box Optimization

Consider an optimization problem maxx u (x) with x ∈ X over an arbitrary solution

space X . The function u (x) measures a solution’s fitness, and we are searching for

the solution x∗ with the maximum fitness. The problem is called black-box if u (x)

is not given in closed form and can only be evaluated at arbitrary points x. EAs

work under this black-box assumption, which makes them applicable to basically any

optimization problem. It follows from the black-box assumption that we cannot differ-

entiate u (x) w.r.t. x, which makes it impossible to apply gradient-based optimization

methods unless a numerical approximation of the gradient is feasible, e.g. in very low

dimensional problems. Even without the black-box assumption, non-differentiable

fitness functions often arise when the function depends on some kind of simulation or

there are discrete choices encoded in x that influence the fitness.

Depending on the problem, the fitness function might be stochastic, i.e. u (x) is a

probability distribution over fitness values conditioned on the solution x. Optimizing

for the expected value E [u (x)] is usually desirable, but we cannot determine it exactly

due to the problem’s black-box nature. It becomes necessary to sample from the

distribution and calculate the average value to get an approximation of the expected

value. However, calling the fitness function is expensive in many cases, which is why

an algorithm that uses as few fitness function evaluations as possible is preferred. Such

an optimization in the presence of fitness noise stemming from the approximation

from samples is a difficult problem that has long been discussed in literature. EAs

in particular are well-equipped to deal with noise, because a diverse population of

solutions is maintained [4, 11]. Even if some solutions are discarded because of

apparent low fitness despite being a good solution, this is unlikely to happen to all

good solutions in the population at once.

We will later use EAs to optimize DNN weights and architectures. In the latter

problem setting, we will find discrete choices that make the fitness function non-

differentiable and make it an ideal candidate for the application of an EA. Furthermore,

for both weight and architecture optimization, we will have to deal with stochastic

fitness functions. During weight optimization in Chapter 5, the fitness function is

noisy because fitness evaluation will use small sampled batches of data instead of the

full dataset. During architecture optimization in Chapter 7, the fitness noise stems

from the non-deterministic SGD training procedure for DNNs.

4.2 Evolutionary Algorithm

Population-based generational EAs solve (possibly black-box and stochastic) opti-

mization problems by creating a population of solutions and refining it over multiple

generations to increase the average fitness. Compared to optimizing a single solution,

it might seem wasteful to optimize a whole population of solutions if, in the end,

42

4.3 Representation of Solutions

the single best result is sufficient and the rest can be discarded. However, such an

approach prevents premature convergence to good local solutions that could trap the

optimization, and it makes the optimization process more resilient to fitness noise.

Furthermore, in some problem settings having a population of good solutions can be

desired. If we consider the optimization of DNNs using an EA, the population at the

end of the optimization consists of several well-performing but different models which

make promising candidates for ensembling. This ensemble gets naturally created for

free as a byproduct of the optimization.

The process of refining the population of solutions is inspired by the evolutionary

process that happens in nature. Algorithm 1 contains pseudo-code for a population-

based generational EA. After initializing the population, a simple loop of variation,

evaluation, and selection is repeated for a number of generations or until the solution

is satisfactory. All these steps are problem-dependent and are described in more detail

in the following sections.

Since Algorithm 1 gives only a birds-eye view of an EA, we cannot yet see all

hyperparameters that are in play and control the algorithm. Next to the population

size µ and offspring count λ, the variation operators have hyperparameters themselves,

which depend on their implementation. Most notably, mutation is usually controlled

by a mutations strength that controls how close (on average) a mutated offspring

solution is to its parent. Such hyperparameters can be static or dynamic, and we will

see this in more detail when we apply EAs to DNN weight training in Chapter 5.

Algorithm 1: High-level view of a population-based generational (µ+ λ)

evolutionary algorithm.

1 P ← randomly initialize µ solutions x1, x2, . . . , xµ
2 evaluate fitness u (x) for all x ∈ P
3 while termination condition not met do
4 Q← create λ offspring by variation
5 evaluate fitness u (x) for all x ∈ Q
6 P ← select µ best solutions from P ∪Q
7 end

4.3 Representation of Solutions

Depending on the problem to be optimized, different representations for solutions may

be possible. The representation is chosen in conjunction with the variation operators

that need to operate on this representation. For example, the well-known traveling

salesman problem has been approached with EAs using many different representations

like binary indicators, paths as strings of identifiers, adjacency matrices, etc. all with

their matching variation operators [44]. It is desirable to find a representation that

43

Chapter 4 Population-based Evolutionary Algorithms

increases the likelihood of good offspring being produced through the application

of the variation operator. In other words, different representations admit different

variation operators, and both should be chosen so as to minimize the chance of

offspring with low fitness being produced from parents with high fitness.

In general, a distinction between genotype and phenotype of a solution can be

made. The genotype would be the representation that the variation operators work

with, while the phenotype is derived from the genotype and used for the evaluation.

Such an indirect encoding is employed by HyperNEAT [121] to encode the weights

of a neural network. The genotype here actually contains a compositional pattern

producing network (CPPN) [119], which is evolved by the NEAT [123] algorithm.

A CPPN is similar to a neural network in that it is a graph with weighted edges and

its nodes apply an activation function to the sum of its inputs. However, each node

has its own activation function and the topology is not layered but evolved arbitrarily.

This design allows to create CPPNs whose outputs exhibit typical patterns found in

evolution, like repetition or symmetries. In HyperNEAT, the genotype CPPN is then

sampled at different positions to create weights for another neural network, which is

the phenotype in this scenario.

However, in many cases a direct encoding where genotype and phenotype coincide

can be a good choice as well. There are numerous examples of EAs being applied to

real-valued vectors in numerical optimization.

4.4 Variation Operators

The implementation of variation operators is problem-dependent and also needs to be

designed to fit the chosen genotype representation. A variation operator creates new

solutions from solutions that currently exist in the population by performing either a

recombination of multiple parent solutions, a mutation of a parent solution, or both.

Depending on the representation and structure of the solution space, some variation

operators would be more likely to produce offspring with high fitness, and they should

be preferred.

There are two main kinds of variation operators called crossover and mutation. A

crossover operator is inspired by the sexual reproduction of animals and combines

two or more solutions into an offspring solution. The goal is to copy parts of a

well-performing parent solution into an offspring solution to combine features from

multiple phenotypes. A mutation operator, on the other hand, is only applied to a

single solution and slightly modifies it. This is again in similarity to random gene

mutations happening during reproduction in nature and is expected to produce mostly

small incremental changes in the phenotype.

When the genotypes are real-valued vectors, there are a number of standard

crossover and mutation operators that can be applied. The uniform crossover of

44

4.5 Selection

two parents x1,x2 ∈ Rd creates offspring z ∈ Rd as

zi =

(x1)i with probability 50 %

(x2)i else
(4.1)

by randomly deciding which elements i ∈ JdK of the offspring’s solution vector is

copied from which parent. While this randomized crossover operator works well

in many cases, if solutions are arranged in such a way that linear combinations of

their representations are meaningful, the arithmetic crossover can be a better choice.

Arithmetic crossover creates offspring

z =
1

2
x1 +

1

2
x2 (4.2)

from two parents x1 and x2 by taking the arithmetic mean. In principle, this weighting

does not need to be equal and could, for example, be biased so that the parent with

higher fitness has a higher coefficient than the other. Both crossover operators can be

extended to more than two parents.

The most common mutation operator for real-valued vectors is the random normal

mutation. This mutation operator creates offspring

z = x1 + σε (4.3)

by adding random noise ε drawn from a normal distribution N (0, 1) and scaled by a

mutation strength σ ∈ R+ to a parent x1. Under this mutation, most components of

the solution will change only slightly, whereas a few components may change a lot. If

other behaviors are desired, different probability distributions can be employed.

How exactly crossover and mutation are combined is a matter of preference and

many different variants exist. For example, crossover might be used to create a certain

percentage of the offspring, and mutation might be used to create the remaining

offspring solutions. Alternatively, offspring created by crossover might also be affected

by mutation, or only a certain percentage of offspring might be affected by mutation.

There is a lot of freedom in designing the variation operation of an EA as these choices

are very problem dependent.

4.5 Selection

Only applying variation operators to random solutions from the population is similar to

performing a random search in the vicinity of the solutions covered by the population.

In order to drive the population to higher average fitness, selection operators are needed.

They decide which solutions survive a generation and become eligible as parents for

the next generation. This process applies selective pressure to the population and,

over time, eliminates weak solutions so that the average fitness of the population

45

Chapter 4 Population-based Evolutionary Algorithms

increases. This in turn makes it more likely that the variation operators are applied to

good solutions and are more likely to produce good offspring solutions.

The selection operator is unrelated to the representation of solutions, and therefore

the same set of selection operators is applicable to all problems. Still, an appropriate

choice must be made depending on the problem that is optimized. They vary in

amount of selective pressure, i.e. how strongly better solutions are preferred over

worse solutions. The choice of selection operator will therefore decide how the fitness

distribution changes from generation to generation. While it might seem to be always

desirable to select only a few of the best solutions, a very high selective pressure will

reduce diversity in the population and can therefore counteract the advantages of a

population-based algorithm. Care has to be taken to strike a good balance between

exploitation of good solutions and exploration of different solutions.

In this thesis, we will always work with truncation selection. This selection scheme

simply sorts the offspring population and then selects the µ best solutions as the next

generation’s population. As long as µ is large enough, this approach still selects a

diverse set of solutions. Whether the offspring population that we select from is the

union of the previous generation’s parents and their offspring P ∪ Q or just their

offspring Q is a design choice. The former choice is called plus-selection, while the

latter choice is called comma-selection. It is common to speak of
(
µ +, λ

)
EAs to

show which kind of selection process is used.

Comma-selection prevents solutions from staying in the population unchanged for

more than one generation. This can be helpful if the fitness function is stochastic,

because in such a situation a solution may receive a very high fitness value by chance

even though the solution is bad. Using plus-selection, this solution would be kept in

the population and used to produce offspring until even better individuals are found.

This can be very detrimental and is avoided by comma-selection.

One disadvantage of comma-selection is that legitimately good solutions only get a

single chance to produce offspring as well and are then discarded. Especially with

fitness functions that are expensive to evaluate this can be undesirable. Elite selection

can be used in conjunction with comma-selection to prevent this. Elite selection

simply copies a fixed number of the best solutions from the last generation into the

next generation and effectively bypasses the actual selection scheme for these elite

solutions.

46

Chapter 5

Application to Deep Supervised
Learning

Stochastic gradient descent is the leading approach for neural network weight optimiza-

tion. Significant research effort has lead to creations such as the Adam optimizer [59],

batch normalization layers [47], or advantageous weight initializations [30], all of

which improve upon the standard gradient-based training process. Furthermore, effi-

cient libraries with automatic differentiation and GPU support are readily available. It

is therefore unsurprising that SGD outperforms all other approaches to neural network

training. Still, in this chapter we want to examine EAs for this task because of their

prominent advantage of being black-box, i.e. not needing gradient information.

While neural networks are usually built so that they are differentiable, this restriction

can be lifted when training with EAs. For example, this would allow the direct training

of neural networks with binary weights for deployment in low-power embedded

devices. As a second example, the loss function does not need to be differentiable

when training with an EA, so that it becomes possible to optimize for different metrics

like the F1-score directly. We, however, are mostly motivated by the prospect of being

able to optimize weights and architecture of a DNN together in a unified evolutionary

algorithm. While earlier work on neuroevolution sparked algorithms like NEAT that

promise exactly that, these approaches only work well for small networks on the order

of tens of nodes [122, 124, 140]. NEAT and other neuroevolution approaches do not

scale to large DNNs and the large datasets that are common today in the field of deep

learning. On the other hand, evolutionary approaches different from neuroevolution

are attracting attention for DNN training [85, 6, 152] but often study only small-scale

DNNs or problems that are not representative of today’s large network architectures

and datasets. Therefore, we want to scale up an evolutionary approach and evaluate

its usefulness for large-scale DNN training, which we consider a prerequisite for its

successful application in neuroevolution methods.

With growing computational resources and algorithmic advances, it is becoming

feasible to optimize large, directly encoded neural networks with EAs. The limited

evaluation evolutionary algorithm (LEEA) [85] saves computation by performing

the fitness evaluation on small batches of data and smoothing the resulting fitness

47

Chapter 5 Application to Deep Supervised Learning

noise with a fitness inheritance scheme. We create a LEEA implementation that

executes entirely on a GPU to facilitate extensive experimentation with larger DNNs

and populations than previously possible. The GPU implementation avoids memory

bandwidth bottlenecks, reduces latency, and most importantly allows to efficiently

batch the evaluation of multiple network instances with different weights into a single

operation.

Using this framework, we perform experiments with significantly larger networks

and on more difficult problems than in the original publication [85]. We highlight

a trade-off between batch size and achievable accuracy and also find the proposed

fitness inheritance scheme to be detrimental. Instead, we show how the LEEA can

profit from low selective pressure when using small batch sizes. Despite the problems

discussed in literature about crossover and neural networks [28, 131], we see that basic

uniform and arithmetic crossover perform well when paired with an appropriately

tuned mutation operator. Finally, we apply the lessons learned to train a neural network

with 92,000 parameters on MNIST using an EA and achieve 97.6 % test accuracy. In

comparison, training with Adam results in 98 % test accuracy. Note that these low

accuracies (for MNIST) are due to the network architecture and downsampled inputs

and therefore neither the EA nor Adam would be able to reach state-of-the-art results.

The results presented in this chapter are based on the following publication with

accompanying source code:

• Jonas Prellberg and Oliver Kramer. Limited evaluation evolutionary optimiza-

tion of large neural networks. In Frank Trollmann and Anni-Yasmin Turhan,

editors, KI 2018: Advances in Artificial Intelligence - 41st German Conference

on AI, Berlin, Germany, September 24-28, 2018, Proceedings, volume 11117 of

Lecture Notes in Computer Science, pages 270–283. Springer, 2018

• https://github.com/jprellberg/gpuea

Outline. Section 5.1 presents related work on the application of EAs to neural network

training. In Section 5.2, we present our GPU-accelerated EA for the evolution of DNN

weights. Section 5.3 covers all experiments and contains the main results of this work.

Finally, we conclude the chapter with a summary in Section 5.4.

5.1 Evolutionary DNN Weight Optimization

The limited evaluation evolutionary algorithm for neural network training by Morse

et al. [85] is a modified population-based generational EA that picks a small batch

of training examples at the beginning of every generation and uses it to evaluate

the population of neural networks. This idea is conceptually very similar to SGD,

which also uses a batch of data for each step. Performing the fitness evaluation on

small batches instead of the complete training set significantly reduces the required

48

https://github.com/jprellberg/gpuea

5.2 Accelerating Evolutionary DNN Weight Optimization with GPUs

computation, but it also introduces noise into the fitness evaluation. The second

component of the LEEA is therefore a fitness inheritance scheme that combines an

offspring solution’s fitness evaluation result with its parent’s fitness. The algorithm is

tested with networks of up to 1,500 weights and achieves results comparable to SGD

on small datasets.

Baioletti et al. [6] pick up the idea of limited evaluation but replace the evolutionary

algorithm with differential evolution, which is a very successful optimizer for continu-

ous parameter spaces [22]. The largest network they experiment with contains 7,000

weights. However, there is still a rather large performance gap on the MNIST dataset

between their best performing differential evolution algorithm at 85 % accuracy and a

standard SGD training at 92 % accuracy.

Yaman et al. [147] combine the concepts limited evaluation, differential evolution,

and cooperative co-evolution. They consider the weights of a single node’s inputs as a

component and evolve many populations of such components in parallel. Complete

solutions are created by assembling components from different populations into a

complete network. Using this approach, they are able to optimize networks of up to

28,000 weights.

Zhang et al. [152] explore neural network training with a natural evolution strategy.

This algorithm starts with a parent weight vector and creates many so-called pseudo-

offspring weight vectors by adding random noise to it. The fitness of all pseudo-

offspring is evaluated and used to estimate the gradient in the direction of lower loss.

Finally, this gradient approximation is fed to SGD or another optimizer, such as Adam,

to modify the parent weight vector. Using this approach, they achieve 99 % accuracy

on MNIST with 50,000 pseudo-offspring for the gradient approximation. Natural

evolution strategies will be explained in more detail in Section 8.3.

5.2 Accelerating Evolutionary DNN Weight
Optimization with GPUs

We implement a population-based EA that optimizes the weights of directly encoded,

fixed size neural networks. For performance reasons, the EA is implemented with

TensorFlow and executes entirely on the GPU, i.e. the whole population of networks

lives in GPU memory and all EA logic is performed on the GPU.

5.2.1 Evolutionary Algorithm

Algorithm 2 shows our EA in pseudo-code. It is a population-based (µ, λ) EA

extended by the limited evaluation concept. In our case, we set µ = λ so that the

initial population contains λ solutions, which are randomly initialized neural network

weight vectors. Every generation, the fitness evaluation of neural networks in the

population P is performed on a small batch of data x,y that is drawn randomly from

49

Chapter 5 Application to Deep Supervised Learning

Algorithm 2: Evolutionary algorithm for supervised DNN training.

1 Let Lx,y (θ) be the loss for a batch of data x,y under weights θ
2 P ← randomly initialize λ weight vectors θ1, θ2, . . . , θλ
3 while termination condition not met do
4 x,y← get random batch of training data
5 evaluate fitness −Lx,y (θ) for all θ ∈ P
6 T ← select ρλ best solutions from P by truncation selection
7 E ← select pEλ best solutions from P as elites
8 C ← apply crossover operator to pCλ random parent pairs from T × T
9 M ← apply mutation operator to pMλ random parents from T

10 P ← E ∪ C ∪M
11 end

the training set. During fitness evaluation, every solution θ ∈ P is assigned a fitness

value

ux,y (θ) = −Lx,y (θ) , (5.1)

which is the negative of the (problem-dependent) loss function L (θ) restricted to

data and labels x,y instead of the whole dataset. By convention, fitness values are

maximized, which is why in our case the fitness is the negative of the loss function,

which has to be minimized. Therefore, the best solution is the one with highest fitness

and lowest loss. The restriction to data and labels from x,y reduces the computational

cost, because the networks have to be evaluated on less data, but it also introduces an

increasing amount of fitness noise, especially with smaller batch sizes. To counteract

this, Morse et al. [85] propose a fitness inheritance scheme that we implement as well.

Due to the stochasticity in the fitness evaluation, it seems advantageous to combine

fitness evaluation results from multiple batches. However, simply evaluating every

network on multiple batches is no different from using a larger batch size and would

cancel out any performance gains. Therefore, the assumption is made that the fitness

of a parent network and its offspring are related. Then, a parent’s fitness can be

inherited to its offspring as a good initial guess and be refined by the actual fitness

evaluation of the offspring. This is done in form of a weighted sum

uadj = (1− α)uinh + αux,y (θ) , (5.2)

where uinh is the fitness value inherited by the parents, ux,y (θ) is the fitness value

of the offspring θ on the current batch x,y, and α ∈ [0, 1] is a hyperparameter that

controls the strength of the fitness inheritance scheme. Setting α to one disables

fitness inheritance altogether. During crossover of two parents with fitness u1 and u2
or during mutation of a single parent with fitness u3, the inherited fitness values are

uinh = 1
2 (u1 + u2) or uinh = u3 respectively.

50

5.2 Accelerating Evolutionary DNN Weight Optimization with GPUs

After the fitness evaluation is finished, truncation selection is applied to create a

set of parents T that are eligible for reproduction. The size of this set is controlled by

the selection proportion ρ ∈ [0, 1]. The smaller it is, the higher the selective pressure,

since only the best solutions will become parents for the next generation.

Then, a total of λ offspring networks are derived from T . The hyperparameters pE ,

pC , and pM determine the percentage of offspring created by elite selection, crossover,

and mutation respectively and must sum to one. First, the pEλ networks with the

highest fitness are selected as elites from the population. These elites move into the

next generation unchanged and will be evaluated again. Even though their weights did

not change, the repeated evaluation is desirable. Because the fitness function is only

evaluated on a small batch of data, it is stochastic and repeated evaluations will result

in a better estimate of the true fitness when combined with previous fitness evaluation

results. Even if the fitness inheritance is turned off, this behavior is still desirable so

that all fitness values in a generation are based on the same random batch of data and

can be compared fairly.

Next, pCλ pairs of networks are selected uniformly at random from T as parents

for crossover, and finally pMλ networks are selected uniformly at random from T as

parents for mutation. By applying the crossover and mutation operators described in

the next section, this results in pCλ and pMλ new offspring networks. Together with

the elites, the offspring population has λ members and replaces the current population.

5.2.2 Crossover and Mutation Operators

Members of the EA population are direct encodings of neural network weights θ ∈ Rd,

where d is the total number of weights in each network. The crossover and mutation

operators directly modify this vector representation. Therefore, we can use the general

variation operators for real-valued vectors described in Section 4.4. Depending on the

experiment, we employ either random uniform crossover or arithmetic crossover, and

random normal mutation with mutation strength σ ∈ R+.

The mutation strength σ is an important hyperparameter that can be changed over

the course of the EA run if desired. In the simplest case, the mutation strength

stays constant over all generations, but different mutation strengths may be necessary,

depending on the chosen crossover operator. Therefore we also experiment with two

different mutation strength adaptation schemes.

First, we implement deterministic control in the form of an exponentially decaying

value. For each generation i, the mutation strength is calculated according to

σi = 0.99
i
kσ0, (5.3)

where σ0 is the initial mutation strength and the hyperparameter k controls the decay

rate in terms of generations.

Furthermore, we implement self-adaptive control. The mutation strength σ is

51

Chapter 5 Application to Deep Supervised Learning

included as a gene in each solution’s genotype, and each solution is mutated with

the mutation strength σ taken from its own genotype. The mutation strength itself is

mutated according to

σi+1 = σi exp (τε) (5.4)

with ε drawn from a normal distributionN (0, 1) and hyperparameter τ ∈ R+. During

crossover, the arithmetic mean of two σ-genes produces the value for the σ-gene in

the offspring.

5.2.3 GPU Implementation

Naively executing thousands of small neural networks on a GPU in parallel incurs

significant overhead, since many short-running, parallel operations that compete for

resources are launched, each of which also has a startup cost. To efficiently evaluate

thousands of network weight configurations, the computations should be expressed as

batch tensor products where possible.

Consider a neural network containing a dense layer as described in Section 2.3.1.

We assume inputs are of dimensionality d1, and the dense layer has d2 output units

and no bias. In such a case, a simple matrix-vector product between the dense layer

weight W ∈ Rd2×d1 and input u ∈ Rd1 is performed. In actual implementation, the

input tensor has an additional batch dimension, and a batched matrix-vector product

is computed between W and an input batch u ∈ Rb×d1 consisting of b independent

samples. Every sample in the input batch is processed individually and multiplied

with W, but this is expressed as an efficient GPU operation.

Batching over multiple sets of network weights follows the same approach and

introduces a population dimension with p components. Obviously, the weight tensor

needs to be extended by this dimension so that it can hold weights of different networks.

However, the data tensor also needs an additional population dimension, because the

output of each layer will be different for networks with different weights. This will

result in a product between weights W ∈ Rp×d2×d1 and data u ∈ Rp×b×d1 , where

the batched matrix-vector product is computed for every pair of weights and data that

occupy the same component in the population dimension.

In order to exploit this batched evaluation of populations, the whole population

lives in GPU memory in the required tensor format. Next to enabling the population

batching, this also alleviates the need to copy data between host and GPU memory,

which is typically a bottleneck. These advantages apply as long as the networks

do not have too many weights. The larger each network, the more computation is

necessary to evaluate it, which reduces the gain from batching multiple networks

together. Furthermore, combinations of population size, network size, and batch size

are limited by the available GPU memory. Despite these shortcomings, this framework

allows us to experiment at reasonably large scales, such as a population of 8,000

networks with 92,000 parameters and a batch size of 64 using 16 GB GPU memory.

52

5.3 Experiments

Table 5.1: Default hyperparameter settings for exploratory experiments on the valida-
tion set and the final experiment on the test set. The differences, informed
by the results of experiments on the validation set, are marked in bold.

Parameter Validation value Test value

Crossover operator uniform uniform
Mutation strength adaptation constant constant
Batch size 512 1024
Elite ratio pE 0.05 0.05
Crossover ratio pC 0.50 0.75
Mutation ratio pM 0.45 0.20
Population size λ 1000 2000
Mutation strength σ 0.001 0.001
Truncation proportion ρ 0.50 0.50
Fitness inheritance weight α 1.00 1.00

5.3 Experiments

We apply the EA described in the previous Section 5.2 to optimize weights θ ∈ Θ

of a neural network f (θ,x) : Θ × X → Y with X = R1×28×28 and Y = RC that

classifies the MNIST dataset. MNIST is a standard image classification benchmark

with 28 × 28 pixel grayscale inputs and C = 10 classes. The training set contains

50,000 images, which we split into an actual training set of 45,000 images and a

validation set of 5,000 images.

The fitness function that is optimized by the EA is defined over a batch ofB training

examples with data x(i) ∈ X and labels y(i) ∈ JCK, where i ∈ JBK. We define it as

the negative of the loss function (see 5.1), which in this case is the cross-entropy loss

Lx,y (θ) =
1

B

B∑
i=1

`xent

(
ŷ(i), y(i)

)
, (5.5)

where we write ŷ(i) = f
(
θ,x(i)

)
for notational convenience. The cross-entropy term

`xent is defined in Equation 2.7.

All reported accuracies during experiments are validation set accuracies. The test

set of 10,000 images is only used in the final experiment that compares the EA to SGD.

All experiments have been repeated 15 times with different random seeds. When

significance levels are mentioned, they have been obtained by performing a one-sided

Mann-Whitney U test between the samples of each experiment. Unless otherwise

stated, the hyperparameters listed in Table 5.1 are used for all experiments.

5.3.1 Network Architecture

The neural network we use in all our experiments applies 2 × 2 max-pooling to its

inputs, followed by four dense layers with 256, 128, 64, and 10 outputs respectively.

53

Chapter 5 Application to Deep Supervised Learning

Each dense layer except for the last one is followed by a ReLU non-linearity. In total,

this network has 92,000 weights that need to be trained.

Even with SGD training this network architecture is unable to achieve state-of-the-

art results, but it has been chosen due to the following considerations. We want to

limit the maximum network parameter count to roughly 100,000 so that it remains

possible to experiment with large populations and batch sizes. However, we also want

to work with a multi-layer network. We deem this aspect important, as there should

be additional difficulty in optimizing deeper networks with more interactions between

weights. This is the internal covariate shift problem already described in Section 2.3.5.

To avoid concentrating a large part of the weights in the network’s first layer, we

downsample the input. This way, it is possible to have a multi-layer network with a

significant number of weights in all layers.

Furthermore, we decide against using convolutional layers, because our batched

implementation of dense layers is more efficient than the convolutional counterpart.

This would prolong the runtime of all experiments without providing additional

insight, as we are not interested in state-of-the-art results but want to investigate

whether training DNNs with an EA scales well and can perform comparably to SGD.

All networks in the EA population are initialized using the Glorot-uniform [30]

initialization scheme. Even though Glorot-uniform and other neural network initial-

ization schemes were devised to improve SGD performance, we find that the EA also

benefits from them. Furthermore, this allows for a comparison against SGD on even

footing.

5.3.2 Tradeoff between Batch Size and Accuracy

The EA randomly draws a batch of training data for each generation and uses it to

evaluate the population’s fitness. A single fitness evaluation is therefore only a noisy

estimate of the true fitness that could be computed on the whole training set. The

smaller the batch size, the higher the variance of this estimate, because Equation 5.5

averages over fewer cross-entropy loss values. A noisy fitness estimate introduces two

problems: A good network may receive a low fitness value and be eliminated during

selection, or a bad network may receive a high fitness value, survive, and reproduce.

Morse et al. [85] introduce their fitness inheritance scheme with the intent to

counteract this noise and allow effective optimization despite noisy fitness values.

However, in our preliminary experiments fitness inheritance does not seem to have a

positive impact on training results and Morse et al. do not report experiments isolating

the effect of their fitness inheritance scheme. Therefore, we perform a systematic

experiment to explore the interaction between batch size, fitness inheritance weight,

and the resulting network accuracy. The results can be found in Figure 5.1, and three

key observations can be made.

First of all, the validation set accuracy is positively correlated with the batch size.

54

5.3 Experiments

0.850

0.875

0.900

0.925

0.950

0.975
= 100, = 0.20 = 100, = 0.50 = 100, = 1.00

0.850

0.875

0.900

0.925

0.950

0.975

Va
lid

at
io

n
ac

cu
ra

cy

= 1000, = 0.20 = 1000, = 0.50 = 1000, = 1.00

8 16 64 256 512
0.850

0.875

0.900

0.925

0.950

0.975
= 2000, = 0.20

8 16 64 256 512
Batch size

= 2000, = 0.50

8 16 64 256 512

= 2000, = 1.00

Figure 5.1: Validation accuracies of 15 EA runs for different population sizes λ, fitness
inheritance strengths α and batch sizes. Looking at the grid of figures, λ
increases from top to bottom, while α increases from left to right. Inside
each sub-plot and for each batch-size, a boxplot depicts the lower to upper
quartile values of validation accuracies achieved over the 15 repetitions,
with a line at the median and whiskers that show the total range of the
data.

55

Chapter 5 Application to Deep Supervised Learning

0.825

0.850

0.875

0.900

0.925

0.950
batch size = 8, = 100 batch size = 8, = 1000

0.1 0.2 0.3 0.4 0.5 0.6
0.94

0.95

0.96

0.97
batch size = 512, = 100

0.1 0.2 0.3 0.4 0.5 0.6

batch size = 512, = 1000

Selection proportion

Va
lid

at
io

n
ac

cu
ra

cy

Figure 5.2: Validation accuracies of 15 EA runs for different population sizes λ, batch
sizes and selection proportions ρ. The first row of figures shows results for
small batch sizes, while the second row shows results for large batch sizes.

This relationship holds for all tested settings of population size λ and fitness inheritance

weight α. This means, using as large a batch size as possible is always preferable.

Note that the EA was allowed to run for more generations when the batch size was

small, so that all runs could converge. In consequence, it is not possible to compensate

the accuracy loss incurred by small batch sizes by allowing the EA to run longer.

Second, the validation set accuracy is also positively correlated with the fitness in-

heritance weight α. Especially for small batch sizes, significant increases in validation

accuracy can be observed when increasing α. This is surprising, as higher values of α

reduce the amount of fitness inheritance, which was supposed to be especially helpful

for small batch sizes. Instead, we find that the fitness inheritance either has a harmful

effect or no effect on validation accuracy.

Lastly, increasing the population size λ improves the validation accuracy. This

is important but unsurprising, as increasing the population size is a known way to

counteract noise [11]. A large population is generally a desirable property for EAs,

which however comes with the downside of increased computational cost. In our case,

an additional constraint is the amount of GPU memory consumed by each network,

which effectively limits λ given some network size.

5.3.3 Selective Pressure

Having observed that fitness inheritance does not improve results at small batch

sizes, we will now show that instead decreasing the selective pressure results in

higher validation accuracies. The selective pressure influences to what degree fitter

56

5.3 Experiments

Table 5.2: Relative improvement of validation accuracy when increasing the selection
proportion from ρ = 0.1 to ρ = 0.2 in four different scenarios. Since large
population sizes are also an effective countermeasure against noise, the
relative improvement decreases with increasing population sizes.

Batch size Population size Relative improvement

8 100 2.26 %
8 1000 1.57 %
512 100 0.49 %
512 1000 0.34 %

individuals are favored over less fit individuals during the selection process. Since

small batches produce noisy fitness evaluations, a low selective pressure should

be helpful, because the EA is less likely to eliminate all good solutions based on

inaccurate fitness estimates. In our algorithm, the selective pressure is determined by

the selection proportion ρ.

We experiment with different settings of the selection proportion ρ, which deter-

mines what percentage of the population ordered by fitness is eligible for reproduction.

During selection, parents are drawn uniformly at random from T , which is the set of

the ρλ best networks (see Section 5.2). Low selection proportions, i.e. low values of ρ,

lead to high selective pressure, because parents are drawn from a smaller group of

individuals with high apparent fitness. Therefore, we expect low values of ρ to work

worse with small batches than high values of ρ.

Figure 5.2 shows results for increasing values of ρ at two different batch sizes

and two different population sizes. Generally speaking, increasing ρ increases the

validation accuracy (up to a certain degree). For a specific ρ, the validation accuracies

across the four scenarios are not comparable because batch size and population size

are influencing factors as well. In order to quantify the improvement through the use

of low selective pressure in the different scenarios, we treat the relative difference in

validation accuracies going from ρ = 0.1 to ρ = 0.2 as a proxy. Table 5.2 confirms

that decreasing the selective pressure (by increasing ρ) has a positive influence on

the validation accuracy, especially for small batch sizes. This is in line with our

expectations, because small batch sizes lead to fitness estimates with higher variance,

where keeping the selective pressure low is more important than with high batch sizes,

which lead to less noise in the fitness evaluation.

5.3.4 Crossover and Mutation Operators

While the previous experiments explore the influence of limited evaluation, another

significant factor for good performance are crossover and mutation operators that

match the optimization problem. Neural networks in particular have problematic

redundancy in their search space. Nodes in the network can be reordered without

57

Chapter 5 Application to Deep Supervised Learning

0.93

0.94

0.95

0.96

0.97

constant constant

0.88

0.90

0.92

0.94

0.96

Va
lid

at
io

n
ac

cu
ra

cy

exp. decaying exp. decaying

none
pC = 0

uniform
pC = 0.5

uniform
pC = 0.75

0.945
0.950
0.955
0.960
0.965
0.970

self-adaptive

none
pC = 0

arithmetic
pC = 0.5

arithmetic
pC = 0.75

self-adaptive

Figure 5.3: Validation accuracies of 15 EA runs with different levels of crossover pC ,
crossover operators and mutation strength σ adaptation schemes. The left
column shows results using uniform crossover, while arithmetic crossover
is employed to get the results in the right column.

changing the network connectivity. This means that there are multiple equivalent

weight vectors that represent the same function mapping.

Designing crossover and mutation operators that are specifically equipped to deal

with these problems seems like a promising research direction, but for now we want to

establish baselines with commonly used operators. In particular, these are uniform and

arithmetic crossover as well as random normal mutation. It is not obvious if crossover

is helpful for optimizing neural networks, as there is no clear compositionality in

the weight space. There are many interdependencies between weights that might be

destroyed, e.g. when random weights are replaced by those from another network

during uniform crossover. We not only want to compare the uniform and arithmetic

crossover operators among themselves, but also test if crossover leads to improvements

at all. This can be achieved by varying the EA hyperparameter pC , which controls the

percentage of offspring that are created by the crossover operator.

On the other hand, random normal mutation intuitively performs the role of a local

search, but its usefulness significantly depends on the choice of the mutation strength σ.

Therefore, we compare the three adaptation schemes (constant, exponential decay, and

self-adaptation) that provide different mutation strengths over the course of evolution.

58

5.3 Experiments

0 10000 20000 30000 40000 50000
Iterations

0.000

0.001

0.002

0.003

0.004

0.005

M
ea

n
se

lf-
ad

ap
tiv

e

uniform, pC = 0.50
uniform, pC = 0.75
arithmetic, pC = 0.50
arithmetic, pC = 0.75
none, pC = 0

Figure 5.4: Population mean of mutation rate σ from 15 EA runs with self-adaptation
turned on. The shaded areas indicate one standard deviation around the
mean.

Since different crossover operators might need different mutation strengths to oper-

ate optimally, we test all combinations and show results in Figure 5.3. In experiments

that use at least some amount of crossover, i.e. pC > 0, validation accuracies are

always significantly (Mann-Whitney U test, p < 0.01) higher than in experiments

without crossover, except for the case of arithmetic crossover with exponential decay.

The reason for this exception is likely that arithmetic crossover needs high mutation

strengths to counteract the loss of diversity that is incurred by continually taking

averages of solutions. In combination with exponential decay, σ decreases too fast to

provide this additional diversity. This becomes evident when examining the mutation

strengths chosen by self-adaptation in Figure 5.4. Compared to uniform crossover, the

self-adaptation drives σ to much higher values when arithmetic crossover is used.

Overall, both crossover operators work well under different circumstances. Uniform

crossover at pC = 0.75 with constant σ achieves the highest median validation

accuracy of 97.3 %, followed by arithmetic crossover at pC = 0.5 with self-adaptive σ

at 96.9 % validation accuracy. When using uniform crossover at pC = 0.75, a constant

mutation strength works significantly (p < 0.01) better than the other adaptation

schemes. On the other hand, for arithmetic crossover at pC = 0.5, the self-adaptive

mutation strength performs significantly (p < 0.01) better than the other two tested

adaptation schemes. The main drawback of the self-adaptive mutation strength is the

the additional randomness that leads to high variance in the training results. This

could probably be overcome with even bigger populations.

5.3.5 Comparison to SGD

Informed by the other experiments, we want to run the EA with advantageous hyper-

parameter settings and compare its test set performance to the Adam optimizer. Most

importantly, we use a large population, large batch size, no fitness inheritance, and

offspring are created by uniform crossover in 75 % of all cases, as summarized in

Table 5.1. Population and batch size were chosen so that the population uses most of

59

Chapter 5 Application to Deep Supervised Learning

the available GPU memory.

Median test accuracies over 15 repetitions are 97.6 % for the EA and 98.0 % for

Adam. Adam still significantly (p < 0.01) beats EA performance, but the difference

in final test accuracy is rather small. However, training with Adam progresses about

10 times faster, so it would be wrong to claim that EAs are competitive for neural

network training on supervised learning problems. Yet, this work is another piece of

evidence that EAs have potential for applications in this domain despite the very large

search space that EAs aren’t traditionally applied to.

5.4 Conclusion

Efficient batch fitness evaluation of a population of neural networks on GPUs makes

it feasible to perform extensive experiments with the LEEA. While the idea of using

very small batches for fitness evaluation is appealing for computational cost reasons,

we find that it comes with the drawback of significantly lower accuracy than with

larger batches. Furthermore, the fitness inheritance that is supposed to offset these

drawbacks actually has a detrimental effect in our experiments. We propose to use

low selective pressure as an alternative countermeasure.

We compare uniform and arithmetic crossover in combination with different muta-

tion strength adaptation schemes. Surprisingly, uniform crossover works best among

all tested combinations, even though it is counter-intuitive that randomly replacing

parts of a network’s weights with those of another network is helpful.

Finally, we train a network of 92,000 weights on MNIST using an EA and reach a

median test accuracy of 97.6 %. SGD still achieves higher accuracy at 98 % and is

remarkably more efficient in doing so, but this apparent drawback is mostly due to

the supervised learning setting. Here, gradient-based learning works exceptionally

well, whereas other areas such as reinforcement learning paint a different picture.

We will take a look at an application to reinforcement learning in the next chapter.

However, since in this thesis we are concerned with neural architecture search (G1)

and computational efficiency (G2) on supervised image classification problems, it

seems more fruitful to keep training network weights using SGD on these kinds of

tasks.

60

Chapter 6

Application to Deep Reinforcement
Learning

The last chapter demonstrates how a DNN can be trained by an EA on a supervised

image classification task. While it is possible to do so, the results are not competitive

with SGD training. This is not extremely surprising, because the EA completely

disregards the analytical weight gradient. Therefore, the EA solves a more difficult

problem compared to SGD, which uses this gradient information. However, there are

other domains where EAs can outperform SGD despite this disadvantage.

Recent literature suggests that EAs achieve very competitive results on reinforce-

ment learning tasks. In a reinforcement learning setting, an agent interacts with an

environment through actions and receives rewards in response [101]. An agent can be

represented by any kind of mapping between environment states and actions, i.e. it

can be a lookup table but also a DNN model. The goal for the agent is to maximize

the total reward over its lifetime. Because of this abstract process, many tasks can be

cast as a reinforcement learning problem though it is most natural when there is an

actual agent that interacts in an environment, such as in robotics.

We implement an evolutionary reinforcement learning algorithm that trains a DNN

agent to play Atari 2600 games from pixel inputs. Atari 2600 games are a challenging

reinforcement learning benchmark for a variety of reasons, as we will detail later. In

particular, there is a lot of randomness involved that leads to high variance in scores

between different evaluations of the same agent. With this observation in mind, we

propose tweaks to an existing algorithm that improve its robustness in the presence of

strong fitness noise.

This chapter will serve to showcase a more successful application of EAs to DNN

weight training. In the reinforcement learning setting, it should be a lot more realistic

to create modern neuroevolution algorithms that perform well with large DNNs

on difficult problems. While we are concerned primarily with supervised image

classification in this thesis, this serves to show that other domains that currently heavily

rely on deep learning can also benefit from evolutionary algorithms. Reinforcement

learning is just one of these domains; generative image modeling is also starting to

include evolutionary approaches [138, 20, 132].

61

Chapter 6 Application to Deep Reinforcement Learning

Outline. Section 6.1 introduces the Atari environment and explains the difficulty

in learning to play these games. In Section 6.2 we introduce the evolutionary rein-

forcement learning algorithm and motivate our modifications. Section 6.3 presents

experiments on a selection of six games and we summarize our work in Section 6.4.

6.1 Atari Environment

The Atari 2600 is a game console that was released in the seventies. Its dated hardware

makes it easy to emulate Atari games with high speed on modern computers. This

makes them good candidates as experimental testbeds for game playing, especially in

the context of reinforcement learning, because the simulation of Atari environments is

inexpensive compared to other environments like modern computer games. Games

in general are popular to test reinforcement learning algorithms, because they often

require complex skills and allow to compare the algorithms to human performance

through scores. Therefore, the Arcade Learning Environment [9], which offers access

to many different Atari games through a convenient Python wrapper, has become a

popular benchmark for reinforcement learning.

The game state upon which the agent acts can be either the pixel image that is

rendered by the game, or the game’s random access memory (RAM). Since the Atari

only has 128 bytes of RAM, this is a very compact representation that can easily be

learned from. If the state is given as the RAM, the agent will often have direct access

to meaningful properties, like the player or enemy position. In contrast, if the state

is the rendered pixel image, such high-level information has to be extracted from the

image through the agent itself. This complicates the learning process significantly,

but it also makes the algorithms that manage to learn from such a representation

transferable to other reinforcement learning problems that have visual state input. In

the end, this transferability is what matters to allow real-world applications.

Despite their simple appearance, Atari games pose significant challenges to current

reinforcement learning algorithms. Some games require the player to complete long

sequences of actions before giving any kind of reward in the form of score points.

For example, the first level of the game Montezuma’s Revenge requires the player to

climb down a ladder, jump over a gap, climb down another ladder, evade an enemy,

and climb up another ladder to get a key. Only after the key is collected, a reward is

issued. Therefore, there is no incentive for the agent to perform any of these steps

until the sequence has been completed in its entirety at least once by random chance.

Unlike humans, the agents are missing the prior information about ladders and keys,

which gives hints on the required actions to progress in the game.

Another hurdle is non-determinism. There is randomness inherent to some games,

but additional randomness is injected by the Arcade Learning Environment in the

form of non-deterministic frame-skips. For some game frames, the environment

simply repeats the last action instead of querying the agent for a new action to prevent

62

6.2 Evolutionary Deep Reinforcement Learning

the agent from learning brittle strategies. The non-determinism usually results in a

significant score variance for the same agent over repeated evaluations. In the EA

context, the score is used as the fitness function, and the high variance increases the

difficulty of optimization.

6.2 Evolutionary Deep Reinforcement Learning

Evolutionary deep reinforcement learning has been applied to Atari games with

good results, e.g. using evolution strategies [19, 58, 107, 16] or a population based

EA [125] as the DNN optimizer. EAs can easily be scaled to all available hardware

resources, because they are inherently parallel. In a distributed setting, it is necessary

to communicate agents and rewards over the network. With DNN agents, this would

ordinarily be a bottleneck due to the large amount of weights. However, ES and EA

with random normal mutation admit a strong compression of the weights by simply

expressing them in terms of seeds for random number generators that create the initial

weight and mutation vectors [107]. This way, the weights of a whole DNN can be

expressed in just a few scalar values. The actual weights can then be reconstructed at

the receiver at relatively low cost.

In comparison to Q-Learning and similar reinforcement learning algorithms, EAs

are insensitive to the value distribution of rewards and long time horizons between re-

wards, because the fitness is aggregated over whole episodes and rank-based selection

is possible. This, together with the fundamentally different optimization approach,

can lead to qualitatively different solutions, e.g. with increased robustness [66].

Algorithm 3: Evolutionary algorithm for Atari DNN agent training.

1 P ← randomly initialize λ weight vectors θ1, θ2, . . . , θλ
2 evaluate fitness for all solutions in P
3 P ← best µ solutions from P

4 while termination condition not met do
5 E ← select κ best solutions from P

6 re-evaluate and update fitness for eligible solutions in E
7 Q← select λ solutions from P uniformly at random with replacement
8 Q← {θ + σN (0, 1)| θ ∈ Q}
9 evaluate fitness for all solutions in Q

10 P ← best µ solutions from E ∪Q
11 end

We implement an EA for deep reinforcement learning heavily inspired by Such

et al. [125] with a tweak that increases its robustness against fitness noise. It is a

population-based (µ, λ) EA with elitism and is listed in Algorithm 3. Agents are

trained for every game separately, i.e. they can only play a single game. The training

63

Chapter 6 Application to Deep Reinforcement Learning

begins by initializing λ random DNN agents, evaluating them, and choosing the best µ

as the initial parents P . Then, the evolutionary loop starts and, in our case, continues

until the number of total processed game frames by all fitness evaluations so far

exceeds a set limit. Every iteration, we select the κ best agents by fitness from P as

elites, which are not mutated in any way. Furthermore, we select λ random solutions

from P , perform random normal mutation with mutation strength σ, and evaluate

these offspring agents.

During the evaluation each agent is given a 4 × 84 × 84 tensor as its input state

that consists of the last four grayscale game frames stacked on top of each other. This

allows the agent to perceive motion without recurrent connections in the DNN. The

agent plays the game until it dies or exhausts a predetermined budget of 3,000 frames.

This prevents agents that perform nonsensical actions such as always standing still

from never completing their evaluation. Our frame budget is set rather low because

of computational resource constraints, and this would likely prevent state-of-the-art

results for some games. Nevertheless, good results can be achieved even in this

scenario.

Every evaluation is performed using a different random seed, and a random number

of no-ops (up to 30) are performed at the beginning of every episode, which is a

common configuration to make the agent experience different states at the beginning

of the game. This in turn increases the difficulty, because it requires more adaptive

behavior from the agent. The score achieved by the agent at the end of the episode is

returned as its fitness and often varies strongly between evaluations of the same agent

due to the non-determinism.

Such et al. [125] select µ solutions among elites and offspring as parents for the

next generation. They use only a single elite (κ = 1) and select a total of µ = 10

parents. In our experiments, this often leads to the parent population being filled with

agents that have a spurious high score run but perform badly in repeated evaluations.

Agents that perform well consistently but did not score exceptionally high are very

likely to be replaced by such bad agents with apparent high fitness.

Therefore, we tweak the algorithm in several ways. First of all, we increase the

number of elites to κ = 10 and size of the parent population to µ = 40. When selecting

a larger number of parents from the population, it becomes increasingly unlikely that

all parents will be badly-performing agents with overestimated fitness, i.e. there is a

higher chance for offspring to derive from actually good agents. Increasing the number

of elites also decreases the chance that all of them will have an overestimated fitness

value, although the chance is still higher because elites are specifically the agents with

highest fitness. Therefore, we introduce a re-evaluation procedure (see Algorithm 3,

line 6). Re-evaluation is a common countermeasure to fitness noise that performs

multiple evaluations of the same solution and averages the result. This increases the

computational cost, so we do not re-evaluate the whole population but only the elites,

which are most prone to contain agents with overestimated fitness. Every generation,

64

6.3 Experiments

Table 6.1: Hyperparameters for the baseline and our proposed evolutionary reinforce-
ment learning algorithm.

Hyperparameter Baseline Proposal

Elites κ 1 10
Parents µ 10 40
Offspring λ 5,000 2,000
Mutation strength σ 0.005 0.005
Max. evaluations 1 20

an additional re-evaluation is performed (until a solution reaches a maximum number

of evaluations), so that the elite agents’ fitness values approach their true fitness value

over time.

6.3 Experiments

We train DNN agents on six different Atari games using the EA defined in Algorithm 3.

Both the baseline from Such et al. [125] and our algorithmic tweak can be expressed

by choosing different hyperparameters, as specified in Table 6.1. In addition to the

increased number of elites and parents, we allow up to 20 evaluations per agent. In

consequence, elites are re-evaluated up to 19 times, and their fitness gets more accurate

with each re-evaluation. Setting the maximum number of evaluations to 1 recovers the

original algorithm from Such et al [125].

The DNN modeling our agents consists of three convolutional layers and two

dense layers, each followed by a ReLU activation except for the final layer. The

convolutional layers in sequence are configured as follows: 32 channels using a 8× 8

kernel with stride 4; 64 channels using a 4× 4 kernel with stride 2; 64 channels using

a 3 × 3 kernel with stride 1. The first dense layers has 512 outputs, while the final

dense layer has a game-dependent number of outputs that corresponds to the number

of buttons that the game uses. For the game Atlantis there are 4 outputs, while there

are 18 outputs for all other games. This architecture is identical to the one Such et al.

[125] use. The action corresponding to the output with the highest score is chosen by

the agent at each timestep.

The evolution progresses until a total of one million game frames have been pro-

cessed. Unfortunately, it is difficult to compare results between different reinforcement

learning algorithms directly, as the different algorithms use frames in a different way.

For example, gradient-based methods put frames in a replay memory, and frames are

re-used multiple times to train the DNN. In addition to the cost of using an agent to

play the game in order to receive new state transitions, the gradient-based methods

incur training costs. Therefore, we can only directly compare between the baseline

variant and our proposed variant of Algorithm 3. We will still list results of other

65

Chapter 6 Application to Deep Reinforcement Learning

Table 6.2: Results on six Atari games from literature and our own experiments. The
asterisk marks experiments that use ensembling.

Method Atlantis Frostbite Gravitar Kangaroo Seaquest Venture

DQN [82] 279,987 797 473 7,259 5,861 163
Duel [139] 382,572 4,673 588 14,854 50,254 497
ES [107] 1,267,410 370 805 11,200 1,390 760

Baseline 57,294 5,547 200 8,213 1,316 626
Baseline* 45,168 5,140 124 9,850 628 0
Proposal 96,057 6,440 656 10,032 1,369 1,230
Proposal* 100,987 2,455 480 10,198 921 580

approaches from literature to provide context.

For every experiment, we retrieve the single best agent from the union of all

generations according to their fitness values. For a fair comparison between the

baseline and our proposal, the best agents are evaluated by playing their game for 100

trials. Each trial has a fixed but unique seed, so that the environment is the same for

both agents. Figure 6.1 shows how the evolution progresses for both baseline and

proposal. We see that the proposed algorithm performs similarly to the baseline in the

game Seaquest and outperforms the baseline in the five other games.

Final scores are listed again in Table 6.2, together with results from the differentiable

deep reinforcement learning algorithms DQN [82], Duel [139], and another method

based on evolution strategies (ES) [107]. We can see that the different algorithms

excel at different games. Our proposed EA scores highest in two games, the ES scores

highest in another two games, and Duel scores highest in the remaining two games.

Overall, evolutionary methods (EA and ES) are very competitive with gradient-based

approaches.

However, the state-of-the-art has since advanced significantly by exploiting scaling

effects. For example, the recently published Ape-X [41] employs a training archi-

tecture distributed among a large number of workers and uses prioritized experience

replay [111] to select the most promising transitions for training the agent. Despite

only combining already existing deep reinforcement learning techniques, they sig-

nificantly advance the state-of-the-art, because their method is able to generate and

exploit several orders of magnitude more state transitions as training data than before.

It stands to reason that evolutionary approaches would similarly benefit from more

samples.

Finally, we test if it is possible to ensemble the agents that get created by evolution

for even better results. This would be a great side-effect of EAs, since they naturally

train a population of well-performing agents. To create an ensemble, we take the best

three unique agents from the union of all generations according to their fitness values.

The outputs of all models are averaged before the agent chooses its action. Results are

66

6.4 Conclusion

listed in Table 6.2 as the experiments marked with an asterisk. There are some slight

improvements in some games but also large losses in other games. Overall, this kind

of ensembling does not seem promising out of the box. A possible explanation might

be that the different agents follow different strategies that contradict each other but we

did not investigate this further.

6.4 Conclusion

We implement an EA to train DNNs in a reinforcement learning setting using Atari

games as a benchmark problem. Reinforcement learning poses a very different

challenge from supervised learning and is usually strongly affected by noise from

various sources. EAs can be designed in ways that makes them very resilient to noise

and we have demonstrated this by improving upon an existing evolutionary deep

reinforcement learning method.

EA and ES perform competitively to gradient-based methods on Atari games

although each method seems to excel at different tasks. Due to the fundamentally

different algorithmic approach between gradient-based Q-learning and evolution,

we can expect very different solutions with different properties and this allows for

promising future work.

This chapter showcases that evolutionary techniques can be used to train large

DNNs for complex problems just as well as SGD even if they cannot compete with

SGD on supervised image classification tasks. For the remainder of the thesis will

return to supervised learning, but we want to point out that reinforcement learning

seems like a very promising domain to test modern neuroevolutionary approaches that

use large DNNs.

67

Chapter 6 Application to Deep Reinforcement Learning

0.0 0.2 0.4 0.6 0.8 1.0
1e9

20000

40000

60000

80000

Sc
or

e

Atlantis

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0

2000

4000

6000

8000

Frostbite

0.0 0.2 0.4 0.6 0.8 1.0
1e9

250

0

250

500

750

1000

1250

1500

Sc
or

e

Gravitar

0.0 0.2 0.4 0.6 0.8 1.0
1e9

0

2000

4000

6000

8000

10000

Kangaroo

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e9

250

500

750

1000

1250

1500

1750

2000

Sc
or

e

Seaquest

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e9

0

200

400

600

800

1000

1200

1400

Venture

Baseline Proposal

Figure 6.1: Progress of evolution in terms of score over total processed number of
frames. Shown is the average and standard deviation over 50 trials of the
best agent in each generation.

68

Part III

Evolutionary Neural
Architecture Search

After exploring DNN weight training with EAs, we now turn our attention to the DNN

architecture. So far, the architecture has been manually set beforehand, but it is difficult

and inefficient to manually search for good architectures in the enormous space of

possibilities. Since we saw that EAs are not competitive with SGD for the training

of DNNs on supervised learning problems, we will now explore neural architecture

search methods that train weights with SGD while optimizing the architecture with

evolutionary algorithms. Chapter 7 will introduce evolutionary NAS approaches and

explore a technique to reduce the computational requirements of NAS. Then, we turn

to one-shot NAS for even larger efficiency gains. In Chapter 8, we present a NAS

algorithm that closely integrates the SGD weight training process with an evolutionary

optimization of the architecture by a natural evolution strategy. The algorithm is used

to perform deep multi-task learning with the goal to find architectures that allow the

application of DNNs to multiple small but related tasks.

69

Chapter 7

Lamarckian Evolution of
Convolutional Neural Networks

Convolutional neural networks, i.e. DNNs with convolutional layers as their main com-

ponent, perform extremely well as image classifiers. As we have seen in Section 2.4,

the architecture of the network has significant impact on its performance. Neural

architecture search methods allow to automatically find well-performing architectures,

but the process is computationally very expensive, sometimes requiring thousands of

GPU-hours.

One of our goals in this thesis is to reduce the computational requirements for neural

architecture search. In this chapter, we show that an evolutionary algorithm saves

training time during the network architecture optimization if learned network weights

are inherited over generations by Lamarckian evolution. By using a parent’s trained

weights as the starting point for the optimization of an offspring solution, less training

time is required for the evaluation of the offspring. Experiments on typical image

datasets show similar or significantly better test accuracies and improved convergence

speeds compared to two different baselines without weight inheritance. On CIFAR-10

and CIFAR-100, weight inheritance reduces the necessary number of training epochs

to match or surpass baseline accuracies by 75 %.

The results presented in this chapter are based on the following publication:

• Jonas Prellberg and Oliver Kramer. Lamarckian evolution of convolutional

neural networks. In Anne Auger, Carlos M. Fonseca, Nuno Lourenço, Penousal

Machado, Luís Paquete, and Darrell Whitley, editors, Parallel Problem Solving

from Nature - PPSN XV - 15th International Conference, Coimbra, Portugal,

September 8-12, 2018, Proceedings, Part II, volume 11102 of Lecture Notes in

Computer Science, pages 424–435. Springer, 2018

Outline. Section 7.1 presents related work about approaches that optimize DNN

architectures with EAs. In Section 7.2, we detail EA and non-EA approaches that

have used weight inheritance for various reasons. Then, Section 7.3 describes the EA

that is used in this chapter and explains how the mutation with weight inheritance

works. In Section 7.4, experimental results are presented and discussed. We end with

a conclusion in Section 7.5.

71

Chapter 7 Lamarckian Evolution of Convolutional Neural Networks

7.1 Evolutionary Neural Architecture Search

Over the last years, DNNs and especially convolutional neural networks (CNN) have

become state-of-the-art in numerous application domains. Their performance is greatly

influenced by the network architecture, which makes choosing the right architecture an

important aspect of applying neural networks to new problems. However, comparing

different architectures is computationally expensive due to the lengthy training process

that has to be repeated each time a new architecture is tested. This downside applies to

optimization by hand as well as to automated approaches, such as grid search, random

search, or evolutionary optimization.

In contrast to neuroevolutionary approaches that search architectures in the space of

individual nodes and connections, in the recent years EAs have mostly been applied

to optimize network architectures on a coarser level. They work on the level of

building blocks or hyperparameters that describe regular architectures. The actual

weight training is performed with SGD, since it offers increased efficiency for training

the large and deep networks prevalent today. The usual procedure is as follows:

A genotype encodes the network architecture, e.g. as a graph or a list of building

blocks. In a genotype-phenotype process, a network is built from this description and

initialized with random weights. Then, several epochs of SGD on a training set adjust

the network weights. Finally, the network is tested on a validation set and a metric,

such as accuracy, is reported as the solution’s fitness.

There are numerous publications that follow this general NAS concept. Kramer [60]

uses a (1 + 1) EA with a special niching strategy to optimize hyperparameters that

define a convolutional highway network, a specific human-designed architecture that

can be configured in different ways. Suganuma et al. [126] use a modified (1 + λ) EA

to optimize the structure of a CNN using a Cartesian genetic programming encoding

scheme. Both approaches use small populations and only employ mutations while

still achieving good results. Desell [23] modifies the NEAT algorithm to optimize the

structure of a CNN by evolving a graph of convolutional layers which is then trained

with SGD. Similar to Desell, CoDeepNEAT [80] also extends the NEAT algorithm

to use DNN layers as nodes in the evolved graph. Additionally, a co-evolution of

modules and blueprint networks is performed. The blueprint networks reference

the evolved modules, which results in architectures with repeated motifs similar to

how hand-designed architectures are mostly built from repeated blocks of the same

type. Another recent approach, DENSER [5], uses a genetic algorithm to optimize

a sequence of neural network layers whose hyperparameters are evolved through

dynamic structured grammatical evolution.

All of these approaches have one thing in common: Over the course of the evolution,

thousands of networks are trained using SGD, which is extremely resource intensive.

As we will see next, weight inheritance can offset some of the training cost.

72

7.2 Weight Inheritance

7.2 Weight Inheritance

Lamarckian evolution describes the idea that traits acquired over the lifetime of an

individual are inherited to its offspring [110]. While rejected in biology, this approach

can be beneficial for artificial evolution when there is a bi-directional mapping between

genotype and phenotype. This allows to encode learned behavior back into the

genotype and then apply an EA as usual. For example, Parker and Bryant [88] and Ku

et al. [62] apply Lamarckian evolution to neural networks by directly encoding the

network weights in the genotype. This creates a simple one-to-one mapping between

genotype and phenotype. Other publications also use weight inheritance with more or

less success and different goals.

Desell [23] conducted an experiment on weight inheritance in the context of their

NEAT CNN training algorithm, but it was not found to decrease the time necessary to

train a single network to completion.

Fernando et al. [26] use a microbial genetic algorithm to optimize the structure of

a DPPN. A DPPN is a differentiable version of the compositional pattern producing

network that is also used in HyperNEAT and produces weights for a second target

network. Fernando et al. found their Lamarckian EA with weight inheritance to

improve the mean squared error in an image reconstruction experiment over their EA

without weight inheritance.

Jaderberg et al. [49] use an EA to optimize hyperparameters of static networks. It

only performs mutations but inherits weights to mutated offspring. The networks are

therefore trained to completion over multiple steps with potentially different hyperpa-

rameters. If one of the optimized hyperparameters is the learning rate, this effectively

trains the network using a dynamic, evolved learning rate schedule. Different from

their work, our goal is to increase the data efficiency of a NAS algorithm.

Real et al. [98] use an EA to optimize the structure of a CNN through mutations

with weight inheritance. During fitness evaluations, SGD training is performed for 28

epochs on CIFAR-10 or CIFAR-100. Using very large population sizes, they reach

results that are competitive with hand-designed networks. Weight inheritance is not a

focus of their work, but they show that it is necessary to evolve networks with good

final accuracy, since 28 epochs are not enough to fully train a network on the used

datasets.

We will look at weight inheritance in more detail in this chapter and show that a

weight inheritance scheme can drastically increase the data efficiency of an EA that

optimizes neural network architectures. Usually there is a trade-off between training

time per fitness evaluation and final accuracy. The longer each network is trained

during its fitness evaluation, the more accurate the fitness estimate gets. However, the

total runtime of the EA increases significantly as well. Weight inheritance allows to

resolve this trade-off by increasing the convergence speed of network training through

a better-than-random weight initialization.

73

Chapter 7 Lamarckian Evolution of Convolutional Neural Networks

7.3 Lamarckian Neural Architecture Search

To assess the influence of weight inheritance for neural network architecture optimiza-

tion, design decisions regarding the optimizable architecture search space and type of

EA must be made. The goal is not to achieve state-of-the-art performance or find novel

architectures but instead to show the advantages of weight inheritance. Therefore, we

choose to optimize a fairly restricted architecture space of linearly stacked building

blocks which, however, is still applicable to many problems.

In contrast, let us consider NAS approaches like [154, 155, 69] that allow a wider

variety of network architecture graphs because nodes can connect to several input

and output nodes. This comes with drawbacks such as solutions that do not represent

valid network architectures due to incompatibilities in data shapes or nodes without

any inputs or outputs that have to be heuristically connected. Most importantly

though, this creates a significantly larger search space that covers a larger number of

possible architectures. While this is advantageous in general because some of these

architectures may be better than what can be found in a more constrained search

space, it becomes a disadvantage if only a tiny fraction of it can be explored. Since

we are concerned with NAS in a resource-constrained setting, the total number of

explored architectures will be comparatively small. In such a scenario, it is more

beneficial to explore a smaller, coarse-grained search space well in order to cover

a diverse set of architectures. In contrast, exploring solutions in a small part of a

fine-grained solution space would waste computation on many similar architectures.

Furthermore, this choice allows the EA to converge fast enough within our hardware

resource constraints to make multiple repetitions of the same experiment feasible for

statistical purposes.

The architecture search space is defined by the template presented in Figure 7.1.

It consists of stacked building blocks that contain a convolutional layer followed by

batch normalization and a ReLU activation. The total number of building blocks and

the individual number of channels, kernel size, and stride of the convolutional layer in

each building block are subject to optimization. They make up the genotype for this

evolutionary optimization. When creating the phenotype, i.e. the actual network, we

always append global average-pooling and a dense layer after the last building block,

since experiments are performed specifically on image classification datasets.

The optimization is performed by a (1 + 1) EA. In contrast to evolutionary algo-

rithms with larger populations, the necessary computational resources are modest, but

the method is also more prone to getting stuck in local optima in multi-modal prob-

lems. To alleviate this, a form of niching is introduced. The evolutionary algorithm

and its mutation operator with weight inheritance are presented in more detail in the

following sections.

74

7.3 Lamarckian Neural Architecture Search

Input image

Conv2D
c1, k1 × k1, s1

BatchNorm2D

ReLU

· · ·

Conv2D
cn, kn × kn, sn

BatchNorm2D

ReLU

AvgPool2D

Dense

Figure 7.1: Graph template defining the network architecture search space, which is a
sequence of building blocks (shown as gray boxes). Each building block
i ∈ JnK has its individual hyperparameters channel count ci, kernel size ki,
and stride si that have to be optimized by the EA.

7.3.1 Evolutionary Algorithm

In contrast to all previous descriptions of the DNN training process in Part I and II,

we now not only optimize weights but also the DNN architecture. Therefore, we now

minimize an extended loss function L (θ, a) : Θ × A → R that depends on both

weights and architecture, where Θ is the space of weights and A is the space of DNN

architectures. Our method requires the dataset to be split into a training set Dtrain and

validation set Dval. The loss function L (θ, a) will only use data from Dtrain and is

used for weight training with SGD while keeping the architecture fixed. We further

define a fitness function V (θ, a), e.g. accuracy for classification problems, that only

uses data from Dval and is used to guide the evolutionary architecture optimization.

Algorithm 4 presents the (1 + 1) EA with niching as pseudo-code. An initial

solution (θ, a) with an architecture a consisting of a single convolutional layer with a

random number of channels, random kernel size, and a stride of one is created and

initialized with random weights θ. This solution is optimized by the EA in a loop as

follows.

First, a random mutation from the set of possible mutations is applied to the

parent (θ, a) to create a child (θ′, a′) with a different network architecture but inherited

weights. Note that θ′ will not generally be equal to θ, even though that is the intent

behind weight inheritance. Changes in the architecture will lead to differently shaped

75

Chapter 7 Lamarckian Evolution of Convolutional Neural Networks

Algorithm 4: (1 + 1) evolutionary algorithm for NAS with niching.

1 Let L (θ, a) be the loss on the training set under weights θ and architecture a
2 Let V (θ, a) be the fitness on the validation set under weights θ and architecture a
3 def EvoNAS (θ, a, steps, allowNiching) as
4 for i in 1 . . . steps do
5 θ′, a′ ← apply mutation with weight inheritance to (θ, a)

6 θ∗ ← minimize L (θ′, a′) for e epochs by SGD with a′ fixed
7 if allowNiching and V (θ∗, a′) ≤ V (θ, a) and rnd() < ω then
8 θ∗, a′ ← EvoNAS (θ∗, a′, k, False)

9 end
10 if V (θ∗, a′) > V (θ, a) then
11 θ, a← θ∗, a′

12 end
13 end
14 return (θ, a)

15 end
16 θ, a← initial arch. with a single random building block and random weights
17 θ, a← EvoNAS (θ, a, maxSteps, True)

weight tensors that make inheritance impossible in some cases. It will however be

as similar as possible and keep weights of all building blocks that are unaffected by

the mutation. These mutations with weight inheritance are described in the following

sections.

Next, the weights θ′ of this child solution are optimized by SGD for e epochs by

minimizing L (θ′, a′) while keeping a′ fixed. The resulting trained weights θ∗ are

used to evaluate the child solution’s fitness V (θ∗, a′). If it is greater than the parent’s

fitness V (θ, a), the child replaces the parent.

Because this algorithm is greedy, it can get stuck in local minima. Therefore, a

niching approach adapted from Kramer [60] is implemented. There is a random

chance ω to follow solutions that are initially worse. In such a case, a child, which has

a lower fitness than its parent, is used as the parent network for a recursive call of the

same algorithm. During niching, the mutate-evaluate-select-loop is repeated k times.

When the last loop iteration ends, the best network found during niching is returned.

If this network has a greater fitness than the original parent, it is selected. Otherwise,

optimization proceeds with the original parent.

7.3.2 Mutation Operators

As mentioned before, the number of building blocks, as well as the number of channels,

kernel size, and stride of each convolutional layer are subject to optimization. For

simplicity, all these hyperparameters are chosen from predefined sets:

76

7.3 Lamarckian Neural Architecture Search

• Number of building blocks n ∈ N

• Number of channels ci ∈ C = {16, 32, 64, 96, 128, 192, 256} for all i ∈ JnK

• Kernel sizes ki ∈ K = {1, 3, 5} for all i ∈ JnK

• Strides si ∈ S = {1, 2} for all i ∈ JnK

Mutations are picked randomly from the list below. Each choice has a relative

frequency (indicated by the multiplier in front of the list item) that determines how

much more likely it is to be chosen than the mutation with a relative frequency of

one. The frequencies have been chosen such that the more granular mutations, which

are likely to have a smaller impact on the result, are applied less often in order to

effectively use the available computation time.

• 3× add block: Adds a building block at a random position. The contained

convolutional layer is initialized with a random number of channels, random

kernel size, and a stride of one. This mutation indirectly governs the number of

building blocks n.

• 3× remove block: Removes a random building block. This mutation indirectly

governs the number of building blocks n.

• 2× add channels: Picks a random convolution and sets its number of channels

to the next greater value in C.

• 2× remove channels: Picks a random convolution and sets its number of chan-

nels to the next lower value in C.

• 2× change kernel size: Picks a random convolution and randomly draws its

kernel size from K.

• 1× change stride: Picks a random convolution and randomly draws its stride

from S.

All random choices within each mutation, such as picking a random block to apply

the mutation to or picking a new kernel size, are chosen uniformly at random from the

appropriate set.

The mutation operator is forced to modify the network. A history of all previously

evaluated network architectures is maintained, and mutations are repeatedly applied to

the parent network until an architecture is created that has not been evaluated before.

Furthermore, only network architectures with at most three convolutions of stride two

are allowed because the image inputs of CIFAR are only 32× 32 and each stride-two

convolution halves the side lengths.

77

Chapter 7 Lamarckian Evolution of Convolutional Neural Networks

7.3.3 Weight Inheritance

Each solution consists of a network architecture made from n building blocks and the

associated weight vector. The latter is the concatenation of all weights in all building

blocks that are part of the corresponding network architecture:

θ = θ1 ‖ . . . ‖ θn. (7.1)

Here, ‖ denotes the concatenation of flattened tensors. The weights θi for building

block i are comprised of the convolutional layer kernel ki ∈ Rci×ci−1×ki×ki and

bias bi ∈ Rci , and batch normalization weights γi, βi ∈ Rci and running statistics

σ2i , µi ∈ Rci . The concatenation of weights for building block i is therefore:

θi = ki ‖ bi ‖ γi ‖ βi ‖ σ2i ‖ µi = ki ‖ hi. (7.2)

We aggregate all one-dimensional tensors with ci components into the tensor hi

for notational convenience, because they can be treated identically by all mutation

operators.

When creating the initial parent network, its weights are randomly initialized in an

appropriate fashion, e.g. Glorot-uniform [30] initialization. However, once a network

has been evaluated, its weights contain useful, learned values. These learned weights

can be exploited as a good starting point instead of random weights when an offspring

solution needs to be trained for its own evaluation. By performing mutation with

weight inheritance the offspring network converges faster, and the whole NAS process

is accelerated.

Given a parent solution with weight vector θ, we apply one of the previously

described mutation operators to the architecture. At the same time, we create a weight

vector θ′ that matches the mutated architecture and keeps as many components of

θ as possible. Whenever a mutation changes a block i in such a way that one of

the contained weight tensors ki or hi changes in shape, it needs to be randomly

reinitialized. Other unaffected weights can be copied from the parent. However,

some mutations have an effect on the block’s number of output channels ci, which

determines the number of input channels for the next block i + 1. This requires

changing the convolutional kernel ki+1 to accept ci input channels. In such a case,

ki+1 also needs to be reinitialized. All mutations are shown graphically in Figure 7.2

and are specified formally in the remainder of this section.

When the mutation change stride is applied to block i, all weights can be reused

because the hyperparameter si does not modify the shape of any component in θ and

it does not affect the number of output channels ci either. Even though the spatial reso-

lution of the output halves, this does not cause any problems. All convolutional layers

can deal with arbitrary spatial input sizes and global average-pooling is performed

before the dense layer, i.e. only the number of channels cn of the last convolutional

78

7.3 Lamarckian Neural Architecture Search

A

B

Before

1 A

B

Mutation at 1

Change kernel size

A

B

Before

1

2

A

C

B

Mutation at 1

A

B

C

Mutation at 2

Add block

A

B

Before

1 A

B

Mutation at 1

Add or remove channels

A

B

C

Before

1

2

A

C

Mutation at 1

A

B

Mutation at 2

Remove block

A

B

Before

1 A

B

Mutation at 1

Change stride

Figure 7.2: Mutation operators with weight inheritance applied to small architectures
at different positions. The colors signify different weights and white blocks
are reinitialized.

layer determines how many components the input tensor to the dense layer contains. In

summary, the weight inheritance for change stride is simply implemented by θ′ = θ.

The mutation change kernel size applied to block i affects only the weights ki of

the mutated block itself, which are randomly reinitialized. The convolutional layer’s

output shape stays identical because zero-padding is performed to keep the spatial

dimensions of constant size, and the number of output channels does not change either.

The new weight vector under this mutation is

θ′ = θ1 ‖ . . . ‖
(
k
!
i ‖ hi

)
‖ . . . ‖ θn, (7.3)

where we use the superscript ! to denote weights that are reinitialized by the same

random initialization method that was used to set the initial network weights.

Applying the mutations add channels or remove channels to block i requires both ki

and hi to be reinitialized because both tensors’ shapes are affected by ci. Furthermore,

the number of output channels of block i changes so that the convolutional kernel ki+1

in the following block i + 1 also needs to be adapted to its new number of input

channels and consequently reinitialized. (Unless i is the last block of course, i.e.

block i+ 1 does not exist.) The new weight vector under either of these mutations is

θ′ = θ1 ‖ . . . ‖ θ
!
i ‖

(
k
!
i+1 ‖ hi+1

)
‖ . . . ‖ θn. (7.4)

79

Chapter 7 Lamarckian Evolution of Convolutional Neural Networks

Similarly, the mutations add block and remove block lead to changes in the input

shape of the block that follows the newly inserted block or that followed the block that

was just removed. Adding a new block with randomly initialized hyperparameters

after block i results in a new weight vector

θ′ = θ1 ‖ . . . ‖ θi ‖
(
k! ‖ h!

)
‖
(
k
!
i+1 ‖ hi+1

)
‖ . . . ‖ θn, (7.5)

where k and h are the randomly initialized weights of the newly inserted block. Their

shape depends on the randomly set hyperparameters. On the other hand, removing the

block i results in the weight vector

θ′ = θ1 ‖ . . . ‖ θi−1 ‖
(
k
!
i+1 ‖ hi+1

)
‖ . . . ‖ θn, (7.6)

where the successive convolutional kernel ki+1 needs to adapt to its new number of

input channels ci−1.

In this description we have left out the weights of the final dense layer, which are

also inherited, for brevity. They only need to be reinitialized if cn changes and are

copied in all other cases. Note that cn may change indirectly if a new building block

is appended to the end, or the last block is removed.

7.4 Experiments

Training neural networks for image classification typically takes lots of resources and

improving data efficiency in this kind of setting would be of great value. Therefore,

we choose to experiment on the standard image benchmarks CIFAR-10 and CIFAR-

100. Both contain 60,000 RGB images of 32 × 32 pixels and C = 10 or C = 100

classes respectively. The datasets are split into a training set Dtrain of 45,000 examples,

validation set Dval of 5,000 examples, and test set Dtest of 10,000 examples for both

CIFAR-10 and CIFAR-100.

For every solution (θ, a) that is created by the EA, we can construct a DNN

model f (θ, a,x) : Θ×A×X → Y with weight space Θ, architecture spaceA, input

space X = R3×32×32 and output space Y = RC . During every fitness evaluation, its

weights θ are trained by the Adam optimizer for e epochs with data from Dtrain. The

batch size is 512 and the learning rate is 10−3 for this training process. After training,

the validation set accuracy over inputs x(i) ∈ X and labels y(i) ∈ JCK from Dval is

calculated as

V (θ, a) =
1

|Dval|

|Dval|∑
i=1

δŷ(i),y(i) , (7.7)

where δm,n is the Kronecker delta function that is 1 if m = n and 0 otherwise

and ŷ(i) = arg maxj ŷ
(i)
j is the index of the highest scoring class in the network

80

7.4 Experiments

output ŷ(i) = f
(
θ, a,x(i)

)
. This validation set accuracy V (θ, a) is used as the

solution’s fitness.

The test set is only used after all experiments have finished. During evolution the

best solution is saved in regular intervals. After the EA finishes, these checkpoints are

trained to completion for another 30 epochs on the training set using a learning rate

schedule (10−3 until epoch 10, 10−4 until epoch 20 and 10−5 until epoch 30). After

this additional training step, they are evaluated on the test set. We use this to compare

test accuracies between experiments at one point during the evolution and after the

evolution is finished.

The experiments are repeated 20 times with different random seeds to account for

variance introduced by the randomness that is inherent to the EA and also the network

training. Using the results from these repetitions, we perform significance testing

using the one-sided Mann-Whitney U test.

7.4.1 Study Setup

The mutation operator that employs weight inheritance is compared to a mutation

operator that randomly reinitializes all network weights after each mutation. Otherwise,

the same EA with the same hyperparameters is used on both datasets. The niching

rate and depth are set to ω = 0.1 and k = 5 respectively.

During each fitness evaluation, a network is trained for e epochs and subsequently

its performance is assessed on the validation set. Choosing e is a trade-off between

evaluation speed and the accuracy of the fitness assessment. If e is very low, evaluation

is fast, but networks are not trained to completion. Therefore, the reported fitness

will usually be lower than what the network could actually achieve given enough

training time. Consequently, large but accurate networks have difficulty competing

with smaller networks which train faster but might reach a lower final accuracy. If

e is very high, these problems vanish, but the evaluation takes a long time. Since

many evaluations are necessary for large search spaces, this is impractical. Weight

inheritance is supposed to offset some of the problems that come with the choice of a

small training epoch budget e during fitness evaluation.

The EA gets a budget of n total training epochs as its termination condition. Every

time the EA performs training steps, whether niching or not, this counts towards

the budget. This allows for a comparison of accuracy in terms of training examples

that each experiment has processed. Given the total epoch budget n, the choice of e

influences how many generations are possible before the EA finishes. Consequently,

this determines how many different architectures are tested during evolution.

We propose an EA with weight inheritance and e = 4 training epochs per fitness

evaluation. Note that four epochs is not sufficient to train networks that work well

on CIFAR to completion. The comparison baselines are EAs that do not use weight

inheritance with two different epoch settings.

81

Chapter 7 Lamarckian Evolution of Convolutional Neural Networks

0 100 200 300 400 500
Total training epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n/
te

st
 a

cc
ur

ac
y

CIFAR-10

e=04, weight inheritance
e=04, no weight inheritance
e=16, no weight inheritance

Figure 7.3: Training progression of the EA with weight inheritance compared to both
baselines on CIFAR-10.

Table 7.1: Test accuracies at two checkpoints on CIFAR-10.

128 total epochs 512 total epochs
Inheritance e Min. Mean Max. Min. Mean Max.

Yes 4 79.1 85.0± 2.4 89.0 83.3 87.2± 1.5 89.3
No 4 68.3 77.6± 3.2 81.8 78.9 82.3± 1.4 84.2
No 16 32.5 70.4± 12.6 85.5 76.6 84.8± 3.1 88.9

The first baseline, which will be called baseline I, also uses e = 4 training epochs

per evaluation in order to allow for a direct comparison. This allows us to show that the

algorithm with weight inheritance is more data efficient and has better final accuracy

all else being equal.

The second baseline, which will be referred to as baseline II, uses e = 16 training

epochs per evaluation. This significantly longer training time is more in line with the

traditional approach of optimizing neural network architectures. It allows us to show

that our observations still hold here, and we do not simply trade a lower final accuracy

for data efficiency.

7.4.2 Results

Figures 7.3 and 7.4 compare three experimental settings on CIFAR-10 and CIFAR-

100 with a total epoch budget of 512. The EA with weight inheritance outperforms

the comparison baselines that do not use weight inheritance on both datasets. The

accuracy plateau is reached more quickly and higher test accuracy is achieved.

In these figures, each dot in the background represents the best validation accuracy

achieved so far during a repetition of the experiment. Each line shows the mean

validation accuracy over all repetitions at each epoch. The boxplots show the average

test accuracy after training the network checkpoints to convergence and their whiskers

represent one standard deviation of these final test accuracies.

Tables 7.1 and 7.2 list minimum, mean, and maximum test accuracies of the

CIFAR-10 and CIFAR-100 experiments for specific checkpoint epochs. When weight

82

7.4 Experiments

0 100 200 300 400 500
Total training epochs

0.1

0.2

0.3

0.4

0.5

0.6

Va
lid

at
io

n/
te

st
 a

cc
ur

ac
y

CIFAR-100

e=04, weight inheritance
e=04, no weight inheritance
e=16, no weight inheritance

Figure 7.4: Training progression of the EA with weight inheritance compared to both
baselines on CIFAR-100.

Table 7.2: Test accuracies at two checkpoints on CIFAR-100.

128 total epochs 512 total epochs
Inheritance e Min. Mean Max. Min. Mean Max.

Yes 4 47.7 55.3± 3.8 61.1 56.1 60.7± 2.9 66.1
No 4 31.7 40.2± 3.8 46.0 39.8 46.1± 3.0 52.2
No 16 25.9 41.4± 10.3 57.7 46.6 56.7± 4.5 63.0

inheritance is used, minimum, mean, and maximum accuracies are higher than their

baseline counterparts at all tested checkpoints.

For CIFAR-10, weight inheritance experiments reach a mean test accuracy of

85 %±2 % after only 128 total training epochs. In comparison, baseline I experiments

reach a mean test accuracy of 82 % ± 1 % after 512 epochs. This means that the

EA with weight inheritance achieves significantly (p < 0.01) higher accuracy than

baseline I in 75 % less total training epochs. Baseline II experiments reach a test

accuracy of 85 % ± 3 % after 512 epochs. This is slightly, though not significantly,

lower than the test accuracy of the weight inheritance experiments. After 512 epochs,

the weight inheritance experiments reach a mean test accuracy of 87 %± 2 %, which

is significantly (p < 0.01) higher than baseline II at 512 epochs.

For CIFAR-100, results look very similar. After 128 epochs, the weight inheritance

experiments achieve a mean test accuracy of 55 % ± 4 %. In contrast, baseline I

experiments reach a significantly (p < 0.01) lower mean test accuracy of 46 %± 3 %

after 512 epochs. Again, this is an improvement using 75 % less total training epochs.

Baseline II experiments achieve a (not significantly) higher mean test accuracy of

57 % ± 5 % after 512 epochs. Running the weight inheritance experiments for all

512 epochs as well results in a mean test accuracy of 61 % ± 3 %, which now is

significantly (p < 0.01) higher than the baseline II test accuracy at 512 epochs.

Our best evolved network on CIFAR-100 without data augmentation reaches a

test accuracy of 66.1 % after 512 total epochs and required 1× 1016 FLOPs1 to find.
1The FLOPs estimate for a single network is based on the FLOPs reported by the TensorFlow profiler

to process a single example multiplied by 4 epochs, 98 batches per epoch and batch size 512. The

83

Chapter 7 Lamarckian Evolution of Convolutional Neural Networks

This takes about 1.5 days on a single NVIDIA K40 GPU and is a modest amount of

computation, e.g. compared to Real et al. [98] who use 2× 1020 FLOPs. In contrast

to Real et al., none of our results reach state-of-the-art performance, but that was, as

already pointed out, not the goal of this work.

In summary, weight inheritance experiments on CIFAR-10 and CIFAR-100 have

shown to achieve significantly (p < 0.01) higher accuracy using a quarter of the total

training epochs when compared to baseline I that uses the same amount of training

epochs per fitness evaluation. Furthermore, final accuracy after 512 epochs is also

significantly (p < 0.01) higher compared to baseline II experiments which benefited

from more training epochs per fitness evaluation.

To get an idea how the evolutionary process modifies the genotypes, consider

Figure 7.7. It shows how the genome length, i.e. the number of building blocks

in the corresponding networks, changes over the course of evolution. All EA runs

are initialized with a genotype that contains a single building block. During the

evolutionary process, increasingly larger genotypes are evaluated as their phenotypes

reach higher accuracy than those of genotypes with fewer building blocks. The weight

inheritance experiments and baseline II both settle around an average of seven building

blocks, whereas baseline I networks contain an average of six building blocks.

Additional experiments with 10 repetitions each have been performed on the smaller

MNIST and Fashion-MNIST datasets. The results are shown in Figures 7.5 and 7.6. On

both datasets, improvements from weight inheritance over its baselines are marginal.

This is expected, as they are easy to solve compared to CIFAR-10 or CIFAR-100

and can be learned quickly by small networks. Still, there is no deterioration in

performance from using weight inheritance either.

7.4.3 Discussion

The tradeoff between few and many training epochs per fitness evaluation that is ex-

plained in Section 7.4.1 has a visible effect in Figures 7.3 and 7.4. At the beginning of

each experiment, baseline I outperforms baseline II, but at some point this relationship

inverts. This is because small networks, which require only few epochs to reach good

accuracy, are still sufficient to increase the validation set accuracy in the beginning

of the experiment. However, eventually larger networks become necessary to further

improve the results. These networks require more training time, making it easier

for the algorithm that trains networks longer during fitness evaluation to progress.

Therefore, the green and blue graphs intersect. This happens earlier for CIFAR-100,

because it is a harder problem than CIFAR-10.

We see weight inheritance experiments consistently outperform their baselines

on CIFAR-10 and CIFAR-100 but could not observe a significant difference on the

total FLOPs of the EA run is the sum of the FLOPs estimates for all networks that were trained
during the optimization.

84

7.4 Experiments

10 20 30 40 50
Total training epochs

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n/
te

st
 a

cc
ur

ac
y

MNIST

e=04, weight inheritance
e=04, no weight inheritance
e=08, no weight inheritance

Figure 7.5: Training progression of the EA with weight inheritance compared to both
baselines on MNIST.

0 50 100 150 200 250
Total training epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n/
te

st
 a

cc
ur

ac
y

Fashion-MNIST

e=04, weight inheritance
e=04, no weight inheritance
e=08, no weight inheritance

Figure 7.6: Training progression of the EA with weight inheritance compared to both
baselines on Fashion-MNIST.

1 256 512
Total training epochs

1

2

3

4

5

6

7

Av
er

ag
e

bu
ild

in
g

bl
oc

ks

e=04, weight inheritance
e=04, no weight inheritance
e=16, no weight inheritance

Figure 7.7: Average (of all EA runs) number of building blocks in the genome during
the optimization process on CIFAR-100.

85

Chapter 7 Lamarckian Evolution of Convolutional Neural Networks

MNIST or Fashion-MNIST datasets. We do not find any instances in our experiments

where weight inheritance is harmful, but this need not be the case generally. Just like

in our work, most recent neuroevolution publications only use mutation operators and

refrain from performing crossover. While this is usually motivated by the difficulty of

designing a useful network crossover operator, crossover might also bring problems

with regard to weight inheritance. Similar to choosing a bad initialization before

starting the training of a network, building a new network from trained parts of

different networks could leave it in a region of the weight space that is hard to

optimize.

7.5 Conclusion

Evolutionary algorithms show promise as a way to automatically discover appropriate

network architectures for new problems and tackle our first goal (G1). However, their

usefulness is limited by their enormous computational requirements. Optimizing

deep neural network architectures is computationally expensive because networks

have to be retrained for each fitness evaluation. Therefore, approaches to lower these

requirements are of great value.

We show that an evolutionary algorithm with a weight inheritance scheme generally

achieves equal or higher accuracy compared to baselines that do not use weight

inheritance and benefit from more training epochs per fitness evaluation. The fitness

convergence speed is improved, sometimes making it possible to drastically reduce

the number of total training epochs while achieving test accuracies comparable to

the baselines. Specifically, on both CIFAR-10 and CIFAR-100 weight inheritance

achieves similar or better accuracy than baselines in 75 % fewer training epochs. The

resulting speedup makes evolutionary algorithms a lot more viable for application

to neural network architecture optimization, even on hard problems, achieving our

goal of reduced computational requirements (G2). If accuracy is more important than

training time, weight inheritance can also lead to a higher final test accuracy in some

cases. Most importantly though, we find no instance where weight inheritance is

harmful. All results using our EA show either equally good or better results than the

baselines.

However, despite reduced training times this approach to NAS is still expensive,

as it requires the training of many networks. Research into one-shot NAS algorithms

circumvents this problem by concurrently training a single set of weights and the

architecture. We take a look at such an approach in the next chapter.

86

Chapter 8

Learned Weight Sharing for Deep
Multi-Task Learning

After exploring EAs for weight training in Chapters 5 and 6, and for neural architecture

search in Chapter 7, we now want to face the problem of creating an algorithm in

the spirit of neuroevolution that optimizes both weights and architecture at once but

apply it to large DNNs. In other words, we will work on a one-shot NAS algorithm.

Previous chapters have shown that for weight training EAs are not yet competitive

to SGD in supervised learning settings. On the other hand, they perform well for

the architecture optimization which becomes costly overall due to the repeated SGD

training processes. In this chapter, we will present an algorithm that combines an EA

with SGD to learn weights and architecture and that does not need to train a network

for each fitness evaluation.

We do so in the context of multi-task learning, i.e. multiple supervised tasks are

learned simultaneously by a shared model. In deep multi-task learning, weights of

task-specific networks are shared between tasks to improve performance on each

single one. Since the question of which weights to share between layers is difficult to

answer, human-designed architectures often share everything but a last task-specific

layer. In many cases, this simplistic approach severely limits performance. Instead,

we propose an algorithm to learn the assignment between a shared set of weights and

task-specific layers. To optimize the non-differentiable assignment and at the same

time train the differentiable weights, learning takes place via a combination of natural

evolution strategy and stochastic gradient descent. The end result are task-specific

networks that share weights but allow independent inference. They achieve lower test

errors than baselines and methods from literature on three multi-task learning datasets.

The results presented in this chapter are based on the following publication with

accompanying source code:

• Jonas Prellberg and Oliver Kramer. Learned weight sharing for deep multi-task

learning by natural evolution strategy and stochastic gradient descent. In 2020

International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, UK,

July 19-24, 2020. IEEE, 2020

• https://github.com/jprellberg/learned-weight-sharing

87

https://github.com/jprellberg/learned-weight-sharing

Chapter 8 Learned Weight Sharing for Deep Multi-Task Learning

Outline. Section 8.1 introduces the concept of deep multi-task learning and related

work that implements deep MTL in various ways. The following Section 8.2 highlights

the connection to NAS and presents the high-level idea of our learned weight sharing

algorithm. In Section 8.3, the necessary background on natural evolution strategies

is given. Section 8.4 explains our learned weight sharing method in detail and we

showcase its performance on multiple datasets in Section 8.5. The chapter ends with a

conclusion in Section 8.6.

8.1 Deep Multi-Task Learning

Deep learning systems have achieved remarkable success in various domains at the

cost of massive amounts of labeled training data. This poses a problem in cases where

such data is difficult or costly to acquire. In contrast, humans learn new tasks with

minimal supervision by building upon previously acquired knowledge and reusing it

for the new task. Transferring this ability to artificial learning is a long-standing goal

that is being tackled from different angles [65, 25, 130]. A step in this direction is

multi-task learning (MTL), which refers to learning multiple tasks at once with the

intention to transfer and reuse knowledge between tasks in order to better solve each

single task [14].

MTL is a general concept that can be applied to learning with different kinds of

models. For the case of neural networks, MTL is implemented by sharing some

amount of weights between task-specific networks (hard parameter sharing) or using

additional loss functions or other constraints to create dependencies between otherwise

independent weights of task-specific networks (soft parameter sharing). This way,

better generalization may be achieved, because the network is biased to prefer solutions

that apply to more than one task.

The main difference between various deep multi-task learning approaches is how

weight sharing between tasks is implemented. This decision is encoded in the ar-

chitecture of a deep neural network, either by the designer or an algorithm. Early

works usually employ a shared neural network that branches into small task-specific

parts at its end [153, 72]. This approach, referred to as full sharing in this chapter, is

restrictive, because all tasks have to work on exactly the same representation, even

if the tasks are very different. This motivates further work to lift this restriction and

make weight sharing data-dependent.

Approaches like cross-stitch networks [81], sluice networks [104], or soft layer

ordering [79] introduce additional differentiable parameters that control the weight

sharing and are jointly optimized with the networks weights by SGD. In these ap-

proaches, the task-specific networks are connected by gates between every layer that

perform weighted sums over the individual layer outputs. The coefficients of these

weighted sums are learned and can therefore control the influence that different tasks

have on each other. However, since all task-specific networks are interconnected, this

88

8.2 Neural Architecture Search for Deep Multi-Task Learning

approach requires forward passes on all of them for a training step on any task and

also when performing inference on only a single task. In contrast, every task-specific

network created with our algorithm can perform forward passes independently. Soft

layer ordering further has the restriction that all shareable layers at any position in the

network must be compatible in input and output shape. Our approach, on the other

hand, is unrestricted by the underlying network architecture and can, for example, be

applied to standard residual networks.

Another set of works explores non-differentiable ways to share weights. Examples

include fully-adaptive feature sharing, which iteratively builds a branching architecture

that groups similar tasks together [73], or routing networks, which use reinforcement

learning to choose a sequence of modules from a shared set of modules in a task-

specific way [102]. Routing networks are similar to our work in that they also avoid

the interconnection between task-specific networks, as described before. However,

their approach also fundamentally differs from ours in that their routing network

chooses layers in a data-dependent way on a per-example basis, while our network

configuration is fixed after training and only differs between tasks not examples.

8.2 Neural Architecture Search for Deep Multi-Task
Learning

In this chapter, we will perform deep MTL with hard parameter sharing and optimize

how to share weights between tasks with a one-shot NAS algorithm. We confine our-

selves to the common case where weights can only be shared between corresponding

layers of each task-specific network. Figure 8.1 illustrates the resulting spectrum

of possible sharing configurations with three possibilities to solve a three-task MTL

problem. When disregarding the possibility to perform MTL, an independent set of

weights is used in every task-specific network. We will refer to this configuration as

no sharing and use it as our first baseline to check that the MTL approach actually

performs better than single-task learning. A very simple form of MTL, sometimes

called shared back-bone in literature but referred to as full sharing here, shares all

weights but those of the final layer. This will form our second baseline to show

improvements over a simple MTL approach. Our own approach is a middle-ground

and learns a weight sharing configuration from data. The configuration shown in

Figure 8.1 is a result on DKL-MNIST (see Section 8.5.1).

The difficulty now lies in choosing an appropriate weight sharing configuration

from this extremely large search space. We use an automatic method that learns how

to share layer weights between task-specific networks using alternating optimization

with a natural evolution strategy (NES) and stochastic gradient descent. The main

problem is the non-differentiable assignment between weights and layers that prevents

learning both the assignment and weights with SGD. Therefore, we exploit the black-

89

Chapter 8 Learned Weight Sharing for Deep Multi-Task Learning

T1

A1

A2

A3

A4

A5

T2

B1

B2

B3

B4

B5

T3

C1

C2

C3

C4

C5

No sharing

T1

A1

A2

A3

A4

A5

T2

A1

A2

A3

A4

B5

T3

A1

A2

A3

A4

C5

Full sharing

T1

A1

A2

A3

A4

A5

T2

A1

B2

B3

B4

B5

T3

C1

C2

A3

A4

C5

Learned sharing

Figure 8.1: Different weight sharing schemes to solve a three-task MTL problem.
For each scheme, three task-specific networks with five layers are shown.
Layer weights are indicated by the letter in each layer and weights are
shared between tasks if different task-specific networks use the same
weight as indicated by the letter. Weights are never shared in the last layer
because it is the task-specific output layer.

box nature of NES to optimize a probability distribution over the non-differentiable

assignment. It would also be possible to learn the weights themselves with NES, but

as we have seen in Chapter 5 disregarding the gradient is inefficient and should be

avoided. Since for every fixed assignment the networks become differentiable w.r.t.

their weights, we exploit SGD to efficiently train them.

While alternating these two steps, the probability distribution’s entropy decreases,

and the layer weights are optimized to perform well under the most likely assignments.

In the end, this results in a single most likely assignment and corresponding layer

weights. Notably, this is achieved without resorting to costly fitness evaluation steps

that have to train networks from scratch or differentiable weight sharing approaches

[81, 104, 79] that result in computationally intensive forward passes during inference.

This optimization process is a form of neural architecture search where a number of

building blocks are predetermined, and the search process explores how to connect

these building blocks. Different from typical NAS, there is not a single input and output

but one for each task. By optimizing the structure of all task-specific networks together,

they can share building blocks in their architectures and consequently share weights.

It would also be possible to combine this setting with a search over different kinds of

building blocks or a less restricted connection model that does not predetermine the

overall architecture.

The algorithm that powers our learned weight sharing (LWS) approach is the afore-

mentioned hybrid optimization of differentiable and non-differentiable parameters. It

traces back to information-geometric optimization [87], which provides algorithms for

the optimization of arbitrary probability distributions using natural gradient methods,

and it has been combined with SGD for problems that are not completely black-box.

90

8.3 Natural Evolution Strategy

Shirakawa et al. [114] perform a simple form of NAS that is based on binary decisions.

These non-differentiable decisions are modeled with Bernoulli distributions and opti-

mized using NES. Shirakawa et al. then show that it is possible to simultaneously train

the differentiable network weights with SGD by using a Monte-Carlo approximation

of the weight gradient.

Akimoto et al. [2] build on this algorithm and apply it to a more general neural ar-

chitecture search space that allows to select between different kinds of building blocks

for (single-task) image classification and image inpainting. These non-differentiable

choices are modeled with a categorical distribution and optimized by NES, while SGD

optimizes the network weights as before.

Lenc et al. [67] also use the hybrid optimization algorithm to simultaneously

optimize non-differentiable binary sparsity masks via a Bernoulli distribution and

differentiable layer weights. This allows to train sparse networks directly instead of

sparsifying them after first training a dense model, which would require vastly more

memory and computation.

We model deep MTL as an assignment problem between layer weights and task-

specific networks that is expressed with categorical distributions. This allows us to use

the same concept of hybrid NES and SGD optimization to efficiently search for a MTL

architecture in the large combinatorial search space, while training the layer weights

at the same time. The resulting MTL architectures yield accuracy improvements

compared to our own baselines and baselines from literature on three datasets.

8.3 Natural Evolution Strategy

After working with population-based EAs, we now shift the focus to a different kind of

EA. Natural evolution strategy refers to a class of black-box optimization algorithms

that update a search distribution in the direction of higher expected fitness using

the natural gradient [142]. In contrast to population-based EAs, there is no actual

population of solutions, but instead the information that would be contained in the

population is encoded as a probability distribution. Again, we consider an optimization

problem maxx u (x) over an arbitrary solution space x ∈ X with a black-box fitness

function u (x).

Let us first discuss the concept of a search gradient. A search distribution over

the solution space X with probability density function q (x|α) is defined. It is

parameterized by a real-valued vector α. When sampling and evaluating solutions

from such a distribution the expected fitness is given by

J (α) = Eqα [u (x)] . (8.1)

We are interested in the gradient ∇αJ (α) in order to change the distribution’s param-

91

Chapter 8 Learned Weight Sharing for Deep Multi-Task Learning

eters in the direction of higher expected fitness. It is given by [142] as

∇αJ (α) = ∇α
∫
u (x) q (x|α) dx (8.2)

=

∫
u (x)∇αq (x|α) dx (8.3)

=

∫
u (x)

q (x|α)

q (x|α)
∇αq (x|α) dx (8.4)

=

∫
u (x) q (x|α)

∇αq (x|α)

q (x|α)
dx (8.5)

=

∫
u (x) q (x|α)∇α log q (x|α) dx (8.6)

= Eqα [u (x)∇α log q (x|α)] , (8.7)

where they use the so-called log-likelihood trick to arrive at Equation 8.6. This trick

simply consists of using the relationship

∇α log q (x|α) =
∇αq (x|α)

q (x|α)
, (8.8)

which follows from calculus rules about the derivative of the logarithm. It is now

possible to estimate the search gradient in the direction of higher expected fitness for

any search distribution for that we can calculate the log-derivative∇α log q (x|α).

Since the gradient ∇αJ (α) is expressed as an expectation in Equation 8.7, it can

easily be approximated from samples x1, . . . , xλ distributed according to q (x|α) by

the Monte-Carlo estimate

∇αJ (α) ≈ 1

λ

λ∑
i=1

u (xi)∇α log q (xi|α) , (8.9)

where λ is the number of samples. Using this gradient, the distribution parameters α

can be adjusted by taking a small step in its direction. This search gradient evolution

strategy as outline by [142] is summarized in Algorithm 5.

Instead of following the plain gradient directly, NES follows the natural gradient

F−1∇αJ (α). Here, F−1 refers to the inverse of the search distribution’s Fisher

information matrix. Gradient descent using the natural gradient ensures that the

Kullback–Leibler divergence between the search distribution q (x|α) before and after

the update is of a constant small stepsize, i.e. the distribution is only slightly modified

after taking a single step. In contrast, following the plain gradient might drastically

alter the distribution, e.g. due to outliers in the current set of samples used to calculate

the gradient.

The Fisher information matrix depends only on the probability distribution itself

and can often be analytically derived, e.g. for the common case of multinormal search

distributions [127]. For the case of search distributions from the exponential family

92

8.3 Natural Evolution Strategy

Algorithm 5: Search gradient evolution strategy, see [142].

1 Let q (x|α) be the search distribution
2 while termination condition not met do
3 for i in 1 . . . λ do
4 sample xi distributed according to q (x|α)

5 calc. fitness ui = u (xi)

6 calc. log-derivative∇α log q (xi|α)

7 end
8 ∇αJ (α) = 1

λ

∑λ
i=1 ui∇α log p (xi|α)

9 α← α+ η∇αJ (α)

10 end

under expectation parameters, a direct derivation of the natural gradient without first

calculating F is given by [87, page 57] and will be presented in the remainder of this

section. The probability density function for members of the exponential family has

the form

q (x|α) = h (x) exp (α · T (x)−A (α)) (8.10)

with natural parameter vector α, sufficient statistic vector T (x) and cumulant function

A (α) . We focus only on the case where h (x) = 1 in our work. If we reparameterize

the distribution with a parameter vector µ that satisfies

µ = Eqα [T (x)] = ∇αA (α) , (8.11)

then we call µ the expectation parameters. With such a parameterization, there is a

nice result regarding the natural gradient: The natural gradient w.r.t. the expectation

parameters is given by the plain gradient w.r.t. the natural parameters, i.e.

∇̃µq (x|µ) = ∇αq (x|α) . (8.12)

It follows that the log-derivative, which is necessary for the search gradient estimate

in NES, can easily be derived as

∇̃µ log q (x|µ) = ∇α log q (x|α) (8.13)

= ∇α (α · T (x)−A (α)) (8.14)

= T (x)− µ (8.15)

because of the relationship in Equation 8.11 between gradient of the cumulant function

and expectation parameters. In other words, if we choose a search distribution with

expectation parameters, the plain and natural gradient coincide. We will use this fact

later, to follow the natural gradient of a categorical distribution.

93

Chapter 8 Learned Weight Sharing for Deep Multi-Task Learning

∗

Base arch.

A1

A2

A3

A4

B1

B2

B3

B4

N/A

Layer weights

C1

C2

C3

C4

T1

C1

A2

A3

B4

π1=[0.1,0.2,0.7]

π2=[0.7,0.2,0.1]

π3=[0.8,0.1,0.1]

π4=[0.4,0.5,0.1]

T2

C1

B2

B3

A4

π5=[0.1,0.1,0.8]

π6=[0.3,0.6,0.1]

π7=[0.1,0.8,0.1]

π8=[0.4,0.3,0.3]

Task-specific networks

T3

A1

B2

A3

C4

π9=[0.5,0.2,0.3]

π10=[0.1,0.5,0.4]

π11=[0.6,0.3,0.2]

π12=[0.2,0.2,0.6]

Figure 8.2: Setup to solve a three-task MTL problem with LWS. A base architecture
is duplicated for each task and weights are stochastically assigned to each
layer. There are a total of N = 12 layers and K = 3 weights per weight
set. The depicted assignment is the most probable one, which is used for
inference.

8.4 Learned Weight Sharing

Consider the setup depicted in Figure 8.2 to solve an MTL problem using deep neural

networks. Any neural network architecture is chosen as the base architecture, e.g. a

residual network. This base architecture is duplicated once for each task to create

task-specific networks. Finally, the last layer of each task-specific network is modified

to have the appropriate number of outputs for the task.

In this setup, the weights of every layer except for the last one are compatible

between task-specific networks and can potentially be shared. To this end, a set of

K weights is created for every layer, and all of the N task-specific network layers

are assigned a weight from their corresponding set. By assigning the same weight to

multiple task-specific networks, weight sharing is achieved. The number of weights

per layer must not necessarily be the same, however, we restrict ourselves to equally

sized sets of weights for simplicity.

The problem is now to find good assignments between the weights and task-specific

network layers and, at the same time, train the weights themselves. We achieve this by

alternating between the optimization of a search distribution over assignments with

NES and the optimization of layer weights with SGD. This approach is summarized

in Algorithm 6 and explained in more detail below.

8.4.1 Learning Objective

Since the hybrid optimization algorithm is fundamentally the same algorithm as in

[114, 2, 67], we choose to frame the learning objective in the same way as [2] because

of their clear mathematical approach. The search for good assignments and layer

94

8.4 Learned Weight Sharing

Algorithm 6: Learned weight sharing training procedure.

1 Let p (a|π) be the search distribution over assignments
2 Let Lx,y (θ, a) be the loss for a batch of data x,y under weights θ and

assignment a
3 def StepNES (θ, π) as
4 x,y← get random batch of training data
5 for i in 1 . . . λπ do
6 sample ai distributed according to p (a|π)

7 calc. loss li = Lx,y (θ, ai)

8 calc. log-derivative∇π log p (ai|π)

9 end
10 calc. utilities ui = 2 · rank(li)−1

λπ−1 − 1

11 ∇πJπ = 1
λπ

∑λπ
i=1 ui∇π log p (ai|π)

12 return π + ηπ∇πJπ
13 end
14 def StepSGD (θ, π) as
15 x,y← get random batch of training data
16 for i in 1 . . . λθ do
17 sample ai distributed according to p (a|π)

18 calc. weight gradient∇θLx,y (θ, ai)

19 end
20 ∇θJθ = 1

λθ

∑λθ
i=1∇θLx,y (θ, ai)

21 return θ − ηθ∇θJθ
22 end
23 π ← search distribution parameter vector with all N (K − 1) elements set to 1

K

24 θ ← randomly initialized neural network weights
25 while not finished do
26 π ← StepNES (θ, π)

27 θ ← StepSGD (θ, π)

28 end

95

Chapter 8 Learned Weight Sharing for Deep Multi-Task Learning

weights is cast as an optimization problem

min
θ,a
L (θ, a) , (8.16)

where L : Θ×A → R is the average loss over all tasks, θ ∈ Θ is a vector of all layer

weights, and a ∈ A is an assignment of weights to task-specific network layers. The

loss function L is differentiable w.r.t. θ but black-box w.r.t. a. We would like to exploit

the fact that θ can be efficiently optimized by SGD but need a way to simultaneously

optimize a. Therefore, we create a stochastic version of the problem

min
θ,π

J (θ, π) = Epπ [L (θ, a)] (8.17)

by introducing a probability distribution defined on A with density function p (a|π).

This stochastic formulation makes the assignments amenable for optimization through

π by the NES algorithm but, on the other hand, requires to sample assignments for the

calculation of the gradient w.r.t. θ.

8.4.2 Assignment Optimization

We use the NES algorithm to optimize π for lower expected loss J (θ, π) while keeping

θ fixed (see Algorithm 6, lines 3 to 13). The parameter π is initialized so that all

assignments are equally probable, but with prior knowledge the initial parameter

vector could also be chosen so that it is biased towards certain preferred assignments.

Assignments a1, . . . , aλπ distributed according to p (a|π) are sampled and their

loss values li = L (θ, ai) are calculated on the same batch of training data for every

assignment. Following Equation 8.9, the search gradient can be approximated as

∇πJ (θ, π) ≈ 1

λπ

λπ∑
i=1

ui∇π log p (ai|π) (8.18)

with utility values ui in place of fitness values (see below). Finally, π is updated by

performing a step in the direction of∇πJ (θ, π) scaled by a learning rate parameter ηπ.

This is basic SGD but in principle more sophisticated optimizers like SGD with

momentum or Adam could be used for this update step as well.

The utility values are created by fitness shaping to make the algorithm invariant to

the scale of the loss function. Loss values li are transformed into utility values

ui = 2 · rank (li)− 1

λπ − 1
− 1, (8.19)

where rank (li) ranks the loss values from 1 to λπ in descending order, i.e. the smallest

li receives rank λπ. This results in equally spaced utility values in [−1, 1] with the

lowest loss value receiving a utility value of one.

96

8.4 Learned Weight Sharing

8.4.3 Layer Weight Optimization

While we can use backpropagation to efficiently determine the weight gradient

∇θL (θ, a) with a fixed, determining∇θJ (θ, π) with π fixed on the stochastic prob-

lem version is not possible directly. Instead, we use a Monte-Carlo approximation to

optimize θ for lower expected loss J (θ, π) while keeping π fixed (see Algorithm 6,

lines 14 to 22). This Monte-Carlo approximation as part of a hybrid optimization

framework has first been described by Shirakawa et al. [114].

In the beginning, all layer weights θ are randomly initialized. For the Monte-Carlo

gradient estimation, assignments a1, . . . , aλθ distributed according to p (a|π) are

sampled, and backpropagation is performed for each sample. The same batch of

training data is used for the backpropagation step throughout this process for every

assignment. The resulting gradients∇θL (θ, ai) are averaged over all assignments, so

that the final gradient is given by

∇θJ (θ, π) ≈ 1

λθ

λθ∑
i=1

∇θL (θ, ai) . (8.20)

Using this gradient, θ is updated by SGD with learning rate ηθ but, again, more

sophisticated optimizers could be employed instead.

8.4.4 Natural Gradient

The NES search gradient calculation in Equation 8.18 actually follows the plain gradi-

ent instead of the natural gradient unless we take care to use a specific parameterization

for the search distribution. As previously explained, the natural gradient and plain

gradient coincide when the distribution is a member of the exponential family and

has expectation parameters. In our problem setting, there are a total of N layers

distributed over all task-specific networks that need to be assigned a weight from K

possible choices from the weight set corresponding to each layer. We can model this

with categorical distributions, which are part of the exponential family, as follows.

First, consider a categorical distribution over K categories with samples x ∈ JKK.

It is well known [29] that the categorical distribution can be written in exponential

family form (see Equation 8.10) with natural parameters α ∈ RK−1 as

pnat (x|α) = exp (α · Tnat (x)−Anat (α)) (8.21)

Tnat (x) =
(
δ1,x · · · δK−1,x

)
(8.22)

Anat (α) = log

(
1 +

K−1∑
i=1

eαi

)
, (8.23)

where δi,j is the Kronecker delta function that is 1 if i = j and 0 otherwise. Our goal

is to have this distribution in expectation parameters so that we can use the results

97

Chapter 8 Learned Weight Sharing for Deep Multi-Task Learning

mentioned before for the natural gradient calculation. We can reparameterize the

distribution as

pex (x|µ) = exp (rex (µ) · Tex (x)−Aex (µ)) (8.24)

rex (µ) =
(

log µ1
µK

· · · log
µK−1

µK

)
(8.25)

Tex (x) =
(
δ1,x · · · δK−1,x

)
(8.26)

Aex (µ) = − logµK , (8.27)

which gives us a parameter vector µ ∈ [0, 1]K−1 with entries corresponding to

the probabilities of all but the last category. For notational convenience, we use

µK = 1−
∑K−1

i=1 µi even though µK is not technically part of the parameter vector.

First, to see why Equation 8.27 is equal to Equation 8.23 under the reparameteriza-

tion, consider the following steps:

Aex (µ) = Anat (rex (µ)) (8.28)

= log

(
1 +

K−1∑
i=1

µi
µK

)
= log

(
1 +

1

µK

K−1∑
i=1

µi

)
(8.29)

= log

(
1 +

1

µK
(1− µK)

)
= log

(
1

µK

)
(8.30)

= − logµK . (8.31)

Then, to see that µ are expectation parameters, we compare it to the derivative of the

cumulant function in natural parameters (see Equation 8.11). By using the relationship

αi = log µi
µK

between natural parameters and the reparameterization, we can see that

they are equal for all i ∈ JK − 1K:

∂Anat (α)

∂αi
=

eαi

1 +
∑K−1

j=1 eαj
=

µi
µK

1 +
∑K−1

j=1
µj
µK

(8.32)

=
µi

µK +
∑K−1

j=1 µj
=

µi
µK + 1− µK

(8.33)

= µi. (8.34)

Now that we have a categorical distribution with expectation parameters, consider a

joint of N independent but not identically distributed categorical distributions with

samples a and parameters π so that

a =
(
a1 · · · aN

)
∈ JKKN (8.35)

π =
(
π1 · · · πN

)
∈ [0, 1]N(K−1) (8.36)

are the concatenations of the samples and expectation parameters of all N categorical

98

8.5 Experiments

distributions, i.e. π is the concatenation of N parameter vectors πi ∈ [0, 1]K−1.

Due to the independence of the N categorical distributions, the density function for

the joint distribution becomes the product of their individual densities. Again, this is a

member of the exponential family with expectation parameters:

p (a|π) =
N∏
i=1

pex (ai|πi) (8.37)

=

N∏
i=1

exp (rex (πi) · Tex (ai)−Aex (πi)) (8.38)

= exp

(
N∑
i=1

rex (πi) · Tex (ai)−
N∑
i=1

Aex (πi)

)
(8.39)

= exp (r (π) · T (a)−A (π)) (8.40)

r (π) =
(
rex (π1) · · · rex (πN)

)
(8.41)

T (a) =
(
Tex (a1) · · · Tex (aN)

)
(8.42)

A (π) =

N∑
i=1

Aex (πi) . (8.43)

Equation 8.40 follows from the previous line, because the dot product between two

vectors can just as well be computed over individual aligned parts of the vector that

are later summed.

In summary, LWS uses p (a|π) from Equation 8.37 as the density for its search

distribution. The parameters π are the concatenation of all but the last probabilities

for each categorical distribution. Since π are expectation parameters, we can use

Equation 8.15 to calculate the natural gradient as

∇π log p (a|π) = T (a)− π (8.44)

and plug it into Algorithm 6 at line 8.

8.4.5 Inference

After training has finished, the most likely weight assignment arg maxa p (a|π) is

used for inference. Given this assignment, a DNN can be constructed for each task,

and they can be independently applied to input data from the respective task.

8.5 Experiments

We demonstrate the performance of LWS on three different multi-task datasets using

convolutional network architectures taken from other MTL publications to compare

our results to theirs. We also perform experiments using a residual network [39]

99

Chapter 8 Learned Weight Sharing for Deep Multi-Task Learning

Table 8.1: Test error of learned weight sharing compared to full sharing and no sharing
baselines on three datasets.

DKL-MNIST CIFAR-100 Omniglot
Method ConvNet ResNet18 ResNet18

Full sharing 14.16 ± 0.37 31.80 ± 0.44 10.97 ± 0.60
No sharing 12.80 ± 0.16 32.53 ± 0.32 15.82 ± 1.02
Learned sharing 11.83 ± 0.51 30.84 ± 0.49 10.70 ± 0.62

architecture to show applicability of LWS to modern architectures. Furthermore, we

provide two baseline results for all experiments which are full sharing, i.e. every

task shares weights with every other task at each layer except for the last one, and

no sharing, i.e. all task-specific networks are completely independent. Note that

a completely independent network for each task means that its whole capacity is

available to learn a single task, whereas the full sharing network has to learn all tasks

using the same capacity. Depending on network capacity, task difficulty, and task

compatibility, we will see no sharing outperform full sharing and vice versa.

All experiments are repeated 10 times and reported with mean and standard devia-

tion. For statistical significance tests, we perform a one-sided Mann-Whitney U test.

The search distribution parameters π are initialized to 1
K so that layers are chosen

uniformly at random in the beginning. Furthermore, to prevent that a layer will never

be chosen again once its probability reaches zero, every entry in π is clamped above

0.1 % after the update step and then π is renormalized to sum to one. The layer

weights θ are initialized with He-uniform [38] initialization and update steps on θ

are performed with the Adam [59] optimizer. All batches are created by sampling 16

training examples from each different task and concatenating them. Full sharing, no

sharing, and LWS all use the same equal loss weighting between different tasks. MTL

is usually sensitive to this weighting and further improvements might be achieved, but

its optimization is left for future work.

8.5.1 DKL-MNIST

DKL-MNIST is a custom MTL dataset created from the Extended-MNIST [18]

and Kuzushiji-MNIST [17] image classification datasets. The classification of digits,

letters, and Japanese kuzushiji characters are different but related tasks, which provides

good conditions to perform MTL. We select 500 training examples of digits, letters,

and kuzushiji each for a total of 1,500 training examples and keep the complete test

sets for a total of 70,800 test examples. Using only a few training examples per task

creates a situation where sharing features between tasks should improve performance.

Since all three underlying datasets are MNIST variants, the training examples are

28× 28 pixel grayscale images, but there are 10 digit classes, 26 letter classes, and 10

kuzushiji classes in each task respectively.

100

8.5 Experiments

For this small dataset, we use a custom convolutional network architecture that

consists of three convolutional layers and two dense layers. The convolutions all have

32 output channels, kernel size 3× 3, and are followed by batch normalization, ReLU

activation, and 2× 2 max-pooling. The first dense layer has 128 units and is followed

by a ReLU activation, while the second dense layer has as many units as there are

classes for the task. LWS is applied to the three convolutional layers and the first

dense layer, i.e. the whole network except for the task-specific last layer.

We train LWS and the two baselines for 5,000 iterations on DKL-MNIST using

a SGD learning rate of ηθ = 10−3. Furthermore, LWS uses λθ = λπ = 8 samples

for both SGD and NES, and a NES learning rate of ηπ = 10−2 to learn to share sets

of K = 3 weights for each layer. We see in Table 8.1 that full sharing at 14.16 %

test error performs worse than no sharing at 12.80 % test error, i.e. there is negative

transfer when using the simple approach of sharing all but the last layer. However,

using LWS we find an assignment that is significantly (p < 0.01) better than the no

sharing baseline for a total error of 11.83 %.

8.5.2 CIFAR-100

CIFAR-100 is a popular image classification dataset that contains 50,000 training

examples and 10,000 test examples, all of which are 32× 32 pixel RGB images. We

cast it as an MTL problem by grouping the different classes into tasks by the 20

coarse labels that CIFAR-100 provides. For example, from the coarse label “flowers”

a classification task with the five classes orchids, poppies, roses, sunflowers, and tulips

is created. Each task then contains 5 classes and a total of 2,500 training examples

(500 per class).

We employ the neural network architecture given by [102] to allow for a comparison

against their results. It consists of four convolutional layers and four dense layers. The

convolutions all have 32 output channels, kernel size 3× 3, and are followed by batch

normalization, ReLU activation, and 2× 2 max-pooling. The first three dense layers

all have 128 units and are followed by a ReLU activation, while the last dense layer

has as many units as there are classes for the task, i.e. 5 for all tasks on this dataset.

In [102] the authors only apply their MTL method to the three dense layers with 128

units, so we do the same for a fair comparison. This means the convolutional layers

always share their weights between all tasks.

We train LWS and the two baselines for 4,000 iterations on CIFAR-100 using a

SGD learning rate of ηθ = 10−3. Furthermore, LWS uses λθ = λπ = 8 samples

for SGD and NES, and a NES learning rate of ηπ = 10−1 to learn to share sets of

K = 20 weights for each layer. Table 8.2 shows that LWS, with a test error of 37.43 %,

outperforms both cross-stitch networks at 47 % test error and routing networks at 40 %

test error. However, no sharing achieves even better results. This can be attributed

to the network capacity being small in relation to the dataset difficulty. In this case,

101

Chapter 8 Learned Weight Sharing for Deep Multi-Task Learning

Table 8.2: Comparison against results from [102] using their network architecture.

Method CIFAR-100 Test Error [%]

Cross-stitch networks [102] 47
Routing networks [102] 40

Full sharing 39.08 ± 0.36
No sharing 36.50 ± 0.43
Learned sharing 37.43 ± 0.53

having 20 times more weights is more important than sharing data between tasks.

Therefore, we repeat the experiment with a ResNet18 architecture that has much

higher capacity than the custom convolutional network from [102]. The channel

configuration in our ResNet18 is the same as in the original publication about residual

networks [39]. However, due to the much smaller image size of CIFAR-100, we

remove the 3 × 3 max-pooling layer and set the convolutional stride parameters so

that downsampling is only performed in the last three stages. We apply LWS to

share weights between each residual block. They are treated as a single unit that

consists of two convolutional layers and, in the case of a downsampling block, a third

convolutional layer in the shortcut connection. All hyperparameters stay the same

except for the amount of iterations, which is increased to 20,000.

Test curves are shown in Figure 8.3 and final test results are listed in Table 8.1. We

notice that no sharing at 32.53 % test error now performs worse than full sharing at

31.80 % test error. We believe the reason to be the increased network capacity that is

now high enough to benefit from data sharing between tasks. LWS further improves

on this and achieves the lowest test error at 30.84 %, which is significantly (p < 0.01)

better than full sharing.

Depending on the sharing configuration, the total number of weights that are present

in the system comprised of all task-specific networks differs. Naturally, the no sharing

configuration has the highest possible amount of weights at 223M, while full sharing

has the lowest possible amount at 11M. They differ exactly by a factor of 20, which is

the number of tasks in this setting. LWS finds a configuration that uses 136M weights

while still achieving higher accuracy than both baselines.

8.5.3 Omniglot

The Omniglot dataset [64] is a standard MTL dataset that consists of handwritten

characters from 50 different alphabets, each of which poses a character classification

task. The alphabets contain varying numbers of characters, i.e. classes, with 20

grayscale example images of 105 × 105 pixels each. Since Omniglot contains no

predefined train-test-split, we randomly split off 20 % as test examples from each

alphabet.

We employ the neural network architecture given by [79] to allow for a comparison

102

8.5 Experiments

Table 8.3: Comparison against results from [79] using their network architecture.

Method Omniglot Test Error [%]

Soft layer ordering [79] 24.1

Full sharing 20.85 ± 1.07
No sharing 23.52 ± 1.25
Learned sharing 19.31 ± 2.54

against their results. It consists of four convolutional layers and a single dense layer.

The convolutional layers all have 53 output channels, kernel size 3 × 3, and are

followed by batch normalization, ReLU activation, and 2× 2 max-pooling. The final

dense layer has as many units as there are classes for the task. As in [79], we apply

LWS to the four convolutional layers.

We train LWS and the two baselines for 20,000 iterations on Omniglot using a

SGD learning rate of ηθ = 10−3. Furthermore, LWS uses λθ = λπ = 8 samples

for SGD and NES, and a NES learning rate of ηπ = 10−2 to learn to share sets of

K = 20 weights for each layer. Table 8.3 shows how LWS outperforms SLO and

both baselines. We repeat the experiment with a ResNet18 architecture with the 3× 3

max-pooling removed and present results in Table 8.1. LWS still performs significantly

(p < 0.01) better than no sharing and is on par with full sharing. Neither full sharing

nor LWS is significantly (p < 0.01) better than the other.

8.5.4 Qualitative Results

Figure 8.4 sheds light on what kind of assignments are learned on the DKL-MNIST

dataset. The three convolutional layers and the one dense layers that are shareable are

denoted on the horizontal axis in the same order as in the network itself. For each

layer, a stacked bar represents the percentage of tasks over all repetitions that shared

the layer weight within a group of t tasks. Since there are three tasks and three weights

per shared set, the only possible assignments are (1) all three tasks have independent

weights, (2) two tasks share the same weight, while the last task has an independent

weight, and (3) all three tasks share the same weight. In Figure 8.4, the group sizes

correspond to these three assignments, e.g. in 40 % of the experiments the first layer

had three tasks with independent weights. An exemplary assignment that was found

in one of the DKL-MNIST experiments can be seen in Figure 8.1.

Figure 8.5 shows the same kind of visualization on Omniglot for a ResNet18. Due

to the vastly increased number of possible assignments, the interpretation is not as

straightforward as in the DKL-MNIST case. However, we can clearly see how weights

are shared between a larger number of tasks in the early layers. This corresponds well

to results from transfer learning literature [148], where early convolutional layers have

been found to learn very general filters.

103

Chapter 8 Learned Weight Sharing for Deep Multi-Task Learning

0 5000 10000 15000 20000
Iterations

60%

62%

64%

66%

68%

70%

Te
st

 a
cc

ur
ac

y
LWS
No sharing
Full sharing

Figure 8.3: Test accuracy during training for LWS and its baselines using a ResNet18
on CIFAR-100.

1 2 3 4
Position in network

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
as

ks
sh

ar
in

g
we

ig
ht

s w
ith

 t
ta

sk
s

1

2

3

Gr
ou

p
siz

e
t

Figure 8.4: Percentage of tasks that share weights between exactly t tasks when
learned with LWS on DKL-MNIST.

1 2 3 4 5 6 7 8
Position in network

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
as

ks
sh

ar
in

g
we

ig
ht

s w
ith

 t
ta

sk
s

1
2
3
4
5
6
7
8
9
10
11
12

Gr
ou

p
siz

e
t

Figure 8.5: Percentage of tasks that share weights between exactly t tasks when
learned with LWS on Omniglot.

104

8.6 Conclusion

8.6 Conclusion

LWS solves MTL problems by learning how to share weights between task-specific

networks. We show how combining NES and SGD creates a learning algorithm that

deals with the problem’s non-differentiable structure by NES, while still exploiting the

parts that are differentiable with SGD. This approach beats the MTL approaches cross-

stitch networks, routing networks, and soft layer ordering on their respective problems,

and we show good performance on three datasets using a large-scale residual network.

Through the use of MTL, this approach can be helpful in settings where labeled

datasets are small but other similar datasets are available. Usually, it would be difficult

to use them, because they are labeled differently or have a different format, but these

deviations are acceptable in an MTL setting. The small size of the target dataset is

offset through the MTL procedure, achieving the goal of increased data efficiency (G3).

The NAS approach to the configuration of weight sharing for deep MTL minimizes

the amount of manual decisions that have to be taken. This reduces the expertise

necessary to apply MTL in practice and is in line with the motivations of our goal

to create NAS algorithms (G1). Furthermore, LWS is efficient compared to other

NAS approaches as presented in Chapter 7, because it is a one-shot algorithm, i.e.

trains weights and architecture in a single pass. This tackles our goal of computational

efficiency (G2).

105

Chapter 9

Conclusion

Deep learning has emerged as a powerful machine learning technique that is able to

learn and generalize complex functions from data. This predictive capability is useful

in an immense number of different real-world applications, e.g. supporting medical

professionals in various ways [48, 90, 91, 35, 133, 57, 3, 37]. Many of these tasks

require to extract information from images, which is what we focus on in this thesis.

While it is getting easier and easier for everyone to apply deep learning to their own

problems, it is difficult to achieve optimal results without machine learning expertise

due to the immense number of hyperparameters that influence the training result.

Even machine learning experts have to rely on experience, because it is impossible to

exhaustively search for the best configuration by hand.

However, the burden on the machine learning practitioner can be eased through

automated hyperparameter tuning and by extension automated machine learning.

Initially, the development of such techniques just shifts the necessary expertise from the

manual design of deep learning systems to the design of these automated algorithms.

However, once a good algorithm exists, it can be reused for a variety of problems to

automatically configure deep learning systems.

Driven by this goal (G1), we explore neural architecture search methods in this

thesis. They promise to automate the selection of a network architecture, one of the

most important hyperparameters of a deep learning system, at the cost of additional

computation. Unfortunately, the amount of additional computation can be so sig-

nificant that it becomes impractical to apply. This motivates us to strive for NAS

algorithms with lower computational requirements (G2).

Finally, a general problem of supervised deep learning is that it requires a large

number of labeled samples to achieve good generalization performance. Such a

labeled dataset can be very difficult to acquire and motivates approaches that work

with smaller datasets as well. We work towards this as our third goal (G3).

Our initial idea to tackle (G1) is to scale neuroevolution up to large DNNs. In a

preliminary step, we test if the training of large DNNs with EAs is feasible. Despite

the fact that EAs are traditionally applied to problems of much smaller dimensionality,

we can successfully train a DNN with almost 100,000 weights using an EA. This is

made possible by a GPU-accelerated implementation of the limited evaluation EA

107

Chapter 9 Conclusion

which allows extensive experimentation to properly configure variation operators and

hyperparameters. The EA achieves promising DNN training results, but at the same

time the process is significantly less efficient than training with SGD. This is mainly

due to the fact that the analytical gradient is completely disregarded, while SGD

exploits it. In other domains like reinforcement learning where the gradient infor-

mation is more difficult to exploit, evolutionary approaches compare more favorably

to SGD. Both experiments demonstrate that EAs can be a viable alternative to SGD

for neural network training even without enormous computational resources, and our

open-source implementation opens the door for further research on this topic to find

and exploit unique advantages that EAs offer for this problem. Nevertheless, many

practical problems that we are interested in work with high-dimensional image data in

a supervised learning setting.

Consequently, we change our approach and instead investigate NAS algorithms

that use SGD for weight training while optimizing the architecture with evolutionary

algorithms. We showcase how a NAS algorithm can create convolutional neural

network architectures for image classification (G1) by mutating a genotype that

describes a stack of DNN building blocks. The process is expensive, because it

requires the training of many candidate network architectures during the evolutionary

process. To keep the computational requirements modest, we employ a (1 + 1) EA

and extend it with a niching approach to counteract its tendency to converge to local

optima. However, the introduction of a mutation with weight inheritance results in a

far more significant reduction of this NAS algorithm’s computational requirements

(G2) while keeping or increasing the network’s accuracy. We demonstrate strong

data-efficiency gains with this approach on the common CIFAR-10 and CIFAR-100

benchmark datasets and demonstrate that NAS for large-scale networks is possible

even in resource-constrained settings.

This is already a very positive result, but further reductions in computational require-

ments are possible. We investigate a one-shot NAS algorithm, which more closely

integrates the weight and architecture optimization, in order to avoid having to train

thousands of networks during the search process. We provide a new perspective on

configuring a deep MTL system by formulating the process as a multi-task architecture

search in which weight sharing between task-specific networks is optimized. By ex-

pressing the weight and architecture optimization in a stochastic way, the architecture

becomes amenable to optimization by a hybrid NES and SGD algorithm. The architec-

ture space is searched by NES (G1), but we can still exploit the differentiable nature

of neural networks (G2) and approximate a weight gradient through Monte-Carlo

methods.

By applying our one-shot NAS algorithm to an MTL setting, it becomes possible to

work with smaller datasets than usual (G3) by leveraging different related datasets.

We demonstrate the applicability of our approach to MTL on three different MTL

datasets and significantly outperform similar approaches from literature. It begs

108

further investigation, to find out what kinds of datasets benefit from MTL and also to

allow more heterogeneous task-specific architectures by using a more flexible MTL

architecture search space.

Thanks to its modest computational requirements, one-shot NAS is a promising

avenue for further research. In particular, we only focus on a single hyperparameter,

the network architecture, so far. It would be immensely useful to extend the ideas

found in one-shot NAS to other hyperparameters and eliminate the need for manual

decisions as much as possible. Orthogonal to that, the hybrid NES and SGD algorithm

needs further analysis to identify failure modes and improve upon it. Such an analysis

can be performed on problems different from DNN training, but there are also aspects

specific to DNNs that require further investigation.

For example, it seems plausible that, given unlimited computational resources, the

conventional NAS approach of training architectures from scratch will result in better

architectures than one-shot NAS. The latter has to overcome interference between

shared weights of competing architectures, which might hurt performance. Luo et

al. [75] observe low ranking correlation between networks trained by one-shot NAS

and trained-from-scratch versions of the same architectures. Such results are likely

dependent on the exact one-shot NAS algorithm and should be investigated in order to

find better architectures at low cost.

109

Part IV

Appendix

111

List of Algorithms

1 High-level view of a (µ+ λ) evolutionary algorithm. 43

2 Evolutionary algorithm for supervised DNN training. 50

3 Evolutionary algorithm for Atari DNN agent training. 63

4 (1 + 1) evolutionary algorithm for NAS with niching. 76

5 Search gradient evolution strategy, see [142]. 93

6 Learned weight sharing training procedure. 95

113

List of Figures

2.1 A simple convolutional neural network architecture comprised of

different building blocks. 19

2.2 The branching micro-architecture of an inception module. 25

2.3 The branching micro-architecture of a residual block. 26

2.4 The branching micro-architecture of a residual block with grouped

convolutions as used in ResNeXt. 27

3.1 Example images taken from the C-NMC training set. 32

3.2 Training and validation curves of the best C-NMC model after each

training epoch. 36

3.3 Subject-level cell classification accuracy on preliminary C-NMC test

set using the best model. 36

3.4 Metrics on the preliminary C-NMC test set for the proposed setting

and the two ablation studies. 37

5.1 Validation accuracies of 15 LEEA runs for different population sizes,

fitness inheritance strengths and batch sizes. 55

5.2 Validation accuracies of 15 LEEA runs for different population sizes,

batch sizes and selection proportions. 56

5.3 Validation accuracies of 15 LEEA runs with different levels of crossover,

crossover operators and mutation strength adaptation schemes. . . . 58

5.4 Population mean of mutation rate from 15 LEEA runs with self-

adaptation turned on. 59

6.1 Progress of evolution in terms of score over total processed number

of frames. Shown is the average and standard deviation over 50 trials

of the best agent in each generation. 68

7.1 Graph template defining the network architecture search space. . . . 75

7.2 Mutation operators with weight inheritance applied to small architec-

tures at different positions. 79

7.3 Training progression of the EA with weight inheritance compared to

both baselines on CIFAR-10. 82

7.4 Training progression of the EA with weight inheritance compared to

both baselines on CIFAR-100. 83

115

List of Figures

7.5 Training progression of the EA with weight inheritance compared to

both baselines on MNIST. 85

7.6 Training progression of the EA with weight inheritance compared to

both baselines on Fashion-MNIST. 85

7.7 Average (of all EA runs) number of building blocks in the genome

during the optimization process on CIFAR-100. 85

8.1 Different weight sharing schemes to solve a three-task MTL problem. 90

8.2 Setup to solve a three-task MTL problem with LWS. 94

8.3 Test accuracy during training for LWS and its baselines using a

ResNet18 on CIFAR-100. 104

8.4 Percentage of tasks that share weights between exactly t tasks when

learned with LWS on DKL-MNIST. 104

8.5 Percentage of tasks that share weights between exactly t tasks when

learned with LWS on Omniglot. 104

116

List of Tables

2.1 Error rates on the ImageNet dataset for different DNN architectures. 23

3.1 Composition of the C-NMC dataset. 31

3.2 Results on the preliminary C-NMC test set using the best model

checkpoints from 24 training runs. 35

5.1 Default LEEA hyperparameter settings for exploratory experiments

and the final comparison experiment. 53

5.2 Relative improvement of validation accuracy when increasing the

LEEA selection proportion in four different scenarios. 57

6.1 Hyperparameters for the baseline and our proposed evolutionary rein-

forcement learning algorithm. 65

6.2 Results on six Atari games from literature and our own experiments. 66

7.1 Test accuracies at two checkpoints for NAS on CIFAR-10. 82

7.2 Test accuracies at two checkpoints for NAS on CIFAR-100. 83

8.1 Test error of LWS compared to full sharing and no sharing baselines

on three datasets. 100

8.2 Comparison of LWS against routing networks. 102

8.3 Comparison of LWS against soft layer ordering. 103

117

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray,

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Ku-

nal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B.

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on het-

erogeneous distributed systems. CoRR, abs/1603.04467, 2016.

[2] Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari, Kento Uchida, Shota

Saito, and Kouhei Nishida. Adaptive stochastic natural gradient method for

one-shot neural architecture search. In Proceedings of the 36th International

Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,

California, USA, pages 171–180, 2019.

[3] Sharib Ali and Felix Zhou, editors. Proceedings of the 2019 Challenge on En-

doscopy Artefacts Detection (EAD2019) co-located with the 16th International

Symposium on Biomedical Imaging (ISBI), volume 2366 of CEUR Workshop

Proceedings. CEUR-WS.org, 2019.

[4] Dirk V. Arnold. Noisy optimization with evolution strategies, volume 8 of

Genetic algorithms and evolutionary computation. Kluwer, 2002.

[5] Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro.

DENSER: deep evolutionary network structured representation. Genetic Pro-

gramming and Evolvable Machines, 20(1):5–35, 2019.

[6] Marco Baioletti, Gabriele Di Bari, Valentina Poggioni, and Mirco Tracolli. Can

differential evolution be an efficient engine to optimize neural networks? In

Giuseppe Nicosia, Panos M. Pardalos, Giovanni Giuffrida, and Renato Umeton,

editors, Machine Learning, Optimization, and Big Data - Third International

Conference, MOD 2017, Volterra, Italy, September 14-17, 2017, Revised Se-

lected Papers, volume 10710 of Lecture Notes in Computer Science, pages

401–413. Springer, 2017.

119

Bibliography

[7] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and

Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey.

Journal of Machine Learning Research, 18(153):1–43, 2018.

[8] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling

modern machine-learning practice and the classical bias–variance trade-off.

Proceedings of the National Academy of Sciences, 116(32):15849–15854, jul

2019.

[9] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The

arcade learning environment: An evaluation platform for general agents. J.

Artif. Intell. Res., 47:253–279, 2013.

[10] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys-

law Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,

Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki,

Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim

Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie

Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforce-

ment learning. CoRR, abs/1912.06680, 2019.

[11] Hans-Georg Beyer. Evolutionary algorithms in noisy environments: Theoretical

issues and guidelines for practice. Computer methods in applied mechanics

and engineering, 186(2-4):239–267, 2000.

[12] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient

architecture search by network transformation. In Sheila A. McIlraith and

Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Confer-

ence on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of

Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational

Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,

February 2-7, 2018, pages 2787–2794. AAAI Press, 2018.

[13] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture

search on target task and hardware. In 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[14] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, Jul 1997.

[15] Sabina Chiaretti, Gina Zini, and Renato Bassan. Diagnosis and subclassification

of acute lymphoblastic leukemia. Mediterranean journal of hematology and

infectious diseases, 6(1):e2014073–e2014073, November 2014.

[16] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. Back to basics: Bench-

marking canonical evolution strategies for playing atari. In Proceedings of the

120

Bibliography

Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI

2018, July 13-19, 2018, Stockholm, Sweden, pages 1419–1426, 2018.

[17] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki

Yamamoto, and David Ha. Deep learning for classical japanese literature.

CoRR, abs/1812.01718, 2018.

[18] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EM-

NIST: extending MNIST to handwritten letters. In 2017 International Joint

Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May

14-19, 2017, pages 2921–2926, 2017.

[19] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Ken-

neth O. Stanley, and Jeff Clune. Improving exploration in evolution strategies

for deep reinforcement learning via a population of novelty-seeking agents. In

Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò

Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information

Processing Systems 31: Annual Conference on Neural Information Processing

Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages

5032–5043, 2018.

[20] Victor Costa, Nuno Lourenço, and Penousal Machado. Coevolution of gener-

ative adversarial networks. In Paul Kaufmann and Pedro A. Castillo, editors,

Applications of Evolutionary Computation - 22nd International Conference,

EvoApplications 2019, Held as Part of EvoStar 2019, Leipzig, Germany, April

24-26, 2019, Proceedings, volume 11454 of Lecture Notes in Computer Science,

pages 473–487. Springer, 2019.

[21] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:

Training deep neural networks with binary weights during propagations. In

Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Ro-

man Garnett, editors, Advances in Neural Information Processing Systems 28:

Annual Conference on Neural Information Processing Systems 2015, December

7-12, 2015, Montreal, Quebec, Canada, pages 3123–3131, 2015.

[22] Swagatam Das, Sankha Subhra Mullick, and Ponnuthurai N. Suganthan. Recent

advances in differential evolution - an updated survey. Swarm and Evolutionary

Computation, 27:1–30, 2016.

[23] Travis Desell. Large scale evolution of convolutional neural networks using

volunteer computing. In Peter A. N. Bosman, editor, Genetic and Evolutionary

Computation Conference, Berlin, Germany, July 15-19, 2017, Companion

Material Proceedings, pages 127–128. ACM, 2017.

121

Bibliography

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

pre-training of deep bidirectional transformers for language understanding.

In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of

the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,

Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),

pages 4171–4186. Association for Computational Linguistics, 2019.

[25] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha,

Andrei A. Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution

channels gradient descent in super neural networks. CoRR, abs/1701.08734,

2017.

[26] Chrisantha Fernando, Dylan Banarse, Malcolm Reynolds, Frederic Besse,

David Pfau, Max Jaderberg, Marc Lanctot, and Daan Wierstra. Convolution

by evolution: Differentiable pattern producing networks. In Tobias Friedrich,

Frank Neumann, and Andrew M. Sutton, editors, Proceedings of the 2016 on

Genetic and Evolutionary Computation Conference, Denver, CO, USA, July 20

- 24, 2016, pages 109–116. ACM, 2016.

[27] L. J. Fogel. Autonomous automata. Industrial Research, 4:14–19, 1962.

[28] Nicolás García-Pedrajas, Domingo Ortiz-Boyer, and César Hervás-Martínez.

An alternative approach for neural network evolution with a genetic algorithm:

Crossover by combinatorial optimization. Neural Networks, 19(4):514–528,

2006.

[29] Charles J. Geyer. Stat 5421 lecture notes: Exponential families, part i, April

2016.

[30] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Yee Whye Teh and D. Mike Titterington,

editors, Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy,

May 13-15, 2010, volume 9 of JMLR Proceedings, pages 249–256. JMLR.org,

2010.

[31] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier

neural networks. In Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudík,

editors, Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13,

2011, volume 15 of JMLR Proceedings, pages 315–323. JMLR.org, 2011.

[32] Faustino J. Gomez, Jürgen Schmidhuber, and Risto Miikkulainen. Efficient

non-linear control through neuroevolution. In Johannes Fürnkranz, Tobias

122

Bibliography

Scheffer, and Myra Spiliopoulou, editors, Machine Learning: ECML 2006,

17th European Conference on Machine Learning, Berlin, Germany, September

18-22, 2006, Proceedings, volume 4212 of Lecture Notes in Computer Science,

pages 654–662. Springer, 2006.

[33] Faustino John Gomez. Robust Nonlinear Control through Neuroevolution. PhD

thesis, University of Texas at Austin, 2003.

[34] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[35] Anubha Gupta and Ritu Gupta, editors. ISBI 2019 C-NMC Challenge: Classifi-

cation in Cancer Cell Imaging. Springer Singapore, 2019.

[36] Ritu Gupta, Pramit Mallick, Rahul Duggal, Anubha Gupta, and Ojaswa Sharma.

Stain color normalization and segmentation of plasma cells in microscopic im-

ages as a prelude to development of computer assisted automated disease diag-

nostic tool in multiple myeloma. Clinical Lymphoma, Myeloma and Leukemia,

17(1):e99, 2019/03/18 2017.

[37] Hassan Al Hajj, Mathieu Lamard, Pierre-Henri Conze, Soumali Roychowdhury,

Xiaowei Hu, Gabija Maršalkaitė, Odysseas Zisimopoulos, Muneer Ahmad Ded-

mari, Fenqiang Zhao, Jonas Prellberg, Manish Sahu, Adrian Galdran, Teresa

Araújo, Duc My Vo, Chandan Panda, Navdeep Dahiya, Satoshi Kondo, Zheng-

bing Bian, Arash Vahdat, Jonas Bialopetravičius, Evangello Flouty, Chenhui

Qiu, Sabrina Dill, Anirban Mukhopadhyay, Pedro Costa, Guilherme Aresta,

Senthil Ramamurthy, Sang-Woong Lee, Aurélio Campilho, Stefan Zachow,

Shunren Xia, Sailesh Conjeti, Danail Stoyanov, Jogundas Armaitis, Pheng-

Ann Heng, William G. Macready, Béatrice Cochener, and Gwenolé Quellec.

CATARACTS: Challenge on automatic tool annotation for cataRACT surgery.

Medical Image Analysis, 52:24–41, feb 2019.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago,

Chile, December 7-13, 2015, pages 1026–1034, 2015.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,

pages 770–778, 2016.

[40] J. Holland. Nonlinear environments permitting efficient adaptation. In Com-

puter and Information Sciences II. Academic Press, 1967.

123

http://www.deeplearningbook.org

Bibliography

[41] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,

Hado van Hasselt, and David Silver. Distributed prioritized experience replay.

In 6th International Conference on Learning Representations, ICLR 2018,

Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,

2018.

[42] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedfor-

ward networks are universal approximators. Neural Networks, 2(5):359–366,

1989.

[43] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In 2018

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,

Salt Lake City, UT, USA, June 18-22, 2018, pages 7132–7141. IEEE Computer

Society, 2018.

[44] Abid Hussain, Yousaf Shad Muhammad, M. Nauman Sajid, Ijaz Hussain,

Alaa Mohamd Shoukry, and Showkat Gani. Genetic algorithm for traveling

salesman problem with modified cycle crossover operator. Computational

Intelligence and Neuroscience, 2017:1–7, 2017.

[45] C. Igel. Neuroevolution for reinforcement learning using evolution strategies.

In The 2003 Congress on Evolutionary Computation, 2003. CEC '03. IEEE,

2003.

[46] OEIS Foundation Inc. The on-line encyclopedia of integer sequences: A003024,

2020. https://oeis.org/A003024.

[47] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of the

32nd International Conference on Machine Learning, ICML 2015, Lille, France,

6-11 July 2015, pages 448–456, 2015.

[48] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus,

Chris Chute, Henrik Marklund, Behzad Haghgoo, Robyn L. Ball, Katie S. Sh-

panskaya, Jayne Seekins, David A. Mong, Safwan S. Halabi, Jesse K. Sandberg,

Ricky Jones, David B. Larson, Curtis P. Langlotz, Bhavik N. Patel, Matthew P.

Lungren, and Andrew Y. Ng. Chexpert: A large chest radiograph dataset with

uncertainty labels and expert comparison. In The Thirty-Third AAAI Conference

on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications

of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on

Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,

USA, January 27 - February 1, 2019, pages 590–597. AAAI Press, 2019.

[49] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki,

Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen

124

Bibliography

Simonyan, Chrisantha Fernando, and Koray Kavukcuoglu. Population based

training of neural networks. CoRR, abs/1711.09846, 2017.

[50] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An

Introduction to Statistical Learning. Springer New York, 2013.

[51] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural

architecture search system. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer

Rosales, Evimaria Terzi, and George Karypis, editors, Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 1946–1956.

ACM, 2019.

[52] Kenneth A. De Jong. Evolutionary Computation: A Unified Approach. MIT

Press, 2006.

[53] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy

Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-

maghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard

Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron

Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew,

Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu

Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacK-

ean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,

Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,

Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek,

Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter,

Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Ho-

ria Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric

Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor

processing unit. In Proceedings of the 44th Annual International Symposium on

Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017,

pages 1–12. ACM, 2017.

[54] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos,

and Eric P. Xing. Neural architecture search with bayesian optimisation and

optimal transport. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,

Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 31: Annual Conference on Neural

Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,

Montréal, Canada, pages 2020–2029, 2018.

125

Bibliography

[55] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture

for generative adversarial networks. In IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,

pages 4401–4410. Computer Vision Foundation / IEEE, 2019.

[56] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and

Timo Aila. Analyzing and improving the image quality of stylegan. CoRR,

abs/1912.04958, 2019.

[57] A. Emre Kavur, Naciye Sinem Gezer, Mustafa Baris, Pierre-Henri Conze,

Vladimir Groza, Duc Duy Pham, Soumick Chatterjee, Philipp Ernst, Savas

Özkan, Bora Baydar, Dmitry Lachinov, Shuo Han, Josef Pauli, Fabian Isensee,

Matthias Perkonigg, Rachana Sathish, Ronnie Rajan, Sinem Aslan, Debdoot

Sheet, Gurbandurdy Dovletov, Oliver Speck, Andreas Nürnberger, Klaus H.

Maier-Hein, Gözde B. Akar, Gözde Ünal, Oguz Dicle, and M. Alper Selver.

CHAOS challenge - combined (CT-MR) healthy abdominal organ segmentation.

CoRR, abs/2001.06535, 2020.

[58] Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in

reinforcement learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,

Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 31: Annual Conference on Neural

Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,

Montréal, Canada, pages 1196–1208, 2018.

[59] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[60] Oliver Kramer. Evolution of convolutional highway networks. In Kevin Sim

and Paul Kaufmann, editors, Applications of Evolutionary Computation - 21st

International Conference, EvoApplications 2018, Parma, Italy, April 4-6, 2018,

Proceedings, volume 10784 of Lecture Notes in Computer Science, pages

395–404. Springer, 2018.

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Advances in Neural

Information Processing Systems 25: 26th Annual Conference on Neural Infor-

mation Processing Systems 2012. Proceedings of a meeting held December 3-6,

2012, Lake Tahoe, Nevada, United States, pages 1106–1114, 2012.

[62] Kim W. C. Ku, Man-Wai Mak, and Wan-Chi Siu. A study of the lamarckian

evolution of recurrent neural networks. IEEE Trans. Evolutionary Computation,

4(1):31–42, 2000.

126

Bibliography

[63] R. D. Labati, V. Piuri, and F. Scotti. All-idb: The acute lymphoblastic leukemia

image database for image processing. In 2011 18th IEEE International Confer-

ence on Image Processing, pages 2045–2048, Sep. 2011.

[64] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-

level concept learning through probabilistic program induction. Science,

350(6266):1332–1338, 2015.

[65] Sang-Woo Lee, Chung-yeon Lee, Dong-Hyun Kwak, Jiwon Kim, Jeonghee

Kim, and Byoung-Tak Zhang. Dual-memory deep learning architectures for

lifelong learning of everyday human behaviors. In Proceedings of the Twenty-

Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New

York, NY, USA, 9-15 July 2016, pages 1669–1675, 2016.

[66] Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O. Stanley. ES is more than

just a traditional finite-difference approximator. In Hernán E. Aguirre and Keiki

Takadama, editors, Proceedings of the Genetic and Evolutionary Computation

Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pages 450–457.

ACM, 2018.

[67] Karel Lenc, Erich Elsen, Tom Schaul, and Karen Simonyan. Non-differentiable

supervised learning with evolution strategies and hybrid methods. CoRR,

abs/1906.03139, 2019.

[68] Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers

is a universal approximator. In Advances in Neural Information Processing

Systems 31: Annual Conference on Neural Information Processing Systems

2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 6172–6181,

2018.

[69] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia

Li, Li Fei-Fei, Alan L. Yuille, Jonathan Huang, and Kevin Murphy. Progres-

sive neural architecture search. In Vittorio Ferrari, Martial Hebert, Cristian

Sminchisescu, and Yair Weiss, editors, Computer Vision - ECCV 2018 - 15th

European Conference, Munich, Germany, September 8-14, 2018, Proceedings,

Part I, volume 11205 of Lecture Notes in Computer Science, pages 19–35.

Springer, 2018.

[70] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray

Kavukcuoglu. Hierarchical representations for efficient architecture search.

In 6th International Conference on Learning Representations, ICLR 2018,

Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,

2018.

127

Bibliography

[71] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable archi-

tecture search. In 7th International Conference on Learning Representations,

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[72] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-

Yi Wang. Representation learning using multi-task deep neural networks

for semantic classification and information retrieval. In NAACL HLT 2015,

The 2015 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Denver, Colorado,

USA, May 31 - June 5, 2015, pages 912–921, 2015.

[73] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and

Rogério Schmidt Feris. Fully-adaptive feature sharing in multi-task networks

with applications in person attribute classification. In 2017 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,

July 21-26, 2017, pages 1131–1140, 2017.

[74] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The

expressive power of neural networks: A view from the width. In Isabelle Guyon,

Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.

Vishwanathan, and Roman Garnett, editors, Advances in Neural Information

Processing Systems 30: Annual Conference on Neural Information Processing

Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 6231–6239,

2017.

[75] Renqian Luo, Tao Qin, and Enhong Chen. Understanding and improving

one-shot neural architecture optimization. CoRR, abs/1909.10815, 2019.

[76] H. T. Madhloom, S. A. Kareem, and H. Ariffin. A robust feature extraction and

selection method for the recognition of lymphocytes versus acute lymphoblastic

leukemia. In 2012 International Conference on Advanced Computer Science

Applications and Technologies (ACSAT), pages 330–335, Nov 2012.

[77] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133,

dec 1943.

[78] Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie Yang, Alan L. Yuille,

and Jianchao Yang. Atomnas: Fine-grained end-to-end neural architecture

search. In 8th International Conference on Learning Representations, ICLR

2020, 2020.

[79] Elliot Meyerson and Risto Miikkulainen. Beyond shared hierarchies: Deep

multitask learning through soft layer ordering. In 6th International Conference

128

Bibliography

on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -

May 3, 2018, Conference Track Proceedings, 2018.

[80] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,

Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,

and Babak Hodjat. Evolving deep neural networks. In Artificial Intelligence in

the Age of Neural Networks and Brain Computing, pages 293–312. Elsevier,

2019.

[81] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-

stitch networks for multi-task learning. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,

2016, pages 3994–4003, 2016.

[82] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep

reinforcement learning. CoRR, abs/1312.5602, 2013.

[83] Subrajeet Mohapatra, Dipti Patra, and Sanghamitra Satpathy. An ensemble

classifier system for early diagnosis of acute lymphoblastic leukemia in blood

microscopic images. Neural Computing and Applications, 24(7):1887–1904,

Jun 2014.

[84] David E. Moriarty and Risto Miikkulainen. Efficient reinforcement learning

through symbiotic evolution. Machine Learning, 22(1-3):11–32, 1996.

[85] Gregory Morse and Kenneth O. Stanley. Simple evolutionary optimization can

rival stochastic gradient descent in neural networks. In Tobias Friedrich, Frank

Neumann, and Andrew M. Sutton, editors, Proceedings of the 2016 on Genetic

and Evolutionary Computation Conference, Denver, CO, USA, July 20 - 24,

2016, pages 477–484. ACM, 2016.

[86] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and

Ilya Sutskever. Deep double descent: Where bigger models and more data

hurt. In 8th International Conference on Learning Representations, ICLR 2020,

2020.

[87] Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. Information-

geometric optimization algorithms: A unifying picture via invariance principles.

J. Mach. Learn. Res., 18:18:1–18:65, 2017.

[88] Matt Parker and Bobby D. Bryant. Lamarckian neuroevolution for visual

control in the quake II environment. In Proceedings of the IEEE Congress on

Evolutionary Computation, CEC 2009, Trondheim, Norway, 18-21 May, 2009,

pages 2630–2637. IEEE, 2009.

129

Bibliography

[89] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. Pytorch: An imperative style, high-performance deep

learning library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,

Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 32: Annual Conference on Neural

Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,

Vancouver, BC, Canada, pages 8024–8035, 2019.

[90] Caroline Petitjean, Su Ruan, Zoé Lambert, and Bernard Dubray, editors. Pro-

ceedings of the 2019 Challenge on Segmentation of THoracic Organs at Risk

in CT Images, SegTHOR@ISBI 2019, April 8, 2019, volume 2349 of CEUR

Workshop Proceedings. CEUR-WS.org, 2019.

[91] Kilian M. Pohl, Wesley K. Thompson, Ehsan Adeli, and Marius George Lin-

guraru, editors. Adolescent Brain Cognitive Development Neurocognitive

Prediction - First Challenge, ABCD-NP 2019, Held in Conjunction with MIC-

CAI 2019, Shenzhen, China, October 13, 2019, Proceedings, volume 11791 of

Lecture Notes in Computer Science. Springer, 2019.

[92] Jonas Prellberg and Oliver Kramer. Lamarckian evolution of convolutional

neural networks. In Anne Auger, Carlos M. Fonseca, Nuno Lourenço, Penousal

Machado, Luís Paquete, and Darrell Whitley, editors, Parallel Problem Solving

from Nature - PPSN XV - 15th International Conference, Coimbra, Portugal,

September 8-12, 2018, Proceedings, Part II, volume 11102 of Lecture Notes in

Computer Science, pages 424–435. Springer, 2018.

[93] Jonas Prellberg and Oliver Kramer. Limited evaluation evolutionary optimiza-

tion of large neural networks. In Frank Trollmann and Anni-Yasmin Turhan,

editors, KI 2018: Advances in Artificial Intelligence - 41st German Conference

on AI, Berlin, Germany, September 24-28, 2018, Proceedings, volume 11117

of Lecture Notes in Computer Science, pages 270–283. Springer, 2018.

[94] Jonas Prellberg and Oliver Kramer. Acute lymphoblastic leukemia classification

from microscopic images using convolutional neural networks. In Anubha

Gupta and Ritu Gupta, editors, ISBI 2019 C-NMC Challenge: Classification in

Cancer Cell Imaging, pages 53–61, Singapore, 2019. Springer Singapore.

[95] Jonas Prellberg and Oliver Kramer. Learned weight sharing for deep multi-task

learning by natural evolution strategy and stochastic gradient descent. In 2020

International Joint Conference on Neural Networks, IJCNN 2020, Glasgow,

UK, July 19-24, 2020. IEEE, 2020.

130

Bibliography

[96] Ching-Hon Pui. Acute Lymphoblastic Leukemia, pages 39–43. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2017.

[97] Lorenzo Putzu and Cecilia Di Ruberto. White blood cells identication and

classication from leukemic blood image. In International Work-Conference on

Bioinformatics and Biomedical Engineering, IWBBIO 2013, Granada, Spain,

March 18-20, 2013. Proceedings, pages 99–106, 2013.

[98] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon

Suematsu, Jie Tan, Quoc V. Le, and Alexey Kurakin. Large-scale evolution of

image classifiers. In Doina Precup and Yee Whye Teh, editors, Proceedings of

the 34th International Conference on Machine Learning, ICML 2017, Sydney,

NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine

Learning Research, pages 2902–2911. PMLR, 2017.

[99] I. Rechenberg, B.F. Toms, and Royal Aircraft Establishment. Cybernetic

Solution Path of an Experimental Problem:. Library translation / Royal Aircraft

Establishment. Ministry of Aviation, 1965.

[100] Amjad Rehman, Naveed Abbas, Tanzila Saba, Syed Ijaz ur Rahman, Za-

hid Mehmood, and Hoshang Kolivand. Classification of acute lymphoblas-

tic leukemia using deep learning. Microscopy Research and Technique,

81(11):1310–1317, 2018.

[101] Andrew G. Barto Richard S. Sutton. Reinforcement Learning. The MIT Press,

2018.

[102] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks:

Adaptive selection of non-linear functions for multi-task learning. In 6th

International Conference on Learning Representations, ICLR 2018, Vancouver,

BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[103] F. Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[104] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard.

Sluice networks: Learning what to share between loosely related tasks. CoRR,

abs/1705.08142, 2017.

[105] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, 323(6088):533–536, oct

1986.

[106] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,

131

Bibliography

Alexander C. Berg, and Fei-Fei Li. Imagenet large scale visual recognition

challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[107] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies

as a scalable alternative to reinforcement learning. CoRR, abs/1703.03864,

2017.

[108] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.

How does batch normalization help optimization? In Samy Bengio, Hanna M.

Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-

man Garnett, editors, Advances in Neural Information Processing Systems 31:

Annual Conference on Neural Information Processing Systems 2018, NeurIPS

2018, 3-8 December 2018, Montréal, Canada, pages 2488–2498, 2018.

[109] N. Saravanan and David B. Fogel. Evolving neural control systems. IEEE

Expert, 10(3):23–27, 1995.

[110] Takahiro Sasaki and Mario Tokoro. Comparison between lamarckian and

darwinian evolution on a model using neural networks and genetic algorithms.

Knowl. Inf. Syst., 2(2):201–222, 2000.

[111] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized

experience replay. In Yoshua Bengio and Yann LeCun, editors, 4th International

Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,

May 2-4, 2016, Conference Track Proceedings, 2016.

[112] Hans-Paul Schwefel. Numerische Optimierung von Computer-Modellen mit-

tels der Evolutionsstrategie: mit einer vergleichenden Einführung in die Hill-

Climbing-und Zufallsstrategie, volume 1. Springer, 1977.

[113] Sarmad Shafique and Samabia Tehsin. Acute lymphoblastic leukemia detection

and classification of its subtypes using pretrained deep convolutional neural

networks. Technology in Cancer Research & Treatment, 17:1533033818802789,

2018. PMID: 30261827.

[114] Shinichi Shirakawa, Yasushi Iwata, and Youhei Akimoto. Dynamic optimiza-

tion of neural network structures using probabilistic modeling. In Sheila A.

McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second

AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative

Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium

on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,

Louisiana, USA, February 2-7, 2018, pages 4074–4082. AAAI Press, 2018.

[115] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,

132

Bibliography

Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A

general reinforcement learning algorithm that masters chess, shogi, and go

through self-play. Science, 362(6419):1140–1144, dec 2018.

[116] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. In 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, 2015.

[117] David R. So, Quoc V. Le, and Chen Liang. The evolved transformer. In

Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the

36th International Conference on Machine Learning, ICML 2019, 9-15 June

2019, Long Beach, California, USA, volume 97 of Proceedings of Machine

Learning Research, pages 5877–5886. PMLR, 2019.

[118] S Spigler, M Geiger, S d’Ascoli, L Sagun, G Biroli, and M Wyart. A jamming

transition from under- to over-parametrization affects generalization in deep

learning. Journal of Physics A: Mathematical and Theoretical, 52(47):474001,

oct 2019.

[119] Kenneth O. Stanley. Compositional pattern producing networks: A novel

abstraction of development. Genetic Programming and Evolvable Machines,

8(2):131–162, 2007.

[120] Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Real-time neu-

roevolution in the NERO video game. IEEE Trans. Evolutionary Computation,

9(6):653–668, 2005.

[121] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. A hypercube-

based encoding for evolving large-scale neural networks. Artificial Life,

15(2):185–212, 2009.

[122] Kenneth O. Stanley and Risto Miikkulainen. Efficient reinforcement learning

through evolving neural network topologies. In William B. Langdon, Erick

Cantú-Paz, Keith E. Mathias, Rajkumar Roy, David Davis, Riccardo Poli,

Karthik Balakrishnan, Vasant G. Honavar, Günter Rudolph, Joachim Wegener,

Larry Bull, Mitchell A. Potter, Alan C. Schultz, Julian F. Miller, Edmund K.

Burke, and Natasa Jonoska, editors, GECCO 2002: Proceedings of the Genetic

and Evolutionary Computation Conference, New York, USA, 9-13 July 2002,

pages 569–577. Morgan Kaufmann, 2002.

[123] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through

augmenting topologies. Evolutionary Computation, 10(2):99–127, jun 2002.

[124] Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolution through

evolutionary complexification. J. Artif. Intell. Res., 21:63–100, 2004.

133

Bibliography

[125] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Ken-

neth O. Stanley, and Jeff Clune. Deep neuroevolution: Genetic algorithms are

a competitive alternative for training deep neural networks for reinforcement

learning. CoRR, abs/1712.06567, 2017.

[126] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic

programming approach to designing convolutional neural network architectures.

In Peter A. N. Bosman, editor, Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO 2017, Berlin, Germany, July 15-19, 2017,

pages 497–504. ACM, 2017.

[127] Yi Sun, Daan Wierstra, Tom Schaul, and Jürgen Schmidhuber. Stochastic search

using the natural gradient. In Proceedings of the 26th Annual International

Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada,

June 14-18, 2009, pages 1161–1168, 2009.

[128] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. In IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,

2015, pages 1–9, 2015.

[129] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for con-

volutional neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov,

editors, Proceedings of the 36th International Conference on Machine Learn-

ing, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of

Proceedings of Machine Learning Research, pages 6105–6114. PMLR, 2019.

[130] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie

Mannor. A deep hierarchical approach to lifelong learning in minecraft. In

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,

February 4-9, 2017, San Francisco, California, USA., pages 1553–1561, 2017.

[131] Dirk Thierens. Non-redundant genetic coding of neural networks. In Toshio

Fukuda and Takeshi Furuhashi, editors, Proceedings of 1996 IEEE International

Conference on Evolutionary Computation, Nayoya University, Japan, May 20-

22, 1996, pages 571–575. IEEE, 1996.

[132] Jamal Toutouh, Erik Hemberg, and Una-May O’Reilly. Spatial evolutionary

generative adversarial networks. In Anne Auger and Thomas Stützle, editors,

Proceedings of the Genetic and Evolutionary Computation Conference, GECCO

2019, Prague, Czech Republic, July 13-17, 2019, pages 472–480. ACM, 2019.

[133] Vladimír Ulman, Martin Maška, Klas E G Magnusson, Olaf Ronneberger,

Carsten Haubold, Nathalie Harder, Pavel Matula, Petr Matula, David Svoboda,

134

Bibliography

Miroslav Radojevic, Ihor Smal, Karl Rohr, Joakim Jaldén, Helen M Blau,

Oleh Dzyubachyk, Boudewijn Lelieveldt, Pengdong Xiao, Yuexiang Li, Siu-

Yeung Cho, Alexandre C Dufour, Jean-Christophe Olivo-Marin, Constantino C

Reyes-Aldasoro, Jose A Solis-Lemus, Robert Bensch, Thomas Brox, Johannes

Stegmaier, Ralf Mikut, Steffen Wolf, Fred A Hamprecht, Tiago Esteves, Pedro

Quelhas, Ömer Demirel, Lars MalmstrÃ¶m, Florian Jug, Pavel Tomancak,

Erik Meijering, Arrate Muñoz-Barrutia, Michal Kozubek, and Carlos Ortiz

de Solorzano. An objective comparison of cell-tracking algorithms. Nature

Methods, 14(12):1141–1152, oct 2017.

[134] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,

Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 30: Annual Conference on Neural

Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,

USA, pages 5998–6008, 2017.

[135] Phillip Verbancsics and Josh Harguess. Image classification using generative

neuro evolution for deep learning. In 2015 IEEE Winter Conference on Ap-

plications of Computer Vision, WACV 2015, Waikoloa, HI, USA, January 5-9,

2015, pages 488–493. IEEE Computer Society, 2015.

[136] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, MichaÃ«l Mathieu,

Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo

Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Dani-

helka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg,

Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard,

David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre,

Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario

WÃŒnsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap,

Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grand-

master level in StarCraft II using multi-agent reinforcement learning. Nature,

575(7782):350–354, oct 2019.

[137] L. H. S. Vogado, R. D. M. S. Veras, A. R. Andrade, F. H. D. D. Araujo,

R. R. V. e. Silva, and K. R. T. Aires. Diagnosing leukemia in blood smear

images using an ensemble of classifiers and pre-trained convolutional neural

networks. In 2017 30th SIBGRAPI Conference on Graphics, Patterns and

Images (SIBGRAPI), pages 367–373, Oct 2017.

[138] Chaoyue Wang, Chang Xu, Xin Yao, and Dacheng Tao. Evolutionary generative

adversarial networks. IEEE Trans. Evolutionary Computation, 23(6):921–934,

2019.

135

Bibliography

[139] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and

Nando de Freitas. Dueling network architectures for deep reinforcement learn-

ing. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings

of the 33nd International Conference on Machine Learning, ICML 2016, New

York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and

Conference Proceedings, pages 1995–2003. JMLR.org, 2016.

[140] Shimon Whiteson and Peter Stone. Evolutionary function approximation for

reinforcement learning. J. Mach. Learn. Res., 7:877–917, 2006.

[141] A. P. Wieland. Evolving neural network controllers for unstable systems. In

IJCNN-91-Seattle International Joint Conference on Neural Networks. IEEE,

1991.

[142] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen

Schmidhuber. Natural evolution strategies. J. Mach. Learn. Res., 15(1):949–

980, 2014.

[143] Jiqing Wu, Zhiwu Huang, Dinesh Acharya, Wen Li, Janine Thoma, Danda Pani

Paudel, and Luc Van Gool. Sliced wasserstein generative models. In IEEE Con-

ference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,

CA, USA, June 16-20, 2019, pages 3713–3722. Computer Vision Foundation /

IEEE, 2019.

[144] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.

Aggregated residual transformations for deep neural networks. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2017, Hon-

olulu, HI, USA, July 21-26, 2017, pages 5987–5995, 2017.

[145] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring

randomly wired neural networks for image recognition. In The IEEE Interna-

tional Conference on Computer Vision (ICCV), October 2019.

[146] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural

architecture search. In 7th International Conference on Learning Representa-

tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[147] Anil Yaman, Decebal Constantin Mocanu, Giovanni Iacca, George H. L.

Fletcher, and Mykola Pechenizkiy. Limited evaluation cooperative co-

evolutionary differential evolution for large-scale neuroevolution. In Hernán E.

Aguirre and Keiki Takadama, editors, Proceedings of the Genetic and Evo-

lutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19,

2018, pages 569–576. ACM, 2018.

[148] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable

are features in deep neural networks? In Advances in Neural Information

136

Bibliography

Processing Systems 27: Annual Conference on Neural Information Processing

Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3320–

3328, 2014.

[149] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu

Salzmann. Evaluating the search phase of neural architecture search. In 8th

International Conference on Learning Representations, ICLR 2020, 2020.

[150] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. In David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne

Tuytelaars, editors, Computer Vision - ECCV 2014 - 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I, volume 8689

of Lecture Notes in Computer Science, pages 818–833. Springer, 2014.

[151] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol

Vinyals. Understanding deep learning requires rethinking generalization. In

5th International Conference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings, 2017.

[152] Xingwen Zhang, Jeff Clune, and Kenneth O. Stanley. On the relationship

between the openai evolution strategy and stochastic gradient descent. CoRR,

abs/1712.06564, 2017.

[153] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial

landmark detection by deep multi-task learning. In Computer Vision - ECCV

2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014,

Proceedings, Part VI, pages 94–108, 2014.

[154] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement

learning. In 5th International Conference on Learning Representations, ICLR

2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

[155] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning

transferable architectures for scalable image recognition. In 2018 IEEE Confer-

ence on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,

UT, USA, June 18-22, 2018, pages 8697–8710, 2018.

137

	Title: Evolving Deep Neural Networks: Optimization of Weights and Architectures
	Zusammenfassung
	Abstract
	Mathematical Notation
	Contents
	Introduction
	Neuroevolution
	Neural Architecture Search
	Thesis Overview
	Contributions

	Foundations of Deep Learning
	Deep Neural Networks
	Function Approximation
	Parameter Optimization
	Building Blocks
	Modern Architectures

	Application to Blood Cancer Detection
	C-NMC Challenge
	Dataset Description
	Network Architecture
	Experiments
	Conclusion

	Evolutionary Weight Optimization
	Population-based Evolutionary Algorithms
	Stochastic Black-Box Optimization
	Evolutionary Algorithm
	Representation of Solutions
	Variation Operators
	Selection

	Application to Deep Supervised Learning
	Evolutionary DNN Weight Optimization
	Accelerating Evolutionary DNN Weight Optimization with GPUs
	Experiments
	Conclusion

	Application to Deep Reinforcement Learning
	Atari Environment
	Evolutionary Deep Reinforcement Learning
	Experiments
	Conclusion

	Evolutionary Neural Architecture Search
	Lamarckian Evolution of Convolutional Neural Networks
	Evolutionary Neural Architecture Search
	Weight Inheritance
	Lamarckian Neural Architecture Search
	Experiments
	Conclusion

	Learned Weight Sharing for Deep Multi-Task Learning
	Deep Multi-Task Learning
	Neural Architecture Search for Deep Multi-Task Learning
	Natural Evolution Strategy
	Learned Weight Sharing
	Experiments
	Conclusion

	Conclusion

	Appendix
	List of Algorithms
	List of Figures
	List of Tables
	Bibliography

