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Abstract 

The amount of professional data centers in Germany is continuously increasing. This results in a growing 

demand for ICT components, such as servers and storage units. This, in addition to their short service 

times and high intensity of critical raw material content, results in a higher demand for valuable raw 

materials and primary energy for their production. The evaluation of the energy and material demands 

comes with challenges regarding poor data quality, a focus on operational phases, and lack of proper 

information on End-of-Life strategies. Recovery of valuable materials from high grade electronic 

components is considered strategic because of their high concentration of critical metals but at the same 

time represents a knowledge gap. 

The goal of this dissertation is to analyze the raw material and primary energy demands for the cradle-

to-grave lifecycle of professional data centers and its equipment, outside of the operational phase, and 

to analyze possible resource savings that come from different End-Of-Life strategies. The 

interdependencies of these resource demands within several scenarios is to be analyzed. To achieve this, 

Life Cycle Assessment of different data center systems and their components is conducted, with 

consideration of the infrastructure and inventorial composition of such facilities.  

This requires gathering and updating data on raw material content and on devices composition, 

preparation of models for analysis, and evaluation of results through appropriate Life Cycle Impact 

Assessment Methods that reflect the use of material and energy resources, as current indicators consider 

mostly the operational phase, and omit the importance of different materials to the economy. Different 

scenarios for technologies applied for End-of-Life treatment and recycling are evaluated. Due to the 

number of models required and the volume of input and output data, automation of model building, 

calculations, and of results evaluation is required. An assessment of input data quality allows evaluating 

the results quality and validity, which serves to provide an overview of the data improvements. The 

information system used to calculate resource consumption is evaluated within the scope of this 

research. This provides a validated methodological basis for holistic resource consumption evaluation. 
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Zusammenfassung 

Die Anzahl professioneller Rechenzentren in Deutschland nimmt kontinuierlich zu. Daraus resultiert 

ein wachsender Bedarf an IKT-Komponenten wie Servern und Speichereinheiten. Dies führt neben ihren 

kurzen Standzeiten und der hohen Intensität an kritischen Rohstoffgehalten zu einem höheren Bedarf an 

wertvollen Rohstoffen und Primärenergie für ihre Herstellung. Die Bewertung des Energie- und 

Materialbedarfs ist mit Herausforderungen in Bezug auf schlechte Datenqualität, Fokus auf 

Betriebsphasen und Mangel an angemessenen Informationen über End-of-Life-Strategien verbunden. 

Die Rückgewinnung wertvoller Materialien aus hochwertigen elektronischen Komponenten wird 

aufgrund ihrer hohen Konzentration an kritischen Metallen als strategisch angesehen, stellt aber 

gleichzeitig eine Wissenslücke dar. 

Ziel dieser Dissertation ist es, den Rohstoff- und Primärenergiebedarf für den Cradle-to-Grave-

Lebenszyklus professioneller Rechenzentren und ihrer Geräte außerhalb der Betriebsphase zu 

analysieren und mögliche Ressourceneinsparungen zu analysieren, die sich aus verschiedenen 

Strategien ergeben. Die Interdependenzen dieser Ressourcenanforderungen innerhalb mehrerer End-Of-

Life Szenarien sollen analysiert werden. Um dies zu erreichen, werden Lebenszyklusanalysen 

verschiedener Rechenzentrumssysteme und ihrer Komponenten unter Berücksichtigung der 

Infrastruktur und Bestandszusammensetzung solcher Einrichtungen durchgeführt.  

Dies erfordert das Sammeln und Aktualisieren von Daten zum Rohstoffgehalt und zur 

Gerätezusammensetzung, die Erstellung von Modellen für die Analyse und die Bewertung der 

Ergebnisse durch geeignete Methoden zur Bewertung der Auswirkungen auf den Lebenszyklus, die die 

Nutzung von Material- und Energieressourcen widerspiegeln, da aktuelle Indikatoren hauptsächlich die 

Betriebsphase berücksichtigen und die Bedeutung verschiedener Materialien für die Wirtschaft außer 

Acht lassen. Es werden verschiedene Szenarien für Technologien bewertet, die für die Behandlung und 

das Recycling von End-of-Life angewendet werden. Aufgrund der Anzahl der benötigten Modelle und 

der Menge an Ein- und Ausgabedaten ist eine Automatisierung der Modellbildung, der Berechnungen 

und der Ergebnisauswertung erforderlich. Eine Bewertung der Eingangsdatenqualität ermöglicht die 

Bewertung der Ergebnisqualität und -validität, was dazu dient, einen Überblick über die 

Datenverbesserungen zu geben. Im Rahmen dieser Untersuchung wird das Informationssystem zur 

Berechnung des Ressourcenverbrauchs evaluiert. Damit steht eine validierte methodische Grundlage für 

eine ganzheitliche Ressourcenverbrauchsbewertung zur Verfügung. 
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1. Introduction 

1.1. Motivation 

Data centers have become an integral part of everyday life. Streaming services, automation, or real-time 

analysis such as traffic density are just a few of the many topics that are taken for granted today. The 

data centers run in the background and are increasingly struggling with their energy demands due to the 

high computing power. Data centers have thus an important role in the implementation of the EU climate 

protection goals and on the achievement of the efficiency goals of the German Federal Government 

[HH18]. More than 14 TWh/a are consumed yearly by around 53 000 Data Centers in Germany, 

representing 2.5% of the country’s electricity consumption in 2018. This quantity is expected to grow 

to 21 TWh/a by 2030 [Hi21, Hi20b]. This despite an overall increment in energy efficiency of data 

center infrastructure of about 21% [Hi20a, HH20, BSB08]. Energy use indicators, such as Power Usage 

Efficiency, improved from 1.98 to 1.70 between 2010 and 2018. The increasing energy consumption 

has been documented in several studies not only for Germany, but also for Europe and the rest of the 

world [Hi14, Pr14, Co14]. 

The increasing energy demand of data centers poses a challenge when it comes to achieving climate 

protection goals and implementing the energy transition. This challenge is reinforced by two aspects. 

On the one hand, particularly in the area of IT products with their very short life cycles, not only the 

energy requirement in the operation phase is relevant [Ga12]. The so-called grey energy, i.e., the energy 

that is required for the manufacture, transport, storage, and disposal of the components, can also make 

up a considerable proportion of the total energy requirement, especially when operation lifetime can be 

as short as two years [FH14].  

Between 2003 and 2013, the IT surface area of German professional data centers grew by 42% to 1.8 

million m2 [HC14], with over 2.3 million servers in operation by 2014. These trends result in an 

increasing demand for raw materials for these applications. One reason for this is the rapidly increasing 

need to store and process substantial amounts of data. In 2020, the energy requirements of the storage 

systems accounted for around 33% of the energy requirements of data centers [Mo20]. For the data 

center operators involved in the consortium of the project TEMPRO1 (Total Energy Management for 

Professional Data Centers), a German project, the energy requirement of the storage systems is currently 

around 30% of the total electricity requirement [Pe20]. 

 

1 https://tempro.uni-oldenburg.de/ 
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In addition to ever-increasing energy consumption, however, the demand for material resources for 

manufacturing data center components is coming to the forefront. Even before a data center has used a 

kWh for data processing or storage, the structure of a data center contains an important amount of 

embedded energy.  

This aspect is becoming increasingly important as the material intensity of data centers increases. 

Associated with a clear trend towards larger data centers, there has been a significant increase in IT 

(Information Technology) infrastructures such as servers, storage, and network components. The 

number of servers alone increased by 15% between 2010 and 2018 and will continue to increase until 

2025 [Mo20]. This leads to an ever-increasing demand for raw materials, some of them considered 

critical due to their scarcity and economic importance. However, quantifying the amount of energy and 

raw material demands presents challenges regarding the methodologies to assess these values, and the 

limited amount of information available from manufacturers. 

The high specific content of valuable materials makes data center equipment attractive for recycling, 

since the material content of the End-Of -Life (EoL) products makes them be categorized as High Grade 

Waste Electrical and Electronical Equipment (WEEE) [BBC12]. The possible material recovery is thus 

only considered from an economic point of view, and normally aspects such as recovery of critical 

materials with sustainability considerations are overlooked. Moreover, the benefits that proper EoL 

strategies can have on the overall primary energy demand are to be studied. 

1.2. Related research and research gaps 

The topic of resource depletion and environmental impacts of data centers has been widely researched, 

although most of the research focuses on operational energy efficiency [SN16, JN16] and assessment 

and improvement of carbon footprint of operational energy uses [JSN14]. Recent is the discussion of 

material use and incorporating concepts such as material supply risks has gained attention, mostly when 

considering production and recycling of WEEE.  

1.2.1. Energy efficiency in data centers 

The energy use during operation of a data center has been thoroughly studied due to economic and 

ecological issues. Due to the considerable amounts of electricity and the additional requirement to cool 

the IT devices, data centers present opportunities for energy saving which directly represent savings for 

the operators. This generates great interest in the development of indicators and metrics that reflect the 

performance of a data center that can help to keep track of a data center energy performance. There is 

abundant research on reducing data center operational energy consumption, such as the work presented 

in [Sc16], which developed operation indicators dependent on IT load. Consolidation and virtualization 

provide solutions for optimization of resource use while considering operational stability [Ja17, Bo21]. 
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Measurements for operational energy efficiency and for reducing the environmental impacts of data 

centers operations are focused on the supply of power and cooling energy into data centers [SUO17]. 

1.2.2. Data center material composition 

Data Centers structure can be divided into: IT, Energy Supply, Climatization, and Infrastructure systems 

[BI13]. IT components consist of equipment such as servers, storage units, and network units. Data 

centers use IT equipment fabricated mostly from non-renewable raw materials. These components 

contain high concentrations of valuable materials, such as precious metals, which make them a potential 

source from recovery. Some of these raw materials are labeled as “critical materials” by the European 

Union due to its economic importance and supply risk [EC14, EC17, Bu12, Os13]. There is however a 

lack of information regarding material composition of data centers, so no proper information on material 

demands or contents is available, and consequently no certain information on material availability for 

recovery exists. [FHS10] conducted a study for an assessment the material content of data centers in 

Germany, where the amounts of valuable metals such as copper, iron, gold, silver, and palladium present 

in data centers, were evaluated. This study already concluded that along with the increasing energy 

demand for operation, the demand for raw materials for the manufacturing of these components was 

rising, and therefore these materials are accumulating in the installed or in the decommissioned IT 

equipment, creating the potential for urban mining. The number of servers grew by 28% for the period 

2010-2014, with the trend to build bigger facilities [Hi15]. This is accompanied by the increasing 

material intensity in data centers, so the material demand for these applications keeps rising in parallel. 

1.2.3. Life cycle assessment for data centers and embodied energy 

Increasing the overall energy efficiency of a data center is part of the Sustainable Development Goals. 

Additionally, the topic of raw material efficiency gains importance as increasing circularity of materials 

has also benefits on reduction of energy consumption. Studies on IT devices during its life cycle prove 

that as the equipment becomes more operationally efficient, the specific material demands increase, the 

embodied stage will play a larger role in the full life cycle [WAS15]. 

The average lifespan of central processing units in computers has decreased from 4-6 years in 1997 to 

2 years in 2005 [Ba14, RPA07], which has been reduced even further (Figure 1-1). IT products used in 

data centers have a comparatively short lifetime (2-5 years) [Ga12]. [FBK18] conducted a study for 

assessing the lifetime of different consumer electronics, considering IT for data centers as one single 

category with a maximum probability of lifetime at 4.6 years. The result of this technology driven 

paradigm is that Electrical and Electronic Equipment (EEE) becomes obsolete at an early stage in their 

product life cycle, sometimes within only a few months of their release indicating that the energy 

consumption outside of the service phase is also of relevance. The contributions to the embodied energy 

demands comes in part from the required efforts for mining and processing of raw minerals into 
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materials for manufacturing. The assessment of this energy is required to evaluate potential benefits that 

recovery and recycling of these materials can have on the overall life cycle of data center equipment. 

Consequently, indicators need to be developed that display these dependencies. 

 
Figure 1-1: Example of product lifespans in years, represented as a Weibull distribution. Source: Data from [FBK18]. 

1.2.4. Data center resource use indicators 

Indictors for evaluation of environmental impacts for data centers have been developed for the operation 

phase, with a focus on the greenhouse emissions from energy use for the services and for the cooling of 

facilities. Widely known are indicators such as Power Usage Effectiveness (PUE) and Data Center 

Infrastructure Efficiency (DCIE) [Re17a, Be08]. Some indicators are linked with a reference unit that 

quantifies the useful work done by a data center, although a unified indicator is difficult to stablish 

[WDD12]. [Ar15] introduced metrics for the assessment of flexibility and sustainability of data 

centers, which consider the inputs of renewable energy sources and account for avoided emissions.  

Metrics to assess the circularity of materials are so far bounded to the operational aspects of a data 

center, with a focus on the amount in weight of data center components sent for recovery, such as the 

Electronics Disposal Efficiency (EDE) [Re17a, Br13]. Most of the metrics regarding material recovery 

stop at the operation phase and omit the posterior processes of recycling recovery, so no information on 

EoL processes is included.  

1.2.5. Life cycle impact resource indicators 

The concept of embodied energy attached to the steps of raw parts production, manufacturing, 

transporting, decommissioning, and recycling are often excluded when analyzing energy consumption 

or improvements on energy efficiency, which focuses mostly on the use phase, and overlooks the 
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importance of the critical material content of IT applications. To study the relationship between material 

requirements and total primary energy consumption for manufacturing is complex due to different data 

center configurations, different material composition of the devices, and in general a poor data quality 

regarding high grade IT equipment. This analysis requires the execution of Life Cycle Assessments 

(LCA), that consider the products lifecycle and its stages. 

There are indicators that have been developed for evaluation of primary energy demand across the 

lifecycle of a system, which can be applied to a data center and its components. Indicators such as the 

cumulated energy demand have been used for assessing total primary energy demand in distinct stages 

of the lifecycle. Indicators such as the cumulated material demand present a methodology for evaluating 

raw material demand consumption for product manufacturing [Gi12]. These indicators of material 

resource use overlook aspects such as material importance or material supply risks, so they are unable 

to include aspects such as material scarcity in their assessments.  

1.2.6. Recycling and recovery 

Electronic components have greater concentrations of precious metals than natural ores, which makes 

their recycling as secondary sources significant for both economic and environmental motivations 

[LZ12]. Components from data centers coming for recycling can be cataloged as High-Grade generated 

Waste Electrical and Electronic Equipment (WEEE) [BBC12] . When discussing WEEE, there is 

research regarding processes for recovering valuable materials, especially copper and gold, from printed 

circuit boards [Iş16]. There are several methodologies that yield each one different performance [La14, 

MCB19]. Nevertheless, these studies focus in generic WEEE components, and do not reflect the 

potential of recovering valuable metals from printed circuit boards (PCBs) coming from data center 

components [An16, Ba16]. Recovering of scarce metals, such as rare earths, from WEEE hast gained 

attention due to supply constraints, and there are several studies addressing the potential for recovery of 

these materials [Bi13, Ch20, Li19]. A complementary analysis of the relation between material recovery 

and energy gains for recovery from data center components is also often missing, although the 

sustainability of recovery of materials from other sources has been analyzed, with focus in savings of 

greenhouse emissions [Un17, DCG18]. However, since the information on recovery is mostly focused 

on generic WEEE, the data quality is deficient. 

1.2.7. Data quality and methods 

A dedicated analysis of data quality for specific IT components for data centers has not been conducted. 

Moreover, commercial databases for LCA, such as GaBi and ecoinvent, do not include product systems 

representing the devices used in data centers. These databases include data quality assessments of the 

included products [Ci21, We16]. Most of the electronic components present on different studies are 

limited to laptops, personal computers, and cellphones. Therefore, when performing modelling of IT 
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components from data centers, many assumptions are taken and proxy data is used, which diminishes 

further the quality of the results. Methodologies for assessing data quality are based on a qualitative 

evaluation of the data [AW16], with a relation of data quality and uncertainty of results being used in 

LCA for results uncertainty evaluation [CMW12, GM12]. This provides a guideline for assessing the 

data quality of new data generated in this research, and to evaluate the improvements. Table 1-1 

provides a summary of the related research and an overview of the research gaps found. 

1.3. Research questions 

From the thematic problems described in Section 1.1 and with the overview of the current state of 

research briefly described in Section 1.2, the following subsections detail the research questions defined 

for analysis in this dissertation: 

1.3.1. Main research question (MRQ) 

From this main research question, the scope of this research lies on analyzing the various stages of data 

center equipment, from raw material gathering, production, mounting, and all the stages related to life 

after operational phase, including decommissioning, disposal, recycling, and recovery of materials. This 

research focuses on energy consumption and material demands in data centers located in Germany. This 

requires developing LCA models to analyze products used in datacenters, assess data centers 

inventories, data center components material composition, and use of appropriate indicators to evaluate 

these energy consumption and material demand impacts. Relations to the resource consumption on the 

use phase, specially energy use, can be studied using the dimensioning of the data center. On parallel, 

data quality and results quality need to be evaluated through this research. 

The following three sub-questions result from the main research question, with consideration of the 

various aspects related to the current state of the research, which specifically deepens various aspects of 

the question. These three questions build on each other in terms of content and help to guide the 

objectives of this research. 

MRQ:  How are the primary energy consumption and raw material demand in 

professional data centers divided between the distinct phases of their lifecycle 

outside of the operational phase? 
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1.3.2. Secondary research questions (SRQ) 

The secondary research questions part from the main research question and are formulated to answer 

specific issues related to the obtaining of research goals. 

For this evaluation, LCA models representing the different components of data centers need to be 

developed. The goal is to evaluate the different production chains and manufacturing process, so the 

total amounts of energy required, and material demand are quantified. To evaluate these parameters, 

indicators need to be applied or further developed, so they can also represent the materials demands not 

only by their physical amount, but also by including aspects such as criticality. 

SRQ 2 is related to the aspects of sustainable production, which shall include recovery of materials as 

part of the production chains. Building up on the developed models, different scenarios for recycling are 

to be further constructed. These scenarios allow further experimentation on parameters such as recycling 

rates and on the technologies used for recycling. Information on industrial recycling process for various 

kinds of electronic equipment is therefore required, with the possibility of evaluating established and 

experimental technologies. This allows evaluating with a high degree of confidence the amount of 

material present on these components, so a proper assessment may be conducted. Improvements on 

energy consumption through appropriate recycling strategies are here evaluated, complementing the 

aspects of the Secondary Research Question 1. 

Given the existing issues on data quality [FHS10], and the requirement to use proxy data for developing 

models for LCA, results with low data quality are obtained in general. This produces a problem when 

assessing the potential of data center EoL equipment as a potential source for minerals. This issue is 

replicated for electronic equipment when considering urban mines as a material source [SBF11]. 

Reliable data on waste production, treatment facilities and management are partial requirements for the 

implementation of a community legislation and for the evaluation of the waste management [OJ93]. As 

SRQ 1:  Which are the dependencies between the values of the indicators of raw material 

consumption and primary energy demand during the distinct stages of the 

lifecycle? 

 

SRQ 2:  What are the benefits of different scenarios for recycling, when considering 

energy savings, greenhouse emission savings, and material recovery potential? 

SRQ3:  Which have been the improvements of data quality of the results, after 

improvements on current data sources are conducted. 
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part of the measures to be taken by actors across the lifecycle of a product to facilitate the preparation 

for re-use and correct treatment, for products in the category of Electrical and Electronic Equipment 

(EEE) and the generated Waste Electrical and Electronic Equipment (WEEE), data and statistics on their 

lifecycle are necessary to monitor the achievement of the objectives of the European Union Directive 

[EC12]. This research attempts to improve the data quality on material content and on process for 

manufacturing of data center equipment to present better data on material content and improve the 

results on evaluation of energy demand and material demands for this application, as specified on the 

Secondary Research Questions 1 and 2.  

1.4. Research objectives 

The methodology for the analysis is based on LCA and includes the development of a new database for 

performing impact assessments of IT equipment used in data centers, including a new analysis of 

material composition. Results on raw material depletion, the embodied energy and the cumulative 

energy demands represent indicators for integration in a comprehensive lifecycle analysis. This is a first-

time approach to include the EoL phase and laboratory results on material composition into the LCA of 

professional data centers. Emphasis is placed on analyzing the dependencies of the results on embodied 

energy in combination with the results on the evaluation of the quantities of materials required for the 

production and operational phases. 

Following the requirements of the main research question detailed in Section 1.3.1 and of the secondary 

research questions in Section 1.3.2, specific objectives are formulated for achieving the research goals. 

These can be understood as specific tasks for the development of this research, and as requirements for 

developing the models and executing the different calculations required for the experimentation and 

scenario evaluation. Following objectives can be therefore established, which will serve as a path for 

the development of this dissertation. 

1.4.1. Update of inventory and material composition data 

The SRQ 3 indicates a requirement of an improvement of the data available for evaluation of material 

and energy demands of data center components. As expressed in Section 1.2.2, the most common 

databases do not possess information on data center components [We16, th19], and proxy data used 

(coming from other electronic products) may produce results with lower data quality. Using 

decommissioned devices from data centers, an analysis of the parts and components of these devices is 

to be executed. Inventories on data centers are to be gathered from data center operators in Germany, 

which will allow to construct models representing their infrastructure. To get precise information on 

material composition of these components, laboratory analysis to quantify and determine their material 

content is to be conducted. This information is to be systematized in databases built with the required 

structure to access and store the information and to be used for model building and further calculations. 
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1.4.2. Building LCA models for data centers and their devices 

To start the evaluation of resource consumption outlined in the MRQ, different models for the lifecycle 

of devices and systems need to be built using the information gathered from the results required in the 

objective 1.4.1. This with the objective of performing LCA of the various products and evaluating the 

inputs/outputs of flows of resources during their lifecycle. These models will be based on the bill-of-

materials (BoM) and on the inventories of data centers. To allow escalation of the results, these 

components need to be modular, so different data center configurations can be later evaluated. 

1.4.3. Modelling material recovery  

The SRQ 2 requires the development of models for processes of material recovery for data center 

components to study the end-of-life stages, where different scenarios of material recovery and recovery 

processes can be analyzed. Information on recovery processes and their recovery factors, gathered also 

in objective 1.4.1, is here to be used as input for modelling and further calculations. These models will 

be based on the different recycling and recovery processes from literature sources and industrial 

processes [BBC12, Al14, Li19], and are to be developed with consideration of the particularities of the 

high critical material content of data center components. 

1.4.4. Evaluation of current resource assessment indicators and development of 

critical material consumption indicators 

To evaluate properly the dependencies between raw material and energy use, as outlined in the SRQ 2, 

an assessment of the existing indicators for evaluation of material and energy consumption through the 

life cycle of a product is to be conducted. This with the goal of evaluating whether the current existing 

indicators can reflect the issues that come with material use, such as material scarcity or economic value 

of materials. Additionally, new indicators are to be proposed, implemented, and evaluated. These will 

serve the purposes of this dissertation and reflect current issues with energy consumption and material 

scarcity. The new indicators to be proposed will try to overcome the drawbacks and limitations of the 

state-of-the-art indicators with regards to energy consumption and material scarcity. 

1.4.5. Results evaluation and analysis of dependencies 

Following the requirements of the MRQ and of the SRQ 1, the developed models from the objectives 

1.4.2 and 1.4.3, and the formulation of indicators developed in objective 1.4.4, calculations on total 

resource demand for different systems under different scenarios can be evaluated, for whole data centers 

or for a particular device. Life Cycle Impact Assessment (LCIA) for these systems allow evaluation of 

these quantities and an evaluation of the results and their interactions. Given the amount of product 

systems and parameters to evaluate, automation of the calculations is desired, and storing and automated 

analysis of the results is also required. 
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1.4.6. Data quality assessment and uncertainty modelling 

SRQ 3 requires simultaneously the developments previously explained and the evaluation of the quality 

of the input data in objective 1.4.1. This quality evaluation follows the methodologies in [Ci21, Mu16]. 

Following the calculations in objective 1.4.5, the results quality also needs to be evaluated. To assess 

improvements in data quality, comparisons with previous studies or previous databases need to be 

conducted. Statistical parameters such as uncertainty of results are also evaluated. 

1.4.7. Build an information system for energy and material demands evaluation 

The information gathered from objective 1.4.1 is to be systematized in different databases of material 

composition, devices BoM, and data center inventories. Similar systems for the development of 

indicators are to be developed. The values used for creation of new indicators in objective 1.4.4 also 

need to be linked with the proper material they represent. Given the amount of data and results required, 

the results of the calculations from objective 1.4.5 and objective 1.4.6 need to be saved on proper 

databases for further evaluation of results. The models developed in the objectives 1.4.2 and 1.4.3 need 

to be saved and exported to appropriate databases that include the models of the different devices, data 

centers, and recovery processes in the appropriate formats. The algorithmic implementation of the 

connections between these databases for the creation of models, execution of impact assessment 

calculations, and saving and evaluation of results is to be developed to automate the calculations. The 

specifics of this information system are detailed in the following chapters.  

1.5. Structure of the research 

Following the relation outline of the research objectives in Section 1.4, the design of this research 

follows broadly first the structure of a Life Cycle Assessment Study, which follows the steps of 

[ISO14040]. This also provides a framework for conducting and evaluating various aspects of this 

research. The requirements also call for engineering methods to design and produce an information 

system that allows a proper management of the information gathered and generated. This requires the 

development of a software solution that helps with the management of the information here included, as 

required by objective 1.4.7. 

Figure 1-2 details the general structure of this dissertation, with relations to the research questions here 

detailed, the research objectives, and the distinct stages of LCA and Software Development. 
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Figure 1-2: Structure of this dissertation with relation to the main and secondary research questions and the development of a 

Life Cycle Assessment Study with an information system. 

After this introduction, Chapter 2 provides an overview of data centers, their structure, and the 

indicators used for resource consumption evaluation. Accordingly, LCA as a scientific methodology is 

described. Chapter 3 details the specific targets for research and evaluates the existing methods for 

resource consumption evaluation. material criticality and criticality assessment methods are introduced 

here. Chapter 4 evaluates existing databases for LCA of data center and its equipment, and attempts 

closing gaps on data by presenting inventories of operational data centers, and on material content data 

gathered from laboratory analysis performed. Improvements to data quality are first assessed. Chapter 

5 presents an overview of EoL processes for data center components, review on industrial and 

experimental processes, and recovery potential. Chapter 6 summarizes the architecture of the 

information system built to manage the information gathered and save and evaluate the results and the 

calculated models. Chapter 7 gives an overview of the modelling and calculation, the scenarios and 
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experiments performed, and the selection of the indicators for evaluation. The results are analyzed and 

evaluated accordingly, and aspects like interdependency of indicators, scenario results, and results data 

quality are evaluated. This dissertation concludes in Chapter 8 with an overview of the most important 

results, and a reflection on scientific contributions, limitations, and future work.  

On the right side of Figure 1-2, the chapters of this dissertation and their relationship with the steps of 

a LCA research study are detailed. The specification of these steps is deepened in Chapter 2. On the 

left side of Figure 1-2 are the research questions formulated in Section 1.3, and the relation that the 

chapters have with these questions. The content formulated in Chapters 3 and 7 allow evaluating the 

resource consumption indicators and their interdependencies. Chapters 5 and 7 also allow evaluation 

of EoL scenarios. Chapters 3, 7 and 8 provide an outlook on data quality and on the improvements 

achieved during this research. Chapter 6 has overlapping content with the objectives, as it is about the 

development of artifacts to facilitate and improve data management regarding life cycle inventories, 

material content, models, and results. Answers to the main research question are derived from the results 

evaluation and the conclusions in Chapters 7 and 8. 
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2. Theoretical Foundations 

This section details the fundamental concepts on data centers, existing indicators to evaluate data center 

performance, and on LCA as a tool to evaluate the environmental impacts of processes and products, 

which are later used as methods to evaluate data center energy and material resource use. This has the 

goal of providing a better overview of the technological and scientific contexts to advance the 

development of the scientific tools and models to achieve the objectives of this dissertation. These 

foundations are used as basis for the development of indicators for assessment of material and energy 

demands for data center manufacturing, inventories for LCA of data centers at different stages of their 

lifecycle, and for the evaluation of results quality (Figure 2-1). 

 
Figure 2-1: Conceptual development for the theoretical framework and linkage to other chapters. 

2.1. Data centers 

Data centers are the backbone of IT networks across the globe [CSD13]. A data center is space which 

houses the central data processing technology for an organization. Data centers contain IT equipment 

for the processing and storage of data, and for communications networks [Bro07]. Data centers house 

servers, networking, and storage equipment. It must consist at least of a room of its own with a secure 

electricity supply and climate control [Hi15, HF10]. Data Centers include the supporting infrastructures 

required to power and cool the IT equipment, plus the required infrastructure for safety and hosting of 

the devices. The computing capacities (server, storage, network) and the infrastructure for its operation 

(power supply, climatization, security) are centrally located [Re17a, Sc16, Ko08]. A more complete 

definition states that [ec08]: 

“A data center is at least one independent, structurally separate room with simple 

air conditioning, a simple power supply, an UPS with a five-minute bridging time, 

fire detection and protection devices, access protection and stable network 

connection.” 
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Data centers may fulfill one of the different functions [Hi15, Wh14]: 

• The physical housing of IT equipment, including servers, switches, routers, data storage 

devices, racks, and related equipment. 

• The storage, management, processing, and exchange of digital data. 

• The provision of application services or management for data processing, such as web hosting, 

internet, intranet, and telecommunication.  

The size of the IT load capacity depends on the type and number of installed servers. This determines 

the energetic dimensioning of the supporting devices and the infrastructure required [Ja17]. 

2.2. Data center structure 

A data center can be as simple as a single rack in a server closet or as complex as a large warehouse 

with floor area reaching 150 000 m2, typically having built-in redundancy for the avoidance of 

downtime. Hardly any robust data and statistics on the structure of data centers is available [HC14]. 

Therefore, studies on the impacts of use of data centers usually focus on analyzing individual data or 

determining the total electricity consumption. Traditionally, the systems on a data center can be divided 

into IT, power supply, climatization, and additional infrastructure. 

2.2.1. IT hardware for data centers 

Under IT are the devices responsible for executing the data center operations and processing tasks. The 

applications and services run on servers2. There are various server types on the market, varying in terms 

of capacity, size, and energy requirements. In addition to the usual plug-in servers for racks (sizes given 

in units of height, e.g., 1U, 2U, 5U), there are also complete server cabinets (mainframes), or compact 

and exchangeable blade servers. This work considers diverse types of servers, their parts, and their 

inventory for analysis of material resource demand. Servers have the characteristic that their electrical 

power consumption is load sensitive. In addition, IT includes storage devices that consist of hard disk 

arrays for data storage and backups. 

IT hardware also includes network devices such as switches and routers. These devices are usually also 

located in the racks in the IT rooms. The network devices are often static consumers, since they have 

the task of data transmission, which is not load sensitive [Sc16, Ja17].  

 

2 Server may also refer to a virtual server is executed in a virtual machine. Since this work focuses on analyzing physical infrastructure and 

their resource demands, the term server here refers to a physical server. 
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The individual rack always forms the basis for secure installation of the IT systems. [BI13] refers to 

these as server racks, network racks, or power supply and power distribution racks. Due to their 

standardized size, they offer possibilities for scalability of the IT infrastructure. 

2.2.2. Power supply 

The power supply architecture in data centers includes power distribution, sub-distribution, and 

infrastructure for emergency power supply and its redundancy. Newer architectures integrate 

uninterruptible power supply systems (UPS) devices into the racks or into the servers [Go12, Go10]. 

Transformers and power converters are required for the power supply. The medium voltage is 

transformed to 400 V in the transformer stations and routed to the data center via cables or bus bars via 

the low-voltage distribution board. The sub-distribution lines also supply the UPS with power [BI13]. 

Electricity suppliers are unable to guarantee an uninterrupted supply of electrical energy [BI13]. UPSs 

bridge the time until the emergency generator is active in the event of a power failure. The electricity 

required for this is usually temporarily stored in accumulators [Sc16]. UPSs also filter out disturbances, 

such as voltage surges or voltage dips, and bridge interruptions in the network. This reduces transmission 

errors, computer crashes and data loss. The energetic dimensioning of the UPS thus depends primarily 

on the devices to be supplied. Due to redundancy requirements for the data center, several UPS systems 

share the entire workload. This means that a single UPS system utilization normally lies beyond a certain 

limit. Typical levels of utilization are below 50%, which affects the operational efficiency. 

There are two levels of emergency power supply for mains power failures: For short failures of a 

maximum of a few minutes, battery units are kept available, which are switched on by UPS units. In the 

event of longer failures, emergency power systems must be used. In data centers, these are usually large 

diesel generators located outside of the actual data center complex and can be started up in less than a 

minute [Go12]. They enable further data center operation, sometimes from several hours to a few days.  

UPS systems use various technologies. The most used is that of the static UPS. Rechargeable batteries 

store electric energy. In the event of a power failure, a static converter (inverter) makes the storage 

energy available at the output of the UPS system. Typical bridging times are in the range of 10 to 30 

min. Electrochemical storage used in conjunction with UPS systems include lead-acid and nickel-

cadmium batteries. The use of lithium-ion batteries has not yet established itself [BI13]. The air 

conditioning is supplied by the emergency power generator in the event of a power failure. Until the 

emergency power generator starts, air conditioning is provided exclusively by the server fans. Figure 

2-2 provides an overview of the energy flows in a data center, with the power supply system included. 
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Figure 2-2: Energy flows in a data center. Source: Adapted from [DWF16, JK12]. 

2.2.3. Climatization 

Data centers use cooling and air conditioning to dissipate the waste heat produced from the operation of 

the IT devices. The air conditioning of IT systems is an essential criterion for their availability and 

operational reliability [BI13]. The increasing heat density in IT rooms makes this task challenging 

[HPF08, PBB03]. Typical power densities can vary between 0.5-11 kW/m2, with the higher values 

associated to the latest IT technologies [Gl21, Ra05]. Since the energy input of the servers is dissipated 

as heat and must be transported away to maintain the temperatures stable, the cooling must be adjusted 

accordingly. Circulating air conditioning systems differ significantly in terms of their structure and the 

system to be used must consider the expected heat loads, the climatic outside conditions, and the 

structural possibilities of the IT room.  

In larger data centers, a central air conditioning chain supplies cold air in the IT rooms through 

circulating air-cooling devices (Figure 2-3). This cools down the warm air generated by the waste heat 

from the servers in the IT room using heat exchangers and cooling water. A central water chiller or free 

cooling unit provide the energy required to cool down the thermal fluid, often cooling water. [Li12]. 

Pumps transport the cooling water from the chiller to the IT rooms. The cooling fluid (usually a water-

glycol mixture) leaves the chiller at the set cold temperature. The coolant heats up after passing through 
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air-liquid heat exchangers, which transfer the energy contained in the air and previously dissipated by 

the IT equipment to the circulating cool fluid. 

 
Figure 2-3: Air conditioning chain in a Data Center. Source: Adapted from [Ja17]. 

Compression chillers are usually used in data centers [Pe09], which compress a gas and then expand it 

within a heat exchanger. Free cooling can be used in data center locations where the outdoor temperature 

is often relatively low during the year. Efficient air conditioning systems reduce the operating times of 

the cooling generation to a minimum using free cooling. There are two different options [PBB03]: 

• Direct use of external air as cold air in the IT room when the external temperature is below the 

temperature required for the operation of the IT equipment [Zh12]. This requires air filtering 

and humidity control [PBB03]. 

• Use of external air to cool down the coolant (chilled water): This common method maintains 

the indoor air climate. A free cooling unit for the water (usually a cooling tower) is used instead 

of by the chillers. 

Other functions of the air conditioning systems are filtering, reheating, humidifying, and dehumidifying. 

2.2.4. Additional infrastructure 

Several installations are required to guarantee the safe functioning of a data center. Complementary 

services, such as lightning, security, and fire protection services are required.  

Reliable and effective fire protection is an indispensable prerequisite for the safe operation of the data 

center. For security purposes, fire detection and extinguishing technology is necessary. This includes 

smoke detectors, which mostly use the scattered light principle. For fire protection, an oxygen-poor 

atmosphere is recommended to have an inert atmosphere in which fire is unlikely to occur. Means which 

use fluids are considered dangerous. Other means include extinguishing systems with gaseous 

extinguishing agents. 

Although the building may also be considered part of the infrastructure, for most analysis the impacts 

of the construction of civil facilities are often set aside, as their long-term impacts are negligible in 

comparison. The housing of data center systems may be included, if not already shared by the 
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organization infrastructure. Regenerative architecture (e.g., vegetated roof, water management practices, 

etc.) may be included if they are part of an energy management plan that includes the data center 

operation [ABD12]. 

2.3. Types of data centers  

Given the previous description in Section 2.2 regarding the composition of data centers, it comes as a 

result that configurations may vary widely from one system to another. Data centers are each planned 

and built individually for the specific operator and the required applications. They are subject to constant 

further development due to rapid technological development. Each data center is therefore unique. 

There is no uniform system for classification or taxonomy of data centers, either nationally or 

worldwide. Criteria for classification of data centers may include superficial area, number of racks, 

number of servers, number of processors, IT power, annual energy consumption, operation capacity, 

etc. Additionally, operative characteristics may be used, such as application, location, availability. Four 

categories are presented here. 

2.3.1. Classification by size 

Size is used for classification for statistical purposes. These typologies have mainly been used to make 

statements about the energy consumption of data centers [BSB08]. [Ba07] provided a first example of 

this categorization, with rather vague statements on IT and infrastructure equipment. [HF10] expanded 

on these criteria to build a classification system appropriate to the German market (Table 2-1). 

Table 2-1: Classification of Data Centers by Type. Sources: [Hi22, HF10] 

Data Center  

Type 

N° of  

Servers 

Average N° of 

Servers 

IT Power 

(kW) 

Area 

(m2) 

Number of DC 

in Germany 

(2013) 

Yearly 

growth 

Server Cabin 3-10 4,8 1,5 5 30500 -8% 

Server Room 11-100 19 6 20 18100 0% 

Small DC 105-450 150 50 150 2150 +23% 

Medium DC 450-5000 600 240 600 280 +27% 

Big DC >5000 6000 2500 6000 70 +40% 

This approach is based on the number of servers in the data centers. The average connected load of the 

IT and the size of the data center are given also as classification criteria. This approach benefits from its 

simplicity, and on the availability of market data [HF12]. This typology is based on the inventory of IT 

material and provides a base for extrapolation. The types selected are comparable with other approaches 

and studies: [Hi23] estimates that for Germany, there are more than 3 000 data centers with more than 

40 kW of IT load, and around 50 000 smaller data centers for 2022 (Figure 2-4). 
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Figure 2-4: Proportion of servers by category according to their size. Source: Data from [HC14, Hi23]. 

2.3.2. Classification by availability 

Availability refers to the probability that a system can be used as planned at a given time. The demand 

for continuous data center availability for organizations is increasing rapidly, with outages of merely 

minutes being undesired. The availability has a direct impact on the composition of a data center. 

Redundancies in the air conditioning and power supply, double feeds and uninterrupted maintenance of 

the systems are the standard for highly available IT infrastructures. 

Several authors define different degrees of availability of data centers [Tu06, In10, BI09]. In most cases, 

these typologies are based on the maximum permissible downtime of a data center. Table 2-2 presents 

a Tier classification based on availability. 

Table 2-2: Tier Classification of Data Centers by Availability. Source: Data from [Tu06, HF10, BI13]. 

Category Availability Downtime 

per year 

Description 

Tier I 99.671% 28h simple power supply path, simple cooling supply, no redundant 

components 

Tier II 99.741% 22h simple power supply path, simple cooling supply, redundant 

components 

Tier III 99.982% 1h30 multiple paths available, but only one active, redundant 

components Maintenance possible without interruption,  

Tier IV 99.995% 0h26 multiple active power & chilled water distribution paths, redundant 

components fault tolerant 

2.3.3. Classification by purpose  

Data Centers can also be typologized regarding their application. This can be, for example, the type of 

application or the underlying business model. [ec08] classifies the data centers as multi-purpose or single 

business purpose (Figure 2-5). 

62.07%

33.85%

3.29% 0.70% 0.09%

Number of Data Centers

(Total 53170)

Server Cabin Server Room Small DC Medium DC Large DC
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Figure 2-5: Typology of Data Centers by Purpose. Source: Data from [ec08]. 

2.3.4. Classification by type of operator:  

Data center and equipment suppliers often describe clients in terms of the type of operator. This can be, 

for example, the industry (banking, automotive, telecommunications, research) or the distinction 

between authorities and companies. This is because the requirements, applications, and legal and other 

framework conditions for data centers with similar operators are often similar. 

2.3.5. Categorization of data centers applied to LCA 

The categorization according to size allows an easier typology, which agrees with the objectives of this 

dissertation. The evaluation of material resources goes in hand with the inventory of a data center, which 

can be coupled with its dimensioning. This typology is also geared towards the servers. Due to the high 

proportion of electronics in a data center, it can be expected that IT equipment will present the greatest 

environmental relevance in terms of resource consumption. This categorization can also help to provide 

an overview of the complete material availability in data centers. It is also useful for comparing the 

primary energy consumption to the operational energy consumption [HF10]. Availability also refers to 

the infrastructure of the data centers, and it is useful to define inventories based on their classification. 

Classification by purpose or by type of operator of data centers is unsuited for the present study because 

it has no direct relation to the material used or the embedded energy consumed for manufacturing. It 

focuses very strongly on the information technology used and on the software level and ignores the 

existing infrastructure in the data center. 

2.4. Metrics for evaluation of data center performance 

An efficient and eco-friendly operation of data centers requires monitoring of all their components. By 

applying specific oriented metrics and making accurate measurements, it is possible to better utilize data 

center infrastructure and reduce the recurring costs of IT and facility management [Re17a]. Most of the 

metrics developed refer to individual systems in the data center, such as the cooling, power supply, 

servers, or the type of energy use. Various systems can be aggregated in groups to provide metrics of 
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the data center infrastructure. These key figures are often unsuited to provide overall assessment of the 

energy efficiency of data centers [HH18]. Another group of metrics has the purpose of defining a 

performance measure for the IT of a data center. These metrics consider a defined output unit and are 

suitable to evaluate the overall efficiency of a data center. 

[Re17a] presented an analysis of metrics that are commonly used in data centers, from the power grid 

up to the service delivery. This work identifies various metrics relating to a data center and presents a 

classification based on the different core dimensions of data center operations. Based on this taxonomy 

schema, the following dimensions are here considered as core: a) Efficiency (Energy Efficiency and 

Greenness), b) Air Conditioning (Thermal Management and Cooling), c) Performance (Operation, 

Network, Storage, Security), and d) Financial Impact. The infrastructure of a data center is considered 

as background (Figure 2-6), with the possible subdivisions regarding the system that these represent 

(Section 2.2). Figure 2-7 presents a visualization of the taxonomy of the metrics used to evaluate data 

center operation. Annex A details the acronyms used.  

 
Figure 2-6: Topology of a Data Center for Classification of KPIs. 

2.4.1. Energy efficiency metrics 

The energy efficiency of a system is defined as the ratio of useful work done by a system to the total 

energy delivered to the system. For data centers, the energy efficiency translates into the useful work 

performed by different subsystems [Re17a]. A variety of different Key Performance Indicators have 

been developed [Da09, EDP13, Li09, SCI05, Az11, WK13, DDW12, St15]. Even if many of these key 

figures consider the energy requirements of IT, few key figures pursue the approach to put the 

performance of IT in a relationship to the energy requirement [HH18]. 

The most popular energy efficiency metric, PUE, relates the amount of power used by IT devices to the 

total energy consumed by the facility [Av12]. The Data Center Infrastructure Efficiency (DCiE) is the 

inverse of PUE [Av12]. Server Power Usage Efficiency [Wi14] and Partial PUE [Av12] metrics are 
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based on the same principles as the PUE metric. The Data Center Performance per Energy [Grn12] 

metric is a combination of four other metrics: DCiE, Green Energy Coefficient (GEC), IT Equipment 

Energy (ITEE), and IT Equipment Utilization (ITEU). PUE and DCiE help operators know the 

efficiency of the data center, where partial PUE measures the energy efficiency of a zone in a data center 

[Re17a]. 

 

Figure 2-7: Taxonomy of Data Center Metrics. Source: Data from [Re17a]. Acronyms are detailed in Annex 1. 

2.4.2. Green metrics 

The carbon footprint has become subject to governmental regulations and taxes. As a result, the 

“greenness” of a data center is becoming increasingly important. “Greenness” mostly refers to a 

subjective categorization related to low greenhouse emission during operation. Green IT benefits the 
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environment by improving energy efficiency, lowering greenhouse gas emissions, using renewable 

resources, and by encouraging reuse and recycling [Mu08]. Green metrics measure the environmental 

impact of a data center and its components [Re17a]. These can be used to decrease the environmental 

impact of data centers.  

Metrics such as Carbon Usage Effectiveness (CUE) [Az10], Water Usage Effectiveness (WUE) 

[ABP11], and Electronics Disposal Efficiency (EDE) [Ba12], measure the CO2 footprint, the water 

consumption per year, and the disposal efficiency of the data centers, respectively [Re17a]. 

2.4.3. Thermal management metrics 

Thermal and air management metrics measure environmental conditions of the data center. These 

metrics are based on the relationship between air flow rate and ambient temperature. Measurements like 

temperature (T), relative humidity (RH), dew point (DP) and heat flux are used to prevent the over-

heating, maintain the humidity levels, or assess the cooling system [SS11]. Air management metrics 

address air flow efficiency and separation of hot and cold air streams [Re17a]. 

2.4.4. Cooling metrics 

The complex interconnection of heat, ventilation, and air conditioning (HVAC) systems ensures optimal 

conditions for the computing environment in a data center, guaranteeing the life span, scalability, and 

flexibility of the servers [KK15]. Cooling metrics are related to the efficiency of the cooling devices 

(such as the Coefficient of Performance, COP) [PP09], or of the whole infrastructure, such as Data 

Center Cooling System Efficiency (DCCSE) [Ma09]. 

2.4.5. Performance Metrics 

The performance of a data center is the total effectiveness of the system, including throughput, response 

time, and availability [WK13]. Measuring performance and productivity is crucial as sub-optimal 

performance has operational and financial implications for a data center [Re17a]. Different metrics 

consider the outputs of the data center as a functional unit that fits the purpose of the data center. 

Indicators such as the Data Center Energy Efficiency and Productivity Index (DEEPI) [Br07] and the 

Flops per Watt (flops/W) [BC10] directly relate output to direct energy consumption. These metrics can 

also include subsections such as Network, Storage, and Security (Figure 2-6). 

2.4.6. Financial impact metrics  

Most of the organizations depend on non-financial, operational metrics except in setting up budgets and 

measuring the projects [AP09]. Employing financial metrics can enable the operators to put other key 

metrics such as outage reports and service quality metrics in a financial perspective. Metrics such as 
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Total Cost of Ownership (TCO) [Ra11], Capital expenditure (CapEx) and Operational expenditure 

(OpEx) keep tracks of the financial impacts of a Data Center [Re17a]. 

2.4.7. Applicability of data center metrics to this study 

There is no single metric to cover all dimensions of the operation of a data center. Mapping the different 

indicators according to their category allows an overview of their relations and of the area they cover. 

While many differ on the inputs, these indicators separately can serve to define operational goals and as 

benchmarks with other data centers. Some of these metrics also require seasonal benchmarking to 

capture region and season changes. Green metrics are also dependent energy sources [Re17a]. 

Regarding performance metrics, “useful computing work” is not defined uniquely. [HH18] presented a 

metric which considers environmental impacts based on server tasks and uses the CO2 footprint of 

energy used. Financial metrics are difficult to present as benchmarks since confidentiality concerns 

associated with revealing costs for a particular facility limit openness. Carbon Credits used for carbon 

trading may vary based on local governmental policies, requiring more disclosure. 

While most of these indicators consider energy inputs, only a few consider related environmental 

impacts of energy use, and none considers the impacts of production of the devices related to data center. 

Impacts on material consumption are overlooked, and they focus on the operational energy use. 

Moreover, energy consumption data disaggregated by data center sub-components may not be available, 

so a granular comparison is often not possible. 

2.5. Life Cycle Assessment 

Life Cycle Assessment (LCA) is a structured, comprehensive, and internationally standardized method. 

It quantifies all relevant emissions and resources consumed and the related environmental and health 

impacts associated with any goods or services. LCA is a systematic and iterative process [EC10]. The 

[ISO14040] and [ISO14044] standards provide the indispensable framework for LCA. [EC10], in their 

publication “International Reference Life Cycle Data System (ILCD) Handbook”, provides a common 

basis for consistent, robust, and quality-assured LCA. LCA is the scientific approach behind modern 

environmental policies and business decision support related to Sustainable Consumption and 

Production (SCP) [EC10]. The main aim of LCA is to reduce the environmental impact of products 

through guiding the decision making process towards more sustainable solutions [Me11]. 

A life cycle approach enables product designers, service providers, government agents, and individuals 

to make choices for the longer term [va13]. LCA provides a framework for micro-level decision support, 

answering questions related to specific products of an organization; and meso/macro-level decision 
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support, which is support at a strategic level, e.g., raw materials strategies, technology scenarios, policy 

options, amongst others [EC10]. 

LCA considers a product’s full life cycle: from the extraction of resources, through production, use, and 

recycling, up to the disposal of remaining waste (Figure 2-8). The boundary of analysis is typically from 

cradle to grave, considering extraction, production, distribution, consumption and disposal [Re17c].It is 

based on physical metrics of material and energy flows during the life cycle of a product or service 

system [Re04, ISO14040]. LCA thereby helps to avoid resolving one environmental problem while 

creating others. LCA is always structured around a functional unit that defines what is examined [va13]. 

Due to its systemic approach, the methodology is considered suitable to provide a valuable support in 

integrating sustainability of resources into design, innovation and evaluation of products and services 

[KSB14, SFZ13]. 

 
Figure 2-8: Phases considering during a Life Cycle Analysis. Source: Modified from [NJR07] 

[ISO14040] standardized the methodology into a framework of four interdependent phases: Goal and 

Scope Definition, Life Cycle Inventory (LCI), Life Cycle Impact Assessment (LCIA), and 

Interpretation. [EC10] separates Goal and Scope Definition in two separate phases (Figure 2-9). The 

most critical phase in an LCA study is the LCIA, where the inventory results of a system are transformed 

into understandable impact categories that represent the impact on the environment [Me11]. 

2.5.1. Goal Definition 

During the goal definition the decision-context and intended application of the study are identified and 

the targeted audience are to be named. This guides all the detailed aspects of the scope definition, which 

in turn sets the frame for the LCI work and LCIA work. The quality control of the work is performed in 

view of the requirements derived from the goal. The interpretation is in close relation to the goal. 
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Figure 2-9: Framework for Life Cycle Assessment. Source: Modified from [EC10]. 

Goal definition shall consider intended application, limitations, reasons for carrying out the study, target 

audience for the results, publication strategies, and stakeholders [EC10]. 

2.5.2. Scope definition 

In the scope definition it is decided what to analyze and how. The object of the LCA study is identified 

and defined. This shall be done in line with the goal. A main part is to derive the requirements on 

methodology, quality, reporting, and review in accordance with the goal [EC10]. Main types and sources 

of data and other information should be identified. Normalization data and weighting factors may be 

required but may hinder the transparency of the study. 

The derivation of the scope of an LCA study from the goal includes: defining the types of the deliverable; 

the system or process studied and its function; functional units and reference flows; modelling 

framework; system boundaries, completeness requirements and cut-off rules; impact categories to be 

covered and selection of specific LCIA methods to be applied; types, quality and sources of required 

data and information; and planning reporting of the results [EC10]. 

The functional unit indicates the quantity of the product under consideration in the LCA. The 

quantitative definition of a product’s functional unit should refer to technical standards wherever 

possible [Re17c]. 

2.5.3. Life Cycle Inventory 

The inventory phase involves the collection of the required data and modelling of the system [EC10]. 

This is to be done in line with the goal definition and meeting the requirements derived in the scope. 
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Types of required data comprise inventory information, statistical data, technical process and system 

information, market information, allocation-related information, and legal and other boundary 

conditions. For process based LCA, the flow of materials and energy inputs and outputs is also involved. 

Typically, the Life Cycle Inventory (LCI) phase requires the highest efforts and resources of an LCA 

for data collection, acquisition, and modelling. Some missing data may be present. For all processes that 

have been identified, the inventory data must be collected. Additional measurements, third party data, 

or use of proxy data may be employed here. The quality requirements on inventory data can only be 

identified after the first rough model of the life cycle has been established. It is then revised in context 

of the iterative improvement of the inventory [EC10]. 

Unit process data are at the basis of all LCI work. This produces data for input and outputs of separated 

processes, which combined represent the entire system. The specific kind of life cycle inventory include: 

• Identifying the processes of the system within its boundaries 

• Planning, collection, and averaging of the background and foreground data, generic and 

complementary data. Here databases can be used for background data, and process 

measurement as foreground data. 

• Modelling the system in a framework by connecting and scaling the data sets, and by 

connecting the system to the functional unit (Figure 2-10). 

• Calculating LCI results, i.e., summing up all material and energy inputs and outputs of all 

processes within the system boundaries. If entirely modelled, only the reference flow (main 

output) and elementary flows (inputs from nature) remain in the inventory. 

 
Figure 2-10: Simplified supply chain life cycle model of a Product. Source: Modified from [EC10]. 

The LCI results are the input to the subsequent LCIA phase. The results of the LCI work also provide 

feedback to the scope phase as initial scope settings often need adjustments. The quality of the LCI 

depends on the data quality. Data quality is composed of accuracy, precision, with technological, 

geographical, and time-related representativeness, and with the completeness of the inventory. All of 

these contribute to the overall quality and typically the weakest of them determines the overall data 

quality. On a system's level, the inventory data must be representative of the processes, which actually 
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relate to the life cycle of the system [EC10]. For specific unit process data measurements at the operated 

processes are the as preferred option. 

2.5.4. Life Cycle Impact Assessment 

The inputs and outputs of elementary flows that collected and reported in the inventory are translated 

into potential environmental impact indicator results related to human health, natural environment, and 

resource depletion. The results of LCIA are considered impact potential indicators. LCIA is composed 

of several steps: 

• Based on classification and characterization of the individual elementary flows, the LCIA results 

are calculated by multiplying the individual inventory data of the LCI results with the 

characterization factors. These are found in literature or from other scientific sources. 

• LCIA results can then be multiplied with normalization factors to obtain dimensionless, normalized 

LCIA results. The selection of impact categories and normalization and weighting sets shall be 

consistent with the goal of the LCA study. 

• The LCIA results can be multiplied by weighting factors, that indicate the different relevance that 

the different impact categories (midpoint level related weighting) or areas-of-protection (endpoint 

level related weighting) may have, obtaining normalized and weighted LCIA results [EC10]. 

 
Figure 2-11: Life cycle impact assessment. Schematic steps from inventory to category endpoints. Source: Modified from 

[EC10] 
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2.5.5. Interpretation 

The interpretation phase of an LCA has two main purposes: to self-improve the Life Cycle Inventory to 

meet the needs derived from the study goal; and to communicate results to the intended audience through 

reporting. The interpretation phase serves then to derive robust conclusions and often recommendations. 

Criteria for analysis and interpretation include accuracy, completeness and precision of the applied data, 

and evaluation of the assumptions made throughout. The LCIA results are appraised to answer questions 

posed in the goal definition. The interpretation relates to the intended applications of the study and is 

used to develop recommendations. 

Reporting needs to consider and address the needs of different audiences when presenting or 

disseminating the study. Target audiences can be internal, (defined) external, or public, and technical or 

non-technical. Good reporting of LCA studies provides the relevant project details, the process followed, 

approaches and methods applied, and results produced. This is essential to ensure reproducibility of the 

results and to provide the required information to reviewers to judge the quality of the results and 

appropriateness of conclusions and recommendations. 

2.5.6. Applicability of LCA to the case of data centers 

The [ISO14040] and [ISO14044] standards provide the indispensable framework for LCA. This 

framework, however, leaves a range of choices, which can affect the legitimacy of the results of an LCA 

study [EC10]. When assessing data centers, the current state of LCA methodologies, the lack of 

applicable primary and secondary data for assessing data center components and systems, and the 

complexity of the data center create serious difficulties in performing a data center LCA. Currently, 

there is no LCA methodology developed specifically for data centers. There is a variety of software, 

database, and secondary data tools available with which to perform an LCA, and the methodology which 

best suits the study requirements is to be used [ABD12]. In the following chapters, the work focuses on 

gathering information to construct databases for inventories of data centers and their components, and 

to evaluate the current alternatives for End-of-Life and the technologies available for recovering of 

materials that help to improve the material and primary energy efficiency of the lifecycle. 

2.6. Key aspects for LCA in data centers 

This section summarizes a framework for identifying and describing the elements necessary to assess a 

data center’s complete life cycle. This focuses on defining applicable assessment boundaries and 

environmental concerns. By using a comprehensive approach that encompasses the data center’s supply 

chain, the impacts and the consequences of changes in the process can be assessed [ABD12].  
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Several organizations have published their methodologies for LCA applied to data centers. [SD13] and 

[ISO14067] focus on GHG but are not specific to data centers. [EC10a] and [ET11] consider a data 

center as part of an IT network. [Ha09] focuses on data centers but with emphasis on the energy 

management of the use phase and on metrics for sustainability. [IC13] focuses on a data center’s energy 

management system with a consideration of life cycle impacts, focused on best practices for a “green” 

data center. [Wh12] provided a methodology based on screening of inventories. [Ma09] presented an 

LCA-based approach to estimate the sustainability impact of equipment in terms of its lifetime exergy 

(available energy) consumption. This approach divides the life cycle into two phases: embedded phase, 

involving impacts related to product design decisions (material extraction, manufacturing and supply 

chain impacts, and end-of-life); and operational phase, including impacts related to decisions during 

product use (operation and maintenance). Following is a summary of the LCA Framework applied to 

data centers, as per Section 2.5. 

2.6.1. Goal definition 

The goal of this dissertation is to evaluate the resource depletion and the primary energy demand for the 

lifecycle of a data center. Since the focus is on critical material depletion, the study is framed around 

the embedded phase and the EoL of a data center and its components. This study is to be presented as 

part of the ongoing research on material criticality and resource depletion, hence the target audience is 

policy makers and researchers within the area. This study advances the work done in resource depletion 

assessment and on potentials of urban mining from high grade electronics. 

This study is categorized as a stand-alone LCA [BT04]. This is used to describe a specific product in an 

exploratory way to get acquainted with the product’s environmental performance.  

Results are to be peer-reviewed as part of the publication strategies for this dissertation. This includes 

workshops, conferences, and scientific journals. Annex 2 presents a complete list of the related 

publications by the author. Additionally, databases developed are to be included as Life Cycle 

Inventories for replication. Complementary, an information system based on the information gathered, 

calculation methodologies applied for the obtainment of results, and on the evaluation and visualization 

of said results is to be developed as a tool for modelling and results data analysis. 

2.6.2. Data center scope definition 

When considering the scope of the assessment of a data center, the distinct phases on the lifecycle need 

to be considered. Additionally, for the establishment of a reference unit, the output of the data center, 

being it a service, computations, or the operation of the data center itself, can be considered for this 

quantification. Figure 2-12 presents an extended view of the production system of an IT system, such 

as a data center. This also considers the software development portion. For the intended application, the 
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study focuses on the development of hardware and its decommissioning. Considered stages on the 

lifecycle are:  

• Manufacturing and Construction: manufacturing of IT and facilities equipment; construction of 

power, telecommunications, and transportation infrastructure for supporting the data center. 

• Transport: to site and onsite transport of materials for data center equipment manufacturing; 

transportation of the equipment 

• Operation: use and operation of the data center, equipment, and structure. 

• Equipment upgrade: maintenance of equipment and structure, including upgrade and addition of 

equipment. 

• End-of-Life: reprovisioning processes including decommissioning, reuse, redeployment, 

dismantling for parts, recycling, and final disposal. 

 
Figure 2-12: Simplified representation of an IT production system. Source: Modified from [HH18, Hil15]. 

Outside the boundaries of a data center are impacts caused by employee-related activities; impacts 

caused by non-data center usage of the building; grid-level electricity generation and distribution, IT 

commodity systems; telecommunication equipment and systems connecting the data center to the rest 

of the world, including satellites, submarine cables, etc. [ABD12]. 

The functional unit contributes by defining the scope of the system that will be evaluated by the LCA 

methodology and quantifying the service delivered by the data center system. All data (inputs and 

outputs of the system) should be linked to the functional unit that is defined in the scope of the data 

center LCA [ABD12]. An example of a functional unit can be the operation of a data center in a period 

of a year (in units of 𝑘𝑊𝐼𝑇 ∙ 𝑎), or the whole lifecycle of the data center. 
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2.6.3. Data center Life Cycle Inventory 

There is a limited quantity of primary or secondary data available on the equipment and systems used 

in a data center. An effective life cycle assessment is based on accurate data and considers the product 

category rules, which is a set of specific rules, requirements, and guidelines for developing 

environmental declarations [ABD12]. 

As part of a data center, all the facilities and infrastructures for power distribution and environmental 

control together with the necessary levels of resilience and security required to provide the desired 

service availability are considered. Power generation and delivery systems (UPS, transformers, switch 

gear, backup generators, power distribution units, batteries, power cables), IT equipment (servers, 

storage equipment, monitors, switches, routers, racks, network cables) and cooling system (chillers, air 

conditioning units, heat exchangers pumps, cooling towers) are to be included in the analysis. Equipment 

with impact contribution lower than 2% can be neglected in subsequent iterations. 

Currently, there is no effective methodology by which equipment lifetimes can be factored or distributed 

across an LCA analysis, and current standards and assessment methodologies are silent on how to 

compare impacts and attributes with different periods. Although the benefits are not typically 

quantifiable, the use of more robust and upgradable equipment will reduce the overall impact of the data 

center [ABD12]. For IT components, the average lifetime lies between 3 to 5 years, with high end servers 

extending it to 8 years. Power supply equipment and air conditioning equipment have lifetimes of 20 

years, with batteries needing replacement every 5 years.  

The current state of LCA methodologies and the lack of reliable primary and secondary data for the 

complex equipment and systems used in a data center will require several iterations to introduce a 

significant degree of uncertainty and approximation into any final results [ABD12]. Data sources are 

limited, and the data must be extracted from various sources to construct a complete model of the data 

center. The preferred hierarchy of data is: 

• Primary data: collected data that is directly measured or calculated.  

• Secondary data: data derived from other sources such as literature or databases. 

• Proxy data: primary or secondary data related to an input, process, or activity that is similar (but 

not representative) to the one in the inventory, which can be used in lieu of representative data if 

unavailable. 

Most LCA of raw material gathering and metal production processes do not consider the mining and 

mineral processing stages in any detail, largely due to a lack of publicly available data [HN15]. Since 

this is the focus of this dissertation, this data needs to be updated or filled. This produces high 

uncertainties in the resulting impacts. As an example, studies on IT equipment have shown uncertainties 
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of 20% to 30% in estimates of emissions impacts on a single, high-volume server system [ABD12]. 

Updating of the databases for raw material gathering and their results is shown in Chapter 7. 

2.6.4. Life Cycle Impact Assessment 

The environmental impacts under consideration must be clearly defined, in accordance with the goals 

of the study. The LCIA can be disaggregated into the data center life cycle stages. There is no 

standardized list of impact categories, so the choice of impacts needs to agree with the scope, in this 

case critical resource depletion [ABD12]. Midpoint indicators [Gu06] and endpoint indicators [Go99] 

are commonly used for reporting. Chapter 3 covers an analysis of the existing impact categories, with 

section 3.4 detailing the formulation of new categories suited for the evaluation of critical material 

depletion. 

Impacts normally incorporated in the LCIA include energy consumption during operation, raw material 

depletion for construction of the data center structure, raw material depletion for manufacturing of IT 

and facility equipment, land use and environmental impacts of the facility, mix of energy-generating 

sources used to support operation, water consumption during operation; and reuse, recycling, and/or 

disposal of IT and facility equipment and materials. Secondary impacts can also include hazardous 

substance content of data center building and equipment, and air pollution during operation. Missing in 

these categories are impacts that include the socio-economic relevance of materials within the area of 

study, which is discussed further in Chapter 3. 

The key areas of importance are energy consumption during the use phase (related to energy efficiency), 

the embodied impact of materials in the data center (including IT equipment manufacturing and 

maintenance) which show the importance of the energy sources for all phases [FTW17, Sh09, WAS15]. 

2.6.5. Interpretation and reporting 

Organizations can use LCIA results to make more informed decisions regarding design and operational 

activities that contribute to reducing a data center’s environmental impact, including reducing material 

depletion and optimization of recovering strategies. Such activities include determining when to retire 

equipment versus re-deploy it and identifying opportunities for virtualization and consolidation of 

lower-performing systems onto a single platform to reduce overall energy use and improve system 

utilization.  

To facilitate clear communications, a single number representing the global environmental impact may 

also be presented. The complexity of a data center and the lack of credible data and methodologies 

hinder the creation of a single aggregate number describing the environmental impact. [ABD12] 
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recommends assessing metrics or use values for each of the impacts mentioned above and identifying 

system or operational approaches to optimize the metric or reduce the use of the resources.  

As given by the general low quality of data, several iterations for improving data and refining the models 

are required. The uncertainty of the results and the further improvements in these is also to be reported. 

This dissertation serves also as a case study to evaluate the application of LCA use in a real-world data 

center scenario and determine what needs to be updated or added. Methodologies for evaluating data 

quality are presented in the next section, and results on data quality are presented in Chapter 7. 

2.7. Methods for evaluation of data quality and uncertainty 

Within the evaluation of Life Cycle Inventories, concerns arise regarding the quality and reliability data 

used for the study. Issues such as uncertainty of the measurements taken and of the appropriateness of 

the proxy data used and of the representativeness of the process analyzed must be considered when 

reporting. [ISO14044] lists under “data quality” aspects such as representativeness, uncertainty 

(precision), and other directly data quality related aspects, but also aspects such as methodological 

consistency, data sources used, and reproducibility. Data quality within LCA is a significant issue for 

the future support and development of LCA as a decision support tool and its wider adoption within 

industry [AW16]. 

2.7.1. Definition of data quality 

[ISO14040] defines data quality as “characteristics of data that relate to their ability to satisfy stated 

requirements”. Thus, the quality of a given LCI model, of datasets, or of a database, fully depends on 

the “stated requirements.” For this reason, it is sometimes referred as “fitness for purpose” [Ci21]. The 

data quality goals should explicitly define needs for representativeness, including temporal, geographic 

and technological aspects, and completeness. [ISO14044] addresses the concept of data quality by two 

approaches. First, on data quality in the stricter sense, which refers to aspects that determine the quality 

of the inventory data and the related LCIA results. Second, to aspects that relate to data quality 

documentation and review and to efforts of basic consistency such as nomenclature and terminology 

[EC10]. 

Data quality is composed of accuracy (representativeness and methodological appropriateness and 

consistency), uncertainty (also called precision) and completeness of the inventory. All of these 

contribute to the overall quality and typically the weakest of them determines (lowers) the overall data 

quality. In general, in LCA, the lowest quality can be found regarding representativeness, 

methodological appropriateness and consistency (especially on system level), and completeness. Data 

quality of LCA starts from the quality of the single inventory data values [EC10]. Initial data quality 

requirements must also be specified in the goal and scope phase of an LCA study. Data must be used 
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appropriately in relation to the goal of the study. A critical review needs to address data quality in LCA 

case studies [Ci21]. 

2.7.2. Data quality indicators 

Collected data usually represents the system being modeled with an accuracy lower than 100%. Data 

quality indicators are used and structured to provide a qualitative analysis of data (using a 

semiquantitative system) to compare data collected against the intended goal and scope of the project. 

However, neither [ISO14040] nor [ISO14044] define how these areas are to be addressed. No 

specification on to which component or level a data quality analysis should be applied. [ISO14044] 

defines ten key categories required for addressing data quality: 

a) Time-related coverage: age of data and the minimum length of time over which data should 

be collected. 

b) Geographical coverage: geographical area from which data for unit processes should be 

collected to satisfy the goal of the study. 

c) Technology coverage: specific technology or technology mix. 

d) Precision: measure of the variability of the data values for each data expressed. 

e) Completeness: percentage of flow that is measured or estimated. 

f) Representativeness: qualitative assessment of the degree to which the data set reflects the true 

population of interest (geographical coverage, time, and technology coverage). 

g)  Consistency: qualitative assessment of whether the study methodology is applied uniformly 

to the various components of the analysis. 

h) Reproducibility: qualitative assessment of the extent to which information about the 

methodology and data values would allow an independent practitioner to reproduce the results 

reported in the study. 

i) Sources of the data. 

j) Uncertainty of the information (e.g., data, models, and assumptions). 

The qualitative and quantitative evaluations are done at the flow level. Data quality analysis at this flow 

level analysis permits a more detailed understanding of the data quality than can be provided at the 

process level, since the process level can be a combination of many different flows from many different 

sources [AW16]. Flow level indicators address source reliability, temporal, geographic, and 

technological correlation, and data sampling methods. A methodology to evaluate these qualities is built 

around establishing a matrix for data quality evaluation. 
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2.7.3. Pedigree matrix 

The pedigree matrix was introduced to uncertainty analyses as a method to code qualitative expert 

judgement for a set of problem-specific criteria into a numerical scale [FR90]. [WW96] applied this 

methodology to LCA. This method evaluates five criteria with a rating scale from “1” to “5”. Low 

ranking values (scores of “4” or “5”) do not necessarily indicate “bad” data, nor do high ranking values 

(scores of “1” or “2”) indicate “good” data. Rather they qualitatively describe how the data relate to the 

goal and scope, and highlight potential areas of improvement in the data quality [AW16]. 

The pedigree matrix is not designed to capture all areas of data quality, but to semi-quantitatively address 

certain key areas to improve communication of data quality results. Not all data quality areas are 

addressed using a pedigree matrix. Following criteria is evaluated for different flows in a process model: 

• Reliability: This indicator refers to the reliability of the source to address that some 

information sources in LCA are more reliable than others. A more reliable source is always 

desirable, independent of the application. Independently peer-reviewed, empirical-based 

sources are seen as most reliable, unqualified estimates as least reliable [CA21, We13]. 

• Completeness: Completeness indicates the degree to which the included flows represent the 

actual system of interest and enable full impact characterization. It addresses whether and how 

to which extent a given information can represent a larger group. 

• Temporal Correlation: Indicates the correlation between the time period the data was 

collected and the year the model represents [AW16]. A dataset represents a certain period. As 

time passes, input and output flows of a process can change. Changes in different areas 

(technological, geographical) occur at different speeds, hence distinct factors may be applied 

for different sectors. 

• Geographical Correlation: Indicates the appropriateness of the sample region in representing 

the model region. The intended geographical data coverage is the geographical area from which 

data for a unit process should be collected to satisfy the goal of the study [AW16]. 

• Technological Correlation: Quantifies the differences that may be present between data 

source and technology scope [AW16]. Technology refers to the product and the production 

process, and it is the one data quality indicator that most determines the specific inventory of 

a process dataset. This indicator addresses differences that are omitted by the other indicators: 

time, location, and also other indicators may impact the technology used in the process [Ci21]. 

2.7.4. Uncertainty and probability distributions for LCIA data 

[ISO14044] defines precision as the “measure of the variability of the data values for each data 

expressed”. Uncertainty is used for expressing the quantitative degree of the lack of precision. It 

represents the degree to which further measurements or calculations done by different experts will 
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produce the same results. The ISO definition relates to the statistical meaning of stochastic uncertainty. 

[Mu16] indicates that uncertainty in LCIA inventories can come from: 

• Intrinsic variability and stochastic error of the parameters, due to measurement uncertainties. This 

uncertainty is captured in a basic uncertainty factor. 

• Uncertainty due to the use of imperfect data, such as data resulting from estimates, lacking 

verification, or extrapolated from temporally, spatially and/or technologically different conditions. 

This is called additional uncertainty. 

For uncertainty, the actual value of a quantity is unknown and described by a probability distribution. 

This distribution is based on the information or metadata about the value and can be reduced by 

improving the metadata. Mathematically, the uncertainty of a value is defined through probability 

distributions. This represents the values a parameter can take and uses information on the probability of 

this value taking place. Various probability distribution functions can be applied to LCIA data. One of 

the most used is the lognormal distribution. In this type of distribution, the logarithm of the variable is 

randomly distributed. It presents certain characteristics that make it appropriate to represent the 

uncertainty of the value of a flow within LCA. Negative values cannot be defined through a lognormal 

distribution. Since the flows which are scrutinized in LCA are physical quantities, they cannot be 

negative, so a lognormal approach is suitable. The function is also scalable, meaning that the mean can 

be increased, while holding the shape given by the geometric uncertainty factor. This is useful to adapt 

to LCI since the reference value of the flow can be altered while keeping the information on uncertainty 

unmodified. 

The lognormal distribution (Figure 2-13, Eq. 2.1) is represented by two definition parameters: the 

geometric mean (𝜇𝑔) and the geometric standard deviation (𝜎𝑔). The geometric mean is the deterministic 

value, and the geometric standard deviation captures the information on the uncertainty. It is represented 

by : 

 𝑓(𝑥, 𝜇𝑔, 𝜎𝑔) =
1

√2𝜋 ln𝜎𝑔
𝑒𝑥𝑝 (−

(ln𝑥−ln𝜇𝑔)
2

2 ln2 𝜎𝑔
) (Eq. 2.1) 

Where 𝑥 is the variable , 𝜇𝑔 is the geometric mean, and 𝜎𝑔 is the geometric standard deviation. The 

confidence intervals for the 5th and 95th percentiles are calculated as presented in Eq. 2.2: 

 𝐶𝐼68% = [
𝜇𝑔

𝜎𝑔
, 𝜇𝑔𝜎𝑔], 𝐶𝐼95% = [

𝜇𝑔

𝜎𝑔
2 , 𝜇𝑔𝜎𝑔

2]  (Eq. 2.2) 
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Figure 2-13: Example of a probability density function for a lognormal distributed variable. 

The pedigree matrix is used to address qualitative uncertainty. Past pedigree matrices have used 

uncertainty as an indicator. The uncertainty of a measurement is composed then of a basic uncertainty 

factor and on the additional uncertainty due to data quality. Due to the properties of the lognormal 

function, the basic uncertainty of a measurement and the uncertainties derived from the pedigree matrix 

indicators can be then aggregated to estimate a total uncertainty for the flow value. Eq. 2.3 shows the 

calculation of the geometric uncertainty based on the parameters of the pedigree matrix. 

 ln(𝜎𝑔
2) = √∑ (ln𝑈𝑖)

25
𝑖=0  (Eq. 2.3) 

Where the indexes of 𝑈𝑖 relate to the source of uncertainty as follows: 

𝑈0 : basic uncertainty factor 

𝑈1 : uncertainty factor for reliability 

𝑈2 : uncertainty factor for completeness 

𝑈3 : uncertainty factor for temporal correlation 

𝑈4 : uncertainty factor for geographic correlation 

𝑈5 : uncertainty factor for technological correlation 

2.7.4.1. Data quality factors and characterization 

The databases for LCA may include information on data quality for background process and contain 

also detailed documentation for the sources of information and aspects such as geographical zone, time 

of data gathering, and process information. It also includes data quality information and uncertainty 

values. 

A Pedigree Matrix is also included to assess the quality of data, and it is included in the calculation 

methodology to estimate results data quality. It can also be used to assign data quality and uncertainty 
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values to specific process information within a custom build model. Table 2-3 presents the information 

found in this table, which is used to quantify data quality. 

Table 2-3: The ecoinvent pedigree matrix. Source: Modified from [We13]. 

Indicator 

score 

1 2 3 4 5 

Reliability Verified data 

based on 

measurements 

Partly assumed 

or non-verified 

measured data  

Non-verified 

data based on 

qualified 

estimates 

Qualified 

estimate (by 

industrial 

expert) 

Non-qualified 

estimate 

Completeness Representative 

for the process 

over a proper 

period 

Representative 

for >50% of the 

process 

considered 

Representative 

for only part of 

the process 

(<<50%)  

representative 

for only one 

part of the 

process  

Unknown 

which part of 

the process is 

represented 

Temporal 

correlation 

Less than 3 

years 

Less than 6 

years  

Less than 10 

years  

Less than 15 

years  

More than 15 

years 

Geographic 

correlation 

Data from area 

under study 

Average data 

from larger 

area  

Data from area 

with similar 

production 

Data from area 

with slightly 

similar 

production  

Data from 

unknown or 

different area 

Further 

technical 

correlation 

Data from 

process  

under study 

Identical 

technology but 

different 

process 

Data from 

processes under 

study but from 

different 

technology 

Data on related 

processes or 

materials 

Data on related 

processes on 

laboratory scale  

Default basic and additional uncertainty factors are considered and a method to combine basic and 

additional uncertainty is applied only for the lognormal distribution. For calculating the additional 

uncertainty, the pedigree matrix results are not taken directly, but after a transformation producing an 

uncertainty value from the data quality scores (Table 2-4). The values in this transformation table never 

exceed 2.0 and are mostly below 1.5. [CMW12] established a set of empirical data quality factors. 

However, some indicators do not have a related uncertainty for the lowest of data qualities. 

Table 2-4: The ecoinvent pedigree matrix data quality uncertainty values. Source: Adapted from [We16]. 

Indicator score 1 2 3 4 5 

Reliability 1.00 1.05 1.10 1.20 1.50 

Completeness 1.00 1.02 1.05 1.10 1.20 

Temporal correlation 1.00 1.03 1.10 1.20 1.50 

Geographic correlation 1.00 1.01 1.02 1.06 1.10 

Further technical correlation 1.00 1.13 1.20 1.50 2.00 

2.8. Conclusions 

This section presented an overview on the current state of the art on the research on the topics of data 

center and LCA. The goal is to provide a foundation for the execution of LCA applied to data centers, 

with considerations of other life cycle phases outside of the operation phase. 

As stated in different sources, most of the research and analysis is focused on the operational phase. The 

analysis and research on optimization of data centers is tied to minimizing energy consumption during 

the service phase of a data center. This has provided an extensive basis for evaluation of data center 
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performance, and a wide range of indicators that cover many aspects of the operation of a data center. 

These indicators, however, do not consider other aspects such as embodied energy or material content. 

Additionally, categorization of data centers does not provide a sufficient basis for evaluation of life cycle 

impacts. Therefore, each data center must be evaluated individually, and thus inventorization of each 

facility is required for an assessment that provides results of high quality, so that the LCA models 

developed represent appropriately the inventory of a data center.  

LCA as a scientific methodology has been implemented for some case studies for data centers. However, 

these studies still focus on the operational phase, and focus on evaluating electric energy use, which 

remains dependent on the local energy mixes. An extension of these studies is possible using the 

frameworks stated in this chapter, since many of the methodological aspects are given in literature, 

which serve as a guideline for conducting LCA on data centers and on their equipment. Despite this, 

few research regarding assessment of the demand of primary energy and raw (critical) materials for 

manufacturing data center equipment is available. This aspect is to be addressed in this work, with a key 

aspect being the building of new indicators focused on evaluating raw critical material depletion in 

Chapter 3.  

The absence of published data on material composition and on manufacturing processes for data center 

equipment may result in poor data quality of the results. To evaluate this aspect, methods for a 

quantitative evaluation of data quality are to be implemented. These methods focus on assessing the 

appropriateness of the information used with regards to the objectives of the study, and may be 

understood as a technological, geographical, and temporal correlation to the system they represent. By 

means of direct inventorization of operating data centers from different institutions, quantification of 

BoM from decommissioned data center equipment, and of laboratory analysis of material content in 

data center WEEE, the quality of this information is to be improved, which is to be evaluated in Chapter 

7. 
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3. Development of Methods for Criticality Assessment 
within LCA 

This chapter summarizes the development of the methodologies for criticality assessment within LCA, 

developed to answer the main research question. The requirement for indicators to reflect depletion of 

resources comes from the goals of this study, since the indicators used for data center focus mostly on 

the operational phase, as reflected in Section 2.4. By aligning the goals of the study with the research 

questions from Section 1.3, the scope of the study can be refined to include indicators that reflect the 

problem of depletion with considerations of material criticality. This chapter presents existing methods 

(Section 3.3) and new developed methods (Section 3.4) developed within this work for use in the LCIA 

calculations in Chapter 7 (Figure 3-1). The information required and the results are saved in databases 

containing information on criticality and on the resulting characterization factors (Chapter 6). 

 
Figure 3-1: Development of criticality-based life cycle impact assessment methods. 

3.1. Refinement of goal and scope  

3.1.1. Refinement of goals 

This LCA study has as general goal the investigation of the environmental performance associated to 

the raw material extraction and manufacturing processes of the data center equipment, and the 

environmental impacts involved during its use and end-of life phases. The scope then excludes the use 

phase because the energy consumed during the use phase is decoupled with the material flows. Another 

desirable achievement is to make available a suitable framework for evaluation of data center equipment, 

develop calculation methodologies to integrate inventories and automated calculation procedures for 

LCA, and to provide updated databases for similar of studies. To achieve the general goal, and following 

the Secondary Research Question 1, this study will aim to answer the following specific questions: 

a) What are the specific resource depletion impacts associated to a data center life cycle, from 

cradle to grave, excluding of the operation phase?  

b) Which set of indicators are suited for resource depletion evaluation? 
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c) What components are responsible for the greatest environmental impacts related to resource 

depletion? 

d) What is the role of material recovery in improving resource efficiency and helping to alleviate 

issues such as material scarcity? 

These questions are answered following the LCA methodology. To help with these questions, specific 

set of impact assessment methods are further developed in this chapter. 

3.1.2. Refinement of scope 

For this evaluation, LCA models representing the different components of data centers need to be 

developed. The goal is to evaluate the different production chains and manufacturing processes to 

quantify the total amounts of energy and material demand. The use of appropriate indicators allows 

evaluating these parameters. These need to represent the materials demands by their physical amount 

and by aspects such as criticality. 

There are several impact assessment methods used for evaluation of resource depletion. However, these 

methods lack consideration of aspects such as material supply risks or relative economic importance. 

Section 3.3 gives an overview of existing indicators, and Section 3.4 details newly developed or updated 

indicators created for the purpose of this dissertation. 

3.2. Raw materials in the economy 

Raw materials are essential to produce a broad range of products and services, including IT equipment. 

Some raw materials are referred to as “critical raw materials” (CRM) due to their comparatively high 

economic importance and high risk of supply disruptions [EC20b]. Although geological scarcity is 

unlikely, supply risks lie in import dependence, the concentration of production in politically unstable 

countries, and the nationalization of mining companies [BST12]. 

The rapid technological innovation cycles and the growth of emerging economies has led to an 

increasing demand for these materials. Consumption of raw material resources implies a decrease in 

future availability and hence resource depletion. Because of continuous modifications of function and 

design of appliances, electrical and electronic equipment (EEE) contains a highly heterogeneous mix of 

materials. Essential constituents include metals such as precious metals (gold, silver, and palladium) and 

special metals (indium, selenium, tellurium, tantalum, bismuth, antimony) [CBR11]. In the 1980s, 

computer chips contained twelve elements. Today, as many as sixty different elements are used in 

fabricating integrated circuits [Ba14], with around 34 metals in the category of are earth, scarce, and 

scattered metals [Li22] 
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The manufacture of components and the use-phase energy consumption are often responsible for most 

of the environmental impacts of EEE. Metals can often have a significant environmental impact because 

of their toxicity, the use of energy and water in processing, their tailings, or related emissions [Gr12]. 

Based on weight, steel and plastics are the two dominant materials used in EEE. The weight distribution 

of the different substances differs from the value distribution and so does the distribution of related 

environmental pressures [Ba14]. Precious metals account for a significant part of the economic value of 

EEE, especially when recovery is considered. 

Securing access to a stable supply of such materials is a major challenge for economies with limited 

natural resources, such as the EU, which is heavily dependent on imported supplies of many minerals 

and metals needed by industry. There is a risk of supply disruptions due to supply concentration and 

political instability of the producing countries. Environmental policies commonly address resource 

efficiency and scarcity [Ma15]. Resource security is a premise then for sustainable development 

[SBF15]. 

The term resource efficiency refers to maximizing the output of a system while minimizing its resource 

consumption and it is a key element in sustainable development and security supply. Methods are 

required to ensure the ecological and efficient use of resources [KSB14]. Scientific methods such as 

LCA make it possible to consider the impacts caused by distinct stages of the IT life cycles. 

3.2.1. Material criticality 

Raw materials are the base of all value chains, hence key enablers for all sectors of the economy. The 

life cycle of raw materials can give an overview on the environmental impacts of raw material gathering 

but says nothing about changes in supply or demand. Studies on material criticality addresses these 

aspects [Gr15]. Criticality assessments evaluate products, technologies, companies, or a country’s 

economy. They can also be done for different periods, e.g., according to the current resource data and 

reserves or as a long-term projection. For these reasons, criticality assessments can diverge, since they 

depend on the selected indicators, the underlying data, and the goal of the study. A review of recent 

approaches reveals a general consensus that criticality is comprised of two main dimensions: supply risk 

and economic importance of its uses [De16]. 

[EC10c] published a list of ‘‘Critical Raw Materials”. [EC20b] updated this list, while maintaining the 

same approach. The methodology underpinning the identification of CRMs for the EU combines two 

main variables: economic importance (EI) and vulnerability to supply disruption due to poor governance 

(SR). High economic importance means that the raw material is of fundamental importance to industrial 

sectors that create added value, which could be lost in case of inadequate supply and if adequate 

substitutes cannot be found. Supply risk means that the supply is associated with a considerable risk of 

not being adequate to meet EU industry demand. Raw materials, which reach or exceed the thresholds 
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determined by [EC20b] are listed as “critical”. The report does not rank materials in terms of criticality. 

This publication also calculates these values with data from the last five years and many different 

databases, including the official EU data, public data, and some information from other non-EU 

members (Figure 3-2). A new list of critical materials is expected to be published for 2023. 

 
Figure 3-2: Procedure for development of criticality indicators. Source: Modified from [EC20b] 

3.2.2. Economic importance 

Economic importance gives insight on the relative relevance of a material in the context of the EU 

economy with respect to the end-use application and value added of corresponding EU manufacturing 

sectors. Eq. 3.1 shows how the economic importance (𝐸𝐼) is calculated, where 𝐴𝑠 is the share of end 

use of a raw material in an economic sector according to the European Classification of Economic 

Activities system [EC08], 𝑄𝑠 is the sector’s value added and 𝑠 denotes the sector. A correction value for 

substitution is also included (𝑆𝐼𝐸𝐼), which is related to technical and cost performance of the substitutes 

for individual applications. 

 𝐸𝐼 = ∑ (𝐴𝑠𝑄𝑠)𝑆𝐼𝐸𝐼𝑠   (Eq. 3.1) 

3.2.3. Supply risk 

Supply risk is the risk of a disruption in the supply of the material to meet industry demands. It is 

calculated based on the concentration of primary supply from countries producing raw material and it 

considers their governance performance and trade characteristics. Supply risk is determined at the 

bottleneck stage of the material, which means at the point of extraction or processing, hence the highest 

risk point. Additionally, recycling and substitution reduce the risk. Following parameters are considering 

for calculation of supply risk [MBS18]: 
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a) Level of concentration of worldwide production of raw materials, using the Herfindahl-

Hirschman Index (𝐻𝐻𝐼). 

b) Political and economic stability of the producing countries, using the Worldwide Governance 

Indicator (𝑊𝐺𝐼). 

c) Potential of substitution of raw materials (based on a substitutability index estimated through 

experts’ opinion and aggregating the substitutability for the different uses) 

d) Recycling rate, using estimates on end-of-life recycling rates [Gr11]. 

𝑊𝐺𝐼 is the most robust indicator to capture the level of governance in a country in the context of 

criticality assessment. Moreover, 𝑊𝐺𝐼 is applicable to different life-cycle stages of a material (e.g., 

mining and refining). However, 𝑊𝐺𝐼  does not capture risks due to export restrictions. [EC20b] 

incorporates novel methodological elements for trade, import dependency, and the actual supply mix to 

the EU, in parallel to substantial improvements for substitution and recycling as risk reducing measures. 

Eq 3.2 shows how the supply risk (𝑆𝑅) is calculated, where 𝐼𝑅 is the import reliance, 𝐺𝑆 is the global 

supply, 𝐸𝑈 sourcing is the actual sourcing of the supply to the EU, 𝐻𝐻𝐼 is the Herfindahl-Hirschman 

Index, 𝑊𝐺𝐼 is the scaled world governance index, 𝑡 is the trade parameter, 𝐸𝑜𝐿𝑅𝐼𝑅 is the end-of-life 

recycling input rate and 𝑆𝐼𝑆𝑅 is also the substitution index for Supply Risk. 

 𝑆𝑅 = [𝐻𝐻𝐼𝑊𝐺𝐼,𝐺𝑆,𝑡
𝐼𝑅

2
+𝐻𝐻𝐼𝑊𝐺𝐼,𝐸𝑈,𝑡 (1 −

𝐼𝑅

2
)] (1 − 𝐸𝑜𝐿𝑅𝐼𝑅)𝑆𝐼𝑆𝑅  (Eq. 3.2) 

3.2.4. Results on material criticality  

Representation of the criticality concept uses the described indicators. [EC20b] considers a material as 

critical when both a high potential impact of a shortage (economic importance) and a comparatively 

high probability of such a shortage (supply risk) are present. Thus, criticality is a matter of degree and 

comparison, and thresholds are defined in both dimensions to distinguish between those raw materials 

considered critical and those that are not. 

This produces a shortlist (Table 3-1) of “Critical Raw Materials” that highlight the underlying issues 

accounted for in the respective methodologies and serve as a focus point for concrete actions of policy 

makers. Figure 3-3 presents the overall results of the 2020 criticality assessment. Critical Raw Materials 

are located within the criticality zone (𝑆𝑅 ≥  1 and 𝐸𝐼 ≥  2.8) of the graph.  
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Figure 3-3: Critical Raw Materials. Source: Data from [EC20b]. 

Table 3-1: Critical Raw Materials. Source: Data from [EC20b]. 

Antimony Fluorspar Magnesium Silicon Metal 

Baryte Gallium Natural Graphite Tantalum 

Bauxite Germanium Natural Rubber Titanium 

Beryllium Hafnium Niobium Vanadium 

Bismuth HREEs PGMs Tungsten 

Borates Indium Phosphate rock  Strontium 

Cobalt Lithium Phosphorus 
 

Coking Coal LREEs Scandium 
 

3.2.5. Comments on criticality 

In the previous decade there has been interest in criticality of raw materials, enough to warrant the 

development of rigorous and quantitative methodologies for assessing criticality [EG11]. [Gr12] uses a 

similar approach that considers vulnerability to supply restriction and supply risk. It also extended the 

approach to addressing an additional dimension: environmental implications. This is an attempt to 

include cradle-to-grave environmental impacts as a separate dimension. It focuses on the impacts of 

mineral use, rather than on the supply risks. 

Examining the shortlists of critical raw materials, [BST12] points that there is a bias towards so-called 

technology metals and minerals, which are only used in small quantities for very specific applications. 
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These “technology” minerals are often only mined in small volumes, which makes price volatility and 

producer dominance much more likely. New sources of demand arising from newly developed 

applications can cause demand to outstrip supply in the short term. Most criticality approaches have the 

intention to account for substitution and recycling but the implementation into the calculations diverge. 

Moreover, data on recycling is difficult to assess properly, especially for scarce metals such as rare 

earths [De16]. 

The indicators are developed using data with temporal boundaries. Hence, some of the materials 

identified as critical might only pose a temporary problem, and these studies may not be able to reflect 

other problems in longer scope. The usefulness of short lists of critical raw materials as a policy 

instrument, therefore, depends not only on the degree to which a particular methodology reflects the 

underlying issues but also on the timeframe chosen for the analysis [BST12]. Combining these indicators 

with parameters that consider depletion of available reserves can provide an understanding of the 

resource consumption problematics with a long-term horizon. This combination of factors is formulated 

in Section 3.4. 

3.3. Existing indicators for assessment of material and energy depletion 

The approach of LCA to resource depletion is characterized by a lack of consensus on methodology and 

on the relative ranking of resource depletion impacts. This can be seen from a comparison of 

characterization factors. Different approaches yield vastly different characteristics of the impacts from 

resource depletion and show gaps in the number and types of resources covered [KSB14]. The existing 

methods currently focus on aspects such as material depletion or global warming potential, without 

consideration of criticality, potential for replacement, or material efficiency. The indicators omit the 

temporal variations of material stocks. This section provides an overview on the existing methods and 

their indicators for assessing raw materials consumption and highlights their limitations when it comes 

to evaluating the total impacts of modern technologies. 

3.3.1. Evaluation of resource depletion within LCA 

LCA modelling of processes and products uses databases and models of processes that contain 

information about raw material mining, product manufacturing, and the physical properties of a system’s 

input and output flows to assess a product’s physical and economic impacts. The raw material data on 

mining and processing found in these databases varies due to different data sources. These consider the 

economic value of the materials used, the resource stock, and the energy required to obtain an additional 

unit of raw material. 

Individual indicators related to elementary flows are not always used to produce results. Instead, several 

flows are aggregated, weighted, and added using midpoint and endpoint methods. This leads to a joint 
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assessment that reflects all the life cycle impacts on nature, humans, and the atmosphere. The results of 

mass balances and life cycle inventories are weighted and added to the midpoint indicators, which then 

are then weighted and added to the endpoint indicators, whose aggregation results in a single LCA score 

(Figure 2-11). 

Existing methods for the assessment of resource consumption in LCA relate to the energy and mass of 

the resource used, exergy or entropy impacts, future consequences of resource extraction (e.g., surplus 

energy, marginal cost), and diminishing geological deposits. Other methods also evaluate the 

environmental damages caused by raw materials extraction [Sc14]. Quantification of mineral resource 

consumption in LCA has been heavily discussed in the literature. There is a multiplicity of approaches 

for quantifying the effects in the raw materials impact category, as there are several impact category 

indicators in LCIA [Ye09]. 

Three approaches are currently used to quantify resource consumption: mass-based accounting (material 

and energy flow analysis); impact assessments using material flow analysis (MFA) and inventories in 

LCA; and criticality assessments [MBS15, Bl17]. Material flow analysis can show hot spots for raw 

material consumption and waste flows. LCIA can show which areas of protection are most affected 

during a product’s life cycle. A criticality assessment identifies materials that are critical and might 

become scarce in the future (Figure 3-4). 

 
Figure 3-4: Current methodologies for assessing resource depletion and their impacts. 
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3.3.2. Resource accounting methods (RAM) 

Resource accounting methods are used to measure the material and energy throughputs between natural 

and anthropogenic systems for the purposes of conducting a material flow analysis or developing life 

cycle inventories. These focus on calculating the specific mass of materials or energy inputs and outputs 

of a product [AOA16, KSB14]. Resource accounting methods that are suitable for LCA include: 

• Cumulated Material Demand (CMD) includes all the extracted raw materials in weight units, 

without differentiation regarding criteria such as scarcity, availability, and exhaustibility 

[Gi12]. 

• Environmental Development of Industrial Products (EDIP) – Non-Renewable Resources 

considers the total mass input of distinct natural mineral resources and aggregates them equally 

regardless of their origin (country or specific deposit) or any scarcity-related parameter 

[BBC12]. 

• Cumulated Energy Demand (CED) accounts for resources with energy or heating value such 

as oil and natural gas, but also renewable sources such as solar energy and biomass [AOA16]. 

This approach takes into consideration all the energy consumed during the extraction, 

manufacturing, and disposal of a product. It represents a product’s total energy demand [Me11, 

Hu10]. 

• The Cumulative Exergy Demand (CExD) uses the CED as a baseline but uses exergy as 

indicator. Exergy of a resource is the maximum amount of useful work that can be obtained 

from it [Bö07, De08]. By using exergy, the CExD can account for several types of resources 

including those with no heating value. This method does not have spatial differentiation. 

• Cumulative Exergy Extraction from the Natural Environment (CEENE) considers several 

elementary flows, with a higher number of characterization factors than other than CExD. One 

of the differences between CEENE and CExD is the approach used to account for the exergy 

of metals and minerals. CEENE enables to account for very different natural resource intakes, 

from renewable resources, nonrenewable resources, water and atmospheric resources, and land 

use [De07]. 

3.3.3. Midpoint methods 

The impact-based methods use LCIA methodologies from the life cycle assessment framework. The 

amount of inventoried material and energy resources is multiplied by characterization factors that 

represent specific resource-related impacts. These factors are developed based on the properties being 

studied, such as resource stock depletion, or the economic impacts of depletion, or damage to the 

environment [AOA16]. These methods include: 
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• CML focuses on environmental impact categories expressed as resource use or emissions 

released into the environment [MBS18, Hu02]. Following impact categories are relevant: 

a) Abiotic Depletion Potential (ADP), which is multiplied by the extracted amount of a 

given resource, and compared with the depletion of 1 kg of antimony (Sb) as a reference 

[KSB14, Hu02]. The ADP characterization factors for minerals and fossil fuels are 

calculated by comparing the resource’s extraction rate to its ultimate available reserve 

[BK16, SBF15, SR17]. The characterization factors are developed using data on ultimate 

stock reserves, referring to the quantity of resources that is ultimately available. The 

separation of minerals and fossil fuels into distinct categories provides a better 

representation of the different reserves [Sa16, vG16]. [EC10] adopted a version of the 

Abiotic Depletion Potential that is calculated using the reserve base instead of the ultimate 

reserve estimations.  

b) The Global Warming Potential (GWP) represents a system’s equivalent carbon dioxide 

(CO2) emissions that contribute to anthropogenic climate change. To quantify the effect of 

different greenhouse gases and express them CO2-equivalent emissions, the emission 

quantities are multiplied by characterization factors [My13]. Although not a method for 

evaluating resource consumption, GWP is the most well-known LCA indicator, and thus 

worth including for communication purposes. 

• The Anthropogenic Stock Extended Abiotic Depletion Potential (AADP) may be 

considered a complementary method for the ADP, by including the depletion assessment 

resources that have already been extracted from their deposits and are now available in the 

anthroposphere. However, due to the difficulty of obtaining consistent data, it has 

characterization factors for a reduced number of metals [SBF11, SBF15]. 

• The Eco-Indicator 99 midpoint method considers the decrease in resource quality based on 

current extraction rates. The metal depletion category considers all mineral resources as of 

equal importance and omits substitution possibilities. It uses a lognormal distribution of 

concentrations of mineral resources to quantify extracted amounts against grade and use this 

relationship to calculate marginal effects of present extractions. The concept of surplus energy 

allows quantifying the required increase of efforts [Go01]. 

• The ReCiPe midpoint method was developed with characterization factors for fossil fuels, 

metals, and minerals, and a different approach is used for each resource. The Mineral Resource 

Depletion (MRD) impact category uses data about deposits and evaluates the depletion of 

metals and minerals. This method also considers decreases in the concentration of minerals 

found in ores due to their extraction, normalized to kilograms of iron [AOA16]. This is 

achieved by using the monetization of surplus energy demand to characterize future efforts for 

resource extraction. Marginal increases in a resource’s extraction cost per kilogram forms the 

basis of the model [Go09, KSB14]. 
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3.3.4. Endpoint methods 

Endpoint methods are based on midpoint methods. They are developed to consider the overall 

environmental burdens associated with resource extraction and use, rather than the most immediate 

impacts such as the diminishing of stocks or deposits [KSB14, AOA16]. The results are assigned to 

protected areas, weighted in a common unit (e.g. points), and aggregated in order to present the total 

impacts in a single equivalent score [SR17]. This shows the relative importance of resource depletion 

in comparison to the other categories and the total environmental impacts of a process. 

The calculation of single-point Eco-Indicator scores is intended to aid day-to-day decision making, and 

also serves as a general-purpose impact assessment method in LCA [EC10]. Endpoint methods are based 

on various midpoint indicator methods and include: 

• The Eco-Indicator 99 endpoint evaluates the total impact of using resources by considering the 

increased workload involved in the extraction of more inaccessible reserves. Categories aggregated 

include damage to ecosystem quality, damage to human health, total resource consumption, and 

total impacts [Go01, AOA16, SR17]. 

• The ReCiPe endpoint differentiates between fossil depletion and mineral depletion in the resource 

category [AOA16, EC10, Go09]. 

3.3.5. Selection of indicators for evaluation 

The answer to the question “what is the right indicator or method?” is: “there isn’t one.” There are 

always a variety of indicators, and the method is selected based on the overall question under 

investigation. Table 3-2 presents a summary of the discussed methods related to raw material usage 

during the life cycle. The EU recommends using CED to evaluate the impacts related to total resource 

consumption and identify potential direct savings in primary resource use, and to improve process 

efficiency [EC10]. EDIP is used to evaluate total resource consumption for each distinct metal. For the 

midpoint assessment, [EC10] recommends that the ADP be presented together with GWP for company 

reports and other communication. The ReCiPe endpoint method is the recommended endpoint LCIA 

method, as it differentiates between fossil and metal depletion in the resource category [AOA16]. 

3.3.6. Gaps on indicators for material depletion assessment 

There is a lack of consensus across impact assessment methods for mineral resource consumption in 

LCA [KSB14], as the different methods were developed using different approaches for the evaluation 

of impacts. Most methods acknowledge the depletion of natural resources from a functional point of 

view. This neglects the intrinsic value of minerals [Hu02]. Expanding the analysis of the impacts of 

material usage requires an evaluation of socio-political, economic, and environmental dimensions. 

These need to be developed in addition to the existing analysis of LCA.  
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Table 3-2: Methods for assessing the impacts of material resource consumption. 

Category 

Method Indicator Unit References 

Resource 

Account 

Methods 

CED Cumulated Energy Demand MJeq [Hu10] 

CExD Cumulated Exergy Demand MJeq [Bö07] 

[De08] 

CEENE Cumulative Exergy Extraction from 

the Natural Environment 

MJeq [De07] 

CMD Cumulated Material Demand kg [Gi12] 

EDIP2003 Material Depletion kg [HP05] 

Midpoint 

 

 

ADP 

GWP 

Abiotic Depletion Potential 

Global Warming Potential 

kgSb-eq 

kgCO2-eq 

[SBF15], 

[Gu06], 

[vG16] 

AADP Anthropogenic Abiotic Depletion  kgSb-eq [SBF11], 

[SBF15] 

ME Eco-Indicator 99 - Mineral Extraction points [Go01] 

MRD ReCiPe - Mineral Resource Depletion kgFe-eq [KSB14], 

[Go09] 

Endpoint Eco-Indicator 99 Resources - Total points [Go01] 

ReCiPe Total Resource Depletion points [Go09] 

Cumulated Energy Demand (CED) and Cumulated Material Demand (CMD) are considered in 

Germany’s national sustainability strategy [Gi12]. These two indicators lack information on distinct raw 

material consumption. The EDIP indicator on the other hand, presents non-renewable resource depletion 

results based on the total mass of each separated resource [WW17]. However, the EDIP categories for 

each raw material (such as aluminum) leave aside information such as material origin or production 

processes. 

CED, CExD and CEENE remain influenced by fossil resources. The same can be said about endpoint, 

single score indicators [AOA16], where the weighting of midpoint indicators related to fossil fuel usage 

overwhelms the impact of mineral depletion. Reporting mineral depletion separately is therefore 

preferred. 

Abiotic resource depletion is one of the most debated impact categories. There is no scientifically 

accurate method for deriving the weighting factors that are used to calculate abiotic depletion based on 

the input and output flows. Diverse ways to characterize these weighting factors do exist, such as a 

decrease in the resource itself, a decrease in international reserves of useful energy, or an incremental 

change in the environmental impact of extraction processes at some point in the future. Therefore, an 

assessment of only one indicator can provide insufficient information, which could lead to incorrect 

conclusions [vG16, Dr16]. Additionally, the development of different methods has resulted in different 

characterization factors for distinct materials, and some materials were not considered during the 

development of the methods. For example, neodymium, palladium, and silver are not included in the 

Eco-Indicator 99 midpoint and endpoint methods for calculating the depletion of metals.  

Changes in economic data caused by fluctuating demand, exploration and supply cycles, politics and 

socio-economic trends make the inclusion of a temporal dimension inescapable [Dr16, Sa16]. The 

consequences of further exploitation of these metals need to be analyzed. Furthermore, the materials 
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considered “critical” vary according to market conditions, as seen on the evolving list of critical raw 

materials [BST12]. Criticality indicators are calculated for minerals and metals, so that economic and 

geopolitical factors can be included in LCA. However these criticality indicators are not used when 

researchers evaluate the material demands of products [KSB14]. The following subsection presents a 

set of indicators developed and updated within this dissertation to include criticality in LCA. These 

indicators are to be used to evaluate resource depletion with considerations of criticality in Chapter 7. 

3.4. Formulation and development of criticality-based indicators for LCA 

This section provides an overview of the development of indicators for LCA that include the discussed 

aspects of criticality. The goal is to develop a novel set of characterization factors that include the 

information on criticality as per the definition of the EU. These indicators are to be applied and their 

usefulness also evaluated by using the results of the impact assessment of data center equipment 

presented in Chapter 7. 

3.4.1. Critical materials and their relationship to the material demands of IT 

hardware 

Increased usage of IT hardware has raised awareness among different stakeholders that this development 

also relates to increasing demand for critical metals. IT devices contain critical materials, and their 

development is vulnerable to supply disturbances. Criticality assessments might be a suitable method 

for policy makers to understand and regulate the market. Although data is often sparse, the available 

information about the material demands of IT suggests that current practices are likely to lead to scarcity 

for some metals in the not-too-distant future [GE12]. Thus, raw material productivity could be increased 

by minimizing material inputs and reusing production waste, which would result in lower environmental 

impacts and less consumption of scarce resources [Gi12]. [EC10] recommends methods for LCIA to 

cover some scarcity-related issues, such as depletion from mines. Similarly, life cycle data for critical 

raw materials can provide valuable insights into the options for managing these materials at the end-of-

their-life stage, particularly when evaluated using a material flow analysis [Ma15]. 

There is no ideal indicator or method available in LCA to assess impacts caused by raw materials and 

criticality, or the potential benefits of recycling to alleviate supply chains. Mass and unit-based metrics 

provide insufficient information about the benefits of the recycling rates of critical materials. Most of 

the commonly used approaches in LCA are still incapable of predicting the physical scarcity of raw 

materials in the future and the consequences for sustainable material use. As resource efficiency is 

considered a key element for sustainable development, there is an increasing need for suitable methods 

to address the sustainability of resource use [KSB14]. 



56 

 

Due to the dependence on raw materials and their availability in new technologies, recent literature 

proposed the integration of resource criticality assessments in the life cycle sustainability assessment 

framework [MBS18, KPP19]. Resource criticality has so far received more attention outside the LCA 

community and is gaining importance in policy making. It is therefore desirable to use a resource 

depletion indicator that reflects the supply criticality of a given resource, subject to economic, political 

and strategic influences, in addition to mere availability in the natural environment [KSB14]. 

3.4.2. Criticality-weighted abiotic depletion potential 

Recent works proposed the integration of resource criticality assessment within LCA [Ge16, ScB14, 

So15, MBS18]. The Criticality Weighted Abiotic Depletion Potential (CWADP) here proposed is a 

set of indicators that merge the concepts of ADP and criticality. The ADP characterization factors are 

modified using the criticality values of raw materials. This addresses a missing link in LCA and the 

impact of resources with a focus on their criticality. It reaches a high degree of abstraction in terms of 

economic values as it is related to and normalized to kg of antimony equivalent. Normalization allows 

comparing results between different products and provides a baseline for assessment.  

It is based on ADP of natural resources and uses the two main parameters defined by the EU to determine 

the criticality of a material (economic importance and supply risk) to build the indicators for each 

parameter. Comparing the CWADPs to the corresponding EU criticality values and its thresholds show 

the equivalent criticality of the assessed product. This information reflects the impacts of criticality on 

LCA and assesses the total resource consumption of critical materials in a system. Criticality values are 

taken from EU criticality reports [EC20b]. The dynamic nature of the results allows investigating the 

impact of criticality over time.  

Eq. 3.3 describes the calculation abiotic depletion, which is the result of the sum of each resource ADP 

multiplied by its mass: 

 𝐴𝐷𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐴𝐷𝑃𝑖 ∗ 𝑚𝑖𝑖   (Eq. 3.3) 

With the calculation of the individual characterization factor 𝐴𝐷𝑃𝑖 described in Eq. 3.4: 

 𝐴𝐷𝑃𝑖 =

𝐷𝑅𝑖
𝑅𝑖
2

𝐷𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓
2

 (Eq. 3.4) 

where: 

 𝐴𝐷𝑃𝑖 is the abiotic depletion potential of resource 𝑖 (kgSb /kgi); 

 𝑚𝑖 is the quantity of resource 𝑖 extracted (kg); 

 𝑅𝑖  is the ultimate reserve of resource 𝑖 (kg); 
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 𝐷𝑅𝑖 is the extraction rate of resource 𝑖 (kg/year) (regeneration is assumed to be zero); 

 𝑅𝑟𝑒𝑓 is the ultimate reserve of the reference resource, antimony (kg); 

 𝐷𝑅𝑟𝑒𝑓 is the extraction rate of the reference resource, 𝑅𝑟𝑒𝑓 (kg/year). 

Moving from the abiotic depletion to the criticality weighted abiotic depletion is achieved by multiplying 

the 𝐴𝐷𝑃𝑖 of a resource with the normalized criticality factor 𝑐𝑖𝑥 of a resource to build the 𝐶𝑊𝐴𝐷𝑃𝑖𝑥 of 

this resource, as presented in Eq. 3.5: 

 𝐶𝑊𝐴𝐷𝑃𝑖𝑥 = 𝑐𝑖𝑥 ∙ 𝐴𝐷𝑃𝑖 (Eq. 3.5) 

where: 

𝐶𝑊𝐴𝐷𝑃𝑖𝑥 is the criticality weighted abiotic depletion potential of resource 𝑖 based on  the 

 criticality parameter 𝑥; 

𝑐𝑖𝑥 is the normalized criticality factor of resource 𝑖 based on the criticality parameter 𝑥; 

To exclude a decreasing impact of the criticality parameter on the CWADP its value is normalized to 

avoid values below 1.0 (Eq. 3.6). Therefore, both parameters, the economic importance and the supply 

risk of a resource are be divided by the lowest respective value of all critical resources in the report: 

 𝑐𝑖𝑥 =
𝑐𝑥𝑖
𝑐𝑥𝑚𝑖𝑛

 (Eq. 3.6) 

where: 

 𝑐𝑥𝑖 criticality parameter 𝑥 of resource 𝑖; 

 𝑐𝑥𝑚𝑖𝑛 minimal criticality parameter of resource 𝑖 in the data base. 

Since the criticality, values are being updated in perennial cycles these CWADPs will change with any 

new report released. So, the CWADPs will need to be indexed with the corresponding report and the 

chosen criticality parameter to guarantee a unique assignment, e.g., “CWADPEI-EC2022” for the CWADP 

using the economic importance parameter (EI) based on the report by the European Commission (EC) 

published in 2022. This indexing method allows the unique designation and the use of any criticality 

parameter of any database in general. 

By including the normalized criticality parameter into the equation of the abiotic depletion above, Eq. 

3.7 allows obtaining a life cycle impact: 

 CWAD𝑥 = ∑ 𝑐𝑖𝑥 ∗ 𝐴𝐷𝑃𝑖⏟      
𝐶𝑊𝐴𝐷𝑃𝑖𝑥

∗ 𝑚𝑖𝑖  (Eq. 3.7) 

where 𝑥 is the criticality parameter used. 
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Creating a quotient of the criticality weighted abiotic depletion and the abiotic depletion defines the 

criticality factor which shows the impact of a given criticality parameter 𝑥 within the LCA. Eq. 3.8 

describes the calculation of such equivalences: 

 𝑆𝑅𝑒𝑞 = 
CWAD𝑆𝑅

𝐴𝐷
 , 𝐸𝐼𝑒𝑞 = 

CWAD𝐸𝐼

𝐴𝐷
  (Eq. 3.8) 

here 𝑆𝑅𝑒𝑞 and 𝐸𝐼𝑒𝑞 are the equivalent criticality indicators for the analyzed product. 

3.4.3. Geo-Political Supply Risk 

The Geo-Political Supply Risk (GPSR) involves developing characterization factors for each elementary 

flow, based on the individual Supply Risk of the material and on the global production of this, thus 

integrating Supply Risk directly into the LCA methodology. This method, first proposed by [MBS18], 

aims to quantify the risk of short-run supply disruptions in commodity trading between countries as a 

function of production concentration, supply chain composition, and political stability of producing 

countries. This indicator divides the Supply Risk indicator by the total amount of produced raw material. 

This allows highlighting the materials that are used in lesser amounts over the bulk materials. The 

Supply Risk relates to the market, using data on mine production [Ob16]. The formulation given in Eq. 

3.9 states that:  

 𝐺𝑃𝑆𝑅𝑖 =
𝑆𝑅𝑖

𝑃𝑖
 (Eq. 3.9) 

where: 

𝐺𝑃𝑆𝑅𝑖  is the Geo-Political Supply Risk of the material 𝑖 (1/kg); 

𝑆𝑅𝑖  is the Supply Risk of the material 𝑖 (1); 

𝑃𝑖  is the global production of the material 𝑖 (kg). 

Like other impacts, the total 𝐺𝑃𝑆𝑅 of a product is obtained via the elementary mass flows of the LCI 

and the characterization factors of Eq. 3.9, as described by Eq. 3.10: 

 𝐺𝑃𝑆𝑅 = ∑ 𝐺𝑃𝑆𝑅𝑖 ∙ 𝑚𝑖𝑖  (Eq. 3.10) 

where: 

𝐺𝑃𝑆𝑅  is the total Geo-Political Risk of the system (1); 

𝑚𝑖  is the individual mass flow (1). 

[MBS18] developed these indicators and evaluated different combinations of Supply Risk and 

exponentials. The use of the Supply Risk combined with the global production better reflects CRM 

importance and therefore could be used in LCA for an assessment of resource security impact for the 



59 

 

EU. This dissertation expanded on the characterization factors and updated inventories and databases to 

update the indicators. 

3.4.4. Results on proposed methods 

Including criticality into LCA has been challenging to achieve but desirable to accomplish. Innovative 

approaches for the evaluation of resource consumption of products by building comparison values based 

on LCIA combined with weighted criticality values to show the direct impacts of criticality on LCA 

results. Figure 3-5 presents the characterization factors for the developed indicators. 

 
Figure 3-5: Comparative values of the developed indicators. Logarithmic scale. 

As mentioned above, numbers and values that could be compared to ecologic values should be avoided 

and there is no uniform opinion about the “ideal” indicator assessing and reflecting the criticality of 

resources. Therefore, this indicator should reflect the impact as an additional factor to be added to 

existing and recognized methods used in LCA. 

The proposed indicators are applied in several case studies in the following chapters using inventories 

of products used in data centers. Using these characterization factors, the results on the different impact 

categories can be calculated. The process considers the gathered information on parts composition of 

the different devices to construct product systems based on the inventory information. 

  



60 

 

3.4.5. Outlook on the developed indicators. 

Indicators such as the Criticality Weighted Abiotic Depletion Potential represent initial attempts to 

merge the concepts of criticality with resource depletion. There is a lack of fully dynamic criticality 

analysis, although some authors have conducted static assessments of different time periods, or analyzed 

stock and flows of materials over time [Gr12, DG11]. Thus, novel approaches are required to incorporate 

the dynamic aspect of criticality. The indicators here developed and expanded can be understood as an 

extension of the well-known abiotic depletion potential (ADP). This could be a straightforward and 

universal method to include the impact of a criticality parameter into LCA and thus could be closer to 

the Sustainable Development Goals to secure raw materials. The criticality factors resulting from the 

quotient of the criticality-weighted abiotic depletion and the abiotic depletion of a product is a direct 

indicator for this impact and the underlying method is independent of the choice of the database and the 

criticality parameter used. These methods can serve to assess resource security in LCA when there is 

the need to enhance strategic and socio-economic considerations. 

The normalized criticality factor of a resource is the key factor in the interpretation of the results. This 

factor depends on the database for criticality parameters of a given report. Depending on the database 

and its underlying calculations used for the criticality parameter, the normalized criticality factor might 

have non-linear amplitudes. Even effects of feedback due to correlations to the abiotic depletion 

potential are possible. An interpretation of the criticality factor should then always be done based on the 

database used. 

Focusing on the socio-economic and geopolitical perspectives, [MBS18] identified the GPSR as an 

alternative for the characterization of resource security and criticality concerns for adoption within in 

LCA. This has the capability to include socio-economic and geopolitical considerations related to the 

use of material resources. Of the options, the supply risk related to the annual mine production gives 

more importance to specialty metals and reflects more closely the results on criticality of [EC20b]. 

However, the problematic of focusing on scarce materials used mostly in technology manufacturing 

persists and may be unsuited for use in other applications. 

Data and data sets of comparable quality are not always available for all raw materials included in the 

LCA, as seen in indicators such as the abiotic depletion potential and in the list of critical raw materials. 

A common database for the comparison of different raw materials would increase the quality of 

information on relevant issues [BST12]. Today, there is still great uncertainty when comparing different 

LCIA related to raw material and criticality impacts, but there are already projects underway that take 

this issue seriously into account, such as the “Sustainable Management of Critical Raw Materials” 

project [EI17]. In addition to the assessment of primary resource availability, future studies need to 

consider differentiating between primary and secondary resources [Sc14]. 
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Addressing dependencies between indicators can also show the effects of reducing material use in other 

impact categories. Studies on the impacts of the effects of recovery technologies and omit effects such 

as ‘rebound’ or ‘leap frogging,’ which could disrupt the supply of raw materials to manufacturers. 

Including a dynamic analysis in these methodologies could provide information for policy development. 

These dependencies between indicators are evaluated statistically in Chapter 7. 
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4. Development of Life Cycle Inventories of Data 
Center Equipment for Cradle-To-Grave Analysis 

This section presents an overview on the information gathering process and on the data for evaluation 

of critical material and energy depletion impacts of data centers. This is based on clusterization of 

devices in different layers, and on the establishment of databases for the information collected. First 

starting with a screening of case studies of data centers in northern Germany, selected devices are 

disassembled for this research, and their most relevant constituents, namely printed circuit boards, are 

analyzed in laboratory to characterize the material composition of reference components. Results on 

material composition are compared to the values found in databases and in literature, systematized in 

new databases, and are later incorporated in the inventories. This contributes to improving data quality, 

which is used in Chapter 7 to compare results quality. Models for the different components are built 

based on previous literature, existing databases, and by development of new processes, with the updated 

information being incorporated accordingly into the model building structure proposed in Chapter 6. 

This led to databases with updated information based on inventories of the data centers under study, the 

information on composition of data center devices, their constituent parts, and the updated material 

content information. These inventories are later used for life cycle impact assessment calculation and an 

assessment of the potentials of material recycling (Figure 4-1). Cradle-to-Gate models can be 

calculated, or later incorporated with End-of-Life models. 

 
Figure 4-1: Information flow for development of databases with Life Cycle Inventories for data center components. 
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4.1. Methodology 

For the preparation of life cycle inventories for life cycle impact assessment, different methodologies 

were applied: 

a) Proxy research: As part of the proxy research (related literature and values) an analysis of existing 

databases containing information on data center equipment or similar components was conducted. 

This with the goal of analyzing which information on these components exists, and which is the 

quality of this information for this research. This identifies research gaps and data gaps. 

b) Development of case studies: Different case studies were conducted to analyze the bill-of-

materials (BoM) of components at the End-Of-Life from data centers. Disassembly and weighting 

of the individual parts are registered here. Information on data center inventories is gathered to 

conduct case studies in whole facilities. 

c) Preliminary modelling and simulation: Based on the first inventory analysis and on the proxy 

research, preliminary models of the components are executed. This with the goal of identifying hot 

spots and inventories with low data quality, which will need to be further improved. This step is 

further developed in Chapter 7. 

d) Laboratory analysis: Given the requirements on information and the preliminary identification of 

components with the highest critical and valuable material concentration, several components are 

analyzed in laboratory to evaluate material composition and improve the data quality of the models. 

This information is systematized in databases containing updated information. 

e) Inventory data base actualization: With the research gaps identified, and the identification of 

missing elements and outdated values in the database, the outdated information in the raw material 

gathering process databases is updated with the laboratory results, which is then validated against 

similar studies by comparing the trends and values obtained. 

f) Results improvement assessment: With the information gathered on material composition and on 

raw material gathering processes, updated calculations on the models are executed using the 

architecture of Chapter 6 and evaluated in Chapter 7. This is to analyze the changes in the results 

and on the quality of results obtained, which are evaluated via uncertainty analysis. Changes to 

data on material content are presented in this chapter, whereas the improvement on results quality 

is evaluated quantitatively in Chapter 7. 

This chapter describes the process of developing LCI for data centers based firstly on proxy research for 

developing an approach to data center hierarchical structure. Case studies are developed based on the 

inventory information. A description of the laboratory analysis is included when describing relevant 

components. Finally, a description of the different life cycle models for the most relevant components 

of data centers is provided. 
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4.2. Clusters for data centers and their components 

The guidelines produced by The Green Grid [ABD12], provide a framework for identifying and 

describing the elements necessary to assess a data center’s complete life cycle, taking all relevant 

environmental impacts into consideration. These guidelines do not delve into all the economic and social 

aspects of sustainable data center operations, such as the use of “critical materials” and does not attempt 

to determine the level of accuracy that can be achieved in assessing the life cycle impacts of a data 

center. Both aspects are of importance for the evaluation of critical material depletion and evaluation of 

accuracy and completeness of the analysis, which are objectives of this dissertation. Hence, improved 

data and additional methodologies are to be used. 

4.2.1. Identification of clusters for material analysis 

This subsection identifies devices that require a deeper analysis, based on the information presented in 

Section 2.2. The most relevant devices for the purposes of this research here are identified for further 

analysis. For the other clusters, categorization options and the corresponding raw material-relevant 

components are described. 

Figure 4-2 shows the scheme of the clusters of the inventory. It displays the delimitation of the cluster 

levels and the cluster groups that fall below them, down to their breakdown according to the raw 

materials. The levels lead from the system-level of data center via the application-related first level of 

the system groups, the levels of the individual devices, their components, their modules, to the last level 

of raw materials. Following levels are portrayed: 

• The system size defines five size categories of the data center system, according with Section 

2.3.1: server racks with an average of 5 servers, server rooms with 19, small data centers with 

150, medium-sized data centers with 600, and large data centers with 6 000 servers. 

• At the system category level, the data center system is subdivided into the application-related 

categories: the IT devices, power supply, air conditioning, and other support infrastructure. 

• At the devices level, the systems are divided into modular components. The IT equipment 

cluster is divided into high-performance clusters, such as servers, storage clusters, and network 

technology. The UPS, generators, batteries, and related components are assigned to the cluster 

of power supply. Air conditioning and cooling devices are assigned to the climatization cluster. 

The other infrastructure cluster includes fire protection, security technology, and small 

consumers such as lighting and screens. 

• At the components groups level, the system devices of the IT system are divided into their 

separable components: printed circuit boards, molded parts, heat sinks, copper cables, fiber 

optic cables, (semiconductor, magnetic and optical) storage, power supplies, fans, batteries, 



66 

 

amongst others. Before the raw material breakdown, the components need to be considered in 

more detail. 

• In the modules level, the components of the different parts are further divided into individual 

manufactured parts, such as capacitors, resistors, printed wired boards, cable terminals, 

magnets, terminals, etc. This relates to existing or newly developed databases that provide a 

direct indication of the raw material composition. 

• At the end of the breakdown, the components are linked to the raw material content. Raw 

materials are also categorized based on their application group, such as base metals, precious 

metals, platinum group metals, and rare earth elements. The material content of the different 

devices is assessed with the use of proxy databases and of laboratory analysis performed with 

the purpose of improving the information available. The databases for life cycle of material 

impacts are also here linked with the material demands. 

4.2.2. Methodology for screening inventories for LCA of data centers 

[Wh12] introduced the screening methodology for LCA in data centers. This method makes use of LCA 

data from previous studies held in databases. Where data is missing or is non-existent this method 

approximates components to the nearest comparable option. Such an LCA allows for the identification 

of hot spots in a comparatively short period of time. This may later be embellished by improving the 

databases and the inventory information. 

4.2.3. Description of case studies 

Information from existing data centers in northern Germany is used as case studies for the applied 

methodology. These operating data centers were screened to provide a complete inventory list of their 

infrastructure and hardware. These belong to different types of organizations extending from communal 

oriented data processing facilities, commercial business applications, and data centers for researching 

of IT optimization (Table 4-1). All IT equipment is within racks arranged in cold aisle containments, 

and for the purpose of modelling it is assumed there is no free-standing kit. 

Table 4-1: Summary description of the considered case studies. These correspond for existing and operating data centers. 

Label Rack density 

(kW/Rack) 

IT load  

(kW) 

No. of  

server units 

Size category Tier  

DC1 4.4 122 485 Medium II 

DC2 6.4 64 180 Small III 

DC3 3.4 3 5 IT Cabinet I 

DC4 3.1 15 135 Small III 

DC5 3.3 99 444 Small III 
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Figure 4-2: Cluster for analysis of materials in a Data Center. 

• DC1 operates with water cooled down by a compression chiller system and has a free cooling 

system to extract heat from the IT halls, and PDU and UPS rooms. This system is backed up 

by a redundant chilled water system. Due to its commercial oriented use, it presents peak loads 

during the month of December.  

• DC2 is part of a bigger research institution, and its power supply and cooling energy supply 

are part of bigger institutional facilities.  
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• DC3 is a small IT cabinet of a private organization. 

• DC4 is an experimental facility with the purpose of researching IT performance and energy 

use in data centers, with a cooling system of variable capacity based on chilled water. 

• DC5 is a communal oriented organization that provides data processing services, uses 

redundant chilled water system, and operates under IT redundancy. 

4.2.4. Functional unit 

The general function of a data center is to provide computing. This calls for an assessment based on a 

unit of computing output. However, due to the heterogeneity of data centers and their purpose, 

referencing the results to a general computing unit is still complex. Different stages of the research call 

for different functional units that adjust to the objectives of the stage of the research. For the first portion, 

where individual components are assessed to identify hot spots and requirements on improvement of 

data, whole devices are considered as a unit. [Wh12] applies a per-kW of computing per-year basis for 

the complete assessment of a data center (𝑘𝑊 ∙ 𝑎). This last approach also allows a sophisticated model 

where material flows of data centers can be incorporated based on their lifetime. 

4.2.5. System boundaries 

Section 3.1.2 defined the boundaries of the study. The study is a cradle-to-grave investigation with 

exclusion of the operational phase and considers the life cycle of a data center and its components from 

the extraction of raw materials (cradle) to the eventual end-of-life of the facility (grave). For the first 

screenings and assessment of results quality, the boundaries are set up to the production phase (cradle 

to gate). This is because without proper information on material content, an analysis of EoL and 

recycling strategies will result in inaccuracies. Stages included are then refined to: 

a) Manufacturing: This stage includes the material and energy inputs in the extraction of raw 

materials, their transport to the manufacturing plant, manufacturing of each material and 

component, and final assembly. 

b) Transport: No specific data was available on the transport used to transfer final products to 

site. Assumptions for transport and values given in other sources were included. As an example, 

200 km average transport from plant to plant for server components to assembly plant was 

included. This assumption may also be used for End-of-Life transport to disassembly and 

recycling facilities.  

c) Use: Since this study focuses on impacts of raw materials, only material flows are considered 

during the use phase. This includes component exchange and use of consumable materials, 

such as cooling refrigerant. IT would undergo exchange every 2 to 5 years, batteries every 5 to 

10 years, and facilities every 20 years. General maintenance is excluded. 
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d) End-of-Life: Broadly speaking, this stage includes transport of the components to disassembly 

facilities, disassembly processes, crushing and/or manual or automatic separation, and 

recycling of materials using different technologies. The recovery of materials is modelled as 

“avoided mining”. This means that the generated ores are considered to generate negative 

impacts of the same specific absolute value as the raw ore. A more detailed specification of 

these processes is given in Chapter 5. This stage is included after a first evaluation of material 

composition data accuracy. 

4.3. Data collection and databases 

4.3.1. Data collection 

The first stage encompassed exhaustive data collection. Information was gathered on the inventories of 

the data center, with lists of IT devices, cooling equipment, and energy supply infrastructure. Additional 

data, such as power and data cable length were extrapolated based on the number of devices. All IT 

equipment is considered as WEEE for the EoL, with different scenarios for disposal and treatment. 

Equipment such as cables and metal frameworks were considered as scrap metal for recycling. Here, 

reference values for the composition of the devices were considered, and proxy databases were first 

included. These serve to identify components with hotspots on material usage and embedded energy. 

A second step of the research included disassembly of EoL components of the data centers under study, 

which provided decommissioned equipment for their analysis. This led to an inventory database on parts 

of the devices. The lifecycle databases of the different components and subcomponents were first 

modelled using proxy information from existing databases, and updated information for the inventories. 

Inventory information for gathering of raw materials in its commercial form varies by source and quality. 

Information on the product life cycle of some common materials such as aluminum, copper and iron is 

already included in the ecoinvent 3.4 database [We16]. The database on raw material gathering 

processes was analyzed to evaluate accuracy and representativeness. One of the gaps found was the 

absence of some critical materials on the database, such as individual rare earth elements. Moreover, the 

ecoinvent database presents some products as byproducts of other mining activities or represent them 

completely as other materials due to the multiple outputs that come from the same mine. E.g., platinum 

was represented using gold flows, which lead to errors in the assessment of the impacts of critical 

material use. This substitution required a modification of the databases to include materials originally 

omitted, and to separate properly processes with multiple outputs. This update is also presented as a key 

contribution of the research and described in Chapter 7. 

Individual material assessments were conducted using the research outputs of a previous update in the 

life cycle assessment of metals, presented in [NE14], as a starting point, and updated sources on global 
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mining output were gathered from sources such as the US Geological Survey [Ob16]. The updated 

materials database is later used for impact assessment calculations.  

LCI information is gathered from specific studies to create models for the various processes required to 

mine and process the different raw material. In cases where mining and refining activities generate 

multiple materials, economic allocation of environmental impacts and resource use provides a method 

for attribution of the total impacts of those materials. Economic allocation factors are derived from 

information about the economic value of the manufactured goods and combined with the mass fraction 

of each product. 

4.3.2. Databases for LCA 

Databases for LCIA exist for various products and processes. After a screening of available databases, 

some of the relevant databases for this study are: 

• Ecoinvent 3.x: The ecoinvent database provides updated information on energy mixes and 

industrial production processes for IT and electronic components, although not focusing on 

data center components. In addition, it offers a collection of methods for assessing 

environmental impacts. These methods also serve as a starting point for the development of 

criticality-based impact assessment methods, but the characterization factors are updated and 

modified according to the methodology presented in Section 3.4. The current of this database 

version is 3.8 [We16]. 

• GaBi v2002.2: This database, attached also to the software of the same name, contains 

worldwide industry data from primary sources with background data sets. It contains 

extensions for specific industrial activities. 

• ProBas+, a refined version of the ProBas dataset of the German Federal Environment Agency, 

includes information on energy, materials, products, transport, and waste. It contains 

information on processes centered around Germany and has information on the manufacturing 

of electronic components such as computer chips. However, the process of wafer 

manufacturing has no backup information. 

Of the databases currently used in the scientific community, the best known are the GaBi and ecoinvent 

databases. Since the ecoinvent database has attributed geographic location information and a list of 

electronic components, is used as a starting point. Software restrictions make it preferable, as the GaBi 

software is not open source. The information of the ProBas database on integrated circuit manufacturing 

is used later for comparison. Other databases were deemed incomplete, are discontinued, or focus on 

other types of products. 
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4.4. Modelling methodology 

Given the wide variety of products included in data centers, and the multiple system configurations, it 

becomes difficult to develop exact models of each component in the case studies. [FHS10] and later 

[Sz18], [Sc18] and [Pe20] proposed an approach based on the definition of “Reference Products” and 

“Reference Units” to construct models of devices which are representatives of the devices and 

components present in the data centers under study. 

Reference devices are established from the inventory list of devices used in the data centers, which 

consideration of the technical aspects and their functionality within the system. Reference components 

are gathered from a technical characterization of the Bill-of-Materials of the selected device. The 

material data for the reference components is collected from literature sources, existing databases, and 

from specific laboratory analyses. 

Figure 4-3 gives an example of this construction for the case of IT devices. Reference modules are 

included as a disaggregation of components. 

 
Figure 4-3: Procedure for creating databases for modelling of components of data centers. 

4.4.1. Reference devices 

Reference devices are meant to represent a variety of similar components. [FHS10] established a set of 

products based on market information. However, for the application of this study, the reference products 

must be in accordance with the inventory lists of devices available for analysis. This results in a reduced 
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number of devices, focusing on IT devices, and is based on typical server classifications. These 

classifications include different reference devices for servers, network devices, and storage components. 

As an example, servers are categorized in stand-alone (mainframe) servers, tower servers, server blades, 

rack servers, Unix servers. Hard disks are categorized according to their technology and size (SSD, 

HHD 3.5" and 2.5"). 

Each reference device has different technical specifications and performance. These differ from each 

other in key characteristics, such as type and number of installed processors, memory capacity, network 

interfaces and thus also the design of power supply, cooling, and housing. Therefore, models for each 

of these components can be used to build up the model of each reference device. 

Devices of other subsystems are determined by their size and their composition. The first approach to 

develop models for these devices is to use inventory data and literature data for the bulk of their materials 

and identify hot spots in the impact assessment phase. An example of these is the transformer for energy 

supply, whose size depends on its nominal power. These support devices also include electronic 

components, such as PCBs for the control devices, which can also be modelled to build up the model of 

the device. 

4.4.2. Reference components 

For a characterization of the reference devices, the weight contribution of their characteristic 

components is analyzed to develop a BoM. This is the basis for the inventories of data center devices 

and their components. Components are separable elements that are obtained during disassembly. Each 

of the components is then modelled after a proxy product of a database to reach a first iteration of the 

model. These serves as a bridge for a preliminary assessment of the material composition of the devices. 

Components include printed circuit boards, power supply units, cooling units, storage components, 

cables, amongst others. 

4.4.3. Reference modules 

In a deeper category, each of the components is comprised then of modules, which represent the 

constituting elements of the components. This refer to, for example, CPUs, integrated circuits, 

capacitors, RAM memory, etc. [FHS10] and [PHS19] (a preliminary study for this dissertation) identify 

these as hotspots for material depletion impacts, hence the importance of assessing them in detail. 

4.4.4. Disassembly analysis 

This part of the research is based on the dismantling of data center devices conducted in collaboration 

with Mairec Edelmetallgesellschaft GmbH, one of the project partners of the project TEMPRO. Further 

sampling and analyzes were also carried out by the Technische Universität Hamburg (TUHH) [Pe20]. 
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Twenty-eight different types of servers were obtained for disassembly. The servers were dismantled, 

and the inventories of the parts were collected, with the weight of the individual components registered 

for development of BoM with an emphasis on the printed circuit boards. With the dismantling of the 

test material provided, the individual parts of the IT devices were separated, dismantled, and the weight 

of the individual components was measured. 

Identified components include mainboards, expansion cards, memory modules, and CPUs attached to 

the motherboards. Servers also contain storage units (HDD, SSD), CD/DVD drives, power supply units, 

and cooling units. Table 4-2 presents an example of the inventoried composition of the servers. 

Table 4-2: Overview of the component fractions of a decommissioned server. Results come from disassembly of servers 

conducted in this study. 

Material Weight Percentage (%) 

Motherboard 4.65 

Expansion Cards 1.20 

HDD/SSD 0.73 

RAM and CPU 0.51 

Back panels 1.35 

Power Supply Boards 6.99 

Aluminum 5.74 

Fan 3.87 

Hard Drive Magnets 1.33 

Iron 69.78 

Plug Cable 1.03 

Heatsink (Copper 0.92 

Others 1.90 

4.4.5. Laboratory analysis of material composition 

After obtaining different samples of the PCBs, the amount of different valuable and critical materials in 

the main components of servers was analyzed, since these are the components with the highest critical 

and precious material concentration. The devices were categorized and sorted into categories by 

application: 

• Motherboards 

• Expansion boards 

• HDD printed circuit boards 

• RAM (memory boards) 

• CPUs (separable from motherboards) 

• Power supply boards 

• Network boards 

For the analysis of material composition, samples of the above components were cut into long strips and 

then into smaller pieces. Then these pieces were crushed to 4 mm, then 2 mm, and then 0.2 mm to obtain 

a homogenized fraction. Mairec conducted analysis to evaluate the fractions of copper and precious 
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metals. These crushed samples were later sent to the TUHH for further laboratory analysis for other 

metals, such as REE. The samples were treated with acids for further atomization and analysis in the 

ICP-OES equipment (Inductively coupled plasma - optical emission spectrometry). To identify the metal 

content, microwave digestion was carried out with acid (aqua regia). The microwave acid digestion 

process followed the analysis process described in DIN-EN 16174. 

The results of this analysis allow a new characterization of the material content in the mentioned devices. 

There are some key differences between the laboratory data and the assumed literature values. The 

content of aluminum and iron is lower than initially reported. The content of gold, silver, and precious 

metals is up to one order of magnitude higher, indicating higher material concentration than previously 

reported. Another novelty of this analysis is the reporting of critical material content, such as dysprosium 

und neodymium. Figure 4-4 and Figure 4-5 display some of these values compared to previous assumed 

information. 

 
Figure 4-4: Difference of data between the results from the laboratory analysis and the existing data from literature for server 

motherboards. 

 

Figure 4-5: Difference of data between the results from the laboratory analysis and the existing data from literature for RAM. 
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4.5. Life Cycle Inventories of data center elements 

4.5.1. Description of inventories for modules 

This section describes a summary of the LCI for modelling of the modules that have the highest impacts 

on material depletion and on primary energy demand. As there is a vast number of electronic 

components, only a small selection is described here. The developed LCI databases include a description 

of components of lesser relevance. 

4.5.1.1. Processors 

[Pr16] presented information on production of CPUs. [Sc18] developed models based in a differentiation 

according to front-end back-end manufacturing processes. The frontend process includes the structuring, 

coating, and doping of silicon wafers. The backend processes include building connections and 

assembling into CPUs. These models are also incorporated in the ecoinvent 3.4 database, and are based 

on the production of silicon wafers, with a requirement of 180 cm2 of wafer surface per kilogram of 

CPU. Average die density is taken as 629 g/m2. Transport from is specified as 2 500 km via freight train 

and on lorry, representing transport from frontend to backend manufacturing plants, and similar values 

for transport to assembly plants. Modelling includes mix from electricity sources representing 

production, mainly from China and the United States. Further intercontinental transport includes 

transoceanic freight (10 000 km). The production of wafer is given in square meters, whereas the 

integrated circuit is given in weight units. Figure 4-6 presents a schema of the model for this process. 

 
Figure 4-6: Description of process chains for life cycle inventories for CPUs. 

4.5.1.2. Integrated circuits 

Integrated circuit production is based also on the processes for manufacturing silicon wafers. Integrated 

circuits include frontend and backend processes. This is modelled as memory integrated circuits, in 

accordance to the approach of [Pr13]. Electricity mixes are represented as a mixture of country specific 

mixes. Integrated circuits are used to populate printed wiring boards to compose printed circuit boards. 

A die area of 44.4 mm2/kg is considered in the ecoinvent database. [Sc18] also includes integrated 
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circuits directly on mainboards, without differentiation of products. Transport activities include 

transport from wafer factory to frontend process plant, from frontend to backend process, and to the 

final assembly plant. The process is like the one in Figure 4-6. 

4.5.1.3. Capacitors 

Manufacturing of capacitors includes using critical metals such as tantalum and precious metals such as 

silver. There are different types of capacitors considered for the fabrication of printed circuit boards, 

and their use depends on the type of application intended. Electrolytic capacitors are widely used in ICT, 

whereas the tantalum capacitors are used in surface-mounted devices where small areas and high-

capacity density are required. For a general model, tantalum, silver, manganese, palladium, and titanium 

presence is dependent on the specific capacitor type. Tantalum is given as powder manufactured for 

capacitors, whose process is linked to the ecoinvent background process. Data is normalized at 1 kg of 

capacitor. Figure 4-7 represents this process, where the optional components are marked in dashed lines 

since their input depends on the type of capacitor manufactured. 

 
Figure 4-7: Model for life cycle inventory of capacitors. 

4.5.1.4. Printed wiring board 

Printed wiring boards are the basis for mounting the different modules, such as integrated circuits, 

resistors, capacitors, transistors, and other electronic components. The ecoinvent database has a variety 

of models for printed wiring boards, albeit the applications are oriented towards personal computers. 

Several differentiation characteristics are for surface, or through-hole mounting, the lead content, and 

the type of soldering used. Lead-free PWBs include metals such as gold, silver, and nickel. Transport 

includes land transport from manufacturing plant to assembly plant. Data from [Hi07] was extrapolated 

to 2017. The data corresponds to a six-layer FR4 multilayer printed circuit board, which simplified the 

information on backend processes. This is a similar process as the one in [Pr16]. The flow information 

is referenced to 1 m2 of printed wiring board. Similar assumptions on transport as for the integrated 

circuits were made. Figure 4-8 represents a generalization of this process, where the inclusion of 

precious metals is dependent on the type of board. 
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Figure 4-8: LCI for the manufacturing of printed wiring boards. 

4.5.1.5. Magnets 

Neodymium is used for strong permanent magnets. Magnetic storage devices, such as HDD, can contain 

powerful magnets based on neodymium. Another material that can meet the needs of magnets in HDDs 

is samarium cobalt. According to DIN-EN 60404-8-1, neodymium magnets contain 28% to 35% 

neodymium (mass fraction) and 0% to 10% other light rare earths such as dysprosium, terbium, and 

praseodymium. [Sz18] established the content of Nd between 20.8% and 28.8% for magnets used in 

2.5” und 3.5” HDDs. For NdFeB magnets, a typical composition of 65% iron, 1% boron, 2% cobalt, 

24.8% neodymium, 6.2% praseodymium and 1% dysprosium are estimated. These magnets are 

manufactured by melting the mixture, consisting of neodymium, iron, and boron; followed by casting 

of this mixture into ingots. The ingots are subsequently pulverized to powder, which, in turn, is sintered 

and magnetized to form the permanent magnet [TMK21]. Figure 4-9 details the model used, which is 

based on a proxy for aluminum technology and considers an estimation on transport of 20km from 

production to HDD assembly plant. 

 

Figure 4-9: LCI for the manufacturing of magnets for HDDs. 

4.5.2. LCI for components 

At the component level, most of the material depletion impact embodied energy depletion impacts are 

focused on electronic devices, such as printed circuit boards, RAM memories, storage technologies, and 
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cables with their connectors. Their manufacturing processes are modelled after the modules described 

in the sections above. 

4.5.2.1. Printed circuit boards 

Printed circuit boards are fundamentally characterized by a very high variety of materials. This depends 

on their subcomponents and on the functionality of the board. PCBs for an UPS have different 

composition than that of a server, and within server there may be different categories of PCBs. The 

material composition of the server boards is determined by the number of processors (CPU), memory, 

and network connections (ports) fitted. Mainboards make up most of the PCBs in IT equipment, with a 

share of around 80%. Adapter boards with various applications are connected to the main boards (also 

called Printed Wiring Boards, PWB). Memory modules and CPU (chips) are usually attached to the 

motherboards of the servers. Hard drives, CD-ROM drives, and power supplies also contain circuit 

boards. Network technology devices such as switches are also equipped with motherboards. Figure 4-10 

represents the inventory for manufacturing a PCB. 

 

Figure 4-10: General schema for the LCI of a printed circuit board, with example of a mainboard. 

Most of the valuable materials are found in PCBs, which leads to a broad classification of them into 

low, medium, and high-grade PCBs, based on the value of the metals that can be recovered. Table 4-3 

presents a classification based on gold content, which is generally used when discussing recycling of 

PCBs [Sz14]. This classification is however insufficient for this dissertation, and a deeper analysis is 

required. However, to keep a relation with current literature, these denominations are also later 

employed. [FHS10] differentiates the various PCBs existing in servers according to the value of the 

material content as well. 

Table 4-3: Categorization of PCBs by Gold content. Source: Data from [FHS10]. 

Category (Grade) Gold (ppm) 

Low <100 

Medium 100-400 

High >400- 
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Within the disassembly analysis, several types of PCBs were identified, each with a particular purpose 

and material composition. Material content information is firstly gathered from a reference data based 

on past studies [Sz18, FHS10, Ha06], which allows a first evaluation of material content (Table 4-4). 

Based on this information, reference PCBs from data center components obtained during the 

disassembly were evaluated to assess the material content. The LCI databases are later modified 

accordingly to reflect the material content and the related material depletion of each component. 

Following elements are considered: 

a) Mainboards are modelled as populated printed wiring boards, with a memory component 

included. This is built upon the “printed circuit board - mounted memory” process in ecoinvent. 

Mainboards include a CPU (represented as a logic type chip) and a memory (memory type 

integrated circuit). Additional components of relevance include surface capacitors, connectors, 

and diodes. 

b) Expansion cards serve as accessories to add functionalities or to extend capacities. These are 

also modelled with a similar composition as mainboards. 

c) Memory cards are considered as RAM Modules and are modeled as an aggregate of integrated 

circuits, which are based on the memory type integrated circuit model in ecoinvent. [Pr13] 

considers a RAM memory of 1 GB as a reference product, with a die surface area of 43 mm2. 

A reference RAM module is equipped with nine memory chips mounted in a circuit board, 

with an extra chip for parity. Efforts for the assembly of the circuit board must be considered 

in the modelling of the RAM. Memory cards contain gold contacts that compose most of the 

valuable metals found. Transport activities include transport from wafer factory to frontend 

process plant, from frontend to backend process, and to the final assembly plant. 

d) HDD boards can be present in servers as part of the storage devices, or as separate 

components. The composition of PCBs for HDDS are represented as PCBs with lower valuable 

material composition. These are modelled as a mixture of different PCBs to adjust to the 

material composition presented, which represent an average of the mixture found in data 

centers. 

e) Network boards are also present on servers as part of the communication components (LAN 

terminals). These are found to have valuable material composition, mostly because of gold 

contacts. Network boards are modelled analogously as adapter boards. 

f) Power adapter boards have a smaller circuit board which are small in relation to the 

outstandingly large electrical components (e.g., electrolytic capacitors, coils, transformers, 

resistors, heat sinks). The proportion of non-ferrous metals and iron is assumed to be relatively 

high. This reduces the material content and thus are modelled as a printed circuit board with 

low material content (Pb mounted surface PCB). 
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Table 4-4: Literature values for material composition of Printed Circuit Boards according to their application. Source: Data 

from [Sz18, FHS10, Ha06]. Content given in is in mg/kg. 

Material Mainboard Expansion 

Cards 

Memory HDD-Board CPU Network  

Board 

Ag  232.35 232.35 348.53 248.87 290.44 23.24 

Al  51430 51430 39320 25720 308590 128580 

Au  49.38 60.96 198.38 132.31 99.89 3.62 

Be 0.24 0.24 0.18 0.26 0.14 0.1 

Co  24.77 24.77 18.94 26.53 14.18 10.5 

Cu 205730 205720 308590 220350 308590 411450 

Fe  73030 73030 7300 36520 7300 175280 

Ga  4.21 4.21 3.22 4.51 2.41 1.79 

In 0.24 0.24 0.18 0.26 0.14 0.1 

Nd 0 0 0 0 0 0 

Ni  13370 13370 10220 14320 7660 5670 

Pb 15430 15430 0 16530 0 6540 

Pd  40.72 40.72 61.08 43.62 50.9 4.07 

Si 436140 436130 333430 467150 249740 184950 

Ta  1440 1440 1100 1540 820 610 

Y  135 135 103.21 144.6 77.3 57.25 

Zn  11.01 11.01 0 11.79 0 4.67 

4.5.2.2. Cooling units for electronics 

Cooling units are mostly modelled as aluminum, brass and iron bodies shaped as a heat exhaustion 

device. These can also include fans (from plastic), with small PCBs (modelled after a power adapter 

board) for control. 

4.5.2.3. Power transmission cables 

Power transmission cables are mostly comprised of copper and plastic. Wire drawing process for wire 

manufacturing and plastic extrusion is considered in the models, as well as transport. Data is modelled 

after a 1 meter of low voltage transmission cable with a weight of 1.04 kg/m. 

4.5.2.4. Network cables 

Network cables for communication devices are modelled after data for UNINET cables, with a weight 

of 360 g/m [We16]. These consist of plastic and copper, and the model includes the manufacturing 

efforts for wiring and molding process. Plugs are modelled separately as copper and plastic pieces. Data 

cables in servers can contain gold in their pins, which are modelled separately (Figure 4-11). Data cables 

for servers with gold in their terminals can contain precious metal concentrations as high as 100 ppm. 

4.5.2.5. Optic fiber cables 

Optic fiber cables are modelled directly with data from ecoinvent, and modified to include the presence 

of rare earths, since these were absent in the original database. These present traces of germanium in the 

form of germanium oxide. Optic fiber cables are used in network devices [FHS10, Sz18]. 
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Figure 4-11: Manufacturing process for a data cable with connection terminals. 

4.5.3. LCI for reference devices 

4.5.3.1. Servers 

There are different categories of servers. [bi13] details a categorization of servers by type, which include 

tower server, rack servers, blade serves, and microservers. Due to the different configuration of servers, 

different models of these components were developed. The first approach follows the establishment of 

average units proposed by [FHS10]. Selected reference products are established here. After that, specific 

units were selected from data center decommissioned devices and were analyzed for their composition. 

These vary in size, and a reference unit of 1U is selected for scaling purposes. From this, tower servers 

and rack servers are the most used in data centers. The following items were then selected as reference 

devices. 

• Server 1U is modelled after a server with one height unit. The model of a PowerEdge 1950 

excludes storage, which is later inventoried separately. It consists of main memory with 8 

memory modules. Added storage devices also include two 3.5" HDDs and one 2.5" HDD. 

• Server 2U is defined based on a HP ProLiant DL360 G3 server, excluding external storage. 

Added storage includes four 3.5" HDDs and two 2.5" HDDs. 

• Sandwich servers are servers 1U unit but half the depth. This is modelled after a Pyramid-

Supermicro server. It is equipped with a CPU, mainboard, and two memory modules. The 

examined server is modelled with four memory modules. 

• Server (1+N)U are scaled up from Server 1U without storage, with half of the housing content 

for every additional unit. External storage is modelled separated. 

• Half-Blade servers: The model is based on a PowerEdge M620, divided into mainboard, 

processors, and adapter boards. 
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• Blade server model is based on a PowerEdge M710. This model includes storage devices of 

3,5", which are modelled separately. Its main component consists of 18 memory modules. 

• Blade center model is based on the disassembly of a Dell PowerEdgeM1000e. It is comprised 

of external housing, 9 fans, 6 power supplies, a mainboard, and 6 switches. 

• Server housing, the enclosure of a server, consists primarily of steel chassis. A PCB is included 

for connection of the plugged module, modelled as a small mainboard unit. The steel structure 

is around 80% by mass. The remainder is considered as data cables and plastic parts. 

Table 4-5 shows an example of the disassembly analysis, which serves as a first iteration for the 

modelling. The components are assigned to the models discussed in the previous section. A proxy for 

assembling in a manufacturing plant is based on the existing database for energy and manufacturing 

efforts existing in the ecoinvent database, plus shipping (mixture of sea and freight). 

Table 4-5: Example of components list for a Server 2U, based on a model HP ProLiant DL380. 

Component Weight (kg9 Count Model 

Power Adapter 1.696 2 Network PCB 

Main Memory 0.024 6 RAM PCB 

Housing 14.832 1 Fe 

Plastic 0.304 1 Moulded Plastic 

Hard Disk 1.001 6 HDD 3.5 in 

Fan 0.165 8 Fan 

Network Card 0.121 2 Expansion Cards 

Active Riser Card 0.169 1 Expansion Cards 

DVD Drive 0.256 1 DVD Drive 

Battery 0.002 1 Li battery 

Motherboard 1.060 1 Mainboard 

Processor 0.022 2 CPUs 

Processor Cooler 0.433 2 Cooling Unit 

Voltage Regulator 0.062 2 Expansion Card 

Rectifier Module 0.602 1 Expansion Card 

Circuit Board 0.018 1 Expansion Card 

Server Cable  0.089 5 Data Cable 

Main Circuit Board 0.294 1 Expansion Card 

Connection Board  0.028 1 Expansion Card 

Cable(Motherboard) 0.013 1 Data Cable 

Power Cable 0.009 1 Power Cable 

4.5.3.2. Storage devices 

Storage devices within data centers can be categorized in SSD and HDD, the latter being subdivided in 

HDD of 2.5" and 3.5". 

a) HDD: [Pr16] provides a first dataset for a 1TB, 3.5" in HDD. Disassembly data for an HDD is then 

obtained after a WIDE ULTAR320 3.5" HDD , and a DELL Savvio provides data for the HDD 

2.5". The data for the components of these devices is modelled after the LCI of PCBs, magnets, 

cables, and similar components from the previous section, plus additional upstream components 

when required. 2.5" and 3.5" drives are similar in components but differ in size and weight. [Pr16] 
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assumes that the size of the integrated circuit in the printed circuit board is the same. Energy for 

production is scaled accordingly. 

b) SSD: Solid State Drives are modelled after information from the disassembly from an SSD 

included in a Brocade Bladecenter. These consist mostly of printed wiring boards with integrated 

memory circuits, plus a socket from a 2.5" HDD. In these memory modules, gold contacts can 

account for a relatively large proportion of the board. The configuration of memory populated 

integrated circuits is assumed for SSD circuit boards and SD cards. 

Table 4-6: Material composition for an HDD 2,5 in, 1TB. 

Component Weight (kg) Count Model  

Housing (Fe) 0.086 1 Iron Housing  

Housing (AI) 0.158 1 Al housing  

PCB 0.014 1 HDD PCB  

Magnets 0.003 2 Magnet  

Magnetic Tape 0.002 1 Magnet  

E-Motor Housing 0.006 1 Iron Casting  

Plate Disks 0.007 2 Al, casted  

4.5.3.3. Network hardware 

[FHS10] made the initial assumption that the Network composition is equivalent to 10% of the amount 

of materials in servers. Inventories on network devices are here gathered to improve this assumption. 

Network components are modelled as a collection of Network-PCB and metal (iron housing) 

components. Table 4-7 presents an example of the list of the inventory of a network unit. 

Table 4-7: Material composition for a network unit. 

Part Mass (kg) Count Modell 

Iron Housing 0.571 1 Iron Housing 

Network PCB 1  0.102 1  Network PCB 

Network PCB 2  0.122 1 Network PCB 

PCB, low content 0.002 2 Power Adapetr PCB 

Case 0.008 1 Plastic 

4.5.3.4. Racks 

Racks are used to hold servers, storage units and network devices. Most of the material of racks consists 

of iron, plastic, glass, and aluminum. The amount of material present in racks is dependent on the 

number and type of servers and devices, and extrapolations can be made to estimate the amount of 

material present in a data center IT room. [FHS10] indicates an average of 5 server units per rack, with 

an estimated 87% iron content. 

4.5.3.5. UPS 

UPS as devices are here simplified as battery-backed up power supply devices. Two types of UPS are 

considered: single-phase UPSs, mostly used in smaller locations (server rooms), and three-phase UPS, 

used in bigger datacenters. The size of an UPS and the material content are scaled up to its nominal 
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power, with average outputs between 3 kVA and 60kV as studied units. These consist of batteries 

(mostly Lead-Acid), iron, aluminum, copper, and low-grade electronic components. Models for 

manufacturing and forming parts, and for transport are included. The size of the UPS capacity depends 

on the redundancy of the data center (tier category) and on the required IT power. 

4.5.3.6. Electric storage system for UPS 

The electric storage (battery) system for UPS devices consists of the electric storage units, power 

converters, electronic control and regulation, and network connections. Most of the batteries are of the 

lead-acid type, which has the advantage of its high recycling capabilities. The batteries are connected to 

the control board by cables. The power converter and the control consist of a larger transformer and of 

additional power electronics (switching transistors, microcontroller, etc.). A model for a battery is 

established separately and based on the ecoinvent database. Control units and power converters are 

modelled after the PCBs presented in previous sections. Figure 4-12 represents the process for 

manufacturing and assembly of a UPS unit with batteries. 

 
Figure 4-12: Schema for the LCI of a UPS System for data centers. 

4.5.3.7. Other electrical supply systems 

Generators are modelled using mostly data on their material composition, which is present in the 

ecoinvent database. Generators consist mostly of copper and iron, with smaller, low grade printed circuit 

boards. A reference product of 200 kW and 850 kg of weight is considered and escalated by size. 



85 

 

Transformers for data centers are mostly of the low voltage type. These include mostly bulk materials, 

such as iron, ferrite, copper, plus plastic components. Similarly, low grade PCBs can be found in these 

devices as control units. A reference unit of 500 kW weighing 3 tons is used as reference product and 

scaled accordingly. 

Lithium batteries are gaining ground as secondary batteries for backup power supply. There are several 

types of composition of Li-Ion batteries, some of them using cobalt (15 -20% of weight per pack). 

Recovery of lithium (2-3% of weight per pack) is of current interest, however no procedure for recovery 

is already established at an industrial scale that can provide data for recycling. Other components are 

iron supporters and copper cables. 

The amount of power cables, of the 3-phase type, are extrapolated using a factor of 1.1 kg/kW of 

installed electric capacity. These consist mostly of copper and plastic. 

4.5.3.8. Climatization units 

For medium data centers and above, most of the cooling is done via air conditioning. Air conditioner 

inside the IT room can be of the split-air type (used in server rooms) or an air-cooling system (for small 

data centers and above. Air cooling inside the IT rooms is done via heat exchangers that use chilled 

water (or a mix of water and glycol). Chilled water is obtained via compressed chilled devices. 

a) Air conditioning units: [Ol12] developed a model with a complete inventory for an air 

conditioning unit within a data center. This model consists mostly of a radiator, fans, condensation 

pumps, and a small control unit, with additional hydraulic components for chiller fluid control 

(Table 4-8). A small control unit is also included and modelled as low-grade PCB. 

Radiators consist mostly of copper and aluminum. Fans are manufactured from steel, aluminum, 

and copper. Pumps are manufactured from cast iron and aluminum. Most of the hydraulic 

components consist of copper tubes, iron tubes, cast iron, copper (for heat exchangers), and bronze. 

The encasement is mostly steel. An average reference unit size of 10 kg/kW is extrapolated, based 

on the results of [FHS10]. 

b) Water cooling devices: Most of the cooling in data centers is done through compressed chilled 

water devices, with free-cooling devices taking a considerable portion in recent years. Components 

include fans, pumps, compressors, copper tubes, and others. The sizing of the cooling system is 

dependent on the heat removal requirements of the IT system, and the material composition of 

these is escalated accordingly. A reference value of 9.1 kg/kW of installed cooling system is used 

to calculate the inputs of components and material flows. Nominally, the cooling capacity must 

match the IT capacity, with requirements of redundancy being specific to each case study, following 

the n+1 schema. 
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Chillers are comprised mostly of copper, steel, iron, plastics, and a small portion of low-grade 

electronics. Similarly, pumps are mostly cast iron, steel, and copper. R134a is considered as the 

standard refrigerant used in compression chilling devices, with a specific value of 0.31 kg/kW 

required, and a loss of around 0.5% per year during the use phase. 

Table 4-8: Breakdown of components for an air-cooling system with a power of 350 kW. Source: Based on [Ol12]. 

Component name  Amount  Weight (kg)/unit  Total Weight (kg) 

Radiator 1  155.8 155.8 

External Encasement  1  206.7 206.7 

Fan 3  6.2 18.6 

Condensation Pump 1  1.1 1.1 

Control Unit 1  0.5 0.5 

4.5.3.9. Transport 

General assumptions for transporting elements, components, and devices include the terrestrial shipping 

of goods, such as IT components, to port (400 km), from plant to plant (200 km), intercontinental 

shipping of goods (sea shipping, 10 000 km), and the intracontinental transport by lorry (1100 km) to 

site. 

4.6. Data center equipment inventories 

The different equipment of data centers is grouped according to the systems presented in Section 4.5. 

This allows grouping the components and developing inventories based on the devices installed on the 

data center facilities. Given the heterogeneity of the devices found, these were paired with reference 

devices and counted as unites. 

Within the development of this research, different project partners with operating data centers made 

their inventories available for this research. Inventories on their devices were developed that accounted 

for the number and type of devices installed and for the technical characteristics of these devices. This 

data is compiled and paired with reference devices to facilitate the development of models that represent 

the complex structure of a data center. 

The key aspect of these case studies is the information regarding the IT systems. These are disaggregated 

into 3 subsystems: servers, storage, and network. Figure 4-13, Figure 4-14, and Figure 4-15 display an 

overview of the inventories gathered for the case studies analyzed. Information gathered included, in a 

broad sense: 

• Size of the data center 

• Inventory of IT equipment 

• Power supply system sizing inventory 

• Climatization equipment sizing and inventory. 
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One of the limitations of this research is that for some cases, the power supply of the data center is part 

of the power supply of the infrastructure of the organization. This was approached by stating that the 

size of the power supply and cooling systems scales according to the power of the IT devices. While 

this is a firstly simplified approach, the impact of these broad assumptions on the material depletion is 

to be further analyzed, as these systems do not contain important amounts of critical metals whose 

extrapolation can impact the results of this analysis. 

When not available, information on cooling facility size and on electrical supply system size was 

extrapolated using reference values based on the IT power installed. 

 
Figure 4-13: Number of servers installed in each facility under study. 

 
Figure 4-14: Number of storage units installed in each facility under study. 
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Figure 4-15: Number of network devices installed in each facility under study. 

4.7. Conclusions on life cycle inventories for data centers 

This section presents an overview on the development of life cycle inventories for posterior evaluation 

of resource depletion impacts. Several case studies are presented as an approach to obtain inventory 

information on data centers as a base to develop life cycle inventories. Different equipment, namely 

servers, network devices, and storage devices, were disassembled to analyze their composition and to 

obtain information on their components. Specific components, such as printed circuit boards of different 

categories, were then evaluated in laboratory analysis to obtain data on material content of specific 

critical material components of data centers. This without disregarding the material composition of other 

components with bulk materials in the inventories. Newly gathered information on material composition 

shows that literature values originally assumed are outdated. Results on material composition indicate a 

higher concentration of precious metals as previously reported, which is expected to have direct 

influence on the results of material depletion impacts in later calculations. As an example, the content 

of gold is 2.4 times higher than initially assumed for mainboards, and around 3 times higher for silver. 

It is notorious that the content of rare earth elements, such as dysprosium, neodymium, and yttrium, is 

here also for the first time reported as part of the information on material content. 

Previous work on assessment of data center inventories, such as [Wh12], and later work focused on 

Germany, such as [Sc18] and [FHS10], already included extrapolated inventory of data centers. The 

present study approach includes for the first-time firsthand information on material composition, 

improving the quality of the data by performing direct analysis instead of assuming proxy values from 

similar components or technologies. 

This part of the research is however limited by the availability of devices that were obtained for 

disassembly, and on the developments in IT that result in constantly changing material compositions. 

Extrapolation of the results is to be conducted carefully, with a proper assessment of the reduced quality 

of extrapolations. 
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With improved information on material content, better models on material recycling can be constructed, 

with the procedure for model building being detailed in Chapter 6. This requires then modelling of 

recycling technologies and assessment of the potential of material recovery from electronic components 

of data centers. The next chapter details models for recycling of data center components based on current 

technologies. With the inventories presented and the improved information on material content, and the 

inclusion of recovery, complete life cycle models can later be developed to estimate resource depletion 

and research the potential benefits of different recycling strategies. The results, presented in Chapter 7, 

require a deep analysis to assess the validity of this study and of the methodologies here employed. 
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5. Circular Economy Approach for Data Center 
Components 

This chapter focuses on the development of life cycle inventories for strategies for the EoL of data center 

components. Due to the variety of materials present on data centers and the focus on critical materials 

of this dissertation, the attention lies on the recovery of critical and valuable materials. An overview of 

the recycling directives and the general recycling of electrical and electronic equipment serves as a 

starting point for the analysis of EoL processes. Due to the particularities of recycling modelling in 

LCA, such as the multiple outputs obtained or the substitutability of the final product, modelling 

methodologies and evaluation indicators for recycling must be defined. An analysis of the process chain 

of recycling follows, with consideration of the various EoL chains and metal recovery technologies 

applied in the industry based on literature reviews and industry data, which is gathered as recovery 

factors and as inventory databases. The development of inventories is executed by combining the 

information on these processes with the available information on material composition of inventories 

presented in Chapter 4, particularly from printed circuit boards, based on units of weight of product 

recovered, and on specific energy and material inputs and outputs for different recycling chains (Figure 

5-1). This serves to answer questions on benefits and impacts of EoL processes on critical material 

sustainability of data center components. 

 
Figure 5-1: Process for development of EoL models for data center components. 

5.1. Recycling of electrical and electronical equipment 

Electrical and electronic equipment (EEE) has a highly heterogeneous mix of materials. The EoL 

treatment is especially important because of increasing concerns that waste electrical and electronic 

equipment (WEEE), containing hazardous constituents, may negatively impact the ecological 

environment and affect human health if unproperly managed [An16]. Disposal in landfills or traditional 
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incineration produces harmful effects to the environment. Additionally, up to 95% of mining energy is 

saved when recycling metals, with corresponding savings in GHG emissions [Iş18]. This being noted, 

it is the value of the metallic fraction, mostly of gold, which is the main driver for industrial WEEE 

recycling. 

PCBs concentrate the most valuable materials in in WEEE. In data centers, they stand for 5-10% of 

overall WEEE weight but hold a high part of valuable material. However, more than 70% of PCB scraps 

cannot be efficiently recycled and recovered and are thus incinerated or landfilled [Li04]. Issues with 

collection within the EU show that the collection rate is insufficient, too much WEEE is exported 

(legally and illegally) from the EU, and finally, the recovery rate from end-processing of WEEE is 

insufficient for specific metals, since the recycling process focuses on extracting bulk materials. This is 

partly because thermodynamics limit the technical recyclability of certain metals if they are alloyed 

[Ba14]. 

The economic driving force for WEEE recycling is the recovery of material value, 95% of which is 

attributed to precious metals and copper, 80% attributed to gold [Ch17]. From the technological point 

of view, current WEEE recycling approaches demand high energy and are environmentally dangerous. 

These can recover about 30–35% of the metals present in PCBs, with purity levels going between 85% 

and 95% depending on the element. Some materials, such as rare earth elements, cannot yet be 

economically recycled [Cu15]. However, recovering metals from scrap is much less energy-intensive 

than from ore. When considering the whole recycling chain, most recycling recovery rates fall to 28% 

of the total weight. For example, recovery of silver is only 11.5%, for gold is 25.6% and for palladium 

is 25.6%. For copper, iron and aluminum, the estimated recovery is about 60%, 95.6% and 75% 

respectively [DFF15]. 

5.1.1. European legislations on management of WEEE 

Three main regulations exist at EU level for the treatment of WEEE: 1) the WEEE directive, 2) the 

RoHS directive (Restriction on Hazardous Substances), and 3) the REACH regulations (Registration, 

Evaluation, Authorization and Restriction of Chemicals). The most important for the development of 

the goals of this thesis is the WEEE Directive. When considering circularity of EEE products, proposed 

regulations of relevance include the “Eco-design Requirements for Sustainable Products”, the 

“Framework for Ensuring a Secure and Sustainable Supply of Critical Raw Materials,” and the 

“Proposal for Promoting the Repair of Goods” (known as “Right to Repair”). 

5.1.1.1. WEEE Directive 

The WEEE Directive (Directive 2012/19/EU) looks to prevent and minimize WEEE by reuse, recycling, 

and recovery. A chief role is given to manufacturers and distributors being required to cover the costs 
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of collection, treatment, recycling, and recovery of WEEE. Producers must set up individual or 

collective schemes for the collection and treatment of WEEE. The directive aims to solve the problems 

associated with improper management of WEEE, which alongside the RoHS Directive (2002/95/EC) 

complements the measures on preventing landfilling and incineration of hazardous waste. It also 

introduced the a “take-back system” assigning the responsibility of WEEE collection on producers 

[EC12]. 

This directive defines WEEE as “Electrical or electronic equipment which is waste… including all 

components, sub-assemblies and consumables, which are part of the product at the time of discarding.” 

WEEE is grouped into ten primary categories. WEEE from data centers falls under the category of “IT 

and telecommunications equipment,” although components from other categories are also present. It 

includes the requirement not to dispose of WEEE as unsorted municipal waste and to collect such WEEE 

separately [EC12]. 

The revised WEEE Directive has a variety of improvements on the earlier iterations. Critical raw 

materials are included in the purpose; a new minimum collection rate of 45 % must be achieved within 

4 years and 65 % after 7 to 9 years. The rate is calculated as a percentage of the average weight of EEE 

placed on the market in the three preceding years. European standards for the collection, storage, 

transport, treatment, recycling, and repair of WEEE and its preparation for reuse are also included, 

although no technical definitions on processes are given. The recycling rates defined are solely weight 

based, making the recycling of all materials equally important. Thus, to achieve the quota, usually it 

becomes most important to recover plastics, iron, aluminum, and copper. This neglects the 

incentivization of recovering valuable or critical metals. 

5.1.1.2. Eco-design Requirements for Sustainable Products 

The European Green Deal [EC19] Europe’s sustainable growth strategy that aims to transform the Union 

into a fair and prosperous society, with a modern, competitive, climate-neutral and circular economy. It 

sets the ambitious objective of ensuring that the Union becomes the first climate neutral continent by 

2050. 

The “Proposal for Setting Eco-design Requirements for Sustainable Products” [EC22] has as main 

objectives to reduce the negative life cycle environmental impacts of products. It therefore lays down a 

framework for setting eco-design requirements based on the sustainability and circularity aspects listed 

in the “Circular Economy Action Plan” [EC20a], including critical material content, resource 

efficiency, and for reducing products’ carbon and environmental footprints. It aims to make products 

last for longer and to boost the use of recycled content in products, decoupling the economic 

development from natural resource use and aiming at the reduction of material dependencies. The 
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framework will allow for the setting of a wide range of requirements, including product durability, 

reusability, upgradability, reparability, and recyclability. 

5.1.1.3. Framework for a Secure and Sustainable Supply of Critical Raw Materials 

The proposal for a “Secure and Sustainable Supply of Critical Raw Materials” [EC23a] aims to 

strengthen the different stages of the European critical raw materials value chain, to diversify the EU's 

imports of critical raw materials to reduce strategic dependencies, and to ensure the free movement of 

critical raw materials on the single market while ensuring a high level of environmental protection, by 

improving their circularity and sustainability. 

This framework goes in hand with the EU’s waste framework on the collection, reduction, recycling, 

and treatment of waste, including of waste streams containing critical raw materials. Operators and 

governments must then analyze the critical raw materials recovery potential in extractive waste. It 

encourages Member States to take measures to prevent the generation of waste, targeting products 

containing critical raw materials.  

Recycling should become increasingly important and reduce the need for primary extraction and its 

associated impacts. This framework gives special relevance to permanent magnet recycling, which 

contain critical raw materials, such as neodymium, praseodymium, dysprosium and terbium, boron, 

samarium, nickel, or cobalt. Permanent magnets should therefore be a priority product for increasing 

circularity. 

To address the current lack of information on the critical raw materials potential of closed extractive 

waste facilities, Member States should draw up a database containing all information relevant to promote 

the recovery, notably the quantities and concentrations of critical raw materials.  

To limit such damage and incentivize the production of more sustainable critical raw materials, the 

Commission should be empowered to develop a system for the calculation of the environmental footprint 

of critical raw materials. 

5.1.1.4. Right to repair 

The proposal on “Common Rules Promoting the Repair of Goods” [EC23] aims at products which are 

discarded prematurely, even though they could be repaired and used for longer. Major causes for the 

decreased lifespan of goods purchased by consumers included the difficulty for consumers to repair 

products themselves, the inconvenience, inflated costs, or non-availability of repair services for 

consumers.  

This framework aims at prioritizing repair whenever it is cheaper than replacement within the legal 

guaranteed framework, producing additional environmental benefits due to lower manufacturing 
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demands. It helps to reduce greenhouse gas emissions, waste, and use of additional resources by 

increasing repairs and thereby extending the lifetime of goods. Member States shall ensure that at least 

one online platform exists for their territory that allows consumers to find repairers.  

5.1.2. Databases for WEEE recycling 

Several information sources can be assessed to evaluate the status of WEEE recycling. Some databases 

supply information on the collection of WEEE, while other databases refer to the life cycle inventories 

of some WEEE products and their downstream processes. 

According to the WEEE Directive, member States shall collect annual information, including estimates, 

on the quantities and categories of EEE placed on their markets, collected through all routes, prepared 

for re-use, recycled and recovered within the Member State, and on separately WEEE exported, by 

weight [EC12]. Already in [PR19], the author identified the necessity of a common database schema at 

European level with participation of different actors involved in the supply chain recovery of critical 

metals, with the aim of supplying standardized information for management and research. Moreover, 

the lack of a common database for the comparison of different material contents and recycling processes 

limits the extent to which recycling potentials or cradle-to-grave environmental impacts can be evaluated 

at a European level. This is because data of comparable quality is often unavailable. Building up such a 

database is additionally complicated by different national interpretations of the WEEE Directive. 

Commonly, the databases on recovery and quantities of WEEE are unlinked to databases with 

information on recyclability, recovery ratios of processes, recycling processes inputs and outputs, or 

impact assessment of WEEE recovery by process. For these purposes, either specific process 

information is needed, or databases holding life cycle inventories of industrial recycling processes must 

be developed. These LCI databases, such as the ecoinvent, have information on energy and material 

uses for recovery of specific case studies, such as laptops. These databases also offer the possibility of 

creating models of specific processes, which is the approach executed in this dissertation. The lack of 

unified data and the unavailability of many of the studied source’s results in the requirement for creation 

of models for recycling to evaluate the potential benefits within a holistic energy and material saving 

strategy. These models are based on diverse sources for individual industrial and experimental recycling 

processes, and on firsthand data on material composition. This harmonized framework will contribute 

to evaluate the environmental impacts of critical material recovery from WEEE and provide a common 

database for evaluation of such processes. 

Additionally, LCI data on raw material production of a wide variety of materials is also needed. This 

was already developed, updated, presented in Chapter 4, and serves as a basis for quantification of the 

savings obtained by recovering metals from WEEE. This comprises the foundations for performing Life 

Cycle Impact Assessment on recycling of data center components. 
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5.2. Recycling in Life Cycle Assessment 

Modelling of recycling in LCA aims to study the environmental impacts of recycling of products and to 

study the benefits of recovering materials and energy from waste streams when these are used in new 

processes or are reincorporated to the original material streams. A comparison of savings with the 

products these recycled materials are replacing is thus necessary to evaluate potential gains. The 

sustainability of different recycling strategies can then be analyzed using the proper indicators. Figure 

5-2 shows a simplified recycling process for EEE and their WEEE outputs. 

 
Figure 5-2: Life Cycle of EEE and their WEEE streams. Source: Modified from [Al14]. 

5.2.1. Modelling of recycling 

Through the processing of EoL products secondary materials, energy resources, and parts are regained 

in a form, which allows to use them in later products. They can replace primary production of the same 

or another material, energy form, part, or product. This always involves some form of processing. 

Methodologically, the outputs can be considered as replacement of equivalent uses, such as energy, or 

direct replacement of materials of the same quality, such as minerals. 

The approach normally is a consequential LCA, since the goals are to reflect the consequences of 

recycling when using secondary goods (i.e., substituting high value primary production). The 

superseded mix of processes is to be determined and their avoided production is credited. For this, a true 

joint process needs to be found, which studies the replacement of recycled materials in the production 

of raw materials. This approach is usually combined with Material Flow Analysis (MFA), and in the 

case of recovery of metals, it is useful to study the different material flows during the EoL processes. 

The avoided inventory of primary production of a good is credited to the EoL product or waste according 

to the degree that it is recyclable. Only the amount of goods that cannot be obtained back from the 

secondary good (e.g., losses due to incomplete collection, recycling losses, etc.) is modelled as primary 

production [EC10b]. 
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Figure 5-3: True joint process obtained from recycling of an EoL product under consequential modelling. Source: Modified 

from [EC10b]. 

Whereas other modelling approaches exist, such as open loop recycling, for the purposes of evaluating 

the direct benefits of recycling of metals, a closed-loop approach is preferred, since it is a requirement 

that the materials obtained from recycling have qualities that allow them to replace materials on the 

market, and thus no degradation of material is desired or expected. 

5.2.2. Allocation of recycling products 

The impacts of recycling are often assigned depending on the scope of LCA. If only the recycling 

process is being evaluated, then it considers the input of waste material without any initial burden. In 

consequential LCA, the impacts of substituted processes are calculated using data on material or energy 

production being replaced for the original production. As a result, the recycling process avoids the 

impact of the primary production. For this reason, the approach is also known as “avoided burden” . 

Given the different outputs of recycling (e.g., a mix of metals), multiple products can result from one 

process. This multifunctionality can be solved by applying an allocation procedure. Several allocation 

procedures exist to assign the impacts to various products. As revenue generation is the driving force in 

the market, the first and most common alternative is economic allocation. The impacts of recovery are 

distributed based on the economic value of the final products of each metal, which then can be divided 

by the quantity produced to obtain a normalized impact by unit. 

To evaluate different technologies, prospective consequential LCA and comparative consequential LCA 

are conducted. Some technologies considered as alternatives are scaled-up for comparison with existing 

technologies. Environmental impact performance comparison of the different recycling scenarios and 

technologies is then executed. The goal is to evaluate the available technologies and recycling routes. 

5.2.3. Scope of EoL in LCA 

Usually, the EoL includes the reuse and recycling process. For reuse, transportation and potential 

remanufacturing activities are included. For recycling, transport, preprocessing, and metal recovery 

processes are considered. 
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When discussing data center components, most of the IT devices have an average life time of between 

5-8 years for high-end servers, and 3-5 years for other equipment [ABD12]. Data center devices lifetime 

can also be modelled using a Weibull distribution, which can be applied using the corresponding shape 

and scale parameters for the specific product type [Ho20]. Most of the reuse takes part within the 

organization, and discarded devices are disposed for recovery. In agreement with the WEEE directive, 

data center operators use provider schemes to dispose of the devices. Other devices, such as 

infrastructure, cooling units, and back-up generators have lifetimes between 10 and 20 years. 

5.2.4. Functional unit 

Several ways of approaching the functional unit in recycling include considering recycling of a whole 

device, recycling of distinct parts that are first grouped together from several dismantled devices (i.e., 

recycling of 1 kg PCB), and recovery of one unit of “recovered good” (e.g., “recycling of 1 g of gold”). 

Some more complex functional units can include “recovery of mix of metals” to bypass 

multifunctionality [BBC12]. 

[Li19] defines the functional based as “recovery of 1 kg of gold” from WEEE assuming that the recovery 

efficiency of gold is the same for all recycling processes, which excludes experimental processes but 

can serve as a starting point for establishing a comparison basis. For the purposes of this work, metal 

recovery processes are first evaluated based on inventoried data for recovery of valuable metals, and 

then scaled to 1 kg of discarded product. This allows connecting the functional unit of disposal (in kg) 

with the inputs for recycling. 

5.2.5. Indicators for evaluation of recycling 

Direct evaluation of recycling is based on either global indicators or specific indicators. [EU12] 

measures the overall WEEE recycling efficiency at three levels: 

1. Collection rate, which is the ratio between generated WEEE and WEEE collected for recycling. 

2. Recycling process efficiency rate, which is the quotient of a recycled material and that material 

collected with WEEE for recycling. 

3. (Element-specific) recycling rate, which refers to functional recycling and is defined by the 

ratio of recycled material (or element) and the total amount of this material (or element) in 

generated WEEE. 

Data center specific recycling metrics are mostly mass based. The most representative is the Material 

Reclamation Ratio (MRR), defined as the sum of the amount of recycled/reclaimed/repurposed material 

over the inbound material. This can be specific for EEE equipment, resulting in the MRR-EEE. The 

inverse of this value is known as Material Reuse Effectiveness (MRE). Additionally, reporting of the 
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volume and composition of materials disposed of as solid waste sent to recycling centers; and volumes 

repurposed or reclaimed, either inside or outside the organization is encouraged [Em11]. 

The [ISO14021] calculates the recycled content as the mass of recycled material divided by the total 

input mass. Within LCA, the environmental impacts from recycling come mostly from energy use within 

the recycling process and direct emissions from it. Midpoint and endpoint methods are used to quantify 

these benefits. These benefits are calculated as negative impacts from savings resulting in substitution 

by the output products. 

Criticality of materials is commonly overlooked, but the application of the indicators developed in 

Chapter 3 can provide an overview on the circularity of the recycling processes and stablish how 

beneficial is the recycling to encourage critical material sustainable use. This in accordance with the 

proposed “European Regulation for Critical Raw Materials” [EC23a]. Criticality weighted-based 

recycling rate, proposed in this study, aims at assessing the total fraction of critical resources recovered 

from a recycling process. This set of indicators is used to evaluate different strategies in Chapter 7. 

5.3. Process chains for data center components EoL 

The components of a data center have distinctive characteristics, thus requiring different recycling 

processes (Figure 5-4). Bulk metals and plastics can be sent to be recovered directly as scraps. Cables 

need to be separated into plastic and copper. Batteries have special recycling processes. If existing, 

hazardous substances need to be managed separately for disposal. Most of the critical materials are 

concentrated on PCBs. Recycling of PCB has its own specific processes. Emphasis in these processes 

is given since 97% of the critical material content is concentrated in PCBs. 

 
Figure 5-4: Different recycling routes for data center components. 

Recycling of PCBs can be further divided into further steps 1) disassembly: targeting on singling out 

hazardous or valuable components for special treatment; 2) upgrading or pre-treatment: using 
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mechanical processing and metallurgical processing to upgrade the materials content; 3) refining or 

metal recovery: where materials are purified by using chemical or metallurgical processing so as to be 

acceptable for their original using [CZ08]. 

5.3.1. Collection, transport, and pre-sorting 

In the first step, the discarded electrical and electronic devices are collected to be sorted. The presorting 

(also called triage) is recommended to feed the WEEE in treatment processes adequate to their 

composition, thus enhancing process efficiency. Pre-sorting can be done based on material content. 

Although collection rates of 40% are normally reported for WEEE, in the case of data center equipment 

a collection rate of 100% can be estimated, since data center operators need to guarantee disposal and 

destruction of decommissioned devices. 

Transport from operation site to pre-sorting facilities is modelled by broad estimates. The use of freight 

lorry and 250 km distance are assumed. Usually, the traveled distance plays a minor role in the 

contributions to environmental impacts of the whole recycling scheme. Presorting is done manually and 

therefore excluded as energy input. 

5.3.2. Pre-treatment 

Treatment means any activity after the WEEE has been handed over to a facility for depollution, 

disassembly, shredding, recovery, or preparation for disposal [EU12]. Before metal recovery, the 

various metals and materials contained in WEEE must be liberated first. The liberation usually is done 

by a size reduction process (such as shredding or crushing), supported by prior manual dismantling of 

certain components. These smaller particles are then sorted into defined output fractions, making use of 

their specific physical and optical characteristics. Typical sorting processes used are magnetic separation 

of ferrous parts, eddy current separation, and gravity separation [Ha06] (Figure 5-5). Finally, 

metallurgical processes are used to recover select materials from the scraps to obtain almost pure 

secondary resources. 

5.3.2.1. Manual sorting and dismantling 

Many metals are concentrated on certain parts of the WEEE components, and manual separation is often 

needed. Disassembly of these parts is the most time-consuming operation. Automatic, semiautomatic, 

and manual disassembly systems have been developed, the latter being the most adopted technique. The 

recovery efficiency by manual treatment is a lot higher than that of automatic systems. Manual sorting 

and dismantling are economically unfeasible in developed economies.  

Without a manual dismantling precious metals are often either sent to further mechanical pre-processing 

or sent with the plastic mix and lost. Manual dismantling allows the recovery up to 92% of silver, 97% 
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of gold and 99% of palladium, whereas mechanical processes only recover 44%, 51% and 28%, 

respectively [Ba14]. Reasons for these losses are related to the mechanical treatments that smash most 

contacts and ceramics and are dispersed in the dust and in other shredding residues. Similar losses occur 

also for other electronic components embodying other CRMs [AM13]. The manually sorted fraction is 

further separated and 40% of this fraction is sent to special treatment, the remaining 60% are bigger 

metallic parts which are recycled [BBC12]. 

 
Figure 5-5: Schematic for preprocessing of WEEE. Source: Adapted from [DFF15, Kh14], 

5.3.2.2. Size reduction 

Manual sorting and dismantling are typically followed by a size reduction step. Size reduction is made 

via mechanical cutting and shredding to reduce the size of the metal-containing fractions. Size fraction 

is relevant to reduce the possibility of particles having several types of metals. Waste PCBs are 

comminuted by multiple crushing systems to liberate metals and nonmetals. 

5.3.2.3. Magnetic separation 

Magnetic separators are used for the extraction of ferromagnetic metals (iron and nickel) from non-

ferrous metals and other nonmagnetic wastes. Nonferrous materials are crushed in a non-magnetic 

fraction by gravity. Efficiencies of the recovery of this method can be up to 99% for the ferrous fractions. 

The magnetic fraction of crushed PCB ranges between 4.5% and 11% of the total weight [Ja16]. 

5.3.2.4. Electrostatic separation 

The non-magnetic fraction is then transported to an electrostatic separator. Materials are separated based 

on their electrical conductivity difference. Copper- and aluminum-holding streams are produced. The 
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electrostatic separating capability depends on the difference in polarity and the amount of charge 

obtained by particles to be separated. There are two typical electric conductivity-based separation 

techniques [Ya11]: 

• Corona electrostatic separation can successfully separate the mixed particles that have 

significant difference in conductivities. The electrostatic separator can remove non-ferrous 

metals from non-metallic materials. 

• Eddy current separation uses the principle that in the separation zone gravitational, centrifugal, 

and frictional forces influence the falling particles, but only magnetic force deflects the ferrous 

particles to a higher degree [Ka16]. Eddy currents can be induced in an electrically conductive 

particle by a time-dependent magnetic field. 

5.3.2.5. Gravity separation 

Gravity is used to separate materials of different specific gravity by their relative movement in response 

to the force of gravity and resistance to motion offered by a fluid, such as water or air. In practice, close 

size control of feeds to gravity processes is required to reduce the effect on the size [CJ11]. This is 

applied for the separation of metals from non-metals. 

5.3.2.6. Automated optical sorting 

With the fast development of the Charge-Coupled Device sensor, computing, and software technology, 

optical sorting processes have been developed in both recycling and mineral processing industry. Data 

gathering and analysis improves the separation performance of automated sorting equipment. The 

measuring of particle properties such as color, texture, morphology, conductivity, and others allows 

high-quality sorting of mixed materials into almost pure fractions. Systems involving the use of multiple 

sensors have been developed over the past few years [CJ11]. 

5.3.2.7. Recovery rates of pre-processing 

Mechanical treatments are characterized by low capital operating costs. However, the main drawback is 

represented by the losses of valuable and critical metals and significant dust generation [MCB19]. 

[HPW15] reports complete losses of REEs contained in NdFeB magnets of hard disk drives. Mechanical 

processes are well designed to recover mass relevant metals (iron, copper, aluminum) with yields up to 

80% [MCB19]. 

Empirical studies show that the overall pre-processing efficiency of dismantling procedure for ICT 

WEEE is 80% for Au, 49% for Ag, and 66% for Pd. The highest pre-processing efficiencies (97% Au, 

92% Ag, 99% Pd) can be achieved by multi-level deep manual dismantling, which means that 

subcomponents such as HDDs, SDDs, memories, or CPUs are further separated manually. This leads to 

a higher concentration of critical metals in the material for end-processing. A combination of mechanical 
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and manual processes leads to gold recovery rates of 70%, which is the dominant method used in the 

industry (Table 5-1). The components are first separated by smashing, which is followed by 

handpicking of valuable components. Hazardous components are either removed manually before 

smashing (manual depollution) or afterwards by handpicking. The components are then reduced to small 

pieces by shredding or hammer milling and the output material is finally automatically sorted [Ba14]. 

Table 5-1: Recovery rates for several metals under manual and mechanical separation processes. Source: [Ba14]. 

 

Manual Deep Manual Mechanical 

Manual + 

Mechanical 

 

Distribution  

in the EU-27 

24% 0% 0% 76% Overall 

Ag 49% 92% 11% 75% 69% 

Co 100% 100% 100% 100% 100% 

In 100% 100% 100% 100% 100% 

Li 100% 100% 100% 100% 100% 

Ta 80% 97% 0% 0% 19% 

Te 80% 97% 0% 0% 19% 

W 80% 97% 0% 0% 19% 

Au 80% 97% 26% 70% 72% 

Be 80% 97% 0% 0% 19% 

Ga 80% 97% 0% 0% 19% 

Ge 80% 97% 0% 0% 19% 

Pd 66% 99% 26% 41% 47% 

Ru 0% 97% 26% 70% 53% 

5.3.3. Life Cycle Inventories (LCI) for pre-treatment 

There is difficulty in establishing a LCI for each individual process, since all of the separation normally 

happens in the same facility. [BBC12] established a LCI for the whole pretreatment of PCBs, which 

included manual sorting, separation, and mechanical separation of elements for further refinement 

(Table 5-2). The reference unit is 1 kg of processed PCB, and the iron and aluminum rich outputs are 

sent to the scrap market. The copper fraction is sent for refining. Residual waste and plastic are sent to 

incineration (Figure 5-6). The specific fractions are dependent on the material content of PCBs. 

Table 5-2: Life Cycle Inventory of the pre-treatment process. 

Description Value Unit 

electricity 6.60E-02 kWh 

Emissions to air 

aluminum 1.00E-06 kg 

antimony 1.00E-07 kg 

bromine 2.00E-07 kg 

cadmium 2.00E-08 kg 

chlorine 3.00E-07 kg 

chromium 5.00E-08 kg 

copper 4.00E-07 kg 

iron 5.00E-06 kg 

lead 4.00E-07 kg 

nickel  2.00E-07 kg 

phosphorus 1.00E-08 kg 

polychlorinated biphenyls 2.00E-09 kg 

tin 3.00E-07 kg 

zinc 1.00E-06 kg 
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Figure 5-6: Life Cycle Model for the pre-treatment facility process. Source: Adapted from [BBC12]. 

5.4. Metal recycling for printed circuit boards 

The final recovery process takes output fractions produced in preprocessing to recover metals. This is 

achieved through treatments based on physical, chemical and biological processes [MCB19]. Three 

main material streams are created during pre-processing: 1) ferrous fractions go to steel plants to be 

recovered as slag, 2) aluminum fractions to aluminum refiners, and 3) copper, lead, zinc, and other 

precious metal fractions are treated in integrated nonferrous metal smelters [GEE09]. During end-

processing the final metal recovery and thus value recovery takes place. The most common include 

pyrometallurgical and hydrometallurgical processes. Modern pyrometallurgical and hydrometallurgical 

refineries achieve 95% recovery of Au and can recover several metals in addition to precious metals and 

copper. Experimental procedures, such as electrochemical and bioleaching processes have shown 

promising results and are here incorporated for evaluation. 

5.4.1. Pyrometallurgical recycling 

Pyrometallurgical processes involve the use of elevated temperature processes to extract metals. They 

have been successfully implemented to recover valuable metals from WEEE by firms such as Umicore 

in Belgium and Outotec in South Korea [Re17b]. These methods can recover various metals like Cu, 

Ag, Au, Pd, Ni, Se, Zn, and Pb. Pyrometallurgical routes are used initially for the segregation and 

upgrading of precious metals (Au and Ag) embedded into base metals (Cu, Pb, and Ni), followed by 

hydrometallurgical and electrometallurgical processing for the recovery of other valuable metals and 

REE. 

Integrated smelters combining pyrometallurgical and hydrometallurgical processes can recover precious 

metals, copper, and other non-ferrous metals, including certain critical metals, while isolating hazardous 

substances. Precious and special metals (Pd, Au, Ag, Pt, Ru, Co, In, and Te) are extracted with a collector 

metal (Cu) while other metals such as Li, Be, Ta, and REEs end up in the slag. The processes have high 

recovery rates for some metals: >95% for Ag, Au, Pd, and Ru, 90% for Co and Te, and 50% of Indium. 

The rest of materials, such as Ta, Ge, end up in slags [Ba14]. 

[Li19] studied a process for refining of WEEE in a black copper smelter. The process can be described 

in four consecutive steps (Figure 5-7): 1) a reduction furnace where the polymers present are used as 
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reducing agent to obtain the Cu scrap; 2) an oxidation furnace for separation of metal impurities as oxide 

slag; 3) fire refining to remove the oxygen in the molten Cu and produce Cu anode; and 4) the electro 

refining processes, which include Cu and precious metals electro-refining. Due to the heterogeneity of 

material content, individual energy and material requirements are escalated for each reference 

component developed in Chapter 4. Table 5-3 presents an example inventory for pyrometallurgical 

recovery in an integrated smelter for 1 kg of PCB representing a mainboard. The differences in reduced 

material content are due to losses in the recycling process. Material losses during pretreatment can here 

be added as a factor for the recovery of materials. 

 
Figure 5-7: System Boundary for pyrometallurgical processing. Source: Adapted from [BBC12]. 

Table 5-3: Life Cycle Inventory for the recovery of metals from 1 kg of WEEE using the pyrometallurgical route. 

Process inputs 
  

 Recovered metals 
 

electricity, medium voltage 1.80E+00 MJ  palladium 2.50E-05 kg 

sulfuric acid 2.20E-04 kg  silver 5.20E-04 kg 

water, completely softened,  9.60E-02 kg  gold 8.50E-05 kg 

activated silica 6.10E-03 kg  alluminuim scrap 1.60E-02 kg 

air flow, for pyrolysis 2.40E-01 kg  copper scrap 2.30E-01 kg 

calcium carbonate, precipitated 7.20E-03 kg  iron scrap 2.90E-02 kg 

charcoal 4.70E-02 kg  Process outputs   

compressed air, for pyrolysis 3.20E-01 kg  exhaust gases, from pyrolysis 6.20E-01 kg 

input copper scrap, sorted, pressed 1.60E-02 kg  carbon dioxide emissions 6.80E-01 kg 

hydrochloric acid 3.20E-03 kg  municipal solid waste 1.70E-01 kg 

input iron ore, beneficiated, 65% fe 8.70E-03 kg     

limestone, crushed, washed 4.40E-03 kg  
   

natural gas, high pressure 2.40E-02 kg  
   

sodium hydroxide 2.50E-04 kg  
   

sodium sulfate, anhydrite 1.00E-03 kg  
   

5.4.2. Hydrometallurgical recycling 

Hydrometallurgical techniques involve leaching metals into solutions during reactions with leachant and 

oxidants. Separation and purification are then performed to obtain primary products for refining (Figure 

5-8). After extraction, the respective leaching solutions go through a purification step, or directly to 
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metal recovery through chemical reduction or electro-refining [Li19]. Hydrometallurgical techniques 

offer the advantages of lower gas emission and slag generation, but consume substantial amounts of 

strongly corrosive chemicals, such as nitric acid, sulfuric acid, and aqua regia. 

Low investment and the high recovery rate are the primary advantages. Hydrometallurgy is more 

predictable and controllable than pyrometallurgy, allowing selective material outputs. No gaseous 

emissions are generated but large amounts of liquid effluents are produced as a result of the extraction 

procedure [MCB19]. REEs can also be recovered. WEEE treatment solely by hydrometallurgical 

processes exists but it has not been implemented on an industrial scale yet [Ba14]. For this reason, 

prospective LCIs are created based on the material flows and the recovery rates. Most of the studies 

present normalized information with a functional unit of 1 kg of Au recovered. A process for each type 

of reference component is created to adapt the process demands to the material content information 

(Table 5-4). 

 
Figure 5-8: Schematic of hydrometallurgical recovery processes for WEEE. Source: Adapted from [Li19]. 

Table 5-4: LCI for hydrometallurgical recovery of 1 kg of WEEE. Source: Adapted from [Li19]. 

Inputs 
  

 Recovered Metals 
 

zinc 1.60E-03 kg  palladium 6.75E-06 kg 

electricity, medium voltage 5.96E+00 MJ  silver 7.12E-04 kg 

sulfuric acid 4.29E+00 kg  gold 5.77E-04 kg 

hydrochloric acid 3.19E-02 kg  aluminum scrap 8.85E-03 kg 

limestone 3.86E+00 kg  copper scrap 3.28E-01 kg 

sodium hydroxide 1.67E-03 kg  iron scrap 8.86E-03 kg 

sodium sulfate, anhydrite 6.85E-03 kg  Outputs   

hydrogen peroxide 5.89E+00 kg  municipal solid waste 1.32E-01 kg 

iron (III) chloride 1.14E-03 kg  wastewater 3.03E+01 kg 

sodium persulfate 7.22E-04 kg  
   

sodium persulfate 4.37E-03 kg  
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5.4.3. Electrochemical recovery 

Electrochemical recovery is a novel alternative process. An electrochemical recovery of base metals 

liberates PM-containing fractions (Figure 5-9). This has lower chemical consumption, enhanced 

control, and reduced energy demand compared to the pyrometallurgical and the hydrometallurgical 

processes. [Li19] presents an inventory of an experimental process, which is presented for 1 kg of gold 

recovered. These values are normalized to 1 kg of WEEE and adjusted to the material content of each 

reference component (Table 5-5). 

 
Figure 5-9: Schematic of electrochemical recovery for WEEE. Source: Adapted from [Li19]: 

Table 5-5: LCI for recovery of metals using electrochemical recovery for 1 kg of PCB from a control unit. 

Inputs 
  

 Recovered Metals 
 

zinc 4.68E-05 kg  palladium 2.70E-06 kg 

electricity, medium voltage 1.74E-01 MJ  silver 3.11E-04 kg 

sulfuric acid 1.26E-01 kg  gold 1.69E-05 kg 

hydrochloric acid 9.34E-04 kg  aluminum scrap 8.68E-02 kg 

limestone 1.13E-01 kg  copper scrap 1.74E-01 kg 

sodium hydroxide 4.88E-05 kg  iron scrap 1.11E-01 kg 

sodium sulfate 2.00E-04 kg  Outputs   

hydrogen peroxide 1.72E-01 kg  wastewater 8.85E-01 kg 

iron (iii) chloride 3.34E-05 kg  municipal solid waste 3.87E-03 kg 

sodium persulfate 2.11E-05 kg  
   

sodium persulfate 1.28E-04 kg  
   

5.4.4. Biometallurgy 

Biometallurgical processes have been researched to recover metals from WEEE. These use microbes 

for metal extraction, and encompass two related microbial processes: bioleaching and bio-oxidation 

[Er13]. It targets valuable metal fraction from WEEE, focusing on gold and copper. Under optimized 

conditions, 92.2% and 99.2% of Cu and Au, respectively, can be removed [Is17]. It provides benefits in 

terms of treating and disposing of strong inorganic acid waste compared to the weaker and more readily 

treatable organic acids generated by microorganism cultures. Recovery of other metals is also under 
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research due to low investment cost, less environmental impact, lower energy consumption and better 

control than pyrometallurgy or hydrometallurgy routes [Ka16]. [Iş16] presented an analysis where the 

combination of biometallurgy and hydrometallurgy yielded the best results in terms of material recovery 

(Figure 5-10). 

The extraction of metals such as Co, Mo, Ni, Pb, and Zn from sulfidic ores by bioleaching is technically 

possible. However, currently only Cu and Au are the metals recovered in significant proportions by this 

way. Most of the applications are still at laboratory scale, especially with reference to REEs [MCB19]. 

Table 5-6 presents an inventory for the recovery of metals from WEEE for 1 kg of PCB. 

 
Figure 5-10: Schematic for biometallurgy hybrid process. Source: Adapted from [Iş16]. 

Table 5-6: Life Cycle Inventory for recovery of 1 kg of PCB with mainboard. Source: [Iş16]. 

Inputs 
  

 Recovered Metals 
 

electricity, medium voltage 1.45E+00 MJ  gold 6.97E-05 kg 

sodium sulfate, anhydrite 2.68E-02 kg  copper scrap 0.224749 kg 

ammonium nitrite 5.91E-03 kg  iron scrap 0.028058 kg 

copper sulfate 5.29E-03 kg     

activated carbon, granular 3.73E-03 kg     

iron sulfate 2.71E-02 kg  
   

sulfur 3.11E-03 kg  
   

5.5. Special processes 

High recycling costs and low economic and regulatory incentives tend to discourage the recycling of 

certain materials [Ho20]. The recovery of specific metals is modelled separately as these can be 

separated in preliminary stages of pretreatment. Such is the case of tantalum in capacitors, or 

neodymium in magnets. Magnets are special focus for recycling in the newly proposed “Framework for 

Critical Raw Materials” [EC23a]. Some others are results of the final product and are present in slags, 

such as REE, that may still be recovered, although the processes are in early stages. 
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5.5.1. Tantalum recovery 

Tantalum is a critical metal whose main application is the production of capacitors. These contain 

metallic Ta and tantalum oxide (Ta2O5), surrounded by layers of MnO, C and Ag [Ch18]. They also 

contain Al, Fe, Ni, Ti, and Zi at fractions lower than 1%. Ta capacitors must be removed from PCBs 

manually. [Ba20] presents a process for treatment of tantalum capacitors which includes treatment by 

pyrolysis to isolate metallic components, which are then leached to obtain 92% pure Ta2O5 (Figure 

5-11). A model for recovery of these components considers the content of 1 kg of Ta capacitors, which 

is modelled separately from the other recycling processes (Table 5-7). The recovered material in this 

case is tantalum oxide, which can be reused directly for manufacturing of capacitors. 

 
Figure 5-11: Process route for recovery of Ta from capacitors. Source: Adapted from [Ba20]. 

Table 5-7: LCI for the recovery of tantalum oxide from capacitors. Source: [Ba20]. 

Inputs 
  

 Recovered Material 
  

heat, natural gas 3.1E+01 MJ tantalum, powder, capacitor-grade 1.6E-01 kg 

nitric acid 3.1E+00 kg 
   

nitrogen, liquid 6.2E+01 kg 
   

phosphoric acid 3.1E+00 kg 
   

Outputs 
   

bromine, for tantal recycling 4.4E-03 kg 
   

5.5.2. Neodymium and REE recovery 

Magnet-to-magnet recycling of NdFeB magnets is a preferred alternative to direct metal recycling, since 

it avoids the production processes of magnets, and uses mechanical rather than chemical processes. 

[Ji18] compared the environmental impacts of virgin magnet production and magnet-to-magnet 

recycling, with direct use of the recycling outputs as material inputs. As the recycling route uses most 

of the waste materials, only 0.5 g to 1.0 g of new materials are needed to produce 1 kg of NdFeB. The 

process of recovery includes transport, demagnetization, blasting, acid cleaning, hydrogen mixing, 
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pulverization, sintering, and magnetization, compression, and cutting, and electroplating (Figure 5-12). 

Material losses within the process are collected and reused as raw material feedstock (Table 5-8) 

 

Figure 5-12: Schematic of process for magnet-to-magnet recycling. Source: Adapted from [Ji18]. 

Table 5-8: LCI for magnet-to-magnet recycling for 1 kg of product. Source: [Ji18]. 

Inputs    Outputs   

Materials/fuels 
 

Waste to treatment 

transport, lorry >32 mt 7.36e-02 tkm 
 

nickel smelter slag 1.49e-01 kg 

transport, freight train 2.11e+00 tkm 
 

sludge, pig iron production 1.82e-01 kg 

transport, lorry 16-32 mt 1.49e-01 tkm 
 

Emissions to air 
 

Electricity/heat 
 

nickel (emissions to air) 
 

4.49e-06 kg 

electricity, for collection 3.44e-02 kwh 
 

Emissions to water 

electricity, for sintering 4.62e+00 kwh 
 

borate (emissions to water) 2.04e-04 kg 

electricity, for grinding 1.24e+01 kwh 
 

nickel, ion (emissions to water) 
 

1.43e-06 kg 

Materials/fuels 
 

  
 

nickel sub-sulfide  6.80e-05 kg 

collected NdFeB magnets 1.23e+00 kg 
 

wastewater 7.14e-04 m3 

neodymium  8.78e-05 kg 
 

sodium saccharin 3.40e-05 kg 

dysprosium  3.53e-04 kg 
 

Recovered material 

iron pellet  5.56e-06 kg 
 

NdFeB magnet  1.00e+00 kg 

copper 1.78e-05 kg 
     

cobalt  1.17e-04 kg 
     

hydrogen, liquid 4.78e-03 kg 
     

chemical, organic 1.63e-04 kg 
     

sulfuric acid  1.25e-03 kg 
     

sodium hydroxide 3.40e-04 kg 
     

soda ash, dense  6.80e-05 kg 
     

nickel, 99.5%  1.07e-01 kg 
     

sodium phosphate  1.36e-04 kg 
     

water, unspecified  1.93e-03 m3 
     

5.5.3. NiMH batteries 

Nickel metal hydride batteries contain REEs such as La, Ce, Pr, and Nd. Until recently, the industrial 

recycling of NiMH batteries consisted of the smelting of whole battery focusing on the extraction of 

nickel for use in stainless steel production. REEs were lost in the smelter slags. Recently research has 
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led to the development of metallurgical methods for the recovery of Ni, Co and REE from NiMH 

batteries [TC14]. [Si20] developed inventories for recycling of NiMH batteries that recovered nickel, 

steel and REE oxides mixture (Table 5-9). Recycling of NiMH batteries involves deactivation, 

mechanical processes, and the recovering of metals. After deactivation by thermal treatment, manual 

dismantling and the separation of electrodes is needed. Cells are processed in a crushing mill and in a 

disintegrator. Hydrometallurgical leaching leads to the recovering of metals, including sulfuric acid 

leaching and solvent extraction. Recovery rates for Fe, mischmetal (mixture of metals) and Ni are 95%, 

85%, and 70%, respectively. 

Table 5-9: LCI for recovery of metals from 1kg of NiMH batteries. Source: [Si20]. 

Inputs 
  

 Outputs 
  

Hydrometallurgical leaching  Recovered metals 
  

n-methyl-2-pyrrolidone 1.40e-04 kg  chromium steel  8.00E-02 kg 

citric acid 9.52e-01 kg  mischmetal (REE) 5.06E-02 kg 

H2O2 1.74e-01 kg  nickel 99.5 2.39E-01 kg 

water 1.20e+00 kg  Emissions to air 
 

electricity 1.26e+00 mj  arsenic 2.25E-03 g 

heat 5.35e+00 mj  cadmium 6.08E-01 mg 

Energy for recycling  carbon dioxide 1.03E+00 kg 

electricity - crushing 1.21e+00 mj  lead 8.38E-03 g 

electricity - drying 1.09e+01 mj  methane 2.57E-02 g 

electricity - sieving 3.32e+00 mj  nitrogen dioxide 2.50E-02 g 

Transport  sulfur dioxide 2.93E-02 kg 

rail transport 5.16e-01 tkm  sulfur oxides 1.00E-05 g 

truck transport 5.97e-01 tkm  vanadium 1.72E-02 g    
 zinc 2.61E-02 g    
 Emissions to water 

 

   
 acenaphthene 3.00E-05 mg 

    barium 2.93E-01 g 

    copper 3.13E-01 g    
 nickel 5.40E-04 kg    
 phosphorus pentachloride 4.07E-01 ug    
 selenium 2.35E-02 g 

5.5.4. Recycling of bulk components 

Most of the rest of the material content of interest for recycling is composed of steel frames and steel 

components, cables, aluminum frames, and plastics. It is assumed that a travel distance to a treatment 

plant of 250 km (75% by lorry, 25% by train) to recycling facilities takes place [HWG05]. Fe and Al 

are modelled as scraps for treatment at plants. Cables are separated into plastics and Cu, the latter 

modelled as scrap. Plastics, when no further information is supplied, are sent for incineration. 

5.6. Uncertainty of data 

For the EU to increase the recycling of critical and valuable metals in WEEE, it is necessary to access 

improved data on quantities of critical metals contained in the different products in the EU [EC23a, 

EC12]. This dissertation tries to close the gap for the case of data centers, and the methods can be 

replicated to other products. 
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Uncertainty in the developed inventories comes from lack of knowledge on where the metals are in 

various components, lack of information on the composition of collected WEEE, and from the maturity 

of the recycling processes considered. If scaling of the results presented here is further developed, 

increased uncertainties are bound to appear, so extrapolation to regional potential for recyclability can 

lead to results with low quality. This leads to problems when assessing the potential of urban mining. 

Better data can lead to better understanding of flows of critical materials used in technological 

applications and better foundations for policy development [Ch15]. 

Uncertainty around the environmental data can also be a product of methodological assumptions in 

LCA. The choice of allocation, the ex-ante method applied to some experimental methods, and the 

multiple outputs bound to the same process may lead to further uncertainties. When mapping 

uncertainties, [Ch10] applied general percentual uncertainties regarding characterization (5-20%), 

WEEE generation (30%), and collection (10%). Some uncertainties have been improved in this analysis 

due to the high collection rates of data center equipment, and on the experimental nature for 

characterization of WEEE material content from PCBs. Uncertainties of recycling procedures vary 

depending on how mature and established the process is. The influence of the procedure with the 

attached uncertainty will produce results of different quality, which is further analyzed in Chapter 7. 

5.7. Conclusions 

This chapter developed Life Cycle Inventories for the EoL of data center components. Starting with 

collection of EoL equipment, inventories on pre-treatment and metal refining for WEEE are here 

studied. Inventories for recycling of bulk materials are also presented. Since processes such as 

incineration and landfilling mean a complete loss of critical materials contained in WEEE, for the 

purposes of this work only processes where recovery of metals is possible are considered. 

The developed inventories are based on industrial and experimental data on the different steps of the 

recycling chain. While most of the values for transport are assumed from estimates, information on 

pretreatment and metal recycling process inputs and outputs, and process efficiencies are gathered from 

multiple reports and scientific studies, particularly from existing recycling facilities in the European 

Union. Data on transport estimations, collection rates, material loss during pretreatment, and material 

recovery for each output metal during metal recycling processes is needed. Models for special processes 

for the recovery of REEs and Ta are also developed. Although still in an early stage, these processes 

have potential to alleviate the criticality of some key metals used in technological applications. 

For the final recovery stages, different processes are considered for recovery of metals. Each process 

has its own maturity stage and presents different material and energy demands. To assess the benefits 

and drawbacks of these recycling strategies, proper allocation methods and indicators need to be 

included. This can allow a choice of recycling routes which improve circularity of critical materials, 
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while also considering other environmental impacts. The modelling method assumes that the output 

fractions can replace directly the metal produced from mines, this resulting in a reduction on the impacts 

associated with material use. 

The developed inventories are also coupled with the diverse types of reference components developed 

in Chapter 4. Since these have different material compositions, the amounts of recovered material and 

the related inputs need to be also considered. This attempts to close one of the biggest gaps in 

assessments of metal recycling, since usually the material content is taken from average values or from 

literature, or from a particular sample. This process provides high quality information for the recovery 

of metals from data center components. The information gathered is also used to build models, which is 

described in detail in Chapter 6. Moreover, the nature of the disposal of data center devices also 

improves the quality of data on key aspects such as collection rates. The impact of the different processes 

on improving circularity of critical materials is to be evaluated in Chapter 7. 

Further improvement of these inventories can include the inclusion of novel processes (such as 

pyrolysis), an assessment of reuse as an alternate strategy, and a direct comparison with traditional 

methods such as landfill or direct incineration. These inventories can serve as a tool evaluation of 

recovery strategies, and evaluation of hotspots for material loss. 
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6. Development of a Software Architecture for 
Calculation of Life Cycle Impacts of Data Centers 

This section details the development of an information system built for Life Cycle Impact Assessment 

of data centers. Figure 6-1 describes the process for this development applied in this chapter. 

Motivations for this development include the data-intensive nature of LCA and the number of models 

needed to be created to answer the research questions. The development is based on the software 

development cycle. Requirements are specified based on the dissertation objectives and research 

questions. Similar existing solutions are researched within the LCA domain, so that existing work is 

also considered. The software design includes development of a technical solution at both the software 

system level and on the subsystem and component level. A multi-tier architecture and its subcomponents 

and their interactions are specified. The implementation section describes the different components and 

artifacts developed in detail. The developed system is evaluated locally and with consideration of the 

requirements and objectives established. Future development possibilities are formulated based on the 

potential applicability of the software solution. This system is used to produce the results for evaluation 

in the next chapter. 

 
Figure 6-1: General software development process applied in this chapter. 

6.1. Motivation for development 

The creation of models for LCA is a data intensive procedure. The LCI process is usually the most time 

consuming and resource intensive section of the study and requires several iterations to achieve results 

of desired quality. Model building must be done carefully in LCA software interfaces. LCIA results are 

often too complex for stakeholders unfamiliar with environmental assessments and must be heavily 

processed before presentation. Given the vast number of values resulting from LCIA, their evaluation 

can be overwhelming for non-domain stakeholders. 

Within the LCA process, there is a strong need for data exchanges between actors, especially between 

process designers (or process responsible) and LCA experts to ease information flows. [Ra17] indicates 

a lack of approaches for gathering and synthesizing information flows from downstream lifecycle stages 
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to support system evaluation, design, and optimization. This added to the difficulty of getting proprietary 

industrial data, especially in the domain of data centers. Current LCA tools are not well integrated into 

knowledge management systems such as external databases. There are challenges in integrating product 

data into LCA databases. Many issues arise from data sources, coupling of formats, and selection of 

proxy or representative process [Ki12]. [Ra17] discusses these issues by pointing the difficulties on 

incorporating information gathered from architectural projects into LCA for decision making. A 

separation of specific process knowledge management systems, LCA software, and scripting or 

visualization tools used for analyzing LCA results is usually found (Figure 6-2). There is a lack of 

interoperability between the different software systems used for LCA [AD14]. 

There are opportunities to improve the LCA process and to ease the flows of information by improving 

inventorization and using tools that enable systematization of the inventories and of the resulting 

impacts. This can allow to translate „big data“ into „big insight“. This requires tools that can combine 

automated, data-driven approaches for life cycle data inventorization, model creation, calculation, and 

analysis with functionalities that enable domain experts to generate novel insights [Ra17]. Most of the 

effort is oriented to gathering and creating the inventories list and then finding the correct datasets in the 

LCA process database. As a result, LCA studies are commonly conducted at the end of the design 

process, when the necessary information is available, but it is too late to affect the decision-making 

[HGH20]. This hinders the development of including LCA in the decision-making process. 

 
Figure 6-2: Status of the connection between product inventories, LCI databases, and result evaluation tools. Source: Adapted 

from [Ra17]. 

These challenges are also present in the current study. Issues about inventories, such as the diversity of 

the products in the studied data centers and the complexity of the reference components and devices 

selected, resulted in extensive data that required to be organized. Similarly, the update and creation of a 

materials database affected the structure of many processes in the LCI databases used. Finally, the use 

of time-dependent parameters such as criticality indicators and reference prices for allocations means 
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also that the data needs to be updated and that the resulting indicators and results from allocation need 

to be periodically modified. Given these challenges, several alternatives are studied to attempt to close 

the gaps between the different information found. Addressing these challenges can improve the quality 

and quantity of the results, perform evaluations which can otherwise take considerable amount of time, 

and present a framework that can be replicated and could significantly aid sustainability-focused 

decision-making throughout the product lifecycle by helping actors to make use of the results here found. 

6.1.1. Structure of the development 

The structure of the development follows broadly the general software development cycle, with 

emphasis on its application for this study. Steps include [Ba11]: 

1. General analysis and requirements specification: This step includes the establishment of the 

requirements of the software, with focus on the desired functionalities applied for this 

dissertation. This is evaluated in Section 6.2. 

2. Software design: The focus is to develop a technical software solution in the sense of a 

software architecture from the given requirements of a software system. The design process 

often takes place in two steps: 1) Global design, where the software architecture is defined, 

and 2) Detailed Design, where the individual subsystems and components are then specified. 

This is detailed in Section 6.3. 

3. Implementation: This process includes implementation of the stablished architecture in 

different code artifacts. This also includes testing for detection of problems and issues in the 

artifacts. An overview of the different artifacts developed is given in section 6.3. 

4. Evaluation: This step is focused on evaluating the interoperability between components, the 

fulfillment of the requirements and the outputs produced. Evaluation of the software is done in 

section 6.4, while the produced results are evaluated in Chapter 7. 

Since the aim of the developed information system is strongly tied to the obtention of the dissertation 

goals, publishing and deployment are not included in the development. 

6.2. General analysis and requirements specifications 

This section serves as a foundation for the development of the required artifacts for the obtainment of 

the results of this dissertation. The general requirements for the developed information system arise 

from the research objectives and thus must be developed from there. 

6.2.1. Functional requirements 

[RJ14] presents a general structure for the definition of system requirements (Figure 6-3). These are 

developed on the desired capabilities of the system and arise from the general workflow of an LCA 
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oriented towards the competition of the thesis objectives described in Chapter 1. Figure 6-4 details the 

link between these functionalities and the obtainments of the research goals. These requirements are:  

FR1. Automation: The system must be able to automatically build LCA models based on 

inventories from screening and Bill-of-Materials and create product systems connected with 

background process. 

FR2. Granularity: The system must be able to build models of different granularity levels 

considering parts, components, devices, systems, and whole data centers. 

FR3. Indicators: The system must allow the creation of custom indicators for impact assessment. 

FR4. Data Quality: The system must incorporate data quality information in the input and output 

data and include data quality calculations. 

FR5. Scope: The system must be able to build recycling models based on inventory, recovery 

factors, and product composition. 

FR6. Results Evaluation: The system must perform LCIA calculations and store the impact 

assessment results in an accessible format. Results are to be postprocessed for evaluation. 

FR7. Experimentation: The system must allow parametrization, sensitivity analysis, and 

uncertainty modelling. 

 

Figure 6-3: Template for functional requirements. Source: [RJ14] 

 
Figure 6-4: Dependencies between the functional requirements, thesis objectives, and research questions. 
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6.2.2. Non-functional requirements: 

Non-Functional requirements are bound to the qualities, to the attributes, and to the limitations of the 

designed system. These are mostly derived from the constraints of this research. Such desired 

requirements are: 

• Scalability: The system should be able to build and model data center configurations 

regardless of size. Databases must be able to hold information on multiple processes and 

products. 

• Updateability: The system must allow an update of indicators based on criticality parameters 

and on allocation factors. 

• Privacy: The data inventoried must be anonymized, and the resulting inventories must be 

stored without description of the process chains representing data center configuration or 

architecture. 

• Performance: Given the complexity of the models and the number of calculations needed, a 

reasonable computation time is to be expected. Monte Carlo simulations, for example, which 

last longer than 24h are undesired. 

• Usability: When possible, non-commercial tools are to be used. This with the goal of 

maximizing usability and replicability. 

6.2.3. Related work 

This subsection provides an overview of some software solutions developed to close similar gaps. LCA 

software and tools that include LCA software as part of an evaluation of products are reviewed. The 

goal is to find similar tools and study their limitations and contributions to further the development of 

the system. 

6.2.3.1. Software for LCA 

There are different commercial applications for conducting LCA. The basic function of these software 

tools is to determine energy and mass balances on a model representing a product process and allocate 

energy and mass flows to calculate inventories and environmental impacts. These software packages 

have as their main components the databases used and the internal applications for model building and 

for impact calculations. Software tools may work with one or more databases. Some software solutions 

are offered with proprietary databases. [OJP14] conducted an evaluation of available software for LCA, 

and focused on three tools that were chosen due to their widespread application: GaBi, SimaPro, and 

openLCA.  
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Table 6-1 presents a summary of the characteristics evaluated. Based on this analysis, openLCA is 

chosen as the tool for modelling in this dissertation. The main advantage is the openness of its source 

code, which is key for automation of model building and creation of inventories. 

 

Table 6-1: Features of the most used software for LCA. 

Features GaBi SimaPro openLCA 

LCI Database Gabi, ecoinvent Ecoinvent, US LCI, Dutch LCI Not included 

Uncertainty analysis Monte Carlo Monte Carlo Monte Carlo 

Data quality No No Yes 

Reporting Self-editor, excel export Graphical, excel export Graphical, excel export 

Results Multiple Indicators Multiple Indicators Multiple Indicators 

License Commercial Commercial Open 

Parametrization Dynamic As factor As factor 

6.2.3.2. BIM and LCA 

Within construction projects, Building Information Modeling (BIM) is a digital tool that involves 

creating and managing a 3D virtual model of a building. This model includes geometrical and physical 

properties of the building. The digitization of the design process through the use of BIM, and the need 

for the inclusion of environmental considerations, called for the creation of tools that allow exchange of 

information between BIM software and LCA software [WD19]. This takes the advantage that BIM 

models provide structured data on material composition [AD14]. Current commercial LCA tools are 

limited in that they do not offer many possibilities of integrating inventorization with external 

information systems. For these reasons, several solutions for exchanging inventory information have 

been built. 

There are several approaches to integrating these tools. In one of the most common approaches, a Bill-

of-Materials (BoM) is exported from a BIM tool as a spreadsheet. The BoM is then imported into the 

LCA software, where the model environmental assessment is conducted. A disadvantage is that the LCA 

practitioner must manually link the different components (with their quantities) to predefined LCA 

profiles available in the LCA database or create new LCA profiles. Calculation and visualization are 

done within the LCA software. Another disadvantage is that any change in the BIM model usually means 

restarting the process, so parametrization is usually difficult (Figure 6-5). 

In a second approach, the BIM model is imported “as such” in a dedicated LCA software. Usually, a 

specific open exchange format is needed. The imported data includes, for example, geometric 

parameters, so that material quantities (surfaces, volumes, mass) can be determined. It may include 

material specifications as well. Based on these imported data, the LCA practitioner must link the 

building components not already specified to predefined LCA profiles. Calculations and results analysis 

are performed within the LCA software. 
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Another novel approach is including impacts of specific profiles within a BIM software. This includes 

specific values of embodied impacts for varied materials, which can be directly assigned while 

constructing the BIM model. The results are summed up under consideration of the reference service 

life of the individual components, and can be summed directly in the BIM application [HGH20]. This 

solution is present in packages such as SolidWorks Sustainability. 

 

Figure 6-5: BIM strategies for LCIA. Source: Modified from [WD19]. 

Limitations of these methodologies come from the limited databases that exist for representing a 

particular product, and on the need of linking a concrete material to a specific product. Thus, a lack of 

structure on the data is always present. Moreover, the impacts of aspects such as transportation are often 

neglected or must be manually included. If only the building stage is considered, use phase is then 

omitted, thus decoupling the environmental performance of buildings as an aspect of sustainability. 

Lastly, EoL strategies are completely overlooked. 

Key advantages of these processes are a reduction of time needed on tasks such as inventorization, and 

on manual entry of data. When including embodied impacts of materials on the BIM software, a quick 

first assessment of impacts, such as emissions, can be easily obtained. 

Further potential for development of the integration of LCA in BIM suggested in literature are: 

• Organization of the BIM inventory according to standards (e.g., ISO 12006, classification 

schemes, reference products) 

• Structuring elements and sub-components hierarchically with specified levels of granularity. 

• Linking of BIM elements and quantities with respective LCA datasets and scenarios for EoL 

(replacement, disposal, recycling) 

• A parametric approach for setting up the LCIA based on both BIM and LCA model to facilitate 

changes. 

6.2.3.3. Web-based tools 

Web based tools present an interface that allows connecting users with large scale databases and hosted 

software applications for conducting LCA. These tools present also visualization of results. These tools 
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can be used with relative ease and are based on inventories that need to be coupled with specific product 

databases. Software packages such as Antelope allow publishing and analysis of life cycle models 

[BS15]. Brightway2 is an open-source framework for LCA written in python that allows users to apply 

open-source graphing libraries to create visualizations [Mu17]. SimaPro Collect is a web-based platform 

for sharing and uploading LCA models and performing scenario analysis [PR23]. 

While these tools have the advantages of being widely available, they offer poor customization and are 

limited on the capacities required for this study. However, visual representation are useful tools that will 

be implemented for data analysis. 

6.2.3.4. Databases for LCA 

Since the goal is working with an open-source calculation engine, the databases are selected in a format 

compatible with openLCA. This software uses a specific format for its databases, which converts various 

LCA data formats (such as ecospold) and allows to access the database through the openLCA API. This 

allows creating and saving flows, process, and product systems that represent the data center and its 

components. Through the product input/output structure, it is then possible to build products and process 

chains while keeping granularity, thus enabling the identification of hot spots through the analysis of 

contribution trees. Additionally, databases of impact indicators and characterization factors can be 

exported, edited, and imported. This allows creating and updating indicator values for impact assessment 

calculations. 

The benefit of having an API to create product systems is that the models can be created, updated, and 

interconnected using data from separate databases. Databases containing BoMs, material criticality, 

recycling ratios, recycling inventories, and other information required for the evaluation of data center 

components can be separately stored. Additionally, the results can be fetched, and the values stored in 

databases or in separate files (such as CSV). This makes possible the automation of creation and update 

of models, and of saving and postprocessing of results as well. 

6.3. System design 

This section details the design of the components of the system and their interaction. The global system 

design defines the software architecture , and the detail design specifies individual subsystem within the 

architecture. 

6.3.1. Global software architecture design 

The software architecture describes the structures of the software system using architectural building 

blocks and their relationships and interactions with one another, and their physical distribution [Ba11]. 
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Various reference architectures patterns exist that align with different requirements to satisfy functional 

and quality attributes. The decision on this pattern is mate to satisfy these qualities [Ka18]. 

Several aspects drive the choice of an architecture for the information system for this work. [Ka18] 

conducted a study where different architectures were surveyed within software developers. 

Functionality, technology constraints, and quality are key aspects for selecting an architecture, with 

functionality at the forefront. Moreover, within the Academic and Education sector, [Ka18] found that 

usability and modifiability are key factors on deciding for an architectural pattern. From the architectural 

patterns analyzed, the multi-tier pattern was found to align better with the objectives of this work. This 

is due to its simplicity, modularity, the interoperability of the components, and the possibility of having 

separated databases that keep their integrity and limit their access. It is a scalable solution, and it is 

highly maintainable since the applications, databases, and visualization components are separated. 

Each tier of this architecture pattern has a specific role and responsibility within the application. A 

feature of a multi-tier architecture pattern is the separation of concerns among components. While 

closed tiers ease isolation and help modular changes, there are times when it makes sense for certain 

tiers to be open, for example, if content of a database wants to be directly shown (Figure 6-7). Some 

reported disadvantages are that the system may be difficult to build, separated entities for databases and 

applications need to be built (usually separated servers), and good knowledge of object-oriented 

concepts is needed for the development. 

Several versions of this architecture exist, with the easiest one presenting three tiers. One tier deals with 

the presentation part of the system (user and system interfaces), another handles the business logic, being 

the core of the system, and the last tier takes on the data storage. [Fe08]. This structure can be further 

split to gain granularity and better structuring of the system. Since a User Interface is out of scope, the 

system is presented in five different subsystems, explained in the sections below (Figure 6-6). 
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Figure 6-6: Multi-tier architecture with its components. 

 
Figure 6-7: Concept of the open tier architecture. 
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6.3.1.1. Database tier 

This tier handles storing and managing the data used by the other tiers. This includes collected data, 

generated data, models, and downstream LCA process. Included in this tier must be: 

• Relational databases handling products inventories and BoM. 

• Databases for material criticality. 

• Databases for recycling process data (rates, inputs, outputs). 

• LCA Databases. 

• Results databases. 

• LCIA Databases (simplified versions of inputs/outputs) with anonymized data. 

The database tier structure ensures that data is properly split and is available to other tiers. It will also 

ensure that the data is secure and available to the other tiers when needed. 

6.3.1.2. Persistence tier 

This tier handles collecting, processing, and managing data related to the life cycle of a product. It is 

used to connect the application tier to the databases or data source. It has methods which are used to 

perform operations on database like insert, delete, update, and similar. This tier has stored procedures 

which are used to query databases. Hence this layer sets up a connection with the database and performs 

functions on the database. It can also create data (such as CSV files) to store other modelling results. 

6.3.1.3. Domain model tier 

This tier has as its main function to build specific flows, process, and product systems associated with 

LCA using the openLCA API. It has several applications to collect data from exchanges (inputs and 

outputs), reference processes, and inventories. This data is used to build LCA models which contain the 

required input, outputs, reference process, process providers, data quality schemes, uncertainty values, 

parameter factors, and other data required for calculations. It uses the persistence tier to access 

information on different models, can store these models, and the results of the calculations as LCI 

models. 

6.3.1.4. Calculation tier 

This tier handles performing the LCIA calculations based on the data and models created by the data 

management and model creation tier, and on the impact calculations methods specified (predefined or 

created). This involves using the openLCA calculation engine to calculate direct impact assessments to 

perform environmental impact calculations for assessing material and energy resource needs and 

performing experiments on models such as sensitivity analysis and Monte Carlo simulations of specific 

products and processes. Existing data centers of varied sizes can thus be mapped more easily via the 



126 

 

modular structure The possibility of scripting these modeling processes in openLCA enables the various 

steps to be automated, so that the entire inventory of a data center can be analyzed for each part, 

component, device, or system without manual intervention. 

Additionally, to gather information on components content, total flow requirements of components and 

of material flows can be assessed, so total results and total contents available for recovery can also be 

indicated. This is useful to assess urban mining potential. 

6.3.1.5. Results analysis tier 

This tier handles analyzing the results of the LCA calculations and presenting them to be interpreted 

accordingly. The visualizations are to be developed using common data analytics methods and open-

source packages. The goal of the visualizations is to answer the research questions, so the results 

presented must be oriented towards giving insight on these points. This requires creating customizable 

reports, graphs, or charts to display the results of the LCA calculations. This also involves statistical 

analysis of results and obtaining insights on the results of the experiments conducted. 

6.3.2. Detail design and component structure 

This section details the components of each tier and specifies the interaction between them. 

6.3.2.1. Databases 

The first step for creating databases is to systematize the information obtained during this dissertation. 

The data is cleaned and stored in SQL databases, which provide the required structure so that it can be 

easily accessed, created, or modified via queries. Following databases must then be created: 

• Material process data is gathered on raw materials, mining processes, material costs, and EU 

criticality values. This data is stored in a Materials Database. 

• Data on data center inventories is stored is SQL tables. This data holds information on parts 

composition, pieces composition, devices BoM, data center system inventories. The structure 

of this data also allows for space for saving results of impact assessment resulting for 

calculations, since the results can be linked to the corresponding product system modelled. 

• Data on material recovery, recovery fractions, recovery process inventories, and on different 

collection and recovery ratios are also stored. 

• The ecoinvent 3.4 database is stored separately since it needs first to be imported by openLCA 

and decompressed. This database has been altered and updated to include several mining 

processes for raw materials that were absent in the original version of the database. 

Considerable changes were made to include critical materials and their mining processes. This 

database serves as base for creating the different flows, products, processes, and product 

systems needed to build the models required of this dissertation (Figure 6-8). 
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• Impact Assessment Methods in XML format must be imported to the LCIA Database. This 

XML database holds information on characterization factors and is built using information on 

material criticality and factors on material depletion potential. 

• CSV databases holding results of Monte Carlo simulations and of sensitivity studies are stored 

in this tier. These are saved in separated plain files to avoid overloading the SQL databases and 

to allow multiple iterations to save results on the same indicator. 

 
Figure 6-8: Elements of the database tier and flow of data for creating the databases. SQL databases can be merged into a 

single database. 

6.3.2.2. Persistence tier objects 

This tier has as objective to access the databases and separate them from the rest of applications. These 

consist of SQL Data Access Objects (DAO) for SQL and for the environmental databases (Figure 6-9). 

• For SQL databases, SQLite extensions are used to connect and close databases. 

• For environmental databases, the openLCA API is used to connect and close the databases 

specified by name. 

• For XML data, python packages to read and write XML are used. 

• For CSV data, python, and java packages to read, write, create, or overwrite files are used. 
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Figure 6-9: Persistence tier components. 

6.3.2.3. Model building Components 

Several classes and methods are required to perform specific tasks regarding model building. Following 

items are then contained in this tier: 

• Category building: using the distinct levels of disaggregation for data center components 

(data center, systems, devices, components, parts, materials, and EoL) 

• Flow building: For each product, a reference flow with proper units must be first built. This 

uses information such as category and reference unit. 

• Process building: Using information on reference products and input/outputs for each process 

from the BoM databases. Information on data quality, uncertainty, and data quality method is 

also given here. 

• Product system building: Using information on process, a model for the product system is 

built and interconnected with the corresponding providers to create product process chains. 

• Impact category: Using information on existing indicators, material criticality, and allocation 

factors. 

Scripts for creating all the required categories, flows, process, and product systems are also included for 

automation of the construction of the model database. Utility functions to access information in the 

databases are also included. These are, e.g., wipe database, create all products in a category, fetch 

process list, fetch exchanges list, amongst others (Figure 6-10). 

Extra classes to temporarily store the information are also developed. These serve as a bridge between 

the information obtained from the SQL databases with inventory info and the environmental databases. 
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Figure 6-10: Model building tier components. 

6.3.2.4. Calculation tier 

This tier is built around calculating the impacts of a specific product, which can be called by its name 

or by its identification (Figure 6-11). The system needs to firstly get information on the existing product 

systems, select the specific product system from the environmental database, select a calculation method 

(a detailed calculation is selected), impact categories, perform calculation on impacts, and save the 

results in a database. For the calculation, the openLCA calculation engine is used. 
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Figure 6-11: Model calculation tier components. 

A simplified inventory (without a process product chain) is also calculated and is stored. This 

anonymized version contains only elementary inputs and outputs and can be used later for quick 

evaluation of environmental impacts. These inventories are saved in the environmental database. 

Results saved include total impact by category, total material flow required, and total flow of reference 

products, such as mainboards or CPUs. This allows an inventory of different granularity at higher levels, 

which then can be evaluated for recycling evaluation. If all the products or a list of products are to be 

calculated, a list is obtained from the SQL databases. 

Additionally, for selected processes, sensitivity studies need to be conducted by varying one or more 

parameters. Monte Carlo simulations must be conducted for products. Due to time constraints, only 

selected products with the highest impacts on material and energy demand are considered. This requires 

a specified number of runs and writing of the results in separated CSV files. 
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Since the calculation of recycling potential needs first evaluation on content of components for 

recycling, the EoL models are built after the calculations on data center components and systems take 

place. The recovery models are built then as an intermediate step. Recovery potential using different 

material recovery strategies is evaluated for components, devices, and data centers. This also allows 

various levels of detail within the urban mining potential. Results are written in the databases using the 

persistence layer to get data models. 

6.3.2.5. Results analysis tier 

This section is composed of scripts and methods that automate the evaluation of results based on the 

research questions (Figure 6-12). Results required include: 

• Indicators characterization factors. 

• Evaluation of impacts associated with each material, per kg of ore produced. This to supply a 

basis of comparison for recovery savings. 

• Environmental impacts on resource depletion (energy and materials) for product systems at 

different granularity levels, including whole data centers. 

• Fractional contribution of metal mining to total impacts of products. 

• Environmental impacts of EoL strategies, including metal recycling, considering the savings 

from metal recovery. 

• Material flows during product lifecycle, including recovery. 

• Sensitivity analysis results evaluation. 

• Result on correlation between indicators 

• Data quality and statistical analysis of Monte Carlo simulations for uncertainty analysis. 

Since the results are calculated and stored in SQL databases and in CSV files, the analysis is done using 

the persistence layer to access the previously mentioned data. Results are saved either as tables or visual 

representations of the data. Data is analyzed using open-source analysis tools or custom-made 

applications. Figure 6-12 details the application of these analysis to achieve the research goals. 

6.4. Implementation 

This section provides a summary of the different objects developed specifically for the construction of 

the system. The goal is to present an overview of the internal structure of the different components 

developed during the implementation of this system. 
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Figure 6-12: Data evaluation tier components and links to the research objectives. 

6.4.1. Databases 

SQL was chosen to store information on materials, data center inventories, recovery processes 

information, and results. SQL offers key advantages such as speed in queries, stability, and integrity of 

the databases. The use of structured queries makes it possible to save results in an organized way for 

posterior analysis. 

Figure 6-13 shows one example for the Materials Database. This contains the necessary information on 

materials which serve as input in the LCIA for said materials. Information on embodied impacts of these 

materials is also included. This allows structuring the information so it can be used for posterior analysis. 

Data such as material symbol (for indexing), physical and economic allocation (for mining processes 

with multiple outputs), material category (such as precious metals, base metals, ferrous metals), and 

criticality factors are here stored. 

The inventory data of data center components is also stored in the databases. As an example, the 

inventories for the devices are stored by saving the obtained BoM in structured tables (Figure 6-14). A 

device can then contain specific quantities of reference modules, reference components, and specific 

inputs from the ecoinvent database (specified by name). 
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Figure 6-13: Materials database Entity Relation Diagram (ERD). 

 
Figure 6-14: Devices BoM database ERD. 

The inventories of data centers are also saved using structured tables (Figure 6-15). The subdivision in 

systems, devices, modules, and components allows retaining the required granularity in the analysis. 
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Figure 6-15: Data center inventories ERD. 

Recycling and recovery information is stored using a similar approach (Figure 6-16). The information 

on recycling models contains data on inputs and outputs of recycling processes (exchanges), materials 

content on components and modules, recovery rates. 

 
Figure 6-16: Recycling database ERD. 

The results database is developed with the help of the tables with list of the different levels of 

components of a datacenter, from materials, components, modules, devices, systems, data centers, and 

recycling of different products (Figure 6-17). This uses a list with the required indicators that are 

selected for evaluation. 
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Figure 6-17: Results database ERD. 

The ecoinvent database is directly imported using the openLCA interface and saved separately. This 

database needs modification for inclusion of several processes which are initially absent from the 

database, which needed to be created first manually. 

6.4.2. Persistence layer 

Since the native development of openLCA is done in Java, this was chosen as the language to develop 

the persistence layers to access the SQLite databases and environmental databases for creation of 

product systems and for writing and saving of results from the calculations of environmental impacts. 

The openLCA modules can be imported directly from the .jar packages downloaded from their website 

[Gr21]. 

DAO objects for the SQLite databases are created using the Sqlite-jdbc.3.36.0.3 plugin. CSV 

databases are created and accessed through the opencsv5.6 plugin. The ecoinvent database is accessed 

through the org.openlca.core package. 

Figure 6-18 shows an example of the SQL DAO class (ConnectSQL) with some utility functions 

created for querying the SQL databases. The database is accessed by its filename name. A connection 

object (sql.Connection) is created by the DAO and can be used by the util functions to perform 

queries for reading, writing, deleting, and updating information. 
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Figure 6-18: Class structure for reading SQL databases. 

Figure 6-19 shows the connection with the environmental database. The connection is achieved using 

the database name as a string, which is passed to create a database object using the 

olca.core.database package. Several helper functions are also built, which can find specific objects 

such categories or model types using information obtained by reading the SQL database. This achieves 

a connection between the information on the SQL databases and the environmental processes database. 

 
Figure 6-19: Class structure for connecting to the environmental database. 

6.4.3. Model building layer 

This layer is constructed to build specific flows, processes, and product systems using the information 

stored in the SQL databases and linking that information to the environmental database. Figure 6-20 

presents a schematic for the creation of flows. For each product specified, a flow needs to be created, so 

it can be used as reference for process exchanges. The basic information of the flow (ID, name, unit, 
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reference amount) is first stored in a data class (Classes.ProcessData) built with information read 

from the BoM database obtained through the SQL DAO class (sql.Connection). This information is 

sent for building a flow object (core.model.Flow) within the environmental database (accessed 

through the openLCA DAO class (core.database.IDatabase). The flow object is stored in the 

environmental database within the proper category. 

 
Figure 6-20: Class structure for the creation of flows in the environmental database. 

Figure 6-21 details the class structure for creating a process. For each process, there is a reference flow, 

created as specified in Figure 6-20. With use of a SQL DAO (sql.Connection), data on the reference 

quantities and on the exchanges (Classes.Process) is used to create a Process object 

(core.model.Process) to be inserted in the environmental database 

(core.database.IDatabase). These processes are used later to create a chain of processes as 

product systems, which are later autocompleted and stored for posterior calculation of environmental 

impacts. 

6.4.4. Calculation tier 

This tier contains several classes for calculation of environmental impacts. At its core is the openLCA 

calculation engine (core.math.SystemCalculator.calculateFull). This package is used with 

different setup configurations to obtain the contribution results as an object containing the data on the 

calculation outputs. (core.results.ContributionResult). 
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Figure 6-21: Class structure for the creation of Processes in the environmental database. 

A SQL DAO (sql.Connection) is used to read information on a specific product and store it in a 

custom data class (Classes.ProcessData). This information is used to search for an existing product 

system in the environmental database (olca.core.IDatabase). Once the product system has been 

selected, an impact assessment method (olca.core.model.ImpactMethod) is selected from the 

environmental database based on the name specified on the impacts database. This is used to set up and 

execute the calculation of the environmental impacts. The information on the results is written in the 

contribution results object. Specific information is gathered from this last object, saved in a data 

structure object (util.HashMap) for intermediate storage of results, and later written in the results 

database using a SQL DAO (sql.Connection). 

Multithreading is implemented for this process to allow parallel calculation of multiple product systems 

using a multi-thread object (Runnable) and a List (util.List) of product systems. This same object 

is implemented in the Monte Carlo simulation for reduction of calculation time (Figure 6-22). 
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Figure 6-22: Class diagram for calculation of environmental impacts 

6.4.5. Results evaluation tier 

This tier is focused on the evaluation of data obtained after the calculations have taken place. Due to the 

wide availability of tools for data analysis and plotting existing in python, this programming language 

and its environment are used for evaluating calculation results and preparation of reports. 

As such, this tier is based on accessing the data stored in the SQL Results Database and evaluating the 

impact assessment results data. Given the number of results, these processes are scripted for faster 

evaluation. 

As an example, the evaluation of indicators of material use is done by directly analyzing the impact 

assessment results by selecting relevant categories and grouping the material indicators by material 

category. Figure 6-23 represents this process. A list of products and the desired impacts for evaluation 

are first given by the user in a Notebook interface. A DAO (sqlite3.connect) is used to access the 

information present in the database on material data, process data, and results of LCIA. This information 
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is read using Dataframes (pandas.DataFrame), whose internal methods are used to filter the results 

by environmental impacts, group results by material category, and normalize results. Plots are built and 

saved using Figure objects (matplotlib.pyplot.subplots). The process is repeated for all the 

product systems specified at the beginning. 

 
Figure 6-23: Sequence diagram for evaluation and reporting of data on environmental impacts of products. 

A similar process is done for evaluation of correlations between the different indicators. This is achieved 

by studying the results of the Monte Carlo simulations (Figure 6-24). The products analyzed and the 

environmental impacts to be studied are first given as lists. Dataframes (pandas.DataFrame), are used 

to directly read the CSV files resulting from the Monte Carlo simulations. Data is then filtered by 
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impacts and cleaned. A PairGrid (seaborn.PairGrid) is created and used to evaluate the dataframe 

holding the results. Scatter plots, histograms, and kernel density estimate (KDE) distributions plots are 

created using the PairGrid package. The correlations between each pair of indicators are evaluated using 

a statistical calculations package (scipy.stats). A Heatmap with the correlation results is also 

created. The process is repeated for all the product systems selected. 

 
Figure 6-24: Evaluation of results dependencies. 
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6.5. Evaluation 

The evaluation methodology for the developed software is done in accordance with the requirements 

established at the beginning of the development process. Additionally, qualities such as scalability, 

usability, and performance are also evaluated. The main goal of the development was to establish a tool 

that connects the material and inventorial information of datacenter components with the LCA 

modelling and calculation software. Evaluation is made regarding the functionality and usability of the 

information system, which are the key concerns in tools developed in the research sector. 

For evaluating the functionalities of the system, inventories of data centers of varied sizes are built based 

on reference inventory data and on collected inventory data regarding size, IT load and equipment, and 

configuration of power supply and air conditioning. This with the goal of testing if different 

configurations are possible and if the models keep the granularity levels desired. 

FR1. Automation: The inventory must be first collected from a table, and this must then be 

transferred to the inventory tables in the database. The different data center systems (IT, 

Power Supply, Air Conditioning, Infrastructure) are linked there directly with reference 

devices. Once the inventory is set up, the software can build a product system representing 

the data center and create links between the different processes. Key aspects to improve 

here are the necessity of inputting the inventories manually on tables through an SQL GUI 

or through a DAO which reads the information from an excel table and writes it on the SQL 

database (Figure 6-25). 

FR2. Granularity: The build systems are based on product systems of different granularity levels 

that can be evaluated separately and are also kept in the product chain information found in 

the models. LCIA can also be conducted for products of various levels of granularity. 

FR3. Indicators: New indicators were developed that align with the goals of this study. This is 

achieved separately of the model process and takes as input data that must be first cleaned. 

FR4. Data Quality: Data quality is given as an input value (string, e.g., “(1,2,1,3,2)”) when 

preparing the inventories for the different components, modules, and devices. To consider 

data quality on the calculations, the ecoinvent data quality schema is also included in the 

environmental database, which is first assigned when building the processes and the product 

systems. 

FR5. Scope: The system can build recycling models based on inventory, recovery factors, and 

product composition. To achieve this goal, it was first necessary to evaluate the contents of 

products to be collected (e.g., total among of structural steel, or total amount of PCBs with 

mainboards), so a first run of the data center models was needed. With the information of 

products present in the data center models and using the same process for creation of 

product systems (based on reading inventories), models for recycling and End-of-Life are 

developed. These models assume first a “perfect” collection, so that factors such as 
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collection rates can be later be changed for parameterization during the results evaluation. 

The models for recycling are based on a collection of models for individual recycling of 

separate components based on different parameters such as mass and method for recycling. 

FR6. Results evaluation: Calculation for product systems is done using the openLCA calculation 

engine, and the results are evaluated using python packages. Simple scripts allow for 

looping through all the selected product systems for quick evaluation. 

FR7. Experimentation: Studies such as Monte Carlo simulations and sensitivity analyses are 

conducted. The Monte Carlo calculation method found in openLCA also allows performing 

a set number of iterations. The use of parameters within the definition of the process allows 

modifying its value to perform several sensitivity studies during the calculation. Due to the 

amount of data resulting as output, these were saved in separate CSV files. 

 
Figure 6-25: Example of a test use case as presented by the openLCA user interface. 

Regarding the non-functional requirements, following aspects were found during the development: 

NFR1. Scalability: The process of model building did not show any constraints regarding the 

model size or the size of the inventory for the tested case studies. 

  An issue regarding scalability is found in the results databases. Results are stored in vertical 

tables due to the required flexibility on the calculated environmental impacts. This resulted 

in extensive vertical tables with several rows for the same product system. Extending the 

databases or restructuring the format may be required. 

NFR2. Updateability: To update aspects like indicator characterization factors, the scripts for 

updating must be separately executed and imported. This puts a limitation on the automation 
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of the process since the updated values on indicators or economical allocation factors must 

be firstly manually gathered and cleaned from external reports (such as EU Criticality 

Reports). 

  For updating the inventories, the update of material quantities is done by reading and 

modifying the values of existing exchanges. However, deleting one or several exchanges was 

not allowed by the environmental database DAO due to the interconnection between 

different models, and in some cases deleting and rebuilding the process is required. 

NFR3. Privacy: The inventoried data is anonymized, and the databases containing this information 

are not made accessible. 

NFR4. Performance: Performance is evaluated in a local device using JDE 17 for the model 

building and calculation under Windows 10 OS (i7@ Intel Core i7 @ 2.50GHz). Under the 

current schema the process of building and autocompleting product systems is done in less 

than 30s. Calculation of environmental impacts of individual product systems takes around 

60s. Parallelization allows reducing calculation times to a quarter by using 4 cores 

simultaneously. Monte Carlo simulations are set up for 2500 runs and take around 12h when 

using multithreading. This limited the number of product systems that were considered for 

this kind of analysis, which had first to be selected by finding hot spots of material related 

impacts. 

NFR5. Usability: Only non-commercial tools were used for development of the system. Java was 

used to build classes, packages such as the openLCA libraries are open-source, and 

commonly known python packages are used for data evaluation and analysis. The goal is to 

provide a framework and make it reusable, and to provide a basis for future expansion. An 

important aspect is the documentation available on the used packages, which allows a 

clearer understanding of the used software. 

 A key limitation in usability is in the form of data input. No user interface was developed, 

so the system is not yet adequate to reach general usage. 

6.5.1. Potential for future development 

Future development of this tool may include aspects such as: 

• Automation of economic allocation factors for materials, by linking to specific public price 

information. 

• Development of several dynamic indicators to study the evolution of criticality and the 

influence of these factors on the resulting impacts over different periods. Indicators must be 

indexed by date (e.g., criticality factors for 2017 and 2020). 
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• Development of a User Interface which allows building a data center model based on 

inventories linked automatically with reference devices. This may allow performing quick 

assessments of material content and embodied impacts by using the information stored as LCI 

models. 

• Deployment as a portable tool which holds LCI black box models with the impacts of devices. 

This, combined with a UI to enter data center configurations, may serve to get a first evaluation 

of material content, and provide a basis for assessment of urban mining potential. 

• Deployment as web-service to perform quick environmental assessment. The structure 

developed is appropriate to be offered as a web tool to evaluate data centers embodied impacts. 

This requires a web-based interface, and a server to host the front-end. The input data can be 

saved in a separate database, and results can be sent directly for visualization. However, issues 

regarding storage and protection of data need to be considered before, as the databases such as 

ecoinvent are proprietary and subject to an end-user license agreement preventing those 

without a license to use them [Pe21]. 

6.6. Conclusions 

This chapter described in detail the process of building an information system for managing the data 

collected during this research, performing LCA calculations, and analyzing the resulting outputs. 

Conceptualization, requirements specification, global architecture description, detailed design, 

implementation, and evaluation are part of the development of the tool here presented. 

Requirements were specified based on the objectives defined at the beginning of this dissertation. Upon 

searching for similar software tools, specifically in the BIM domain, general concepts for data exchanges 

and BoM applied in LCA are considered for formulating a solution. From the existing architectural 

patterns, the multi-tier pattern is chosen for implementation. 

The system developed for analysis is built upon this architecture, where the databases are created to 

store information on BoM, impact methods characterization factors, and impact assessment results. 

Model building and calculation is built around the openLCA software. Visualization and reporting are 

built using open-source python tools. This allowed automation of the various stages of the LCA process: 

LCI data management, model building, impact assessment, and reporting. 

The current system has as a benefit the integration of structured databases holding inventory information 

with environmental databases, and to allow calculation and experimentation. For software developers, 

one of the greatest challenges is to improve the interoperability between different frameworks tools. 

Although the general principle has been developed for other applications, such a system needed to be 

built to satisfy the requirements of this dissertation. The development aligns with current efforts to create 
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open source LCA tools, public inventories, nonproprietary data exchange standards, and the use of open-

source software in research. 

Compared to a traditional process, such as building the models directly in the LCA software interface, 

this system allows much faster creation of product systems while maintaining aspects such as granularity 

and background process information. Other existing solutions require the input of information directly 

in python scripts, which reduces usability. The complexity of associating each material and component 

with specific background process with the unit processes during the life cycle of a device (e.g., transport, 

manufacturing energy) is detected as a major difficulty. 

As the evaluation is based on specific case studies, the effectiveness in evaluating other types of products 

is to be evaluated. The system is developed with a data center infrastructure under consideration, which 

has a characteristic hierarchical structure. However, the general principle of linking the different 

frameworks for automation of LCA is valid. Moreover, the repurposing and reproducibility of the 

different objects developed (such as databases, calculation tools, visualization tools) and of the 

assessment models is of advantage for the scientific community. 

Further development may include deployment of the tool as a portable solution for quick evaluation of 

embodied impacts by local actors such as data center planners for reporting of GHG emissions, or the 

development of a web-based interface that can serve for assessment of urban mine potential of critical 

materials within a region. Such efforts need to consider that a reduction in complexity for end users 

when entering data in a user interface and privacy and protection of said data are of high relevance. 
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7. Results and Discussion 

This section presents a summary of the results obtained from the calculation of Life Cycle Impacts for 

the models developed from Chapter 4. As a basis for calculations, impact indicators, first discussed and 

developed in Chapter 3, are selected for evaluation of impacts of the product systems constructed, which 

represent data centers and their devices and modules. Results on environmental impacts of raw material 

gathering are first presented, which constitute the basis for future evaluations. The different impacts of 

data center and its components, at different disaggregation levels, are then evaluated. This includes 

analysis of material flows for specific raw materials. The inclusion of End-of-Life models allows 

evaluating the benefits of recycling from a recovery and impact avoidance perspective. The models 

developed are used to study the effects that different pretreatment and metal recycling strategies have 

on material flows and on avoidance of environmental impacts. Results data quality is evaluated through 

the results of Monte Carlo simulations using the corresponding uncertainties, where the effects of input 

data quality are evaluated. Improvements on data are also analyzed by a study on the effects of the 

incorporation of laboratory data on the quality of the results. Through this chapter, the correlations and 

dependencies between the indicators selected are also evaluated, which allows to analyze where 

dependencies exists and to evaluate the benefit of use of the indicators created in Section 3.4 for the 

evaluation of material and energy use. Figure 7-1 represents the structure of this chapter for the 

evaluation of results. 

 
Figure 7-1: Structure for the evaluation of results according to the research questions. 

7.1. Indicators selected for evaluation 

The selection of indicators is done according to the goal and scope sections. Section 3.3 presented a list 

of existing indicators for material and energy depletion. The focus of this work is on material and energy 

resource demands and their interaction. Indicators are then selected based on their area of evaluation, 

aggregation level, and on the usefulness to communicate results. Table 7-1 summarizes the selected 

indicators for further reporting: 
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Table 7-1: Selected indicators for LCIA evaluation 

Area of  

Evaluation 

Resource Accounting 

Methods 

Midpoint Methods Endpoint Methods 

Material 

Resources 

Cumulated 

Material Demand  

 

:CMD 

Abiotic Depletion  

Potential - Minerals 

 

:ADP-M 

 

 Resource 

Depletion 

:kgAu, 

 kgAg, 

Economic  

Importance ADP 

 

:EI-ADP 

 

   Supply Risk ADP :SR-ADP  

   Geo-Political 

Supply Risk 

 

:GPSR 

 

   ReCiPe V1.13 -  

Metal depletion  

 

:MDP 

ReCiPe V1.13 -

Metals 

Energy 

Resources 

Cumulated 

Energy Demand 

 

:CED 

Eco-Indicator 99- 

Fossil Fuels 

 

:E99-FF 

  

 Cumulative 

Exergy Demand 

 

:CExD 

ReCiPe V1.13 - 

Fossil fuel depletion 

 

:FDP 

ReCiPe V1.13 -Fossil 

Fuels 

Environmental 

Affectation 

  Global Warming  

Potential 

 

:GWP 

Eco-Indicator 99 

-Total 

   Abiotic Depletion 

Potential 

 

:ADP 

ReCiPe V1.13 -

Resources 

     ReCiPe V1.13 -Total 

Cumulated Material Demand and Cumulated Energy Demand have been recommended to study 

depletion of natural resources [Gi12]. Cumulative Exergy Demand offers a link between material and 

energy contained in ores [Bö07]. EDIP 2003- Non-Renewable Resource Depletion offers an insight on 

de total depletion of mineral ores containing elementary flows, and it is separated by material [BBC12]. 

Abiotic Depletion Potential (and its subdivision in minerals) is the current standard for evaluating 

depletion of material resources [EC10]. The variations developed in Chapter 3 (ADP-SR, ADP-EI, 

GPR) include criticality and reflect aspects such as economic relevance and supply risk. Eco-Indicator 

99 is useful since it considers the increased effort in material mining, thus providing a link between 

material an energy [Go01]. ReCiPe V1.13 includes marginal extraction costs information and offers a 

link with economic activities [KSB14]. Global Warming Potential is a standard in LCA communication 

and is included for clarity and for validation of results [My13]. 

Figure 7-2 shows the values for criticality of different materials. It is noticeable that outside rare earth 

elements (REEs), there is no visible cluster for these materials. REEs have a heavily concentrated 

regional source, and the different REEs metals are usually produced from the same mineral ore (known 

as mischmetal). Other metal groups do not show such heavy clustering. The application of the criticality 

indicators to the Abiotic Depletion Potential characterization factors produces the Criticality Weighted 

ADP. Since both dimensions for these factors are derived from ADP, a correlation between these two is 

observed. This does not immediately mean that results on impacts based on these indicators are 

correlated, since material composition varies. Clusters here can be first observed for REEs, platinum 

group metals (PGM), and precious metals. 
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Figure 7-2: Criticality factors for different materials and conversion to criticality weighted ADP. 

Figure 7-3 show the results of applying material production data to create the Geo-Political Supply Risk 

characterization factors. There is no correlation observed between factors. This is due to the 

incorporation of production data, which due to being in the denominator, scales the importance of certain 

materials such as scandium, indium, and tellurium. When evaluating the indicators for metal depletion 

for the ReCiPe V1.13 and from the Eco-Indicator 99 methods, it is noticeable that fewer minerals have 

characterization factors present in these methods. Most of them are base metals and ferrous metals. This 

limits the application of these indicators for evaluating products whose impacts of consumption of 

critical metals is being evaluated. At a logarithmic scale, these indicators do not show a clusterization 

either. An outlier in this method is tin, which shows a characteristic higher impact in both dimensions. 

 
Figure 7-3: Geo-Political Supply Risk and Metal Depletion characterization factors. 

Figure 7-4 shows the exergy demand for different materials and their relation to resource depletion. 

There is no direct correlation between exergy depleted from mineral ores and the depletion from 

materials from mineral reserves. This may indicate an uncoupling between material and energy demands 
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for mineral consumption. When evaluating the dependencies of these energy-related characterization 

factors to other depletion methodologies, the lack of characterization factors for materials such as REEs 

still presents difficulties for a complete evaluation. 

 
Figure 7-4: Exergy demand vs. metal depletion characterization factors. 

Figure 7-5 shows correlations between indicators for material and energy. It is worth nothing the high 

correlations between EcoIndicator99 and ReCiPe methods. This due to the few data points and on the 

presence on the outlier found in Figure 7-3. As expected, the criticality weighted ADP indicators still 

present a high correlation (0.86-0.88). The rest of the indicators present lower correlations. Specifically, 

the exergy indicators present low correlations across the board. This points at the usefulness of using 

various categories of indicators to study different areas of environmental damage and resource use. 

 
Figure 7-5: Correlations between characterization factors. 
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7.2. Impact assessment of raw material gathering 

This section provides an overview of the evaluation of impact assessment performed for the material 

gathering processes for different ores. The process of updating inventories included creating models for 

processes that were originally absent from the environmental database. Other processes were originally 

replaced by other related processes (such as Ag being modeled as Au). This last assumption from the 

developers of the environmental database originally produced incorrect results when assessing 

elementary flow depletion and thus also incorrect results on the impact assessments. 

Figure 7-6 details the results on the impact assessment for varied materials as their final market product, 

per kg of material. It is noticeable how precious metals, especially Au, have high impacts across 

indicators such as CED, ADP, and GWP. REEs have lower specific impacts for GHG emissions. Ferrous 

and base metals present lower impacts overall. When considering Geopolitical supply risk, the analysis 

of the criticality factors is reflecting on metals such as REEs, Ta, Nb, and Ga. In the LCA models, the 

economic allocation approach was adopted for the processes where multiple products occurred. Price 

information was compiled for 2022. 

 

 
Figure 7-6: Direct impacts for gathering of raw material per kg produced as product. 

Figure 7-7 directly compares the indicators selected to analyze the correlations between them. The 

criticality-based indicators do not hold a strong correlation, but clusters of materials categories can be 

observed presenting a partial correlation. This can be traced down to the allocation procedure as groups 

of metals them come for the same mining process (such as REEs, PMs and PGMs). CED and ADP 

present on the contrary a strong correlation. This is due to CED being calculated mostly from the energy 

required for mining efforts, which is a large fraction of the traditional ADP methodology (as it includes 

fossil fuels as part of the flows). Relating CExD and MDP is expected to provide a correlation since 
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CExD is a representative in the degradation of the energy quality (represented as exergy) and MDP is 

related to the increased marginal efforts of mining. Finally, GWP and the Total Impacts form the ReCiPe 

method also show a correlation, this due to the GWP being an important contributor for the total impacts 

on the ReCiPe method. 

 
Figure 7-7: Direct comparison between different impacts for mining and production of different metal categories. 

Figure 7-8 shows a full evaluation of correlations of the resulting impact assessment for the different 

process of mining metals analyzed. Lower correlations are observed for the supply risk indicators and 

for the CExD. GWP shows strong correlations with MDP, ADP, and the Total Impacts (ReCiPe). The 

economic importance ADP shows low correlations with the supply risk and CExD indicators, and high 

correlations with the rest of the indicators. 
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Figure 7-8: Heatmap of correlations between the specific environmental impacts for mining of materials 

Figure 7-8 display correlations that help identify indicators with strong interdependencies and 

determine the independent impacts under evaluation. These correlations also assess whether the selected 

indicators capture different aspects of environmental impacts from data center component 

manufacturing. For instance, the high correlation between CED and GPW stems from their calculation 

methodologies, as both primarily rely on the impacts caused by consumption of fossil fuel resources. 

Similarly, traditional ADP and GWP exhibit a strong correlation due to the inclusion of fossil fuels as 

abiotic resources, considered alongside mineral resources. Indicators such as GPSR and CExD present 

lower correlations since both represent different aspects of resource depletion.  

7.3. Impact assessment of data centers and their components 

Figure 7-9 describes the results on impact assessment for critical material depletion categories. The 

analysis was conducted for various levels of product systems to study individual impacts and to provide 

a basis for a granular analysis. Products are presented in different groupings according to their 

application in a data center or its systems. At the module level, the products related to electronics present 

the highest specific impacts, with integrated circuits and memory devices having exponentially higher 

specific impacts. This is due to their highly concentrated critical material content. Their cumulated 

energy demand is also significantly higher due to the energy-intensive manufacturing processes. 

At the component level, electronic components such as printed circuit boards and memory units present 

the highest specific impacts, pointing at the significantly higher critical material concentration for these 

devices. CED for these products also has important contributions from the energy for manufacturing. 

For the devices analyzed, the IT devices present the highest material depletion impacts, again showing 

a higher critical material content. Since these results are presented for unit of device and not by specific 
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unit (such as weight), components such as climatization devices (such as chillers) and energy supply 

devices (such as transformers and UPS) present high CED impacts due to the amount of material 

required for the manufacturing of a whole reference unit. 

For the evaluated data centers, the correspondence of impacts correlates with the size of the data center. 

There is a positive correlation between the different impacts presented here, although the correlation 

factors are not similar. 

 
Figure 7-9: Life Cycle Impact Assessment at various levels for data centers and its components. 

Figure 7-10 presents a selection of product systems with a disaggregation of the material related impacts 

and grouping by material category. These diagrams present an overview of which materials are 

contributing the most to the different impacts. A simple mass accounting shows information on material 

content of the different processes. As an example, for a mainboard unit, material content corresponds 

mostly to ferrous metals (Fe, Nd) and other materials (such as plastics). When evaluating indicators for 

critical material depletion, most of the impacts come from precious metals (Au, Pt) and PGMs (Pt). 
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Indicators related to supply risk and production (GPSR) come mostly from Ta in capacitors and Nd from 

ferrous alloys. 

For a whole device such as a server, the bulk of the mass comes in from Fe for the frames. The 

distribution of impacts for minerals with economic importance (ADP-EI) comes mostly from precious 

metals and PGMs, whereas GPSR impacts are related to the depletion mostly of Ta. Ta shows important 

contributions across the whole products analyzed. 

At a higher level of data centers, the bulk of materials corresponds to Fe and Cu. Impacts for depletion 

of minerals come from base metals (Zn for the UPS, Pb for batteries), Cu (cables and connectors), and 

precious metals and PGMs in electronics. GPSR depletion comes from Ta and Nd use. 

 
Figure 7-10: Contribution analysis to material impacts for selected products. 

Establishing correlations between the impacts can be done for all the impact categories considered. 

Figure 7-11 shows the correlations between the impacts obtained at the levels of components and 
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devices. Higher levels were avoided since not enough data points are present to evaluate correlations 

satisfactorily. The heatmaps presented offer an overview of the dependencies of the indicators. For 

indicators heavily related to material depletion and quality of minerals, such as GPSR and CExD, low 

correlations with other indicators can be observed across the board. CED still has high correlations with 

traditional methods such as GWP, ADP, and Total Impacts (ReCiPe). This is due to the methodology of 

establishing these impacts, which assign high characterization factors to fossil fuel consumption, and on 

the relevance of fossil fuels to the local energy mix. Indicators relating to depletion of minerals and 

related economic efforts (such as ADP-EI and MDP) present medium correlations with all the other 

factors. This indicates a decoupling of these indicators with traditional impact assessment methods and 

reflects on the importance of presenting them separately. 

 
Figure 7-11: Correlation heat map for indicators for the evaluated products at various levels. 

One of the aspects important for evaluation of impacts contribution is on the lifetime of the devices 

considered. Devices with high impacts of material depletion are in the category of IT, which have shorter 

life spans. Annualizing (by simple division by the expected lifetime) is a fast evaluation method to better 
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show the intensity of material depletion related impacts from IT devices. Figure 7-12 shows a 

comparison between the results of the impact assessment for a medium size data center and the results 

after an annualization has been estimated. As noted, the contributions of IT devices grow when 

considering their lifetime, taking more than 95% of the annualized impacts related to material use. This 

is an indicator of the high relevance of material recovery strategies for the materials present on these 

components. 

 
Figure 7-12: Comparison of LCIA before and after annualization by using lifetime expectations for product systems. 

Different models of data centers were built as part of the evaluation of the information system and to 

validate the modeling methodology. Models of data centers based on inventories described in Chapter 

4 are also built and evaluated together. As a reference unit, the service of a data center in units of kWIT·h 

is considered, which is related to the size and operation type of a data center. This unit has also a relation 

to the energy consumption of the data center since it can be related to the hourly consumption of the IT. 

Figure 7-13 presents the results of this evaluation. Correspondence in the log-log scale can be observed, 

although for impacts related to material energy quality (CExD) and material supply concentration 

(GPRS) a direct correlation cannot be seen, finding more dispersion at the lower size of data centers, 

where real case studies were built. Impacts across the categories present a linear correlation in this scale. 

This indicates that, when discussing data centers and their resource use, bigger facilities do not 

necessarily mean more resource- efficient infrastructures. 
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Figure 7-13: Correlations of Impact Assessment Results with the service unit (kWIT·h) of Data Center operation for the created 

models. 

For evaluation of the benefits of recycling, it is helpful to know how much of the initial impacts are due 

to raw material extraction and processing. Figure 7-14 presents a summary of the CED for the different 

devices analyzed and the contribution of material extraction to the CED. In most cases, material 

extraction is responsible for around 25% of the impacts. When focusing on other material related 

impacts, such as CExD, raw material extraction accounts for 50-85% of the impacts (Figure 7-15). For 

impacts related to criticality, such as supply risk (Figure 7-16), raw material extraction contributes to 

almost 100% the impacts. 

 
Figure 7-14: Total CED and contribution of raw material gathering to the total impacts for selected devices. The darker portion 

of the bar represents the contribution of raw material gathering to the total impact. Each bar represents a reference device 

evaluated. 
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Figure 7-15: Total CExD and contribution of raw material gathering to the total impacts for selected devices. 

 
Figure 7-16: Total depletion of materials by supply risk and contribution of raw material gathering to the total impacts for 

selected devices. 

When discussing whole data centers, these contributions rise for 20-25% of CED (Figure 7-17) and 70-

90% of ADP-EI (Figure 7-18), and similarly, all of the GPSR impacts comes from raw material 

gathering (Figure 7-19). 

 
Figure 7-17: Total CED and contribution of raw material gathering to the total impacts for the Data Centers modelled. 

 
Figure 7-18: Total CExD and contribution of raw material gathering to the impacts for the Data Centers modelled. 
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Figure 7-19: Total Depletion of Minerals by Economic Importance and contribution of raw material gathering to the impacts 

for the Data Centers modelled. 

The contributions to the impacts of the data center can be understood via flow charts to map 

contributions to different impact indicators from systems, devices, and components, and to evaluate 

specific material flows, so the location of metals and the structure of impact contributions within a data 

center can be better understood. Figure 7-20 shows the inputs of Au (as product metal) for the various 

levels of a data center. Higher concentrations are found in integrated circuits and printed wiring boards, 

all of it on IT devices. This is normally the focus of recovery and thus of high importance to be 

addressed. 

The contributions of CED are completely distinct. Figure 7-21 shows the contributions from various 

levels to the total of a data center embodied energy from manufacturing devices and systems. Whereas 

IT remains at the forefront of the contributions, important amounts come from infrastructure and 

climatization devices. This is due to the bulk of the materials required for manufacturing these 

components.  

Depletion of minerals with high supply risk has a different structure, where the impacts come from 

manufacturing of capacitors and PWB related parts (Figure 7-22). Manufacturing losses are not 

displayed. 

 

Figure 7-20: Flowchart for percentual input of Au for a Medium Data Center 
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Figure 7-21: Flowchart for percentual contributions to CED impacts for a Medium Data Center 

 
Figure 7-22: Flowchart contributions to Depletion of Supply Risk Minerals for a Medium DC 

7.4. End-of-life for data centers and their components 

The different possibilities for EoL described in Chapter 3 allow for creation of different scenarios and 

of parametrization of different variables that allow evaluation of strategies for material recovery. Figure 

7-23 shows an overview of the different flows for material under the different conditions evaluated. Two 

stages are important: a) the separation (pretreatment) which gives the amount of material sent for 

recovery, represented by a parameter that factors the relation between material inputs and outputs, and 

b) the metal recovery process, which provides the final material recovery outputs and is dependent on 

the technology used. 

Figure 7-24 shows the LCIA for different recovery processes for a high-grade PCB. This process shows 

as positive impacts the energy and material consumption for the recycling processes, and as negative 

impacts the equivalent avoided impacts from substitution of primary raw material production. Two main 

differences between the processes are 1) the specific impacts for the processes themselves (represented 

by the blue bar) and 2) the different outputs and outputs fractions. Pyrometallurgical processes are the 

current industry standard and offer benefits from recycling precious metals and avoiding their primary 
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production. Hydrometallurgical processes are energy and material intensive, and they also produce high 

amount of GHG emissions (related to the production of chemicals for the process). This even produces 

a negative balance for hydrometallurgical recovery process in categories such as GHG emissions 

(meaning positive GHG emissions). Bioleaching has limited benefits due to the materials obtained (only 

Au and Cu). Tantalum recycling is modelled as a separate process and therefore is recovered in all the 

scenarios with the same amount. There are light advantages for electrochemical recovery, mostly 

coming from the reduced specific energy consumption when compared to pyrometallurgical processes. 

 
Figure 7-23: Schematic for the evaluation of recycling scenarios. 

 

 
Figure 7-24: LCIA of recovery of metals from a mainboard per kg of module processed. The top line represents direct impacts 

of the recycling process. Bottom line represents net impacts after material gains are included. 
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Figure 7-25 shows the process for another PCB, per kg, with a wider variety of metal products 

recovered. Nd and Al also contribute to the balance of impacts. This positively affects the avoidance of 

primary energy use and the avoidance of metal depletion. 

Figure 7-26 depicts the specific impacts associated with production of secondary metals from the 

recycling processes specified for a low-grade PCB. Figure 7-27 presents the results for a high-grade 

PCB. It is notorious that impacts from secondary production are normally 1 or 2 orders of magnitude 

below the impacts associated with primary material production. Due to the allocation method selected 

and the different recovery rates from metals, there is not one single value resulting from the recovery 

process. This is still dependent on the material content of the inputs and on the process selected. Given 

that gold and copper are normally at the focus of evaluations, electrochemical processes can offer a 

considerable reduction on impacts of these two keys metals. The highest reduction is seen in iron, with 

impacts being 3 to 4 orders of magnitude lower than raw ore production. Tantalum offers comparable 

results for all strategies since it is modelled as a separate process. 

 

 
Figure 7-25: LCIA for recovery of a low-grade PCB per kg of recycled module. The top line represents direct impacts of the 

recycling process. Bottom line represents net impacts after material gains are included. 
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Figure 7-26: Equivalent impacts for production of secondary materials from recycling from a low-grade PCB. 

 
Figure 7-27: Equivalent impacts for production of secondary materials from recycling from a high-grade PCB. 

Figure 7-28 presents a comparison between the impacts avoided from recovery for a high-grade PCB 

and the impacts related to production of all the metals present in the modeled process. This gives an 

insight into the potential for recovery and of the impact of the different strategies selected. As a 

sensitivity parameter, the factors of efficiency on pretreatment of Table 5-1 are included as factors in 

the material flows before entry to the recycling process. Impacts related to direct energy consumption 

offer a limited benefit on avoidance of primary energy use (between 5-30%) and on GHG emissions 

avoidance (3-20%). Higher benefits are seen in the avoidance of exergy consumption (related to material 

degradation) and on avoidance of depletion of critical materials (related to direct material use). Slight 

differences are found in material related impacts for the different recycling processes. The key factor 

here is then the separation process, which has a much higher influence than recycling process in material 

related impacts. However, when considering energy related impacts (including GHG emissions), 

pyrometallurgical and electrochemical processes offer clear advantages over hydrometallurgical and 

bio-leeching processes. Bio-leaching presents the limitation of limited material recovery. 
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Figure 7-28: Comparison of impacts from different recovery scenarios for a high-grade PCB. 

Figure 7-29 presents a similar evaluation for a complete Server (1U). Here, the lower specific content 

of precious metals and the higher content of base metals (Fe and Al for housing, Cu for cables) makes 

the differences between each recycling process less noticeable across all the impacts. However, the 

potential for avoidance of primary energy and GHG emissions is higher due to the recovery of bulk 
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metals. The limited recovery factors on other metals lower the benefits of recovery for other material 

related impacts. At a device level, the importance of the pretreatment process is increased, as impacts 

seem less distinct between different PCB-recovery strategies. This is because bulk materials are sent to 

the same scrapping process, lowering the influence of the PCB metal recycling process. 

 

Figure 7-29: Comparison of impacts from different recovery scenarios for a Server -1U. 
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7.4.1. Material flow analysis for data centers 

The results of LCIA can be used to establish material flow analysis (MFA) and obtain visualizations 

that allow inspecting material flows and indicating where the material hotspots are. Figure 7-30 shows 

the material flows for gold considering also the material gathering and the recovery of metals. Since the 

gold content in a data center is concentrated on the PCB components, recycling of these offers the most 

recovery potential in the data center for recuperating this metal. For this example, a deep-manual 

separation process (97% efficiency rate) and a pyrometallurgical recycling process for PCBs is modelled 

(98% recovery rate) yield the maximal amount of material recycled and inserted back into production. 

Figure 7-31 shows a comparison with a mixed separation (70% efficiency) with the same metal 

recycling process. Differences in non-recovered content come mostly from losses at the separation stage. 

 

Figure 7-30: MFA for Au with deep manual recovery for a medium DC. 

 
Figure 7-31: MFA for Au with mixed recovery for a medium DC. 

Figure 7-32 offers a similar visualization for Cu for a deep-manual PCB pretreatment and 

pyrometallurgical process. Cu is contained mostly in cables for energy supply and for infrastructure, 

and thus the separation process for PCBs has reduced influence on the result, since the cables are sent 

directly as scrap, and the Cu content in PCBs loss during pretreatment has less overall impact.  

 
Figure 7-32: MFA for Cu with deep manual recovery for a medium DC. 
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Figure 7-33 shows that when changing the pretreatment strategy to a mixed method (70% efficiency 

for PCB) the results do not differ significantly from the previous figure. 

 
Figure 7-33: MFA for Cu with mixed recovery for a medium DC. 

7.5. Uncertainty and data quality 

The different models created were established using a mixture of laboratory data, case study inventory 

data, and use of proxy data from industrial databases. These data sources have distinct characteristics 

regarding data quality. Therefore, the results produced by the analyses are bound to uncertainties. 

Results with high uncertainty are not desirable, independent from the application of the LCA model, be 

it “accounting” ( a mere report on impact figures linked to a product system) or, more frequently, 

decision-support [Ci21]. To provide a basis for comparison of the quality of the results, the 

improvements in the quality of the results are shown by means of the uncertainty obtained. 

Reporting the uncertainty of LCIA results and LCA models as quantitative increases the overall quality 

and reliability of the study. [Su05] suggested applying the Pedigree matrix approach to literature-based 

data but to use statistical methods to quantify the uncertainties in industrial inventories. This is the 

method used in this study, where laboratory data and case study inventory data case assigned a geometric 

uncertainty of “1” and correspondingly, high markings in the data quality indicators. The resulting value 

of total uncertainty is calculated using the propagation method and the pedigree matrix uncertainty 

factors. 

Monte Carlo simulations are then executed to evaluate the uncertainty of the results on impact 

assessments introduced by the statistical variability or temporal, geographical, or technological gaps in 

the LCI data. The simulation results for selected impact categories are presented as a detailed example 

of the application of statistical methods at the LCI level. Based on the uncertainty of LCI data expressed 

as a probability distribution, the Monte Carlo simulations are conducted using the openLCA calculation 

engine and multithreading, using in total 2500 runs. Figure 7-34 presents the distribution of impacts 

calculated for distinct categories for a reference module. Figure 7-35 presents similarly the results for 

a reference device. Results present a lognormal distribution, where the geometric standard deviation 

represents the quality of the result obtained. 
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Figure 7-34: Distribution of results of LCIA for a PCB with a mounted CPU. 

The nature of these distributions was also analyzed since some distributions did not fit entirely in the 

lognormal probability density function. Table 7-2 shows the corresponding P-Value calculated for the 

statistical test under the assumption of a lognormal distribution for different products analyzed. Values 

above 0.01 are considered to indicate no evidence to reject the null hypothesis, and thus a lognormal 

distribution is considered as appropriate to represent the data. Indicators such as ADP do not fit this 

distribution and other distributions (such as Weibull-Exponential) fit the obtained results better. Further 

analysis is excluded. 
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Figure 7-35: Distribution of results of LCIA for a Blade Server. 

Table 7-2: Results of the evaluation of the P-Value for the statistical test of the lognormal distribution. Green values show a 

rejection of the null hypothesis under the threshold implemented. 

Indicator Mainboard PCB  

with CPU 

Low-grade  

PCB for UPS 

Server, 1U, 

no storage 

Blade  

Server 

Au 1.58E-01 1.11E-02 5.20E-02 9.42E-02 1.07E-01 

Cu 1.44E-01 3.27E-02 3.46E-03 1.07E-01 2.39E-02 

CExD 3.28E-01 4.19E-02 3.07E-02 4.86E-02 2.10E-01 

CED 4.86E-13 2.65E-01 4.12E-13 2.08E-18 1.93E-01 

ADP 7.80E-16 1.41E-03 1.49E-10 2.79E-22 1.16E-01 

ADP-Mins 2.17E-02 3.82E-03 1.24E-01 5.58E-01 7.56E-02 

ADP-EI 4.27E-03 5.69E-03 1.70E-01 2.83E-01 1.92E-01 

ADP-EI-PM 1.89E-01 3.78E-02 4.92E-02 2.10E-01 5.22E-02 

ADP-SR 5.52E-05 9.63E-04 1.60E-01 2.21E-01 6.60E-02 

GPSR 9.54E-04 1.01E-02 3.61E-02 1.64E-01 1.35E-01 

GWP 5.07E-16 2.03E-01 4.23E-12 1.34E-24 3.45E-02 
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The inclusion of different parameters with uncertainty values allows also studying the dependencies that 

different impact indicators have between each other. Figure 7-36 shows visualization of these 

indicators. Selected indicators for a reference device (Server 2U with) are compared to each other and 

their correlations are analyzed. The resulting Pearson-correlation coefficient allows evaluating the 

dependencies between indicators of different areas, such as material depletion or energy depletion. For 

the plotted example of a server, the content of Au has a direct incidence on indicators such as CED. 

Indicators such as depletion of supply risk materials have low correlation on the value of primary energy 

depletion. 

 
Figure 7-36: Correlations between the different indicators of material and energy depletion. Darker points indicate lower total 

aggregated impacts (ReCiPe method). 

Figure 7-37 presents a summary of the correlations between different indicators for a product system 

modelling a Server of 1U without storage unit. The developed indicators of Supply Risk (SR) and 

Economic Importance (EI) show a high value of correlation, but they are nondependent of other material 

depletion indicators such as Metal Depletion Potential (MDP). Geo-Political Supply Risk (GPSR) 

presents a good correlation with Exergy consumption (CExD), this is due to their focus on mineral 
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quality and on normalization by quantity. Cumulated Energy Demand (CED) and Abiotic Depletion 

Potential (ADP) also present good correlations due to the impact of fossil fuels in these categories. Gold 

depletion is highly correlated to Economic Importance, due to the high characterization factors they 

present for this indicator. Copper depletion has a strong influence on MDP. It is of notice that the “Total“ 

aggregated impacts (ReCiPe) hold a low correlation with the rest of the studied indicators across the 

board. This can be explained when considering that this “Total“ indicator is an aggregation of the 

different impacts across various categories, and all domain dependencies are lost when evaluating a 

single indicator representing the totality of impacts over different areas of protection. 

 
Figure 7-37: Pearson coefficient for covariance of lognormal distributions of studied indicators for a Server. 

To study if any improvement on data quality has been achieved by this work, two different sets of models 

were created. The first one is based purely on the ecoinvent database and on inventory data. The second 

set of models includes the results of laboratory analysis on material content as presented in Figure 4-4 

and in Figure 4-5. The goal is to evaluate what are the changes on the different impacts obtained by 

including this data on the models, and to evaluate the improvements on results data quality obtained. 

Figure 7-38 compares the product system created with only ecoinvent data and with the input of 

laboratory data on material content. The differences can be observed in the results on mean and standard 

deviation. First, the mean is increased, meaning that a higher result on depletion of materials is expected, 

this being a reflection on the higher quantities of valuable minerals found in the laboratory analysis. 

Second, due to the improved data quality at the input, the geometric uncertainty is reduced, producing 

better data quality. Figure 7-39 repeats this comparison for energy depletion. For this indicator, no 

substantial change in the results can be inferred, although the data quality of the resulting indicator has 

slightly improved. 
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Figure 7-38: Comparison of results for a Blade Server between models created using the ecoinvent data (left) and the laboratory 

data (right) for Depletion of Minerals. 

 
Figure 7-39: Comparison of results for a Blade Server between models created using the ecoinvent data (left) and the laboratory 

data (right) for Depletion of Energy. 

To summarize these results, Figure 7-40 presents a comparison between the results obtained for data 

quality and the related geometric uncertainty for selected indicators. There is an increase in the 

calculated amounts of raw material consumed, and a visible increment on the resulting impacts related 

to material depletion, including economic importance and supply risk indicators. There is however no 

notorious change in indicators related to energy demand or GWP. Since the Total (ReCiPe) indicator 

aggregates other indicators based on areas of protection including material depletion, these values are 

also increased, with the most relative increments found at the module level (such as Mainboard). 

A better visualization of the improvement of result quality is obtained comparing normalized values 

obtained from the two datasets (Figure 7-41). The sharper shapes of the updated values show a higher 

concentration around the (normalized) mean and thus a lower uncertainty, demonstrating improvements 

in the results quality. These effects are mostly seen in material-related impacts. There is however a 

reduction in the quality of energy related categories. This can be explained due to the increased amount 

of materials present, which despite having higher data quality, contribute to the increment on primary 
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energy demand and on the number of flows which increases the uncertainty of the results due to the 

propagation of uncertainty. 

Figure 7-40: Comparison between results data quality for different product systems 
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Figure 7-41: Violin charts representing the improvements on data quality for a Mainboard with mounted CPU. 

7.6. Conclusions 

In this section, the different results obtained from Life Cycle Impact Assessment calculations were 

analyzed, with a focus on answering the research questions established in Section 1. 

Based on the results obtained, an overview of the interactions between the results of raw material and 

primary energy consumption can be assessed. The methodology here used applies indicators developed 

to assess critical material use and is built upon evaluation of the impacts of raw material gathering. 

These methods allow to evaluate separately the depletion of critical materials, based on economic 

importance and supply risk, and to evaluate energy depletion, by means of primary energy or primary 

energy quality (exergy). Links between the results obtained for these indicators are then studied. 
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Different reference components, devices, and case studies of inventoried data centers are used as 

research objects for the application of these indicators, which aligns with the goals of this work. The 

dependencies between material and energy indicators are stronger at the lower disaggregation levels at 

the electronics components cluster. This is due to the higher material concentration and the wide variety 

of materials present, including critical materials. 

Studying correlation between indicators allows assessing quantitatively how these interactions between 

indicators are. Commonly used methods (such as global warming potential, abiotic material depletion, 

cumulated energy demand) have strong correlations amongst them due to the heavy influence of fossil 

fuels consumption in the calculation of these indicators. It was then of advantage to develop and to use 

criticality-based indicators to highlight the importance of material consumption for these specific 

products. The endpoint indicators (such as ReCiPe v1.13-Total) lose correlation since they aggregate 

various aspects of environmental affectation in only one indicator linearly constructed. These endpoint 

indicators, however easier for communication, omit information relevant for the evaluation of material 

and energy resource use. 

The analysis of inventories at different granularity levels allows material flow analysis to be conducted 

for the stages of the lifecycle, including recycling and recovery of metals. The different recovery 

strategies are evaluated by means of parametrization of collection rates, pretreatment efficiencies, and 

metal recovery fractions from recycling processes. While the modelling focus is on recycling 

technology, the selection of a proper pretreatment route presents more relevance to the whole End-of-

Life chain. Of the recycling technologies evaluated, pyrometallurgical, being the most mature, offers 

clear advantages in terms of avoided primary energy use and avoided greenhouse gas emissions. 

Experimental technologies, such as electrochemical recovery, can potentially offer higher advantages in 

terms of avoidance of impacts, while presenting similar recovery rates. This is due to the reduced 

specific energy consumption for material recovery. An economical assessment of these routes would 

also be required in a prospective study to analyze the benefits of experimental technologies, such as 

bioleaching, at an industrial scale. As the evaluation did not consider cost aspects, no information on the 

economic advantages of the different recycling routes was obtained. 

The use of Monte Carlo analysis paired with data quality and inventory uncertainty evaluation allows 

evaluating the quality of the results, and to evaluate the improvements on said quality obtained through 

this work. A complete separate database with products built only based on reference ecological 

databases was constructed to quantify the improvements achieved through the incorporation of data 

from laboratory analysis. While a clear improvement can be observed in the material-related indicators 

at the resource accounting and midpoint level, the quality of energy and emission related results at the 

midpoint level did not show substantial improvement. This reflects the methodologies for construction 

of such indicators and shows the effects of incorporating more material flows and higher quantities of 
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material use for manufacturing of electronic components. Reporting of the uncertainty increases in 

general the quality of any LCA study, with a full quantitative uncertainty assessment giving high 

transparency on the quality of the results provided. 

By using a variety of indicators for evaluation, this work presents novel insights on material depletion 

and on energy use for various products, whose high specific critical material content make them of 

relevance for urban mining and for securing secondary material sources. Additionally, the use of Monte 

Carlo simulations paired with data quality to evaluate the results is a procedure not commonly observed 

within LCA studies, mostly due to time and to computer resource constraints. This last evaluation 

provided an insight on methodologies for evaluation of results quality and on the improvement of said 

quality, while also providing a basis for studying interdependences of indicators. However, limitations 

on the methodology are reflected when evaluating the distribution of the results. For example, it was 

assumed that all flows are lognormally distributed. The effects of these assumptions and the use of other 

PDFs can be implemented in future studies. 

When compared to similar studies, advances in results quality here presented reflect the benefits of using 

state-of-the art data and existing data centers as sources of information for building case studies for 

evaluation. This is a challenging task in the data center sector, as much of the information on inventory 

and architecture of data centers remains unavailable. Additionally, the implementation of an information 

and calculation system to build models and calculate results allowed obtaining and processing 

considerable amounts of data for evaluation in this chapter. Further analysis may include updated 

inventories, bigger data centers, refinement of the service unit, and a techno-economical evaluation of 

recycling strategies of data center components. 
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8. Conclusions 

In the context of the present work, a software architecture for building Life Cycle Assessment models 

of different data centers under study and their components was developed. The LCA models were built 

based on updated information on material composition of printed circuit boards, bill-of-materials 

obtained from disassembly of servers and IT devices, and on inventories of existing data centers. The 

goal was to establish a basis for the evaluation of embodied energy and material consumption for data 

centers, and to evaluate strategies for end-of-life for their components. Seven specific objectives were 

defined arising from three secondary research questions regarding the appropriateness of indicators for 

evaluation, potential environmental benefits of recycling, and on the data quality of the results. The 

specific goals were developed in accordance with a complete LCA study to answer the research 

objectives. The developed software was constructed to satisfy the requirements of this study. 

The defined objectives were used firstly to evaluate the existing indicators for evaluation of data center 

resource consumption outside of the operation phase. After an evaluation of the literature on data centers 

and the indicators used for the evaluation of their environmental impacts, it was concluded that several 

indicators needed to be created to better assess aspects such as economic importance or supply risk of 

material consumption for the manufacturing of data center components. After literature research on 

information on data for building LCA models for data center components, most of the available 

information was found to be of low quality due to the use of loosely technologically related process and 

outdated information for creation of models of components. Additionally, when considering recycling, 

few information was available on inventories of recycling processes and on specific advantages of 

recycling. This justified the need for creation of new indicators for assessment of depletion of critical 

raw materials, improving information on data center components for LCA modelling, and on modelling 

of different recycling processes for EoL scenarios. 

As tools for resource depletion evaluation, different environmental impact assessment methods were 

analyzed. Based on the requirements of the research, criticality of materials was incorporated in new 

indicators built for evaluation of impacts of data center components. These indicators are formulated 

based upon existing methodologies and on criticality of materials as per the definition of the European 

Union. 

The data available for LCA modelling of datacenter components existing in environmental databases 

and on published literature presented low quality to fit the purposes of this research, as the existing 

information did not fit the purpose and data quality goals. Improvements to this data needed to be made. 

After first assessments, it resulted that most of the improvements need to be done on the information for 

manufacturing and on the information on material composition of printed circuit boards, their individual 

electronic components, and on the inventories of IT devices such as servers and storage units. The 
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updating of this information was done via laboratory tests for the analysis of material content, and on 

updated BoM for specific devices. To couple this information, case studies were made on data centers 

operating in northern Germany, whose inventories were gathered to establish models that can allow 

evaluation of their embodied resource consumption. 

Once updated information on material content was gathered, EoL models were built to consider different 

scenarios for recovery of materials. The various stages of EoL were studied and the technologies for 

preprocessing and for metal recycling were analyzed. Inventories for models of industrial and 

experimental metal recycling technologies were built. The goal was to establish different routes for 

recycling and to analyze which EoL steps have the most influence on the mitigation of environmental 

impacts through recycling. 

As a tool for model building, for data and results saving, and for evaluation and analysis of results of 

the impact assessment, an information system linking databases, model creation and calculation 

applications, and results evaluation scripts was built. This allows linking the information on BoM and 

on manufacturing on components, creating LCA process models based on this information, and 

performing calculation for the evaluation of different impacts. Results saved on databases can then be 

evaluated via scripting. The construction of this system was made using a traditional software 

development methodology, where requirements were gathered from the research objectives, an 

architecture was build based on performance and usability, and opensource software and packages were 

use across the development for implementation. The evaluation of the software is done via the 

assessment of the fulfillment of the requirements previously established. 

Results evaluation was done by use of the previously mentioned information system, and with the goal 

of answering the research questions first established. Impact assessment indicators were selected first 

for evaluation. These indicators were used to evaluate environmental impacts of data centers, devices, 

modules, and components, including evaluation specific raw material gathering impacts and evaluation 

of the potential benefits of recycling and recovery of materials. An analysis of correlations between the 

resulting indicators allowed to evaluate the appropriateness and representativeness of said indicators to 

answer the research questions. Evaluation of resulting data quality and Monte Carlo simulation results 

allowed to investigate the improvements on data quality obtained. 

8.1. Results and scientific contributions 

The results obtained via the developed application were evaluated according to the research objectives 

in Chapter 7. Results regarding indicator evaluation highlighted the importance of considerations of 

criticality during assessment of resource depletion, and on the limitations of existing indicators that 

either omit these factors or completely overlook certain critical materials. The indicators developed are 

suited not only for the case of data centers, but also to evaluate any technology where the use of materials 
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comes into question. A further example of the application of these concepts in the domain of 

environmental sustainability of electromobility has already been published by the author [Pe22]. 

Results regarding specific impacts for raw material gathering were first required as basis for evaluation 

of the impacts of manufacturing and later recovery of different components. For this, much of the 

information on raw material processes on the existing environmental databases had to be updated or 

new processes entirely created for specific materials initially absent from the databases. This resulted in 

an updated database for raw material gathering and production, which includes updated information on 

process impact allocation based on economic factors. This assessment of the impacts of critical materials 

goes in hand with the current requirements of the EU framework for Critical Raw Materials [EC23a]. 

The evaluation of results on the models for data centers, devices, modules, and components gave an 

overview of the linkage between different indicators. The relevance of components such as Integrated 

Circuits and RAMs is first recognized, which can reach orders of magnitude higher specific impacts 

than other components. This translates to a higher specific importance of electronic parts such as PCBs 

and memory units. Most of the material depletion impacts come from the use of precious metals, 

platinum group metals, and metals such as tantalum and neodymium. Whereas a link can be identified 

between different indicators commonly reported, such as greenhouse gas emissions and abiotic depletion 

potential, some impacts such as supply risk are often decoupled of energy related impacts such as 

primary energy use. This, to a lesser extent, can be seen for Economic Importance related impacts. This 

decoupling highlights the importance of presenting separate indicators to remark these two aspects of 

resource depletion. The methodology applied allowed to evaluate data centers at different granularity 

levels, so that key contributors to impacts under various categories can be identified, as exemplified in 

the Sankey diagrams for impacts contributions. The resulting Life Cycle Inventories are then created 

and can be further used to evaluate environmental impacts of other data centers. Testing with mock-up 

configurations verified the viability of the application of the inventories here developed, and later use 

in case studies showed their use for resource impact assessment of existing facilities.  

Using recovery and process efficiency factors for various stages of EoL, different scenarios were created 

to evaluate the benefits of recycling. For this, it was first necessary to develop recycling inventories for 

modules, devices, and data centers, which consider how much recyclable components are contained, 

and which recovery processes are connected to each component recycling flow. This required first a 

compilation and inventorization of recycling processes, which serves for evaluation of recovery 

potential of any electronic component. Different models and scenarios were combined to evaluate 

recycling strategies. As a result, most of the potential benefits of EoL management recovery can be lost 

in improper preprocessing, where most of the material can be lost. Recycling shows limited benefits on 

avoidance of primary energy consumption and greenhouse gas emissions due to use of secondary 

mineral sources instead of primary ores but is clearly advantageous when considering savings on 
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avoidance of depletion of critical minerals. This analysis is of use when evaluating the advantages of 

different recycling strategies and serves to stress the importance of recycling methods under 

development. Additionally, the benefits of a correct pretreatment process are here highlighted and can 

serve as basis for policy development on EoL management. 

The value of the contributions presented here is reflected in the data quality of the results, which reflects 

the improvements of the results obtained through this work. The inclusion of the analysis of data quality 

is an aspect commonly omitted in LCA studies, mostly due to time constraints and to the complexity of 

the execution of this analysis. The inclusion of an analysis of inventory and results data quality in general 

improves any LCA study. The use of the methodology presented here is advantageous to the 

improvement of the quality of this work. 

An important contribution comes with the developed tools created and adapted for model building and 

calculation. A key advantage is the use of open-source LCA software, which allowed the creation of 

applications for model building and for calculation of environmental impacts. This accelerated the 

development of this study. The use of further open-source tools for data and results saving, and for 

results postprocessing and visualization was a key component of this dissertation, since the amount of 

gathered and generated data demanded the use of automation for calculations and results analysis. The 

creation of these tools followed the software development process, whose implementation allowed the 

obtainment of the stablished research goals.  

8.2. Gap closing and research questions 

Key aspect to the evaluation of the achievements of this work is on the gap closing. First presented in 

Table 1-1, the various aspects regarding attempted gap closing were formulated, and gaps were 

identified based on existing literature reviews and on current methodologies. Regarding the gap closing, 

different methods were applied to close these gaps in the context of a Life Cycle Assessment study 

(Table 8-1). The updated inventoried data consists of material data, bills-of-materials, and data center 

inventories, which are used to build LCA process chains for modelling. The raw material data is an 

update on the existing environmental databases which includes production of metals previously absent 

from the database. The data quality assessment is a semi-quantitative valuation following the pedigree 

matrix methodology. The LCA models were created for different granularity levels of data centers and 

their components. Impact categories include traditional methods and newly created methods that focus 

on critical material resource depletion. Uncertainty modelling is based on the propagation of uncertainty 

methods and on transformation of qualitative to quantitative assessment. Life Cycle Impact Assessment 

on the developed models was conducted using the mentioned categories to obtain results to evaluate 

material and energy resource depletion of product systems. The evaluation of these results allows 

studying the interdependencies of these indicators via a study of correlations of results. Finally, the 
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quality of these results was evaluated by means of the data quality assessment and by using Monte Carlo 

simulations. The applied methodology was used to answer the secondary research questions on 

indicators selection, benefits of EoL strategies, and on data quality. This allowed to evaluate the material 

and energy demands of existing data centers and to provide a baseline for future evaluation of urban 

mining potential from these sources. 

Table 8-1: Attempted gap closing and methods applied. 

 

8.3. Limitations of this work 

The models created and the software built were developed based on the obtainment of the research 

objectives derived from the research questions. The models built follow the framework established at 

the beginning of this work, where the focus was on evaluation of material and energy demands for a 

specific application in the IT sector. The indicators constructed were designed independent of the 

application constructed, but this has been formulated using concepts of criticality built for the European 

Union [EC20b]. Thus, their understanding must be achieved within this framework. Expansion to other 

regions is possible but has not been formulated and would require reassessment of criticality in other 

contexts and on the adjustment of the resulting factors. 

The models developed refer to data centers, subsystems, devices, modules, and components. Further 

devices were not considered, and thus not present in the resulting LCI databases. The models built 

correspond to decommissioned devices, and the quality of data for their representativeness was assigned 

accordingly to indicate a phasing on temporal correlation. The models of devices and modules, which 

were then considered as “reference” may not be representative for future technological developments. 

Moreover, for other process flows (such as manufacturing energy or other resource demands) proxy data 

from the environmental databases were used. Though these data can be improved by obtaining first-

hand manufacturing data, this aspect was out of the scope of the research and remains a point which has 

improvement potential. Although this point may not present a strong influence on the results regarding 
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material demand, the prevalence of fossil fuels in the energy mixes can suggest a strong influence on 

the results for impact indicators for primary energy demand and on greenhouse emissions. This is 

reflected in the quality of the results for these energy-related indicators, where limited improvements in 

data quality were obtained. 

Furthermore, the recycling models were developed using literature data obtained from publications 

which assessed one or more existing facilities. Other processes were done by using escalated 

experimental data on technologies under development. These models, while providing a solid basis for 

comparison and scenario evaluation, need to be refined if the processes are scaled to industrial and 

mature levels. The positive results found for experimental technologies may be used to justify further 

development of these and to include them in EoL strategies.  

Finally, while the evaluation of the software developed showed that the implemented solution works for 

the achievement of the research objectives, the potential application to other case studies remains limited 

due to the structure of the databases, which was built to reflect the architecture of a data center and its 

subsystems. However, the same principles for building said solutions may apply to another domain, and 

similar solutions can thus be developed for sectors such as construction or manufacturing. A limit on 

the capacities of this work was also found while performing calculations, as time and computational 

resources limitations made it feasible to perform Monte Carlo analysis for a limited number of product 

systems, which were selected on basis of representativeness and material concentration. 

8.4. Reflection on the methodology 

Life Cycle Assessment as a scientific methodology provides several advantages, including the required 

transparency of the data collected, the possibilities to evaluate impacts on different areas of protection, 

and the quantitative nature of the results. This makes it suitable to evaluate issues regarding primary 

energy and material demands, since the inclusion of raw material gathering in the product manufacturing 

process chains, and the possibility of including avoided raw material production in the EoL models, 

make it possible to evaluate aspects concerning energy savings and material efficiency coming from 

recycling strategies. Its iterative nature makes it suitable to be continuously improved until reaching the 

desired results quality. 

Challenges were recognized first regarding quality of data sources. The modelling process and results 

evaluations is in general a very data-intensive and time-consuming process, and more challenging when 

the available environmental databases have processes that are outdated and representing completely 

different technologies. Very few information regarding data center inventories and material content of 

their components is available. The methods for assessing this issue, namely laboratory analysis on 

material content, disassembly, and inventorization of operating data centers, were executed in 
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cooperation with partnering research institutes and companies, and thus of high value to the obtainment 

of research goals. This provided a unique case where the data obtained is of the highest quality. 

Methodologies for evaluation of data quality are based on qualitative valuation methods, since for many 

of the process flows evaluated no information on uncertainty factors was available. Thus, the evaluation 

of results quality is dependent on the methodology for data quality assessment selected and on the 

process background information. However, an improvement in the data sources is translated into an 

improvement in the results quality, as observed on the evaluated uncertainty for product systems, 

especially for the material-related impacts.  

LCA as a method also requires an interdisciplinary approach, since knowledge on the system under 

study is also required, and additional input from different areas was needed to formulate models through 

the different stages of the lifecycle of the products under study. Information from various disciplines, 

such as IT devices and components manufacturing, data center architecture, and recycling technologies 

suitable for waste electrical and electronic equipment, had to be harmonized. Moreover, the data-

intensive nature of this study constituted the main reason for the development of an information system 

as presented in Chapter 6, which was developed using principles of software development, which was 

evaluated upon the fulfillment of requirements derived from this thesis objectives.  

In the context of this work, the results obtained of demand of material and energy resources for data 

center present a first basis for the evaluation of the material needs for the further development of data 

center sector, which is under continuous growth. The high quality of the results on material consumption 

means that the methodology can be applied to assess present and future demands, and strategies for 

mitigation of scarcity of critical materials. 

8.5.  Future work 

Future development of the topics presented in this study arise from limitations found and from the 

methodology used. First, the evolving nature of the global supply and demand of materials and of 

material uses in different areas means that the criticality indicators are constantly evolving, as already 

observed in previous criticality reports presented by the European Union [EC17, EC20]. This means 

that a constant update of the criticality values is expected, and thus a periodic update of the developed 

methods is periodically required. 

As previously mentioned, the constructed indicators were already used to evaluate sustainability of 

material use of other technologies. Further work can include use of these impact assessment methods to 

keep evaluating critical material depletion of other technological sectors known for the high content of 

critical materials, such as the energy sector. This can, for example, provide interesting insights into the 
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amounts of emissions saved and relate them to the depletion of critical minerals consumed for 

manufacturing of energy technologies. 

The IT hardware manufacturing sector is one of fast paced development and technological improvement. 

This means that temporal correlations with process models chains degrade quicker, and the resulting 

models here constructed may be obsolete in future applications. Thus, a continuous update of the 

material content information and of the manufacturing process databases is required to keep the 

relevance of this study. Similarly, the growing trend to build bigger datacenters with ever-growing 

computing capacities means a continuous grow on products such as servers and storage devices, which 

translates to higher material demand. Hence, incorporating this kind of study to provide a holistic 

sustainability evaluation of this sector is of growing interest at a regional level. 

Models for recycling and recovery were done within the scope of recycling of high-grade WEEE coming 

from EoL devices from data centers. The inventories and models were built based on process 

information for recovery of these type of devices. However, the methodologies here used can be 

replicated to evaluate recycling of other types of WEEE, where more information on material content 

and on existing industrial process exists. This can use a similar framework as the one here presented and 

can be expanded to include more areas of WEEE and expand the analysis of urban mining potential. 

While the information system was developed and tested locally, the implementation of this as a tool for 

evaluation of data centers was proposed by the author in [Pe21]. The developed architecture was built 

using a layered architecture, and expansion to present a user interface is feasible. This can allow it to be 

deployed as a tool for quick assessments that provides initial information on material content and 

recycling potential, but further concerns on data privacy and data security need to be considered. 

The evaluation of results is limited to the devices and to the data centers under study, and extrapolations 

were excluded since these were out of scope. The use of the methodologies developed in this work, 

combined with statistical evaluations on existing data centers, on their infrastructure, and on current 

trends on the data center sector, can allow to obtain regional results on material end energy demands for 

manufacturing on data center components, evaluate potentials of urban mining, and on recovery and 

recycling strategies to assess and improve the sustainability of raw material consumption within the 

European Union, aligned with current proposed frameworks for the Union [EC22, EC23a, EC20a]. 
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Annex 1 

Lists of symbols and abbreviations 

Table A1-1: List of abbreviations 

Symbol Meaning 

AADP  Anthropogenic Stock Extended Abiotic Depletion Potential  

ADP  Abiotic Depletion Potential  

ADP-M  Abiotic Depletion Potential of Minerals 

API  Application Programming Interface 

BIM  Building Information Modeling  

BoM  Bill-Of-Materials 

CED  Cumulated Energy Demand  

CED  Cumulated Energy Demand 

CEENE  Cumulative Exergy Extraction from The Natural Environment  

CExD  Cumulated Exergy Demand 

CExD  Cumulative Exergy Demand  

CMD  Cumulated Material Demand  

CPUs  Central Processing Unit 

CRM  Critical Raw Materials 

CWADP  Criticality Weighted Abiotic Depletion Potential  

DAO  Data Access Objects  

EDIP  Environmental Development of Industrial Products  

EEE  Electrical and Electronic Equipment 

EI Economic Importance  

EoL  End-Of -Life 

FDP  Fossil Fuel Depletion Potential 

GPSR  Geo-Political Supply Risk  

GS Global Supply  

GSD Geometric Standard Deviation 

GUI  Graphical User Interface 

GWP  Global Warming Potential 

HDD,  Hard Disk Drive 

HHI  Herfindahl-Hirschman Index  

HREE  Heavy Rare Earth Elements 

HVAC  Heat, Ventilation, And Air Conditioning 

ICP-OES  Inductively Coupled Plasma - Optical Emission Spectrometry 

IR  Import Reliance 

IT  Information Technology 

 DE Java Development Environment 

KDE  Kernel Density Estimate  

LCA  Life Cycle Assessments  

LCI  Life Cycle Inventory  

LCIA  Life Cycle Impact Assessment 

LREE  Light Rare Earth Elements 

MDP  Metal Depletion Potential  

MFA  Material Flow Analysis  

MRD  Mineral Resource Depletion  

MRE  Material Reuse Effectiveness 

MRQ  Main Research Question 

MRR  Material Reclamation Ratio 

PCB Printed Circuit Boards 

PDU Power Distribution Units 

PGM Platinum Group Metals  

RAM Random-Access Memory 

REACH  Registration, Evaluation, Authorization, And Restriction of Chemicals  

RoHS  Restriction of Hazardous Substances in Electrical and Electronic Equipment  
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SCP  Sustainable Consumption and Production 

SDG Sustainable Development Goals  

SQL  Structured Query Language 

SR  Supply Risk 

SRQ  Secondary Research Questions 

SSD  Solid State Drive 

TEMPRO Total Energy Management for Professional Data Centers 

UPS  Uninterruptible Power Supply 

WEEE  Waste Electrical and Electronic Equipment 

WGI Worldwide Governance Indicator  

Table A1-2: Symbol of chemical elements 

Symbol  Name 

Ag  Silver 

Al  Aluminium 

Au  Gold 

B  Boron 

Ba  Barium 

Be  Beryllium 

Bi  Bismuth 

Br  Bromine 

Ca  Calcium 

Cd  Cadmium 

Ce  Cerium 

Co  Cobalt 

Cr  Chromium 

Cu  Copper 

Dy  Dysprosium 

Er  Erbium 

Eu  Europium 

Fe  Iron 

Ga  Gallium 

Gd  Gadolinium 

Ge  Germanium 

 

 

Symbol  Name 

Hf  Hafnium 

Hg  Mercury 

Ho  Holmium 

In  Indium 

Ir  Iridium 

K  Potassium 

La  Lanthanum 

Li  Lithium 

Lu  Lutetium 

Mg  Magnesium 

Mn  Manganese 

Mo  Molybdenum 

Na  Sodium 

Nb  Niobium 

Nd  Neodymium 

Ni  Nickel 

Os  Osmium 

Pb  Lead 

Pd  Palladium 

Pr  Praseodymium 

Pt  Platinum 

 

 

Symbol  Name 

Re  Rhenium 

Rh  Rhodium 

S  Sulphur 

Sb  Antimony 

Sc  Scandium 

Se  Selenium 

Si  Silicon 

Sm  Samarium 

Sn  Tin 

Ta  Tantalum 

Tb  Terbium 

Te  Tellurium 

Ti  Titanium 

Tl  Thallium 

Tm  Thulium 

V  Vanadium 

W  Tungsten 

Y  Yttrium 

Yb  Ytterbium 

Zn  Zinc 

Zr  Zirconium 
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Table A1-3: Data Center KPIs. 

Symbol Name Unit Area 

APC Adaptability Power Curve Ratio Facility 

CADE Corporate Average Data Center Efficiency Percentage Facility 

CPE Compute Power Efficiency Percentage Facility 

DCA DC Adaptability Ratio Facility 

DCcE Data Center Compute Efficiency Percentage Server 

DCeP Data Center Energy Productivity UW/kWh Facility 

DCiE Data Center Infrastructure Efficiency Percentage Facility 

DCLD Data Center Lighting Density kW/ft2 Facility 

DCPD Data Center Power Density kW/Rack Rack 

DCPE Data Center Performance Efficiency UW/Power Facility 

DC-FVER Data Center Fixed to Variable Energy Ratio Deployed Ratio Facility 

DH-UE Hardware Utilization Efficiency Percentage Server 

DH-UR Deployed Hardware Utilization Ratio Percentage Server 

DPPE Data Center Performance Per Energy Ratio Facility 

DWPE Data Center Workload Power Efficiency Perf/Watt Server 

EES Energy Expenses Ratio Facility 

EWR Energy Wasted Ratio Ratio Facility 

H-POM IT Hardware Power Overhead Multiplier Ratio IT 

ITEE IT Equipment Energy Cap/kW IT 

ITEU IT Equipment Utilization Percentage IT 

OSWE Operating System Workload Efficiency OS/kW Facility 

PDE Power Density Efficiency Percentage Rack 

PEsavings Primary Energy Savings Ratio Facility 

PUE1-4 Power Usage Effectiveness Level 1-4 Ratio Facility 

PUEscalability Power Usage Effectiveness Scalability Percentage Facility 

pPUE Partial Power Usage Effectiveness Ratio Facility 

PpW Performance per Watt Perf/Watt Server 

ScE Server Compute Efficiency Percentage Server 

SI-POM Site Infrastructure Power Overhead Multiplier Ratio Facility 

SPUE Server Power Usage Efficiency Ratio Facility 

SWaPe Space, Watts and Performance Ratio Rack 

TUE Total-Power Usage Effectiveness Ratio Facility 

AEUF Air Economizer Utilization Factor Percentage HVAC 

CoP Coefficient of Performance Ensemble Ratio Facility 

DCCSE Data Center Cooling System Efficiency kW/ton HVAC 

DCSSF Data Center Cooling System Sizing Factor Ratio HVAC 

EER Energy Efficiency Ratio Ratio Facility 

HSE HVAC System Effectiveness Ratio HVAC 

RI Recirculation Index Ratio HVAC 

WEUF Water Economizer Utilization Factor Percentage HVAC 

CO2-R CO2 Savings Ratio Facility 

CUE Carbon Usage Effectiveness KgCO2/kWh Facility 

EDE Electronics Disposal Efficiency Percentage Facility 

ERE Energy Reuse Effectiveness Percentage Facility 

ERF Energy Reuse Factor Percentage Facility 

GEC Green Energy Coefficient Percentage Facility 

GUF Grid Utilization Factor Percentage Facility 

MRR Material Recycling Ratio Percentage Facility 

Omega Water Usage Energy / v Ratio Facility 

TCE Technology Carbon Efficiency CO2/kWh Facility 

TGI The Green Index Ratio Facility 

WUE Water Usage Effectiveness Liters/kWh Facility 

ACE Availability, Capacity, and Efficiency Performance Score Ratio HVAC 

CPU Central Processing Unit Usage Percentage Server 

DCP Data Center Productivity Useful work/Watt Facility 

DEEPI Data Center Energy Efficiency and Productivity Index Prod./Watt Facility 

DR Dynamic Range Ratio Server 

EP Energy Proportionality Ratio Server 
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FpW Flops per Watt Float. ops/Joule Server 

IPR Idle-to-peak Power Ratio Ratio Server 

LD Linear Deviation Ratio Server 

LDR Linear Deviation Ratio Ratio Server 

PG Proportionality Gap Ratio Server 

SWaP Space, Watts and Performance Ratio Facility 

UDC Data Center Utilization Percentage Facility 

Userver Server Utilization Percentage Server 

UCF Uninterruptible Power Supply Crest Factor Ratio UPS 

UPEE Uninterruptible Power Supply Energy Efficiency Percentage UPS 

UPF Uninterruptible Power Supply Power Factor Ratio UPS 

UPFC Uninterruptible Power Supply Power Factor Corrected Ratio UPS 

USF Uninterruptible Power Supply Surge Factor Ratio UPS 

AirEff Airflow Efficiency W/cfm Facility 

BPR Bypass Ratio Ratio Facility 

BR Balance Ratio Ratio Facility 

CI Capture Index Percentage HVAC 

DC_T Data Center Temperature C or F Facility 

DP Dew Point C or F Facility 

HF Heat Flux W/m2 Facility 

IoT Imbalance of Temperature Percentage Server 

D2 Mahalanobis Generalized Distance (D2) Unit Facility 

M Mass Flow Mc, Mn, Mbp, Mr, Ms cfm Facility 

RCI Rack Cooling Index Percentage Rack 

RH Relative Humidity Percentage Facility 

RHI Return Heat Index Ratio Facility 

RR Recirculation Ratio Ratio Facility 

RTI Return Temperature Index Percentage Rack 

SHI Supply Heat Index Ratio Facility 

bindex b-index Ratio Rack 

B C Bits per Joule Capacity bits/joule IT 

CNEE Communication Network Energy Efficiency Joule/bit IT 

DS Diameter Stretch Ratio IT 

ECR-VL Energy Consumption Rating Variable Load Watts/Gbps IT 

NPUE Network Power Usage Effectiveness Ratio IT 

NPkW Network Traffic per Kilowatt-Hour Bits/kWh Facility 

PS Path Stretch Ratio IT 

RSmax Maximum Relative Size Ratio IT 

TEER Telecommunications Energy Efficiency Ratio Ratio IT 

Unetwork Network Utilization Percentage IT 

Sto Capacity GB/Watt Storage 

LSP Low-cost Storage Percentage Percentage Storage 

MemU Memory Usage Ratio Storage 

OSE Overall Storage Efficiency Ratio Storage 

RT Response Time Milliseconds Storage 

SU Slot Utilization Percentage Storage 

B/s Throughput Bytes/second Storage 

Ustorage Storage Usage Percentage Storage 

ACPR Average Comparisons Per Rule Count IT 

AS Accessibility Surface Count IT 

ATR Application Transaction Rate Bits/sec IT 

CC Concurrent Connections Count IT 

CER Connection Establishment Rate Connections/sec IT 

CTR Connection Tear down Rate Connections/sec IT 

DeD Defense Depth Count Facility 

DeP Detection Performance - IT 

DTE Data Transmission Exposure Count IT 

FC Firewall Complexity Ratio IT 

HTTPR HTTP Transfer Rate Bits/sec IT 

IAS Interface Accessibility Surface Count IT 

IPFH IP Fragmentation Handling - IT 
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b/s IP throughput Bits/sec IT 

ITH Illegal Traffic Handling Percentage IT 

LAT Latency Milli-seconds IT 

RA Rule Area Count IT 

RC Reachability Count Count Facility 

RCD Rogue Change Days Days IT 

T Vulnerability Exposure days IT 

BVCI Business Value of Converged Infrastructure Dollars Facility 

CapEx Capital Expenditure Dollars Facility 

CCr Carbon Credit Tons of Carbon Facility 

MTBF Mean Time Between Failures Hours Facility 

MTTF Mean Time to Failure Hours Facility 

MTTR Mean Time to Repair Hours Facility 

OpEx Operational Expenditure Dollars Facility 

ROI Return On Investment Ratio Facility 

TCO Total Cost of Ownership Dollars Facility 

R Reliability Faults/Hour Facility 
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