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Abstract

Ordinary differential equations (ODEs) are traditionally used for modeling the continuous
behavior within continuous- or hybrid-state feedback control systems. In practice, delay
is introduced into the feedback loop if components are spatially or logically distributed.
Such delays may significantly alter the system dynamics and unmodeled delays in
a control loop consequently have the potential to invalidate any stability and safety
certificate obtained on the delay-free model. An appropriate generalization of ODE able
to model the delay within the framework of differential equations is delay differential
equations (DDEs), as studied by Bellman and Cooke in their seminal work. Beyond
distributed control, DDEs play an important role in the modeling of many processes
with time delays, both natural and manmade processes, in biology, physics, economics,
engineering, etc. This induces an interest especially in the area of modeling embedded
control and formal methods for its verification.

In this thesis, we focus on automatic safety analysis and verification for continuous
systems featuring delays, extending the techniques of safely enclosing set-based initial
value problem of ODEs to DDEs. First, as a result of collaborative work, we expose
interval-based Taylor over-approximation method to enclose the solution of a simple
class of DDE for stability and safety verification. Then, we explore different means of
computing safe over- and under-approximations of reachable sets for DDEs by lifting
the set-boundary reachability analysis based method of ODEs to a class of DDEs.
Furthermore, for the sake of extending the safety properties by involving a number
of critical properties such as timing requirements and bounded response rather than
just invariance properties, we propose an approach —extending interval-based Taylor
over-approximation method for a class of DDEs— to verify arbitrary time-bounded
metric interval temporal logic (MITL) formulae, including nesting of modalities.





Zusammenfassung

Zur Modellierung des kontinuierlichen Verhaltens von Regelkreisen mit kontinuierlichen
oder hybriden Zuständen werden traditionell gewöhnliche Differentialgleichungen (ODEs)
verwendet. Sind die Komponenten des Systems räumlich oder logisch verteilt, entstehen
in der Praxis Verzögerungen in der Rückkopplungsschleife. Solche Verzögerungen
können die Systemdynamik erheblich verändern. Folglich können Stabilitäts- und
Sicherheitszertifikate ungültig werden, falls Verzögerungen im untersuchten Modell nicht
berücksichtigt werden. Retardierte Differentialgleichungen (DDEs) sind, wie schon
Bellman und Cooke zeigten, eine Verallgemeinerung von gewöhnliche Differentialgle-
ichungen (ODEs), die es erlaubt, Verzögerungen zu modellieren. DDEs spielen über das
Gebiet der verteilten Regelung hinaus eine wichtige Rolle bei der Modellierung vieler
künstlicher oder natürlicher Prozesse, beispielsweise in Biologie, Physik, Wirtschaft
oder Ingenieurswesen. Daraus erwächst ein besonderes Interesse auf dem Gebiet der
Modellierung und der formalen Methoden zur Verifikation eingebetter Systeme.

Diese Arbeit fokussiert auf die automatische Sicherheitsanalyse und Verifikation
kontinuierlicher Systeme mit Verzögerungen. Dabei werden die Techniken der sicheren
Überapproximation von mengenbasierten Anfangswertproblemen von ODEs auf DDEs
erweitert. Zunächst wird als das Ergebnis kollaborativer Arbeit die intervallbasierte
Taylor-Überapproximation zur Annäherung von Lösungen einfacher DDE-Klassen zum
Nachweis von Stabilitäts- und Sicherheitseigenschaften vorgestellt. Anschließend werden
verschiedene Methoden der sicheren Über- und Unterapproximation von Erreichbarkeits-
mengen für DDEs untersucht, indem die mengenrandbasierte Erreichbarkeitsanalyse für
ODEs für eine Klasse von DDEs adaptiert wird. Um erweiterte sicherheitskritische
Eigenschaften wie Anforderungen an Reaktionszeiten einbeziehen zu können, wird
ein Ansatz vorgeschlagen, der die intervallbasierte Taylor-Überapproximation erweitert



xii Zusammenfassung

sodass beliebige zeitbeschränkte Formeln der metrischen Intervall-Temporallogik (MITL)
einschließlich geschachtelter Modalitäten verifiziert werden können.

(I thank Paul Kröger for the German translation)
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Chapter 1

Introduction

“Indecision and delays are the parents of failure.”

[attributed to George Canning1, 1770–1827]

The rapidly increasing deployment of cyber-physical systems into diverse safety-
critical application domains ranging from, a.o., transportation systems over chemical
processes to health-care renders safety analysis and verification for these systems
societally important. Cyber-physical systems are complex systems exhibiting both
discrete and continuous behaviors, and are networked and/or distributed with possibly
humans in the loop. They have applications in a wide-range of systems spanning
communication, infrastructure, energy, health-care, manufacturing, military, robotics
and transportation. Consequently, they are believed to be the systems of the future
with an immense impact on the engineering systems technology at least comparable
to the impact of the internet on the information systems. A suitable model for such
cyber-physical systems is a hybrid system that comprises continuous and discrete
aspects of a system. Hybrid systems are mathematical models that allow us to model,
specify and verify several types of cyber-physical systems, including physical systems
of the environment, logic-dynamic controllers, and even internet congestion. Ordinary
differential equations (ODEs) are traditionally used to model the continuous behavior
within continuous- or hybrid-state systems. Significant research has been invested to
achieve automatic verification for ODEs (and their piecewise extensions to hybrid state).

1George Canning was a British politician in the early 19th century.
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An ODE model formulation of a system, however, ignores the presence of any delay
[92].

“Time delays are natural components of the dynamic processes of biology,

ecology, physiology, economics, epidemiology and mechanics”[59] and “to

ignore them is to ignore reality”[83].

Delayed coupling between state variables of dynamic systems occurs in many
domains. For instance, in population dynamics, where birth rate follows changes
in population size with a delay related to reproductive age, spreading of infectious
diseases, where delay is induced by the incubation period, exhaust gas control in
internal combustion engines, where relevant sensors —like the λ probe— are located
downstream the exhaust system such that gas transport induces a delay between the
controlled combustion processes and sensing their effect, or networked control systems
through the communication networks if the components are spatially or logically
distributed, to name just a few. Obviously, most examples feature feedback dynamics
and the presence of feedback delays reduces controllability due to the impossibility of
immediate reaction and enhances likelihood of transient overshoot or even oscillation
in the feedback system. In practice, the introduction of delays into a feedback system
may reduce stabilization rates of or even destabilize an otherwise stable system, it may
provoke overshoot and drive the system to otherwise unreachable states, it is likely to
stretch dwell times, and it may induce residual error that never cancels. As this implies
that safety or stability certificates obtained on idealized, delay-free models of systems
prone to delayed coupling may be erratic, automated methods for system verification
ought to address models of system dynamics reflecting delays, rendering verification
tools only addressing ODEs and their derived models —like hybrid automata— vastly
insufficient. An appropriate generalization of ODE able to model delays within the
framework of differential equations is provided by delay differential equations (DDEs),
as studied by Bellman and Cooke in their seminal work [13].

“Despite [. . . ] very satisfactory state of affairs as far as [ordinary] differential

equations are concerned, we are nevertheless forced to turn to the study of more

complex equations. [. . . ] the rate of change of physical systems depends not

only on their present state, but also on their past history.” [13, p. iii]
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DDEs play an important role in the modeling of natural or artificial processes
with time delays in biology, physics, economics, engineering, etc. As a consequence,
attention has gone to developing tools permitting their mechanical analysis. Generalizing
techniques developed for ODE to DDE, however, is not as straightforward as it may
seem at first glance. The reason is that DDEs are in some respect much more complex
objects than ODEs: the future evolution of a DDE is no longer governed by the
current state instant only, but depends on a chunk of its past trajectory such that
introducing a delay immediately renders a system with finite-dimensional state into an
infinite-dimensional dynamical system. In other words, DDEs belong to the class of
systems with functional state, i.e., the time derivatives at the current time depend on the
solution and possibly its derivatives at previous times as well. While DDEs describing
system dynamics as a function

d
dt

x⃗(t) = f (⃗x(t), x⃗(t − τ1), . . . , x⃗(t − τn)), with τn > .. . > τ1 > 0, (1.1)

of past system states have long been suggested as an adequate means of modeling
delayed feedback systems [13], their tool support is still not at the level of ODE.
Although the tool support of DDEs has benefited a great deal from the advances made
in ODE during the past several years, the state-of-the-art for handling DDE, especially
in formal verification, is an active area of research.

For instance, some methods are developed for solving DDEs numerically such as
the numerical simulation based on integration from discontinuity to discontinuity, e.g.
by Matlab’s dde23 algorithm. Such numerical simulation, despite being extremely
useful in system analysis, nevertheless fails to provide reliable certificates of system
properties, as it is numerically approximate only — in fact, error control even is
inferior to ODE simulation codes as dynamic step-size control is much harder to
attain for DDEs due to the non-local effects of step-size changes. Counterparts to
the plethora of, well-established and still being subject of active research, techniques
for safely enclosing set-based initial value problems of ODEs, be it safe interval
enclosures [102, 141, 91], Taylor models [17, 110], or flow-pipe approximations based
on polyhedra [29], zonotopes [55], ellipsoids [85], or support functions [88], are
thus urgently needed for DDEs. As in the ODE case, such techniques would safely
(and preferably tightly) over-approximate the set of states reachable at any given time
point from the set of initial values. On the other hand, techniques for computing
under-approximations of ODEs (e.g., [77, 152, 81, 62, 28, 157]) are also needed to
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be lifted to DDEs. Such techniques are incorporated into a variety of applications in
engineering domains, e.g., for detecting falsification of safety properties by finding
counterexamples.

In this thesis we will expose an interval-based Taylor over-approximation method,
as collaboratively proposed in [162], to enclose the solution of a simple class of
DDE for stability and safety verification. Then, we will explore different means
of computing safe over- and under-approximations of reachable sets for DDEs by
lifting the reachability analysis method based on set-boundary of ODEs, discussed in
[155, 157], to a class of DDEs. Furthermore, for the sake of extending the safety
properties by involving a number of critical properties such as timing requirements and
bounded response rather than just invariance properties, we will extend interval-based
Taylor over-approximation method for a class of DDEs such that it can verify arbitrary
time-bounded metric interval temporal logic (MITL) formulae [4].

1.1 Delay Differential Equations

Driven by the demand for safety cases (in a broad sense) for safety-critical control
systems, we have over the past decades seen a rapidly growing interest in automatic
verification procedures for system models involving continuous quantities and dynamics
described by, a.o., differential equations. Differential equations can be divided into
two types: ordinary differential equations (ODEs) having a finite dimensional state
vector and partial differential equation (PDEs), i.e., infinite dimensional. Over the past
decades, ODEs are widely used in the research field to model the continuous behavior
of many processes especially in automatic verification purposes. Thus, a plethora of
techniques are developed for ODEs to be algorithmically analyzable by safely enclosing
set-based initial value problems of ODEs, e.g., [91, 110, 29, 55, 85, 88]. Due to
increasing expectations on the accuracy of predicting, the engineers need their models to
behave like the real processes by considering, e.g., the delay (also known as aftereffect
phenomena) in the framework of differential equation. Many processes include delay
(or aftereffect phenomena) in their inner dynamics [13, 39]. Besides, the delays are
inevitably introduced in the feedback control loop by including the time taken for
a signal to travel to the controlled object [83]. Finally, besides actual delays, time
lags are frequently used to simplify very high dimensional models without delays by
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lower dimensional models with delays [112], as extensively used in process control
industry (see [79]). This way, formulation as a functional differential equation (FDE)
(or differential equation with deviating arguments), which includes all delay differential
equations (DDEs), enables both the current and all previous values of a function and/or
its derivatives to be considered when determining the future behavior of a system.
Based on this, it often leads to an improved model of a process since ‘an increase in
the complexity of the mathematical models can lead to a better quantitative consistency
with real data’, but at cost [92, 8]. Note that the modeler’s decision about the choice
of model formulation is influenced by the size of the delay relative to the underlying
time-scales [7]. Those systems, which their model based on a FDE are more appropriate
than the models based on an ODE, can usually be referred to as “problems with
memory” [92].

DDEs (time-delay systems or system with aftereffect or dead-time) are a type of
differential equations which belong to the class of system with functional state, i.e.,
PDEs which are infinite dimensional as opposed to ODEs. DDEs have become so
popular as infinite-dimensional models in the very complex area of PDEs and the interest
for DDEs keeps on growing in the research field especially in control engineering [83],
where the control of delay systems presents many stimulating challenges for further
research. In this vein, one may think that the simplest approach would be in replacing
such infinite dimensional systems by some finite-dimensional approximations ignoring
the effects which are adequately represented by DDEs. Unfortunately, it is not a general
alternative: in the best case (e.g., constant and known delays), it leads to the same
degree of complexity in the control design, and in worst cases (e.g., time-varying
delays), it is potentially disastrous in terms of safety, stability and oscillations. On
the other hand, several studies have shown that voluntary introduction of delays can
also benefit the control [134]. One may also think that a reasonably small delay
does not affect the solution of a linear ODE much, such that analyzing the ODE
derived from the DDE by ignoring the delays may be indicative of the overall behavior.
Unfortunately, it is unclear how much delay can be ignored in general, as this depends
on the property under investigation. The following simple example, taken from [162],
demonstrates the difference between DDE and their related ODE obtained by neglecting
delays. Furthermore, in Section 1.1.1, we show that small delay may have significant
effect.
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Fig. 1.1 Solutions to the ODE ẋ = −x (dashed graph) and the related DDE ẋ(t) =
−x(t − 1) (solid line), both on similar initial conditions x(0) = 1 and x([0,1]) ≡ 1,
respectively.

In Fig. 1.1, the dashed and solid lines represent the solution of the ODE ẋ =−x

without delay and of the related DDE ẋ(t) =−x(t −1) with 1 second delay, respectively.
Both are given as initial value problems, where for the ODE we assume an initial
value x(0) = 1, which we generalize for the DDE to x([0,1])≡ 1. Fig. 1.1 demonstrates
that the delay tremendously prolongs dwell times, as well as invalidates some safety
properties: the dashed line (representing the ODE behavior) always stays above the
horizontal axis whereas, in contrast, the solid line (representing the DDE solution) visits
the negative range repeatedly. Even though the difference between the solutions of the
ODE and the DDE becomes smaller when the delay turns smaller, it is in general hard
to say how small a delay may ensure conservation of some safety property valid of
the ODE. Hence, it is obvious that the difference between the ODE and the DDE is
substantial and necessitates analyzing the behavior of the DDE.
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1.1.1 Small Delays Have Significant Effect

As mentioned, due to societal safety requirements, engineers are required to improve the
dynamic performance of their models by considering, e.g., the delay in the framework of
differential equation. The presence of delayed dynamics may invalidate any stability and
safety certificate obtained on the related delay-free model, as delays may significantly
alter the overall shape of the system dynamics. This situation is illustrated through
the following simple example taken from [83], where arbitrarily small delays have
significant effect on state dynamics.

Example 1.1.1 (taken from [83]). The solution of the ODE

ẋ(t)+2ẋ(t) =−x(t) (1.2)

is asymptotically stable, converging to the equilibrium point x = 0 from any initial state.

However, the solution of its corresponding DDE

ẋ(t)+2ẋ(t − τ) =−x(t) (1.3)

is unstable for any positive delay τ .

Therefore, taking time-delay terms into account to either verify or falsify properties
of systems by performing safe automatic analysis is not just desirable, but ought to
be imperative for systems that are more accurately modeled by DDEs, especially in
safety-critical applications. Also, the delay can act as a stabiliser or a destabiliser of
ODEs models [92, 59, 12, 19]. The following simple example, taken from [92, 10],
illustrates this situation.

Example 1.1.2 (taken from [92, 10]). Consider the equation

ẋ(t) = λx(t)+µx(t − τ), τ ≥ 0. (1.4)

The zero solution of Eq.(1.4) is asymptotically stable if λ + |µ| ≤ 0. In case of
µ = 0, an ODE is obtained whose zero solution is asymptotically stable if λ < 0.
On the other hand, positive values of λ , with corresponding negative values of µ ,
give rise to asymptotic stability of Eq.(1.4). Thus, the delay term τ can stabilise an
unstable ODE. Alternatively, if the delay term τ = 0, again leading to an ODE which
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is asymptotically stable if and only if λ +µ < 0. However, if the delay term τ > 0,
λ +µ < 0 is insufficient to guarantee stability, and thus the introduction of a delay term
τ can destabilise a stable solution.

Given the omnipresence of the effects of delays in, a.o., modern control schemes,
one might thus expect tools permitting automatic safety analysis of such delayed
systems to abound. Unfortunately that is not the case; their validated tool support still
seems to be in its infancy and thus provides an open area of research. The reason for
their current lack is that DDEs are in some respect much more complex objects than
ODEs. Fortunately, there are many similarities between the theory of ODEs and that
of DDEs, and thus analytical methods for ODEs have been extended to DDEs when
possible [92]. On the other hand, their differences have necessitated new approaches.
Similarly, for DDEs to be algorithmically analyzable in automatic verification purposes,
developed techniques for ODEs are required to be lifted to DDEs.

1.1.2 Important Differences Between ODEs and DDEs

“The future depends on what we do in the present.”

[attributed to Mahatma Gandhi2, 1869–1948]

It has been well said by Mr. Gandhi, however, it is not completely true when it
comes to delay differential equations (DDEs) because we cannot describe the future
based on just the current situation but we need to always look back a bit into history,
i.e., the history function is needed. In other words, the effect of any changes to
a system of DDEs is not instantaneous and the past history is taken into account.
DDEs belong to the class of systems with functional state, i.e., the future (and past)
is not determined by a single temporal snapshot of the state variables, yet by a
segment of a trajectory. This renders the systems infinite-dimensional; in fact, as can
be seen from Eq.(1.1), transformed copies of the initial segment of duration τn will
generally be found in higher-order derivatives of x(t) even after arbitrarily long time.
Such differences, for example, lead to a significant challenge in order to generalize

2Mohandas Karamchand Gandhi was an Indian activist who was the leader of the Indian independence
movement against British rule.
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the developed techniques for ODEs to handle DDEs. Table 1.1, taken from [92],
summarizes the important differences between ODEs and DDEs, e.g., the need for an
initial (history) function and the infinite dimensionality of a DDE.

ODE model DDE model

assumes that the effect of any changes to
the system is instantaneous (a principle
of causality).

assumes that the effect of any changes
to the system is not instantaneous, i.e.,
past history is taken into account.

generates a system that is finite dimen-
sional.

generates a system that is infinite
dimensional.

needs an initial value (to determine a
unique solution).

needs an initial (history) function (to
determine a unique solution).
enables a more accurate reflection of
the system being modeled, however, safe
automatic analysis of the solution is
much less developed.

Table 1.1 Important Differences between ODEs and DDEs [92].

Unfortunately, the presence of an initial function, yet not an initial value as in
ODE case, has several unwelcome consequences, e.g., unlike ordinary equations, there
is no longer injectivity3 between the set of initial data and the set of solutions; the
solutions corresponding to different initial function data can intersect [92, 8, 19]. This
fact, for example, leads to a significant challenge in order to generalize verification
techniques of ODE to DDE (this point will be discussed in details in Chapter 3). For
more consequences, the interested reader is referred to [92] and the references therein.

Note that the dynamical structure exhibited by DDEs is richer than that of ODEs.
Also, DDE model is a richer class of delay phenomena than sample-and-hold devices
or sampled controllers, even if the latter come equipped with delayed output delivery.
Such devices can well be modeled by finite-dimensional hybrid automata, providing an
infinite-state yet finite-dimensional Markovian model, and consequently can be analyzed
by the corresponding verification tools. The functional state of DDE, in contrast, is
infinite-dimensional.

3injective function or one-to-one function preserves distinctness: every element of the function’s codomain
is the image of at most one element of its domain.
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1.2 Related Work

For automatic (safety) verification, especially in case of autonomous systems [49],
formal methods have been developed as a rigorous solution to address the incomplete
verification of design provided by simulation, where confidence obtained via simulation
is based primarily on intuition and experience [37]. Formal methods, however, increase
the confidence by including techniques rooted in logic, mathematics, and computer
science. Roughly, a specification is constructed and a formal reasoning is used to show
whether the model under analysis satisfies such specification. In general, there are two
broad classes of methods to formally specify and verify dynamical systems. One class
of methods, which is out of the scope of this thesis, is based on logical proof, where
such methods represent the behavior of the systems in some type of logic, and then
deductive reasoning is used to construct a proof [121, 65, 66, 97, 11, 74, 23, 34]. For
example, automated theorem proving is a set of deductive techniques that are purely
automatic, e.g., [133, 73, 35, 41], contrary to interactive theorem proving [100] with
a manual complete proof that is constructed by hand (potentially with help from a
proof assistant) using a base set of axioms and rules, e.g., [118, 116, 60, 16]. Also, an
essential difference between interactive and automated theorem provers is that automated
theorem provers are confined to a much smaller fragment of logical theories. This
consequently affects the types of conjectures that can be analyzed [37]. The other
class of methods is state-space exploration, where such methods are mainly based on
representing the behavior as a transition system and then verifying temporal properties
over the resulting state machine. Model checking [31] is the popular example in this
class of methods where an exhaustive search of the state space is undertaken. It is
a preferred method, though memory constraints pose a significant problem for model
checking [32], because it is fully automatic. Notice that model checking can also be
combined with automated theorem proving and benefit from the power of this approach
to verification. In this thesis, we focus on such a class of methods.

Formally, the safety verification problem can often be reduced to a problem of
deciding whether the system of interest, starting from legal initial states, may in its
evolution touch a specified set of unsafe states. This way, a natural approach to the
automatic verification is state-space exploration aiming at computing the reachable state
space. In this context, we will recap some state-of-the-art verification techniques used
for continuous/hybrid dynamics given as ODEs that are urgently needed to be lifted
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to DDEs. Then, we will recap some state-of-the-art verification techniques for DDEs,
where the main ideas and the relations to our work are introduced.

1.2.1 Automatic Verification Techniques for ODEs

As outlined above, ODEs are traditionally used to model a vast variety of dynamical
systems. The safety verification problems of primary interest are invariance properties
concerning the dynamically reachable states. Invariance properties are a prototypical
safety property and computing the reachable state space is the natural approach to
their automatic verification. Therefore, reachability analysis plays a fundamental role
in addressing safety verification challenges. While there is no closed form for the
solution of ODE in many cases, one may resort to numerical approximations, e.g.,
given by one-step methods like the Euler method or the more general family of
Runge-Kutta methods, which approximate the solution in several discrete steps in time.
Numerical simulation, however, introduces imprecision stemming from, e.g., rounding in
floating-point arithmetic or truncation errors in the integration of differential equations
[42]. Thus, there are no guarantees on the quality of the approximation, as they
are numerically approximate only with a finite number of simulation runs4, in the
sense that they fail to provide reliable certificate of system properties, especially in
safety-critical applications. This way, methods have been developed that are supposed
to compute enclosures of the solution. In a sense, they do not compute the solution
with approximate values, but with sets enclosing the solution [76].

Unfortunately, only very few families of restrictive linear dynamic systems feature a
decidable state reachability problem [86, 69]. A more generally applicable option is to
compute over-approximations of the state sets reachable under time-bounded continuous
dynamics, and then to embed them, e.g., into depth-bounded automatic verification
by bounded model checking, or into unbounded verification by theorem proving.
Computing over-approximations of the reachable sets of continuous dynamics (discrete
as well) is a fundamental for formally verifying given safety properties that is used to
counteract imprecise approximations made, e.g., in traditional numerical simulation tools.
Much progress has been made towards reachable set over-approximations for linear

4Since it is impossible to cover all possible initial conditions and all possible inputs with a finite number of
simulation runs, no matter how close samples are chosen, there is probability that a value in between (known as
corner case) causes undesired behavior.
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as well as nonlinear continuous/hybrid dynamics featuring ODEs. Among the many
abstraction techniques proposed for over-approximating reachable sets of continuous
dynamics given as ODEs is use of interval arithmetic [102]. Interval arithmetic suffers
from the wrapping effect, i.e., large over-approximations when enclosing rotated boxes
in a box, and the dependency problem, i.e., it cannot track dependencies between
variables. A family of algorithms overcomes the wrapping effect with QR-decomposition
is well-studied based on Taylor series expansions and computing with interval arithmetic
(surveyed, e.g., by Nedialkov in [107]), implemented in tools like AWA [91], ADIODES
[141], VNODE [109], and VNODE-LP [108]. A different abstraction technique based on
Taylor models is used to relieve the wrapping effect and the dependency problem
as studied by Berz and Makino [17, 110]. Also, flow-pipe approximations based on
polyhedra [29], zonotopes [55], ellipsoids [85], or support functions [88] are used
for over-approximating the reachable sets of the continuous dynamics given as ODEs.
Other than the above methods, abstraction based on discovering invariants technique is
also used, e.g., [137, 129, 123, 89], to prove safety of continuous and hybrid systems
featuring ODEs. Unlike the computation of flow-pipe over-approximation, invariant
computation technique derives a system of constraints such that all states of the system
satisfy them. Then, if the derived constraints are inconsistent with the specification
of the unsafe set, it means that the system is safe. Furthermore, verifying delayless
dynamical systems, in particular ODE, using numerical simulation has been well-studied,
e.g., [38, 40, 57, 105], where the concepts based on sensitivity information provided
by discrepancy functions or simulation functions, respectively, have been presented
to bloat the traces obtained from simulations to “trajectory tubes” over-approximating
time-bounded reach sets. While the first settings resorted to user-supplied sensitivity
information, Fan and Mitra in [48] proposed an algorithm for automatically computing
piecewise exponential discrepancy functions, i.e., the key ingredient is an on-the-fly
discrepancy computation.

While over-approximations serve as states that “may” be reachable, under-
approximations represent states that “must” be reachable. The case of computing
under-approximations of the reachable sets for linear as well as nonlinear continuous
dynamics featuring ODEs, though less attention has been given to such case, is
also considered in the literature, cf. e.g., [62, 81, 152, 28, 157]. Computing under-
approximations of the reachable sets are incorporated into a variety of applications in
engineering domains. They can be used for, e.g., designing robust artificial pancreas
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[157, 154, 132], computing under-approximations of backward reachable sets helps to
find a set of feasible states such that every trajectory originating from it will definitely
enter a specified region (e.g., normal blood glucose ranges) at a specified time instant,
helps to judge the quality of related over-approximations by comparing the states
that “may” be reachable with the states that “must” be reachable, proving attractive
properties by checking if all the trajectories originating from them will stay in them
forever and eventually enter some specified desired sets [131], detecting falsification of
safety properties by finding counterexamples [119]. Furthermore, computing under- and
over-approximations of reachable sets may provide an indication of the precision of an
estimate of the exact reachability region [157, 70]. Also, it can help us prove desired
reach-while-avoid properties that are common in many control systems: the system must
reach a specified target set of states, while avoiding a set of unsafe states [28, 155].

For automatic verification and analysis of continuous dynamics featuring ODEs,
there are several mature bounded model checkers available for continuous and hybrid
systems, like iSAT-ODE [43], Flow∗ [27], dReach [80], to new just a few. In case
of unbounded automatic verification, theorem provers for ODE dynamics and hybrid
systems are also available, e.g., KeYmaera [122] or HHL Prover [163].

Confining safety properties to a set of unsafe states (invariance properties)
considerably restricts the ability of designers to adequately express the desired
safe behavior of the system that may involve a number of critical properties such as
timing requirements and bounded response. Metric temporal logic (MTL), introduced
by Koymans [82], is popular formalism for expressing such properties as a real-time
extension of linear temporal logic (LTL) [96] to specify real-time properties. Then,
Alur et al. in [4] introduced metric interval temporal logic (MITL) to address the
undecidability problem of MTL by relaxing the punctuality of the temporal operators.
The bounded-time verification or falsification of such properties has been studied for
continuous/hybrid systems given as ODEs in [46, 47, 136, 120, 95]. Besides, safety
verification is complemented by automatic procedures for providing certificates of
stability. The great majority of such methods are based on Lyapunov functions [21]
or piecewise Lyapunov functions [113]. Interestingly, such procedures can only be
complete for restricted, mostly linear cases, though incomplete extensions to rather
general classes exist, e.g., [90].
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1.2.2 Automatic Verification Techniques for DDEs

Delay differential equations (DDEs), as reviewed in [160, 61], were initially introduced
in the 18th century by Laplace and Condorcet. Some preliminary work concerning
stability of systems described by equations of this type was carried out in 1942 by
Pontryagin. Later, important works have been written by Bellman and Cooke in their
seminal work in 1963, Smith in 1957, Pinney in 1958, Halanay in 1966, El’sgol’ts and
Norkin in 1971, Myshkis in 1972, Hale in 1977, Yanushevski in 1978, and Marshal in
1979. For a more detailed review, the interested reader is referred to [160, 61], and the
references therein.

To our knowledge, there are some methods that have been hypothesized to solve
DDE. Among these methods are the method of steps, the classical Laplace Transform
method, and a Least Square method. Such methods are of interest for the reason that
they are widely used in studies involving the solution of DDEs and have the potential
to be automated using tools provided by computer algebra, like Maple [68]. First,
the method of steps is an elementary method that can be used to analytically solve
very simple linear DDEs. This method, however, suffers from being too tedious and
thus it is usually discarded for many cases (only in few cases the tedium might be
removed using computer algebra). Second, the classical method of Laplace Transforms
are confined to solve simple linear problems with constant delays. This method usually
leads to a non-harmonic Fourier series solution for linear problems with constant delays
[68, 160]. Third, the Least Square method, which involves the Lambert W function
and a numerical Least Square method, is used also to solve some simple linear DDEs.
This method is studied by Corless as well as by Asl and Ulsoy, who developed a
solution method that incorporates the Lambert W function into an approximation of
the solution of a linear DDE with constant delays [159, 5, 160]. The aforementioned
methods, unfortunately, fail to algorithmically analyze a large group of linear DDEs as
well as nonlinear DDEs. For instance, it is intractable to calculate the reachable set
of a large group of linear DDEs as well as nonlinear DDEs using the aforementioned
methods. Also, the numerical simulation, which numerically approximates only the
solution of DDE, e.g., Matlab’s dde23 and its successor ddesd [139], though being
useful in system analysis, fails to provide reliable certificates of system properties.
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Albeit there is a reasonable amount of literature on the theory and computational
practice of DDEs, see for example [13, 61, 139] for pointers to introductions, surveys
and tutorials, also addressing the question of how to manually verify stability of
some linear DDEs (e.g., [71, 161]), even some nonlinear DDEs (e.g., [15]), or using
numerical approaches (e.g., [98, 22]), fully automatic validated proof procedures for
linear as well as nonlinear DDEs that can be used in automatic verification purposes
such as safety verification are currently lacking and thus providing an open area of
research. This induces an interest in fully automatic validated proof procedures for
linear and nonlinear DDEs that can be used in automatic verification purposes, e.g.,
calculating over- and under-approximations of the reachable set of the DDE.

Unfortunately, few researchers have addressed the problem of automated analysis
and (safety) verification of time-delay systems (i.e., DDEs). In the recent years,
however, there has been growing interest in such problems driven by the demand for
safety cases (in a broad sense) for high-dynamic-performance systems (i.e., modeled by
DDEs). Prajna and Jadbabaie in [128] were among of the first to consider the safety
verification of time-delay systems. In the introduction of their seminal paper [128],
they have argued that most of the available analysis results in the field of time-delay
systems are focused on stability, robustness, or input-output properties and not on
safety or reachability (see, e.g., [63, 111]). They have extended the barrier certificate
methodology for ordinary differential equations (ODEs) to the polynomial time-delay
differential equations setting, in which the safety verification problem is formulated
as a problem of solving sum-of-square programs. In [126], Pola et al. proposed
an approach abstracting incrementally input-to-state stable (δ -ISS) nonlinear control
systems with constant and known delays to finite-state symbolic models, and establish
approximate bisimilarity between them. In [125], they extended the work in [126]
to incrementally-input-delay-to-state stable (δ -IDSS) nonlinear control systems with
time-varying and unknown delays, and proved that the original δ -IDSS nonlinear control
systems and the corresponding symbolic models are alternating approximately bisimilar.
The work in [72] presents a technique for simulation-based time-bounded invariant
verification of nonlinear networked dynamical systems with delayed interconnections by
computing bounds on the sensitivity of trajectories (or solutions) to changes in initial
states and inputs of the system. A similar simulation method integrating error analysis
of the numeric solving and the sensitivity-related state bloating algorithms was proposed
in [24], as a result of collaborative work with Chen et al., to obtain safe enclosures of
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time-bounded reach sets for systems modeled by DDEs. These approaches, however,
are not well suited to unbounded safety verification problems. In [162], as a result
of collaborative work with Zou, Fränzle et al., we have exposed interval-based Taylor
over-approximation method to enclose the solution of a class of DDEs (i.e., with
single constant delay) for stability and safety verification. This way, unbounded safety
verification problem is presented by means of pursuing bounded model checking (BMC)
for sufficiently many steps kdepth in case the DDE is stabilizing [162].

For the case of computing the under-approximations of reachable sets for DDEs,
unfortunately, a recent review of the literature found that the state-of-the-art of
techniques for DDEs is not at the level of ODEs. The work in [149] has considered
finding outer bounds of forwards reachable sets and inner bounds of backwards
reachable sets for linear systems with interval time-varying delays and unknown-
but-bounded disturbances. Subsequently, computing the smallest box to bound all
reachable sets of a class of nonlinear time-delay systems with bounded disturbances
was considered in [106]. In [156], with Xue, Fränzle et al., we have explored different
means of computing safe over- and under-approximations of reachable sets for a class
of DDEs. In this paper we have lifted the reachability analysis method based on
set-boundary of ODEs, discussed in [155, 157] by Xue et al., to a class of DDEs. In
this context we have employed sensitivity analysis for bounding time-lags of DDEs to
ensure the homeomorphism property. The practical implication is a rigorous method for
selecting appropriate components (e.g., sensors) guaranteeing sufficiently low latency
in the feedback loop with the ability of computing over- and under-approximation of
the reachable sets for such class of DDEs. Our technique, in that paper, is believed
to attract considerable interest as it can leverage many more techniques for ODE on
DDE, like stability and bifurcation analysis. Reachability analysis thus constitutes just
an example.

As reported above, reducing safety verification problems to only reachability problem
(i.e., invariance properties) may restrict the ability to adequately express the desired safe
behavior of the system. The formal specification of a wider range of safety properties,
to the best of our knowledge, at the time of writing this dissertation, seems to be
unsupported for DDEs. In [103] and its extended revised version [104] we tried to
extend the safety properties by involving a number of critical properties such as timing
requirements and bounded response rather than just invariance properties. With this
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in mind, within the framework of interval-based Taylor over-approximation method
introduced in [162], we have exploited metric interval temporal logic (MITL) with a
continuous-time semantics evaluating signals over metric spaces, which is more well-
suited to the case of DDEs rather than, e.g., dynamic logic (DL) [65, 66] as introduced
by Platzer in [121] for continuous/hybrid dynamics given as ODEs. For instance,
dynamic logics are inherently situation-based logics, yet DDE are not situation-based
(rather history-based) in their dynamics. This is irrelevant in the combination DDE
model vs. MITL specification, where the non-situational model generates a trajectory
that can be interpreted by a situation-based logics. Yet w/o an independent model,
as in DL, we cannot reasonably encode DDE dynamics. The problem is that we
cannot describe the future based on just the current situation, but need to always look
back a bit into history. This way, exploiting MITL with continuous-time semantics
as requirements specification language within the framework of interval-based Taylor
over-approximation method, we could solve time-bounded verification problems of
temporal logic properties for a class of DDEs. For the unbounded verification problems
that are aimed to be facilitated by interval-based Taylor over-approximation method, it
is still an active area of research.

1.3 Contributions

This dissertation is written within the research project SCARE— System Correctness
under Adverse Conditions —(DFG GRK 1765) which is funded by the DFG5. It is
the culmination of almost three years of research with peer-reviewed publications to
produce the research work in this dissertation. In fact, this dissertation is mainly based
on the research work that has been peer-reviewed and published before the thesis is
written. This fact is a well-accepted state of affairs in computer science and those who
grade this dissertation are well aware of it.

In this thesis the author, together with other researchers who contributed mostly
their thoughts in discussions, sometimes their guidance, and the writing of the papers,
has studied the problem of handling delay differential equations (DDEs) in automatic
verification purposes, which is in its infancy and thus provides an open area of research
as reported above. The contributions of the author in this PhD work are as follows.

5Deutsche Forschungsgemeinschaft
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• The author of this thesis was involved in the research work [162] together with
Zou, Fränzle et al. to develop a safe enclosure method for a class of DDEs
by using a parametric Taylor series with parameters in interval form. To avoid
dimension explosion incurred by the ever-growing degree of the Taylor series
along the time axis, following the idea of Taylor models [17, 110], we have
employed interval Taylor series of fixed degree and moved higher-degree terms
into the parametric uncertainty. By iterating bounded degree interval-based Taylor
over-approximations of the time-wise segments of the solution to a DDE, we
could identify and automatically analyze the operator that yields the parameters of
the Taylor over-approximation for the next temporal segment from the current one.
This way, by using constraint solving for analyzing the properties of this operator,
we have obtained a procedure able to provide stability and safety certificates for a
simple class of DDEs (i.e., with single constant delay).

My contribution in this work: discussion on the main approach, discussion on the

related work, performing some experiments, and co-writing the paper.

• The author et al. in [156] have developed a different means of computing
safe over-approximations as well as under-approximations for a higher class
in complexity of DDEs than the class of DDEs discussed in [162], where
the right-hand side of characterizing the differential equation is a combination
of ordinary differential equation (ODE) and DDE with single constant delay.
We have lifted the set-boundary reachability analysis based method of ODEs,
discussed in [155, 157] by Xue et al., to a class of DDEs featuring a local
homeomorphism property. This topological property facilitates construction of over-
and under-approximations of their full reachable sets by performing reachability
analysis on the boundaries of their initial sets, thereby permitting an efficient
lifting of reach-set computation methods for ODEs to DDEs. Membership in this
class of DDEs is determined by conducting sensitivity analysis of the solution
mapping with respect to the initial states to impose a bound constraint on the
time-lag term. We then generalize boundary-based reachability analysis to such
DDEs.

My contribution in this work: defining the research problem, central contribution to

develop the main approach, and writing the paper.
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• The author et al. in [103] and its extended revised version [104] has extended the
safety properties within the framework of interval-based Taylor over-approximation
method introduced in [162] by involving a number of critical properties such as
timing requirements and bounded response rather than just invariance properties.
We have exploited metric interval temporal logic (MITL) with a continuous-time
semantics as requirements specification language, aiming at automatic safety
verification of a simple class of DDEs (i.e., with single constant delay) against
requirements expressed in a linear-time temporal logic. We have employed the
over-approximation method based on interval Taylor series to enclose the solution
of the DDE and thereby reduce the continuous-time verification problem for
MITL formulae to a discrete-time problem over sequences of Taylor coefficients.
We have encoded sufficient conditions for satisfaction of the MITL formulae as
SMT formulae over polynomial arithmetic and used the iSAT36 SMT solver in
its bounded model-checking mode for discharging the resulting proof obligations,
thus proving satisfaction of time-bounded MITL specifications by the trajectories
induced by a DDE. In contrast to our preliminary work in [162], we could verify
arbitrary time-bounded MITL formulae, including nesting of modalities, rather
than just invariance properties.

My contribution in this work: defining the research problem, the fundamental contribu-

tion to develop the main approach, the experiments, writing the paper, the improvements

on the main approach, and writing the journal extension.

1.4 Structure of the thesis

The next chapter, Chapter 2, revisits some preliminaries that we will use in the rest of
this research work. This thesis is logically divided into three chapters according to the
contributions mentioned above. Chapter 3 gives an introduction of using Taylor model
methods in analysis and verification of (nonlinear) continuous systems and then we
will review interval-based Taylor over-approximation method for a class of DDEs as
studied in [162]. In Chapter 4, we will discuss in detail different means of computing
safe over-approximations for a class of DDEs as well as under-approximations through
lifting the reachability analysis method based on set-boundary of ODEs as discussed

6The iSAT3 implementation of the iSAT algorithm [52] is available at
http://projects.informatik.uni-freiburg.de/projects/isat3/
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in [156]. In Chapter 5, we will extend the safety properties within the framework of
interval-based Taylor over-approximation method introduced in Chapter 3 to verify a
class of DDEs against arbitrary time-bounded metric interval temporal logic (MITL)
formulae as presented in [103, 104]. Finally, conclusions, limitations of the research,
and some suggestions about promising points for further research will be drawn in
Chapter 6.



Chapter 2

Preliminaries

“It is evident that one cannot say anything demonstrable about the problem

before having resolved these preliminary questions, and yet we hardly possess

the necessary information to solve some of them1.”

[Georges Cuvier2, 1769–1832]

In this chapter we gather together some general definitions and some preliminaries
that we will use throughout this dissertation. We shall not go into details but cite
references in which the interested reader can find further details. The first section,
Section 2.1, is devoted to introducing delay differential equations (DDEs). The second
section, Section 2.2, is devoted to the reachability problem where we give a brief
overview of reach set computation and generally state the definitions of over- and
under-approximation of the reachable set. Section 2.3 looks at expressing specifications
on the desired temporal evolution to the system under investigation. We introduce, in
Section 2.3, a brief overview of temporal logics, especially linear temporal logic (LTL)
that will be useful for presenting our method in Chapter 5.

1As stated in 1796 before the National Institute of Sciences and Arts in Paris, concerning fossil elephants.
2Baron Georges Léopold Chrétien Frédéric Dagobert Cuvier (August 23, 1769 – May 13, 1832) was a

French naturalist and zoologist.
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2.1 Introduction to Delay Differential Equations

Delay differential equations (DDEs) differ from ordinary differential equations in that
they belong to the class of systems with functional state, i.e., the derivative at any time
depends on the solution (and in the case of neutral equations on the derivative) at prior
times. The DDE with constant delays has the form

ẋ(t) = f (t,x(t),x(t − τ1), . . . ,x(t − τn)), (2.1)

where the time delays (lags) τ1, . . . ,τn are positive constants. More generally, in
population dynamics and epidemic problems the delay time has also been represented as
a function of the state variable itself, i.e., DDE with state-dependent delay τi = τi(t,x(t))

[87].

Systems of DDEs have central importance in many areas of science and particularly
in the biological sciences (e.g., population dynamics and epidemiology) [147]. In [9],
the reader is referred to some references for several application areas. Furthermore,
DDEs arise naturally as models of, e.g., networked control systems, where the
communication delay in the feedback loop cannot always be ignored [162]. Here, we
revisit the basic property of DDEs which is the initial history function as discussed in
[147, 139], and the references therein. This property highlights the main obstacle to
lifting the power of established verification methods for ODEs to much more complex
objects as DDEs, i.e., the main aim of this dissertation as stated in the Introduction
(Chapter 1).

2.1.1 Initial History Function

Unlike ODE, a system of DDEs assumes that the effect of any changes to the system
is not instantaneous, i.e., past history is taken into account [92]. Hence, an initial
value problem (IVP) requires additional information than an analogous problem for a
system of ODEs. For an ordinary differential system, a unique solution is determined
by an initial point in Euclidean space at an initial time t0 [50]. Since the derivative
in (2.1) depends on the solution at the prior times t − τi, it is necessary to provide
an initial history function that conveys the value of the solution before the initial
time t0 [147]. The future evolution of a DDE is no longer governed by the current
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state instant only, but depends on a chunk of its past trajectory. This generates a
system that is infinite-dimensional. Therefore, a system of DDEs cannot be modeled
by finite-dimensional hybrid automata, and consequently cannot be analyzed by the
corresponding verification tools.

In most instances, the presence of an initial function may cause a jump derivative
discontinuity at the initial time. In other words, the DDE and the initial history are
incompatible: for some derivative order, usually the first, the left and right derivatives
are not equal [147]. In the area concerned with numerical analysis, numerical methods
for both ODEs and DDEs are intended for problems with solutions that have several
continuous derivatives [139]. Thus, discontinuities in low-order derivatives need special
attention. Due to the nature of DDEs, though such discontinuities are not unusual for
ODEs, this is a much more serious matter. One reason why discontinuities are much
more serious for DDEs is that they are almost always present for DDEs: generally
there is a discontinuity in the first derivative of the solution at the initial point. There
can also be discontinuities at times both before and after the initial point. In some
problems, there might be histories with discontinuities in low-order derivatives. Another
reason is that such derivative discontinuities are propagated in time. The detection and
location of derivative discontinuities is a central issue in the design of robust solvers
for solving DDEs numerically [153]. Some solvers are available to numerically find
approximate solutions to DDEs, e.g., dde23, ddesd [139]. Several of these solvers
use explicit Runge-Kutta methods with a suitable interpolation method, e.g., Hermite
interpolation, to integrate systems of DDEs. A discussion of numerical methods for
DDEs falls outside the scope of this dissertation; the interested reader is referred to
[139], and the references therein.

The numerical simulation is extremely useful in system analysis in order to study
the behavior of systems whose mathematical models are too complex to provide
analytical solutions, as in most nonlinear systems. Several studies, for example, have
used simulation methods to detect unsafe behaviors of many systems [25, 56]. On the
other hand, numerical simulation methods fail to provide reliable certificates of system
properties, as it is numerically approximate only. Another way to reliably verify, e.g.,
a safety property, on a system is formal verification, which is our concern in this
dissertation. In formal verification, the system is usually defined by a mathematical
model, e.g., DDE model, and we try to prove that no behavior of the model violates
the given safety property. For a prototypical safety property that is defined by a set
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of unsafe states, we compute all reachable states of the model, if no unsafe state
in included then the system is safe. This natural approach to the automatic formal
verification is also called reachability analysis [25, 36].

2.2 Reachability Problem

Reachability is a crucial problem that appears in several different areas: discrete and
continuous systems, time critical systems, hybrid systems, Petri nets, probabilistic
systems, open systems modeled as games, to name just a few [36]. A reachability
problem consists in checking whether a given set of target states, e.g., unsafe states,
can be reached starting from a fixed set of initial states. In this context, reachability
analysis plays a fundamental role in addressing safety verification challenges. While
one side of the problem is that only very few families of restrictive linear dynamic
systems feature a decidable state reachability problem [86, 69]. The other side is
that many continuous systems, modeled by ODEs and/or DDEs, do not have closed
form for their solutions. This way, one may resort to numerical approximations, e.g.,
Runge-Kutta methods, for computing the solutions with approximate values. For formal
verification, however, we need to compute enclosures of the solutions. A more generally
applicable option is computing an over-approximation for the reachable state set. If
the over-approximation does not contain any unsafe state, then neither does the exact
reachable set, and thus the system is safe. In case of negative verdict, the safety
then is unknown due to excessive over-approximation, and we may need to refine the
over-approximation [25]. While over-approximations serve as states that “may” be
reachable, under-approximations represent states that “must” be reachable. Therefore,
computing under-approximations may help to detect falsification of safety properties by
finding counterexamples [119].

2.2.1 Reach Set Computation

For a given safety analysis problem, we specify the problem by a tuple S = (H,I0,T ),
where H is a system model, I0 is the initial set, and T is the unsafe set or target
[101]. Roughly, reachability analysis seeks to determine whether trajectories of H can
reach T from I0. Reachability can be determined by simulating individual trajectories
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of H and observing whether these trajectories can reach T . In fact, such simulation is
a typical method by which safety is disproved [101]. For proof of safety, however, all
possible trajectories need to be investigated to increase the confidence in the correctness
of the system. This is a challenging task in continuous and hybrid systems where
the number of states is infinite [101]. Reachability computation is thus an exhaustive
exploration of the state space in order to compute at each time step all states reachable
by all possible inputs. It is evident that this set-based simulation is more costly than
the simulation of individual trajectories of a given system [94]. However, for the safety
problem, it provides more confidence in the correctness of the system.

Mathematically, let us assume that the trajectory of the system model H is defined
to be

φφφ(t;xxx0) = xxx(t),

where xxx(t) is the solution of H that satisfies the initial condition xxx(0) = xxx0 at time
instant t = 0. We define the reachable set Ω of a given initial set I0 for any time t ≥ 0
as follows.

Definition 2.2.1. The reachable set Ω(t;I0) at time t ≥ 0 is a set of states visited by trajec-

tories originating from I0 at time t = 0 after time duration t, i.e.

Ω(t;I0) = {xxx : xxx = φφφ(t;xxx0),xxx0 ∈ I0}.

Reachability analysis relies on a reach-set computation algorithm, which is closely
related to the mathematical model of the given system [148]. The term reachability
algorithm or reach-set computation algorithm is usually reserved for techniques that
determine the set of states traversed by all trajectories originating from a given set
[101]. There are direct and indirect reachability algorithms as discussed in, e.g.,
[101]. For direct reachability algorithms, there are two main classes. First, Lagrangian
approaches which represent the set or tube with information that moves with the flow of
the underlying dynamics. These approaches are typically described in terms of forward
reachability that starts with states in the initial set I0 and follows trajectories forward
in time. Another class of direct reachability algorithms is Eulerian approaches. These
approaches work with a discretization that is not moving with dynamics, although it
may be refined during computation. They are typically described in terms of backward
reachability that starts with states in the target set T and follows trajectories backwards
in time. More details on the comparison between forward and backward reachability
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as tools for safety analysis, the interested reader is referred to [101] and the citations
within. Also, there are at least two other classes of indirect reachability algorithms
for continuous and/or hybrid systems, e.g., automated Lyapunov type methods, the
interested reader is referred to [101, 127] and the references therein.

The representation of the computed reachable sets has a crucial effect on the effi-
ciency of the whole procedure, e.g., the computational complexity [143]. Consequently,
it has a deciding impact on the applicability of the reachability techniques. The
representation of the reachable sets is also strongly related to the mathematical model of
the given system. For instance, convex geometric objects such as hyper-rectangles, e.g.,
[26], polyhedra obtained from convex hull computations, e.g., [29], Zonotopes, e.g., [55],
and ellipsoids, e.g., [85], can be successfully used as flow-pipe over-approximations
in the reachability analysis for the hybrid automata with all dynamics defined by
linear expressions [25]. On the other hand, convex representations are not suitable for
flow-pipe overapproximations for the hybrid automata with non-linear dynamics. In this
case, some proposed representations such as orthogonal polyhedron, e.g., [20], interval
sets, e.g., [130], and Taylor models, e.g., [17], are more suitable. Generally speaking,
each of these representations has strengths and weaknesses. More details on this topic
can be found in, e.g., [143] and the references therein.

2.2.2 Over- and Under-Approximations

Over-approximation is defined as an approximation that is higher than the true
value. Contrary to this, under-approximation is defined as an approximation that is
lower than the true value. As already known about the limitations of computing
exact reachable sets especially for nonlinear systems, over- and under-approximations
for the reachable sets are usually computed for certain applications. For example,
computing an over-approximation for the reachable set is usually used for verification
purposes. If the over-approximation does not contain any of the defined unsafe states,
then the system is reliably safe. On the other hand, for example, computing an
under-approximation for the reachable set is used for detecting falsification of safety
properties by finding counterexamples. In a sense, when the under-approximation
contain any of the defined unsafe states, the system is thus unsafe based on concrete
counterexample. Furthermore, as mentioned in the Introduction, computing under- and
over-approximations of reachable sets may provide an indication of the precision of an
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estimate of the exact reachability region [157, 70]. Also, it can help us prove desired
reach-while-avoid properties that are common in many control systems: the system must
reach a specified target set of states, while avoiding a set of unsafe states [28, 155].

For the computed reachable set Ω(t;I0) from Definition 2.2.1, we compute the
corresponding over- and under-approximation as follows.

Definition 2.2.2. An over-approximation of the reachable set Ω(t;I0) is a set O(t;I0), where

Ω(t;I0)⊆ O(t;I0). In contrast, an under-approximation U(t;I0) of the reachable set is a

nonempty subset of the reachable set Ω(t;I0).

Notice that from Definition 2.2.2, the over-approximation O(t;I0) is an enclosure
s.t.

∀xxx0 ∈ I0 : φφφ(t;xxx0) ∈ O(t;I0)

holds, for any time t ≥ 0. On the other hand, the under-approximation U(t;I0) is a
nonempty set s.t.

∀xxx(t) ∈U(t;I0) : ∃xxx0 ∈ I0 : xxx(t) = φφφ(t;xxx0).

As stated in the Introduction, confining safety properties to a set of unsafe states
(invariance properties) restricts the ability of designers to formally specify the desired
behavior of the system under investigation. In the next section, we present linear
temporal logic (LTL) that has more expressive power to specify the desired behavior
of the system in formal verification. This introduction to LTL will be useful while
presenting our method in Chapter 5.

2.3 Temporal Logic

Temporal logic has found an important application in formal verification, where it is
used to specify the desired properties over time [54]. Temporal logics include many
types with different expressive powers, e.g., linear temporal logic (LTL), computation
tree logic (CTL), to name just a few. For a detailed review on temporal logics see [54]
and the references therein. Here, we give a brief overview of linear temporal logic
(LTL) serving as a preliminary material that is useful throughout our research work in
Chapter 5. In Chapter 5, we will exploit metric interval temporal logic (MITL) which
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is a real-time extension of LTL as requirements specification language. More details on
MITL will be given in Chapter 5.

2.3.1 Linear Temporal Logic

Linear temporal logic or linear-time temporal logic (LTL) is the most popular and
widely used temporal logic in computer science [54]. It was first proposed for the
formal verification of computer programs by the seminal work of Amir Pnueli in 1977
[124]. In this context, Pnueli has proposed the application of temporal logics to the
specification and verification of reactive and concurrent programs and systems. For
instance, in order to ensure the correct behavior of a reactive program, it is necessary
to formally specify and verify the acceptable infinite executions of the program. Also,
for a concurrent program, where two or more processors are working in parallel, it is
necessary to formally specify and verify their interaction and synchronization [54, 96].
The logic LTL can express some properties like safety and liveness properties. We
define the syntax and the semantics of LTL as introduced in the literature, e.g., [96, 6].

Syntax

LTL is built up from a finite set of atomic propositions AP, the Boolean connectors
like conjunction ∧, the negation ¬, two basic temporal modalities ⃝, i.e., the next

operator, and U , i.e., the until operator. The set of LTL formulae over AP is inductively
defined as in [6].

Definition 2.3.1. (Syntax of LTL). The LTL formulae over the set AP of atomic propositions

are formed according to the following grammar:

ϕ ::=⊤ | ρ | ¬ϕ1 | ϕ1 ∧ϕ2 | ⃝ϕ1 | ϕ1 U ϕ2

where ρ ∈ AP, and ⊤ is the Boolean constant true.

The until operator is a binary infix operator and requires two LTL formulae as
argument, e.g., ϕ1 and ϕ1. For example, a formula ϕ1 U ϕ2 holds at the current
moment, if ϕ1 holds at all moments until ϕ2 holds at the current or a future moment.
The next operator is a unary prefix operator and requires a single LTL as argument,
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e.g., ϕ1. For example, a formula ⃝ϕ1 holds at the current moment, if ϕ1 holds at the
next state (or step) [6].

The full power of propositional logic can be obtained by using the Boolean
connectives ∧ and ¬. The constant false can be derived by ⊥≡¬⊤. Also, for example,
other Boolean connectives such as disjunction ∨, implication ⇒, and equivalence ⇔
can be derived as follows:

ϕ1 ∨ϕ2 ≡ ¬(¬ϕ1 ∧¬ϕ2),

ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ϕ2,

ϕ1 ⇔ ϕ2 ≡ (ϕ1 ⇒ ϕ2)∧ (ϕ2 ⇒ ϕ1)

From the until operator, we can also define the temporal modalities 3, i.e.,
eventually operator, and 2, i.e., always operator, as follows:

3ϕ1 ≡⊤ U ϕ,

2ϕ ≡ ¬3 ¬ϕ.

This way, 3ϕ1 ensures that ϕ1 will be true eventually in the future. 2ϕ1 holds
from now on forever (always). This is equivalent to the case that eventually ¬ϕ1

does not hold. By combining the temporal modalities, e.g., 3 and 2, new temporal
modalities can be obtained, e.g., 23ϕ1 that is infinitely often ϕ1, and 32ϕ1 that is
eventually forever ϕ1.

The additional temporal operator release R can also be defined in terms of U as
follows:

ϕ1 R ϕ2 ≡ ¬((¬ϕ1) U (¬ϕ2)).

It ensures that ϕ2 remains true until and including the point where ϕ1 first becomes
true. If ϕ1 never becomes true, then ϕ2 must remain true forever.
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Semantics

LTL formulae represent properties of paths (or traces). This means that an LTL formula
is checked on a path or trace, and thus the path can either fulfill the LTL formula
or not. To precisely formulate this, the semantics of LTL formula ϕ is defined as a
language Words(ϕ) that contains all infinite words over the alphabet 2AP that satisfy ϕ .
In other words, an LTL formula ϕ can be satisfied by an infinite sequence of truth
evaluations of variables in the set of atomic propositions AP. Let W = w0,w1,w2, . . . be
such an infinite word, W (i) = wi, W i = wi,wi+1,wi+2, . . . , and ρ ∈ AP. The satisfaction
relation |= between a word W and an LTL formula is formally defined as follows:

W |= ρ iff ρ ∈ W (0),

W |= ¬ϕ1 iff W ⊭ ϕ1,

W |= ϕ1 ∧ϕ2 iff W |= ϕ1 and W |= ϕ2,

W |=⃝ϕ1 iff W 1 |= ϕ1,

W |= ϕ1 U ϕ2 iff ∃i ≥ 0 such that W i |= ϕ2 and W k |= ϕ1, for all 0 ≤ k < i.

This semantics is extended to an interpretation over paths and states of a transition
system T S [6]. We say the transition system T S satisfies an LTL formula ϕ if all
initial paths of T S, i.e., the paths starting from the intial state(s), satisfy ϕ . For more
details on this topic, the interested reader is referred to [6].



Chapter 3

Taylor Model for Continuous Systems

“Part of the charm in solving a differential equation is in the feeling that we

are getting something for nothing. So little information appears to go into

the solution that there is a sense of surprise over the extensive results that are

derived.”

[George Robert Stibitz, [142]]

In this chapter, we briefly revisit the method of approximation using Taylor
polynomials from [17]. After a brief introduction about Taylor approximations, more
details on interval-based Taylor over-approximation method will be presented to enclose
the solution of a simple class of delay differential equations (DDEs) [162] that we have
applied in order to perform safety and stability verification.

3.1 Taylor approximations

The first version of Taylor’s theorem was stated by the mathematician Brook Taylor

in 1712 [117]. Taylor’s theorem provides an approximation of a k-times differentiable
function around a given point by a k-th order Taylor polynomial. An explicit expression
of the error was provided later by Joseph-Louis Lagrange. However, an earlier version
of the result was already mentioned in 1671 by James Gregory [78].
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Given a univariate function f that is κ times differentiable over the domain
(a,b)⊆ R. Taylor approximation of the order k, where k ≤ κ of function f at x = c for
some c ∈ (a,b) is

pk(x) = f (c)+ f (1)(c)(x− c)+
1
2!

f (2)(c)(x− c)2 + · · ·+ 1
k!

f (k)(c)(x− c)k (3.1)

such that f (i) denotes the i-th order derivative of f at x = c.

The approximation error of pk(x) for any x ∈ (a,b) is expressed by the Lagrange
remainder term. If f is also (k+1) times differentiable, the Lagrange remainder term
is expressed as follows:

rk(x) = f (x)− pk(x) =
1

(k+1)!
f (k+1)(ξ (x))(x− c)k+1 (3.2)

Berz and Makino have originally developed Taylor models [17, 110] to provide
over-approximate representations for continuous functions. Taylor models combine
Taylor polynomials and intervals that obtain over-approximations [25].

Definition 3.1.1. (Taylor model). A Taylor model is denoted by a pair (p, I) such that p is

a polynomial over a set of variables x⃗ ranging in an interval domain, and I is the interval

remainder.

3.2 Interval based Taylor Over-approximation for a Class
of DDEs

An increasing number of studies have been found for using Taylor models, among
several representation techniques, to enclose the solution of ordinary differential
equations (ODEs) which are traditionally used to model a vast variety of dynamical
systems. Driven by the demand for safety cases (in a broad sense) for safety-critical
control systems and the engineers need their models to behave like the real processes
by considering, a.o., the delay, in the collaborative work with Zou and Fränzle et al.,
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we have considered Taylor models to over-approximate the solution of a simple class of
delay differential equations (DDEs) [162].

A safe enclosure method using Taylor series with coefficients in interval form was
presented in [162]1. To avoid dimension explosion incurred by the ever-growing degree
of the Taylor series along the time axis, the method depends on fixing the degree
for the Taylor series and moving higher-degree terms into the parametric uncertainty
permitted by the interval form of the Taylor coefficients. By using this data structure
to iterate bounded degree Taylor over-approximations of the time-wise segments of
the solution to a DDE, the approach identifies the operator that yields the parameters
of the Taylor over-approximation for the next temporal segment from the current one.
Employing constraint solving to analyze the properties of this operator, an automatic
procedure is obtained to provide stability and safety verification for a simple class of
DDEs of the form

d
dt

x⃗(t) = f (⃗x(t − τ)) (3.3)

with linear or polynomial vector field f : RN → RN , where the derivative at t is a
function of the trajectory at t − τ , i.e., the signal value determines the future evolution
with delay of τ . In order to compute an enclosure for the trajectory defined by an
initial value problem of the DDE (3.3), a template interval Taylor form of fixed degree
k is defined as

fn(t) = an0 +an1t + · · ·+ankt
k, (3.4)

where fn encloses the trajectory for time interval [nδ ,(n+1)τ], the constant τ is the
feedback delay from Eq. (3.3), and an0, . . . ,ank are interval-vector parameters. The
trajectory induced by DDE (3.3) can be represented by a piece-wise function, with
the duration of each piece being the feedback delay τ . To compute the enclosure
for the whole solution of the DDE, we need to calculate the relation between the
interval Taylor coefficients in successive time steps as pre-post-constraints on these
interval parameters. For notational convenience, we denote the interval parameters
[an0, . . . ,ank ] by a matrix A(n) in RN×(k+1). The relation between A(n) and A(n+1)

1The corresponding prototype implementation of the interval Taylor over-approximation method for DDEs
as well as some examples are available for download from https://github.com/liangdzou/isat-dde.
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can be computed, exploiting different orders of Lie derivatives f (1)n+1, f (2)n+1, . . . , f (k)n+1, as
follows:

f (1)n+1(t) = g( fn(t)), f (2)n+1(t) =
d f (1)n+1(t)

d t
, . . . , f (k)n+1(t) =

d f (k−1)
n+1 (t)

d t
, (3.5)

i.e., the first order is obtained directly from the given DDE (3.3) and the (i+ 1)-st
order is computed from the i-th order by symbolic differentiation. Then, the Taylor
expansion of fn+1(t) with fixed degree k is derived as follows:

fn+1(t) = fn(δ )+
f (1)n+1(0)

1!
t + · · ·+

f (k−1)
n+1 (0)
(k−1)!

tk−1 +
f (k)n+1(ξn)

k!
tk , (3.6)

where ξn is a vector ranging over [0,τ]N .

From Eq. (3.6), by comparing the coefficients of monomials with the same degree
at the two sides and by replacing ξn by the interval vector [0,τ]N , we can obtain a
time-invariant operator which represents the relation between A(n) and A(n+1). The
details of this construction can be retrieved from the example underneath. Hence,
we safely enclose the trajectory induced by the DDE (3.3) by a discrete-time model
providing a timed state sequence on a state space S ⊆ RN×(k+1).

By constructing a time-invariant discrete dynamic system, the stability of this system
can be determined by existing approaches. In case of a linear time-invariant discrete
dynamic system, the method proposed in [33] is used to determine whether this discrete
dynamic system is asymptotically or robustly stable. For a more general polynomial
case concerning the right-hand side of Eq. (3.3), as well as the initial condition, the
stability of a time-invariant polynomial discrete dynamic system can be analyzed thanks
to existing methods on computing parametric Lyapunov functions, such as [90, 131].
More details on stability concern for DDEs in the form of Eq. (3.3) are given in [162],
and references therein.

Turning our attention now to safety verification rather than stability, the main
objective of this dissertation, the constructed time-invariant discrete dynamic system can
be iterated within bounded model checking (BMC), using any BMC tool built on top
of an arithmetic SMT solver being able to address polynomial arithmetic, e.g., iSAT
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[52]. An unbounded safety verification is also possible by means of pursuing BMC
for sufficiently many steps kdepth in case our DDE is stabilizing. More details on
unbounded safety verification are found in [162] and references therein. On the other
hand, we mainly focus on time-bounded safety verification in this dissertation.

3.2.1 Time-Wise Discretization of DDEs into Timed State Sequences

“Most of the fundamental ideas of science are essentially simple, and may, as a

rule, be expressed in a language comprehensible to everyone.”

[Albert Einstein, [45]]

Motivated by a lesson learned from the long-dead, great man, especially when it
comes to explaining complex mathematical problems, in this section, interval-based
Taylor over-approximation method is demonstrated in a very simple example providing
the discrete-time model that encloses the solution of a DDE like Eq. (3.3). The running
example is the linear DDE with a single constant delay as discussed in [162] and
introduced in our motivation, Chapter 1, as follows:

ẋ(t) =−x(t −1) (3.7)

with the initial condition x([0,1])≡ 1.

The method provided in [162] aims at over-approximating the solution of DDE (3.7)
by iterating bounded degree interval-based Taylor over-approximations of the time-wise
segments of the solution to the DDE. That way, we identify the operator that yields the
parameters of the Taylor over-approximation for the next temporal segment from the
current one. For instance, suppose we are trying to over-approximate the solution of
DDE (3.7) by polynomials of degree 2. Then we can predefine a template Taylor form

fn(t) = an0 +an1t +an2t2

on interval [n,n+1], where an0 , an1 , and an2 are interval parameters able to incorporate
the approximation error eventually necessarily incurred by bounding the degree of the
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polynomial to (in this example) 2. Here, fn(t) corresponds to the solution x of DDE
(3.7) at time n+ t, i.e., fn(t) over-approximates x(n+ t) in the sense of x(n+ t) ∈ fn(t).

In order to compute the Taylor model, the first and second derivative f (1)n+1(t) and
f (2)n+1(t) of solution segment n+1 based on the preceding segment (where both segments
are of duration 1 each) have to be calculated. The first derivative f (1)n+1(t) is computed
directly from Eq. (3.7) as

f (1)n+1(t) =− fn(t) =−an0 −an1t −an2t2 .

The second derivative f (2)n+1(t) is computed based on f (1)n+1(t) by

f (2)n+1(t) =
d ( f (1)n+1(t))

d t
=−an1 −2an2t .

By using a Lagrange remainder with fresh variable ξn ∈ [0,1], we obtain

fn+1(t) = fn(1)+
f (1)n+1(0)

1!
t +

f (2)n+1(ξn)

2!
t2

= (an0 +an1 +an2)−an0t − an1 +2an2ξn

2
t2.

Then, the operator expressing the relation between Taylor coefficients in the current
and the next step can be derived by replacing both fn(t) and fn+1(t) with their
parametric forms an0 +an1t +an2t2 and an+10 +an+11t +an+12t2 in the above equation
and pursuing coefficient matching. As a result, one obtains the operator

an+10

an+11

an+12

=

 1 1 1
−1 0 0
0 −1

2 −ξn


an0

an1

an2

 (3.8)

mapping the coefficients of the Taylor form at step fn to the coefficients of the
Taylor form of fn+1. The coefficients change at every τ time units (every second in the
given example) according to the above operator, which therefore defines a discrete-time
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dynamical system corresponding to the DDE. The discrete-time operator can be rendered
time-invariant, yet interval-valued by substituting the uncertain time varying parameter
ξn with its interval [0,τ]. Hence, we can safely enclose the solution of DDE (3.7) by a
sequence of parametric Taylor series with parameters in interval form. In the case of
system (3.7), as well as for any other linear DDE, the operator generating this sequence
is a set-valued linear operator definable by an effectively computable interval matrix.

For a time-bounded safety verification, a given safety property like S(x)=̂−1≤ x≤ 1,
for example, the requirement in the n-th segment translates to ∀t ∈ [0,1] : S( fn(t)),
where fn is the Taylor form stemming from the n-th iteration of the above linear
operator. Hence, the safety property S(x) for system (3.7) becomes safety property
∀n ∈ N, t ∈ [0,1] : S( fn(t)) in system (3.8). Discharging this proof obligation in BMC
requires polynomial constraint solving due to the Taylor forms involved. We use
bounded model checking (BMC) mode in iSAT3 [138] as given in details later in
Chapter 5. In what follows, we start warming up to prepare the readers for the method
that will be discussed in Chapter 5.

3.2.2 Solving Time-Bounded Verification Problems by iSAT3

We opted iSAT3 solver [138] in bounded model checking (BMC) mode for solving
the time-bounded verification problem, taking advantage of the solver for efficiently
solving (un)bounded verification problems that involve polynomial (and, if needed,
transcendental) arithmetic. Thus, it is optimal in our case, owing to the Taylor forms
involved. The iSAT3 solver is a stable version implementation of the iSAT algorithm,
introduced by Fränzle et al. in [52].

In [162], the presented method facilitate solving time-(un)bounded verification
problems against invariance safety properties. In this context, the safety properties
can be expressed using bounded always temporal operator, i.e., 2kdepth , where BMC
of the Taylor over-approximation transition system aims at finding a run of bounded
length kdepth that starts in an initial state of the system, complies with the system’s
transition relation, i.e., the constructed operator (3.8), and ends in a state in which a
certain (un)desired property holds. The bounded model checking engine then constructs
a formula which is satisfiable if and only if a trace with a given property exists.
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For example, assume we want to verify the constructed Taylor over-approximation
model of the above running example against a given safety property like 2kdepth(x ≤ 1.2),
where kdepth = 10. We encode the constructed discrete transition system on Taylor
model, i.e., the operator (3.8), according to the input format for the iSAT3 BMC:
declaring all variables, describing the initial state(s) of the system, describing the
transition relation in symbolic form, i.e., the operator (3.8), and finally characterizing
the state(s) whose reachability is to be checked that is expressed by the given property
2kdepth(x ≤ 1.2). The input format of the iSAT3 BMC for such running example is
illustrated in Listing 3.1.

1 DECL

2 -- the range of each variable has to be bounded

3 float [-1000, 1000] a0, a1, a2, x;

4 float [0,1] t, xi;

5

6 -- define counter for the bounded verification problem

7 int [0,9] counter;

8

9 INIT

10 -- initial value of x over [0,1]

11 x = 1;

12

13 -- initialize Taylor coefficients

14 a0 = 1;

15 a1 = 0;

16 a2 = 0;

17

18 -- initialize the counter observing the time interval

19 -- covered by the bounded always

20 counter = 0;

21

22 TRANS

23 -- relation between Taylor coefficients current and next step

24 a0’ = a0 + a1 + a2;

25 a1’ = -a0;

26 a2’ = -0.5*a1 - xi*a2;

27
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28 -- x(t) is given by a Taylor form of degree 2

29 x’ = a0’ + a1 ’*t + a2 ’*(t^2);

30 -- note the implicit existential quantification of t

31

32 -- increment the counter by 1 after each time frame

33 counter ’ = counter + 1;

34

35 TARGET

36 -- state to be reached in bounded time

37 x > 1.2 and

38 counter <= 9;

Listing 3.1 The input format of iSAT3 BMC for the transition system of Equation 3.7.

The solver unwinds the transition relation kdepth times, conjoins the resulting formula
with the formulae describing the initial state(s) and the target state(s), and then solves
the obtained formula. More details on this will be given in Chapter 5 that is built
based on this chapter. There, we will consider wider range of temporal properties rather
than just invariance properties as considered in [162].

3.3 Discussion

“Nothing is particularly hard if you divide it into small jobs.”

[Henry Ford2, 1863–1947]

The interval-based Taylor over-approximation method is based on using interval
Taylor forms for safely enclosing segments of the solution of delay differential
equations (DDEs) with point- or set-valued initial conditions. Interestingly, this method
complements the established methods for enclosing reachable state sets of ordinary
differential equations (ODEs), lifting their power to DDEs. These early successes in
a new area, as considering DDEs in automatic formal verification, may give hope to
cover the situations actually encountered in many modern control applications, where
the feedback dynamics entails delays due to communication networks etc. and thus can
reasonably be described by DDEs.

2United States manufacturer of automobiles who pioneered mass production.
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For this introductory research in the verification area of DDEs, it is assumed
that the system dynamics is represented as a DDE with a single, constant delay, i.e.,
the restricted form given by Eq. (3.3). This study has gone some way towards the
verification of several dynamical systems that can be modeled by DDE with a single
constant as in biology [58, 93], optics [75], economics [145, 144], ecology [51]. In
control applications, one may however want to combine delayed feedback, as imposed
by communication networks, with immediate state feedback as suggested by ODE
models of the plant dynamics derived from, e.g., Newtonian models. Presumably such
cases can be addressed by a layered combination of Taylor-model computation for
ODEs, e.g. [110], with the ideas exposed herein. Note that we have considered in [156]
a higher class in complexity of DDEs, where the right-hand side of characterizing the
differential equation is a combination of ODE and DDE with single constant delay.
This method will be introduced in Chapter 4. Also, it should be noted that we have
considered the class of systems that involves a combination of ODE and DDE with
multiple constant delays as a collaborative work with Chen et al. in [24] using validated
simulation-based verification technique; however, this work is not considered in this
dissertation.

Although the interval-based Taylor over-approximation method, presented in this
chapter, is interesting, it may fail due to excessive over-approximation, which would be
induced by selecting an insufficient bound on the degree of the Taylor forms. A more
practical solution for this problem might be by selecting a higher degree of the Taylor
forms. However, with a negative verdict, it is unclear whether failure of the verification
attempt is an artifact of excessive over-approximation or an inherent property of the
system under investigation. Further work needs to be performed to develop a clear
improvement on our method for disambiguating these two cases [162].



Chapter 4

Over- and Under-Approximations for a
Class of DDEs

“Until now, physical theories have been regarded as merely models with approx-

imately describe the reality of nature. As the models improve, so the fit between

theory and reality gets closer. Some physicists are now claiming that supergrav-

ity is the reality, that the model and the real world are in mathematically perfect

accord.”

[P.C.W. Davies1]

In this chapter, we discuss in detail lifting another method, which was introduced
by Xue et al. in [155, 157] for ordinary differential equations (ODEs), to compute safe
over-approximations as well as under-approximations for a higher class in complexity
of delay differential equations (DDEs), compared to the class of DDE discussed in
previous chapter, where the right-hand side of characterizing the differential equation in
this class is a combination of ODE and DDE with single constant delay. The original
paper we have published on which this chapter is based, is [156]. Note that we have
considered also the class of systems that involves a combination of ODE and DDE
with multiple constant delays as a collaborative work with Chen et al. in [24] using
validated simulation-based verification techniques; however, this work is not considered
in this dissertation, as already mentioned.

1Superforce (1984, 1985), 149.
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While we have discussed in the previous chapter an over-approximation method
for a simple class of DDEs, our contribution in this chapter not only adapting a
developed method for a more complex class of DDEs, but computing both over- and
under-approximations for such a class of DDEs. The motivation of this work is
not only the inspiring work by Xue et al. in [155, 157] for ODEs, but computing
under-approximations of the reachable sets are incorporated into a variety of application
in engineering domains and accordingly the need to compute under-approximations for
DDEs as we have discussed in the introduction of this dissertation.

The method discussed in [155, 157] is reachability analysis method based on
set-boundary of ODEs. The main idea of this method relies on the fact that the solution
mapping of ODE is a homeomorphism and thus preserves set boundaries. This way,
one can retrieve safe over- and under-approximations for ODEs from enclosures of
the dynamic images of the boundaries of the initial set. This raises many questions
regarding whether the set-boundary based method could be used for DDEs taking into
consideration the fact that the solution mappings of DDEs need not be homeomorphisms.
Therefore we will devote ourselves, in this chapter, to answer the raised questions and
lift the reachability analysis method based on set-boundary of ODEs to DDEs.

4.1 Preliminaries

In this section, we formally define the dynamical systems of interest, i.e., a combination
of ODE and DDE with single constant delay, and recall the basic notion of reachability
used throughout this chapter. The following conventions will be used in the remainder
of this chapter: the space of continuously differentiable functions on X is denoted by
C1(X ); for a set ∆, the decorations ∆◦, ∆c and ∂∆ represent its interior, complement,
and boundary respectively; vectors in the Rn as well as of functions are denoted by
boldface letters. The set of n×n matrices over the field R of real numbers is denoted
by Rn×n.

We consider systems, in this chapter, that can be modeled by delay differential
equations (DDEs) of the form
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ẋxx =

ggg(xxx), if t ∈ [0,τ),xxx(0) ∈ I0

fff (xxx,xxxτ), if t ∈ [τ,Kτ],
(4.1)

where xxx(t) = (x1(t),x2(t), . . . ,xn(t))
′ ∈ X , xxxτ = (x1(t − τ),x2(t − τ), . . . ,xn(t − τ))

′ ∈ X ,
X ⊆ Rn, K ≥ 2 is a positive integer, ggg : X 7→ Rn describes the process which the
initial function is determined by the initial value xxx(0) ∈ I0, and I0 ⊂ Rn is a simply
connected2 compact3 set and fff : X ×X 7→ Rn is globally Lipschitz continuous over the
variables xxx(t) and xxx(t −τ). Also, we require that ggg(xxx) ∈ C1(X ) and ggg : X 7→Rn satisfies
the Lipschitz continuity condition with respect to the variables xxx(t), guaranteeing that
ẋxx = ggg(xxx) with initial value xxx(0) = xxx0 ∈ I0 has a unique solution on [0,τ]. Therefore,
Eq.(4.1) describes a deterministic process on [0,Kτ]. Besides, we assume that max
norms ∥∂ggg(xxx)

∂xxx ∥max, ∥∂ fff (xxx,yyy)
∂xxx ∥max and ∥∂ fff (xxx,yyy)

∂yyy ∥max of the matrices ∥∂ggg(xxx)
∂xxx ∥, ∥∂ fff (xxx,yyy)

∂xxx ∥ and

∥∂ fff (xxx,yyy)
∂yyy ∥ are uniformly bounded for any combination of xxx ∈ X and yyy ∈ X , i.e.,

∥∂ggg(xxx)
∂xxx

∥max ≤ M′,
∂ fff (xxx,yyy)

∂xxx
∥max ≤ M,∥∂ fff (xxx,yyy)

∂yyy
∥max ≤ N, (4.2)

where M′, M and N are positive real numbers.

Given System (4.1) with an initial set I0, and a finite time duration t, where
0 ≤ t ≤ Kτ and K ≥ 2 is a positive integer, the set of allowable initial functions selected
by ggg(xxx) is just a set of solutions of the ODE

ẋxx = ggg(xxx)

initialised in I0 with respect to the time interval [0,τ]. The trajectory of System (4.1)
is defined to be

φφφ(t;xxx0) = xxx(t),

where xxx(t) is the solution of System (4.1) that satisfies the initial condition xxx(0) = xxx0

at time instant t = 0. In addition, we recall some definitions from Chapter 2 to define
the reachable set of a given initial set I0 for any time t ≥ 0 and its corresponding over-
and under-approximations as follows.

2A connected set is a set which cannot be partitioned into two nonempty subsets which are open in the
relative topology induced on the set.

3The set is called compact if it is closed and bounded.
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Definition 4.1.1. The reachable set Ω(t;I0) at time t ≥ 0 is a set of states visited by trajec-

tories originating from I0 at time t = 0 after time duration t, i.e.

Ω(t;I0) = {xxx : xxx = φφφ(t;xxx0),xxx0 ∈ I0}.

As intuitively known about the limitations of computing exact reachable sets
especially for nonlinear systems, the approximate solutions are usually computed. Hence,
it is convenient to consider their over- and under-approximations for certain applications.
Its corresponding over- and under-approximations are defined below.

Definition 4.1.2. An over-approximation of the reachable set Ω(t;I0) is a set O(t;I0), where

Ω(t;I0)⊆ O(t;I0). In contrast, an under-approximation U(t;I0) of the reachable set is a

nonempty subset of the reachable set Ω(t;I0).

Notice that from Definition 4.1.2, the over-approximation O(t;I0) is an enclosure
s.t.

∀xxx0 ∈ I0 : φφφ(t;xxx0) ∈ O(t;I0)

holds, where 0 ≤ t ≤ Kτ . On the other hand, the under-approximation U(t;I0) is a
nonempty set s.t.

∀xxx(t) ∈U(t;I0) : ∃xxx0 ∈ I0 : xxx(t) = φφφ(t;xxx0).

As we mentioned above, aiming at computing safe over- as well as under-
approximations for DDEs in the form of Eq.(4.1), we wish to extend the reachability
analysis method based on set-boundary of ODEs, discussed in [157], to DDEs.
The method in [157] relies on the fact that the solution mapping of ODE is a
homeomorphism and thus preserves set boundaries, permitting to retrieve safe over- and
under-approximations from enclosures of the dynamic images of the boundaries of the
initial set. Actually it is a real challenge to lift such a method to DDEs.

Homeomorphism is a continuous function between topological spaces that has
a continuous inverse function. In other words, homeomorphism is a one-to-one
correspondence between two topological spaces such that the two mutually-inverse
mappings defined by this correspondence are continuous [67]. In fact, the solution
mappings of DDEs in the form of Eq.(4.1), however, need not be homeomorphisms.
That is, the inverse of the solution mapping of Eq.(4.1) may have numerous branches,
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not a unique inverse as ODE, that need to be taken into account. This is a serious
barrier to extend the reachability method based on set-boundary of ODEs to DDEs.
Hence, we devote ourselves to exposing a class of systems of the form (4.1) with
solution mappings having that desirable property. Then, we compute safe over- and
under-approximations for such a class of DDEs. We study, in this chapter, the following
problems:

Problem 1. Which class of systems characterized by Eq. (4.1) has solution mappings
forming a homeomorphism?

Problem 2. How can we efficiently compute safe over- and under-approximations of
the reachable set for the systems described in Problem 1 if the initial set I0 is a
simply connected compact set?

4.1.1 Nonlinear Control Systems

Nonlinear control systems obviously arise in natural as well as artificial dynamic
processes including biology, physics, economics, engineering, etc. In this vein, they
cover a wider class of systems as a real-world systems. They are characterized by the
presence of nonlinear elements in the right-hand side of the characterizing differential
equation. Such non-linearities may stem from both the system under control (i.e., the
plant) and the controller itself.

Ordinary differential equations (ODEs) are traditionally used to model the continuous
behavior of such systems. In general, the nonlinear control systems that are modeled by
ODEs with a control input are of the following form

ẋxx(t) = hhh(xxx(t),uuu(t)), (4.3)

where xxx(0) ∈ X0 ⊆ Rn, uuu(t) ∈UUU ⊆ Rm, and X0, UUU are both compact sets. Equation
(4.3) is required to be (globally) Lipschitz-continuous and the input trajectory uuu(·) :
R+ 7→UUU is required to be piecewise continuous so that a solution is guaranteed to exist
globally in the sense for all t ≥ 0. For convenience, we denote the space of piecewise
continuous functions from R+ to UUU as P .
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Let us denote the solution to System (4.3) for a given initial state and an input
trajectory by χ(t;xxx0,uuu(·)), where t ≥ 0, xxx(0) = xxx0 ∈ X0 and uuu(·) ∈ UUU is the input
trajectory within the time interval [0, t]. The reachable set at time t = r can be defined
for a set of initial states X0 and a set of input values UUU as

R(r) = {χ(r;xxx0,uuu) ∈ Rn|xxx0 ∈ X0,uuu ∈ P}.

Althoff’s approaches [3, 1] are among the many methods for computation of
over-approximations of the reachable set R(r). Such methods can also be applied to
over-approximating the reachable set for cases involving DDEs of the form (4.1) by
regarding the delay term xxxτ as the time-varying uncertainty uuu (cf. [72] for such an
algorithm).

4.2 Reachable Sets Computation

This section mainly focuses on solving Problem 1 and Problem 2 as presented in
Section 4.1. Firstly, we address Problem 1 by conducting sensitivity analysis on the
solution mappings φφφ(t; ·) with respect to the initial states for DDEs of the form of
Eq. (4.1). This facilitates imposition of a bound constraint on the time-lag term
such that the homeomorphism property is guaranteed. Then, addressing Problem 2,
we generalize the reachability method based on set-boundary of ODEs, discussed in
[155, 157], to the computation of safe approximations of reach sets for systems of
the form (4.1). This way, we can construct over- and under-approximations of their
reachable sets.

4.2.1 Sensitivity Analysis Theory

For a system governed by the ODE

ẋxx = ggg(xxx),

where t ∈ [0,τ], its flow mapping φφφ(t;xxx0) as a function of xxx0 is differentiable with
respect to the initial state xxx0, if ggg ∈ C1(X ) and ggg is Lipschitz continuous. The
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sensitivity of solutions at time t ∈ [0,τ] to initial conditions is defined by

sxxx0(t) =
∂φφφ(t;xxx0)

∂xxx0
, (4.4)

where sxxx0(t) is a square matrix of order n. The (i, j)th element of sxxx0 basically
represents the influence of variations in the ith coordinate x0,i of xxx0 on the jth
coordinate x j(t) of φφφ(t;xxx0). To compute the sensitivity matrix, we first apply the chain
rule to get the derivative of sxxx0 with respect to time [38], as follows:

d
dt

∂φφφ(t;xxx0)

∂xxx0
= Dggg(φφφ(t;xxx0))

∂φφφ(t;xxx0)

∂xxx0
,

which yields the ODE
ṡxxx0 = Dgggsxxx0

describing evolution of sensitivity over time, where Dggg is the Jacobian matrix of vector
field ggg along the trajectory φφφ(t;xxx0). This equation is a linear time-varying ODE and
the relevant initial value sxxx0(0) is the identity matrix III ∈ Rn×n.

Remark 4.2.1. From the definition of the sensitivity matrix sxxx0(t), we observe that sxxx0(t) is

also the Jacobian matrix of the mapping φφφ(t; ·) : I0 7→ Ω(t;I0), where t ∈ [0,τ].

Assume that the solution mapping φφφ(t;xxx0) of System (4.1) for time ranging over
t ∈ [(k−1)τ,kτ] and the state variable xxx0 ∈ I0, could be equivalently reformulated as a
continuously differentiable function of the state variable xxx((k−1)τ) in Ω((k−1)τ;I0)

and the time variable t ∈ [(k−1)τ,kτ] , i.e.,

φφφ(t;xxx0) = ψψψk−1(t;xxx((k−1)τ),(k−1)τ),

where k ∈ {1, . . . ,K−1}, and xxx((k−1)τ) = φφφ((k−1)τ;xxx0). Also assume the determinant
of the Jacobian matrix of the mapping ψψψk−1(t;xxx((k− 1)τ),(k− 1)τ) with respect to
any state xxx((k−1)τ) ∈ Ω((k−1)τ;I0) is not zero for any t ∈ [(k−1)τ,kτ]. Then, we
deduce what follows.

Lemma 4.2.1. Given the above assumptions, the sensitivity matrix sxxx(kτ)(t) =
∂xxx(t)

∂xxx(kτ) , t ∈
[kτ,(k+1)τ], for System (4.1) satisfies the following linear time-varying ODE:

ṡxxx(kτ) =
∂ fff (xxx,xxxτ)

∂xxx
sxxx(kτ)+

∂ fff (xxx,xxxτ)

∂xxxτ

∂xxxτ

∂xxx(kτ)
, (4.5)
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where ṡxxx(kτ) =
dsxxx(kτ)

dt , and sxxx(kτ)(kτ) = III ∈ Rn×n.

Proof. Since the determinant of the Jacobian matrix of the mapping xxx(t)=ψψψk−1(t;xxx((k−
1)τ,(k− 1)τ) with respect to any state xxx((k− 1)τ) ∈ Ω((k− 1)τ;I0) is not zero for
t ∈ [(k−1)τ,kτ], then for any fixed t ∈ [(k−1)τ,kτ], the mapping

xxx(t) = ψψψk−1(t; · ,(k−1)τ) : Ω((k−1)τ;I0) 7−→ Ω(t;I0)

is a bijection and its inverse mapping from Ω(t;I0) to Ω((k−1)τ;I0) is continuously
differentiable. Thus, the sensitivity matrix sxxx(kτ)(t) for t ∈ [kτ,(k+ 1)τ] satisfies the
sensitivity equation:

ṡxxx(kτ) =
∂ fff (xxx,xxxτ)

∂xxx
sxxx(kτ)+

∂ fff (xxx,xxxτ)

∂xxxτ

∂xxxτ

∂xxx(kτ)
,

with sxxx(kτ)(kτ) = III ∈ Rn×n.

From the definition of the sensitivity matrix sxxx(kτ)(t) =
∂xxx(t)

∂xxx(kτ) together with the fact
that its determinant is not equal to zero, the solution mapping φφφ(t; ·) : I0 7→ Ω(t;I0)

for t ∈ [kτ,(k+1)τ] could be formulated equivalently as a continuously differentiable
function of the state variable xxx(kτ) ∈ Ω(kτ;I0) for any fixed t ∈ [kτ,(k+1)τ], and this
mapping from Ω(kτ;I0) to Ω(t;I0) for t ∈ [kτ,(k+1)τ] is a continuously differentiable
homeomorphism between two topological spaces Ω(kτ;I0) and Ω(t;I0). This assertion
is formalized in Corollary 4.2.1.

Corollary 4.2.1. If the determinant of the sensitivity matrix sxxx(kτ)(t) with respect to any state

xxx(kτ)∈Ω(kτ;I0) at time kτ is not zero for any t ∈ [kτ,(k+1)τ], then φφφ(t;xxx0) for xxx0 ∈I0 and

t ∈ [kτ,(k+1)τ] could be equivalently reformulated as a continuously differentiable function

of the state variable xxx(kτ) ∈ Ω(kτ;I0) and the time variable t ∈ [kτ,(k+1)τ], and the state

xxx(t) = φφφ(t;xxx0) is uniquely determined by the state xxx(kτ) for any fixed t ∈ [kτ,(k + 1)τ],
where xxx(kτ) = φφφ(kτ;xxx0).
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4.2.2 Generating a Constraint Bounding the Time-Lag Term

According to what we discussed above, here, we will infer a class of DDEs of the form
(4.1), where the determinant of the corresponding sensitivity matrix sxxx(kτ)(t) with respect
to the state variable xxx(kτ) ∈ Ω(kτ;I0) at time kτ is not zero for t ∈ [kτ,(k+1)τ], and
k = 0, . . . ,K −1. Such a class of equations is derived by appropriately confining the
time-lag term of the DDE (4.1), i.e., τ . In what follows, first, we review the classical
result about diagonally dominant matrices from Varah [151].

If a matrix A ∈ Rn×n is strictly diagonally dominant, i.e.,

∆i(A) = |Aii|−∑
j ̸=i

|Ai j|> 0, with 1 ≤ i ≤ n,

where Ai j is the entry in the ith row and jth column of the matrix A, then the inverse
of the matrix A satisfies the bound

∥A−1∥∞ ≤ max1≤i≤n
1

∆i(A)
.

Note that, by convention, ∥ · ∥∞ is the maximum absolute row sum of a matrix. Based
on this classical result, we derive a constraint on the time-lag term τ in System (4.1)
rendering the sensitivity matrix mentioned in Lemma 4.2.1 strictly diagonally dominant.
We begin with the time interval [0,τ].

Lemma 4.2.2. There exist R > 1 and ε > 1 s.t. if

τ ≤ min
{

ε −1
εn2M′R

,
lnR

2
√

nnM′

}
,

the matrix sxxx0(t) in Eq. (4.4) is diagonally dominant and satisfies ∥sxxx0(t)∥max ≤ R and

max1≤i≤n
1

∆i(sxxx0(t))
≤ ε for t ∈ [0,τ] and xxx0 ∈ I0, where M′ is presented in (4.2).

Proof. Since the sensitivity matrix sxxx(0)(t) for t ∈ [0,τ] with respect to the state xxx(0)
satisfies the sensitivity equation

ṡxxx(0) =
∂ggg(xxx)

∂xxx
sxxx(0), with sxxx(0)(0) = III. (4.6)
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In the following, we employ the comparison principle for ODEs to derive a bound
on the solution to Eq. (4.6).

Let
Md = max

0≤t≤τ
2
√

nn∥AAA(t)∥max,

where AAA(t) = ∂ggg(xxx)
∂xxx . It is obvious that Md ≤ 2

√
nnM′.

We take the jth column of the sensitivity matrix sxxx(0)(t) and the matrix bbb(t) as
a vector yyy(t) and bbb j(t), where j ∈ {1, . . . ,n}. Let u(t) = ∥yyy(t)∥2

2 = ⟨yyy(t),yyy(t)⟩ with
u(0) = 1, where ∥yyy(t)∥2 is the 2-norm for yyy and ⟨·, ·⟩ is an inner product in Rn.

Based on Cauchy-Schwarz inequality and the fact that 2∥yyy∥2 ≤ ∥yyy∥2
2 + 1 as well

as ∥AAA(t)yyy∥2 ≤ ∥AAA(t)∥F∥yyy∥2 ≤
√

n∥AAA(t)∥2∥yyy∥2, where ∥AAA(t)∥F is the Frobenius norm of
the matrix AAA(t), we obtain

u̇ = 2⟨yyy, ẏyy⟩ ≤ 2∥yyy∥2∥ẏyy∥2 = 2∥yyy∥2∥AAA(t)yyy∥2 ≤ 2
√

n∥yyy∥2
2∥AAA(t)∥2

≤ 2
√

n∥AAA(t)∥2∥yyy∥2
2 ≤ Md∥yyy∥2

2 = Mdu. (4.7)

Applying Gronwall’s inequality [14] to Eq. (4.11), we deduce that

u(t)≤ u0eMdt = u0eMdt ≤ Rd

for 0 ≤ t ≤ τ , where u0 = u(0) = 1, and

Rd = eMdτ .

Therefore, ∥yyy(t)∥2
2 ≤ Rd for 0 ≤ t ≤ τ . By solving the inequality Rd ≤ R2, we

conclude that ∥sxxx(0)(t)∥max ≤ R for t ∈ [0,τ] holds if

τ ≤ lnR
2
√

nnM′ .
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For the sensitivity matrix sxxx(0)(t) with t ranging in the interval [0,τ], the diagonal
element in the i-th row of the matrix sxxx(0(t) is equal to

1+
[

∂gi(xxx)
∂xxx

∂xxx
∂x0,i

]
t=ξi

t,

the element in the ith row and jth column is equal to[
∂gi(xxx)

∂xxx
∂xxx

∂x0, j

]
t=ξ j

t,

where j ∈ {1, . . . ,n}\{i} and ξl , for l = 1, . . . ,n, is some value in (0,τ).

Thus ∆i(sxxx(0)(t)) is larger than

1− τ

n

∑
j=1

∣∣∣∣∂gi(xxx
∂xxx

∂xxx
∂x0, j

∣∣∣∣
t=ξ j

,

which in turn is larger than 1−n2M′Rτ .

By solving the inequality 1
1−n2M′Rτ

≤ ε, we obtain that τ ≤ ε−1
εn2M′R . Therefore, if

τ ≤ min
{

ε −1
εn2M′R

,
lnR

2
√

nnM′

}
,

then ∥sxxx(0)(t)∥max ≤ R and max1≤i≤n
1

∆i(sxxx(0)(t))
≤ ε hold, and sxxx(0)(t) is also diagonally

dominant for t ∈ [0,τ] since τ ≤ ε−1
εn2M′R , 1−n2M′Rτ > 0 holds.

Assume that the sensitivity matrix sxxx((k−1)τ)(t) is strictly diagonally dominant s.t.

∥sxxx((k−1)τ)(t)∥max ≤ R, (4.8)

max1≤i≤n
1

∆i(sxxx((k−1)τ)(t))
≤ ε, (4.9)

for any t ∈ [(k−1)τ,kτ], where k ∈ {1, . . . ,K−1}, ε > 1, and R > 1. Then, we construct
the bound constraint on the time-lag term τ as follows.
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Lemma 4.2.3. Based on Eq. (4.8) and (4.9), if the time-lag term is

τ ≤ min

{
ε −1

ε(n2MR+n2NRε)
,

ln R2+1
2√

n(2nM+n2NRε)

}
,

where M and N are presented in Constraint (4.2), then sxxx(kτ)(t) for t ∈ [kτ,(k+1)τ] is strictly

diagonally dominant with the property of

∥sxxx(kτ)(t)∥max ≤ R, and

max
1≤i≤n

1
∆i(sxxx(kτ)(t))

≤ ε.

Proof. Since the sensitivity matrix sxxx((k−1)τ)(t) is strictly diagonally dominant and Eq.
(4.9) holds, the inequality

∥s−1
xxx((k−1)τ)(t)∥∞ ≤ ε,

also holds, where t ∈ [(k− 1)τ,kτ] and k ∈ {1, . . . ,K − 1}. Accordingly, this implies
that ∥s−1

xxx((k−1)τ)(t)∥max ≤ ε . This way, according to Lemma 4.2.1, the sensitivity matrix
sxxx(kτ)(t) for t ∈ [kτ,(k+ 1)τ] with respect to the state xxx(kτ) satisfies the sensitivity
equation

ṡxxx(kτ) =
∂ fff (xxx,xxxτ)

∂xxx
sxxx(kτ)+

∂ fff (xxx,xxxτ)

∂xxxτ

∂xxxτ

∂xxx(kτ)
, with sxxx(kτ)(kτ) = III. (4.10)

In the following, we employ the comparison principle for ODEs to derive a bound
on the solution to Eq. (4.10).

Let
Md = max

kτ≤t≤(k+1)τ

√
n(2n∥AAA(t)∥max +∥bbb(t)∥max),

Nd = max
kτ≤t≤(k+1)τ

√
n∥bbb(t)∥max,

where AAA(t) = ∂ fff (xxx,xxxτ )
∂xxx and bbb(t) = ∂ fff (xxx,xxxτ )

∂xxxτ

∂xxxτ

∂xxx((k−1)τ)
∂xxx((k−1)τ)

∂xxx(kτ) . It is obvious that
Md ≤

√
n(2nM+n2NRε) and Nd ≤

√
nn2NRε .

We take the jth column of the sensitivity matrix sxxx(kτ)(t) and the matrix bbb(t) as
a vector yyy(t) and bbb j(t), where j ∈ {1, . . . ,n}. Let u(t) = ∥yyy(t)∥2

2 = ⟨yyy(t),yyy(t)⟩ with
u(kτ) = 1, where ∥yyy(t)∥2 is the 2-norm for yyy and ⟨·, ·⟩ is an inner product in Rn.
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Based on Cauchy-Schwarz inequality and the fact that 2∥yyy∥2 ≤ ∥yyy∥2
2 + 1 as well

as ∥AAA(t)yyy∥2 ≤ ∥AAA(t)∥F∥yyy∥2 ≤
√

n∥AAA(t)∥2∥yyy∥2, where ∥AAA(t)∥F is the Frobenius norm of
the matrix AAA(t), we obtain

u̇ = 2⟨yyy, ẏyy⟩ ≤ 2∥yyy∥2∥ẏyy∥2 = 2∥yyy∥2∥AAA(t)yyy+bbb j(t)∥2 ≤ 2
√

n∥yyy∥2
2∥AAA(t)∥2 +2∥yyy∥2∥bbb j(t)∥2

≤ 2
√

n∥AAA(t)∥2∥yyy∥2
2 +∥bbb j(t)∥2(∥yyy∥2

2 +1)≤ Md∥yyy∥2
2 +Nd = Mdu+Nd. (4.11)

Applying Gronwall’s inequality [14] to Eq. (4.11), we deduce that

u(t)≤ u0eMd(t−kτ)+
∫ t

kτ

NdeMd(t−s)ds = u0eMd(t−kτ)+
Nd

Md
eMd(t−kτ)− Nd

Md
≤ Rd

for kτ ≤ t ≤ (k+1)τ , where u0 = u(kτ) = 1, and

Rd =

(
1+

Nd

Md

)
eMdτ − Nd

Md
.

Therefore, ∥yyy(t)∥2
2 ≤ Rd for kτ ≤ t ≤ (k+1)τ . By solving the inequality Rd ≤ R2,

we conclude that ∥sxxx(kτ)(t)∥max ≤ R for t ∈ [kτ,(k+1)τ] holds if

τ ≤
ln R2+1

2√
n(2nM+n2NRε)

,

where the right side of this inequality could be gained when Md = Nd .

For the sensitivity matrix sxxx(kτ)(t) with t ranging in the interval [kτ,(k+1)τ], the
diagonal element in the i-th row of the matrix sxxx(kτ)(t) is equal to

1+
[

∂ fi(xxx,xxxτ)

∂xxx
∂xxx

∂xkτ,i
+

∂ fi(xxx,xxxτ)

∂xxxτ

∂xxxτ

∂xkτ,i

]
t=ξi

(t − kτ),

the element in the ith row and jth column is equal to[
∂ fi(xxx,xxxτ)

∂xxx
∂xxx

∂xkτ, j
+

∂ fk(xxx,xxxτ)

∂xxxτ

∂xxxτ

∂xkτ, j

]
t=ξ j

(t − kτ),

where j ∈ {1, . . . ,n}\{i} and ξl , for l = 1, . . . ,n, is some value in (kτ,(k+1)τ).
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Thus ∆i(sxxx(kτ)(t)) is larger than

1− τ

n

∑
j=1

∣∣∣∣∂ fi(xxx,xxxτ)

∂xxx
∂xxx

∂xkτ, j
+

∂ fi(xxx,xxxτ)

∂xxxτ

∂xxxτ

∂xkτ, j

∣∣∣∣
t=ξ j

,

which in turn is larger than 1− (n2MR+n2NRε)τ .

By solving the inequality 1
1−(n2MR+n2NRε)τ

≤ ε, we obtain that τ ≤ ε−1
ε(n2MR+n2NRε)

.
Therefore, if

τ ≤ min

{
ε −1

ε(n2MR+n2NRε)
,

ln R2+1
2√

n(2nM+n2NRε)

}
,

then ∥sxxx(kτ)(t)∥max ≤R and max1≤i≤n
1

∆i(sxxx(kτ)(t))
≤ ε hold, and sxxx(kτ)(t) is also diagonally

dominant for t ∈ [kτ,(k+1)τ] since τ ≤ ε−1
ε(n2MR+n2NRε)

, 1− (n2MR+n2NRε)τ > 0 holds.

Combining Lemma 4.2.2 and Lemma 4.2.3, we deduce the following theorem.

Theorem 4.2.1. If the time-lag term of DDE (4.1) is

τ ≤ min

{
ε −1

εn2M′R
,

lnR
2
√

nnM′ ,
ε −1

ε(n2MR+n2NRε)
,

ln R2+1
2√

n(2nM+n2NRε)

}
,

then the solution mapping φφφ(t; ·) : I0 7→Ω(t;I0) to System (4.1) is a homeomorphism between

two topological spaces I0 and Ω(t;I0) for any t ∈ [0,Kτ].

When the time-lag τ satisfies the condition presented in Theorem 4.2.1, the
homeomorphism property in Theorem 4.2.1 implies that the solution mapping φφφ(t; ·) :
I0 7→ Ω(t;I0) to System (4.1), where t ∈ [0,Kτ], maps the boundary and interior points
of the initial set I0 onto the boundary and interior points of the set Ω(t;I0) respectively.
Therefore, the full reachable set induced by the initial set of System (4.1) could be
retrieved by computing the reachable set just of the initial set’s boundary. We illustrate
Theorem 4.2.1 through the following example involving a delay τ that could be caused
by sensor circuitry. Determining a bound on that delay could thus help facilitate the
choice of appropriate sensors such that the delay τ incurred satisfies the conditions of
Theorem 4.2.1.
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Example 4.2.1. Consider a modified model of an electromechanical oscillation of a syn-

chronous machine,

ẋxx =

ggg(xxx), if t ∈ [0,τ),xxx(0) ∈ I0

fff (xxx,xxxτ), if t ∈ [τ,Kτ],
(4.12)

with xxx=(δ ,w)′, xxxτ =(δτ ,wτ), ggg(xxx)= (g1(xxx),g2(xxx))′=(0,0)′, fff (xxx,xxxτ)= ( f1(xxx,xxxτ), f2(xxx,xxxτ))
′=

(w,0.2−0.7sinδτ −0.05wτ)
′, and I0 = [−0.5,0.5]×[2.5,3.5], K = 60 and X = [−100,100]×

[−100,100]. Through simple calculations, we obtain that M′ = 0,M = 1, N = 0.7, R = 2.5
and ε = 2.5, thus any τ ≤ 0.0218 satisfies the condition in Theorem 4.2.1. In our experiments,

we set τ = 0.02.

14 15 16 17 18 19 20 21

2.6

2.8

3

3.2

3.4

3.6

δ

w

Fig. 4.1 An illustration of the reachable set for Example 4.2.1 at time t = 6.0
using simulation methods, (red, green, blue and yellow points – the approximate
sampling states reachable from the boundary subsets [−0.5,−0.5]× [2.5,3.5], [0.5,0.5]×
[2.5,3.5], [−0.5,0.5]× [2.5,2.5] and [−0.5,0.5]× [3.5,3.5] respectively; black points –
the approximate sampling states reachable from the entire initial set).

From the result illustrated in Fig. 4.1, we conclude that the corresponding solution
mapping φφφ(6; ·) : I0 7→ Ω(6;I0) maps the boundary and interior points of the initial
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set I0 onto the boundary and interior points of the set Ω(6;I0) respectively, as the
homeomorphism property suggests.

Based on this insight, in the section to follow, we present a reachability algorithm
for our method. This algorithm is resting on techniques for computing reachable sets
for nonlinear control systems in order to construct over- and under-approximations of
the reachable set for System (4.1) with a time-lag τ that satisfies the conditions of
Theorem 4.2.1.

4.2.3 Constructing Reachable Sets

In this section, the reachability analysis method based on set-boundary of ODEs, i.e.,
introduced in [155, 157] for nonlinear control systems, is extended to reachability
computations of System (4.1) with a time-lag τ satisfying the conditions of Theorem
4.2.1. The reduction is based on considering the delayed state variable xxxτ in System
(4.1) as a control input uuu(t), and the confinement to set boundaries adds precision as it
significantly reduces the volume of the tube containing all such input trajectories xxxτ .
Note that, in our algorithm we obviously restrict the initial set I0 to a specific family
of computer-representable sets in the Rn such as polytopes [18].

Assume that the initial set’s boundary can be represented as union of m subsets
from the respective family, i.e.,

∂I0 = ∪m
i=1I0,i.

For t ∈ [0,τ], the system is governed by ODE ẋxx = ggg(xxx). Therefore, we can apply any
existing reachability analysis technique for ODEs that is able to deal with reachability
computations with initial sets of forms, such as polytopes, to the computation of an
enclosure B0,t of the reachable set for the initial set’s boundary ∂I0 at time t ∈ [0,τ],
where B0,t = ∪m

i=1B0,i(t) and B0,i(t) is an over-approximation of the reachable set at
time t ∈ [0,τ] starting from the set I0,i, for i = 1, . . . ,m. The corresponding over- and
under-approximations of the reachable set at time t could be constructed by including
(excluding, resp.) the set B0,t from the set obtained from convex combinations of points
in B0,i(t), according to [157].
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Based on these computations for the initial trajectory segment up to time τ ,
for t ∈ [kτ,(k+ 1)τ], k = 1, . . . ,K − 1, the following steps are used to compute its
corresponding over- and under-approximations of the reachable set respectively.

1. First, we compute an enclosure Bk,i(t), for t ∈ [kτ,(k+1)τ], of the reachable set
Ω(t; I0,i) for System (4.1) with the initial set Bk−1,i(kτ) and xxxτ ∈ Bk−1,i(t − τ).
This enclosure can be computed by employing reachability analysis methods for
nonlinear control systems of the form (4.3) with a time-varying input

uuu(t) = xxxτ ∈ Bk−1,i(t − τ).

Therefore, Bk,t = ∪m
i=1Bk,i(t) is an enclosure of the reachable set for the initial

set’s boundary ∂I0 at time t ∈ [kτ,(k+1)τ].

2. Then, we construct a simply connected compact polytope Ok,t such that it covers
Bk,t . The set Ok,t is an over-approximation of the reachable set Ω(t;I0) at time
t ∈ [kτ,(k+1)τ] according to Lemma 1 in [157].

3. Finally, we construct a simply connected polytope Uk,t that satisfies two conditions:
1) the enclosure of the reachable set from the boundary of the initial set, i.e.,
Bk,t , is obtained to be a subset of the enclosure of its complement, and 2) it
intersects the interior of the reachable set Ω(t;I0). Then, according to Lemma
2 in [157], Uk,t is an under-approximation of the reachable set Ω(t;I0) at time
t ∈ [kτ,(k+1)τ].

4.3 Examples

In this section, we test our method on two examples of a two-dimensional system
and a seven-dimensional system. Our implementation is based on Althoff’s continuous

reachability analyzer (CORA) [2], which is a MATLAB toolbox for prototype design of
algorithms for reachability analysis. All computations are carried out on an i5-3337U
1.8GHz CPU with 4GB running Ubuntu Linux 13.10.
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Example 4.3.1. Consider a modified Lotka-Volterra two-variables system with a delay τ ,

given by

ẋxx =

ggg(xxx), if t ∈ [0,τ),xxx(0) ∈ I0

fff (xxx,xxxτ), if t ∈ [τ,Kτ]
(4.13)

with xxx = (x,y)′, xxxτ = (xτ ,yτ)
′, ggg(xxx) = (g1(xxx),g2(xxx))′ = (y,−0.2x+ y−0.2x2y)′, fff (xxx,xxxτ) =

( f1(xxx,xxxτ), f2(xxx,xxxτ))
′ = (y,−0.2xτ + y − 0.2x2y)′, I0 = [0.9,1.1]× [0.9,1.1] with ∂I0 =

∪4
i=1I0,i and X = [0.5,3.5]× [0.2,1.5], where I0,1 = [0.9,0.9]× [0.9,1.1], I0,2 = [1.1,1.1]×

[0.9,1.1], I0,3 = [0.9,1.1]× [0.9,0.9] and I0,4 = [0.9,1.1]× [1.1,1.1].

In this example, the valuations M′ = 2.3,M = 2.10,N = 0.2, R = 2 and ε = 2 fulfill
the condition in Lemma 4.2.3. Through simple calculations, τ = 0.01 satisfies the
requirement in Theorem 4.2.1. Also, K is assigned to 100, i.e. the entire time interval
is [0,1.0]. The over- and under-approximation of the reachable set illustrated in Fig.
4.2 and 4.3 are represented by polytopes. The computation time for computing over-
and under-approximations is 111.56 seconds.

Example 4.3.2. Consider a seven-dimensional system with a delay τ4,

ẋxx =

ggg(xxx), if t ∈ [0,τ),xxx(0) ∈ I0

fff (xxx,xxxτ), if t ∈ [τ,Kτ]
(4.14)

with xxx = (x1, . . . ,x7)
′, xxxτ = (x1,τ , . . . ,x7,τ)

′, ggg(xxx) = 000, fff (xxx,xxxτ) = (1.4x3 − 0.9x1,τ ,2.5x5 −
1.5x2,0.6x7 −0.8x3x2,2.0−1.3x4x3,0.7x1 −1.0x4x5,0.3x1 −3.1x6,1.8x6 −1.5x7x2)

′, I0 =

[1.1,1.3]× [0.95,1.15]× [1.4,1.6]× [2.3,2.5]× [0.9,1.1]× [0.0,0.2]× [0.35,0.55] and X =

[0.5,1.5]× [0.5,1.5]× [1.0,2.0]× [2.0,3.0]× [0.5,1.5, ]× [0.0,0.5]× [0.0,1.0].

The valuations M′ = 0,M = 3.9,N = 0.9, R = 2 and ε = 9 fulfill the condition in
Lemma 4.2.3. Thus, τ ≤ 0.01 satisfies the requirement in Theorem 4.2.1. Also, τ and
K are assigned to 0.01 and 30 respectively, i.e., the entire time interval is [0,0.03].

The computed over-approximation at time instant 0.03 is O(0.03;I0)= [1.121,1.336]×
[0.971,1.178]×[1.368,1.575]×[2.221,2.430]×[0.859,1.057]×[0.009,0.194]×[0.332,0.538].
The computed under-approximation at time instant 0.003 is U(0.03;I0)= [1.141,1.317]×
[0.991,1.159]×[1.387,1.555]×[2.241,2.411]×[0.878,1.037]×[0.028,0.175]×[0.351,0.519].

4The delay-free system could be found in the Package CORA.
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Fig. 4.2 An illustration of the reachable set of the initial set’s boundary for Example
4.3.1 at time t = 1.0, (red curve – ∂O(1.0; I0,1); blue curve – ∂O(1.0; I0,2); green curve
– ∂O(1.0; I0,3); yellow curve– ∂O(1.0; I0,4); black points – the approximate sampling
states reachable from the initial set I0 after time duration of 1.0, which are computed
using simulation methods).

The computation time for both is 900.23 seconds. The projections for over-and under-
approximations at time instants t = 0.01,0.02,0.03 on the x1 − x2 space are illustrated
in Fig. 4.4.

4.4 Discussion

Fig. 4.2 presents the approximation of the reachable set’s boundary obtained by
applying numerical simulation methods along with the set-boundary based method to
Example 4.3.1. Our findings would seem to show that the set-boundary based method
is able to produce a valid over-approximation of the reachable set’s boundary when the
delay-lag term τ satisfies the conditions in Theorem 4.2.1. Furthermore, it is shown
in Fig. 4.3 that the set-boundary based method, as discussed in Subsection 4.2.3, is



60 Over- and Under-Approximations for a Class of DDEs

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

x

y

Fig. 4.3 An illustration of the reachable set of the initial set’s boundary for Example
4.3.1 at time t = 1.0, (red curve – ∂O(1.0; I0,1); blue curve – ∂O(1.0; I0,2); green curve
– ∂O(1.0; I0,3); yellow curve – ∂O(1.0; I0,4); black curve – boundary ∂O(1.0;I0) of the
over-approximation obtained by our boundary method; black dash curve – boundary
∂U(1.0;I0) of the under-approximation obtained by our boundary method; purple curve
– boundary ∂O(1.0;I0) of less tight over-approximation obtained by extrapolating the
entire initial set rather than its boundaries).

able to output validated over- and under-approximations of the reachable sets. Also,
from our findings in Fig. 4.3, we argue that the set-boundary based method induces a
smaller wrapping effect in performing reachability analysis compared with extrapolating
the entire initial set for the reason that the boundaries of the initial set have definitely
much smaller volume than the entire initial set.

For Example 4.3.2, the approximations of the interval form, as illustrated in Fig.
4.4, are computed for the sake of reducing computational burden. Note that the bound
imposed for maintaining homeomorphism property applies to the time-lag in the DDE
only and is not a bound on the temporal horizon coverable by reach-set computation,
which can be arbitrarily larger if only the time-lag suits the condition. The relatively
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Fig. 4.4 An illustration of the reachable set on the x1 − x2 space for Example 4.3.2
at times t = 0.01,0.02,0.03, (red, blue and black solid lines – the boundaries of over-
approximations on the x1 − x2 space at time instants t = 0.01,0.02,0.03 respectively;
red, blue and black dashed lines – the boundaries of under-approximations on the
x1 − x2 space at time instants t = 0.01,0.02,0.03 respectively).

small horizons in these examples are due to the wrapping effect in the underlying
reachability techniques, not the method itself, as discussed below.

There is evidence to support the hypothesis that the positive aspect induced by using
polytopes for representations is that they enable the analysis of some properties such as
safety and reliability by reasoning in the theory of linear arithmetic. On the other side,
they might not be the best representations of the reachable sets for nonlinear systems
for the reason that the reachable sets of nonlinear systems modeled by ODEs and
DDEs may be far from being convex as demonstrated in Fig. 4.1, thereby generating
poor results when employing polytopes to characterize the reachable sets. In order
to address the issue of conservativeness induced by polytopes, we will try to employ
representations of more complex shapes such as semi-algebraic sets in the construction
of the reachable sets at the expense of computational efficiency.
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Another undesirable feature that might be in our implementation, is due to the
excessive use of previous state information to compute the set of current reachable
states from the boundaries of the initial set. In a sense, while computing the set of
reachable states at time t ∈ [kτ,(k+ 1)τ], the entire reachable set of the past states
within the time interval [(k−1)τ,kτ] is used for the computations rather than the set of
reachable states at just time instant t − τ . Therefore, a large amount of spurious states
might be introduced that are not actually reachable at previous time from the boundaries
of the initial set. Consequently, it is not surprising that this causes the wrapping
effect to increase. Due to constructing over- and under-approximations by including
(excluding, resp.) the obtained boundary enclosure from certain convex combination of
points, a pessimistic over-approximation of the reachable sets from the boundaries of
the initial set may reduce the tightness of computed results accordingly. In order to
circumvent this issue, we will extend Taylor-model based reachability analysis for ODEs
to the proposed class of DDEs in the future work. Since Taylor models are functions
being explicitly dependent on time and state variables, this dependence enables the
use of an over-approximation associated with the reachable sets of the boundaries of
the initial set at previous time t − τ rather than within the time interval [(k−1)τ,kτ]

to over-approximate the set of states reachable from the boundaries of the initial set
at current time t ∈ [kτ,(k+ 1)τ], thereby resulting in a significant reduction in the
wrapping effect.

Finally, we should point out that our method is suitable for systems modeled by
DDEs of the form (4.1) with solutions having homeomorphism property. But, it is
restricted to a class of DDEs with time-lag term τ satisfying the conditions in Theorem
4.2.1. As a future work, we will expand such class of systems by loosing bound
constraints on τ . Also, in order to measure the conservativeness on such bounds, we
plan to deduce constraints on τ such that the solution to the associated system does not
equip with homeomorphism property. Besides, if such homeomorphism property fails,
one feasible solution to compute its over- and under-approximations of reachable sets is
first to reformulate the associated DDE as an ODE via the method of steps in [146]
and then apply the reachability method based on set-boundary in [155, 157] to the
obtained ODE. However, the formulated ODE suffers an increase of space dimension
over reachability time of interest. We will investigate more about this in future work.



Chapter 5

Temporal Logic Verification for a Class
of DDEs

“In mathematics, logic is static. It deals with connections among entities that

exist in the same time frame. When one designs a dynamic computer system that

has to react to ever changing conditions, [. . . ] one cannot design the system

based on a static view. It is necessary to characterize and describe dynamic

behaviors that connect entities, events, and reactions at different time points.

Temporal Logic deals therefore with a dynamic view of the world that evolves

over time.”

[Amir Pnueli1]

Until now, the presentation of our work in Chapter 3 and Chapter 4 seems to be
confined to reducing safety verification problem to reachability problem (i.e., invariance
properties) that may restrict the ability of adequately express the desired safe behavior
of the system. This makes some controversy surrounding if we able to use the presented
methods to consider a wider class of safety properties. In the original papers on which
this chapter is based, [103] and its extended revised version [104], we have extended
the safety properties by involving a number of critical properties such as timing
requirements and bounded response rather than just invariance properties employing the
framework of interval-based Taylor over-approximation method introduced in [162] and
reviewed in Chapter 3.

1To quote Amir Pnueli from his talk after receiving the Israel Prize, https://amturing.acm.org/award_
winners/pnueli_4725172.cfm.

https://amturing.acm.org/award_winners/pnueli_4725172.cfm
https://amturing.acm.org/award_winners/pnueli_4725172.cfm
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5.1 Problem Formulation

In this section, we formulate the verification problem of a simple class of DDEs in the
form of Eq. (3.3)

d
dt

x⃗(t) = f (⃗x(t − τ))

against a class of safety requirements specified using an appropriate linear-time temporal
logic. As we deal with continuous state and time, we adopt metric interval temporal
logic (MITL) [4] for the purpose of requirements specification language. In this section,
we review its syntax and its continuous-time, signal-based semantics.

Let R be the set of the real numbers. Our time domain is the set of nonnegative
real numbers R≥0. Also, the trajectory of the DDE of Eq. (3.3) on an initial condition
x([0,τ])≡ c ∈ R is a function x(t) such that x : R≥0 → RN satisfies the initial condition
and ∀t ≥ τ : d

dt x⃗(t) = f (⃗x(t − τ)), where the positive integer N denotes the dimension
of the state space. In order to specify the temporal properties of interest, we exploit
MITL with continuous semantics, as meaningful when the states evolve in metric spaces
like in Eq. (3.3). We say that P(C) denotes the powerset of a set C and assume that
AP is a set of atomic propositions. Then, the predicate mapping M : AP →P(RN) is
a set valued function that assigns to each atomic proposition ρ ∈ AP a set of states
M(ρ) ⊆ RN . In this paper, we take the set of atomic propositions AP to be bound
constraints e ∼ c on state expressions, where e is an expression formed over the state
variables, like x1x2 −2sinx3, and being compared via a relation ∼ ∈ {<,≤,>,≥} to a
constant c ∈Q. Such atomic propositions come equipped with their natural semantics.

5.1.1 Metric Interval Temporal Logic

Metric interval temporal logic (MITL) [4] is a linear-time temporal logic designed for
capturing properties of signals evolving over quantitative and thus metric rather than
qualitative time, an assumption met by continuous-state systems as in Eq. (3.3). It is a
real-time extension of linear temporal logic (LTL), i.e., discussed in Chapter 2, where
the modalities of LTL are constrained with quantitative timing bounds. Metric temporal
logic (MTL) was first introduced by Koymans [82] to specify real-time properties. In
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order to address the undecidability problem of MTL, Alur et al. in [4] relaxed the
punctuality of the temporal operators s.t. they cannot constrain to singleton intervals.
We employ MITL to formally characterize the desired behavior of DDEs. Along the
following lines, we review and suitably adapt the syntax and the continuous-time and
continuous-space semantics of MITL as presented in [4, 115].

Definition 5.1.1. (Syntax of MITL). An MITL formula ϕ is built from a set of atomic

propositions AP using Boolean connectives and timed-constrained versions of the until

operator. It is inductively defined according to the grammar

ϕ ::=⊤ | ρ | ¬ϕ1 | ϕ1 ∧ϕ2 | ϕ1 UI ϕ2

where ρ ∈ AP, ⊤ is the Boolean constant true and I ⊆ Q≥0 is a nonsingular interval

imposing timing bounds on the temporal operators, where Q≥0 is the set of non-negative

rational numbers.

We can derive the constant false by ⊥ ≡ ¬⊤. Also, we can define additional,
time-constrained version of, temporal operators such as release RI , eventually 3I , and
always 2I as follows:

ϕ1 RI ϕ2 ≡ ¬((¬ϕ1) UI (¬ϕ2)),

3I ϕ ≡⊤ UI ϕ, and

2I ϕ ≡⊥ RI ϕ ≡ ¬3I ¬ϕ.

Notice that the release operator is a temporal modality that is dual to the until

operator. A formula ϕ1 RI ϕ2 holds if ϕ2 always holds, a requirement that is released
as soon as ϕ1 becomes valid with respect to the time bounds I.

Also, note that MITL has no next operator as the time domain is dense. For
I = [0,∞], we can remove the subscript I from the temporal operators, obtaining the
traditional modalities of LTL. Another notice, we would like to point out that the
decidability problem of MITL in the continuous semantics for both model checking
and satisfiability problems is out of the scope of this dissertation. For details about the
decidability problem, we refer the reader to [4, 114]. Furthermore, it is an open issue
whether the model property of DDE with respect to MITL formulae is decidable.
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Negation Normal Form

We consider MITL formulae in negation normal form (NNF), which can be achieved by
pushing all negations inside into the atoms [135]. If we admit the release modality and
disjunction in our syntax, then every formula ϕ has a semantically equivalent negation
normal form nn f (ϕ). Such an NNF can be obtained by applying De Morgan’s laws

as well as the dualities between until and release in order to push negations inwards,
and thereafter eliminating double negations. This is done by exploiting the following
equivalences as rewrite rules from left to right:

¬¬ϕ1 ≡ ϕ1,

¬(ϕ1 ∧ϕ2)≡ ¬ϕ1 ∨¬ϕ2,

¬(ϕ1 ∨ϕ2)≡ ¬ϕ1 ∧¬ϕ2,

¬(ϕ1 UI ϕ2)≡ ¬ϕ1 RI ¬ϕ2,

¬(ϕ1 RI ϕ2)≡ ¬ϕ1 UI ¬ϕ2.

These rewrite rules can also be lifted to the derived operators as follows:

¬3I ϕ ≡2I ¬ϕ,

¬2I ϕ ≡3I ¬ϕ.

Continuous-Time, Continuous-State Semantics of MITL

The continuous semantics of MITL formulae is used to express specifications on
the desired temporal evolution to the solutions of DDEs in the form of Eq. (3.3).
This semantics is based on real-valued signals x : R≥0 → RN over time. We say that
expression e over the state variables x satisfies atomic formula e ∼ c at time t ≥ 0,
denoted e, t |= e ∼ c, iff e(t) ∼ c holds. Based on this, semantics of arbitrary MITL
formulae is defined inductively, with the semantics of Boolean connectives ¬ and ∧
as well as the constant ⊤ being standard. The semantics of the time-constrained until

operator is defined as follows: e, t |= ϕ1 UI ϕ2 iff for some t ′ ∈ I, e, t + t ′ |= ϕ2 holds
and furthermore e, t |= ϕ1 for all t ∈ (t, t + t ′).
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By convention, we say that the DDE of Eq. (3.3) with an initial value x([0,τ])≡ c

satisfies an MITL formula ϕ if the expression e(t) over its solution trajectory satisfies
ϕ in the sense of e,0 |= ϕ . In what follows, we employ the interval-based Taylor
over-approximation method, introduced in [162] and revisited in Chapter 3, to enclose
the solution of such a DDE. As this method factually generates a discrete sequence
of Taylor coefficients rather than a continuous trajectory, we are thus able to reduce
a correctness problem over continuous time into a corresponding problem of a time-
invariant operator over discrete time. Therefore, it is however necessary to recover the
continuous semantics on the actual solution of the DDE from the timed state sequence
semantics on the Taylor coefficients.

5.1.2 Bounded Model Checking Mode in iSAT3

In order to encode the Taylor model corresponding to a DDE as discussed in Chapter
3, we use bounded model checking (BMC) mode in iSAT3 [138]. The iSAT3 solver
is a satisfiability checker for Boolean combinations of arithmetic constraints over real-
and integer-valued variables as well as a bounded model-checker for transition systems
over the same fragment of arithmetic. It is a stable version implementation of the
iSAT algorithm [52]. The solver can efficiently solve bounded verification problems
that involve polynomial (and, if needed, transcendental) arithmetic. Hence, it is a good
option to solve our proposed problem due to the Taylor forms involved. Also, it allows
us to verify/falsify a variety of MITL formulae built on atomic predicates defined over
simple bounds, linear, and nonlinear constraints [84]. Bounded model checking (BMC)
of a transition system aims at finding a run of bounded length kdepth which

• starts in an initial state of the system,

• complies with the system’s transition relation, and

• ends in a state in which a certain (un)desired property holds.

The bounded model checking engine then constructs a formula which is satisfiable
if and only if a trace with above properties exists.2 In case of satisfiability, any

2It should be noted that this semantic property does not imply that the solver engine subsequently checking
that formula for satisfiability can exactly determine its satisfiability. In the case of iSAT, a sound, yet incomplete
unsatisfiability check is implemented, as necessitated by the undecidable fragment of arithmetic addressed.
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satisfying valuation of this formula corresponds to such a trace. For encoding the
discrete transition system on Taylor model in BMC mode, iSAT3 has an input file
format consisting of four sections:

• DECL: This part contains declaration of all variables (i.e., variables of the dynamic
system, Taylor coefficients of the Taylor over-approximation solution, the duration
of each segment t ∈ [0,τ], the uncertain time-varying parameter ξ ∈ [0,τ]).

• INIT: This part is a formula describing the initial state(s) of the system to be
investigated.

• TRANS: This formula describes the transition relation in symbolic form; in our
case the evolution of the time-discrete Taylor model. We encode a template
interval Taylor form of fixed degree k, i.e., fn(t), and the relation between interval
Taylor coefficients in the current and the next step. Variables may occur in primed
(e.g., a′) or unprimed (e.g., a) form. A primed variable represents the value of
that variable in the successor step, i.e., after the transition has taken place.

• TARGET: This formula characterises the state(s) whose reachability is to be
checked; in our case it represents satisfaction of the given MITL formula.

The solver unwinds the transition relation kdepth times, conjoins the resulting formula
with the formulae describing the initial state(s) and the target state(s), and then solves
the obtained formula. For our transition relation in terms of Taylor coefficients, the
solver recursively for each time frame [0,kdepthτ] constructs the following formula:

init (⃗a0)∧
kdepth−1∧

i=0

trans (⃗ai ,⃗ai+1)∧ target (⃗akdepth),

where a⃗ is the interval-vector of the Taylor coefficients of the fixed-degree Taylor
polynomial fn(t).

Returning to Chapter 3 in order to recall our running example in Sect. 3.2.1, we
explain the iSAT3 encoding through the constructed operator (3.8)
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an+10

an+11

an+12

=

 1 1 1
−1 0 0
0 −1

2 −ξn


an0

an1

an2


that defines a safe enclosure to the solution of DDE (3.7) by a sequence of parametric
Taylor series with parameters in interval form using iSAT3. The iSAT3 encoding for
this example is as shown in Listing (5.1).

In the DECL part, we declare all variables; the variables of the dynamic system, i.e.,
x, the Taylor coefficients of degree 2, i.e., a0,a1, and a2, the duration of each segment
t ∈ [0,1], and the uncertain time varying parameter ξ ∈ [0,1]. Notice that the range of
each variable has to be bounded in iSAT3. We initialize the system variable x and
the Taylor coefficients in INIT part according to the given initial condition(s) in our
example. Then, in the TRANS part, we state the interval Taylor form of degree 2, i.e.,
fn(t) corresponds to the solution x of DDE (3.7), as shown in line 22, and the relation
between Taylor coefficients in the current (unprimed variables) and the next segment
(primed variables) according to the generated operator (3.8), where the segments are of
duration 1 each.

1 DECL

2 -- the range of each variable has to be bounded

3 float [-1000, 1000] a0, a1, a2, x;

4 float [0,1] t, xi;

5

6 INIT

7 -- initial value of solution

8 x = 1;

9

10 -- initialize Taylor coefficients

11 a0 = x;

12 a1 = 0;

13 a2 = 0;

14

15 TRANS

16 -- relation betw. Taylor coefficients in current and next step
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17 a0’ = a0 + a1 + a2;

18 a1’ = -a0;

19 a2’ = -0.5*a1 - xi*a2;

20

21 -- x(t) is given by a Taylor form of degree 2

22 x’ = a0’ + a1 ’*t + a2 ’*(t^2);

23

24 TARGET

25 -- state to be reached , e.g.

26 x = -0.25;

Listing 5.1 The encoding in iSAT3 of the running example in Sect. 3.2.1.

5.1.3 Proving Continuous-Time Properties on the Time Discretization

Operator (3.8) straightaway defines a safe temporal discretization of the DDE system in
Eq. (3.3), i.e., an operator generating a classical timed state sequence in the sense of
[4, 46]. We can, however, not simply apply the discrete-time interpretation of MITL to
this timed state sequence, as it ranges over a different state space —namely the Taylor
coefficients— than the requirements specification in terms of the original state variables.
Therefore, we have to translate forth and back between the different state spaces and
time models. In detail, the iterated execution of operator (3.8), starting from an initial
vector a00, . . . ,a0k of Taylor coefficients encoding the initial solution segment x([0,τ]),
generates a timed state sequence over (interval) Taylor coefficients, with time stamps
ti = iτ , rather than a continuous signal over the state variables x1, . . . ,xN . Reflecting
this encoding, we need a translation step generating conditions over the timed sequence
of Taylor coefficients from which we are able to recover the original continuous-time,
continuous-state signal-based semantics on the actual solution x of the DDE, as defined
in Sect. 5.1.1.

As has already been observed in [162], such a mapping is straightforward when
invariance properties are to be dealt with, for which a sufficient —yet, in the light of
over-approximation of the solution, obviously not necessary— condition can be obtained
as follows. For an invariance requirement 2x ∈ Safe, where Safe is a set of safe states,



5.2 Solving Continuous-Time MITL Formulae by Reduction to Time-Discrete Taylor
Approximations 71

the requirement in the n-th segment is translated to the stronger condition

∀t ∈ [0,τ]∀ξ ∈ [0,τ]∀a0 ∈ An,0, . . . ,ak ∈ An,k : fn(t) ∈ Safe, (5.1)

where fn is the underlying Taylor form and An,0 to An,k are the intervals Taylor
coefficients stemming from the n-th iteration of the operator (3.8). As this Taylor form
provides an over-approximation of the solution x over time frame [nτ,(n+1)τ], the
condition (5.1) implies ∀t ∈ [nτ,(n+1)τ] : x(t)∈ Safe. Consequently, the continuous-time
safety property 2x ∈ Safe for system (3.7) is translated into a sufficient condition
according to Eq. (5.1) for t,ξ ∈ [0,1] over the sequence of Taylor coefficients of Taylor
polynomial of degree 2. As its violation is an existential statement both instantiations
of Taylor coefficients within given intervals and existentially quantified time points t

and ξ , a solver for satisfiability modulo theory over the existential theory of polynomial
arithmetic can be used to solve the safety verification problem. It requires polynomial
constraint solving due to the Taylor forms, i.e., polynomial expressions involved in the
statement fn(t) ∈ Safe.

Different proof schemes can be implemented using such a solver: using k-
induction [140] or interpolation-based unbounded proof schemes [99], absence of
any time point in the sequence of valuations generated by operator (3.8) satisfying
∃n ∈N,∃t ∈ [0,1],∃ξ ∈ [0,1],∃a0 ∈ An,0, . . . ,ak ∈ An,k : fn(t) ̸∈ Safe can be shown, thereby
rigorously showing safety of the DDE system under investigation. Bounded model
checking of the same system could, on the other hand, generate counterexamples to
safety, which may however be spurious due to the over-approximation involved in the
Taylor enclosure.

5.2 Solving Continuous-Time MITL Formulae by Reduc-
tion to Time-Discrete Taylor Approximations

We extend the above idea of generating sufficient conditions for MITL specifications on
DDEs in terms of the sequences of enclosing (interval) Taylor coefficients. The aim is
to cover a large fragment of MITL, expanding well beyond the invariance properties
addressed in [162]. As explained in the previous section, we have obtained a generator
for a timed state sequence —the operator (3.8)— representing the solution of the DDE,
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yet ranging over a different state space, namely the Taylor coefficients. Hence, the
continuous interpretation of the MITL formulae over DDE solutions has to be translated
into a semantically appropriate discrete interpretation on a timed state sequence with
time stamps ti = iτ . This translation needs to restore, in the sense of providing sufficient
conditions for the solution being a counterexample (i.e., a witness of violation of the
property), the continuous semantics of the MITL formulae over the discrete model
of the timed state sequence. We do so by first transforming the MITL formula into
negation normal form, then generating a sufficient condition by adding the appropriate
conditions to the Taylor model that meet the semantics of the property for searching for
(possibly spurious) counterexamples with the help of an efficient SMT solver.

5.2.1 Atomic Proposition

According to the MITL syntax of Sect. 5.1, atomic propositions are of the form e ∼ c,
where e is an expression over the state variables, c is a constant and ∼ an inequational
relational operator, i.e., one of <,≤,>,≥. Using bounded model-checking based on
SMT solving, we attempt to find a counterexample of the MITL formula, or, in other
words, look for a witness for the negation of the MITL formula. As we transform that
negated formula into NNF, atomic propositions occur in positive context only. Then,
sufficient conditions for truth of such propositions throughout a time frame [iτ,(i+1)τ]
can, as already observed in Eq. (5.1)), obviously be expressed as follows:

∀t ∈ [0,τ]∀ξ ∈ [0,τ]∀a0 ∈ Ai,0, . . . ,ak ∈ Ai,k :
n∧

i=1

xi = fi(t)∧ e ∼ c. (5.2)

As mentioned in Sect. 5.1.3, when using SMT solving for finding violations of
condition (5.2), we use the negation of the universally quantified condition Eq. (5.2).
As this is an existential formula, it is amenable to standard SMT solving.

5.2.2 Boolean Connectives

For solving complex-structured formulae, we use a Tseitin-like definitional translation
[150], where we introduce a fresh Boolean helper variable ⟨ψ⟩i for each subformula ψ
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and each index i of a time frame [iτ,(i+1)τ]. The intuition is that ⟨ψ⟩i being true
implies that ψ holds for each time point t ∈ [iτ,(i+1)τ]. Note that this is a one-sided
implication, as we cannot decide properties exactly.

Note that we have in the previous section already obtained appropriate definitions
for the case that ψ is an atomic formula, such that we can define

¬⟨e ∼ c⟩i ⇒

(
∃t ∈ [0,τ]∃ξ ∈ [0,τ]∃a0 ∈ Ai,0, . . . ,ak ∈ Ai,k :∧n

i=1 xi = fi(t)∧ e ̸∼ c

)
(5.3)

as sufficient condition for validity of an atomic formula e ∼ c, where e is an expression
over the state variables and ̸∼ is the converse of the relation ∼.

Given a compound formula of the form ψ1 = ϕ1 ∧ϕ2 or ψ2 = ϕ1 ∨ϕ2, the encoding
for the compound formula is obtained by conjoining to the “axiomatisations” of ϕ1 and
ϕ2 the following definitional translations:

⟨ϕ1 ∧ϕ2⟩i ⇔ ⟨ϕ1⟩i ∧⟨ϕ2⟩i

⟨ϕ1 ∨ϕ2⟩i ⇔ ⟨ϕ1⟩i ∨⟨ϕ2⟩i

Note that a single-sided implication “⇐” from right to left would actually suffice, as
we target sufficient conditions only.

5.2.3 Unary Temporal Operators

Assume we have an MITL formula ψ1 = 3I ϕ or ψ2 = 2I ϕ featuring a time-
constrained eventually or always temporal operator as its outermost operator. Let the
lower and upper bound of I for simplicity be integer multiplies lτ and uτ of τ . For
each time frame, the value of a given MITL formula is encoded with the help of new
Boolean variables for the truth values of its subformulae in particular time instants. The
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encoding of ψ1 and ψ2 can be recursively understood as follows:

⟨3[lτ,uτ]⟩i ⇔ ⟨3[0,(u−l)τ]ϕ⟩i+l, if 1 ≤ l < u

⟨3[0,uτ]ϕ⟩i ⇔ ⟨ϕ⟩i ∨⟨3[0,(u−1)τ]ϕ⟩i+1, if 1 < u

⟨3[0,τ]ϕ⟩i ⇔ ⟨ϕ⟩i

⟨2[lτ,uτ]⟩i ⇔ ⟨2[0,(u−l)τ]ϕ⟩i+l, if 1 ≤ l < u

⟨2[0,uτ]ϕ⟩i ⇔ ⟨ϕ⟩i ∧⟨2[0,(u−1)τ]ϕ⟩i+1, if 1 < u

⟨2[0,τ]ϕ⟩i ⇔ ⟨ϕ⟩i

Single-sided implications “⇐” from right to left would again suffice for a sound
definitional translation.

In the case of the eventually modality, the condition for detecting satisfaction of ϕ

is somewhat stronger than necessary, actually requiring it to hold throughout a full time
frame rather than just once inside.

5.2.4 Binary Temporal Operators

Assume we have a subformula of shape ψ1 = ϕ1 UI ϕ2 or ψ2 = ϕ1 RI ϕ2 featuring a
time-constrained until or release operator as its outermost connective. For simplicity,
we assume that the lower bound of I is 0. Such a form can always be achieved
by prepending the modality with a unary temporal operator. Then the encoding of a
sufficient condition for validity of ψ1 or ψ2, resp., over time frame [iτ,(i+1)τ] is as
follows:

⟨ϕ1 U[0,uτ] ϕ2⟩i ⇔ ⟨ϕ2⟩i ∨ (⟨ϕ1⟩i ∧⟨ϕ1 U[0,(u−1)τ] ϕ2⟩i+1), if 1 < u

⟨ϕ1 U[0,τ] ϕ2⟩i ⇔ ⟨ϕ2⟩i

⟨ϕ1 R[0,uτ] ϕ2⟩i ⇔ ⟨ϕ2⟩i ∧ (⟨ϕ1⟩i ∨⟨ϕ1 R[0,(u−1)τ] ϕ2⟩i+1), if 1 < u

⟨ϕ1 R[0,τ] ϕ2⟩i ⇔ ⟨ϕ2⟩i
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As in the case of the eventually modality, the condition for detecting ϕ2 in the
case of until and of ϕ1, resp., in the case of release again is somewhat stronger than
necessary, requiring it to hold throughout the respective time frame instead of just once
inside.

5.2.5 Correctness

Let ψ be an MITL formula and [ψ]0 be the definitional translation of ψ obtained
by recursively unfolding and conjoining the above definitions of ⟨ψ⟩0 and all ⟨ϕ⟩ j

occurring therein. Let d⃗x
dt (t + τ) = f (⃗x(t)) be a DDE with initial value x⃗([0,τ])≡ i⃗, and

let A be the interval matrix obtained from it due to Eq. (3.8). Let k be the highest
index j of any Tseitin variable ⟨ϕ⟩ j occurring in [ψ]0.

Lemma 5.2.1. If a⃗0 =̂ i⃗∧
∧k

i=0 a⃗i+1 = A⃗ai ∧ [ψ]0 ∧¬⟨ψ⟩0 is unsatisfiable then x⃗ satisfies ψ ,

where a⃗0 =̂ i⃗ denotes the appropriate initialisation of the Taylor coefficients and x⃗ is the exact

solution of the DDE.

Proof. The sequence a⃗0 =̂ i⃗∧
∧k

i=0 a⃗i+1 = A⃗ai of interval Taylor forms generates an
over-approximation of x. The construction of [ψ]0 is such that a⃗0 =̂ i⃗∧

∧k
i=0 a⃗i+1 =

A⃗ai ∧ [ψ]0 |= ⟨ψ⟩0 if all trajectories y enclosed by the sequence of interval Taylor forms,
and thus also x itself, satisfies ψ . Satisfiability of a⃗0 =̂ i⃗∧

∧k
i=0 a⃗i+1 = A⃗ai∧ [ψ]0∧¬⟨ψ⟩0

consequently is a necessary condition for violation of ψ by x.

Note that a⃗0 =̂ i⃗∧
∧k

i=0 a⃗i+1 = A⃗ai ∧ [ψ]0 ∧¬⟨ψ⟩0 is a purely existential statement
and thus amenable to standard SAT-modulo-theory solving by removing the explicit
existential quantifiers in each instant of Eq. (5.3) by introducing fresh variables.

5.2.6 Verification Examples

In this section, we use the iSAT3 SMT solver to discharge the above proof obligations.
In order to be able to present the encodings in a compact form suitable for manual
inspection and for publication in print, we slightly deviate from a strict implementation
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of the above scheme, and instead employ the bounded model checking (BMC) mode of
iSAT and symbolic counter variables as abbreviation mechanisms whenever appropriate
in the search for witnesses as counterexamples of the MITL formulae. The results are,
however, the same and the logics behind the encodings is equivalent to the point it
can be in a BMC encoding. In particular, the method for using existential arithmetic
constraints as sufficient conditions to determine the truth values of propositional
(sub)formulae based on the over-approximation model of the DDE and thus recover the
continuous semantics of the MITL formula on the actual solution x of the DDE from
the timed state sequence semantics is exactly as in Eq. (5.3).

We demonstrate the approach based on illustrative examples of DDEs in the form
of Eq. (3.3). In our examples, we first consider the DDE (3.7) presented in Sect. 3.2.1
with different conjectured MITL formulae to be verified. Thereafter, we apply our
method to an adaptation of Gustafson’s model of nutrient flow in an aquarium (three
dimensional example) [64, p. 589f].

Example 5.2.1. We consider the linear DDE ẋ(t)=−x(t−1) with initial condition x([0,1])≡
1 and the conjectured safety property 2[0,10] (x ≤ 1.2).

The bounded degree interval-based sequence of Taylor forms can be generated by the
operator Eq. (3.8)). Adopting degree 2 Taylor forms, we can encode this generator in
the iSAT3 input language as shown in lines 24–26 of Listing 5.2. The encoding is a
discrete-time dynamic system over the variables x representing (snapshots of) the DDE
solution, Taylor coefficients of the Taylor over-approximation solution, i.e., a0,a1,, and
a2, a time point in each segment t ∈ [0,1], and the uncertain time varying parameter
ξ ∈ [0,1]. Also, we declare a counter to observe the timing bound on the temporal
operator.

In order to solve the given MITL formula 2[0,10] (x ≤ 1.2) in iSAT3 in the sense
of trying to construct a counterexample, we

1. in accordance with Eq. (5.3) search for a time frame within which x, being
defined as the image of the Taylor polynomial for some t ∈ [0,1], ξ ∈ [0,1] in
line 29 of the listing, exceeds 1.2, as encoded by condition x > 1.2 in the target
(line 37), and
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2. enforce the count of the time frame to be at most 9 (target, line 38), as time
frame n ranges from time n to n+1.

For verifying the property at hand, it obviously suffices to check this formula up to
unwinding depth 9.3 Such bounds on unwinding depths can in iSAT3 be set with the
–start-depth and –max-depth command line options.

In our example, the solver outputs that the system is safe for unwinding depth 10,
i.e., no state satisfying the target property could be reached within the relevant depth.
This constitutes a rigorous proof that the system actually satisfies the MITL formula.

1 DECL

2 -- the range of each variable has to be bounded

3 float [-1000, 1000] a0, a1, a2, x;

4 float [0,1] t, xi;

5

6 -- define counter for the bounded verification problem

7 int [0,9] counter;

8

9 INIT

10 -- initial value of x over [0,1]

11 x = 1;

12

13 -- initialize Taylor coefficients

14 a0 = 1;

15 a1 = 0;

16 a2 = 0;

17

18 -- initialize the counter observing the time interval

19 -- covered by the bounded always

20 counter = 0;

21

22 TRANS

23 -- relation between Taylor coefficients current and next step

24 a0’ = a0 + a1 + a2;

3iSAT counts unwindings starting from 0 such that an unwinding of depth 9 yields a trace comprising 10
time instants.
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25 a1’ = -a0;

26 a2’ = -0.5*a1 - xi*a2;

27

28 -- x(t) is given by a Taylor form of degree 2

29 x’ = a0’ + a1 ’*t + a2 ’*(t^2);

30 -- note the implicit existential quantification of t

31

32 -- increment the counter by 1 after each time frame

33 counter ’ = counter + 1;

34

35 TARGET

36 -- state to be reached in bounded time

37 x > 1.2 and

38 counter <= 9;

Listing 5.2 The encoding of Example 5.2.1 in iSAT3.

Example 5.2.2. Consider the same DDE equation as Example (5.2.1) with the same initial

condition, but for solving the conjectured safety property of (bounded) until operator (x ≤
1.2) U[0,10] (x ≤ 1.0).

This time, we employ four Boolean helper variables, of which iSAT’s BMC mode
will instantiate a fresh copy in each step:

1. Boolean state variable b records a sufficient condition for x ≤ 1.2 being true
throughout the current time frame in the sense that b is true only if x(t)≤ 1.2
holds for each time instant t in the current time frame (cf. lines 28 and 50 in
Listing 5.3);

2. Boolean state variable c records a sufficient condition for x ≤ 1.0 being true
throughout the current time frame (cf. lines 31 and 52);

3. the Boolean state variable u records a sufficient condition for the temporal
porperty (x ≤ 1.2) U[0,10−n] (x ≤ 1.0) being true in the current step, with n being
the number of the current step (cf. line 54);

4. Boolean state variable done is a helper variable necessitated by the confined
expressiveness of the BMC mode, which permits reference to current and next
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states only. It records whether the termination condition x ≤ 1.0 has already been
true in the past (lines 34 and 55).

1 DECL

2 -- the range of each variable has to be bounded

3 float [-1000, 1000] a0, a1, a2, x1, x2;

4 float [0,1] t1 , t2, xi;

5 -- each of the atomic subformulae needs its own

6 -- fresh copy of the state variable x and the time

7 -- instant t due to the quantifier elimination

8

9 -- define counter for bounded verification problem

10 int [0,9] counter;

11

12 -- define Boolean helper variables

13 boole b, c, u, done;

14 -- b records sufficient condition for x <= 1.2

15 -- c records sufficient condition for x <= 1.0

16 -- u records sufficient condition for until

17 -- done records whether c has been true in the past

18

19 INIT

20 x1 = 1;

21 x2 = 1;

22 -- initialize Taylor coefficients

23 a0 = 1;

24 a1 = 0;

25 a2 = 0;

26

27 --initialize b, the sufficient condition of everywhere x <= 1.2

28 (not b) -> (x1 > 1.2);

29

30 --initialize c, the sufficient condition of everywhere x <= 1.0

31 (not c) -> (x2 > 1.0);

32

33 -- initialize done , the variable memoizing x <= 1.0

34 done <-> c;

35
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36 -- counter observes the time interval

37 counter = 9;

38

39 TRANS

40 -- description of the transition system of DDE model

41 a0’ = a0 + a1 + a2;

42 a1’ = -a0;

43 a2’ = -0.5*a1 - xi *a2;

44

45 -- tracing the bounded until

46 -- find witness points

47 x1’ = a0’ + a1 ’*t1 + a2 ’*(t1^2);

48 x2’ = a0’ + a1 ’*t2 + a2 ’*(t2^2);

49 -- b is sufficient condition for x <= 1.2 throughout time frame

50 (not b’) -> (x1’ > 1.2);

51 -- c is sufficient condition for x <= 1.0 throughout time frame

52 (not c’) -> (x2’ > 1.0);

53 -- recurrence rules for until

54 u <-> done or (b and u’);

55 done ’ <-> (c’ and counter > 0) or done; -- remembers c

56 (counter > 0) -> (counter ’ = counter -1);

57 (counter = 0) -> (counter ’ = 0);

58

59 TARGET

60 -- for constructing a counterexample , the until formula ought

61 -- to be violated in the initial time instant

62 (not u) and (counter = 9);

Listing 5.3 The encoding of Example 5.2.2 in iSAT3.

Checking above example for an appropriate unwinding depth of at least 9, iSAT

will report unsatisfiable, which approves absence of a counterexample and thus proves
the property to be satisfied.

Example 5.2.3. This example (taken from [162]) is an adaptation of Gustafson’s model

of nutrient flow in an aquarium [64, p. 589f]. It deals with using a radioactive tracer for

the food chain consisting of two aquatic plankton varieties drifting with the currents. The

variables in this three-dimensional system reflect the isotope concentrations in the water,
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a phytoplankton species, and a zooplankton species, respectively. The original model was

an ODE model; a concise model would presumably have to use PDE (partial differential

equations) to model spacial variations and the necessary drifts of species in the predator-prey

part of the food chain; our DDE model here is a compromise between these two extremes.

Therefore consider the three-dimensional linear DDE

˙⃗x(t) =

−3 6 5

2 −12 0

1 6 −5

 x⃗(t − 1
100

) (5.4)

with initial condition x⃗([0,1]) ≡ [10,0,0] and a conjectured MITL formula specifying the

distance between the isotope concentrations of two aquatic plankton varieties always stays

below 10 in a bounded time [0,50], i.e., 2[0,50] | x2 − x3 |≤ 10.

Using Taylor models of degree 1, we calculate the operator relating successive
parameter vectors to be

AAA(n+1) =



1 1
100 0 0 0 0

−3 −3ξ1 6 6ξ1 5 5ξ1

0 0 1 1
100 0 0

2 2ξ2 −12 −12ξ2 0 0

0 0 0 0 1 1
100

1 ξ3 6 6ξ3 −5 −5ξ3


AAA(n) ,

In this example, the solver outputs that the system is safe, which means that
any state satisfying the target property is unreachable within depth 50 w.r.t. the
over-approximation model of the DDE. This constitutes a rigorous proof that the system
actually satisfies the given property.

1 DECL

2 -- the range of each variable has to be bounded

3 float [-1000, 1000] a01 , a11 , a02 , a12 , a03 , a13 , x1, x2, x3;

4 float [0 ,1/100] t, xi1 , xi2 , xi3;

5

6 -- define counter for the bounded verification problem

7 int [0,49] counter;

8

9 INIT

10 -- initial values for the three components of the state
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11 x1 = 10;

12 x2 = 0;

13 x3 = 0;

14 -- initialize Taylor coefficients

15 a01 = 10;

16 a11 = 0;

17 a02 = 0;

18 a12 = 0;

19 a03 = 0;

20 a13 = 0;

21 -- initialize the counter

22 counter = 0;

23

24 TRANS

25 --description of the transition system of DDE model

26 x1’ = a01 ’ + a11 ’*t;

27 x2’ = a02 ’ + a12 ’*t;

28 x3’ = a03 ’ + a13 ’*t;

29 a01 ’ = a01 + (1/100)*a11;

30 a11 ’ = ((-3)*a01) - ((3* xi1)*a11) + (6*a02)

31 + ((6* xi1)*a12) + (5*a03) + ((5* xi1)*a13);

32 a02 ’ = a02 + (1/100)*a12;

33 a12 ’ = (2*a01) + ((2* xi2)*a11) - (12* a02) - ((12* xi2)*a12);

34 a03 ’ = a03 + (1/100)*a13;

35 a13 ’ = a01 + (xi3*a11) + (6*a02) + ((6* xi3)*a12)

36 - (5*a03) - ((5* xi3)*a13);

37

38 -- increment the counter by 1 for each time frame

39 counter ’ = counter + 1;

40

41 TARGET

42 -- state to be reached in bounded time

43 abs(x2 -x3) > 10 and counter <= 49;

Listing 5.4 The encoding of Example 5.2.3 in iSAT3.
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5.3 Discussion

Our research has elaborated a necessarily incomplete method to verify/falsify temporal
specifications of time-delay systems modeled by a simple class of delay differential
equations (DDEs) with a single constant delay. Although the above verification
procedure for temporal specifications is interesting, it could suffer from providing false
negatives and corresponding counter-examples, due to excessive over-approximation of
the DDE’s solution. As this problem would be induced by selecting an insufficient
bound on the degree of the Taylor forms, one could simply select a higher degree.
Therefore it should, however, be clear that the negative verdict actually is spurious due
to excessive over-approximation. Automatic methods to check whether the reported
counterexample is spurious or not remain to be developed. The situation is thus
still semi-automatic due to adjusting manually the fixed degree of the Taylor forms.
We hypothesize that one possible solution to make it fully automatic could be by
using counter-example guided abstraction refinement (CEGAR) [30] for enhancing the
over-approximation model. Another possible promising solution would be by conducting
sensitivity analysis, and hence refining the over-approximating Taylor model. That
latter solution aims at eliminating the wrapping effect due to the dependency issues in
interval arithmetic. A preliminary study of that latter solution will be manifested as a
future research direction.





Chapter 6

Conclusion, Limitations, and Future
Research

“Problems worthy of attack prove their worth by hitting back1.”

[Piet Hein]

This chapter attempts to put the dissertation into broader context and to subject it
to criticism. It is more than just a summary of the chapters or data the author has
presented in the main chapters of the dissertation. Along with providing a synthesis
of the key findings and arguments projected by our research to answer the research
questions of this dissertation, this chapter makes a stand regarding the dissertation
statement. In other words, this chapter is able to stand on its own and provide a
justification and defense of the dissertation. Hence, in an attempt to have a clear
structure of this chapter, we first in Section 6.1 conclude our research, where we draw
the attention of the reader to the dissertation statement upon which our research was
conducted. And we provide evidence and synthesis of arguments, presented in the body
of our dissertation, to show how these converge to answer our research questions. Then,
in Section 6.2, we identify the various limitations which were encountered during our
research. This could also be combined with Section 6.3, future research, demonstrating
how future research could build on from this research, recognizing and responding to
the limitations.

1‘Problems’, p. 2 in GROOKS, by Piet Hein.
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6.1 Conclusion

Delay differential equations (DDEs) are yet among the most commonly investigated
types of differential equations for the reason that they play an important role in
the modeling of natural or artificial processes with time delays in biology, physics,
economics, engineering, etc. In engineering, our area of focus, the community has
raised some concerns about increasing expectations of the accuracy in describing
dynamic performances, i.e., the engineers expect their models to behave like the real
processes by considering, e.g., the delay, in the framework of differential equations,
consequently raising concerns about DDEs especially for safety-critical control systems
driven by the demand for safety cases in a broad sense. DDEs are reasonably used
towards enhancing the understanding of the situations encountered in many modern
control applications, where the feedback dynamics entails delays due to communication
networks etc. Relaxing these DDEs to ordinary differential equations (ODEs) in
automatic verification, in many cases, may yield misleading results owing to the impact
of delays on system dynamics. Thus, handling DDEs in automatic verification is crucial.

Unlike the plethora of automatic verification techniques developed for ODEs,
automatic verification techniques available for DDEs appear to be not well supported,
where their tool support still seems to mostly be confined to numerical simulation based
on integration from discontinuity to discontinuity, e.g. by Matlab’s dde23 algorithm.
Although such numerical simulation is extremely useful in system analysis, it fails
to provide reliable certificates of system properties, as it is numerically approximate
only. For this reason, lifting the power of established verification methods for ODEs to
much more complex objects than ODEs, i.e., DDEs2, is necessary to provide reliable
certificates for DDE-system properties, e.g., safety properties. This dissertation has
given an account of the progress in this direction by answering many research questions
raised during the author’s research journey.

In Chapter 3 which is based on [162], we have succeeded in using interval-based
Taylor forms as a reasonable data structure to enclose the solution of a DDE, where
the delay introduced in the framework of the differential equation is a single constant
delay τ . To sum up, this study has gone some way towards providing a safe enclosure

2DDEs belong to the class of systems with functional state, i.e., the future (and past) is not determined by a
single temporal snapshot of the state variables, yet by a segment of a trajectory.
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method for a simple class of DDEs and obtaining a procedure able to provide stability
and safety certificates. The findings of this study suggest that interval-based Taylor
forms are used as a suitable data structure, facilitating to enclose a set of trajectories
by parametric Taylor series with parameters in interval form. This data structure is used
to iterate bounded degree interval-based Taylor over-approximations of the time-wise
segments of the solution to a DDE. Given a DDE, we thereby identify the operator
that computes the parameters of the Taylor over-approximation for the next temporal
segment from the current one, and we employ constraint solving for automatically
analyzing its properties. Our findings suggest that iSAT tool [52] could be taken
advantage of in order to obtain an automatic procedure able to provide stability and
safety certificates for a simple class of DDEs.

These early successes, in our view, represent an excellent initial step towards the
main aim of this dissertation: handling DDEs in automatic verification, concerning
time-bounded safety verification. We believe that our results in [162] have important
implications for providing reliable certificates of the system dynamics represented as a
DDE with a single constant delay τ , i.e., of the restricted form given by DDE (3.3),
against time-(un)bounded invariance (stability and) safety properties. For pursuing our
research goal on a wider scale, we have planned further research in two directions. The
first direction is to consider more complex classes of DDE than DDE with a single
constant delay. In this direction, Chen et al. collaborated in [24] to investigate the
class of systems that involves a combination of ODE and DDE with multiple constant
delays by using validated simulation-based verification techniques, however, this work is
not considered in this dissertation. More details on this study can be found in [24].
Interestingly, we have found a promising method to consider more complex classes of
DDE and to provide over- and under-approximations of the reachable set for a DDE.
It is reachability analysis method based on set-boundary of ODEs that is introduced
by Xue et al. in [155, 157]. In Chapter 4 which is based on [156], we have adapted
this method to handle a more complex class of DDE than the class discussed in [162].
The second direction is to verify the system dynamics modeled by DDE against wider
ranges of temporal properties rather than just invariance properties. We have carried out
this work in [103] and its extended revised version [104], as presented in Chapter 5.

For our study in the first direction, in order to lift the power of the reachability
analysis method based on set-boundary of ODEs to DDEs, many concerns have
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been raised. In summary, the reachability analysis method based on set-boundary of
ODEs that is in [155, 157] relies on the fact that the solution mapping of ODE is a
homeomorphism and thus preserves set boundaries. Based on this, one can retrieve safe
over- and under-approximations for ODEs from enclosures of the dynamic images of the
boundaries of the initial set. Contrary to Xue’s reasoning in [155, 157], however, the
solution mappings for DDEs need not be homeomorphisms3. In [156], and presented
in Chapter 4, we have managed to expose a class of DDEs exhibiting homeomorphic
dependency on initial conditions. This class is a higher class in complexity compared
to the class of DDE discussed in our very initial work in this field, where the
right-hand side of the differential equation in this class is a combination of ODE
and DDE with single constant delay τ , facilitating the coverage of many situations
encountered in modern control applications. Membership in this class is determined
by conducting sensitivity analysis of the solution mapping with respect to the initial
states, therefrom deriving an upper bound on the time-lag term τ of the DDE that
ensures homeomorphic dependency. One of the primary benefits of the existence of
a corresponding homeomorphism is that state extrapolation can be pursued from the
boundaries of the initial set only, rather than the full initial set, as the homeomorphism
preserves boundaries and interiors of sets. As (appropriate enclosures of) the boundaries
of the initial set have much smaller volume, such an approach tremendously reduces the
wrapping effect incurred when using set-based state extrapolation on ODE with inputs
as a means for enclosing solutions to the DDE. Furthermore, it allows us to construct
an over- and under-approximations of the full reachable set by including (excluding,
resp.) the obtained boundary enclosure from certain convex combinations of points in
that boundary enclosure. Taken together, our findings in this study highlight significant
results on computing both under- and over-approximations of the reachable sets for
DDEs that may have important implications for providing an indication of the precision
of an estimate of the exact reachability region. We believe that these findings add
a significant contribution to a growing body of literature on studying the automatic
verification of system dynamics modeled by DDE.

For our study in the second direction, as stated in the motivation of our research in
Chapter 1, confining safety properties to a set of unsafe states or invariance properties
restricts the ability of designers to adequately express the desired safe behavior of the

3The inverse of the solution mapping of DDE may have numerous branches, not a unique inverse as for
ODE.
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system that may involve a number of critical properties such as timing requirements and
bounded response. The aim of our research in [103] and its extended revised version
[104], as presented in Chapter 5, was thus to cover the automatic formal verification of
DDEs against arbitrary temporal properties, rather than just against invariance properties
as considered in our initial research. In conclusion, we have elaborated in [103, 104]
a method to verify/falsify temporal specifications of time-delay systems modeled by a
simple class of DDEs with a single constant delay τ . Taking advantage of a fixed
degree interval-based Taylor over-approximation method discussed in our very initial
work, our research has suggested that metric interval temporal logic (MITL) [4] could
be exploited as requirements specification language in order to express time-bounded
properties with continuous-time semantics on the solutions of the DDEs.

In this study, we have built our method around a fixed degree interval-based Taylor
over-approximation technique [162] in order to provide a safe enclosure method for
DDEs, thereby obtaining timed state sequences spanned by the piecewise valid Taylor
coefficients. In this way, the continuous semantics of the MITL formulae is reduced to
a time-discrete problem on timed state sequences in terms of Taylor coefficients. Then,
we have devised sufficient conditions on these timed state sequences recovering the
continuous-time interpretation of MITL on the actual solutions of the DDEs. To achieve
this, we have first built sufficient conditions for validation of the atomic predicates
over time frames of the Taylor over-approximation model of the DDE. We have then
extended this approach to arbitrary bounded MITL formulae in negation normal form.
Exploiting this as a tableaux or using a related encoding as a bounded model checking
(BMC) problem, we could employ an appropriate arithmetic SMT solver addressing
(a.o.) polynomial arithmetic as a tool able to automatically provide certificates of
temporal properties for DDEs. In our case, we have used the iSAT3 solver4, which
is the third implementation of the iSAT algorithm [52]. In very first experiments on
simple DDEs, the iSAT3 solver proved able to solve the temporal properties expressed
in MITL formulae, thereby safely determining satisfaction of the formulae in an
over-approximation setting. We were able to verify formulae of temporal logic also
involving Boolean connectives and temporal modalities, like the (bounded) until operator.
The soundness of the method is guaranteed due to the over-approximation employed in

4iSAT3 is a satisfiability checker for Boolean combinations of arithmetic constraints over real-
and integer-valued variables. The iSAT3 implementation of the iSAT algorithm [52] is available at
http://projects.informatik.uni-freiburg.de/projects/isat3/
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the DDE enclosure by Taylor forms and the sufficient conditions of determining the
truth values of the atomic propositions over the time frames.

Finally, as a summary of this conclusion, our research in this dissertation has
suggested several courses of action in order to address the problem of handling
a complex class of differential equations than ODEs, i.e., DDEs, in time-bounded
automatic formal verification. We have lifted the power of the established methods
for enclosing reachable state sets of ODEs to specific classes of DDEs that may
cover many possible situations encountered in many applications. Furthermore we
have expanded the expressiveness of the properties by verifying DDE-systems against
arbitrary time-bounded MITL formulae, including nesting of modalities, rather than just
invariance properties. On the other hand, as normally known about scientific research,
especially in engineering field, our study has encountered a number of limitations,
which need to be considered.

6.2 Limitations

“As we advance in life we learn the limits of our abilities.”

[James Anthony Froude5]

That’s right, Mr. Froude! Also it would seem right when it comes to scientific
research in general. It is well known and generally accepted that all research work
unavoidably faces some limitations, raising some questions that need further research to
be answered. This way, this section could also be combined with the next section on
recommendations for future research. In fact, knowledge and discussion of limitations
are essential for genuine scientific progress: they are useful for understanding research
findings, placing the current work in context, and ascribing a credibility level to it. In
this section, we focus on the limitations of our research. In other words, we raise some
open research questions.

Our work in [162], and presented in Chapter 3, was clearly limited to a simple
class of DDE, since we have assumed that the system dynamics is represented as a

5Inaugural Address Delivered to the University of St. Andrews, March 19, 1869 (1869), 3.
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DDE with a single constant delay τ . Despite this we believe our work in [162] could
be a springboard for handling DDEs in automatic formal verification by providing
reliable certificates for invariance properties, e.g., stability and safety properties. Also,
the restricted form of DDE considered in [162] is able to cover the models of several
dynamical systems as in biology [58, 93], optics [75], economics [144, 145], ecology
[51], to name just a few. On the other hand, in control applications, one may however
want to combine delayed feedback, as imposed by communication networks, with
immediate state feedback as suggested by ODE models of the plant dynamics derived
from, e.g., Newtonian models. The cutting-edge solution for such cases could be
through a layered combination of Taylor-model computation for ODEs, e.g. [110], with
the ideas exposed in [162]. We recommend that further research should be done in this
area. On a wider level, research is also needed to address more general kinds of DDE,
like DDE with multiple different discrete delays, DDE with randomly distributed delay,
or DDE with time-dependent or more generally state-dependent delay [87].

In [156], as presented in Chapter 4, we have considered a more complex class of
DDE, where the system dynamics is represented as a combination of ODE and DDE
with single constant delay τ . The most important limitation in this work is due to
the fact that we have imposed an upper bound on the time-lag term τ of the DDE.
Although this could be interesting in engineering process, where this upper bound on
the time-lag can be considered as an automatically derived design space constraint,
asking the development engineers for selection of appropriate components (sensors,
processors, actuators, communication networks) guaranteeing sufficiently low latency
in the feedback loop, the bound on the time-lag might suffer from conservativeness
especially for high dimensional systems. This is based on the fact that the derived
upper bound on the time-lag term τ depends explicitly on the dimension of the system
n, i.e., the derived upper bound on τ is decreased with increasing n and tends to zero
as n tends to infinity. One possible solution for this problem is to derive a new bound
on τ independent of the system dimension n as suggested in [158]. Although the
derived bound on the time-lag term τ in [156] was not optimal, we nevertheless believe
that our innovative work in [156] has important implications for research into DDEs as
it represents an important reference in order to leverage techniques for ODE on DDE.
We are also confident that our results in [156] have improved knowledge about DDEs
and can lead to further research built on from our research, e.g., [158].
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On the one hand, in [103] and its extended revised version [104] we have addressed
the confinement of our method in [162] to considering only invariance properties
by extending the verification of DDE-systems against arbitrary temporal properties
expressed by MITL formulae; on the other hand, the limitation to a specific class of
DDE, i.e., DDE with single constant delay τ , is inherited. Our work presented in
Chapter 5, which is based on [103, 104], has also a limitation to solving time-bounded
verification problems of temporal logic properties for a class of DDEs. For the
unbounded verification problems that are aimed to be facilitated by interval-based Taylor
over-approximation method, it is still an active area of research. Apart from that, it is
not surprising that our work presented in Chapter 5 is interesting preliminary attempt
to verify system dynamics modeled by complex class of differential equations, i.e.,
DDEs, against arbitrary temporal properties expressed by MITL formulae that make
the designers to adequately express the desired safe behavior of the system. At the
same time we believe that our research will serve as a basis for future studies on the
verification of DDEs. In other words, this work has successfully raised some good
research questions that are intended to be answered in future research.

6.3 Future Research

“In three words I can sum up everything I’ve learned about life: It goes on.6”

[Robert Frost, American poet (1874-1963)]

And the research shall go on as well. In this context, we suggest in this section
some recommendations for future research. In fact, the limitations of our research
discussed above in Section 6.2, point towards topics to be addressed in the future,
recognizing and responding to the limitations. Thus, this section could also be integrated
with the section above, the limitations, in order to demonstrate how future research
could build on from our research. We also have mentioned some future research ideas
throughout different sections of this dissertation. Besides, we propose in this section
two main research directions to broaden and enrich handling DDEs in automatic formal

6The acclaimed American poet Robert Frost was asked as an octogenarian what he had learned about
life, and he succinctly replied: It goes on. 1954 September 5, The Cincinnati Enquirer, Section: This Week
Magazine, Robert Frost’s Secret by Ray Josephs, Quote Page 2, Column 1, Cincinnati, Ohio.
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verification, responding to the motivation of our research. We propose that further
research should be undertaken in the following areas:

• Extension to general types of DDEs. Future studies should aim at extending the
discussed methods in this dissertation to more general types of DDEs. In fact,
on a wider level, lifting the power of established verification methods for ODEs
to much more complex objects than ODEs, i.e., DDEs with their several types,
will be a challenge for future research for years. Some examples on the types of
DDEs that may be a vital issue for future research are the following [87]:

– DDE with discrete delays: DDEs with multiple delays are represented as

ẋ(t) = f (t,x(t),x(t − τi)),

where the quantities τi > 0, i = 1,2, . . . , are time-lags or discrete delays and f

is a vector valued smooth continuous function. This type of multiple delays
inevitably occurs, for example, in networks of coupled dynamical systems
with different architectures in analogy with the consideration of weighted
networks, where different weights are considered at the couplings to account
for the different degree of interactions between the various dynamical units
in the network [87].

– DDE with distributed delay: DDEs with distributed or continuous delay can
be represented in general as [87]

ẋ(t) = f (t,x(t),
∫

∞

0
µ(τ)x(t − τ)dτ).

Such models that are based on distributed delays have important implications
in many areas such as biology, ecology, neurology, viscoelasticity, and
economics [87].

– DDE with state-dependent delay: DDEs with state-dependent delay can be
represented in general as [87]

ẋ(t) = f (t,x(t),x(t − τ(t,x(t)))).

State-dependent delay appears in many processes, where the delay depends
on the present state and also on a delayed one, e.g., the delay for turning
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processes in the milling operations [87]. For instance, the introduced time
delay for turning processes in the milling operations is not only determined
by the rotation of the workpiece but is also affected by the current and
the delayed position of the tool. Consequently, this results in a DDE with
state-dependent delay.

We believe that our current research will serve as a basis for future studies on
handling several types of DDEs in automatic verification by lifting the power of
ODEs’ verification methods to DDEs, e.g., as already done in [158] by extending
our method in [156] to address perturbed DDEs, where the dynamics of the class
of DDE considered in [156] is subject to perturbations.

• Extension to hybrid systems. Further work needs to be carried out to extend
the discussed methods herein in order to facilitate the automatic verification and
analysis for hybrid systems that feature delays. Hybrid systems are a class of
dynamical systems which exhibit both continuous and discrete behaviors [25].
They are yet among the most commonly investigated systems that usually appear
in safety-critical situations, thus it is significant to model the continuous behavior
within hybrid-state systems featuring delays by DDEs, rather than just ODEs that
ignore the presence of any delay. A good way to go is to extend Egger’s method
for integrating safe ODE enclosures into a SAT modulo theory (SMT) solver
[43, 44] from ODE enclosures to DDE enclosures. In this case, one will need
to extend the enclosure methods for DDEs to a constraint propagator mutually
narrowing intervals of pre- and post-states and to integrate that propagator into
the iSAT SMT solver as in [53]. We believe that our findings in this dissertation
might be transferable hybrid systems that feature DDE models for continuous
behaviors.

“There is no real ending. It’s just the place where you stop the story.”

[Frank Herbert7, 1920–1986]

7An American science fiction writer.
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