
Carl von Ossietzky University of Oldenburg
Faculty II – School of Computing Science, Business Administration, Economics, and Law

Department of Computing Science

Prediction-Based Nature-Inspired Dynamic
Optimization

A dissertation accepted by the School of Computing Science, Business
Administration, Economics and Law of the Carl von Ossietzky University

of Oldenburg (Germany)

to obtain the degree and title

Doctor of Natural Sciences (Dr. rer. nat)

Submitted by:

Almuth Meier

Reviewers:

Prof. Dr. Oliver Kramer
Prof. Dr.-Ing. Sanaz Mostaghim

Date of disputation:

April 20th, 2020

Abstract

Many real-world optimization problems are not static, but changing over
time. This optimization scenario is known as dynamic optimization. Chang-
ing objective functions result in moving optima and may be due to changing
conditions like environmental parameters in real-world. The task becomes
to find and follow the optimum, while it is dynamically moving in the solu-
tion space. Nature-inspired optimization algorithms like evolution strategies
and swarm algorithms are common choices for solving dynamic optimization
problems. Nevertheless, their rather fast convergence impedes finding the
new optimum. In real-world scenarios, the changes of objective functions
often are not random, but certain time-depending characteristics exist. Al-
gorithms exploiting such information often are superior to naive variants
with random re-starts regarding convergence speed and tracking accuracy.
Predicting the moving optimum based on information gained from the op-
timization and incorporating the predictions into the optimization process
is a strategy that has attained attention in the recent past to circumvent
premature convergence.
Prediction approaches in dynamic nature-inspired optimization employed

so far mostly rely on statistical prediction methods. In this thesis, we show
that neural network-based prediction methods are applicable as well. Fur-
thermore, particle swarm optimization was rarely used with prediction until
now. We propose extensions of particle swarm optimization that incorporate
prediction and are superior to the base algorithm. Moreover, for prediction-
based evolution strategies we suggest a strategy to adapt the population
after an objective function change mitigating the negative effect of uncer-
tain predictions. In addition, we propose a benchmark generator and a
convergence measure that better than existing ones take into account the
specific characteristics of prediction-based optimization algorithms.

iii

Zusammenfassung

In realen Anwendungen sind Optimierungsprobleme oft nicht statisch, son-
dern über die Zeit veränderlich. Ein solches Optimierungsszenario wird als
dynamische Optimierung bezeichnet. Die zu optimierende Zielfunktion ver-
ändert sich beispielsweise auf Grund veränderter Umgebungsbedingen und
weist sich bewegende Optima auf. Dynamische Optimierung hat das Ziel,
das globale Optimum der Zielfunktion zu finden und über die Zeit im Lö-
sungsraum zu verfolgen. Naturinspirierte Optimierungsalgorithmen wie Evo-
lutionsstrategien und Schwarmalgorithmen werden häufig zum Lösen dyna-
mischer Optimierungsprobleme verwendet, allerdings erschwert ihre schnelle
Konvergenz das Finden des Optimums der geänderten Zielfunktion. In realen
Anwendungsszenarien sind die Änderungen der Zielfunktion selten vollstän-
dig zufällig, sondern weisen zeitabhängige Charakteristiken auf. Algorith-
men, die diese Zusammenhänge ausnutzen, sind oft einfachen Algorithmen
mit zufälligen Neustarts bezüglich Konvergenzgeschwindigkeit und Genauig-
keit der Annäherung des Optimums überlegen. In den letzten Jahren haben
Ansätze an Bedeutung zugenommen, die das Optimum vorhersagen, indem
sie während des Optimierungsprozesses gewonnene Information ausnutzen,
und die Vorhersage für die Optimierung der geänderten Zielfunktion ver-
wenden.
Vorhersageansätze, die bislang in dynamischer naturinspirierter Optimie-

rung verwendet werden, sind meist statistische Methoden. In dieser Arbeit
wird gezeigt, dass auch neuronale Netze für die Vorhersage anwendbar sind.
Da Partikelschwarmoptimierung bisher sehr selten mit Vorhersageansätzen
kombiniert wird, werden in dieser Arbeit Erweiterungen der Partikelschwar-
moptimierung vorgestellt, die Vorhersage verwenden und dem Basisalgorith-
mus überlegen sind. Außerdem wird für vorhersagebasierte Evolutionsstrate-
gien ein Ansatz entwickelt, die Population nach einer Zielfunktionsänderung
so anzupassen, dass die negativen Auswirkungen einer unsicheren Vorhersa-
ge vermindert werden. Darüber hinaus werden ein neues dynamisches Test-
problem und ein Konvergenzmaß vorgestellt, welche die Charakteristiken
vorhersagebasierter Optimierungsalgorithmen besser als existierende Test-
probleme und Konvergenzmetriken berücksichtigen.

v

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xvii

Acronyms xix

Nomenclature xxi

1 Introduction 1
1.1 Challenges in Dynamic Optimization 2
1.2 Prediction-Based Dynamic Optimization 3
1.3 Contributions and Results . 4
1.4 Overview of the Thesis . 5

I Foundations 7

2 Dynamic Optimization Problems 9
2.1 Problem Characteristics . 11

2.1.1 Characteristics of Static Optimization Problems . . . 11
2.1.2 Characteristics of Dynamics 12

2.2 Optimization Goals . 13
2.3 Dynamic Optimization Problems in the Thesis 14

3 Nature-Inspired Optimization Algorithms 17
3.1 Overview of Optimization Methods 17
3.2 Principles of Nature-Inspired Optimization 19
3.3 Evolution Strategies . 19
3.4 Particle Swarm Optimization 21

4 Dynamic Optimization Approaches 25
4.1 General Approaches . 25

vii

Contents

4.2 Prediction-Based Approaches 27

5 Time Series Prediction Methods 29
5.1 Persistence Model . 30
5.2 Autoregressive Model . 30
5.3 Kalman Filter . 31
5.4 Recurrent Neural Network . 31
5.5 Temporal Convolutional Network 33

6 Performance Measurement 35
6.1 Benchmark Problem Sets . 35

6.1.1 Moving Peaks Benchmark 35
6.1.2 CEC Competition Benchmark 37
6.1.3 Free Peaks Benchmark 38
6.1.4 Dynamic Sine Benchmark 38

6.2 Quality Measures . 47
6.2.1 Best of Generation . 47
6.2.2 Best Error before Change 48
6.2.3 Absolute Recovery Rate 48
6.2.4 Relative Convergence Speed 49

II Prediction-Based Dynamic Optimization 51

7 Prediction for Evolution Strategies 53
7.1 Related Work . 53

7.1.1 Time Series Prediction Methods in Dynamic ES . . . 53
7.1.2 Comparative Studies on Time Series Prediction Methods 55

7.2 Recurrent Neural Network Prediction for Evolution Strategies 56
7.3 Experimental Setup . 58

7.3.1 Group SRR . 59
7.3.2 Group MPB-Random 60
7.3.3 Group MPB-Noisy . 60
7.3.4 Group Ros-Length . 60
7.3.5 Group SRR-Neurons 60
7.3.6 Group SRR-Hybrid . 61

7.4 Experimental Results . 61
7.4.1 Group SRR . 61
7.4.2 Group MPB-Random 62
7.4.3 Group MPB-Noisy . 64

viii

Contents

7.4.4 Group Ros-Length . 65
7.4.5 Group SRR-Neurons 65
7.4.6 Group SRR-Hybrid . 66

7.5 Summary . 67

8 Prediction for Particle Swarm Optimization 69
8.1 Related Work . 69

8.1.1 Dynamic Particle Swarm Optimization 69
8.1.2 Prediction Approaches in Dynamic PSO 70

8.2 Prediction-Based Particle Swarm Optimization 71
8.2.1 Prediction as Particle 71
8.2.2 Prediction as Third Attractor 72
8.2.3 Prediction as Particle and Attractor 72
8.2.4 PSO Framework . 72
8.2.5 Convergent Parameter Settings 74

8.3 Experimental Setup . 75
8.4 Experimental Results . 76

8.4.1 Identification of Best Parameter Settings 76
8.4.2 Comparison of PSO Variants 77

8.5 Summary . 83

9 Predictive Uncertainty for Evolution Strategies 85
9.1 Related Work . 85

9.1.1 Re-Initialization Strategies 86
9.1.2 Uncertainty Estimation with Neural Networks 87

9.2 Uncertainty-Aware Re-Initialization 88
9.3 Experimental Setup . 90
9.4 Experimental Results . 91

9.4.1 Dynamic Sine Benchmark 91
9.4.2 Moving Peaks Benchmark 97

9.5 Summary . 99

III Summary 101

10 Conclusion 103
10.1 Contributions . 103
10.2 Transferability . 104

10.2.1 Prediction for Other Optimization Algorithms 105
10.2.2 Prediction for Other Optimization Problems 105

ix

Contents

10.2.3 Prediction for Application Problems 106

11 Outlook 107

IV Appendix 111

A Fitness Functions 113

B Examination of RCS and ARR 115

C Empirical Comparison of Prediction Methods 119

D Further Results 123
D.1 Prediction for Evolution Strategies 123
D.2 Prediction for Particle Swarm Optimization 125
D.3 Predictive Uncertainty for Evolution Strategies 132

D.3.1 Tuning of Hyperparameters 132
D.3.2 Final Comparisons on DSB and MPB 134

E Implementation 143

Bibliography 145

x

List of Figures

5.1 Recurrent neural network . 32
5.2 Temporal convolutional network 34

6.1 Static MPB fitness landscape 37
6.2 MPB: time-dependent peak positions 38
6.3 DSB: fitness landscape at three points in time 39
6.4 DSB: sampling of component function 41
6.5 DSB: influence of curviness and velocity 42
6.6 DSB: influence of ρmax . 44
6.7 Ideal sampling of a trigonometric function 46

9.1 Feed-forward NN with uncertainty output 88
9.2 Best fitness per generation on Sphere function 97

A.1 Sphere function . 113
A.2 Rosenbrock function . 113
A.3 Rastrigin function . 114

B.1 Fitness plots for absolute recovery rate 117
B.2 Fitness plots for relative convergence speed 118

C.1 2DE time series . 121
C.2 Trigo time series . 121
C.3 DSB time series . 122

xi

List of Tables

7.1 SRR (Sphere): BOG . 62
7.2 SRR (Sphere): BEBC . 62
7.3 SRR (Sphere): ARR . 63
7.4 SRR (Sphere): RCS . 63
7.5 SRR (Rosenbrock): BOG . 63
7.6 SRR (Rosenbrock): BEBC . 63
7.7 SRR (Rastrigin): BOG . 63
7.8 SRR (Rastrigin): BEBC . 63
7.9 MPB-Random: BOG . 64
7.10 MPB-Random: BEBC . 64
7.11 MPB-Random: ARR . 64
7.12 MPB-Random: RCS . 64
7.13 MPB-Noisy: BOG . 65
7.14 MPB-Noisy: BEBC . 65
7.15 Ros-Length: BOG . 66
7.16 Ros-Length: BEBC . 66
7.17 SRR-Neurons: BOG . 66
7.18 SRR-Neurons: BEBC . 66
7.19 SRR-Hybrid: linear . 67
7.20 SRR-Hybrid: sine . 67

8.1 SRR (Sphere, sine): comparison of parameter settings 78
8.2 MPB-Noisy (noise = 1.0): comparison of parameter settings . 78
8.3 SRR: comparison of PSO variants 80
8.4 SRR: p values for pairwise tests of PSO variants 81
8.5 MPB-Noisy: comparison of PSO variants 82
8.6 MPB-Noisy: p values for pairwise tests of PSO variants . . . 82

9.1 DSB: comparison of re-initialization strategies for npm 92
9.2 DSB: comparison of re-initialization strategies for ar 92
9.3 DSB: comparison of re-initialization strategies for tcn 92
9.4 DSB: comparison of re-initialization strategies for kal 93

xiii

List of Tables

9.5 DSB: comparison of re-initialization strategies for unc 93
9.6 DSB: comparison of prediction methods 95
9.7 DSB (Sphere, dimensionalities): kal-pRND and kal-pUNC . . . 96
9.8 DSB (Sphere, dimensionalities): unc-pRND and unc-pUNC . . . 96
9.9 MPB: comparison of re-initialization strategies for npm . . . 97
9.10 MPB: comparison of re-initialization strategies for ar 98
9.11 MPB: comparison of re-initialization strategies for kal . . . 98
9.12 MPB: comparison of re-initialization strategies for tcn . . . 98
9.13 MPB: comparison of re-initialization strategies for unc . . . 98
9.14 MPB: comparison of prediction methods 100

11.1 CMA-ES variants on DSB . 109

C.1 Comparison of time series prediction methods 122

D.1 SRR (Rosenbrock): ARR . 123
D.2 SRR (Rosenbrock): RCS . 123
D.3 SRR (Rastrigin): ARR . 124
D.4 SRR (Rastrigin): RCS . 124
D.5 MPB-Noisy: ARR . 124
D.6 MPB-Noisy: RCS . 124
D.7 Ros-Length: ARR . 124
D.8 Ros-Length: RCS . 124
D.9 SRR-Neurons: ARR . 124
D.10 SRR: comparison of parameter settings for dynPSO 126
D.11 SRR: comparison of parameter settings for pred2p 127
D.12 SRR: comparison of parameter settings for pred3 128
D.13 SRR: comparison of parameter settings for pred3p 129
D.14 MPB-Noisy: comparison of parameter settings for dynPSO . . 130
D.15 MPB-Noisy: comparison of parameter settings for pred2p . . 130
D.16 MPB-Noisy: comparison of parameter settings for pred3 . . 131
D.17 MPB-Noisy: comparison of parameter settings for pred3p . . 131
D.18 Parameter settings for experiments 132
D.19 Comparison of different input ranges 133
D.20 Results for tuning of architecture parameters 133
D.21 Results for tuning of training parameters 135
D.22 DSB: pairwise test results . 136
D.23 Continues Table D.22; continued in Table D.24 137
D.24 Continues Table D.23 . 138
D.25 MPB: pairwise test results . 139

xiv

List of Tables

D.26 Continues Table D.25; continued in Table D.27 140
D.27 Continues Table D.26 . 141

xv

List of Algorithms

1 (µ+λ)-ES . 20
2 PSO . 22

3 DSB generator . 43

4 Dynamic (µ+λ)-ES with prediction 58

5 Dynamic PSO with partial restart 70
6 Dynamic PSO with partial restart and prediction 73

7 Dynamic (µ+λ)-ES with predictive uncertainty 86

xvii

Acronyms
AR autoregressive model (p. 30)

ARR absolute recovery rate (p. 48)

BEBC best error before change (p. 48)

BOG best of generation (p. 47)

CMA-ES covariance matrix adaptation evolution strategy (p. 20)

DSB dynamic sine benchmark (p. 38)

ES evolution strategy (p. 19)

FPB free peaks benchmark (p. 38)

LSTM long short-term memory network (p. 32)

MC Monte Carlo (p. 87)

MPB moving peaks benchmark (p. 35)

NN neural network (p. 31)

PE prediction error (p. 91)

PSO particle swarm optimization (p. 21)

RCS relative convergence speed (p. 49)

RNN recurrent neural network (p. 32)

ROOT robust optimization over time (p. 13)

SRR group of experiments with Sphere, Rosenbrock, and Rastrigin (p. 59)

TCN temporal convolutional network (p. 33)

TMO tracking the moving optimum (p. 13)

xix

Nomenclature

First we list symbols that occur in the whole thesis, then symbols follow that
are only used for optimization, prediction or for benchmarking. In general,
v is a vector, e.g., v ∈ Rd, and vi is the ith entry of v. A matrix is denoted
by V, e.g. V ∈ Rd×d, and vij is the jth entry in the ith row.

General

α significance level of Mann-Whitney U tests

ôc predicted optimum in change period c

ûc predictive uncertainty in change period c

d·e ceiling function, i.e., rounding to the next greater integer

b·c floor function, i.e., rounding to the next smaller integer

I identity matrix

oc true global optimum in change period c

pj jth pattern in training set

xl local optimum

N normal distribution

U uniform distribution

εεε multivariate noise

υ change period length

ε univariate noise

‖x‖2 Euclidean norm of vector x with ‖x‖2 =
√
x2

1 + . . .+ x2
d

‖x‖22 squared Euclidean norm

xxi

Nomenclature

bl lower bound of solution space in all dimensions

bu upper bound of solution space in all dimensions

c change period counter, 1 ≤ c ≤ P

d problem dimensionality

E number of constraint functions

e constraint function

f fitness function

g overall number of generations

N neighborhood relation to define a local optimum

P overall number of change periods

r overall number of runs

t generation/iteration counter, 1 ≤ t ≤ g

Optimization

A archive of solutions x∗c found by the optimizer

x∗c best solution found in change period c

x∗ct best solution found in generation t of change period c

σ standard deviation of a normal distribution, σ2 is the variance

Evolution Strategy

λ number of offspring individuals

P′ offspring population

P population

pi ith parent individual selected for recombination

x′ mutated offspring

µ number of parents/immigrants

xxii

Nomenclature

ψ number of parents selected for recombination

ξ adaptation factor for the step size in Rechenberg’s 1/5th success rule

ps success rate in Rechenberg’s 1/5th success rule

s mutation strength

s′ mutation strength adapted by Rechenberg’s 1/5th success rule

Particle Swarm Optimization

r randomness: r1 for cognitive part, r2 for social part, r3 for prediction

S swarm

v particle’s velocity

xp particle’s best position

xs swarm’s best position

ω inertia weight

θ influence of attractor: θ1 cognitive factor, θ2 social factor, θ3 influence
of prediction

CMA-ES

Ct covariance matrix in generation t

mt population mean in generation t

Re-Initialization

χ constant used for computation of δ

δ factor influencing how many individuals are placed around the pre-
diction (re-initialization strategy pKAL)

x̂c predicted next position of individual xc−1

ûmax maximum entry of vector ûc

xc immigrant in change period c

z scaling factor for a normal distribution

xxiii

Nomenclature

Prediction

ŷ output of an NN (point prediction)

xt observation of x at time step t

φ function a neuron computes

Ψ prediction model

p̃ unknown new pattern the prediction model was not trained for

ỹ true label of unknown new pattern

M training set size

ws window size

yj label of pattern pj in the training set

Autoregression

Φi determines influence of previous time steps

θ vector of constants

C covariance of noise

p order of the autoregressive model

Kalman Filter

âc a posteriori state estimation in change period c

â−c a priori state estimation in change period c

Êc a posteriori error covariance in change period c

Ê−c a priori error covariance in change period c

ac true sytem state in change period c

TCN

ψ filter

ŷT output of TCN at index T in the time series output

xxiv

Nomenclature

s univariate input sequence with T time steps

ψi filter weight at index i in ψ

E [ŷ] predictive mean

Var [ŷ] predictive variance

b block index, 0 ≤ b < #blocks

Db dilation factor for block b

h history captured by a TCN

k filter size

m number of Monte Carlo runs

n network output function for point prediction

Q convolutional operation

q network output function for aleatoric uncertainty

sj value of jth time step in series s

T number of time steps in input sequence s

Moving Peaks Benchmark

η correlation factor, η = 1− ν

Si shift vector for the position of the ith peak

Xi position of the ith peak

ν noise, ν = 1− η

H peak height

sh height severity

sl shift length

sw width severity

W i width of the ith peak

xxv

Nomenclature

Dynamic Sine Benchmark

α overall scaling of composite function ζw

βmax upper bound of frequencies βi

βi frequency of component function i

γi phase shift of component function i

ιmax upper bound of amplitudes ι

ιi amplitude of component function i

κ step size

ofs global optimum position of stationary fitness function fs

ρ number of component functions

ρmax upper bound of ρ

τ vertical shift

ζw composite function for dimension w

C desired curviness

Cmax largest curviness function ζw can realize

Ctheo curviness theoretically realized by function ζw with respect to the
specifications of the component functions

Cζw curviness realized by function ζw

fs stationary fitness function

L period length of arbitrary sine function

V desired velocity

Vζw velocity realized by ζw

w a certain dimension

Metrics

f (oc, c) global optimal fitness in change period c

xxvi

Nomenclature

f
(
x∗cworst , c

)
worst fitness achieved by any algorithm during change period c

f
(
x∗ct , c

)
best fitness achieved by the algorithm until generation t of change

period c

g (c) number of generations in change period c

xxvii

1 Introduction

Dynamics is inherent to many real-world optimization problems. Immediate
adaptation of process plans or continuously running systems to time-vary-
ing conditions with respect to arising expenses, lead time or other criteria
is a frequent scenario in various industrial sectors [MLY17; HMR09]. Ex-
amples are cloud service providers that dynamically distribute and relocate
virtual machines on physical machines trying to reduce the energy consump-
tion [Cho+18], logistics companies that prepare delivery routes shorten-
ing the travel time, while targets may dynamically be added or canceled
[Mei+15; Bos+19], or dynamic machine scheduling problems where jobs are
distributed to different machines minimizing the lead time, and unexpected
events as machine breakdown or new jobs involve replanning the schedule
[OP09; And+18]. Dynamic rescheduling of railway timetables after delay
is a similar application [EYG17]. Controlling the conditions inside a green-
house to maximize produced biomass [PH99], influencing the throughput of
chemical reactions [Mül+17], or production optimization in petrol industry
[FKG18] are examples of dynamic optimization tasks as well.
In all these applications, the system state x ∈ Rd is defined by a set of

d parameters that have to be optimized subject to a certain objective. For
example, in a greenhouse optimization task the current system configuration
x ∈ R3 may consist of values for the three control variables temperature,
humidity and carbon dioxide content. Dynamic optimization problems have
in common that the reward or cost f(x, t) of a system configuration is time-
dependent. A frequent objective is to find for each time step t within the
time interval for that optimization is conducted the optimal configuration
ot. If the reward function does not change after each single time step, the
task reduces to finding the optimal solution for each change period. But still
the repeated optimization leads to large computational effort and therefore
requires efficient algorithms.
In this chapter, we depict challenges of dynamic optimization problems

and describe prediction as possibility to cope with them. Then, we moti-
vate our contributions to tackle difficulties of prediction-based approaches
in dynamic optimization and overview the structure of this thesis.

1

1 Introduction

1.1 Challenges in Dynamic Optimization

Dynamic optimization is challenging since each change of the reward func-
tion involves a new optimization procedure which could be computationally
expensive. Depending on how frequently changes occur, the time frame
available to search for a solution could be very short. This requires the op-
timization to be fast and restricts the set of applicable algorithms. Among
the many optimization algorithms that exist, most research on dynamic
optimization focuses on nature-inspired methods [RY13; NYB12]. Nature-
inspired optimization algorithms are stochastic optimization techniques that
handle the objective function as black-box. In black-box optimization sce-
narios, no information is available but the evaluation f(x) of configura-
tions x. Nature-inspired algorithms iteratively improve a set of candidate
solutions until a sufficiently good solution is found. Candidate solutions are
possible configurations of the system to be optimized.
A special kind of dynamic problems are optimal control problems [RY13].

In control problems, a dynamic system is influenced by an environment and
observed by a controller that, in turn, influences the system by adapting the
system’s control variables so that a desired system state is achieved [JH75;
CB07]. This forms a control loop running during a certain period of time
without user interaction [Mor04]. Some of the applications mentioned above
belong to this class. In control theory, the dynamic system is mostly de-
scribed by differential equations, and the control strategy that varies the
control variables to achieve the desired objective is computed either analyt-
ically or numerically [AP98]. Nature-inspired algorithms can tackle control
problems in real-time as well, at least for slowly changing systems [UFK02].
Especially if the control problem cannot be solved analytically, e.g., for non-
linear dynamics, nature-inspired methods are a possible alternative [RY13].
The publications [MLY17; HMR09] overview many dynamic optimization
problems in which nature-inspired methods have found application. We
restrict this thesis to nature-inspired methods, since they are problem-inde-
pendent and also applicable to problems that cannot be solved analytically.
For nature-inspired methods, dynamic optimization is challenging as well.

They tend to converge relatively fast so that it might be hard to find the
new optimal solution after a change if it is dissimilar to the old one. An-
other disadvantage is that they need some time to find good solutions due to
their iterative design. Applications with a short time frame for optimization
prohibit optimization from scratch after each change and demand for sophis-
ticated algorithms. Various ideas exist to circumvent theses shortcomings.
One among them are prediction approaches that gain information about the

2

1.2 Prediction-Based Dynamic Optimization

optimum dynamics during the optimization process. This information is
used to start optimization with better candidate solutions after a change to
reduce search effort. We describe this approach more detailed in the next
paragraph.

1.2 Prediction-Based Dynamic Optimization

Prediction-based dynamic optimization combines optimization and time se-
ries prediction. Time-series prediction methods are learning algorithms,
often from the field of statistical or machine learning. For a given sequence
of observations at succeeding points in time (time series) they predict which
value would be observed next. Their internal parameters are adjusted by
techniques specific for each prediction method so that the model represents
a given time-series as good as possible. A concrete parameterized instance
of a certain prediction method is called prediction model or predictor.
The overall procedure of prediction-based optimization is as follows. The

optimizer conducts optimization as long as no change occurs. When a change
is detected (the optimizer has to implement a detection mechanism for this),
the best solution found during the past change period is stored and opti-
mization is continued. Thus, the optimizer reports for each change period
c the best found solution x∗c so that a time series [x∗1, . . . ,x∗c−1] of solutions
is collected. If the optimizer is able to follow the optimum accurately, this
series represents the optimum’s movement. By means of time series predic-
tion, it can be estimated which solution ôc the optimizer will find in change
period c. This is an estimate for the true optimum position oc. In the
optimization procedure, prediction takes place at the beginning of change
period c, i.e., after a change has been detected. Then, the set of candidate
solutions could be placed around the prediction ôc. In case ôc is near to the
true optimum oc, the optimizer is likely to converge faster to the optimum
than with a random set of candidate solutions.
Prediction-based optimization entails difficulties for both predictor and

optimizer. Since the optimizer does not necessarily find the optimum, the
time series the predictor relies on might be a very inaccurate approximation
of the optimum dynamics hampering good predictions. Many time-series
prediction methods provide more precise predictions with increasing num-
ber of time steps they can learn from. Therefore, prediction quality improves
with increasing number of change periods for which optimization has been
conducted. After each change period, a new solution is available so that the
parameters of the prediction method have to be adapted to the extended

3

1 Introduction

time series. This operation is very time-demanding for some prediction
methods so that the time available for prediction might be too short to use
these prediction methods in case of high-frequent changes. Even if the time
series perfectly represents the optimum movement and enough time is avail-
able for prediction, it might be hard to capture the relationship inherent in
the dynamics since it could change during optimization time. For example,
first the optimum could follow a linear direction and start oscillating later.
Even the predictor might hamper optimization. If the predicted optimum

is far from the true one and hence also the new candidate solutions, the
optimizer might need many iterations to find a good solution. The possibly
inaccurate prediction and changing type of dynamics are reasons why the
prediction model cannot replace the optimizer. Optimizer and predictor are
required to support each other.

1.3 Contributions and Results

In nature-inspired optimization, various attempts already exist to incor-
porate prediction into the optimizer. Nevertheless, the prediction methods
mostly employed are simple statistical ones. This rises the question, whether
modern approaches from machine learning could cope with the challenges of
dynamic optimization as well. Furthermore, most work concentrates on evo-
lution strategies, one family among the many nature-inspired optimization
algorithms, while for others like particle swarm optimization almost no ap-
proaches are available. In addition, literature lacks attempts to consider the
inaccuracy of the predictor and to circumvent negative effects of uncertain
predictions on the optimization process. Moreover, benchmark problems
and convergence measures available to examine dynamic optimization algo-
rithms are less suited for prediction-based algorithm. Existing benchmarks
either consist of simple or non-predictable dynamics, while well-known con-
vergence measures disadvantage algorithms starting with a better fitness af-
ter a change which often is the case for prediction-based algorithms. These
points led us to the following five contributions of this thesis which are
published in three conference articles and summarized in a book chapter
[MK20].

Recurrent Neural Network Prediction for Evolution Strategies We pro-
pose to employ a recurrent neural network as prediction model and compare
it with a statistical approach (autoregression). The results show that de-
pending of the dynamics either of both achieves better results and hybridiz-

4

1.4 Overview of the Thesis

ing these prediction methods attains outstanding performance (Chapter 7).
This work is published in [MK18a].

Prediction for Particle Swarm Optimization For particle swarm optimiza-
tion, we propose algorithmic extensions to incorporate prediction. Using
the predicted optimum as third attractor in the movement function is most
promising (Chapter 8). This work is published in [MK18b].

Predictive Uncertainty for Evolution Strategies We propose a new re-ini-
tialization mechanism spreading the set of candidate solutions of an evolu-
tion strategy wider in dimensions where the prediction is likely to be inac-
curate. This strategy supports finding better solutions at the beginning of
change periods (Chapter 9). This work is published in [MK19].

Dynamic Sine Benchmark We construct the dynamic sine benchmark to
generate problems with predictable dynamics that is adjustable regarding its
difficulty for the optimizer and the predictor. By this means, also prediction
methods can be employed that exhibit strengths in more complex dynamics.
It is published in [MK19], whereas this thesis provides an improved version.

Relative Convergence Speed This convergence measure considers how fast
an algorithm comes close to the optimum fitness instead of evaluating how
fast it leaves worse solutions at the beginning of a change period. Thus,
it represents the specifics of algorithms with and without prediction more
fairly than existing measures. We proposed it in [MK18a].

1.4 Overview of the Thesis

In the first part of this thesis, we formalize dynamic optimization prob-
lems, describe their characteristics and depict the kind of dynamic opti-
mization problems we investigate (Chapter 2). Then, we give an overview
of optimization methods, present principles of nature-inspired optimization,
and describe evolution strategies and particle swarm optimization in detail
(Chapter 3). Chapter 4 covers approaches to enable nature-inspired opti-
mization to cope with dynamic problems. Furthermore, time series predic-
tion is introduced and prediction methods applied to dynamic optimization
are described (Chapter 5). Afterwards, an overview of common benchmarks
and measures to evaluate optimization performance in dynamic problems is

5

1 Introduction

given, and both an own benchmark and measure designed in this thesis are
proposed (Chapter 6).
The second part comprises our contributions that are roughly depicted

above. First, we investigate neural network prediction for evolution strate-
gies (Chapter 7), then we propose three extensions of particle swarm opti-
mization with prediction (Chapter 8). Finally, for evolution strategies we
develop a new strategy to adapt the candidate solutions so that the uncer-
tainty of the prediction affects the optimization less (Chapter 9).
In the third part, we summarize the results and discuss transferability to

other optimization algorithms and kinds of dynamic problems (Chapter 10).
The thesis ends with an perspective on follow up research (Chapter 11),
while the appendix contains complete results of experiments and additional
examinations.

6

Part I

Foundations

7

2 Dynamic Optimization Problems

Dynamic optimization problems can be seen as extension of static ones
[Ahr+19]. Therefore, we formalize static optimization and introduce the
definition of dynamic problems afterwards. A static optimization problem
is defined as

minimize
x

f(x)

subject to ei(x) ≤ 0 for i = 1, . . . , E,
(2.1)

where f is the objective or reward function to be optimized, in nature-
inspired optimization also called fitness function. The objective function1

f : Rd → R maps a decision vector x = [x1, x2, . . . , xd] ∈ Rd, also called can-
didate solution, from a d-dimensional solution space, also decision space, to
a one-dimensional objective space. The solution space is restricted by E con-
straint functions ei, and the number d of decision variables to be optimized
determines problem dimensionality d. The domain of f is defined with bl

and bu as lower and upper bounds, respectively, where bl < bu holds. We use
the same bounds for all dimensions, although the solution space could have
different bounds in each dimension. Maximization problems can be con-
verted to minimization problems by multiplying the fitness and constraint
functions with −1.

An optimal solution (global optimum) o ∈ Rd for a static optimization
problem is a vector that complies with all constraints and never achieves
a worse fitness value than any other vector in the solution space: f

(
o
)
≤

f
(
x
)
∀x ∈ Rd [BV11]. Vector xl is a local optimum if it is best within a

certain neighborhood N of vectors: f
(
xl
)
≤ f

(
x
)
∀x ∈ N

(
xl
)
∧ xl,x ∈ Rd

[MLY17]. In some applications, searching for the global optimum would be
too expensive, e.g., in terms of runtime, so that a solution with a reasonable
suboptimal fitness, e.g., a local optimum, is sufficient.
In dynamic optimization problems, objective and constraint functions,

and solution and objective space are time-dependent. While time might be
measured by variable t, the problem may remain unchanged during a change

1As we consider continuous problems in this thesis, we restrict the depiction to Rd and
R as solution and objective space, respectively, whereas also other spaces are possible.

9

2 Dynamic Optimization Problems

period c of a certain number of points in time t. Thus the optimization task
has to be solved for all static problem instances c ∈ N>0 ∧ c ≤ P within a
time span of P change periods with length υ ∈ N>0:

minimize
x

f (x, c) = f

(
x,
⌈
t

υ

⌉)
subject to ei (x, c) = ei

(
x,
⌈
t

υ

⌉)
≤ 0 for i = 1, . . . , E

∀c ∈ N>0 ∧ c ≤ P

(2.2)

The upper bound P of change periods might be unspecified, e.g., in a real-
world control problem where the optimization is continuously running. Anal-
ogously to static optimization, global and local optima can be defined for
each change period.

In real-world scenarios, the dynamic objective function would be called
without time parameter, since it would be realized by an external module
whose behavior and output would depend on real-time. Nevertheless, in
an implementation without external real-world component, the objective
function requires an artificial time measure; in iterative optimization mostly
the iteration counter t ∈ N>0. Depending on the specified change period
length υ, which is unknown to the optimizer, the iteration counter is mapped
to a change period with

⌈
t
υ

⌉
, where t < g and g = P ·υ is the overall number

of iterations. With this mapping, changes take place only between iterations,
though, in practice, it would be possible that changes occur within iterations.
Since literature mostly ignores that case and we assume that the effect on
the optimization performance is negligible, in this thesis we only consider
changes between iterations.

Various attempts exist to define dynamic optimization problems [Fu+14],
but most works agree that a sequence of static optimization problems only is
a dynamic problem if relationships exist between the single static instances.
Otherwise, restarting the optimization for each static instance would be
sufficient, and there would be no need for sophisticated algorithms [Bra02;
Ahr+19]. Often it is assumed that dynamic real-world applications un-
derly rather small modifications such that it is reasonable to reuse appro-
priate information instead of starting optimization from scratch after each
change [JB05].

In the remaining parts of this chapter, we describe characteristics of dy-
namic optimization problems, overview optimization goals and specify the
type of problems considered in this thesis.

10

2.1 Problem Characteristics

2.1 Problem Characteristics
The character of a dynamic optimization problem depends both on the topo-
logical properties of the static fitness landscape and the type of dynamics
that connects the static instances. A fitness landscape is the multi-dimen-
sional surface formed by the fitness values of all possible solutions [Ric10].
It consists of one or more peaks2 constituting local and global optima. Dif-
ferent approaches to quantify properties of dynamic fitness landscapes have
been developed [BSU05; Ric10; Fu+12]. In the following, we describe static
and dynamic characteristics of optimization problems in general.

2.1.1 Characteristics of Static Optimization Problems

The properties of a static optimization problem, and thus also those of a
dynamic one, depend on the nature of objective function, constraints and
solution space. They influence how difficult the problem is to solve and which
classes of optimization algorithms are suitable to solve it, see Chapter 3.
The main distinction is between convex and nonconvex problems. Convex

problems consist of convex objective and constraint functions, and are there-
fore solvable in shorter time even with thousands of dimensions [BV11]. If
constraint functions are available as in Equations (2.1) and (2.2), the prob-
lem is called constrained, otherwise unconstrained. In addition, problems
are classified either as multimodal or unimodal. Problems with more than
one local optimum are called multimodal [ES15], otherwise they are uni-
modal. Another distinction can be made according to whether the solution
space is discrete or continuous.
Other properties solely concern the objective function. If the objective

function is evaluated multiple times for the same input and returns diverg-
ing outputs, it is called noisy, otherwise deterministic. An objective function
is separable (or decomposable [Rot11]) if a subset of decision variables can
be optimized independently from the other ones. Separable problems are
easier to solve than non-separable ones, as lower-dimensional sub-problems
require less resources. This is referred to as “curse of dimensionality” [Bel15,
p. 94]. The formalizations in Equations (2.1) and (2.2) depict single-objec-
tive problems. Another scenario are multi-objective problems with multiple
objectives that have to be taken into account at the same time [ZLB04]. In
multi-objective optimization, a Pareto set of solutions is found. Their fitness
cannot be ranked further because no single solution can be best regarding

2With “peaks” we refer in maximization problems to the elevations and in minimization to
the valleys such that the terms peak and (local) optimum can be used interchangeable.

11

2 Dynamic Optimization Problems

all objectives if they are conflicting. The Pareto front comprises the fitness
values of the solutions in the Pareto set.
Objective functions can also differ in the form in which they are available.

They can be categorized as functions with given mathematical formulation
and fitness functions that do not have a mathematical representation but
only are observable by their input-output behavior. The first category ap-
plies for artificial standard benchmark problems, see Paragraph 6.1, while
the latter one is much more frequent. It applies to benchmark test suites
in online competitions, simulation models that simulate the real world and
compute an approximate output for an input, and real-world systems that
return a measurable value as reaction to an input, see also [Kra08; YK11].
The objective function’s form determines which classes of algorithms are
feasible to solve it.
Another property is the objective function’s locality [Rot11]. A high lo-

cality indicates that the objective function maps similar input vectors to
similar output values. This is a requirement for some optimization algo-
rithms, especially nature-inspired ones. They perform worse on problems
with low locality, since the objective values would not provide meaningful
information about promising search directions.

2.1.2 Characteristics of Dynamics

Various attempts have been made to characterize the dynamics of changes
[SC14; Wei03; Jon06; MLY17]. The main aspects are what, when, and how
changes. We describe them in the following.
There are different components that can underly changes [NYB12]. The

objective function can vary, but also the number of objective functions
[CLY18]. The same applies for the constraint functions. Regarding the
search space, changes in the number and domain of decision variables are
possible. For example, in job shop scheduling problems the number of deci-
sion variables varies when jobs are canceled or new jobs arrive [JB05].
Simões and Costa [SC14] characterize dynamic optimization problems ac-

cording to when and how they change. In some scenarios, the objective
function remains static during a change period over a specific number of
function evaluations, while changes occur at discrete points in time. The
period length may follow a predictable pattern or may be completely ran-
dom and unpredictable. In other cases, the objective function varies contin-
uously so that each function evaluation leads to a different value. The same
classification can be applied to the other modifiable components.
The way how the objective function changes can be classified regarding the

12

2.2 Optimization Goals

function shape. In some problems the fitness landscapes moves, while their
shape does not change, i.e., the fitness differences between solutions remains
constant. Other problems show a dynamic change of the fitness landscape
where new peaks can appear, become flatter, or disappear. Simões and
Costa [SC14] introduce the predictability and the severity of the objective
function change as categories for a dynamic optimization problem taxonomy.
Further characteristics of dynamic optimization problems, are the follow-

ing. Some problems comprise time-linkage property [NYB12; MLY17] which
means that the solution selected in a change period has influence on the fit-
ness landscape in succeeding points in time. The detectability of changes
with simple methods is another criterion [NYB12; MLY17]. Bosman [Bos07]
distinguishes online and offline dynamic optimization problems. A dynamic
problem is called online, if it is not possible to evaluate the objective func-
tion for future points in time. Otherwise, in offline dynamic optimization,
it would be possible to optimize the objective function for various points in
time at once before the optimized time span begins.

2.2 Optimization Goals

An obvious goal in dynamic optimization is to find for each change period
the best combination of values for the decision variables [MLY17; Fu+14]
as represented by Equation (2.2). In various publications, e.g., in [Fu+12;
MLY17], this strategy is called tracking the moving optimum (TMO). But
even for TMO, different performance measures exist (see Paragraph 6.2),
that emphasize other aspects.
Robust optimization over time (ROOT) is an alternative goal in dynamic

optimization and involves an adapted objective function. In ROOT, the goal
is to prevent large differences in the decision variables between solutions of
succeeding change periods, since in real-world applications the modification
of a current solution would cause costs. Solutions are called robust if their
fitness value is acceptable for a number of change periods and underlies only
minor changes [Fu+12; Yu+10]. Work on ROOT can be found for example
in [YNB19; Fu+12; Fu+13; CMP16; BS07].
In dynamic time-linkage problems it is assumed that chosen solutions in-

fluence the future fitness landscape. The goal is to optimize the accumulated
reward over all change periods. For this it is helpful to take into account
the effect a decision has on the problem. For this kind of problems, [NY13]
suggests a more precise problem definition. Jin et al. [Jin+13] use au-
toregression and radial basis function models to predict the future fitness of

13

2 Dynamic Optimization Problems

solutions. Yu et al. [Yu+10] propose ROOT as means to tackle time-linkage
problems.
A completely different task in dynamic optimization is surrogate modeling

(or meta-modeling) that aims at creating a model of the dynamic objective
function. If the surrogate model (or meta-model) is sufficiently good, some
of the objective function calls can be evaluated with the surrogate model
instead of the objective function. This is advantageous in applications where
objective function calls are expensive, e.g., in terms of time. Recent work
on this topic is done, e.g., by [Luo+19; MB15; MB13].
In general, all problem properties and optimization goals mentioned before

can occur in combination. For example, [Yaz+18] deals with a dynamic
multi-objective time-linkage problem with robust optimization as goal.

2.3 Dynamic Optimization Problems in the Thesis

In this thesis, we consider unconstrained deterministic optimization prob-
lems with one objective. Solution space Rd and objective space R are real-
valued and do not change over time. We take into account problems with
dependencies between problem instances at succeeding points in time. The
objective functions mostly are nonconvex and multimodal, but we also apply
convex unimodal benchmarks. All the problems are given as mathematical
functions and some of them are separable. But we take advantage of neither
the separability nor the mathematical formulation, since all optimizers in
this thesis handle the objective function as black-box. The locality of the
objective functions is sufficient for the employed optimizers, since they were
explicitly designed for nature-inspired optimization.
In this thesis, only the objective functions underly modifications. Changes

take place between change periods and occur with fixed frequency at discrete
points in time. The change frequency is chosen so that the optimizer has
some generations to start converging to the optimum. Too fast changes, e.g.
after each generation, would require the optimizer to find the optimum in
one step which contradicts the design of iterative meta-heuristics [Ric10].
We consider two kinds of objective function changes. In some settings,

static objective functions move through the solution space leading to abrupt
changes. In other scenarios, the objective function is subject to continuous
modifications. In most cases, we consider predictable changes, otherwise no
insight could be gained into the advantages of prediction approaches. No
time-linkage problems are taken into account and changes are detectable,
since prediction takes place change-triggered. Otherwise, prediction would

14

2.3 Dynamic Optimization Problems in the Thesis

never be conducted. We consider online optimization because this is more
related to real-world scenarios like control problems. Our goal is accurate
tracking of the optimum (TMO), and we ignore the robustness of solutions.
With various performance measures, we examine different characters of the
algorithms, see Paragraph 6.2.

15

3 Nature-Inspired Optimization
Algorithms

Since decades, research on optimization has been driven in various domains
like mathematics, operations research, or computational intelligence. The
many domains led to diverse families of optimization algorithms. The al-
gorithms can either be grouped by the kind of problems they solve, e.g.,
combinatorial or multimodal, or by the search strategy they pursue, e.g., lo-
cal or stochastic. There exist various comprehensive publications on certain
groups of methods, like convex [BV11], combinatorial [Hro04], numerical
[NW99], or meta-heuristic [LMR09; ES15; RBK12] optimization. In the fol-
lowing, we describe the most important families of optimization algorithms
according to the optimizers’ properties. Afterwards, we introduce the main
principles of nature-inspired optimization, and explain the nature-inspired
algorithms evolution strategy and particle swarm optimization in detail be-
cause the contributions of this thesis rely on them.

3.1 Overview of Optimization Methods
In optimization, the goal is to find the global optimum, preferably with low
computational effort. Optimization strategies differ in whether their focus
is on optimality or effort, and can mainly be distinguished into exact and
approximate approaches. Exact methods, among them are analytical and
exploration-based ones, guarantee to find the global optimum. Analytical
methods are not applicable if a mathematical description is not available or
the problem is too complex, e.g., NP-hard [Kru+16; Rot11]. Complete or
exhaustive exploration searches for the optimal solution by going through
all possible solutions in the whole solution space [Kru+16]. This is only
feasible for combinatorial problems, since they have a finite search space.
Nevertheless, in practice even for most combinatorial problems this approach
would be too time-consuming due to the curse of dimensionality. Since all
methods mentioned so far mostly are not practical for real-world solution
spaces with many dimensions and unknown mathematical description of the
objective function, there exists a large variety of iterative methods that try

17

3 Nature-Inspired Optimization Algorithms

to approximate the optimum, either by local or global search strategies.

Local optimization, most successful in unimodal problems, since they are
likely to get stuck in local optima, can be distinguished into derivative-
based and derivative-free ones. Derivative-based algorithms, like Newton’s
method or conjugate gradient methods [Yan11], require explicit derivatives
and therefore only are applicable to objective functions with certain char-
acteristics, e.g., twice differentiability. Local derivative-free methods do not
have such requirements. They solely rely on objective function evaluations;
examples are hill-climbing or pattern search [YK11]. Local optimization
methods have in common that on multimodal problems the starting point
has strong influence on the found solution. A local optimum near to the
initial point is likely to be selected as final result.

Since many optimization problems are multimodal so that local methods
often do not provide sufficient solution quality, the need for global optimiza-
tion methods rose. Global optimization methods actively try to overcome
local optima with random components, but nevertheless cannot guarantee
finding the global optimum. Kruse et al. [Kru+16] differentiate between
blind random search methods, that randomly evaluate solutions in the so-
lution space, and guided random search methods, that gain information
about promising regions during the optimization process and search more
efficiently by utilizing it. Both types are derivative-free and can be applied
to a broad range of problems.

The main class of algorithms belonging to guided random search are meta-
heuristics. They are problem-independent, since they handle the objective
function as black-box. Their parameters and operators have to be adapted to
the respective problem. A key characteristic of meta-heuristics is their any-
time property, which means that the algorithms provide a feasible solution
for the problem at any point in time during the optimization run. This is
a main advantage over analytical or exhaustive methods, that may have a
long runtime and only return the solution at the end of the optimization
process so that no intermediate, sub-optimal solutions are available.

Nature-inspired optimization methods are a class of meta-heuristics whose
operators and algorithmic structure are inspired by principles that can be
observed in nature. Examples are evolution strategies or swarm intelligence,
and other stochastic optimization approaches like simulated annealing, tabu
search [GL97], or deluge algorithm [Kru+16]. Many meta-heuristics are
explained in [Yan14], and very recent ones are listed in [Dha+19].

18

3.2 Principles of Nature-Inspired Optimization

3.2 Principles of Nature-Inspired Optimization

Nature-inspired methods start with an initial set (population) of random
candidate solutions (individuals) and try to improve them iteratively. Infor-
mation gained during the optimization process is utilized to lead the pop-
ulation to better solutions and to introduce randomness to overcome local
optima. The algorithms differ in how they memorize good solutions and how
they pull the population to attractive search regions. While nature-inspired
methods are population-based, other meta-heuristics iteratively improve a
single solution, i.e., are trajectory-based [BLA16; Yan14]. Populations are
advantageous because they ease exploration of the solution space.
Exploration and exploitation describe different search strategies during

the optimization process. Exploration should take place in the beginning,
since the optimizer has to inspect the solution space to find regions with
good fitness level. This phase is characterized by a large diversity in the
population. Exploitation is the phase when the algorithm starts to converge
to a solution. For this, decreasing diversity in the population is necessary
so that it concentrates on the region surrounding the solution. A reason-
able balance between exploration and exploitation is required in order to
enable sufficient search in the whole solution space and to ensure final con-
vergence to a solution. For nature-inspired optimizers, various techniques
exist to influence the intensity of exploration and exploitation that mainly
can be distinguished into static parameter tuning before the optimization
and dynamic parameter control at runtime [ES15; Kra08].

3.3 Evolution Strategies

Evolution strategies (ES) belong to the family of evolutionary algorithms
and have been introduced by Rechenberg and Schwefel [Rec73]. The search
is based on a population P ∈ Rµ×d of µ individuals x ∈ Rd, which are subject
to recombination and mutation. Algorithm 1 shows the pseudocode of the
prominent (µ + λ)-ES. At the beginning, µ initial solutions are generated,
e.g., randomly in the solution space (Line 1). In each generation, λ offspring
solutions are created based on recombination and mutation (Line 3). At the
end of each generation, the solutions with the best fitness are selected as
parents for the next generation (Line 4). In the following, we explain the
key concepts of ES in detail, which are recombination, mutation, selection,
and step size adaptation. More information on ES can be found, e.g., in
[BS02; HAA15; Kra17].

19

3 Nature-Inspired Optimization Algorithms

Algorithm 1 (µ+λ)-ES
1: P ← initialize_population()
2: for generations do
3: P′ ← create_λ_offspring_individuals(P) # recomb.&mutation
4: P ← select_best_µ_individuals(P,P′)

Recombination Recombination, also called crossover [Kra08], creates λ off-
spring individuals from ψ randomly selected parent individuals p1, . . . ,pψ.
The goal of recombination is to retain and combine information that achieved
good fitness during the last generations. For ES, mostly dominant or inter-
mediate recombination is applied. In dominant recombination, entry xj of
the offspring is taken from the respective entry of parent pi randomly chosen
among the ψ parents:

xj = pij with i ∼ U (1, ψ) ∀ j ∈ {1, . . . , d}, (3.1)

where i is independently drawn for all j ∈ {1, . . . , d}. This procedure is
repeated to generate all λ offspring individuals. In intermediate recombina-
tion, the offspring individuals are generated by averaging the chosen parents:

xj = 1
ψ

ψ∑
i=1

pij ∀ j ∈ {1, . . . , d} (3.2)

Mutation Mutation takes place after recombination and adds randomness
to offspring individuals in order to gain new information that might lead to
better fitness. Often Gaussian mutation is applied [Kru+16]:

x′ = x +N
(
0, s2

)
(3.3)

The standard deviation of the normal distribution, in this context often
called mutation strength or step size, is signified with s. There exist ad-
vanced strategies that sample a multivariate normal distribution with differ-
ent spreads in the dimensions. The well known covariance matrix adaptation
ES (CMA-ES) is one example, see e.g. [Rud12; HO01] for details.

Selection Selection chooses µ individuals for the next generation in order
to preserve information that probably will lead to promising solutions. For
ES, plus and comma selection exist [Kru+16], denoted with (µ+ λ)-ES and
(µ, λ)-ES, respectively. In plus selection, the best individuals among both

20

3.4 Particle Swarm Optimization

the parent and offspring population are selected, while comma selection only
considers the offspring population. ES with plus selection are more prone
to get stuck in local optima, compared to comma selection. In contrast,
comma selection can loose the best solution found so far.

Step Size Adaptation As motivated before, exploration and exploitation
need to be balanced during the optimization process. An important strategy
to achieve this is step size adaptation that modifies the mutation strength de-
pending on the search progress. For exploration, larger step sizes are useful,
as the population could be distributed wider, while exploitation is supported
by smaller mutation steps. Step size adaptation is the main concept in ES
to achieve faster convergence than random search [HAA15]. Rechenberg’s
1/5th success rule [Rec73] is a famous way for step size adaptation that be-
longs to dynamic parameter control strategies [Kra08]. Repeatedly, after a
specified number of iterations or mutations, the step size is adapted depend-
ing on a success factor. Success factor ps is the ratio of successful mutations,
that led to offspring individuals with better fitness, to the overall number of
mutations [ES15]. The new step size s′ is computed as

s′ =


s
ξ if ps > 1

5
s · ξ if ps < 1

5
s if ps = 1

5

, (3.4)

where 0 < ξ < 1. This update leads to increasing step size if many successful
mutations occurred in the past.

3.4 Particle Swarm Optimization

Particle swarm optimization (PSO) belongs to the family of swarm intel-
ligence algorithms [BL08; MLY17] that covers, among others, ant colony
optimization [DS04], bacterial foraging optimization [Pas02] or bee colony
optimization [Teo09]. PSO has been introduced by Kennedy and Eber-
hart [KE95], and is based on the idea of a swarm of flying particles (solu-
tions) that are attracted by best found solutions. Algorithm 2 shows the
pseudocode of the basic PSO algorithm.
Each particle in a swarm S has a position x ∈ Rd, that represents a

candidate solution, and a velocity v ∈ Rd. Both parameters are iteratively

21

3 Nature-Inspired Optimization Algorithms

Algorithm 2 PSO
1: S ← initialize_swarm_particles() # random position&velocity
2: for iterations do
3: S ← move_particles(S) # following Eq. (3.5), (3.6)
4: xp,xs ← update(xp,xs) # update xp for each particle

updated with:

vt = ωvt−1 + θ1r1 ◦ (xp − xt−1) + θ2r2 ◦ (xs − xt−1) (3.5)
xt = xt−1 + vt (3.6)

Variable xp stores the best solution the particle has found during lifetime,
while xs saves the best position ever found by the whole swarm. Parameter ω
is the inertia weight controlling the influence of the previous velocity, and θ1
and θ2 are scalars balancing the particle’s egoism and altruism. Sometimes
they are called cognitive and social factors, respectively [Cho+18]. The
random vectors r1, r2 are uniformly drawn from [0, 1]d [BBL08] and allow
random explorations, where ◦ is the Hadamard product. The optimization
process is terminated when a criterion is met.
Many PSO variants have been proposed, see e.g. [CE15; PV10; PKB07].

Variations mainly concern the type of neighborhood model, and how the
parameters are set. We depict these aspects in the following paragraphs.

Neighborhood Topologies The neighborhood topology determines which
solution is used for xs. Algorithm 2 reflects the global neighborhood struc-
ture, also called global best model, where the best solution ever visited
by the whole swarm is employed as xs for all particles. In an alternative
setting, called local best model, local neighborhood relations are defined,
and xs of a particle is the best particle in its local neighborhood [MLY17].
Thus, different particles may have distinct particles xs. The global best
model is the traditional one, while the local best model is claimed to better
prevent getting stuck in local optima. In addition, many other topologies,
like random or ring, have been proposed trying to impede premature con-
vergence [ZWJ15; CE15]. Engelbrecht [Eng13] compares global and local
neighborhood models on many benchmark problems and shows that neither
always outperforms the other topology. Thus, the topology has to be chosen
regarding the specific problem at hand.

22

3.4 Particle Swarm Optimization

Choice of Parameters While the convergence properties of ES mainly de-
pend on the mutation strength, in PSO the parameters ω, θ1 and θ2 influence
exploration and exploitation, and by this means convergence. Large inertia
values (ω > 1) cause large steps of the particles, lead to exploration, and
make it difficult for the particles to change their direction [LE13]. A small
inertia weight (ω < 1) leads to decreasing lengths of the particles’ steps
and supports exploitation. Besides, the parameters θ1 and θ2 influence the
optimization progress. When θ1 is large in contrast to θ2, the particles are
mostly attracted by their own best position so that the swarm diverges in
different directions. The opposite case increases the particles altruism lead-
ing to convergence to the swarms’ best position.
By dynamic modification of these three parameters, exploration or ex-

ploitation can be intensified in different phases during optimization [LE13].
Various strategies especially for dynamic adaptation of inertia weight have
been proposed, see e.g. [HEOB16a] for an overview. Nevertheless, in some
studies, e.g., [HEOB16b; HEOB16a; ZE14], dynamic choice of parameter
values turn out to be likely to produce either divergent behavior or cause
premature convergence. Harrison et al. [HEOB16a] conclude that a static
or random inertia weight is the best option. There exist convergence proofs
showing which parameter values lead to convergent behavior in PSO; we
refer to some of them in Chapter 8.

23

4 Dynamic Optimization Approaches
The simplest approach to solve dynamic optimization problems is to treat
each change period as a static problem and to run an optimization algorithm
separately in each period. In contrast, dynamic optimization algorithms as-
sume dependencies between change periods. They are executed once and
adapt to changes during their runtime [NYB12]. By this means, they can uti-
lize information from the past and might converge faster than an optimiza-
tion started from scratch [Ahr+19]. The more similar the problem instances
are at different points in time, the more reasonable it is to re-use information
gained during the optimization process [JB05]. Meanwhile, many approaches
have been proposed to solve dynamic optimization problems; surveys can
be found in [BRAK13; CGP11]. Among nature-inspired approaches are,
e.g., differential evolution [MM05; HDM13; Has+19], co-evolution [Liu+14;
GT09], and particle swarm optimization [BBL08; Jor14; MLY17], while ES
are most frequently used in dynamic optimization [BRAK13; CGP11; JB05].
Therefore, in this chapter we describe common extensions of ES for dynamic
optimization problems; adaptations of PSO for dynamic optimization are
depicted in Chapter 8.

4.1 General Approaches
Different extensions of ES have been developed in order to deal with dynamic
problems. The general problem when ES dedicated to static optimization
are applied to solve a dynamic problem is their fast convergence. When
an ES was running during a time without objective function changes, it
may be converged to a solution so that the whole population is located very
close to this point. When the optimum slowly moves through the solution
space, standard algorithms may be able to follow. But if optima tend to
jump within the solution space, standard optimization algorithms might fail
to follow or even to detect new basins of attraction and get stuck in the
previously found local optimum. The basin of attraction of a local optimum
is the set of all points from which this optimum can be reached by gradient
descent [Shi12; Ase+13]. So, enforcing diversity in the population at the
right point in time is important to enable flexibility to adapt to a modified

25

4 Dynamic Optimization Approaches

fitness landscape [JB05]. Different approaches have been investigated to
make ES suitable for dynamic problems. Based on the overviews [CGP11;
NYB12], we describe some of them in the following.

Maintaining diversity A strategy to overcome getting stuck in a former local
optimum is to maintain diversity. In each generation, some random
solutions, in this context often called immigrants or gifts, are inserted
into the population so that other regions of the solution space can be
explored as well [Gre92; TY07; CY13]. There also exist approaches
that modify the algorithms’ operators in order to preserve diversity in
the population [Ahr+19].

Change detection Another approach is to actively detect a change in order
to adapt the algorithm behavior afterwards. A change can be detected
for example by re-evaluating individuals [ATE17; Ric09]. If their fit-
ness values in the current time step differ from those in the former time
step, the fitness function has changed. After a change has been de-
tected, introducing diversity, e.g., by adding random individuals into
the population, could be a strategy to support the ES in discovering
the new optimum [Gre92]. Another approach to achieve more diver-
sity, called hyper-mutation [Cob90], increases the mutation rate in ES
after a change.

Memory Furthermore, the ES can employ memory that stores good solu-
tions found during previous generations. Individuals from the memory
could replace individuals of the population in later generations if they
have a better fitness. This might be helpful especially if the changes
are cyclic. See [BLA16] for an overview.

Multi-population In multi-population approaches, multiple populations are
simultaneously searching in various regions of the solution space. By
this means, not only the global but also local peaks can be covered at
the same time. If one of the local peaks becomes the global one, the op-
timizer can converge very fast as there already is a population located
at that peak. A well-known multi-population ES is the self-organizing
scouts algorithm [Bra+00], another recent work is [Li+16]. In [Li+15],
a survey on multi-population strategies can be found. The multi-pop-
ulation approach can also be utilized for co-evolution or maintaining
diversity [NYB12].

Self-adaptive In this strategy, parameters of the optimizer, e.g., mutation
rate, are encoded as genes and underly the evolutionary process as

26

4.2 Prediction-Based Approaches

well. By this means, the optimizer is supposed to adapt the parameters
according to the current situation of the population. Examples for this
branch of strategies are [Gre99; Urs00].

Prediction Additionally, approaches have been introduced that predict the
next optimum after a change has been detected by the ES. Inserting
this prediction as solution into the population, the ES starts with a
population containing an individual that is located maybe somewhere
near to the real optimum. This approach works best if the changes are
not completely random but follow a defined pattern.

Often, combinations of these approaches are applied. For example, strate-
gies that do not maintain diversity but react to changes, like prediction,
frequently are combined with a change detection mechanism. In the next
paragraph, we overview prediction strategies in detail.

4.2 Prediction-Based Approaches
If changes in the objective function are not solely based on randomness but
obey a certain pattern, prediction approaches can be applied. Prediction
approaches use an archive as a training set which is used for learning, i.e., for
adapting parameters of the prediction method. These concepts are explained
in Chapter 5. Following [NYB12; MK20], prediction approaches for dynamic
optimization can be classified into the following concepts.

Predicted optimum as immigrant Predicted optima can be integrated into
the population to enrich it with immigrants. An autoregressive ap-
proach is used by [HW06], a Kalman filter is applied by [RAD08;
MTV16]. Similar approaches, sometimes called “population-based pre-
diction” [Ron+19], adapt the population based on the predicted Pareto
set [WJL15; FS17; RGZ16] or predicted characteristic points [ZJZ14;
Jin+16; Zho+18].

Predicted optimum for operators Predicted optima can be used to bias op-
erators, e.g., the mutation operator [RAD08] or the PSO equations
[MK18b], to lead the population to the new optimum.

Prediction for fitness functions Predictions can also be used to influence
the evaluation of solutions. For example, [RAD08] proposes to improve
the fitness of solutions in the neighborhood of predicted optima. It is
also possible to learn dynamic meta-models of the near future of the
fitness function, e.g., one step ahead [Bu+17; Hem+01].

27

4 Dynamic Optimization Approaches

Prediction of individuals In this class of approaches, also named “individ-
ual-based prediction” [Ron+19], the next position for each individual
is predicted based on the position of its predecessor [Zho+07; Liu+14].
Thus, for each individual a separate prediction model is employed.

Prediction of point in time Some approaches [SC08a; SC09] concentrate
on predicting the time, at that the next change will take place. This
information can be used to reset the algorithm, e.g., to initial settings
like large step sizes. It can also be combined with approaches that
predict the optima while using promising initial parameters.

Prediction of problem type For combinatorial problems, [SC14] proposes
to predict the problem type that will occur next. Then, individuals
from memory that had good fitness in the predicted kind of problem
replace the worst ones in the population.

Prediction for time-linkage problems If the dynamics of the problem is in-
fluenced by solutions chosen by the optimization algorithm, e.g., in job
scheduling algorithms, approaches can take into account predictions
of probable changes of the objective function based on own solution
choices [Bos05; BLP07; NY09b; Bu+17].

The choice of prediction approach is determined by the chosen optimiza-
tion algorithm and the application context. For example, in this work we
show that for PSO using predictions as immigrants is less successful than
biasing the swarm to the predicted directions (Chapter 8). Moreover, pre-
dicting when the next change will occur is only helpful if the points in time
at which changes take place follow a predictable pattern. For unpredictable
points in time, the use of mechanisms which detect changes is recommended.
In our work, we use predicted optima as immigrants and for biasing opera-
tors (Chapters 7, 8, and 9). In Chapter 5, we give an overview of time series
prediction methods that can be employed for the mentioned approaches.

28

5 Time Series Prediction Methods

Prediction methods are statistical or machine learning techniques that fit
models to observed data so that they are able to predict an output for new,
unseen data. Oriented to the terminology in machine learning, we call the
fitting process learning or training, and the data used for learning training
data or training set. We use the term training item for a certain element
of the training set. In a supervised learning scenario, training data comes
in pattern-label pairs (pj , yj) with j ∈ {1, . . . ,M} and training set size M .
Patterns are the inputs pj , while labels are the outputs yj corresponding
to the inputs. Both can also have other than the depicted formats. The
training data is used to train a prediction model Ψ so that it outputs a rea-
sonable prediction Ψ(p̃) given a novel pattern p̃. Training adapts the model
parameters minimizing the difference |Ψ(p̃)− ỹ| between the estimated and
expected true output for the training data. This is an optimization problem
solved in different ways by the prediction methods. For an introduction to
machine learning and prediction methods, we recommend [HTF09; Bis07]
and further introductory textbooks. The methods differ mainly in their
computational complexity and in the types of relationships in the data they
are intended to cover, e.g., linear or nonlinear.
Time series prediction is one branch of prediction methods where the task

is to estimate the next step xt of a series [x0, . . . ,xt−1] of multivariate ob-
servations xi ∈ Rd from succeeding time steps.1 For this, techniques from
different research domains exist. Various methods were developed in statis-
tics, ranging from simple ones like autoregressive models to sophisticated
approaches like ARIMA [SS17; MJK15; YM00]. There are also success-
ful approaches from machine learning [BTB12; RS19], like decision trees,
nearest neighbors regression, and neural networks [Zha12].
In time series prediction, training data consists of one time series.2 For

machine learning methods, this series has to be converted into supervised
1Another frequent task is to predict a scalar from a series of multivariate observations,
e.g., predicting the output of a failing sensor based on measurements of other sensors.

2Also multiple (independent) time series would be possible. Since in this thesis the opti-
mum movement is a single-series problem, we restrict the descriptions in this chapter
to the single series case.

29

5 Time Series Prediction Methods

training data. Usually the sliding window approach is used, where ws is the
window size. The first ws time steps of the series form the pattern, and
the succeeding time step becomes the label. Then, the window is moved
one step ahead so that it overlaps in ws − 1 steps with the first window.
The pattern of the second training item comprises the values underlying the
window, while the next value is the label. This process is repeated until the
whole series is split into pattern-label pairs. Overall, the training set would
consist of t− ws items of the form:

(xi,xi+1, . . . ,xi+ws−1︸ ︷︷ ︸
pattern

,xi+ws︸ ︷︷ ︸
label

) (5.1)

The choice of ws influences the learning ability, and depends on the predic-
tion method and time series characteristics like length of periodicity. Time
series prediction methods have different requirements on the data, such as
stationarity or no missing data, that can heavily influence their performance.
This makes data preprocessing necessary, see [MJK15; MSA18a] for different
kinds of adaptations, and also restricts the possible applications.
In the following, we depict the relevant prediction methods that have

found application in evolutionary dynamic optimization, e.g., in [RAD08;
MK18b; HW06]. An overview of prediction methods in ES is given in Para-
graph 7.1.1. Which of those methods should be applied, depends on the
problem characteristics, e.g., kind of dynamics or number of change periods
which determines the amount of training data.

5.1 Persistence Model

The persistence model, also called naive forecast, is the simplest prediction
approach. The value for the next time step is assumed to be the same as
for the last time step, thus no training procedure is required:

x̂t = xt−1 (5.2)

5.2 Autoregressive Model

Statistical learning methods [Jam+13] are historically based on the area of
statistics. Basic methods are linear models that assume a linear relationship
between patterns and labels. Autoregressive models (AR) belong to this
class and can be applied to various types of time series [HA13].

30

5.3 Kalman Filter

An AR model predicts x ∈ Rd for time step t with

x̂t = θ +
p−1∑
i=0

Φixt−1−i + εεεt, (5.3)

where x,θ,εεε ∈ Rd, and Φi ∈ Rd×d. Order p defines how many previous
time steps are considered [HA13], Φi controls the influence of xt−1−i on
x̂t, and vector θ consists of constants. The noise parameters εεεt are uncor-
related [NS01], and contain values with zero mean and covariance matrix
C ∈ Rd×d. The least squares method is used to determine parameters θ, Φ
and C. Autoregressive models base on some assumptions, so as the station-
arity of time series and no missing data. There exist different approaches to
transform data to ensure both criteria [YM00].

5.3 Kalman Filter

The Kalman filter [Kal60] is a linear time series model that is based on the
assumption that the state of a system is observable by noisy measurements.
It can be applied to both estimating the true state variables ac−1 underlying
noisy observations and predicting the next state âc for that not yet obser-
vations are available. It is a recursive model. First, a priori estimations of
the next system state â−c and its error covariance Ê−c are computed. After
having obtained an observation for the next time step, the filter model is
optimized so that the a posteriori covariance error is minimized. This is
interpreted as a least-squares problem to minimize the deviation of the ob-
servation and the predicted value. With the updated model, the a posteriori
state estimation âc and its error covariance Êc are computed. The Kalman
filter requires a linear dynamic and additive Gaussian noise. For further
details on Kalman filter see, e.g., [Sor70; Wal02; BH12]. Although there
exist sophisticated variants of the Kalman filter, e.g., the extended Kalman
filter for nonlinear dynamics, so far only the linear Kalman filter has found
application in nature-inspired dynamic optimization.

5.4 Recurrent Neural Network

Neural networks (NNs) have been introduced as nature-inspired learning
methods in the 1940s [Cel91; GBC16]. Increasing amount of available
data, hardware infrastructure and software tools caused the success of NNs

31

5 Time Series Prediction Methods

x1

x2

x3

n1,1

n1,2

n2,1 ŷ

Figure 5.1: Recurrent neural network

since the 2000s and led to ongoing growth of powerful network architec-
tures [GBC16].

A kind of architectures called recurrent neural networks (RNNs) have
shown strengths in time series prediction [Lev16; Wu+16] and are neural
networks representing past observations with hidden states. In RNNs, neu-
rons are connected with themselves so that the neurons’ output is led back
to their input [Roj96]. Figure 5.1 depicts a simple RNN architecture. Let
xt ∈ Rd be the input of a neuron and φ the function the neuron outputs.
Then the neuron computes φ (xt, φ (xt−1, φ (xt−2, . . .))) while taking into ac-
count values of x for previous time steps. Due to their backward connections,
RNNs can model relationships between observations from multiple sequen-
tial time steps. How many time steps the RNN considers for learning, i.e.,
window size ws, influences prediction performance and should be chosen de-
pending on the problem. Due to the vanishing gradient problem, RNNs are
trained with a modified backpropagation procedure known as backpropaga-
tion through time, see [Roj96; GBC16]. In backpropagation, the training
set is divided into parts (batches). After a batch is passed through the net-
work, the weights are adapted according to the computed error. The number
of epochs, i.e., how often the complete training set is processed, influences
prediction quality. Various extensions of RNNs have been proposed. A
prominent one is the long short-term memory (LSTM) network [HS97] that
allows learning insertions and deletions of patterns with mechanisms like
attention and forget gates.

Unlike AR models or Kalman filters, neural network-based prediction does
not come with certain restrictions to the time series. Nevertheless, appropri-
ate data preprocessing, e.g., normalization, can strongly influence prediction
performance [Smy19; Ahm+10].

32

5.5 Temporal Convolutional Network

5.5 Temporal Convolutional Network

Temporal convolutional networks (TCNs) are specialized to time series data.
Among different TCN architectures, we describe the architecture proposed
by [BKK18] (Figure 5.2). In contrast to fully-connected NNs, that consist of
layers of neurons and weighted connections between them, TCNs are based
on the concept of filters that are sliding over the input time series. For a
univariate input time series s ∈ RT with T time steps, a filter is a vector
ψ ∈ Rk; its elements are called weights. For each element sj from input s,
the convolutional operation

Q(sj) =
k−1∑
i=0

ψi · sj−D·i (5.4)

is computed so that the filter output is a scalar value. Here, ψi is the
filter weight at index i in ψ and D denotes the so-called dilation factor. If
D = 1, operation Q involves element sj and a history of k− 1 elements, i.e.,
the elements “left” to sj in series s. With an arbitrary dilation factor, the
history captured by a filter is D · (k− 1) which follows from Equation (5.4).
Applying Q to all elements sj of the input series s results in a sequence with
the same length as s if additional elements with value zero are appended at
the beginning of the sequence, see Figure 5.2. A filter covers a larger part
of the input sequence, if the dilation factor is increased. For example, with
D = 2 the filter is applied to every second input element so that it considers
a two times longer history.

A complete TCN is constructed by stacking residual blocks. A residual
block contains two layers of filters having the same dilation factor, and a
residual connection so that the block input is added to the output of the
second layer [BKK18]. A frequent setting is to increase the dilation factor
exponentially among the blocks with Db = 2b, where b is the block index
with 0 ≤ b < #blocks. The history h captured by the whole network, i.e.,
the number of history time steps in the input series involved to compute an
entry in the output series, equals twice the sum of histories the filters have
in different blocks:

h =
#blocks-1∑

b=0
2 ·Db ·

(
k − 1

)
= 2 ·

(
k − 1

)
·

#blocks-1∑
b=0

Db (5.5)

33

5 Time Series Prediction Methods

0

1

Figure 5.2: Two-layer TCN (no residual blocks) based on [BKK18], k = 3.
Input and output sequences are univariate with T time steps

If Db = 2b, Equation (5.5) can be simplified with the geometric series to:

h = 2 ·
(
k − 1

)
·
(
2#blocks − 1

)
(5.6)

With this relationship and chosen filter size k, the number of blocks nec-
essary to cover an input series of a certain length ws so that ws ≤ h + 1
is:

#necessary blocks =
⌈
log2

(
ws − 1

2 · (k − 1) + 1
)⌉

(5.7)

Since history h is defined being one time step shorter than the whole network
output series, the condition ws ≤ h + 1 is required. In our context of pre-
diction in dynamic optimization, we use ŷT in the network output sequence
as predicted optimum, see Figure 5.2.

34

6 Performance Measurement

For evaluation and comparison of different approaches, benchmark prob-
lem sets and performance measures are essential. Various benchmarks and
metrics are available in literature that examine different properties of algo-
rithms. Which benchmarks and measures should be employed, depends on
the optimization goal and the use case. In this chapter, we describe standard
problems and measures frequently used in dynamic optimization. Further-
more, we propose a new benchmark and performance measure tailored to
the specifics of prediction-based algorithms.

6.1 Benchmark Problem Sets

In nature-inspired dynamic optimization, various benchmark sets have been
proposed [MD99; YY03; LY08; NY09a; GTA17; JY17; Yaz+19; PE19]; an
overview is given in [NYB12]. In the following, we introduce a selection of
well-known dynamic benchmark problems we find appropriate for testing
prediction methods on problems of the kind considered in this thesis, see
Paragraph 2.3.

6.1.1 Moving Peaks Benchmark

The moving peaks benchmark (MPB) proposed by [Bra99] is a standard
test set in nature-inspired dynamic optimization. The fitness function is
nonseparable [Yaz+19] and consists of multiple peaks with randomly chang-
ing positions, heights, and widths. The peaks move linearly controlled with
noise that can be adjusted via a correlation factor, see [MC13]. The global
optimum may jump if a previous local optimum becomes the new global
one. Thus, the optimum fitness may change among change periods.
The fitness of solution x in change period c is computed with:

f(x, c) = max
i=1,...,#peaks

H i
c

1 +W i
c‖x−Xi

c‖22
, (6.1)

where ‖ · ‖22 is the squared Euclidean norm. Height H i
c, width W i

c , and

35

6 Performance Measurement

position Xi
c of the ith peak underly random changes:

H i
c = H i

c−1 + sh · ε (6.2)
W i
c = W i

c−1 + sw · ε (6.3)
Xi
c = Xi

c−1 + Sic (6.4)

with ε ∼ N (0, 1), H i
c,W

i
c ∈ R, and Xi

c ∈ Rd. Height severity sh and width
severity sw are static factors determining the amount of disturbance in the
height and width, respectively, while Sic causes the position movement. Its
severity is determined by shift length sl = ‖Sic‖2, while Sic is computed with

Sic = sl
‖εεε+ Sic−1‖2

(
(1− η)εεε+ ηSic−1

)
, (6.5)

where εεε is a vector of random values. Since in literature no information
on the distribution is given, we sample the values from a standard normal
distribution. Correlation factor η ∈ [0, 1] leads to a completely random
movement for η = 0, and with η = 1 to a deterministic linear shift. If Sic
would place Xi

c outside the solution space, it is multiplied with −1 so that
the peak moves backwards again. Correlation factor η was introduced after
the first publication [Bra99]. In the first variant, shift vector Sic was drawn
completely randomly but also had specified length sl.

According to literature on MPB, e.g., [Li+15; MC13; Yu+10], Equa-
tion (6.5) is constructed so that Sic has the specified length sl. Factor

sl
‖εεε+Sic−1‖2

is claimed to normalize the new shift vector (1− η)εεε + ηSic−1

such that it gets length sl. Nevertheless, this is only the case if ‖εεε+ Sic−1‖2
and ‖ (1− η)εεε + ηSic−1‖ are equal. This is not guaranteed, since factor η
modifies the latter so that εεε+Sic−1 and (1− η)εεε+ηSic−1 are different vectors.
To ensure proper length of Sic, we modify Equation (6.5) to:

Sic = sl
‖(1− η)εεε+ ηSic−1‖2

(
(1− η)εεε+ ηSic−1

)
(6.6)

Figure 6.1 visualizes an MPB instance as minimization problem with 10
peaks, sh = 7, sw = 0.1, and sl = 0.6. The peaks’ movement is shown in
Figure 6.2. It is obvious that η = 1 leads to a deterministic linear movement,
while a lower value disturbs the movement direction. In either case, the
global optimum may jump among peaks.
In our experimental studies, we use most of the parameters as suggested

in the original work [Bra99]: solution space [0, 100]d, 10 peaks, sl = 0.6,

36

6.1 Benchmark Problem Sets

Dimension 1

20 0 20 40 60 80 100120
Dim

ensio
n 2

20
0

20
40

60
80

100
120

Fi
tn

e
ss

40

30

20

10

Figure 6.1: Static MPB fitness landscape as minimization problem

sh = 7, sw = 0.1, initial height 50, initial width 0.1, random initial position.
Correlation factor η differs among the experiments. We multiply the fitness
function (Equation (6.1)) by −1 because we consider minimization problems.

6.1.2 CEC Competition Benchmark

For the Congress on Evolutionary Computation (CEC), benchmark prob-
lem sets have been introduced as challenge for example in 2009, 2012, and
2014 [Li+08; LYP11; Li+13]. The latter contains a rotation peak function
and composition of basic functions.
The dynamic rotation peak benchmark generator (DRPBG) is based on

the concept of peaks like MPB. The fitness function in change period c is

f(x, c) = max
i=1,...,#peaks

H i
c

1 +W i
c

√
1
d‖x−Xi

c‖22
, (6.7)

with symbols as defined for MPB. In DRPBG, ten different types exist to
change the peaks’ heights, width, and position, for example with random,
chaotic, recurrent, and noisy changes.
The other CEC 2014 benchmark is the dynamic composition benchmark

generator (DCBG). It allows for composing a weighted selection of the ba-
sic functions Sphere, Rastrigin, Weierstrass, Griewank, and Ackley to one
fitness function, see Appendix A for some of these functions. The dynamics
for moving these functions are the same as for DRPBG.

37

6 Performance Measurement

0 100 200 300 400 500
Change Period

0

20

40

60

80

100

P
e
a
ks

'
P
o
si

ti
o
n
s

(D
im

e
n
si

o
n

)
1

0 100 200 300 400 500
Change Period

0

20

40

60

80

100

P
e
a
ks

'
P
o
si

ti
o
n
s

(D
im

e
n
si

o
n

)
1

Figure 6.2: Movement of the peaks’ positions () and the position of the
global optimum () in dimension 1. Left: η = 1. Right: η = 0.95

6.1.3 Free Peaks Benchmark

A framework for constructing continuous optimization problems was intro-
duced by [Li+18]. It is called free peaks benchmark (FPB) and can generate
global, multi-modal, multi-objective, dynamic, and constrained optimization
problems. In FPB, the solution space is divided into a defined number of
non-overlapping partitions which each are equipped with one of eight base
functions. The fitness of an individual is computed with the base function
of the partition it is located in.
Among the dynamic optimization part, the free peaks benchmark offers

equations to change an optimum’s location, the shape of its neighborhood,
the size of the optimum’s basin of attraction, the height of the basin, and
number of optima. Similar to MPB, the peaks’ movement within their re-
spective sub-space is linear with adjustable noise. To modify the landscape
around a peak, the corresponding base function can be replaced by another
one. By relocating the partition boundaries, a peak’s basin of attraction can
be enlarged or reduced. Also the basin’s height is randomly changed like
in MPB. Since the base functions are unimodal, the number of peaks can
dynamically be changed by varying the numbers of partitions.

6.1.4 Dynamic Sine Benchmark

In [MK19] we proposed the dynamic sine benchmark (DSB) to address the
problem that many benchmarks only allow simple movements of their op-
tima. For example, the previously discussed and frequently applied MPB
benchmark only provides noisy linear movement, as well as the FPB bench-

38

6.1 Benchmark Problem Sets

Dimension 1

50 60 70 80 90 100 Dim
ensio

n 2

50
60

70
80

Fi
tn

e
ss

0

10

20

30

40

50

Figure 6.3: Optimum position of Sphere function in a two-dimensional
solution space at three points in time

mark does. Although the CEC competition test sets provide more advanced
dynamics, they are still rather simple. For example the recurrent dynamics
is defined by a single sine function.
Our DSB problems are quantifiable in their dynamics and are based on

moving classic stationary fitness functions, e.g., Sphere or Rosenbrock, with
parameterized trigonometric functions, see Figure 6.3. A related bench-
mark, that has found application in time series prediction but so far not
in dynamic nature-inspired optimization, is the multiple superimposed os-
cillators (MSO) benchmark [WGS05; Ste07; KB12; ORB19]. It consists of
two or more additive sine functions to examine the performance of predic-
tion methods on signals with large periodicity [RI10]. In contrast to this,
DSB has multiplicative sine functions, which might lead to more complex
dynamics, and offers quantifiable complexity
After the initial publication [MK19], we simplified the benchmark gener-

ator, solved some bugs and improved several details. This updated version
is explained in the following.

Overall Approach

The underlying idea is that the optimum positions are generated by sampling
trigonometric functions with a certain step size, see left part in Figure 6.4.
In each dimension w of the solution space the optimum movement follows a
separate trigonometric function

ζw(c) = τ + α ·
ρ∏
i=1

(
ιi · sin (βi · κ · (c− 1) + γi)

)
(6.8)

39

6 Performance Measurement

which is composed by multiplying ρ sine functions, called component func-
tions, with random amplitude ιi, frequency βi, phase shift γi, vertical shift τ ,
and overall scaling α. We call ζw composite function as well. In change pe-
riod c the optimum is located at the sampled position

oc = [ζ1(c), ζ2(c), . . . , ζd(c)] , (6.9)

which is visualized in the right part of Figure 6.4. To generate optimum po-
sitions for P change periods, each function ζw is evaluated for c ∈ [1, . . . , P].
In ζw, step size κ determines the distance between sampling points. This can
be illustrated with an alternative formulation where the optimum position
is written as

oc =
[
ζ ′1(κ · (c− 1)), ζ ′2(κ · (c− 1)), . . . , ζ ′d(κ · (c− 1))

]
, (6.10)

where the sine functions that ζ ′w consists of are written in the basic form
with x as point in time at which ζ ′w is sampled:

ζ ′w(x) = τ + α ·
ρ∏
i=1

(
ιi · sin (βi · x+ γi)

)
(6.11)

From Equation (6.10) it can easily be obtained that the distance between
successive points at that ζ ′w is sampled equals step size κ in each dimension:

κ · ((c+ 1)− 1)− (κ · (c− 1)) = κ · c− κ · c+ κ = κ

In Equation (6.8), c− 1 is used instead of c to begin the sampling at point 0
because c is defined with c ≥ 1, see Equation (2.2). Step size κ requires a
careful choice to cover all important parts of function ζw. Therefore, in the
updated benchmark we set it automatically as described later.
DSB can be combined with any stationary fitness function fs. While shape

and level of fitness function fs remain unchanged, function ζw defines the
location of the landscape in the solution space. It determines the position
of the global optimum as the fitness landscape’s anchor, see Figure 6.3. If
fs has multiple global optima, one of them has to be chosen as anchor. The
fitness for individual x in change period c is

f(x, c) = fs(x− (oc − ofs)) (6.12)

where ofs denotes the global optimum of the unmoved function fs.
In order to quantify the benchmark’s complexity, we introduce the con-

40

6.1 Benchmark Problem Sets

0 5 10 15 20 c0

1

2

3

4

5
1(c)
2(c)

1 2 3 4
Dimension 1

2.0

2.5

3.0

Di
m

en
sio

n
2

o1

o3

o5

o7

o9

o11

o13

o15

o17

o19

Figure 6.4: Left: sampling of ζw at 20 points in time. Right: corresponding
optimum positions oc in the solution space

cepts curviness and velocity. Curviness C ∈ N>0 specifies the number of
extremes ζw has within 100 samples at successive equidistant points. Thus,
curviness determines how many changes in the optimum’s movement direc-
tion take place on the first 100 optimum positions. Since trigonometric func-
tions are periodic, the overall number of extremes can be deduced based on
the curviness. By this means, curviness indicates the difficulty for a predic-
tion model to track the optimum. Velocity V ∈ R>0 is the median distance
between successive optimum positions and represents the problem difficulty
for the optimization algorithm. In case the velocity is much higher than the
mutation strength, an ES without prediction might need many more gener-
ations to find the new optimum position. To generate a DSB instance with
specified velocity and curviness, scaling factor α and frequencies βi have
to be chosen appropriately. The generation process and the mathematical
relations are described in the next paragraphs.
In a d-dimensional DSB instance, for dimensions w ∈ [1, . . . , d] the func-

tions ζw are generated with the same curviness and velocity in order to
ensure that the complexity of DSB instances with different dimensionality
but equal curviness and velocity only depends on the number of dimensions.
Figure 6.5 visualizes DSB instances with different parameterizations for ve-
locity and curviness. Apparently, curviness influences the shape of ζw, while
velocity influences the vertical scaling. For example, the range of DSB in-
stances with V = 1.0 is twice as large as the range of instances with V = 0.5.

Algorithmic Implementation

The DSB generator provides parameters that have to be set to construct a
DSB instance with desired properties. They are listed in the following.

41

6 Performance Measurement

0 100 200 300 400 500
c

0

20

40

60

(c
)

C = 5, V = 0.5

0 100 200 300 400 500
c

0

20

40

60

(c
)

C = 10, V = 0.5

0 100 200 300 400 500
c

0

20

40

60

(c
)

C = 15, V = 0.5

0 100 200 300 400 500
c

0

20

40

60

(c
)

C = 5, V = 1.0

0 100 200 300 400 500
c

0

20

40

60

(c
)

C = 10, V = 1.0

0 100 200 300 400 500
c

0

20

40

60

(c
)

C = 15, V = 1.0

Figure 6.5: 500 optimum positions of 1-dimensional DSB instances (ρmax =
4) with varying curviness and velocity. First row: V = 0.5, second row:
V = 1.0. From left to right: C ∈ {5, 10, 15}

d ∈ N>0 dimensionality

bl, bu ∈ R lower and upper bounds for range of ζw; correspond to
bounds of solution space

P ∈ N>0 number of samples; equal to number of change periods
P and optimum positions

C ∈ N>0 ∧ C < 100 curviness

V ∈ R>0 velocity

ρmax ∈ N>0 maximum number of functions that are composed to ζw

Furthermore, the seed of the random number generator can be set to allow
for reproducibility.
In our definition, curviness counts the extremes of ζw per 100 samples.

The minimum curviness realizable is one, since the generator can only count
discrete numbers of extremes on a given set of samples. Theoretically, it
might be interesting to examine benchmarks with lower curviness values,
e.g., C = 0.6. To construct such an instance, the number of samples which
curviness refers to, must be increased in the generator’s implementation.
For the given example, 100 · 5 = 500 samples would be appropriate since
0.6 · 5 = 3 would result in a discrete number of extremes. However, if

42

6.1 Benchmark Problem Sets

the number of reference samples is changed, it should be mentioned in the
description of the experiments to enable comparability with other studies.
The benchmark generation process is described in the following; pseu-

docode is provided in Algorithm 3. Based on the user-defined specification,
parameters are set and upper bounds ιmax and βmax for parameters ι and
β of the functions ζw are determined (Lines 4–7). Then, functions ζw are
preliminarily parameterized (Lines 9–12). The chosen parameter values are
corrected after all functions have been initialized in order to comply with
the specification (Lines 14–16.) Justification for the upper bounds and ex-
planation of the parameter correction is given in the next paragraph.

Algorithm 3 DSB generator
1: given d, bl, bu, ρmax, P, C, V
2: for w = 1, . . . , d do
3: # set constants and upper bounds for parameters
4: ρ ∼ U (1, ρmax)
5: ιmax =

⌊
ρ

√
bu−bl

2

⌋
6: κ = 1
7: βmax = 1

2·κ
8: # parameterize function ζw randomly
9: for i = 1, . . . , ρ do

10: ιi ∼ U (−ιmax, ιmax) ∧ ιi 6= 0
11: βi ∼ U (−βmax, βmax) ∧ βi 6= 0
12: γi ∼ U

(
0, 2π

βi

)
13: # adapt parameterization
14: βi ← correct curviness
15: α← V

Vζw
Vζw : velocity realized by ζw

16: τ ← correct range

Mathematical Justification

Roughly following the order of operations in Algorithm 3, we describe how
the upper bounds for parameters are determined and how the generator
fulfills the specifications regarding curviness, velocity and range.

Number of Component Functions The maximum number ρmax of com-
ponent functions forming ζw can be chosen arbitrarily. However, our studies

43

6 Performance Measurement

0 100 200 300 400 500
c

0

50

100

150
(c

)

max = 2

0 100 200 300 400 500
c

0

50

100

150

(c
)

max = 7

0 100 200 300 400 500
c

0

50

100

150

(c
)

max = 14

Figure 6.6: 500 optimum positions of 1-dimensional DSB instances (C =
7, V = 0.5) with varying ρmax. From left to right: ρmax ∈ [2, 7, 14]

showed that ρmax < C is sufficient. Otherwise, interference becomes likely so
that ζw exhibits extreme peaks or flat regions, see Figure 6.6 for ρmax = 14,
which might be unusual in real-world applications. In our applications,
ρmax = 4 was a reasonable choice independent of C. In each function ζw, we
choose ρ randomly (Line 4) to allow for more diverse function shapes.

Amplitudes The upper bound ιmax for amplitudes ιi of component func-
tions (Line 5) depends on range1 [bl, bu] allowed for composite function ζw.
In order to meet it, the amplitude of ζw must be less or equal to bu−bl

2 since
the maximum range of a trigonometric function is twice its amplitude. The
amplitude of a function consisting of ρ multiplied trigonometric functions
is the product of the component amplitudes ιi which leads to the condi-
tion

∏ρ
i=1 ιi ≤ bu−bl

2 . Applying the ρ-th root results in the upper bound for
amplitudes ιi. For simplification, the result is rounded to an integer value:

ιmax =

 ρ

√
bu − bl

2

 (6.13)

Step Size As described earlier, the optimum positions are sampled from
functions ζw. A proper choice for step size κ is necessary to sample all
important parts of the function ζw. The Nyquist-Shannon sampling theo-
rem [Sha49] defines the relation κ < 1

2·βi . We choose κ = 1 (Line 6) as fixed
step size and parameterize the functions ζw with frequencies compatible with
κ, see next paragraph. Any other value would be possible for κ as well, the
possible specifications, e.g., for curviness, would be the same.

1Without loss of generality, we depict the benchmark generator with equal bounds bl and
bu for all ζw, while different bounds are applicable as well.

44

6.1 Benchmark Problem Sets

Frequency (Curviness) Frequency and curviness are directly related. Re-
lying on the largest possible frequency βmax that follows from the Nyquist-
Shannon theorem (Line 7), the maximum curviness Cmax that ζw theoreti-
cally can realize is

Cmax =
ρ∑
i=1
|50 · βmax|. (6.14)

Value Cmax is the sum of the largest possible curviness values that the ρ
component functions can achieve. The maximum curviness of a component
function is deduced as follows. Any sine function consists of 2 extremes
within each period. If the function is sampled with the upper bound for the
step size according to the Nyquist-Shannon theorem, one period is covered
by four sampling points:

κ <
1

2 · βi
= 1

2 · 2π
L

= L

4π (6.15)

with period length L as multiple of π and the known relationship for trigono-
metric functions βi = 2π

L . Thus, not more than two extremes can lie within
four sampling points, which is visualized in Figure 6.7. Our generator spec-
ifies the curviness in relation to 100 samples. Hence, any ideally sampled
function has 100

4 periods per 100 samples and 100
4 · 2 = 50 extremes within

100 samples. Therefore, C = 50 is the largest realizable curviness for this
and any other function. From this follows that sine functions with βi ≤ βmax
provide 50 ·βi extremes per 100 samples. Summing up the component curvi-
ness values results in the theoretical curviness of ζw:

Ctheo =
ρ∑
i=1
|50 · βi| (6.16)

This leads to the upper bound Cmax in Equation (6.14) if every βi equals
βmax. In practice, Ctheo is not necessarily equal to the curviness Cζw realized
by ζw due to two reasons. First, the component functions might not be
ideally sampled because of the phase shift. Second, we compute curviness
Cζw empirically. It is determined by computing the number of sign changes
of the differences oc − oc−1 for all c ∈ {1, . . . , P}. Therefore peaks located
at a border cannot be detected, for example the extreme at point 4π in
Figure 6.7.

In the implementation, we restrict C to be less than 100, since 100 is the

45

6 Performance Measurement

1 2 3 4 x

1.0

0.5

0.0

0.5

1.0
sin(0.5x)

Figure 6.7: Ideal sampling of a period of an arbitrary sine function. Black
dots mark sampling points

number of samples the definition of C refers to, and it is not possible to
have more extremes than samples. However, we allow C > Cmax, even if it
is only realizable by violating the Nyquist-Shannon condition for βi, since
in some applications the resulting benchmark might be useful although the
functions are not ideally sampled.
During the generation process, first all frequencies are chosen from interval

[−βmax, βmax] regardless of the realized curviness, see Line 11 in Algorithm 3.
After the component functions’ parameterization was completed by setting
the phase shift, the frequencies are adapted so that ζw complies with the
specified curviness (Line 14). This works as follows.
All frequencies that do not become too large by this operation are mul-

tiplied with factor C
Cζw

. In case the specified curviness can only be realized
by violating the bounds of all βi, all frequencies are multiplied with C

Cζw
.

The correction is done iteratively since multiple steps might be necessary
to achieve C. If the correction was not successful for a specified number
of iterations, e.g., when the frequencies are increased and decreased by the
same factor, only a random subset of frequencies is updated. By this means,
it becomes more probable to find a proper parameterization. After the cor-
rection procedure, some βi might exceed βmax. Thus, the sampling would
not be mathematically exact, but for dynamic optimization as application
context it should be sufficient.

Phase Shift Phase shift γi is chosen from [0, 2π
βi

), where 2π
βi

is the period
length of the corresponding component function (Line 12). This interval
is sufficient because sine functions are periodic so that larger or smaller
phase shifts can be expressed by values within this interval as well. It is

46

6.2 Quality Measures

reasonable to parameterize the component functions with different phase
shifts in order to lower the risk of interference and to increase the number
of possible functions.

Scaling (Velocity) The overall scaling factor α influences the velocity. It
is set to V

Vζw
to achieve the specified velocity (Line 15). Here, Vζw is the

velocity realized by ζw and is equal to the median distance of the differences
oc − oc−1 for all c ∈ {1, . . . , P}. The scaling factor is computed after the
curviness has been corrected, since changes in the frequencies might change
the velocity again.

Vertical Shift (Range) The term τ shifts ζw vertically such that the range
covered by ζw matches the specified interval [bl, bu] (Line 16). It might be
the case, that no such shift can be found as the range of ζw is too wide. In
this case ζw cannot be corrected because adapting the scaling α would in
turn violate the velocity specification. The only solution would be that the
user selects a larger range.

6.2 Quality Measures
To evaluate the efficiency of dynamic optimization problems, various quality
measures have been introduced in the past. Surveys are given in [BRAK13;
NYB12; CGP11]. The authors of [NYB12] propose to differentiate between
optimality-based measures, which evaluate the ability to track the optimum,
and behavior-based measures taking into account properties like convergence
speed or diversity within the population. In real-world scenarios, the appli-
cation context indicates which characteristics are of interest and hence which
measures to use. In the following, we present four measures we employ for
evaluating our prediction methods in the next chapters.

6.2.1 Best of Generation

Best of generation (BOG) is a known fitness-based performance measure
averaging the fitness of the best found solutions over a defined number of g
generations and r runs of repeated experiments. It evaluates the algorithm’s
behavior over the whole run. The best value of BOG is problem-dependent.

BOG = 1
g · r

g∑
t=1

r∑
j=1

BOGtj , (6.17)

47

6 Performance Measurement

where BOGtj is the best fitness found during generation t in run j. Low
values are desirable in case of minimization problems.

6.2.2 Best Error before Change

Best error before change (BEBC) [TM99] is a frequently used fitness-based
measure considering the fitness of the best solution found during a change
period. It averages the fitness differences between the best found solution
x∗c and the optimum oc over all change periods c:

BEBC = 1
P

P∑
c=1
|f(x∗c , c)− f(oc, c)| (6.18)

In contrast to BOG, BEBC takes into account only the lowest error per
change period. By this means, BEBC ignores fitness peaks during early
generations of a change period. An optimal algorithm finds the global op-
timum for each change period leading to a BEBC of zero. BEBC has no
upper bound for the worst case. It can only be applied if the optimum oc is
known.

6.2.3 Absolute Recovery Rate

Absolute recovery rate (ARR) is a behavior-based measure for the speed an
optimization algorithm starts converging to the global optimum before the
next change happens [Ngu11; NY12]. It is computed as follows:

ARR = 1
P

P∑
c=1

∑g(c)
t=1

(
f(x∗ct , c)− f(x∗c1 , c)

)
g(c) ·

(
f(oc, c)− f(x∗c1 , c)

) (6.19)

Variable g(c) denotes the number of generations during change period c,
and P is the overall number of change periods. Variable f(oc, c) signifies the
global optimum fitness for change period c, while f(x∗ct , c) represents the best
fitness the algorithm has found in change period c until generation t. Thus,
f(x∗c1 , c) is the best fitness the algorithm has found in the first generation
of change period c. Following [Ngu11; NY12], the best value achievable for
ARR is one, the worst is zero. However, in Appendix B we show that also
negative values can occur. Therefore, in our implementation we use absolute
differences to circumvent negative values.

48

6.2 Quality Measures

6.2.4 Relative Convergence Speed
In [MK18a], we introduced the measure relative convergence speed (RCS)
because in dynamic optimization it is not only important to quickly leave
poor solutions, considered by ARR, but also to find the global optimum
with as few generations as possible. RCS measures how fast the ES ap-
proaches the global optimum relatively to the other algorithms included in
the comparison:

RCS = 1
P

P∑
c=1

∑g(c)
t=1 t · |f(x∗ct , c)− f(oc, c)|∑g(c)

t=1 t · |f(x∗cworst , c)− f(oc, c)|
(6.20)

The semantic of the symbols is the same as defined for ARR. The worst
fitness any algorithm has achieved during change period c is denoted by
f(x∗cworst , c). RCS ranges from zero as best to one as worst value.

ARR is designed so that it measures how fast an algorithm can get far
away from its first solution, i. e., the best fitness found in the first generation
after a change. Due to this, algorithms that start with a very poor solution
may achieve a larger ARR than those starting with a better solution. We
illustrate this with an example. Assuming the best fitness values found by
algorithm A during one change period are [9, 6, 6, 0], those of algorithm B are
[4, 3, 3, 0], and zero is the global optimum fitness. Then, A has ARR = 0.42
and B has ARR = 0.36. Thus, A outperforms B although B in every but
the last generation achieves a better fitness than A.

To overcome this unexpected behavior, we proposed RCS that takes into
account how fast an algorithm finds solutions near to the global optimum.
There exist four main differences to ARR. 1) As motivated above, we employ
the difference f(x∗ct , c)−f(oc, c) instead of the difference f(x∗ct , c)−f(x∗c1 , c)
to measure how near a solution is to the optimum. 2) In order to scale
this difference into the interval [0, 1] it is divided by the difference between
the global optimum fitness and the worst fitness of any algorithm. By this
means, RCS measures the convergence speed of the algorithms relative to
the worst fitness. If instead the difference f(x∗c1 , c) − f(oc, c) would be
incorporated like in ARR, the RCS would exhibit behavior similar to ARR
in cases like the example presented above, but with inverted range. 3) The
difference terms are weighted with the generation number in order to reward
early good fitness values and penalize high fitness values at the end of change
periods. 4) In contrast to ARR, the best value for RCS is zero and the worst
is one. In Appendix B, we scrutinize ARR and RCS deeper and show further
disadvantages of ARR as division by zero and negative ARR values.

49

Part II

Prediction-Based Dynamic
Optimization

51

7 Prediction for Evolution Strategies

Several studies attest that prediction approaches in ES are successful. So
far, mostly statistical prediction methods have found application in dynamic
ES. Motivated by the success of NNs in domains like object recognition and
time-series prediction, we investigate NN-based prediction. The approach is
published in [MK18a], and was the first combining NN-based prediction and
dynamic optimization. Because of the no-free-lunch theorems [WM97] and
results of competitions and comparing surveys, we are aware that neither
NN-based nor statistical prediction methods are best for all problems. In this
work, we show that it is possible to integrate RNN prediction into ES and
that there exist cases in which RNN prediction better supports optimization
compared to autoregression. We also show that hybrid prediction can further
improve the optimizer’s performance.

7.1 Related Work

As described in Chapter 5, time series prediction methods with different
properties exist. First, we review which prediction methods have been em-
ployed in dynamic evolutionary optimization showing a lack of sophisticated
methods. Then, we list literature that compares prediction methods.

7.1.1 Time Series Prediction Methods in Dynamic ES

Literature on prediction approaches in ES investigates multi-objective op-
timization more frequently than single-objective optimization. We include
literature from both domains, although the focus of this thesis lies on sin-
gle-objective optimization. In ES, the prediction methods autoregression,
Kalman filter, and the persistence model are used most often.
The earliest work employing autoregression is [HW06]. Based on solutions

discovered for previous change periods, the optimum position is predicted
and inserted into the population. In multi-objective scenarios, autoregres-
sion is applied to characteristic points of the Pareto set [Li+19b; ZJZ14]
or Pareto front [Zou+17], respectively. The first contribution with a linear

53

7 Prediction for Evolution Strategies

Kalman filter is [RAD08]. The authors employ the predicted optimum posi-
tion to influence the optimizer’s operators, penalize individuals far from the
predicted optimum with a poor fitness, and place some individuals around
the prediction. Another strategy with ES and linear Kalman filter was sug-
gested by [MTV16]. An approach that is different to the ones mentioned
before is pursued in [Jia+18a; Hu+19]. Instead of predicting positions as
in the other approaches, they classify randomly generated points whether
they will be part of the next Pareto set. The points with a positive label
are included into the population. A support vector machine [SC08b] is the
classifier.

The most prediction-based publications do not use an external prediction
model, like Kalman filter or autoregression, but rely on calculating differ-
ences between two observations. For example, [Zho+07] predicts for each
individual its new position by adding the difference to its predecessor. This
resembles the persistence model (Chapter 5), since the movement direction
is assumed to be the same. Liu et al. [Liu+14] additionally add some noise
to the new position. Most difference-based strategies predict the movement
of the center of the Pareto set by computing the deviation of the present
to the previous center point [WJL15; Li+19a; Li+19b; Zho+18; Zou+17;
Cao+17; Ahr+19; Pen+15; Rua+17]. The predicted movement is added to
each individual leading to the new population. The work of [Cao+18] does
not only take into account the movement but also the acceleration of the
center point. An alternative approach is to cluster the population after each
change into various groups having one center point each and to predict the
movement of the center point [Jin+16; Ron+19; RGZ16; LD19]. The new
individuals are generated by adding the difference between the current and
the previous cluster center it belongs to.

Other approaches make use of the orthogonal design strategy to generate
better populations [Zen+06; Liu+15; Wan+16; Rua+17], apply Newton’s
law for prediction [FS17], or employ a quadratic model [Bos05]. Further-
more, works exist on predictive gradient strategies [KGT10] and transfer
learning to build a prediction model [Jia+18b].

This literature overview shows that prediction in evolutionary dynamic
optimization so far mostly relies on the persistence model or, more seldom,
is conducted with traditional time-series models (autoregression, Kalman
filter). In the next paragraph, we give an overview on comparative studies
for time-series prediction methods.

54

7.1 Related Work

7.1.2 Comparative Studies on Time Series Prediction Methods

Research on time series prediction was dominated by statistical approaches
for a long time, see Chapter 5. In recent years, the advent of new, neural
network-based time series prediction methods became popular by applica-
tions like Google’s Neural Machine Translation [Wu+16] or Apple’s speech
recognition system Siri [Lev16]. Often it is discussed whether simpler tradi-
tional or more sophisticated machine learning models perform better. Per-
formance comparison of time series prediction methods is done both de-
scriptive, e.g., by [YM00; BTB12], and empirically in survey studies, e.g.,
by [MSA18a; PSB19; Zha01]. Also international competitions on time series
prediction tasks, e.g., Makridakis or Kaggle competitions, give insights into
the performance of a large variety of methods [FO07]. While survey arti-
cles frequently compare either machine learning or statistical methods, e.g.,
[BKK18; Ahm+10; Geo+17], competitions are advantageous in that there
often are contributions with prediction methods from diverse research fields.
One of the most famous competitions on time series prediction are the

Makridakis competitions (M-Competitions). They were founded in 1982 and
have been conducted overall four times. They are based on univariate real-
world time-series data from various domains like finance or industry. Mainly
pushed from the statistics community, in the first three competitions almost
no contributions with machine learning approaches participated [CHN11].
The results of the three competitions are very similar [MH00; MSA18b].
Often simple methods perform at least equally well as complex ones, and,
in the M4-competition, no evidence is found that machine learning methods
generally have better results than traditional methods. Furthermore, hybrid
methods relying on different statistical or machine learning methods often
are better than raw ones.
Also the NN3-competition [CHN11], that is an extension of the M3-com-

petition with more submissions from machine learning, shows that machine
learning methods perform equally to statistical ones and that hybrid meth-
ods are good. The authors of [CHN11] emphasize, that studies on data sets
that are different to those employed in the M-competitions are required to
show whether neural networks in time series prediction are powerful or not.
The study of [MSA18a] extends the work of [Ahm+10] by comparing not

only machine learning methods but also statistical ones. The authors find
worse performance of machine learning models than of statistical methods
but state that machine learning models could have advantages if the time
series would exhibit nonlinear components. Moreover, they claim that more
diverse data sets would be beneficial which led to the M4-competition. In the

55

7 Prediction for Evolution Strategies

M4-competition, a hybrid method of machine learning and statistical meth-
ods, called “Exponential Smoothing-Recurrent Neural Networks” [Smy19],
clearly outperforms all other methods. The author claims, that for NN-
based approaches it is difficult to learn in classical prediction tasks because
of limited data and inappropriate preprocessing. Zhang [Zha12] summarizes
that neither raw machine learning nor pure statistical models perform best
on all tasks and propose that hybrid models should be the method of choice.
In general, much work has been spent on hybridizations of statistical and
machine learning methods, e.g., [OJOMN19; KB11], as well as on ensembles
of machine learning methods [KLT13; Bis07; HTF09; KBC14].
The study [Wol19] examined a TCN, an LSTM, a Kalman filter and a

persistence model on multivariate time series where each dimension follows
a simple second-order differential equation. In this study, the Kalman filter
and the persistence model outperformed LSTM and TCN. However, com-
paring these methods on the dynamic sine benchmark led to better results
of the neural network approaches emphasizing the influence of the chosen
benchmark problem on the results, see Appendix C.
Furthermore, a recent Kaggle competition on time series is the “Web

Traffic Time Series Forecasting” [Kag17] where the number of views on cer-
tain Wikipedia pages had to be forecast. Also there the contributions are
very diverse. The best solution is an RNN-based method, while other well
performing approaches are, e.g., polynomial autoregression (5th place), a
convolutional NN (6th place), or Kalman filter (8th place).
It can be concluded, that simpler models often turn out to be superior to

more complex ones as well as machine learning models do not necessarily
outperform statistical ones. There is evidence, that much attention has to be
spent on preprocessing matching the requirements of the machine learning
model otherwise the performance probably is poor [Ahm+10]. Moreover,
the chosen benchmark series have strong influence on the performance, and
hybrid approaches seem to be promising.

7.2 Recurrent Neural Network Prediction for
Evolution Strategies

The fact that so far mostly the persistence model or statistical methods are
employed for prediction in dynamic optimization motivates us to examine
whether and how more enhanced methods, i.e., NN-based prediction, can be
utilized. Despite the disappointing performance of machine learning meth-
ods in some studies and competitions (Paragraph 7.1.2), we assume that dy-

56

7.2 Recurrent Neural Network Prediction for Evolution Strategies

namic optimization can profit from capabilities of machine learning methods
if the model is reasonably instantiated, combined with suitable preprocess-
ing and applied to an appropriate problem. This is justified by the success
of machine learning methods in specialized cases, see Paragraph 7.1.2. We
explain our approach employing a raw RNN architecture as prediction model
for dynamic ES in the following.
The original ES, described in Chapter 3, needs only few modifications to

integrate a prediction model. Algorithm 4 shows pseudocode for our predic-
tion-based ES. At the beginning of every generation it has to check whether
the objective function has changed (Line 7). We realize it by re-evaluating
half of the population and additional random solutions somewhere in the so-
lution space. This strategy does not necessarily recognize all changes. There
are different approaches trying to attain high detection quality [ATE17;
Ric09].
If a change has been detected, the best solution x∗c−1 found during the last

change period is appended to archive A (Line 10). Thus, at the beginning of
change period c archive A ∈ Rc−1×d consists of a time series of c− 1 found
solutions [x∗1,x∗2, . . . ,x∗c−1] that are used to train the prediction model Ψ
and to estimate the next optimum position ôc (Line 11):

ôc ← Ψ
(
x∗1,x∗2, . . . ,x∗c−1

)
(7.1)

Since prediction models comprise parameters that have to be fit, at the
first change periods prediction cannot be conducted. After a reasonable
number of change periods, i.e., when enough training data has been collected
in A, the prediction model is trained the first time. In further course of
optimization, the model is trained at the beginning of every new change
period with the new found optimum. This re-training is necessary because
the data the model was trained on the first time, does not necessarily capture
all properties of the dynamics. Also it would be possible that the kind of
dynamics varies over time.
After change detection and prediction, the population is reinitialized by

using the prediction (Line 12). This can be done by introducing solutions
(immigrants) that are initialized near the predicted optimum. In our setting,
one third of the immigrants is randomly placed in the solution space. The
other immigrants are the predicted optimum and neighbors xc obtained by
adding noise to the prediction: xc ∼ z · N (ôc, I) with z ∈ {0.01, 0.1, 1, 10}.
Afterwards, the ES is continued by producing offspring individuals (Line 13),
and selecting the best ones for the next generation (Line 14). After the
selection step, the population has its original size again.

57

7 Prediction for Evolution Strategies

Furthermore, the mutation strength of the ES is controlled by Rechen-
berg’s 1/5th success rule [BS02; Rec73] (Line 6). In static optimization
this is a well-known approach to influence the amount of exploration and
exploitation depending on the success of search, see Paragraph 3.3. After
a change is detected, we set the mutation strength to its initial value so
that the ES can better explore the solution space (Line 9). This is a means
to overcome the general problem of convergence in dynamic optimization.
Without modification, the mutation strength would be too small to find a
new optimum because in the previous change period the ES might already
have left the exploration phase and started to converge to the optimum,
leading to a decreasing mutation strength.

Algorithm 4 Dynamic (µ+λ)-ES with prediction
1: P ← initialize_population()
2: s ← initialize_mutation_strength()
3: A← [] # found solutions
4: c ← 1 # change period counter
5: for generations do
6: s ← adapt_mutation_strength(s) # Rechenberg’s 1/5th rule
7: if change_detected() then
8: c ← c+ 1
9: s ← reset_mutation_strength()

10: A← A.append(x∗c−1) # store best solution
11: ôc ← train_and_predict_optimum(A)
12: P ← reinitialize_population(P, ôc)
13: P′ ← create_λ_offspring_individuals(P, s) # recomb.&mutation
14: P ← select_best_µ_individuals(P,P′)

7.3 Experimental Setup
We compare three different algorithms: an ES without prediction, denoted
by noPred in the following, an ES with an autoregressive prediction model
(autoPred), and an ES with our new RNN-based prediction (rnnPred). For
all three approaches we employ the ES framework presented in Algorithm 4.
The ES framework employs a (50+100)-ES and is run for g = 6000 genera-

tions. We use dominant recombination (ψ = 2), plus selection, and Gaussian
mutation. The mutation strength is initially set to s = 1.0, and adapted
every five mutations with Rechenberg’s 1/5th success rule (ξ = 0.5). The

58

7.3 Experimental Setup

fitness function changes every υ = 20 generations. After a change occurred,
µ random immigrants are incorporated into the population. Prediction is
conducted from the 1000th generation, i.e., when 50 training items have been
collected. As preprocessing, training data is scaled into interval [−1, 1]. The
prediction models use window size ws = 7, i.e., seven previous optima are
used to estimate the next one, and are re-trained after each change with the
new found optimum. The RNN is trained for 30 epochs. These parameter
settings are the same for all experiments unless otherwise stated.
We employ a simple RNN approach instead of an LSTM because in our

application we are faced with very few training data (dozens till hundreds)
whereas LSTMs require due to their larger complexity more training data
to fit the parameters well. Because of this, we employ a rather small net-
work with only two layers. The first one comprises 20 neurons each with the
tanh activation function. The second layer is the output layer and there-
fore consists of d neurons with linear activation function. It returns the
d-dimensional estimation of the optimum for the next change period.

The experimental study comprises four groups of experiments that inves-
tigate different characteristics of optimization problems. Two further groups
deal with improving prediction quality by optimizing the predictor’s param-
eters or employing a hybrid a prediction approach, respectively. Each group
comprises several experiments that are repeated 20 times. In the following,
we motivate the groups of experiments and present their parameter settings.

7.3.1 Group SRR

The experiments of this group concern dynamic variants of the Sphere, Ras-
trigin and Rosenbrock (SRR) benchmark functions. The goal is to examine
whether linear or sine movement has different effects on noPred, rnnPred
and autoPred, and whether the dimensionality of the functions plays a role.
Therefore, we perform one experiment for each combination of dimensional-
ity d ∈ {2, 5, 10, 20, 50, 100} and the movement types linear and sine.

The Sphere function (Figure A.1) is a simple convex function with one
global and no local optimum. Rosenbrock (Figure A.2) is a nonconvex func-
tion with one global optimum and, in high dimensions, one local optimum
[Kra16]. Also Rastrigin is nonconvex (Figure A.3); its shape resembles the
Sphere function but has many local optima. We make these functions dy-
namic by moving the whole function landscape linearly or sine-like within
the solution space. The linear movement is realized by adding an offset,
that is increased every change, to all dimensions. The sine-like movement
is applied to the first two dimensions. The overall fitness level is not mod-

59

7 Prediction for Evolution Strategies

ified, only the position of the function changes within the space. Sphere,
Rosenbrock and Rastrigin are minimization problems, the optimum fitness
for every change is zero.

7.3.2 Group MPB-Random

In this experiments, we investigate the case where the optimum movement
does not follow a pattern but is random. We apply the original moving
peaks benchmark (MPB) with completely random movement [Bra99], see
Paragraph 6.1.1, and instantiate it for dimension d ∈ {2, 5, 10, 20, 50, 100}.

7.3.3 Group MPB-Noisy

Again the MPB benchmark is applied, but now we restrict the movement
of the peaks’ positions to be linear with noise. For this, we instantiate shift
vector Sic with all ones and add Gaussian noise. In the experiments, we
vary the strength of noise among the levels 0.0, 0.1, 1.0, and 10 in order to
examine to which extent randomization does affect the prediction. We use
MPB instances with dimensionality d ∈ {2, 20}.

7.3.4 Group Ros-Length

In the forth group of experiments, we modify the change period length,
i. e., the number of generations lying between two changes. We apply the
Rosenbrock function with sine-like optimum movement and investigate dif-
ferent settings for dimensionality d ∈ {2, 20, 50} and period length υ ∈
{5, 10, 20, 40, 60}. The longer the change periods, the more generations are
required to collect enough training data. Therefore, we conduct optimiza-
tion for g = υ · 300 generations so that in each experiment the final number
of training data is 300.

7.3.5 Group SRR-Neurons

The goal of this group is to test whether the usage of more neurons for
the RNN of our rnnPred approach has an effect. We employ the Sphere,
Rosenbrock and Rastrigin functions with sine-like optimum movement and
d ∈ {2, 5, 10, 20, 50, 100}. In general, the higher the dimensionality, the
more neurons are required to cover characteristics inherent in the data. We
set the number of neurons depending on the problem dimensionality with
#neurons = d1.3 · de as a compromise between network capability and com-
putational effort.

60

7.4 Experimental Results

7.3.6 Group SRR-Hybrid

Since in comparative studies often hybrid approaches outperformed raw ones
as described in Paragraph 7.1.2, in this group of experiments we compare
the prediction methods employed in the previous experiments to an ES with
hybrid prediction (hybPred). In hybPred, both an autoregressive model and
an RNN are trained in parallel and both predict the optimum independently.
The predicted optimum that achieves a better fitness is used in the ES. The
intention behind this is that the optimum dynamics might exhibit parts
that are better explainable with an autoregressive model and others that
can easier be fitted with an RNN. A hybrid predictor could combine the
advantages of both prediction methods. The algorithms are evaluated on
the Sphere function with linear and sine movement parameterized as in
group SRR. The RNN is instantiated with #neurons = d1.3 · de and each
training phase is conducted for 20 epochs.

7.4 Experimental Results

In the following paragraphs, we examine the different groups of experiments
separately. The result tables, e. g., Table 7.1, depict in column “Mov.” the
movement type, while “Dim.” is the dimensionality. The best value within
a row is highlighted bold.

7.4.1 Group SRR

All experiments of this group demonstrate the complexity of problems with
a high dimensionality. The algorithms show deteriorating BOG and BEBC
values the larger the dimensionality gets (Tables 7.1, 7.2, 7.5, 7.6, 7.7, and
7.8). The best possible BOG is zero in all except MPB-based experiments.
In addition, the differences among the algorithms decrease with increasing
dimensionality. These findings are caused by the curse of dimensionality: the
more dimensions, the more difficult becomes the exploration of the search
space.
Furthermore, common to all experiments is that ES with prediction out-

performs noPred regarding BOG and BEBC. Another observation regarding
BOG and BEBC results for the Sphere function is that autoPred always out-
performs rnnPred when the optimum is moved linearly. But for the more
complex Rosenbrock and Rastrigin functions, rnnPred often is better than
autoPred in case of a 5-, 10- or 20-dimensional linearly moved problem.
When the optimum is moved sine-like, rnnPred has always better BOG and

61

7 Prediction for Evolution Strategies

Table 7.1: SRR (Sphere): BOG
Mov. Dim. noPred rnnPred autoPred

linear

2 2.14E-1 9.31E-2 7.67E-2
5 3.12E+0 2.04E+0 1.71E+0
10 1.52E+1 1.07E+1 9.35E+0
20 6.20E+1 4.45E+1 3.99E+1
50 3.85E+2 2.70E+2 2.26E+2
100 1.64E+3 1.19E+3 7.91E+2

sine

2 1.80E+0 4.43E-1 6.73E-1
5 9.75E+0 4.93E+0 6.01E+0
10 2.53E+1 1.64E+1 2.12E+1
20 7.25E+1 5.57E+1 6.44E+1
50 3.46E+2 2.94E+2 3.08E+2
100 1.00E+3 9.41E+2 9.29E+2

Table 7.2: SRR (Sphere): BEBC
Mov. Dim. noPred rnnPred autoPred

linear

2 7.31E-7 3.88E-7 2.93E-7
5 9.23E-3 6.22E-3 5.09E-3
10 4.99E-1 3.56E-1 3.10E-1
20 7.51E+0 5.25E+0 4.66E+0
50 1.25E+2 8.59E+1 6.90E+1
100 8.44E+2 6.18E+2 3.77E+2

sine

2 6.60E-6 2.26E-6 3.34E-6
5 2.80E-2 1.68E-2 1.88E-2
10 7.23E-1 4.77E-1 6.17E-1
20 8.62E+0 6.31E+0 7.50E+0
50 1.26E+2 1.01E+2 1.08E+2
100 5.34E+2 4.89E+2 4.83E+2

BEBC results than autoPred, except for 100-dimensional functions. These
observations emphasize the strengths of RNNs for optimization problems
where the optimum movement follows a periodic pattern.
For the Sphere function, we include the results for the convergence mea-

sures ARR (Table 7.3) and RCS (Table 7.4); the convergence values for the
other functions can be found in Appendix D.1. Regarding ARR, noPred al-
ways is best except for three cases with sine-like movement, whereas for the
RCS measure noPred is outperformed by rnnPred and autoPred: autoPred
is always best in case of linear movement and noPred converges best in sine-
like dynamics, except for 100 dimensions. These contrary results are due
to the measures’ design (see discussion in Paragraph 6.2.4). Since it has no
information about the next optimum, noPred probably starts after a change
with a worse population than rnnPred and autoPred. Therefore, noPred
may have more potential to quickly achieve large fitness improvements than
rnnPred and autoPred leading to its good ARR values. The results for
RCS are consistent to the observations made for BOG and BEBC: rnnPred
converges faster for sine-like and autoPred for linearly moved functions.

7.4.2 Group MPB-Random

The MPB-Random experiments are characterized by randomly changing
peak heights, widths and positions. Thus, the optimal BOG varies among
the settings and therefore is listed in the result tables. The results show that
noPred mostly outperforms the prediction-based ES in the 2-, 5-, and 10-
dimensional case regarding all four quality measures (Tables 7.9, 7.10, 7.11,
and 7.12). For the other dimensions, rnnPred or autoPred are best but the
differences between the three algorithms are very marginal. The prediction-
based approaches perform poor in these settings, since the changes are ran-

62

7.4 Experimental Results

Table 7.3: SRR (Sphere): ARR
Mov. Dim. noPred rnnPred autoPred

linear

2 9.17E-1 8.88E-1 1.94E-1
5 8.79E-1 8.47E-1 2.98E-1
10 7.89E-1 7.62E-1 2.51E-1
20 6.45E-1 6.34E-1 1.90E-1
50 4.70E-1 4.33E-1 1.33E-1
100 3.51E-1 2.88E-1 1.21E-1

sine

2 9.15E-1 8.90E-1 8.98E-1
5 8.86E-1 8.49E-1 8.66E-1
10 8.08E-1 7.87E-1 8.03E-1
20 6.67E-1 6.85E-1 6.80E-1
50 4.39E-1 4.75E-1 4.64E-1
100 2.89E-1 3.15E-1 3.11E-1

Table 7.4: SRR (Sphere): RCS
Mov. Dim. noPred rnnPred autoPred

linear

2 1.36E-2 5.33E-3 2.49E-3
5 3.18E-2 1.25E-2 5.32E-3
10 8.58E-2 3.19E-2 1.44E-2
20 2.01E-1 6.87E-2 3.33E-2
50 3.90E-1 1.59E-1 6.57E-2
100 5.40E-1 3.09E-1 9.04E-2

sine

2 1.23E-2 5.33E-3 7.69E-3
5 2.75E-2 1.60E-2 1.88E-2
10 7.16E-2 4.48E-2 5.89E-2
20 1.79E-1 1.12E-1 1.45E-1
50 4.19E-1 2.90E-1 3.24E-1
100 5.98E-1 4.98E-1 4.76E-1

Table 7.5: SRR (Rosenbr.): BOG
Mov. Dim. noPred rnnPred autoPred

linear

2 4.14E+0 2.34E+0 2.21E+0
5 3.49E+4 3.46E+4 3.45E+4
10 9.24E+5 9.22E+5 9.28E+5
20 7.40E+6 7.39E+6 7.39E+6
50 5.89E+7 5.83E+7 5.83E+7
100 2.36E+8 2.26E+8 2.20E+8

sine

2 9.05E+1 1.66E+1 1.93E+1
5 5.54E+4 2.92E+4 3.25E+4
10 1.00E+6 9.63E+5 9.79E+5
20 8.40E+6 8.34E+6 8.36E+6
50 6.13E+7 6.12E+7 6.12E+7
100 2.28E+8 2.28E+8 2.28E+8

Table 7.6: SRR (Rosenbr.): BEBC
Mov. Dim. noPred rnnPred autoPred

linear

2 1.60E-2 1.22E-2 6.63E-3
5 7.84E+0 7.20E+0 6.16E+0
10 9.75E+2 9.54E+2 3.24E+3
20 1.11E+5 1.11E+5 1.11E+5
50 7.60E+6 7.42E+6 7.41E+6
100 7.57E+7 7.03E+7 6.61E+7

sine

2 8.57E-2 3.11E-2 4.25E-2
5 1.67E+1 1.13E+1 1.26E+1
10 1.04E+3 9.70E+2 9.97E+2
20 1.44E+5 1.43E+5 1.43E+5
50 8.07E+6 8.06E+6 8.06E+6
100 6.67E+7 6.66E+7 6.66E+7

Table 7.7: SRR (Rastrigin): BOG
Mov. Dim. noPred rnnPred autoPred

linear

2 5.92E+0 2.89E+0 1.31E+0
5 5.46E+1 3.81E+1 4.74E+1
10 2.17E+2 1.63E+2 1.84E+2
20 7.23E+2 6.09E+2 6.25E+2
50 3.54E+3 3.45E+3 3.44E+3
100 1.20E+4 1.01E+4 7.24E+3

sine

2 5.29E+0 2.47E+0 3.46E+0
5 4.35E+1 2.34E+1 3.60E+1
10 1.91E+2 1.07E+2 1.66E+2
20 8.88E+2 6.00E+2 6.28E+2
50 4.87E+3 2.69E+3 2.71E+3
100 1.69E+4 1.30E+4 8.64E+3

Table 7.8: SRR (Rastrigin): BEBC
Mov. Dim. noPred rnnPred autoPred

linear

2 4.42E+0 2.06E+0 9.35E-1
5 4.05E+1 2.72E+1 3.55E+1
10 1.62E+2 1.17E+2 1.39E+2
20 5.49E+2 4.64E+2 4.75E+2
50 2.85E+3 2.86E+3 2.79E+3
100 1.02E+4 8.64E+3 6.00E+3

sine

2 4.80E-1 2.18E-1 4.12E-1
5 2.15E+1 1.08E+1 1.74E+1
10 1.38E+2 7.54E+1 1.24E+2
20 8.16E+2 5.37E+2 5.55E+2
50 4.67E+3 2.52E+3 2.54E+3
100 1.65E+4 1.26E+4 8.25E+3

63

7 Prediction for Evolution Strategies

Table 7.9: MPB-Random: BOG
Dim. noPred rnnPred autoPred Expected

2 -1.44E+2 -1.23E+2 -1.26E+2 -1.70E+2
5 -1.07E+2 -1.02E+2 -1.02E+2 -2.05E+2
10 -5.60E+1 -5.65E+1 -5.63E+1 -1.34E+2
20 -5.19E+1 -5.21E+1 -5.21E+1 -1.61E+2
50 -5.83E+1 -5.85E+1 -5.86E+1 -2.05E+2
100 -6.31E+1 -6.33E+1 -6.35E+1 -1.50E+2

Table 7.10: MPB-Random: BEBC
Dim. noPred rnnPred autoPred

2 2.66E+1 4.73E+1 4.44E+1
5 9.25E+1 9.85E+1 9.85E+1
10 7.15E+1 7.15E+1 7.15E+1
20 1.01E+2 1.01E+2 1.01E+2
50 1.36E+2 1.36E+2 1.36E+2
100 7.70E+1 7.68E+1 7.67E+1

Table 7.11: MPB-Random: ARR
Dim. noPred rnnPred autoPred

2 8.46E-1 7.23E-1 6.54E-1
5 3.54E-1 3.08E-1 3.17E-1
10 2.66E-1 2.63E-1 2.65E-1
20 1.43E-1 1.45E-1 1.45E-1
50 9.70E-2 9.83E-2 9.86E-2
100 1.19E-1 1.21E-1 1.22E-1

Table 7.12: MPB-Random: RCS
Dim. noPred rnnPred autoPred

2 5.10E-1 6.94E-1 6.67E-1
5 6.17E-1 6.44E-1 6.45E-1
10 6.92E-1 6.90E-1 6.90E-1
20 8.16E-1 8.14E-1 8.14E-1
50 8.64E-1 8.63E-1 8.63E-1
100 8.30E-1 8.27E-1 8.25E-1

dom and prediction especially makes sense when the changes follow a pattern
that can be learned.
An explanation for the better performance of noPred for small dimen-

sions may be that after a change the prediction-based approaches initialize
a part of their population near to the predicted optimum. Due to random
changes, this prediction is probably very poor. Instead, noPred initializes
that population part randomly somewhere in the solution space. Therefore,
it has more diversity within the population and can more easily find a better
solution. A reason why this difference between the approaches cannot be
observed in higher dimensions may be the curse of dimensionality. Many
more, but not only few more, random individuals are required to adequately
explore the solution space.

7.4.3 Group MPB-Noisy

Considering BEBC (Table 7.14), it can be observed that noPred outperforms
the prediction-based approaches (autoPred is better than rnnPred) in the
2-dimensional setting, but for 20 dimensions both predictors are better than
noPred. The results for BOG (Table 7.13) are similar. These findings are
akin to the observations made in the MPB-Random experiments and can be
justified by the same explanation.
In addition, it can be observed that in the MPB-Noisy experiments the

results differ much more among the approaches than in the MPB-Random
settings. Especially regarding BEBC the performance differences between

64

7.4 Experimental Results

Table 7.13: MPB-Noisy: BOG
Dim. Noise noPred rnnPred autoPred Expected

2

0.0 -1.38E+2 -1.38E+2 -1.41E+2

-1.77E+20.1 -1.43E+2 -1.39E+2 -1.42E+2
1.0 -1.58E+2 -1.57E+2 -1.56E+2
10.0 -1.25E+2 -1.27E+2 -1.27E+2

20

0.0 -1.64E+1 -4.22E+1 -9.20E+1

-2.25E+20.1 -2.01E+1 -4.89E+1 -9.55E+1
1.0 -1.08E+1 -1.30E+1 -1.46E+1
10.0 -6.17E-1 -6.66E-1 -6.76E-1

Table 7.14: MPB-Noisy: BEBC
Dim. Noise noPred rnnPred autoPred

2

0.0 3.45E+1 3.72E+1 3.57E+1
0.1 2.88E+1 3.65E+1 3.44E+1
1.0 1.10E+1 1.58E+1 1.70E+1
10.0 2.13E+1 2.46E+1 2.54E+1

20

0.0 1.83E+2 1.50E+2 1.31E+2
0.1 1.73E+2 1.34E+2 1.11E+2
1.0 1.95E+2 1.90E+2 1.87E+2
10.0 2.23E+2 2.23E+2 2.23E+2

noPred and the prediction approaches are larger than in MPB-Random.
A reason for this is that in MPB-Noisy the peaks basically follow a linear
movement. Though the relationship is disturbed to some extent by noise,
the predictors seem to be able to learn the pattern.

Furthermore, it is interesting that in the 2-dimensional case BOG and
BEBC become better with increasing noise but then become worse for noise
10. In the 20-dimensional, case both measures improve only for very small
noise (0.1) and deteriorate for higher noise. The measures of convergence
speed show no clear relationship to the strength of noise and are included
in Appendix D.1.

7.4.4 Group Ros-Length
In general, both BOG (Table 7.15) and BEBC (Table 7.16) are improving
with increasing period length υ. This is because the ES has more generations
per change period to explore the solution space and may converge to a better
solution. Another observation is that rnnPred is outperformed only one
time. This shows that rnnPred is able to cope with fast and slow changes.
It is interesting that the prediction-based approaches in these settings

always outperform noPred although, especially in case of very frequent
changes, the training data for the prediction models probably are rather
poor, since the ES has very few generations to converge. The convergence
results are consistent with these findings; they are listed in Appendix D.1.

7.4.5 Group SRR-Neurons
Tables 7.17 and 7.18 present the results for these experiments; remaining
results are available in Appendix D.1. The bold highlighting signifies results
that are better than the corresponding ones in group SRR (Paragraph 7.4.1).
In the settings with 2, 5 and 10 dimensions, rnnPred achieves worse results
compared to the corresponding experiments of the SRR settings, since now

65

7 Prediction for Evolution Strategies

Table 7.15: Ros-Length: BOG
Dim. υ noPred rnnPred autoPred

2

5 1.35E+2 5.28E+1 5.39E+1
10 9.81E+1 2.30E+1 2.63E+1
20 9.50E+1 1.74E+1 1.94E+1
40 5.45E+1 1.14E+1 1.26E+1
60 3.52E+1 6.61E+0 7.61E+0

20

5 3.56E+7 3.43E+7 3.46E+7
10 1.64E+7 1.62E+7 1.62E+7
20 8.23E+6 8.17E+6 8.19E+6
40 3.82E+6 3.79E+6 3.80E+6
60 2.68E+6 2.66E+6 2.66E+6

50

5 2.68E+8 2.65E+8 2.65E+8
10 1.23E+8 1.23E+8 1.23E+8
20 6.03E+7 6.02E+7 6.02E+7
40 3.01E+7 3.01E+7 3.01E+7
60 1.99E+7 1.98E+7 1.98E+7

Table 7.16: Ros-Length: BEBC
Dim. υ noPred rnnPred autoPred

2

5 1.44E+1 7.47E+0 7.67E+0
10 4.17E+0 1.13E+0 1.44E+0
20 5.44E-2 3.14E-2 3.87E-2
40 1.99E-3 1.24E-3 1.63E-3
60 1.29E-4 1.13E-4 5.92E-4

20

5 1.86E+7 1.79E+7 1.80E+7
10 2.93E+6 2.89E+6 2.91E+6
20 1.46E+5 1.45E+5 1.45E+5
40 6.50E+2 6.25E+2 6.41E+2
60 6.58E+1 6.08E+1 6.26E+1

50

5 1.89E+8 1.87E+8 1.87E+8
10 5.30E+7 5.28E+7 5.28E+7
20 7.92E+6 7.91E+6 7.91E+6
40 2.62E+5 2.61E+5 2.61E+5
60 1.11E+4 1.11E+4 1.11E+4

Table 7.17: SRR-Neurons: BOG
Dim. Sphere Rosenbrock Rastrigin

2 6.61E-1 2.56E+1 3.31E+0
5 5.33E+0 4.39E+4 2.43E+1
10 1.67E+1 1.16E+6 1.15E+2
20 5.49E+1 8.02E+6 5.71E+2
50 2.90E+2 5.79E+7 2.29E+3
100 9.11E+2 2.16E+8 1.12E+4

Table 7.18: SRR-Neurons: BEBC
Dim. Sphere Rosenbrock Rastrigin

2 3.41E-6 6.11E-2 3.09E-1
5 1.78E-2 1.31E+1 1.11E+1
10 5.72E-1 1.08E+3 8.21E+1
20 6.77E+0 1.37E+5 5.08E+2
50 9.85E+1 7.93E+6 2.12E+3
100 4.74E+2 6.05E+7 1.08E+4

fewer neurons are employed. However, in case of 20, 50 and 100 dimensions,
more neurons are used than in the SRR-Neurons settings. Here, rnnPred
becomes better and even outperforms autoPred. The reason for this is that
RNNs with a more complex architecture, i. e., many neurons and layers, can
often better learn difficult relationships than RNNs with simpler architec-
tures. These experiments show that there is some potential to optimize our
prediction model in order to improve the results.

7.4.6 Group SRR-Hybrid

Here, we do not list the absolute results, but whether pairwise Mann-
Whitney U tests are significant (significance level α = 0.05). Tables 7.19
and 7.20 contain ‘H’ (‘M’), if the algorithm of the respective row achieves a
significantly lower (larger) value than the algorithm in the respective column
regarding the specific metric on the given benchmark. The symbol ‘−’ sig-
nifies a non-significant test result. For each algorithm, the column contains
the metrics BOG, BEBC, ARR, and RCS (from left to right).
First, it has to be mentioned that the experiments for noPred, rnnPred,

66

7.5 Summary

Table 7.19: SRR-Hybrid: linear
Alg. Dim. autoPred rnnPred hybPred

no
Pr

ed

2 M M M M M M M M M M M M
5 M M M M M M M M M M M M
10 M M M M M M M M M M M M
20 M M M M M M M M M M M M
50 M M − M M M M M M M M M
100 M M M M M M M M M M M M

au
to

Pr
ed

2 H H − H M M − M
5 H H H H M M − M
10 H H H H M M − M
20 H H H H M M M M
50 M M M M M M M M
100 H H H H M M M M

rn
nP

re
d

2 M M − M
5 M M M M
10 M M M M
20 M M M M
50 − − − −
100 M M M M

Table 7.20: SRR-Hybrid: sine
Alg. Dim. autoPred rnnPred hybPred

no
Pr

ed

2 M M H M M M M M M M M M
5 M M M M M M M M M M M M
10 M M M M M M M M M M M M
20 M M M M M M M M M M M M
50 M M M M M M M M M M M M
100 M M M M M M M M M M M M

au
to

Pr
ed

2 M M M M M M M M
5 M M M M M M M M
10 M − M M M M M M
20 H H H H M M M M
50 M M M M M M M M
100 H H H H M M M M

rn
nP

re
d

2 M − M −
5 M M M −
10 M M M M
20 M M M M
50 − − − −
100 M M M M

and autoPred reproduce the results of group SRR (Tables 7.1–7.4), ex-
cept for marginal differences. As in group SRR, noPred outperforms the
other approaches regarding ARR, autoPred is better than rnnPred on lin-
ear movement, except for ARR, and rnnPred outperforms autoPred on the
sine dynamics up to medium-sized dimensionality. Minor deviations in the
results are possible, since we train the RNN of the hybrid predictor only
with 20 epochs instead of 30 to reduce the runtime, and it is instantiated
with #neurons = d1.3 ·de because in group SRR-Neurons this turned out to
be a good choice.

Considering the results for hybPred, its success is obvious. It is never out-
performed by any other approach neither for linear nor sine dynamics. This
emphasizes the advantage of hybrid prediction that consists of prediction
methods which are able to learn different types of time series dynamics.

7.5 Summary
In this chapter, we presented a new approach to predict the position of the
next optimum of a dynamically changing fitness function. We designed a
recurrent neural network to serve as prediction model and trained it during
the optimization with new optima found by the ES. In the experimental
study, our approach showed competitiveness to an existing prediction ap-
proach (autoPred) that employs an autoregressive model.
Based on the results of the experimental study we can conclude that our

new approach (rnnPred) works well for objective functions where the opti-
mum movement follows a recurrent pattern but also yields good results for
other movement patterns. It could be observed that rnnPred is able to cope

67

7 Prediction for Evolution Strategies

with different change frequencies as well as for different problem dimension-
alities. In case of noisy optimum movements it did not perform best, but
nevertheless yields results competitive to those of autoPred. Furthermore, it
turned out that our prediction model can be improved by incorporating more
neurons into the architecture. Then it would be able to yield even better re-
sults for high-dimensional problems. Further improvement of the prediction
could be achieved by hybrid predictors utilizing the advantages of prediction
methods suited to different types of dynamics. In general, prediction-based
ES performed better than ES without predictor. Only in low-dimensional
experiments with random or noisy optimum movement noPred was able to
achieve better results.

68

8 Prediction for Particle Swarm
Optimization

In order to enable particle swarm optimization (PSO) to cope with dynamic
optimization problems, various strategies have been introduced, e. g., ran-
dom restart, memory, and multi-swarm approaches. However, in contrast
to ES, literature for PSO lacks approaches based on prediction. In this
chapter, we propose three different PSO variants employing a prediction
approach based on recurrent neural networks to adapt the swarm behavior
after a change of the objective function. This contribution was published in
[MK18b].

8.1 Related Work
Like ES, PSO faces the challenges diversity loss and premature convergence.
Thus, after a fitness function change it is hard for the optimizer to escape the
previously found optimum in favor of the new one probably located further
away. Approaches allowing PSO to solve dynamic optimization problems
are similar to those developed for ES (see Chapter 4). A broad overview
of PSO in dynamic problems is given by [MLY17; Jor14; Bla07]. First, we
give an example of a dynamic PSO that is equipped with some techniques
frequently applied in dynamic optimization. Afterwards, we overview pre-
diction-related literature for dynamic PSO.

8.1.1 Dynamic Particle Swarm Optimization

To apply basic PSO, introduced in Chapter 3, to dynamic optimization only
few adaptations are required. Nevertheless, a wide range of more sophisti-
cated PSO derivatives exists, like quantum particles [BB04] or heterogeneous
PSO [Eng10], that try to overcome certain limitations. Algorithm 5 shows a
simple dynamic PSO that is the performance reference for our PSO variants;
dynPSO refers to it in the following. It requires mechanisms to detect changes
of the fitness function (Line 6) and to adapt the swarm after a change so
that it becomes more diverse in order to explore new regions of the solution

69

8 Prediction for Particle Swarm Optimization

space (Line 9). Changes can be detected by re-evaluating particles and com-
paring their current and previous fitness values. The diversity of the swarm
can be increased by a partial restart (re-randomization) as proposed by Hu
and Eberhart [HE02]. For example, the worst individuals could be replaced
by new random ones so that probably new regions of the solution space are
covered by the swarm.
An optional setting for PSO is an adaptive inertia weight ω in the veloc-

ity update (Equation (3.5)) that decreases with increasing iteration number
(Line 5). Extensive work on how to set the inertia weight for static optimiza-
tion problems exists, see e. g. [HEOB16a] for an overview. If an adaptive
inertia weight is employed for dynamic optimization, it could be reset to its
initial value after a change (Line 7).
After a fitness function change, the particles’ best positions xp should

be reset, since the old ones could lead them into directions that are not
promising anymore. A possible choice is to set xp to the current position
of the respective particle. Hence, the swarm’s best position has to be re-
computed as well (Line 10).

Algorithm 5 Dynamic PSO with partial restart
1: S ← initialize_swarm() # random position&velocity
2: ω, θ1, θ2 ← initialize_values()
3: A← [] # found solutions
4: for iterations do
5: ω ← adapt_inertia(ω)
6: if change_detected() then
7: ω ← reset_inertia()
8: A← A.append(xs) # store best solution
9: S ← adapt_swarm(S)

10: xp,xs ← reset(xp,xs) # reset xp for each particle
11: S ← move_particles(S) # following Eq. (3.5), (3.6)
12: xp,xs ← update(xp,xs) # update xp for each particle

8.1.2 Prediction Approaches in Dynamic PSO
As far as we know, two publications exist for dynamic PSO with prediction.
When we published the work presented in this chapter [MK18b], only the
work by [BLY17] was present. It investigates constrained optimization prob-
lems and assumes that feasible regions in the solution space move linearly.
The authors employ a linear prediction model to forecast the locations of

70

8.2 Prediction-Based Particle Swarm Optimization

the feasible regions. They track the movement of subpopulation centers,
i.e., the individual with the best fitness in the respective subpopulation,
and predict the new center positions by adding the difference to the last
position as done in many publications for ES (see Paragraph 7.1.1). The
authors of [BLY17] claim that the predicted points represent the feasible
regions or are near to them, and employ them to build the new population.
Besides, they introduce various other extensions like memory. The second
work considering prediction for dynamic PSO is [Liu+18] and was published
after our work. It is a multi-population approach for multi-objective opti-
mization. The authors employ a population-based prediction mechanism
(Paragraph 4.2) adopted from [ZJZ14], and predict the population center
with autoregression.

In contrast to these works, we employ a more sophisticated prediction
method (RNN) and propose PSO variants that extend the PSO movement
functions. A further minor difference is that we only use one population
while the related approaches are based on multiple populations. However,
our PSO variants could easily be extended to a multi-population setting
as well. After our work [MK18b] was published, we found the work [Li+14]
proposing a prediction approach for static optimization. It applies a polyno-
mial model to forecast the static optimum position during the optimization
process and employs it as third attractor like we independently suggested in
our work to handle the predicted dynamic optimum.

8.2 Prediction-Based Particle Swarm Optimization

We propose three different ways to integrate a prediction strategy into PSO
for dynamic optimization. After a fitness function change, they predict the
optimum based on the best solutions found for the previous change periods,
like done for ES in Chapter 7. The PSO variants differ in how they use the
prediction in guiding the optimizer.

8.2.1 Prediction as Particle (pred2p)

This approach integrates the predicted optimum position as separate parti-
cle into the swarm. This mechanism is similar to approaches for ES, where
the predicted optimum is often employed to create individuals that are in-
cluded into the population [NYB12]. It also resembles the related approach
of [BLY17] that integrates some of the predicted subpopulation centers as
particles into the population. Such a new particle is treated like the other

71

8 Prediction for Particle Swarm Optimization

ones. Its position and velocity are updated every iteration following Equa-
tions (3.5) and (3.6). If the predicted optimum has a promising fitness, the
corresponding particle will become the swarm’s best particle and lead the
swarm in direction of the predicted global optimum. If the prediction is not
promising, the prediction particle will probably not influence the movement
of the swarm.

8.2.2 Prediction as Third Attractor (pred3)

The idea of this approach is to move the particles not only in direction of
the swarm’s and particle’s best positions, but also to the location of the
predicted optimum. In order to implement this, we extend the velocity
update function (Equation (3.5)) by a further term:

vt = ωvt−1 +θ1r1 ◦ (xp−xt−1)+θ2r2 ◦ (xs−xt−1)+θ3r3 ◦ (ôc−xt−1) (8.1)

Here, the predicted optimum ôc ∈ Rd of the current change period serves
as third attractor. The influence of ôc − xt−1 is controlled by θ3, while r3
is a vector of random values like r1 and r2. This approach differs from the
first one (pred2p) because the particles are always moved in direction of
the predicted optimum, independently of whether the prediction has good
or poor fitness.

8.2.3 Prediction as Particle and Attractor (pred3p)

In our third approach we combine the first two ones. The predicted optimum
is both a particle in the swarm and a third attractor within the velocity
function (Equation (8.1)). This strategy is similar to the second one (pred3)
in that the particles are moved in direction of the predicted optimum whether
it has a good fitness or not. If the prediction has a good fitness, it may
become the swarm’s best particle resulting in two of three attractors moving
the particles to the predicted optimum. In this case, the prediction influences
the particles’ movement stronger than in pred2p and pred3.

8.2.4 PSO Framework

The PSO that serves as basis for our prediction-based PSO variants is de-
picted in Algorithm 6. It applies a re-randomization strategy to increase
swarm diversity after a change (Line 12). The worst 1/5th particles are
replaced by random ones and, in case of pred2p and pred3p, an arbitrary
one of them is replaced by the predicted optimum. Hu and Eberhart [HE02]

72

8.2 Prediction-Based Particle Swarm Optimization

examine in their work different re-randomization rates and report a rate of
ten percent as reasonable value. However, on our benchmark problems a
rate of 20 percent seems to be better.

Changes are detected by re-evaluating half of the swarm and some random
points in the solution space (Line 7). In addition, we adapt the inertia
weight at the beginning of each iteration with Rechenberg’s 1/5th success
rule (Line 6). If more than 1/5th of the particles have found in the previous
iteration a solution that is better than their particle’s best solution, the
inertia weight is doubled, in case less than 1/5th have been successful, the
inertia weight is halved. Although some studies report poor performance
of dynamic parameter adaptation in PSO, see Paragraph 3.4, we apply it
because it seemed to have positive influence regarding our benchmarks.

Overall, our PSO framework with prediction (Algorithm 6) is very similar
to basic dynamic PSO without prediction (Algorithm 5). The only differ-
ences are that a prediction is made (Line 11), the prediction becomes a
swarm particle in case of pred2p and pred3p (Line 12), the velocity move-
ment function contains a third attractor for pred3 and pred3p (Line 14),
and in some experiments θ3 is adapted besides the inertia weight for pred3
and pred3p (Lines 6 and 9).

Algorithm 6 Dynamic PSO with partial restart and prediction
1: S ← initialize_swarm() # random position&velocity
2: ω, θ1, θ2, θ3,← initialize_values()
3: A← [] # found solutions
4: c ← 1 # change period counter
5: for iterations do
6: ω, θ3 ← adapt_parameters(ω, θ3)
7: if change_detected() then
8: c ← c+ 1
9: ω, θ3 ← reset_parameters()

10: A← A.append(xs) # store best solution
11: ôc ← train_and_predict(A)
12: S ← adapt_swarm(S, ôc)
13: xp,xs ← reset(xp,xs) # reset xp for each particle
14: S ← move_particles(S) # following Eq. (3.5), (3.6)
15: xp,xs ← update(xp,xs) # update xp for each particle

73

8 Prediction for Particle Swarm Optimization

8.2.5 Convergent Parameter Settings

As shown in previous studies, e. g., [BE06; Pol09; HEOB16b], the perfor-
mance of PSO heavily depends on its parameter values such that inappro-
priate values can lead to divergent behavior, see Paragraph 3.4. A particle
converges if its position varies only within a specified radius around a point
in the solution space which is not necessarily the optimum [CE14b]. As basis
for the experimental study, we select values for w, θ1, θ2, and θ3 that will
theoretically lead to convergence.

Convergent Settings for pred2p For ordinary PSO with two attractors in
the movement equation, different convergence proofs exist [CE15; CE14b;
BE06; Pol09]. For example, [Pol09] proposes

θ1 + θ2 <
24(ω2 − 1)

5ω − 7 , θ1, θ2 > 0, ω ∈ [−1, 1] (8.2)

theoretically leading to convergent behavior. Which of the proposed conver-
gence proofs should be employed is challenging to decide. Since each theoret-
ical study is based on specific assumptions that do not hold in practice, e.g.,
that the swarm’s and particle’s best position do not change anymore (stag-
nation), empirical justification is required [CE15]. In an empirical analysis,
[CE14a] show that Equation (8.2) is best among the examined variants.
For approach pred2p, we follow the common approach to assign θ1 and

θ2 the same value. We set θ1 = θ2 = 1.49618 and ω = 0.7298, since these
values comply with Equation (8.2) and have often been applied in previous
works. Parameter θ3 is set to 0 as the predicted optimum should not serve
as attractor.

Convergent Settings for pred3 and pred3p For a so called fitness-dis-
tance-ratio PSO with a third attractor, [CE17] derived the relationship:

θ1 + θ2 + θ3 <
18(1− ω2)

5− 4ω , |ω| < 1, θ1 + θ2 + θ3 > 0 (8.3)

We set ω = 0.7298 like in the setting for pred2p and also apply equal values
for θ1, θ2, and θ3. Thus, we get θ1 = θ2 = θ3 < 1.3477 as maximum bound.
Since in previous experiments larger parameter values seemed to yield better
results, we set θ1 = θ2 = θ3 = 1.0532, which is an arbitrary value slightly
below the maximum bound.

74

8.3 Experimental Setup

8.3 Experimental Setup
We empirically compare four different algorithms: the proposed three vari-
ants of PSO with prediction (pred2p, pred3, pred3p), and the standard
PSO without prediction (dynPSO, Algorithm 5). We do not include the re-
lated approach [BLY17] (see Paragraph 8.1.2) into the experimental study
because in a single-population setting the approach resembles our strategy
pred2p. The only difference is the employed prediction method: their pre-
diction is the persistence model, while we employ an RNN. In Chapter 7,
we could show, that NNs can be superior to simpler models and vice versa.
Therefore, we evaluate our strategies only against each other and the raw
PSO.
We execute each algorithm with both its theoretically convergent param-

eter values, see Paragraph 8.2.5, and the settings of the other algorithms. In
addition, we test further parameter settings so that we analyze five different
settings overall; they are listed in the following. In all experiments, inertia
weight ω is set to 0.7298, while θ3 is always set to 0 for dynPSO and pred2p.

• θ1 = θ2 = θ3 = 1.0532
This is a convergent setting for PSO variants with three attractors
(pred3 and pred3p). It is also convergent for dynPSO and pred2p
following Equation (8.2).

• θ1 = θ2 = θ3 = 1.49618
This is a convergent setting for PSO with two attractors (dynPSO and
pred2p). It is not convergent for pred3 and pred3p according to
Equation (8.3).

• θ1 = θ2 = θ3 = 2.0
With this setting, we examine whether larger parameter values lead
to better results. It is convergent neither for the variants with two nor
with three attractors.

• θ1 = θ2 = 1.49618, θ3 = θ1 + θ2 = 2.99236
If the predicted optimum has a good fitness, it might be advantageous
that it gets more influence than the swarm’s and particle’s best solu-
tions. In order to analyze this, we employ a value for θ3 that is the sum
of θ1 and θ2. Only pred3 and pred3p are executed with this setting,
it is theoretically non-convergent.

• θ1 = θ2 = 1.49618, θ3: adaptive
In case of pred3 and pred3p it may happen that the swarm’s best

75

8 Prediction for Particle Swarm Optimization

particle xs and the predicted optimum particle ôc are contradictory
when ôc is located in a completely different region than xs. Therefore,
we examine whether an adaptive θ3 shows better results. If the fitness
of ôc is better or only slightly (≤ 1.5 times) worse than the fitness of
xs, θ3 is doubled, otherwise it is halved. This setting is not convergent.

The experimental design is similar to that in Chapter 7. Each benchmark
function undergoes a change every 20 iterations. In total, 6000 iterations are
performed for each experiment and the experiments are repeated 20 times.
The swarms of all PSO variants comprise 200 particles, employ the global
neighborhood model, and adapt the inertia weight similar to Rechenberg’s
1/5th success rule.
As prediction model we use a recurrent neural network parameterized

according to Chapter 7. The window size is seven and the number of neurons
depends with #neurons = d1.3·de on the problem dimensionality. The RNN
is utilized after 50 training data have been collected, i.e., from the 1000th
iteration, and is re-trained with 30 epochs at each change with the new
training item. The training set is scaled into the interval [−1, 1].
Our benchmark problems are the MPB variant MPB-Noisy which is ex-

plained in Chapter 7, and dynamic variants of the Sphere, Rosenbrock, and
Rastrigin functions (together denoted by SRR). We employ MPB-Noisy in
order to examine the influence of noise on prediction approaches, since pre-
diction is known to perform best when data provides a learnable pattern.
We transform the static functions Sphere, Rosenbrock, and Rastrigin into
dynamic ones by moving them linearly or sine-like. The linear movement
is implemented by adding an offset to all dimensions, the sine-like move-
ment by applying a separate sine function with random amplitude and fre-
quency to each dimension. We instantiate all benchmarks with dimensions
d ∈ {2, 20, 50, 100}.

8.4 Experimental Results
First, we identify the best parameter setting for each algorithm. Then, we
compare the PSO variants employing these settings.

8.4.1 Identification of Best Parameter Settings

To ease the depiction, we show results only for the Sphere function and
MPB-Noisy with noise level 1.0, which are representative for the results
of the other SRR and MPB-Noisy experiments. The complete results are

76

8.4 Experimental Results

given in Appendix D.2. The parameter values are abbreviated as follows:
1.05 for 1.0532 and 1.49 for 1.49618. In Table 8.1, the column headings
“additive” and “adaptive” denote the fourth and fifth settings, respectively,
described in Paragraph 8.3. A bold value signifies the best parameter setting
regarding the respective benchmark and metric. In the following, we use
θ = θ1 = θ2 = θ3.

On the SRR benchmark (Table 8.1), dynPSO with θ = 1.49 clearly out-
performs the other parameter settings as it achieves most often the best
results. Variant pred2p performs with θ = 1.05 and c = 1.49 rather equally
regarding the measures BOG and BEBC, but the convergence speed (RCS)
is much better with 1.05. Therefore, we employ setting θ = 1.05 for the
further evaluations, although this actually is a non-convergent setting for
pred2p. Approaches pred3 and pred3p achieve best results with c = 1.05
regarding all metrics. The settings with an additive or adaptive θ3 seem
not to be advantageous; they achieve similar performance to c = 1.49. For
the Rastrigin and Rosenbrock functions, the same settings as for the Sphere
function appear to be the best, see Tables D.10, D.11, D.12, and D.13 in the
appendix.
In the MPB-Noisy experiments (Table 8.2), for dynPSO c = 1.49 is slightly

better than θ = 2.0. The variants pred2p, pred3 and pred3p perform best
with θ = 1.05. For the other noise levels, the same settings are reasonable
choices, see Tables D.14, D.15, D.16, and D.17.

8.4.2 Comparison of PSO Variants

We compare the PSO variants separately for SRR and MPB-Noisy ex-
periments. The parameter settings are those identified as best in Para-
graph 8.4.1.

SRR

Table 8.3 shows the experiments with respect to the three metrics BOG,
BEBC and RCS for each of the four examined PSO variants averaged over all
runs. The abbreviations “sph.”, “ros.”, and “rast.” stand for Sphere, Rosen-
brock, and the Rastrigin function, respectively, the abbreviations “lin.”, and
“sin.” denote a linear and sine movement, respectively, of the objective func-
tion. The last row of the table counts how often the respective algorithm
is the best over all experiments. An algorithm has a bold value, if it out-
performs the other three PSO variants in that experiment regarding the
respective metric.

77

8 Prediction for Particle Swarm Optimization

Table 8.1: SRR (Sphere, sine movement): comparison of parameter settings
Metric BOG BEBC

Dim 1.05 1.49 2.00 additive adaptive 1.05 1.49 2.00 additive adaptive 1.05 1.49

2

d
yn

P
S
O

8.1E+0 1.6E-1 1.3E-1 - - 1.3E-4 1.0E-4 1.4E-4 - - 0.01 0.02

5 1.2E+1 2.7E+0 7.2E+0 - - 1.9E-1 3.6E-2 1.8E-1 - - 0.03 0.03

10 4.5E+2 9.4E+1 1.7E+2 - - 2.9E+2 5.7E+0 1.8E+1 - - 0.15 0.06

20 1.3E+3 4.6E+2 8.3E+2 - - 9.3E+2 1.0E+2 2.5E+2 - - 0.31 0.18

50 6.6E+4 9.2E+3 1.4E+4 - - 6.3E+4 5.4E+3 9.1E+3 - - 0.82 0.47

100 4.9E+5 4.1E+4 5.2E+4 - - 4.8E+5 3.3E+4 4.2E+4 - - 0.94 0.71

2

p
re

d
2
p

7.3E+0 1.5E-1 1.4E-1 - - 9.5E-5 1.1E-4 1.5E-4 - - 0.01 0.02

5 1.2E+1 2.8E+0 7.0E+0 - - 7.1E-2 3.8E-2 1.9E-1 - - 0.02 0.04

10 1.5E+2 9.3E+1 1.7E+2 - - 4.0E+0 5.5E+0 1.8E+1 - - 0.05 0.06

20 6.0E+2 4.5E+2 8.1E+2 - - 2.5E+2 1.0E+2 2.4E+2 - - 0.17 0.18

50 8.0E+3 9.2E+3 1.4E+4 - - 5.2E+3 5.5E+3 9.2E+3 - - 0.20 0.47

100 3.8E+4 4.1E+4 5.1E+4 - - 3.2E+4 3.3E+4 4.2E+4 - - 0.25 0.70

2

p
re

d
3

2.1E+0 1.1E-1 2.0E-1 1.7E-1 1.1E-1 7.9E-5 1.6E-4 2.2E-4 2.4E-4 1.6E-4 0.00 0.02

5 5.0E+0 3.8E+0 9.6E+0 6.2E+0 3.8E+0 3.4E-2 5.9E-2 2.4E-1 9.7E-2 5.9E-2 0.02 0.05

10 1.1E+2 1.1E+2 1.9E+2 1.3E+2 1.1E+2 2.4E+0 6.6E+0 1.8E+1 7.5E+0 6.7E+0 0.03 0.07

20 4.4E+2 4.6E+2 8.1E+2 4.9E+2 4.6E+2 1.6E+2 1.1E+2 2.3E+2 1.1E+2 1.1E+2 0.12 0.19

50 5.6E+3 8.2E+3 1.5E+4 9.1E+3 8.2E+3 2.9E+3 4.5E+3 9.2E+3 5.2E+3 4.5E+3 0.15 0.42

100 2.8E+4 3.7E+4 5.2E+4 3.7E+4 3.7E+4 2.1E+4 2.8E+4 4.2E+4 2.8E+4 2.8E+4 0.20 0.62

2

p
re

d
3
p

2.1E+0 1.1E-1 2.0E-1 1.7E-1 1.2E-1 8.0E-5 1.6E-4 2.3E-4 2.5E-4 1.6E-4 0.00 0.02

5 5.0E+0 3.8E+0 9.5E+0 6.2E+0 3.8E+0 3.4E-2 5.9E-2 2.4E-1 9.8E-2 5.9E-2 0.02 0.05

10 1.1E+2 1.1E+2 1.9E+2 1.3E+2 1.1E+2 2.4E+0 6.7E+0 1.8E+1 7.3E+0 6.7E+0 0.03 0.07

20 4.4E+2 4.6E+2 8.2E+2 5.0E+2 4.6E+2 1.6E+2 1.1E+2 2.3E+2 1.1E+2 1.1E+2 0.12 0.19

50 5.6E+3 8.2E+3 1.5E+4 9.1E+3 8.2E+3 2.9E+3 4.5E+3 9.0E+3 5.2E+3 4.5E+3 0.15 0.41

100 2.7E+4 3.6E+4 5.2E+4 3.6E+4 3.6E+4 2.0E+4 2.8E+4 4.2E+4 2.8E+4 2.8E+4 0.20 0.62

RCS

2.00 additive adaptive

0.02 - -

0.05 - -

0.10 - -

0.27 - -

0.55 - -

0.73 - -

0.02 - -

0.05 - -

0.10 - -

0.27 - -

0.55 - -

0.73 - -

0.03 0.03 0.03

0.07 0.06 0.06

0.11 0.08 0.09

0.26 0.19 0.20

0.56 0.48 0.46

0.73 0.68 0.68

0.03 0.03 0.03

0.07 0.06 0.06

0.11 0.08 0.08

0.26 0.19 0.20

0.55 0.48 0.46

0.73 0.67 0.68

Table 8.2: MPB-Noisy (noise = 1.0): comparison of parameter settings
Metric BOG BEBC RCS

Dim 1.05 1.49 2.00 1.05 1.49 2.00 1.05 1.49 2.00

2

d
yn

P
S
O

-21.59 -104.53 -171.54 153.76 71.47 4.05 0.91 0.60 0.14

20 -26.31 -21.90 -11.29 159.74 175.45 200.28 0.86 0.90 0.95

50 -0.04 -0.36 -0.22 194.27 193.78 194.01 1.00 1.00 1.00

100 0.00 -0.01 -0.01 187.29 187.28 187.28 1.00 1.00 1.00

2

p
re

d
2
p

-21.76 -79.04 -167.25 153.76 97.49 8.41 0.91 0.73 0.19

20 -29.27 -21.66 -11.15 151.31 176.18 200.69 0.85 0.90 0.95

50 -0.14 -0.35 -0.23 194.11 193.79 194.00 1.00 1.00 1.00

100 -0.05 -0.03 -0.01 187.23 187.26 187.28 1.00 1.00 1.00

2

p
re

d
3

-22.42 -111.65 -166.98 153.76 64.59 7.69 0.91 0.52 0.18

20 -33.21 -21.90 -11.33 144.28 175.34 199.96 0.83 0.90 0.95

50 -0.29 -0.22 -0.22 193.80 193.97 193.99 1.00 1.00 1.00

100 -0.16 -0.10 -0.02 187.08 187.16 187.27 1.00 1.00 1.00

2

p
re

d
3
p

-22.44 -119.38 -164.79 153.76 56.87 9.72 0.91 0.49 0.21

20 -32.62 -21.98 -11.35 145.66 175.32 199.76 0.84 0.90 0.95

50 -0.30 -0.23 -0.22 193.79 193.96 194.00 1.00 1.00 1.00

100 -0.15 -0.11 -0.02 187.10 187.16 187.27 1.00 1.00 1.00

78

8.4 Experimental Results

Considering Table 8.3, pred2p can be classified as worst of the variants,
since it is never the best one. Algorithm dynPSO outperforms all other
variants regarding BOG, but often only when the objective function is low-
dimensional. Its results for BEBC are good as well (pred3p is equally of-
ten best), but it is outperformed by pred3. Taking into account the algo-
rithms’ convergence properties, pred3 and pred3p clearly surpass dynPSO
and pred2p. Altogether, pred3 achieves in most cases the best result, fol-
lowed by pred3p and dynPSO.

To examine whether the differences between the PSO variants are statis-
tically significant, we perform pairwise Mann-Whitney U tests. Table 8.4
contains the p values, where statistically significant values, i. e., p < 0.05, are
highlighted bold. The table is constructed as follows. The algorithm whose
name is written vertically is tested against the algorithms whose names are in
the column headlines, e. g., dynPSO is tested pairwise against pred2p, pred3
and pred3p. The p values show in nearly all cases statistical significance for
tests of dynPSO and pred2p against the other approaches, whereas the tests
pred3 versus pred3p hardly ever yield statistically significant values.

MPB-Noisy

Table 8.5 shows the metric values for the MPB-Noisy experiments. Since
here the best achievable BOG depends on the respective fitness function (for
SRR it is 0), a column for the expected value is inserted. The benchmark
column contains the strength of the noise in parentheses. Interestingly, there
is no relationship between the noise strength and which algorithm achieves
best results. Like for the SRR benchmarks, pred2p least frequently out-
performs other algorithms, and dynPSO achieves better results than pred3
and pred3p on rather low dimensions. Examining RCS, pred3p is most
frequently best. Regarding BOG and BEBC, pred3 and pred3p have often
very similar metric values whereas dynPSO and pred2p appear to be different
to them and to each other. These findings are confirmed by statistical tests
(Table 8.6). Approaches pred3 and pred3p remain too similar, whereas
dynPSO and pred2p appear to be statistically different from the other PSO
variants.

79

8 Prediction for Particle Swarm Optimization

Table 8.3: SRR: comparison of PSO variants with best parameter settings
Metric BOG BEBC RCS

Benchmark dynPSO pred2p pred3 pred3p dynPSO pred2p pred3 pred3p dynPSO pred2p pred3 pred3p

sph. 2 lin. 6.0E-2 9.6E-1 5.0E-1 5.0E-1 5.2E-5 3.1E-5 2.8E-5 2.9E-5 0.01 0.01 0.00 0.00

sph. 5 lin. 3.1E+0 8.0E+0 3.1E+0 3.1E+0 2.7E-2 1.9E-2 1.8E-2 1.8E-2 0.02 0.02 0.01 0.01

sph. 10 lin. 2.2E+1 3.1E+1 1.5E+1 1.5E+1 1.4E+0 4.1E-1 3.2E-1 3.2E-1 0.07 0.05 0.02 0.02

sph. 20 lin. 1.6E+2 1.4E+2 7.7E+1 7.7E+1 3.5E+1 1.7E+1 9.6E+0 9.6E+0 0.20 0.14 0.07 0.07

sph. 50 lin. 3.5E+3 2.7E+3 1.7E+3 1.7E+3 2.3E+3 1.8E+3 1.1E+3 1.2E+3 0.56 0.15 0.13 0.13

sph. 100 lin. 7.0E+4 6.4E+4 4.0E+4 4.2E+4 6.3E+4 5.8E+4 3.6E+4 3.7E+4 0.83 0.18 0.16 0.17

sph. 2 sin. 1.6E-1 7.3E+0 2.1E+0 2.1E+0 1.0E-4 9.5E-5 7.9E-5 8.0E-5 0.02 0.01 0.00 0.00

sph. 5 sin. 2.7E+0 1.2E+1 5.0E+0 5.0E+0 3.6E-2 7.1E-2 3.4E-2 3.4E-2 0.03 0.02 0.02 0.02

sph. 10 sin. 9.4E+1 1.5E+2 1.1E+2 1.1E+2 5.7E+0 4.0E+0 2.4E+0 2.4E+0 0.06 0.05 0.03 0.03

sph. 20 sin. 4.6E+2 6.0E+2 4.4E+2 4.4E+2 1.0E+2 2.5E+2 1.6E+2 1.6E+2 0.18 0.17 0.12 0.12

sph. 50 sin. 9.2E+3 8.0E+3 5.6E+3 5.6E+3 5.4E+3 5.2E+3 2.9E+3 2.9E+3 0.47 0.20 0.15 0.15

sph. 100 sin. 4.1E+4 3.8E+4 2.8E+4 2.7E+4 3.3E+4 3.2E+4 2.1E+4 2.0E+4 0.71 0.25 0.20 0.20

ros. 2 lin. 3.8E+0 3.8E+2 1.2E+2 1.2E+2 1.2E-3 9.0E-3 5.5E-3 5.5E-3 0.01 0.01 0.00 0.00

ros. 5 lin. 2.5E+3 1.1E+4 5.4E+3 5.4E+3 1.8E+1 2.0E+1 1.9E+1 1.9E+1 0.01 0.01 0.00 0.00

ros. 10 lin. 9.0E+4 2.2E+5 1.9E+5 1.9E+5 8.4E+2 2.8E+2 1.2E+2 1.2E+2 0.02 0.02 0.01 0.01

ros. 20 lin. 1.0E+7 2.7E+6 2.2E+6 2.2E+6 2.9E+6 1.8E+5 4.9E+3 4.9E+3 0.16 0.05 0.01 0.01

ros. 50 lin. 2.7E+8 1.3E+8 6.8E+7 7.1E+7 1.2E+8 4.8E+7 1.8E+7 2.0E+7 0.37 0.20 0.09 0.10

ros. 100 lin. 1.4E+10 1.1E+10 7.7E+9 7.7E+9 1.1E+10 9.5E+9 6.8E+9 6.8E+9 0.72 0.16 0.14 0.14

ros. 2 sin. 3.7E+4 3.1E+5 5.9E+4 5.9E+4 1.5E-1 3.8E+3 3.7E+3 3.7E+3 0.01 0.05 0.04 0.04

ros. 5 sin. 7.6E+3 4.1E+5 1.2E+5 1.1E+5 8.3E+1 3.7E+1 1.1E+1 9.2E+0 0.02 0.00 0.00 0.00

ros. 10 sin. 4.8E+5 1.6E+6 9.1E+5 9.3E+5 7.3E+3 5.2E+3 2.9E+3 2.7E+3 0.02 0.01 0.01 0.01

ros. 20 sin. 8.1E+6 5.3E+6 3.6E+6 3.6E+6 6.5E+5 1.1E+5 5.7E+4 6.0E+4 0.07 0.03 0.02 0.02

ros. 50 sin. 8.2E+8 3.2E+8 2.4E+8 2.3E+8 3.2E+8 1.2E+8 6.7E+7 6.6E+7 0.27 0.14 0.10 0.10

ros. 100 sin. 5.6E+9 3.5E+9 2.6E+9 2.5E+9 3.9E+9 2.5E+9 1.5E+9 1.5E+9 0.52 0.16 0.14 0.14

rast. 2 lin. 1.6E+0 3.8E+0 2.1E+0 2.1E+0 5.6E-3 1.1E-2 4.7E-3 4.5E-3 0.03 0.03 0.01 0.01

rast. 5 lin. 2.2E+1 4.9E+1 2.2E+1 2.2E+1 7.4E+0 2.0E+1 6.9E+0 6.9E+0 0.18 0.08 0.05 0.05

rast. 10 lin. 9.9E+1 2.2E+2 1.3E+2 1.3E+2 5.6E+1 1.3E+2 8.1E+1 8.1E+1 0.33 0.08 0.08 0.08

rast. 20 lin. 4.0E+2 6.2E+2 3.9E+2 3.9E+2 2.3E+2 3.9E+2 2.5E+2 2.5E+2 0.42 0.12 0.10 0.10

rast. 50 lin. 4.1E+3 6.7E+3 4.9E+3 4.9E+3 2.8E+3 5.4E+3 4.1E+3 4.1E+3 0.60 0.17 0.15 0.15

rast. 100 lin. 6.2E+4 9.3E+4 5.3E+4 5.2E+4 5.5E+4 8.6E+4 4.8E+4 4.7E+4 0.81 0.21 0.17 0.17

rast. 2 sin. 5.1E+0 3.2E+1 1.7E+1 1.7E+1 1.0E-1 1.1E+1 9.4E+0 9.4E+0 0.04 0.06 0.04 0.04

rast. 5 sin. 2.6E+1 1.0E+2 4.6E+1 4.6E+1 1.0E+1 6.2E+1 2.5E+1 2.5E+1 0.22 0.07 0.06 0.06

rast. 10 sin. 1.8E+2 4.1E+2 3.1E+2 3.1E+2 7.5E+1 2.2E+2 1.6E+2 1.6E+2 0.17 0.16 0.12 0.12

rast. 20 sin. 6.6E+2 1.1E+3 8.0E+2 8.0E+2 3.1E+2 7.0E+2 4.8E+2 4.8E+2 0.28 0.12 0.10 0.10

rast. 50 sin. 1.0E+4 9.8E+3 6.7E+3 6.7E+3 6.2E+3 7.0E+3 4.0E+3 4.0E+3 0.49 0.18 0.14 0.14

rast. 100 sin. 4.3E+4 4.0E+4 2.9E+4 2.9E+4 3.5E+4 3.4E+4 2.2E+4 2.2E+4 0.71 0.29 0.23 0.23

Best frequen. 18 0 11 7 11 0 14 11 1 0 19 16

80

8.4 Experimental Results

Table 8.4: SRR: p values for pairwise tests of PSO variants
Algorithm

d
yn

P
S
O

pred2p pred3 pred3p

p
re

d
2
p

pred3

Benchmark BOG BEBC RCS BOG BEBC RCS BOG BEBC RCS BOG BEBC

sph. 2 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 3.3E-5

sph. 5 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

sph. 10 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

sph. 20 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

sph. 50 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

sph. 100 lin. 4.0E-3 4.0E-3 1.9E-7 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

sph. 2 sin. 8.0E-9 4.0E-6 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 1.4E-6

sph. 5 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 4.0E-6 6.8E-8 8.0E-9 2.1E-7 6.8E-8 6.8E-8 6.8E-8

sph. 10 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

sph. 20 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

sph. 50 sin. 8.0E-9 4.0E-3 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

sph. 100 sin. 4.0E-6 2.2E-2 1.9E-7 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

ros. 2 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 2.1E-6

ros. 5 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

ros. 10 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

ros. 20 lin. 8.0E-9 8.0E-9 3.0E-8 8.0E-9 8.0E-9 3.0E-8 8.0E-9 8.0E-9 3.0E-8 6.8E-8 6.8E-8

ros. 50 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

ros. 100 lin. 2.1E-7 4.0E-6 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

ros. 2 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

ros. 5 sin. 8.0E-9 4.0E-6 8.6E-6 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 8.6E-6

ros. 10 sin. 8.0E-9 4.0E-6 6.8E-8 8.0E-9 8.0E-9 3.9E-1 8.0E-9 8.0E-9 3.0E-1 6.8E-8 1.8E-6

ros. 20 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 3.9E-7

ros. 50 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

ros. 100 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

rast. 2 lin. 8.0E-9 4.0E-6 6.8E-8 8.0E-9 4.0E-3 7.6E-6 8.0E-9 2.2E-2 1.7E-7 6.8E-8 5.9E-6

rast. 5 lin. 8.0E-9 8.0E-9 6.8E-8 4.0E-6 2.1E-7 7.9E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

rast. 10 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

rast. 20 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 2.1E-7 8.0E-9 9.2E-8 6.8E-8 6.8E-8

rast. 50 lin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

rast. 100 lin. 8.0E-9 8.0E-9 6.0E-1 2.1E-7 4.0E-6 6.8E-8 2.1E-7 2.1E-7 1.4E-7 6.8E-8 6.8E-8

rast. 2 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

rast. 5 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

rast. 10 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

rast. 20 sin. 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

rast. 50 sin. 5.5E-5 2.1E-7 6.2E-4 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

rast. 100 sin. 4.0E-6 5.5E-5 1.1E-7 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

pred3p

p
re

d
3

pred3p

RCS BOG BEBC RCS BOG BEBC RCS

6.8E-8 6.8E-8 2.3E-3 6.8E-8 8.2E-1 1.6E-1 3.9E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 2.7E-1 4.2E-1 7.8E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 2.0E-1 9.9E-1 4.2E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 9.0E-1 5.8E-1 6.4E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 7.6E-2 4.1E-2 2.9E-2

6.8E-8 6.8E-8 6.8E-8 1.1E-7 2.3E-1 2.3E-1 3.2E-1

6.8E-8 6.8E-8 4.5E-6 6.8E-8 2.2E-1 8.8E-1 7.1E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 7.4E-1 6.2E-1 7.8E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 1.3E-1 4.1E-1 3.6E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 8.6E-1 5.6E-1 8.4E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 4.9E-1 9.9E-1 8.2E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 1.5E-2 1.9E-2 3.0E-1

6.8E-8 6.8E-8 1.8E-6 6.8E-8 5.8E-1 2.4E-1 1.6E-1

6.8E-8 6.8E-8 3.0E-7 6.8E-8 9.7E-1 1.5E-1 9.9E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 7.8E-1 6.9E-1 5.2E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 8.8E-1 6.9E-1 4.9E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 2.5E-1 3.2E-1 3.4E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 5.4E-1 5.6E-1 6.2E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 8.2E-1 8.6E-1 8.6E-1

6.8E-8 6.8E-8 2.2E-7 6.8E-8 2.6E-1 4.9E-1 2.7E-1

6.8E-8 6.8E-8 1.4E-6 6.8E-8 7.4E-1 2.0E-1 7.4E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 2.5E-1 8.6E-2 1.5E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 3.4E-1 3.0E-1 3.6E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 8.4E-3 2.2E-2 4.4E-1

6.8E-8 6.8E-8 4.5E-6 6.8E-8 8.6E-1 4.2E-1 8.6E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 5.6E-1 9.0E-1 4.4E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 2.2E-1 2.4E-1 3.0E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 5.8E-1 9.7E-1 1.2E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 6.9E-1 7.8E-1 2.1E-1

6.8E-8 1.2E-7 1.2E-7 6.8E-8 7.8E-1 7.4E-1 3.2E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 3.1E-1 7.8E-1 7.6E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 6.6E-1 4.6E-1 4.2E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 8.1E-2 9.0E-1 6.8E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 3.2E-1 3.4E-1 7.6E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 8.2E-1 8.6E-1 7.8E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 3.1E-1 4.7E-1 5.2E-1

81

8 Prediction for Particle Swarm Optimization

Table 8.5: MPB-Noisy: comparison of PSO variants with best parameter
settings
Metric BOG BEBC RCS

Benchmark dynPSO pred2p pred3 pred3p expected dynPSO pred2p pred3 pred3p dynPSO pred2p pred3

noisy (0) 2 -142.65 -22.70 -23.11 -23.09 -177.42 33.75 153.76 153.76 153.76 0.35 0.93 0.91

noisy (0) 20 -22.31 -32.82 -17.07 -16.92 -225.32 176.51 149.43 191.60 191.73 0.90 0.90 0.91

noisy (0) 50 -0.40 -0.64 -1.41 -1.40 -194.32 193.73 193.36 191.91 191.93 1.00 1.00 0.99

noisy (0) 100 -0.02 -0.07 -0.17 -0.18 -187.29 187.27 187.21 187.08 187.06 1.00 1.00 1.00

noisy (0.1) 2 -23.53 -22.67 -23.05 -23.04 -177.42 153.76 153.76 153.76 153.76 0.98 0.87 0.91

noisy (0.1) 20 -22.67 -34.03 -15.80 -15.93 -225.32 176.79 146.15 192.33 192.03 0.90 0.90 0.91

noisy (0.1) 50 -0.17 -0.26 -0.75 -0.75 -194.32 194.06 193.90 193.03 193.03 1.00 1.00 1.00

noisy (0.1) 100 -0.01 -0.09 -0.12 -0.15 -187.29 187.28 187.18 187.13 187.10 1.00 1.00 1.00

noisy (1) 2 -104.53 -21.76 -22.42 -22.44 -177.42 71.47 153.76 153.76 153.76 0.60 0.73 0.91

noisy (1) 20 -21.90 -29.27 -33.21 -32.62 -225.32 175.45 151.31 144.28 145.66 0.90 0.90 0.83

noisy (1) 50 -0.36 -0.14 -0.29 -0.30 -194.32 193.78 194.11 193.80 193.79 1.00 1.00 1.00

noisy (1) 100 -0.01 -0.05 -0.16 -0.15 -187.29 187.28 187.23 187.08 187.10 1.00 1.00 1.00

noisy (10) 2 -139.73 -123.95 -126.34 -126.97 -177.42 28.11 28.75 31.56 30.68 0.20 0.24 0.20

noisy (10) 20 -0.58 -0.93 -1.11 -1.13 -225.32 223.82 222.27 221.58 221.56 1.00 1.00 0.99

noisy (10) 50 -0.02 -0.01 -0.01 -0.01 -194.32 194.29 194.30 194.29 194.29 1.00 1.00 1.00

noisy (10) 100 0.00 0.00 -0.01 -0.01 -187.29 187.29 187.29 187.28 187.28 1.00 1.00 1.00

Best frequency 6 2 4 4 5 2 5 4 3 2 4

pred3p

0.91

0.91

0.99

1.00

0.91

0.91

1.00

1.00

0.91

0.84

1.00

1.00

0.20

0.99

1.00

1.00

7

Table 8.6: MPB-Noisy: p values for pairwise tests of PSO variants
Algorithm

d
yn

P
S

O

pred2p pred3 pred3p

p
re

d
2

p

pred3

Benchmark BOG BEBC RCS BOG BEBC RCS BOG BEBC RCS BOG BEBC

noisy (0) 2 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 1.0E-3

noisy (0) 20 5.5E-5 5.5E-5 1.6E-4 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 1.6E-4 1.6E-4

noisy (0) 50 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

noisy (0) 100 4.0E-6 4.0E-6 3.4E-4 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 3.3E-5 2.0E-5

noisy (0.1) 2 8.0E-9 8.0E-9 5.6E-3 8.0E-9 8.0E-9 1.2E-1 8.0E-9 8.0E-9 1.0E-1 6.8E-8 2.6E-5

noisy (0.1) 20 2.1E-7 2.1E-7 1.2E-6 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 1.2E-6 1.2E-6

noisy (0.1) 50 2.1E-7 2.1E-7 1.2E-6 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

noisy (0.1) 100 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.4E-1 6.9E-1

noisy (1) 2 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 3.7E-5

noisy (1) 20 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.4E-2 9.2E-1

noisy (1) 50 8.0E-9 8.0E-9 6.8E-8 8.0E-9 5.5E-4 6.8E-8 8.0E-9 9.9E-1 6.8E-8 6.8E-8 6.8E-8

noisy (1) 100 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

noisy (10) 2 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 7.1E-3 2.7E-2

noisy (10) 20 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

noisy (10) 50 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 6.8E-8 6.8E-8

noisy (10) 100 5.5E-5 5.5E-5 3.9E-7 8.0E-9 8.0E-9 6.8E-8 8.0E-9 8.0E-9 6.8E-8 2.2E-7 6.8E-8

pred3p

p
re

d
3

pred3p

RCS BOG BEBC RCS BOG BEBC RCS

1.0E-1 6.8E-8 3.1E-3 1.1E-1 1.6E-1 9.9E-1 9.7E-1

1.6E-4 1.6E-4 1.6E-4 1.6E-4 4.2E-1 5.4E-1 7.6E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 4.4E-1 5.6E-1 5.4E-1

2.3E-5 1.3E-5 9.7E-6 9.7E-6 5.8E-1 6.0E-1 6.0E-1

1.5E-1 6.8E-8 2.3E-3 1.8E-1 2.4E-1 7.8E-1 9.2E-1

1.2E-6 1.2E-6 1.2E-6 1.2E-6 3.6E-1 8.6E-2 1.1E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 6.9E-1 7.6E-1 7.1E-1

6.9E-1 2.6E-2 2.1E-2 2.4E-2 4.6E-1 4.4E-1 4.2E-1

9.1E-7 6.8E-8 2.0E-5 1.2E-6 1.1E-2 4.6E-1 7.4E-1

4.1E-1 1.5E-2 9.7E-1 5.1E-1 9.0E-1 9.0E-1 8.2E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 2.0E-1 2.6E-1 2.7E-1

6.8E-8 2.6E-5 2.3E-5 2.3E-5 7.4E-1 7.8E-1 8.2E-1

7.1E-3 2.2E-4 9.1E-2 1.2E-3 5.2E-1 5.8E-1 6.6E-1

6.8E-8 6.8E-8 9.2E-8 6.8E-8 2.6E-1 7.8E-1 3.1E-1

6.8E-8 6.8E-8 6.8E-8 6.8E-8 2.6E-1 2.4E-1 2.1E-1

7.9E-8 6.8E-8 6.8E-8 6.8E-8 1.6E-1 1.3E-1 1.6E-1

82

8.5 Summary

8.5 Summary
In this chapter, we proposed three different extensions of dynamic PSO
(pred2p, pred3, pred3p). They integrate a prediction model that forecasts
the optimum position of the next change period. Approach pred2p inserts
the prediction as particle into the swarm, pred3 adds a third attractor to
the velocity function with the predicted optimum serving as attractor, and
pred3p combines both approaches.
The experimental study demonstrated that the predicted optimum as

third attractor within the velocity function is necessary to successfully in-
tegrate prediction into PSO, since pred2p achieved worse results than the
basic PSO without prediction. Outstanding results of the prediction variants
(pred3, pred3p) could be observed regarding convergence, while the results
for tracking accuracy were satisfying as well. Especially, on problems with
higher dimensionality positive influence of prediction could be observed.

83

9 Predictive Uncertainty for
Evolution Strategies

In the approaches covered by this thesis, prediction strategies aim at estimat-
ing the moving optimum after a change of the fitness function. Considering
the predicted optimum for re-initialization of the population, the optimizer
is led into the direction of the next optimum. Prediction approaches have
in common that they might hamper the optimization in case the predicted
optimum differs much from the true one. If all individuals were re-initialized
around the falsely predicted optimum after a fitness function change, an ES
or PSO possibly needs some extra generations to find a promising region in
the solution space. Ideally, the closer the prediction is to the true optimum,
the more individuals should be placed close to the prediction. As the true
optimum is unknown, it would be useful to have at least an estimate ûc
for the predictive uncertainty, that is an estimate of how far the predicted
optimum ôc is from the real one (Line 11 in Algorithm 7).

In this chapter, we propose a new re-initialization strategy for ES to
control the influence of the prediction depending on its estimated uncer-
tainty. To our knowledge, there exists only the work [RAD08] that takes
into account predictive uncertainty. Instead of a Kalman filter, employed by
[RAD08], we use a prediction model that might be able to capture more diffi-
cult problem dynamics: a temporal convolutional network (TCN) equipped
with Monte Carlo dropout. Since in preliminary experiments TCNs seemed
to be easier and more stable to train, and, e.g., also [BKK18] reports supe-
riority of TCNs against basic RNN structures, we do not employ recurrent
neural networks that have been applied in Chapters 7 and 8. However, the
focus of this chapter lies rather on the evaluation of re-initialization strate-
gies than on comparison of prediction methods. This chapter is based on
our publication [MK19].

9.1 Related Work
We explain how existing re-initialization strategies try to ensure a diverse
population and take into account uncertainty caused by a prediction. After-

85

9 Predictive Uncertainty for Evolution Strategies

Algorithm 7 Dynamic (µ+λ)-ES with predictive uncertainty
1: P ← initialize_population()
2: s ← initialize_mutation_strength()
3: A ← [] # found solutions
4: c ← 1 # change period counter
5: for generations do
6: s ← adapt_mutation_strength(s) # Rechenberg’s 1/5th rule
7: if change_detected() then
8: c ← c+ 1
9: s ← reset_mutation_strength()

10: A← A.append(x∗c−1) # store best solution
11: ôc, ûc ← train_and_predict(A) # predict opt.&unc.
12: P ← reinitialize_population(P, ôc, ûc)
13: P′ ← create_λ_offspring_individuals(P, s) # recomb.&mutation
14: P ← select_best_µ_individuals(P,P′)

wards, we describe the process of uncertainty estimation for neural networks
that we use in our approach.

9.1.1 Re-Initialization Strategies

Population re-initialization after a change is important to support explo-
ration abilities of the ES (Line 12 in Algorithm 7). Different re-initialization
strategies exist both for dynamic optimization with [HW06; RAD08; SC14;
BLY17] and without prediction [NYB12; CGP11; WY09]. In the following,
we introduce re-initialization strategies, that have been proposed for ES and
are used in our experimental study. The pattern for the strategies’ names is
as follows. The first letter signifies whether a prediction model is applied (p)
or not (n). The last letters denote the respective strategy. Vector xc ∈ Rd
is an immigrant of the population in change period c.

nRND

The new individuals xc are randomly sampled within the lower bound bl

and upper bound bu of the solution space: xc ∼ U
(
bl, bu

)
[Zho+07].

86

9.1 Related Work

nVAR

The new individuals are the old ones with additional noise: xc = xc−1 + ε.
The noise is sampled with ε ∼ N

(
0, 1

4d‖xc−1 − xc−2‖22
)
and depends on the

difference between the current position xc−1 and the position of the nearest
individual xc−2 in the previous population [Zho+07].

nPRE

This strategy does not require a separate prediction model but serves itself
as a simple prediction approach [Zho+07]. For each individual xc−1 its next
position x̂c is predicted with x̂c = xc−1 +(xc−1−xc−2) where xc−2 is defined
as in nVAR. The individuals are re-initialized at their predicted positions that
are perturbed with noise ε as in nVAR: xc = x̂c + ε.

pKAL

The only approach that considers uncertainty ûc of prediction ôc, is the
work of [RAD08] with a Kalman filter prediction model. Based on the esti-
mated prediction uncertainty they adapt the number of individuals that are
placed around the predicted optimum. The new individuals xc are sampled
from xc ∼ N (ôc, ûc) leading to a larger spread in dimensions with high
uncertainty. Here, the a priori state estimation â−c is the predicted opti-
mum ôc, and the a priori error variance, i.e., the diagonal of the a priori
error covariance Ê−c , serves as estimate for the predictive uncertainty ûc
(see Paragraph 5.3).
Rossi et al. [RAD08] propose to re-initialize only bδ ·µc individuals around

the predicted optimum, the remaining ones are re-initialized with a standard
method, e.g., nRND. Factor δ decreases with increasing uncertainty, where
δ = χ

1+ûmax
and 0 < χ < 1 + ûmax. Here, ûmax denotes the maximum entry

of ûc, µ the population size, and χ a selectable constant.

9.1.2 Uncertainty Estimation with Neural Networks

By design, artificial neural networks (NNs) output a point prediction ŷ for
a given input x ∈ Rd. In order to get an estimate for the uncertainty of the
output, NNs of any type can be combined with Monte Carlo (MC) dropout
without changing the network architecture [Gal16]. With MC dropout, neu-
rons are dropped not only during training but also for prediction. After
training of the NN, for a given input the output and its uncertainty are
predicted by conducting m so-called Monte Carlo runs. The NN output is

87

9 Predictive Uncertainty for Evolution Strategies

...

x

...

...

...

n(x)

...
...

q(x)

Figure 9.1: Feed-forward neural network with additional output layer for
aleatoric uncertainty

computed m times for the same input with other neurons dropped in each
run. This leads to m different network outputs for the given input. The av-
erage output and its variance, i.e., predictive mean and predictive variance,
respectively, are computed with

E [ŷ] = 1
m

m∑
i=1

ni(x) (9.1)

Var [ŷ] = 1
m

m∑
i=1

qi(x) + ni(x)2 − E [ŷ]2 , (9.2)

where ni(x) denotes the network output of the ith MC run for input x. The
predictive variance represents the uncertainty of the prediction. It consists
of the sample variance plus noise qi(x) that is inherently present in the data,
i.e., aleatoric uncertainty [KG17]. Aleatoric uncertainty is data-dependent
and can automatically be learned by the NN without further information.
Only an additional output layer for q(x) and a corresponding loss function
are required, see Figure 9.1. For more information on uncertainty estimation
for NNs, see [OZK18; KG17; Gal16].
In the experimental study, we use a TCN combined with Monte Carlo

dropout. However, also recurrent neural networks can be extended by the
uncertainty estimation method. The ES employs the predictive mean E [ŷ]
as predicted optimum ôc and the predictive variance Var [ŷ] as predictive
uncertainty ûc.

9.2 Uncertainty-Aware Re-Initialization
We propose new population re-initialization strategies for ES with predic-
tion (pUNC, pDEV, pRND): one with and two without predictive uncertainty
estimation. They are described in the following.

88

9.2 Uncertainty-Aware Re-Initialization

pUNC

This is our new re-initialization strategy with predictive uncertainty. In
contrast to pKAL, we propose to sample not only some as in [RAD08] but
all new individuals from confidence intervals around the predicted optimum
with xc ∼ z · N (ôc, ûc). In pKAL, the problem that a poor prediction might
lead to a population concentrated in a region far from the real optimum is
circumvented by also sampling immigrants uniformly in the whole solution
space. Since this strategy often might place many individuals in regions not
containing promising solutions, we propose to sample the individuals from
various intervals around the prediction, e.g., with z ∈ {0.1, 0.5, 1.0, 2.0} that
represent the probability intervals 0.09, 0.38, 0.68, and 0.95 of the normal
distribution. For each interval, an equal proportion of the overall number
of immigrants is generated. By this means, the population covers a large
area of the solution space but still is centered around the prediction. This
might be advantageous as prediction often provides some information about
the direction of the optimum movement even if the predicted position does
not exactly represent the real one. Nevertheless, the population is spread
widely so that it is able to explore other regions.
In our publication [MK19], we accidentally implemented pUNC in a dif-

ferent way: xc ∼ N
(
ôc, z ·

√
ûc
)
. Therefore, the concrete results of the

experimental study in this thesis differ slightly from the published ones,
nevertheless the conclusion is same.

pDEV

In order to examine whether the uncertainty estimation of the Kalman fil-
ter and the TCN, respectively, are useful we also propose a simpler kind of
uncertainty estimation. Here, the deviation of the predicted and found opti-
mum is interpreted as uncertainty σ =

√
1
d‖x∗c−1 − ôc−1‖22. We sample with

different z values like in pUNC: xc ∼ z · N
(
ôc, σ2). In contrast to pKAL and

pUNC, here only one uncertainty estimate for all d dimensions is available.

pRND

Our last strategy does not consider predictive uncertainty and is only for
the sake of comparison. The predicted optimum is randomly perturbed with
different scales z: xc ∼ z · N (ôc, I), where I is the identity. We use this
strategy in Chapter 7 as well.

89

9 Predictive Uncertainty for Evolution Strategies

9.3 Experimental Setup
We equip the same base ES (Algorithm 7) with five different prediction meth-
ods: no prediction model (npm), a linear autoregressive model (ar) [HW06],
TCN without (tcn) and with uncertainty estimation (unc), and a Kalman
filter (kal). We combine the prediction methods with following re-initial-
ization strategies:

• npm with nRND, nVAR, and nPRE

• ar and tcn with pRND, and pDEV

• kal and unc with pRND, pDEV, pKAL, and pUNC

For pKAL, we set χ = 0.1 since this setting turned out to be good in the
original work. All re-initialization strategies with probability intervals have
z ∈ {0.1, 0.5, 1.0, 2.0}.

We employ a (50+100)-ES with mutation strength set to 1.0 initially.
After a change, 50 immigrants are generated according to the respective
re-initialization strategy and are inserted into the population; one third of
them is randomly placed in the solution space to support exploration. The
fitness function changes every 30th generation and the ES is conducted for
554 change periods. We chose this number in order to get a number of
training data that is divisible by the batch size of the TCNs such that all
batches have the same size. All experiments are repeated 20 times.
We predict the next optimum after each change but re-train the prediction

models only every 75 changes to circumvent excessive runtimes. Overall, five
training phases are conducted. In each of them we use the most recent 128
training patterns. This is different to the experiments in Chapters 7 and 8
where training took place after each change but only with the last new
training pattern. The training data are scaled into interval [−1, 1]. Different
from the experiments in the previous chapters, now the data are not the
absolute positions but differences between each two succeeding solutions.
This is a common strategy to ease prediction [Zha12]. We train the TCNs
for 100 epochs and conduct 50 and 10 Monte Carlo runs during training
and prediction, respectively. Since the training patterns have a window
size of 50 time steps, the TCN requires 3 blocks according to Equation 5.7.
Nevertheless, we use four blocks since slightly overparameterized networks
seem to achieve better results. In preliminary experiments, we tuned the
hyperparameters of the TCNs, see Appendix D.3.1. The best setting we
found is: 27 filters, filter size 6, learning rate 0.001, batch size 32, and dropout
probability 0.1.

90

9.4 Experimental Results

We compare the algorithms on the dynamic sine benchmark (DSB) and
the moving peaks benchmark (MPB). We initialize the benchmarks for di-
mensions d ∈ {2, 5, 10, 20}, the solution space is within [0, 100]d. We combine
DSB with the well-known fitness functions Sphere, Rastrigin, and Rosen-
brock. The parameterization of DSB is: C = 10, V = 0.5, ρmax = 4. We
instantiate MPB with ten peaks and noise ν ∈ {0.0, 0.01, 0.05}, η = 1− ν.

Unlike in Chapters 7 and 8, here we measure not only the performance of
the ES but also the error of the prediction models. We introduce prediction
error (PE) as root mean squared error of the predicted and true optimum
positions over all change periods. The best PE value is 0. The metrics are
computed with respect to the generations in which a prediction is conducted.

9.4 Experimental Results

Both for DSB and MPB we first identify for each prediction model the
best re-initialization strategy. Afterwards, we compare the different predic-
tion approaches combined with the identified settings. We conduct pairwise
Mann-Whitney U tests with significance level α = 0.05 to examine statistical
significance. The structure of the tables containing the results is the same
as in Paragraph 7.4.6, only the employed metrics differ. Here, the order of
metrics listed for the algorithms in the columns from left to right is: BOG,
BEBC, RCS, PE. With ‘·’ we indicate that the PE measure is not computed
for npm, since npm has no prediction model. The algorithms’ names consist of
the prediction model followed by the re-initialization strategy. For all met-
rics low values are desirable. Hence, an algorithm whose name is in the row
significantly outperforms another algorithm if the respective metric contains
‘H’. The columns ‘Alg.’, ‘Bmk.’, and “Dim.” contain the algorithm’s name,
the benchmark function, and the problem dimensionality, respectively.

9.4.1 Dynamic Sine Benchmark

Comparison of Re-Initialization Strategies

ES without prediction (npm) performs best with re-initialization strategy
nVAR because it almost never is worse than nPRE and nRND (Table 9.1).
For prediction model ar, the choice of re-initialization strategy seems to
be less important (Table 9.2). Here, strategy pRND leads to better results
than pDEV only for BOG. In contrast, pRND clearly outperforms pDEV if the
ES is equipped with tcn (Table 9.3). Interestingly, the ES equipped with
kal performs worse with pKAL than with those re-initialization strategies

91

9 Predictive Uncertainty for Evolution Strategies

Table 9.1: DSB: comparison of re-
initialization strategies for npm. Or-
der of metrics from left to right:
BOG, BEBC, RCS, PE

Alg. Bmk. Dim. npm-nVAR npm-nPRE
np

m
-n
R
N
D

Sp
he
re

2 − − M · M − M ·
5 − M M · − M M ·
10 M M M · M − − ·
20 M M M · M − − ·

R
os
en
br
oc
k 2 − M M · − − M ·

5 − M M · − M M ·
10 H − M · − M M ·
20 − − − · − − − ·

R
as
tr
ig
in 2 M M M · M M M ·

5 M M M · M − − ·
10 M M M · H − − ·
20 M − M · − − − ·

np
m
-n
VA

R

Sp
he
re

2 − − − ·
5 − − H ·
10 − H H ·
20 − H H ·

R
os
en
br
oc
k 2 − H − ·

5 − − H ·
10 − − − ·
20 − − − ·

R
as
tr
ig
in 2 H − − ·

5 H H H ·
10 H H H ·
20 H − H ·

Table 9.2: DSB: comparison of re-
initialization strategies for ar

Alg. Bmk. Dim. ar-pDEV

ar
-p
R
N
D

Sp
he
re

2 H − − −
5 H − − −
10 − − − −
20 H − − −

R
os
en
br
oc
k 2 H − − −

5 H − − −
10 H − − −
20 H H − −

R
as
tr
ig
in 2 H − − −

5 − − − −
10 − − − −
20 − − − −

Table 9.3: DSB: comparison of re-
initialization strategies for tcn

Alg. Bmk. Dim. tcn-pDEV

tc
n-
pR

N
D

Sp
he
re

2 H H H −
5 H − − −
10 H H H −
20 H H H −

R
os
en
br
oc
k 2 H H H −

5 H H − −
10 H H H −
20 H − − −

R
as
tr
ig
in 2 H H H −

5 H − − −
10 H − − −
20 H − − −

(pRND, pDEV) that do not utilize the uncertainty estimation of the Kalman
filter (Table 9.4). In contrast, pUNC, also considering predictive uncertainty,
frequently outperforms the other strategies. This shows the advantage of
predictive uncertainty for the ES. Whether the predictive uncertainty can
be utilized by the ES obviously depends on the choice of re-initialization
strategy. Even with unc, pKAL is worse than all other strategies (Table 9.5).
For unc, pRND and pUNC seem to have nearly equal results while pDEV is
slightly worse than these two. Since the intention of unc was to examine the
influence of predictive uncertainty, we choose pUNC for unc in the following
analysis although the results so far would also justify the choice of pRND.

Comparison of Prediction Methods

After having identified the best re-initialization strategy for each prediction
method, we compare these ES variants in the following, see Table 9.6. In Ap-
pendix D.3, tables with all pairwise comparisons can be found (Tables D.22,
D.23, D.24).
First, we consider the prediction-based algorithms. Algorithm ar-pRND

92

9.4 Experimental Results

Table 9.4: DSB: comparison of re-
initialization strategies for kal

Alg. Bmk. Dim. kal-pDEV kal-pUNC kal-pKAL

ka
l-p

R
N
D

Sp
he
re

2 H − − − M − − H H − H H
5 H H H − M M H − H H H −
10 H − H M M M H M H H H H
20 H − H − M M H − H H H −

R
os
en
br
oc
k 2 H − − − M M − − H H H H

5 H − − − M M − − H H H H
10 H H H − M M H − H H H −
20 H H H − M − H − H H H M

R
as
tr
ig
in 2 H − − − M M − − H H H −

5 H − − − − − − − H − − −
10 − − − − − − − − H − − −
20 M M M M − − M − − − − M

ka
l-p

D
EV

Sp
he
re

2 M − − − H H H −
5 M M − − H H H −
10 M M − − H H H H
20 M M − − H H H −

R
os
en
br
oc
k 2 M M − − H H H H

5 M M − − H H H −
10 M M − − H H H −
20 M M − − H − H −

R
as
tr
ig
in 2 M M − − H H H −

5 M − − − H − − −
10 − − − − H − − M
20 H H − H H H H −

ka
l-p

U
N
C

Sp
he
re

2 H H H −
5 H H H −
10 H H H H
20 H H H −

R
os
en
br
oc
k 2 H H H H

5 H H H −
10 H H H −
20 H H H M

R
as
tr
ig
in 2 H H H −

5 H − − −
10 H − − −
20 − − H M

Table 9.5: DSB: comparison of re-
initialization strategies for unc

Alg. Bmk. Dim. unc-pDEV unc-pUNC unc-pKAL

un
c-
pR

N
D

Sp
he
re

2 M M M M M M M M − − − M
5 H H H − M − M − H H H H
10 H H H H H − − − H H H H
20 H H H H H H H H H H H H

R
os
en
br
oc
k 2 H H H − M M M − H H H −

5 H H H − − − − − H H H −
10 H H H − H H H − H H H −
20 H − H − H H H − H H H −

R
as
tr
ig
in 2 − − − − M M M − H H H −

5 H − − − H − − − H H H −
10 − − − M H − H − H H H −
20 − − − M H − − M H − H M

un
c-
pD

EV

Sp
he
re

2 M M M M H H H −
5 M M M − H H H H
10 − − − − H H H H
20 H − H H H H H H

R
os
en
br
oc
k 2 M M M − H H H −

5 M M M − H H H −
10 − − − − H H H −
20 − H H − H H H −

R
as
tr
ig
in 2 M M M − H H H −

5 M − − − H H H −
10 H H H − H H H −
20 − − − − H − − −

un
c-
pU

N
C

Sp
he
re

2 H H H H
5 H H H H
10 H H H H
20 H H H −

R
os
en
br
oc
k 2 H H H H

5 H H H −
10 H H H −
20 H H H −

R
as
tr
ig
in 2 H H H −
5 H H H −
10 H − H −
20 H − − −

93

9 Predictive Uncertainty for Evolution Strategies

is almost always outperformed by the other approaches, and tcn-pRND is
superior to kal-pUNC although it does not take into account predictive un-
certainty. The reason for this is that TCNs are better suited to these kinds of
dynamics than linear models like Kalman filters and autoregressive models.
This is confirmed by the results on the MPB benchmark, see Paragraph 9.4.2.
The comparison of tcn-pRND and unc-pUNC shows that for TCN-based ES
predictive uncertainty has a positive effect especially on lower-dimensional
functions with few local optima.
No prediction, i.e., npm-nRND, often is the worst algorithm except for good

RCS values compared to ar and kal. The good RCS values can be explained
as follows. Prediction-based re-initialization leads to a population that is
concentrated in a region probably close to the true optimum. Therefore,
these algorithms find solutions with better fitness after a fitness function
change. But it might be the case that this concentration hampers finding
the true optimum, since the population has to be spread again. In contrast,
npm-nRND distributes the population over the whole solution space so that
it might need more generations after a change to find a promising region
which leads to worse average fitness (BOG). Since it approaches this region
probably from different directions, it might be easier at the end to exploit
the region causing a good RCS. It is possible that npm-nRND has a better
RCS but worse BOG because BOG is based on average (good for ar and
kal), while RCS punishes poor fitness values especially in later generations
of a change period due to multiplication with the generation number, see
Paragraph 6.2.4. Generally, npm-nRND does not outperform the TCN-based
predictors regarding RCS because, as already described, TCNs are better
predictors for this benchmark and probably yield a prediction that is nearer
to the true optimum.
Overall, the order of performance reaches from best to worst tcn-pRND,

unc-pUNC, kal-pUNC, ar-pRND, npm-nVAR. The fact that tcn outperforms kal
emphasizes that, in case a prediction approach is not suited to the problem
dynamics, even uncertainty estimation cannot compensate the weaknesses
of the prediction approach. In addition, a smaller advantage of uncertainty
could be observed for multimodal and high dimensional problems.

Influence of Dimensionality

In the previous paragraph it turned out that for TCN-based ES predictive
uncertainty might be helpful only in lower-dimensional problems. Therefore,
we examine on the Sphere function, up to which dimensionality predictive
uncertainty provides useful information both for Kalman filter and TCN.

94

9.4 Experimental Results

Table 9.6: DSB: comparison of prediction methods
Alg. Bmk. Dim. ar-pRND tcn-pRND kal-pUNC unc-pUNC

np
m
-n
VA

R

Sp
he
re

2 M − H · M M M · M M H · M M M ·
5 M − H · M M M · M M H · M M M ·
10 M H H · M M M · M M − · M M M ·
20 M M − · M M M · M M − · M M M ·

R
os
en
br
oc
k 2 M − H · M M M · M M − · M M M ·

5 M − H · M M M · M M H · M M M ·
10 M M H · M M M · M M − · M M M ·
20 M M H · M M M · M M H · M M − ·

R
as
tr
ig
in 2 − − H · M M M · M M − · M M M ·

5 − − H · M − − · − − H · M − − ·
10 M − H · M − − · M − H · M − H ·
20 M − − · M M M · M H − · M M − ·

ar
-p
R
N
D

Sp
he
re

2 M M M M M − − M M M M M
5 M M M M M M M M M M M M
10 M M M M M M M M M M M M
20 M M M M M M − H M M M M

R
os
en
br
oc
k 2 M M M M M M − M M M M M

5 M M M M M M M M M M M M
10 M M M M M M M M M M M M
20 M M M M M − − H M M M M

R
as
tr
ig
in 2 M M M M M M − M M M M M

5 M M M M − − H H M − M M
10 M − − M H − − H − − − M
20 M − M − H H − H − − − M

tc
n-
pR

N
D

Sp
he
re

2 H H H H M M M M
5 H H H H M M M −
10 H H H H H H H −
20 H H H H H H H −

R
os
en
br
oc
k 2 H H H H M M M −

5 H H H H − − M −
10 H H H H H H H −
20 H H H H H H H −

R
as
tr
ig
in 2 H H H H M M M −

5 H H H H H − − −
10 H − H H H − − −
20 H H H H H − − −

ka
l-p

U
N
C

Sp
he
re

2 M M M M
5 M M M M
10 M M M M
20 M M M M

R
os
en
br
oc
k 2 M M M M

5 M M M M
10 M M M M
20 M M M M

R
as
tr
ig
in 2 M M M M

5 M − M M
10 M − − M
20 M M − M

95

9 Predictive Uncertainty for Evolution Strategies

Table 9.7: DSB (Sphere, various
dimensionalities): kal-pRND and
kal-pUNC

Alg. Bmk. Dim. kal-pUNC

ka
l-p

R
N
D

Sp
he
re

2 M − − H
3 M − − M
4 M M − M
5 M M M −
6 M M − −
7 M M − −
8 M M − −
9 M M − −
10 M M M M
11 M M − −
12 M M − −
13 M M − −
14 M M − −
15 M M − −
16 M − − −
17 M M − −
18 M M − −
19 M M − −
20 M M M −

Table 9.8: DSB (Sphere, various
dimensionalities): unc-pRND and
unc-pUNC

Alg. Bmk. Dim. unc-pUNC

un
c-
pR

N
D

Sp
he
re

2 M M M M
3 M M M −
4 M − M −
5 M − M −
6 M M M −
7 M M M −
8 − − − −
9 H H H −
10 H − H −
11 − − H −
12 H H H −
13 H H H −
14 H H H −
15 H H H −
16 H H H −
17 H H H −
18 H H H −
19 H H H −
20 H H H H

For the Kalman-based algorithms no dependency between dimensionality
and effect of predictive uncertainty can be observed (Table 9.7). Further-
more, RCS seems not to be influenced by the uncertainty estimate. From
Table 9.8 it is obvious that unc outperforms tcn for lower dimensions, and
the use of predictive uncertainty decreases with increasing dimensions. From
d = 8, unc has no advantage over tcn. The reason for this is that the uncer-
tainty estimate of the TCN becomes very large in high dimensions, while the
uncertainty of the Kalman filter remains in the same magnitude. Therefore,
in TCN-based ES the population is spread so widely that the optimization
is hampered.

In order to scrutinize the effect of uncertainty estimation further, in Fig-
ure 9.2 we plot the best fitness achieved in the respective generation averaged
over the runs. The algorithms are ES with kal and unc as prediction model
combined with re-initialization strategies pRND and pUNC. Due to restricted
space not all generations are shown. It can be observed that unc-pUNC and
kal-pUNC often start after a change with a lower fitness value than their
counterpart without predictive uncertainty. Thus, considering predictive
uncertainty for re-initialization often prevents high fitness peaks during the
first generations of change periods. After some generations, the algorithms
without uncertainty estimation often achieve quite good fitness values as
well and sometimes even converge to better solutions.

96

9.4 Experimental Results

15550 15600 15650 15700
Generation

0.4

0.6

0.8

1.0

1.2

1.4

A
v
e
ra

g
e
 F

it
n
e
ss

kal-pRND

kal-pUNC

unc-pRND

unc-pUNC

// //

Figure 9.2: Best fitness for some generations on Sphere function (d = 7)

9.4.2 Moving Peaks Benchmark

Comparison of Re-Initialization Strategies

Table 9.9: MPB: compari-
son of re-initialization strate-
gies for npm

Alg. Noise Dim. npm-nVAR npm-nPRE

np
m
-n
R
N
D

0.00

2 H H H · H H H ·
5 − − H · − − H ·
10 M M M · − − − ·
20 M M M · − − M ·

0.01

2 H H H · H H H ·
5 − − − · − − − ·
10 H H H · H H H ·
20 M M M · − − M ·

0.05

2 H H H · H H H ·
5 H H H · H H H ·
10 H H − · H H H ·
20 − − M · − − − ·

np
m
-n
VA

R

0.00

2 − − − ·
5 − − − ·
10 H H H ·
20 H H − ·

0.01

2 − − − ·
5 − − − ·
10 H H H ·
20 H H − ·

0.05

2 − − − ·
5 − − − ·
10 − − H ·
20 − − H ·

Also for MPB we first identify the best re-
initialization strategy for each prediction
approach. The same combinations as on
DSB are best except for npm. Overall, npm
has better results with nRND though nVAR
would be a reasonable choice on high-di-
mensional problems with low or medium-
sized noise (Table 9.9). Prediction method
tcn again performs better with pRND but on
problems with high noise the re-initializa-
tion strategy has not much influence (Ta-
ble 9.12). For ar and unc, the re-ini-
tialization strategy seems to be less impor-
tant than on DSB (Tables 9.10 and 9.13).
While unc performs with pRND and pUNC
nearly equally, kal with pUNC clearly out-
performs the other re-initialization strate-
gies (Table 9.11). As already motivated in
the paragraph on DSB, the reason for this
is that Kalman filters are better suited to noisy linear dynamics than TCNs,
and proper re-initialization cannot mitigate poor prediction to such a large
extent. Interestingly, for both unc and kal re-initialization strategy pKAL
performs not as poor as on DSB. This is indicated by the fact that the
respective columns for pKAL contain more often ‘−’ or ‘M’.

97

9 Predictive Uncertainty for Evolution Strategies

Table 9.10: MPB: comparison of
re-initialization strategies for ar

Alg. Noise Dim. ar-pDEV
ar
-p
R
N
D

0.00

2 H − − −
5 − − − −
10 − − − −
20 H H − −

0.01

2 H H − −
5 − − − −
10 − − − −
20 H H − −

0.05

2 − − − −
5 − − − −
10 − − − −
20 − − − −

Table 9.11: MPB: comparison of
re-initialization strategies for kal

Alg. Noise Dim. kal-pDEV kal-pUNC kal-pKAL

ka
l-p

R
N
D

0.00

2 − − − − − − − − − − − −
5 − − − − − − − − − − − −
10 H H − − M M M − H H M −
20 H H − − M M M − H H − −

0.01

2 H H − H M M M M H H M −
5 − − − − − − − − − − − −
10 − − − − − − − H − − − −
20 H H − − M M M − − − − −

0.05

2 − − − − − − − − M M − M
5 H H − − M M − − H H − −
10 − − − − − − − − − − − −
20 − − − − − − M − − − − −

ka
l-p

D
EV

0.00

2 − − − − − − − −
5 − − − − − − − −
10 M M M − M − M −
20 M M M − − − − −

0.01

2 M M M M M M M −
5 − − − − − − − −
10 − − − H − − − −
20 M M M − − − − −

0.05

2 − − − − M M − M
5 M M M − M M M −
10 M M − − − − − −
20 M M M − − − − −

ka
l-p

U
N
C

0.00

2 − − − −
5 − − − −
10 H H H −
20 H H H −

0.01

2 H H − H
5 − − − −
10 − − − M
20 H H H −

0.05

2 M M − M
5 H H − −
10 − − − −
20 H H H −

Table 9.12: MPB: comparison of
re-initialization strategies for tcn

Alg. Noise Dim. tcn-pDEV

tc
n-
pR

N
D

0.00

2 − − − −
5 − − − −
10 H H H −
20 H H H −

0.01

2 H H H −
5 H H − −
10 − − − −
20 H H H −

0.05

2 − − − −
5 H H − −
10 − − − −
20 − − H −

Table 9.13: MPB: comparison of
re-initialization strategies for unc

Alg. Noise Dim. unc-pDEV unc-pUNC unc-pKAL

un
c-
pR

N
D

0.00

2 − − − − − − − − − − − −
5 − − − − − − − − − − − −
10 H H H − − − − − H H − −
20 H H H − − − − − H H − −

0.01

2 H H H − − M − − H H − −
5 − − − − − − − − − − − −
10 − − − − − − − − − − − −
20 − − H − − − − − − − − −

0.05

2 − − − − − − − − M M − −
5 H H − − − − − − H H − −
10 − − − − − − − − − − − −
20 − − H − − − − − − − − −

un
c-
pD

EV

0.00

2 − − − − − − − −
5 − − − − − − − −
10 M M M − − − M −
20 M M M − − − M −

0.01

2 M M M − − − M −
5 − − − − − − − −
10 − − − − − − − −
20 − − M − − − M −

0.05

2 − − − − M M − M
5 M M − − − − − −
10 − − − − − − − −
20 − − M − − − M −

un
c-
pU

N
C

0.00

2 − − − −
5 − − − −
10 H H − −
20 H H − −

0.01

2 H H − −
5 − − − −
10 − − − −
20 − − − −

0.05

2 − M − M
5 H H − −
10 − − − −
20 − − − −

98

9.5 Summary

Comparison of Prediction Methods

No prediction (npm) outperforms the other approaches frequently regarding
BEBC (Table 9.14). The reason for this might be that the prediction-based
approaches follow a local optimum but not the global one. Therefore, they
have lower fitness values at the beginning of the change period resulting in
lower BOG and RCS. In contrast to that, npm shows more diversity in the
population. Hence, it is more likely to explore the global optimum leading
to a better BEBC. On the multimodal Rastrigin function these effects do
not appear, see Table 9.6. Possibly, this can be explained by the fitness
landscape. MPB is rather flat with some small basins of attraction whereas
Rastrigin exhibits strong slopes everywhere enabling the ES to find promis-
ing directions in the solution space. Therefore, npm might find good solutions
faster, and the prediction-based approaches could easier leave their tracked
local optimum. This might lead to a better RCS for npm, and to a better
BEBC for the prediction-based approaches on Rastrigin compared to MPB.
Prediction methods ar, tcn, and unc exhibit only marginal differences on

MPB and often perform worse than kal showing Kalman filters’ superiority
for problems with linear dynamics. The fact that no differences between
tcn and unc exist confirms the previous finding that uncertainty-based re-
initialization does not support the optimizer if the predictor is not good
enough (Paragraph 9.4.1). The overall order of performance on MPB is
from best to worst kal, unc & tcn, ar, npm.

9.5 Summary
In this chapter, we proposed a new re-initialization strategy (pUNC) to con-
sider predictive uncertainty for population re-initialization. We applied a
temporal convolutional network (TCN) with Monte Carlo dropout as new
prediction model with uncertainty estimation for dynamic optimization.
The results demonstrate the advantage of TCNs with uncertainty esti-

mation on rather complex problems whereas Kalman filters are superior on
noisy linear problem dynamics. Our new re-initialization strategy turned
out to outperform the existing one that considers predictive uncertainty
(pKAL). We could show that predictive uncertainty only has a positive effect
on the ES if the prediction approach is combined with the proper re-initial-
ization strategy, and, vice versa, that uncertainty-based re-initialization can
not mitigate poor prediction. In general, the positive effect of predictive
uncertainty vanishes with increasing problem dimensionality.

99

9 Predictive Uncertainty for Evolution Strategies

Table 9.14: MPB: comparison of prediction methods
Alg. Noise Dim. ar-pRND tcn-pRND kal-pUNC unc-pUNC

np
m
-n
R
N
D

0.00

2 M M M · M M M · M M M · M M M ·
5 − − − · − − − · − − M · − − M ·
10 − H M · − − M · M − M · − − M ·
20 − H − · − H M · M H M · − H M ·

0.01

2 M M M · M M M · M M M · M M M ·
5 M − − · M − − · − − − · − − − ·
10 − H − · − H − · − H − · − H − ·
20 M H M · M H M · M H M · M H M ·

0.05

2 M H − · M H − · M H − · M H − ·
5 M − − · M − − · M − M · M − − ·
10 − H − · − H − · − H − · − H − ·
20 − H − · − H − · − H − · − H − ·

ar
-p
R
N
D

0.00

2 − − − − − − − M − − − −
5 − − − − − − M − − − M −
10 − − − − M M M − − − − −
20 − − − − M M M − − − − −

0.01

2 M M M − M M M M M M M −
5 M − − − M − − − − − − −
10 − − − − − − − − − − − −
20 − − − − − − M − − − − −

0.05

2 − − − − − − − − − − − −
5 M − − − M M M M M M − −
10 − − − − − − − − − − − −
20 − − − − − − M − − − − −

tc
n-
pR

N
D

0.00

2 M − − M − − − −
5 − − M − − − − −
10 M M M − − − − −
20 M M M − − − − −

0.01

2 M M M M − − − −
5 − − − − − − − −
10 − − − − − − − −
20 − − M − − − − −

0.05

2 − − − − − − − −
5 M M M M − − − −
10 − − − − − − − −
20 − − M − − − − −

ka
l-p

U
N
C

0.00

2 H − − −
5 − − − −
10 H H H −
20 H H H −

0.01

2 H H H H
5 − − − −
10 − − − −
20 − − H −

0.05

2 − − − −
5 H H H H
10 H H − −
20 − − − −

100

Part III

Summary

101

10 Conclusion
Dynamic optimization problems typically appear in real-world systems un-
derlying environmental influence. Solving this kind of problems requires
algorithms considering relationships between problem instances at differ-
ent points in time. Nature-inspired optimization is frequently used to solve
dynamic optimization problems as they store information about past en-
vironments in the population by a natural means. In order to circumvent
the premature convergence of nature-inspired meta-heuristics in dynamic
problems, prediction is one among other approaches.
This thesis investigated prediction-based nature-inspired optimization and

neural networks as prediction methods. The main contributions are summa-
rized in the following. Furthermore, we depict their transferability to other
kinds of optimization algorithms and dynamic optimization problems.

10.1 Contributions
Prediction for ES We equipped an ES with a recurrent neural network
and incorporated the predicted optimum as individual into the population.
In our experimental study, prediction-based ES outperform the simple ES
without prediction. Depending on the problem dynamics, either RNN or
autoregressive prediction is better. The results show that neural networks
are applicable as predictors in dynamic optimization despite their specific
requirements regarding amount of training data and training time. Neural
networks extend the pool of applicable prediction techniques for dynamic
optimization covering types of dynamics that are difficult to model by other
techniques. Hybridizing RNN and autoregressive prediction combines ad-
vantages of both methods leading to overall best performance.

Prediction for PSO While work on prediction for dynamic ES is rather
mature, for PSO in dynamic optimization only two approaches exist that
adapt the swarm according to the predicted optimum. In contrast, we fo-
cused on extending the PSO function by the predicted optimum as third
attractor. Our results show that this approach leads to better performance
than inserting the prediction as individual into the swarm.

103

10 Conclusion

Predictive Uncertainty for ES If the predicted optimum is located far from
the true one, prediction would mislead the optimizer and might drastically
deteriorate optimization performance. To cope with that, we constructed
a new re-initialization strategy taking into account predictive uncertainty.
After a change, it samples the new population from intervals of a normal
distribution that is centered to the predicted optimum, while the intervals’
spread is based on predictive uncertainty. The higher the uncertainty, the
wider the population is distributed in the solution space increasing the op-
timizer’s exploration abilities. Our re-initialization strategy lowers fitness
peaks after fitness function changes and outperforms the already available
uncertainty-based re-initialization strategy. Its benefit depends on the qual-
ity of the predictor’s uncertainty estimate.

Dynamic Sine Benchmark (DSB) We proposed DSB as new benchmark
generator equipping static fitness functions with randomized trigonometric
movement. It provides the configurable parameters velocity and curviness
that determine problem difficulty for the optimizer and the predictor, respec-
tively. In contrast to other benchmark generators for dynamic optimization,
DSB constructs predictable dynamics with difficulty that is appropriately
balanced between too easy (linear) and unpredictable (random) dynamics.
Therefore, DSB is well suited to evaluate prediction-based optimization al-
gorithms.

Relative Convergence Speed (RCS) RCS is our new measure to evaluate
the convergence properties of optimization algorithms. It takes into account
how fast an algorithm approaches the global optimum fitness. By this means,
the behavior of prediction-based approaches that typically begin a change
period on a lower fitness level than other algorithms is better represented
than with existing measures.

10.2 Transferability

We discuss whether prediction and prediction with uncertainty estimation
can be used in other types of optimization algorithms than those described
in Chapter 3. Then, we show which modifications are necessary to apply our
approaches to kinds of dynamic optimization problems that are not covered
by this thesis. Finally, applicability to use cases with available domain
knowledge is depicted.

104

10.2 Transferability

10.2.1 Prediction for Other Optimization Algorithms

In optimization algorithms solving the problem analytically, prediction is not
necessary, since they already are able to find the global optimum. Moreover,
it would be hard or even impossible to integrate an approximated optimum in
an exact solution method. Neither exploration-based algorithms are able to
benefit from prediction. Even if they started evaluating candidate solutions
close to the prediction, they would have to enumerate the remaining solution
space in order to possibly find better solutions.
Local optimizers could be supported by prediction to choose an appropri-

ate starting point. If the optimizer starts near the global optimum without
local optima in between, they are likely to converge to the global one. Global
methods, i.e., blind and guided random search, could benefit from prediction
as well. Blind random search could start at the predicted position. If the
algorithm is stopped after some time, it is likely to have found a better solu-
tion than if the search would have started somewhere else. Guided random
search, comprising meta-heuristics, are suited for incorporating prediction
because the prediction could easily be introduced as candidate solution, like
done in this thesis. Prediction in meta-heuristics can also be combined with
other specialized techniques. For example, in multi-population approaches
different local optima are tracked at the same time leading to a separate
time series for each one. Here, it has to be considered whether the same
prediction model is trained on the time series of all peaks, or whether a
separate model is instantiated for each peak.
Local and global optimizers could employ predictive uncertainty as well.

It could be used to adapt parameters of the optimizer that influence where
new solutions in the next iteration should be generated. Such a parameter
could be the step size in Newton’s method or in nature-inspired techniques.

10.2.2 Prediction for Other Optimization Problems

In Paragraph 2.3, we restricted this thesis to certain kinds of optimization
problems. Here, we consider whether prediction can be used in nature-
inspired optimizers to solve problems other than those.
In dynamic constrained or noisy problems, the prediction mechanism does

not need modifications as the fitness and constrained functions are consid-
ered as black-box. Even if specialized search mechanisms circumventing the
individual challenges in constrained and noisy optimization are applied, the
optimizer still produces a time-series of optimum positions that the predic-
tion could rely on.

105

10 Conclusion

In multi-objective optimization, various conflicting objectives are opti-
mized, e.g., with sophisticated algorithms like NSGA-II [Kra17], leading to
a Pareto set of non-comparable solutions instead of one solution in single-
objective optimization. Thus, not a single optimum has to be predicted but
the Pareto set. Therefore, similar considerations as for multi-population
optimizers have to be done, for example, whether for each solution in the
Pareto set a separate predictor is employed.
Another kind of problems are changing number of dimensions which would

affect the individuals’ representation. Since prediction methods usually ex-
pect input in a defined format, preprocessing the time series for the predictor
would be necessary. Missing dimensions could be padded with zero values
if the minimum and maximum number of dimensions is known.
In time-linkage problems and problems with robust optimization as goal,

the optimum prediction could be done as usual. Nevertheless, better so-
lutions might be found by the optimizer if the fitness value of solutions in
the next time step(s) is predicted as described in Paragraph 4.2. By this
means, the optimizer could also take into account the future performance
of a solution and thus optimize the average fitness of solutions. This would
involve a completely different prediction mechanism because the data would
form a mapping from a position to a fitness for different points in time.

10.2.3 Prediction for Application Problems
As common practice in the optimization domain, we evaluated our meth-
ods on generic artificial benchmark sets. Since nature-inspired optimization
techniques handle the problem at hand as black-box, they are applicable to
a wide range of problems. As motivated in Chapter 3, the operators and pa-
rameters of meta-heuristic optimization algorithms have to be chosen prob-
lem-dependent to achieve best performance on a certain application. Even
with our extensions, the optimizers are adjustable to application problems.
Utilizing domain knowledge does not only support refining the optimizer’s
operators and parameters but also choosing an appropriate predictor and
employing the prediction in the best way. Since neither of our extensions
depends on a specific prediction method, the predictor is exchangeable. If
the type of dynamics, e.g., linear or recurrent, is known for a certain appli-
cation problem, a matching prediction method could be chosen.

106

11 Outlook

This thesis presented the application of neural network prediction to ES,
extensions of PSO with prediction and improvement of optimization perfor-
mance by predictive uncertainty. It leaves space for further investigation;
two possible research directions are described in the following.

PSO with Predictive Uncertainty We considered predictive uncertainty
in ES by adapting the re-initialization operator, see Chapter 9. In PSO,
this approach could be applied as well if the predicted optimum would be
incorporated as particle into the swarm. However, employing the prediction
as third attractor turned out to be more successful, see Chapter 8. An
approach to take into account predictive uncertainty in this setting would be
to adapt parameters ω, θ1, θ2 and θ3 of the velocity function (Equation (8.1))
according to the uncertainty, since these parameters influence the intensity
of exploitation and exploration as described in Paragraph 3.4.
In case of a large predictive uncertainty, the influence of the prediction

should be reduced by decreasing θ3, while inertia weight ω and θ1 could
be increased to support exploration. Because the parameter adaptation is
prone to lead to divergent behavior of the PSO, it has to be done carefully
considering existing proofs for convergent parameter values as described in
Paragraph 8.2.5. An automatic adaptation depending on the uncertainty
and subject to the convergence bounds would be desired.

CMA-ES with Prediction Covariance matrix adaptation evolution strat-
egy (CMA-ES) is the most famous variant of ES with a specialized muta-
tion operator. Different to ES that employ a univariate normal distribution
for generating offspring individuals, see Equation (3.3), CMA-ES samples
a multivariate normal distribution to create an offspring individual x′ in
generation t:

x′ = mt + st · N (0,Ct) (11.1)

The weighted mean of the population is denoted by mt, while st is the step
size and Ct the covariance matrix. CMA-ES consists of sophisticated mech-

107

11 Outlook

anisms to adapt step size and covariance in order to compute successful
offspring individuals. So far, two attempts have been made to apply CMA-
ES to dynamic optimization problems. On the one hand, the static CMA-ES
is employed without adaptations [Bou05; AL12; NCP16]. This approach is
called statCMA in the following. On the other hand, after a fitness function
change the step size is set according to the estimated shift severity, while
internal variables belonging to the adaptation mechanism of covariance ma-
trix and step size are reset to their initial values [Yaz+19]. We refer to this
strategy with yazCMA. As far as we know, no prediction approaches have
been incorporated into CMA-ES so far.
The most obvious approach to equip CMA-ES with prediction, here called

predCMA, is to reset all variables of CMA-ES to their initial values and to
modify the sampling after a fitness function change to:

x′ = ôc +
√

ûc · N (0, I) (11.2)

By this means, the predicted optimum ôc and the predictive uncertainty ûc
are used similar to our re-initialization strategy pUNC, see Paragraph 9.2.

Preliminary experiments show superiority of our approach to both exist-
ing ones, see Table 11.1. The structure of the tables is the same as in Para-
graph 9.4. We use three DSB instances with C = 10 and V ∈ {0.5, 2, 5}.
The statCMA approach shows strength in high-dimensional problems, while
predCMA outperforms the other approaches on problems with lower dimen-
sions. With increasing velocity, predCMA becomes better in relation to
yazCMA.
There is still potential to improve our approach. Open questions are,

for example, how to set the covariance matrix and other parameters of the
CMA-ES after a change, or whether a better choice for the step size could
be done. Another idea is to pull the population in direction of the prediction
in each generation. This could be realized by a mechanism similar to the
one we proposed with pred3 for PSO (Chapter 8).

108

Table 11.1: CMA-ES variants on DSB. From left to right V ∈ {0.5, 2, 5}
Alg. Bmk. Dim. yazCMA predCMA

st
at

CM
A

Sp
he
re

2 M M M · M M M ·
5 M M M · M M M ·
10 H H H · H H H ·
20 H H H · H H H ·

R
os
en
br
oc
k 2 M M M · M M M ·

5 M M − · M M − ·
10 H H − · H H H ·
20 H H H · H H H ·

R
as
tr
ig
in 2 M M M · M M M ·

5 M M M · M M M ·
10 M M M · M M M ·
20 M M M · H M M ·

ya
zC

MA

Sp
he
re

2 M M M ·
5 M M M ·
10 H H H ·
20 H H H ·

R
os
en
br
oc
k 2 − M − ·

5 H H − ·
10 H H H ·
20 − H − ·

R
as
tr
ig
in 2 M M M ·

5 − − − ·
10 H H − ·
20 H H H ·

Alg. Bmk. Dim. yazCMA predCMA

st
at

CM
A

Sp
he
re

2 M M M · M M M ·
5 M M M · M M M ·
10 H H H · H H H ·
20 H H H · H H H ·

R
os
en
br
oc
k 2 M M M · M M M ·

5 H − H · H M − ·
10 H H H · H H H ·
20 H H H · H H H ·

R
as
tr
ig
in 2 M M M · M M M ·

5 M M M · M M M ·
10 M M M · M M M ·
20 H H H · H H H ·

ya
zC

MA

Sp
he
re

2 M M M ·
5 M − H ·
10 M − M ·
20 M M H ·

R
os
en
br
oc
k 2 − M − ·

5 − M M ·
10 M M M ·
20 M M − ·

R
as
tr
ig
in 2 M H M ·

5 − − H ·
10 H H − ·
20 M M H ·

Alg. Bmk. Dim. yazCMA predCMA

st
at

CM
A

Sp
he
re

2 M M − · M M M ·
5 M M M · M M M ·
10 H H − · − − M ·
20 H H H · H H H ·

R
os
en
br
oc
k 2 M M − · M M M ·

5 − − H · − M − ·
10 H H − · H H − ·
20 H H H · H H H ·

R
as
tr
ig
in 2 M M − · M M M ·

5 M M M · M M M ·
10 H H − · H H H ·
20 H H H · H H H ·

ya
zC

MA

Sp
he
re

2 M − M ·
5 M − M ·
10 M M M ·
20 M M M ·

R
os
en
br
oc
k 2 M − M ·

5 M M − ·
10 M M − ·
20 M M M ·

R
as
tr
ig
in 2 M − M ·
5 M M M ·
10 M M H ·
20 M M M ·

109

Part IV

Appendix

111

A Fitness Functions

For static nature-inspired optimization, a set of fitness functions exists that
frequently are applied to benchmark optimization algorithms, see [Kra08;
LQS13] for a comprehensive list of functions. Since the functions Sphere,
Rosenbrock and Rastrigin are used in this thesis, we depict their mathemat-
ical description and visualize their fitness landscape for a two-dimensional
solution space. For all functions holds x ∈ Rd.

Sphere

f(x) =
d∑
i=1

x2
i (A.1)

Rosenbrock

f(x) =
d−1∑
i=1

(
(100 · (x2

i − xi+1)2 + (xi − 1)2) (A.2)

Dimension 2

6
4

2
0

2
4

6
Dim

en
sio

n 1

6
4

2
0

2
4

6

Fi
tn
e
ss

10

20

30

40

50

60

70

Figure A.1: Sphere function

Dimension 2

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0 Dim
en

sio
n

1

3
2

1
0

1
2

3
4

Fi
tn
e
ss

1000

2000

3000

4000

Figure A.2: Rosenbrock function

113

A Fitness Functions

Dimension 2

6
4

2
0

2
4

6
Dim

ensio
n 1

6
4

2
0

2
4

6

Fi
tn
e
ss

0

20

40

60

80

100

Figure A.3: Rastrigin function

Rastrigin

f(x) =
d∑
i=1

(
x2
i − 10 · cos(2πxi) + 10

)
(A.3)

114

B Examination of RCS and ARR

We examine the differences between ARR and RCS by means of a simplified
optimization scenario where three discrete fitness values are possible (0,1,
and 2) with zero as best fitness, and the optimization is conducted for one
change period with two generations. Therefore, 32 possible optimization
runs exist for one algorithm. For two algorithms, called A and B, there are(9

2
)

= 36 possible combinations disregarding the cases where both algorithms
have the same sequence of fitness values. For each of these combinations,
Figure B.1 shows the ARR, while Figure B.2 visualizes the RCS. The plots
depict for each generation the best fitness value the respective algorithm has.
The legend contains the ARR or RCS value, respectively, while the color of
the lines for the fitness progress is chosen according to the metric value. The
darker the color, the better the metric value. Thus, a dark color represents a
high ARR and a low RCS, respectively. Due to the exponentially increasing
number of plots, we do not visualize scenarios with more fitness levels or
generations. To signify a certain plot, for example the third from left in the
second row, we write (2,3).
The most obvious disadvantage of ARR is that negative ARR values are

possible though the authors proposing this measure claim that it ranges
between zero and one [NY12]. In case the fitness level increases during a
change period, the ARR becomes negative, e.g., in plot (5,2). That plot
also shows the second limitation of ARR. If an algorithm starts a change
period with the best possible fitness, division by zero occurs so that the ARR
cannot be computed. In our implementation, we handle that case by setting
ARR to one. However, this does not reflect the algorithm’s behavior because
the algorithm has ARR = 1 independent of whether its fitness stays low or
increases, see e.g. plot (1,2). The third drawback are unintuitive ARR values
in case algorithms start at different fitness levels, and their fitness decreases
or stays the same. If the algorithm that started on a lower fitness always has
equal or better fitness than the other algorithm, its ARR unexpectedly is not
better. This happens in plots (8,1), (8,2), and (6,4). This behavior especially
disadvantages prediction-based optimizers, since they might often obtain a
lower fitness level at the beginning of change periods than algorithms without
prediction because the prediction is supposed to lead them to promising

115

B Examination of RCS and ARR

regions in the solution space.
Comparing the results for ARR and RCS, it can be obtained that RCS

solves these disadvantages. RCS cannot become negative, since in minimiza-
tion problems both f(x∗ct , c) and f(x∗cworst , c) always are greater or equal to
f(oc, c) so that f(x∗ct , c) − f(oc, c) and f(x∗cworst , c) − f(oc, c) are positive.
For maximization, these differences have a negative result, hence RCS is
positive as well. Thus | · |, used in the original publication [MK18a], is not
required. Division by zero takes place in the computation of RCS if all al-
gorithms achieve the best possible fitness in all generations of the respective
change period. Then, all algorithms get RCS = 0 for that change period.
In contrast to ARR’s behavior when division by zero occurs, this represents
the situation that all algorithms perfectly converge to the global optimum.
Furthermore, RCS does not disadvantage prediction-based optimizers as can
be observed in plots (8,1), (8,2), and (6,4).

116

0

1

2

3
A (1.00) B (1.00) A (1.00) B (1.00) A (1.00) B (0.50) A (1.00) B (0.00)

0

1

2

3
A (1.00) B (-0.50) A (1.00) B (0.50) A (1.00) B (0.25) A (1.00) B (0.00)

0

1

2

3
A (1.00) B (1.00) A (1.00) B (0.50) A (1.00) B (0.00) A (1.00) B (-0.50)

0

1

2

3
A (1.00) B (0.50) A (1.00) B (0.25) A (1.00) B (0.00) A (1.00) B (0.50)

0

1

2

3
A (1.00) B (0.00) A (1.00) B (-0.50) A (1.00) B (0.50) A (1.00) B (0.25)

0

1

2

3
A (1.00) B (0.00) A (0.50) B (0.00) A (0.50) B (-0.50) A (0.50) B (0.50)

0

1

2

3
A (0.50) B (0.25) A (0.50) B (0.00) A (0.00) B (-0.50) A (0.00) B (0.50)

0

1

2

3
A (0.00) B (0.25) A (0.00) B (0.00) A (-0.50) B (0.50) A (-0.50) B (0.25)

0 1

0

1

2

3
A (-0.50) B (0.00)

0 1

A (0.50) B (0.25)

0 1

A (0.50) B (0.00)

0 1

A (0.25) B (0.00)

Generation

B
e
st

 F
it

n
e
ss

Figure B.1: ARR (in brackets) for all possible combinations of two al-
gorithms (A and B) with three fitness levels (0, 1, 2) and two generations.
Fitness plots with better ARR values, i.e., larger ones, have darker colors

117

B Examination of RCS and ARR

0

1

2

3
A (0.00) B (0.67) A (0.00) B (0.67) A (0.00) B (0.33) A (0.00) B (1.00)

0

1

2

3
A (0.00) B (0.83) A (0.00) B (0.33) A (0.00) B (0.67) A (0.00) B (1.00)

0

1

2

3
A (0.33) B (0.67) A (0.67) B (0.33) A (0.67) B (1.00) A (0.33) B (0.83)

0

1

2

3
A (0.33) B (0.33) A (0.33) B (0.67) A (0.33) B (1.00) A (0.67) B (0.17)

0

1

2

3
A (0.67) B (0.50) A (0.67) B (0.83) A (0.67) B (0.33) A (0.67) B (0.67)

0

1

2

3
A (0.67) B (1.00) A (0.33) B (1.00) A (0.17) B (0.83) A (0.17) B (0.33)

0

1

2

3
A (0.17) B (0.67) A (0.17) B (1.00) A (0.50) B (0.83) A (0.50) B (0.33)

0

1

2

3
A (0.50) B (0.67) A (0.50) B (1.00) A (0.83) B (0.33) A (0.83) B (0.67)

0 1

0

1

2

3
A (0.83) B (1.00)

0 1

A (0.33) B (0.67)

0 1

A (0.33) B (1.00)

0 1

A (0.67) B (1.00)

Generation

B
e
st

 F
it

n
e
ss

Figure B.2: RCS (in brackets) for all possible combinations of two al-
gorithms (A and B) with three fitness levels (0, 1, 2) and two generations.
Fitness plots with better RCS values, i.e., lower ones, have darker colors

118

C Empirical Comparison of
Prediction Methods

As described in Paragraph 7.1.2, the work of [Wol19] compared different
time series prediction methods (persistence model, Kalman-Filter, TCN,
and LSTM) on simple dynamics. They are called 2DE and Trigo, and are
described below. Here, we show results of applying the same methods to
the dynamic sine benchmark (DSB). We also re-compute the results on the
benchmarks employed in [Wol19] leading to small deviations but the same
conclusions.
All time series S ∈ RT×d are d-variate with independent dimensions, each

following a separate univariate time series s ∈ RT with T = 1000 time steps.
In the noisy setting, the time series are disturbed by multiplicative Gaussian
noise with zero mean and standard deviation as listed in Table C.1. The
evaluated time series (2DE, Trigo, DSB) are described in the following, visu-
alizations for five-dimensional instances of the time series without noise are
given in Figures C.1,C.2, and C.3, where each line represents one dimension.

2DE Second-order differential equation [Wol19]:

st = st−1 + α1 · s′t
s′t = s′t−1 + α2

with s0 = s′0 = 0. Parameters αi ∈ [−1, 1] are randomly chosen every
100 steps. For each of the d dimensions of series S an instance of this
series is created.

Trigo Trigonometric function with randomly parameterized additive sine
functions [Wol19]:

st = ι1 sin
(
t

T
β1

)
+ ι2 sin

(
t

T
β2

)
with amplitudes ι1 ∈ [30, 100] and ι2 ∈ [3, 10], and frequencies β1 ∈
[5, 25] and β2 ∈ [50, 250]. This procedure is repeated for each dimen-
sion of series S.

119

C Empirical Comparison of Prediction Methods

DSB Same parameterization as in Paragraph 9.3, i.e., C = 10, V = 0.5,
ρ = 4. Compared to the benchmarks 2DE and Trigo, these series
exhibit higher frequencies.

The performance of the prediction models is evaluated by the root-mean-
square-error (RMSE), a frequently employed measure in regression problems
[Bis07]:

RMSE =

√√√√ 1
d · T

d∑
i=1

T∑
t=1

(sti − ŝti)2,

where sti denotes the true value in dimension i at time step t, i.e., the ith
entry in the tth row of S, and ŝti is the predicted one.
The prediction models are initially trained with the first 250 time steps.

Afterwards, in an iterative manner the next step is predicted, and the model
is re-trained on the true value. The window size is 15, and the neural network
models are trained for 15 epochs.
The results are listed in Table C.1. The sign “−” signifies that due to an

exception during runtime no results could be computed for the respective
prediction model. The results reproduce the conclusion of [Wol19] that
Kalman filters and the persistence model are the best choice for 2DE and
Trigo series, whereat Kalman filters outperform the persistence model on
noisy series. Comparing Kalman filter and persistence model on DSB shows
similar behavior. Interestingly, both are outperformed by LSTM and also
TCN outperforms Kalman filter and persistence model on series without
noise. This result suggests, that neural network-based prediction might be
a good choice for high frequency series.

120

0 200 400 600 800 1000
Time

25000

20000

15000

10000

5000

0

5000
V

a
lu

e
 p

e
r

D
im

e
n
si

o
n

Figure C.1: 2DE time series

0 200 400 600 800 1000
Time

100

75

50

25

0

25

50

75

100

V
a
lu

e
 p

e
r

D
im

e
n
si

o
n

Figure C.2: Trigo time series

121

C Empirical Comparison of Prediction Methods

0 200 400 600 800 1000
Time

0

10

20

30

40

50

60

70

V
a
lu

e
 p

e
r

D
im

e
n
si

o
n

Figure C.3: DSB time series

Table C.1: Comparison of time series prediction methods
Series Type Noise Dim. Persistence Kalman LSTM TCN

2D
E

0

2 0.0030 0.0053 0.0534 0.1331
5 0.0026 0.0097 0.1187 0.1979
10 0.0032 0.0575 0.1195 0.2080
20 0.0031 − 0.1393 0.2553

0.1

2 0.0471 0.0378 0.0799 0.1472
5 0.0501 0.0410 0.1185 0.1843
10 0.0583 0.0477 0.1354 0.1974
20 0.0580 0.0486 0.1468 0.2292

Tr
ig
o

0

2 0.0083 0.0115 0.0754 0.1302
5 0.0065 0.0084 0.1661 0.2303
10 0.0082 0.0110 0.1775 0.2757
20 0.0072 0.0529 0.2039 0.3427

5

2 0.0516 0.0440 0.0845 0.1277
5 0.0507 0.0419 0.1557 0.2179
10 0.0478 0.0412 0.1620 0.2377
20 0.0499 0.0421 0.1801 0.2881

D
SB

0

2 0.1867 0.1995 0.0028 0.0881
5 0.1387 0.1463 0.0407 0.1210
10 0.1466 0.1531 0.0491 0.1403
20 0.1358 − 0.0986 0.1634

5

2 0.1916 0.1454 0.1382 0.1562
5 0.1958 0.1535 0.1489 0.1640
10 0.2034 0.1567 0.1524 0.1655
20 0.2104 0.1635 0.1538 0.1681

122

D Further Results

This appendix contains the complete results for the experiments in Chap-
ters 7, 8, and 9.

D.1 Prediction for Evolution Strategies
This paragraph lists for Chapter 7 the results regarding the convergence
measures ARR and RCS averaged over all runs. The results for group SRR
are contained in Tables D.1–D.4. Tables D.5 and D.6, and Tables D.7 and
D.8 belong to group MPB-Noisy and Ros-Length, respectively. Table D.9
comprises the ARR values for the group SRR-Neurons. For SRR-Neurons,
the RCS measure cannot be computed, since it requires at least two algo-
rithms, but group SRR-Neurons is conducted only for rnnPred.

Table D.1: SRR (Rosenbr.): ARR
Mov. Dim. npm rnnPred autoPred

linear

2 8.96E-1 8.26E-1 2.22E-1
5 9.10E-1 8.58E-1 6.31E-1
10 8.36E-1 8.22E-1 4.14E-1
20 7.23E-1 7.27E-1 2.29E-1
50 5.29E-1 5.24E-1 1.57E-1
100 3.61E-1 2.84E-1 1.37E-1

sine

2 8.96E-1 8.55E-1 8.66E-1
5 9.16E-1 8.70E-1 8.95E-1
10 8.74E-1 8.27E-1 8.59E-1
20 8.14E-1 7.71E-1 7.94E-1
50 7.29E-1 7.01E-1 7.13E-1
100 6.42E-1 6.22E-1 6.30E-1

Table D.2: SRR (Rosenbr.): RCS
Mov. Dim. npm rnnPred autoPred

linear

2 2.33E-2 1.08E-2 4.77E-3
5 1.80E-2 6.08E-3 5.01E-3
10 4.68E-2 1.45E-2 7.16E-2
20 1.25E-1 3.28E-2 2.83E-2
50 3.29E-1 7.63E-2 5.06E-2
100 5.31E-1 2.60E-1 8.02E-2

sine

2 1.78E-2 9.92E-3 1.22E-2
5 1.37E-2 8.45E-3 9.55E-3
10 3.41E-2 2.64E-2 2.90E-2
20 6.82E-2 5.44E-2 5.90E-2
50 1.32E-1 1.01E-1 1.08E-1
100 2.18E-1 1.71E-1 1.66E-1

123

D Further Results

Table D.3: SRR (Rastrigin): ARR
Mov. Dim. npm rnnPred autoPred

linear

2 4.90E-1 5.92E-1 2.21E-1
5 3.27E-1 3.75E-1 3.24E-1
10 2.69E-1 2.96E-1 2.70E-1
20 2.29E-1 2.31E-1 2.31E-1
50 1.81E-1 1.60E-1 1.81E-1
100 1.52E-1 1.36E-1 1.66E-1

sine

2 8.27E-1 8.11E-1 8.12E-1
5 5.72E-1 6.00E-1 5.87E-1
10 3.26E-1 3.75E-1 3.32E-1
20 1.19E-1 1.53E-1 1.70E-1
50 4.41E-2 4.22E-2 3.97E-2
100 2.37E-2 2.49E-2 1.94E-2

Table D.4: SRR (Rastrigin): RCS
Mov. Dim. npm rnnPred autoPred

linear

2 4.12E-1 1.97E-1 9.08E-2
5 4.64E-1 3.36E-1 4.10E-1
10 5.06E-1 4.08E-1 4.54E-1
20 5.16E-1 4.65E-1 4.71E-1
50 5.39E-1 5.26E-1 5.14E-1
100 6.28E-1 5.51E-1 3.89E-1

sine

2 7.36E-2 4.19E-2 5.77E-2
5 2.95E-1 1.85E-1 2.48E-1
10 4.79E-1 3.45E-1 4.49E-1
20 7.65E-1 4.99E-1 5.28E-1
50 9.29E-1 5.39E-1 5.36E-1
100 9.51E-1 7.58E-1 5.34E-1

Table D.5: MPB-Noisy: ARR
Dim. Noise npm rnnPred autoPred

2

0.0 6.25E-1 4.86E-1 1.27E-1
0.1 6.64E-1 4.77E-1 4.10E-1
1.0 7.82E-1 6.91E-1 6.96E-1
10.0 6.79E-1 6.61E-1 6.64E-1

20

0.0 6.34E-2 1.31E-1 3.85E-2
0.1 7.36E-2 1.50E-1 2.08E-1
1.0 4.06E-2 4.85E-2 5.37E-2
10.0 2.26E-3 2.43E-3 2.46E-3

Table D.6: MPB-Noisy: RCS
Dim. Noise npm rnnPred autoPred

2

0.0 3.10E-1 3.38E-1 3.21E-1
0.1 2.71E-1 3.23E-1 3.13E-1
1.0 1.40E-1 1.67E-1 1.70E-1
10.0 1.90E-1 1.95E-1 1.93E-1

20

0.0 9.06E-1 7.82E-1 6.20E-1
0.1 8.91E-1 7.52E-1 5.87E-1
1.0 9.39E-1 9.26E-1 9.18E-1
10.0 9.96E-1 9.96E-1 9.96E-1

Table D.7: Ros-Length: ARR
Dim. υ npm rnnPred autoPred

2

5 4.63E-1 4.59E-1 4.59E-1
10 7.03E-1 6.99E-1 6.91E-1
20 8.99E-1 8.59E-1 8.67E-1
40 9.52E-1 9.28E-1 9.36E-1
60 9.68E-1 9.51E-1 9.57E-1

20

5 3.43E-1 3.60E-1 3.62E-1
10 6.15E-1 5.91E-1 6.11E-1
20 8.15E-1 7.73E-1 7.95E-1
40 9.17E-1 8.89E-1 9.00E-1
60 9.48E-1 9.29E-1 9.37E-1

50

5 2.52E-1 2.61E-1 2.67E-1
10 4.93E-1 4.88E-1 4.99E-1
20 7.32E-1 7.02E-1 7.15E-1
40 8.66E-1 8.42E-1 8.48E-1
60 9.12E-1 8.95E-1 8.95E-1

Table D.8: Ros-Length: RCS
Dim. υ npm rnnPred autoPred

2

5 1.23E-1 6.38E-2 7.59E-2
10 1.64E-2 9.57E-3 1.12E-2
20 4.12E-3 2.19E-3 2.75E-3
40 2.80E-1 1.86E-1 1.98E-1
60 1.99E-3 1.09E-3 1.44E-3

20

5 2.09E-1 1.29E-1 1.59E-1
10 6.76E-2 5.35E-2 5.90E-2
20 1.90E-2 1.63E-2 1.75E-2
40 4.96E-1 2.74E-1 3.22E-1
60 8.98E-3 7.74E-3 8.18E-3

50

5 3.47E-1 2.45E-1 2.49E-1
10 1.30E-1 9.66E-2 1.06E-1
20 4.50E-2 4.12E-2 4.21E-2
40 6.28E-1 4.49E-1 4.16E-1
60 2.45E-2 2.20E-2 2.34E-2

Table D.9: SRR-Neurons: ARR
Dim. Sphere Rosenbrock Rastrigin

2 8.93E-1 8.67E-1 8.10E-1
5 8.50E-1 8.76E-1 6.02E-1
10 7.85E-1 8.29E-1 3.73E-1
20 6.85E-1 7.75E-1 1.65E-1
50 4.83E-1 7.02E-1 4.42E-2
100 3.30E-1 6.17E-1 2.56E-2

124

D.2 Prediction for Particle Swarm Optimization

D.2 Prediction for Particle Swarm Optimization
The following pages contain the experimental results obtained by executing
all PSO variants with different parameter settings in order to find the most
suitable setting as described in Chapter 8. Tables D.10–D.13 are for the
SRR benchmark, while Tables D.14–D.17 are for MPB-Noisy.

125

D Further Results

Table D.10: SRR: comparison of parameter settings for dynPSO
Metric BOG BEBC RCS

Benchmark 1.05 1.49 2.00 1.05 1.49 2.00 1.05 1.49 2.00

sph. 2 lin. 9.2E-1 6.0E-2 5.4E-2 3.5E-5 5.2E-5 5.8E-5 0.01 0.01 0.03

sph. 5 lin. 8.2E+0 3.1E+0 4.3E+0 1.9E-2 2.7E-2 7.2E-2 0.02 0.02 0.04

sph. 10 lin. 3.2E+1 2.2E+1 3.9E+1 4.1E-1 1.4E+0 4.1E+0 0.05 0.07 0.12

sph. 20 lin. 1.5E+2 1.6E+2 3.0E+2 2.3E+1 3.5E+1 9.3E+1 0.15 0.20 0.32

sph. 50 lin. 6.7E+4 3.5E+3 6.4E+3 6.5E+4 2.3E+3 4.5E+3 0.89 0.56 0.64

sph. 100 lin. 3.2E+6 7.0E+4 6.3E+4 3.2E+6 6.3E+4 5.4E+4 0.97 0.83 0.81

sph. 2 sin. 8.1E+0 1.6E-1 1.3E-1 1.3E-4 1.0E-4 1.4E-4 0.01 0.02 0.02

sph. 5 sin. 1.2E+1 2.7E+0 7.2E+0 1.9E-1 3.6E-2 1.8E-1 0.03 0.03 0.05

sph. 10 sin. 4.5E+2 9.4E+1 1.7E+2 2.9E+2 5.7E+0 1.8E+1 0.15 0.06 0.10

sph. 20 sin. 1.3E+3 4.6E+2 8.3E+2 9.3E+2 1.0E+2 2.5E+2 0.31 0.18 0.27

sph. 50 sin. 6.6E+4 9.2E+3 1.4E+4 6.3E+4 5.4E+3 9.1E+3 0.82 0.47 0.55

sph. 100 sin. 4.9E+5 4.1E+4 5.2E+4 4.8E+5 3.3E+4 4.2E+4 0.94 0.71 0.73

ros. 2 lin. 3.8E+2 3.8E+0 1.7E+0 6.4E-3 1.2E-3 1.5E-2 0.01 0.01 0.03

ros. 5 lin. 1.1E+4 2.5E+3 2.4E+3 2.1E+1 1.8E+1 3.9E+1 0.01 0.01 0.02

ros. 10 lin. 2.2E+5 9.0E+4 1.8E+5 5.2E+2 8.4E+2 2.5E+3 0.02 0.02 0.04

ros. 20 lin. 4.2E+6 1.0E+7 1.6E+7 8.2E+5 2.9E+6 2.9E+6 0.18 0.16 0.14

ros. 50 lin. 7.2E+9 2.7E+8 5.2E+8 6.7E+9 1.2E+8 3.1E+8 0.57 0.37 0.50

ros. 100 lin. 4.6E+11 1.4E+10 1.7E+10 4.5E+11 1.1E+10 1.3E+10 0.90 0.72 0.71

ros. 2 sin. 3.1E+6 3.7E+4 4.4E+1 2.1E+6 1.5E-1 6.3E+0 0.43 0.01 0.05

ros. 5 sin. 1.3E+9 7.6E+3 1.7E+4 1.2E+9 8.3E+1 4.1E+2 0.35 0.02 0.04

ros. 10 sin. 1.6E+6 4.8E+5 1.4E+6 4.6E+3 7.3E+3 4.1E+4 0.01 0.02 0.04

ros. 20 sin. 6.7E+6 8.1E+6 2.0E+7 3.8E+5 6.5E+5 1.9E+6 0.04 0.07 0.11

ros. 50 sin. 1.6E+9 8.2E+8 2.0E+9 1.4E+9 3.2E+8 9.1E+8 0.55 0.27 0.37

ros. 100 sin. 3.9E+11 5.6E+9 1.2E+10 3.9E+11 3.9E+9 8.1E+9 0.91 0.52 0.61

rast. 2 lin. 3.8E+0 1.6E+0 1.4E+0 1.2E-2 5.6E-3 2.2E-2 0.03 0.03 0.07

rast. 5 lin. 2.4E+5 2.2E+1 2.7E+1 2.4E+5 7.4E+0 1.1E+1 0.64 0.18 0.26

rast. 10 lin. 5.9E+5 9.9E+1 1.3E+2 5.9E+5 5.6E+1 6.8E+1 0.90 0.33 0.36

rast. 20 lin. 3.0E+5 4.0E+2 5.6E+2 3.0E+5 2.3E+2 3.1E+2 0.87 0.42 0.46

rast. 50 lin. 2.0E+5 4.1E+3 7.2E+3 2.0E+5 2.8E+3 5.2E+3 0.93 0.60 0.67

rast. 100 lin. 3.2E+6 6.2E+4 6.2E+4 3.2E+6 5.5E+4 5.3E+4 0.98 0.81 0.80

rast. 2 sin. 9.9E+1 5.1E+0 2.3E+0 6.4E+1 1.0E-1 1.3E-1 0.18 0.04 0.09

rast. 5 sin. 4.7E+4 2.6E+1 3.6E+1 4.7E+4 1.0E+1 1.5E+1 0.83 0.22 0.25

rast. 10 sin. 1.3E+3 1.8E+2 2.6E+2 1.1E+3 7.5E+1 1.0E+2 0.41 0.17 0.19

rast. 20 sin. 6.9E+4 6.6E+2 1.0E+3 6.8E+4 3.1E+2 4.5E+2 0.88 0.28 0.33

rast. 50 sin. 1.8E+5 1.0E+4 1.5E+4 1.7E+5 6.2E+3 9.6E+3 0.89 0.49 0.56

rast. 100 sin. 2.1E+5 4.3E+4 5.1E+4 2.1E+5 3.5E+4 4.2E+4 0.93 0.71 0.73

Best frequen. 3 25 8 8 26 2 11 21 4

126

D.2 Prediction for Particle Swarm Optimization

Table D.11: SRR: comparison of parameter settings for pred2p
Metric BOG BEBC RCS

Benchmark 1.05 1.49 2.00 1.05 1.49 2.00 1.05 1.49 2.00

sph. 2 lin. 9.6E-1 6.4E-2 5.5E-2 3.1E-5 4.9E-5 6.3E-5 0.01 0.01 0.03

sph. 5 lin. 8.0E+0 3.0E+0 4.2E+0 1.9E-2 2.8E-2 7.1E-2 0.02 0.02 0.04

sph. 10 lin. 3.1E+1 2.2E+1 3.9E+1 4.1E-1 1.3E+0 4.1E+0 0.05 0.07 0.12

sph. 20 lin. 1.4E+2 1.6E+2 3.0E+2 1.7E+1 3.6E+1 9.2E+1 0.14 0.20 0.31

sph. 50 lin. 2.7E+3 3.4E+3 6.2E+3 1.8E+3 2.2E+3 4.3E+3 0.15 0.56 0.62

sph. 100 lin. 6.4E+4 5.5E+4 6.2E+4 5.8E+4 4.8E+4 5.3E+4 0.18 0.69 0.80

sph. 2 sin. 7.3E+0 1.5E-1 1.4E-1 9.5E-5 1.1E-4 1.5E-4 0.01 0.02 0.02

sph. 5 sin. 1.2E+1 2.8E+0 7.0E+0 7.1E-2 3.8E-2 1.9E-1 0.02 0.04 0.05

sph. 10 sin. 1.5E+2 9.3E+1 1.7E+2 4.0E+0 5.5E+0 1.8E+1 0.05 0.06 0.10

sph. 20 sin. 6.0E+2 4.5E+2 8.1E+2 2.5E+2 1.0E+2 2.4E+2 0.17 0.18 0.27

sph. 50 sin. 8.0E+3 9.2E+3 1.4E+4 5.2E+3 5.5E+3 9.2E+3 0.20 0.47 0.55

sph. 100 sin. 3.8E+4 4.1E+4 5.1E+4 3.2E+4 3.3E+4 4.2E+4 0.25 0.70 0.73

ros. 2 lin. 3.8E+2 4.0E+0 1.6E+0 9.0E-3 4.2E-3 1.1E-2 0.01 0.01 0.03

ros. 5 lin. 1.1E+4 2.6E+3 2.4E+3 2.0E+1 2.0E+1 3.7E+1 0.01 0.01 0.02

ros. 10 lin. 2.2E+5 9.0E+4 3.4E+5 2.8E+2 9.5E+2 8.7E+4 0.02 0.02 0.06

ros. 20 lin. 2.7E+6 1.1E+7 1.9E+7 1.8E+5 3.2E+6 3.6E+6 0.05 0.17 0.17

ros. 50 lin. 1.3E+8 2.6E+8 5.5E+8 4.8E+7 1.1E+8 3.2E+8 0.20 0.36 0.52

ros. 100 lin. 1.1E+10 9.1E+9 1.8E+10 9.5E+9 7.1E+9 1.4E+10 0.16 0.55 0.74

ros. 2 sin. 3.1E+5 3.0E+4 2.9E+1 3.8E+3 1.5E+0 3.4E+0 0.05 0.02 0.04

ros. 5 sin. 4.1E+5 5.1E+3 1.6E+4 3.7E+1 7.8E+1 6.7E+2 0.00 0.02 0.04

ros. 10 sin. 1.6E+6 5.6E+5 1.4E+6 5.2E+3 1.2E+4 3.6E+4 0.01 0.02 0.04

ros. 20 sin. 5.3E+6 7.8E+6 2.3E+7 1.1E+5 6.2E+5 2.3E+6 0.03 0.07 0.12

ros. 50 sin. 3.2E+8 7.8E+8 2.1E+9 1.2E+8 3.0E+8 9.4E+8 0.14 0.26 0.38

ros. 100 sin. 3.5E+9 5.5E+9 1.1E+10 2.5E+9 3.7E+9 8.0E+9 0.16 0.50 0.60

rast. 2 lin. 3.8E+0 1.7E+0 1.4E+0 1.1E-2 6.6E-3 2.6E-2 0.03 0.03 0.07

rast. 5 lin. 4.9E+1 2.2E+1 2.7E+1 2.0E+1 7.5E+0 1.1E+1 0.08 0.18 0.26

rast. 10 lin. 2.2E+2 1.0E+2 1.3E+2 1.3E+2 5.6E+1 6.8E+1 0.08 0.33 0.36

rast. 20 lin. 6.2E+2 4.0E+2 5.6E+2 3.9E+2 2.3E+2 3.1E+2 0.12 0.42 0.46

rast. 50 lin. 6.7E+3 4.0E+3 7.0E+3 5.4E+3 2.8E+3 5.0E+3 0.17 0.60 0.65

rast. 100 lin. 9.3E+4 5.3E+4 6.3E+4 8.6E+4 4.6E+4 5.4E+4 0.21 0.71 0.81

rast. 2 sin. 3.2E+1 5.2E+0 2.3E+0 1.1E+1 1.2E-1 1.4E-1 0.06 0.04 0.09

rast. 5 sin. 1.0E+2 2.6E+1 3.5E+1 6.2E+1 1.0E+1 1.5E+1 0.07 0.22 0.25

rast. 10 sin. 4.1E+2 1.8E+2 2.6E+2 2.2E+2 7.5E+1 9.9E+1 0.16 0.17 0.19

rast. 20 sin. 1.1E+3 6.7E+2 1.0E+3 7.0E+2 3.1E+2 4.5E+2 0.12 0.28 0.33

rast. 50 sin. 9.8E+3 1.0E+4 1.5E+4 7.0E+3 6.1E+3 9.6E+3 0.18 0.49 0.56

rast. 100 sin. 4.0E+4 4.3E+4 5.2E+4 3.4E+4 3.5E+4 4.2E+4 0.29 0.71 0.73

Best frequen. 11 18 7 18 18 0 33 3 0

127

D Further Results

Table D.12: SRR: comparison of parameter settings for pred3
Metric BOG BEBC

Benchmark 1.05 1.49 2.00 additive adaptive 1.05 1.49 2.00 additive adaptive 1.05 1.49

sph. 2 lin. 5.0E-1 4.8E-2 5.7E-2 4.1E-2 4.8E-2 2.8E-5 5.2E-5 6.3E-5 5.4E-5 5.1E-5 0.00 0.01

sph. 5 lin. 3.1E+0 2.1E+0 3.4E+0 2.4E+0 2.1E+0 1.8E-2 2.6E-2 6.3E-2 3.2E-2 2.7E-2 0.01 0.02

sph. 10 lin. 1.5E+1 1.7E+1 3.1E+1 2.1E+1 1.7E+1 3.2E-1 1.3E+0 3.3E+0 1.8E+0 1.3E+0 0.02 0.06

sph. 20 lin. 7.7E+1 1.4E+2 2.4E+2 1.4E+2 1.4E+2 9.6E+0 3.5E+1 6.9E+1 3.1E+1 3.5E+1 0.07 0.18

sph. 50 lin. 1.7E+3 2.2E+3 5.7E+3 2.5E+3 2.2E+3 1.1E+3 1.4E+3 3.9E+3 1.5E+3 1.4E+3 0.13 0.34

sph. 100 lin. 4.0E+4 2.8E+4 5.1E+4 2.8E+4 2.7E+4 3.6E+4 2.3E+4 4.3E+4 2.3E+4 2.2E+4 0.16 0.37

sph. 2 sin. 2.1E+0 1.1E-1 2.0E-1 1.7E-1 1.1E-1 7.9E-5 1.6E-4 2.2E-4 2.4E-4 1.6E-4 0.00 0.02

sph. 5 sin. 5.0E+0 3.8E+0 9.6E+0 6.2E+0 3.8E+0 3.4E-2 5.9E-2 2.4E-1 9.7E-2 5.9E-2 0.02 0.05

sph. 10 sin. 1.1E+2 1.1E+2 1.9E+2 1.3E+2 1.1E+2 2.4E+0 6.6E+0 1.8E+1 7.5E+0 6.7E+0 0.03 0.07

sph. 20 sin. 4.4E+2 4.6E+2 8.1E+2 4.9E+2 4.6E+2 1.6E+2 1.1E+2 2.3E+2 1.1E+2 1.1E+2 0.12 0.19

sph. 50 sin. 5.6E+3 8.2E+3 1.5E+4 9.1E+3 8.2E+3 2.9E+3 4.5E+3 9.2E+3 5.2E+3 4.5E+3 0.15 0.42

sph. 100 sin. 2.8E+4 3.7E+4 5.2E+4 3.7E+4 3.7E+4 2.1E+4 2.8E+4 4.2E+4 2.8E+4 2.8E+4 0.20 0.62

ros. 2 lin. 1.2E+2 7.8E-1 1.6E+0 6.0E-1 7.9E-1 5.5E-3 1.0E-3 2.2E-2 1.2E-3 1.2E-3 0.00 0.01

ros. 5 lin. 5.4E+3 2.1E+3 2.4E+3 2.2E+3 2.1E+3 1.9E+1 1.9E+1 3.5E+1 2.1E+1 2.0E+1 0.00 0.01

ros. 10 lin. 1.9E+5 8.4E+4 3.8E+5 9.0E+4 8.3E+4 1.2E+2 6.3E+2 8.1E+4 6.7E+2 5.8E+2 0.01 0.02

ros. 20 lin. 2.2E+6 1.1E+7 1.6E+7 9.5E+6 1.1E+7 4.9E+3 3.1E+6 2.8E+6 2.5E+6 3.0E+6 0.01 0.17

ros. 50 lin. 6.8E+7 1.4E+8 4.5E+8 1.7E+8 1.4E+8 1.8E+7 5.2E+7 2.6E+8 6.3E+7 5.1E+7 0.09 0.19

ros. 100 lin. 7.7E+9 3.8E+9 1.1E+10 3.5E+9 3.6E+9 6.8E+9 2.7E+9 8.5E+9 2.5E+9 2.5E+9 0.14 0.26

ros. 2 sin. 5.9E+4 6.2E+3 2.9E+1 6.2E+3 6.3E+3 3.7E+3 1.3E-1 1.5E+0 1.5E-1 1.8E-1 0.04 0.01

ros. 5 sin. 1.2E+5 5.4E+3 2.8E+4 1.3E+4 5.4E+3 1.1E+1 9.8E+1 7.7E+2 1.9E+2 9.7E+1 0.00 0.03

ros. 10 sin. 9.1E+5 6.4E+5 1.9E+6 8.9E+5 6.3E+5 2.9E+3 1.3E+4 4.2E+4 1.6E+4 1.3E+4 0.01 0.03

ros. 20 sin. 3.6E+6 8.4E+6 2.4E+7 1.0E+7 8.4E+6 5.7E+4 6.7E+5 2.2E+6 6.7E+5 6.5E+5 0.02 0.08

ros. 50 sin. 2.4E+8 6.4E+8 2.0E+9 7.9E+8 6.5E+8 6.7E+7 2.2E+8 8.6E+8 2.8E+8 2.2E+8 0.10 0.21

ros. 100 sin. 2.6E+9 5.1E+9 1.1E+10 5.2E+9 5.1E+9 1.5E+9 3.2E+9 7.3E+9 3.3E+9 3.2E+9 0.14 0.46

rast. 2 lin. 2.1E+0 1.2E+0 1.4E+0 1.1E+0 1.2E+0 4.7E-3 6.1E-3 2.9E-2 5.9E-3 5.7E-3 0.01 0.02

rast. 5 lin. 2.2E+1 2.0E+1 2.6E+1 2.2E+1 2.0E+1 6.9E+0 7.2E+0 1.1E+1 8.8E+0 7.3E+0 0.05 0.17

rast. 10 lin. 1.3E+2 9.5E+1 1.2E+2 9.9E+1 9.5E+1 8.1E+1 5.6E+1 6.4E+1 5.7E+1 5.6E+1 0.08 0.33

rast. 20 lin. 3.9E+2 3.6E+2 5.0E+2 3.7E+2 3.6E+2 2.5E+2 2.2E+2 2.9E+2 2.2E+2 2.2E+2 0.10 0.39

rast. 50 lin. 4.9E+3 2.6E+3 6.4E+3 3.0E+3 2.6E+3 4.1E+3 1.8E+3 4.6E+3 2.0E+3 1.8E+3 0.15 0.39

rast. 100 lin. 5.3E+4 2.9E+4 5.1E+4 3.0E+4 2.9E+4 4.8E+4 2.4E+4 4.3E+4 2.4E+4 2.4E+4 0.17 0.39

rast. 2 sin. 1.7E+1 2.4E+0 2.7E+0 2.7E+0 2.4E+0 9.4E+0 8.5E-2 2.0E-1 1.3E-1 8.5E-2 0.04 0.04

rast. 5 sin. 4.6E+1 2.8E+1 4.0E+1 3.3E+1 2.8E+1 2.5E+1 1.1E+1 1.6E+1 1.3E+1 1.1E+1 0.06 0.25

rast. 10 sin. 3.1E+2 2.0E+2 2.8E+2 2.2E+2 2.0E+2 1.6E+2 7.9E+1 1.0E+2 8.0E+1 7.9E+1 0.12 0.18

rast. 20 sin. 8.0E+2 6.8E+2 1.0E+3 7.2E+2 6.8E+2 4.8E+2 3.1E+2 4.4E+2 3.1E+2 3.1E+2 0.10 0.28

rast. 50 sin. 6.7E+3 8.8E+3 1.5E+4 9.8E+3 8.9E+3 4.0E+3 5.1E+3 9.4E+3 5.8E+3 5.1E+3 0.14 0.43

rast. 100 sin. 2.9E+4 3.9E+4 5.2E+4 3.9E+4 3.9E+4 2.2E+4 3.0E+4 4.2E+4 3.0E+4 3.0E+4 0.23 0.63

Best frequen. 13 12 1 4 6 23 7 0 3 3 35 1

RCS

2.00 additive adaptive

0.03 0.04 0.02

0.04 0.06 0.04

0.09 0.11 0.10

0.24 0.22 0.26

0.57 0.49 0.51

0.65 0.72 0.70

0.03 0.03 0.03

0.07 0.06 0.06

0.11 0.08 0.09

0.26 0.19 0.20

0.56 0.48 0.46

0.73 0.68 0.68

0.03 0.03 0.02

0.02 0.03 0.03

0.05 0.04 0.04

0.14 0.18 0.19

0.39 0.33 0.32

0.50 0.58 0.59

0.04 0.04 0.04

0.05 0.04 0.04

0.04 0.03 0.03

0.12 0.09 0.09

0.36 0.27 0.26

0.56 0.51 0.52

0.07 0.07 0.04

0.25 0.29 0.26

0.33 0.39 0.41

0.41 0.44 0.48

0.59 0.55 0.58

0.66 0.72 0.71

0.10 0.09 0.09

0.27 0.27 0.29

0.20 0.18 0.20

0.33 0.28 0.30

0.56 0.49 0.48

0.74 0.69 0.69

0 0 0

128

D.2 Prediction for Particle Swarm Optimization

Table D.13: SRR: comparison of parameter settings for pred3p
Metric BOG BEBC

Benchmark 1.05 1.49 2.00 additive adaptive 1.05 1.49 2.00 additive adaptive 1.05 1.49

sph. 2 lin. 5.0E-1 4.8E-2 5.7E-2 4.2E-2 4.9E-2 2.9E-5 5.1E-5 6.7E-5 5.3E-5 5.3E-5 0.00 0.01

sph. 5 lin. 3.1E+0 2.1E+0 3.4E+0 2.4E+0 2.1E+0 1.8E-2 2.7E-2 6.5E-2 3.2E-2 2.7E-2 0.01 0.02

sph. 10 lin. 1.5E+1 1.7E+1 3.1E+1 2.1E+1 1.7E+1 3.2E-1 1.3E+0 3.3E+0 1.7E+0 1.3E+0 0.02 0.06

sph. 20 lin. 7.7E+1 1.4E+2 2.4E+2 1.4E+2 1.4E+2 9.6E+0 3.5E+1 6.9E+1 3.0E+1 3.4E+1 0.07 0.18

sph. 50 lin. 1.7E+3 2.2E+3 5.7E+3 2.5E+3 2.2E+3 1.2E+3 1.4E+3 3.9E+3 1.5E+3 1.3E+3 0.13 0.34

sph. 100 lin. 4.2E+4 2.9E+4 5.2E+4 2.8E+4 2.8E+4 3.7E+4 2.4E+4 4.4E+4 2.3E+4 2.3E+4 0.17 0.38

sph. 2 sin. 2.1E+0 1.1E-1 2.0E-1 1.7E-1 1.2E-1 8.0E-5 1.6E-4 2.3E-4 2.5E-4 1.6E-4 0.00 0.02

sph. 5 sin. 5.0E+0 3.8E+0 9.5E+0 6.2E+0 3.8E+0 3.4E-2 5.9E-2 2.4E-1 9.8E-2 5.9E-2 0.02 0.05

sph. 10 sin. 1.1E+2 1.1E+2 1.9E+2 1.3E+2 1.1E+2 2.4E+0 6.7E+0 1.8E+1 7.3E+0 6.7E+0 0.03 0.07

sph. 20 sin. 4.4E+2 4.6E+2 8.2E+2 5.0E+2 4.6E+2 1.6E+2 1.1E+2 2.3E+2 1.1E+2 1.1E+2 0.12 0.19

sph. 50 sin. 5.6E+3 8.2E+3 1.5E+4 9.1E+3 8.2E+3 2.9E+3 4.5E+3 9.0E+3 5.2E+3 4.5E+3 0.15 0.41

sph. 100 sin. 2.7E+4 3.6E+4 5.2E+4 3.6E+4 3.6E+4 2.0E+4 2.8E+4 4.2E+4 2.8E+4 2.8E+4 0.20 0.62

ros. 2 lin. 1.2E+2 7.7E-1 1.6E+0 6.1E-1 7.8E-1 5.5E-3 9.9E-4 1.7E-2 1.2E-3 9.6E-4 0.00 0.01

ros. 5 lin. 5.4E+3 2.1E+3 2.3E+3 2.2E+3 2.1E+3 1.9E+1 1.9E+1 3.6E+1 2.3E+1 1.9E+1 0.00 0.01

ros. 10 lin. 1.9E+5 8.4E+4 3.0E+5 8.9E+4 8.3E+4 1.2E+2 7.3E+2 4.5E+4 6.1E+2 5.6E+2 0.01 0.02

ros. 20 lin. 2.2E+6 1.0E+7 1.5E+7 9.2E+6 1.1E+7 4.9E+3 2.8E+6 2.5E+6 2.4E+6 3.1E+6 0.01 0.15

ros. 50 lin. 7.1E+7 1.4E+8 4.6E+8 1.7E+8 1.5E+8 2.0E+7 5.2E+7 2.7E+8 6.3E+7 5.3E+7 0.10 0.19

ros. 100 lin. 7.7E+9 3.7E+9 1.1E+10 3.4E+9 3.7E+9 6.8E+9 2.7E+9 8.5E+9 2.4E+9 2.6E+9 0.14 0.26

ros. 2 sin. 5.9E+4 6.2E+3 3.6E+1 6.2E+3 6.2E+3 3.7E+3 1.3E-1 2.6E+0 1.6E-1 1.4E-1 0.04 0.01

ros. 5 sin. 1.1E+5 5.5E+3 2.9E+4 1.4E+4 5.3E+3 9.2E+0 1.0E+2 7.3E+2 2.1E+2 9.9E+1 0.00 0.03

ros. 10 sin. 9.3E+5 6.6E+5 1.8E+6 8.7E+5 6.3E+5 2.7E+3 1.6E+4 3.9E+4 1.6E+4 1.3E+4 0.01 0.03

ros. 20 sin. 3.6E+6 1.0E+7 2.5E+7 9.8E+6 9.2E+6 6.0E+4 9.4E+5 2.3E+6 6.4E+5 7.6E+5 0.02 0.08

ros. 50 sin. 2.3E+8 6.4E+8 2.0E+9 8.0E+8 6.5E+8 6.6E+7 2.2E+8 8.7E+8 2.8E+8 2.2E+8 0.10 0.21

ros. 100 sin. 2.5E+9 5.2E+9 1.1E+10 5.2E+9 5.0E+9 1.5E+9 3.2E+9 7.2E+9 3.2E+9 3.2E+9 0.14 0.47

rast. 2 lin. 2.1E+0 1.2E+0 1.4E+0 1.1E+0 1.2E+0 4.5E-3 5.8E-3 3.0E-2 5.8E-3 6.3E-3 0.01 0.02

rast. 5 lin. 2.2E+1 2.0E+1 2.6E+1 2.2E+1 2.0E+1 6.9E+0 7.3E+0 1.1E+1 8.8E+0 7.2E+0 0.05 0.17

rast. 10 lin. 1.3E+2 9.5E+1 1.2E+2 9.9E+1 9.5E+1 8.1E+1 5.7E+1 6.4E+1 5.7E+1 5.6E+1 0.08 0.33

rast. 20 lin. 3.9E+2 3.6E+2 5.0E+2 3.7E+2 3.6E+2 2.5E+2 2.2E+2 2.9E+2 2.2E+2 2.2E+2 0.10 0.39

rast. 50 lin. 4.9E+3 2.7E+3 6.4E+3 3.0E+3 2.6E+3 4.1E+3 1.8E+3 4.6E+3 2.0E+3 1.8E+3 0.15 0.39

rast. 100 lin. 5.2E+4 3.0E+4 5.1E+4 3.0E+4 3.0E+4 4.7E+4 2.5E+4 4.3E+4 2.4E+4 2.5E+4 0.17 0.40

rast. 2 sin. 1.7E+1 2.4E+0 2.7E+0 2.7E+0 2.4E+0 9.4E+0 9.0E-2 2.0E-1 1.2E-1 8.9E-2 0.04 0.04

rast. 5 sin. 4.6E+1 2.8E+1 4.0E+1 3.3E+1 2.8E+1 2.5E+1 1.1E+1 1.6E+1 1.3E+1 1.1E+1 0.06 0.25

rast. 10 sin. 3.1E+2 2.0E+2 2.8E+2 2.2E+2 2.0E+2 1.6E+2 7.9E+1 1.0E+2 8.0E+1 7.9E+1 0.12 0.18

rast. 20 sin. 8.0E+2 6.8E+2 1.0E+3 7.2E+2 6.8E+2 4.8E+2 3.1E+2 4.4E+2 3.1E+2 3.1E+2 0.10 0.28

rast. 50 sin. 6.7E+3 8.8E+3 1.5E+4 9.9E+3 8.8E+3 4.0E+3 5.1E+3 9.4E+3 5.8E+3 5.1E+3 0.14 0.43

rast. 100 sin. 2.9E+4 3.9E+4 5.2E+4 3.9E+4 3.9E+4 2.2E+4 3.0E+4 4.2E+4 3.0E+4 3.0E+4 0.23 0.63

Best frequen. 13 7 1 6 9 22 2 0 6 6 35 1

RCS

2.00 additive adaptive

0.03 0.04 0.03

0.04 0.06 0.04

0.09 0.11 0.10

0.24 0.21 0.26

0.57 0.50 0.50

0.67 0.71 0.73

0.03 0.03 0.03

0.07 0.06 0.06

0.11 0.08 0.08

0.26 0.19 0.20

0.55 0.48 0.46

0.73 0.67 0.68

0.03 0.03 0.02

0.02 0.03 0.02

0.05 0.04 0.04

0.13 0.17 0.20

0.40 0.33 0.33

0.50 0.57 0.60

0.05 0.04 0.04

0.05 0.04 0.04

0.04 0.03 0.03

0.12 0.09 0.09

0.36 0.28 0.26

0.56 0.51 0.51

0.07 0.07 0.04

0.25 0.30 0.26

0.33 0.39 0.41

0.41 0.43 0.48

0.59 0.55 0.57

0.66 0.72 0.74

0.11 0.10 0.09

0.27 0.27 0.29

0.20 0.18 0.20

0.33 0.29 0.30

0.56 0.50 0.48

0.74 0.69 0.70

0 0 0

129

D Further Results

Table D.14: MPB-Noisy: comparison of parameter settings for dynPSO
Metric BOG BEBC RCS

Benchmark 1.05 1.49 2.00 1.05 1.49 2.00 1.05 1.49 2.00

noisy (0) 2 -22.64 -142.65 -155.18 153.76 33.75 21.40 0.91 0.35 0.41

noisy (0) 20 -31.62 -22.31 -15.99 149.78 176.51 190.97 0.84 0.90 0.94

noisy (0) 50 -0.06 -0.40 -0.26 194.24 193.73 193.96 1.00 1.00 1.00

noisy (0) 100 0.00 -0.02 -0.01 187.29 187.27 187.28 1.00 1.00 1.00

noisy (0.1) 2 -22.66 -23.53 -144.48 153.76 153.76 32.10 0.91 0.98 0.52

noisy (0.1) 20 -32.30 -22.67 -16.09 149.16 176.79 190.48 0.83 0.90 0.93

noisy (0.1) 50 -0.15 -0.17 -0.27 194.13 194.06 193.94 1.00 1.00 1.00

noisy (0.1) 100 0.00 -0.01 -0.01 187.29 187.28 187.28 1.00 1.00 1.00

noisy (1) 2 -21.59 -104.53 -171.54 153.76 71.47 4.05 0.91 0.60 0.14

noisy (1) 20 -26.31 -21.90 -11.29 159.74 175.45 200.28 0.86 0.90 0.95

noisy (1) 50 -0.04 -0.36 -0.22 194.27 193.78 194.01 1.00 1.00 1.00

noisy (1) 100 0.00 -0.01 -0.01 187.29 187.28 187.28 1.00 1.00 1.00

noisy (10) 2 -123.79 -139.73 -124.78 28.27 28.11 40.25 0.20 0.20 0.31

noisy (10) 20 -0.61 -0.58 -0.28 223.50 223.82 224.66 1.00 1.00 1.00

noisy (10) 50 0.00 -0.02 -0.01 194.31 194.29 194.30 1.00 1.00 1.00

noisy (10) 100 0.00 0.00 0.00 187.29 187.29 187.29 1.00 1.00 1.00

Best frequency 4 6 6 4 6 6 5 6 5

Table D.15: MPB-Noisy: comparison of parameter settings for pred2p
Metric BOG BEBC RCS

Benchmark 1.05 1.49 2.00 1.05 1.49 2.00 1.05 1.49 2.00

noisy (0) 2 -22.70 -43.93 -159.17 153.76 133.19 17.14 0.91 0.93 0.34

noisy (0) 20 -32.82 -21.89 -15.80 149.43 177.90 191.41 0.83 0.90 0.94

noisy (0) 50 -0.64 -0.27 -0.27 193.36 193.92 193.94 1.00 1.00 1.00

noisy (0) 100 -0.07 -0.04 -0.01 187.21 187.25 187.28 1.00 1.00 1.00

noisy (0.1) 2 -22.67 -44.50 -156.18 153.76 132.65 20.00 0.91 0.87 0.37

noisy (0.1) 20 -34.03 -22.65 -15.53 146.15 176.18 192.06 0.83 0.90 0.94

noisy (0.1) 50 -0.26 -0.24 -0.27 193.90 193.96 193.93 1.00 1.00 1.00

noisy (0.1) 100 -0.09 -0.03 -0.01 187.18 187.26 187.28 1.00 1.00 1.00

noisy (1) 2 -21.76 -79.04 -167.25 153.76 97.49 8.41 0.91 0.73 0.19

noisy (1) 20 -29.27 -21.66 -11.15 151.31 176.18 200.69 0.85 0.90 0.95

noisy (1) 50 -0.14 -0.35 -0.23 194.11 193.79 194.00 1.00 1.00 1.00

noisy (1) 100 -0.05 -0.03 -0.01 187.23 187.26 187.28 1.00 1.00 1.00

noisy (10) 2 -123.95 -134.22 -129.14 28.75 33.34 33.48 0.20 0.24 0.28

noisy (10) 20 -0.93 -0.58 -0.29 222.27 223.84 224.64 0.99 1.00 1.00

noisy (10) 50 -0.01 -0.02 -0.01 194.30 194.29 194.30 1.00 1.00 1.00

noisy (10) 100 0.00 0.00 0.00 187.29 187.29 187.29 1.00 1.00 1.00

Best frequency 9 3 4 11 2 3 11 2 3

130

D.2 Prediction for Particle Swarm Optimization

Table D.16: MPB-Noisy: comparison of parameter settings for pred3
Metric BOG BEBC RCS

Benchmark 1.05 1.49 2.00 1.05 1.49 2.00 1.05 1.49 2.00

noisy (0) 2 -23.11 -104.97 -160.75 153.76 71.79 15.32 0.91 0.58 0.31

noisy (0) 20 -17.07 -24.18 -16.15 191.60 175.46 191.06 0.91 0.90 0.93

noisy (0) 50 -1.41 -0.32 -0.28 191.91 193.82 193.92 0.99 1.00 1.00

noisy (0) 100 -0.17 -0.11 -0.03 187.08 187.15 187.26 1.00 1.00 1.00

noisy (0.1) 2 -23.05 -99.15 -153.68 153.76 77.57 22.29 0.91 0.55 0.41

noisy (0.1) 20 -15.80 -24.67 -16.30 192.33 174.82 190.40 0.91 0.89 0.93

noisy (0.1) 50 -0.75 -0.31 -0.28 193.03 193.83 193.92 1.00 1.00 1.00

noisy (0.1) 100 -0.12 -0.12 -0.02 187.13 187.14 187.26 1.00 1.00 1.00

noisy (1) 2 -22.42 -111.65 -166.98 153.76 64.59 7.69 0.91 0.52 0.18

noisy (1) 20 -33.21 -21.90 -11.33 144.28 175.34 199.96 0.83 0.90 0.95

noisy (1) 50 -0.29 -0.22 -0.22 193.80 193.97 193.99 1.00 1.00 1.00

noisy (1) 100 -0.16 -0.10 -0.02 187.08 187.16 187.27 1.00 1.00 1.00

noisy (10) 2 -126.34 -124.87 -118.78 31.56 41.15 39.48 0.20 0.29 0.33

noisy (10) 20 -1.11 -0.53 -0.28 221.58 223.90 224.64 0.99 1.00 1.00

noisy (10) 50 -0.01 -0.02 -0.01 194.29 194.29 194.30 1.00 1.00 1.00

noisy (10) 100 -0.01 0.00 0.00 187.28 187.29 187.29 1.00 1.00 1.00

Best frequency 10 3 3 10 3 3 11 2 3

Table D.17: MPB-Noisy: comparison of parameter settings for pred3p
Metric BOG BEBC RCS

Benchmark 1.05 1.49 2.00 1.05 1.49 2.00 1.05 1.49 2.00

noisy (0) 2 -23.09 -100.37 -155.65 153.76 76.36 20.44 0.91 0.62 0.38

noisy (0) 20 -16.92 -24.59 -16.92 191.73 174.56 189.46 0.91 0.89 0.93

noisy (0) 50 -1.40 -0.31 -0.28 191.93 193.83 193.93 0.99 1.00 1.00

noisy (0) 100 -0.18 -0.11 -0.02 187.06 187.15 187.26 1.00 1.00 1.00

noisy (0.1) 2 -23.04 -109.83 -154.42 153.76 66.87 21.46 0.91 0.49 0.39

noisy (0.1) 20 -15.93 -25.96 -15.16 192.03 171.89 192.80 0.91 0.89 0.94

noisy (0.1) 50 -0.75 -0.32 -0.27 193.03 193.82 193.93 1.00 1.00 1.00

noisy (0.1) 100 -0.15 -0.11 -0.02 187.10 187.16 187.27 1.00 1.00 1.00

noisy (1) 2 -22.44 -119.38 -164.79 153.76 56.87 9.72 0.91 0.49 0.21

noisy (1) 20 -32.62 -21.98 -11.35 145.66 175.32 199.76 0.84 0.90 0.95

noisy (1) 50 -0.30 -0.23 -0.22 193.79 193.96 194.00 1.00 1.00 1.00

noisy (1) 100 -0.15 -0.11 -0.02 187.10 187.16 187.27 1.00 1.00 1.00

noisy (10) 2 -126.97 -120.45 -121.70 30.68 46.24 36.86 0.20 0.32 0.31

noisy (10) 20 -1.13 -0.53 -0.27 221.56 223.90 224.66 0.99 1.00 1.00

noisy (10) 50 -0.01 -0.02 -0.01 194.29 194.29 194.30 1.00 1.00 1.00

noisy (10) 100 -0.01 0.00 0.00 187.28 187.29 187.29 1.00 1.00 1.00

Best frequency 10 3 3 10 3 3 11 2 3

131

D Further Results

Table D.18: Parameter settings for experiments
Input Range Hyperparameter Tuning Final Comparison

Architecture Training

Range [0, 2], [0, 1], [−1, 1] [−1, 1] [−1, 1] [−1, 1]

Filters 16 [8, 16, 27] 27 27
Filter Size k 3 [2, 3, 4, 5, 6, 7] 6 6

Learning Rate 0.002 0.002 [0.001, 0.002, 0.004] 0.001
Epochs 5 80 80 100
Batch Size 32 32 [8, 16, 32] 32
Dropout 0.1 0.05 [0.01, 0.05, 0.1] 0.1

D.3 Predictive Uncertainty for Evolution Strategies
As mentioned in Chapter 9, we tune the network hyper-parameters before
conducting the final experiments. Procedure and results of hyperparameter
tuning are presented in Paragraph D.3.1, while Paragraph D.3.2 contains
the results of the final comparison.

D.3.1 Tuning of Hyperparameters
We tune the hyperparameters of the TCNs only on tcn. Since the training
process for tcn and unc is the same except for the output layer of the
aleatoric uncertainty, the identified settings on tcn should also be suited for
unc. Re-initialization strategy is pRND. We employ a ten-dimensional DSB
instance with the Sphere function as benchmark which differs from the one
used in the final comparison. All experiments are repeated five times.
Before we tune the hyperparameters, we identify the best range for scaling

the input data. The hyperparameter tuning is divided into two parts: tuning
of architecture and training parameters. The best found setting is employed
for the final comparison. See Table D.18 for an overview of the employed
parameter settings.

Input Range

For NNs it is important to scale the inputs into a reasonable range. There-
fore, we experimentally identify the best among three common ranges before
we tune the hyperparameters. The interval [−1, 1] turns out to be more suit-
able than [0, 2] and [0, 1] (Table D.19).

132

D.3 Predictive Uncertainty for Evolution Strategies

Table D.19: Comparison of different input ranges
Range BOG BEBC RCS PE

[0, 2] 2.01 ± 0.01 1.55 ± 0.02 0.53 ± 0.01 0.97 ± 0.17
[0, 1] 2.00 ± 0.02 1.54 ± 0.02 0.53 ± 0.01 0.85 ± 0.02
[−1, 1] 1.78 ± 0.02 1.43 ± 0.01 0.48 ± 0.01 0.62 ± 0.01

Table D.20: Results for tuning of architecture parameters
Filters k BOG BEBC RCS PE

8

2 1.75 ±0.024 1.42 ±0.022 0.71 ±0.010 0.62 ±0.006
3 1.77 ±0.030 1.43 ±0.017 0.71 ±0.013 0.62 ±0.009
4 1.76 ±0.020 1.41 ±0.012 0.71 ±0.005 0.62 ±0.013
5 1.76 ±0.030 1.43 ±0.036 0.70 ±0.010 0.62 ±0.009
6 1.78 ±0.015 1.44 ±0.010 0.71 ±0.007 0.63 ±0.006
7 1.78 ±0.023 1.44 ±0.015 0.70 ±0.007 0.63 ±0.011

16

2 1.79 ±0.021 1.44 ±0.011 0.70 ±0.014 0.64 ±0.010
3 1.79 ±0.011 1.45 ±0.013 0.71 ±0.012 0.63 ±0.010
4 1.73 ±0.037 1.42 ±0.023 0.72 ±0.013 0.61 ±0.014
5 1.72 ±0.018 1.40 ±0.014 0.72 ±0.005 0.60 ±0.013
6 1.73 ±0.034 1.41 ±0.024 0.72 ±0.014 0.60 ±0.011
7 1.77 ±0.036 1.45 ±0.031 0.72 ±0.011 0.62 ±0.018

27

2 1.75 ±0.039 1.43 ±0.027 0.72 ±0.021 0.61 ±0.014
3 1.73 ±0.038 1.40 ±0.037 0.72 ±0.003 0.60 ±0.007
4 1.72 ±0.010 1.41 ±0.007 0.73 ±0.003 0.59 ±0.005
5 1.67 ±0.024 1.38 ±0.015 0.73 ±0.010 0.58 ±0.014
6 1.70 ±0.027 1.39 ±0.018 0.74 ±0.012 0.58 ±0.017
7 1.73 ±0.027 1.41 ±0.020 0.73 ±0.011 0.59 ±0.014

Tuning of Architecture Parameters

We tune the architecture parameters number and size k of filters by grid
searching over the values listed in Table D.18. Table D.20 contains the
average results and their standard deviation. A bold value denotes that this
setting is the best among all filter sizes k for a certain number of filters
regarding the respective metric. The best value of the whole column is
signified by an underlined bold value.
The results show that 27 filters are the best choice for all metrics except

for RCS. Regarding PE, k = 6 is best whereas k = 5 is best for the other
metrics. Nevertheless, in the following experiments we employ k = 6, since
we aim at optimizing the prediction ability of the TCN which mainly is
measured by PE.

133

D Further Results

Tuning of Training Parameters

We conduct a grid search over different values for learning rate, batch size
and dropout rate (Table D.18). The results are highlighted as follows (Ta-
ble D.21). A bold value denotes the best dropout rate with fixed learning
rate and batch size whereas an underlined bold value represents the best
batch size for a certain learning rate. A boxed value represents the best
setting of the whole column, i.e., the best learning rate.
Regarding BOG, BEBC and PE, 0.001 is the best learning rate. It can

be observed that batch size 8 is almost never the best, whereas for learning
rates 0.001 and 0.002 batch size 32 is superior. For learning rate 0.004,
batch size 16 is reasonable as well. Since learning rate 0.001 and batch size
32 seem to be promising, we only consider these settings to identify the best
dropout rate. Regarding RCS, dropout rate 0.01 is best but for all other
metrics rate 0.1 has better values.
Overall the tuning of architecture and training hyperparameters yields 27

filters, filter size 6, learning rate 0.001, batch size 32 and dropout rate 0.1 as
best parameters. This setting is employed in the final comparison for both
tcn and unc.

D.3.2 Final Comparisons on DSB and MPB
Tables D.22, D.23 and D.24 comprise pairwise statistical tests between all
combinations of prediction method and re-initialization strategy on DSB.
Results for corresponding experiments on MPB are listed in Tables D.25,
D.26 and D.27.

134

D.3 Predictive Uncertainty for Evolution Strategies

Table D.21: Results for tuning of training parameters
Learnig R. Batch S. Dropout BOG BEBC RCS PE

0.001 8
0.01 1.68 ±0.009 1.38 ±0.015 0.74 ±0.010 0.58 ±0.011
0.05 1.70 ±0.016 1.40 ±0.011 0.74 ±0.008 0.58 ±0.004
0.1 1.69 ±0.014 1.40 ±0.017 0.73 ±0.005 0.58 ±0.009

16
0.01 1.71 ±0.030 1.40 ±0.017 0.73 ±0.016 0.59 ±0.021
0.05 1.66 ±0.042 1.37 ±0.030 0.75 ±0.017 0.56 ±0.015
0.1 1.68 ±0.017 1.39 ±0.022 0.75 ±0.009 0.56 ±0.009

32
0.01 1.69 ±0.023 1.39 ±0.023 0.73 ±0.010 0.58 ±0.003
0.05 1.68 ±0.018 1.38 ±0.024 0.74 ±0.007 0.56 ±0.009
0.1 1.65 ±0.033 1.37 ±0.031 0.75 ±0.012 0.56 ±0.012

0.002 8
0.01 1.76 ±0.012 1.43 ±0.013 0.71 ±0.007 0.62 ±0.012
0.05 1.72 ±0.026 1.41 ±0.018 0.73 ±0.009 0.60 ±0.014
0.1 1.72 ±0.030 1.41 ±0.018 0.72 ±0.007 0.60 ±0.013

16
0.01 1.71 ±0.034 1.40 ±0.030 0.72 ±0.015 0.60 ±0.018
0.05 1.70 ±0.020 1.40 ±0.009 0.73 ±0.014 0.59 ±0.008
0.1 1.70 ±0.036 1.39 ±0.032 0.73 ±0.008 0.58 ±0.008

32
0.01 1.71 ±0.028 1.40 ±0.024 0.73 ±0.013 0.59 ±0.019
0.05 1.69 ±0.032 1.39 ±0.014 0.74 ±0.011 0.58 ±0.020
0.1 1.67 ±0.026 1.38 ±0.013 0.73 ±0.020 0.58 ±0.007

0.004 8
0.01 1.84 ±0.017 1.47 ±0.015 0.70 ±0.011 0.70 ±0.017
0.05 1.85 ±0.018 1.49 ±0.015 0.70 ±0.012 0.68 ±0.023
0.1 1.79 ±0.001 1.45 ±0.015 0.69 ±0.006 0.65 ±0.016

16
0.01 1.84 ±0.042 1.46 ±0.035 0.69 ±0.018 0.70 ±0.029
0.05 1.76 ±0.023 1.43 ±0.011 0.71 ±0.009 0.63 ±0.012
0.1 1.75 ±0.021 1.42 ±0.024 0.71 ±0.011 0.63 ±0.010

32
0.01 1.81 ±0.030 1.47 ±0.023 0.70 ±0.005 0.68 ±0.019
0.05 1.76 ±0.034 1.43 ±0.022 0.70 ±0.013 0.63 ±0.022
0.1 1.75 ±0.022 1.43 ±0.011 0.71 ±0.007 0.62 ±0.012

135

D Further Results

Table D.22: DSB: pairwise test results for all combinations of re-initializa-
tion strategy and prediction method; continued in Table D.23

Alg. Bmk. Dim. npm-nVAR npm-nPRE ar-pRND ar-pDEV tcn-pRND tcn-pDEV kal-pRND kal-pDEV kal-pUNC kal-pKAL unc-pRND unc-pDEV unc-pUNC unc-pKAL

np
m
-n
R
N
D

Sp
he
re

2 − − M · M − M · M − − · M − − · M M M · M M M · M − M · M − M · M M M · M − H · M M M · M M M · M M M · M M M ·
5 − M M · − M M · M M − · M M − · M M M · M M M · M M M · M M M · M M M · M − H · M M M · M M M · M M M · M M M ·
10 M M M · M − − · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
20 M M M · M − − · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·

R
os
en
br
oc
k 2 − M M · − − M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M − · M M M · M M M · M M M · M M M ·

5 − M M · − M M · M M − · M M − · M M M · M M M · M M M · M M M · M M M · M M H · M M M · M M M · M M M · M M − ·
10 H − M · − M M · M M − · M M − · M M M · M M M · M M M · M M M · M M M · M M − · M M M · M M M · M M M · M M M ·
20 − − − · − − − · M M − · M M − · M M M · M M M · M M − · M M − · M M − · M M − · M M M · M M M · M M M · M M − ·

R
as
tr
ig
in 2 M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M − · M M M · M M M · M M M · M M M ·

5 M M M · M − − · M M M · M M M · M M M · M M M · M M M · M − − · M M − · M M − · M M M · M M M · M M M · M − − ·
10 M M M · H − − · M − M · M − M · M M M · M M M · M − − · M − M · M − M · M − − · M M M · M M M · M M M · M − − ·
20 M − M · − − − · M − M · M − M · M M M · M M M · M − M · M M M · M − M · M − M · M M M · M M M · M M M · M M M ·

np
m
-n
VA

R

Sp
he
re

2 − − − · M − H · M − H · M M M · M M M · M − H · M − H · M M H · M − H · M M M · M M M · M M M · M M M ·
5 − − H · M − H · M − H · M M M · M M M · M M H · M M H · M M H · M − H · M M M · M M M · M M M · M M − ·
10 − H H · M H H · M H H · M M M · M M M · M M M · M M − · M M − · M − H · M M M · M M M · M M M · M M M ·
20 − H H · M M − · M M − · M M M · M M M · M M − · M M − · M M − · M − H · M M M · M M M · M M M · M M H ·

R
os
en
br
oc
k 2 − H − · M − H · M − H · M M M · M M M · M M − · M − − · M M − · M − H · M M M · M M M · M M M · M M − ·

5 − − H · M − H · M − H · M M M · M M M · M M H · M M H · M M H · M − H · M M M · M M M · M M M · M − H ·
10 − − − · M M H · M M H · M M M · M M M · M M − · M M − · M M − · M M H · M M M · M M M · M M M · M M H ·
20 − − − · M M H · M M H · M M M · M M M · M M − · M M H · M M H · M M H · M M M · M M − · M M − · M M H ·

R
as
tr
ig
in 2 H − − · − − H · H − H · M M M · M M M · M M − · − − − · M M − · H H H · M M M · M M M · M M M · M M M ·

5 H H H · − − H · H − H · M − − · − − − · − − H · H − H · − − H · H − H · M − − · − − H · M − − · H H H ·
10 H H H · M − H · M − H · M − − · M − − · M H H · M − H · M − H · M − H · M M − · M M − · M − H · M − H ·
20 H − H · M − − · M − − · M M M · M M M · M − H · M M − · M H − · M − H · M M M · M − − · M M − · M M − ·

np
m
-n
PR

E

Sp
he
re

2 M − H · M − H · M M M · M M M · M − H · M − H · M − H · M − H · M M M · M M M · M M M · M M M ·
5 M M H · M − H · M M M · M M M · M M − · M M H · M M H · M − H · M M M · M M M · M M M · M M M ·
10 M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
20 M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·

R
os
en
br
oc
k 2 M M − · M M − · M M M · M M M · M M − · M M − · M M − · M − H · M M M · M M M · M M M · M M − ·

5 M − H · M − H · M M M · M M M · M M H · M M H · M M H · M M H · M M M · M M M · M M M · M M H ·
10 M M − · M M − · M M M · M M M · M M M · M M − · M M − · M M H · M M M · M M M · M M M · M M − ·
20 M M − · M M − · M M M · M M M · M M − · M M − · M M − · M M H · M M M · M M M · M M M · M M − ·

R
as
tr
ig
in 2 M − − · M − − · M M M · M M M · M M − · M − − · M M − · H H H · M M M · M M M · M M M · M M M ·

5 M M M · M M M · M M M · M M M · M M − · M − − · M M − · M M − · M M M · M M M · M M M · M − H ·
10 M M M · M M M · M M M · M M M · M − M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
20 M − M · M − M · M M M · M M M · M − − · M M M · M − M · M − − · M M M · M M M · M M M · M M M ·

ar
-p
R
N
D

Sp
he
re

2 H − − − M M M M M M M M M − − M M − − M M − − M H − H M M M M M M M M M M M M M M M M M
5 H − − − M M M M M M M M M M M M M − M M M M M M M H H M M M M M M M M M M M M M M M M M
10 − − − − M − − M M M M M M M M M M M M M M M M M
20 H − − − M M M M M M M M M − − H − − − H M M − H H H H H M M M M M M M M M M M M M H − M

R
os
en
br
oc
k 2 H − − − M M M M M M M M M M M M M M − M M M − M H − H M M M M M M M M M M M M M M M M M

5 H − − − M − − H M M M M M M M M M M M M M M − − M
10 H − − − M − − H M M M M M M M M M M M M M M − M M
20 H H − − M M M M M M M M M − − H − H − H M − − H H H H H M M M M M M M M M M M M − H − M

R
as
tr
ig
in 2 H − − − M M M M M M M M M − M M − − − M M M − M H H H M M M M M M M M M M M M M M M M M

5 − − − − M M M M M M M M − − − H H − H H − − H H H − H H M − M M − − M M M − M M H H H M
10 − − − − M − − M − − − M H − − H H − − H H − − H H − H H M − M M M M M M − − − M H − − M
20 − − − − M − M − − − − − H − H H H − − H H H − H H − H H M M M − − − − − − − − M H − − M

ar
-p
D
EV

Sp
he
re

2 M M M M M M M M M − − M M − − M M − − M H − H M M M M M M M M M M M M M M M M M
5 M − H M M M M M M M M M M M M M M M M M
10 M − − M M M M M M M M M M M M M M M M M
20 M M M M M M M M M M − H M − − H M M − H H H H H M M M M M M M M M M M M M − − M

R
os
en
br
oc
k 2 M M M M M M M M M M M M M − − M M M − M H H H M M M M M M M M M M M M M M M M M

5 M − H M M M M M M M M M M M M M M − − M
10 M − H M M M M M M M M M M M M M M − M M
20 M M M M M M M M M M − H M − − H M M − H − − H H M M M M M M M M M M M M M − − M

R
as
tr
ig
in 2 M M M M M M M M M − M M M − − M M M − M H − H M M M M M M M M M M M M M M M M M

5 M − M M M − M M − − − H − − H H − − H H H − H H M − M M M − M M M − M M H H H M
10 M − − M M M − M H − − H − − − H H − − H H − H H M M M M M M M M − − − M H − − M
20 M M M − M M − − H − H H − M − H H H − H H − H H M M M H M − − − M − − M − − − −

136

D.3 Predictive Uncertainty for Evolution Strategies

Table D.23: Continues Table D.22; continued in Table D.24
Alg. Bmk. Dim. npm-nVAR npm-nPRE ar-pRND ar-pDEV tcn-pRND tcn-pDEV kal-pRND kal-pDEV kal-pUNC kal-pKAL unc-pRND unc-pDEV unc-pUNC unc-pKAL

tc
n-
pR

N
D

Sp
he
re

2 H H H − H H H H H H H H H H H H H H H H − − − − M M M M M M M M − − − M
5 H − − − H H H H H H H H H H H H H H H H − − − − H − H − M M M − H H H H
10 H H H − H H H H H H H H H H H H H H H H − − − − H H H H H H H − H H H H
20 H H H − H H H H H H H H H H H H H H H H − − − − H H H − H H H − H H H H

R
os
en
br
oc
k 2 H H H − H H H H H H H H H H H H H H H H − − − − H H H − M M M − H H H −

5 H H − − H H H H H H H H H H H H H H H H − − M − H − − − − − M − H H H −
10 H H H − H H H H H H H H H H H H H H H H − − − − H H H − H H H − H H H −
20 H − − − H H H H H H H H H H H H H H H H − − − − H − H − H H H − H H H −

R
as
tr
ig
in 2 H H H − H H H H H H H H H H H H H H H H − H − − − − − − M M M − H H H −

5 H − − − H H H H H H H H H H H H H H H H − − − − H − − − H − − − H H H −
10 H − − − H H H H H − H H H − H H H − H H − − − − − M − − H − − − H H H −
20 H − − − H H H H H − H H H H H H H H H H − − − H − − − − H − − − H − H −

tc
n-
pD

EV

Sp
he
re

2 H H H H H H H H H H H H H H H H M M M − M M M M M M M M M M M M
5 H H H H H H H H H H H H H H H H M M − − − − H − M M M − H H H H
10 H H H H H H H H H H H H H H H H M − M − − H H − − − − − H H H H
20 H H H H H H H H H H H H H H H H M M M M − − M − − − − H H H H H

R
os
en
br
oc
k 2 H H H H H H H H H H H H H H H H M M M − − − − − M M M − H H H −

5 H H H H H H H H H − H H H H H H M M M − − − − − M M M − H H H −
10 H H H H H H H H H H H H H H H H M M M − − − − − − − − − H H H −
20 H H H H H H H H H H H H H H H H − − M H − − − − H H H − H H H −

R
as
tr
ig
in 2 H H H H H H H H H H H H H H H H M M M − M M M − M M M − H H H −

5 H H H H H H H H H H H H H H H H M − − − − − − − − − − − H H H M
10 H H H H H − H H H H H H H − H H − − − H − M − − − − − − H H H −
20 H H H H H − − H H H − H H H H H M − − − − − − − − − − M H − − −

ka
l-p

R
N
D

Sp
he
re

2 H − − − M − − H H − H H M M M M M M M M M M M M M M M M
5 H H H − M M H − H H H − M M M M M M M M M M M M M − M M
10 H − H M M M H M H H H H M M M M M M M M M M M M M − − M
20 H − H − M M H − H H H − M M M M M M M M M M M M − H H M

R
os
en
br
oc
k 2 H − − − M M − − H H H H M M M M M M M M M M M M H − − M

5 H − − − M M − − H H H H M M M M M M M M M M M M H − H M
10 H H H − M M H − H H H − M M M M M M M M M M M M H H H M
20 H H H − M − H − H H H M M M M M M M M M M M M M H H H M

R
as
tr
ig
in 2 H − − − M M − − H H H − M M M M M M M M M M M M M M M M

5 H − − − − − − − H − − − M − M M M − M M M − M M H H H M
10 − − − − − − − − H − − − M M M M M M M M M − − M H − − M
20 M M M M − − M − − − − M M M M M M M M M M M M M M M M M

ka
l-p

D
EV

Sp
he
re

2 M − − − H H H − M M M M M M M M M M M M M M M M
5 M M − − H H H − M M M M M M M M M M M M M M M M
10 M M − − H H H H M M M M M M M M M M M M M M M M
20 M M − − H H H − M M M M M M M M M M M M − H − M

R
os
en
br
oc
k 2 M M − − H H H H M M M M M M M M M M M M H − − M

5 M M − − H H H − M M M M M M M M M M M M H H − M
10 M M − − H H H − M M M M M M M M M M M M H H H M
20 M M − − H − H − M M M M M M M M M M M M − − − M

R
as
tr
ig
in 2 M M − − H H H − M M M M M M M M M M M M M M M M

5 M − − − H − − − M M M M M M M M M M M M H − − M
10 − − − − H − − M M M M M M M M M M − − M H − − M
20 H H − H H H H − M − M M M − − M M − − M − − − M

ka
l-p

U
N
C

Sp
he
re

2 H H H − M M M M M M M M M M M M M M M M
5 H H H − M M M M M M M M M M M M H H M M
10 H H H H M M M M M M M M M M M M H H M M
20 H H H − M M M M M M M M M M M M H H − M

R
os
en
br
oc
k 2 H H H H M M M M M M M M M M M M H − − M

5 H H H − M M M M M M M M M M M M H H − M
10 H H H − M M M M M M M M M M M M H H H M
20 H H H M M M M M M M M M M M M M H H − M

R
as
tr
ig
in 2 H H H − M M M M M M M M M M M M M M M M

5 H − − − M − M M − − M M M − M M H H − M
10 H − − − M M M M M M M M M − − M H − − M
20 − − H M M M M M M M − M M M − M M M − M

137

D Further Results

Table D.24: Continues Table D.23
Alg. Bmk. Dim. npm-nVAR npm-nPRE ar-pRND ar-pDEV tcn-pRND tcn-pDEV kal-pRND kal-pDEV kal-pUNC kal-pKAL unc-pRND unc-pDEV unc-pUNC unc-pKAL

ka
l-p

K
A
L

Sp
he
re

2 M M M M M M M M M M M M M M M M
5 M M M M M M M M M M M M M M M M
10 M M M M M M M M M M M M M M M M
20 M M M M M M M M M M M M M M M M

R
os
en
br
oc
k 2 M M M M M M M M M M M M M M M M

5 M M M M M M M M M M M M M − M M
10 M M M M M M M M M M M M M − M M
20 M M M M M M M M M M M M M − M M

R
as
tr
ig
in 2 M M M M M M M M M M M M M M M M

5 M M M M M − M M M − M M − H − M
10 M M M M M M M M M − M M − − − M
20 M M M M M M M M M M M M M M M M

un
c-
pR

N
D

Sp
he
re

2 M M M M M M M M − − − M
5 H H H − M − M − H H H H
10 H H H H H − − − H H H H
20 H H H H H H H H H H H H

R
os
en
br
oc
k 2 H H H − M M M − H H H −

5 H H H − − − − − H H H −
10 H H H − H H H − H H H −
20 H − H − H H H − H H H −

R
as
tr
ig
in 2 − − − − M M M − H H H −

5 H − − − H − − − H H H −
10 − − − M H − H − H H H −
20 − − − M H − − M H − H M

un
c-
pD

EV

Sp
he
re

2 M M M M H H H −
5 M M M − H H H H
10 − − − − H H H H
20 H − H H H H H H

R
os
en
br
oc
k 2 M M M − H H H −

5 M M M − H H H −
10 − − − − H H H −
20 − H H − H H H −

R
as
tr
ig
in 2 M M M − H H H −

5 M − − − H H H −
10 H H H − H H H −
20 − − − − H − − −

un
c-
pU

N
C

Sp
he
re

2 H H H H
5 H H H H
10 H H H H
20 H H H −

R
os
en
br
oc
k 2 H H H H

5 H H H −
10 H H H −
20 H H H −

R
as
tr
ig
in 2 H H H −

5 H H H −
10 H − H −
20 H − − −

138

D.3 Predictive Uncertainty for Evolution Strategies

Table D.25: MPB: pairwise test results for all combinations of re-initial-
ization strategy and prediction method; continued in Table D.26

Alg. Noise Dim. npm-nVAR npm-nPRE ar-pRND ar-pDEV tcn-pRND tcn-pDEV kal-pRND kal-pDEV kal-pUNC kal-pKAL unc-pRND unc-pDEV unc-pUNC unc-pKAL

np
m
-n
R
N
D

0.00

2 H H H · H H H · M M M · M − M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
5 − − H · − − H · − − − · M H − · − − − · M − M · − − M · M − M · − − M · M − M · − − − · M − M · − − M · M − M ·
10 M M M · − − − · − H M · − H M · − − M · − H − · M − − · − H − · M − M · − H − · − − M · − H M · − − M · − H M ·
20 M M M · − − M · − H − · − H − · − H M · − H − · − H − · − H − · M H M · − H − · − H M · − H − · − H M · − H M ·

0.01

2 H H H · H H H · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
5 − − − · − − − · M − − · M − − · M − − · − − − · M − − · M − − · − − − · M − − · − − − · − − − · − − − · M − − ·
10 H H H · H H H · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − ·
20 M M M · − − M · M H M · M H M · M H M · M H M · M H − · M H − · M H M · M H M · M H M · M H M · M H M · M H M ·

0.05

2 H H H · H H H · M H − · M H − · M H − · M H − · M H − · M H − · M H − · M − − · M H − · M H − · M H − · M − − ·
5 H H H · H H H · M − − · M − − · M − − · M − − · M − M · M − − · M − M · M − M · M − − · M − − · M − − · M − − ·
10 H H − · H H H · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − ·
20 − − M · − − − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − ·

np
m
-n
VA

R

0.00

2 − − − · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
5 − − − · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M ·
10 H H H · − H − · − H − · − H M · − H − · M − − · − H − · M − M · − H − · − H M · − H − · − H M · − H M ·
20 H H − · − H − · − H − · − H − · − H − · − H H · − H H · M H M · − H H · − H − · − H − · − H − · − H − ·

0.01

2 − − − · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
5 − − − · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M ·
10 H H H · M H − · M H − · M H M · M H M · M H − · M H − · M H M · M H − · M H M · M H − · M H M · M H M ·
20 H H − · M H M · − H M · M H M · − H − · − H H · − H H · M H M · − H H · M H M · M H − · M H M · − H M ·

0.05

2 − − − · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
5 − − − · M − M · M − M · M − M · M − M · M M M · M − M · M M M · M − M · M − M · M − M · M − M · M − M ·
10 − − H · M H − · M H − · M H − · M H − · M H − · M H − · M H M · M H − · M H − · M H − · M H − · M H − ·
20 − − H · − H − · − H − · − H − · − H − · − H H · − H H · − H − · − H H · − H − · − H H · − H − · − H − ·

np
m
-n
PR

E

0.00

2 M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
5 M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M ·
10 − H M · − H M · − − M · − H M · M − − · − H − · M − M · − H − · − − M · − H M · − − M · − H M ·
20 − H − · − H − · − H − · − H − · − H H · − H H · M H M · − H H · − H − · − H − · − H − · − H − ·

0.01

2 M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
5 M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M · M − M ·
10 M H M · M H M · M H M · M H M · M H M · M H M · M H M · M H M · M H M · M H M · M H M · M H M ·
20 M H M · M H M · M H M · M H − · M H H · M H H · M H M · M H H · M H M · M H − · M H M · M H M ·

0.05

2 M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M · M M M ·
5 M − M · M − M · M − M · M − M · M M M · M − M · M M M · M M M · M − M · M − M · M − M · M − M ·
10 M H M · M H M · M H M · M H − · M H − · M H − · M H M · M H − · M H M · M H − · M H M · M H M ·
20 − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − · − H − ·

ar
-p
R
N
D

0.00

2 H − − − − − − − H − − − M − − M − − − M − − − M M M − M − − − − H − − − − − − − − − − −
5 − − − − − − − − − − − − − − M − − − M − − − M − M M M − − − − − − − − − − − M − − − M −
10 − − − − − − − − − − − − M M H − H − H − M M M − − − − M − − − − − − − − − − − − − − − −
20 H H − − − − − − H H H − − − H M H H H M M M M − H H H M − − − − H H H − − − − − H H − −

0.01

2 H H − − M M M − H H H − M M M M M M M M M M M M M M M M M M M − H H H − M M M − H − M −
5 − − − − M − − − − − − − M M − − M M − − M − − − M M − − − − − − − − − − − − − − − − − −
10 − − − − − − − − − − − − M M − − − − − − − − − − − − − − M − M − − − − − − − − − − − − −
20 H H − − − − − − − − H − − − H − H H H − − − M − − − H − − − − − − − H − − − − − − − − −

0.05

2 − M M − M − − − − − − − − − − − − M M − −
5 − − − − M − − − − − − − M M M M M M − M M M M M M M M M M − − − − − − − M M − − − − − −
10 −
20 − − − − − − − − − − H − − − H − − − H − − − M − − − H − − − − − − − H − − − − − − − − −

ar
-p
D
EV

0.00

2 M M − − − − − − M M − M M M − M M M − M M M − M M − − − M − − − M − − − − − − −
5 − − − − − − − − − − M − − − M − − − M − − − M − − − − − − − − − − − M − − − M −
10 M M − − − − − − M M H − − − H − M M M − − − − − M M − − − − − − M M − − − − − −
20 M M − − − − H − M M H M H H H − M M M − H H H M M M − − − − H − M M − − − − − −

0.01

2 M M M − M − H − M M M M M M M M M M M M M M M M M M M − M M H − M M M − M M M −
5 − − − − − − − − − − − − M − − − − − − − M M − − − − − − − − − − − − − − − − − −
10 − M − − − − − − − − − − − − −
20 M M − − − − H − − − H − − − H − M M M − − − H − M M − − − − H − M M − − − − − −

0.05

2 − M M − M − − − − − − − − − − − − − M − M
5 M M − − − − − − M M M M M M − M M M M M M M M M M M − − − − − − M M − − − − − −
10 − − − − − − − − − − − − − − − − M M −
20 − − − − − − H − − − H − − − H − M M M − − − H − − − − − − − H − − − − − − − − −

139

D Further Results

Table D.26: Continues Table D.25; continued in Table D.27
Alg. Noise Dim. npm-nVAR npm-nPRE ar-pRND ar-pDEV tcn-pRND tcn-pDEV kal-pRND kal-pDEV kal-pUNC kal-pKAL unc-pRND unc-pDEV unc-pUNC unc-pKAL

tc
n-
pR

N
D

0.00

2 − − − − M − − M − − − M M − − M M M − M − − − − − − − − − − − − − − − −
5 − − − − − − − − − − − − − − M − − − M − − − − − − − − − − − − − − − − −
10 H H H − M M H − H H H − M M M − − − H − − − − − H H H − − − − − H H − −
20 H H H − − − H − H H H − M M M − H H H − − − − − H H H − − − − − H H − −

0.01

2 H H H − M M M M M M M M M M M M M M M M − H − − H H H − − − − − H H − −
5 H H − − M − − − − − − − − − − − − − − M − − − − − − − − − − − − − − − −
10 − − − − M M −
20 H H H − − − H − H H H − − − M − − − H − − − − − − − H − − − − − − − − −

0.05

2 − − − − − − − − − − − − − − − − M M − M − − − − − − − − − − − − M M − −
5 H H − − M M M M M M − M M M M M M M M M − − − − H H − − − − − − H H − −
10 −
20 − − H − − − H − − − H − − − M − − − H − − − − − − − H − − − − − − − − −

tc
n-
pD

EV

0.00

2 M − − M M − − M M − − − M M − M − − − − − − − − − − − − − − − −
5 −
10 M M H − − − H − M M M − − − − − M M M − − − − − M M M − − − M −
20 M M H − H H H − M M M − H H H − M M M − − − − − M M M − − − M −

0.01

2 M M M M M M M M M M M M M M M M M M M − − − − − M M M − − − M −
5 M M M − M M − − M − − − M M − − − − − − − − − − − − − − − − − −
10 M M −
20 − − H − H H H − M M M − − − H − M M M − − − − − M M M − − − M −

0.05

2 − − − − − − − − − − − − M M − M − − − − − − − − − − − − − − − −
5 M M M M M M − M M M M M M M M M M M − − − − − − M M − − − − − −
10 M − − − − − − − M M M −
20 − − − − − − − − M M M − − − H − − − M − − − − − − − M − − − M −

ka
l-p

R
N
D

0.00

2 − − − − − − − − − − − − H − − H H − − H H − − H H − − H
5 −
10 H H − − M M M − H H M − H H M − H H M − H H M − H H M −
20 H H − − M M M − H H − − − − M − − − M − − − M − H H M −

0.01

2 H H − H M M M M H H M − H H H H H H H H H H H H H H H H
5 − − − − − − − − − − − − H H − − H H − − H H − − − − − −
10 − − − − − − − H − − − − H H − − H H − − H H − − − − − −
20 H H − − M M M − − − − − M M M − − − M − M M M − − − M −

0.05

2 − − − − − − − − M M − M − − − − − − − − − − − − M M − −
5 H H − − M M − − H H − − H H H H H H H H H H H H H H H H
10 −
20 − − − − − − M − − − − − − − M − − − − − − − M − − − M −

ka
l-p

D
EV

0.00

2 − − − − − − − − H − − H H − − H − − − H H − − H
5 −
10 M M M − M − M − M M M − M − M − M M M − − − M −
20 M M M − − − − − M M M − M M M − M M M − M M M −

0.01

2 M M M M M M M − H H H H H H H H H H H H H H H H
5 − − − − − − − − − − − − H − − − − − − − − − − −
10 − − − H −
20 M M M − − − − − M M M − M M M − M M M − M M M −

0.05

2 − − − − M M − M − − − − − − − − − − − − M M − M
5 M M M − M M M − H − − H H H − H H H − H H H − H
10 M M −
20 M M M − − − − − − − M − − − − − − − M − − − M −

ka
l-p

U
N
C

0.00

2 − − − − H − − H H − − − H − − − H − − H
5 − − − − H − H − − − − − − − − − − − − −
10 H H H − H H H H H H H − H H H − H H H −
20 H H H − H H H − H H H − H H H − H H H −

0.01

2 H H − H H H H H H H H H H H H H H H H H
5 − − − − H − − − − − − − − − − − − − − −
10 − − − M − − − − − − − − − − − − − − − −
20 H H H − − − H − H H H − − − H − H H H −

0.05

2 M M − M − − − − − − − − − − − − M M − −
5 H H − − H H H H H H H H H H H H H H H H
10 − − − − H H − − − − − − H H − − − − − −
20 H H H − − − H − H H H − − − − − H H − −

140

D.3 Predictive Uncertainty for Evolution Strategies

Table D.27: Continues Table D.26
Alg. Noise Dim. npm-nVAR npm-nPRE ar-pRND ar-pDEV tcn-pRND tcn-pDEV kal-pRND kal-pDEV kal-pUNC kal-pKAL unc-pRND unc-pDEV unc-pUNC unc-pKAL

ka
l-p

K
A
L

0.00

2 H H − H H H − H H H − H H H − H
5 − − H − − − − − − − − − − − − −
10 − − M H − − − − − − M − − − M −
20 M M M − M M M − M M M − M M M −

0.01

2 H H H H H H H H H H H H H H H H
5 − − − − H H − − − − − H H H − −
10 − − − − − − − − − − − − − − − −
20 − − M − − − M − − − M − − − M −

0.05

2 H H − H H H − H H H − H − − − H
5 H H H H H H H H H H H H H H H H
10 − − − − − − − − − − − − − − − −
20 − − M − − − − − − − M − − − M −

un
c-
pR

N
D

0.00

2 − − − − − − − − − − − −
5 − − − − − − − − − − − −
10 H H H − − − − − H H − −
20 H H H − − − − − H H − −

0.01

2 H H H − − M − − H H − −
5 − − − − − − − − − − − −
10 − − − − − − − − − − − −
20 − − H − − − − − − − − −

0.05

2 − − − − − − − − M M − −
5 H H − − − − − − H H − −
10 − − − − − − − − − − − −
20 − − H − − − − − − − − −

un
c-
pD

EV

0.00

2 − − − − − − − −
5 − − − − − − − −
10 M M M − − − M −
20 M M M − − − M −

0.01

2 M M M − − − M −
5 − − − − − − − −
10 − − − − − − − −
20 − − M − − − M −

0.05

2 − − − − M M − M
5 M M − − − − − −
10 − − − − − − − −
20 − − M − − − M −

un
c-
pU

N
C

0.00

2 − − − −
5 − − − −
10 H H − −
20 H H − −

0.01

2 H H − −
5 − − − −
10 − − − −
20 − − − −

0.05

2 − M − M
5 H H − −
10 − − − −
20 − − − −

141

E Implementation

The algorithms, the benchmark generator, and the convergence measure
proposed in this thesis are implemented in Python; the code is available
on GitHub.1 The Python packages numpy, scipy and scikit-learn are
mainly used. For the prediction methods, we employ the following packages
and libraries:

• Autoregressive model: statsmodels2

• Kalman filter: pykalman3

• RNN: Keras4 library for neural networks

• TCN: Our implementation relies on the code written by [Hsi18] for
Tensorflow;5 it corresponds to the architecture proposed by [BKK18].
In order to estimate the predictive uncertainty we modified the code:
we added an output layer for aleatoric uncertainty, see Paragraph 9.1.2,
and trained it with the loss function suggested by [OZK18].

1https://github.com/almuthmeier/DynOpt, last access 2019/12/05
2http://www.statsmodels.org/0.6.1/vector_ar.html, last access 2019/12/05
3https://pykalman.github.io/, last access 2019/12/05
4https://keras.io/, last access 2019/12/05
5https://www.tensorflow.org/, last access 2019/12/05

143

https://github.com/almuthmeier/DynOpt
http://www.statsmodels.org/0.6.1/vector_ar.html
https://pykalman.github.io/
https://keras.io/
https://www.tensorflow.org/

Bibliography

[Ahm+10] Nesreen K. Ahmed et al. “An empirical comparison of ma-
chine learning models for time series forecasting.” In: Econo-
metric Reviews 29.5-6 (2010), pp. 594–621 (cit. on pp. 32, 55,
56).

[Ahr+19] Ali Ahrari et al. “A new prediction approach for dynamic
multiobjective optimization.” In: Congress on Evolutionary
Computation (CEC). 2019, pp. 2268–2275 (cit. on pp. 9, 10,
25, 26, 54).

[AL12] Chun-Kit Au and Ho-Fung Leung. “An empirical compari-
son of CMA-ES in dynamic environments.” In: Parallel Prob-
lem Solving from Nature (PPSN). 2012, pp. 529–538 (cit. on
p. 108).

[And+18] Simon Anderer et al. “Meta heuristics for dynamic machine
scheduling: A review of research efforts and Industrial require-
ments.” In: International Joint Conference on Computational
Intelligence (IJCCI). 2018, pp. 192–203 (cit. on p. 1).

[AP98] Uri M. Ascher and Linda R. Petzold. Computer Methods for
Ordinary Differential Equations and Differential-Algebraic
Equations. SIAM, 1998 (cit. on p. 2).

[Ase+13] Daniel Asenjo et al. “Visualizing basins of attraction for dif-
ferent minimization algorithms.” In: The Journal of Physical
Chemistry B 117.42 (2013), pp. 12717–12723 (cit. on p. 25).

[ATE17] Lokman Altin, Haluk Rahmi Topcuoglu, and Murat Ermis.
“Hybridizing change detection schemes for dynamic optimiza-
tion problems.” In: Congress on Evolutionary Computation
(CEC). 2017, pp. 2086–2093 (cit. on pp. 26, 57).

[BB04] Tim Blackwell and Jürgen Branke. “Multi-swarm optimiza-
tion in dynamic environments.” In: Applications of Evolu-
tionary Computing, EvoWorkshops. 2004, pp. 489–500 (cit.
on p. 69).

145

Bibliography

[BBL08] Tim Blackwell, Jürgen Branke, and Xiaodong Li. “Particle
swarms for dynamic optimization problems.” In: Swarm Intel-
ligence: Introduction and Applications. Springer, 2008, pp. 193
–217 (cit. on pp. 22, 25).

[BE06] Frans van den Bergh and Andries P. Engelbrecht. “A study
of particle swarm optimization particle trajectories.” In: In-
formation Sciences 176.8 (2006), pp. 937–971 (cit. on p. 74).

[Bel15] Richard Bellman. Adaptive Control Processes - A Guided
Tour (Reprint from 1961). Vol. 2045. Princeton Legacy
Library. Princeton University Press, 2015 (cit. on p. 11).

[BH12] Robert G. Brown and Patrick Y. C. Hwang. Introduction to
Random Signals and Applied Kalman Filtering. 4th Edition.
John Wiley & Sons, Inc., 2012 (cit. on p. 31).

[Bis07] Christopher M. Bishop. Pattern recognition and machine
learning. Information science and statistics. Springer, 2007
(cit. on pp. 29, 56, 120).

[BKK18] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. “An empiri-
cal evaluation of generic convolutional and recurrent networks
for sequence modeling.” In: CoRR abs/1803.01271 (2018) (cit.
on pp. 33, 34, 55, 85, 143).

[BL08] Christian Blum and Xiaodong Li. “Swarm intelligence in op-
timization.” In: Swarm Intelligence: Introduction and Appli-
cations. Springer, 2008, pp. 43–85 (cit. on p. 21).

[Bla07] Tim Blackwell. “Particle swarm optimization in dynamic en-
vironments.” In: Evolutionary Computation in Dynamic and
Uncertain Environments. Springer, 2007, pp. 29–49 (cit. on
p. 69).

[BLA16] Yesnier Bravo, Gabriel Luque, and Enrique Alba. “Global
memory schemes for dynamic optimization.” In: Natural Com-
puting 15.2 (2016), pp. 319–333 (cit. on pp. 19, 26).

[BLP07] Peter A. N. Bosman and Han La Poutré. “Learning and an-
ticipation in online dynamic optimization with evolutionary
algorithms: The stochastic case.” In: Conference on Genetic
and Evolutionary Computation (GECCO). 2007, pp. 1165–
1172 (cit. on p. 28).

146

Bibliography

[BLY17] Chenyang Bu, Wenjian Luo, and Lihua Yue. “Continuous dy-
namic constrained optimization with ensemble of locating and
tracking feasible regions strategies.” In: Transactions on Evo-
lutionary Computation 21.1 (2017), pp. 14–33 (cit. on pp. 70,
71, 75, 86).

[Bos+19] Jakob Bossek et al. “Bi-objective orienteering: Towards a dy-
namic multi-objective evolutionary algorithm.” In: Evolution-
ary Multi-Criterion Optimization (EMO). 2019, pp. 516–528
(cit. on p. 1).

[Bos05] Peter A. N. Bosman. “Learning, anticipation and time-
deception in evolutionary online dynamic optimization.”
In: Genetic and Evolutionary Computation Conference
(GECCO) Workshops. 2005, pp. 39–47 (cit. on pp. 28, 54).

[Bos07] Peter A. N. Bosman. “Learning and anticipation in online
dynamic optimization.” In: Evolutionary Computation in Dy-
namic and Uncertain Environments. Springer, 2007, pp. 129–
152 (cit. on p. 13).

[Bou05] Amine Boumaza. “Learning environment dynamics from
self-adaptation: A preliminary investigation.” In: Genetic
and Evolutionary Computation Conference (GECCO) Work-
shops. 2005, pp. 48–54 (cit. on p. 108).

[Bra+00] Jürgen Branke et al. “A multi-population approach to dy-
namic optimization problems.” In: Evolutionary Design and
Manufacture. Ed. by I. C. Parmee. Springer, 2000, pp. 299–
307 (cit. on p. 26).

[Bra02] Jürgen Branke. Evolutionary Optimization in Dynamic Envi-
ronments. Springer, 2002 (cit. on p. 10).

[Bra99] Jürgen Branke. “Memory enhanced evolutionary algorithms
for changing optimization problems.” In: Congress on Evo-
lutionary Computation (CEC). 1999, pp. 1875–1882 (cit. on
pp. 35, 36, 60).

[BRAK13] Hajer Ben-Romdhane, Enrique Alba, and Saoussen Krichen.
“Best practices in measuring algorithm performance for
dynamic optimization problems.” In: Soft Computing 17.6
(2013), pp. 1005–1017 (cit. on pp. 25, 47).

147

Bibliography

[BS02] Hans-Georg Beyer and Hans-Paul Schwefel. “Evolution
strategies–A comprehensive introduction.” In: Natural Com-
puting 1.1 (2002), pp. 3–52 (cit. on pp. 19, 58).

[BS07] Hans-Georg Beyer and Bernhard Sendhoff. “Robust optimi-
zation–A comprehensive survey.” In: Computer Methods in
Applied Mechanics and Engineering 196.33 (2007), pp. 3190–
3218 (cit. on p. 13).

[BSU05] Jürgen Branke, Erdem Salihoglu, and Sima Uyar. “Towards
an analysis of dynamic environments.” In: Genetic and Evolu-
tionary Computation Conference (GECCO). 2005, pp. 1433–
1440 (cit. on p. 11).

[BTB12] Gianluca Bontempi, Souhaib Ben Taieb, and Yann-Aël Le
Borgne. “Machine learning strategies for time series fore-
casting.” In: Business Intelligence–Second European Summer
School (eBISS). 2012, pp. 62–77 (cit. on pp. 29, 55).

[Bu+17] Chenyang Bu et al. “Solving online dynamic time-linkage
problems under unreliable prediction.” In: Applied Soft Com-
puting 56 (2017), pp. 702–716 (cit. on pp. 27, 28).

[BV11] Stephen P. Boyd and Lieven Vandenberghe. Convex Opti-
mization. 9th edition. Cambridge University Press, 2011 (cit.
on pp. 9, 11, 17).

[Cao+17] Leilei Cao et al. “A first-order difference model-based evolu-
tionary dynamic multiobjective optimization.” In: Simulated
Evolution and Learning (SEAL). 2017, pp. 644–655 (cit. on
p. 54).

[Cao+18] Leilei Cao et al. “A differential prediction model for evo-
lutionary dynamic multiobjective optimization.” In: Genetic
and Evolutionary Computation Conference (GECCO). 2018,
pp. 601–608 (cit. on p. 54).

[CB07] Eduardo F. Camacho and Carlos Bordons. Model Predictive
Control. Springer, 2007 (cit. on p. 2).

[CE14a] Christopher W. Cleghorn and Andries P. Engelbrecht.
“Particle swarm convergence: An empirical investigation.”
In: Congress on Evolutionary Computation (CEC). 2014,
pp. 2524–2530 (cit. on p. 74).

148

Bibliography

[CE14b] Christopher Wesley Cleghorn and Andries P. Engelbrecht. “A
generalized theoretical deterministic particle swarm model.”
In: Swarm Intelligence 8.1 (2014), pp. 35–59 (cit. on p. 74).

[CE15] Christopher W. Cleghorn and Andries P. Engelbrecht. “Par-
ticle swarm variants: Standardized convergence analysis.” In:
Swarm Intelligence 9.2 (2015), pp. 177–203 (cit. on pp. 22,
74).

[CE17] Christopher W. Cleghorn and Andries P. Engelbrecht. “Fit-
ness-distance-ratio particle swarm optimization: Stability
analysis.” In: Genetic and Evolutionary Computation Con-
ference (GECCO). 2017, pp. 12–18 (cit. on p. 74).

[Cel91] François E. Cellier. Continuous system modeling. Springer,
1991 (cit. on p. 31).

[CGP11] Carlos Cruz, Juan R. González, and David A. Pelta. “Opti-
mization in dynamic environments: A survey on problems,
methods and measures.” In: Soft Computing 15.7 (2011),
pp. 1427–1448 (cit. on pp. 25, 26, 47, 86).

[CHN11] Sven F. Crone, Michèle Hibon, and Konstantinos Nikolopou-
los. “Advances in forecasting with neural networks? Empirical
evidence from the NN3 competition on time series prediction.”
In: International Journal of Forecasting 27.3 (2011), pp. 635
–660 (cit. on p. 55).

[Cho+18] Li-Der Chou et al. “DPRA: Dynamic power-saving resource
allocation for cloud data center using particle swarm opti-
mization.” In: IEEE Systems Journal 12.2 (2018), pp. 1554–
1565 (cit. on pp. 1, 22).

[CLY18] Renzhi Chen, Ke Li, and Xin Yao. “Dynamic multiobjec-
tives optimization with a changing number of objectives.”
In: Transactions on Evolutionary Computation 22.1 (2018),
pp. 157–171 (cit. on p. 12).

[CMP16] Jenny F. Calderín, Antonio D. Masegosa, and David A.
Pelta. “Dynamic optimization with restricted and unre-
stricted moves between changes: A study on the dynamic
maximal covering location problem.” In: Congress on Evo-
lutionary Computation (CEC). 2016, pp. 570–577 (cit. on
p. 13).

149

Bibliography

[Cob90] Helen G. Cobb. An investigation into the use of hypermuta-
tion as an adaptive operator in genetic algorithms having con-
tinuous, time-dependent nonstationary environments. Tech.
rep. Naval Research Lab Washington DC, 1990 (cit. on p. 26).

[CY13] Hui Cheng and Shengxiang Yang. “Genetic algorithms for
dynamic routing problems in mobile ad hoc networks.” In:
Evolutionary Computation for Dynamic Optimization Prob-
lems. Ed. by Shengxiang Yang and Xin Yao. Springer, 2013,
pp. 343–375 (cit. on p. 26).

[Dha+19] Krishna G. Dhal et al. “A survey on nature-inspired optimiza-
tion algorithms and their application in image enhancement
domain.” In: Archives of Computational Methods in Engineer-
ing 26.5 (2019), pp. 1607–1638 (cit. on p. 18).

[DS04] Marco Dorigo and Thomas Stützle. Ant colony optimization.
MIT Press, 2004 (cit. on p. 21).

[Eng10] Andries P. Engelbrecht. “Heterogeneous particle swarm opti-
mization.” In: Swarm Intelligence (ANTS). 2010, pp. 191–202
(cit. on p. 69).

[Eng13] Andries P. Engelbrecht. “Particle swarm optimization: Global
best or local best?” In: BRICS Congress on Computational
Intelligence and 11th Brazilian Congress on Computational
Intelligence. 2013, pp. 124–135 (cit. on p. 22).

[ES15] A. E. Eiben and James E. Smith. Introduction to Evolutionary
Computing. 2nd edition. Natural Computing Series. Springer,
2015 (cit. on pp. 11, 17, 19, 21).

[EYG17] Jayne Eaton, Shengxiang Yang, and Mario Gongora. “Ant
colony optimization for simulated dynamic multi-objective
railway junction rescheduling.” In: Transactions on Intelligent
Transportation Systems 18.11 (2017), pp. 2980–2992 (cit. on
p. 1).

[FKG18] Bjarne A. Foss, Brage R. Knudsen, and Bjarne Grimstad.
“Petroleum production optimization–A static or dynamic
problem?” In: Computers & Chemical Engineering 114
(2018), pp. 245–253 (cit. on p. 1).

150

Bibliography

[FO07] Robert Fildes and Keith Ord. “Forecasting competitions:
Their role in improving forecasting practice and research.”
In: A Companion to Economic Forecasting. John Wiley &
Sons, Ltd, 2007. Chap. 15, pp. 322–353 (cit. on p. 55).

[FS17] Xiaogang Fu and Jianyong Sun. “A new learning based dy-
namic multi-objective optimisation evolutionary algorithm.”
In: Congress on Evolutionary Computation (CEC). 2017,
pp. 341–348 (cit. on pp. 27, 54).

[Fu+12] Haobo Fu et al. “Characterizing environmental changes in
robust optimization over time.” In: Congress on Evolutionary
Computation (CEC). 2012, pp. 1–8 (cit. on pp. 11, 13).

[Fu+13] Haobo Fu et al. “Finding robust solutions to dynamic opti-
mization problems.” In: Applications of Evolutionary Compu-
tation. 2013, pp. 616–625 (cit. on p. 13).

[Fu+14] Haobo Fu et al. “What are dynamic optimization problems?”
In: Congress on Evolutionary Computation (CEC). 2014,
pp. 1550–1557 (cit. on pp. 10, 13).

[Gal16] Yarin Gal. “Uncertainty in Deep Learning.” PhD thesis. Uni-
versity of Cambridge, 2016 (cit. on pp. 87, 88).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016 (cit. on pp. 31, 32).

[Geo+17] Koshy George et al. “Comparison of neural-network learn-
ing algorithms for time-series prediction.” In: International
Conference on Advances in Computing, Communications and
Informatics (ICACCI). 2017, pp. 7–13 (cit. on p. 55).

[GL97] Fred W. Glover and Manuel Laguna. Tabu Search. Kluwer,
1997 (cit. on p. 18).

[Gre92] John J. Grefenstette. “Genetic algorithms for changing envi-
ronments.” In: Parallel Problem Solving from Nature (PPSN).
1992, pp. 139–146 (cit. on p. 26).

[Gre99] John J. Grefenstette. “Evolvability in dynamic fitness land-
scapes: A genetic algorithm approach.” In: Congress on Evo-
lutionary Computation (CEC) (1999) (cit. on p. 27).

[GT09] Chi Keong Goh and Kay Chen Tan. “A competitive-coop-
erative coevolutionary paradigm for dynamic multiobjective
optimization.” In: Transactions on Evolutionary Computation
13.1 (2009), pp. 103–127 (cit. on p. 25).

151

Bibliography

[GTA17] Sen B. Gee, Kay C. Tan, and Hussein A. Abbass. “A bench-
mark test suite for dynamic evolutionary multiobjective
optimization.” In: Transaction on Cybernetics 47.2 (2017),
pp. 461–472 (cit. on p. 35).

[HA13] Rob J. Hyndman and George Athanasopoulos. Forecasting:
principles and practice. OTexts: Melbourne, Australia. Last
access 2019/12/05. 2013. url: http://otexts.org/fpp/
(cit. on pp. 30, 31).

[HAA15] Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. “Evo-
lution strategies.” In: Springer Handbook of Computational
Intelligence. Springer, 2015, pp. 871–898 (cit. on pp. 19, 21).

[Has+19] Maryam Hasani-Shoreh et al. “On the behaviour of differen-
tial evolution for problems with dynamic linear constraints.”
In: Congress on Evolutionary Computation (CEC). 2019,
pp. 3045–3052 (cit. on p. 25).

[HDM13] Udit Halder, Swagatam Das, and Dipankar Maity. “A cluster-
based differential evolution algorithm with external archive
for optimization in dynamic environments.” In: Transactions
on Cybernetics 43.3 (2013), pp. 881–897 (cit. on p. 25).

[HE02] Xiaohui Hu and Russel C. Eberhart. “Adaptive particle
swarm optimization: Detection and response to dynamic sys-
tems.” In: Congress on Evolutionary Computation (CEC).
2002, pp. 1666–1670 (cit. on pp. 70, 72).

[Hem+01] Jano van Hemert et al. A “Futurist” approach to dynamic
environments. 2001 (cit. on p. 27).

[HEOB16a] Kyle R. Harrison, Andries P. Engelbrecht, and Beatrice M.
Ombuki-Berman. “Inertia weight control strategies for parti-
cle swarm optimization.” In: Swarm Intelligence 10.4 (2016),
pp. 267–305 (cit. on pp. 23, 70).

[HEOB16b] Kyle R. Harrison, Andries P. Engelbrecht, and Beatrice M.
Ombuki-Berman. “The sad state of self-adaptive particle
swarm optimizers.” In: Congress on Evolutionary Computa-
tion (CEC). 2016, pp. 431–439 (cit. on pp. 23, 74).

[HMR09] Tim Hendtlass, Irene Moser, and Marcus Randall. “Dynamic
problems and nature-inspired meta-heuristics.” In: Biologi-
cally-Inspired Optimisation Methods. Vol. 210. Springer, 2009
(cit. on pp. 1, 2).

152

http://otexts.org/fpp/

Bibliography

[HO01] Nikolaus Hansen and Andreas Ostermeier. “Completely de-
randomized self-aptation in evolution strategies.” In: Evolu-
tionary Computation 9.2 (2001), pp. 159–195 (cit. on p. 20).

[Hro04] Juraj Hromkovič. Algorithmics for Hard Problems. 2nd edi-
tion. Texts in Theoretical Computer Science. Springer, 2004
(cit. on p. 17).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term
memory.” In: Neural Computation 9.8 (1997), pp. 1735–1780
(cit. on p. 32).

[Hsi18] Yuan-Ting Hsieh. Tensorflow Temporal Convolutional Net-
work. Version 2018/09/04. 2018. url: https://github.com/
YuanTingHsieh/TF_TCN (cit. on p. 143).

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman.
The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer Series in Statistics. Springer, 2009
(cit. on pp. 29, 56).

[Hu+19] Weizhen Hu et al. “Solving dynamic multi-objective optimiza-
tion problems using incremental support vector machine.”
In: Congress on Evolutionary Computation (CEC). 2019,
pp. 2794–2799 (cit. on p. 54).

[HW06] Iason Hatzakis and David Wallace. “Dynamic multi-objective
optimization with evolutionary algorithms: A forward-looking
approach.” In: Genetic and Evolutionary Computation Con-
ference (GECCO). 2006, pp. 1201–1208 (cit. on pp. 27, 30,
53, 86, 90).

[Jam+13] Gareth James et al. An Introduction to Statistical Learning
with Applications in R. Springer, 2013 (cit. on p. 30).

[JB05] Yaochu Jin and Jürgen Branke. “Evolutionary optimization in
uncertain environments–A survey.” In: Transactions on Evo-
lutionary Computation 9.3 (2005), pp. 303–317 (cit. on pp. 10,
12, 25, 26).

[JH75] Arthur E. Bryson Jr. and Yu-Chi Ho. Applied Optimal Con-
trol: Optimization, Estimation and Control. Halsted Press,
1975 (cit. on p. 2).

153

https://github.com/YuanTingHsieh/TF_TCN
https://github.com/YuanTingHsieh/TF_TCN

Bibliography

[Jia+18a] Min Jiang et al. “Solving dynamic multi-objective optimiza-
tion problems via support vector machine.” In: Interna-
tional Conference on Advanced Computational Intelligence
(ICACI). 2018, pp. 819–824 (cit. on p. 54).

[Jia+18b] Min Jiang et al. “Transfer learning-based dynamic multiob-
jective optimization algorithms.” In: Transactions on Evolu-
tionary Computation 22.4 (2018), pp. 501–514 (cit. on p. 54).

[Jin+13] Yaochu Jin et al. “A framework for finding robust optimal so-
lutions over time.” In: Memetic Computing 5.1 (2013), pp. 3–
18 (cit. on p. 13).

[Jin+16] Yaochu Jin et al. “Reference point based prediction for evo-
lutionary dynamic multiobjective optimization.” In: Congress
on Evolutionary Computation (CEC). 2016, pp. 3769–3776
(cit. on pp. 27, 54).

[Jon06] Kenneth A. De Jong. Evolutionary Computation–A Unified
Approach. MIT Press, 2006 (cit. on p. 12).

[Jor14] Ahmad R. Jordehi. “Particle swarm optimisation for dynamic
optimisation problems: A review.” In: Neural Computing and
Applications 25.7-8 (2014), pp. 1507–1516 (cit. on pp. 25, 69).

[JY17] Shouyong Jiang and Shengxiang Yang. “Evolutionary dy-
namic multiobjective optimization: Benchmarks and algo-
rithm comparisons.” In: Transactions on Cybernetics 47.1
(2017), pp. 198–211 (cit. on p. 35).

[Kag17] Kaggle. Web Traffic Time Series Forecasting. 2017. url: ht
tps://www.kaggle.com/c/web-traffic-time-series-
forecasting/leaderboard (cit. on p. 56).

[Kal60] Rudolph E. Kalman. “A new approach to linear filtering and
prediction problems.” In: Journal of Basic Engineering 82.1
(1960), pp. 35–45 (cit. on p. 31).

[KB11] Mehdi Khashei and Mehdi Bijari. “A novel hybridization
of artificial neural networks and ARIMA models for time
series forecasting.” In: Applied Soft Computing 11.2 (2011),
pp. 2664–2675 (cit. on p. 56).

[KB12] Danil Koryakin and Martin V. Butz. “Reservoir sizes and
feedback weights interact non-linearly in echo state networks.”
In: International Conference on Artificial Neural Networks
(ICANN). 2012, pp. 499–506 (cit. on p. 39).

154

https://www.kaggle.com/c/web-traffic-time-series-forecasting/leaderboard
https://www.kaggle.com/c/web-traffic-time-series-forecasting/leaderboard
https://www.kaggle.com/c/web-traffic-time-series-forecasting/leaderboard

Bibliography

[KBC14] Nikolaos Kourentzes, Devon K. Barrow, and Sven F. Crone.
“Neural network ensemble operators for time series fore-
casting.” In: Expert Systems with Applications 41.9 (2014),
pp. 4235–4244 (cit. on p. 56).

[KE95] James Kennedy and Russell Eberhart. “Particle swarm opti-
mization.” In: International Conference on Neural Networks
(ICNN). Vol. 4. 1995, pp. 1942–1948 (cit. on p. 21).

[KG17] Alex Kendall and Yarin Gal. “What uncertainties do we need
in Bayesian deep learning for computer vision?” In: Advances
in Neural Information Processing Systems (NeurIPS). 2017,
pp. 5580–5590 (cit. on p. 88).

[KGT10] Wee T. Koo, Chi K. Goh, and Kay C. Tan. “A predictive
gradient strategy for multiobjective evolutionary algorithms
in a fast changing environment.” In: Memetic Computing 2.2
(2010), pp. 87–110 (cit. on p. 54).

[KLT13] Przemyslaw Kazienko, Edwin Lughofer, and Bogdan Trawin-
ski. “Hybrid and ensemble methods in machine learning.” In:
Universal Computer Science (UCS) 19.4 (2013), pp. 457–461
(cit. on p. 56).

[Kra08] Oliver Kramer. Self-Adaptive Heuristics for Evolutionary
Computation. Vol. 147. Studies in Computational Intelli-
gence. Springer, 2008 (cit. on pp. 12, 19–21, 113).

[Kra16] Oliver Kramer. Machine Learning for Evolution Strategies.
Springer, 2016 (cit. on p. 59).

[Kra17] Oliver Kramer. Genetic Algorithm Essentials. Vol. 679. Stud-
ies in Computational Intelligence. Springer, 2017 (cit. on
pp. 19, 106).

[Kru+16] Rudolf Kruse et al. Computational Intelligence–A Method-
ological Introduction. 2nd edition. Texts in Computer Science.
Springer, 2016 (cit. on pp. 17, 18, 20).

[LD19] Qiang Liu and Jinliang Ding. “Reference vector based mul-
tidirectional prediction for evolutionary dynamic multiobjec-
tive optimization.” In: Congress on Evolutionary Computa-
tion (CEC). 2019, pp. 1081–1087 (cit. on p. 54).

155

Bibliography

[LE13] Barend J. Leonard and Andries P. Engelbrecht. “On the op-
timality of particle swarm parameters in dynamic environ-
ments.” In: Congress on Evolutionary Computation (CEC).
2013, pp. 1564–1569 (cit. on p. 23).

[Lev16] Steven Levy. The iBrain is here–and it’s already inside your
phone. Last access 2019/10/14. 2016. url: https://www.
wired.com/2016/08/an-exclusive-look-at-how-ai-and-
machine-learning-work-at-apple/ (cit. on pp. 32, 55).

[Li+08] Changhe Li et al. Benchmark Generator for CEC 2009 Com-
petition on Dynamic Optimization. Tech. rep. University of
Leicester, U.K., 2008 (cit. on p. 37).

[Li+13] Changhe Li et al. Benchmark Generator for the IEEE WCCI-
2014 Competition on Evolutionary Computation for Dynamic
Optimization Problems. Tech. rep. De Montfort University,
UK, 2013 (cit. on p. 37).

[Li+14] Qiuying Li et al. “Global prediction-based adaptive muta-
tion particle swarm optimization.” In: International Confer-
ence on Natural Computation (ICNC). 2014, pp. 268–273 (cit.
on p. 71).

[Li+15] Changhe Li et al. “Multi-population methods in uncon-
strained continuous dynamic environments: The challenges.”
In: Information Sciences 296 (2015), pp. 95–118 (cit. on
pp. 26, 36).

[Li+16] Changhe Li et al. “An adaptive multipopulation framework
for locating and tracking multiple optima.” In: Transactions
on Evolutionary Computation 20.4 (2016), pp. 590–605 (cit.
on p. 26).

[Li+18] Changhe Li et al. “An open framework for constructing con-
tinuous optimization problems.” In: Transactions on Cyber-
netics (2018), pp. 1–15 (cit. on p. 38).

[Li+19a] Jianxia Li et al. “A special points-based hybrid prediction
strategy for dynamic multi-objective optimization.” In: IEEE
Access 7 (2019), pp. 62496–62510 (cit. on p. 54).

[Li+19b] Qingya Li et al. “A predictive strategy based on special points
for evolutionary dynamic multi-objective optimization.” In:
Soft Computing 23.11 (2019), pp. 3723–3739 (cit. on pp. 53,
54).

156

https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/
https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/
https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/

Bibliography

[Liu+14] Ruochen Liu et al. “A novel cooperative coevolutionary dy-
namic multi-objective optimization algorithm using a new
predictive model.” In: Soft Computing 18.10 (2014), pp. 1913–
1929 (cit. on pp. 25, 28, 54).

[Liu+15] Ruochen Liu et al. “An orthogonal predictive model-based dy-
namic multi-objective optimization algorithm.” In: Soft Com-
puting 19.11 (2015), pp. 3083–3107 (cit. on p. 54).

[Liu+18] Ruochen Liu et al. “A dynamic multiple populations particle
swarm optimization algorithm based on decomposition and
prediction.” In: Applied Soft Computing 73 (2018), pp. 434–
459 (cit. on p. 71).

[LMR09] Andrew Lewis, Sanaz Mostaghim, and Marcus Randall,
eds. Biologically-Inspired Optimisation Methods: Parallel
Algorithms, Systems and Applications. Vol. 210. Studies in
Computational Intelligence. Springer, 2009 (cit. on p. 17).

[LQS13] Jing J. Liang, Bo Y. Qu, and Ponnuthurai N. Suganthan.
Problem Definitions and Evaluation Criteria for the CEC
2014 Special Session and Competition on Single Objec-
tive Real-Parameter Numerical Optimization. Tech. rep.
Zhengzhou University (China) and Nanyang Technological
University (Singapore), 2013 (cit. on p. 113).

[Luo+19] Wenjian Luo et al. “Surrogate-assisted evolutionary frame-
work for data-driven dynamic optimization.” In: Transactions
on Emerging Topics in Computational Intelligence 3.2 (2019),
pp. 137–150 (cit. on p. 14).

[LY08] Changhe Li and Shengxiang Yang. “A generalized approach to
construct benchmark problems for dynamic optimization.” In:
Simulated Evolution and Learning (SEAL). Springer, 2008,
pp. 391–400 (cit. on p. 35).

[LYP11] Changhe Li, Shengxiang Yang, and David A Pelta. Bench-
mark generator for the IEEE WCCI-2012 competition on
evolutionary computation for dynamic optimization prob-
lems. Tech. rep. Brunel University, UK, 2011 (cit. on p. 37).

[MB13] Sergio Morales-Enciso and Jürgen Branke. “Response sur-
faces with discounted information for global optima tracking
in dynamic environments.” In: Nature Inspired Cooperative

157

Bibliography

Strategies for Optimization (NICSO). 2013, pp. 57–69 (cit.
on p. 14).

[MB15] Sergio Morales-Enciso and Jürgen Branke. “Tracking global
optima in dynamic environments with efficient global op-
timization.” In: European Journal of Operational Research
242.3 (2015), pp. 744–755 (cit. on p. 14).

[MC13] Irene Moser and Raymond Chiong. “Dynamic function opti-
mization: The moving peaks benchmark.” In: Metaheuristics
for Dynamic Optimization. Springer, 2013, pp. 35–59 (cit. on
pp. 35, 36).

[MD99] Ronald W. Morrison and Kenneth A. De Jong. “A test prob-
lem generator for non-stationary environments.” In: Congress
on Evolutionary Computation (CEC). 1999, pp. 2047–2053
(cit. on p. 35).

[Mei+15] Stephan Meisel et al. “Evaluation of a multi-objective EA
on benchmark instances for dynamic routing of a vehi-
cle.” In: Genetic and Evolutionary Computation Conference
(GECCO). 2015, pp. 425–432 (cit. on p. 1).

[MH00] Spyros Makridakis and Michèle Hibon. “The M3-Competi-
tion: results, conclusions and implications.” In: International
Journal of Forecasting 16.4 (2000), pp. 451–476 (cit. on p. 55).

[MJK15] Douglas C. Montgomery, Cheryl L. Jennings, and Murat Ku-
lahci. Introduction to Time Series Analysis and Forecasting.
Ed. by David J. Balding. Wiley, 2015 (cit. on pp. 29, 30).

[MK18a] Almuth Meier and Oliver Kramer. “Prediction with recurrent
neural networks in evolutionary dynamic optimization.” In:
Applications of Evolutionary Computation (EvoApplications).
2018, pp. 848–863 (cit. on pp. 5, 49, 53, 116).

[MK18b] Almuth Meier and Oliver Kramer. “Recurrent neural network-
predictions for PSO in dynamic optimization.” In: Genetic
and Evolutionary Computation Conference (GECCO). 2018,
pp. 29–36 (cit. on pp. 5, 27, 30, 69–71).

[MK19] Almuth Meier and Oliver Kramer. “Predictive uncertainty es-
timation with temporal convolutional networks for dynamic
evolutionary optimization.” In: International Conference on
Artificial Neural Networks (ICANN). 2019, pp. 409–421 (cit.
on pp. 5, 38, 39, 85, 89).

158

Bibliography

[MK20] Almuth Meier and Oliver Kramer. “Prediction in nature-
inspired dynamic optimization.” In: Frontier Applications of
Nature Inspired Computation. Ed. by Mahdi Khosravy et al.
Springer, 2020, pp. 34–52 (cit. on pp. 4, 27).

[MLY17] Michalis Mavrovouniotis, Changhe Li, and Shengxiang Yang.
“A survey of swarm intelligence for dynamic optimization:
Algorithms and applications.” In: Swarm and Evolutionary
Computation 33 (2017), pp. 1–17 (cit. on pp. 1, 2, 9, 12, 13,
21, 22, 25, 69).

[MM05] Rui Mendes and Arvind S. Mohais. “DynDE: A differential
evolution for dynamic optimization problems.” In: Congress
on Evolutionary Computation (CEC). 2005, pp. 2808–2815
(cit. on p. 25).

[Mor04] Ronald W. Morrison. Designing Evolutionary Algorithms for
Dynamic Environments. Natural Computing Series. Springer,
2004 (cit. on p. 2).

[MSA18a] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assi-
makopoulos. “Statistical and machine learning forecasting
methods: Concerns and ways forward.” In: PLOS ONE 13.3
(Mar. 2018), pp. 1–26 (cit. on pp. 30, 55).

[MSA18b] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assi-
makopoulos. “The M4 competition: Results, findings, conclu-
sion and way forward.” In: International Journal of Forecast-
ing 34.4 (2018), pp. 802–808 (cit. on p. 55).

[MTV16] Arrchana Muruganantham, Kay C. Tan, and P. Vadakkepat.
“Evolutionary dynamic multiobjective optimization via Kal-
man filter prediction.” In: Transactions on Cybernetics 46.12
(2016), pp. 2862–2873 (cit. on pp. 27, 54).

[Mül+17] David Müller et al. “Dynamic real-time optimization under
uncertainty of a hydroformylation mini-plant.” In: Computers
& Chemical Engineering 106 (2017), pp. 836–848 (cit. on p. 1).

[NCP16] Pavel Novoa-Hernández, Carlos Cruz Corona, and David A.
Pelta. “Self-adaptation in dynamic environments–A survey
and open issues.” In: International Journal of Bio-Inspired
Computation (IJBIC) 8.1 (2016), pp. 1–13 (cit. on p. 108).

159

Bibliography

[Ngu11] Trung Thanh Nguyen. “Continuous dynamic optimization us-
ing evolutionary algorithms.” PhD thesis. University of Birm-
ingham, 2011 (cit. on p. 48).

[NS01] Arnold Neumaier and Tapio Schneider. “Estimation of pa-
rameters and eigenmodes of multivariate autoregressive mod-
els.” In: Transactions on Mathematical Software (TOMS) 27.1
(2001), pp. 27–57 (cit. on p. 31).

[NW99] Jorge Nocedal and Stephen J. Wright. Numerical Optimiza-
tion. Springer, 1999 (cit. on p. 17).

[NY09a] Trung Thanh Nguyen and Xin Yao. “Benchmarking and solv-
ing dynamic constrained problems.” In: Congress on Evolu-
tionary Computation (CEC). 2009, pp. 690–697 (cit. on p. 35).

[NY09b] Trung Thanh Nguyen and Xin Yao. “Dynamic time-linkage
problems revisited.” In: Applications of Evolutionary Comput-
ing. Ed. by Mario Giacobini et al. Springer, 2009, pp. 735–744
(cit. on p. 28).

[NY12] Trung Thanh Nguyen and Xin Yao. “Continuous dynamic
constrained optimization–The challenges.” In: Transactions
on Evolutionary Computation 16.6 (2012), pp. 769–786 (cit.
on pp. 48, 115).

[NY13] Trung Thanh Nguyen and Xin Yao. “Dynamic time-linkage
evolutionary optimization: Definitions and potential solu-
tions.” In: Metaheuristics for Dynamic Optimization. Sprin-
ger, 2013, pp. 371–395 (cit. on p. 13).

[NYB12] Trung Thanh Nguyen, Shengxiang Yang, and Jürgen Branke.
“Evolutionary dynamic optimization: A survey of the state of
the art.” In: Swarm and Evolutionary Computation 6 (2012),
pp. 1–24 (cit. on pp. 2, 12, 13, 25–27, 35, 47, 71, 86).

[OJOMN19] Domingos S. de O. Junior, João F. L. de Oliveira, and Paulo S.
G. de Mattos Neto. “An intelligent hybridization of ARIMA
with machine learning models for time series forecasting.”
In: Knowledge-Based Systems 175 (2019), pp. 72–86 (cit. on
p. 56).

[OP09] Djamila Ouelhadj and Sanja Petrovic. “A survey of dynamic
scheduling in manufacturing systems.” In: Journal of Schedul-
ing 12.4 (2009), pp. 417–431 (cit. on p. 1).

160

Bibliography

[ORB19] Sebastian Otte, Patricia Rubisch, and Martin V. Butz.
“Gradient-based learning of compositional dynamics with
modular RNNs.” In: International Conference on Artificial
Neural Networks (ICANN). 2019, pp. 484–496 (cit. on p. 39).

[OZK18] Stefan Oehmcke, Oliver Zielinski, and Oliver Kramer. “Di-
rect training of dynamic observation noise with UMarineNet.”
In: International Conference on Artificial Neural Networks
(ICANN). Ed. by Věra Kůrková et al. Springer, 2018, pp. 123–
133 (cit. on pp. 88, 143).

[Pas02] Kevin M. Passino. “Biomimicry of bacterial foraging for dis-
tributed optimization and control.” In: IEEE Control Systems
Magazine 22.3 (2002), pp. 52–67 (cit. on p. 21).

[PE19] Gary Pamparà and Andries P. Engelbrecht. “A generator for
dynamically constrained optimization problems.” In: Genetic
and Evolutionary Computation Conference (GECCO) Com-
panion. 2019, pp. 1441–1448 (cit. on p. 35).

[Pen+15] Zhou Peng et al. “Novel prediction and memory strategies
for dynamic multiobjective optimization.” In: Soft Computing
19.9 (2015), pp. 2633–2653 (cit. on p. 54).

[PH99] Hartmut Pohlheim and Adolf Heiéner. “Optimal control of
greenhouse climate using real-world weather data and evolu-
tionary algorithms.” In: Genetic and Evolutionary Computa-
tion Conference (GECCO). Orlando, Florida, 1999, pp. 1672–
1677 (cit. on p. 1).

[PKB07] Riccardo Poli, James Kennedy, and Tim Blackwell. “Parti-
cle swarm optimization.” In: Swarm Intelligence 1.1 (2007),
pp. 33–57 (cit. on p. 22).

[Pol09] Riccardo Poli. “Mean and variance of the sampling dis-
tribution of particle swarm optimizers during stagnation.”
In: IEEE Transactions on Evolutionary Computation 13.4
(2009), pp. 712–721 (cit. on p. 74).

[PSB19] Antonio R. S. Parmezan, Vinícius M. A. de Souza, and Gus-
tavo E. A. P. A. Batista. “Evaluation of statistical and ma-
chine learning models for time series prediction: Identifying
the state-of-the-art and the best conditions for the use of each
model.” In: Information Sciences 484 (2019), pp. 302–337 (cit.
on p. 55).

161

Bibliography

[PV10] Konstantinos E. Parsopoulos and Michael N. Vrahatis. Parti-
cle Swarm Optimization and Intelligence: Advances and Ap-
plications. Information Science Reference - Imprint of IGI
Publishing, 2010 (cit. on p. 22).

[RAD08] Claudio Rossi, Mohamed Abderrahim, and Julio César Díaz.
“Tracking moving optima using Kalman-based predictions.”
In: Evolutionary Computation 16.1 (2008), pp. 1–30 (cit. on
pp. 27, 30, 54, 85–87, 89).

[RBK12] Grzegorz Rozenberg, Thomas Bäck, and Joost N. Kok, eds.
Handbook of Natural Computing. Springer, 2012 (cit. on
p. 17).

[Rec73] Ingo Rechenberg. Evolutionsstrategie: Optimierung techni-
scher Systeme nach Prinzipien der biologischen Evolution.
Frommann-Holzbog, Stuttgart. 1973 (cit. on pp. 19, 21, 58).

[RGZ16] Miao Rong, Dun-Wei Gong, and Yong Zhang. “A multi-
direction prediction approach for dynamic multi-objective
optimization.” In: International Conference on Intelligent
Computing (ICIC). 2016, pp. 629–636 (cit. on pp. 27, 54).

[RI10] Benjamin Roeschies and Christian Igel. “Structure optimiza-
tion of reservoir networks.” In: Logic Journal of the IGPL 18.5
(2010), pp. 635–669 (cit. on p. 39).

[Ric09] Hendrik Richter. “Detecting change in dynamic fitness land-
scapes.” In: Congress on Evolutionary Computation (CEC).
2009, pp. 1613–1620 (cit. on pp. 26, 57).

[Ric10] Hendrik Richter. “Evolutionary optimization and dynamic fit-
ness landscapes.” In: Evolutionary Algorithms and Chaotic
Systems. Springer, 2010, pp. 409–446 (cit. on pp. 11, 14).

[Roj96] Raul Rojas. Neural Networks: A Systematic Introduction.
Springer, 1996 (cit. on p. 32).

[Ron+19] Miao Rong et al. “Multidirectional prediction approach for
dynamic multiobjective optimization problems.” In: Trans-
actions on Cybernetics 49.9 (2019), pp. 3362–3374 (cit. on
pp. 27, 28, 54).

[Rot11] Franz Rothlauf. Design of Modern Heuristics. Natural Com-
puting Series. Springer, 2011 (cit. on pp. 11, 12, 17).

162

Bibliography

[RS19] Karthik Ramasubramanian and Abhishek Singh. Machine
Learning Using R. With Time Series and Industry-Based Use
Cases in R. 2nd edition. Apress, 2019 (cit. on p. 29).

[Rua+17] Gan Ruan et al. “The effect of diversity maintenance on pre-
diction in dynamic multi-objective optimization.” In: Applied
Soft Computing 58 (2017), pp. 631–647 (cit. on p. 54).

[Rud12] Günter Rudolph. “Evolutionary strategies.” In: Handbook
of Natural Computing. Springer, 2012, pp. 673–698 (cit. on
p. 20).

[RY13] Hendrik Richter and Shengxiang Yang. “Dynamic optimiza-
tion using analytic and evolutionary approaches: A compara-
tive review.” In: Handbook of Optimization–From Classical to
Modern Approach. Springer, 2013, pp. 1–28 (cit. on p. 2).

[SC08a] Anabela Simões and Ernesto Costa. “Evolutionary algorithms
for dynamic environments: Prediction using linear regression
and Markov chains.” In: Parallel Problem Solving from Nature
(PPSN). 2008, pp. 306–315 (cit. on p. 28).

[SC08b] Ingo Steinwart and Andreas Christmann. Support Vector Ma-
chines. Information Science and Statistics. Springer, 2008 (cit.
on p. 54).

[SC09] Anabela Simões and Ernesto Costa. “Improving prediction in
evolutionary algorithms for dynamic environments.” In: Ge-
netic and Evolutionary Computation Conference (GECCO).
2009, pp. 875–882 (cit. on p. 28).

[SC14] Anabela Simões and Ernesto Costa. “Prediction in evolution-
ary algorithms for dynamic environments.” In: Soft Comput-
ing 18.8 (2014), pp. 1471–1497 (cit. on pp. 12, 13, 28, 86).

[Sha49] Claude E. Shannon. “Communication in the presence of
noise.” In: Proceedings of the IRE 37.1 (1949), pp. 10–21
(cit. on p. 44).

[Shi12] Ofer M. Shir. “Niching in evolutionary algorithms.” In: Hand-
book of Natural Computing. Springer, 2012, pp. 1035–1069
(cit. on p. 25).

[Smy19] Slawek Smyl. “A hybrid method of exponential smoothing
and recurrent neural networks for time series forecasting.” In:
International Journal of Forecasting (2019) (cit. on pp. 32,
56).

163

Bibliography

[Sor70] Harold W. Sorenson. “Least-squares estimation: From Gauss
to Kalman.” In: IEEE Spectrum 7.7 (1970), pp. 63–68 (cit. on
p. 31).

[SS17] Robert H. Shumway and David S. Stoffer. Time Series Analy-
sis and Its Applications. With R examples. 4th edition. Sprin-
ger Texts in Statistics. Springer, 2017 (cit. on p. 29).

[Ste07] Jochen J. Steil. “Several ways to solve the MSO prob-
lem.” In: European Symposium on Artificial Neural Networks
(ESANN). 2007, pp. 489–494 (cit. on p. 39).

[Teo09] Dusan Teodorovic. “Bee colony optimization (BCO).” In: In-
novations in Swarm Intelligence. Springer, 2009, pp. 39–60
(cit. on p. 21).

[TM99] Krzysztof Trojanowski and Zbigniew Michalewicz. “Searching
for optima in non-stationary environments.” In: Congress on
Evolutionary Computation (CEC). Vol. 3. 1999, pp. 1843–
1850 (cit. on p. 48).

[TY07] Renato Tinós and Shengxiang Yang. “A self-organizing ran-
dom immigrants genetic algorithm for dynamic optimization
problems.” In: Genetic Programming and Evolvable Machines
8.3 (2007), pp. 255–286 (cit. on p. 26).

[UFK02] Rasmus K. Ursem, Bogdan Filipič, and Thiemo Krink. “Ex-
ploring the performance of an evolutionary algorithm for
greenhouse control.” In: Journal of Computing and Informa-
tion Technology 10.3 (2002), pp. 195–201 (cit. on p. 2).

[Urs00] Rasmus K. Ursem. “Multinational GAs: Multimodal opti-
mization techniques in dynamic environments.” In: Genetic
and Evolutionary Computation Conference (GECCO). 2000,
pp. 19–26 (cit. on p. 27).

[Wal02] David M. Walker. “Kalman filtering of time series data.”
In: Modelling and Forecasting Financial Data: Techniques of
Nonlinear Dynamics. Ed. by Abdol S. Soofi and Liangyue
Cao. Springer, 2002, pp. 137–157 (cit. on p. 31).

[Wan+16] Zi-Jia Wang et al. “Orthogonal learning particle swarm opti-
mization with variable relocation for dynamic optimization.”
In: Congress on Evolutionary Computation (CEC). 2016,
pp. 594–600 (cit. on p. 54).

164

Bibliography

[Wei03] Karsten Weicker. Evolutionary Algorithms and Dynamic Op-
timization Problems. Der Andere Verlag Berlin, 2003 (cit. on
p. 12).

[WGS05] Daan Wierstra, Faustino J. Gomez, and Jürgen Schmidhuber.
“Modeling systems with internal state using evolino.” In: Ge-
netic and Evolutionary Computation Conference (GECCO).
2005, pp. 1795–1802 (cit. on p. 39).

[WJL15] Yan Wu, Yaochu Jin, and Xiaoxiong Liu. “A directed search
strategy for evolutionary dynamic multiobjective optimiza-
tion.” In: Soft Computing 19.11 (2015), pp. 3221–3235 (cit.
on pp. 27, 54).

[WM97] David H. Wolpert and William G. Macready. “No free lunch
theorems for optimization.” In: Transactions on Evolutionary
Computation 1.1 (1997), pp. 67–82 (cit. on p. 53).

[Wol19] Mattis Wolf. Experimenteller Vergleich von Vorhersagemetho-
den von multidimensionalen Zeitreihen. Student Thesis. 2019
(cit. on pp. 56, 119, 120).

[Wu+16] Yonghui Wu et al. “Google’s neural machine translation sys-
tem: Bridging the gap between human and machine transla-
tion.” In: CoRR abs/1609.08144 (2016) (cit. on pp. 32, 55).

[WY09] Yonas G. Woldesenbet and Gary G. Yen. “Dynamic evolu-
tionary algorithm with variable relocation.” In: IEEE Trans-
actions on Evolutionary Computation 13.3 (2009), pp. 500–
513 (cit. on p. 86).

[Yan11] Xin-She Yang. “Optimization algorithms.” In: Computa-
tional Optimization, Methods and Algorithms. Springer, 2011,
pp. 13–31 (cit. on p. 18).

[Yan14] Xin-She Yang. Nature-Inspired Optimization Algorithms. El-
sevier, 2014 (cit. on pp. 18, 19).

[Yaz+18] Danial Yazdani et al. “A multi-objective time-linkage ap-
proach for dynamic optimization problems with previous-
solution displacement restriction.” In: Applications of Evolu-
tionary Computation (EvoApplications). 2018, pp. 864–878
(cit. on p. 14).

165

Bibliography

[YK11] Xin-She Yang and Slawomir Koziel. “Computational Opti-
mization: An Overview.” In: Computational Optimization,
Methods and Algorithms. Springer, 2011, pp. 1–11 (cit. on
pp. 12, 18).

[YM00] Robert A. Yaffee and Monnie McGee. Introduction to Time
Series Analysis and Forecasting with Applications of SAS and
SPSS. Academic Press, Inc., 2000 (cit. on pp. 29, 31, 55).

[YNB19] Danial Yazdani, Trung Thanh Nguyen, and Jürgen Branke.
“Robust optimization over time by learning problem space
characteristics.” In: Transactions on Evolutionary Computa-
tion 23.1 (2019), pp. 143–155 (cit. on p. 13).

[Yu+10] Xin Yu et al. “Robust optimization over time-A new perspec-
tive on dynamic optimization problems.” In: Congress on Evo-
lutionary Computation (CEC). 2010, pp. 1–6 (cit. on pp. 13,
14, 36).

[YY03] Shengxiang Yang and Xin Yao. “Dual population-based in-
cremental learning for problem optimization in dynamic en-
vironments.” In: Asia Pacific Symposium on Intelligent and
Evolutionary Systems. 2003, pp. 49–56 (cit. on p. 35).

[ZE14] E. T. van Zyl and Andries P. Engelbrecht. “Comparison of
self-adaptive particle swarm optimizers.” In: Swarm Intelli-
gence Symposioum (SIS). 2014, pp. 48–56 (cit. on p. 23).

[Zen+06] Sangyou Zeng et al. “A dynamic multi-objective evolutionary
algorithm based on an orthogonal design.” In: Congress on
Evolutionary Computation (CEC). 2006, pp. 573–580 (cit. on
p. 54).

[Zha01] Guoqiang P. Zhang. “An investigation of neural networks for
linear time-series forecasting.” In: Computers & OR 28.12
(2001), pp. 1183–1202 (cit. on p. 55).

[Zha12] Guoqiang P. Zhang. “Neural networks for time-series fore-
casting.” In: Handbook of Natural Computing. Springer, 2012,
pp. 461–477 (cit. on pp. 29, 56, 90).

[Zho+07] Aimin Zhou et al. “Prediction-based population re-initializa-
tion for evolutionary dynamic multi-objective optimization.”
In: Evolutionary Multi-Criterion Optimization (EMO). Ed.
by Shigeru Obayashi et al. 2007, pp. 832–846 (cit. on pp. 28,
54, 86, 87).

166

Bibliography

[Zho+18] Jianwei Zhou et al. “An evolutionary dynamic multi-objective
optimization algorithm based on center-point prediction and
sub-population autonomous guidance.” In: Symposium Series
on Computational Intelligence (SSCI). 2018, pp. 2148–2154
(cit. on pp. 27, 54).

[ZJZ14] Amin Zhou, Yaochu Jin, and Qingfu Zhang. “A population
prediction strategy for evolutionary dynamic multiobjective
optimization.” In: Transactions on Cybernetics 44.1 (2014),
pp. 40–53 (cit. on pp. 27, 53, 71).

[ZLB04] Eckart Zitzler, Marco Laumanns, and Stefan Bleuler. “A
tutorial on evolutionary multiobjective optimization.” In:
Metaheuristics for multiobjective optimisation. Springer,
2004, pp. 3–37 (cit. on p. 11).

[Zou+17] Juan Zou et al. “A prediction strategy based on center points
and knee points for evolutionary dynamic multi-objective op-
timization.” In: Applied Soft Computing 61 (2017), pp. 806
–818 (cit. on pp. 53, 54).

[ZWJ15] Yudong Zhang, Shuihua Wang, and Genlin Ji. “A compre-
hensive survey on particle swarm optimization algorithm and
its applications.” In: Mathematical Problems in Engineering
2015 (2015) (cit. on p. 22).

[Yaz+19] D. Yazdani et al. “Scaling up dynamic optimization problems:
A divide-and-conquer approach.” In: IEEE Transactions on
Evolutionary Computation (2019) (cit. on pp. 35, 108).

167

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Nomenclature
	Introduction
	Challenges in Dynamic Optimization
	Prediction-Based Dynamic Optimization
	Contributions and Results
	Overview of the Thesis

	Foundations
	Dynamic Optimization Problems
	Problem Characteristics
	Characteristics of Static Optimization Problems
	Characteristics of Dynamics

	Optimization Goals
	Dynamic Optimization Problems in the Thesis

	Nature-Inspired Optimization Algorithms
	Overview of Optimization Methods
	Principles of Nature-Inspired Optimization
	Evolution Strategies
	Particle Swarm Optimization

	Dynamic Optimization Approaches
	General Approaches
	Prediction-Based Approaches

	Time Series Prediction Methods
	Persistence Model
	Autoregressive Model
	Kalman Filter
	Recurrent Neural Network
	Temporal Convolutional Network

	Performance Measurement
	Benchmark Problem Sets
	Moving Peaks Benchmark
	CEC Competition Benchmark
	Free Peaks Benchmark
	Dynamic Sine Benchmark

	Quality Measures
	Best of Generation
	Best Error before Change
	Absolute Recovery Rate
	Relative Convergence Speed

	Prediction-Based Dynamic Optimization
	Prediction for Evolution Strategies
	Related Work
	Time Series Prediction Methods in Dynamic ES
	Comparative Studies on Time Series Prediction Methods

	Recurrent Neural Network Prediction for Evolution Strategies
	Experimental Setup
	Group SRR
	Group MPB-Random
	Group MPB-Noisy
	Group Ros-Length
	Group SRR-Neurons
	Group SRR-Hybrid

	Experimental Results
	Group SRR
	Group MPB-Random
	Group MPB-Noisy
	Group Ros-Length
	Group SRR-Neurons
	Group SRR-Hybrid

	Summary

	Prediction for Particle Swarm Optimization
	Related Work
	Dynamic Particle Swarm Optimization
	Prediction Approaches in Dynamic PSO

	Prediction-Based Particle Swarm Optimization
	Prediction as Particle
	Prediction as Third Attractor
	Prediction as Particle and Attractor
	PSO Framework
	Convergent Parameter Settings

	Experimental Setup
	Experimental Results
	Identification of Best Parameter Settings
	Comparison of PSO Variants

	Summary

	Predictive Uncertainty for Evolution Strategies
	Related Work
	Re-Initialization Strategies
	Uncertainty Estimation with Neural Networks

	Uncertainty-Aware Re-Initialization
	Experimental Setup
	Experimental Results
	Dynamic Sine Benchmark
	Moving Peaks Benchmark

	Summary

	Summary
	Conclusion
	Contributions
	Transferability
	Prediction for Other Optimization Algorithms
	Prediction for Other Optimization Problems
	Prediction for Application Problems

	Outlook

	Appendix
	Fitness Functions
	Examination of RCS and ARR
	Empirical Comparison of Prediction Methods
	Further Results
	Prediction for Evolution Strategies
	Prediction for Particle Swarm Optimization
	Predictive Uncertainty for Evolution Strategies
	Tuning of Hyperparameters
	Final Comparisons on DSB and MPB

	Implementation
	Bibliography

