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Zusammenfassung

Im heutigen technologischen Umfeld repräsentieren cyber-physische Systeme (CPS) eine
wegweisende Konvergenz physikalischer Prinzipien und logischer Konstrukte. Diese Systeme
umfassen verschiedene Komponenten, die von digitalen und analogen Elementen bis hin zur
physischen Welt reichen. CPS wird als ein zentrales Forschungsgebiet der Gegenwart anerkannt
und ist wegweisend für die künftige Systemgestaltung und -entwicklung. Besonders die funktionale
Architektur derzeit entstehender Systeme, wie sie in autonomen Fahrzeugen exemplarisch zu sehen
ist, integriert zunehmend Komponenten, die durch künstliche Intelligenz-basierte Modelle wie
maschinelles Lernen generiert werden, verbunden durch Echtzeit-Netzwerke. Dieser Wandel weg
von konventionellen Ingenieuransätzen führt zu einer heterogenen Kombination von Komponenten
und schafft komplexe Wechselwirkungen, die bei der Analyse große Herausforderungen darstellen.

Die Validierung und Verifizierung der Funktionalität von CPS, insbesondere in sicherheitskri-
tischen Bereichen, bringt eine Vielzahl ungelöster Komplexitäten mit sich. Trotz ihres Potenzials
fehlt es den gängigen Rechenstrukturen, einschließlich tiefer neuronaler Netze (DNNs), an ska-
lierbaren, automatisierten Verifizierungsmechanismen. Die inhärente Größe, Nichtlinearität und
Nichtkonvexität von künstlichen neuronalen Netzen (ANNs) machen sie für bestehende Verifizie-
rungsmethoden, wie gemischt-ganzzahlige lineare Programmierung (MILP) Solver und Satisfiability
Modulo Theories (SMT) Solver, besonders herausfordernd.

Dieses Dissertationsprojekt widmet sich einer gezielten Erforschung von ANNs mit Aktivie-
rungsfunktionen jenseits der weit verbreiteten Rectified Linear Unit (ReLU). Ein wesentlicher
Aspekt dieser Forschung liegt in der Anwendung des SMT-Solvers iSAT, der sich durch seine
Fähigkeit auszeichnet, boolesche Kombinationen von linearen und nichtlinearen Constraints zu
behandeln, selbst wenn sie transzendente Funktionen umfassen. Diese Eigenschaft macht iSAT be-
sonders geeignet, um die Sicherheitseigenschaften von ANNs mit nichtlinearen Transferfunktionen
zu verifizieren.



Abstract

In today’s technological landscape, cyber-physical systems (CPS) represent a pivotal convergence
of physical principles and logical constructs. These systems encompass diverse components
ranging from digital and analog elements to the physical realm. Recognized as a key domain of
contemporary research, CPS is poised to revolutionize future system design and development.
Notably, the functional architecture of emerging systems, exemplified by autonomous vehicles,
increasingly integrates components generated through artificial intelligence-driven models like
machine learning, connected by real-time networks. This shift away from conventional engineering
approaches introduces a heterogeneous amalgamation of components, establishing intricate
interplays that pose formidable analysis challenges.

Validating and verifying the functionality of CPS, especially in safety-critical domains, presents
a host of unresolved complexities. Despite their potential, prevalent computational structures,
including deep neural networks (DNNs), lack scalable, automated verification mechanisms. The
inherent size, non-linearity, and non-convexity of artificial neural networks (ANNs) make them
particularly challenging for existing verification methods, such as mixed integer linear programming
(MILP) solvers and satisfiability modulo theories (SMT) solvers.

This doctoral project undertakes a focused exploration of ANNs with activation functions
beyond the widely-used rectified linear unit (ReLU). A significant facet of this research centers
on the application of the SMT solver iSAT, uniquely adept at tackling Boolean combinations
of linear and non-linear constraint formulas, even extending to transcendental functions. This
characteristic renders iSAT suitable for verifying the safety properties of ANNs characterized by
non-linear transfer functions.
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Chapter 1

Introduction

Cyber-physical systems [Jaz14] merge physical and computational elements into an intri-
cately integrated system, empowering physical objects with intelligence and adaptability
beyond their inherent properties. These systems are anticipated to play a pivotal role in
shaping future smart technologies, encompassing areas such as smart cities, advanced sup-
ply chains, autonomous transportation, and automated healthcare.

The functional architectures of CPSes, like those seen in autonomous vehicles [KKLR13],
are increasingly being shaped by machine learning methods rather than traditional engi-
neering approaches. Although such systems offer significant advantages in analyzing and
predicting vast and intricate datasets, they lack strong mathematical guarantees concerning
essential functionalities, unlike most historically employed architectures. Consequently,
integrating machine-learning-enabled CPSes into CPS architectures, which involve a di-
verse array of functional building blocks interacting in heterogeneous combinations, poses
a formidable challenge in terms of analyzing and detecting potential errors. One of the
primary methods for testing cyber-physical systems and their associated functional design
models involves utilizing simulation tools [DLV11]. Through simulations, developers aim
to provide evidence that these systems will behave as intended. For instance, companies
working on self-driving vehicles rely on simulation results (pertaining to software, hard-
ware, etc.) to establish safety cases and meet functional safety standards. However, a
crucial question arises: can simulation-based testing alone suffice for critical systems?
Will it effectively identify potentially unsafe, inefficient, or incomplete features?

A notable incident occurred in March 2018 when a Tesla Model X, operating with
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1. Introduction

autopilot driving assistance, was involved in a fatal accident, colliding with a concrete
median on Highway 101 in Mountain View, California, after millions of test miles [Dic18,
Lam18]. Ensuring the societal acceptance of intelligent cyber-physical systems depends
on mitigating such risks adequately.

Both the research community and the industry are thus intensely pursuing the idea of
complementing extensive simulation and testing with formal verification of essential safety
properties in machine-learning-enabled CPSes, particularly in the context of automated ve-
hicles (AV). This approach aims to address concerns and enhance confidence in the safety
and reliability of smart systems. However, this presents a significant challenge: artificial
neural networks are trained using samples and heuristic optimization techniques, leading
to an approximation of a mathematically complex statistical inference. The statistical na-
ture of this inference and the inherent imprecision in ANNs introduce uncertainties into
their reasoning process, affecting the output of each network. Due to these uncertainties
and the absence of an accessible closed-form specification of their function, post-training
verification methods become crucial for assessing the functional well-behavedness and
reliability of machine-learning-based systems.

Currently, the only hope for providing reasonable guarantees of these systems’ func-
tionality is through a functional verification method, inspecting the behavior of the trained
neural network. This becomes particularly vital when dealing with large and complex neu-
ral networks. Ensuring high safety standards in smart safety-critical devices like automated
vehicles necessitates the use of formal methods in functional verification [ZJ15, CW96].
However, the hybrid discrete-continuous system structure and the heterogeneity of compo-
nents in safety-critical cyber-physical systems pose significant challenges when applying
functional verification techniques. This issue is already relevant to traditional engineered
designs, but it becomes even more pronounced with the integration of machine learning
components, particularly artificial neural networks, in cyber-physical systems for environ-
ment analysis. The incorrect outputs from neural networks can potentially lead to danger-
ous situations and result in significant consequences, particularly in critical systems.

As a result, there is an urgent need to verify ANNs, which poses a significant, yet
mostly unsolved, scientific challenge. Ensuring the reliability and safety of these ma-
chine learning components is of paramount importance in mitigating potential hazards
and avoiding costly outcomes.

An ANN is a network structure comprising interconnected elements known as neurons
[AJO+18, AKB00]. Each neuron has inputs, and outputs, and performs simple localized
data-flow operations. While the network’s structure, including the number, types, layout,
and interconnections of neurons, is typically predefined manually by a designer, neural
networks learn significant aspects of their function during a training process. This training
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involves adjusting parameters within the neuron functions to achieve specific goals.

Once a neural network is trained, it is possible to translate it into a closed-form func-
tional equation that describes its actual function. This translation can be achieved by taking
the characteristic equations of each neuron function, similar to the approach used in digi-
tal circuit verification for many years, along with the interconnect structure. By logically
combining these characteristic equations, we obtain an exact representation of the input-
output activation function of the analog combinatorial circuit that the feed-forward neural
network (FFNNs)) [CW96, BG94] represents, which might be potentially deep.

Formal verification [Bje05] of a neural network then involves conducting a mathemat-
ical analysis of the properties of this resulting mathematical function. By performing this
verification, we can gain insights into the network’s behavior and ensure its reliability and
correctness for various applications. The latter analysis can, in principle, be mechanized
using interactive or automatic formal verification techniques. However, computational
challenges arise when dealing with neural networks with a substantial number of neurons,
which is often the case in practice. This results in unwieldy mathematical descriptions
of the network function, containing as many mathematical operators as the number of
neurons in the network, and often even more due to the need to describe each neuron as
a composition of simpler mathematical functions and the sharing of subnetwork outputs
facilitated by the network interconnect.

The complexity of calculating properties for such large networks primarily arises from
the presence of a significant fraction of non-linear functions, attributable to the activa-
tion functions (AFs) [SSA17] of neurons. Non-linear activation functions are essential
for introducing non-linearity into the overall activation function, allowing the definition
of non-monotonic functions or non-convex regions that underlie decisions. Without these
non-linear AFs, neural networks would struggle to learn even the simplest non-monotonic
Boolean operators, like exclusive or (XOR).

Furthermore, they would be ill-suited for modeling classification tasks involving com-
plex input data types, such as images, videos, audio, speech, etc. However, the non-linear
nature of activation functions gives rise to a massive non-convex constraint problem in the
verification of neural networks [KBD+17b], making it difficult to find scalable automatic
solving methods for this challenge. As a result, addressing verification problems in large
neural networks with non-linear activation functions remains a formidable task in the field
of neural network research.
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1. Introduction

1.1 Related Work

Despite its youth, the verification of neural networks has garnered increasing attention
due to the widespread deployment of these models in critical applications such as au-
tonomous vehicles and healthcare. Researchers are exploring various techniques to en-
sure the reliability and safety of neural networks, including formal methods, robustness
analysis, and adversarial testing. As the complexity and scale of neural networks con-
tinue to grow, addressing the verification challenges becomes paramount for maintaining
trust in AI systems. Two primary methodologies are commonly employed to tackle prop-
erty verification in artificial neural networks: mixed integer linear programming and SAT
modulo theory utilizing dedicated SMT solvers. These approaches play crucial roles in
ensuring the reliability and safety of neural network models by verifying properties such
as robustness, safety constraints, and general performance. By leveraging mixed integer
linear programming and SAT modulo theory, researchers aim to enhance the trustwor-
thiness and deployment readiness of ANNs across diverse applications. Several studies
have utilized SMT solvers directly for property verification in neural networks, including
[BR23, BR23, KBD+17b, BIL+16, HKWW17, LM17, Ehl17]. For instance, the Relu-
plex architecture introduced in [KBD+17a] deals with ReLU-based networks, where the
primary non-linearity is the piecewise linear ReLU node (essentially a clipped identity
function). To handle the complexity arising from ReLU activation functions, Reluplex
employs a lazy theorem proving and conflict-driven clause learning approach. The ar-
chitecture takes a neural network description as input along with the desired property of
the network’s activation function, expressed as an SMT formula. This property is later ap-
pended to the SMT formulation of the network’s activation function. By integrating linear
programming (LP) [DT03] to address linear weighting nodes and employing a dedicated
constraint propagator for ReLU nodes within an SMT core for linear arithmetic, the com-
pound formula’s satisfiability or unsatisfiability is determined. Another study [GZZ+23]
presents an SMT-based method to formally verify deep neural networks’ robustness against
occlusions, a significant semantic perturbation. By formulating the occlusion robustness
verification problem and introducing efficient encoding techniques within neural networks,
the approach enables scalable verification using off-the-shelf tools. However, these meth-
ods are limited to piecewise linear ReLU-type neural networks.

While it might seem straightforward to extend the underlying verification scheme to
more general activation functions by employing more versatile SMT solvers capable of ad-
dressing the corresponding non-linear arithmetic fragments, such approaches have proven
to be non-scalable for networks of non-trivial size, especially those encountered in real-
world problems. [PT10, PT11] use piecewise linear functions to approximate the sigmoid
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activation function. For verification, the SMT-Solver HYSAT [FH07] — a predecessor
of iSAT — was used. It was shown that a safety-critical property that is verifiable for a
consistent abstraction also holds for the original neural network. The downside of this
approach is its lack of scalability, as only small networks with just 20 hidden nodes could
be verified [PT10, PT12].

Regarding the verification of more intricate neural network architectures, such as re-
current neural networks (RNNs) [MC01], notable research efforts have already been un-
dertaken. Akintunde et al. [AKLP19] have achieved formal verification of RNNs by trans-
forming them into feed-forward Neural Networks and converting the resulting verification
problem into a mixed-integer linear program. Jacoby et al. [JBK20b] proposed a method
for the formal verification of systems consisting of a stateful agent implemented as an RNN
interacting with an environment. Their approach involves utilizing inductive invariants to
reduce RNN verification to FFNN verification. However, both of these techniques are
currently applicable only to piecewise linear, ReLU-type neural networks.

In the context of more general and flexible classes of RNNs, which include long short-
term memory (LSTM) networks [She20] and generative adversarial networks (GANs)
[PYY+19], the presence of layers with nonlinear transfer functions, such as sigmoid and
hyperbolic tangent function (tanh), poses challenges. Mohammadinejad et al. [MPDW21]
proposed a differential verification method for verifying RNNs with nonlinear activation
functions. Their verification goal is to certify the approximate equivalence of two struc-
turally similar neural network functions, rather than verifying behavioral invariants. This
method offers a promising approach to handling RNNs with various nonlinear activation
functions, facilitating their formal verification and enhancing the applicability of verifica-
tion techniques to a wider range of neural network architectures. [TCY+23] introduces an
extended star reachability method to verify the robustness of recurrent neural networks for
safety-critical applications with the NNV tool [LCTJ23].

Recent research has expanded the scope of neural network verification to include other
architectures, notably convolutional neural networks [TBXJ20], reinforcement learning
[CMF21], and semantic segmentation networks [TPM+21]. This exploration employs di-
verse set-based reachability tools, including JuliaReach [BFF+19], among others, show-
casing the versatility of verification methodologies across various neural network struc-
tures.

1.2 Objectives
The primary objective of this thesis is to provide automated formal verification of neu-
ral networks, with an emphasis on both well-known feed-forward neural networks and
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1. Introduction

more intricate structures like recurrent neural networks, particularly LSTM networks. The
verification process involves ensuring compliance with formal safety specifications. To
achieve this, we propose an automatic verification strategy that involves extending the
core capabilities of the SMT solver iSAT [FHT+07] to handle networks with nonlinear
activation functions, such as sigmoid and tanh. iSAT is well-suited for this task due to two
key reasons: (1) its specific design to handle complex Boolean combinations of non-linear
arithmetic facts, including transcendental functions, and (2) its integrated mechanisms for
bounded model checking (BMC) [BCCZ99]. By leveraging these features, our approach
aims to facilitate efficient and rigorous verification of neural networks, broadening the
scope of formal verification techniques to encompass a wider range of activation func-
tions and network structures.

The principal aim of this project is to establish a rigorous and formal procedure for
assessing the outputs generated by both feed-forward and recurrent neural networks. To
accomplish this, the project was structured around the pursuit of the following key mile-
stones:

• Encoding neural networks into iSAT: The initial step in this project involves en-
coding the neural networks into expressions compatible with the iSAT solver. This
involves formulating the mathematical representation of the network’s architecture,
including its layers, connections, and activation functions. By mapping the neural
network components into iSAT-compatible expressions, we can effectively utilize
the solver’s capabilities for formal verification and analysis. This step is crucial in
enabling iSAT to process and assess the network’s behavior and performance based
on the specified safety specifications.

• Conduct a reachability analysis of the recurrent neural network: Following the
encoding of the neural network into iSAT expressions, the project proceeds to con-
duct a reachability analysis when the network is an RNN. This analysis involves
examining the network’s behavior and its capability to reach specific states or out-
comes from given initial conditions. By performing reachability analysis, we can
systematically explore the network’s response to different inputs and evaluate its
ability to achieve desired or critical states. The reachability analysis plays a crucial
role in verifying whether the network meets the specified formal safety specifica-
tions. By thoroughly analyzing the reachable states and trajectories, we can gain
insights into the network’s behavior and identify potential issues or vulnerabilities.
This step allows us to assess the network’s reliability and performance under vari-
ous scenarios, helping ensure that it behaves as intended and adheres to the desired
safety constraints.
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• Evaluate the scalability of the developed techniques: The evaluation of the scal-
ability of the developed techniques is an important aspect of this project. It involves
assessing the performance and efficiency of the verification procedures as the com-
plexity and size of the neural networks increase. To evaluate scalability, we conduct
a series of experiments and analyses with varying network sizes and architectures.
We measure the computational resources (such as time and memory) required to
perform the verification process for each network configuration. Additionally, we
examine the solver’s ability to handle larger and more complex networks, including
those with a higher number of layers, neurons, and nonlinear activation functions.

1.3 Challenges
The project encountered substantial challenges attributed to the inherent complexity of the
addressed problem. These difficulties were primarily a result of the resource-intensive na-
ture of neural network verification. As we reflect on the research and development process,
the following challenges have been identified:

• Dealing with (diverse) variants of NN architectures: The field of neural networks
has witnessed rapid advancements, leading to the creation of diverse architectures,
activation functions, optimization techniques, and training algorithms. Each vari-
ation may be tailored to specific tasks and domains, resulting in a highly complex
landscape of neural network configurations. Addressing this challenge requires a
flexible and adaptable approach to verification and analysis. The verification method-
ologies must be capable of handling different network structures, ranging from sim-
ple feed-forward networks to more intricate recurrent neural networks and trans-
formers. Moreover, considering the presence of various activation functions, such
as sigmoid, tanh, ReLU, and beyond, further adds to the complexity.

• Various neural network frameworks: The existence of different implementations
of neural networks, such as TensorFlow [PNW20] and PyTorch [KMKM21], presents
a significant challenge in this project. These frameworks offer various functionali-
ties, optimizations, and programming paradigms, making it essential to ensure con-
sistency and compatibility in the verification process. The verification techniques
and tools developed for one framework may not be directly transferable to another
due to differences in their underlying architecture and computation models. This
demands adaptation and possibly re-implementation of verification algorithms to
accommodate the specific characteristics of each framework. Furthermore, different
implementations may have varying levels of support for formal verification libraries
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and solvers, requiring careful consideration when integrating verification tools into
each framework. The availability and compatibility of third-party libraries, as well
as their support for nonlinear activation functions and recurrent connections, may
vary between frameworks.

• Reachability analysis techniques in RNNs: Reachability refers to the ability to
determine whether a certain state or condition can be reached from a given start-
ing point within a system. The absence of suitable reachability analysis techniques
for RNNs limits the ability to benchmark and compare the performance of the pro-
posed verification method. Without established baselines and benchmarks, it be-
comes challenging to evaluate the efficiency and effectiveness of the new approach
objectively.

1.4 Structure
The rest of the thesis is organized as follows: Chapter 2 provides necessary mathemati-
cal and algorithmic background information, including an overview of neural networks,
Boolean satisfiability problems, and SMT solvers, with a detailed exploration of iSAT
[FHT+07] and dReal [GKC13]. This chapter lays the foundation for the subsequent chap-
ters by introducing the fundamental concepts and tools essential for understanding the
neural network verification methodologies presented in this thesis. Chapter 3 will explore
the various aspects and objectives that neural network verification aims to address. Chapter
4 focuses on the verification of neural networks, discussing the translation of neural net-
work models into iSAT constraint problems, the methodology used for verification, and
various optimization techniques to enhance the verification process. Chapter 5 delves into
the evaluation of the proposed methods, presenting metrics for assessment and discussing
benchmarks involving data sets such as MNIST [LCB10], NGSIM [Adm07], and satellite
collision detection [Eur]. Finally, in Chapter 6, the thesis concludes by summarizing the
findings and contributions of the research, along with potential future directions in the
field of neural network verification.
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Chapter 2

Background

The beginning of Chapter 2 takes a review of neural networks, which is a crucial aspect of
our research. Our goal is to explain these concepts with clarity, offering a comprehensive
overview of the fundamentals that underlie the functioning of neural networks. As we
uncover the core elements of their complex structures, we explore the layers of connected
neurons. Additionally, we shed light on the important role that activation functions play
in influencing the behavior and results of the network.

Moreover, we explore the impact of training algorithms, serving as crucial agents in
refining the network’s numerous parameters to achieve desired outcomes. Within the ex-
pansive domain of neural networks, we place special focus on two distinct yet influential
network topologies: feed-forward neural networks and recurrent neural networks. The
former, recognized for its prevalence and straightforward information flow, contrasts with
the latter, which displays dynamic temporal behavior and cyclic connections. This unique
characteristic makes recurrent neural networks adept at processing sequential data, en-
hancing their suitability for various applications. Our thorough examination of both net-
work types yields profound insights into their distinctive traits and complexities, proving
invaluable in addressing intricate verification challenges that arise in safety-critical con-
texts.

In Section 2.2.3 following that, we introduced iSAT, an SMT solver serving as the
verification backend utilized in this thesis. This solver plays a pivotal role in understand-
ing and implementing the verification techniques central to our project. We embark on a
detailed journey through the underlying principles of SMT solvers, unveiling their remark-
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2. Background

able effectiveness in addressing complex Boolean combinations of linear and non-linear
constraint formulas. Specifically, we shed light on iSAT’s exceptional ability to handle
transcendental functions, including the sigmoidal and hyperbolic tangent activation func-
tions commonly encountered in the context of neural networks. This makes iSAT’s capa-
bilities particularly relevant to the objectives of our project.

2.1 Neural Networks
In this overview, we aim to provide a thorough understanding of the fundamental principles
that govern neural networks’ operations. By elucidating the intricate interplay of neurons,
layers, and activation functions, we aim to establish a clear mental model of how these
networks process information and extract meaningful insights from data. As we progress
from this broad understanding, we seamlessly transition to the core focal points of our
investigation. The first of these is the feed-forward neural network, a prevalent architecture
characterized by its unidirectional flow of information. Here, our intention is to unravel
the architecture’s components, its information propagation mechanisms, and its utilization
in various real-world applications.

Simultaneously, our exploration ventures into the realm of recurrent neural networks,
a distinct type known for its capacity to effectively handle sequential and time-series data.
As we delve into the intricacies of recurrent connections and cyclic behavior, we endeavor
to provide a comprehensive perspective on the unique strengths and challenges posed by
these networks.

By combining this foundational understanding of neural networks with our focused
insights into the distinctive qualities of feed-forward and recurrent neural networks, we
set the stage for the innovative verification approach that constitutes the essence of our
research.

2.1.1 Overview
In the realm of computational architectures, artificial neural networks, also commonly
referred to as connector systems, showcase the emulation of intricate operations found in
biological neural networks. Drawing inspiration from their biological counterparts, these
networks orchestrate the amalgamation of tens of thousands, and at times millions, of
artificial neurons.

A neural network [AJO+18] is composed of fundamental processing components known
as units, nodes, or neurons. These units are meticulously organized into multiple layers,
each layer housing a multitude of nodes. While the nodes within a specific layer do not
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2.1 Neural Networks

share direct connections amongst themselves, they establish vital connections with nodes
residing in adjacent layers. This connectivity pattern forms the backbone that facilitates
the seamless transmission of information across the network. Precisely, nodes within a
certain layer acquire input signals from nodes in the preceding layer and propagate their
output to nodes located in subsequent layers, which exist downstream in the network’s
progression.

There are two primary classes of network architectures based on the connections be-
tween neurons: "feed-forward neural networks" and "recurrent neural networks." A net-
work is classified as a feed-forward neural network when there is no feedback loop from
the neuron outputs to the inputs within the network. On the other hand, if such feedback
connections exist, where outputs connect to inputs, whether their own or those of other
neurons, the network is labeled a recurrent neural network.

2.1.2 Feed-Forward Neural Networks
A feed-forward NN is a neural network where the inner architecture is organized in sub-
sequent layers of neurons and every neuron of a layer is connected to the neurons of the
subsequent layer. The dynamicity of the design is another key aspect. Because no mem-
ory is permitted in an FFNN, the network can only be used to represent static functions
which refer to functions that do not incorporate memory or time-dependent elements. In
the context of a feed-forward neural network, where no memory or delay is allowed, the
network is limited to representing static functions. This means that the FFNN is suitable
for tasks where the input and output are not dependent on previous states or changes over
time, making it well-suited for certain types of pattern recognition and classification tasks
[HSW90].

Typically, neural networks are organized in layers. Within the category of feed-forward
neural networks, there are two subtypes based on the number of layers: "single-layer" and
"multi-layer."

Figure 2.1 illustrates a single-layer feed-forward neural network with full connectiv-
ity. This structure comprises two layers, but the input layer is not considered as it does
not perform any computations. Instead, it simply transmits input signals to the output
layer, where the output signals are computed by the neurons using the weights. The term
"weights" denotes the parameters of the neural network that determine the magnitude of
influence or significance of each input feature on the output of the neural network. These
weights essentially signify the importance or impact of each input feature on the network’s
decision-making process.

A multi-layer feed-forward neural network can be broadly categorized into three dis-

11



2. Background

Input 1 

Input 2 

Input 3 

Output 1 

Output 2 

Output 3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: A single layer feed-forward neural network

tinct types of units, each with its defined role:

• Input units: The initial layer of the network comprises these units. They are respon-
sible for receiving diverse types of information, which the network aims to process,
learn, and ultimately identify.

• Hidden units: They are situated within intermediate layers, and these internal units
play a pivotal role in the network’s processing operations. The output often denoted
as activation, of a hidden layer node, emerges from either forming a linear combi-
nation of its input values or by applying a particular activation function to a solitary
input value.

• Output units: They are occupying the final layer. These units carry the outcomes
of the network’s processing tasks. Their role is to provide meaningful results based
on the processing performed by the network’s hidden layers.

To provide a visual representation, consider a multi-layer feed-forward network de-
picted in Figure 2.2. This specific example showcases an architecture with n input nodes,
2 output nodes, and 2 hidden layers. The primary goal of the network is to process diverse
types of information, aiming to understand, recognize, and analyze this data.

The starting point for this data is the input units, marking the beginning of its journey
through the network. As data traverses through the network, hidden layers come into play,
imbuing the network with the capability to decipher intricate relationships inherent within
the data.

The transition between the network’s input and output nodes is facilitated by these
concealed layers. Within these layers, a node’s output, often referred to as its activation,
is governed either by performing an affine combination of its input values or by applying
a designated activation function to an individual input value.
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Figure 2.2: A FFNN with n input nodes, 2 output nodes, and 3 hidden layers.

Data is transmitted between neurons through connections, and these connections pos-
sess weights that can be either excitatory or inhibitory. In a neural network, layers typically
refer to groups of neurons that are organized in a hierarchical manner. Each layer can be
connected to the layers before and after it, forming a network.

Definition (feed-forward neural network):
A tuple (N,V,w, b, Fact) is a feed-forward neural network, where:

• N : Is the set of neurons.

• V : Is the set of connections between neurons of the form (i, j), where i, j ∈ N ,
ensuring that the neural network topology represented by (N,V ) forms an acyclic
graph. This acyclic property is crucial for feed-forward neural networks to ensure
that information flows in one direction, from input to output, without any cycles or
feedback loops.

• w : V → R is a function that specifies the weight associated with each connection.
These weights determine the strength of influence one neuron has on another in the
network.

• b : N → R is a function defining the bias of a neuron.

• Fact : { fact1 , fact2 , . . . , factm} → R is the activation function, where m is the number of
activation functions in the network.

The equation 2.1 depicts an affine transformation with bias. It arises from the definition
that, for a given neuron j, there could exist a collection of neurons I = {i1, i2, . . . , ip} for
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which (i, j) ∈ V for every t ∈ 1, . . . , p. The network input of neuron j, represented as net j ,
is defined in equation 2.1 [Kri07].

Affine: net j =

p∑
t=1

ot · wt, j + b j (2.1)

net j represents the affine transformation of the inputs to neuron j, where oi is the out-
put of neuron i and wi, j is the weight corresponding to the connection (i, j) in the network
structure V . This affine transformation sums the products of the outputs oi and their cor-
responding weights wi, j for all neurons i connected to neuron j.

The output of each neuron in the network, such as oi, is connected to the network
structure V . In a feed-forward neural network, this connection structure V ensures that the
output of each neuron in a given layer becomes the input to the neurons in the subsequent
layer. Specifically, if neuron i is connected to neuron j (i.e., (i, j) is a connection in V ), then
the output of neuron i contributes to the calculation of the network input net j for neuron
j. The weight wi, j associated with the connection (i, j) determines the extent to which
the output of neuron i influences the network input of neuron j. Thus, the connection
structure defined by V ensures that information flows through the network during forward
propagation.

Equation 2.2 shows the computational process of a feedforward neural network for a
single node. net j represents the affine transformation of the inputs to neuron j and y j

denotes the output of neuron j.

y j = fact(net j) = fact(
p∑

t=1

ot · wt, j + b j) (2.2)

Furthermore, Equation 2.3 provides an overview of a feedforward neural network with
multiple layers and diverse activation functions. In this equation, yk represents the output
of the network for a specific neuron k. The expression demonstrates the iterative nature of
information flow through the network, with each layer applying its respective activation
function factm .

The equation encapsulates the transformation of inputs ol through each layer’s weights
wl, j , culminating in the final output yk. Additionally, bias terms bm−1 and bm are incorpo-
rated to adjust the outputs of each layer.

This formulation provides a comprehensive depiction of the network’s computation,
emphasizing the sequential processing of information across its multiple layers.
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yk = factm

( g∑
j=0

factm−1

( z∑
i=0

factm−2

(
. . .

( s∑
l=0

ol · wl, j

)
· w j,k

)
· wk,n + bm−1

)
+ bm

)
(2.3)

Different characteristics are assigned to the network depending on how these functions
are defined. For instance, if the problem relates to classification, a sigmoid function might
be appropriate. The hidden number of nodes in the network is denoted by the constant M.
The input layer’s dimensions and the input vector’s size are determined by the constant N .
The overall output of the entire network is produced by combining all K output values yk

into a vector.
The activation of a neuron is another factor to consider. A non-linear activation func-

tion, often also simply referred to as an activation function, may be present in neurons to
non-linearly transform input impulses into output signals. In other words, the activation
of a neuron in a neural network depends on its input values as well as its activation func-
tion. The activation function’s goal is to transform a node’s input signal into an output
signal in the range, often 0 to 1 or -1 to 1. The subsequent layer receives this output as
an input. Our neural network would not be able to categorize non-convex sets or learn
non-monotonic functions, which are required to model images and videos, without the
use of non-linear activation functions. However, the presence of this non-linear compo-
nent in ANNs’ structure accounts for a large portion of the difficulty in determining the
features of these networks. The dynamics of training and task performance in neural net-
works are significantly influenced by the choice of activation functions. Generally, there
are three groups of activation functions. Here we consider value net j as an input of the
activation function (equation 2.1). For simplicity, in the following formula, we assume
that x represents the value of net j .

Figure 2.3: Unit step or binary step activation function
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Unit Step or Binary Step Function

Figure 2.3 illustrates the unit step or binary step activation function. Unit step is a threshold-
based activation function that generates output at two discrete levels (equation 2.4), return-
ing one of the two levels depending on whether the total input is larger or smaller than a
given threshold.

fact(x) =
 0 if x < 0

1 if x ≥ 0
(2.4)

Identity Activation Functions

It produces an output signal that is proportional to the input by multiplying the inputs by
the weights assigned to each neuron. Equation 2.5 illustrates an identity function that is
different from a step function in one sense since it allows for several outputs rather than
simply yes or no.

fact(x) = x (2.5)

However, there are several problems. For example, we cannot train the model using
gradient descent (backpropagation). This is because the function’s derivative is a constant
that has no bearing on the input value. Therefore, it is impossible to go back and determine
which input neuron weights can produce a better forecast.

Non-Linear Activation Functions

Non-linear activation functions are used in contemporary neural network models. They
give the model the ability to construct intricate mappings between the network’s inputs
and outputs, which are crucial for understanding and simulating complicated data, such as
pictures, video, audio, and non-linear or highly dimensional data sets. In this section, we
will briefly refer to the most common and popular nonlinear activation functions.

• Sigmoid (Logistic) function: A popular activation function transforming its input
into an output value between 0 and 1. The smooth gradient of the sigmoid activation
function prevents jumps in output values.

fact(x) =
1

1 + e−x (2.6)
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• Hyperbolic Tangent function (Tanh): This function is similar to sigmoid, but its
output is zero-centered. The gradient of the tanh is steeper than the sigmoid activa-
tion function.

fact(x) =
ex − e−x

ex + e−x (2.7)

• Rectified Linear Unit (ReLU): This function is piecewise linear. ReLU is the
identity for all positive input values and yields zero on all negative inputs.

fact(x) = max(0, x) (2.8)
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Figure 2.4: A spectrum of activation functions shaping neural network behavior,
from (A) Identity to (D) ReLU, (B) Sigmoid, and (C) Tanh.

Figure 2.4 presents a graphical representation showcasing the characteristics of the lin-
ear, ReLU, sigmoid, and tanh activation functions. This chart offers insight into how these
functions shape the behavior of neural networks, highlighting their distinct non-linearities
and linearities. When training ReLU networks, it can be difficult since the gradient of
the function becomes 0 when inputs are close to zero or negative, making it impossible
for the network to do backpropagation—that is, to change the weights on the input to the
ReLU node—and possibly failing to learn. To tackle this issue, Google proposed the Swish
activation function in [RZL17], which shares a similar form with ReLU. However, it incor-
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porates a smoothness factor due to the sigmoid function. Figure 2.5 illustrates the Swish
activation function, which is defined in equation 2.9, where β is a parameter controlling
the function’s shape. The plot demonstrates the Swish function’s characteristic S-shaped
curve, showcasing its smooth and differentiable nature.

fact(x) =
x

1 + e−βx
(2.9)

Figure 2.5: Swish activation functions

A network must begin learning how to produce the right result given specific inputs
after it has an established design. The following learning paradigms can be distinguished
in this process, depending on the type of training set being used: supervised, unsupervised,
and reinforcement learning [Kri07]. Different topologies have been developed to address
different categories of tasks by utilizing the fundamental ideas of a neural network. Two
main types of networks are examined in great depth for the project’s purposes: recurrent
neural networks and feed-forward neural networks, as already introduced.

2.1.3 Recurrent Neural Networks
Recurrent neural networks represent a class of neural networks renowned for their remark-
able ability to process sequential data effectively. Unlike feed-forward networks, RNNs
possess a distinctive feature – the capacity to maintain an internal state or memory, en-
abling them to store and utilize information related to previous inputs. This critical at-
tribute is particularly valuable in various applications that involve uncovering underlying
structures in sequential or time-ordered data.

RNNs find versatile applications across domains like time series analysis, natural lan-
guage processing, speech recognition, financial data modeling, audio processing, video
analysis, and more. These data structures inherently possess temporal dependencies, where
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Figure 2.6: Recurrent neural network element (left). The behavior at any time
point is given by the unfolding of its time-discrete feedback behavior (right).

each data point relies on its preceding ones. Herein lies the strength of recurrent neural
networks, as they can leverage their internal memory to retain context and capture long-
term dependencies across the sequence. The organization of this memory is crucial to
understanding how RNNs manage information:

• Memory Update: It is in RNN updated at each time step as new input is processed.
The update involves incorporating information from the current input and the pre-
vious state of the memory. The update process typically follows a formulation such
as:

ht = RNNCell(xt, ht−1),

where ht is the updated memory state at time t, xt is the input at time t, and ht−1 is
the previous memory state.

• Memory Read: The memory read is utilized to influence the prediction or com-
putation at each time step. The output or prediction at a given time step is often a
function of the current input and the current state of the memory. Mathematically,
this can be expressed as:

yt = OutputFunction(xt, ht),

where yt is the output at time t, xt is the input at time t, and ht is the memory state
at time t.

This capacity to process sequential data and maintain context sets RNNs apart from
feedforward networks, which lack the ability to retain and process non-local information.
For instance, while a feedforward network can only learn bounded-range addition, an RNN
excels at tasks requiring the processing of sequences of arbitrary length. The core structure
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of an RNN is illustrated in Figure 2.6, where each cell in the network takes an input,
x0, and produces an output, h0. This output, together with the next input, x1, forms the
basis for computation in the subsequent time step. The internal state, represented as ht−1,
plays a pivotal role in the computation at time step t, creating a recursive process that
facilitates the flow of information across the sequence. By building upon this recursive
computation scheme, RNNs can effectively process sequential data, uncover patterns, and
make predictions based on historical context.

2.1.4 LSTM Neural Networks
Long short-term memory (LSTM) networks [HS97] represent an improved version of
basic recurrent neural networks, addressing the problem of vanishing gradients during
training. One of the key features of LSTM networks is their ability to actively control
when to remember past data, achieved through a fixed memory structure [HS97]. This
crucial enhancement makes LSTMs particularly suitable for tasks involving time series
data with time delays of unknown durations, as they can effectively classify, process, and
predict such sequences. The network is trained using the back-propagation algorithm.

A fundamental difference between LSTM networks and basic RNNs lies in the inclu-
sion of so-called gates within LSTMs. These gates play a vital role in actively regulating
the flow of information between memory and computational units. By doing so, LSTMs
gain the ability to actively control the lifespan of stored information, which overcomes the
limitations of basic RNNs in remembering properties across long sequences and retaining
information for extended periods.

In essence, LSTM networks can be seen as a special type of recursive neural network,
as they possess the unique capability to learn and capture long-term dependencies within
sequential data. This advancement in memory and control mechanisms makes LSTMs a
powerful tool for a wide range of applications, particularly in tasks that involve complex
temporal dependencies and require the ability to retain and recall important information
over extended periods. Through their architecture, LSTM networks have significantly im-
proved the capacity of recurrent neural networks, enabling them to tackle more challenging
and real-world sequential data analysis tasks with enhanced accuracy and efficiency.

LSTM Architecture

Figure 2.7 depicts the architecture of an LSTM cell, showcasing its unique design with a
series of gates that govern the flow of information within the memory component of the
network. These gates play a critical role in controlling how data in a sequence is received,
stored, and transmitted within the LSTM cell. Although there are variations of LSTM
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Figure 2.7: LSTM structure. [YSHZ19]

structures, a standard LSTM cell usually consists of three fundamental gates: forget gate,
input gate, and output gate. These gates serve as filters, regulating the flow of information
throughout the LSTM cell.

Various components of the LSTM, including input vectors, hidden state vectors, cell
state vectors, weight vectors, bias vectors, and gate outputs, involve the use of vectors.

• Input gate (it): The input gate determines which new information from the current
time step (xt) and the previous hidden state (ht−1) should be stored in the cell state
(ct). It computes the gate value using a weighted sum of the input and hidden state,
passed through the sigmoid function. A gate value close to 1 indicates that informa-
tion should be stored, while a value close to 0 means the information is discarded.
The characteristic equation for the input gate is given by:

it = σ(wh,iht−1 + wi,ixt + bh,i + bi,i) (2.10)

• Cell state (ct): The cell state stores and retains relevant information over time. It is
updated using the output of the input gate (it), combined with the output of a tanh
function that normalizes the input and hidden state values into the range -1 to 1. The
forget gate output ( ft) from the previous time step also influences the updating of the
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cell state. The characteristic equations for the cell state are:

gt = tanh(wh,ght−1 + wi,gxt + bh,g + bi,g) (2.11)

ct = it ⊙ gt + ft ⊙ ct−1 (2.12)

• Forget gate ( ft): The forget gate determines whether to retain or forget information
stored in the cell state. It computes the gate value by considering the input (xt) and
hidden state (ht−1) and passing them through the sigmoid function. The gate output,
which ranges from 0 to 1, decides how much of the previous cell state should be
retained. The characteristic equation for the forget gate is given by:

ft = σ(wh, f ht−1 + wi, f xt + bh, f + bi, f ) (2.13)

• Output gate (ot): The output gate prepares the relevant information to be output
from the LSTM cell. It computes the gate value by considering the input (xt) and
hidden state (ht−1) and passing them through the sigmoid function. The updated cell
state value (ct) is then passed through the tanh function. The output of the sigmoid
and tanh functions become combined linearly to determine the hidden state (ht) that
will be passed to the next time step. The characteristic equation for the output gate
is:

ot = σ(wh,oht−1 + wi,oxt + bh,o + bi,o) (2.14)

• Cell output (ht): The cell output (ht) is the final output of the LSTM cell, which
represents the hidden state of the cell. It is computed as the element-wise multipli-
cation of the output gate (ot) and the hyperbolic tangent of the updated cell state (ct).
This combination ensures that the relevant information is carried forward to the next
time step. The characteristic equation for the cell output is:

ht = yt = ot ⊙ tanh(ct) (2.15)

2.1.5 Frequently Encountered Issues
In the realm of training and working with neural networks, several challenges are often
encountered, each of which has a profound impact on the model’s performance. These
challenges are inherent to neural networks and affect their performance in various tasks,
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including optimization. They influence the model’s ability to learn and generalize, impact-
ing optimization by posing challenges in updating model parameters effectively. Address-
ing these challenges often involves selecting suitable architectures, activation functions,
regularization methods, and optimization strategies to enhance overall performance.

One of these common issues is the vanishing gradient problem [Hoc98], where gradi-
ents become extremely small during back-propagation [RDGC13], hindering the model’s
training process. Overfitting [Yin19], on the other hand, arises when a model becomes
excessively complex and starts fitting the training data too closely, leading to poor general-
ization. Conversely, underfitting [Koe18] occurs when a model is too simplistic to capture
the underlying patterns in the data, resulting in suboptimal performance. Addressing these
challenges is paramount in the pursuit of effective and robust neural network solutions.

• Vanishing gradient problem : This problem can manifest during network training
when utilizing common gradient-based learning techniques. This issue results in
suboptimal network accuracy and, at its worst, an inability to complete the training
process altogether. The training process relies on backpropagation, which calculates
gradients by applying the chain rule to the partial derivatives of activation functions.
In each training iteration, weights in the network are adjusted based on the partial
derivative of the error function with respect to the current weight. However, when
dealing with functions like the sigmoid, which have derivatives within the range of 0
to 0.25, the repetitive multiplication of such small values leads to a rapid decline in
gradient magnitudes, particularly in the early layers. This hinders training progress
and effectively stalls weight updates, thereby impeding the network’s ability to en-
hance output accuracy.

• Overfitting: A network is deemed overfitted when it closely mimics the output of
the training data, a situation often stemming from an excessive number of adjustable
parameters or the adoption of an unnecessarily complex approach. Overfitting leads
to the network factoring in extraneous details from the training data, incorporat-
ing "noise," rather than restricting its considerations to the minimal information re-
quired for accurate results across all input data sets. While unnecessary complexity
diminishes the network’s overall performance, the incorporation of noise-based in-
formation from test data can substantially distort outcomes for general input data.
Determining whether a network exhibits signs of overfitting is a pertinent aspect of
its validation. Utilizing a range of values instead of exact inputs permits an exam-
ination of the extent to which noise can increase before it exerts an impact on the
output.

• Underfitting: A network is considered to be underfitted when it inadequately cap-
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tures the nuances of the training data, resulting in a lack of fidelity between the
network’s output and the actual data. This typically arises from a model that is too
simplistic or has too few adjustable parameters, causing it to oversimplify the un-
derlying patterns. Underfitting leads to the network failing to take into account rel-
evant information from the training data, thereby producing inaccurate results and
disregarding essential details necessary for accurate predictions. While a simpler
model may be computationally efficient, it struggles to generalize to new data, and
this deficiency in complexity impairs its performance. In summary, underfitting is
the opposite of overfitting, where the model’s simplicity compromises its ability to
accurately represent and predict the data.

2.1.6 Frameworks and Libraries
A deep learning and neural network library is a software framework or toolkit designed to
facilitate the development, training, and deployment of neural networks. These libraries
provide a wide range of tools, functions, and pre-implemented algorithms that streamline
the process of building and working with complex neural networks. In this section, we will
explore three of the most renowned open-source libraries that facilitate the development of
neural networks, making the process more convenient and efficient: PyTorch [KMKM21],
TensorFlow [PNW20], and Keras [KK17].

• Tensorflow: It is an open-source library for high-speed numerical computing that
was introduced in 2017 and has since grown in popularity for deep learning and
machine learning [Dev22]. Due to its adaptable architecture, which permits de-
ployment on many platforms like CPUs, GPUs, and TPUs, its use in industry has
increased. More developers are also using the platform thanks to its thorough doc-
umentation and effective debugging system.

• Keras: With its Python-based API, Keras focuses on providing simple, dependable
methods for creating and training neural networks. It is highly customizable. Us-
ability is increased by its user-friendly wrappers, while efficiency is ensured by as-
signing demanding computations to other specialized frameworks like TensorFlow,
Theano, or CNTK [KK17].

• PyTorch: A machine learning framework built upon the Torch library, PyTorch is
open-source and facilitates the smooth transition from research prototypes to de-
ployment [KMKM21]. PyTorch incorporates a significant innovation from Chainer
[TOHC15] known as reverse-mode automated differentiation. This mechanism op-
erates akin to a tape recorder, computing gradients by replaying previously executed

24



2.2 Verification

operations. As a result, PyTorch offers ease of debugging and is well-suited for var-
ious applications, particularly dynamic neural networks. Its adaptability to varying
iterations makes it popular for prototyping purposes.

2.2 Verification
In this section, we delve into various facets of verification, exploring fundamental concepts
and key techniques that underpin this essential discipline. Beginning with an examination
of foundational problems such as the Boolean Satisfiability Problem, we progress towards
more sophisticated approaches including Satisfiability Modulo Theories (SMT). By com-
prehensively exploring these topics, we aim to establish a fundamental understanding of
verification methodologies, laying the groundwork for the subsequent analysis and discus-
sion in this thesis.

Algorithm 1 The DPLL algorithm
Input: A set of clauses ϕ
Output: the integer fraction that represents t
Function DPLL(ϕ):

T ∗ ←− F;
while there is a unit clause ξ in ϕ do
ϕ←− unit − propagate(ξ, ϕ);

end
while a pure literal ξ that appears in ϕ do
ϕ←− pure − literal − assign(ξ, ϕ);

end
if ϕ is empty then

return true;
end
if ϕ encloses an empty clause then

return false;
end
ξ ←− select − literal(ϕ);
return DPLL(ϕ ∧ ξ) or DPLL(ϕ ∧ not(ξ);

2.2.1 Boolean Satisfiability Problem
The Boolean Satisfiability Problem (SAT) [AMM22] in computer science is the issue
of figuring out whether there is a particular Boolean interpretation that satisfies a given
Boolean formula. SAT attempts to determine whether a feasible set of assignments of
Boolean variables exists such that the formula evaluates to true, in which case the formula
is satisfiable, or whether there is no feasible set of assignments that satisfies the formula
such that it always evaluates to false and, as a result, the formula is unsatisfiable. One of
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the earliest problems that was demonstrated to be NP-complete was SAT, which is also es-
sential to the development of artificial intelligence, algorithms, and hardware. The Davis-
Putnam-Logemann-Loveland method (DPLL) [DLL62] is one remarkable algorithm that
serves as the foundation for numerous SAT solvers. The DPLL algorithm can be summa-
rized in the following pseudocode 1, where ϕ is the conjunctive normal form (CNF) of a
formula [DLL62]:

The Algorithm 1 takes a set of clauses, denoted as ϕ, as input and aims to determine
the truth value of the given formula, represented as a binary value (0 or 1). In other words,
the algorithm seeks to find a truth assignment to the variables in ϕ that makes the entire
formula true. A clause is a disjunction of literals, where a literal is either a propositional
variable or its negation. These clauses collectively form the propositional formula, and
the DPLL algorithm works to find a satisfying assignment of truth values to the variables
that make the entire formula true. In Algorithm 1, three key functions play crucial roles
in the process of solving the Boolean Satisfiability Problem. Unit-propagate(ξ, ϕ) deals
with unit clauses, which are clauses containing only one literal within the formula ϕ. In
this step, the algorithm propagates the truth value of the single literal ξ throughout the
formula ϕ. By assigning it a truth value consistent with the clause’s polarity, the function
simplifies ϕ accordingly. Pure-literal-assign(ξ, ϕ) are literals that consistently appear with
the same polarity throughout the formula ϕ. This function identifies and assigns truth
values to such pure literals. By doing so, it simplifies ϕ further, reducing redundancy
and facilitating the search for a satisfying assignment. Select-literal(ϕ) is responsible for
selecting the next literal to explore in the search tree. It determines which literal ξ to
choose next based on a heuristic strategy. This selection process is crucial for guiding the
search towards a satisfying assignment efficiently. These functions collectively contribute
to the effectiveness of the DPLL algorithm in solving SAT instances by systematically
simplifying the formula and guiding the search for a satisfying assignment. The algorithm
begins by initializing a temporary working set, T ∗, with the same clauses as the input
formula. It then iteratively performs several key steps. First, it checks for unit clauses and
employs unit propagation to simplify ϕ. Unit propagation determines the truth value of
the single literal in a unit clause and propagates it throughout ϕ, simplifying the formula
accordingly. Next, it identifies and assigns pure literals, further simplifying ϕ by reducing
redundancy. If the formula becomes empty during these steps, it is deemed satisfiable,
and the algorithm returns true. This occurs as the algorithm removes satisfied clauses and
eliminates redundant literals. Conversely, if the algorithm encounters an empty clause
(indicating a contradiction), it returns false. Otherwise, it selects a literal ξ and recursively
explores two branches of the search tree. By employing a divide-and-conquer approach,
the DPLL algorithm efficiently explores possible assignments and ultimately determines
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the satisfiability of the input formula. It plays a crucial role in propositional logic and
Boolean satisfiability, serving as a valuable tool in various areas of computer science and
artificial intelligence.

2.2.2 Satisfiability Modulo Theories
A decision problem known as the Satisfiability Modulo Theories (SMT) [BT18] problem
asks for an algorithmic determination of the satisfiability of a Boolean combination of
quantifier-free claims over a theory or combination of theories in a form that is mostly
CNF. Equivalence reasoning over uninterpreted function symbols, linear or polynomial
arithmetic, fixed-size bit-vectors, arrays, and other practical first-order theories, as well as
combinations thereof, are common examples of such theories [DMB08]. In most practi-
cal solvers for SMT problems, an underlying SAT solver determines the satisfiability of a
propositional logic formula obtained by replacing the theory atoms by propositions, while
a coupled theory solver determines the satisfiability of conjunctions of theory atoms from
the particular first-order theory T embedded into the particular SMT fragment [SKB13].
Propositional logic’s connectives are used in the language of SMT problems, but compli-
cated expressions containing constants, functions, and predicate symbols are used in place
of propositional variables. These include the signature

∑
, functions, and predicates which

define the vocabulary and fundamental building blocks of the logical language.

• Signature Σ: The signature defines the set of symbols used in the logical language,
including function symbols, predicate symbols, and constants. It essentially charac-
terizes the vocabulary of the logical theories involved.

• Functions and predicates: Functions and predicates are fundamental building blocks
of the logical language. Functions represent operations that take input values and
produce output values, while predicates express relations between values. These
symbols play a central role in expressing constraints and relationships within the
theories.

• Propositional logic connectives: The language of SMT problems utilizes the con-
nectives of propositional logic, such as AND, OR, NOT, implying the combination of
simpler formulas to form more complex ones.

Definition 1. (Formula ) For a given signature
∑

and theory T over this signature, a∑
formula φ is an expression formed using symbols and operations from the signature∑
, adhering to the syntax rules defined by the formal language of T . A formula φ is

satisfiable if there exists an assignment ξ to its free variables that render it true. It is called
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unsatisfiable if no such satisfying assignment exists. Let D be the domain over which the
variables in φ are defined. The assignment ξ provides values to the free variables in φ
from D.

For example, considering
∑
= {0, 1, . . . ,+,≥,≤, . . .} and D = Z, the formula 3x+y ≥ 8

under the model {x → 2, y → 3} is satisfiable, as there exists an assignment ξ to its free
variables (x and y) that renders it true. On the other hand, the formula 2x+3y ≥ 0∧ (−1 ≥
y) ∧ (−1 ≥ x) is unsatisfiable, as no such satisfying assignment exists.

According to Section 2.1, since neural networks have activation functions, their SMT-
based verification requires SMT-solvers to incorporate theory solvers that can handle non-
linear and transcendental functions. iSAT [FHT+07, SKB13] and dReal [GAC12] are two
solvers that can handle these types of functions.

2.2.3 iSAT
The iSAT [FHT+07, SKB13] algorithm combines SAT-solving techniques with Interval-
based Arithmetic Constraint Solving (ICP), enabling it to reason about non-linear arith-
metic constraints. iSAT (up to its second release iSAT2) does not include a theory solver
to which the SAT-solver delegated the decisions over theory predicates, in contrast to the
techniques for SMT solution that were previously discussed. Instead, to achieve a tight
integration of the two, iSAT takes advantage of similarities between interval-based arith-
metic constraint propagation and DPLL-style SAT-solving approaches. As a result, the
constraint propagation within theory atoms can be directly controlled by the DPLL-style
solver. ICP is an incomplete decision procedure that effectively reduces the domain of a
set of variables, covering transcendental functions, etc. It is one of the subtopics in the
field of constraint programming.

The ICP step for the primitive constraint y = ex is depicted in Figure 2.8. Assume that
the current intervals are x ∈ [−5, 2] and y ∈ [1.0, 2.7]. The current interval of variable x
is taken as input and computes using interval arithmetic that variable y is in [0.0, 7.38].
This indicates that ICP was successful in obtaining a more robust lower bound for the y-
interval. As the maximum value of y is currently 7.38 we derive e = 2.7 as a new stronger
upper bound of the interval of x.

There are three iSAT algorithm implementations. HySAT [Her11], the original im-
plementation, is no longer supported. The second implementation, now known as iSAT,
is currently being developed on. To more clearly distinguish between the iSAT algorithm
and the second implementation of iSAT, in the following, we refer to this version as iSAT2.
The most recent iSAT version is named iSAT3 [isa10] since it is the third implementation
of the iSAT algorithm. In contrast to HySAT and iSAT2, which both act on simple bounds
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Figure 2.8: Interval constraint propagation (ICP) performed on constraint ex

directly, iSAT3 reverts to a little more lazy approach and explicitly maps each simple con-
straint to a literal once again.

The iSAT command-line tool offers two distinct modes of operation: Firstly, it serves as
a satisfiability checker for individual formulas. Secondly, it functions as a tool for tracing
the behavior of a hybrid system through bounded model checking (BMC).

• Single formula mode: In the single formula mode, the input file comprises two main
sections: The initial section, marked by the keyword DECL, includes declarations
for all variables present in the formula under consideration. The subsequent section,
initiated by the keyword EXPR, encompasses the formula itself, typically consisting
of a single arithmetic constraint.

• Bounded model checking mode

– DECL: Variables used in the model should be declared, representing the state
of the system or any relevant quantities to be tracked. Symbolic constants,
which are values remaining constant throughout the model’s execution, can
also be defined.

– INIT: This part specifies the initial conditions or states of the system. It sets
the starting values for all variables declared in the DECLARATION section,
representing the system’s state at the beginning of the verification.

– TRANS: In this part, the evolution of the system over time is defined, describ-
ing the relationship between the current state of the system and its next state.
Variables may appear in primed (x′) or unprimed (x) form, where primed vari-
ables represent their values in the subsequent time step, after the transition.
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DECL 

    boole jump;                -- true iff ball bounces 

    int [0, 15] n;             -- bounce counter 

    float [0.0, 10000] t;      -- global time 

    float [-100.0, 100.0] xv;  -- vertical position of the ball 

    float [-100.0, 100.0] yv;  -- vertical velocity of the ball 

    float [-100.0, 100.0] xh;  -- horizontal position of the ball 

    float [-100.0, 100.0] yh;  -- horizontal velocity of the ball 

 

    define dt = 0.2;           -- discrete time adances in steps of size dt 

    define g  = 9.8;           -- gravitational acceleration on earth 

    define lv = 0.3;           -- loss of speed in vertical direction 

    define lh = 0.1;           -- loss of speed in horizontal direction 

    define xv_limit = 15.0;    -- upper bound of the initial hight 

    define vh_limit = 5.0;     -- upper bound of the initial horizontal speed 

    define xh_hole  = 40.0;    -- position of the hole 

 

INIT 

    -- Conditions at the moment when ball is dropped. 

    xv <= xv_limit; 

    yv = 0.0; 

 

    xh = 0.0; 

    yh <= vh_limit; 

 

    n = 0; 

    t = 0.0; 

 

TRANS 

    -- A jump occurs if the heigth of the ball is zero and the velocity 

    -- is directed towards the ground. 

    jump <-> (xv <= 0.0 and yv < 0.0); 

 

 

    -- Continuous part of the dynamics. 

    !jump -> 

        (xv' = xv + dt * yv  - 0.5 * g * dt^2 and 

         yv' = yv - dt * g and 

         xh' = xh + dt * yh and 

         yh' = yh and 

         n' = n and 

         t' = t + dt); 

 

    -- Discrete part of the dynamics. 

    jump -> 

        (xv' = 0.0 and 

         yv' = -(1.0 - lv) * yv and 

         xh' = xh and 

         yh' = (1.0 - lh) * yh and 

         n' = n + 1 and 

         t' = t); 

 

TARGET 

    -- The ball shall hit the hole on ground level. 

    xh = xh_hole and xv = 0.0; 

Figure 2.9: iSAT code of a bouncing ball [FHT+07, SKB13]
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Table 2.1: Arithmetic operators available in iSAT. Operators marked with an *
are only available in iSAT3 [isa10]

Operator Args Meaning
+ infix 1 or 2 unary ’plus’ and addition
- infix 1 or 2 unary ’minus’ and subtraction
* infix 2 multiplication

abs prefix 2 absolute value
min prefix 2 minimum
max prefix 2 maximum
ite* prefix 3 If-then-else
exp prefix 1 exponential function regarding base e

exp2* prefix 1 exponential function regarding base 2
exp10* prefix 1 exponential function regarding base 10

log prefix 1 logarithmic function regarding base e
log2* prefix 1 logarithmic function regarding base 2
log10* prefix 1 logarithmic function regarding base 10

sin prefix 1 sine (unit: radian)
cos prefix 1 cosine (unit: radian)
pow prefix 2 (2nd argument) has to be an integer, n ≥ 0

^ infix 2 (2nd argument) has to be an integer, n ≥ 0
nrt infix 2 nth root, (2nd argument) has to be an integer, n ≥ 1

– TARGET: This section specifies the property or condition desired to be ver-
ified about the system, defining the state(s) aimed to be reached or avoided
during the verification.

Figure 2.9 illustrates an example of an iSAT code translating the motion of a bouncing
ball. The ball is initially dropped from a certain height and given an initial velocity in
the horizontal direction. As the ball descends, it experiences acceleration due to gravity
in the vertical direction. When the ball hits the ground, this event is treated as a discrete
transition (’jump’), during which the ball loses a fraction of its energy. The objective of
the solver is to determine the initial height and velocity required for the ball to hit a hole
located at a specified distance from the starting point. To avoid trivial solutions where the
ball does not bounce at all, upper bounds are set for the initial height and velocity.

iSAT Natively Supports Non-Linear Arithmetic

iSAT is specifically designed for solving Boolean combinations of linear and non-linear
(not limited to polynomial, but in contrast to most of its competitors also including tran-
scendental functions) constraint formulas. It extends the classical conflict-driven clause
learning (CDCL) [Sol21] framework by interval constraint propagation. ICP enables
iSAT to reason about the linear and non-linear constraints with the help of interval arith-
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Table 2.2: Recently released activation functions

Activation Function Formula
swish x

1+e−x

soft plus ln(1 + ex)

ELU
α(ex − 1) x ≤ 0

x x > 0

SELU
λα(ex − 1) x ≤ 0

x x > 0

metic.
Therefore, we propose iSAT as a suitable tool to verify neural networks containing

activation functions with a more complex arithmetic base than just piecewise linear, such
as sigmoid or tanh activation functions, which are part of complex neural networks. The
mathematical operators in iSAT are shown in Table 2.1, allowing us to encode nonlinear
activation functions that comprise transcendental arithmetic. For instance, exponential
function terms ex form the basis of activation functions like sigmoid, tanh, and recent
variants like swish [RZL17], ELU, SELU [RAS20] as shown in Table 2.2 and Figure 2.10.

Regarding scalability, iSAT has routinely solved arithmetic problems involving tran-
scendental functions as well as polynomials of degrees in the hundreds, and problem sizes
of hundreds of thousands of variables, leading us to expect it to scale well to neural net-
works with comparable numbers of neurons.

iSAT enhances the performance of arithmetic constraint rea-
soning by use of verified floating-point arithmetic
When working with SMT formulas that involve real-valued variables, an important con-
sideration is how real numbers are represented. To avoid round-off errors and ensure
soundness, most SMT solvers use precise arithmetic, which is different from approximate
floating-point arithmetic. However, precise computation can significantly slow down the
computational speed due to the need for extremely high precision, which tends to increase
over the course of computation. Moreover, when dealing with transcendental functions,
exact arithmetic is not available or feasible on digital computers. To reason about real num-
bers, iSAT has adopted a different approach since its early versions. It employs verified
floating-point arithmetic, following the principles of ICP based on safe, i.e. downward for
lower interval bounds and upward for upper bounds, rounding. This technique provides
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Figure 2.10: Activation function showcase: Softplus, ELU, SELU, and Swish.
Dive into the diverse curves shaping neural network behavior.

a balance between accuracy and efficiency, ensuring reliable results when handling real
numbers in SMT formulas.

2.2.4 dReal
In Chapter 5, the study will involve a comprehensive comparison between our proposed
approach in iSAT and the dReal solver which is an SMT-Solver-based tool capable of han-
dling the non-linearity of the activation functions. Like iSAT, it concentrates on solving
existential first-order logic formulas over real numbers [GAC12] and follows a more tradi-
tional lazy approach to SMT and blends DPLL-style SAT solving methods with interval-
based arithmetic constraint propagation. In contrast to iSAT, the dReal chose to promote
the SMT-LIB initiative rather than offering its own input language. In order to develop
the field of SMT systems, the SMT-LIB initiative offers a standardized format and a li-
brary of benchmarks. This allows SMT-solvers that support the SMT-LIB format to be
benchmarked against other SMT-LIB compatible solvers.

Figure 2.11 and Table 2.3 illustrate the available commands and a snippet of dReal
code within the SMT-LIB 2.0 format. This format differs from iSAT in that it does not
offer differentiated sections in input files referring to the elements of symbolic transition
systems, which also implies that dReal does not natively support bounded model-checking.
Instead, it allows variables and expressions to be defined anywhere in the file, as long as
they are defined before they are used. A valid SMT-LIB 2.0 file contains a series of com-
mands that can either interact with the solver (such as modifying parameters) or describe
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Table 2.3: commands available in the SMT-LIB 2.0 format [BST+10]

( command ) : : = ( s e t − l o g i c ( symbol ) )
| ( s e t − o p t i o n ( o p t i o n ) )
| ( s e t − i n f o ( a t t r i b u t e ) )
| ( d e c l a r e − s o r t ( symbol ) ( numera l ) )
| ( d e f i n e − s o r t ( symbol ) ( ( symbol ) ∗ ) ( s o r t ) )
| ( d e c l a r e − fun ( symbol ) ( ( s o r t ) ∗ ) ( s o r t ) )
| ( d e f i n e − fun ( symbol ) ( ( s o r t e d _ v a r ) ∗ ) ( s o r t ) ( t e rm ) )
| ( push ( numera l ) )
| ( pop ( numera l ) )
| ( a s s e r t ( t e rm ) )
| ( check − s a t )
| ( ge t − a s s e r t i o n s )
| ( ge t − p r oo f )
| ( ge t − unsa t − co r e )
| ( ge t − va l u e ( ( te rm )+ ) )
| ( ge t − a s s i gnmen t )
| ( ge t − o p t i o n ( keyword ) )
| ( ge t − i n f o ( i n f o _ f l a g ) )
| ( e x i t )

Figure 2.11: A snippet of dReal represented in the SMT-LIB 2.0 format
[GAC12].
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the problem. The command syntax in SMT-LIB 2.0 is akin to LISP, with each command
enclosed in parentheses and written in prefix notation. When it comes to verifying neural
networks, the initial essential command is "set-logic" which this command in SMT-LIB
2.0 is used to specify the logic for addressing the problem. Commonly used logics include:

• QF_LIA: Quantifier-Free Linear Integer Arithmetic

• QF_LRA: Quantifier-Free Linear Real Arithmetic

• QF_UFLIA: Quantifier-Free Uninterpreted Functions with Linear Integer Arithmetic

• QF_UFLRA: Quantifier-Free Uninterpreted Functions with Linear Real Arithmetic

• BV: Bit-Vectors

• AUFLIA: Arrays, Uninterpreted Functions, and Linear Integer Arithmetic

Depending on the problem’s nature and verification task requirements, the logic that
best represents the system’s constraints and properties would be chosen.
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Chapter 3

Rationale for Verifying Neural Networks

In this chapter, we will delve into the task of verifying neural networks and uncover the
reasons behind their necessity. We will examine why ensuring the accuracy and reliability
of these networks is essential in today’s computing landscape. Additionally, in the fol-
lowing sections, we will explore the various aspects and objectives that neural network
verification aims to address. In 1949, Alan Turing wrote a paper titled "Checking a Large
Routine" [Tur89] which looked ahead in addressing a key question: How do we confirm
that our programs do what they are meant to do? In the paper, he went on to provide
correctness proof for a program implementing the factorial function. In Turing’s proof
for the correctness of his factorial program, he addressed a concern about potential errors
in programming computers for mathematical operations. His proof demonstrated that his
factorial implementation aligns with the mathematical definition, highlighting the impor-
tance of functional correctness. This concept ensures that a program faithfully represents a
specific mathematical function, a critical aspect given the potentially severe consequences
of errors in applications like cryptographic primitives or aircraft controllers.

3.1 Why is Verification of Neural Network
Important?
The progress in neural networks and deep learning has revolutionized our perception of
software, its capabilities, and the methods employed in its construction. Contemporary
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software is evolving into a hybrid landscape, incorporating both conventional, manually
crafted code and dynamically trained neural networks that often engage in continuous
learning. However, the inherent fragility of deep neural networks and their potential for
yielding unforeseen outcomes underscore the importance of cautious integration, espe-
cially in critical applications like autonomous vehicles.

Formal methods, essential mathematical techniques utilized in the specification, de-
velopment, and validation of software and hardware systems, have been widely adopted in
various fields (for an early survey, see [CW96]). These methods rely on mathematical rep-
resentations, often termed formal specification languages, to precisely articulate system
properties. Formal methods offer valuable benefits across multiple development phases
for a diverse array of systems. They facilitate thorough analysis and verification, tackling
crucial elements like safety, security, reliability, and correctness with precision. As time
progresses, formal methods have garnered increasing recognition and are now being inte-
grated into industry standards. This signifies a growing acknowledgment and utilization
of formal methods as an indispensable asset in augmenting the development and assurance
of complex systems. Through the utilization of formal methods, developers and engineers
gain the capacity to engage in mathematical reasoning concerning system behavior, detect
potential flaws or errors at the outset of the design process, and establish formal assurances
regarding system correctness. Consequently, this results in the creation of software and
hardware systems that are more resilient and trustworthy. In this context, this thesis aims
to leverage the advantages of formal methods over testing specifically on neural networks.

3.2 Different Types of Formal Methods
In this section, we offer a brief overview of the primary types of formal methods doc-
umented in the literature [Kri24]. These formal methods encompass a diverse array of
mathematical and logical techniques employed in various stages of system development
and verification. By understanding and leveraging these methods, developers, and engi-
neers can enhance the rigor and reliability of their software and hardware systems.

• Abstract interpretation: Abstract interpretation is a method that strives to vali-
date a system at a higher level of abstraction, disregarding insignificant intricacies.
This technique formalizes the concept that an over-approximation of the system’s
behavior can offer valuable insights into its properties. By abstracting away non-
essential details, abstract interpretation enables the analysis of complex systems
more efficiently, aiding in the identification of key properties and potential issues.
Symbolic execution over an abstract domain lies at the core of this approach, with
summaries at join points of the control flow facilitated by the complete-lattice struc-
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ture of the abstract domain. This approach is particularly useful in scenarios where
precise analysis of every system aspect is impractical or unnecessary, allowing for a
more manageable and insightful examination of system behavior and characteristics
[Cou01].

• Model checking: Model checking involves the verification of specifications on tex-
tual models that represent different types of systems. This technique employs ex-
haustive exploration of the model to verify properties and detect potential errors
or violations. By systematically examining all possible states of the model, model
checking ensures that the system meets specified requirements and adheres to de-
sired properties. This approach provides a rigorous and automated method for ver-
ifying system correctness and identifying flaws early in the development process.
Additionally, model checking is particularly effective for systems with complex be-
haviors or intricate interactions between components, making it an invaluable tool
for ensuring the reliability and safety of software and hardware systems [Cla97].

• Semantic static analysis: Semantic static analysis refers to a thorough and auto-
mated examination of a program’s source code without executing it. By scrutinizing
the structure and semantics of the code, static program analyzers can pinpoint poten-
tial errors or vulnerabilities. This process enables developers to detect issues early
in the development cycle, reducing the likelihood of encountering critical issues dur-
ing runtime. Additionally, semantic static analysis aids in improving code quality
and reliability by enforcing coding standards and best practices. By leveraging se-
mantic static analysis tools, developers can enhance the robustness and security of
their software applications while streamlining the development process [GS15].

• Proof Assistants: Proof assistants are interactive tools utilized for constructing and
verifying formal proofs of theorems. Employed in both mathematics and computer
science domains, these tools play a crucial role in ensuring the correctness of formal
specifications and reasoning processes. By providing a platform for users to interac-
tively develop and validate proofs, proof assistants enhance the reliability and rigor
of mathematical and computational reasoning. These tools enable users to formally
verify the correctness of complex algorithms, system designs, and mathematical
conjectures, thereby bolstering confidence in the validity of the outcomes. Addi-
tionally, proof assistants facilitate collaboration and peer review by allowing users
to share and scrutinize formal proofs, fostering a culture of transparency and rigor
in academic and research communities [Geu09].

• Deductive verification: Deductive verification encompasses the process of validat-
ing a program against a formal specification. This method involves providing both
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the program and a precisely defined specification, which serves as a set of desired
properties or behaviors that the program should exhibit. Through techniques such
as weakest preconditions and symbolic execution, the specification is systematically
propagated through the program’s source code. This propagation process aims to
ensure that the program aligns with the specified requirements and adheres to the
desired properties. Deductive verification provides a rigorous approach to software
validation, enabling developers to formally establish the correctness and reliability
of their programs through logical reasoning and systematic analysis. By leverag-
ing deductive verification techniques, developers can mitigate the risk of errors and
ensure the robustness of their software systems [PRZ01].

It is important to note that the categories described are not entirely disjoint. Proof
assistants implement and support deductive verification, offering some level of au-
tomation to the process. Symbolic model-checkers also pursue a specialized form
of deductive verification, as does abstract interpretation.

• Design by refinement: Design by refinement is a methodological approach that
entails iteratively refining a sequence of textual presentations of computational pro-
cesses and their specifications by automata or temporal logics, beginning with an
abstract model and gradually evolving toward a concrete implementation. This it-
erative refinement process involves successive stages of development, where each
refinement step adds more detail and specificity to the design. The goal of design
by refinement is to ensure that the final implementation meets the desired proper-
ties specified at the outset. By systematically refining the design in this manner,
developers can incrementally transform abstract concepts into concrete solutions
while maintaining alignment with the original specifications. This approach fosters
a structured and systematic development process, enabling the creation of robust
and reliable systems through a series of well-defined refinement steps [BPSV03].

• Model-based testing: Model-based testing (MBT) is a dynamic methodology fo-
cused on deriving test scenarios directly from a system’s formal specification. These
scenarios are then executed to validate the system’s behavior against its formal re-
quirements, ensuring alignment with its intended functionality as outlined in the
specification. The advantages of MBT are manifold, including increased test cover-
age, heightened reliability of test cases, and improved traceability between require-
ments and tests [Kri10, Kri18].

However, it is crucial to recognize that, in contrast to the aforementioned benefits,
MBT is an inherently incomplete procedure. While it outperforms non-model-based
testing approaches, it falls short of guaranteeing absolute alignment between the sys-

40



3.3 Verification Conditions Applicable to Neural Networks

tem’s behavior and the specification due to incomplete probing inherent in testing
methodologies. While it does provide valuable evidence of alignment, it does not
offer rigorous and exhaustive proof, unlike proof-based processes that ensure com-
prehensive coverage. It is essential to acknowledge the partial coverage nature of
MBT and understand that proof-based methods excel in providing exhaustive cov-
erage.

3.3 Verification Conditions Applicable to Neu-
ral Networks
The field of neural network verification encompasses a wide range of conditions and tech-
niques aimed at ensuring correctness. This correctness manifests in two primary forms:
adherence to specifications and optimization robustness. Additionally, verification efforts
extend to ensuring the stability and safety of these intricate systems. Let us delve into
the various aspects and verification conditions applied to neural networks, breaking down
the key concepts for individual systems, pairs of neural networks, and their joint dynamic
behavior with the physical context.

3.3.1 Verification Conditions for Individual Systems
and Neural Networks
In the realm of neural network verification, ensuring the correctness and reliability of
individual systems requires meticulous attention to various verification conditions. These
conditions encompass a spectrum of aspects, each crucial for maintaining the integrity and
consistency of neural network behavior.

• Invariance properties and Circuit/State Invariants: Invariance properties spec-
ify that observable state variables remain within a defined set. Verifying satisfaction
of invariants is crucial for maintaining the integrity and consistency of neural net-
work behavior. This involves monitoring the evolution of state variables over time
and verifying that they adhere to specified constraints [JBK20a]. Circuit invariants
focus on the validation of input-output relations for feedforward networks, ensuring
that the network produces the expected outputs for given inputs. State invariants ad-
dress the dynamic behavior of recurrent networks, ensuring that the network’s state
trajectories remain within designated sets of states.

• Stabilization: Neural networks often operate in dynamic environments where in-
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puts and conditions may change over time and are subject to disturbances. Verifica-
tion of stabilization entails confirming that observables converge towards a specific
equilibrium state, potentially at a certain rate, ensuring the network’s or a network-
controlled system’s responsiveness and reliability under varying and partially un-
foreseeable conditions [Kor22].

• Temporal Logic Properties: Temporal logic properties are useful for capturing and
constraining the time-dependent behavior of recurrent neural networks or of neural
networks coupled to dynamic systems. Verifying temporal logic properties involves
ensuring that traces or time series generated by the network conform to specified
safety and liveness properties over time, guaranteeing the system’s temporal cor-
rectness and robustness [WYW+19].

• Hyperproperties: Hyperproperties extend traditional temporal properties to en-
compass ensembles of possible traces rather than individual traces. Verifying hy-
perproperties involves analyzing the collective behavior of neural networks and as-
sessing their adherence to higher-level properties that govern system-wide behavior
and interactions [AMTZ21].

3.3.2 Verification Conditions for Pairs of Neural Net-
works

Comparing the behavior of two neural networks enables us to ascertain their similarity or
dissimilarity, which is crucial for various applications such as ensemble learning, model
compression, and system integration. Verification conditions for pairs of neural networks
involve establishing equivalence or almost equivalence, where the goal is to determine
whether the behavior of one network matches that of another within a specified margin
of error [EKKT22]. Equivalence or almost equivalence verification serves as a means to
validate the implementation correctness of neural networks, aiding in identifying and rec-
tifying discrepancies, and ensuring the reliability and consistency of network interactions
within complex systems. "Implementation correctness" refers to verifying that the imple-
mentation of a neural network accurately reflects its intended behavior, ensuring that it
operates as expected and produces correct outputs for given inputs.
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3.3.3 Verification Conditions for Joint Dynamic Be-
havior of an NN and its Physical Context
Understanding the dynamic interaction between neural networks and their physical con-
text is paramount to ensuring the stability and reliability of integrated systems [LLL+20].
In scenarios where neural networks serve as controllers within feedback loops or interact
with dynamic physical environments, verifying their joint dynamic behavior becomes im-
perative. This verification process entails scrutinizing how neural networks influence and
respond to changes in the physical context, thereby ensuring the overall system operates
safely and effectively. It involves scrutinizing safety invariants and stabilization mecha-
nisms to guarantee the stability and reliability of the overall control system.
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Chapter 4

Verification of Neural Networks

Our research is centered around the automatic functional verification of nonlinear artificial
neural networks through the utilization of the SMT solver iSAT. Following a comprehen-
sive review of the theoretical components associated with the problem we are addressing,
we have organized our efforts into two primary categories: verification of feed-forward
and LSTM neural networks.

Our research journey commences with a succinct explanation of the data acquisition
process, where we obtain neural network information, namely the structure and parameters
of a trained network, using the ONNX format. We then delve into the intricacies of trans-
lating these data into iSAT expressions, with a particular focus on the activation functions.
Each step of the translation process for various activation functions is meticulously de-
tailed. Furthermore, we explore optimizations that can be applied during the conversion
of neural networks into iSAT expressions to enhance verification efficiency. One of the
most pivotal optimizations involves establishing precise bounds on all variables essential
for mapping the neural network functionality into iSAT. This not only reduces the search
space that iSAT needs to navigate but also eliminates extraneous expressions that do not
contribute to the accurate evaluation of the network’s output. In essence, our research aims
to aid the field of automatic functional verification for nonlinear ANNs by offering a com-
prehensive framework that enhances the reliability and efficiency of this critical process.
Through our systematic approach, we are advancing the capabilities of SMT solver iSAT
and contributing to the broader landscape of artificial intelligence research.
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Table 4.1: File format in different frameworks

Framework File Format File extension
TensorFlow Protobuf .pd

Keras H5 .h5
Caffe Caffe model .caffemodel

PySpark MLeap .zip
PyTorch Torch Script .pt

Scikit-learn Pickled Python .pkl
iOS Core ML Apple ML Model .mlmodel

4.1 Methodology
The proposed method consists of two steps: First, we develop a neural network as usual,
which involves training and testing the desired neural network with nonlinear activation
functions. We then automatically extract all the learned features and proceed to automated
functional verification. This requires exporting all the weights W and biases bi that have
been learned during the training process using optimization techniques like backpropaga-
tion.

4.2 Translating to iSAT
Converting neural networks into alternative formats suitable for formal verification presents
a formidable challenge. This difficulty arises from several factors, including the network’s
size, the diverse range of library types, and more. The presence of numerous distinct
frameworks for neural network definition, training, and the creation of other machine
learning applications, each with its unique approach to saving trained networks, adds to
the complexity.

Consequently, the development of a way that can handle the myriad variations across
such a wide spectrum of formats poses a substantial and intricate challenge. Several for-
mats are employed by different frameworks to store models. For instance, TensorFlow
[Dev22] and Keras [KK17] utilize formats like Protobuffers or HDF5. In contrast, Py-
Torch [KMKM21] serializes the data and stores it within compressed zip files.

We designed a system for the purpose of transforming neural networks, which can be
generated using virtually any framework, into representations that can be evaluated and
processed by iSAT. Additionally, our designed system must be able to easily undergo con-
tinuous maintenance and updates whenever a framework undergoes minor format changes
or when a new framework is introduced. To address this, an intermediate step is intro-
duced, wherein the different formats are initially converted into a standardized universal
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Table 4.2: Properties of the graph object in ONNX [onn]

Name Type Description
name string The name of the model graph
node Node[] A list of nodes, forming a partially ordered computa-

tion graph based on input/output data dependencies.
initializer Tensor[] A list of named tensor values. When an initializer has

the same name as a graph input, it specifies a default
value for that input. When an initializer has a name
different from all graph inputs, it specifies a constant
value. The order of the list is unspecified.

doc-string string Human-readable documentation for this model. Mark-
down is allowed.

input ValueInfo[] The input parameters of the graph, possibly initialized
by a default value found in ‘initializer.’

output ValueInfo The output parameters of the graph. Once all output
parameters have been written to by a graph execution,
the execution is complete.

value-info ValueInfo[] used to store the type and shape information of values
that are not inputs or outputs.

format. This approach allows our system to exclusively support this universal format, elim-
inating the need to recognize and accommodate the specific framework used for training
the network that needs to be converted [Fib22].

Open neural network exchange (ONNX) [onn] is a project with the goal of enhancing
the interoperability of neural network frameworks. To accomplish this interoperability,
ONNX introduces an open format that specifies the structures for storing machine learn-
ing models, along with techniques for major frameworks to store and retrieve models in
the ONNX format. Because the ONNX format offers both an open structure and a com-
prehensive toolset that encompasses all crucial interactions required by major network
frameworks, it represents an ideal choice as a universal intermediary format that can serve
as standardized input for our designed system.

For frameworks that are not directly supported by the ONNX project, ONNX provides
libraries for various programming languages and corresponding documentation, enabling
developers of such frameworks or tools to independently integrate support for the ONNX
format into their systems. Although our designed system is not a machine learning frame-
work itself, we can leverage the ONNX library to load models in the ONNX format and
extract the essential data.

The ModelProto structure serves as the top-level object in the ONNX format. It holds
versioning details and includes the GraphProto container. Table 4.2 shows the structure
of the GraphProto datatype. This container, which is a specific ONNX data type, charac-
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terizes the semantics of the trained networks and encompasses all the data required by our
designed system. Within the node parameter, there exists a list of nodes that collectively
form a structured acyclic graph. Each entry in this list represents a node identified by its
optype, which specifies the ONNX operator employed for the node’s computation. Further-
more, each node contains references to the data structures used as inputs by the operator,
as well as references utilized by other nodes to access the output of the current node. This
graph of ONNX operators defines the structure of the expression.

All static values, i.e. parameters referenced by the operators are stored in the initializer
list. Each initializer stores information such as the name used as a reference for the data,
the dimensions of the data, the raw data containing binary information for all values, and
the data type necessary for reconstructing the values from the raw data. In conjunction with
the initializer data, the operator graph provides all the essential information required. Ad-
ditionally, the input and output parameters define the input and output dimensions of the
model. When a model is stored in the ONNX format, it undergoes a transformation into
a collection of standardized ONNX operators (opset) that constitute the ONNX graph. In
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Figure 4.1: ONNX Operator graph of a neural network

equations (4.1) to (4.5) , where defined inputs i1 and i2 are utilized, a mathematical abstrac-
tion is presented, illustrating operations that involve matrix multiplication (MatMul) and
element-wise addition (Add). This formula elucidates the manipulation of input variables,
weights, and biases to generate the resulting output tensors.

input : 0 =
[
i1 i2

]
(4.1)

MatMul/1 =
w1,1 w1,2 w1,3 w1,4

w2,1 w2,2 w2,3 w2,4

 (4.2)

Add/1 =
[
b1 b2 b3 b4

]
(4.3)

MatMul(input : 0,MatMul/1) =[
i1w1,1 + i2w2,1 i1w1,2 + i2w2,2 i1w1,3 + w2,3 i1w1,4 + i2w2,4

] (4.4)
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Add(MatMul(input : 0,MatMul/1),Add/1) =[
i1w1,1 + i2w2,1 + b1 i1w1,2 + i2w2,2 + b2 i1w1,3 + w2,3 + b3 i1w1,4 + i2w2,4 + b4

] (4.5)

Each operator includes all the parameters needed for its function and references to the
operator’s inputs. These references can either point to the output of another operator or
a static data matrix (which is also provided by the ONNX model file). When examining
a simple three-layer network graph (refer to Figure 4.1), we can make two observations.
Firstly, ONNX operators apply their functions to matrices where the first dimension cor-
responds to the number of neurons in a layer. Consequently, they represent layers of the
network rather than individual neurons. Secondly, a layer is not defined by a single opera-
tor but is instead composed of a multiplication operation (MatMul), an addition operation
(Add), and optionally an operator for the activation function.

By combining the MatMul, Add, and the optional activation function operator, our
designed system possesses all the essential information needed to reconstruct the formula
for individual neurons. Through the use of the ONNX operator graph of a network, the
system reconstructs both the overall layer structure and the individual neurons. This re-
construction of each neuron introduces the possibility of optimizing the neural network
graph.

4.2.1 Encoding a Feed-Forward Neural Network into
iSAT

Building upon the definition provided in Chapter 2 (see definition 2.1.2), we character-
ize the artificial neural network as follows: we assume that our network is a classifier
ANN with k disjoint classes. Let m be the number of layers in the network, denoted
as L = L0, L1, . . . , Lm. The input vectors corresponding to x network input values are
represented as X = [x1, x2, x3, . . . , xn−1 , xn], where xi ∈ [Lx,Ux] ⊆ R, and Li repre-
sents the lower limit, and Ui signifies the upper limit of the input value range. Sim-
ilarly, W is a weight vector represented as W = [w1,1,w1,2,w1,3, . . . ,wm,n−1 ,wm,n], and
B = [b1,1, b1,2, b1,3, . . . , bm,n−1 , bm,n], where w and b represent the weights and biases, re-
spectively. We consider To and Tz as the dimensions of the input and output, respectively.
The network output Y is represented as y ∈[Ly,Uy] ⊆ R and is generally obtained by ap-
plying the activation function to the result of multiplying the weights of each layer by the
inputs and adding the bias.
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4.2.2 Declaration of Input Data into iSAT
Figure 4.2 and 4.3 display the declaration of the input neurons and the first layer within the
translated network in iSAT. All variables occurring in the formula to be solved need to be
declared [MF21]. The types supported by iSAT are float (computational reals according
to the IEEE standard), int (bounded integers), real (subranges of the mathematical reals),
and Boolean. Translation rules transforming the network node by node follow: the input
values of the neural network are in a specified range depending on their type. Let xi, j be
the j-th node in the i-th layer. An iSAT variable reflecting its value can be defined by the
following declaration:

xi, j ∈ {[lx, ux] | lx, ux ⊆ R} (4.6)

Figure 4.2: Declaration of the Input neurons of the translated network, show-
casing 7 neurons in iSAT

The nodes in subsequent layers are obtained by applying the activation function to the
result of multiplying the weights of each layer by the inputs and adding the bias. Ultimately,
all auxiliary variables contribute to the calculation, and the result is stored in the node xi, j

for the next calculation. Weight and bias values, unlike input and output values, need to
be defined as constants and do not change during the verification phase. They are known
before the verification process. The iSAT formula is recursively defined over the number
of layers and the activation functions, and it encodes the activation function itself.

Definition 2. As shown in equation 4.7, for simplicity, let Σn
j=1xi−1, jwi−1, j + bi denote the

node value before the activation function. Let xi, j be the value of the j-th node in the i-th
layer Li, and xi−1, j , wi, j , and bi, j be the input, weight, and bias from the i-th layer.

xi, j = Σn
j=1xi−1, jwi−1, j + bi (4.7)

In the subsequent section, we present iSAT code translations for several activation
functions, including ReLU, sigmoid, tanh, and swish. The corresponding iSAT code trans-
lations for each function are represented by Equations 4.10, 4.12, 4.14, and 4.32.
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Figure 4.3: Declaration of the first layer of the translated network, showcasing
7 neurons in iSAT

• ReLU activation function: For the maximum operation, an operator is available in
iSAT2, which can be used to convert this function.

fReLU(xi−1, j) = max(0, xi−1, j) (4.8)

Alternatively, in iSAT3, the maximum operation can be created using the iSAT op-
erator ite (if-then-else).

fReLU(xi−1, j) =

0 if xi−1, j < 0

xi−1, j if xi−1, j ≥ 0
(4.9)

fReLU(xi−1, j) = ite(xi−1, j < 0, 0, xi−1, j) (4.10)

• Sigmoid activation functions: Sigmoid employs division, addition, and exponen-
tial operations. iSAT provides operators for addition (+) and exponential (exp()), but
there is no specific operator for division. However, iSAT does not require explicit
value assignments (e.g., x = 1 + 2), as it calculates variable values from available
expressions. Hence, iSAT can directly deduce the value of x from the expression
x - 2 = 1, resulting in x = 3. To address the absence of a division operator, iSAT
accomplishes division by multiplying with the reciprocal.

xi, j,k = fsigmoid(xi−1, j) =
1

1 + e−xi−1, j
(4.11)

xi, j,k · (1 + exp(−xi−1, j)) = 1 (4.12)

• Tanh activation functions: By leveraging iSAT operators and cleverly handling
divisions as multiplications by their inverses, the given function can be transformed
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into an iSAT expression.

xi, j,k = ftanh(xi−1, j) =
exp(xi−1, j) − exp(−xi−1, j)
exp(xi−1, j) + exp(−xi−1, j)

(4.13)

xi, j,k · (exp(xi−1, j) + exp(−xi−1, j)) = exp(xi−1, j) − exp(−xi−1, j) (4.14)

However, the objective is to minimize computational complexity by encoding each
formula with as few expensive iSAT operators (such as exp) as possible. To achieve
this, we can cleverly factor out either ex or e−x, leading to the elimination of two exp
operators. Moreover, the formula can be further simplified by factoring out e2x + 1
or e−2x + 1 (Formula 4.26). This approach effectively reduces the number of costly
operations involved in the computation.

First approach of factoring out e−x from Tanh activation function

tanh(x) =
ex − e−x

ex + e−x (4.15)

=
e−x(e2x − 1)
e−x(e2x + 1)

(4.16)

=
e2x − 1
e2x + 1

(4.17)

=
e2x − 1 + 2 − 2

e2x + 1
=

(e2x + 1) − 2
e2x + 1

(4.18)

=
e2x + 1
e2x + 1

−
2

e2x + 1
(4.19)

= 1 −
2

e2x + 1
(4.20)

Second approach of factoring out e−x from Tanh activation function

tanh(x) =
ex − e−x

ex + e−x (4.21)

=
ex(1 − e−2x)
ex(1 + e−2x)

=
1 − e−2x

1 + e−2x (4.22)

= −1
−1(1 − e−2x)

1 + e−2x = −1
−1 + e−2x

1 + e−2x (4.23)

= −1
−1 + e−2x + 2 − 2

1 + e−2x = −1
(1 + e−2x) − 2

1 + e−2x (4.24)

= −1
(
1 + e−2x

1 + e−2x −
2

1 + e−2x

)
= −1

(
1 −

2
1 + e−2x

)
(4.25)

= −1 +
2

1 + e−2x (4.26)
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If the hyperbolic tangent is simplified by factoring out e−x, the resulting expres-
sion bears a strong resemblance to the sigmoid function. In fact, upon substituting
4.26 into 4.27, it becomes evident that the hyperbolic tangent is essentially a sig-
moid function that has been both shifted and rescaled, as indicated in equation 4.29
[Fib22].

tanh(x) =
−1 + 2
1 + e−2x (4.27)

sigmoid(2x) =
1

1 + e−2x (4.28)

⇒ tanh(x) = −1 + 2sigmoid(2x) (4.29)

Then in the encoding Tanh from the equation 4.29 to the iSAT we have:

xi, j,k = 1 + 2 fsigmoid(2xi−1, j) (4.30)

• Swish activation function:

xi, j,k = fswish(xi−1, j) =
xi−1, j

1 + e−xi−1, j
(4.31)

xi, j,k · (1 + exp(xi−1, j)) = xi−1, j (4.32)

4.2.3 Encoding LSTMs into iSAT
In order to obtain a recurrent neural network to be verified, we train a neural network
containing LSTM nodes [MFF23]. As usual, this training factually alternates between
training and testing phases until the network is empirically found to be well-behaved. We
then proceed to verification by first extracting all parametric features that have been ad-
justed, i.e., learned, during the training. This means we have to export all weights W and
biases B for every gate in the LSTM that have been determined during the training by the
optimization procedure of back-propagation. Assume a layer in the LSTM ν that receives
n inputs forming an input vector X = [x0, x1, x2, ..., xn] ranging over xm ∈ [Lx,Ux] ⊂ R,
where Lm and Um are the lower bound and upper bound, respectively, defining an interval
where input values in this range are acceptable.

These inputs can be the outputs from another neural network layer, such as a fully
connected layer, or inputs to the overall network.

The neural network layer then receives input sequences over time, where xm,p is the
m-th input at time-step p. Similarly, the layer features outputs xm,p with an output inter-
val ym,p ∈ [Ly,Uy] ⊆ R. As the LSTM is a stateful network, there are also states H =
[h0,0, h0,1, . . . , hn,t] where hm,p represents the hidden state for the m-th feature at time-
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step p. Similarly, the cell states across the features and time-steps are described by C =
[c0,0, c0,1, . . . , cn,t] where cm,p denotes the cell state for the m-th feature at time-step p cap-
turing the long-term memory of the LSTM for each feature and time-step. The outputs
of the LSTM are collected in the matrix O = [o0,0, o0,1, . . . , on,t] where om,p refers to the
output for the m-th at time-step p. This matrix represents the final output of the entire
LSTM, with each om,p being the processed result at each time-step for the corresponding
feature.

In our subsequent discussion of an LSTM network, all units are pooled into vectors: g
represents the vector of cell input, i represents the vector of input gates, f represents the
vector of forgetting gates, c represents the vector of memory cell states, o represents the
vector of output gates, and y represents the vector of cell outputs.

Unlike input and output values, weight and bias values are constants that are deter-
mined during the training phase and are known prior to the verification. W represents
the overall weight vector. For an LSTM cell, the weights Wi = [wi, f ,wi,i,wi,g,wi,o] and
Wh = [wh,g,wh,i,wh, f ,wh,o] correspond to the weights of the connections between inputs
and the cell input, input gate, forget gate, and output gate, respectively. The vectors
B = [bg, bi, b f , bo] represent the bias vectors of the cell inputs, input gates, forget gates,
and output gates, respectively.

The LSTM also generates the signals ct and ht, providing the state output to the next
time step and forming a special case of a general time-discrete recursive neural network.
We use the variable µ to count the time steps across the recursive network evaluation
process. We represent the dynamic behavior of the LSTM as a symbolic transition system,
using the primed-variable notation of iSAT to encode h′ and c′ as the next-state values of
the LSTM cell state ct+1 and hidden state ht+1, respectively. This is achieved by employing
the prime notation in Bounded Model Checking (BMC) with iSAT.

In iSAT, all variables present in the formula to be solved must be declared [isa10]. The
following equations (4.33)–(4.43) illustrate the translation of an LSTM node with µ = t to
iSAT. For instance, equation (4.35) is a direct translation of equation (2.10). The variable
µ is employed to keep track of the progression of time steps by BMC in iSAT throughout
the recursive network evaluation procedure (Figure 4.5).

As illustrated in Figure 4.4 and 4.6 for simplicity, we denote auxiliary variables as-
sociated with input gates, forget gates, cell states, output gates, and cell outputs as xi, j_it,
xi, j_ f t, xi, j_gt, xi, j_ct, and xi, j_ot, respectively. In the nomenclature of these variables,
xi, j indicates the LSTM node to which these auxiliary variables belong. In the iSAT code,
the input gate of an LSTM cell is translated into Equation 4.35. Equation 4.33 calculates
the input gate activation (xi, j_it) using the sigmoid activation function. This line of code
computes a weighted sum of the previous hidden state (h′), the current input (xt), and bias
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Figure 4.4: Structure of the LSTM with dashed circles representing spaces re-
served for auxiliary variables exclusively needed for iSAT encoding [YSHZ19].

terms (bh,i and bi,i), applying the sigmoid function to squash the result between 0 and 1.
Equation 4.34, 4.36, 4.38, 4.38, and 4.43 represent the translation of LSTM gates in the
iSAT code.

Translation of the input gate of an LSTM cell:

xi, j_it = σ(wh,ih′ + wi,ixt + bh,i + bi,i) (4.33)

xi, j_it ∗ (1 + exp10(wh,ih′ + wi,ixt + bh,i + bi,i)) = 1 (4.34)

Translation of the forget gate:

xi, j_ f t = wh, f h′ + wi, f xt + bh, f + bi, f (4.35)

xi, j_ f t ∗ (1 + exp10(wh, f h′ + wi, f xt + bh, f + bi, f )) = 1 (4.36)

Translation of the cell gate:

xi, j_gt = tanh(wh,gh′ + wi,gxt + bh,g + bi,g) (4.37)
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Figure 4.5: iSAT code snapshot: X_0_0 to X_0_4 indicate the input values in
every time steps which here µ = 3

xi, j_gt ∗
(
exp 10

(
wh,gh′ + wi,gxt + bh,g + bi,g

)
+ exp 10

(
−(wh,gh′ + wi,gxt + bh,g + bi,g)

))
= exp 10

(
wh,gh′ + wi,gxt + bh,g + bi,g

)
− exp 10

(
−(wh,gh′ + wi,gxt + bh,g + bi,g)

)
(4.38)

xi, j_ct = xi, j_it ⊙ xi, j_gt + xi, j_ f t ⊙ xi, j_ct′ (4.39)

Translation of the output gate:

xi, j_ot = σ(wh,oh′ + wi,oxt + bh,o + bi,o) (4.40)

xi, j_ot ∗ (1 + exp10(wh,oh′ + wi,oxt + bh,o + bi,o)) = 1 (4.41)

Translation of cell output:

xi, j_yt = xi, j_ot ⊙ tanh(xi, j_ct) (4.42)

xi, j_yt ∗ (exp10(xi, j_ct) + exp10(−(xi, j_ct))) = (xi, j_ct) − exp10(−(xi, j_ct))) ⊙ xi, j_ot
(4.43)
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Figure 4.6: iSAT code snapshot: first layer of translated LSTM neurons with
auxiliary variables. X_0_0 to X_0_9 indicate the input variables.

The ⊙ symbol between two variables indicates the element-wise multiplication of two
input vectors with k elements. The translation scheme described above offers a composi-
tional translation of an LSTM into a symbolic transition system, which results in a transi-
tion system of linear size with respect to the size of the LSTM.

4.3 Property Definition
To facilitate iSAT in verifying the properties of a particular network, it is not enough to
just provide the network itself in a format that iSAT can handle. Equally crucial is the
definition of the verification goal outlining how iSAT should evaluate the network. These
criteria need to be specified through property definitions. Property definitions encompass
two types of constraints. The first type constrains the range of inputs to the neural network,
representing the scenario against which the property’s compliance should be assessed. The
second type of constraint outlines the desired properties that the network’s output must
satisfy. These constraints describe a target condition for which iSAT checks whether it’s
achievable based on the given input scenario. Since iSAT relies on interval constraint
arithmetic, the information within the property can be used to optimize both variables and
expressions further. Although it’s possible to manually include the target conditions into
the iSAT expressions from the network translation a posteriori, given the large number of
expressions and the potential for additional optimizations, it’s preferable to convert neural
networks with a specific property in mind [Fib22].

The input: Constraints define the situation against which the property’s adherence
will be assessed. These input constraints can vary in scope, from restricting input values
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to a specific range to specifying an exact input value. In iSAT, an input is straightforwardly
portrayed as a floating-point variable with either an interval or a designated value. At a
minimum, the property definition must specify the input interval. The assignment can take
the form of ">", ">", "=", "<," or "<=" along with the corresponding assigned expression.
If the assignment matches the input interval of the property, the assignment specifications
in the property definition can be omitted. In this case, iSAT will automatically consider
the input interval as the assignment definition. However, the property is not restricted to a
single assignment; it should include as many assignments as necessary to accurately define
the input scenario.

vi ∈ Ninputs,⊙ ∈ {>=, >,=, <, <=}, vval ∈ R : vi ⊙ vval (4.44)

Output and Target: Similar to how our system automatically assigns names to the
network’s inputs, it also provides automatic generation for naming each output. This en-
hances usability by enabling the formulation of targets using these names instead of the
default "n_o<number >". By utilizing the required outputs as parameters in the constraint,
the target is then defined as one or a sequence of equations, from which a truth value is
derived.

vo ∈ Noutputs,⊙ ∈ {>=, >,=, <, <=}, vval ∈ R ∪ {Noutputs \ vo} (4.45)

4.4 Optimization
This section of the thesis embarks on an exploration of optimization techniques to en-
hance the capabilities of iSAT in the verification of neural networks. Over the course of
the following sections, we explore how these optimization methods play a pivotal role in
augmenting the performance and efficiency of iSAT, ultimately contributing to the ad-
vancement of the formal verification process.

4.4.1 Enhancing Boundaries
iSAT employs interval arithmetic for determining satisfiability, necessitating predefined
boundaries for each variable used in iSAT expressions. These boundaries serve to restrict
the search space that iSAT needs to assess. While the standard boundaries for the out-
put of activation functions are well-known and can be used during conversion, optimizing
boundaries further can significantly enhance iSAT’s performance. For instance, consider a
neuron with an input range of [-12, 5] using the ReLU activation function, which typically
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has a general range of [0,∞]. However, a more detailed examination of this function con-
cerning the input reveals that an evaluation with the optimized range of [0, 5] would suffice.
Hence, our designed system offers the capability to explore potential range optimizations
for each variable and provide these optimizations to iSAT in the form of refined range def-
initions for iSAT variables. This empowers iSAT to confine the satisfiability check to a
narrower search space, ultimately boosting its performance.

To enable our designed system to ascertain optimized ranges, it’s essential to establish
the ranges for both the transfer function and the activation function. The transfer function
operates by multiplying each input by its predefined weight and then adding the results to
the bias. The range encompassing all potential outcomes of the transfer function can be
derived by executing all operations of the transfer function using the input ranges rather
than their actual values [Fib22].

However, it is crucial to note that the choice of boundaries for evaluation depends on
the sign of the weights. Specifically, when determining the upper (lower) bound on the
output range, we consider the upper (lower) bounds of all inputs with positive weights.
Conversely, for inputs with negative weights, we take the lower (upper) bounds. This
distinction is essential, as the sign of the weight influences the direction of the impact on the
output range. Careful consideration of these factors ensures an accurate and meaningful
determination of optimized ranges for the designed system.

Determining the boundaries of the activation function is a more intricate task, as it can
assume various forms. As the formula is dissected into its constituent operators during this
process, its boundaries can also be examined. The formula’s monotonicity plays a pivotal
role in determining the extent of scrutiny required for its boundaries analysis.

For activation functions that exhibit monotonic behavior, it is satisfactory to evaluate
the function’s outcome at both the lower and upper boundaries of its input. This is because
the monotonicity property guarantees that the lower and upper boundaries consistently
correspond to the minimum and maximum values within this input range.

As an example, let’s consider the sigmoid activation function, defined in this function
has a range between 0 and 1, and it monotonically increases from 0 to 1 as the input x
increases from negative infinity to positive infinity.

Let us evaluate the sigmoid function as described in equation 2.6 for an input interval
of [11, 14.5]:

• For x = 11:
σ(11) =

1
1 + e−11 = 0.999983

• For x = 14.5:
σ(14.5) =

1
1 + e−14.5 = 0.99999969
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When evaluating the outcome of the sigmoid function at both the lower and upper
boundaries of its input interval, we observe that it approaches 1 in both cases. This aligns
with our understanding that the sigmoid function tends towards 1 as the input increases.

Furthermore, it is important to note the behavior of the function in extreme cases:

• Lower boundary: As x approaches negative infinity, e−x approaches infinity, and
thus the denominator 1 + e−x approaches infinity as well. Consequently, σ(x) ap-
proaches 0.

• Upper boundary: As x approaches positive infinity, e−x approaches 0, and thus the
denominator 1 + e−x approaches 1. Consequently, σ(x) approaches 1.

Therefore, by evaluating the sigmoid function at both the concrete input interval and
the boundaries, we can understand its behavior comprehensively and ensure that it behaves
as expected in various scenarios.

It is worth noting that the majority of common activation functions, such as the sig-
moid, tanh, and ReLU, exhibit monotonic behavior. These functions are widely used in
neural networks. In contrast, non-monotonic activation functions, including the Gaus-
sian Error Linear Unit (GELU), Swish, HardSwish, Rectified Exponential Unit (REU),
and Mish have been introduced to leverage different characteristics for improved learning
capabilities in certain scenarios [ZMW+21].

Let us consider ReLU as a concrete example of an activation function exhibiting mono-
tonic behavior. For ReLU activation as outlined in equation 2.8, it is straightforward to
observe that the ReLU function is monotonic because, for any two inputs x1 and x2 where
x1 < x2, the corresponding function values f (x1) and f (x2) also follow the inequality
f (x1) ≤ f (x2). Now, let us consider evaluating the ReLU function at both the lower and
upper boundaries of its input range:

• Lower boundary: x = −∞

f (−∞) = max(0,−∞) = 0

• Upper boundary: x = +∞

f (+∞) = max(0,+∞) = +∞

In this case, the monotonic behavior of the ReLU function ensures that the lower bound-
ary corresponds to the minimum value (0), and the upper boundary corresponds to the
maximum value (+∞) within the input range. This example illustrates the suitability of
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evaluating the function at the input boundaries due to the monotonicity property, providing
a clear understanding of the function’s behavior across its entire range.

In the case of non-monotonic activation functions, the initial boundary calculations
follow the same approach as for monotonic functions. However, for these non-monotonic
functions, it becomes necessary to identify the local maxima and minima during the func-
tion parsing process. The GELU activation function [HG16] is defined as:

GELU(x) = 0.5x
1 + tanh

√2
π

(
x + 0.044715x3

) (4.46)

The derivative of GELU with respect to x is given by equation 4.47:

GELU′(x) =
1
2
+

1
2

1 + tanh
√2
π

(
x + 0.044715x3

)
×

1 − tanh2

√2
π

(
x + 0.044715x3

) 0.5√2
π

(1 + 0.134145x2)


(4.47)

In a subsequent step, the optimized upper and lower boundaries are determined by se-
lecting the maximum and minimum values from the initial boundaries and all local max-
ima and minima found within the input interval. This procedure ensures that any extrema
exceeding or falling short of the initial boundaries are accurately incorporated into the de-
termined boundaries of the function for that specific input range. In scenarios where an
activation function is decomposed into multiple iSAT expressions, it becomes necessary
to establish the boundaries for each individual sub-function.

Concurrently, during the translation of activation functions into iSAT expressions (as
discussed in Section 4.2), not only are the iSAT expressions themselves generated, but
also the corresponding mathematical formula and its derivatives. These formulae and their
derivatives serve as essential components for function analysis. Specifically, identifying
local extrema involves identifying values of x where the first derivative f ′(x) equals zero,
as such points signify either minima, maxima, or saddle points in the original function
[Fib22].

f ′(x) = 0⇒ implies a critical point (4.48)

f ′(x) = 0 and f ′′(x) < 0⇒ indicate a local maximum (4.49)

f ′(x) = 0 and f ′′(x) > 0⇒ suggest a local minimum (4.50)

f ′(x) = 0 and f ′′(x) = 0⇒ signify a saddle point (4.51)

For a comprehensive analysis of the function f (x), the second derivative, f ′′(x), is uti-
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lized to ascertain whether any value of x that satisfies f ′(x) = 0 corresponds to a minimum,
maximum, or saddle point. However, when assessing the boundaries of the function, this
distinction becomes non-essential, and merely recognizing the presence of such points is
sufficient. Having information about all extrema and the capacity to compute the outcome
of an activation function’s formula, it becomes possible to define optimized boundaries
in relation to the input interval, as previously mentioned. The outcomes of the formula
for both the upper and lower input boundaries are calculated and saved in a temporary list,
which also encompasses the extrema within the input boundaries. Following this, the min-
imum and maximum values from this list are furnished to iSAT as optimized boundaries
for the given input scenario. For the initial layer, this process yields accurate boundaries
based on the input scenario. However, this level of accuracy cannot be guaranteed for sub-
sequent layers, where we in general obtain overapproximations of the actual value range
due to the well-known dependency problem of interval arithmetic [Krä06].

In the training process of neural networks, individual neurons emphasize specific input
features, the selection of which is often not understandable to humans. Consequently, it is
highly probable that one neuron may approach its upper boundary whenever certain others
gravitate toward the lower boundary. The boundary calculation, however, does not account
for these relationships between neurons in the previous layer. Instead, it uses the previ-
ous layer’s boundaries as the input intervals for the current layer’s boundary calculations.
Consequently, this approach to boundary generation is likely to produce overestimated
boundaries.

Figure 4.7 illustrates an example network in which the first-layer neurons are weighted
in opposing ways, ensuring that when one neuron has a positive output, the other has an
output of zero, and vice versa. While computing the range of the output neuron based on
the boundaries of each first-layer neuron suggests a range of [0,4], the actual range is [0,2]
due to the interdependence between the first-layer neurons.

Computing boundaries while taking into account the dependencies between neurons
would necessitate analyzing all potential input combinations for each neuron, including
those in previous layers leading to the target neuron. This computational process would be
highly resource-intensive and economically impractical, especially considering the marginal
benefits of testing narrower intervals. Although the suggested approach may not yield the
narrowest possible boundaries, it still identifies reasonably narrow intervals. Please note
that the correctness of the verification verdicts generated by iSAT does not depend on the
tightness of these value ranges, as long as they are overapproximating the true ranges.
Tightening the ranges only reduces iSAT’s search space and thereby enhances verification
performance.
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Figure 4.7: An illustrative depiction of the connections between neurons within
a layer [Fib22].

4.4.2 Managing the Numerical Error During Bound-
ary Calculation
Every computation involving real numbers in a computer relies on the approximation of
real values into floating-point numbers. In computer science, floating-point numbers are
a standardized data type [IEE19] that typically exists in five fundamental formats: binary
32-bit, 64-bit, and 128-bit, as well as decimal 64-bit and 128-bit formats. The IEEE-754-
defined formats are known as dyadic rationals, representing a subset of rational numbers
where the denominator is a power of two in equation 4.52.

float =
a
2b (4.52)

Numbers that cannot be represented accurately must be approximated to a representable
floating-point number. This approximation is a common practice for many rational num-
bers. By default, the approximation with the smallest numerical error is used to represent
the number, and this practice introduces rounding nearest. This error can be further mag-
nified in subsequent calculations. Any software in which the result of the calculation is
mission-critical must take this error into account. Therefore, the SMT-solver iSAT uses
interval arithmetic, which allows any number that cannot be exactly represented to be rep-
resented by the interval enclosed by the values of both rounding modes. Since both the
computation of neuron outputs in the actual execution of neuronal networks as well as the
generation of tight boundaries for iSAT variables their SMT encoding are subject to such
numerical error, all calculations are performed with interval arithmetic [Fib22].

Let F be the set of floating-point numbers. The expression z = ⊙([xl, xu]) represents
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the interval result of applying the operation ⊙ to the argument interval [xl, xu], accounting
for numerical errors due to floating-point representations.

• Monotonic and antitonic operators

For monotonic operators (e.g., addition, and multiplication in each of its arguments
individually), the operator preserves or inverts the ordering of the interval depend-
ing on whether the operation is monotonic (increasing) or antitonic (decreasing).
In the context of binary operations, the result can be determined by evaluating the
operation at the interval endpoints, but care must be taken regarding the nature of
the operation.

Thus, for a binary operator ⊙, applied to intervals [xl, xu] and [yl, yu], we derive the
following result in equation 4.53:

⊙([xl, xu], [yl, yu]) =
[
min{⊙(xl, yl),⊙(xl, yu),⊙(xu, yl),⊙(xu, yu)},

max{⊙(xl, yl),⊙(xl, yu),⊙(xu, yl),⊙(xu, yu)}
]
.

(4.53)

For multiplication, the behavior depends on the signs of the interval bounds. Multi-
plication is monotonic if both numbers are non-negative or both are non-positive, but
it becomes antitonic if one number is positive and the other is negative. Therefore,
to compute the correct interval, we must evaluate all four combinations of the in-
terval endpoints: (xl, yl), (xl, yu), (xu, yl), (xu, yu). For example, consider multiplying
two intervals [xl, xu] × [yl, yu]. The result is given by equation 4.54:

[xl, xu] × [yl, yu] =
[
min(xl × yl, xl × yu, xu × yl, xu × yu),

max(xl × yl, xl × yu, xu × yl, xu × yu)
]
.

(4.54)

This ensures that all possible combinations are considered, even when intervals con-
tain negative values or zero, which affect the sign of the product and may invert the
ordering.

• Non-monotonic operators

For non-monotonic operators (e.g., squaring, sine), the minimum and maximum
may not occur at the interval endpoints. Therefore, we must evaluate the operator at
points within the interval, considering critical points where the function’s behavior
changes.

The general form for a unary non-monotonic operator⊕ applied to an interval [xl, xu]
is presented in equation 4.55:

⊕([xl, xu]) =
[
min{⊕(y) | y ∈ [xl, xu]},max{⊕(y) | y ∈ [xl, xu]}

]
. (4.55)
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For instance, squaring the interval [−2, 2] yields [0, 4], because the minimum value
occurs at x = 0, and the maximum occurs at x = ±2.

• Generalizing to n-ary operators

To cover n-ary operators more generally, where we have multiple input intervals
[xl1 , xu1], [xl2 , xu2], . . . , [xln , xun], the interval extension is given by equation 4.56:

⊙([xl1 , xu1], [xl2 , xu2], . . . , [xln , xun]) =
[
min{⊙(y1, y2, . . . , yn) | yi ∈ [xli , xui ]},

max{⊙(y1, y2, . . . , yn) | yi ∈ [xli , xui ]}
]
.

(4.56)
For binary operations like addition or multiplication, the formula simplifies to check-
ing the extreme combinations of the interval endpoints, as shown in the multiplica-
tion example above.

The resulting interval from an operation is established by selecting the smallest and
largest outcomes from the sub-operations to serve as the lower and upper boundaries. In
the event that one of the sub-operation results is also not exactly representable, the interval
for the exact value is utilized, and its boundaries are employed for the selection process.
The application of interval arithmetic ensures that the outcome of each calculation is an
interval encompassing its precise result, with sufficient width to accommodate the total
numerical error. This ensures that the boundary created for each variable is at least as
large as the boundary used by iSAT (equation 4.57).

∀x ∈ V : Bx,conv ⊇ Bx,iSAT (4.57)

4.4.3 Detecting Constant Sub-Expressions and Op-
timizing their Encoding
In addition to variable boundaries, another area where optimization is possible is in the
analysis of expressions and their inputs. Since boundaries are already generated for all
variables, they can be leveraged to optimize expressions. One significant way to achieve
this optimization is through the evaluation of individual neurons. When the boundary
for a neuron’s output is a single point, the expression that computes the neuron’s value
can be simplified to a direct assignment of the value determined by that boundary. This
simplification is possible because the generated boundaries are guaranteed to be equal to
or larger than the exact boundaries of the calculations.

The boundary information can also play a role in optimizing the evaluation of neu-
ron transfer functions. The transfer function involves multiplying each input by its weight
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and summing the results. By examining the individual multiplications within the trans-
fer function for point intervals, we can simplify them by assigning specific values. The
input boundary is computed by the converter, whereas the weight is supplied by the neu-
ral network framework as an exact 32-bit floating-point number (e.g., TensorFlow stores
weights and biases as 32-bit floating-point numbers). Analyzing the multiplications in
the transfer function is simplified when dealing with exactly representable numbers since
their intervals are inherently point intervals. In reference 4.59, the condition (xu − xl) = 0
indicates that the difference between the upper and lower bounds of the input interval col-
lapses to zero, implying that the interval itself collapses to a single point. Consequently,
the resulting interval of the multiplication operation also becomes a point interval.

The expression (xu − xl) = 0 ∨ w = 0 in equation 4.61 underscores that either the
difference between the upper and lower bounds of the input interval is zero, leading to a
collapsed interval, or the weight is zero. In either case, the multiplication operation results
in a zero-width interval. Hence, it is demonstrated that when an interval is multiplied by a
point interval, the outcome will be a point interval if either both intervals are point intervals
or the weight is zero.

[xl, xu] · [w,w] =

[xl · w, xu · w] if w ≥ 0

[xu · w, xl · w] if w < 0
(4.58)

xu · w − xl · w = 0 (4.59)

(xu − xl) · w = 0 (4.60)

⇒ (xu − xl) = 0 ∨ w = 0 (4.61)

⇒ width([xl, xu]) = 0 ∨ w = 0 (4.62)

Another approach to optimize the expressions involves tracking the dependencies of
each neuron in our approach. A neuron is considered dependent on another neuron if
the multiplication of its weight with the input value range, provided by the other neuron,
results in an interval with a non-zero width. This mechanism allows the converter to assess
whether a neuron is genuinely essential for the network’s evaluation. When it is determined
that no other neuron depends on a particular neuron anymore, that neuron is marked as
irrelevant, and all its associated expressions and variables can be omitted. Upon detecting
an irrelevant neuron, all neurons in the previous layer need to be re-evaluated to check
if any of them still rely on the now-irrelevant neuron after its dependency has ceased to
exist. Additionally, any output neuron not utilized in the evaluation, based on the target,
is also labeled as irrelevant. This ensures that only the expressions required for neurons
essential to determine the satisfiability of the target are provided to the SMT solver. The
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algorithm outlined for eliminating unnecessary expressions during network evaluation can
take advantage of boundary optimizations in two ways. The first approach, which is likely
more beneficial for network verification, involves employing constrained input boundaries
determined by the property.

In this context, the suggested approach will exclusively generate the expressions that
are genuinely needed for testing the specific scenario aligned with the property. Any deter-
minations about irrelevant neurons are specific to the given scenario and cannot be extrapo-
lated to other properties. The second approach involves employing the complete spectrum
of boundaries for each input of the network. This enables edge optimization alongside the
elimination of expressions resulting in point intervals, helping identify sections of neural
networks that may go largely unused in solving the problem they were trained for due to
the training process. These redundant neurons can be pruned from the neural network
without affecting its output accuracy. These two approaches are illustrated in Figure 4.7,
where lg employs a general boundary based on the entire input range, potentially relevant
for output, and lp uses a property-based boundary yielding a point interval and therefore
can be omitted [Fib22].

4.5 Converter
To facilitate the implementation of the methods we have described so far, We have em-
ployed a converter that comprises supplied translators from different neural network pack-
ages to the ONNX intermediate format, along with our self-developed translation from
ONNX to iSAT2, iSAT3, and dReal [Fib22]. This converter serves the purpose of au-
tomatically transforming trained neural networks, even those with millions of nodes and
originating from different frameworks such as TensorFlow, into the solver expressions for-
mat. It offers multiple levels of optimization, allowing us to explore automated functional
verification of both feed-forward and LSTM networks. This automation greatly stream-
lines the process of preparing neural networks for analysis, making it feasible to conduct
extensive verification studies efficiently. The converter’s objective is to transform networks
constructed with any framework into iSAT-evaluable statements.

It would take a lot of work to implement every single one of the frameworks’ many
different direct support forms. Additionally, the converter would need to be regularly up-
dated and maintained if a framework launched a new framework or made a minor change
to the existing format. Due to this, an intermediate step is added in which the various
formats are first converted into a universal format, removing the need for the converter to
be able to recognize and support the particular framework used to train the network to be
converted and instead requiring support for this universal format.
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Chapter 5

Evaluation

In Section 5, we provide detailed descriptions of three specific examples that were em-
ployed to test the effectiveness of the neural network verification techniques discussed
earlier. These examples were carefully selected to demonstrate the robustness and accu-
racy of the proposed methods in handling different scenarios and complex systems. Each
example serves as a test case to evaluate the performance and reliability of the implemented
approach, showcasing its capability to analyze and verify the feedforward and recurrent
neural networks in practical applications. By examining these concrete examples, we gain
valuable insights into the capabilities and limitations of the proposed techniques, con-
tributing to a comprehensive understanding of their applicability and potential in various
real-world settings.

• Benchmark 1: involves a thorough scalability assessment using the Modified Na-
tional Institute of Standards and Technology database (MNIST) dataset [LCB10].
It encompasses a collection of customizable neural networks specifically trained on
the MNIST dataset. The primary goal here was to showcase the scalability of the
proposed method in networks with feedforward structures. The networks used in this
benchmark were highly customizable, enabling a wide range of problem solutions
to be represented for the same task. By leveraging iSAT2 and iSAT3, the scalabil-
ity of the approach in handling diverse neural network evaluations was thoroughly
evaluated.

• Benchmark 2 : involves training an LSTM neural network on a dataset of recorded
traffic from the Next Generation Simulation (NGSIM project) [Adm07]. The pri-
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mary proof obligation for iSAT was to verify whether the trained network accu-
rately detected near collisions. The verification process was essential to ensure the
robustness and reliability of the LSTM network’s collision detection capabilities
also outside the concrete training and test points used during network construction.

• Benchmark 3: focuses on investigating the scalability of iSAT when applied to
LSTM neural networks. This study involved analyzing satellites and objects orbit-
ing in space [Eur], which presents a complex scenario. By exploring this intricate
system, we gained valuable insights into the scalability of our proposed method,
shedding light on its efficiency in handling challenging scenarios with LSTM net-
works.

We measured the performance of each solver and the impact of the optimization with
respect to the following four metrics:

• Solver time: Solver time signifies the duration that each solver employed during
the verification process to establish satisfiability. While iSAT2 and dReal4 provide
explicit information regarding the solving duration, iSAT3 lacks this feature, ne-
cessitating the utilization of the Linux command time to gauge the time consump-
tion. Nevertheless, this command’s measurements encompass not only the solver
and preprocessing times but also a minor interval between result return and process
termination. To ensure equitable comparisons, the internal solver time data from
the other two solvers were disregarded. Instead, the time command was uniformly
applied to gauge time for all solvers. By deducting the reported preprocessing time,
a balanced approximation of solver time was derived, encompassing uniform impre-
cision inherent to all operating-system-based timing measurements.

• Memory usage: The amount of memory allocated for the verification process is
acquired from the SLURM workload management system, which was employed to
orchestrate each verification task. The values presented are slightly inflated due
to the inherent limitations of the workload management system. It is capable of
gauging the extent of memory allocation to the process, yet it lacks the capacity
to furnish details about the precise memory consumption during the verification
process itself.

5.1 Benchmark 1: MNIST Dataset
The MNIST dataset [LCB10], frequently employed for training image recognition meth-
ods, consists of handwritten numbers. These images are 28 by 28 pixels in size and display
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Figure 5.1: Instances of handwritten numbers of MNIST dataset [LCB10].

grayscale shades from 0 to 255. Each dataset entry contains the pixel information of the im-
age, maintaining consistent dimensions where the digit was positioned and standardized.
It also includes a class label that identifies the depicted digit in Figure 5.1. By training
various networks using the MNIST dataset, they can be uniformly assessed due to identi-
cal input and output conditions. The sole variables at play are the network configurations
and the precise weights and biases acquired during training. Although it is not feasible
to entirely exclude weights and biases as factors influencing evaluation, their impact can
be lessened by training numerous networks for each configuration and subsequently aver-
aging outcomes. This strategy ultimately narrows down the performance influence to just
the network configuration.

The configurations exhibit variations in terms of the number of layers and neurons
within each layer, as well as the selection of activation functions employed. The evaluated
number of layers spanned from one to six, and the allocation of neurons to these layers
ranged from 250 to 1500, increasing in increments of 250. Among the choices were sig-
moid and hyperbolic tangent as activation functions. To establish configurations, all pos-
sible combinations of 1 to 6 layers, 250 to 1500 neurons, and the two activation functions
were utilized for training, with each configuration being applied to train the networks.

The neurons were distributed across the layers to resemble an exponential distribution
as closely as feasible. In instances where the final layer would have received fewer than
ten neurons, an adjustment was made: initially, all layers were equipped with ten neurons,
and any remaining neurons were subsequently allocated to all layers except the last one. It
is important to note that all networks underwent training with an output layer containing
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ten neurons and utilizing sigmoid activation.

• Property 1: The initial property assessed on the MNIST networks involved an in-
stance from the MNIST dataset portraying the digit seven. In this scenario, the
solvers scrutinize whether there exists a possibility for the network’s output, indi-
cating the classification of the input as "seven," to fall below a threshold of 0.8. In
Equation 5.1, the verification target is depicted, where n_o_0 represents the output
of the neural network [Fib22].

Target : n_o_0 <= 0.8 (5.1)

The input remained devoid of any noise, thereby constraining the solvers to address
only a single, precise value assignment of each input. In theory, the solution process
should be straightforward due to the simplicity of the task. This particular property
serves as a baseline, strategically chosen to demonstrate solver performance in the
context of a highly uncomplicated criterion.

The experiment involved evaluating the property1 across five distinct optimization levels
for a set of six networks, each characterized by varying node counts: 250, 500, 750, 1000,
1250, and 1500.

• b0: unoptimized boundaries. Since iSAT requires boundaries for all variables, infi-
nite values were replaced with 245,000,000.

• b1: boundaries are based on the input ranges of the network.

• fb1: boundaries are based on the input ranges of the network. Irrelevant expressions
were removed.

• b2: boundaries are based on the input ranges determined by the property to be
checked.

• fb2: boundaries are based on the input ranges determined by the property to be
checked. Irrelevant expressions were removed.

All verification processes were run on the CARL cluster which is a multi-purpose clus-
ter designed to meet the needs of compute-intensive and data-driven research projects
in Oldenburg University [vOU24] using nodes equipped with "Intel Xeon E5-2650 v4
12C" CPUs at 2.2GHz and 256 GB RAM consisting of 8x 32GB TruDDR4 modules at
2400MHz.
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Performance on networks with sigmoidal activation functions

In order to assess the efficiency of iSAT2 and iSAT3 concerning networks employing the
sigmoid activation function, a consistent function encoding was adopted across all con-
verted networks. Table 5.1, 5.2, 5.3, and Figure 5.2 offer a comprehensive comparison of
solver times for property1, focusing on networks utilizing the sigmoid activation function
with iSAT2, iSAT3, and dReal solvers.

When examining solver times across different optimization levels, a notable trend be-
comes apparent. Notably, transitioning from boundaries based on the input interval b1
to boundaries determined by the property1, b2 brings about a significant reduction in
solver time for iSAT2. Furthermore, the comparison between optimization strategies f b1
and f b2 with the other approaches is illuminating. f b1 demonstrates enhancement in
solver performance while utilizing boundaries based on the input ranges of the network.
In addition, f b2 demonstrates a significant decrease in solver time, reflecting consistent
performance enhancements. This underscores the effectiveness and adaptability of these
optimization strategies across different solver platforms.

Moreover, the results demonstrate that the proposed optimization strategies, b2, and
f b2 yield comparable enhancements in solver performance across the iSAT2 solver. Within
the context of the defined networks, iSAT2 demonstrated robust verification across all five
levels of optimization parameters: b0, b1, b2, f b1, and f b2, without encountering any
timeouts. However, it is worth noting an observation with iSAT3, where timeouts occurred
during verification processes for b0, b1, and f b1 levels. Further analysis of solver times
revealed intriguing disparities between iSAT2 and iSAT3, particularly evident in the b2
and f b2 optimization levels. Notably, solver times in these specific levels were noticeably
shorter in iSAT2 compared to iSAT3. Both iSAT2 and iSAT3 showcased superior perfor-
mance compared to dReal, particularly evident in scenarios involving networks with over
250 nodes. In contrast, dReal encountered timeouts under similar conditions, indicating
potential scalability limitations.

The primary distinction between iSAT2 and iSAT3 lies in their treatment of bound-
aries. iSAT2 directly handles the boundaries, whereas iSAT3 represents these bounds
as literals that require an initial evaluation. The variation in the time it takes to solve a
problem may suggest differences in performance due to the approach used for integrat-
ing satisfiability checks with the theory solver. A more detailed examination of memory
usage results provides additional evidence to support this hypothesis. Both iSAT3 and
dReal assess the boundaries as boolean constraints, enabling them to terminate promptly
since these boundaries directly contradict the target. In contrast, iSAT2 must first initial-
ize all the necessary variables and then assess the boundaries before it can determine the
satisfiability of the target.
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Table 5.1: Solver time of iSAT2 applied to property1 of the network on the
MNIST dataset using the sigmoid function (in seconds)

Nodes Layers b0 (s) b1 (s) b2 (s) fb1 (s) fb2 (s)
250 1 78.70 81.25 0.63 79.10 0.59
250 2 90.82 82.55 0.81 80.20 0.60
250 3 89.62 88.68 0.83 87.93 0.77
250 4 82.67 82.85 1.35 80.87 1.12
250 5 81.00 85.83 2.90 89.00 1.60
250 6 78.70 87.00 3.73 91.50 1.87
500 1 202.97 182.25 0.92 181.62 0.90
500 2 203.25 182.47 0.93 183.75 0.23
500 3 204.32 183.87 1.22 184.77 1.12
500 4 205.35 183.78 1.87 181.78 1.55
500 5 215.33 186.78 3.87 183.90 2.03
500 6 223.00 194.03 3.73 191.03 2.95
750 1 301.45 300.25 1.83 289.52 0.91
750 2 350.00 350.63 1.00 349.63 0.95
750 3 354.40 369.52 1.75 340.35 1.05
750 4 354.07 349.85 2.97 349.72 1.90
750 5 367.58 368.68 4.40 350.42 3.17
750 6 390.25 481.58 4.50 369.85 3.33
1000 1 504.08 500.82 1.35 489.78 0.99
1000 2 512.72 500.08 1.45 480.68 1.02
1000 3 517.38 500.40 1.90 491.97 1.12
1000 4 519.60 511.32 1.95 503.68 1.14
1000 5 522.07 525.32 8.07 506.93 5.27
1000 6 556.53 568.98 10.53 512.72 6.83
1250 1 721.23 711.88 1.65 659.92 1.17
1250 2 724.32 713.17 2.20 649.35 1.20
1250 3 727.10 719.17 3.18 638.23 2.08
1250 4 730.33 715.30 3.37 690.35 2.27
1250 5 741.17 723.65 4.02 704.98 3.08
1250 6 762.50 728.82 12.83 705.03 8.35
1500 1 1019.20 1000.53 3.37 901.17 1.87
1500 2 1020.63 1011.90 4.32 1004.27 2.03
1500 3 1023.77 1014.27 4.58 1006.42 2.37
1500 4 1062.33 1016.07 5.23 1010.73 3.10
1500 5 1046.00 1025.82 7.70 1011.10 8.50
1500 6 1388.05 1132.93 12.43 1001.25 9.52
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Table 5.2: Solver time of iSAT3 applied to property1 of the network on the
MNIST dataset using the sigmoid function (in seconds)

Nodes Layers b0 (s) b1 (s) b2 (s) fb1 (s) fb2 (s)
250 1 128.38 124.68 76.82 118.95 66.92
250 2 129.10 126.17 78.70 119.97 67.48
250 3 129.78 126.93 85.03 126.15 68.40
250 4 134.25 127.27 85.22 91.20 69.13
250 5 137.58 129.50 86.73 94.37 72.42
250 6 148.50 144.67 89.60 100.17 82.63
500 1 237.92 220.00 168.12 211.87 142.58
500 2 240.48 239.60 170.38 217.88 143.13
500 3 261.40 246.20 189.05 232.07 150.52
500 4 268.65 246.83 190.38 235.18 161.07
500 5 276.28 251.65 192.08 245.53 171.35
500 6 290.63 262.57 196.25 248.70 183.22
750 1 451.60 440.75 260.78 438.42 199.68
750 2 452.67 443.95 261.75 440.67 200.40
750 3 467.70 456.43 265.73 446.82 204.33
750 4 471.78 458.63 281.68 450.20 217.62
750 5 474.65 462.78 285.67 452.92 223.35
750 6 497.70 466.57 291.95 458.38 229.40
1000 1 665.13 644.82 352.52 635.08 343.33
1000 2 669.77 645.47 353.30 636.52 345.42
1000 3 691.87 673.97 366.03 678.73 350.17
1000 4 693.00 683.75 369.78 679.13 356.38
1000 5 701.95 690.54 371.70 681.13 358.77
1000 6 732.63 694.80 386.35 684.75 372.67
1250 1 796.05 783.18 508.27 784.50 488.78
1250 2 839.33 825.55 510.05 818.42 490.83
1250 3 1055.58 1024.35 555.95 1014.57 531.25
1250 4 1064.10 1045.48 570.62 1037.30 549.25
1250 5 1085.75 1069.78 583.55 1052.92 554.78
1250 6 Time-out 1197.22 591.42 1135.92 562.77
1500 1 899.60 890.88 676.10 882.90 624.48
1500 2 1008.15 1000.98 682.35 891.53 635.90
1500 3 1568.17 1513.78 722.70 1485.20 699.60
1500 4 1574.07 1562.32 731.13 1520.57 701.47
1500 5 1591.43 1582.47 746.10 1569.82 711.94
1500 6 Time-out Time-out 774.90 Time-out 732.48
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Table 5.3: Solver time of dReal applied to property1 of the network on the
MNIST dataset using the sigmoid function (in seconds)

Nodes Layers b0 (s) b1 (s) b2 (s) fb1 (s) fb2 (s)
250 1 326722.27 326115.17 168.23 326023.10 129.92
250 2 354753.28 354705.13 169.15 354635.53 130.7
250 3 400887.75 400533.82 202.23 400481.15 169.2
250 4 4326906.6 4326332.82 250.37 4326298.83 235.92
250 5 4989821.6 4989652.13 264.1 4989608.03 243.47
250 6 6856343.42 6856257.38 272.42 6856212.37 250.92
500 1 Time-out Time-out Time-out Time-out Time-out
500 2 Time-out Time-out Time-out Time-out Time-out
500 3 Time-out Time-out Time-out Time-out Time-out
500 4 Time-out Time-out Time-out Time-out Time-out
500 5 Time-out Time-out Time-out Time-out Time-out
500 6 Time-out Time-out Time-out Time-out Time-out
750 1 Time-out Time-out Time-out Time-out Time-out
750 2 Time-out Time-out Time-out Time-out Time-out
750 3 Time-out Time-out Time-out Time-out Time-out
750 4 Time-out Time-out Time-out Time-out Time-out
750 5 Time-out Time-out Time-out Time-out Time-out
750 6 Time-out Time-out Time-out Time-out Time-out
1000 1 Time-out Time-out Time-out Time-out Time-out
1000 2 Time-out Time-out Time-out Time-out Time-out
1000 3 Time-out Time-out Time-out Time-out Time-out
1000 4 Time-out Time-out Time-out Time-out Time-out
1000 5 Time-out Time-out Time-out Time-out Time-out
1000 6 Time-out Time-out Time-out Time-out Time-out
1250 1 Time-out Time-out Time-out Time-out Time-out
1250 2 Time-out Time-out Time-out Time-out Time-out
1250 3 Time-out Time-out Time-out Time-out Time-out
1250 4 Time-out Time-out Time-out Time-out Time-out
1250 5 Time-out Time-out Time-out Time-out Time-out
1250 6 Time-out Time-out Time-out Time-out Time-out
1500 1 Time-out Time-out Time-out Time-out Time-out
1500 2 Time-out Time-out Time-out Time-out Time-out
1500 3 Time-out Time-out Time-out Time-out Time-out
1500 4 Time-out Time-out Time-out Time-out Time-out
1500 5 Time-out Time-out Time-out Time-out Time-out
1500 6 Time-out Time-out Time-out Time-out Time-out
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Figure 5.2: Comparison of the solver time of iSAT2, iSAT3, and dReal4 for the
verification process of property1 of networks using the sigmoid function.
Red lines indicate a 12-hour time limit, and the blue dotted line shows where
solver times converge. A logarithmic scale on both axes enhances the visibility of
swift resolutions.
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Table 5.4: Percentage of aborted verification runs for networks using the sigmoid
function grouped by the solver and optimization level for property1.

Solver b0 b1 b2 fb1 fb2
iSAT2 0% 0% 0% 0% 0%
iSAT3 5.56% 2.78% 0% 2.78% 0%
dReal4 83.33% 83.33% 83.33% 83.33% 83.33%

Table 5.5: The highest number of layers for which each solver successfully ob-
tained results while assessing property1 employing the sigmoid function.

Nodes iSAT2 iSAT3 dReal4
250 6 6 6
500 6 6 T
750 6 6 T
1000 6 6 T
1250 6 6 T
1500 6 6 T

Table 5.4 provides a detailed breakdown of the percentage of aborted verification runs
for neural networks utilizing the sigmoid function, drawing from the results presented in
Tables 5.1, 5.2, and 5.3. The data is organized by solver type and optimization level, of-
fering insights into the robustness of each solver under various scenarios. Notably, iSAT2
exhibits remarkable stability with minimal aborted runs across all optimization levels.

Additionally, Table 5.5 depicts the maximum number of layers for which each solver
successfully evaluated the characteristics of networks using the sigmoid function, along
with explanations for why additional layers could not be analyzed. In this context, T sig-
nifies that the solving process was halted due to a timeout.

Hyperbolic Tangent performance

To evaluate the performance of iSAT2,iSAT3, and dReal on networks utilizing the Tanh
activation function, a standardized function encoding was applied to all converted net-
works. Tables 5.6, 5.7, and 5.8 and Figure 5.3 provide an extensive comparison of solver
times for property1, emphasizing networks employing the Tanh activation function with
iSAT2, iSAT3, and dReal solvers. The results from the defined networks reveal that iSAT2
successfully verified all five networks across the five optimization levels (b0, b1, b2, f b1,
f b2), experiencing timeouts only in networks with 5 and 6 layers in b0, b1, and fb1. Con-
versely, iSAT3 exhibited timeouts in networks with similar configurations, albeit fewer
than iSAT2. Additionally, iSAT2 demonstrated shorter solver times in optimization levels
b and f b2 compared to iSAT3. A comparison of solver times among iSAT2, iSAT3, and
dReal indicates that iSAT2 and iSAT3 perform better overall, while dReal encountered
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Table 5.6: Solver time of iSAT2 applied to property1 of the network on the
MNIST dataset using the Tanh activation function (in seconds)

Nodes Layers b0 (s) b1 (s) b2 (s) fb1 (s) fb2 (s)
250 1 178.62 176.85 0.43 174.50 0.35
250 2 180.95 177.57 1.53 176.00 0.75
250 3 182.63 179.03 1.65 199.48 0.80
250 4 2556.77 22843.40 1.68 21955.93 1.30
250 5 Time-out Time-out 1.72 Time-out 1.51
250 6 Timeout Time-out 2.55 Time-out 1.82
500 1 335.60 340.99 1.00 317.47 0.47
500 2 351.30 348.52 1.37 357.67 0.82
500 3 60003.65 54629.72 1.58 54510.07 1.20
500 4 Time-out Time-out 1.62 Time-out 1.52
500 5 Time-out Time-out 2.23 Time-out 2.01
500 6 Time-out Time-out 3.10 Time-out 2.88
750 1 615.88 568.07 1.47 646.92 1.18
750 2 668.50 660.80 2.17 648.37 1.92
750 3 Time-out Time-out 2.32 Time-out 1.80
750 4 Time-out Time-out 2.43 Time-out 2.38
750 5 Time-out Time-out 2.63 Time-out 2.51
750 6 Time-out Time-out 10.00 Time-out 2.95
1000 1 893.53 879.18 1.80 871.35 1.32
1000 2 1376.10 1355.25 2.52 1349.20 1.98
1000 3 Time-out Time-out 3.41 Time-out 2.58
1000 4 Time-out Time-out 4.77 Time-out 3.81
1000 5 Time-out Time-out 6.05 Time-out 4.72
1000 6 Time-out Time-out 10.33 Time-out 5.98
1250 1 1145.27 1181.13 1.98 1089.05 1.58
1250 2 2762.18 2594.58 2.80 2017.52 1.97
1250 3 Time-out Time-out 5.50 Time-out 3.65
1250 4 Time-out Time-out 6.32 Time-out 3.85
1250 5 Time-out Time-out 6.57 Time-out 4.33
1250 6 Time-out Time-out 10.97 Time-out 6.72
1500 1 1351.62 1368.48 2.00 1301.95 1.83
1500 2 3105.12 2200.23 3.02 2107.57 2.50
1500 3 Time-out Time-out 7.43 Time-out 5.95
1500 4 Time-out Time-out 10.10 Time-out 8.53
1500 5 Time-out Time-out 13.90 Time-out 12.17
1500 6 Time-out Time-out 16.60 Time-out 14.67
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Table 5.7: Solver time of iSAT3 applied to property1 of the network on the
MNIST dataset using the Tanh activation function (in seconds)

Nodes Layers b0 (s) b1 (s) b2 (s) fb1 (s) fb2 (s)
250 1 107.62 94.80 80.22 90.65 73.80
250 2 113.00 112.20 82.03 110.37 74.12
250 3 123.62 121.75 84.48 115.60 77.10
250 4 125.18 122.27 85.02 116.18 79.60
250 5 129.54 124.80 92.90 119.30 87.07
250 6 Time-out Time-out 143.60 Time-out 106.12
500 1 252.73 248.97 190.45 241.23 172.13
500 2 256.77 249.42 200.78 242.17 178.32
500 3 258.22 250.35 202.93 248.08 185.32
500 4 263.65 259.33 208.85 253.67 186.35
500 5 319.70 298.95 225.21 288.93 189.10
500 6 Time-out Time-out 231.70 Time-out 193.32
750 1 441.68 438.78 267.47 430.13 260.72
750 2 454.28 448.50 279.88 439.17 269.48
750 3 481.18 472.15 300.03 463.32 292.43
750 4 487.25 481.38 300.27 474.33 293.93
750 5 544.15 531.31 330.93 520.12 319.48
750 6 Time-out Time-out 347.70 Time-out 336.72
1000 1 632.37 626.93 317.33 621.27 304.13
1000 2 640.30 636.93 365.42 625.48 340.68
1000 3 668.78 661.52 369.42 655.22 336.03
1000 4 687.88 682.67 417.40 671.87 391.08
1000 5 Time-out Time-out 450.05 Time-out 431.12
1000 6 Time-out Time-out 458.22 Time-out 440.82
1250 1 807.25 803.97 518.80 797.18 537.07
1250 2 849.50 845.85 519.10 839.42 559.62
1250 3 1192.80 1188.40 569.60 1179.62 575.43
1250 4 1213.32 1205.63 588.83 1189.53 587.43
1250 5 Time-out Time-out 602.17 Time-out 620.78
1250 6 Time-out Time-out 605.32 Time-out 629.18
1500 1 907.60 896.92 633.73 870.17 621.27
1500 2 1038.23 1020.17 648.62 929.18 632.27
1500 3 1746.80 1495.35 675.08 1038.23 665.40
1500 4 1746.80 1703.57 676.20 1641.72 664.10
1500 5 Time-out Time-out 788.62 Time-out 771.58
1500 6 Time-out Time-out 793.12 Time-out 770.12
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Table 5.8: Solver time of dReal for Property 1 of networks (in second)

Neurons Layers b0 (s) b1 (s) b2 (s) fb1 (s) fb2 (s)
250 1 40705.9 41277.44 293.93 39843.65 295.53
250 2 30467.75 30038.56 216.88 29407.6 199.97
250 3 26024.89 25987.39 177.7 25500.39 178.05
250 4 24140.65 24151.99 169.83 22993.99 171.48
250 5 21383.56 21356.44 154.57 20954.2 133.12
250 6 19689.56 19669.43 136.97 19318.6 128.12
500 1 Time-out Time-out Time-out Time-out Time-out
500 2 Time-out Time-out Time-out Time-out Time-out
500 3 Time-out Time-out Time-out Time-out Time-out
500 4 Time-out Time-out Time-out Time-out Time-out
500 5 Time-out Time-out Time-out Time-out Time-out
500 6 Time-out Time-out Time-out Time-out Time-out
750 1 Time-out Time-out Time-out Time-out Time-out
750 2 Time-out Time-out Time-out Time-out Time-out
750 3 Time-out Time-out Time-out Time-out Time-out
750 4 Time-out Time-out Time-out Time-out Time-out
750 5 Time-out Time-out Time-out Time-out Time-out
750 6 Time-out Time-out Time-out Time-out Time-out
1000 1 Time-out Time-out Time-out Time-out Time-out
1000 2 Time-out Time-out Time-out Time-out Time-out
1000 3 Time-out Time-out Time-out Time-out Time-out
1000 4 Time-out Time-out Time-out Time-out Time-out
1000 5 Time-out Time-out Time-out Time-out Time-out
1000 6 Time-out Time-out Time-out Time-out Time-out
1250 1 Time-out Time-out Time-out Time-out Time-out
1250 2 Time-out Time-out Time-out Time-out Time-out
1250 3 Time-out Time-out Time-out Time-out Time-out
1250 4 Time-out Time-out Time-out Time-out Time-out
1250 5 Time-out Time-out Time-out Time-out Time-out
1250 6 Time-out Time-out Time-out Time-out Time-out
1500 1 Time-out Time-out Time-out Time-out Time-out
1500 2 Time-out Time-out Time-out Time-out Time-out
1500 3 Time-out Time-out Time-out Time-out Time-out
1500 4 Time-out Time-out Time-out Time-out Time-out
1500 5 Time-out Time-out Time-out Time-out Time-out
1500 6 Time-out Time-out Time-out Time-out Time-out
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timeouts for networks with more than 250 nodes.
Table 5.9 offers a comprehensive breakdown of the percentage of aborted verifica-

tion runs for neural networks employing the Tanh function, sourced from Tables 5.6, 5.7,
and 5.8. This data is structured by solver type and optimization level, providing valu-
able insights into the robustness of each solver across different scenarios. Notably, iSAT2
demonstrates remarkable stability with minimal aborted runs observed across all optimiza-
tion levels.

Furthermore, Table 5.10 presents the maximum number of layers for which each solver
successfully evaluated the characteristics of networks using the Tanh function, accompa-
nied by explanations for why additional layers could not be analyzed. Here, instances
marked with T denote halts in the solving process due to timeouts.

Table 5.9: Percentage of aborted verification runs of the property1 for networks
using the hyperbolic tangent function grouped by solver and optimization level

Solver b0 b1 b2 fb1 fb2
iSAT2 58.33% 58.33% 0% 58.33% 0%
iSAT3 25% 25% 0% 25% 0%
dReal4 83.33% 83.33% 83.33% 83.33% 83.33%

Table 5.10: The highest count of network layers that each solver successfully
addressed for property1 using the hyperbolic tangent function. T signifies the
termination of the solver process due to a timeout.

iSAT2 iSAT3 dReal4
250 6 6 6
500 6 6 T
750 6 6 T
1000 6 6 T
1250 6 6 T
1500 6 6 T

The optimization levels have different effects on the solvers. For iSAT2 and iSAT3, the
basic optimization levels (b0, b1, and f b1) do not make much difference, as they have sim-
ilar percentages of aborted verification runs. However, the fine-grained optimization levels
(b2 and f b2) reduce the percentage of aborted verification runs for iSAT2 and iSAT3. This
suggests that the fine-grained optimization levels are more suitable for iSAT2 and iSAT3.
For dReal4, the optimization levels do not seem to matter, as it has the same percentage of
aborted verification runs for all levels when the number of nodes in the networks is bigger
than 250.
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Figure 5.3: Comparison of the solver time of iSAT2, iSAT3, and dReal4 for the
verification process of property1 of networks using the Tanh function.
Red lines indicate a 12-hour time limit, and the blue dotted line shows where
solver times converge. A logarithmic scale on both axes enhances the visibility of
swift resolutions.
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Table 5.11: NGSIM database [Adm07]

V_ID F_ID Local_X Local_Y Length Width Vel Acc Lane_ID Leading
288 1570 50.366 267.751 14 6.5 18.74 9.79 4 292
288 1757 51.159 314.237 14 6.5 0 -1.78 4 292
288 1948 24.405 699.007 14.5 7.4 51.31 11.25 1 291
288 1911 52.399 313.651 14 6.5 0.04 0 4 292
289 2086 19.455 2154.879 15.5 5.9 2 50 -5.33 300
289 903 41.523 1045.145 17 8.4 5 2.89 3 291

 

Leading vehicle 
Ego vehicle 

xego, vego 

∆x = xleading - xego 

xleading, vleading 

Figure 5.4: Visualization of the distance between cars

5.2 Benchmark 2: NGSIM
In the second benchmark of our evaluation to assess the effectiveness of our proposed
verification method for neural networks, with a particular emphasis on recurrent neural
networks, we carried out experiments on a trained LSTM model [MFF23]. This LSTM
network was trained using a dataset derived from the NGSIM project, which recorded
traffic scenarios to learn an auto-braking maneuver. The NGSIM dataset contains com-
prehensive information about the positions, speeds, accelerations, and lanes utilized by
cars traveling on US Highway 101 between 7:50 am and 8:35 am [Adm07]. The study
area covers a length of 640 meters and is comprised of five lanes. A portion of this dataset
is illustrated in Table 5.11. Each entry corresponds to a specific vehicle, and they are
uniquely identified by a Vehicle_ID number. This identifier allows individual cars to be
tracked over an extended period by filtering rows with the respective identifier, thereby
generating a time series of movements for each Vehicle_ID.

To address the classification task of predicting near collisions, a classifier network can
be trained on this dataset. Since the data represents a time series of state snapshots and in-
volves recovering dynamics by correlating these snapshots, an LSTM model was selected
for this classification task. LSTM is well-suited for capturing dependencies and patterns

84



5.2 Benchmark 2: NGSIM

over time, making it a suitable choice to analyze the dynamic movements of vehicles and
predict potential near collisions based on the time series of state snapshots. The primary
proof obligation, which was handled by iSAT, involved verifying whether the trained net-
work accurately detects near collisions.

The visualization depicted in Figure 5.4 illustrates the spacing between vehicles. Ac-
cording to the Vienna Convention, the safe distance between two vehicles is defined as
a "sufficient distance [. . . ] to avoid a collision if the vehicle in front should suddenly
slow down or stop" [ECfE]. This safety distance is crucial in ensuring overall safety and
preventing potential accidents on the road. The trained network’s ability to identify and
predict near collisions aligns with the concept of maintaining a safe distance between ve-
hicles to reduce the risk of collisions. Indeed, maintaining a safe distance between the ego
vehicle and the leading vehicle is of paramount importance. This safe distance should be
large enough to allow for a prompt and safe avoidance of collision, especially in the event
of an emergency deceleration by the leading vehicle. By ensuring an adequate following
distance, drivers can have sufficient time and space to react to sudden changes in the traffic
flow, preventing potential collisions and promoting overall road safety. Adhering to the
concept of a safe distance plays a crucial role in mitigating risks and enhancing the safety
of road users.

Two vehicles, initially separated by a distance ∆x, could potentially collide if the lead-
ing vehicle, referred to as vehicleleading, suddenly applies brakes or comes to a complete
stop. To prevent such collisions, it is imperative to ensure that the distance between
vehicleego and vehicleleading is always kept sufficiently large to allow for sudden and max-
imum deceleration.

To establish a corresponding distance requirement, one can leverage principles from
Newtonian mechanics, consider the physical characteristics of the vehicles, and account
for human reaction times. By incorporating these factors, it becomes feasible to calculate
the necessary safe distance, thereby enabling the formulation of a comprehensive safety
specification that serves as the foundation for formal verification.

The future position of a vehicle at any given time t ≥ 0 is governed by the laws of
accelerated movement, as described by equations of motion. Equation 5.2 represents the
position of a vehicle at any time t ≥ 0, where x(t) denotes the position of the vehicle at
time t, x0 is the initial position, v is the initial velocity, a is the acceleration, and t is time.

Utilizing these principles, it is possible to determine the vehicle’s trajectory over time,
facilitating the computation of the required distance that ensures a secure following be-
tween vehicleego and vehicleleading. This safety distance guarantees that vehicleego can
respond effectively to any sudden deceleration by vehicleleading, effectively reducing the
risk of potential collisions.
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By adhering to the prescribed safe distance and conducting thorough formal verifica-
tion, road safety can be reinforced, and the likelihood of accidents resulting from abrupt
changes in traffic conditions can be mitigated.

x(t) = x0 + vt +
1
2

at2 (5.2)

A collision between the ego vehicle and the leading vehicle occurs when their positions
are equal at some future time t ≥ 0. Mathematically, a collision is possible if the following
condition holds:

∃t ≥ 0 : xego(t) = xleading(t) (5.3)

Based on equations (5.2) and (5.3), a potential for an unavoidable collision exists if the
following constraint system is satisfiable:

vegot +
1
2

at2 = ∆x + vleadingt +
1
2

at2, 0 ≤ t ≤
vego

a
(5.4)

In equation (5.4), the variable∆x represents the initial distance between the ego vehicle and
the leading vehicle. Here, vego and vleading represent the velocities of the ego vehicle and the
leading vehicle, respectively, while a corresponds to the acceleration. The satisfaction of
this constraint system indicates the possibility of an unavoidable collision scenario within
the specified time frame. The maximum deceleration a (which is assumed to be the same
for both vehicles for simplicity) plays a crucial role in determining the braking demand.
To establish a physically justified braking requirement, we start with equation (5.4), where
the identical expression 1

2at2 occurs on both sides. By removing this common term and
simplifying, we derive equation (5.5), which specifies whether braking is necessary:

statebrake ⇐⇒ 0 ≤ ∆x · a ≤ vego · (vego − vleading) (5.5)

In this context, a represents the maximum deceleration of the ego vehicle. The implica-
tion in equation (5.5) indicates that the ego vehicle may encroach upon the safety envelope
of the leading vehicle or even collide with it if the right-hand side of the implication be-
comes true. Therefore, activating the brakes upon a positive edge of statebrake will keep
us outside or at the surface of the risk region. This is because the lead car will decelerate
with a maximum deceleration of a, ensuring a safe distance between the two vehicles. By
adhering to this requirement, the ego vehicle ensures that it can respond appropriately to
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changes in the leading vehicle’s motion, thereby preventing potential collisions and main-
taining road safety.

As a result, equation (5.5) offers the precise definition for the braking advisories, which
serves a dual purpose in supervised learning. It functions as labels for training cases and
as a foundation for verification. It is crucial to note that despite using the same predicate
as a label in supervised learning, the verification process remains essential. This is be-
cause neural networks are in general not capable of achieving a loss (i.e., error rate) of
0 across all training points, and even if they were, their generalization between training
points — i.e., to almost all instances to be expected in the latter application — remains
unpredictable. Hence, the verification step is necessary to ensure the neural network’s
adherence to the specified braking advisories and to verify its ability to maintain safe dis-
tances between vehicles effectively and unfallibly. By combining supervised learning and
formal verification, a comprehensive approach is adopted, addressing complexities and
uncertainties while reinforcing safety requirements and enhancing the reliability of the
collision avoidance system.

Our classification model consisted of 50 LSTM nodes, 4-time steps, and 3 fully con-
nected layers. During training, we assigned safe and unsafe labels to NGSIM data using
equation (5.5), creating a supervised learning problem. The features frame_ID, lane_ID,
velocity, acceleration, and positions of the ego and leading vehicles were extracted from
1,048,576 records of the NGSIM database, which we divided into training and test datasets.
Remarkably, the training process achieved an accuracy of approximately 98% across the
test dataset. For training a neural network to provide emergency braking advisories, we
conducted experiments using the following computer configuration: Intel(R) Core(TM)
i7-4600U CPU @ 2.10GHz, 64 GB Memory, and Ubuntu OS.

After training, we converted the LSTM network into iSAT constraint format [FHT+07,
isa10] using the translation rules presented in Chapter 4. The resulting iSAT constraint
formula, denoted as ϕ, effectively captured the behavior of the full LSTM network and
served as a representation of its functionality. The LSTM network possesses two float-
valued outputs, denoted as γunsa f e and γsa f e, which determine the classification based on
the stronger evidence between them. Specifically, when γunsa f e > γsa f e holds true, the
network detects a critical condition, thereby generating a braking advisory.

The verification process aims to demonstrate that the LSTM outputs, as defined by the
LSTM’s structure and weights, or equivalently by its logical encoding ϕ, consistently align
with the output required by equation (5.5). We can recover the LSTM’s advisory from its
logical encoding ϕ using the following expression:

statenn_brake ⇐⇒ ϕ ∧ (γsa f e < γunsa f e) (5.6)
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The functional verification of the LSTM involves ensuring that equations (5.5) and
(5.6) always remain consistent, irrespective of the actual input to the network. In other
words, the LSTM should never, under any input sequence, reach a state where its output
statenn_brake, defined by constraint system equation (5.6), differs from the expected label
statebrake derived from equation (5.5). This verification process ensures the reliability
and accuracy of the LSTM in generating appropriate braking advisories under various
conditions. Of particular interest are situations where, as per the requirement defined in
formula (5.5), an emergency braking maneuver is required, but the neural network based on
condition in equation (5.6) fails to issue an emergency braking advisory. This verification
obligation aims to investigate whether the neural network could potentially fail to provide
the required braking advice, i.e., whether the condition in equation (5.6) may yield a no-
braking advisory when the condition in equation (5.5) determines emergency braking as
necessary.

To examine this scenario, we introduce the verification target in equation (5.7), which
allows us to employ iSAT to check the satisfiability of this condition. If iSAT2 finds a
satisfying assignment, it implies the presence of a counterexample to the safety of the
LSTM, thus highlighting situations where the neural network will not generate the neces-
sary emergency braking advisory despite the situation requiring it. This verification tar-
get is represented by the following iSAT expression for iSAT’s bounded model-checking
mode:

Target :statebrake ∧ ¬statenn_brake (5.7)

When iSAT is tasked with solving the conjunctively combined system of equations
(5.5) and (5.6), along with the reachability target equation (5.7), it provides a candidate
solution as a result, highlighting a trace leading to satisfaction of the target. The fourth
time step input data that iSAT gives us as a candidate solution as shown in Table 5.12. In
this particular case, when the position of the ego vehicle is at 148 m with a speed of 22
m/s, and simultaneously, the leading vehicle is at 155 m with a speed of 1 m/s, it becomes
evident that emergency braking would be necessary. However, the trained LSTM makes
an erroneous generalization from its training points, incorrectly reporting ¬statenn_brake.
This is a highly critical issue that needs to be addressed.

This example underscores the importance of formal verification in identifying potential
shortcomings or misgeneralizations of the LSTM neural network. By revealing such dis-
crepancies, the verification process plays a vital role in ensuring the reliability and safety
of the collision avoidance system.

In the converse case where we examined the possibility of the LSTM providing a brak-
ing advisory when it should not be necessary (verification target: Target :¬statebrake ∧
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Table 5.12: The result of verifying the NGSIM case study

Target pego vego pleading vleading Ptime−second State
statebrake and !statenn_brake 148 22 155 1 120.02 candidate solution
!statebrake and statenn_brake - - - - 200.41 Unsatisfiable

statenn_brake), iSAT’s analysis did not yield any satisfying instance. This result conclu-
sively demonstrates that the LSTM is robust in avoiding the issuance of a braking advisory
when it is not warranted. The absence of any satisfying instance provides strong evidence
that the LSTM’s decision-making process is reliable and effective in correctly discerning
situations that do not require emergency braking. As a result, we can be confident that
the LSTM model is capable of avoiding unnecessary intervention and minimizing the oc-
currence of false alarms. However, it’s important to note that this ability to avoid false
alarms comes at the cost of potentially generating false negatives, as demonstrated earlier.
This highlights a critical consideration, indicating that the standard training process may
be grossly inappropriate for LSTMs in safety-critical applications. In such contexts, false
negatives are deemed safety-critical and unacceptable, whereas false positives only impact
performance.

5.3 Benchmark 3: Satellite Collision Detec-
tion
We explore the scalability of our proposed method through a comprehensive investigation
in the third case study, which revolves around gathering crucial information about satellites
and objects orbiting in space [MFF23]. In the present scenario, Low Earth orbit (LEO)
satellites are frequently responsible for emitting numerous hazard alerts each week, indi-
cating close encounters with other space objects, such as satellites or space debris. The
European Space Agency (ESA) estimated in January 2019 that our planet is encircled by
over 34,000 objects larger than 10 cm, out of which 22,300 are actively monitored. The
locations of these objects are diligently recorded in a shared global database [Eur]. As de-
picted in Figure 5.5, the spatial density representation of objects in LEO orbits highlights
the complex distribution and potential risks associated with space debris and satellite inter-
actions. Preventing collisions between spacecraft has become a critical aspect of satellite
operations. To achieve this, various operators rely on sophisticated and regularly updated
calculations to assess collision risks between orbiting objects. Subsequently, they devise
risk reduction strategies based on the obtained information. When a possible close en-
counter with any object is detected, the collected data is consolidated into a Conjunction
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Figure 5.5: Visualization of the density of objects orbiting the low Earth orbit
[CFS, Eur]

Data Message (CDM). Each CDM contains essential details about the approach, such as
the Time of Closest Approach (TCA), the satellite’s identity, the type of potential collision
object, and the relative position between the chaser and target, among other elements. Ad-
ditionally, the CDM includes a self-reported risk, computed using various CDM elements.

Typically, three CDMs are recorded daily for each potential near approach over the
course of one week. Consequently, a time series of CDMs is established for each event,
allowing for a comprehensive analysis of the data and risk assessment over time. This con-
tinuous monitoring and reporting of CDMs facilitate effective collision avoidance strate-
gies and contribute to the overall safety and stability of space operations. ESA played a
significant role in providing a valuable compiled dataset containing information on close
approach events in the form of conjunction data messages spanning from 2015 to 2019.
This dataset served as the foundation for the spacecraft collision avoidance challenge, a
machine-learning competition where participating teams were tasked with creating mod-
els to predict the likelihood of an orbiting object colliding with another [UIS+22]. In this
context, an event is categorized as having a high risk if its last recorded risk value is greater
than -6.

• Property 1: The initial property evaluated in satellite collision detection networks
involves an instance from the satellite collision detection dataset depicting risk sit-
uation data. In this context, the solvers examine whether there exists a possibility
for the network’s output, classifying the input as risk data, to fall below a threshold
of -6, serving as a counterexample. Equation 5.8 illustrates the verification target,
with no0 denoting the output of the neural network.

Target : n_o_0 <= −6 (5.8)

The input remained devoid of any noise, thereby constraining the solvers to address
only a single, precise value assignment of each input. In theory, the solution process
should be straightforward due to the simplicity of the task. This particular property1
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serves as a baseline, strategically chosen to demonstrate solver performance in the
context of a highly uncomplicated criterion.

We are interested in ensuring that the last recorded risk value for an event n_o_0 is
equal to or less than −6, categorizing it as high risk. Satisfaction with this property implies
that the LSTM-encoded network has successfully captured and classified events based on
their associated risks, contributing to the overall reliability of the risk assessment system.
The main objective was to check the satisfiability of the equation (5.8). To execute the
verification processes, we employed Oldenburg University’s high-performance computing
cluster, CARL. Each process was limited to a maximum of 300 GB of RAM and 24 hours
of processing time.

To facilitate scalability testing, we carefully selected seven features like time_to_tca,
max_risk_estimate,max_risk_scaling, mahalanobis_distance, miss_distance, c_position,
covariance_det, and c_obs_used such as the team’s final score in the competition [UIS+22].
For the evaluation, our trained models were constructed with varying numbers of LSTM
nodes distributed across two layers. Additionally, the last three CDM data were used as 3
time steps, enabling a comprehensive assessment of the model’s performance over time.
This comprehensive approach allowed us to gauge the scalability and efficiency of the
trained models, providing valuable insights into their effectiveness in predicting and ad-
dressing collision risks in satellite operations.

To assess the scalability of LSTM verification using iSAT2 and iSAT3, we conducted
performance measurements based on two key metrics: Solver time and Memory usage.
These measurements were performed on trained LSTM networks with two different acti-
vation functions, namely tanh and sigmoid. Solver time refers to the CPU time in seconds
that each solver (iSAT2 and iSAT3) consumed during the verification process to determine
satisfiability.

Memory usage data was retrieved from the cluster’s workload management system
SLURM for each verification process and is reported in megabytes. It’s important to note
that the provided memory usage values are slightly overestimated because the workload
management system can only measure the memory allocated to the process and does not
provide information about the memory actually used during the verification process. In Ta-
ble 5.13, we present the performance comparison between iSAT2 and its successor iSAT3.
The columns Sg and Th represent the total number of LSTM nodes in each trained net-
work using the sigmoid and tanh activation functions, respectively. The table provides
insights into the efficiency and resource utilization of both solvers when verifying LSTM
networks with different activation functions. The results aid in understanding the strengths
and weaknesses of each solver, helping in the selection of the most appropriate solver for
specific LSTM verification tasks based on computational efficiency and memory usage
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Table 5.13: Memory usage and time for solving of iSAT2 and iSAT3 on satellite
collision detection data-set for property1

iSAT2 iSAT3
Nodes variables result Memory Time result Memory Time

(second) (second)
Sg20 12,768 UNSAT 1.14 1.160 UNSAT 1.14 0.227
Sg40 42,001 UNSAT 1.14 3.152 UNSAT 1.14 0.847
Sg60 88,130 UNSAT 1.14 6.891 UNSAT 1.14 1.963
Sg80 151,054 UNSAT 1.14 11.835 UNSAT 1.14 5.734
Sg100 230,782 UNSAT 1.13 18.412 UNSAT 1.14 6.162
Sg120 327,308 UNSAT 1.14 26.327 UNSAT 1.14 9.933
Sg140 440,628 UNSAT 990.70 35.544 UNSAT 1.14 12.128

Sg160 - 570,736 UNSAT 1,562.94 47.017 UNSAT 1.14 15.97
Sg180 717,645 UNSAT 1,562.94 59.463 UNSAT 1.14 21.107
S200 881,349 UNSAT 1,562.94 73.186 UNSAT 8,111.68 54.483
Sg400 3,441,142 UNSAT 1,823.22 290.076 Time-out - -
Sg600 7,676,411 UNSAT 1,823.22 669.826 Time-out - -
Sg800 9,691,159 UNSAT 283,417.80 1,271.90 ML - -
Sg1000 15,085,373 UNSAT 299,361.27 1,993.22 ML - -
Th20 12,732 UNSAT 1.14 0.846 UNSAT 1.1367 0.235
Th40 42,122 UNSAT 1.14 3.163 UNSAT 1.14 0.885
Th60 88,311 UNSAT 1.14 6.258 UNSAT 1.14 2.166
Th80 151,298 UNSAT 1.14 12.254 UNSAT 1.14 4.586
Th100 231,088 UNSAT 1.13 22.246 UNSAT 1.14 7.295
Th120 327,672 UNSAT 1.14 24.761 Time-out - -
Th140 441,050 UNSAT 990.70 32.305 Time-out - -
Th160 571,218 UNSAT 1,562.94 1,102.19 Time-out - -
Th180 718,208 Time-out - - Time-out - -

considerations. The terms "Time-out" and "ML" signify that the solving process was ter-
minated due to exceeding the time or memory limit, respectively. The findings from the
experiments suggest that iSAT2, which employs an embedding of Boolean reasoning into
real-valued intervals and interval constraint propagation, outperforms its commercially
successful successor iSAT3 in LSTM verification benchmarks for larger instances. iSAT2
achieves this by saving an SAT-modulo-theory style Boolean abstraction of (arithmetic)
theory constraints using Boolean trigger variables for theory atoms. In contrast, iSAT3
relies on Boolean literal abstraction for theory atoms.

This observation raises a significant concern that warrants further investigation. The
outperformance of iSAT2 over iSAT3 in larger LSTM verification problems could be due
to the nature of these problems, which are characterized by an extremely large number of
variables spanning a vast search space for constraint solving. For instance, example Sg1000

involves around 15 million real-valued variables. In such scenarios, using Boolean literal
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abstraction for theory-related facts in iSAT3 might have adverse effects on the solver’s
efficiency.

This finding should prompt the exploration of dedicated solvers tailored specifically to
LSTM verification tasks. The unique characteristics and challenges posed by LSTM veri-
fication, namely their immense variable count and constraint complexity, call for special-
ized approaches that can optimize the solver’s performance and overcome the limitations
observed in traditional SAT-modulo-theory solvers like iSAT3. Further research in this
direction could lead to the development of more effective and efficient solvers for tackling
LSTM verification problems.
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Chapter 6

Conclusion and Further Research

In the present technological landscape, cyber-physical systems (CPS) represent a key tech-
nology integrating and enhancing physical components with computing and communica-
tion elements. In CPS, the synergy between the physical and digital domains enables
real-time monitoring, control, and coordination, fostering seamless interactions between
the physical world and computational processes. Acknowledged as a vital field of contem-
porary research, CPS are positioned to transform the design and development of future
systems. Notably, the functional architecture of emerging systems, such as autonomous ve-
hicles, increasingly incorporates components created through artificial intelligence-driven
models like machine learning, interconnected through real-time networks. This departure
from traditional engineering methods introduces a diverse combination of components,
creating intricate interactions that present substantial challenges in their safety analysis.

Confirming and ensuring the functionality of CPS, particularly in safety-critical sec-
tors, brings forth numerous unresolved challenges. Despite their promise, widely used
computational structures like deep neural networks currently lack scalable and automated
verification mechanisms. The intrinsic characteristics of artificial neural networks, such
as their size, non-linearity, and non-convexity, present considerable difficulties for some
existing verification methods like Mixed Integer Linear Programming solvers and Satisfi-
ability Modulo Theories solvers.
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6.1 Conclusion
Our research primarily focuses on automating the functional verification of nonlinear ar-
tificial neural networks using the SMT solver iSAT. After thoroughly reviewing the theo-
retical aspects related to our problem, we have structured our work into two main areas:
the verification of feed-forward neural networks and the verification of LSTM neural net-
works, a specific type of recurrent neural network.

In addition, to improve the efficiency of verification by refining the conversion process
of neural networks into iSAT expressions, we delved into optimizations. The optimization
strategies we employed address key aspects such as managing numerical errors during
boundary calculation and enhancing expression efficiency. This not only diminishes the
search space required by iSAT but also eliminates unnecessary expressions that do not
contribute to the accurate evaluation of the network’s output.

Moreover, converting neural networks into alternative formats suitable for formal ver-
ification presents a formidable challenge. This difficulty arises from several factors, in-
cluding the network’s size, the diverse range of library types, and more. The presence
of numerous distinct frameworks for neural network definition, training, and the creation
of other machine learning applications, each with its unique approach to storing trained
networks, adds to the complexity. Therefore, we designed a system to transform neural net-
works, which can be generated using virtually any framework, into representations that can
be evaluated and processed by iSAT. Our approach involves utilizing ONNX, a standard-
ized universal format, as an intermediary representation, facilitating the initial conversion
from various formats.

To facilitate the implementation of the methods we have described so far, we have
employed a tool that comprises supplied translators from different neural network pack-
ages to the ONNX intermediate format, along with our self-developed translations from
ONNX to iSAT2, iSAT3 and dReal. This converter serves the purpose of automatically
transforming trained neural networks, even those with millions of nodes and originating
from different frameworks such as TensorFlow, Keras, and Pytorch, automatically into the
solver expressions format.

To evaluate our method, we chose three specific benchmarks. These examples were
carefully picked to show how well our approach handles different scenarios and complex
systems. Each benchmark serves as a test case to assess the performance and reliability
of our method. Ultimately, this demonstrates its effectiveness in analyzing and verifying
both feed-forward and recurrent neural networks in practical applications.

• Verification of feed-forward In order to evaluate our proposed method in a feed-
forward neural network we used MNIST, frequently employed for training image
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Figure 6.1: Architecture and execution of our study’s methodology

recognition methods, consisting of a handwritten numbers dataset. The experi-
ment involved evaluating the property1 which is the initial property assessed on
the MNIST networks involved an instance from the MNIST dataset portraying the
digit seven across five distinct optimization levels, b0, b1, b2, f b1, f b2 for a set
of six networks, each characterized by varying node counts: 250, 500, 750, 1000,
1250, and 1500 employing the sigmoid and Tanh activation functions. In our com-
parative analysis, we utilized dReal as an alternative method to benchmark against
iSAT. The objective was to evaluate the effectiveness of iSAT in the verification of
feed-forward neural networks by comparing its results with those obtained using
dReal. The findings revealed a notable superiority of iSAT, demonstrating higher
efficacy in the verification process. The discernible difference in performance fur-
ther substantiates the robustness of iSAT in handling feed-forward neural networks.
Our investigation demonstrated the effectiveness of both iSAT2 and iSAT3 in solv-
ing networks that utilized the sigmoid and Tanh function. Notably, iSAT2 exhibited
superior efficiency by requiring less time to solve these networks compared to iSAT3
and dReal.

• Verification of LSTM

We conducted evaluations to assess the effectiveness of our proposed verification
method for neural networks, with a particular focus on LSTM neural networks. Our
experiments were performed on two distinct datasets: the NGSIM dataset and the
satellite collision benchmarks in Chapter 5. First, a network was trained on a data
set of recorded traffic from the NGSIM project to learn an auto-braking maneuver.
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Second satellite collision avoidance data were used to train a risk assessment system.

In the second benchmark, the data set comprised information about the positions,
speeds, accelerations, and lanes used by cars traveling on US Highway 101. We
had two iSAT definitions of braking advisories. One formula encodes the physical
ground truth of Newtonian mechanics’ corresponding distance requirement to avoid
the collision, while the other provides the LSTM behavior for giving emergency
braking advisories. We were particularly interested in situations where emergency
braking is necessary but the neural networks fail to provide the required advisory.
These scenarios highlight unsafe conditions where the neural network lacks the ca-
pability to offer essential braking advice. By providing that condition as a veri-
fication target, iSAT could be successful in checking for the satisfiability of this
condition.

We further investigated the scalability of verifying LSTM neural networks using
our implemented method in the third case study, which offers insights into satellites
and objects orbiting in space. To compare the scalability of LSTM verification us-
ing iSAT2 and iSAT3, we measured the performance of each solver with respect to
the solver time and also memory usage with tanh and sigmoid activation functions.
However, it is noteworthy that, based on these results, we made a strategic deci-
sion not to employ dReal for the evaluation of long short-term memory networks.
The rationale behind this decision lies in the observed substantial performance gap,
where iSAT demonstrated superior results for feed-forward neural networks. Con-
sequently, the focus of our evaluation remained centered on iSAT, recognizing its
proficiency and reliability in the verification of neural networks.

In the verification of LSTM networks, our study revealed that iSAT2 outperformed
iSAT3 in terms of performance. The inherent complexity of LSTM verification
problems stems from the presence of an extensive number of variables, creating a
vast search space for constraint solving. For instance, in the case of the Sg1000
example, there were approximately 15 million real-valued variables involved.

The comparison highlighted a notable difference in the approach employed by iSAT2
and iSAT3. iSAT3 utilized an SAT-modulo-theory-style Boolean literal abstraction
for theory-related facts, while iSAT2 employed direct interval constraint propaga-
tion. In the context of LSTM verification, this distinction seemed to have an impact,
with iSAT2’s approach proving more efficient. The observation suggests that, in sce-
narios involving extremely large numbers of variables and intricate search spaces,
the direct interval constraint propagation method of iSAT2 may be more advanta-
geous than the abstraction-based approach of iSAT3. This observation serves as
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valuable insight for guiding the future development of dedicated LSTM verifiers,
indicating the need for tailored approaches that can effectively handle the unique
challenges posed by the verification of LSTM neural networks.

6.2 Future Research
To expand upon the findings and potential applications of our verification methods, future
research avenues are worth exploring. This section outlines three key areas for future
investigation.

• Handling diverse neural network architectures: Exploring the applicability of
the proposed verification methods to other neural network architectures, including
convolutional neural networks, reinforcement learning models, and other diverse
architectures.

• More benchmarks: To gain further insight into the scale of networks iSAT can
successfully check, a set of different benchmarks would allow this conclusion to be
further confirmed.

• Enhance and improve the current procedures: For future work, it is imperative
to refine and optimize the existing procedures while addressing critical questions
related to the mutual benefits and drawbacks of reach-set versus satisfiability-based
methods for neural network verification. The term ’reach-set’ refers to the set of all
possible states that a system can reach under given conditions. Beyond mere refine-
ment, an in-depth exploration is required to understand the complementary nature
of these methods. A preliminary hypothesis suggests that satisfiability-based meth-
ods may excel in falsification scenarios, which warrants further investigation. The
insights gained from the comparative analysis of iSAT2 and iSAT3 reveal significant
differences in performance. The observed performance bottleneck associated with
Boolean abstraction suggests that the use of off-the-shelf SMT solvers might pose
challenges for NN verification. Therefore, future research could explore the devel-
opment of a structural SMT version that traverses the neural network structurally,
similar to the relation between structural SAT and CNF SAT in circuit verification
[JBH12]. Such an approach holds promise for overcoming current limitations and
enhancing the efficiency of NN verification processes.

99



6. Conclusion and Further Research

100



Bibliography

[Adm07] Federal Highway Administration. US highway 101 dataset NGSIM, 2007.
https://www.fhwa.dot.gov/publications/research/operations/

07030.

[AJO+18] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Vic-
toria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-
the-art in artificial neural network applications: A survey. Heliyon, 4(11),
2018.

[AKB00] S Agatonovic-Kustrin and Rosemary Beresford. Basic concepts of artificial
neural network (ANN) modeling and its application in pharmaceutical re-
search. Journal of pharmaceutical and biomedical analysis, 22(5):717–727,
2000.

[AKLP19] Michael E. Akintunde, Andreea Kevorchian, Alessio Lomuscio, and Edoardo
Pirovano. Verification of RNN-based neural agent-environment systems. In
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 6006–6013. AAAI Press, 2019.

[AMM22] Tasniem Nasser Alyahya, Mohamed El Bachir Menai, and Hassan Mathk-
our. On the structure of the boolean satisfiability problem: A survey. ACM
Computing Surveys (CSUR), 55(3):1–34, 2022.

101

https://www.fhwa.dot.gov/publications/research/operations/07030
https://www.fhwa.dot.gov/publications/research/operations/07030


BIBLIOGRAPHY

[AMTZ21] Mahathi Anand, Vishnu Murali, Ashutosh Trivedi, and Majid Zamani. Ver-
ification of hyperproperties for uncertain dynamical systems via barrier cer-
tificates. arXiv preprint arXiv:2105.05493, 2021.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Rance Cleaveland, editor, Tools
and Algorithms for Construction and Analysis of Systems, 5th International
Conference, TACAS ’99, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’99, Amsterdam, The Nether-
lands, March 22-28, 1999, Proceedings, volume 1579 of Lecture Notes in
Computer Science, pages 193–207. Springer, 1999.

[BFF+19] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and
Christian Schilling. JuliaReach: a toolbox for set-based reachability. In
Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, pages 39–44, 2019.

[BG94] George Bebis and Michael Georgiopoulos. Feed-forward neural networks.
IEEE Potentials, 13(4):27–31, 1994.

[BIL+16] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya Nori, and Antonio Criminisi. Measuring neural net robustness with
constraints. Advances in neural information processing systems, 29, 2016.

[Bje05] Per Bjesse. What is formal verification? ACM SIGDA Newsletter, 35(24):1–
es, 2005.

[BPSV03] Jerry R Burch, Roberto Passerone, and Alberto L Sangiovanni-Vincentelli.
Modeling techniques in design-by-refinement methodologies. System Speci-
fication & Design Languages: Best of FDL’02, pages 283–292, 2003.

[BR23] Sumon Biswas and Hridesh Rajan. Fairify: Fairness verification of neural
networks. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 1546–1558. IEEE, 2023.

[BST+10] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The SMT-LIB standard:
version 2.0. In Proceedings of the 8th international workshop on satisfiability
modulo theories (Edinburgh, UK), volume 13, page 14, 2010.

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories, pages 305–
343. Springer International Publishing, Cham, 2018.

102



BIBLIOGRAPHY

[CFS] CFSCC. Space track. https://www.space-track.org.

[Cla97] Edmund M Clarke. Model checking. In Foundations of Software Technol-
ogy and Theoretical Computer Science: 17th Conference Kharagpur, India,
December 18–20, 1997 Proceedings 17, pages 54–56. Springer, 1997.

[CMF21] Davide Corsi, Enrico Marchesini, and Alessandro Farinelli. Formal verifica-
tion of neural networks for safety-critical tasks in deep reinforcement learn-
ing. In Uncertainty in Artificial Intelligence, pages 333–343. PMLR, 2021.

[Cou01] Patrick Cousot. Abstract interpretation based formal methods and future chal-
lenges. In Informatics: 10 Years Back, 10 Years Ahead, pages 138–156.
Springer, 2001.

[CW96] Edmund M Clarke and Jeannette M Wing. Formal methods: State of the
art and future directions. ACM Computing Surveys (CSUR), 28(4):626–643,
1996.

[Dev22] TensorFlow Developers. TensorFlow. GitHub: https://github.com/

tensorflow/tensorflow/graphs/contributors, 2022.

[Dic18] M.R. Dickey. Tesla model X speed up in autopilot mode seconds be-
fore fatal crash: according to NTSB. https://techcrunch.com/story/

tesla-model-x-fatal-crash-investigation, 2018.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[DLV11] Patricia Derler, Edward A Lee, and Alberto Sangiovanni Vincentelli. Model-
ing cyber–physical systems. Proceedings of the IEEE, 100(1):13–28, 2011.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems: 14th
International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings 14, pages 337–340. Springer,
2008.

[DT03] George Bernard Dantzig and Mukund N Thapa. Linear programming: The-
ory and extensions, volume 2. Springer, 2003.

103

https://www.space-track.org
https://github.com/tensorflow/tensorflow/graphs/contributors
https://github.com/tensorflow/tensorflow/graphs/contributors
https://techcrunch.com/story/tesla-model-x-fatal-crash-investigation
https://techcrunch.com/story/tesla-model-x-fatal-crash-investigation


BIBLIOGRAPHY

[ECfE] Inland Transport Committee Economic Commission for Europe. Vienna con-
vention on road traffic. http://www.unece.org/fileadmin/DAM/trans/
conventn/crt1968e.pdf.

[Ehl17] Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neu-
ral networks. In Automated Technology for Verification and Analysis: 15th
International Symposium, ATVA 2017, Pune, India, October 3–6, 2017, Pro-
ceedings 15, pages 269–286. Springer, 2017.

[EKKT22] Charis Eleftheriadis, Nikolaos Kekatos, Panagiotis Katsaros, and Stavros Tri-
pakis. On neural network equivalence checking using SMT solvers. In In-
ternational Conference on Formal Modeling and Analysis of Timed Systems,
pages 237–257. Springer, 2022.

[Eur] European Space Agency. Collision detection dataset. https://www.

kelvins.esa.int.

[FH07] Martin Fränzle and Christian Herde. HySAT: An efficient proof engine for
bounded model checking of hybrid systems. Formal Methods in System De-
sign, 30:179–198, 2007.

[FHT+07] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias
Schubert. Efficient solving of large non-linear arithmetic constraint systems
with complex boolean structure. J. Satisf. Boolean Model. Comput., 1(3-
4):209–236, 2007.

[Fib22] Connor Fibich. Towards automated analysis of non-linear neural networks:
converting neural networks for verification with iSAT. Master’s thesis, Foun-
dations and Applications of Systems of Cyber-Physical Systems Research
Group, Carl von Ossietzky Universität Oldenburg, September 2022.

[GAC12] Sicun Gao, Jeremy Avigad, and Edmund M Clarke. δ-complete decision
procedures for satisfiability over the reals. In Automated Reasoning: 6th
International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29,
2012. Proceedings 6, pages 286–300. Springer, 2012.

[Geu09] Herman Geuvers. Proof assistants: History, ideas, and future. Sadhana,
34(1):3–25, 2009.

[GKC13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for
nonlinear theories over the reals. In Maria Paola Bonacina, editor, Automated

104

http://www.unece.org/fileadmin/DAM/trans/conventn/crt1968e.pdf
http://www.unece.org/fileadmin/DAM/trans/conventn/crt1968e.pdf
https://www.kelvins.esa.int
https://www.kelvins.esa.int


BIBLIOGRAPHY

Deduction – CADE-24, pages 208–214, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[GS15] Anjana Gosain and Ganga Sharma. Static analysis: A survey of techniques
and tools. In Intelligent Computing and Applications: Proceedings of the
International Conference on ICA, 22-24 December 2014, pages 581–591.
Springer, 2015.

[GZZ+23] Xingwu Guo, Ziwei Zhou, Yueling Zhang, Guy Katz, and Min Zhang. Oc-
cRob: efficient SMT-based occlusion robustness verification of deep neural
networks. In International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 208–226. Springer, 2023.

[Her11] Christian Herde. Efficient solving of large arithmetic constraint systems with
complex Boolean structure. Springer, 2011.

[HG16] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415, 2016.

[HKWW17] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety ver-
ification of deep neural networks. In Computer Aided Verification: 29th In-
ternational Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I 30, pages 3–29. Springer, 2017.

[Hoc98] Sepp Hochreiter. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neu-
ral Comput., 9(8):1735–1780, 1997.

[HSW90] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approxi-
mation of an unknown mapping and its derivatives using multilayer feedfor-
ward networks. Neural networks, 3(5):551–560, 1990.

[IEE19] IEEE. IEEE standard for floating-point arithmetic. Technical Report IEEE
Std 754-2019 (Revision of IEEE 754-2008), IEEE, 2019.

[isa10] iSAT Quick Start Guide. AVACS H1/2 iSAT Developer Team, 2010.

[Jaz14] Nasser Jazdi. Cyber physical systems in the context of Industry 4.0. In 2014
IEEE international conference on automation, quality and testing, robotics,
pages 1–4. IEEE, 2014.

105



BIBLIOGRAPHY

[JBH12] Matti Järvisalo, Armin Biere, and Marijn JH Heule. Simulating circuit-level
simplifications on CNF. Journal of Automated Reasoning, 49(4):583–619,
2012.

[JBK20a] Yuval Jacoby, Clark Barrett, and Guy Katz. Verifying recurrent neural net-
works using invariant inference. In Automated Technology for Verification
and Analysis: 18th International Symposium, ATVA 2020, Hanoi, Vietnam,
October 19–23, 2020, Proceedings 18, pages 57–74. Springer, 2020.

[JBK20b] Yuval Jacoby, Clark W. Barrett, and Guy Katz. Verifying Recurrent Neural
Networks Using Invariant Inference. In Dang Van Hung and Oleg Sokolsky,
editors, Automated Technology for Verification and Analysis - 18th Interna-
tional Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Pro-
ceedings, volume 12302 of Lecture Notes in Computer Science, pages 57–74.
Springer, 2020.

[KBD+17a] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochender-
fer. Reluplex: An efficient SMT solver for verifying deep neural networks.
In Computer Aided Verification: 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, pages 97–
117. Springer, 2017.

[KBD+17b] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochen-
derfer. Towards proving the adversarial robustness of deep neural networks.
arXiv preprint arXiv:1709.02802, 2017.

[KK17] Nikhil Ketkar and Nikhil Ketkar. Introduction to keras. Deep learning with
python: a hands-on introduction, pages 97–111, 2017.

[KKLR13] Junsung Kim, Hyoseung Kim, Karthik Lakshmanan, and Ragunathan Rajku-
mar. Parallel scheduling for cyber-physical systems: Analysis and case study
on a self-driving car. In Proceedings of the ACM/IEEE 4th international
conference on cyber-physical systems, pages 31–40, 2013.

[KMKM21] Nikhil Ketkar, Jojo Moolayil, Nikhil Ketkar, and Jojo Moolayil. Introduc-
tion to pytorch. Deep Learning with Python: Learn Best Practices of Deep
Learning Models with PyTorch, pages 27–91, 2021.

[Koe18] Will Koehrsen. Overfitting vs. underfitting: A complete example. Towards
Data Science, 405, 2018.

106



BIBLIOGRAPHY

[Kor22] Milan Korda. Stability and performance verification of dynamical systems
controlled by neural networks: algorithms and complexity. IEEE Control
Systems Letters, 6:3265–3270, 2022.

[Krä06] Walter Krämer. Generalized intervals and the dependency problem. In
PAMM: proceedings in applied mathematics and mechanics, volume 6, pages
683–684. Wiley Online Library, 2006.

[Kri07] David Kriesel. A Brief Introduction to Neural Networks. dkriesel.com, 2007.
eBook: PDF, 244 pages.

[Kri10] Moez Krichen. A formal framework for conformance testing of distributed
real-time systems. In Principles of Distributed Systems: 14th International
Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010. Pro-
ceedings 14, pages 139–142. Springer, 2010.

[Kri18] Moez Krichen. Contributions to model-based testing of dynamic and dis-
tributed real-time systems. PhD thesis, École Nationale d’Ingénieurs de Sfax
(Tunisie), 2018.

[Kri24] Moez Krichen. Exploring the feasibility of formal methods in machine learn-
ing and Artificial Intelligence, Jan 2024.

[Lam18] Khoa Lam. Tesla model x on autopilot crashed into california highway bar-
rier, killing driver, 2018. https://incidentdatabase.ai/cite/321/.

[LCB10] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST
Database of Handwritten Digits. http://yann.lecun.com/exdb/mnist/,
2010.

[LCTJ23] Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T
Johnson. NNV 2.0: the neural network verification tool. In International
Conference on Computer Aided Verification, pages 397–412. Springer, 2023.

[LLL+20] Yu Li, Min Li, Bo Luo, Ye Tian, and Qiang Xu. Deepdyve: Dynamic verifica-
tion for deep neural networks. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 101–112, 2020.

[LM17] Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for
feed-forward relu neural networks. arXiv preprint arXiv:1706.07351, 2017.

[MC01] Danilo Mandic and Jonathon Chambers. Recurrent neural networks for pre-
diction: learning algorithms, architectures and stability. Wiley, 2001.

107

https://incidentdatabase.ai/cite/321/
http://yann.lecun.com/exdb/mnist/


BIBLIOGRAPHY

[MF21] Farzaneh Moradkhani and Martin Fränzle. Functional verification of cyber-
physical systems containing machine-learnt components. it-Information
Technology, 63(5-6):277–287, 2021.

[MFF23] Farzaneh Moradkhani, Connor Fibich, and Martin Fränzle. Verification of
LSTM neural networks with non-linear activation functions. In NASA Formal
Methods Symposium, pages 1–15. Springer, 2023.

[MPDW21] Sara Mohammadinejad, Brandon Paulsen, Jyotirmoy V. Deshmukh, and
Chao Wang. DiffRNN: Differential Verification of Recurrent Neural Net-
works. In Catalin Dima and Mahsa Shirmohammadi, editors, Formal Mod-
eling and Analysis of Timed Systems - 19th International Conference, FOR-
MATS 2021, Paris, France, August 24-26, 2021, Proceedings, volume 12860
of Lecture Notes in Computer Science, pages 117–134. Springer, 2021.

[onn] ONNX: open neural network exchange. https://onnx.ai/.

[PNW20] Bo Pang, Erik Nijkamp, and Ying Nian Wu. Deep learning with tensorflow:
A review. Journal of Educational and Behavioral Statistics, 45(2):227–248,
2020.

[PRZ01] Amir Pnueli, Sitvanit Ruah, and Lenore Zuck. Automatic deductive verifica-
tion with invisible invariants. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 82–97. Springer,
2001.

[PT10] Luca Pulina and Armando Tacchella. An abstraction-refinement approach
to verification of artificial neural networks. In Computer Aided Verifica-
tion: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19,
2010. Proceedings 22, pages 243–257. Springer, 2010.

[PT11] Luca Pulina and Armando Tacchella. NeVer: A tool for artificial neural
networks verification. Annals of Mathematics and Artificial Intelligence,
62:403–425, 2011.

[PT12] Luca Pulina and Armando Tacchella. Challenging SMT solvers to verify
neural networks. Ai Communications, 25(2):117–135, 2012.

[PYY+19] Zhaoqing Pan, Weijie Yu, Xiaokai Yi, Asifullah Khan, Feng Yuan, and Yuhui
Zheng. Recent progress on generative adversarial networks (GANs): A sur-
vey. IEEE access, 7:36322–36333, 2019.

108

https://onnx.ai/


BIBLIOGRAPHY

[RAS20] Andrinandrasana David Rasamoelina, Fouzia Adjailia, and Peter Sinčák. A
review of activation function for artificial neural network. In 2020 IEEE 18th
World Symposium on Applied Machine Intelligence and Informatics (SAMI),
pages 281–286. IEEE, 2020.

[RDGC13] David E Rumelhart, Richard Durbin, Richard Golden, and Yves Chauvin.
Backpropagation: The basic theory. In Backpropagation, pages 1–34. Psy-
chology Press, 2013.

[RZL17] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Swish: a self-gated
activation function. arXiv preprint arXiv:1710.05941, 7(1):5, 2017.

[She20] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network. Physica D: Nonlinear Phenomena,
404:132306, 2020.

[SKB13] Karsten Scheibler, Stefan Kupferschmid, and Bernd Becker. Recent Improve-
ments in the SMT Solver iSAT. MBMV, 13:231–241, 2013.

[Sol21] SAT Solvers. Conflict-Driven Clause Learning. Handbook of Satisfiability,
336:133, 2021.

[SSA17] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions
in neural networks. Towards Data Sci, 6(12):310–316, 2017.

[TBXJ20] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T Johnson. Ver-
ification of deep convolutional neural networks using imagestars. In Inter-
national conference on computer aided verification, pages 18–42. Springer,
2020.

[TCY+23] Hoang Dung Tran, Sung Woo Choi, Xiaodong Yang, Tomoya Yamaguchi,
Bardh Hoxha, and Danil Prokhorov. Verification of recurrent neural net-
works with star reachability. In Proceedings of the 26th ACM International
Conference on Hybrid Systems: Computation and Control, pages 1–13, 2023.

[TOHC15] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a
next-generation open source framework for deep learning. In Proceedings of
workshop on machine learning systems (LearningSys) in the twenty-ninth an-
nual conference on neural information processing systems (NIPS), volume 5,
pages 1–6, 2015.

109



BIBLIOGRAPHY

[TPM+21] Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Diego Manzanas Lopez,
Nathaniel Hamilton, Xiaodong Yang, Stanley Bak, and Taylor T Johnson.
Robustness verification of semantic segmentation neural networks using re-
laxed reachability. In Computer Aided Verification: 33rd International Con-
ference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I 33,
pages 263–286. Springer, 2021.

[Tur89] Alan Turing. Checking a large routine. In The early British computer con-
ferences, pages 70–72, 1989.

[UIS+22] Thomas Uriot, Dario Izzo, Luís F Simões, Rasit Abay, Nils Einecke, Sven
Rebhan, Jose Martinez-Heras, Francesca Letizia, Jan Siminski, and Klaus
Merz. Spacecraft collision avoidance challenge: Design and results of a ma-
chine learning competition. Astrodynamics, 6(2):121–140, 2022.

[vOU24] Carl von Ossietzky University. CARL: center for high-performance
computing, 2024. https://uol.de/fk5/wr/hochleistungsrechnen/

hpc-facilities/carl.

[WYW+19] Xiaobing Wang, Kun Yang, Yanmei Wang, Liang Zhao, and Xinfeng Shu.
Towards formal verification of neural networks: a temporal logic based
framework. In International Workshop on Structured Object-Oriented For-
mal Language and Method, pages 73–87. Springer, 2019.

[Yin19] Xue Ying. An overview of overfitting and its solutions. In Journal of physics:
Conference series, volume 1168, page 022022. IOP Publishing, 2019.

[YSHZ19] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A Review of
Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural
Computation, 31(7):1235–1270, 07 2019.

[ZJ15] Xi Zheng and Christine Julien. Verification and validation in cyber physical
systems: Research challenges and a way forward. In 2015 IEEE/ACM 1st
International Workshop on Software Engineering for Smart Cyber-Physical
Systems, pages 15–18. IEEE, 2015.

[ZMW+21] Meng Zhu, Weidong Min, Qi Wang, Song Zou, and Xinhao Chen. PFLU
and FPFLU: Two novel non-monotonic activation functions in convolutional
neural networks. Neurocomputing, 429:110–117, 2021.

110

https://uol.de/fk5/wr/hochleistungsrechnen/hpc-facilities/carl
https://uol.de/fk5/wr/hochleistungsrechnen/hpc-facilities/carl


Appendices

111





Appendix A

Acronyms

This section is dedicated to defining the acronyms and abbreviations utilized in this re-
search.

• ANNs: Artificial Neural Networks

• AF: Activation Function

• AV: Automated Vehicles

• BMC: Bounded Model Checking

• CDCL: Conflict-Driven Clause Learning

• CDM: Conjunction Data Message

• CNF: Conjunctive Normal Form

• CPS: Cyber-Physical Systems

• DNN: Deep Neural Network

• DPLL: The Davis-Putnam-Logemann-Loveland Method

• ESA: European Space Agency

• FFNN: Feedforward Neural Network
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• GAN: Generative Adversarial Network

• GELU: Gaussian Error Linear Unit

• ICP: Interval-Based Arithmetic Constraint Solving

• LEO: Low Earth orbit

• LP: Linear Programming

• LSTM: Long Short-Term Memory

• MBT: Model Based Testing

• MNIST: Modified National Institute of Standards and Technology database

• MILP: Mixed Integer Linear Programming Solvers

• NGSIM: Next Generation Simulation

• ONNX: Open Neural Network Exchange

• ReLU: Rectified Linear Unit

• REU: Rectified Exponential Unit

• RNN: Recurrent Neural Network

• SAT: Boolean Satisfiability Problem

• SMT: Satisfiability Modulo Theories Solvers

• Tanh: Hyperbolic Tangent Function

• TCA: Time of Closest Approach

• XOR: Exclusive Or
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