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Abstract

Software plays an important role in our daily lives. To prove that a program fulfills specific
requirements, software verification is used. There exist various approaches for software
verification, implemented in verifiers, each having individual strengths and weaknesses.
To combine their strengths, different concepts for combining them in a white-box manner
have been developed.

In contrast to white-box integrations, cooperative software verification aims at combin-
ing existing components on a conceptual level, working loosely coupled together to solve
a task. Consequently, components are used as black-boxes, exchanging information via
verification artifacts. Thereby, integrating novel components and thus innovation becomes
at best a configuration task. There already exist a few concepts for cooperative software
verification, which demonstrate the advantages of black-box cooperation. In most of these
approaches, the components are executed in a sequence, where each is using intermediate
results computed by the prior component.

This thesis presents a systematic analysis of the effects of using cooperative software ver-
ification. To this end, we develop and evaluate three concepts for cooperative software
verification: a sequential, a cyclic, and a parallel concept. The sequential concept, called
CoVEGI, uses a verifier in cooperation with components that generate invariants. Invari-
ant generation is a core task in software verification and using these externally generated
invariants allows the verifier to solve tasks that could not be solved without cooperation.
The second, cyclic concept for cooperative verification is based on the decomposition of the
existing and widely used CEGAR scheme. In the decomposed version C-CEGAR, three
stateless components communicate via existing verification artifacts. Additionally, we de-
compose a tightly coupled implementation of CEGAR and demonstrate its feasibility, and
that using other off-the-shelf components allows for solving tasks that were not solvable
before. Lastly, we propose the concept of ranged program analysis, a parallel composition
of verifiers, that generalizes the idea of ranged symbolic execution to arbitrary verification
approaches. Ranged program analysis divides the verification task using ranges, where
each range can be solved in parallel by different verifiers. We develop two different meth-
ods for restricting the exploration of off-the-shelf analyses to a given range and show
experimentally, that using two different verifiers increases the overall performance.





Zusammenfassung

Software spielt in unserem täglichen Leben eine wichtige Rolle. Um zu zeigen, dass
ein Programm bestimmte Anforderungen erfüllt wird Softwareverifikation verwendet. Es
existieren verschiedene Ansätze zur Softwareverifikation, implementiert in Verifizierern,
wobei jeder Ansatz individuelle Stärken und Schwächen besitzt. Um die Stärken der einzel-
nen Ansätze zu kombinieren, wurden verschiedene Konzepte zur Kombination mithilfe von
Whitebox-Integration entwickelt.

Das Ziel der kooperativen Softwareverifikation ist im Gegensatz zu Whitebox-Integra-
tionen, existierende Komponenten auf einer konzeptionellen Ebenen zu kombinieren, damit
diese im losen Verbund zusammen die Aufgabe lösen können. Dabei werden Komponenten
konsequenterweise als Blackbox verwendet und die Informationen über Verifikationsarte-
fakte austauscht. Dadurch wird die Integration von neuen Komponenten und somit auch
von Innovation im Idealfall eine Konfigurationsaufgabe. Es gibt bereits erste Konzepte
für kooperative Softwareverifikation, die die Vorteile der Blackbox-Kooperation demon-
strieren. In den meisten dieser Ansätze werden die Komponenten sequentiell ausgeführt,
wobei jede die Zwischenergebnisse der Vorgänger verwendet.

In dieser Arbeit wird eine systematische Analyse der Auswirkungen der Verwendung
von kooperativer Softwareverifikation durchgeführt. Dafür entwickeln und evaluieren wir
drei Konzepte der kooperativen Softwareverifikation: ein sequenzielles, ein zyklisches und
ein paralleles. Im sequenziellen Konzept CoVEGI wird einen Verifizierer in Kombination
mit Komponenten zur Invarianten-Generierung verwendet. Die Invarianten-Generierung
ist eine der Kernaufgaben in der Softwareverifikation und die Verwendung von extern
generierten Invarianten erlaubt den Verifizierer Aufgaben zu lösen, die ohne Kooperation
nicht lösbar sind. Das zweite, zyklische Konzept für eine kooperative Softwareverifika-
tion basiert auf der Zerlegung des existierend und weit verbreiteten CEGAR-Schemas. In
der zerlegten Version C-CEGAR kommunizieren drei zustandslose Komponenten über ex-
istierenden Verifikationsartefakten. Darüber hinaus haben wir eine existierende Implemen-
tierung des CEGAR-Schemas zerlegt und damit sowohl die Machbarkeit von C-CEGAR
demonstriert als auch dass die Nutzung von anderen Standardkomponenten das Lösen von
vorher nicht lösbaren Aufgaben ermöglicht. Zuletzt haben wir das Konzept der Ranged
Program Analysis vorgestellt, eine parallele Komposition von Verifizieren, das die Idee des
Ranged Symbolic Execution für beliebige Standard-Verifizierer generalisiert. Dabei wird
das Verifikationsproblem anhand von Ranges aufgeteilt, sodass die Teilprobleme parallel
von verschiedenen Verifizieren gelöst werden können. Wir haben zwei Methoden entwick-
elt, um die Analyse eines Standard-Verifizier auf eine gegebene Range einzuschränken und
gezeigt, dass die Kombination von verschiedenen Verifizieren die Performance signifikant
erhöht.
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Introduction
1

Software is used everywhere in our daily lives. It is not only executed on computers and
mobile devices, software also controls rockets, self-driving cars, or all kinds of medical
devices. Especially in these safety-critical systems, the correctness of software is crucial,
as bugs can lead to critical issues, ranging from severe financial damage to personal
injuries or death. In 1987, a race condition in the control software of the Therac-25, a
computer-controlled radiation therapy machine for cancer, caused a massive overdose
of radiation, killing at least three patients [LT93]. More recently, a bug in the app of an
insulin pump caused the pump’s battery to run out faster than expected and thereby
stopping the patient’s insulin treatment, which led to 224 injuries [FDA24]. In 1996,
the Ariane 5 rocket started its self-destruction shortly after its launch, as the internal
navigation system was stopped due to an overflow in a variable [Lio+96].

All prior examples demonstrate that even software in safety-critical systems contain
bugs, which can remain undetected until the systems’ productive use. Normally, bugs
do not lead to such drastic consequences. In practice, developers often use testing meth-
ods to test the functionality of software and to identify bugs. Testing is very effective
in finding bugs, however, it can never show their absence [Dij72]. In contrast, methods
such as software verification aim at finding proofs for the correctness of the (software)
system, that are valid for all possible executions of it [GS18; JM09]. In order to do so,
a formal specification of the system’s correctness is needed. Safety properties are often
used for this purpose, for instance stating that certain error states are unreachable or
postconditions are satisfied [CHVB18; JM09]. Given a formal specification, verification
approaches work on a model of the system rather than computing the proofs directly.
Such models are for example Büchi automata [Büc62], Kripke structures [Kri59] or
Control-flow automata [ASU86; BHJM07] and can be constructed at any point in the
development process, but are constructed in most cases based on existing code [CHV18].
As the verification approaches are working on models, they are applicable to differ-
ent types of systems as operating systems and drivers [KMPZ09; BR02b; Man+12],
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(industrial) applications and mobile apps [PNRR15; Pau23; Bau+21] or even hard-
ware [SSS00; JKSC08; GS20]. Having the model and the specification at hand, the
verification approach analyzes the full state space to guarantee that no execution of
the system violates the safety property.

Within the last years, software verification has made enormous progress. New ideas
and techniques as symbolic execution [Kin76; CS13], predicate abstraction [GS97],
(bounded) model checking [CE82; JM09; Bie+03], k-induction [DHKR11], property-
directed reachability [Bra11], or dataflow analyses [Kil73] are developed. In addition,
some large companies like NASA [GMKC13], Facebook [Cal+15; OHe18], Amazon
Web Services [Coo18], Google [Sad+18], or Airbus [Cou+05] use such techniques.
The progress is also observable in annual competitions as SV-COMP [Bey24] or Veri-
fyThis [EHMU19], where so-called verifiers realizing these techniques compete. These
competitions also show that existing verification approaches have individual strengths
and weaknesses. There is no approach that is superior to all others. Hence, either an
approach that fits the needs of the use case best is chosen or different approaches are
combined. The latter idea is successfully employed in many approaches, e.g., [Roc+17;
AABC21; Hus+17; DGH16; NKP18; AGC12; GD17; Nol+20], to either increase the
number of correct results computed (effectiveness) or reduce the time taken to compute
a solution (efficiency). The combinations employ two or more (conceptually different)
approaches and combine their strengths by exchanging information or partial results
or by dividing the task. Most existing combinations use a conceptual integration with
multiple components. In these white-box integrations, information is exchanged using
internal formats, method calls, or accessing shared data structures. Therefore, replacing
one component with another is almost impossible without building a new integration.

1.1 The Idea of Cooperative Software Verification

In 2012, Beyer et al. [BHKW12] and Christakis et al. [CMW12] presented two con-
cepts for black-box cooperation of verification tools. Both concepts are based on the
same idea, namely that several components are executed as black-boxes in a sequence,
where each reuses the partial verification result computed by the previous tools. The
information computed is exchanged using verification artifacts that can be exchanged
among the black-box components. Hence, their ideas combine the strengths of different
components on a conceptual level, cooperating loosely coupled to solve a task. As there
are multiple approaches based on these two ideas [CJW15; BJLW18; BJ20; CMW16],
they can be seen as a starting point for black-box cooperation in software verification.
The ultimate goal of such black-box cooperation is to make the integration of new con-
cepts, and thus innovation, a configuration task, by avoiding strong cohesion between
existing components. In 2020, Beyer and Wehrheim termed this idea as cooperative ver-
ification [BW20]. Following them, we state four requirements for cooperative software
verification approaches in Characterization 1.1.
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Chapter 1. Introduction

Characterization 1.1. A verification approach is called cooperative if (1) there are at
least two identifiable actors that (2) solve the verification task together by (3) exchanging
information using verification artifacts, and (4) most actors are used off the shelf.

We call any component that participates in the process of computing a solution an
actor . Using an actor off-the-shelf means that it is not modified for the specific coop-
erative approach. A verification artifact is a standardized format that allows encoding
information and is exchangeable among different actors. At best, all off-the-shelf actors
are able to use the verification artifacts as inputs or generate them as output.

In contrast to the significant number of approaches using a conceptual integration,
it turns out that there are only a few other cooperative approaches according to Char-
acterization 1.1. Most approaches are sequential and based on the ideas of [BHKW12;
CMW12], or are tailored to a specific domain, e.g., Android app analysis [Pau23]. Con-
sequently, there is currently a research gap regarding cooperative software verification,
as it remains unclear whether ideas successfully used within non-cooperative combina-
tions are also suited for being used in a cooperative way, how such cooperative concepts
look like and if we can develop novel concepts. Moreover, there is no systematic eval-
uation of the positive and potential negative effects when using cooperative software
verification. In this thesis, we thus address the following high-level research question:

Research Question
What are potential forms of cooperative soft-

ware verification and is it beneficial using them?

1.2 Contribution of this Thesis and Outline

To answer this question systematically, we first have a look at potential forms of coop-
eration. In general, we can differentiate three fundamental ways of establishing coop-
eration between actors: sequential, cyclical, or parallel. The three forms are depicted
in Figure 1.1 on a conceptual level, with actors colored in blue.

In order to compute a proof for the correctness of the system, software verification
approaches have to analyze the full state space of the model of the system. As the
state space is usually large or even infinite, we develop three different concepts for
cooperative software verification throughout this thesis, aiming to simplify the analysis
of the state space. Within the sequential concept, actors cooperate using invariants,
which abstract parts of the state space and thereby reduce it. The cyclic concept aims
to generate a suitable abstraction, where different actors cooperate through solving
different subtasks and exchanging the results. The parallel concept allows for dividing
the state space into disjoint parts, such that each can be analyzed independently and
in parallel. We realize and evaluate all three concepts using seven off-the-shelf tools.

In Chapter 2 of the thesis, we explain the fundamental concepts of software ver-
ification used in this thesis, especially defining the verification task that needs to be
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Actor 1 Actor 2

Input Artifact Result
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Actor 1 Actor 2

Input
Artifact
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(b) Cyclic

Input
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Arti-
facts

Result

(c) Parallel

Figure 1.1: Three different ways to build cooperative verification approaches

solved, and introducing existing concepts for software verification and artifacts. There-
after, we start in Chapter 3 the systematic analysis of cooperative software verification.
First, we define a novel concept for sequential cooperative software verification. In
contrast to the two sequential ideas proposed by Beyer et al. [BHKW12] and Chris-
takis et al. [CMW12], we develop a novel concept, called Cooperative Verification via
Externally Generated Invariants (CoVEGI), that does not exchange intermediate ver-
ification results but allows for delegating one core task of verification, namely invariant
generation. CoVEGI uses a verifier in cooperation with a component that generates
invariants. In order to compute such invariants, we additionally present the Modular
Framework for Invariant Generation using Machine Learning (MIGml), which allows
for the construction of tools for invariant generation with machine learning and enables
the comparison of existing ones on equal grounds.

In Chapter 4, we focus on a cyclic cooperative verification. In contrast to the first
concept, we do not propose a novel form of cooperation. Instead, we follow the idea of
decomposing existing schemes of software verification to make them ready to be used
in cooperative settings. To demonstrate and evaluate the feasibility of such decom-
position, we exemplarily decompose the Counterexample-Guided Abstraction Refine-
ment (CEGAR) scheme. Furthermore, we also have a closer look at existing verification
artifacts, particularly discussing if one artifact with fixed semantics exists that is usable
in different scenarios of cooperative software verification. As a result, we develop the
Generalized Information Exchange Automaton (GIA).

In Chapter 5, we develop a parallel approach for cooperative verification. The main
challenge in parallel cooperation is to split the task among the actors, such that the
resulting subtasks can be executed in parallel. Our approach, called ranged program
analysis, uses a divide-and-conquer approach and generalizes the idea of ranged sym-
bolic execution. It allows the division of the verification task such that the actors can
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solve the assigned subtasks in parallel and the intermediate results are joined to a final
answer. We present two methods based on Configurable Program Analyses and instru-
mentation to ensure that off-the-shelf tools only work on the assigned subtasks.
In each chapter, we experimentally evaluate the concepts and compare them to the
non-cooperative actors to demonstrate that cooperative verification is beneficial. We
conclude this thesis by summarizing and discussing the results and providing an outlook
for future work in Chapter 6.

1.3 Publication Details and Personal Contribution

The ideas and most results presented in this thesis are based on articles published in
conference proceedings or in journals. All publications are authored in cooperation with
my supervisor Heike Wehrheim and partially with other colleagues. We also submitted
artifacts, in case the conference accepted or required a submission, and additionally
archived all experimental data and replication packages at Zenodo for all publications.

The ideas presented in Chapter 3 are based on two publications. The concept
of CoVEGI was first published in 2021 at FASE [HW21a] (artifact [HW21b]), and
MIGml was first published in 2022 at ICST [HW22b] (artifact [HW21c]). Both publica-
tions are co-authored with Heike Wehrheim and Jan Haltermann is the main author. In
the same year, we published a paper on decomposition in software verification yielding
the concept of cyclic cooperation, which is applied to CEGAR, as discussed in Chap-
ter 4 at ICSE [BHLW22a] (reusable artifact [BHLW22b]). The publication is authored
in cooperation with Dirk Beyer, Thomas Lemberger, and Heike Wehrheim, where the
concept, implementation, and evaluation were developed and conducted in close coop-
eration with Thomas Lemberger, where both authors contributed equally. The idea
of GIAs, the novel verification artifact, is based on a publication at SEFM [HW22a]
and an article in the Journal on Software and Systems Modeling [HW24] (unified ar-
tifact [HW23]). Both publications are co-authored with Heike Wehrheim and Jan
Haltermann is the main author.

The ideas presented in Chapter 5 are based on three different publications. In
2023, we published a paper introducing the core ideas and the CPA-based approach
at FASE [HJRW23b] (reusable artifact [HJRW23a]). Thereafter, we published fur-
ther ideas, including the concepts of work stealing in the journal Science of Computer
Programming [HJRW24b] (artifact [HJRW24c]). The instrumentation-based approach
was published at SEFM [HJRW23c] in 2023 (reusable artifact [HJRW23d]). All three
publications are authored in cooperation with Marie-Christine Jakobs, Cedric Richter,
and Heike Wehrheim, and Jan Haltermann is the first author. Different implemen-
tation aspects were divided among Marie-Christine Jakobs, Cedric Richter, and Jan
Haltermann.
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Fundamentals
2

Before developing different forms of cooperation for software verification, we set the
stage by defining the verification task that needs to be solved. The goal of software
verification is to determine whether a given program satisfies the predefined correctness
property. As conducting these proofs by hand is time-consuming and error-prone,
automatic tools, so-called verifiers are employed.

C
Program

S
Property

Verifier

V
Verdict

J
Justification

Figure 2.1: Conceptual view of a verifier

As shown in Figure 2.1, a verifier receives a program C and the property S as
input and computes a verdict V . It may also provide a justification J for this verdict,
ideally in the form of a standardized verification artifact. In this chapter, we define
and explain all elements in Figure 2.1 from left to right: We first formalize the syntax
and semantics of programs as well as the property to be verified in Section 2.1. We
then provide a brief overview of existing verification techniques that are used in the
cooperative verification approaches presented in this thesis in Section 2.2. Thereafter,
we present existing verification artifacts that serve as justification like correctness and
violation witnesses, and that are usable for the information exchange among actors
in a cooperative setting in Section 2.3. Next, we introduce existing verification tools
that are used as actors in cooperative verification concepts in Section 2.4. We conclude
this chapter by introducing a tool for building cooperative verification approaches and
describing the methodology used for benchmarking the performance of the cooperative
approaches in Section 2.5.
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2.1 Programs and Properties

2.1 Programs and Properties

Within this thesis, we focus on the verification of programs written in GNU C. We first
define the syntax and semantics for the programs and then provide a formal definition
of the safety properties used for verification.

2.1.1 Program Syntax and Semantics

For representation purposes only, we will introduce a simplified While programming
language using only bounded integer variables. All implementations and concepts pre-
sented in this thesis cover a rich subset of C programs. Figure 2.2 shows the abstract
syntax, which is based on the formalization given in [NNH99]:

P := type NAME((type x)∗){S} (type func((type x)∗){S})∗

S := assign | assume | S1; S2 | skip
assign := type x = a | x = a | x = func(a∗) | return x
assume := if(b) {S1} else {S2} | if(b) {S} | while(b) {S}

Figure 2.2: Abstract syntax of the While programming language

For the syntax, we use the set of all arithmetic expressions AExpr with a ∈ AExpr ,
the set of all boolean expressions BExpr with b ∈ BExpr , and the set of all program
variables Var with x ∈ Var . The type is a keyword for an arithmetic integer datatype
in C (char, short, int, long) which can additionally be unsigned. The language
contains calls to functions with an arbitrary number of arguments via func, where
the arguments are assigned to the parameters x. NAME is the name of the main
function of the program P . S is a sequence of statements, an assignment assign, an
assume statement assume or an skip statement. An assignment assign is a variable
declaration, a variable assignment, a function call assignment, or a return statement,
and an assume statement assume is either an if statement1 or a while loop. We denote
by Assign the set of all possible assignment statements. We use the set Ops to denote all
operations of the program, more formally we define Ops = BExpr ∪ Assign. Note that
programs generated by this abstract syntax are deterministic except for the input. It
is also possible to model non-deterministic behavior caused by user input using specific
functions such as rand() or nondet().

An example of a program generated by the abstract syntax is given in Figure 2.3a.
It divides the absolute value of the input value input by two and calculates the reminder
using only subtraction and addition. The program also contains a call to the function
abort(); in line 10., that is treated as an error location.

Most verification techniques represent programs as automata. We use a Control-
Flow automaton [ASU86; BHJM07] to model programs, an automaton in which edges
are labeled with program statements:

1Note that if(b) {S1} is short for if(b) {S1} else {skip}.
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int div2WithReminderAbs(short input){
0 if (input < 0){
1 input = -input;
2 }
3 int rem = input;
4 int res = 0;
5 while (rem > 1) {
6 rem -= 2;
7 res++;
8 }
9 if(input != 2*res + rem)

10 abort();
11 return res;
12 }

(a) The running example program

ℓ0

ℓ1

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ9

ℓ10

ℓerr

ℓ11

ℓ12

input<0

input = -input;

!(input<0)

rem = input;

res = 0;

rem>1 !(rem>1)

rem -= 2;
re

s+
+; input!=

2*res+rem

abort();

!(input!=
2*res+rem)

return res;

(b) The CFA C1 for the running example
Figure 2.3: The running example for the thesis, a program that computes the division by
two with a reminder for the absolute of given input using only addition and subtraction

Definition 2.1. A Control-Flow automaton (CFA) C = (L, ℓ0, G) is an automaton,
where L ⊆ Loc is a finite set of location names, a subset from all possible locations
Loc. The CFA has the initial location ℓ0 ∈ L and G ⊆ L×Ops×L is the set of control
flow edges. A control flow edge (ℓi, gi, ℓj) describes that the execution of statement gi
at location ℓi leads to location ℓj.

We denote by C the set of all CFAs. We present the CFA C1 for our running
example from Figure 2.3a in Figure 2.3b. Throughout this thesis we generate a CFA
for a program P . Thus, the CFA is deterministic, i.e., ∀(ℓi, gi, ℓj), (ℓi, gi, ℓ′j) ∈ G :
ℓj = ℓ′j , and that branching in the CFA occur only at edges labeled with assume
statements. Hence, we can construct during the transformation an indicator function
BC : G → {T, F,N} for a CFA C that indicates for each statement g ∈ G if g is not an
assume statement (N), is an assume statement that represents the true evaluation of the
boolean condition (T ) or the false evaluation (F ). In the CFA C1 shown in Figure 2.3b,
we have for example BC1(rem>1) = T , BC1(!(rem>1)) = F , and BC1(res=0;) = N .

After having defined the syntax for programs, we need to define their semantics.
First, we define a state σ as a mapping from the integer variables to integers, i.e.,
σ : Var → Z. We can lift the definition of a state to also contain the evaluation
of arithmetic and boolean expressions so that σ maps AExpr to Z and BExpr to B,
which is the boolean domain. The set of all possible states is denoted by Σ. The
combination of state and program location ⟨ℓ, σ⟩ is called program state. A program
path π = ⟨ℓ0, σ0⟩ −g1−→ ⟨ℓ1, σ1⟩ . . . −gn−→ ⟨ℓn, σn⟩ of a CFA C is a sequence of program
states and operations, such that for each transition ⟨ℓi−1, σi−1⟩ −gi−→ ⟨ℓi, σi⟩ the condition
(ℓi−1, gi, ℓi) ∈ G holds and that the path π starts at ℓ0. The initial state σ0 assigns the
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gi∈BExpr σi−1 |= gi σi = σi−1
⟨ℓi−1, σi−1⟩ −gi−→ ⟨ℓi, σi⟩

(2.1)

gi∈Assign \ {return x, x = func(a∗)} gi ≡ x=a σi = σi−1[x 7→ σi−1(a)]
⟨ℓi−1, σi−1⟩ −gi−→ ⟨ℓi, σi⟩

(2.2)

σi = σi−1[x1 7→ σi−1(a1), . . . , xn 7→ σi−1(an)]2 σm+1 = σm[x 7→ σm(x′)]
gi+1, . . . , gm ∈ BExpr ∪ (Assign \ {return y, y = func(a∗)})
⟨ℓi, σi⟩−gi+1−−→ ⟨ℓi+1, σi+1⟩, . . . , ⟨ℓm−1, σm−1⟩−gm−→ ⟨ℓm, σm⟩ adhere to (2.1),(2.2)

⟨ℓi−1, σi−1⟩−x=func(a1,...,an)−−−−−−−−−−→ ⟨ℓi, σi⟩−gi+1−−→ . . .−gm−→ ⟨ℓm, σm⟩−return x′
−−−−−−→ ⟨ℓm+1, σm+1⟩

(2.3)

Figure 2.4: The operational semantics for transitions

input values to the input variables and 0 to all other variables.
Next, we define the semantics of a program path. The formal definition of the

operational semantics is given in Figure 2.4. A transition adheres to the semantics, if the
state changes adhere to these rules. Intuitively, for a transition ⟨ℓi−1, σi−1⟩−gi−→ ⟨ℓi, σi⟩
where gi is a boolean condition, σi−1 has to satisfy the condition (2.1). For assignments,
the value of a variable x in σi has to be equal to the value of the expression a on the
right-hand side in σi−1, cf. (2.2). The notation σ[x 7→ c] means that the value of x is
updated to c in σ and all other values stay unchanged. For function calls, we consider
all statements between the function call and the return statement. The values of the
arguments a1, . . . , an in σi−1 given as input to the function func has to be equal to its
parameters x1, . . . , xn. Moreover, the value of x′ in σm−1 returned by func has to be
equal to x, the variable it is assigned to, cf. (2.3). We call a path π feasible if every
transition adheres to the semantics. Otherwise, we call it infeasible. We denote the set
of all feasible program paths of a CFA C by paths(C). If there is no feasible program
path leading to a certain location ℓ ∈ L, we call ℓ unreachable, and otherwise reachable.

2.1.2 Safety Properties for Programs

After having defined the syntax and semantics of the programs, we can define a cor-
rectness criterion. According to Lamport, safety properties ensure that nothing bad
happens [Lam77] and the Handbook of Model Checking defines safety in terms of
(non-)reachability of certain error states [CHVB18]. We, and many other approaches,
follow this idea:

Definition 2.2. A safety property S= (ℓ, ω) is a pair of location ℓ ∈ L and a boolean
formula ω ∈ BExpr , where ω has to hold in all program states reaching ℓ.

Thus, a CFA C violates S, if there exists a feasible program path π = ⟨ℓ0, σ0⟩ −g1−→
⟨ℓ1, σ1⟩ . . . −gi−→ ⟨ℓi, σi⟩ −gi+1−−→ . . ., such that ℓi = ℓ and σi ̸|= ω. A CFA can have
multiple safety properties. Note that we are interested only in the partial correctness

2where x1, . . . , xn are the parameters of func
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of a program since we focus on checking the violation of the safety property from
Definition 2.2 and do not consider termination.

In our running example, we use the safety property S = (ℓerr, false), i.e., the pro-
gram violates S when the function abort() in line 10 is called. Thus, verifying that
a CFA satisfies the safety property S is equivalent to checking the reachability of the
error location ℓerr. For verifiers working with assertions, we can replace lines 9 and 10
with the function call assert(input == 2*res + rem). This encoding results in an
equivalent safety property S′ = (ℓ9, input = 2 ∗ res+ rem).

2.1.3 SSA and Strongest Postcondition

When analyzing a program, keeping track of the variable values at different points in
the program is needed. To ease that, we usually transform the program first in the
so-called Single Static Assignment (SSA) form (see [Cyt+91]). In a program in SSA
form each variable is equipped with an index. The indices are increased if a variable is
(re-)assigned. Whenever the control flow of the program branches, e.g., for if state-
ments, there are nodes in the CFA having multiple ingoing edges. In case a variable is
assigned a new value within the if- or the else-block, two different SSA indices may be
valid for the variable afterward, depending on which block is executed. To ensure that
all SSA indices that are valid on some paths reaching a location are correctly merged,
ϕ-nodes are introduced. A ϕ-node unifies all indexed variables defined on the paths
leading to the location by reassigning the variable. We present in Figure 2.5 the CFA
C ′

1 of Figure 2.3a in SSA form. Our example contains three ϕ-nodes: The first unifies
the indices of input0 and input1 after the if-statement in line 0. The other two ϕ-nodes
unify the indices of the variables used before the loop and within the loop body.

To be able to encode the effect of the operations from Figure 2.2 on a boolean
formula, we use the strongest postcondition [DS90]. It is used in verification techniques
and we employ the strongest postcondition for defining loop invariants. Intuitively, it
models the effect of executing an operation g on a formula φ.

Definition 2.3. The strongest postcondition operation sp : Ops× BExpr → BExpr is
defined for non-loop statements of the abstract syntax given in Figure 2.2 as follows,
assuming that the program is transformed in SSA form:

sp(S1;S2, φ) ≡ sp(S2, sp(S1, φ))
sp(xi = a, φ) ≡ φ ∧ xi = a

sp(xi = ϕ(xj , xk), φ) ≡ φ[(xj =a) 7→ (xi =xj ∧ xj =a), (xk =a) 7→ (xi =xk ∧ xk =a)]
sp(if (b) {S1} else {S2}, φ) ≡ (b ∧ sp(S1, φ)) ∨ (¬b ∧ sp(S2, φ))

sp(return xi, φ) ≡ φ ∧ retVal func = xi

sp(xi = func(a1, . . . , an){S}, φ) ≡ φ ∧ x1 = a1 ∧ . . . ∧ xn = an ∧ sp(S) ∧ xi = retVal func
(where retVal func is the value returned by func
and func is defined as func(x1, . . . , xn))
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!(input2!=
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return res2;

Figure 2.5: The CFA C ′
1 for the program from Figure 2.3a in SSA form

Next, we define the strongest postcondition for loops. One option could be to dynam-
ically unroll the loop and “move the next loop iteration before the loop” using:

while(b) {S1};S2 ≡ if(b) {S1; while(b) {S1} } else {S2}

Then, we could apply the spoperation for if-statements. Nevertheless, such a transfor-
mation causes two problems. The resulting program may be infinitely long and each
transformation requires to re-compute the SSA form for the program. Thus, we use
a different approach and define the strongest postcondition operation for loops using
loop invariants, that we introduce next.

2.1.4 Loop Invariants

When verifying a program, loops can hamper verification, because the CFA becomes
cyclic and the number of paths becomes large or infinite. A loop invariant summarizes
the effect of a loop and is therefore helpful for verifying a program. We first define loop
invariants for programs with a single loop and later on generalize the definition.

Definition 2.4. A formula inv is called a valid loop invariant (or just loop invariant),
if for a program in SSA of the form S1; while(b){S}; S2 with a single loop the following
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sp(S1, true) ⇒ invssa(S1) ≡
((

(input0 < 0 ∧ input1 = −input0 ∧ input2 = input1) ∨
(input0 ≥ 0 ∧ input2 = input0)

)
∧

rem0 = input2 ∧ res0 =0
)

⇒
input2 = rem0 + 2 ∗ res0

sp(S, b ∧ invssa(S1)) ⇒ invssa(S) ≡(input2 = rem2 + 2 ∗ res2 ∧ rem2 > 1)∧
(rem3 = rem2 − 2 ∧ res3 = res2 + 1) ⇒
input2 = rem3 + 2 ∗ res3

Figure 2.6: Establishment and preservation condition for the loop of C1

two conditions are fulfilled:

sp(S1, true) ⇒ invssa(S1) (2.4)

sp(S, b ∧ invssa(S1)) ⇒ invssa(S), (2.5)

where invssa(S) is an instantiation the variables in inv with the index of the last variable
assignments in S. We call (2.4) the establishment and (2.5) the preservation condition.

A candidate loop invariant for the loop in C ′
1 in a non SSA form is inv ≡ input =

rem+ 2 ∗ res. For checking if inv is in fact a valid loop invariant for the loop of C ′
1 in

Figure 2.5, we have to check (2.4) and (2.5) instantiated for C ′
1 as shown in Figure 2.6.

As inv fulfills both conditions, it is a valid loop invariant. Since true always satisfies
(2.4) and (2.5), it is always a valid loop invariant and called trivial loop invariant.

Now, having the definition of a valid loop invariant at hand, we use the following
rule for the strongest postcondition for loops in SSA form by abstracting its behavior
with a valid loop invariant inv:

spinv(while(b) {S}, φ) ≡ φ ∧ ¬bssa(S1) ∧ invssa(S1), (2.6)

where S1 is the part of the program prior of the loop. In the example C ′
1, the variable

indices used in invssa(S1) are rem2 and res2. Because of the SSA form of the program,
we can also keep all φ’s which hold somewhere in the program within the formula for
the strongest postcondition.

For programs with several consecutive loops, we check the validity of loop invariants
in the order the loops appear in the CFA. We first check establishment and preservation
for the first loop in the CFA and, if inv is valid, use (2.6) to replace the first loop. Now,
the paths from the initial location of the CFA to the second loop do not contain a
loop and we can check establishment and preservation for the second loop. For nested
loops, we first check the validity of the loop invariant for the innermost loop. We use
the loop-free paths from the initial location of the CFA to the innermost loop to check
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establishment and check preservation for the acyclic loop body. If the loop invariant
for the innermost loop is valid, we use (2.6) to replace the loop and repeat the process,
until the validity of the outermost loop’s invariant is checked.

As loop invariants are used to ease the verification problem, we need a way to
classify their quality. Intuitively, invariants forming a good abstraction of the loop
and being sufficient to prove the program safe with respect to the verification prob-
lem are helpful. To define this property formally, we use a program of the form
S1; while(b){S}; S2; assert(ω) with safety property S = (ℓerr, ω), where ℓerr is the
assert statement after S2.

Definition 2.5. A valid loop invariant inv is a helpful loop invariant (sometimes also
safety invariants [McM06]), if

sp(S2, spinv(while(b) {S}, sp(S1, true))) ⇒ ωssa(S2) (2.7)

holds. We call (2.7) the check condition.

For programs with several consecutive loops, we check if the combination of all loop
invariants for the program is helpful by replacing all loops using spinv . For programs
with nested loops, it suffices to check if the loop invariant for the outermost loop is
helpful, as the loop body of the outermost loop and thus all inner loops are replaced
by the invariant for the outermost loop.

The definition of loop invariant used ensures that all invariants are 1-inductive,
meaning that the preservation condition takes a single execution of the loop body into
account, and establishment ensures that the 1-inductive loop invariant holds before
the first loop iteration. There are programs where finding a 1-inductive loop invariant
that is a good summary of the loop is hard. In contrast, finding a k-inductive loop
invariant may be easier. A k-inductive loop invariant is a generalization of a 1-inductive
invariant. For establishment, we take the path leading to the loop and the first k − 1
loop iterations into account, for preservation we take k loop iterations into account.
For example, finding a good 2-inductive loop invariant for a function computing the
Fibonacci numbers is easier than finding a 1-inductive one, as explained in [Wah13].

2.2 Program Verification Techniques

In 1953, Rice showed that all non-trivial semantic properties of programs are in general
undecidable [Ric53], meaning that program verification is also undecidable in general.
Nevertheless, for specific instances of program and property, a solution can be com-
puted [JM09]. Today, there is a plethora of different verification approaches that can
be employed for solving a given verification task. Most of them are based on some
fundamental underlying technique such as model checking [CE82; JM09], abstract in-
terpretation [CC77] or dataflow analyses [Kil73].
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Since the analysis of exactly all feasible paths of a program is a challenging task,
program verification techniques make use of approximation. More precisely, they com-
pute and analyze either an over-approximation or an under-approximation of the set of
feasible program paths. Over-approximation here means that at least all feasible paths
are analyzed, thus locations identified as unreachable in the abstraction are unreach-
able in the program. Locations marked as reachable may still be unreachable, because
the over-approximation may be too coarse. Hence, an over-approximating verifier can
correctly prove a program safe but may generate infeasible or spurious counterexam-
ples. In contrast, under-approximating techniques analyze at most all feasible paths.
Thus, every property violation reported is a real counterexample.

In general, verification techniques compute analysis information that is associated
with program locations of the CFA. There may be multiple elements for a single loca-
tion, especially if the location is reachable on multiple paths. This analysis information
depends on the type of verifier. As we are interested in finding out whether certain
program locations, especially error locations, are reachable, the computed analysis in-
formation is used to answer these questions. Thus, most program verification techniques
compute an over-approximation of the set of all reachable program locations, whereas
approaches like testing compute an under-approximation.

As we repeatedly make use of certain verification techniques as actors within the co-
operative concepts that we develop in this thesis, we provide a brief overview by in-
troducing value analysis, symbolic execution, predicate abstraction, Bounded Model
Checking, and k-induction. In advance, we explain the concept of CEGAR, a scheme
used for finding a suitable abstraction. At the end of the section, we introduce Abstract
Reachability Graphs, a way to store the information computed by the verification ap-
proaches. For a more recent and more comprehensive overview of existing tools and
techniques, we refer the reader to recent surveys [BP22; Bal+18].

2.2.1 Counterexample-Guided Abstraction Refinement

For techniques that make use of abstract interpretation, i.e., computing an abstraction
of concrete program states, finding a suitable abstraction that is precise enough to prove
the program correct is a challenging task. Therefore, the Counterexample-Guided Ab-
straction Refinement (CEGAR) [Cla+00; Cla+03] scheme is used to iteratively compute
a suitable abstraction for proving the correctness of a program.
It consists of the three steps Abstract Model Exploration, Feasibility Check and Precision
Refinement that are visualized in Figure 2.7. Starting with an initial abstraction, the
analysis technique explores in the first step the model using the given abstraction. If no
violation of the safety property is found, the program is correct. Otherwise, a potential
counterexample is generated. Since the abstraction may be too coarse to prove the
correctness, the potential counterexample is checked for feasibility in the second step.
If the counterexample is feasible, the program is incorrect. If it is infeasible, the third
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Figure 2.7: Concept of the Counterexample-Guided Abstraction Refinement scheme,
adapted from [BHLW22a]

step is performed and the precision is refined to exclude the infeasible counterexample.
The newly generated precision increment is then used in the Abstract Model Exploration
in the next iteration.

2.2.2 Value Analysis

Value Analysis [NNH99] is a verification technique analyzing the concrete variable val-
ues within the program. For this, it tracks the exact values for each variable along
all program paths, storing information on whether a variable has a concrete constant
value z, is undefined (⊥), or has no constant value (⊤). In the running example C1,
a value analysis may compute the fact that the variable res has the value 0 on the
path ℓ0, ℓ3, ℓ4, ℓ5. When multiple paths are reaching a location, the value analysis may
or may not merge the information. Information is merged per variable, i.e., if a vari-
able has the same value on both paths merged this value is kept, if they have different
constant values ⊤ is used. In practice, merging information leads especially for large
programs to a too coarse over-approximation. Hence we use a configuration of the
value analysis that does not merge analysis information but keeps them separately. To
enhance the performance for large programs, the analysis does initially not track the
values of all variables but uses a CEGAR based refinement scheme [BL13].

2.2.3 Symbolic Execution

Symbolic execution [Kin76; CS13] is a technique similar to value analysis. The main
difference is the handling of unknown input values. Instead of using an unknown value
⊥ as in value analysis, symbolic execution introduces a new symbolic value for each
unknown value. Thereby, relations between variables can be expressed using formulae
containing the symbolic values, stored in the symbolic memory. The computed analysis
information contains per location the variable values using symbolic values and a path
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condition. The symbolic memory is updated for each variable assignment. A path
condition is a formula containing the branching conditions on a path leading to a
certain program location using the symbolic values of the variables. It thus describes
the conditions that must be satisfied by the symbolic values if the path leading to
the location is feasible. Whenever a branching point is reached, the path condition is
checked for satisfiability. If the path condition is not satisfiable, the path is infeasible
and its exploration is stopped. In the running example, a symbolic execution computes
the information that at location ℓ5 reached on the path ℓ0, ℓ1, ℓ3, ℓ4 the variable values
are {input 7→ −α, rem 7→ −α, res 7→ 0} where α is a symbolic value and the path
condition is α < 0. As the path condition is satisfiable, the path is feasible.

2.2.4 Predicate Abstraction

Predicate abstraction [GS97] is an analysis technique that uses a set of predicates called
precision Π as abstractions for the concrete program states. Initially, the abstraction
true is used for the initial location ℓ0. The new abstraction for a location ℓi reached
via the transition ⟨ℓi−1, σi−1⟩ −gi−→ ⟨ℓi, σi⟩ is computed by using all predicates (and their
negations) from the precision that are implied by sp(gi, φ), where φ is the abstraction
of σi−1. In case a location has multiple predecessors, the disjunction is used to combine
the abstractions. For example, if the precision Π = {input ≥ 0} is used, the abstraction
of the location ℓ1 contains all predicates from Π implied by sp(input < 0, true), which
is ¬(input ≥ 0).

In practice, there exist multiple optimizations for predicate abstraction. First
and foremost, the abstraction is usually computed using CEGAR [Cla+00]. In ad-
dition, instead of computing the abstraction for each location of the CFA, a large-
block-encoding [BKW10] is used. Therein, the abstraction is computed only at certain
abstraction points (by default, e.g., loop heads or branching points) and instead of us-
ing the strongest postcondition for a single operation, the strongest postcondition is
computed for the complete path between two abstraction points. A third optimiza-
tion used is called lazy refinement [HJMS02]. When lazy refinement is used, the new
precision computed in each CEGAR iteration is used to recompute the analysis in-
formation only for the counterexample path that was found in the previous iteration,
instead of recomputing all analysis information. The predicate abstraction that we use
in this thesis computes new predicates in the precision refinement step using Craig-
interpolation [HJMM04].

2.2.5 Bounded Model Checking

Unlike the other techniques, Bounded Model Checking (BMC) [Bie+99; Bie+03] com-
putes an under-approximation of the program. More precisely, it encodes all paths
leading to the error location using the strongest postcondition sp, where each loop is
unrolled up to a bound of k iterations. If there are multiple paths leading to an error
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location, they are disjoined. The resulting formula is then checked for satisfiability.
If the formula is satisfiable, the error location is reachable, otherwise, the bound k

is increased in the next iteration. The program is reported as safe, only if all paths
of the program are analyzed and none of them reaching an error location is feasible,
happening when the bound k is sufficiently large and all loops are completely unrolled.
Since the variables in programs are not unbounded integers but have a datatype lim-
iting the variable values, BMC will eventually explore all paths of programs without
non-terminating loops or infinte srecursions. In our running example, BMC reports the
program as safe if k is greater than 16 384, the maximal number of loop unrollings.

2.2.6 k-Induction

The basic idea of k-induction [DHKR11] is to generalize BMC by induction. In the
first step, the program is proven safe for a bound k using BMC. Next, the proof for the
program with a bounded number of unrollings is extended. For this, the approach main-
tains a collection of auxiliary invariants and tries to generate k-inductive invariants.
If such invariants are found, it is checked whether the invariants are strong enough
to prove the program safe by abstracting the loops using the spinv rule. Otherwise,
k is increased and the process starts anew. The auxiliary invariants can be gener-
ated by a different analysis and are in general continuously refined. In the employed
configuration, a CEGAR-based dataflow analysis using intervals is used to compute
them [BDW15].

In the running example, we assume that k-induction starts with k = 1. First, BMC
is executed, unrolls the loop once, and thereby proves that the program is correct for
the bound k. Next, k-induction tires to generalize the result of BMC. Let us assume
that the 1-inductive invariant inv ≡ (input = rem + 2 ∗ res) is generated. As inv is
helpful, the program is proven correct for an arbitrary number of loop unrollings with
respect to the safety property S.

2.2.7 Abstract Reachability Graph

The information computed by a verification approach is associated with the locations
of the CFA. The Abstract Reachability Graph [BHJM07; BJ21] represents the abstract
state space computed by an analysis and contains the analysis information computed.
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Figure 2.8: ARG AARG
1 generated by a predicate abstraction using the predicate

Π = {input ≥ 0} for the running example C1 and safety property S = (ℓerr, false)

Definition 2.6. An Abstract Reachability Graph (ARG) AARG = (N,n0, succ, F, prec)
for a CFA C = (L, ℓ0, G) is a directed graph with a set of abstract states N , a successor
relation succ ⊆ N×G×N , initial node n0 ∈ N , a set of frontier nodes F ⊆ N that need
to be explored and a precision prec that describes the abstraction level of each state.

Each abstract state comprises a unique name qi, a location ℓi from the CFA, and
analysis information that is valid in the current state. We present an ARG that is
generated by a predicate abstraction using the precision Π = {input ≥ 0} in a CEGAR
iteration in Figure 2.8. Frontier states, that are not explored, are marked in gray.
Hence, node q6 has not yet been explored. The node q10 violates the safety property
S = (ℓerr, false) and is therefore marked in red.

2.3 Verification Artifacts

Verification artifacts are used within (cooperative) verification to encode and exchange
information between actors. The verdict V provides an answer to the question if the
program satisfies the property and is computed by a verifier. Accordingly, a verdict is
either true, false, or unknown. The verdict unknowncan be used if the verifier is unable
to compute a solution, exceeds the memory or time limitations, or in case of an internal
error.

The other verification artifacts serve as a justification J for the verdict, i.e., they
state why the property is fulfilled or violated. In the latter case, providing a counterex-
ample in the form of a concrete path of the CFA that leads to a property violation
suffices [Bey+15]. For correct programs, more detailed reasoning is needed, as it must
be justified why all paths do not violate the property. As comprehending such a jus-
tification most of the time requires a recomputation of the proof, it is necessary for

19



2.3 Verification Artifacts

the justification to contain predicates and especially loop invariants that are crucial for
this [BDDH16]. In case the verifier returns the verdict unknown, it is also possible to
provide partial results, in case a part of the program is already verified.

There are already some standardized formats available, serving as justification,
namely the violation witness [Bey+15], the correctness witness [BDDH16] and the con-
dition automaton [BJLW18]. In the following, we present the three artifacts. Further
details on witnesses can be found in [Bey+22].

2.3.1 Protocol Automaton

All three formats can be defined as instances of a protocol automaton. The proto-
col automaton, initially introduced in [Bey+15] and later extended in [BW20] is an
automaton that accepts a set of program paths from a CFA C.

Definition 2.7. A protocol automaton APA=(Q,Σ, δ, q0, F ) for a program represented
as CFA C = (L, ℓ0, G) is a non-deterministic automaton that consists of:

• a finite set of states Q ⊆ Ω × BExpr , each being a pair of a name out of some set
Ω and a state invariant,

• an alphabet Σ ⊆ 2G × BExpr ,

• a transfer relation δ ⊆ Q× Σ ×Q,

• an initial state q0 ∈ Q, and

• a set F ⊆ Q of final states.

Automaton states have (arbitrary) names and potentially a state invariant φ associ-
ated with them which come in the form of boolean expressions over program variables.
Transitions are labeled over the alphabet Σ with elements being sets of transitions of
the CFA plus additional assumptions ψ about program variables describing conditions
when executing these transitions. The connection between a program path π in the
CFA C and paths that are described by a protocol automaton APA is established via
matched paths. An APA matches a path π = ⟨ℓ0, σ0⟩ −g1−→ ⟨ℓ1, σ1⟩ . . . −gn−→ ⟨ℓn, σn⟩ if
there is a sequence ρ = (q0, φ0) −(G1,ψ1)−−−−→ . . . −(Gk,ψk)−−−−→ (qk, φk), 0 ≤ k ≤ n in APA, with
(qi−1, φi−1) −(Gi,ψi)−−−−→ (qi, φi) ∈ δ, such that

1. gi ∈ Gi for all i ∈ {1, . . . , k},

2. σi |= ψi for all i ∈ {1, . . . , k} ,

3. σi |= φi for all i ∈ {0, . . . , k}.

An APA covers π, if APA matches π, k = n and qk ∈ F . Three protocol automata are
shown in Figures 2.9 to 2.11: A correctness witness, a violation witness, and a condition
automaton. Each of these protocol automata covers a set of paths from the CFA C1 of
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Figure 2.9: Correctness Witness ACW
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Figure 2.3b. Note that we use ∗ to denote any operation from Ops and o/w as shortcut
to denote all transitions other than the one explicitly depicted.

To be able to represent different artifacts as protocol automata, a context-dependent
semantics is used, meaning that the semantics is fixed per artifact instance. Depending
on the artifact, matched paths may, among others, encode paths leading to a property
violation (in Figure 2.10), or paths not reaching any property violation (in Figure 2.9).

2.3.2 Correctness and Invariant Witness

A correctness witness [BDDH16] is used to encode that a program is safe and thus no
path exists violating the safety property. Intuitively, it is a CFA that is equipped with
invariants that explain why the program is safe.

Definition 2.8. A correctness witness ACW= (Q,Σ, δ, q0, Q) is a protocol automaton,
where all states are final states (F = Q) and each edge is labeled with trivial assump-
tions, i.e. ψ = true holds for all (q, (G,ψ), q′) ∈ δ.

States may contain a state invariant φ that justifies why the program is correct.
Semantically, paths covered by an ACW do not contain a property violation. We colorize
correctness witnesses ACW in light green. As an example, we depict in Figure 2.9 the
correctness witness ACW

1 for the CFA C1 from Figure 2.3b with S = (ℓerr, false). In ACW
1 ,

we define the state invariant φ5 ≡ input = rem+ 2 ∗ res, and all other state invariants
are true. As ℓerr is unreachable, the correctness witness ACW

1 can be generated and
all paths of the CFA C1 are accepted by ACW

1 . The state invariant φ5 is a valid loop
invariant and can be used as justification for the unreachability of ℓerr.
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In some cases, we want to exchange (candidates for) loop or program invariants
between actors. As these predicates may not be valid on all paths, e.g., they do not
form a valid loop invariant but can be extended to be valid, we need a new artifact
with slightly modified semantics compared to correctness witnesses. We call this artifact
invariant witness [BHLW22a]. A tool can generate an invariant witness, even though
the verification task is not completely solved and the program is thus not fully verified.

Definition 2.9. A invariant witness AIW= (Q,Σ, δ, q0, Q) is a protocol automaton,
where each edge is labeled with trivial assumptions only, i.e. ψ = true holds for all
(q, (G,ψ), q′) ∈ δ.

Hence, an invariant witness may serve as justification only for a subset of the pro-
gram paths of a CFA, that can be empty if F = ∅ holds. We colorize invariant witnesses
AIW in light orange.

Recently, a new Yaml-based format for correctness witnesses (version 2.0) has been
released [Aya+24]. Instead of constructing an automaton, the information encoded
within the format is directly associated with the source code lines of the C program. It
allows the attachment of loop invariants and location invariants, whereas the latter are
equivalent to state invariants. Note that the semantics of the Yaml-based format are
defined based on the semantics of the programs, making it independent of CFAs. Thus,
the format is likely easier to generate, but is less expressive, as predicates that hold
only on a specific path or after a fixed number of loop unrollings cannot be encoded
directly. As the Yaml-based format is not designed to encode partial correctness of
a program, it cannot represent all information encoded within an invariant witness,
specially defined for this purpose.

2.3.3 Violation Witnesses

A violation witness [Bey+15] is used to encode a set of feasible program paths that
lead to a property violation.

Definition 2.10. A violation witness AVW= (Q,Σ, δ, q0, F ) is a protocol automaton,
where each state has only a trivial state invariant, i.e. φ = true holds for all (q, φ) ∈ Q.

The assumptions in an AVW can contain constraints on the variable values. Seman-
tically, at least one program path covered by an AVW contains a property violation.
We colorize violation witnesses AVW in light red. As the program from Figure 2.3
is correct with respect to the safety property S = (ℓerr, false), we construct a CFA
C ′′

1 assigns an initial value of 1 to res. Formally, for C1 = (L1, ℓ0, G1), we construct
C ′′

1 = (L1 = L, ℓ0, G1 \ {(ℓ4, res=0;, ℓ5)}∪{(ℓ4, res=1;, ℓ5)}). Then, the program vio-
lates the safety property S. Hence, we can construct a violation witness AVW

1 depicted
in Figure 2.10, where we add the assumption that input = 1 holds. The only path
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covered in C ′′
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1 is

π = ⟨ℓ0, {input 7→ 1}⟩ −!(input<0)−−−−−−→⟨ℓ3, {input 7→ 1}⟩

−rem=input;−−−−−−−→⟨ℓ4, {input 7→ 1, rem 7→ 1}⟩

−res=1;−−−−→⟨ℓ5, {input 7→ 1, rem 7→ 1, res 7→ 1}⟩

−!(rem>1)−−−−−→⟨ℓ9, {input 7→ 1, rem 7→ 1, res 7→ 1}⟩

−input!=2∗res+rem−−−−−−−−−−−→⟨ℓ10, {input 7→ 1, rem 7→ 1, res 7→ 1}⟩

−abort();−−−−→⟨ℓerr, {input 7→ 1, rem 7→ 1, res 7→ 1}⟩

Thus, following π in C ′′
1 leads to a property violation.

There is also a Yaml-based format for violation witnesses (version 2.0) [Aya+24].
It describes paths directly by sequences of branching decisions and inputs, e.g., that
the if-branch of a condition in line 9 of Figure 2.3a should be taken and the else-branch
avoided.

2.3.4 Condition Automaton

A condition automaton [BJLW18] states which semantic paths of the program are
already successfully verified and under which condition.

Definition 2.11. A condition automaton ACA = (Q,Σ, δ, q0, F ) is a protocol automa-
ton, where each state has only trivial state invariants, i.e. φ = true for all (q, φ) ∈ Q :
and accepting states cannot be left, i.e. qf ∈ F ⇒ q ∈ F holds for all (qf , ·, q) ∈ δ.

Semantically, the paths covered by an condition automaton do not contain a prop-
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erty violation. Unlike a correctness witness, a condition automaton can contain assump-
tions that specify the unreachability of program locations under those assumptions. In
Figure 2.11, we depict ACA

1 , a condition automaton ACA for our running example, where
∗ again denotes any operation from Ops. The partial result encoded within ACA

1 covers
all paths of the CFA C1 where the input is positive (accepted by the path from q0 to
qa), as well as all paths where the input is negative and greater than −10 (accepted by
the path q0, q1, q3, q4, qa). Therefore, the remaining task is to prove that the program
is safe for all inputs less or equal to −10.

2.4 Existing Verification Tools

After having explained the verification techniques used in this thesis and the input
and output artifacts consumed respectively generated, we introduce some existing ver-
ification tools, that we use as components in our cooperative verification approaches.
These tools include CPAchecker, UltimateAutomizer, Klee, Symbiotic, VeriAbs,
and SeaHorn.

2.4.1 CPAchecker

CPAchecker [BK11] is a configurable tool for software verification. To analyze a
program, CPAchecker computes a CFA of the program and employs a Configurable
Program Analysis (CPA) [BHT07; BHT08]. A CPA provides an abstract domain for
analysis information that forms a semilattice. It defines a transfer relation modeling
the abstract state changes when analyzing a program statement, a merge operator for
combining analysis information, a stop operator for deciding if an abstract state is
already covered by another state, and a precision adjustment operator. CPA-based
analyses can be composed. In that case, the analysis information computed by the
composed analyses can be employed for a dynamic precision adjustment. The analysis
information for each location of the CFA are computed using the CPA-algorithm, that
conducts a fixpoint computation. The computed analysis information is stored in an
ARG, e.g., as shown in Figure 2.8.

CPAchecker provides an implementation of various verification techniques such
as value analysis [BL13], predicate abstraction [BKW10], symbolic execution [BL18],
BMC [BDW18] or k-induction [BDW15], as well as an implementation of CEGAR.

In addition to providing a collection of analyses, CPAchecker allows for an easy
extension, as building a new program analysis can be done by reusing existing analyses
in composition with a new analysis. The modular structure and the rich set of con-
figuration options allow for either tailoring the CPAchecker to the user’s needs or to
reuse internal components as standalone elements within a cooperative approach. In-
formation computed during the analysis, especially predicates and loop invariants, are
exported in different formats, among others using correctness witnesses. In addition,
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CPAchecker has proven its strength in program verification and falsification in many
editions of the SV-COMP by winning several medals [Bey22b; Bey23; Bey24].

2.4.2 UltimateAutomizer

UltimateAutomizer [Hei+23; Hei+18; Hei+17; HHP13] is a software verifier using a
verification approach based on automata theory. The program is represented as a finite
automaton A with error locations as accepting states. UltimateAutomizer applies
a CEGAR-based iterative refinement for an over-approximation of a program’s error
paths, which is represented by the paths accepted by the automaton A. In each CEGAR
iteration, an error path is selected from the automaton A and checked for feasibility. If
the chosen path is infeasible, a Floyd-Hoare automaton [HHP13] is constructed, which
explains the infeasibility of the chosen path and may also show that similar paths of the
automaton A are infeasible. The Floyd-Hoare automaton is constructed using predi-
cate abstraction wherein the new predicates are computed using Craig interpolation or
Newton refinement [Die+17; Hei+23]. The over-approximation is then refined by re-
moving all paths from A that are accepted by the Floyd-Hoare automaton. An answer
to the verification problem is found if either a feasible counterexample is discovered
or the over-approximation contains no path violating the property. The predicates
computed in the abstraction are exported within the generated justification and Ul-
timateAutomizer generates helpful loop invariants in many cases. In recent years,
UltimateAutomizer has successfully participated in the SV-COMP, e.g., winning the
category overall in 2023 [Bey23] and 2024 [Bey24].

2.4.3 Klee

Klee [CDE08] is a dynamic symbolic execution tool, working on the LLVM-intermediate
representation (IR) language. Klee aims for (1) finding inputs covering each executable
line of code and (2) finding any input that leads to a property violation, i.e., a violated
assertion. To achieve this goal, Klee first generates path conditions by symbolically
executing the program, then computes concrete values for the program’s inputs using
the symbolic values, and finally dynamically executes the program using these inputs.
As not all path conditions can be generated in one step, Klee uses, among others,
probability-based or heuristic-based strategies for the exploration. As the number
of paths in a program and thus path conditions are typically large, Klee optimizes
the path conditions using techniques such as constraint simplification (removing un-
necessary constraints) or value concretization (computing implied values in advance).
Klee employs dynamic symbolic execution, which under-approximates the state space.
Therefore, it has to show that all program paths leading to the safety property are
infeasible to verify that the program satisfies the safety property.
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2.4.4 Symbiotic

Symbiotic [Cha+22] is a verifier that combines slicing [Wei84] with dynamic symbolic
execution. The program is first translated to LLVM-IR and sliced with respect to
the safety property. Thereby, all statements that do not influence the reachability
of error locations are removed. Next, a modified and enhanced version of Klee is
executed for at most one-third of the available overall time to find violations of the
safety property. In case Klee is unable to find a program violation, SlowBeast is
used. By default, a backward symbolic execution [CFS09] with loop folding [CS21]
is conducted by SlowBeast. Instead of analyzing the program paths from the initial
location to the error location as in symbolic execution, backward symbolic execution
analyzes the program in reverse. In case loops are found, the loop folding attempts
to generate loop invariants proving the backward path from the error location to the
loop head infeasible. In case this technique fails within a given time limit, Symbiotic
runs forward symbolic execution again using SlowBeast. In recent years, Symbiotic
has successfully participated in the SV-COMP, e.g., winning the category overall in
2022 [Bey22b].

2.4.5 VeriAbs

VeriAbs is a portfolio-based verification tool, employing four different verification tech-
niques, where each may consist of several sequentially composed components [Afz+19].
The strategy selection is based on the loop structure and the value ranges of the vari-
ables related to the loop. Based on the result, VeriAbs selects a strategy: (1) random
fuzz testing using Afl for loops with unstructured control flow, (2) techniques to ab-
stract arrays followed by the default strategy afterward for programs with loops working
on arrays, (3) explicit state model checking followed by standalone invariant genera-
tion techniques for programs with potentially few loop iterations or (4) the default
and fallback strategy, a fixed sequence of different verification approaches like inter-
val analysis, loop abstraction and BMC. In a more recent version, VeriAbs employs
a slicing technique to generate multiple program fragments that can be analyzed in
parallel [DAV21].

2.4.6 SeaHorn

SeaHorn [GKKN15] is a verifier that works on LLVM-IR and that generates Con-
strained Horn-Clauses (CHCs) [Gur22] to solve the verification task. The CHCs gen-
erated for each statement contains predicates for modeling the data and the control
dependencies of the program. They also encode the safety properties of the program.
In case the control flow of the program is cyclic, the set of generated CHCs is recursive.
To solve the computed CHCs, the solver Spacer [KGC14] is employed. Spacer tries
to prove the unsatisfiability of the CHCs, being equivalent to proving the program safe,
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by searching for interpretations of the predicates present in the CHCs. SeaHorn pro-
vides a front end for C programs, but it does not automatically translate the computed
information for the LLVM-IR program back to C.

2.5 Benchmarking and Existing Tool Support

To answer the question of whether cooperation can increase the performance in software
verification, we need easily measurable criteria. In this thesis, we generally use effec-
tiveness and efficiency as criteria. Intuitively, we are interested in the total number of
tasks correctly or incorrectly solved with a fixed set of resources per task for effective-
ness, and in the time taken to compute these solutions per task for efficiency. Before
we describe the setup and the metrics in more detail, we first explain the general eval-
uation setup used. Lastly, we describe an existing tool called CoVeriTeam facilitating
the building and evaluation of new forms of cooperative software verification.

2.5.1 General Evaluation Setup

A verification task comprises a C program and a safety property, which defines the error
locations of the program, whose (non)-reachability needs to be checked. To achieve a
fair comparison between different concepts, such as cooperative and non-cooperative
approaches, we must guarantee that the set of tasks used is representative and widely
accepted. Therefore, we decided to use the SV-Benchmarks, which is currently the
largest publicly available benchmark for C program verification [SVB24]. It comprises,
among others, around 10 000 tasks for reachability verification, that are organized in
18 categories, ranging from tasks with loops, arrays, or recursion over tasks adapted
from hardware verification to tasks based on Linux device drivers or AWS applications.
Moreover, for each task, a ground truth is given. It states if the task is correct and
satisfies the specifications or is incorrect and violates them. The benchmark is extended
on an annual basis. We conducted most of the experiments using the version published
in 2023 [SVB23]. In some cases, we used a subset of the available tasks, as we necessitate
that the program has certain properties like a loop for the generation of loop invariants.

The SV-Benchmarks are also used to conduct the annual SV-COMP [Bey24],
wherein verifiers compete in different categories, e.g. reach-safety. In 2024, 59
verifiers competed in SV-COMP [Bey24], trying to correctly solve as many verification
tasks as possible. The SV-COMP requires each participating tool to generate a correct-
ness witness (cf. Section 2.3.2) or a violation witness (cf. Section 2.3.3) as justification
for a verification task. Hence, these two formats are widely used.

In addition to the fixed set of tasks, we need to ensure that each verifier has the same
fixed set of resources available. For most experiments, each tool has in total 15 minutes
CPU time on 4 cores and 15 GB of RAM available. We employed BenchExec [BLW19]
as the tool for conducting all experiments, as BenchExec guarantees that the provided
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resource limitations are ensured and also measures the consumed resources (CPU time,
overall time, and memory). Thereby, we get reliable benchmarking results as well as
easing the reproduction of the conducted experiments. This is a setup that is compa-
rable to those used in the Competition on Software Verification (SV-COMP) [Bey24],
where each tool can access 8 CPU cores. The setup is comparable, as the overall CPU
time is still fixed to 15 minutes, which are divided among at most 4 cores and not 8.

2.5.2 Evaluation Criteria

To evaluate the performance of a verification approach we use effectiveness and effi-
ciency. In terms of effectiveness, BenchExec counts the number of correct proofs (tasks
that are correct and where the verifier computes a proof), of correct alarms (where the
task is incorrect and the verifier raises an alarm), incorrect proofs and alarms, and
cases where no answer is given (unknowns). Moreover, we calculate the total number
of correct answers (correct proofs + correct alarms) and analogously the total number
of incorrect answers. For efficiency, we measure the time consumed by the verifier to
compute a correct result. Rather than comparing the CPU time that is taken to com-
pute an answer, we decided to compare the overall time elapsed for solving the task,
known as wall time. Thereby, we account for potential parallelization that is intro-
duced in cooperative approaches. Note that the resources are limited for the verifier,
regardless if only a single actor is employed or multiple actors are working together co-
operatively. Thus, cooperative approaches share the resources among all components
used. Thereby, the cooperative approaches do not get any additional resources when
using several instances in parallel. They may only compute a result more efficiently if
subtasks are solved in parallel.

2.5.3 Tool Support for Realizing Cooperative Verification Concepts

According to Characterization 1.1, an approach for cooperative software verification
is exchanging verification artifacts among off-the-shelf components. To facilitate such
an exchange, some form of orchestration is necessary. The basic operations performed
by such an orchestration are executing actors, gathering artifacts and verdicts, and
executing different operations based on the collected verdicts and artifacts in the form of
branches or loops. In 2022, Beyer and Kanav present an open-source framework called
CoVeriTeam [BK22] that is designed to realize cooperative verification approaches
by providing a language and execution framework: Within the language, verification
artifacts serve as objects, and actors like verifiers perform operations on artifacts. By
default, CoVeriTeam provides more than ten predefined artifacts, including program,
safety property, or verdict, and ten predefined actors like verifiers. These sets can
be extended by users in case new artifacts or actors are needed. The description of
the actors contains the input and output artifacts that are consumed and respectively
produced by the actors. For artifacts, operations such as comparing them for equality
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or merging two artifacts of the same type are defined. For using a specific tool, an
actor definition is used, defining where to find the executable binaries of the tool and
commands needed for the tool execution.

To realize a new cooperative combination of tools, CoVeriTeam allows the ex-
ecution of actors sequentially, branch executions in an if-then-else style, repeat the
execution of actors until a certain condition is fulfilled, or execute several actors of the
same type in parallel, until the first computes a result. The main advantage of using
CoVeriTeam for realizing new forms of cooperative verification is that the users do not
need to take care of downloading and executing the tools in isolation or collecting the
results, as CoVeriTeam relies on mechanisms that are provided by BenchExec for the
execution of the actors. In addition, building multiple instances of the same coopera-
tive approach using different tools is easy in CoVeriTeam, as changing the off-the-shelf
tool that is used within the configuration can be done by updating a single line of code.
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Sequential Cooperation
3

When combining two or more verifiers, using a sequential combination is likely the most
intuitive approach. Executing the verifiers or analysis configurations non-cooperatively
one after another, i.e., restarting from scratch, is a commonly used approach, as in
tools like CPAchecker [Wen13] or Symbiotic [Cha+22]. These approaches do not
reuse information computed by previous instances. Thus, there is no need for en-
coding, exchanging, and importing the information. In contrast, it is necessary for
sequential approaches employing cooperation to carry over the information computed
by a previous tool to the next tool and enable it to use the information.

In 2012, Beyer et al. and Christakis et al. present two similar cooperative ap-
proaches: Beyer et al. introduce Conditional Model Checking (CMC) [BHKW12], a
technique where multiple so-called conditional verifiers are executed sequentially, each
with a fixed time limit assigned. After the time limit is exceeded and no final answer
is computed, an intermediate answer in the form of a condition is generated. The con-
dition states which parts of the program have already been successfully verified. The
next conditional verifier can use the condition, which can be represented as condition
automaton (see Definition 2.11), to safely discard the parts of the program that have
already been proven safe by prior verifiers.

Another approach proposed by Christakis et al. [CMW12] allows verifiers to directly
add assumptions under which a program is verified into the code, such as certain
operations do not cause an overflow. The next verifier only needs to confirm that the
assumptions are valid to prove that the full program is correct. The exchanged artifact
is herein the annotated program containing the assumptions.

We propose a novel idea to complement existing concepts for sequential cooperative
verification. Instead of sequentially executing different instances of the same kind of
actor (as in CMC), we propose to delegate subtasks to components specialized in solving
that subtask. More precisely, we let tools cooperate on invariant generation, one core
task of software verification. As a high-level idea, we let a verifier delegate the task
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of generating loop invariants to a specialized invariant generation tool. This concept,
called CoVEGI, is introduced in Section 3.1. Within CoVEGI, tools for generating
invariants are employed. In Section 3.2, we take a more detailed look at a specific class
of tools for generating invariants using machine learning (ML). More precisely, we
present the modular framework MIGml for experimenting with and comparing of ML
based invariant generators. It generalizes the ideas of existing concepts and comprises a
teacher and a learner as instantiable components with clear-cut interfaces. We describe
in Section 3.3 the realization of both approaches. We evaluate in Section 3.4 the
concept of CoVEGI to determine, whether a sequential cooperation wherein the task
of invariant generation is delegated to specialized components increases the verification
performance. Additionally, we investigate if our framework MIGml could potentially
be used as a component within CoVEGI. We conclude this chapter by discussing
the results in Section 3.5 and providing an overview of related work for cooperative
sequential combinations and on invariant generation in general in Section 3.6.

3.1 Cooperation using Externally Generated Invariants

In general, the existing verification approaches perform good in solving verification
tasks. This is for example visible in the increasing number of correctly solved tasks in
annual verification competitions [Bey24; EHMU19]. As invariant generation is one core
task of verification, many approaches also perform well in finding loop invariants helpful
for verification. However, there are tasks for which a verifier fails to compute a solution.
This may happen in case no loop invariant is found or valid loop invariants are generated
that do not ease the verification problem. For those cases, we propose to let the verifier
delegate the task of invariant generation to a dedicated loop invariant generator. Our
novel sequential cooperation approach is called Cooperative Verification via Externally
Generated Invariants (CoVEGI). The idea behind CoVEGI is to obtain invariants
inferred using conceptually different approaches and thereby increasing the variety of
generated predicates. Thus, we use the strength of specialized invariant generation
tools to help the verifier in finding a solution for the verification task.

The high level idea of CoVEGI is depicted in Figure 3.1 and comprises two types
of actors, both shown in blue: A main verifier and a number of helper invariant genera-
tors. The main verifier has the overall control over the verification process and receives
the program and the property as input. It can delegate tasks to helpers as well as con-
tinue its own verification process with (partial) results provided by helpers. The helpers
run in parallel as black-boxes without cooperation. The generated invariants are given
to the main verifier in the form of invariant witnesses. They are particularly well suited
for our intended use because their format is standardized and several verifiers already
produce invariant witnesses. The generated witnesses are then injected into the verifi-
cation run of the main verifier using the Witness Injector. Some off-the-shelf invariant
generators are not able to process the given task or to generate invariant witnesses. To
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Figure 3.1: Overview of CoVEGI

allow using them, the framework thus foresees the two additional components mapper
and encoder , depicted in gray. A mapper maps the program and property into a task
format understandable by the helpers and an encoder incorporates an invariant into
an invariant witness. The framework can be arbitrarily configured with different main
verifiers and helpers, in case suitable encoders and mappers are given.

3.1.1 Motivating Example

To ease understanding, we exemplify the overall workflow and the idea behind CoVEGI
using the running example presented in Figure 2.3: We instantiate CoVEGI with a
main verifier and a helper invariant generator. First, the main verifier runs standalone
and generates the invariant inv1 ≡ (rem ≥ 0), until it eventually realizes that it “got
stuck” in solving the task standalone and requests for help1. The helper invariant
generator is started, computes an invariant inv2 ≡ (input = 2 ∗ res + rem), and
generates an invariant witness, that is injected into the main verifier. The main verifier
now can use inv1 and inv2, where the conjunction suffices to prove the program correct
with respect to a given safety property S.

3.1.2 Actors in CoVEGI

Next, we explain the two sorts of actors participating in the CoVEGI framework,
namely the main verifier and helper invariant generator. For both, we state the re-
quirements for them and describe their functionality:

Main Verifier The main verifier , conceptually depicted in Figure 3.2a, is responsible
for coordinating the verification process and, if needed, it can request support from the
helper invariant generator in the form of invariants. Hence, the main verifier is steering
the cooperation. It receives as input the program C as CFA and a safety property S. It

1There are multiple ways to detect such a situation, e.g., using a timeout or monitoring the analyses
behavior [THW23].
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Figure 3.2: Conceptual view of the actors in CoVEGI

computes as output a verdict, stating whether the property holds, and possibly (but not
necessarily) provides a justification in the form of correctness or violation witness. To
be able to process the provided support in the form of invariants stored inside invariant
witnesses, a main verifier is required to offer a witness injector. The witness injector
loads a witness, extracts the invariants encoded, and injects them into the analysis
of the main verifier. The witness injection can either happen before (re-)starting the
analysis or during runtime.

Helper Invariant Generator A helper invariant generator , conceptually depicted
in Figure 3.2b, receives as input the program C as CFA and a safety property S.
It computes as output a set of invariants, stored in an invariant witness AIW. The
generated invariants are neither required to be helpful for the main verifier nor to be
correct. Thus, helper invariant generators are also allowed to generate trivial invariants
or invariant candidates which might turn out to be wrong.2 Due to this design decision,
we can employ a wider range of tools generating invariants, e.g., those generating
invariants using heuristics, machine learning, or Large Language Models.

3.1.3 Witness Injection for Main Verifiers

The concept of CoVEGI requires that each main verifier allows for a witness injection.
There are existing verifiers that do not have such functionality. In the following, we
thus explain how to realize witness injection for two widely used verification techniques,
namely predicate abstraction and k-induction, and provide ideas for a realization in
other approaches. The core idea for both analysis techniques is to make the invariants
available in all abstraction locations associated with the loop head the invariant is
generated for. The analyses may compute different analysis information for the same
location, e.g., when unrolling a loop. Hence, witness injection has to update all elements
that contain information for a location, for which an invariant is contained in the
invariant witness.

2Recently, Saan et al. have shown (in the context of witness validation) that their tool Goblint
significantly benefits from invariants that could not be verified, i.e., that these invariants ease the
verification problem [Saa+24].
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Predicate Abstraction Predicate abstraction uses a set of predicates, often called
precision, for computing an abstraction of concrete program states [GS97], in most
cases iteratively refined using the CEGAR scheme (cf. Section 2.2.1). Therefore, the
witness injection adds the loop invariants to the precision. Thereby, the predicate ab-
straction will employ these predicates within the next CEGAR iteration. As we allow
helper invariant generators to generate loop invariant candidates, we cannot take their
correctness for granted. If predicates within the loop invariant are conjoined or dis-
joint, they are furthermore split up into atoms and the atoms are inserted individually.
Splitting predicates increases the performance, as Satisfiability modulo theories (SMT)
solvers perform better using many small predicates than few larger ones3. By adding
the predicates to the precision, the abstraction function of the predicate abstraction
itself will reestablish the loop invariants. Invalid loop invariants are ignored, but valid
atoms are still used and may help to complete the verification task.

In case that lazy abstraction [HJMS02] is used, each abstraction point is equipped
with an individual precision. Hence, we add the loop invariant and its atoms only to
the precisions of those abstraction points associated with the loop heads for which the
loop invariant is generated. We can also employ the same procedure when the main
verifier is configured to be restarted. Instead of adding the invariants and the atoms
to the current precision, we add them to the initial precisions of predicate abstraction,
which is otherwise empty.

k-Induction k-Induction maintains a set of auxiliary invariants, used for construct-
ing the inductive correctness proof. Hence, we can make use of the same idea in case
that the verifier is restarted or not: Whenever an invariant witness is made available
to the analysis, the encoded predicates and the program locations are added as can-
didates to the set of auxiliary invariants. k-induction checks each element from that
set periodically for validity. Thus, externally generated invariants that are valid are
conjoined with the predicates stored in the analysis abstract states, corresponding to
the invariant’s location. Invalid invariants are thus ignored.

General Methods For other verification methods, we need to distinguish whether
the technique uses predicates for abstraction or encodes paths using boolean formulas,
like BMC or symbolic execution. In the former case, we follow the idea used for
predicate abstraction and k-induction: The goal is to add the invariants and all atoms
used to the set of predicates maintained by the analysis. For analysis techniques that
employ abstract interpretation, the technique proposed by Saan et al. making use of
“unassume” operations might also be applicable [Saa+24]. In the latter case, we can
follow an idea inspired by CEGAR: First, it has to be verified that the invariants
encoded in the invariant witness are valid, as we allow the helper to generate candidates.
Next, the rule spinv (cf. (2.6)) can be used with the invariant to reduce the number of

3This has been reported by tool developers and has also shown in our experiments.
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paths within the program. If the program is verified using the invariant, the approach
can use the generated verdict as the final answer, as the loop invariant is valid and over-
approximates the loop body and the program thus satisfies the specification. In case
a violation is found, the counterexample has to be analyzed in the original program.
If the counterexamples is feasible, the program violates the specification. Otherwise,
it is infeasible, due to a too coarse over-approximation through the loop invariant. In
this latter case, the invariant is not helpful and the verification approach continues its
verification without the invariant.

3.1.4 Using Off-the-shelf Helper Invariant Generators

As we are interested in building instances of CoVEGI using off-the-shelf tools, we
can neither expect that all existing tools generating invariants which we want to use
as helpers can process the safety property defined nor that they are able to produce
invariant witnesses. Next, we explain the components mapper and encoder, that can
be used in these situations.

3.1.4.1 General Idea of Mapper and Encoder

Intuitively, the mapper’s task is to map the program and property into a format that
can be processed by the off-the-shelf invariant generator and the encoder’s task is
to encode the information computed in a non-standardized format into an invariant
witness. We depict this construction for building a helper invariant generator using an
off-the-shelf invariant generator, a mapper, and an encoder in Figure 3.3. Translated
task and invariant are visualized using a white file symbol with a dotted border to
indicate that this information is encoded in a non-standardized, internal format.

C
Program

S
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Mapper

Translated
Task

Off-the-Shelf
Invariant
Generator Invariant

Encoder
AIW

Invariant
Witness

Helper Invariant Generator

Figure 3.3: Construction of an helper invariant generator using an off-the-shelf invariant
generation tool

Next, we explain the components mapper and encoder in greater detail:

Mapper A mapper transforms the safety property and the program into an input
format understood by the invariant generation tool. In general, these transformations
are simple syntactic code replacements. For instance, some tools may not support
specifying certain error locations, but rather require the use of specific function calls
like verifier_error() or specific return values to encode error locations. Moreover,
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some tools may also require to denote, for which location or loop an invariant should
be generated.

Encoder An encoder generates an invariant witness out of the computed loop invari-
ants of a helper, that may be represented using an internal format. In case a mapper
is used, it may conduct syntactical transformations on the task. Firstly, the encoder
has to ensure that the invariant witness is generated for the original task. In addition,
some helper invariant generators work on IR of the C language (e.g., LLVM-IR) or
intermediate verification languages (e.g., Boogie). In such cases, the computed invari-
ants (formulated in terms of IR-variables) first of all need to be translated back to the
namespace of the C program. We exemplify the construction of such an encoder for
LLVM in Appendix A.1.1.

3.1.5 Cooperation within CoVEGI

Having all components at hand, we formalize their interaction and cooperation within
CoVEGI. The CoVEGI algorithm, shown in Algorithm 1, orchestrates the cooper-
ation and is configurable. Within the algorithm, we assume that main verifier and
all helpers run as threads and can be started and stopped. We furthermore employ
methods wait for waiting until some conditions are satisfied and join for waiting for
a specific thread to complete.

Initially, the main verifier is started without any helper invariant generators run-
ning in parallel (line 1), providing the opportunity to verify programs alone. It runs
standalone until it computes a result that is subsequently returned (line 3), or until it
requests help. Currently, the main verifier sets its flag requestsForHelp after a timer
has expired, which is configurable using the option timerM. We use an explicit flag to
allow using other mechanisms to enable the cooperation4. In case help is requested,
all helpers are started for a user-configurable time limit (timeoutH) in parallel without
cooperation (lines 4 and 5). CoVEGI allows the use of several helper invariant gen-
erators, as we aim to combine complementary approaches to leverage their strengths.
In case the first non-trivial invariant is found, it is added to the set of witnesses (line
8). Depending on the configuration option termAfterFirstInv, the algorithm either
injects the first invariant found directly or waits for all helpers to compute a solution
or exceed their time limit. If invariant witnesses have been computed, they are injected
into the main verifier (line 15). If the restartMain option is set, the main verifier is
stopped before injection and restarted afterward. This option is useful to reduce the
number of available predicates within the main verifier and thereby speed up the ver-
ification with the externally generated invariants. Finally, the main verifier continues
and completes its verification (without any further request for help) and the result is
returned.

4One approach monitors the main verifier’s internal state to predict if it will run into a time-
out [THW23].

37



3.1 Cooperation using Externally Generated Invariants

Algorithm 1 CoVEGI Algorithm
Input: C ▷ CFA

S ▷ safety property
M ▷ main verifier
Helpers ▷ set of helpers
conf ▷ configuration

Output: V ▷ verdict
J ▷ justification

1: M.start(C, S, conf.timerM); ▷ start M standalone
2: wait until (M.requestsForHelp ∨ M.hasSolution());
3: if (M.hasSolution()) then return M.getSolution(); end if ▷ return V , J
4: for each H ∈ Helpers do parallel ▷ run helpers in parallel
5: H.start(C, S, conf.timeoutH);
6: wait until (H.timeout() ∨ H.hasSolution() ∨ H.stopped());
7: if (H.hasSolution() ∧ nonTrivial(H.getSolution())) then
8: witnesses := witnesses ∪ H.getSolution();
9: if (conf.termAfterFirstInv) then

10: for each H’ ∈ helpers \{ H } do parallel
11: H’.stop(); ▷ stop other helpers
12: if (M.hasSolution()) then return M.getSolution(); end if ▷ return V , J
13: if (witnesses ̸= ∅) then ▷ invariants found
14: if (conf.restartMain) then M.stop(); end if
15: M.inject(witnesses); ▷ inject witnesses into main verifier
16: if (conf.restartMain) then M.start(C, S, ∞); end if
17: join(M); ▷ wait for M to finish
18: return M.getSolution(); ▷ return V , J

3.1.6 Example Application of the CoVEGI Algorithm

After having described all components and the cooperation within CoVEGI, we ex-
emplify Algorithm 1 applied to the running example in more detail. We instantiate
CoVEGI with a main verifier employing k-induction and four helper invariant genera-
tors5. The first one called Helper A can process a program and a property as input and
generate invariants in the form of invariant witnesses. The second one, called Helper
B is an off-the-shelf invariant generator working on the LLVM-IR. Hence, we make
use of the construction depicted in Figure 3.3, using a mapper and the encoder ex-
plained in Appendix A.1.1. We additionally use two further helper invariant generator
Helper C and Helper D. We configure the framework as follows: We set restartMain

to true, terminateAfterFirstInv to false, timerM to 50 seconds, and timeoutH to
300 seconds.

Initially, the main verifier runs standalone and the component within k-induction
for invariant generation computes predicates enumerating concrete values for input

5In practice, having more than two helpers is not practical [HW21a]. We use four helpers to
exemplify the most important cases of Algorithm 1 within a single example.
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(input = 0, 1, . . .). As they do not suffice to prove the program correct, the main
verifier sends a request for help after 50 seconds of runtime. Next, the four helper
invariant generators are started and run in parallel with the main verifier.

Let us assume that Helper C returns only trivial invariants (after 10s), Helper
A the invariant input = 2 ∗ res + rem (after 50s), the Helper B the invariant 0 =
input−rem−2∗res (after 100s, transformed from LLVM-IR) and Helper D the invariant
0.5∗ (input−rem) = res (after 500s). The trivial invariant is ignored (see check in line
7) and when Helper A returns a solution, Helper B and Helper D are still not stopped,
due to the chosen configuration. The algorithm waits until the Helper B computes the
invariant. As Helper D can compute an invariant only after 500s, it exceeds the given
time limit and is thus stopped. As configured, the running main verifier is stopped,
and thereby all not helpful predicates are removed. The freshly started main verifier
uses the two invariants input = 2 ∗ res + rem and 0 = input − rem − 2 ∗ res, which
enable it to prove the program correct.

3.2 Machine Learning based Invariant Generation

As just exemplified, the quality of the invariants generated by the helper invariant
generators is the key to success in CoVEGI. If they do not generate (helpful) loop
invariants, the main verifier does not receive any new information and the coopera-
tion is useless. Nevertheless, finding such invariants is a challenging endeavor. For a
long time, loop invariant generation was dominated by template- and logic-based tech-
niques (e.g., [HJMM04; BR02a; Bra11; BDFW08; BHJM07]). Most template-based
approaches are data-driven, meaning that a set of data of the values of program vari-
ables observed at a program location is generated and a template is used to find the
best matching invariant. These templates range from simple non-relational predicates
as x ≤ 4 or x ̸= 0 for x ∈ Var over more complex predicates from relational domains,
that allow stating relations between program variables. Examples for relational do-
mains are Difference Bound Matrices (DBMs) [DKW08], which contain conjunctions
of inequations of the form x1 − x2 ≤ c or ±x1 ≤ c, the octagon domain [Min06], that
contains equations of the form b1 ∗ x1 + b2 ∗ x2 ≤ c, or from the domain of Polyhe-
dra [CH78], that contains equations of the form a1 ∗x1 + . . .+an ∗xn ≤ c, for xi∈ Var ,
c, ai ∈Z and b1, b2 ∈ {−1, 0, 1}. Logic-based approaches use for example interpolation
along program paths to generate predicates that can serve as (part of) a loop invariant.

In 2012, one of the first data-driven approaches to generate predicates, more pre-
cisely interpolants, using ML was proposed by Sharma, Nori, and Aiken [SNA12].
Therein, the predicates are inferred using a combination of Support-Vector Machines
(SVMs) rather than a template. Later, more approaches focusing on the generation
of loop invariants, employing different learners or different ways to generate data were
introduced (e.g., [GLMN14; KPW15; ZMJ18; PSM16; Rya+20; Yao+20]). Most ML-
based approaches for generating loop invariants follow the structure of the learning
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process for regular languages proposed by Angluin [Ang87], except for the fact that
they have a different learning objective. The Angluin-style learning process is divided
into two components, a Teacher and a Learner , as depicted in Figure 3.4:

Task

Solution

Teacher Learner

Data

Candidate

Figure 3.4: The Angluin-style learning process using Teacher and Learner

The Teacher is given the task that needs to be solved and generates a set of data
that are given to the Learner. The Learner learns a candidate for the solution and
returns the candidate to the Teacher. Important to note that the Learner is not aware
of the task and is working only on the given data. The Teacher receives the candidate
from the Learner and checks, if it is a valid solution. If the solution is invalid, the
data is refined and the process starts anew, otherwise the candidate is returned as the
process’ final answer. One advantage of that learning process is the clear separation of
concerns: The Teacher is responsible for validating candidates and generating the data,
and the Learner’s task is to generate candidates given data. Note that this concept is
also sometimes called Counterexample-Guided Inductive Synthesis (CEGIS) [Alu+13].

In the setting of invariant learning using ML, the task comprises a program C

for which an invariant needs to be generated and the property S, the candidate is a
potential loop invariant and the solution thus a valid loop invariant inv. The idea of
using the concept of Teacher and Learner for invariant generation is formalized by Garg
et al. in the ICE-framework [GLMN14; GNMR16]. A point in the set of data given
to the Learner contains values for the program variables that might or might not be
observed at the program location for which a loop invariant needs to be generated.
They also may lead to a violation of the safety property. The candidate generated by
the Learner is herein a candidate loop invariant.

There exist different approaches for ML-based invariant generation, thus it seems
reasonable to employ some within CoVEGI. Having a closer look at four existing
approaches ([SNA12; KPW15; ZMJ18; GLMN14]), we observe similarities and differ-
ences, e.g., same classification approach used and different methods for generating an
initial set of data. Although all approaches are evaluated experimentally, it is still chal-
lenging to find out which approach might likely be the best one for our chosen setting.
A thorough comparison is hindered by several facts:

• Some implementations of the approaches are not publicly available (anymore), re-
quire specific preprocessing or input formats or only run in specific environments.

• The results reported in articles rely on specific optimizations, tuning of hyper-
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Figure 3.5: A linearly separable set of
training data for two variables res and
rem and the function f1 = res + 0.5 ∗
rem− 2.25
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Figure 3.6: A set of training data that
is not linearly separable

parameters, or additional preprocessing in corner cases that are not documented
(or only within the code).

• The authors employ different benchmarks for their evaluation, often with a small
intersection among the benchmark tasks used.

• Seldomly, techniques only work on the presented benchmark and are not ready
to be used in other contexts.

To overcome this unsatisfactory situation, we develop a framework allowing for a con-
ceptual and experimental comparison of ML-based invariant generation approaches.
Therein, we provide re-implementations of the core components of ML-based invariant
generation as proposed in the four selected articles on ML invariant generation ([SNA12;
GLMN14; KPW15; ZMJ18]), allowing for the first time for an unbiased comparison,
disregarding any specific optimizations or test case specific tunings.

Before we introduce the Modular Framework for Invariant Generation using Ma-
chine Learning (MIGml) in Section 3.2.3, we first provide some fundamentals on dif-
ferent ML classification techniques that we use within the framework next.

3.2.1 Fundamentals on Machine Learning Classification Techniques

Machine Learning comprises a huge variety of techniques to process data, like classifi-
cation, regression, or clustering. We focus on the classification of data into two classes,
called binary classification. Each data point in the set of training data provided to a
ML algorithm is labeled with one of the two classes, called supervised learning. Con-
ceptually, supervised learning comprises two phases: a training phase and a prediction
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Figure 3.8: A conjunction of two linear
functions correctly classifying the set of
training data

phase. In the training phase, the learner is given a so-called training set, which it gener-
alizes in order to obtain a model that captures the relationship between the two classes.
The data in the training set are labeled according to the two classes. In our setting,
the training set comprises a set of positive points X+, depicted in green and a set of
negative points X−, depicted red. In the prediction phase, the model is used to classify
new data points, not present in the training set. There are many machine learning al-
gorithms, called classifiers, usable for binary classification in supervised learning. Two
classifiers widely used are Support-Vector Machines (SVMs) and Decision Tree (DT)
learners. As we use both within MIGml, we briefly introduced them next:

Support-Vector Machine A (linear) SVM learns a linear function f(x) =a1x1+. . .+
anxn+b, xi∈ Var , ai, b∈Q separating the positive and negative points, i.e., f(x) > 0
holds for all x ∈ X+ and f(x) ≤ 0 holds for all x ∈ X−. Hence, the hyperplane
f(x) = 0 separates positive and negative points. The SVM aims to find a function that
separate the points maintaining a maximal margin. For a detailed description of how
to compute such a function, we refer to Bishop [Bis07]. We depict in Figure 3.5 a set of
training data and the function f1 = res+ 0.5 ∗ rem− 2.25 learned by the SVM6. As all
points x in the set of training data for which f1(x) > 0 holds are classified positively,
the model learned by the SVM classifies all points in the light blue region positively.

A set of training data is called linearly separable, if there exists a linear function
separating all positively labeled and negatively labeled points. We depict in Figure 3.6 a
set of training data that is not linearly separable. In these cases, multiple solutions exist:
One can make use of the kernel-trick [TK09], where the set of training data is mapped
to a higher-dimensional space such that it is linearly separable. A different method that

6More precisely, we depict the hyperplane f1(x) = 0, which is for the two-dimensional case a line.
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is for example used by Sharma et al. [SNA12] is to use a combination of multiple models
learned by a SVM. In case negatively labeled points are misclassified, an intersection
of multiple linear functions is used. Therefore, all negative points correctly classified
in the first iteration are removed from the set of training data and a new model is
learned, that is conjoined with the model learned in the first iteration. Assuming that
the SVM is given the set of training data depicted in Figure 3.7 and generates the
linear function f1 = res + 0.5 ∗ rem − 2.25 in the first iteration, the two data points
above the linear function that are marked are misclassified. In the second iteration,
the updated set of training data consists of all positive points and the two negative
points misclassified in the first iteration. The SVM now learns the linear function
f2 = −res − 0.5 ∗ rem + 2.75, depicted as a dashed blue line in Figure 3.8 which in
conjunction with f1 correctly classifies all data in the set. The SVM has learned a model
that classifies all points x positively, for which f1(x) > 0 ∧ f2(x) > 0 holds, which is
equivalent to res + 0.5 ∗ rem = 2.5 or 2 ∗ rem + res = 5 for rem, res being integers.
The case that some positive points are misclassified can be handled analogously using
a union of multiple models by disjoining them.

Decision Tree Learner A Decision Tree (DT) learner generates a Decision Tree as
a model which is a compact way of representing a boolean formula. A decision tree is
a binary tree, where each inner node has two successors and is labeled with predicates
of the form x > b, x ∈ Var , b ∈ Q. The edges to the successors are labeled with true
(depicted by solid edges) or false (depicted by dashed edges). Each leaf is labeled
with a class, in our setting either positive (1) or negative (0). A point is classified by
traversing the decision tree and evaluating each predicate in the inner nodes until a leaf
is reached. The learner starts with an empty tree and iteratively selects heuristically a
feature that classifies the data best. For a detailed explanation of decision tree learners
we refer to Quinlan [Qui93] and Breiman et al. [BFOS84].

rem > 2

res > 0

0 1

res > 1

0 1

Figure 3.9: Decision tree classifying the training data of Figure 3.5

We present in Figure 3.9 a decision tree that is learned for the points given in Fig-
ure 3.5. It contains three inner nodes and four leaves. For example, for a classification
of the point (2, 1) it is first checked if rem > 2 is true. As 2 > 2 is false, the dashed
edge is followed and res > 1 is checked. As this predicate is also not satisfied, the point
is classified negatively.
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3.2.2 Motivating Example

Before we explain the details of MIGml, we exemplify the overall process to ease
understanding. We make use of an SVM within the Learner and aim to learn an
invariant for the program of Figure 2.3. At first, the Teacher generates a set of training
data that is depicted in Figure 3.5, comprising positively and negatively labeled points.
Please note that each point in the set of training data contains values for res, rem,
and input. As the value for input is 5 for all points in the set of training data, we
do not show the dimension for input in Figure 3.5 for representation purposes. The
training data is given to the Learner, which generates the linear function f1 = res +
0.5∗rem−2.25, which is transformed into the predicate inv1 ≡ 2∗res+rem > 4.5 and
given to the Teacher. The Teacher checks if inv1 is a valid loop invariant and computes
counterexamples. They are used to extend the set of training data, e.g., by the two
points (2, 2, 5) and (4, 1, 5), yielding the set depicted in Figure 3.6. As the training data
is not linearly separable, the SVM generates the two functions: f1 = res+0.5∗rem−2.25
and f2 = −res−0.5∗rem+2.75, correctly separating the training data. The conjunction
of the two functions is transformed into the predicate inv2 ≡ 2∗res+rem = input. The
transformation is correct, as all variables are integers. The Learner again checks the
candidate inv2 and confirms that inv2 is a valid loop invariant and thus the final answer
of the learning process. The learned invariant could then be used within CoVEGI.

3.2.3 MIGml and its Components

To be able to compare different existing approaches for invariant generation and to ease
the evaluation of new ideas, we develop a Modular Framework for Invariant Genera-
tion using Machine Learning (MIGml). The framework is based on the idea of using
Teacher and Learner as introduced in the ICE approach by Garg et al. [GLMN14], but
we refine each to comprise two individual components to enable the realization of ap-
proaches which do not strictly follow the ICE approach. As a result, MIGml comprises
four components, namely example generator, predicate generator, classifier, and model
validator, depicted in blue in Figure 3.10.

Teacher
Example

Generator

Model
Validator

Learner
Predicate
Generator

Classifier

C,S
Program &
Property

AIW

Invariant
Witness

Training
Data

Predicates

ML-
Model

Counter-
Example

Figure 3.10: Overview of the MIGml-framework
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They communicate via precisely defined interfaces which facilitate a clear decoupling
and independence of components. Each component can be instantiated arbitrarily, al-
lowing for the implementation of and experimentation with different techniques. Before
describing Teacher and Learner and the four components within the framework, we first
explain which information is exchanged and which formats are used for the information
exchange.

3.2.3.1 Exchange Formats

Teacher and Learner exchange information using training data and ML-model. In-
ternally, the Teacher uses a counterexample and the Learner a set of predicates. To
account for components realized using different techniques and to facilitate reusing ex-
isting components, the information exchange needs to be realizable using files, that
at best follow the prevalent format. These formats and the encoded information are
presented next.

Training Data The training data is used for guiding the Learner towards a valid loop
invariant and therefore contains variable values at the loop head, i.e., labeled program
states. It comprises of positive samples X+ and negative samples X−. Furthermore, as
employed by one approach, it may contain implication samples X⇒. Intuitively, positive
samples are observable in the program and negative ones are either not observable or
lead to a property violation. To precisely define the elements within the training data,
we assume a program is given as CFA C having a single loop at location ℓh. To
account for the latter definition of negative samples, we require the same form of safety
property as for helpful loop invariants defined in Definition 2.5, namely, having the
safety property S = (ℓerr, ω), where ω is asserted at ℓerr. A state σh is labeled positively
whenever there exists a path π ∈ paths(C) such that π= ⟨ℓ0, σ0⟩ −g1−→ . . .−gh−→ ⟨ℓh, σh⟩.
Depending on the approach, the definition of negative states differs slightly. A state σh
is labeled negatively if (in some approaches) there is no path π′ ∈ paths(C) such that
π′ = ⟨ℓ0, σ0⟩ −g1−→ . . .−gh−→ ⟨ℓh, σh⟩ or (in other approaches that assume that programs are
correct) there is a path π ∈ paths(C) such that π=⟨ℓh, σh⟩−gh+1−−→ . . . −gj−→ ⟨ℓerr, σerr⟩ and
σerr(ω)= false. Finally, an implication sample [GLMN14] is a pair of states, where the
second one is labeled positively whenever the first one gets classified as positive by the
learned model. If the first state is classified as negative, the second one can be ignored.
Implication samples are used when generating new samples based on the preservation
condition (2.5), as it is in advance unclear, whether the first point, referring to the
state before the loop execution, is observable. In the following, we refer to these states
or state pairs jointly as data points.

Predicates The set of predicates over the variables contained in the training data is
used to increase the expressiveness of the invariants generated by the Learner. Pred-
icates can either be given as additional input to the classifier or are directly encoded
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within the training data. In the former case, an SMT-2-LIB [BST10] conformal no-
tation is used. In the latter case, the training data are extended by calculating the
concrete value for the terms used within the predicates for each data point. For exam-
ple, if the training data contains the data point (x 7→ 3, y 7→ 2) for the variables and
the term x − y for the predicate x − y > 0, a new entry with the term x − y and the
calculated value is added to the data point (hence (x− y) 7→ 1).

ML-Model The ML-model is used for communication of the result of the learning
process to the Teacher and thus contains the candidate invariant computed by the
Learner. It is generated by transforming the learned model into a boolean formula.
The formula is encoded in the standardized SMT-2-LIB [BST10] format.

Counterexample The counterexample is used for extending the current training
data in case the ML-model is not a valid loop invariant. It contains the formula for
the violated condition and satisfying assignments for the variables and uninterpreted
functions present in the formula.

3.2.3.2 Learner

The Learner comprises the two components predicate generator and classifier . Its task
is to learn a classification for the training data separating the positive and negative
points, that does not contradict any implications. The first component, the predicate
generator, may generate additional predicates that serve as additional inputs for the
classifier. The predicate generator can employ multiple techniques: Using templates
(e.g., predicates from the octagon domain [Min06] of the form ±x ±y≤c; x,y∈Var , c∈
Q), logic-based approaches, or using the ML-model that is generated by a different clas-
sifier.
The training data are labeled using two labels. Thus, ML algorithms for binary classifi-
cation in supervised learning are required. Implication points do not match the binary
classification setting. Thus, the learning algorithms used need to be adjusted to be
able to process them. Note that we require in the setting of learning invariants that
the learned model perfectly classifies all given points inside the training data. After
the learning phase is completed, the learned model is transformed into an ML-model
containing the candidate invariant using a boolean combination of predicates over the
program variables. For this, we require the use of classifiers which generate models
having a (compact) boolean representation. Hence, we need a mechanism to translate
the classification learned by the classifier into a boolean formula.

3.2.3.3 Teacher

The Teacher’s main objective is to guide the Learner towards finding an invariant by
providing suitable training data. It comprises of an example generator and model val-
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Algorithm 2 MIGml-Algorithm
Input: C ▷ CFA

S ▷ safety property
Teacher = (ExampleGenerator, Validator) ▷ Teacher
Learner = (PredicateGenerator, Classifier) ▷ Learner

Output: AIW ▷ Invariant witness

1: data := ExampleGenerator.generateInitial(C, S);
2: term := false;
3: while (¬term) do
4: pred := PredicateGenerator.gen(C, S);
5: ml_model := Classifier.learn(data, pred);
6: term, cex := Validator.validate(ml_model, C, S);
7: if (¬term) then
8: data := ExampleGenerator.update(data, cex);
9: return Teacher.generateWitness(ml_model); ▷ Return witness

idator . The model validator is given the ML-model and may check if the candidate
encoded is a valid or even helpful loop invariant, e.g., using verification techniques
based on CHCs or strongest postcondition. In case the candidate is not approved a
counterexample is generated and given to the example generator.
The example generator uses the information of the counterexample to extend the train-
ing data. Intuitively, if the candidate violates the establishment condition (2.4), addi-
tional positively labeled data is added. In case the loop invariant is not helpful, new
negatively labeled data is generated and added, and if the preservation condition (2.5)
is violated, new implication points are generated. Moreover, the example generator
may produce an initial set of training data for the Learner.

3.2.3.4 Learning Process

The overall learning process for a MIGml instance, using all four components, is for-
malized in Algorithm 2. The process is completed when the model validator does not
generate new counterexamples anymore. Then, the last ML-model contains the final
invariant and an invariant witness AIW that is returned as the learning process’ final
answer is generated.
Having a learning process comprising the four components yields multiple advantages:
It allows us to realize components in MIGml that are not described as instances us-
ing Teacher and Learner, create new combinations, and model implicit execution steps
explicitly. Next, we explain how to realize existing approaches for ML-based invariant
generation using MIGml.
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Table 3.1: Overview of the concepts for learning invariants used with their realization
as instances in MIGml

SNA12 GNMR16 KPW15 ZMJ18

G
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Learn
Loop

Invariant

Learn
Loop
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Verify
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✗ ✗ ✗ ✓
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Example
Generator Logic (sp) Logic(sp) Execution Logic(CHC)

Initial
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Generator ✗
Octagon-
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Classification
&Octagon-
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3.2.4 Existing Approaches for Invariant Generation in MIGml

The modular structure of MIGml allows its instantiation with existing concepts for
machine learning-based invariant generation. Thereby, it facilitates a conceptual com-
parison of different approaches as well as an experimental evaluation of them on equal
grounds. We selected four existing and conceptually different approaches, published
by Sharma, Nori and Aiken (SNA12) [SNA12], Garg, Neider, Madhusudan and Roth
(GNMR16) [GNMR16], Krishna, Puhrsch and Wies (KPW15) [KPW15] and Zhu, Mag-
ill and Jagannathan (ZMJ18) [ZMJ18]. The four approaches have slightly different
objectives and employ different techniques within the four MIGml components. Due
to the conceptual differences, we consider our selection to be reasonable w.r.t. the vari-
ety of existing machine learning approaches for invariant generation. Next, we shortly
introduce each of the four approaches and summarize the results in Table 3.1. We
provide a more detailed discussion and a conceptual comparison that is possible due to
the modular structure of MIGml in Appendix A.1.3.

SNA12 To learn interpolants and likely invariants, two formulas are generated for
programs with a single loop: The first formula, representing establishment and preser-

48



Chapter 3. Sequential Cooperation

vation, cf. (2.4) and (2.5), summarizes the path from the program entry with one loop
iteration. The second one encodes the paths from the loop head to the assertion at the
program’s end, used for generating helpful loop invariants (cf. (2.7)). These formulae
are used for model validation and example generation, where ten positive and negative
data points are sampled. In case the learned candidate violates one of the conditions,
new data points are inferred. Within the Learner, an SVM is used as classifier, learn-
ing predicates from the Polyhedra domain [CH78; DKW08]. If the training data is not
linearly separable, a combination of SVMs is used, as explained in Section 3.2.1. No
additional predicates are used as input to the SVM.

GNMR16 The idea of ICE learning [GLMN14; GNMR16] aims at generating loop
invariants that help in proving the program correct. For model validation and ex-
ample generation three formulas representing establishment (2.4), preservation (2.5),
and check (2.7) are generated. Initially, an empty set of training data is used. If the
candidate generated by the Learner violates establishment (respectively check), a new
positively (respectively negatively) labeled data point is generated. Whenever an ML-
model violates the preservation condition, the training data is extended with a new
implication point. On the Learner side, the approach employs a decision tree learner
that is able to also process implications [GNMR16]. The classifier is also able to han-
dle predicates as additional input. In this approach, all predicates from the octagon
domain [Min06] are generated using a template.

KPW15 To learn loop invariants, a similar Learner instantiation as in GNMR16 is
used, applying a decision tree as classifier and generating predicates from the octagon
domain. The main idea of this approach is to generate a single, rich set of training data
and use the decision tree learner only once, not iteratively as in the other approaches.
Therefore, the program is executed with input values from a predefined interval, and
observed states are used as positive data points, negative ones are obtained by mutating
the positive data points and checking, if executing the program leads to a property
violation. If the model validator confirms that an ML-model is a valid loop invariant,
an invariant witness is generated. Otherwise, the process aborts without a result.

ZMJ18 To verify a program, CHCs are generated (cf. Section 2.4.6) that contain
uninterpreted functions. The machine learning approach is asked to learn a predicate
for each uninterpreted function symbol, where one function is generated per loop that
models the loop invariant. Initially, an empty set of training data is used and the
learned interpretations for the uninterpreted function in the CHCs are checked in the
validation step. The CHC generated correspond (among others) to the initialization
(2.4) establishment (2.5) and check (2.7). Positive points are generated and all negative
ones are discarded whenever the uninterpreted functions within the CHC corresponding
to the initialization condition (2.4) is violated. Negative points are added if a CHC
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Figure 3.11: Initial set of training data
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Figure 3.12: Classification of the initial
set of training data using the SVM

corresponding to establishment (2.5) or if check (2.7) is violated and it cannot be
decided if the new data point is observable at the loop head using the set of training
data. For the Learner, a decision tree is used as classifier. Predicates are generated
using an octagon-based template as well as the classification learned by an SVM.

Artifact Availability of the Approaches As we aim to use existing approaches off
the shelf, we are interested in the availability and reusability of the provided software
artifacts. For ZMJ18, the artifact is available at GitHub [ZGNK18], but we were not
able to execute the tool due to issues while building it. Both artifacts of KPW15 and
GNMR16 are not publicly available anymore, but the authors provided them and we
included them in our own artifact [HW21c]. The tool developed by Krishna et al. is only
applicable to tasks used in their evaluation, as it requires some manual transformation.
The implementation of Garg et al. is applicable to Boogie programs only and it is only
executable on Windows-32Bit. For SNA12, no artifact is available anymore.

3.2.5 Example Application of MIGml

To exemplify the advantages of the MIGml framework, we apply a newly built config-
uration to the running example from Figure 2.3. Let the configuration make use of X+

and X− in the training data, an example generator using the strongest postcondition
for the validation of a ML-model (as in GNMR16), an example generator executing
the program to sample data points for the initial set of training data (as in KPW15),
and the Learner that is used by ZMJ18, i.e., using the classification of a SVM and an
octagon template for the predicate generator and a DT-learner as classifier.

In the first step, the initial set of training data is computed by the Teacher.
The set generated is shown in Figure 3.11 and comprises in total of seven positive
points depicted in green and five negative points depicted in red. This set is given
to the Learner. The predicate generator uses an SVM to classify the data and gener-
ate additional predicates. The hyperplane learned by the SVM is depicted in Fig-
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ure 3.12, which is f1 ≡ rem + 2 ∗ res − input + 0.5 = 0 and is transformed in
the predicate p1 ≡ rem + 2 ∗ res − input + 0.5. The set of predicates comprises
{p1, ±rem ± res ≤ c, ±rem ± input ≤ c, ±res ± input ≤ c} and their negations
are given as additional input to the classifier using a DT learner. The DT that is
learned is depicted in Figure 3.13 and is transformed into the invariant candidate
inv1 ≡ input ≤ 5 ∧ rem + 2 ∗ res − input + 0.5 > 0, that is encoded within the
ML-model and given to the Teacher.

input > 5

0rem+ 2 ∗ res− input+ 0.5 > 0

0 1

Figure 3.13: Decision tree classifying the training data of Figure 3.11

The Teacher computes within the model validator for an invariant inv the three
conditions initialization (IC), preservation (PC) and check (CC) in SSA form for the
program C1. To increase readability, we have simplified the conditions by removing or
inlining the ϕ nodes and other SSA-related transformations:

IC ≡
(
(input0 < 0 ∧ input1 = −input0) ∨ (input0 ≥ 0 ∧ input1 = input0)

∧ (rem0 = input1 ∧ res0 = 0
)

⇒ inv

PC ≡
(
inv ∧ rem1 > 1 ∧ rem2 = rem1 − 2 ∧ res2 = res1 + 1

)
⇒ inv′

CC ≡
(
(input0 < 0 ∧ input1 = −input0) ∨ (input0 ≥ 0 ∧ input1 = input0)

∧ rem1 = input1 ∧ res1 = 0 ∧ inv ∧ rem1 ≤ 1
)

⇒ input1 = 2 ∗ res1 + rem1

Within the equations, inv makes use of the variables rem1, res1, input1 and inv′ of
rem2, res2, input1. Now, the candidate inv1 encoded in the ML-model is validated. Un-
fortunately, all three conditions IC , PC , and CC are violated and the counterexamples
are given to the example generator. Depending on its configuration, new data points
are generated. Let us assume that three additional data points (2, 2, 6) for X+ and
(4, 1, 5), (5, 1, 6) for X− are generated. The second iteration starts with the extended
training data that is given to the Learner. Within the predicate generator an SVM is
trained on the data first. As the data is not linearly separable, no hyperplane perfectly
classifying the data can be found. The generated hyperplane that classifies most data
points correctly is again f1 ≡ rem+ 2 ∗ res− input+ 0.5 = 0. The two negative data
points (4, 1, 5), (5, 1, 6) are missclassified, as depicted in Figure 3.14. Hence, the SVM
is asked to classify a reduced set comprising of X+ and X− = {(4, 1, 5), (5, 1, 6)}. The
classification of the dataset that is learned is f2 ≡ −rem − 2 ∗ res + input + 0.5 = 0,
as depicted in Figure 3.15. The conjunction of the two halfspaces and hence of the
predicates generated using f1 and f2 is the learned predicate:
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Figure 3.14: Classification with two
misclassified data points
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Figure 3.15: Classification of the re-
duced set of training data

p2 ≡ rem+ 2 ∗ res− input+ 0.5 > 0 ∧ −rem− 2 ∗ res+ input+ 0.5 > 0 (3.1)

⇔ rem+ 2 ∗ res− input > −0.5 ∧ rem+ 2 ∗ res− input ≤ 0.5 (3.2)

⇔ − 0.5 < rem+ 2 ∗ res− input ≤ 0.5 (3.3)

⇔ rem+ 2 ∗ res− input = 0 (3.4)

The predicate that is generated is thus rem+ 2 ∗ res− input. The transformation from
3.3 to 3.4 is valid, as all variables used in the program are integers. Thus, the set of
predicates given as additional input to the classifier is {p2, ±rem± res ≤ c, ±rem±
input ≤ c, ±res± input ≤ c}. The Decision Tree-learner generates a DT that consists
of two decision nodes and represents the formula inv2 ≡ rem + 2 ∗ res = input, as
depicted in Figure 3.16.

rem+ 2 ∗ res− input > 0

0rem+ 2 ∗ res− input > −1

0 1

Figure 3.16: Decision tree representing the loop invariant rem+ 2 ∗ res = input classi-
fying the training data of Figure 3.14

As the invariant inv2 encoded within the ML-model is a valid and helpful loop invariant,
thus satisfying IC , PC and CC , the model validator confirms the invariant and an
invariant witness AIW is generated and returned as the learning process’ final answer.

3.3 Implementation

To analyze the feasibility of CoVEGI and MIGml we build a prototype for CoVEGI
and MIGml described next. Both implementations are available and software artifacts
are archived at Zenodo [HW21b; HW21c].
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3.3.1 Implementation of CoVEGI

To be able to analyze the performance of CoVEGI, we build a prototype within the
CPAchecker. We implemented Algorithm 1 within CPAchecker 1.9.1, as a config-
urable algorithm. Thereby, we can instantiate the algorithm with different main veri-
fiers and helper invariant generators. For the evaluation, we aim to use CPAchecker’s
implementation of predicate abstraction and k-induction. To ensure that witness in-
jection as explained in Section 3.1.3 is fully supported, we build some minor extensions
within the existing implementation.

To the best of our knowledge, there existed no standalone and publicly available
invariant generators, that generate invariants for both, global and local variables, with-
out doing a full verification, when we built and evaluated the prototype of CoVEGI
in 2020. To be able to still evaluate CoVEGI, we decided to use off-the-shelf veri-
fiers as invariant generators instead. We ignore the computed verdict and only use the
invariant witness generated. We selected the tools SeaHorn (cf. Section 2.4.6), Ulti-
mateAutomizer (cf. Section 2.4.2) and VeriAbs (cf. Section 2.4.5), where the latter
two participated in the SV-COMP [Bey20]. Both UltimateAutomizer and VeriAbs
achieved excellent results in 2020’s SV-COMP, being the reason to chose them. To
exemplify that CoVEGI can employ arbitrary off-the-shelf tools as helper invariant
generator, we select as third tool SeaHorn, a verification tool neither currently partic-
ipating in the SV-COMP nor producing witnesses. It operates on LLVM-IR, therefore
we used the mapper and encoder exemplified in Appendix A.1.1. The three helper
invariant generators are used as black-boxes and employ verification techniques com-
plementary to those of both the other helpers and the two main verifiers. For VeriAbs
and UltimateAutomizer we use the versions evaluated in the SV-COMP 20207. Since
there is no precompiled binary of SeaHorn, we employ the docker container of the 2020
version8. All three helper invariant generators are used in their default configuration.

3.3.2 Implementation of MIGml

One goal of MIGml is to allow us to compare different approaches on equal grounds.
Some implementations of existing approaches are (1) not publicly available, (2) only
executable in a specific execution environment or for a limited set of tasks, and (3) apply
hyperparameter tuning, preprocessing, or additional optimizations for certain tasks.
Hence, such a comparison cannot rely on the existing implementations. The Association
for Computing Machinery (ACM) provides criteria for reproducing experiments [Ass20],
requiring among others that only parts of the artifacts provided by the authors are used.
We therefore decided to build a prototype for the MIGml framework as an independent
standalone tool.

The MIGml framework itself comprises the execution skeleton, steering the ex-
7https://gitlab.com/sosy-lab/sv-comp/archives-2020/tree/master/2020
8suggested by the developers; used docker seahorn/seahorn-llvm5 (4c01c1d)
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ecution and implementing Algorithm 2 and instances for Teacher and Learner. We
employ existing tools (like the CPAchecker [BK11]), that are able to process a rich
set of tasks, but do not primarily focus on efficiency while developing the prototype.
As we aim to allow easy creation of new combinations and extensions of existing ones
with new components, each instance is configured using configuration files. Next, we
shortly introduce the components realized within MIGml. A more detailed description
containing implementation details is given in Appendix A.1.4.

Beneath instances of Teacher and Learner, we provide utility functions to collect
information on variables (Default variable collector), to execute a program with in-
put values from intervals (Interval-based program executor), or symbolically (Symbolic
execution based program executor) and to determine, whether a certain state results
in a property violation (Injectable value analysis). The Symbolic execution based pro-
gram executor is realized using Klee [CDE08; CN20], the other functions using CPA-
checker [BK11].

3.3.2.1 Learner

In contrast to most application areas of machine learning, the data points in our training
data are not noisy, meaning that all data points need to be classified correctly by
the learned ML-model. Moreover, a precise transformation of the generated models
into a boolean representation is required. We implement two different classification
algorithms, namely SVM and decision tree learner.

SVM We have already exemplified in Section 3.2.1, how to represent a model learned
by an SVM using boolean formulae. Due to the learning algorithm employed by the
SVM, the coefficients present in the learned model are real values, where the variables
present in the program are (in most cases) integers. Consequently, an invariant con-
taining integer coefficients like 2 or reals like 0.5 is more likely correct than an invariant
containing 1.999974 or 0.5192. Based on the SVM implementation from the scikit-
learn library [Sci20], we have implemented two different rounding mechanisms, called
close rounding (Svm-C) inspired by SNA12 and scaled rounding (Svm-S), inspired by
ZMJ18. Svm-C rounds only reals that are close9 to the next integer, whereas Svm-S
searches a scaling factor such that all coefficients are close to an integer.

Decision Tree Learner The decision tree learner based on the scikit-learn library
is called Dt-Skl. The boolean formula generated out of a tree is the disjunction of the
formulae for every path from the root to a leaf labeled with 1, which themselves are
conjunctions of the boolean conditions on the nodes. Additional predicates are inte-
grated into the training data as proposed in [KPW15] and explained in Section 3.2.3.1.

9We define close as a configurable parameter denoting the maximal distance to the nearest integer,
by default 0.1.
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To be able to employ implication points, we integrated the existing decision tree learner
(called Dt-Ice) proposed in 2016 by Garg et al. [GNMR16].

Predicate Generator MIGml contains a template-based predicate generator based
on the octagon domain, called Pg-Oct.

3.3.2.2 Teacher

The teacher’s main task is to guide the learner towards finding an invariant. It com-
prises two components, model validator and example generator.

Model Validator For the model validator, we implement three different components:
Val-Ip and Val-SP both make use of the strongest postcondition operator and are
realized using CPAchecker, where Val-Ip computes the two formulas described by
SNA12, and Val-SP, used by GNMR16, generates establishment, preservation, and
check (see (2.4), (2.5) and (2.7)). Val-CHC is based on CHCs, which is used by
ZMJ18. The CHCs are generated using the tool Korn [Ern20; Ern23], that generates
CHCs for C programs directly and exporting them as SMT-2-LIB-code. Inside the
model validators we employ the Java-SMT library [KFB16; BBF21], providing support
for widely used solvers, where we currently use Z3.

Example Generator For the initial example generation, MIGml contains a logic-
based (EX-Log) and execution-based example generator (EX-Exec). The logic-based
example generator generates a fixed number of satisfying assignments for each formula
and extracts the data points. In contrast, EX-Exec generates data points using the
interval-based (EX-I) or symbolic execution-based program executor (EX-S). These
points are mutated, resulting in a set of candidate negative points, that is checked for
violating the postcondition using the injectable value analysis, as proposed by KPW15.

3.4 Evaluation

After having introduced the concepts of CoVEGI for cooperative verification using
externally generated invariants and MIGml for invariant generation using machine
learning, we evaluate both concepts next. The goal of the evaluation is two-fold: Firstly,
we want to investigate, whether externally generated invariants ease the verification
problem, focusing on effectiveness and efficiency. We analyze this in RQ1, RQ2 and
RQ3, cf. Sections 3.4.2 to 3.4.4. Secondly, we are interested in answering in RQ 4 (cf.
Section 3.4.5), if these invariants could be generated using ML, i.e., using our novel
MIGml framework.
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3.4.1 Experimental Setup

To answer the first three research questions regarding the use of externally generated
invariants, we evaluate the general performance of the concept of CoVEGI as well
as compare different configurations. As explained in Section 2.5, we focus on both
effectiveness and efficiency, generally aiming at checking whether the use of CoVEGI
can increase the number of correctly solved verification tasks within the same resource
limits. We explain the slightly different setup used for RQ 4 (cf. Section 3.4.5) later.

Configuration The CoVEGI algorithm presented in Algorithm 1 offers four config-
uration options. During our evaluation, we set termAfterFirstInv and restartMain

to true, the timerM to 50s, and the timeoutH to 300s. Other configurations using
different values for timerM and termAfterFirstInv are evaluated in [HW21a] and for
restartMain in Appendix A.1.5. We use the abbreviations SH for SeaHorn, UA for
UltimateAutomizer, and VA for VeriAbs.

Benchmark Tasks The verification tasks used are taken from the set of SV-COMP
2020 benchmarks [SVB20]. As we are interested in generating loop invariants externally,
we selected all tasks from the category ReachSafety-Loops. The programs used as
tasks in this category of the SV-Benchmarks contain at least one loop. To obtain a
more broad distribution of tasks, we randomly selected 55 additional tasks from the
categories ProductLines, Recursive, Sequentialized, ECA, Floats and Heap that
contain loops, yielding in total 342 tasks.

Computing Resources We conducted the evaluation on three virtual machines,
each having an Intel Xeon E5-2695 v4 CPU with eight cores and a frequency of 2.10
GHz and 16GB memory, running an Ubuntu 18.04 LTS with Linux Kernel 4.15. We run
our experiments using the same setting as in the SV-COMP, giving each task 15 minutes
of CPU time on 8 cores and 15GB of memory and use BenchExec (cf. Section 2.5.1).

Availability The implementations of CoVEGI and MIGml as well as all experi-
mental data are publicly available and archived at Zenodo. We archive in [HW21b]
CoVEGI and the data for RQs 1-3, and in [HW21c] MIGml and the data for RQ 4.

3.4.2 RQ 1: Can CoVEGI Increase the Effectiveness of a Main Ver-
ifier?

Evaluation Plan We let the CoVEGI framework run with a single invariant gen-
erator and compare the results to a standalone run of the main verifier. In total, we
evaluate eight different configurations.
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Table 3.2: Comparison of the two main verifiers running standalone, using a single and
two helper invariant generators

k-induction alone +SH +UA +VA +SH-UA +SH-VA +UA-VA
correct overall 146 148 158 163 153 156 163
correct proof 102 104 114 119 109 112 119
additional proof - 3 13 19 7 11 19
correct alarm 44 44 44 44 44 44 44
additional alarm - 0 0 0 0 0 0
incorrect overall 1 1 1 1 1 1 1

predicate abstr. alone +SH +UA +VA +SH-UA +SH-VA +UA-VA
correct overall 116 122 132 125 130 130 136
correct proof 78 84 94 87 92 92 98
additional proof - 6 16 9 9 9 15
correct alarm 38 38 38 38 38 38 38
additional alarm - 0 0 0 0 0 0
incorrect overall 1 1 1 1 1 1 1

Experimental Results Before having a detailed look at our experimental results,
we can already state that the cooperative idea used within CoVEGI itself is feasible:
For our proof of concept implementation, we only had to build minor extensions within
the main verifiers implementation to fully support witness injection. To be able to
employ the three helper invariant generators within CoVEGI, we do not change a
single line of code of the tools, except for adding encoders and mappers if needed.
Integrating helpers like VeriAbs, which do not require a mapper nor an encoder, can
be done within a few lines of code. Although the implementation is a proof of concept,
this shows that it is applicable to all kinds of off-the-shelf helper invariant generators,
those producing verification witnesses as well as those generating invariants in an IR.

To evaluate whether a main verifier benefits from the support of a helper in the
form of invariants, we execute a combination of a main verifier and a helper in the
default configuration and compare it to the main verifier running standalone. Here,
we are interested in the number of correct answers overall, correct proofs and alarms,
as well as in the number of incorrect answers. In addition, we also state the number
of additional proofs and alarms, i.e., those tasks that are solved by one instance of
CoVEGI but not be the main verifier running standalone.

We summarize the results in the left half of Table 3.2. Running standalone, k-
induction can correctly solve 146 of the verification tasks, predicate abstraction 116.
Both tools compute one incorrect alarm, also reported by any of the framework config-
urations used. When comparing the number of correctly solved tasks for the analyses
running standalone compared with instances using CoVEGI, we observe that the ef-
fectiveness is increased, as each instance can solve more tasks. Using k-induction with
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VeriAbs leads to 19 additional proofs, using predicate abstraction with UltimateAu-
tomizer to 16 additional proofs. As expected, this applies to verification tasks matching
the safety property only, as the invariant generators can help in proving the correctness,
but cannot help in refuting properties (as none of the helpers employed is generating
invariants in these cases). Besides the additionally solved tasks, there are also one (for
SH and UA) and two (for VA) tasks, respectively, which cannot be correctly solved
anymore when using k-induction as main verifier. In these cases, the main verifier con-
sumes most of the CPU time available, hence sharing resources in cooperation with the
helpers results in a timeout. For predicate abstraction, all tasks solved standalone are
also solved by the main verifier.

Results
On our data set, the total number of correctly solved tasks using CoVEGI in-
creases by 12% for k-induction and 14% for predicate abstraction as main verifier
compared to the main verifier used standalone.

3.4.3 RQ 2: How does CoVEGI Impact the Verifier’s Efficiency?

Evaluation Plan Next, we evaluate the efficiency of CoVEGI. Therefore, we com-
pare the CPU time and the overall time (wall time) spent solving the verification tasks.
A CoVEGI instance runs the main verifier standalone within the first 50 seconds and
eventually shares the resources between main verifier and helper invariant generators.
Thus, we expect that more CPU time is needed to compute a correct result after the
helper invariant generator is started for tasks that can also be solved by the main
verifier standalone.

Experimental Results We present in Figure 3.17 four log-scaled scatter plots com-
paring the CPU time and the wall time for the best performing instances of CoVEGI
for predicate abstraction and k-induction with the standalone analyses per task for
tasks that are solved by both verifiers. A point (x, y) in the plot means that the analy-
sis running standalone needs x seconds CPU resp. overall time to compute a solution,
whereas the CoVEGI instance needs y seconds. For points on the solid, diagonal line
both analyses take the same time, while for points on the dashed lines below and above
one analysis takes twice as long as the other. All tasks solved within 50 seconds are
contained in the red dashed box.

When analyzing the scatter plots, we, first of all, observe that the standalone anal-
yses and the CoVEGI instances behave equally within the first 50 seconds CPU time
(cf. Figures 3.17c and A.3e). After 50 seconds, CoVEGI is faster with respect to CPU
and wall time for some tasks compared to the standalone verifier. For other tasks,
we observe that the cooperative approach is slower, as expected. With respect to the
overall time depicted in Figures 3.17d and A.3f, the difference between both tools is
even smaller, as executing main verifier and helper invariant generator in parallel do
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Figure 3.17: Scatter plots comparing the execution time of CoVEGI instances with
the main verifier running standalone

not negatively influence the overall execution time. All instances of CoVEGI need
on average at most five seconds of wall time more than the standalone verifier, the
difference between the median values is within a second.

Results
On our dataset, collaborative invariant generation does not significantly nega-
tively impact the efficiency. We even see in some cases small improvements.

3.4.4 RQ 3: Does Using Invariant Generators in Parallel Pays Off?

Evaluation Plan After having compared the default configuration using a single
helper invariant generator, we want to analyze whether it is beneficial to run two
invariant generators in parallel and to find the best combination. We thus studied the
effectiveness and efficiency of CoVEGI using two helpers in parallel, yielding three
combinations per main verifier.
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Experimental Results The results for effectiveness for the three combinations are
summarized on the right-hand side of Table 3.2. For checking whether a parallel execu-
tion of two helpers is beneficial, we compare these numbers to the results of CoVEGI
using only a single helper invariant generator and the main verifier running standalone,
which are given in the left-hand side of the table. We see that predicate abstraction
benefits from using two helpers in parallel, especially using UltimateAutomizer and
VeriAbs. Using CoVEGI with these tools perfectly combines their strengths, thereby
increasing the number of correctly solved tasks in total by 17%. For k-induction, none
of the combinations of two helpers outperforms CoVEGI using VeriAbs only, which
can solve 163 tasks. For UltimateAutomizer and VeriAbs as helper invariant gener-
ators, also 163 tasks are correctly solved. Compared to CoVEGI using only VeriAbs,
the set of solved tasks deviates. For instance, nearly 50% of the additional tasks solved
using both as helpers are not solved using only UltimateAutomizer as a helper and
vice versa. This result is based on the fact that two helper invariant generators have to
share the available CPU time in the combination. Hence, tasks that are solved using
one of them as a helper alone could not be solved anymore in a combination, because
the instance of CoVEGI runs into a timeout. With respect to efficiency, it turns out
that using two helpers in parallel yields a higher CPU time for correctly solved tasks,
whereas the overall consumed time does not change when using one or two helpers in
parallel (cf. Appendix A.1.2).

When using all three helper invariant generators in parallel we notice that the
resource sharing among all components becomes even more an issue. The CoVEGI
instance using k-induction as main verifier and all three helpers in parallel can solve
only 154 tasks, using predicate abstraction only 129 tasks. We also evaluated different
configurations that wait for all helpers to finish (using termAfterFirstInv as false
and 100s, 200s for timeoutH) and that do not restart the main verifier (restartMain

is false) in [HW21a; HW20]. We observe that none of the configurations using all three
helper invariant generators yield a better effectiveness.

Results
On our dataset, CoVEGI can increase the total number of correctly solved tasks
using UA and VA in parallel; in general waiting for the other tool to also finish
its computation does not pay off.

3.4.5 RQ 4: Can MIGml Generate Loop Invariants?

Evaluation Plan: Next, we answer the question of whether machine learning can be
used to learn loop invariants for program verification and thus validate if MIGml could
be used as a component within CoVEGI. Therefore, we evaluate the four instances
that represent the approaches presented in [SNA12; KPW15; ZMJ18; PSM16] using
the same setup and thus on equal grounds. The feasibility of MIGml to reproduce
and partially confirm the reported results is analyzed in detail in Appendix A.1.6. We
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Table 3.3: Realization of existing concepts in MIGml

ExGen Validator PredGen Classifier
SNA12 EX-Log Val-Ip ✗ Svm-C
GNMR16 EX-Log Val-SP Pg-Oct Dt-Ice
KPW15 EX-I ✗ Pg-Oct Dt-Skl
ZMJ18 EX-Log Val-CHC Pg-Oct,Svm-L Dt-Ice

focus during this research question mainly on effectiveness, i.e., the number of correctly
generated loop invariants, rather than on efficiency, as efficiency was not the primary
focus when developing the prototype of MIGml. As the learning process involves ran-
domness, we run each tool ten times and aggregate the results as follows: An instance
generates a helpful loop invariant if at least one answer contains a helpful invariant, a
valid (but not helpful) invariant if at least one answer contains a valid invariant, and
invalid if at least one invalid is generated; otherwise the result is unknown/timeout
(helpful ≻ valid ≻ invalid, cf. (2.4), (2.5) and (2.7)). The invariants given as the final
answer are evaluated using the strongest postcondition semantics.

Configuration. To reproduce the result from the four approaches, we create configura-
tions making use of the core components explained in Section 3.3.2, that are summarized
in Table 3.3. We contacted all authors and discussed our findings and our implemen-
tation. Each configuration is used for all tasks. Within their implementation, KPW15
uses for EX-I different, hard-coded values for each task, which is not applicable for new
tasks. We thus use the median values L = [0, 2] for the interval, I = 100 for the number
of loop unrollings, and M = 2 as parameters for the permutation. We also evaluated
other parameters (e.g., maximal value) and obtained similar results, cf. [HW22b].

Computing Resources. The experiments are conducted on the same machines as for re-
search questions 1,2 and 3 but with a decreased available CPU time of 5 minutes, which
is the largest timeout used within the four evaluations and as default for CoVEGI.

Benchmark Tasks For the evaluation of MIGml, we first collected all benchmark
tasks from the four approaches that are still available, in summary, 147. To enhance
the validity of our results, we additionally added all tasks from the Loops category of
the SV-COMP 2020 benchmarks [SVB20]. We excluded tasks that contain arrays and
recursion, as they were not supported by Korn (that we use to generate the CHC) or
for which we were not able to generate the strongest postcondition, that is needed to
validate the generated invariants. In total, we obtained a benchmark set of 263 tasks,
where 222 are correct and 41 are incorrect programs.

Evaluation Result Table 3.4 provides in the upper part an overview of the quality
of the generated invariants for the four approaches SNA12, GNMR16, KPW15, and
ZMJ18. It contains the number of tasks, where each approach was able to generate
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Table 3.4: Quality of generated invariants for different MIGml configurations

invariant generated others
helpful valid invalid unknown timeout

SNA12 17 5 109 30 102
GNMR16 55 2 0 155 51
KPW15 24 13 0 209 17
ZMJ18 38 4 4 66 146
KPW15-Val 46 3 7 60 141
ZMJ18-Oct 44 4 16 53 136

invariants that are helpful, valid, or invalid, report no answer, or run into a timeout.
The best approach for generating helpful loop invariants on this benchmark is GNMR16,
generating 52 helpful invariants for verification and 3 for falsification. ZMJ18 can
generate 38 helpful invariants. Surprisingly, the approach is not able to compute an
answer within the given time limit of 5 minutes in more than 50% of all tasks. Both,
GNMR16 and ZMJ18 can generate invariants that are strong enough to show that the
property is valid in the program. In addition, both generate valid or invalid invariants,
for incorrect tasks, where the approaches do not detect the violation. For our re-
implementation KPW15, we observe that a non-iterative approach can also be used
to generate helpful loop invariants (24), although the number is lower compared to
GNMR16 and ZMJ18. As it is non-iterative, it generates a lot more valid but not
helpful invariants (13), and invalid invariants (167), that are reported as unknown
by the approach. SNA12 generates 17 helpful and 5 valid invariants. In addition, a
high number of timeouts is observed for SNA12 (102) and ZMJ18 (146). With a few
exceptions, all reported results are computed in all ten runs conducted.

As MIGml ease building new instances especially the combination of existing com-
ponents, we present in the lower part of Table 3.4 the two new instances KPW15-Val
and ZMJ18-Oct10. We realize that KPW15 generates many invalid invariants. Thus,
we additionally apply the model validator Val-CHC, (instance is called KPW15-Val).
We additionally asked ourselves, if a SVM and Pg-Oct within ZMJ18 pays off. Hence,
we also evaluated the configuration ZMJ18-Oct, which only makes use of Pg-Oct
within the predicate generator. Comparing the absolute numbers, we see that KPW15-
Val computes 46 helpful invariants, whereas the number of valid and invalid answers
(which are subsumed in unknown for KPW15) reduced drastically. Having a look at
the last row in Table 3.4, we observe that ZMJ18-Oct is superior among ZMJ18. In
contrast, ZMJ18 can solve four tasks that ZMJ18-Oct is not able to solve. For exam-
ple, it generates the invariant xa+2 ∗ ya>1, which is not expressible using the octagon
template. We see that MIGml allows for easily building new configurations that can
increase the effectiveness.

10A more in-depth analysis of other instances is given in [HW22b].
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Figure 3.18: Quantile plot for different instances of MIGml

After having analyzed the effectiveness, we also have a look at efficiency. To be poten-
tially usable within CoVEGI, the invariants need to be generated within 300 seconds
(the default value for timeoutH is 300), at best significantly faster. As the CoVEGI
algorithm is using the overall time for tracking the timeouts, we present in Figure 3.18
a quantile plot comparing the overall time taken to compute helpful invariants. A data
point (x, y) in the plot means that the instance computes the x-fastest helpful loop in-
variant in at most y seconds. Therein, we can observe that all instances except KPW15
and ZMJ18 compute at least 80% of the generated loop invariants within 50 seconds
wall time. For the two best-performing instances we see that ZMJ18-Oct computes 36
(82%) and GNMR16 51 (93%) of the helpful loop invariants within 50 seconds.

Results
MIGml can generate helpful loop invariants. The configuration GNMR16 gen-
erates the largest number of helpful invariants on our dataset and more than
90% of these invariants are computed within less than 50 seconds.

3.5 Discussion

Our experimental evaluation demonstrates that using externally generated invariants
eases the verification task, resulting in a higher number of correctly solved tasks on
our data set. Moreover, we observe that MIGml can be used to generate helpful loop
invariants. We first discuss the validity of our experimental evaluation before discussing
the approach itself:

For the evaluation on CoVEGI in RQ 1-3, we used all tasks from the category
Loops and a random sample from other categories. Although this guarantees some
diversity, our findings may not completely carry over to arbitrary real-world programs.
The experiments are conducted using the reliable framework BenchExec, guaranteeing
comparable and reproducible results. However, as SeaHorn is used within a docker-
container, its CPU usage could not be measured by BenchExec. To obtain a lower
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bound for the correctly solved tasks, we measured the CPU usage externally and added
it to the CPU time measured by BenchExec. Thereby, all the results stay valid, espe-
cially of the best-performing instantiations of CoVEGI, as they do not use SeaHorn.

Our implementation of CoVEGI relies on the correctness of the used main verifiers
and helpers (which are given) as well as on the encoders (which we build). However, an
incorrectly translated invariant may only have a negative impact on the performance.
The implementation of the CoVEGI algorithm from Algorithm 1 models both timerM

and timeoutH using real time values instead of CPU time. A main verifier or a helper
using more CPU time than defined does not impair the validity of the results, as
the overall consumed CPU time of a CoVEGI instance is fixed and monitored by
BenchExec. Both main verifiers used as well as UltimateAutomizer and VeriAbs
participate in the annual SV-COMP, so they might be tuned to the tasks employed.
Nevertheless, this does not influence the validity of the results since our focus is on the
number of tasks that can be solved additionally when employing cooperation, and not
the overall solved tasks.

For RQ 4, we use a set of benchmarks that has a large overlap with the one used
for the previous evaluation (the category Loops). In addition, we included all available
benchmarks from four different papers on machine learning-based invariant generation.
Nevertheless, the findings may not completely carry over to arbitrary real-world C
programs. We discussed the re-implementation and intermediate results of the four
approaches used within RQ 4 with the original authors, to ensure that we did not miss
any important aspect. Nevertheless, we cannot guarantee that we did not miss minor
implementation details (as we did not analyze the full code of the original approaches)
or that the prototype of MIGml is free of errors. Such wrong configurations of MIGml
instances or errors within MIGml affect the results only negatively.

Our evaluation indicates that it could be promising to employ MIGml as helper
invariant generator within CoVEGI, as the best-performing instance of MIGml gener-
ates most of the loop invariants within 50 seconds. In addition, the valid but not helpful
loop invariants may also support the main verifier, as a combination with other dis-
covered predicates may suffice to prove the program correct. Nevertheless, evaluating
a combination of both approaches is subject to future work.

The obtained results indicate that CoVEGI increases the effectiveness of the two eval-
uated main verifier for finding proofs. The concept of CoVEGI works only for tasks
that contain at least one loop. By using invariant witnesses for exchanging the com-
puted loop invariants, we also gain some additional flexibility: The CoVEGI algorithm
does not require that the invariant witnesses contain loop invariants (only). To use it
for loop-free programs, we could generalize the task for the helper invariant genera-
tor’s to generate arbitrary state invariants or predicates that might be helpful for the
verification.
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Within the experiments, the use of CoVEGI enables the main verifiers to compute
additional proofs but not to raise additional alarms. The evaluation of MIGml, as
reported in Section 3.4.3, shows that some instances of MIGml generate loop invari-
ants that are helpful for falsification, meaning that the invariant is valid and helps
to verify that the safety property is violated. Beneath that, a valid loop invariant
could potentially reduce the number of CEGAR iterations needed to compute a valid
counterexample and thereby speed up the falsification of a program. An experimental
evaluation that analyzes how CoVEGI in combination with MIGml can be used for
increasing the number of correctly raised alarms is another subject for future work.

3.6 Related Work

The approach for sequential cooperative software verification presented in this chapter
is based on using externally generated invariants. Next, we provide a brief overview
of related work sequentially combining tools or techniques for software verification.
Thereafter, we focus on other existing approaches for generating invariants, of which
most are also based on machine learning.

3.6.1 Sequential Combinations

In the following, we focus on concepts that combine the strengths of different ap-
proaches and exchange information between them in a sequential manner. We first
have a look at cooperative approaches and then at approaches using conceptual inte-
gration. Many tools make use of a sequential portfolio of different analyses or analysis
configurations [DLW15; BKR22; LD22; Ern23; RW19; RHJW20; CSV20; Cha+22;
HHP13], where the instances are executed one after another until a result is computed.
As these combinations do not foresee an information exchange, we do not discuss them
in detail.

Sequential Cooperative Approaches As stated in Characterization 1.1, coopera-
tive approaches use components as black-boxes and exchange information using clearly
defined verification artifacts. One of the earliest ideas for cooperative software valida-
tion in a cooperative manner is CMC [BHKW12]. Therein, so-called conditional model
checkers are executed sequentially. Each generates a predicate specifying under which
condition the program adheres to the specification. This sequential process continues,
until the full program is proven to be correct, i.e., the condition generated is true.
The conditions are exchanged via a condition automaton (cf. Definition 2.11). The
idea of CMC is extended and refined in multiple lines of work: Czech et al. propose in
2015 an extension of CMC wherein the second model checker is replaced using a test-
ing tool [CJW15]. The information from the condition automaton is transformed into
a reduced program, allowing the use of arbitrary testing approaches. In 2018, Beyer
et al. formalized the idea of reducing the program based on a condition automaton
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in [BJLW18]. They define so-called reducers, that remove paths already marked as safe
within the condition automaton from the CFA and generate a residual program using
the reduce CFA. Different reduction and folding strategies are proposed in [BJ20]. A
similar concept for sequential cooperative verification is presented by Christakis et al.,
where a verification tool can add conditions under which the program is safe directly
into the code. These conditions can also be used to model implicit assumptions made
by the verifier explicitly [CMW12]. The task of the next verifier is to validate that
the encoded condition is valid. In 2016, the technique of encoding explicit assumptions
directly in the code is used to guide a dynamic symbolic execution tool towards unver-
ified parts of the program, i.e., to abort the exploration of already analyzed program
parts [CMW16]. Thereby, test cases are generated only for unverified or conditionally
verifier parts of the program. In both lines of work, all employed tools are working
on the same task, that is to verify the remaining parts of the program. In contrast,
we have two conceptually different components working on two different tasks, namely
program verification and invariant generation.

Pauck and Wehrheim proposed CoDiDroid, a framework for cooperative taint flow
analysis for Android apps [PW19; Pau23]. Within their framework, different analysis
tools with specialized capabilities (e.g. native code analysis or inter-procedural anal-
ysis) are combined as black-boxes to conduct a taint flow analysis for Android apps.
CoDiDroid is however tailored to the needs of Android taint flow analysis, thus the
exchanged information differs. Thus CoDiDroid is not able to orchestrate or exchange
information on safety analysis with shared invariant generation.

Witness validation [Bey+15; BDDH16; Bey+22; BS22], aiming to ensure that the
results computed by a verifier are correct, is also a sequential form of combining tools.
It either makes use of witness validators [BS20; HM22; BDLT18; AS23; WSC22] or is
realized as an internal combination of a verifier and a testing approach, e.g., in [CS05;
CSX08]. In contrast to these ideas, CoVEGI aims for solving the verification task.

Sequential Conceptual Integrations Instead of combining different approaches
cooperatively, there are also several approaches where different approaches are con-
nected as conceptual integration, meaning that information is either exchanged by
direct method calls to certain tools or using internal formats: In [GTXT11], a sequen-
tial combination of a verifier that uses a predicate abstraction technique followed by a
dynamic symbolic execution engine that uses the previously computed information for
detecting property violations is presented. Similarly, a verifier is combined with a tool
for robustness testing [Hus+17], which is used to test assumptions made or conditions
stated during verification. In FuSeBMC different components for test case genera-
tion and for interval analysis are combined [AABC21; Ald+23]. In the first phase, a
fuzzing and a bounded model checking tool are run in parallel trying to cover all test
goals. Afterwards, the covered goals and the inputs for covering them are given to a
selective fuzzer, that uses them to cover the remaining test goals in the second phase.
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These approaches combine tools working on the same task. In contrast, we employ two
conceptually different components working on two different tasks in CoVEGI.

As finding helpful loop invariants is one key challenge in software verification, tools
combine a verification technique with some invariant generation tool as conceptual
integration. For example, DepthK combines ESBMC with the invariant generators
PAGAI and PIPS, where the invariants are written as ESBMC-annotations directly
into the code [Roc+17]. These combinations are conducted in a white-box manner
using strong coupling between the components, making the addition of a new approach
a challenging task. CoVEGI conceptually decouples the invariant generation from
the verification, making it more flexible. In addition, using a black-box integration
using standardized verification artifacts, as in CoVEGI, allows for an easy exchange
or integration of new approaches.

Frama-C is a framework for code analysis, aiming for analyzing industrial size
code [Kir+15; Bau+21]. The framework contains different plugins, each implementing
a verification or testing technique. The plugins can exchange information in the form
of ASCL source code annotations. Within Frama-C, the analyzers can collaborate for
example by being composed sequentially. For this, partial results produced by an anal-
ysis can be completed by a second one, or several partial results computed in parallel
are combined to a complete result. For instance, a value analysis result is used as in-
put for a plugin applying verification using a weakest precondition calculus. Frama-C
offers the general possibility to define cooperation between existing plugins. To the
best of our knowledge, Frama-C does however not provide a conceptual collaboration
of a verification approach and tools for invariant generation driven by the verification
approach’s demand for support.

The approach of using continuously refined invariants for k-induction [BDW15;
BD20] uses a lightweight dataflow analysis [BDW15] or the Property-directed reacha-
bility (PDR) algorithm [BD20] for generating auxiliary invariants for k-induction, which
can be considered to be a helper for verification. Therein, the supporting invariant gen-
erator runs in parallel to the k-induction analysis. Note that an analogous approach is
proposed by Brain et al. [BJKS15]. Compared to our framework, the main difference
is the form of cooperation used. Both approaches use a white-box integration for the
cooperation between k-induction and the invariant generator, building hardly wired
connections between both analyses and sharing the information inside the tool. Thus,
integrating external tools is hard to achieve. Moreover, the approach is designed to
work for k-induction only.

To summarize, there are a lot of existing approaches for cooperative verification,
but most of them are white-box combinations, and the existing black-box combinations
do not allow for cooperation on externally generated invariants.
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3.6.2 Invariant Generation

To the best of our knowledge, there is no existing approach for machine learning-based
invariant generation that provides the modularity of MIGml. Ideas and tools for gen-
erating loop invariants (for verification) are however numerous. Most approaches are
iterative and can be classified by the way new predicates and new candidate invariants
are generated, either using logic, templates, machine learning, or a combination. Espe-
cially for the ML-based invariant generation, several approaches using Large Language
Models (LLMs) for a non data-driven invariant generation were recently proposed.
Often, approaches that make use of a template are referred to as syntax-guided syn-
thesis (SyGuS)-approaches [Alu+13], as the template is a grammar.

Logic-based approaches Within the logic based approaches, many verification tools
[AMK18; BK11; KRSS16; RW19; HHP13; BDFW08; GDP17; BHJM07; Hei+18]
employ a CEGAR scheme, where predicates are generated based on Craig interpo-
lation [Cra57a; McM03; HJMM04] or Newton refinement [BR02a]. The IC3 approach
proposed by Bradly [Bra11] generates a sequence of candidates, inductive relative to
the predecessor until a 1-inductive loop invariant is found. The approach presented by
Dillig et al. [DDLM13] generates inductive invariants using logical abduction. Chalupa
and Strejček propose a method for generating loop invariants using backwards symbolic
execution with loop folding to generate inductive loop invariants [CS21].

Template-based approaches In contrast to logic-based approaches, most template-
based approaches are data-driven: Daikon [ECGN99; Ern+07] executes the program
and uses the variable values observed to heuristically select a subset of predicates from a
set of templates. These predicates can contain, among others, constant values x = c, in
range expressions a ≤ x ≤ b, or linear expression y = a ∗ x + b. InvGen [GR09]
uses dynamic and static analysis techniques to generate a set of constraints, that
are used for instantiating an invariant template over linear inequalities. Sharma et
al. [Sha+13] present a technique called Guess-and-Check, that generates a set of data
and guess an invariant using linear algebra techniques from the domain of polyno-
mial with bounded degrees. NumInv [NARH17] generates template-based polynomial
equalities and octagon-based inequalities, where the variable values used for instantia-
tion are computed using program traces. The generated invariants are analyzed using
Klee, which may generate additional counterexamples for invalid invariants. c2i [SA14]
uses an iterative approach, wherein a randomized search generates invariant candidates
based on templates, that are verified in a second step. Invariants generated using these
approaches are limited by the predicates abstractly described in the templates, often
from the polyhedral or octagon domain.

Machine learning-based approaches Using machine learning approaches for gen-
erating invariants is currently a very active field of research. Beneath the data-driven
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approaches that generate data and mostly follow the idea of ICE learning, approaches
that employ LLMs for generating invariants have also been used recently. We first give
an overview of data-driven approaches:

An extension of the ICE-framework of [GNMR16] proposed by Ezudheen et al. em-
ploys a validator using CHCs, additionally giving the learner access to a separate CHC-
solver [Ezu+18]. Thereby a more robust algorithm with guaranteed termination is ob-
tained. The authors of SNA12 published a different concept for learning invariants,
called Pie [PSM16]. The predicate generator works on an expressive and extendable
template, only generating a subset of all predicates, sufficing to separate the good and
bad points and the classifier employs probably approximately correct (PAC) learning.
In contrast to Pg-Oct, a subset of all available predicates that suffice to separate the
positive and negative data points is generated. The tool LoopInvGen is an efficient im-
plementation of this idea [PM17]. The tool Zilu presented by Li et al. [Li+17] employs
an active learning approach based on an SVM, allowing the learner to request a classi-
fication for certain data points and generates invariants path-sensitive with respect to
the path inside the loop. Ryan et al. present a new architecture for neural networks
to learn SMT formulas, called Continuous Logic Networks (CLN) [Rya+20]. The net-
work aims at learning an instantiation of a given template, using data points that are
generated based on program execution traces. A generalization of CLN, so-called gated-
Continuous Logic Networks are proposed in [Yao+20], that does not require templates
as inputs.

In general, the approaches that follow the idea of ICE-learning can be integrated
directly within MIGml. Extending MIGml to also be able to handle requests of active
learning approaches as well as allowing the Learner to generate path-sensitive invariants
is another point planned for future work.

Instead of generating data containing variable values for the machine learning ap-
proach as input, some approaches use (a representation of) the program to learn an
invariant directly as input: Si et al. [Si+18; Si+20] developed the tool Code2Inv, that
represents the program using a Graph Neural Network (GNN) and apply reinforcement
learning with an attention mechanism in an iterative manner. The approach models
the current invariant as a decision tree and new predicates are inferred using an atten-
tion mechanism, working on an abstract program representation. The learner learns a
strategy where (which leaf) and how (disjunction or conjunction) to attach the newly
generated predicates to the decision tree.

LIPuS [YWW23] is using two different program representations as well as concrete
variable values as input for a reinforcement-learner. Instead of learning a loop invariant
directly, the learner’s task is to reduce a general template over the non-linear integer
arithmetic as much as possible. The reduced template is instantiated using a SMT
solver, that also checks if the instance is a valid loop invariant. Counterexamples
generated by the SMT solver are used as additional input for the reinforcement learner.
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A similar approach is proposed by Wang and Wang, wherein the search space of the
reinforcement learner is reduced based on previous counterexamples generated by the
SMT solver [WW22].
As both Code2Inv and LIPuS are using among data points other representations of
the program, they do not fit directly into the idea of MIGml, as they do not provide
the clear separation into Teacher and Learner as the other ML-based approaches.

Recently, LLMs are also employed for generating invariants: Pei et al. trained a
LLM to predict a list of loop invariants for Java tasks based on invariants generated
using Daikon [Pei+23]. The advantage of using a LLM is that the invariants are
generated based on the full program instead of using a set of data points. Instead of
using a model that is specifically trained for generating invariants, Janßen et al. have
shown that one of the most prominent LLMs, namely ChatGPT, can directly be used
in some scenarios for invariant generation [JRW24]. In [Kam+23], multiple models are
evaluated and a list of invariants is generated by the LLMs, where each invariant is
analyzed for being valid. Chakraborty et al. propose to use a ranking mechanism called
iRank, that ranks the list of invariants with respect to the probability of being correct.
Thereby, the number of invariants that need to be validated using Z3 can be reduced
significantly [Cha+23]. The approaches that employ LLMs for learning invariants are
not data-driven, thus they do not fit in the MIGml-framework.
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4

After having discussed how verifiers can cooperate sequentially, we focus on cyclic forms
of cooperation. In a cyclic combination of tools, each tool is executed in an alternat-
ing way, trying to solve a (specific) part of the overall task. Most cyclic combinations
are built as strongly cohesive software units. These tools are typically made up of
tightly coupled, stateful components that operate on shared data structures. Instead
of designing a novel concept for cooperation, as we did in Chapter 3, we aim to de-
compose concepts widely used in software verification processes. Thereby, we allow
for building cooperative software verifiers using the decomposed concepts based on
off-the-shelf components. Simply speaking, we enable concepts for software verifica-
tion to be used in a cooperation setting. Such a decomposition facilitates the reuse
of components, impacts scalability (e.g., parallelization), and eases the exchange and
integration of new components. As the ultimate goal, we want to reduce the integra-
tion of innovations and novel verification techniques to a configuration task. To do so,
we avoid a strong cohesion between existing components. To investigate the feasibil-
ity of such ideas, we exemplarily realize such a strict decomposition on the CEGAR
scheme, presented in Section 2.2.1, that is not only used for software verification by
many tools (e.g., [RU17; AMK18; BK11; KRSS16; RW19; HHP13; BDFW08; GDP17;
Afz+19; YDLW18; Cas+17; RE14; BHJM07; Wan+16; Hol+17]), but also successfully
employed in other areas, like probabilistic or timed-automata model checking [HWZ08;
HSW13].

CEGAR is well suited for decomposition, as the process comprises the three steps
Abstract Model Exploration, Feasibility Check and Precision Refinement, as depicted in
Figure 2.7, but most tools that make use of the scheme are built as strongly cohesive
software units. There exist different concepts for realizing the three components, each
having individual strengths and weaknesses. Whenever novel research ideas arise, they
are integrated into existing strongly cohesive software, which is costly regarding the
required implementation effort. Hence, using components built by others or comparing
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them is challenging, as well as evaluating new concepts in isolation. This situation is
best illustrated by proposals of and discussions on precision refiners [Die+17; HM20;
BLW15b; BLW15a]. Precision refinement techniques rely on heuristics, and hence their
effectiveness can only be evaluated through experiments. Due to the current situation,
multiple re-implementations of precision refiners exist: A vast amount of tools [RU17;
AMK18; BK11; KRSS16; RW19; HHP13; BDFW08; GDP17; Cas+17; BHJM07]
contain implementations of a refiner based on Craig interpolation [Cra57a; McM03;
HJMM04] and at least three tools [Hei+18; BK11; HM20] contain (re-)implementations
of so-called Newton refinement [BR02a].

We aim for a decomposition of CEGAR, which we call component-based CEGAR
((C-CEGAR) - see Section 4.1). Within C-CEGAR, we make use of standardized
artifacts for information exchange between the individual components, namely correct-
ness, violation, and invariant witnesses. The question arises if these artifacts are best
suited for this purpose. We show how a single artifact having a unified semantics (for
the use in cooperation between over- and under-approximative tools) eases coopera-
tive verification and propose such a format, called Generalized Information Exchange
Automaton (GIA) in Section 4.2. Next, we describe the implementation of C-CEGAR
and GIAs in Section 4.3 and evaluate the performance of both concepts in Section 4.4.
Therein, we again focus on both, effectiveness and efficiency. We conclude the chapter
by discussing the results in Section 4.5 and present related work on cyclic cooperative
approaches in Section 4.6.1

4.1 Component-based CEGAR

To make CEGAR ready for being used within cooperative software verification, we
need to define actors that solve the verification task together and exchange information
by using clearly identifiable artifacts. Moreover, the tools used within the decomposed
version of CEGAR should be usable off-the-shelf. To achieve the former goals we present
in Figure 4.1 the decomposed workflow of CEGAR, called component-based CEGAR
(C-CEGAR). It comprises three independent components (or actors) communicating
using clearly defined interfaces based on verification artifacts. For the interfaces, we
employ the existing standardized artifacts violation witnesses (to encode the potential
counterexamples), and invariant witnesses (to encode the precision increment). We
additionally define path witnesses to encode infeasible counterexamples, that are based
on violation witnesses but have different semantics. These witness formats are already
produced and processable by many verifiers, which allows us to partially reuse tools.
Before explaining the artifacts, especially the information encoded, as well as the actors
in more detail, we motivate the advantages of C-CEGAR next.

1Note that C-CEGAR, more precisely the concept (Section 4.1), the implementation (Section 4.3),
and evaluation of C-CEGAR (Section 4.4) was developed and conducted in close cooperation with
Thomas Lemberger from LMU Munich, whereas both authors contributed equally.
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Figure 4.1: Workflow of component-based CEGAR

4.1.1 Motivating Example

To exemplify why an easy exchange of components within C-CEGAR can be beneficial,
we present in Figures 4.2a and 4.2b the two programs prog1 and prog2 taken from
the SV-Benchmarks [SVB22], where we use the safety properties S1 = (ℓ4, false) for
prog1 and S2 = (ℓ6, false) for prog2. Both programs satisfy the specifications. Let us
assume that we analyze these two programs using a verifier that employs a predicate
abstraction using CEGAR for computing new predicates as precision increments.

int prog1() {
0 unsigned int y = 1;
1 while (1) {
2 y = y + 2U * nondet();
3 if (y == 0)
4 abort();
5 }

(a) Craig interpolation finds the more mean-
ingful predicate (y mod 2 = 1), Newton finds
the equivalent, but more complex predicate
1 ≤ y + 2 ∗ ⌊((y ∗ −1 + 1)/2)⌋.

int prog2() {
0 unsigned int x = 0;
1 unsigned short N = nondet();
2 while (x < N) {
3 x += 2;
4 }
5 if (x % 2 != 0)
6 abort();
7 }

(b) Newton refinement finds the more mean-
ingful predicate x ≤ 2 ∗ (x/2), Craig interpo-
lation enumerates all valid assignments for x
explicitly.

Figure 4.2: Code examples for Craig interpolation and Newton refinement

When using the implementation of Craig interpolation from CPAchecker for
prog1, the predicate p1 ≡ y mod 2 = 1 is computed, which is a helpful 1-inductive
loop invariant. Newton refinement (implemented in UltimateAutomizer [Die+17])
computes the predicate p2 ≡ 1 ≤ y + 2 ∗ ⌊((y ∗ −1 + 1)/2)⌋, that is equivalent to p1

(see [BHLW22a]), but is more complex and increases the verification overhead, such
that the tool fails to compute a solution. For prog2, Craig computes in each itera-
tion a new predicate enumerating possible values for x, namely x= 0, 2, 4, and so on.
In contrast, Newton computes immediately (during the first iteration) the predicate
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x ≤ 2∗(x/2), which encodes the helpful loop invariant x mod 2=0. These two examples
show that there is no single technique that is optimal for all programs. Hence, having
the ability to compare different approaches and select the one potentially best suited
is achievable using C-CEGAR.

4.1.2 Exchange Formats in C-CEGAR

The information exchange within C-CEGAR is realized using the tool-independent in-
terfaces violation witnesses, path witnesses, and invariant witnesses to pass (infeasible)
counterexamples and precision increments among the components. We explain their
usage in the context of C-CEGAR next:

Potential Counterexample - Violation Witnesses The abstract model explorer
may aim to encode a set of program paths abstractly or a single path precisely. In the
former case, the abstract representation may ease encoding long paths as well as give
the feasibility checker and precision refiner a greater degree of freedom in computing
information, which may lead to a more generic precision increment. In the latter case,
the abstract model explorer can add information on variable values, hence program
states, at certain points of the path. Such a description avoids imprecision but may
be very large. We decided to use the existing format of violation witnesses (cf. Defini-
tion 2.10), as they allow for encoding abstract sets of paths as well as a single path. In
addition, the semantics of violation witnesses foresees encoding at least one program
path that contains a property violation.

Infeasible Counterexample - Path Witnesses In contrast to the prior artifact, we
cannot use violation witnesses to encode an infeasible counterexample. The feasibility
checker has rejected the violation witnesses given, hence the violation witness does not
contain a path violating the specification. We thus define a novel artifact called path
witness, abbreviated APW and depicted in light yellow.

Definition 4.1. A path witness APW= (Q,Σ, δ, q0, F ) is a protocol automaton, where
each state has only a trivial state invariant, i.e. φ = true holds for all (q, φ) ∈ Q.

Semantically, program paths covered by an APW contain no property violation. Hence,
a violation witness rejected by the feasibility checker is a path witness.

Precision Increment - Invariant Witnesses To guarantee progress in any of the
CEGAR iterations, the precision increment contains an explanation of the infeasibility
of the counterexample generated in that iteration. For model explorers using predicates
as abstraction, the precision increment contains at least one new predicate, preventing
the exploration of the same counterexample again by proving its infeasibility. We use
invariant witnesses as defined in Definition 2.9, which contain predicates justifying that
a set of paths but not necessarily the full program does not violate the specification.
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4.1.3 Components of C-CEGAR

After having explained which artifacts are exchanged among the components, we de-
scribe the components, especially the task that needs to be solved in more detail. As
depicted in Figure 4.1, component-based CEGAR (C-CEGAR) comprises the three
components abstract model explorer, feasibility checker, and precision refiner. As each
of the components is defined stateless, all information needed for solving the tasks is
given as input. In addition, C-CEGAR makes use of a controlling unit, that checks if
a final answer is computed and is responsible for handling the information exchange
among the components. The controlling unit additionally ensures that the precision
increment given to the abstract model explorer contains the increments computed in
all prior iterations, as each component in C-CEGAR is defined stateless.

Abstract Model Explorer The task of an abstract model explorer is to compute
the abstraction of the program using a given precision. It receives as input the task
comprising of the program as CFA C and the specification S as well as the precision in
the form of an invariant witness AIW. After extracting the relevant information from
the invariant witness, it checks whether the program satisfies the given specification
and is thus correct. If the program is correct, the verdict V is true and a justification
J in the form of a correctness witness is returned by the abstract model explorer. In
this case, the CEGAR cycle is terminated, as the verification problem is solved and the
verdict and witness are returned as the final answer. Otherwise, the verdict V is false
and the justification J contains a violation witness AVW.

Feasibility Checker The task of a feasibility checker is to analyze the potential
counterexamples for feasibility. It also receives the task as input and the potential
counterexample encoded within a violation witness AVW. As there may be multiple
paths covered by AVW, each has to be checked for feasibility. In the case at least one is
feasible, the verdict V is false and AVW is returned. The CEGAR cycle is terminated
and the feasible counterexample and V are returned as the final answer. Otherwise, all
counterexamples encoded are spurious. The feasibility checker returns a path witness
APW and the verdict true. Note that violation and path witness are usually syntactically
equivalent and cover the same paths but have different semantics.

Precision Refiner The task of a precision refiner is to generate a precision incre-
ment such that the infeasible counterexamples encoded within the path witness are not
explored anymore. It also receives the task as input and the path witness APW. To
ensure that the infeasible paths encoded within APW are not explored in the next iter-
ation by the abstract model explorer, the precision increment has to contain a reason
explaining the infeasibility. This can for example be computed using interpolation or
by generating an invariant for (some of) the paths. It returns an invariant witness that
contains a precision increment for at least one path encoded in APW.
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4.1.4 Usage of Off-the-Shelf Components

To realize C-CEGAR as a cyclic cooperative verification approach we implement each
of the three components. The task of the feasibility checker is almost the same as
in violation witness validation [Bey+15; Bey+22]. Thus, there exist already multiple
tools like FShell-witness2test [BDLT18], Symbiotic-Witch [AS23], Witch [AS24] or
UltimateAutomizer that can be applied off-the-shelf. In the following, we propose
a method for building instances of the components using an off-the-shelf verifier (cf.
Figure 2.1) for abstract model explorer and feasibility checker. In addition, we explain
how a precision refiner can be constructed using an invariant generator.

Abstract Model Explorer As visualized in Figure 4.3, we can turn any off-the-shelf
verifier into an abstract model explorer. Therefore, we use MetaVal [BS20] to encode
the invariants or predicates in the invariant witness as additional code (assertions) in
the program using a so-called strengthener . The obtained CFA is thus enriched with
invariants and analyzed in combination with the safety property. 2 Some verifiers as
CPAchecker [BK11] and UltimateAutomizer [Hei+18] natively support using invari-
ant witnesses as additional inputs when used as an abstract model explorer.

C, S

Program &
Property

AIW

Invariant
Witness

Strengthener

Strengthened
Task

Off-the-Shelf
Verifier

V
Verdict

AVW

Violation
Witness

Abstract-Model Explorer

Figure 4.3: Construction of an abstract model explorer using off-the-shelf tools

Feasibility Checker As previously stated, each violation witness validator can be
used as a feasibility checker. In case an off-the-shelf verifier should be employed, we
can use a reducer [BJLW18], as depicted in Figure 4.4, to restrict the program to only
those paths that are also encoded in the violation witness AVW, called path program.
We can employ MetaVal [BS20] or the reducer presented in [BJLW18] for generating
a path program.
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Violation
Witness

Reducer
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with Path Program

Off-the-Shelf
Verifier

V
Verdict

APW

Path
Witness

Feasibility Checker

Figure 4.4: Construction of a feasibility checker using off-the-shelf tools
2Note that the violation witness is computed for the strengthened task and needs to be modified by

removing the additionally added assertions.
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Precision Refiner To build a precision refiner using an off-the-shelf invariant gener-
ator (e.g., MIGml), we again need to reduce the program to a path program using the
reducer before employing the invariant generator on the updated task, as depicted in
Figure 4.5. In case the invariant generator is not able to compute invariant witnesses,
we can employ the encoder presented in Section 3.1.4.1. In case the invariant generator
does not compute any invariant, C-CEGAR is aborted.
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Path
Witness

Reducer
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with Path Program

Off-the-Shelf
Invariant
Generator AIW

Invariant
Witness

Precision Refiner

Figure 4.5: Construction of a precision refiner using off-the-shelf tools

Having a component-based instance of CEGAR ready to use, we can build new com-
binations using different tools by simply plugging different components into C-CEGAR,
without the need for re-implementation. Using the presented constructions we can even
use off-the-shelf tools that are not able to process the used exchange formats as addi-
tional inputs. We exemplify this advantage next in more detail.

4.1.5 Example Application of C-CEGAR

To exemplify the advantages of C-CEGAR in more detail, especially to emphasize the
use of off-the-shelf tools, we revisit the program given in Figure 4.2b and present its
CFA C2 in Figure 4.6. Our example instance of C-CEGAR comprises an abstract model
explorer that uses predicate abstraction, an off-the-shelf verifier as a feasibility checker,
and a precision refiner that computes Craig interpolants. We assume that none of the
components can process witnesses as additional inputs to exemplify the constructions
described in Section 4.1.4.

Initially, the abstract model explorer starts with empty precision and computes a
counterexample AVW

2 that does not contain a loop iteration, as depicted in Figure 4.7.
The violation witness covers a single path in C2. Paths that enter the loop or do not
enter the if-condition in line 5, are not covered. As we assume that our feasibility
checker is not able to process violation witnesses as additional inputs, we employ the
construction depicted in Figure 4.4 and generate the path program shown in Figure 4.8
and the updated safety property S′

2 = (ℓ7, false). The path program contains exactly
one path that reaches the call to abort() in line 7. In addition, the condition ψ : N = 0
present in AVW

2 is encoded as an assumption in line 2. The verifier analyzes the program
and detects no property violation, hence returning the verdict true and a path witness
APW

1 , that is identical to AVW
2 depicted in Figure 4.7. Hence, the path program based

on APW
1 is the same as for AVW

2 . It is given to the precision refiner, which computes the
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Figure 4.7: Invalid viola-
tion witness AVW

2 for C2

int prog2() {
0 unsigned int x = 0;
1 unsigned short N=nondet();
2 assume(N == 0);
3 if (x < N){
4 return 0;
5 }else{
6 if (x % 2 != 0){
7 abort();
8 }else{
9 return 0;

10 }
11 }
12 }

Figure 4.8: Path program for
AVW

2 and C2

invariant x = 0, which suffices to prove that the path program adheres to the safety
property S′

2. The resulting invariant witness is depicted in Figure 4.9, containing the
precision increment φ1 ≡ x = 0. The only path that is covered by AIW

1 is the one also
encoded in AVW

2 . This precision increment is used by the abstract model explorer within
the next iteration during its exploration, ensuring that the counterexample from the
last iteration (AVW

2 ) is not computed again. The strengthened program containing the
precision increment that is used in the second iteration by the abstract model explorer
is given in Figure 4.10.

In this example, the precision increment does not suffice to prove the program cor-
rect, hence another counterexample is computed, now containing one loop iteration.
The refinement cycle thus starts anew, the feasibility checker rejects the spurious vio-
lation witness and the precision refiner computes a new precision increment contained
in the invariant witness depicted in Figure 4.11. It contains the precision increment
φ2 ≡ x = 2, which is associated with the state reachable after one loop iteration. Note
that AIW

2 contains only the precision increment that is computed in the second iteration.
Thus, the controlling unit needs to ensure that AIW

1 , the invariant witness computed
in the first iteration, and AIW

2 are combined to ensure that no information is lost. As
the combination of AIW

1 and AIW
2 is still not sufficient to prove the program correct, the

next CEGAR iteration starts, until after 16.384 iterations the program is proven safe.
Now let us consider a slightly different configuration, where we replace the precision

refiner and use a tool that computes a Newton refinement. As the abstract model
explorer and feasibility checker are not changed, the first two steps do not differ from
the first configuration, hence the path program from Figure 4.8 is given to the precision
refiner. As we use Newton refinement in this configuration, the invariant witness
generated in the first iteration differs from AIW

1 regarding the state invariant, as now
the state invariant φ1 ≡ x ≤ 2 ∗ (x/2) ≡ x mod 2 = 0 is included. φ1 is a helpful loop
invariant, thus it suffices to prove that prog2 matches the safety property.
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int prog2() {
0 unsigned int x = 0;
1 assert(x == 0);
2 unsigned short N=nondet();
3 while (x < N) {
4 x += 2;
5 }
6 if (x % 2 != 0)
7 abort();
8 }

Figure 4.10: Strengthened
program for AIW
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Figure 4.11: Invariant wit-
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2 for C2, φ2 ≡x=2

4.2 Generalized Information Exchange Automaton

In C-CEGAR, we use violation witnesses, path witnesses, and invariant witnesses to ex-
change information among the components. All three automaton formats are based on
protocol automata and can, in combination, encode information on feasible counterex-
amples, infeasible paths (i.e., program paths that are known to contain no property
violation), and precision increments in the form of state invariants. Invariant and path
witnesses are formats specifically designed for being used in the context of coopera-
tive verification, more precisely in the context of C-CEGAR3. The question arises if
each new form of cooperative software verification requires defining new artifacts from
scratch or redefining existing artifacts by adding new semantics. This may hinder the
reuse of actors, as either existing actors have to be updated to work with the novel
formats or the novel semantics, or a transformation from one format into another is
needed.

To avoid such situations in the future, we would need one artifact for informa-
tion exchange that has uniform semantics and can encode all information (potentially)
exchanged during cooperative software verification among conceptually different ac-
tors. In order to answer the question if such an artifact already exists or if we can
define such a generalized one, we have a look at the information exchanged in exist-
ing concepts for combining software verification tools. Therefore, we distinguish two
classes of components or actors: Over-approximating and under-approximating analy-
ses. Over-approximating (OA) analyses build an over-approximation of the state space

3Invariant witnesses are also used in Section 3.1, but were originally introduced for C-CEGAR.
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of a program while under-approximating (UA) analyses inspect specific program paths.
An UA analysis typically aims at finding errors; an OA analysis aims at proving the
program correct. For example, the abstract model explorer from C-CEGAR is an OA
analysis, whereas the feasibility checker is an UA analysis.

Next, we summarize the type of information exchanged in existing (cooperative and
non-cooperative) combinations of OA or UA analyses. As we not only want to look at
software verification but also at testing, we propose a uniform way of describing the
goal of testing and verification: For verification, the goal is to show that the specified
safety properties are fulfilled, i.e., the non-reachability of certain error locations (cf.
Definition 2.2). For test case generation, the goal is to find paths from ℓ0 reaching all
locations from a set Lcover, containing e.g., each branch or statement in the program
(branch-, statement-coverage) or certain function calls, e.g., abort(). To specify these
paths, a sequence of return values (called test suite) for the program inputs or the calls
to nondet() suffices (if nondet() models inputs to programs).

For cooperation, we prefer a uniform way of describing these tasks which we get by
introducing the notion of target nodes, denoted by TN , TN⊆L.

Definition 4.2. For a CFA C = (L, ℓ0, G) a target node ℓt∈ TN is a node either
present in a safety property S (for verification) or ℓt ∈ Lcover (for test case generation).

We can now reformulate the two tasks: The goal of verification is to show that no
target node is reachable, the goal of test case generation is to find a test suite such
that all target nodes are reached. For our running example C1 from Figure 2.3
the set of target nodes is TN = {ℓerr} for verification using the safety property
S = (ℓerr, false). In case of test case generation where the goal is branch coverage,
we use TN = {ℓ1, ℓ3, ℓ5, ℓ6, ℓ7, ℓ9, ℓ10, ℓ11}.

Our analysis of existing artifacts shows that none of them is perfectly suited for
this purpose. Hence, we define a new verification artifact in the form of a Generalized
Information Exchange Automaton (GIA). A GIA can express information generated
by over- and under-approximating analyses in the context of software verification and
also testing, which we unified call software validation. More precisely, based on the
idea of target nodes and inspired by three-valued logic, we can define the semantics of
the verification artifact GIA in such a way that it can encode the different information
exchanged in software validation while maintaining uniform semantics. Before we have
a detailed look at the information exchanged and formally define GIAs, we exemplify
the advantage of having a generalized artifact for information exchange with fixed
semantics.

4.2.1 Motivating Example

To exemplify the advantages of GIAs, we use an instance of C-CEGAR that employs
GIAs for the information exchange, resulting in the C-CEGAR scheme that is depicted
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Figure 4.12: C-CEGAR using only GIAs for the information exchange. Components
that are over-approximating are shown in purple, and under-approximating actors in
dark blue. GIAs are colored in light violett.

in Figure 4.12. It comprises the same three actors as in Figure 4.1, but now we only
use GIAs for the information exchange instead of violation witness, path witness, and
invariant witnesses. Moreover, we classify the abstract model explorer and the precision
refiner as over-approximating (colored in purple), as both can prove that certain paths
of the program are infeasible and the feasibility checker as under-approximating, colored
in dark blue.

Before emphasizing the advantages of GIAs, we first revisit the example from Sec-
tion 4.1.5, where we use an instance of C-CEGAR to verify the program prog2 from
Figure 4.2b. We first have a look at the example without using GIAs. After some
iterations, the abstract model explorer has proven that some paths of the program are
safe, e.g., the path without a loop iteration encoded in AVW

2 . As the given precision
(respectively the predicates) are not sufficient to prove the complete program safe, the
abstract model explorer computes a different (spurious) counterexample. As all com-
ponents within C-CEGAR are stateless and the violation witness only allows to encode
paths that lead to a property violation, the information on paths already proven safe is
lost and needs to be reestablished in the next iteration. Moreover, the precision incre-
ment computed in the current iteration has to be merged with the precision increments
computed in the previous iteration to ensure that no information is lost.

Our goal is to define a format with uniformly applicable and fixed semantics that
is able to encode safe paths and paths (potentially) leading to a property violation.
Especially, we aim to be able to encode and combine all information computed by
different components within a single instance of the artifact GIA. Now, we have a look
at C-CEGAR using only GIAs for information exchange. The abstract model explorer
can now store all computed information on safe paths within one GIA and reuse it
later, e.g. in case the counterexample is spurious. Thus, no information computed
in previous iterations by the abstract model explorer needs to be reestablished. The
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precision increments computed in previous iterations are also retained in the GIA,
making the necessity for merging them superfluous.

4.2.2 Information Exchanged in Software Verification

We aim to define a unified artifact that is applicable in many existing concepts of coop-
erative software validation combining OA and UA components. Therefore, we briefly
discuss which information is exchanged via (non)-standardized artifacts in different ex-
isting cooperation-based approaches and derive requirements that need to be fulfilled
by a unified artifact. A more in-depth analysis can be found in [HW24].

Most existing cooperation-based approaches that aim to solve a verification task,
i.e., to show the validity of safety properties from Definition 2.2, exchange information
on a set of paths or information that ease the verification problem. In the former case,
a component may communicate the information that a set of paths is infeasible, for
example in the Ufo algorithm [AGC12] or the cooperative formalization of CEGAR (cf.
Section 4.1). In approaches that follow the idea of CMC [BHKW12; CJW15; BJLW18;
BJ20], artifacts encode the information that a part of the program is safe, either because
all paths that would lead to a property violation are infeasible or the part of the program
does not contain such paths. In the latter case, the information exchanged is often
in the form of predicates, i.e., invariants, interpolants, or conditions under which a
verification result is computed. For example, invariants that ease the verification task
are exchanged in CoVEGI (cf. Section 3.1) or some instances of k-induction [BDW15;
BD20]. In the cooperative formalization of CEGAR (cf. Section 4.1) or property-
directed k-induction [BHMS20] interpolants that justify the unreachability of some
paths are communicated between components. The conditions that are assumed during
the verification of the complete program or a set of paths are communicated among
components for example in CMC or [CMW12; CMW16].

In cooperation-based approaches that aim to generate test cases covering a set of
test goals, most components exchange information on concrete program executions
and the set of test goals covered by the executed paths. Examples are, among oth-
ers, FuSeBMC [AABC21; Ald+23], CoVeriTest [BJ19; Jak20; JR21], or the concept
proposed by Huster et al. [Hus+17]. In addition, the components may exchange in-
formation on concrete inputs that lead to the test cases or conditions that specify the
part of the program that is already complete, as in CoVeriTest. Lastly, [DGH16] uses
a component that reports that some of the test goals are unreachable.

Based on the analysis of existing forms of cooperation, the artifact needs to be able
to encode information on:

(R1) program paths which are already known to be feasible (and may reach certain
test goals or an error state),

(R2) program paths which reach an error state and are either feasible or where the
feasibility is not known for sure (potential counterexample),
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(R3) program paths which are already known to be safe,

(R4) program paths which are already known to be infeasible,

(R5) additional constraints on program paths like state invariants,

(R6) and additionally, an artifact needs to have context-independent semantics.

Existing concepts for cooperative software verification already use different artifacts
to exchange information, e.g., witnesses, condition automata or ARGs. The detailed
analysis provided in Section 4.6.4 shows that none of the artifacts used is able to
encode all desired information and is usable independent of the employed tools while
maintaining one semantics. Thus, we next develop an artifact for the information
exchange among OA and UA verification tools, fulfilling all requirements.

4.2.3 Formalization of GIA

Our overall objective is to define an artifact with one semantics that is able to encode
most information exchanged. In general, UA and OA tools either aim at showing that
target nodes are reachable (for example a call to abort or a branch that needs to be
covered) or that (a part of) the program does not reach any target node (i.e., the
program is safe). The overall goal in software validation is achieved when for each
target node either a path reaching it is found or the node is proven unreachable.

As stated in Section 4.2.2, the information exchanged between UA and OA tools
needs to be about (1) feasible paths definitely leading to a target node (R1), (2) paths
definitely not leading to a target node (either as they do not reach one or are infeasi-
ble, (R3) and (R4)), and (3) candidate paths potentially leading to target nodes and
hence interesting to consider for the analysis, but where the definite result about it
is unknown so far (R2). The latter information is used in two cases: When an UA
tool has not yet covered a path, either due to resource/time limitations or because
it is infeasible, and when an OA tool has discovered a path to a target node, which
might be feasible. In addition, the artifact needs to be able to pass helpful information
about invariants of program locations or constraints about program transitions (R5).
All information needs to be encoded while maintaining one fixed, context-independent
semantics (R6). Inspired by the idea of three-valued logics (e.g., for three-valued model
checking [BG99]), we extend the condition automata of [BJLW18] by introducing three
different, disjoint sets of accepting states, one for each type of exchanged information.

Definition 4.3. A Generalized Information Exchange Automaton (GIA)
A=(Q,Σ, δ, q0, Fut , Frt , Fcand) consists of

• a finite set Q ⊆ Ω × BExpr of states (each being a pair of a name of some set Ω
and a boolean condition) and an initial state q0 ∈ Q,

• an alphabet Σ ⊆ 2G × BExpr ,
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Figure 4.13: GIA A1 generated in the third C-CEGAR iteration, containing the preci-
sion increment φ1 generated in the first C-CEGAR iteration and φ2 from the second
iteration. In addition, it also contains the potential counterexample generated in the
third C-CEGAR iteration for the example program of Figure 4.2b. States of Fut are
marked green and of Fcand yellow. We elide state invariants that are true and depict
for transitions only the operation and non-true conditions.

• a transition relation δ ⊆ Q × Σ × Q, and

• three pairwise disjoint sets of accepting states: Fut (for unreachable targets), Frt

(for reachable targets) and Fcand (for candidates).

Intuitively, a GIA is an extension of a condition automaton (and thus of a protocol
automaton from Definition 2.7) that has three different sets of accepting states and
allows to specify state invariants.

We let A denote the set of all GIAs. When drawing automata, we use ∗ to denote
an edge that matches any operation from Ops. We additionally require for each GIA,
that (1) each state in the sets of accepting states Fut and Frt has no transitions to
states not in Fut (resp. Frt) and (2) each accepting state from Fcand has at least a
transition to itself4. More formally, we require that:

1. ∀qut ∈Fut : ¬∃q∈Q : (qut , op, q)∈δ ∧ q /∈Fut ,

2. ∀qrt ∈Frt : ¬∃q∈Q : (qrt , op, q)∈δ ∧ q /∈Frt ,

3. ∀qcand∈Fcand : (qcand, ∗, qcand)∈δ.

We depict in Figure 4.13 the GIA A1 that is generated in the third C-CEGAR
iteration using Craig interpolation for the example from Figure 4.2b. Based on the
safety property S = (ℓerr, false), we use the set of target nodes TN = {ℓerr}. Thus, we
have in Figure 4.13 Fut = {qerr}, Fcand = {q′

err}, and Frt = ∅, as the program is correct.
Additionally, we depict in Appendix A.2.5.1 an example generated during cooperative
test case generation where all three sets of accepting states are non-empty.

4This property is useful to have a single path π covering several nodes from Fcand.
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To fulfill the requirement (R6) from Section 4.2.2, we need to define context-
independent semantics. Thus, the three sets of accepting states are employed to describe
three different languages of a GIA: the set of paths leading to (1) Fut , (2) Frt , and (3)
Fcand. We first define what it means that a GIA covers a path, which is similar to the
covering relation of condition automata and thus protocol automata. Covered semantic
paths are used to establish a connection between information encoded within the GIA
A and the program represented as CFA C.

Definition 4.4. A GIA A = (Q,Σ, δ, q0, Fut , Frt , Fcand) covers a path π = ⟨ℓ0, σ0⟩−g1−→
. . . −gn−→ ⟨ℓn, σn⟩ from a CFA C, if there is a sequence ρ = (q0, φ0) −(G1,ψ1)−−−−→ . . . −(Gk,ψk)−−−−→
(qk, φk), 0 ≤ k ≤ n in A (called run), with (qi−1, φi−1) −(Gi,ψi)−−−−→ (qi, φi) ∈ δ , such that

1. qk ∈ Fut ∪ Frt ∪ Fcand,

2. gi ∈ Gi for all i ∈ {1, . . . , k},

3. σi |= ψi for all i ∈ {1, . . . , k},

4. σi |= φi for all i ∈ {0, . . . , k}.

We say that A X-covers i, X ∈ {ut, rt, cand}, when qk ∈ FX .

We allow that the run ρ has fewer states than the path π, as each state from Fcand

has a transition to itself and states from Fut resp. Frt have transitions to states in Fut

resp. Frt . Depending on the parameter value for X-cover, we define three sets of paths
(languages) of a GIA A: Put(A),Prt(A) and Pcand(A). These three sets are then used
to establish the connection between a GIA A and a CFA C: If e.g., a path π∈paths(C)
reaches a target node ℓt and π ∈ Prt(A), the GIA encodes the information that ℓt is
reachable.

Using these definitions, we can exemplify the advantages of using GIA in Figure 4.13:
As explained in Section 4.1.5, the precision increment AIW

1 that is generated in the first
iteration if C-CEGAR contains the justification for the correctness of the path with
no loop iteration, AIW

2 the one from the second iteration contains a justification for the
path with a single loop iteration. The GIA A1 from Figure 4.13 contains all information
that is computed in any previous iteration of C-CEGAR, ensuring that no information
computed is lost. More precisely, it contains both computed precision increments in
the form of the state invariants φ1 and φ2 and encodes the information that the paths
to the target node without and the path with a single loop iteration are ut-covered
and thus unreachable. In addition, the counterexample generated in the third loop
iteration, which contains two or more loop iterations, is also encoded.

Next, we can formally define the correctness of the analysis information encoded in
a GIA. Thereby, we are able to later reason about the correctness of combinations of
tools in a cooperative setting.

85



4.2 Generalized Information Exchange Automaton

Definition 4.5. Let A be a GIA, C a CFA and TN ⊆ L a set of target nodes. A is
said to be correct wrt. C and TN if Put(A) ⊆ {π ∈ paths(C) | π is infeasible or π
is feasible and reaches no ℓt ∈ TN} and Prt(A) ⊆ {π ∈ paths(C) | π is feasible and
reaches some ℓt ∈ C}.

Correctness thus means the automaton correctly (according to the program and the set
of target nodes) marks paths as infeasible, as reaching no target or reaching some target
nodes. Similarly, we can define the soundness of an OA or UA analysis, assuming that
the target nodes TN are encoded within the program C. Soundness is also needed to
reason about the correctness of combinations of tools in a cooperative setting.

Definition 4.6. Let tool be an OA or UA analysis producing a GIA as output, i.e., we
assume the tool to encode a mapping tool : C × A → A.

If tool is an OA analysis, it is sound whenever for all A,A′ ∈ A, C ∈ C with
tool(C,A) = A′ we have

• Put(A′) ⊇ Put(A) and Prt(A′) = Prt(A), and

• ∀π ∈ Put(A′) \ Put(A): π is an infeasible path of C or is feasible but reaches no
ℓt ∈ TN .

If tool is an UA analysis, it is sound whenever for all A,A′ ∈ A, C ∈ C with
tool(C,A) = A′ we have

• Prt(A′) ⊇ Prt(A) and Put(A′) = Put(A), and

• ∀π ∈ Prt(A′) \ Prt(A): π is a feasible path of C reaching some ℓt ∈ TN .

Consequently, a sound tool always generates a correct GIA when started with a correct
one.

Finally, we can define when verification or test case generation is completed, namely,
when a correct GIA A is generated for a CFA C such that for all target nodes ℓt there
exists some π ∈ Prt(A) such that π reaches ℓt, or all π reaching ℓt are ut-covered
(∀π ∈ paths(C) : ℓt ∈ π ⇒ π ∈ Put(A)) (all target nodes covered or all paths to a
target node are unreachable).

4.2.4 GIA and Off-the-shelf Tools

GIAs are designed to be applicable in different scenarios of cooperative verification or
test case generation. In the following, we have a closer look at how GIAs are used in
the context of component-based CEGAR, especially when using off-the-shelf tools, as
this is a core property of cooperative verification. We sketch the usage of GIAs in other
scenarios like cooperative test case generation, CoVEGI or CMC in Appendix A.2.1.

To be able to employ off-the-shelf tools, for which we neither require to use GIAs
as input nor to encode the information computed within a GIA, we again make use of
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Figure 4.14: C-CEGAR using GIA, ut-Reducer and Combiner

additional components. The main difference to the previous constructions is that, once
the so-called reducer and combiner are established, a tool can be employed in multiple
different scenarios without requiring new adapters for different exchange formats. Thus,
to use the existing tools in a black-box manner, we need two more operators on GIAs:
(1) a way of encoding the information in the artifact into the only form of input accepted
by the majority of tools, i.e., programs, and (2) a way of combining several partial
results about programs as given by GIAs into one GIA to not lose any information.

We introduce the two components reducer for the former case and a combiner for
the latter case that perform these operations. We depict in Figure 4.14 an instance of
C-CEGAR, but in this scenario, we use an off-the-shelf verifier as an abstract model
explorer and assume that feasibility checker and precision refiner can process GIAs. The
GIA computed from the precision refiner may also contain information that is computed
by the abstract model explorer in previous iterations, i.e., paths of the program that
are proven safe. Using a reducer5 removes all paths from the program proven safe. The
reduced program is given to the off-the-shelf verifier to explore the remaining program.
To be able to feed this information back into a GIA, we employ a combiner to combine
the information computed by the off-the-shelf tool with the GIA generated by the
precision refiner. The resulting GIA is then given to the feasibility checker and the
cycle continues, whereas no information computed in earlier iterations is lost.

4.2.4.1 Reducer

For the first operation on GIAs, we use the concept of reducers as introduced in [CJW15;
BJLW18]. A reducer reduces a program by removing some paths and thereby allows

5Here, we use an ut-Reducer, which is explained later on.
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off-the-shelf tools to use the information computed by others. We define two different
reducers, one removing paths that are ut-covered by the GIA and one removing those
that are rt-covered.

Definition 4.7. An X-reducer for X∈{ut, rt} is a mapping redX : C × A → C s.t.

∀C ∈ C,A ∈ A :P ⊆ paths(redX(C,A)) ⊆ paths(C) ,

where P =

 paths(C) \ PX(A) if Fcand = ∅ in A

Pcand(A) \ PX(A) otherwise.

A reducer for X = ut if Fcand = ∅ is already existing [BJLW18]. In Algorithm 3 we
provide a parameterized reducer for both values of X, building on the existing one6.

Algorithm 3 X-Reducer
Input: CFA C = (L, ℓ0, G) ▷ CFA

GIA A = (Q,Σ, δ, (q0, φ0), Fut , Frt , Fcand) ▷ GIA
Output: CFA Cr = (Lr, ℓr0, Gr) ▷ Reduced CFA

1: (Lr, ℓr0, Gr) := Reducer(C, (Q,Σ, δ, (q0, φ0), FX)); ▷ Call existing reducer
2: if Fcand ̸= ∅ then: ▷ Over-approximate paths cand-covered
3: keep := ∅;
4: for each ℓ=(ℓi, (qi, φi))∈Lr s.t. (qi, φi)∈Fcand do
5: add all predecessors and successors w.r.t. δ of ℓ in Lr to keep;
6: for each ℓ ∈ Lr do ▷ Remove paths not cand-covered
7: if ℓ /∈ keep then
8: Remove ℓ from Lr;
9: Remove all (ℓ, ·, ·), (·, ·, ℓ) from Gr;

10: return (Lr, ℓr0, Gr);

It first calls the existing reducer and obtains a program reduced wrt. X. As Pcand
contains the set of interesting paths whereon the succeeding tool should focus, X-
Reducer minimizes the computed reduced CFA wrt. these paths (in lines 2 to 11).
We get the following result:

Theorem 4.8. Algorithm 3 is an X-reducer according to Definition 4.7.

Proof. We first show that Algorithm 3 works correctly if Fcand=∅ holds: The algorithm
Reducer called in line 2 takes an automaton with one set of final states F as input. It
has been shown that Reducer retains at least all paths that are not covered by the given
automaton w.r.t. F and that the program generated does not contain any path that is
not present in the original program [BJLW18]. We call Reducer with the GIA A only
using FX , thus it reduces the program such that at most all paths that are X−covered
by the GIA are removed. Therefore, Reducer and thus Algorithm 3 work correctly if

6Algorithm 3 assumes for representation purposes that the GIA does not contain state invariants.
A full construction, covering this aspect is given in the Algorithm 7 in Appendix A.2.2.
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Algorithm 4 Combiner
Input: GIA AI = (Q1,Σ, δ1, q0, F

1
ut , F

1
rt , F

1
cand) ▷ First GIA

GIA A′
I = (Q2,Σ, δ2, s0, F

2
ut , F

2
rt , F

2
cand) ▷ Second GIA

Output: GIA AO = (Q,Σ, δ, p0, Fut , Frt , Fcand) ▷ Combined GIA

1: Q := {((q0, s0), true)}; p0 := ((q0, s0), true); δ := ∅; waitlist := {((q0, s0), true)};
2: while waitlist ̸= ∅ do
3: select and remove ((qi, si), φi) from waitlist;
4: for each t1= ((qi, φi) −gi,ψi−−→ (qi+1, φi+1)) ∈ δ1 do ▷ Merge the states
5: if ∄((si, φi)−gj ,ψj−−−→ (si+1, φ

′
i+1))∈δ2 :gi=gj ∨ si∈{◦, •} then

6: if si∈{◦,•} then si+1 =si; else si+1 =◦;
7: Q := Q ∪ {(qi+1, si+1), φi+1};
8: δ := δ ∪ {((qi, si), φi); −gi,ψi−−→ ((qi+1, si+1), φi+1)}
9: if qi+1 /∈ F 1

rt ∪ F 1
ut then

10: waitlist := waitlist ∪{((qi+1, si+1), φi+1)};
11: else
12: for each t2 =((si, φi)−gjψj−−→ (si+1, φ

′
i+1))∈δ2 : gi=gj do

13: waitlist, Q, δ := Merge(waitlist,Q, δ, t1, t2);
14: for each ((si, φi)−gj ,ψj−−−→ (si+1, φi+1)∈δ2) do analogously to lines 4-13
15: Frt = {(qi, si) ∈ Q | qi ∈ F 1

rt ∨ si ∈ F 2
rt};

16: Fut = {(qi, si) ∈ Q | qi ∈ F 1
ut ∨ si ∈ F 2

ut};
17: Fcand = {(qi, si) ∈ Q | qi ∈ F 1

cand ∪ {•} ∧ si ∈ F 2
cand ∪ {•}};

18: if Frt ∩ Fut ̸= ∅ then return ERROR; end if
19: return AO = (Q,Σ, δ, p0, Fut , Frt , Fcand);
where ◦,• are replacements for a state used during splitting and are not processed.

Fcand = ∅. In case Fcand ̸= ∅, the reducer has to generate a program that contains at
least all paths only cand-covered by A. In lines 3-9 we build a set containing a superset
of these paths and remove the other paths, i.e., only these that are not cand-covered
by A. Thus, Algorithm 3 also works in this case concluding the proof.

4.2.4.2 Combiner

When several tools compute analysis information, we have to make sure that all this
information is preserved. To this end, we introduce a combiner for the combination of
GIAs. The combiner’s goal is to keep all information on Put and Prt from both GIAs.

Definition 4.9. A combiner is a partial mapping comb : A × A → A which is defined
on consistent GIAs A and A′ with Put(A) ∩ Prt(A′) = ∅ = Prt(A) ∩ Put(A′) such that

∀A,A′ ∈A :

Put(comb(A,A′))=Put(A) ∪ Put(A′) ∧ Prt(comb(A,A′))=Prt(A) ∪ Prt(A′).

An algorithm for a combiner is given in Algorithm 4, for presentation purposes as-
suming that each edge in δ1, δ2 contains only a single transition. The intuitive idea of
the Combiner is to build the union of the two GIAs AI ,A′

I and consider newly com-
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puted information: For example, if there is a path π, π ∈ Pcand(AI) and π ∈ Put(A′
I),

Combiner ensures that π ∈ Put(AO) holds for the combined GIA AO. To this end,
Combiner builds the new GIA AO by searching for common subpaths in the GIAs AI
and A′

I . A state in AO is a tuple (a1, a2) of two states, a1 ∈Q1 and a2 ∈Q2, both reach-
able on the same path. If the paths diverge, the state is split, where the placeholders
’◦’ and ’•’ are used to replace either a1 or a2. We use e.g., ’◦’ if the transitions from a1

and from a2 contain different CFA edges and ’•’ if the successor states have different
state invariants. To ensure that no information for cand-covered paths are lost when
computing Fcand, the set contains also the states where one element from the state tu-
ple is in ’•’, as ’•’ is used for splitting states having different state invariants and thus
both paths needs to be contained. For a combination of states, Algorithm 4 applies the
method Merge, given in Algorithm 5. Intuitively, Merge ensure that paths from Put

and Prt are preserved as well as additional conditions for paths in Fcand. More details
about Algorithm 5 are given in Appendix A.2.3. We exemplify the use of reducer and
combiner for the program of Figure 4.2b in Section 4.2.5 and provide a more complex
example of an application to Combiner in Appendix A.2.5.2.

The combined GIA computed by Algorithm 4 is not guaranteed to be minimal,
meaning that it may contain some paths multiple times and contain paths that do not
lead to an accepting state. Despite this fact, we can prove the following:

Theorem 4.10. Algorithm 4 is a combiner according to Definition 4.9.

Proof. Intuitively, we have to show that for the combination AO of two GIAs AI and A′
I

each path rt-covered by either AI or A′
I is also rt-covered by AO and that the reverse

holds (and analogously, that both properties hold for ut-covered paths). We therefore
inductively construct an accepting run of AO for a path π that is rt-covered by either
AI or A′

I and vice versa. The full formal proof can be found in Appendix A.2.4.

4.2.4.3 Using Reducer and Combiner

Finally, we can state that connecting tools via reducers and combiners, as depicted in
Figure 4.14, does not lose any of the already computed analysis results. This property
guarantees that any arbitrary combination of sound OA and UA tools using reducer
and combiner achieves the same progress as if they would work directly on GIAs.

Theorem 4.11. Let A ∈ A be a correct GIA, C ∈ C a CFA, tool a sound UA or OA
analysis and X∈{ut, rt}. Then for a GIA A′ = comb(tool(redX(A, C),A),A) we get

• Prt(A′) = Prt(A) ∧ Put(A′) ⊇ Put(A) if tool is an OA, and

• Put(A′) = Put(A) ∧ Prt(A′) ⊇ Prt(A) if tool is an UA.

Proof. As sound OA and UA tools increase the set of ut-covered resp. rt-covered paths
and the reducer retains all this information, the correctness follows directly from Defi-
nition 4.6 and Theorems 4.8 and 4.10.
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Algorithm 5 Merge
Input: waitlist, Q, δ

t1 = ((qi, φi) −gi,ψi−−→ (qi+1, φi+1))
t2 = ((sj , φj) −gj ,ψj−−−→ (sj+1, φj+1) ▷ requirement: gi = gj

Output: waitlist, Q, δ

1: if ψi = ψj ∧φi = φj ∧ ((qi+1 ∈F 1
ut ∪ F 1

rt ∪ F 1
cand)⇔(si+1 ∈F 2

ut ∪ F 2
rt ∪ F 2

cand)) then
2: Q := Q ∪ {((qi+1, sj+1), φi+1)};
3: δ := δ ∪ {((qi, sj), φi) −gi,ψi−−→ ((qi+1, sj+1), φi+1)};
4: if qi+1 /∈ F 1

rt ∪ F 1
ut ∧ sj+1 /∈ F 2

rt ∪ F 2
ut then

5: waitlist := waitlist ∪{((qi+1, sj+1), φi+1)};
6: else if (φi=φj)∧(reachcand(qi+1)∧reachcand(sj+1))∧(trueCond(qi)∨trueCond(sj))

then
7: Q := Q ∪ {((qi+1, sj+1), φi+1)};
8: δ := δ ∪ {((qi, sj), φi) −gi,ψ−−→ ((qi+1, sj+1), φi+1)}; ▷ ψ ∈ {ψi, ψj}, ψ ̸= true
9: if qi+1 /∈ F 1

rt ∪ F 1
ut ∧ sj+1 /∈ F 2

rt ∪ F 2
ut then

10: waitlist := waitlist ∪{((qi+1, sj+1), φi+1)};
11: else if (φi = φj) ∧ (reachut,rt(qi+1) ∧ reachcand(sj+1) then
12: Q := Q ∪ {((qi+1, ◦), φi+1)};
13: δ := δ ∪ {((qi, sj), φi) −gi,ψi−−→ (qi+1, ◦), φi+1)}; ▷ Using ψi
14: if qi+1 /∈ F 1

rt ∪ F 1
ut then waitlist := waitlist ∪{((qi+1, ◦), φi+1)}; end if

15: else if (φi = φj) ∧ (reachcand(qi+1) ∧ reachut,rt(sj+1) then
16: Q := Q ∪ {((◦, sj+1), φi+1)};
17: δ := δ ∪ {((qi, sj), φi) −gi,ψj−−−→; (◦, sj+1), φi+1)}; ▷ Using ψj
18: if sj+1 /∈ F 2

rt ∪ F 2
ut then waitlist := waitlist∪{((◦, sj+1), φi+1)}; end if

19: else
20: Q := Q ∪ {((qi+1, •), φi+1), ((•, sj+1), φj+1)};
21: newS := newS ∪{((qi+1, •), φi+1), ((•, sj+1), φj+1)};
22: δ := δ ∪ {((qi, sj), φi) −gi,ψi−−→ ((qi+1, •), φi+1), ((qi, sj), φj) −gj ,ψj−−−→ ((•, sj+1), φj+1)};
23: for each ((qk, sl), φm) ∈ newS do
24: if qk /∈ F 2

rt ∪ F 2
ut ∧ sl /∈ F 2

rt ∪ F 2
ut then waitlist := waitlist ∪{(qk, sl)}; end if

25: return waitlist, Q, δ;

4.2.5 Example Application of GIA in C-CEGAR

After having defined GIAs and proven that combining tools using reducer and combiner
ensures that no information computed is lost, we exemplify the advantages of using
GIAs next. Therefore, we revisit the scenario depicted in Figure 4.12, where we employ
only GIAs within component-based CEGAR. Beneath demonstrating the advantages
of having an exchange format with uniform semantics, we also exemplify reducer and
combiner.

As in Section 4.1.5 we again employ an abstract example generator using predi-
cate abstraction and a precision refiner computing Craig interpolates as well as an
execution-based feasibility checker within C-CEGAR. Again, we let the configuration
analyze the task shown in Figure 4.2b with the safety property S = (ℓerr, false) for the
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Figure 4.15: GIA A2 containing the po-
tential counterexample generated in the
first C-CEGAR iteration
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Figure 4.16: GIA A3 containing the preci-
sion increment φ1 and the information that
the path encoded in A2 is infeasible

CFA C2 depicted in Figure 4.6. Thus, we use the set of target nodes TN = {ℓerr} and
start with the abstract model explorer with empty precision and thus no predicates.

The potential counterexample computed is encoded within the GIA A2 from Fig-
ure 4.15, where the target node is marked as a candidate for being reached in case that
N is initialized with 0. The resulting reduced program is equivalent to the path pro-
gram shown in Figure 4.8. As the encoded path is infeasible, the UA feasibility checker
is not able to show that there exists a path reaching the target node ℓerr. Hence, the
node qerr corresponding to ℓerr is still encoded as candidate (for covering unreachable
locations). As the GIA that is generated using this information is equivalent to A2,
merging the two GIAs results in an automaton equivalent to A2.

Next, the infeasible counterexample is given to the precision refiner, and the preci-
sion increment φ1 ≡ x = 0 is computed. In addition, as the precision refiner is an OA
component, it has proven that the path to the target node without a loop iteration,
encoded in A2 is infeasible and the target node unreachable via this specific path. This
information is also encoded in the GIA A3 that is generated and shown in Figure 4.16,
which is used as input for the abstract model explorer in the second iteration. As
A3 does not ut-cover all paths of the CFA containing the target node, the verification
task is not completed and the next iteration is started. Assuming that we need to
generate a reduced program as input for the abstract model explorer, we employ the
algorithm Reduce using the CFA C2 of the program and the GIA A3 as input. We
use the Reducer from Algorithm 7 and obtain the reduced program that is shown in
Figure 4.177.

7More precisely, we obtain a CFA C3 that is shown in Figure A.9 and can be transformed into the
program in Figure 4.17
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int prog2() {
0 unsigned int x = 0;
1 if (x == 0){
2 assert(x == 0);
3 unsigned short N =nondet();
4 if (x < N){
5 x += 2;
6 L2: while (x < N) {
7 x += 2;
8 }
9 if (x % 2 != 0){

10 abort();
11 }else{
12 return 0;
13 }
14 }else{
15 if (x % 2 != 0){
16 return 0;
17 }else{
18 return 0;
19 }
20 }
21 }else{
22 unsigned short N =nondet();
23 GOTO L2;
24 }
25 }

Figure 4.17: Reduced program for
A3 and C2

As already explained, the C-CEGAR cycle
continues until all loop iterations are proven safe.
The main advantage of using GIAs becomes more
prominent in the third iteration: Therein, the two
precision increments computed in the first two it-
erations, the information that the program is safe
for no or one loop iteration, and the potential
counterexample with two loop iterations are en-
coded within a single artifact A1 shown in Fig-
ure 4.13. This example shows the advantages of
using GIAs for the information exchange within
C-CEGAR, as the uniform semantics allows for
encoding all computed information within a single
artifact and no information computed is lost.

4.3 Implementation

To analyze the feasibility of the idea to decom-
pose CEGAR, we build a decomposition of the
predicate abstraction of CPAchecker implement-
ing C-CEGAR within CoVeriTeam. In addition,
we also realized GIAs based on the existing for-
mat for condition automaton, to be able to em-
ploy them within C-CEGAR. The implementa-
tion of C-CEGAR in CoVeriTeam as well as the
changes to the CPAchecker and software artifacts
are available and archived at Zenodo [BHLW22b;
HW23].

4.3.1 Decomposing CPAchecker’s Predicate Abstraction

The predicate abstraction that is implemented in CPAchecker follows the high-level
description from Section 2.2.4. It is used within a CEGAR scheme realized within CPA-
checker and the default configuration that we use employs lazy refinement [HJMS02],
adjustable block encoding (ABE)8 [BKW10], and computes interpolants using Craig
interpolation. The implementation comprises two internal modules, a model explorer
and a module combining a feasibility checker and precision refiner. The analysis infor-
mation computed by the model explorer is stored in an ARG, which is also used by the
second module for feasibility checking and precision refinement. The counterexample
encoded within the ARG is validated by computing and validating the path formula of

8ABE is a generalization of large block-encoding allowing to specify different block sizes between
one statement per block and using large block encoding.
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the path of the counterexample using a solver. The newly generated precision incre-
ments in the form of predicates are directly added to the abstract states of the ARG.
In addition, the precision, i.e., the set of computed predicates, is also reported using a
predicate map using the SMT-2-LIB format.
CPAchecker also offers by default a configuration for validation of violation witnesses
and allows to restrict the exploration of arbitrary analyses to paths contained in a
violation witness.

Based on these existing implementations, we build for C-CEGAR three standalone
and stateless components generating the desired output formats: The abstract model
explorer obtains the initial precision as predicate map or invariant witness and uses
predicate abstraction for building the ARG and checks if the safety property is violated.
In this case, a potential counterexample path is exported as a violation witness. For the
feasibility checker, i.e., to check a given violation witness for feasibility, we use CPA-
checker’s existing witness-based result validation [Bey+15], working with violation
witnesses. The precision refiner uses the path witness to restrict the exploration of
the program to only the infeasible paths encoded. It builds the path formula and
uses MathSAT5’s implementation of Craig interpolation for computing the precision
increment. The computed interpolants are exported as predicate maps and as invariant
witnesses.

As stated in Section 4.1.3, we need, among the three stateless components, a con-
trolling unit responsible for handling the information exchange and checking, if a final
answer is computed. We build this unit using CoVeriTeam. We follow the concept
depicted in Figure 4.1. As all components are stateless, we need to ensure that pre-
cision increments computed in the previous iterations are also given to the abstract
model explorer. We therefore store the invariant witnesses or predicate maps from the
previous iterations and build a function for merging them with the newly computed
precision increment within CoVeriTeam.

4.3.2 Realizing C-CEGAR using GIA

In addition to the realization of C-CEGAR, we realize GIA by extending the condition
automaton from [BJLW18]. The formalization follows Definition 4.3. We extended
CPAchecker, such that it can consume a GIA as input and can generate it in addi-
tion to the correctness, violation, path, and invariant witness. We included GIAs as
exchange format within CoVeriTeam and integrated GIAs as exchange formats in the
component-based realization of CEGAR. We built ut-Reducer and rt-Reducer de-
scribed in Algorithm 7 as well as the Combiner from Algorithm 4 within CPAchecker,
forming standalone-executable components, also fully integrated in CoVeriTeam.
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4.4 Evaluation

The goal of our evaluation is to analyze the effect of decomposition and of using stan-
dardized exchange formats for the information exchange, especially GIAs. We analyze
these two aspects separately, by first analyzing the effect of decomposition and in a
second step additionally using standardized formats. Afterward, we have a closer look
at whether our decomposition of CEGAR allows for building cooperative verifiers using
off-the-shelf components, as components can be easily exchanged by others that imple-
ment the same interface via different concepts. The feasibility of using GIAs for the
information exchange in cooperative test case generation is shown in Appendix A.2.6.

4.4.1 Evaluation Setup

To answer the research question regarding the effect of decomposition, we analyze the
different effectiveness and efficiency of decomposed CEGAR instances and compare
them with the default implementation. Moreover, we employ different off-the-shelf
tools as feasibility checker and as precision refiner.

Configurations For analyzing the feasibility of C-CEGAR, we first evaluate three
different configurations based on the decomposition of CPAchecker’s predicate ab-
straction. The component-based version CC-Pred, uses violation witnesses, path wit-
nesses, and the predicate map, CPAchecker’s internal format to encode precision
increments, to exchange information among the three components. The configuration
CC-Pred-Wit uses the invariant witness instead of the predicate map (cf. Figure 4.1),
the configuration CC-Pred-Gia uses GIAs for the information exchange only (cf. Fig-
ure 4.12). We call CPAchecker’s default predicate abstraction using CEGAR Pred.

To also evaluate the advantages of the component-based design of C-CEGAR,
we also evaluate three off-the-shelf components, employing conceptually different ap-
proaches. We employ UltimateAutomizer as a feasibility checker using its config-
uration for violation witness validation. Additionally, we also employ UltimateAu-
tomizer as a precision refiner, where we chose a configuration that uses Newton re-
finement. Newton refinement is conceptually different from Craig interpolation which
is employed by CPAchecker’s precision refiner. Lastly, we also make use of FShell-
witness2test as a feasibility checker. FShell-witness2test [BDLT18] is an execution-
based result validator for violation witnesses that is implemented independently of any
existing verification tool. Given a violation witness, a compilable test harness is ex-
tracted and executed in combination with the original program. In case the safety
property is violated, the violation witness is confirmed.

Computing Resources and Benchmark Tasks We run our experiments on ma-
chines with an Intel Core i5-1230 v5, 3.40 GHz (8 cores), 33 GB of memory, and
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Table 4.1: Comparison of CPAchecker’s predicate abstraction and the component-
based version in three variations

correct incorrect
overall proof alarm proof alarm

Pred 3 769 2 556 1 213 3 9
CC-Pred 3 524 2 450 1 074 0 3
CC-Pred-Wit 2 854 2 110 744 0 1
CC-Pred-Gia 2 641 2 068 573 1 4

Ubuntu 18.04 LTS with Linux kernel 5.4.0-96-generic. Each verification run is lim-
ited to use 15 GB of memory, 4 CPU cores, and 15 min of CPU time. The experiments
are conducted on the 2022 version of SV-Benchmarks [SVB22], where we used all
benchmarks regarding reachability, in total 8 347 verification tasks.

Availability The implementations of C-CEGAR and GIAs as well as all experimen-
tal data are publicly available and archived at Zenodo. In [BHLW22b], we archive
C-CEGAR and the data for all the research questions except for the GIA-related eval-
uation, that can be found in [HW23].

4.4.2 RQ 1: How Large is the Overhead of the Component-based
Design for C-CEGAR?

Evaluation Plan To analyze the cost of using a component-based approach, we
compare the effectiveness and efficiency of Pred and our component-based version CC-
Pred. To improve comparability, we configure the model explorers of both Pred and
CC-Pred to start the exploration at the root of the ARG in each iteration9.

Experimental Results For effectiveness we are interested in the number of cor-
rect answers overall, correct proofs, and alarms, as well as in the number of incorrect
answers.
We present in Table 4.1 the results from our experimental evaluation. To first analyze
the effect of decomposition, we compare the results of default implementation Pred
and the component-based version CC-Pred. The number of tasks solved by the CC-
Pred reduces from 3 769 to 3 524. There are 25 tasks that CC-Pred solves even though
Pred does not, but also 270 tasks that CC-Pred fails to solve but Pred does (a 6.4 %
decrease). We also observe that the number of false alarms reduces from 9 for Pred to
3 for CC-Pred, as the feasibility check used in CC-Pred is different from the one used
in Pred and more precise.

The cause for the decreased effectiveness becomes visible when having a look at the
efficiency of CC-Pred. As we do not add any additional parallelization by decomposing

9Originally, Pred uses lazy refinements to enhance performance
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Figure 4.18: Comparison of efficiency of Pred and CC-Pred

CEGAR, we focus on CPU time in the following. We present in Figure 4.18a a scatter
plot that compares the CPU time taken by Pred on the x-axis and CC-Pred on the
y-axis for tasks solved by both tools. Again, for points on the solid line, both analyses
need the same CPU time, for points on the dashed lines one analysis takes twice as
long as the other one. We can observe that the CPU time taken by CC-Pred is higher
compared to Pred for nearly all cases, meaning that the efficiency of CC-Pred is lower.
The median increase for the CPU time used by CC-Pred is 2.8.

Next, we have in Figure 4.18b a closer look at the median increases and group them
with respect to the number of CEGAR iterations conducted to solve the task. First
of all, we can observe that the median increase strongly correlates with the number
of CEGAR iterations that are needed to solve the task. For tasks solved within the
first CEGAR iteration, the CPU time consumed by CC-Pred does, in the median, not
increase compared to Pred, the factor is 0.9. The overhead caused by the decomposition
becomes visible for tasks solved in more than one CEGAR iteration. The width of the
i-th bar corresponds to the number of tasks solved with i CEGAR iterations. As almost
95% of all tasks can be solved within 5 CEGAR iterations, we summarized the other
iterations within the last bar. In short, the efficiency of CC-Pred decreases compared
to Pred, where the decrease correlates to the number of conducted CEGAR iterations.

Multiple reasons could cause the decrease: As each component is stateless, there
are startup times of the Java Virtual Machine (JVM) and missing caching, especially
for the solvers. In addition, there is I/O overhead for reading and writing the exchange
formats. Recently, Beyer et al. showed that using a microservice-based architecture for
C-CEGAR leads to a comparable efficiency as Pred [BLW23]. Their results indicate
that the JVM startup time and caching are the main reasons for the lower performance
of CC-Pred.
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Using these insights regarding efficiency, it turns out that the decreased effectiveness
of CC-Pred compared to Pred is nearly exclusively caused by the fact that CC-Pred
takes more time to compute a solution. When increasing the CPU time limit for CC-
Pred by the factor of twelve (to 180 min), it fails only on 60 tasks, a 1.7 % decrease
compared to Pred. The remaining 60 unsolved tasks are caused by the feasibility
checker used by CC-Pred. In contrast to Pred, it (1) rejects more counterexamples
because it is more precise than the internal check of Pred, (2) explores paths with
unsupported program features that Pred does not visit, or (3) triggers SMT errors
because different interpolation sequences are queried. All three issues are not related
to the decomposition but rather to inconsistencies between the feasibility checker used
internally in Pred and the one used by CC-Pred. We conclude that decomposing Pred
to CC-Pred does not influence the ability to solve verification tasks, except for the three
issues mentioned above and taking the lower efficiency of CC-Pred into account.

Results
Decomposing an existing CEGAR implementation into components has (almost)
no negative effects on the effectiveness of the approach. The efficiency of CC-
Pred decreases only by a constant factor (median smaller than three). The
decomposed instance can have a higher precision because better components can
be used.

4.4.3 RQ 2: What Are the Costs for Using Standardized Formats?

Evaluation Plan After having analyzed the effect of decomposition in isolation by
using the predicate map within the information exchange, we are next interested in
analyzing the effect of using standardized formats only. Hence, we compare the effec-
tiveness and efficiency of CC-Pred-Wit, the configuration using violation, path, and
invariant witnesses to exchange information (as depicted in Figure 4.1) and CC-Pred-
Gia, a configuration employing GIAs only (as shown in Figure 4.12) with CC-Pred.

Experimental Results For effectiveness, we also present the results of CC-Pred-
Wit and CC-Pred-Gia in Table 4.1. CC-Pred-Wit solves in total 2 854 tasks,
computing 2 110 correct proofs and 744 correct alarms. Compared to CC-Pred, the
effectiveness reduces by 670 tasks, a decrease of around 20 %. CC-Pred-Gia solves in
total 2 641 tasks, computing 2 068 correct proofs and 573 correct alarms. Compared to
CC-Pred, the effectiveness reduces by 883 tasks, a decrease of around 25%. Comparing
CC-Pred-Gia and CC-Pred-Wit, we observe that CC-Pred-Gia solves in total 213
fewer tasks than CC-Pred-Wit. Important to notice that there are 125 tasks that
are solved by CC-Pred-Gia but not by CC-Pred-Wit.

The decreased effectiveness of CC-Pred-Wit compared to CC-Pred reasons
mostly in the fact that the precision refiner used within CC-Pred-Wit does not add
the computed precision increment to the invariant witnesses. Due to the fact that in-
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int prog3(void) {
0 unsigned int x = 1;
1 unsigned int y = 0;
2
3 while (y < 1024) {
4 x = 0;
5 y++;
6 }
7 if (x == 0) {}
8 else
9 error();

10 }

(a) Program prog3, where x =
0 is not a valid invariant at the
loop head
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Figure 4.19: Example showing difference between witness and GIA as exchange formats

variant witnesses are based on correctness witnesses and correctness witnesses are not
primarily designed for exchanging information of precision increments, we regularly
observe that CC-Pred-Wit gets stuck in an endless loop, as the same infeasible coun-
terexample is computed by the model explorer over and over again until it is eventually
aborted.

We exemplify this observation and present in Figure 4.19a a program from the
evaluation. In the program, the value of x is 1 before the loop is executed for the first
time and 0 after each loop iteration. In the experiments, we observe that the abstract
model explorer used generates in the first iteration a counterexample containing no loop
iteration that is rejected by the feasibility checker. The precision increment computed
is y = 0, which is valid before line 2 and rules the counterexample out. Using this
predicate, the model explorer now generates a counterexample that is shown as violation
witness AVW

3 in Figure 4.19b and as GIA A4 in Figure 4.19c. The counterexample
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Figure 4.20: Scatter plots comparing the CPU time of C-CEGAR instances using
standardized exchange formats

contains exactly one loop iteration. The new precision increment computed is x = 0
valid after the first loop iteration. Note that x = 0 is not a valid loop invariant, as
it does not satisfy establishment (cf. (2.4)). Although the invariant witnesses format
can conceptually be used to express loop unrollings and thus can contain the new
predicate, none of the precision refiners used encodes these or comparable predicates
in an invariant witness, they generate an invariant witness without any predicate. In
contrast, using GIAs as an exchange format allows the precision refiner to build the
GIA depicted in Figure 4.19e, precisely encoding the spurious counterexample as a path
leading to s5 ∈ Fut , where the new predicate is present as an assumption at the edge
to s3 (after the first loop iteration). To not lose any information, the GIAs from the
first two iterations A5 in Figure 4.19d and A6 in Figure 4.19e are combined into the
GIA depicted in Figure 4.19f10. It contains two paths, one with the precision increment
x = 0, and one with the precision increment y = 0. In the third iteration, these two
predicates (and their negation) are sufficiently precise, such that the model explorer
proves all paths leading to the target node unreachable.

In this example, using GIAs for the information exchange is preferable compared
to invariant witnesses, as tools can use GIAs uniform semantics to safely encode all
information computed. In the experiments, we see this effect on the 125 tasks for
that CC-Pred-Gia computes a solution, in contrast to CC-Pred-Wit. Nevertheless,
CC-Pred-Wit has overall a higher effectiveness compared to CC-Pred-Gia. The
difference originates mostly in the fact that CC-Pred-Gia is not able to compute a
solution in the given time limit for 299 tasks, for which CC-Pred-Wit computes a
solution within 900 seconds.

10In case that reducer and combiner are applied. Otherwise, there is no need to merge GIAs.
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Table 4.2: C-CEGAR using different off-the-shelf components

Feasibility correct incorrect
Checker overall proof unique alarm unique proof alarm
CPAchecker 2 854 2 110 494 744 441 0 1
FShell-witness2test 1 223 1 126 0 97 64 0 0
UltimateAutomizer 1 941 1 614 4 327 29 0 1

Precision correct incorrect
Refiner overall proof unique alarm unique proof alarm
CPAchecker 2 854 2 110 709 744 436 0 1
UltimateAutomizer 1 739 1 430 29 309 1 0 1

Finally, we have a look at the efficiency of CC-Pred-Wit and CC-Pred-Gia com-
pared to CC-Pred. We compare in Figure 4.20a the CPU time consumed to compute a
correct solution for CC-Pred on the x-axis and CC-Pred-Wit on the y-axis. It turns
out that, except for a few outliers, both configurations need in the median the same
time to solve a task and thus have comparable efficiency. For CC-Pred-Gia, we see
that CC-Pred-Gia takes in the median the 1.4-fold CPU time compared to CC-Pred.
As CC-Pred and CC-Pred-Wit have the same efficiency, CC-Pred-Gia has also a
lower efficiency compared to CC-Pred-Wit, cf. Figure 4.20b. In CC-Pred-Wit,
information from correctness witnesses are joined using a syntactic approach, which is
fast and, as it is only applied within this setting, expresses the precision increment in
a way optimized for C-CEGAR. In contrast, CC-Pred-Gia employs the Combiner,
which takes the semantics of the two GIAs that are combined into account to guarantee
that no information is lost. The resulting GIA is significantly larger (contains more
states and edges) and not optimized for C-CEGAR, which is the reason most likely
causing the lower efficiency and the increased number of timeouts.

Results
The effectiveness of C-CEGAR reduces by 20% when using witnesses, and the
efficiency is not influenced. GIAs can also be applied in C-CEGAR, whereas the
effectiveness reduced by 25%, caused by a lower efficiency compared to CC-Pred.

4.4.4 RQ 3: Does Using Off-the-shelf Components Pays Off?

Evaluation Plan Our objective is to show the most important advantage of
C-CEGAR, namely that using complementary techniques can lead to increased effec-
tiveness through uniquely solved tasks. First, we analyze how using different feasibility
checkers influences the effectiveness. Therefore, we replace within CC-Pred-Wit the
feasibility checker using CPAchecker with two off-the-shelf tools, namely FShell-
witness2test and UltimateAutomizer. Thereafter, we exchange the precision refiner
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within CC-Pred-Wit that computes Craig interpolants for refinement by an instance
of UltimateAutomizer that uses Newton refinement to compute precision increments.

Experimental Results We present in the upper half of Table 4.2 the experimental
results for using different feasibility checkers. It contains the number of overall correct
answers, correct proofs, and correct alarms. In addition, we included the number
of uniquely computed proofs and alarms, i.e., these tasks that are only solved using
either FShell-witness2test or UltimateAutomizer for the feasibility checking but not
using CPAchecker’s violation witness validation. Moreover, we include the number
of incorrect proofs and alarms. The table shows that C-CEGAR using CPAchecker
as feasibility checker produces the best results. For using UltimateAutomizer and
FShell-witness2test we observe 29 respectively 64 tasks solved only using the new
feasibility checkers.

Finally, we have a look at using different precision refiners that employ concep-
tually different techniques, namely Craig interpolation in CPAchecker and Newton
refinement in UltimateAutomizer. In the lower half of Table 4.2, we present the ob-
tained experimental results. CC-Pred-Wit with UltimateAutomizer as precision
refiner is able to find 1 430 proofs (vs. 2 110) and 309 alarms (vs. 744). Although the
effectiveness is lower compared to using CPAchecker’s precision refiner, the instance
is still able to find 29 proofs and 1 alarm that are not found by CC-Pred-Wit with
CPAchecker. These results indicate the different precision refiners using conceptually
different techniques have different strengths and weaknesses, showing that the easy re-
placement that is possible due to C-CEGAR can be beneficial. Such an example where
a replacement is beneficial is already presented as motivation in Figure 4.2b. Having
a closer look at the generated precision increments by UltimateAutomizer, it turns
out that it often contains correct but complex predicates, for which the model explorer
runs into a timeout.

Results
C-CEGAR allows a simple exchange of feasibility checkers and precision refiners.
The use of conceptually different off-the-shelf feasibility checkers or precision re-
finers can increase the effectiveness of C-CEGAR through uniquely solved tasks.

4.5 Discussion

Our experimental evaluation demonstrates that decomposing the existing CEGAR
scheme is possible to make it applicable in a cooperative setting. Moreover, we have
shown that we can use our novel exchange format GIA for the information exchange
in cooperative settings, especially in C-CEGAR. We can again see that combining dif-
ferent tools in the cooperative approaches combines their strengths and enables these
approaches to solve tasks that the non-cooperative tool alone could not solve. Nev-
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ertheless, neither a decomposition nor using an exchange format applicable in many
scenarios comes for free, i.e., the efficiency reduces, and due to the higher runtime of
the decomposed instances or due to information not being exported some tasks can not
be solved anymore. We first discuss the validity of our experimental evaluation before
discussing the approach itself:

We used for the evaluation 8 347 tasks from the SV-Benchmarks from 2022. Al-
though this dataset is widely used and accepted for benchmarking, our findings may
not completely carry over to real-world C programs or other programming languages
like Java. As the results from CC-Pred and Pred show a high agreement in the results
and CC-Pred does not cause any additional incorrect answers, we are confident that
the implementation does not suffer from bugs. Anyhow, such bugs would influence the
effectiveness only negatively and our findings would remain valid.

We have additionally shown that GIAs can be used for exchanging information
within C-CEGAR. For other cooperative approaches using standardized exchange for-
mats, such as test case generation or CMC, we explained how GIAs can be employed
within these concepts and evaluated that GIAs are applicable in cooperative test case
generation (cf. Appendices A.2.1 and A.2.6). Thus, the findings from our evaluation
will most likely carry over to these other forms of cooperation, meaning that GIAs can
be applied in different scenarios as well.

Nevertheless, there are two underlying assumptions when using GIAs for exchang-
ing information: First, we assume that each tool that either takes a GIA as input or
produces a GIA works with the original C program or the reduced program generated
by the reducer. In case a tool is working on a different representation (e.g., LLVM or
Boogie), it has to be ensured that the information generated by the tool is mapped
back to the original C program. The concept of mapper and encoder proposed in Sec-
tion 3.1.4.1 can then be used to map the information back to the level of the C program.
Second, we assume that the task solved by the cooperation of tools can be expressed in
terms of reachability and thus the information communicated can be expressed in terms
of reachability, e.g., the (non)-reachability of certain locations or conditions and state
invariants that hold on some or all paths to a certain location or a function. Although
test case generation and the verification of certain correctness criteria can be expressed
in terms of reachability, there might be other correctness criteria or properties that
cannot be expressed, meaning that GIAs might not be applicable as an exchange for-
mat. In addition, GIAs allow to express additional information in terms of predicates.
Hence, concrete (input) values needed for executing a specific path or information on
variable values gathered during analysis, e.g., interval values, need to be transformed
into predicates. For example, concrete variable values can be expressed using assign-
ments, and the information x ∈ [1, 4] is translated to the formula 1 ≤ x ≤ 4. In case
a combination of analyses is exchanging analysis information that is not representable
using predicates (e.g. tainted or unused variables), it is likely that the information
cannot be encoded within a GIA (or any other instance of a protocol automaton).
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Although there are two assumptions, that might limit the use of GIAs in certain, spe-
cial cases, all in all, we think that GIAs can encode the information that is typically
exchanged between OA and UA tools.

During the evaluation of GIAswe have shown that GIAs can be employed in C-CEGAR.
We also observed that GIAs are larger compared to invariant witnesses tailored to the
use within C-CEGAR. Due to the theoretical guarantees given and the fact that we can
use GIAs in many different scenarios, we observe the decreased efficiency as a down-
side. This trade-off has to be kept in mind when choosing the formats for information
exchange during the design of new forms of cooperative verification.

Information exchange among components is key to success in cooperative verifica-
tion. Beneath having suitable formats for the information exchange such as witnesses
or GIAs, the information computed by the individual components has to be exported.
For the abstract model explorer and feasibility checker, it may suffice to only report
the potential error paths, although including more precise information in the form of
assumptions on variable values may ease the task of the next tool. In contrast, the
precision refiner has to encode the precision increment within the invariant witnesses
or GIAs. We have already seen in the evaluation that missing information is the main
reason for the reduced effectiveness of CC-Pred-Wit compared to CC-Pred. We
selected among CPAchecker only the tool UltimateAutomizer as precision refiner,
as it is, to the best of our knowledge in 2021 when conducting the experiments, the
only formal-verification tool that is able to process violation witnesses as additional
input and that also outputs invariant witnesses. In theory, any off-the-shelf verifier can
be transformed into a precision refiner using the construction depicted in Figure 4.5.
In practice and based on data from SV-COMP’21, no other tool than CPAchecker
and UltimateAutomizer was able in 2021 to produce meaningful invariant witnesses.
Fortunately, tool developers have improved their tools’ output since then, such that
the variety of available precision refiners has increased. For example, Symbiotic is now
able to also produce non-trivial invariant witnesses [Cha+22]. This opens up the pos-
sibility to build more configurations employing more tools that make use of conceptual
different techniques within C-CEGAR. These new configurations have the potential to
(partially) overcome known limitations and to increase the effectiveness of C-CEGAR.

4.6 Related Work

In this chapter we focused on building a cyclic cooperative verification scheme by de-
composing CEGAR and additionally develop and employ a novel verification artifact
called GIA, that is applicable in many scenarios combining over-approximating and
under-approximating verification and testing tools. In the following, we discuss other
(non-cooperative) cyclic software verification approaches. Thereafter, we provide an
overview of other existing verification artifacts used in (non-cooperative) approaches.
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4.6.1 Cyclic Combinations

In the following, we focus on concepts that combine the strengths of different approaches
and exchange information between them in a cyclic manner, either cooperatively or
using conceptual integration.

4.6.2 Conceptual Integrations

The idea of a cyclic combination of tools is used in many scenarios, especially to com-
bine the different strengths or general capabilities of tools [GNRT10; Gul+06; NRTT09;
BNRS08; AGC12; GHMW16; GD17; Chr+21; NKP18]. In Smash [GNRT10], a pred-
icate analysis is combined with dynamic test generation, wherein both tools compute
information in an alternating way. The Smash algorithm maintains two sets of func-
tion summaries in the form of predicates and implications. One set contains witnesses
for concrete execution paths within the function, whereas the other summaries ex-
press certain properties (postconditions) that hold for all executions of the function
satisfying certain preconditions. Synergy [Gul+06] (with its implementation in the
tool Yogi [NRTT09]) and Dash [BNRS08] share the idea of combining predicate ab-
straction with a testing approach. Both maintain two separate data structures, an
over-approximation of the state space and a tree of concrete program executions. The
core idea is to steer testing along potential counterexamples and use information ob-
tained by testing to guide the refinement process. The Ufo algorithm follows a similar
idea but stores all information within a single ARG [AGC12]. In [GD17] over- and
under-approximative tools are combined to characterize program failures as precisely as
possible by providing formulas bounding the input space causing the program failures.
In [Chr+21], a neuro-aware program analyzer is presented, that iteratively combines an
abstract interpretation tool and an analyzer for neural networks, allowing an analysis
of programs that contain calls to neural networks. In [NKP18] a symbolic execution
engine and a fuzzer are iteratively combined to discover program paths whose execution
is resource-intensive.

The idea of concolic testing is to enrich a testing tool with concrete test inputs that
may lead to unexplored parts of the program [SMA05; SA06; TH08; BDMP17; MS07;
LEMR20b; LEMR20a; MSSA22; CDE08]. The concrete inputs are computed using a
symbolic execution. Daca et al. [DGH16] use a concolic execution engine in combination
with predicate abstraction. The predicate abstraction guides the search of the concolic
tester by identifying unreachable program parts. Beneath this information, the concolic
tester communicates the test goals already covered. Information is exchanged using
an ARG. In [ARCB14], dynamic symbolic execution and static symbolic execution
are combined in an alternating way, aiming to increase the effectiveness of detecting
program violations. In [GHMW16], a concolic tester is combined with BMC, where
BMC is used on loop- and recursion-free parts of the program to reduce the number of
paths that need to be explored by concolic execution.
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All the presented cyclic approaches combine several concepts within a single tool
as white-box integration. In contrast, we aim to build a cooperative cyclic approach.
Nevertheless, each is a candidate for being decomposed and thereby made ready for
being used as a scheme for cooperative verification. For example, we demonstrate in
Appendix A.2.1 how to use GIAs for cooperative test case generation, following and
generalizing the idea of [DGH16].

4.6.3 Cooperative Approaches and Decomposition

CoVeriTest [BJ19; Jak20; JR21] generalizes the idea of [DGH16] by combining arbi-
trary verifiers for test case generation. Initially, the set of test goals that need to be
covered is computed. Then, each verifier tries to reduce the set of open test goals and
generates a condition describing the explored state space, such that other tools can
safely ignore it. Hence, the condition is exchanged among the components for coop-
eration. A similar approach only employing testing tools is presented in [BL19a]. For
cooperative test case generation, we explain in Appendix A.2.1 how to realize these
concepts using GIAs for the information exchange, allowing to reuse of components
built for other purposes, e.g., for C-CEGAR.

The concept of property-directed k-induction [GI17; JD16] is formalized in a coop-
erative way in [BHMS20]. The formalization comprises two kinds of components. The
first component, the induction-checking engine, steers the verification and searches for
a k-inductive invariant to show that the program is safe. Within the cooperation, it
makes use of the second component, the finite reachability engine, which checks if a cer-
tain formula is satisfied in any state reachable in a given, finite number of steps. As an
answer, either a concrete trace or an invariant is provided and exchanged. The exchange
is realized using no standardized formats. Although the information is exchanged using
no standardized formats, we could also employ GIAs, especially for communicating the
concrete paths that reach the property or the invariants.

In [Hel+20], Helm et al. present Opal, a framework for building cooperative analy-
ses based on the blackboard approach. Therein, an analysis can request specific analysis
information from the blackboard, that is either already computed by another analysis or
computed on-demand. The blackboard is orchestrating the collaborating analyses. The
analysis information computed is exchanged within Opal using lattice elements. For
example, a three-address-code based intermediate representation of Java bytecode is
computed in [Rei+20], comprising an abstract interpretation in combination with anal-
yses computing precise information on return types and field types. Opal is providing
the infrastructure to build collaborative analyses and can thus be seen as comparable
to CoVeriTeam. The collaborative program analyses implemented in Opal are orthog-
onal to C-CEGAR, as they either decompose existing analyses or build new analyses
on existing components. The information exchanged is mostly analysis-dependent and
is represented using lattices. Compared to GIAs, where information on the reachability
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of program locations or invariants are exchanged, the shared analysis results exchanged
in Opal are on a more fine-grain level, like the return type of a method.

4.6.4 Existing Artifacts

Many existing approaches already exchange information using different artifacts. We
have a closer look at these existing artifacts used, summarize their characteristics, and
discuss to which extent they are suited as general formats for the information exchange
between OA and UA tools, based on the requirements stated in Section 4.2.2.

In conceptual integrations, white-box combinations of multiple components, informa-
tion are exchanged not via clearly defined artifacts but rather using internal formats,
method calls, or accessing shared data structures. These approaches may exchange
information on concrete program executions and the resulting goals covered, or the un-
reachability or safety of certain parts (under some boolean conditions) of the program.
Combinations exchanging information only on already covered goals are for example
FuSeBMC [AABC21; Ald+23], DyTa [GTXT11] or the concept proposed by Huster
et al. [Hus+17]. These approaches do not use standardized formats. Examples of tools
that combine an OA and an UA component and exchange both types of information
are for example Smash [GNRT10], Synergy [Gul+06] (with its implementation in the
tool Yogi [NRTT09]), Dash [BNRS08], the Ufo algorithm [AGC12], or the approach
presented by Daca et al. [DGH16]. Within some of these approaches [DGH16; AGC12]
an ARG, cf. Definition 2.6, is used for information exchange. An ARG represents the
abstract state space containing the analysis results computed as a graph. In general,
the ARG can be used to represent all desired information that should be exchanged.
Due to the analysis-dependent information, ARG states generated by different analyses
(e.g., by interval analysis, live variable analysis, or predicate abstraction) may, however,
have different shapes, which makes an exchange of ARGs between different analyses in
a general setting impossible.

In contrast to conceptual integration, cooperative approaches use components as black-
boxes, and information is exchanged only using clearly defined verification artifacts.
Conditions under which the program is verified are exchanged using condition au-
tomata in CMC [BHKW12]. In order to use off-the-shelf tools in CMC, the condition
automaton can be transformed into a reduced program [CJW15; BJLW18; BJ20]. To
generate test cases cooperatively, CoVeriTest [BJ19; Jak20; JR21] combines arbitrary
verifiers, where each tries to reduce the set of open test goals and generates a condition
describing the explored state space, such that other tools can safely ignore it. The
condition, again represented as a condition automaton, is then used for cooperation. A
similar approach only employing testing tools is presented in [BL19a], where in contrast
to CoVeriTest conditions are encoded as a set of CFA-edges. A condition automaton,
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cf. Definition 2.11, states which semantic paths of the program are already successfully
verified and under which condition. Although condition automata can mark certain
regions as safe, paths (potentially) leading to a node from TN cannot be encoded. In
addition, condition automata do not allow adding state invariants. Hence, (R2) and
(R5) are, in contrast to GIAs, not fulfilled.

Besides being used as justification for the computed verdicts, witnesses are also used
for information exchange in cooperative verification approaches. C-CEGAR exchanges
information on potential counterexamples using violation witnesses, on infeasible paths
using path witnesses, and on precision increments in the form of new predicates using
invariant witnesses. Invariant witnesses are also used in CoVEGI to exchange loop
invariants. A violation witness, cf. Definition 2.10, encodes a set of feasible program
paths where some lead to a property violation. By design, the violation witness does not
allow the use of state invariants. Thus, its semantics does neither allow encoding that
a path does not reach a node from TN (i.e., is safe) or is infeasible or some justification
of this in the form of state invariants. Hence, (R3), (R4), and (R5) are not fulfilled. A
correctness witness, cf. Definition 2.8, is used to encode that a program is safe (no node
from TN is reachable). They do not allow to specify the reachability of nodes from
TN nor to encode partial results. Therefore, encoding paths to nodes from TN as well
as marking that only certain paths of the program (and not the whole program) are
safe is impossible. Hence, (R1) and (R2) are not fulfilled. An invariant witness allows
for encoding that a part of the program satisfies the specification (R1), but it still does
not allow for encoding violating paths (R2). As the Yaml-based format for correctness
and violation witnesses does not increase the expressive power of the formats, the same
line of argument also holds for these two formats.
Condition automaton, as well as version 1.0 of violation and correctness witnesses, are
defined as protocol automaton [BW20]. The protocol automaton, cf. Definition 2.7,
describes a set of paths, and its semantics is context-depended. Consequently, in con-
trast to GIAs, it is impossible to mark within one protocol automaton both, a path to
a node from TN as unreachable and state that another path reaches a different node
from TN . Hence, (R6) and either (R1) or (R3) are not fulfilled.

A completely different form of cooperation is employed in [BSU22], where an automatic
verifier is cooperating with an interactive verifier11. It allows for an interactive verifica-
tion using automatic verifiers. The interactive verifier, in this scenario Frama-C, uses
inputs by human experts in the form of ANSI/ISO C Specification Language (ACSL)
annotations, that are written directly into the program code. Christakis et al. propose
concepts to explicitly state the conditions or assumptions under which the program is
verified [CMW12; CMW16]. These conditions or assumptions are also added as anno-

11An interactive verifier relies on user inputs, e.g., (loop) invariants. Automatic verifiers are called
verifiers in this thesis, as we do not consider interactive verifiers.
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tations directly in the program code. One common option for annotating C programs
with behavioral properties like global or loop invariants, function contracts, or (ad-
ditional) assertions is ACSL [Bau+24]. The idea of ACSL-annotations is to ease the
verification by providing helpful information, thus these annotations can be seen as a
similar concept to correctness witnesses. The ACSL annotations are not designed for
encoding property violations and do not fulfill (R2).
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5

Having discussed methods for building sequential and cyclic cooperative approaches,
we next focus on building a cooperative concept that allows for using different actors
in parallel to cooperatively solve the verification task. The easiest way of combining
tools in parallel is using a parallel portfolio, that is regularly used and has proven to
be successful [TFNM11; BL19a; Gro+12; Hol+16; HJG08; YDLW19; CH23; BKR22;
Luc+16]. Inspired by economics, the core idea of using a parallel portfolio is to increase
the chance of computing the correct solution by employing multiple conceptually dif-
ferent tools or configurations in parallel [HLH97]. More precisely, all selected tools are
executed in parallel, where each tries to solve the verification task, and the first result
that is computed is returned. A parallel portfolio is easily realizable, as it does not
necessitate a concept for splitting the verification task into subtasks. As a downside, it
causes a lot of redundant computations, as each tool solves the same verification task.
In addition, a parallel portfolio is not cooperative, as information computed by one
tool is not shared with the others.

For building a cooperative parallel verification scheme that avoids unnecessary re-
computations, we aim to make use of a core principle in computer science, namely the
divide-and-conquer approach [CLRS09]. The underlying idea of this approach is to split
the task into multiple smaller subtasks, such that each can be solved independently in
parallel. The partial results computed for each of the smaller problems are then com-
bined into a solution for the overall task. To be able to employ the divide-and-conquer
approach for software verification, we need a way to split the verification task into sub-
tasks in advance. The splitting has to guarantee that subtasks can be solved in parallel
and that no parts of the program are left out. As we focus on the (non-)reachability of
(error) locations, which is defined based on a single path (cf. Definition 2.2), we need
to ensure that each feasible path of a program is contained in at least one subtask.
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There exist several ways to split the paths of a program, e.g., using path ranges [SK12],
input ranges [Mis+07], or path-prefixes [FSK12; SK20; SK21]. Instead of developing a
novel concept as in Chapter 3 or decomposing an existing scheme as in Chapter 4, we
generalize an existing concept that is currently applicable for a single technique only,
such that we can employ arbitrary off-the-shelf tools. We base our cooperative approach
for parallel program verification on the idea of Ranged Symbolic Execution, introduced
by Siddiqui and Khurshid [SK12]. It enables multiple instances of symbolic execution
to solve the verification problem in parallel, where each instance is assigned a path
range and analyzes only those paths within the range. A path range describes a set of
ordered paths using a lower and an upper bound and makes use of an ordering relation
for program paths. To ensure that the instances of symbolic execution work on the
given interval only, ranged symbolic execution uses the branching conditions internally
generated by symbolic execution. Clearly, this concept is not directly applicable to
arbitrary off-the-shelf analyses.

Splitter

Ranged
Analysis 1

Ranged
Analysis 2

JoinerC, S

Program &
Property

V ,J
Result

Ranged Program Analysis

Range
[πτ , π⊤ ]

Range
[π⊥ , πτ ]

Partial Result

Partial Result

Figure 5.1: Ranged program analysis using two ranged analyses

In this chapter, we aim to generalize the idea of ranged symbolic execution, such
that arbitrary off-the-shelf verifiers can be used as actors, cooperatively solving the
verification task in parallel. The main challenge thereby is to restrict the analyses to
a given path range. Our concept of ranged program analysis, depicted in Figure 5.1,
generalizes ranged symbolic execution and allows to use off-the-shelf tools. It comprises
three steps: First, given the program and the property, a splitter is used to generate the
path ranges. Each range is given to an actor called ranged analysis, which computes a
result for the given range, and thus a partial result for the overall verification task. In-
ternally, each ranged analysis utilizes an off-the-shelf verifier for solving the verification
task on the given range. To restrict the verifiers to the given range, we develop two
different methods, one based on the composition of Configurable Program Analyses,
called range reduction, and the other using program instrumentation. As each range
can be analyzed separately, the ranged analyses are executed in parallel. Finally, the
partial results computed for each range are aggregated by a joiner to a final result
for the overall verification task. The joiner does not only generate a verdict but also
computes an aggregated justification in the form of a violation or a correctness witness
for the verification task.
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After motivating ranged program analysis by exemplifying the advantages in Sec-
tion 5.1, we formally define path ranges and an ordering on paths in Section 5.2. We
explain splitter and joiner as well as both methods for building ranged analyses in Sec-
tion 5.3. In addition, we introduce work stealing in ranged program analysis, a concept
to increase its effectiveness. Next, we describe the implementation of ranged program
analysis in Section 5.4 and evaluate the proposed concept in Section 5.5. We conclude
the chapter by discussing the results in Section 5.6 and present related work on parallel
cooperative approaches in Section 5.7.

5.1 Motivating Example

Each verification approach has individual strengths and weaknesses. Some are good
at finding property violations, and others compute precise loop invariants to prove
that the specification is not violated. Especially for large tasks or those containing
complex program constructs, dividing the verification task into easier solvable or smaller
subtasks can increase overall performance.

Sharing the work for a program containing a loop unrolled hundreds of thousands
of times when using BMC can be beneficial, as the path formulas computed for each
path range may be smaller and allow the underlying solver to compute a solution faster.
In addition, the ranged program analysis using a divide-and-conquer approach allows
for combining the different strengths of analyses on one program: When analyzing
the running example shown in Figure 2.3, employing a combination of BMC, that
is good and fast at detecting property violations and predicate abstraction, that can
prove programs correct, can increase the verifier’s performance. In case the property
would be violated, BMC working only on a bounded part of the program may find a
counterexample fast. In contrast, in (the actual) case that the program is correct, BMC
shows that the bounded part it works on is free of errors and predicate abstraction can
compute a proof for the remaining part using its abstraction technique.

5.2 Exchange Formats in Ranged Program Analysis

The information exchanged within the default configuration of ranged program analysis,
as depicted in Figure 5.1, comprises the path ranges and the partial results1. For the
latter, we can reuse verdicts and witnesses. In case the range contains a property
violation, a violation witness is computed. Otherwise, an invariant witness showing
the correctness of all program paths in the range and thus of a part of the program is
generated.

Our goal is to define path ranges as a set of “consecutive” paths, such that it can
be guaranteed that all program paths are analyzed. To compare two paths, we need an

1Work stealing, introduced in Section 5.3.6 allows for reusing the analysis precision or previously
computed invariants.
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ordering ≤ on program paths based on their edges. Intuitively, the edge representing
the true-evaluation of an assume statement is smaller than the edge representing the
false-evaluation.

Definition 5.1. Given two program paths π = ⟨ℓ0, σ0⟩ −g1−→ ⟨ℓ1, σ1⟩ −g2−→ . . . −gn−→
⟨ℓn, σn⟩ ∈ paths(C) and π′ = ⟨ℓ0, σ′

0⟩ −g
′
1−→ ⟨ℓ′1, σ′

1⟩ −g
′
2−→ . . . −g

′
m−→ ⟨ℓ′m, σ′

m⟩ ∈ paths(C).
We define the path ordering ≤ as follows:

π ≤ π′ ⇔ ∃ 0 ≤ k ≤ n : ∀ 1 ≤ i ≤ k : gi=g′
i∧(

(n = k ∧m ≥ n) ∨ (m > k ∧ n > k ∧BC(gk+1) = T ∧BC(g′
k+1)=F )

)
.

Note that the path order ≤ is a total ordering, as each feasible execution path of a CFA
C starts in ℓ0. Based on the ordering ≤, we can now specify path ranges:

Definition 5.2. A path range (or in short range) [π, π′] is the ordered set of paths
{πr ∈ paths(C) | π ≤ πr ≤ π′ ∨ πr is a prefix of π or π′}.

We also define π⊥ , π⊤ /∈ paths(C) as the lowest and greatest path to easily describe
ranges that are not bound on the left or right. More formally, (π ≤ π⊤) ∧ (π⊤ ̸≤
π)∧(π⊥ ≤ π) ∧ (π ̸≤ π⊥ ) for all π ∈ paths(C). Consequently, [π⊥ , π⊤ ] = paths(C).

Instead of describing paths directly as a sequence of pairs of program state and
location, we use the following two, more compact representations, namely via test
cases and sequences of branching decisions. We define a test case τ , τ : Var ⇀ Z,
that maps each input variable to a concrete value. As formalized in Figure 2.2, the
programs analyzed are deterministic except for the inputs. Thus, τ describes exactly
a single path, we say that τ induces π and write this path as πτ

2. For example,
τ1 = {input 7→ −2} induces πτ1 in the running example C1 from Figure 2.3:

πτ1 = (ℓ0, {input 7→−2})−input<0−−−−−→ (ℓ1, {input 7→−2})

−input=−input−−−−−−−−−→ (ℓ3, {input 7→2})

−rem=input−−−−−−→ (ℓ4, {input 7→2, rem 7→2})

−res=0−−−→ (ℓ5, {input 7→2, rem 7→2, res 7→0})

−rem>1−−−→ (ℓ6, {input 7→2, rem 7→2, res 7→0})

−rem−=2−−−−→ (ℓ7, {input 7→2, rem 7→0, res 7→0})

−res++−−−−→ (ℓ5, {input 7→2, rem 7→0, res 7→1})

−!(rem>1)−−−−−→ (ℓ9, {input 7→2, rem 7→0, res 7→1})

−!(input!=2∗res+rem)−−−−−−−−−−−−−→ (ℓ11, {input 7→2, rem 7→0, res 7→1})

−return res−−−−−−→ (ℓ12, {input 7→2, rem 7→0, res 7→1})

2More concretely, a test case τ describes a single maximal path and all its prefixes. The case when
τ defines only a part of the input is discussed later.
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As a consequence, given two test cases τ1 and τ2, we can define a range by their induced
paths [πτ1 , πτ2 ]. In case that πτ1 ̸≤ πτ2 holds, the range is empty. For the running
example in Figure 2.3 and the two test cases τ1 = {input 7→ −2} and τ2 = {input 7→ 2},
the range [πτ1 , πτ2 ] contains five (feasible) maximal program paths, namely those where
the input variable input is in the interval [−2, 2] and that contain at most one loop
iteration.

Test cases offer an extremely compact way of representing paths. As a downside,
computing the induced path for a test case requires either a program execution or a
semantic analysis of the program. A second way to represent program paths to ease
computing locations contained on a path is using a sequence of branching decisions sτ .
For an induced path πτ , sτ contains the branching decisions taken on the path. We
can compute sτ using the recursive function TC :paths(C)→{T, F}∗:

TC(ℓi −gi−→ ℓj −gj−→ · · · ) =


() if ℓj has no successor

x ◦ TC(ℓj −gj−→ · · · ) if x = BC(gi) ∈ {T, F}

TC(ℓj −gj−→ · · · ) otherwise

For example, for πτ1 and πτ2 induced in C1 by τ1 = {input 7→ −2} and by
τ2 ={input 7→2}, we have TC1(πτ1)=sτ1 = (T, T, F, F ) and TC1(πτ2)=sτ2 = (F, T, F, F ).

Using the defined ordering ≤ on the paths, we can build an execution tree. It rep-
resents for each path of the program the sequence of branching decisions taken. Thus,
its nodes are labeled with the boolean conditions inside assume statements present in
the program and its leafs with abort- and return- statements. A solid edge represents
the true-evaluation of the condition (BC(b) = T ), a dashed edge the false-evaluation
(BC(b) = F ) for a condition b. We depict in Figure 5.2 a (partial) execution tree for
the running example shown in Figure 2.3. Note that an execution tree does not take
the program semantics into account, hence it (can) contain infeasible program paths.

input<0

rem>1

rem>1

. . . cond

abort() return res

cond

abort() return res

rem>1

rem>1

. . . cond

abort() return res

cond

abort() return res

Figure 5.2: Partial program execution tree for the running example C1 from Figure 2.3.
We define cond≡input!=2*res+rem.
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5.3 Components in Ranged Program Analysis

The goal of ranged program analysis is now to divide the program into ranges along
program paths, where each range is analyzed by a ranged analysis, as depicted in
Figure 5.1. When using two ranged analyses, the splitter generates one path π that
forms the two ranges [π⊥ , π] and [π, π⊤ ]. The number of ranges needed depends thereby
on the number of ranged analyses used. For example, if three ranged analyses are used,
two paths π1, π2 are generated, forming the ranges [π⊥ , π1], [π1, π2], and [π2, π⊤ ]. To
exemplify the concrete paths that need to be analyzed by a ranged analysis, we illustrate
in Figure 5.3 the range [π1, π2] for the running example. All elements that are not in
the range are depicted in gray, the two paths π1 and π2 are highlighted in green resp.
red. We assume that π1 is induced by τ1 = {input 7→ −2} (π1 = πτ1) and π2 is induced
by τ2 = {input 7→ 2} (π2 = πτ2).

input<0

rem>1

rem>1

. . .

(a)

cond

abort() return res

cond

abort() return res

(b)

rem>1

rem>1

. . .

(c)

cond

abort() return res

cond

abort() return res

(d)

Figure 5.3: Program execution tree for running example from Figure 2.3 with the
interval [πτ1 , πτ2 ], where πτ1 is highlighted in green and πτ2 in red. Elements that
are not in the range are depicted in gray. We define cond≡input!=2*res+rem.

The ranged analysis that is working on the interval [π1, π2] has to analyze all paths that
are executed when the input is positive and that contain at least one loop iteration and
the two paths for negative inputs with at most one loop iteration. Next, we introduce
all components present in ranged program analysis, starting with the splitter.

5.3.1 Splitter

Within ranged analysis, ranges can be defined either using test cases or sequences of
branching decisions. We develop four different splitting strategies, two are based on
the number of loop unrollings, and two use a random path exploration. Each strategy
builds the program execution tree demand-driven, i.e., explores only these paths that
are returned. Then, for each path either the sequence of branching decisions or a test
case that induces the path is computed.

Splitter Based on Loop Bounds The goal of these splitters is to generate a range
that contains paths with a finite number of loop iterations. We propose two splitters,
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Lb3 and Lb10. More precisely, Lb3 computes the left-most path in the execution
tree that contains exactly three unrollings of each loop, analogously for Lb10 with
ten loop iterations. If the program contains nested loops, each nested loop is unrolled
three times in each iteration of the outer loop. To generate the test case for the
computed path, we (1) build its path formula using the strongest postcondition operator
(cf. Definition 2.3), (2) use an SMT-solver to check the formula for satisfiability and (3)
in case it is satisfiable, use the evaluation of the input variables provided by the SMT-
solver in the path formula as one test case. In case the path formula is unsatisfiable,
we shorten the path by iteratively removing the last statement from it, until we get a
satisfying path formula. For loop-free programs, we cannot bind the number of loop
unrollings. Hence, Lb3 and Lb10 fail and we generate a single range [π⊥ , π⊤ ].

Splitter Based on Random Exploration The other two strategies Rdm and
Rdm9 select paths randomly by traversing the CFA and deciding at each assume state-
ment to either follow the true- or the false-branch. The probabilities of Rdm for
selecting the true- or false-branch are 50%, whereas Rdm9 selects the true-branch with
a 90% probability. As execution trees of programs with loops are often not balanced
but rather grow to the left, Rdm9 likely generates longer paths.

5.3.2 Ranged Analyses for Off-the-shelf Analyses in General

The task of the actor ranged analysis is to analyze at least all paths that are contained
in a given range. The result computed for the range is thereby a partial result for the
overall task. We depicted the inputs and outputs of a ranged analysis in Figure 5.4.
As input, it is given a program and the specification as well as the range in the form
of two test cases or as two sequences of branching decisions. It then returns a verdict
and a justification, that are valid for the given range.

C, S

Program &
Property

[π1, π2]
Range

Ranged
Analysis

V
Partial
Verdict

J
Partial

Justification

Figure 5.4: Conceptual view of a ranged analysis. Verdict and justification are colored
half to indicate that they are partial results for the given range.

As we aim to employ off-the-shelf analyses within ranged program analysis, we
need a way to guide them to only analyze paths within the given range, as by default
no off-the-shelf analysis supports ranges as input. We present two different methods
for achieving the goal, the first working for CPA-based analyses using a so-called range
reduction, the other using program instrumentation, usable for arbitrary analyses. Both
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methods make use of the same underlying idea. The idea is based on the following three
observations, that we make for the range [π1, π2].

Observation 1. The range is a closed interval, thus the two paths π1 and π2 are also
included. Hence, each prefix of either π1 or π2 may be included in the interval. Thus,
we need to track if the current paths is a prefix of the bounds.

Observation 2. The ordering of two elements can be decided based on local decisions.
Assume we have a path π = ⟨ℓ0, σ0⟩ −g1−→ . . . −gi−→ ⟨ℓi, σi⟩, where ℓi represents an as-
sume statement, meaning that there are two successors (ℓi, gj , ℓj) and (ℓi, gk, ℓk), where
B(gj) = T and B(gk) = F . If we now construct the two paths πj = π −gj−→ ⟨ℓj , σj⟩ and
πk = π −gk−→ ⟨ℓk, σk⟩, we have πj ≤ πk. More importantly, the ordering is the same for
all continuations of πj and πk.

Observation 3. As only local branching decisions matter, inclusion in the range for
a path π is decidable early. In case that π1 ̸≤ π or π ̸≤ π2 holds, we can stop the
exploration of π, as π and any continuation is not included in [π1, π2]. Moreover, we
know that if π ̸≤ π1 and π2 ̸≤ π holds, any continuation of π is included in the interval
[π1, π2].

Within the ranged analysis, we restrict the exploration of the off-the-shelf analyses
either using a range reduction or program instrumentation. We now exemplify the
underlying idea using Figure 5.3. Due to Observation 1, both techniques monitor if
the current branch that is analyzed by the off-the-shelf analysis is a prefix of either the
lower bound π1 or the upper bound π2. In case the exploration would “leave π1 to the
left” (the continuation is strictly smaller with respect to ≤, e.g., the edge marked (a))
or “leave π2 to the right” (the continuation is strictly greater with respect to ≤, e.g.,
the edge marked (d)), the exploration can safely be aborted (Observation 3). If the
explored path is strictly greater than π1 and strictly smaller than π2, all continuations
are in the interval and thus the monitoring is not necessary anymore. In Figure 5.3 two
edges leading to such a situation are marked with (b) and (c).

5.3.3 CPA-based Ranged Analyses

The first method on how to build ranged analyses is using a so-called range reduction
and is based on the composition of CPAs. Thus, it works for analyses that are defined
as CPAs, for example, all analyses realized within CPAchecker.

The idea, depicted in Figure 5.5 is to make use of the three observations presented in
Section 5.3.2 within the range reduction analysis R and then compose it with the actual
analysis A. The range reduction then ensures that only those paths within the range
are analyzed and stops the exploration of the composed analysis for all other paths. It
takes as input two paths, i.e., two test cases that induce the lower and upper bound
of the interval. Before explaining how the range reduction works, we next present the
necessary fundamentals on CPAs, based on [BHT07].
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Figure 5.5: Conceptual overview of ranged analysis using range reduction

5.3.3.1 CPA-based Analyses in General

The CPA-framework allows to define analyses based on abstract interpretation, abstract
domains, and transfer function. The analysis information is computed using the CPA-
algorithm, presented in [BHT07]. The algorithm requires in addition a function for
combining analysis information and a function indicating when to stop the exploration.
Formally, a CPA A = (D,⇝,merge, stop) consists of

• the abstract domain D = (Loc × Σ, (E,⊤,⊑,⊔), J·K), composed of a set Loc×
Σ of program states, a join semilattice on the abstract states E as well as a
concretization function J·K fulfilling

∀e, e′ ∈ E : JeK ∪ Je′K ⊆ Je ⊔ e′K and J⊤K = Loc× Σ

• the transfer relation ⇝ ⊆ E ×G×E defining the abstract semantics that safely
over-approximates the program semantics, i.e.,

∀e ∈ E, g ∈ Loc×Ops× Loc :

{⟨ℓ′, σ′⟩ | ∃ valid execution step ⟨ℓ, σ⟩ −g→ ⟨ℓ′, σ′⟩ : ⟨ℓ, σ⟩ ∈ JeK} ⊆
⋃

(e,g,e′)∈⇝
Je′K

• the merge operator merge : E × E → E used to combine information satisfying

∀e, e′ ∈ E : e′ ⊑ merge(e, e′)

• the termination check stop : E × 2E → B deciding whether the exploration of an
abstract state can be omitted and fulfilling

∀e ∈ E,Esub ⊆ E : stop(e, Esub) =⇒ JeK ⊆
⋃

e′∈Esub

Je′K

In addition, an initial value einit ∈ E the analysis is started with is needed.
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Value Analysis as CPA The range reduction that we develop gets two test cases
as input and tracks the induced paths directly. Therefore, we make use of components
already defined for the value analysis presented in Section 2.2.2. As we work with CPA-
based analyses, we next formalize the CPA for value analysis V [BHT08]: An abstract
state v of the value analysis maps each variable to either a concrete value of its domain
or ⊤, representing any value. The partial order ⊑V and the join operator ⊔V are de-
fined variable-wise while ensuring that v ⊑V v

′ ⇔ ∀x ∈ Var : v(x) = v′(x) ∨ v′(x) = ⊤3

and (v ⊔V v
′)(x) = v(x) if v(x) = v′(x) and otherwise (v ⊔V v

′)(x) = ⊤. The con-
cretization of abstract state v contains all program states that agree on the concrete
variable values, i.e., JvKV := {⟨ℓ, σ⟩ ∈ Loc× Σ | ∀x ∈ Var : v(x) = ⊤ ∨ v(x) = σ(x)}. If
the values for all relevant variables are known, the transfer relation ⇝V will behave
like the operational semantics defined in Figure 2.4. Otherwise, an over-approximation
may be computed using ⊤ for some variables, in case a concrete value cannot be de-
termined. If the successor state of an assume statement is unreachable, the transfer
relation returns ⊥V. The merge operator mergeV combines the elements using ⊔V and
stopV(e, Esub) = ∃e′ ∈ Esub : e ⊑V e

′.

Composite CPA The main advantage of CPAs is the possibility of composing them
to a new analysis [BHT07]. We will also make use of a composition and thus for-
malize the composite CPA next. A composite CPA A× = (D×,⇝×,merge×, stop×)
of CPA A1 = ((Loc × Σ, (E1,⊤1,⊑1, ⊔1), J·K1),⇝1,merge1, stop1) and CPA A2 =
((Loc× Σ, (E2,⊤2,⊑2,⊔2), J·K2),⇝2, merge2, stop2) is working on the product domain
D× = (Loc × Σ, (E1 × E2, (⊤1,⊤2), ⊑×,⊔×), J·K×), that consists of pairs of abstract
states. It defines (e1, e2) ⊑× (e′

1, e
′
2) if e1 ⊑1 e

′
1 and e2 ⊑2 e

′
2, (e1, e1) ⊔× (e′

1, e
′
2) =

(e1 ⊔1 e
′
1, e2 ⊔ e′

2), and J(e1, e2)K = Je1K1 ∩ Je2K2. The transfer relation can be com-
posed using ⇝1 and ⇝2. Similarly, we define merge× and stop× element-wise, i.e.,
merge×((e1, e2), (e′

1, e
′
2)) = (merge1(e1, e

′
1), merge2(e2, e

′
2)) and stop×(e, Esub) = ∃e′ ∈

Esub : e ⊑× e′.

5.3.3.2 Ranged Analysis using Range Reduction

To ensure that an arbitrary program analysis A formalized as CPA only explores all
paths in a given range, we compose it with the newly defined range reduction R. Fol-
lowing from the three observations from Section 5.3.2, the range reduction has to track
for an interval [πτ1 , πτ2 ] whether the path that is currently explored is a prefix of either
πτ1or πτ2 . As the handling of paths that are strictly smaller or greater than the bound
is different for the lower and the upper bound, we decompose the range reduction for
[πτ1 , πτ2 ] into a composition of two specialized CPA analyses, namely the lower bound
CPA R[πτ1 ,π⊤ ] and the upper bound CPA R[π⊥ ,πτ2 ]. Each of them decides whether a
path is in the range [πτ1 , π⊤ ] and [π⊥ , πτ2 ], respectively. Due to the ordering function

3Consequently, ∀x ∈ Var : ⊤V(x) = ⊤.
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(a) R[πτ1 ,π⊤ ] for τ1 = {input 7→ −2}, where πτ1 is highlighted in green
input<0

rem>1

rem>1

. . . cond

abort() return res

cond

abort() return res

rem>1

rem>1

. . .

(a)

cond

abort() return res

cond

abort() return res

(b) R[π⊥ ,πτ2 ] for τ2 = {input 7→ 2}, where πτ2 is highlighted in red

Figure 5.6: Visualization of R[π⊥ ,πτ2 ] and R[πτ1 ,π⊤ ] for the example of Figure 2.3. The
intersection of both ranges is explored by R. We define cond≡input!=2*res+rem.

≤, we know that [πτ1 , πτ2 ] = [πτ1 , π⊤ ] ∩ [π⊥ , πτ2 ] holds. As the composition R[πτ1 ,πτ2 ] of
R[π⊥ ,πτ2 ] and R[πτ1 ,π⊤ ] (R[πτ1 ,πτ2 ] = R[π⊥ ,πτ2 ] ×R[πτ1 ,π⊤ ]) stops the exploration of a path
if one of the two composed analyses returns ⊥ (i.e., denotes a state as unreachable),
R[πτ1 ,πτ2 ] only explores paths that are included in both ranges and thus only paths in
[πτ1 , πτ2 ].

We visualize in Figure 5.6 how the two range reductions work on the example. We
depict the paths that are explored by R[π⊥ ,πτ2 ] in Figure 5.6b and in Figure 5.6a the
paths explored by R[πτ1 ,π⊤ ]. The composition of both analyses thus explores these paths
that are explored by both analyses, i.e. the paths shown in Figure 5.3.
Formally, we construct the composition for a given range [πτ1 , πτ2 ] using range reduction
to transform an arbitrary program analysis A into a ranged analysis, as follows:

R[πτ1 ,π⊤ ] × R[π⊥ ,πτ2 ] × A

For the composition, we define stop× and merge× component-wise for the individual
merge operators as explained in Section 5.3.3.1.

Both R[πτ1 ,π⊤ ] and R[π⊥ ,πτ2 ] reuse components of the value analysis V, introduced
in Section 5.3.3.1. In case all variable values are constant, the program behavior is
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deterministic and the value analysis explores the only feasible path. We exploit this
behavior for the range reduction analyses by initializing the variable values using the
given test case:

einit =
{
v(x) = τ(x) if x ∈ dom(τ), x ∈ Var
v(x) = ⊤ otherwise

As the program behavior is completely determined by the test case, the value anal-
ysis follows πτ1 respectively πτ2 . We handle cases where functions returning random
values (i.e. nondet()) or user inputs are used to model randomness analogously, by
extracting the values on demand from the test case4. As we are interested in not
only exploring the path induced by the test case but rather all paths from the inter-
vals [πτ1 , π⊤ ] respectively [π⊥ , πτ2 ], we next modify the transfer function of the value
analysis for R[πτ1 ,π⊤ ] and R[π⊥ ,πτ2 ] and define the two analyses formally:

Lower Bound CPA For the CPA range reduction R[πτ1 ,π⊤ ], we borrow all compo-
nents of the value analysis except for the transfer relation ⇝τ1 . The transfer relation
⇝τ1 is defined as follows:

(v, g, v′) ∈⇝τ1 iff


v = ⊤ ∧ v′ = ⊤, or (5.1)

v ̸= ⊤ ∧ v′ = ⊤ ∧BC(g) = F ∧ (v, g,⊥) ∈⇝V, or (5.2)

v ̸= ⊤ ∧
(
v′ ̸= ⊥ ∨BC(g) ̸= F

)
∧ (v, g, v′) ∈⇝V (5.3)

Note that we use ⊤ for states on a path that is definitely included in the range and
⊥ represents an unreachable state in the value analysis, which stops the exploration of
the path. Hence, (5.2) ensures that R[πτ1 ,π⊤ ] also visits the false-branch of a condition
when the path induced by τ1 follows the true-branch, e.g. at the edge in Figure 5.6a
labeled with (a). Thus, R[πτ1 ,π⊤ ] visits all paths π with πτ1 ≤ π. Note that in case
that ⇝V computes ⊥ as a successor state for an assumption g with BC(g) = T , the
exploration of the path is stopped, as πτ1 follows the false-branch. This is contained in
(5.3) and can be observed in Figure 5.6a at the edge labeled with (b).

Upper Bound CPA For the CPA range reduction R[π⊥ ,πτ2 ], we again borrow all
components of the value analysis except for the transfer relation ⇝τ2 . The transfer
relation ⇝τ2 is defined as follows:

(v, g, v′) ∈⇝τ2 iff


v = ⊤ ∧ v′ = ⊤ (5.4)

v ̸= ⊤ ∧ v′ = ⊤ ∧BC(g) = T ∧ (v, g,⊥) ∈⇝V (5.5)

v ̸= ⊤ ∧
(
v′ ̸= ⊥ ∨BC(g) ̸= T

)
∧ (v, g, v′) ∈⇝V (5.6)

(5.5) now ensures that R[π⊥ ,πτ2 ] also visits the true-branch of a condition when πτ2

4We assume that the test case contains the necessary number of return values to define a single
program path. We discuss underspecified test cases, i.e. test cases that contain too few values in
Section 5.3.3.3.
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follows the false-branch, cf. for example the edge labeled (a) in Figure 5.6b. (5.5) is
also symmetric to (5.3) and (5.4) identical to (5.1).

5.3.3.3 Handling Underspecified Test Cases

So far, we have assumed that test cases are fully specified, i.e. contain values for all
input variables, and the behavior of the program is deterministic such that executing
a test case τ follows a single (maximal) execution path πτ . However, in practice, we
observe that test cases can be underspecified such that a test case τ does not provide
concrete values for all input variables. We denote by Pτ the set of all paths that are
then induced by τ . In this case, we define:

[π⊥ , Pτ ] = {π | ∀π′ ∈ Pτ : π ≤ π′} = {π | π ≤ min(Pτ )}
and

[Pτ , π⊤ ] = {π | ∃π′ ∈ Pτ : π′ ≤ π} = {π | min(Pτ ) ≤ π}

By defining πτ = min(Pτ ) for an underspecified test case τ we can handle the range as
if πτ would be fully specified.

5.3.4 Instrumentation-Based Ranged Analysis

Next, we propose a method for encoding the ranges directly into the program using
instrumentation and obtaining a so-called range program instead of using a range re-
duction analysis. The main advantage of using range programs is that they are valid C
programs, hence any off-the-shelf verifier can analyze them directly. Thus, instrumen-
tation overcomes the limitation of the range reduction analysis, which works only in
combination with other CPA-based analyses. The core idea of program instrumentation
is to exclude the paths that are out of the given range. Therefore, we add additional
constraints, such that these paths become infeasible. We again make use of the three
assumptions stated in Section 5.3.2 to instrument relevant assume statements (such as
loops and branches) in the program by adding additional range constraints. Instead
of test cases we use sequences of branching decisions for instrumenting the program.
Sequences of branching decisions only require a syntactic processing of the program
compared to test cases, which require taking the program semantics into account. Fol-
lowing the stated observations, it is sufficient to decide whether the current execution
path performs the same branching decisions as the path for the lower or upper bound.
We depict the general construction of ranged program analysis using instrumentation
and off-the-shelf tools in Figure 5.7. Given two sequences of branching decisions, the
range instrumentation computes the range program. As it is a valid program, it is given
directly to the off-the-shelf verifier. As paths not contained in the given range are un-
reachable in the range program, the computed results, i.e. the verdict and justification,
are only valid for the interval and thus partial results. To achieve that those paths
not contained in the range are unreachable in the program, we instrument the code
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Figure 5.7: Construction of a ranged analysis from an off-the-shelf program analysis
for a range [πτ1 , πτ2 ] defined by two sequences of branching decisions sτ1 and sτ2

by adding additional assumptions and return statements. More precisely, we instru-
ment all assume statements5 represented by two edges ℓi−1

gi−→ ℓi and ℓi−1 −gj−→ ℓj with
BC(gi) = T and BC(gj) = F . The instrumentation itself is conducted independently
for both the upper and lower bound. Again, it suffices to check if the program paths
currently explored take the same branching decisions as the lower or the upper bound.
We therefore introduce a readout function and additional global variables for tracking,
if the current branching decision taken leads to paths not contained in the interval.

5.3.4.1 Readout Function

The readout function Rsτ for a sequence of branching decisions sτ = (b0, b1, . . . , bn)
with bi ∈ {T, F} returns the i-th branching decision. For x ∈ N, we define

Rsτ (x) = x > n ∨
∨
bi=T

(x = i),

which is true if the predicate in the function evaluates to true and false otherwise. For
the instrumentation, we use the readout function Rsτ to read the branching decision
in sτ at the current assume statement (e.g., loop heads or if-branches). Therefore, we
introduce counter variables lcntr and ucntr that keep track of the current assume
statement for the lower respectively upper bound. The counters are thus incremented
at each branching decision in the program. To also account for underspecified test
cases, the readout function always returns true if x > n holds, i.e., the number of
branching decisions contained in the sequence is exceeded. We explain the handling of
underspecified test cases in Section 5.3.4.3.

5.3.4.2 Tracking the Bounds

To keep track of whether the current path is a prefix of the lower or upper bound, we
introduce two global boolean variables on_lpath and on_upath for the lower respec-
tively upper bound. Both variables are initialized with true and are set to false, when
the current execution path is no longer a prefix of the bounds. We use the same idea

5In our implementation, we only instrument assume statements that occur on the paths induced by
the lower bound or upper bound.

124



Chapter 5. Parallel Cooperation

as for the range reduction, i.e., we define the instrumentation separately for lower and
upper bound for the intervals [πτ1 , π⊤ ] and [π⊥ , πτ2 ], whereas the combination yields
an instrumentation for the complete interval.

Instrumentation for the Lower Bound We aim to ensure that only paths in
the interval [πτ1 , π⊤ ] are feasible. When an execution path diverges with the lower
bound, we handle the following two cases: (1) the execution path “leaves πτ1 to the
left” (BP (gi) = T and Rsτ (lcntr) = F ) and (2) the execution path “leaves πτ1 to the
right” (BP (gj) = F and Rsτ (lcntr) = T ). In the former case, we add the following
instrumentation directly after the branching decision gi:

if(on_lpath) { if([[ Rsτ1 (lcntr) = F ]]) {return;} lcntr++; }

Thereby, we stop the exploration, as any continuation of the current execution path is
not contained in the interval. In the latter case, all continuations of the current paths
are contained in the interval [πτ1 , π⊤ ], thus we can safely disable checks added during
instrumentation for the lower bound. As we guard the code added using on_lpath

and on_upath, i.e., it is only executed when on_lpath or on_upath are true, setting
on_lpath = 0 disables the instrumentation.

Instrumentation for the Upper Bound Now, we aim to ensure that only paths in
the interval [π⊥ , πτ2 ] are feasible. Thus, we stop the execution if the current execution
path “leaves πτ2 to the right” (BP (gj) = F and Rsτ2

(ucntr) = T ). For this, we add the
following instrumentation after gj :

if(on_upath) { if([[ Rsτ2 (ucntr) = T ]]) {return;} ucntr++; }

In the other case where the execution path “leaves the upper path with πτ2 to the left”
(BP (gi) = T and Rsτ2

(ucntr) = F ), all continuations of the execution path are smaller
than the upper path and thus contained in [π⊥ , πτ2 ]. Therefore, we can disable the
code added during instrumentation for the upper bound by setting on_upath = 0.

5.3.4.3 Handling Underspecified Sequences of Branching Decisions

For sequences of branching decisions that are underspecified, i.e., when the sequences
induce a set of paths, we use the same idea as in range reduction. Therefore, we store
n, the number of branching decisions contained in the sequence. If the next branching
decision is not specified anymore, i.e., the index is greater or equal to n, we disable the
instrumentation for the lower bounds and stop the exploration for the upper bound.
We exemplify the instrumentation and the handling of underspecified sequences next.

5.3.4.4 Example of the Instrumentation

To exemplify the instrumentation, we exemplarily employ the lower bound and upper
bound instrumentation on the running example C1, where we use the interval [πτ1 , πτ2 ],
as depicted in Figure 5.3. We use the two sequences TC1(πτ1) = sτ1 = (T, T, F, F ) and
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TC1(πτ2) = sτ2 = (F, T, F, F ). To increase the readability, we depict in Figure 5.8a the
instrumentation using sτ1 as lower bound and in Figure 5.8b the instrumentation using
sτ2 as upper bound. We highlight the code added during instrumentation in green
and red. The resulting program where we apply the instrumentation for the lower and
upper bound is given in Appendix A.3.1. Recap that the goal of the instrumentation
is to ensure, that all program paths that are not in the given range are infeasible,
such that verifiers do not have to analyze these paths. We achieve this by adding
return statements to all infeasible paths. Each instrumentation adds seven new code
blocks, one for the global variable definition and two blocks for each of the three assume
statements in the program. As explained in Section 5.3.4.3, we added in lines 9, 24,
and 37 of Figures 5.8a and 5.8b the code for handling underspecified sequences.

5.3.5 Joiner

The last component within ranged program analysis is the joiner , that’s task is to
combine the partial results computed by the ranged analyses for each range to a result
for the complete program. Thereby, it has to combine two different verification artifacts,
namely partial verdicts and partial witnesses.

5.3.5.1 Joining Partial Verdicts

The combination of different verdicts is straightforward: When one ranged analysis
has raised an alarm, i.e., it computes a path within the assigned interval that contains
a property violation, the path is also feasible in the full program. Thus, the overall
verdict is false and the other running ranged analyses could be aborted. In case all
ranged analyses have computed the verdict true, the overall program is correct, as
all feasible program paths are contained in at least one interval. Thus, the overall
verdict returned is true. If at least one ranged analysis has computed no result for a
range (e.g., returns unknown) and all others have proven their assigned range safe, the
overall verdict return is also unknown, as the range that is not solved may contain a
path violating the property or is also safe.

5.3.5.2 Joining Partial Witnesses for Range Reduction

Beneath a verdict, the ranged analyses (at best) also compute a partial correctness or
violation witness. We first discuss how to join witnesses when the ranged analyses are
built using range reduction. By using a range reduction in composition with the off-the-
shelf analyses, the program analyzed is not modified and thus the paths contained in
the witnesses can also be found in the original program. As for the verdicts, a violation
witness computed for a range contains a path that is present in the original program,
thus each partial violation witness is also valid for the full program6.

6If more than one ranged program analysis computes a violation witness, reporting all paths violating
the property may be beneficial for users and developers, as one path might be shorter or simpler than
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0 unsigned int on_lpath = 1;
1 unsigned int lcntr = 0;
2 int lredout( int pos)

{return pos>=4||!(pos==2||pos==3);}
3
4 int div2WithReminderAbs(short input){
5 if (input < 0){
6 if(on_lpath){
7 if(!lredout(lcntr)){return;}
8 lcntr++;
9 if(on_lpath&&lcntr>=4)on_lpath=0;

10 }
11 input = -input;
12 }else{
13 if(on_lpath){
14 on_lpath = !lredout(lcntr);
15 lcntr++;
16 }
17 }
18 int rem = input;
19 int res = 0;
20 while (rem > 1){
21 if(on_lpath){
22 if(!lredout(lcntr)){return;}
23 lcntr++;
24 if(on_lpath&&lcntr>=4)on_lpath=0;
25 }
26 rem -= 2;
27 res++;
28 }
29 if(on_lpath){
30 on_lpath = !lredout(lcntr);
31 lcntr++;
32 }
33 if (input != 2 * res + rem){
34 if(on_lpath){
35 if(!lredout(lcntr)){return;}
36 lcntr++;
37 if(on_lpath&&lcntr>=4)on_lpath=0;
38 }
39 abort();
40 }else{
41 if(on_lpath){
42 on_lpath = !lredout(lcntr);
43 lcntr++;
44 }
45 }
46 return res;
47 }

(a) A lower bound instrumentation using sτ1

0 unsigned int on_upath = 1;
1 unsigned int rcntr = 0;
2 int rredout( int pos)

{return pos >= 4 || pos == 1;}
3
4 int div2WithReminderAbs(short input){
5 if (input < 0){
6 if(on_upath){
7 on_upath = rredout(rcntr);
8 rcntr++;
9 if(on_upath && rcntr>=4){return;}

10 }
11 input = -input;
12 }else{
13 if(on_upath){
14 if(rredout(rcntr)){return;}
15 rcntr++;
16 }
17 }
18 int rem = input;
19 int res = 0;
20 while (rem > 1){
21 if(on_upath){
22 on_upath = rredout(rcntr);
23 rcntr++;
24 if(on_upath && rcntr>=4){return;}
25 }
26 rem -= 2;
27 res++;
28 }
29 if(on_upath){
30 if(rredout(rcntr)){return;}
31 rcntr++;
32 }
33 if (input != 2 * res + rem){
34 if(on_upath){
35 on_upath = rredout(rcntr);
36 rcntr++;
37 if(on_upath && rcntr>=4){return;}
38 }
39 abort();
40 }else{
41 if(on_upath){
42 if(rredout(rcntr)){return;}
43 rcntr++;
44 }
45 }
46 return res;
47 }

(b) An upper bound instrumentation using sτ2

called rangeProg1

Figure 5.8: Range programs generated using instrumentation for the running example

Next, we have a look at the case where all ranged analyses compute partial correct-
ness witnesses and assume, that we only use two ranged analyses in parallel. As both

the other. We plan to also be able to handle multiple violation witnesses in future work.
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ranged analyses have proven that the program is correct, we could simply generate a
trivial correctness witness, i.e., a witness containing each CFA location once and no
invariants. Nevertheless, we lose all information computed to justify the correctness,
namely the (partial) invariants contained in the partial correctness witnesses. We pro-
pose in Algorithm 6 an algorithm to join two correctness witnesses7, that explores both
witnesses in parallel, guaranteeing that computed invariants are retained.

Algorithm 6 Joining two correctness witnesses
Input: CFA C = (L, ℓ0, G) ▷ CFA

Witnesses ACW
1 = (Q,Σ, δ, (q0, φ0), Q), ▷ First witness

ACW
2 = (Q′,Σ, δ′, (q′

0, φ
′
0), Q′) ▷ Second witness

Output: ACW ▷ Joined correctness witness

1: waitlist = N = {(ℓ0, (q0, φ0), (q′
0, φ

′
0))};

2: while (waitlist ̸= ∅) do
3: pop (ℓ, (qi, φi), (q′

i, φ
′
i)) from waitlist

4: for each each (ℓ, op, ℓs) ∈ G do
5: for each each ((qi, φi), (Gi, ψi), (qj , φj)) ∈ δ with (ℓ, op, ℓs) ∈ Gi do
6: for each each ((q′

i, φ
′
i), (G′

i, ψ
′
i)′, (q′

j , φ
′
j)) ∈ δ′ with (ℓ, op, ℓs) ∈ G′

i do
7: if ψi ̸≡ false ∧ ψ′

i ̸≡ false ∧ (ℓs, (qj , φj), (q′
j , φ

′
j)) /∈ N then

8: N = N ∪ {(ℓs, (qj , φj), (q′
j , φ

′
j))};

9: waitlist = waitlist ∪ {(ℓs, (qj , φj), (q′
j , φ

′
j))};

10: Qjoin = {(ℓ, inv)|ℓ ∈ L, inv = false
∨

(ℓ,(q,φ),(q′,φ′))∈N φ ∨ φ′};
11: δjoin = {(ℓ, ({(ℓ, op, ℓ′)}, true), ℓ′) | (ℓ, op, ℓ′) ∈ G}

∪ {(ℓ, ({(ℓp, op, ℓs) ∈ G | ℓp ̸= ℓ}, true), ℓ) | ℓ ∈ L};
12: return ACW = (L,Σ, δjoin, ℓ0, Qjoin);

The parallel exploration (lines 1–9) of the two witnesses also takes the program
given as CFA into account, to generate more compact and potentially easier verifi-
cation witnesses. It starts at the initial nodes of the CFA and the two correctness
witnesses and explores the successor of each node once. As the goal is to explain the
behavior of the program we only combine successors that adhere to the control flow of
the program, As the correctness witnesses only contain trivial assumptions ψ, we can
ignore them. We continue this exploration until all successors are computed. There-
after (lines 10 and 11), we compute the states of the joined correctness witness, and
combine all invariants from both witnesses computed for each location of the CFA. We
choose to combine the information via disjunction, as the different nodes most likely
represent different behaviors of the program ranges. Thus, we may lose information in
case both witnesses consider the full behavior when computing their invariant informa-
tion. However, disjunction ensures that we remain sound in case different behaviors are
considered. Note that we include false in the disjunction to account for syntactically
unreachable locations. Thereafter, we compute the transfer relation for the joined in-

7For more correctness witnesses, one could iteratively combine these by first joining the first two
witnesses with Algorithm 6 and then successively using Algorithm 6 to combine the remaining witnesses.

128



Chapter 5. Parallel Cooperation

variant witnesses using the transfer relation of the CFA, where we use true assumptions
only. Additionally, we add self-loops to each state in Q that cover all remaining edges,
which do not adhere to the control flow.

Finally, the question arises, which state invariants should be used by the ranged
analysis for locations that are out of range. Basically, there are two options: true or
false. In contrast to false, true is always a correct invariant with respect to the complete
program. However, correctness witnesses of ranged analyses that only analyze a subset
of the program behavior already do not guarantee correct invariants for the complete
program for locations they visited during their analysis, especially if they do not analyze
all paths to that location. They only encode information on behavior that they have
seen. In addition, providing true results in losing all correctness witness information
provided by a different ranged analysis, in case invariants for the same location are
combined using a disjunction. The invariants need to be combined using a disjunction
to compute a sound solution, as the invariants may be generated for different program
paths. Thus, false better fits the information encoded at other seen locations. Since
correctness witnesses were not designed for incomplete analysis and do not provide any
requirements on how to handle program locations that are not reached, it depends on
the verifier how it handles locations not analyzed.

5.3.5.3 Joining Witnesses for Instrumentation

Lastly, we briefly discuss how to join correctness witnesses in case ranged analyses are
built using instrumentation. By instrumenting the code individually for each range,
additional program statements are added. Thus, correctness and violation witnesses
may contain these additional statements not present in the original program. In both
cases, the instrumentation has to be reverted within the artifacts, meaning that added
lines of code are removed and additional information contained in the witnesses, as
line numbers of statements, are mapped back to the original program. Thereafter,
the methods discussed in Section 5.3.5.2 are applicable. To revert the instrumenta-
tion it would suffice to mark each line added, e.g., using comments or an extra file,
remove them afterward from the witnesses, and ensure, that no variables added during
instrumentation are present in the witness.

5.3.6 Work Stealing

When employing ranged program analysis with different analyses for the ranges, one
has to decide which analysis should work on which range. As all program analyses have
different strengths and weaknesses, the assignment of ranges can affect the performance
of the ranged program analysis. Especially, there exist tasks that certain analyses can
solve very fast. Thus, when using such an analysis in combination with another analysis,
that can not solve the assigned range, the ranged program analysis is likely to fail.

As the assignment of program analyses and ranges is fixed for all tasks, we propose
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using work stealing to avoid such situations, where the ranged program analysis fails at
solving a task, although at least one of the used ranged analyses can solve all ranges of
the task. The idea of work stealing is simple but efficient: The ranged analysis that first
finishes proving its assigned range safe is restarted on the other range unless it already
found a violation and, thus, already determined the analysis result. Thereby, the other
range is analyzed by both ranged analyses in parallel, until one of them computes a
result for the range.

Splitter

Ranged
Analysis 1

Ranged
Analysis 1

Ranged
Analysis 2

JoinerC, S

Program,
Property

Result

Ranged Program Analysis with Work Stealing

Range
[πτ , π⊤ ]

Range
[π⊥ , πτ ]

Partial
Result

Range
[π⊥ , πτ ]

Partial
Result

term
inate

Figure 5.9: Ranged analysis with work stealing, where Ranged Analysis 1 completes
the verification of both ranges

We depict work stealing in case the analysis of the range [πτ , π⊤ ] is completed first
in Figure 5.9 and Figure 5.10. In both scenarios, Ranged Analysis 1 is started for a
second time and analyzes the range [π⊥ , πτ ]. In Figure 5.9, we depict the situation
that Ranged Analysis 1 also finishes for the range [π⊥ , πτ ], i.e., it successfully analyzes
both ranges and Ranged Analysis 2 is terminated. Figure 5.10 depicts the opposite
situation, where Ranged Analysis 2 finishes the analysis of the range [π⊥ , πτ ] before
Ranged Analysis 1 and Ranged Analysis 1 is terminated.
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Figure 5.10: Ranged analysis with work stealing, where both Ranged Analysis 1 and
Ranged Analysis 2 complete the verification of a range

Note that work stealing offers a simple but efficient way to reduce the risk of the
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ranged program analysis failing, especially in cases where one ranged analysis used
can solve the task. Conceptually, work stealing also allows for precision reuse, as
in [Bey+13], or reusing information encoded in the partial results, as in CoVEGI, when
an analysis is restarted. We depict this precision reuse in Figure 5.9, where Ranged
Analysis 1 also uses the partial result computed for the upper range as additional input.
Work stealing can increase the resource consumption, especially the CPU time, as there
may be three analyses in total (but at most two in parallel).

5.3.7 Example Application of Ranged Program Analysis

After having explained the concept of ranged program analysis and the different meth-
ods for building ranged analyses, we revisit the running example from Figure 2.3. We
use ranged program analysis with two ranged analyses, a predicate abstraction and a
tool employing BMC. Both ranged analyses are constructed using instrumentation to
ensure that only paths within the bounds are analyzed8. We configure ranged program
analysis to let the predicate abstraction analyze the first range and the tool employing
BMC the second range.

As we combine two analyses, the splitter generates a single path πτ , which is induced
by the test case τ = {input 7→ 2} and forms the sequence sτ = (F, T, F, F ). Thus, the
program is divided into the two ranges [π⊥ , πτ ] and [πτ , π⊤ ]. The second range contains
only two feasible program paths, namely the one that contains one loop iteration, and
the one that has no loop iteration. The first range contains all paths with at least two
loop iterations for positive inputs and all paths traversed with negative input.

Now, we use the instrumentor to construct two range programs, the first one called
rangeProg1 is depicted in Figure 5.8b, the second one called rangeProg2 is shown in
Appendix A.3.1 in Figure A.12. As configured, rangeProg1 is given to the predicate
abstraction and rangeProg2 is analyzed by the BMC tool. The predicate abstraction
computes the invariant inv ≡ input = rem + 2 ∗ res, which suffices to prove that the
assigned range is safe. In contrast, BMC does not employ any abstraction techniques,
but encodes the full program up to the bound n using the strongest postcondition. In
the first iteration with n = 0, only the path without a loop iteration is checked and
proven correct. Increasing n, e.g. to 2, enables BMC to encode the full range, such
that the range is proven safe. As both ranges are proven safe, the joined results are
returned.

To demonstrate the advantage of work stealing, we change the configuration such
that the BMC tool is working on the first range and predicate abstraction on the
second one. Thus, rangeProg1 is given to the BMC tool and predicate abstraction is
analyzing rangeProg2. Again, the predicate abstraction computes the invariant inv
for rangeProg2 and completes the assigned task. In contrast, BMC has to unroll the

8We could also combine ranged analyses using instrumentation and range reduction within a single
ranged program analysis. Then, the splitter generates a test case and we transform the test case in a
sequence of branching decisions as explained in Section 5.2.
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loop to a bound of 16 384 to complete the analysis of the range. Clearly, this number of
unrollings is significantly larger than in the former example, and BMC may exceed the
given time limitations. Then, the ranged program analysis fails, as no solution for the
range [π⊥ , πτ ] is known. When employing work stealing, the predicate abstraction is
assigned rangeProg1 after it finishes the analysis of rangeProg2, where the computed
invariants are reused. Hence, given the invariant inv, predicate abstraction succeeds
fast in proving rangeProg1 safe. Both partial results computed by predicate abstraction
are joined and the final results are returned.

5.4 Implementation

To analyze the feasibility of ranged program analysis for CPA-based and non-CPA-
based off-the-shelf analyses, we implemented ranged program analysis and all necessary
components. More precisely, we realized the concept of ranged program analysis in Co-
VeriTeam, implemented range reduction and program instrumentation as well as four
different splitters and a joiner for verdicts and witnesses.

Realizing Ranged Program Analysis The composition of ranged program anal-
yses is implemented within CoVeriTeam. To be able to use work stealing, i.e., to keep
track of which program range is already successfully analyzed, we build a novel ranged
program analysis component within CoVeriTeam. Its task is to (1) orchestrate the
composition of ranged analyses, especially for work stealing, and (2) aggregate the par-
tial results. The algorithm follows the description in Figure 5.4 and Section 5.3.6 and
receives as inputs the two ranged analyses Ranged Analysis 1 and Ranged Analysis 2,
and a splitter. It first uses the splitter to generate the ranges. If the splitter fails, e.g.,
Lb3 cannot compute a test case, when the program does not contain a loop, we exe-
cute Ranged Analysis 1 on the interval [π⊥ , π⊤ ]. We extended CoVeriTeam by adding
ranged analyses as a new type of verifier. Thus, it executes the two ranged analyses
in parallel using the execution mechanism of CoVeriTeam. The algorithm collects the
verdicts and witnesses computed by the ranged analyses and employs, if configured,
work stealing. Moreover, the witnesses are joined. Therefore, the partial verification
witnesses generated by Ranged Analysis 1 and Ranged Analysis 2 are collected first.
Then, the algorithm for joining witnesses is used to compute the joined witness.

Generating Ranges For the evaluation, we build our different splitters introduced in
Section 5.3.1 as standalone components within CPAchecker. Each of them generates
either test cases in the standardized XML-based TEST-Comp test case format9 or
sequences of branching decisions. For the latter, we implemented the transformation
from test cases to sequences explained in Section 5.2 within the splitter to generate the

9https://gitlab.com/sosy-lab/test-comp/test-format/blob/testcomp23/doc/Format.md
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correct input format needed for the instrumentation. The two splitters based on loop-
unrollings Lb3 and Lb10 build the program execution tree demand-driven, meaning
that only the path containing three respectively ten loop unrollings is generated. Using
the path formula, an SMT-solver is called to find satisfiable assignments for the program
input variables. These assignments are then used within the test case that is returned.
The two splitters based on a random selection of branching decisions, namely Rdm
and Rdm9 are also realized as standalone components within CPAchecker.

Ranged Analyses within CPAchecker At first, we implement the composition of
range reduction from Section 5.3.3 with an arbitrary Configurable Program Analysis in
CPAchecker, making use of the existing composite pattern. More precisely, we build
a novel range reduction analysis within CPAchecker, which combines the transfer
relations of lower bound CPA and upper bound CPA as formalized in Section 5.3.3.2.
Hence, it reuses elements from the value analysis, especially from the transfer relation,
which are already implemented within CPAchecker.

Ranged Analyses for Off-the-shelf-tools We implement the instrumentation as
a standalone component in Python10. First, we use an AST parser11 to identify all
branching points in the program. Then, we instrument the program as defined in Sec-
tion 5.3.4, using the sequences generated by the splitter. Our implementation supports
the instrumentation of (GNU) C programs except for switch statements.

Witness Joining We implemented Algorithm 6 for the joining of witnesses presented
above in CPAchecker12. For the parallel exploration, we compose a CPA tracking the
control flow with one CPA per witness that tracks the transitions of that witness. We
then use CPAchecker to compute the joined witness with combined information and
use CPAchecker’s witness generation for computing witnesses similar to Algorithm 6.

5.5 Evaluation

The goal of our evaluation is to analyze the effect of using ranged program analysis
for CPA-based and off-the-shelf analyses not based on the CPA algorithm. Siddiqui
and Khurshid [SK12] already showed that the idea of using ranges for splitting work
among instances of symbolic execution analyses increases the overall efficiency. In the
following, we are interested in a more systematic analysis of the effect of using ranged
program analysis. The overall goal of the evaluation is to investigate, to which ex-
tent using ranged program analysis can increase the performance (i.e., effectiveness
and efficiency) of off-the-shelf analyses and how it compares to a parallel portfolio.

10The implementation was led by Cedric Richter as part of the work for [HJRW23c].
11https://tree-sitter.github.io/tree-sitter/
12The conceptual work and implementation was led by Marie-Christine Jakobs as part of the work

for [HJRW24b].

133



5.5 Evaluation

Hence, we compare ranged program analysis with the basic analysis employed. We
first start with using symbolic execution in ranged program analysis to analyze the
feasibility of ranged program analysis and evaluate the performance of the different
splitting strategies. Thereafter, we use seven verifiers and evaluate different configura-
tions of ranged program analysis to analyze the overall effect of using parallel execution
based on ranges, combining different analyses, and using work stealing. Next, we com-
pare the best-performing instance with a parallel portfolio. Lastly, we experimentally
demonstrate the feasibility of the algorithm for joining witnesses.

5.5.1 Evaluation Setup

To answer the research questions regarding the effect of using ranges for arbitrary off-
the-shelf analyses, we analyze the effectiveness and efficiency of different configurations
of ranged program analysis compared to the analyses running standalone, which are
called basic analyses. We use CPAchecker with the configurations for symbolic execu-
tion, predicate abstraction, value analysis, and BMC, as well as Klee, Symbiotic, and
UltimateAutomizer.

Configurations For the evaluation, we build different configurations of ranged pro-
gram analysis using the seven basic analyses. We use the abbreviations Value for value
analysis, Se for symbolic execution, Pred for predicate abstraction, Symb for Symbi-
otic, and UA for UltimateAutomizer. For configurations using UltimateAutomizer,
Symbiotic, or Klee, we employ instrumentation to build the ranged analyses, for the
others we use the range reduction. A ranged program analysis that uses value analysis
for the range [π⊥ , πτ ] and BMC for [πτ , π⊤ ] for some computed test input τ is denoted
by Ra-Value-Bmc. In case we use the same analysis for both intervals, we denote this
by e.g., Ra-Value. To achieve a fair comparison of basic analyses and ranged program
analyses, we also executed the basic analyses in CoVeriTeam, where we build a simple
configuration that directly calls them.

Computing Resources and Benchmark Tasks All experiments were run on ma-
chines with an Intel Xeon E3-1230 v5 @ 3.40 GHz (8 cores), 33 GB of memory, and
Ubuntu 22.04 LTS with Linux kernel 5.15.0. We used in total 10 229 C tasks from all
sub-categories of the SV-COMP dealing with the reachability of error labels [SVB23],
whereof 6 791 tasks fulfill the property and the other 3.438 contain a property violation.
In a verification run a tool is given one of the 10 229 C tasks, containing a program
and a specification, and is asked to either compute a proof (in case the program fulfills
the specification) or to raise an alarm (if it violates the specification). We limit the
available resources to a total of 15 min CPU time on 4 CPU cores and 15 GB of mem-
ory. To ensure a comparison on equal ground, we use the same resource limitations for
each tool. This means that the basic analyses have the same resources available as the
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Table 5.1: The number of correct and incorrect verdicts reported by symbolic execution
employing different splitting strategies. The column par. only(parallel only) contains
the number of tasks solved by the ranged program analysis but not by symbolic exe-
cution.

correct incorrect
overall proof alarm par. only proof alarm

Se 1 593 584 1 009 - 5 27
Ra-Se-Lb3 1 639 583 1 056 113 5 57
Ra-Se-Lb10 1 638 582 1 056 117 5 58
Ra-Se-Rdm 1 578 583 995 70 4 39
Ra-Se-Rdm9 1 539 582 957 31 4 57

ranged program analyses. As we employ two ranged analyses within a ranged program
analysis, the available resources are split between the two ranged analyses13.

Availability The implementations of the ranged program analysis and all components
as well as all experimental data are publicly available and archived at Zenodo in the
unified artifact [HJRW24a].

5.5.2 RQ 1: Does Ranged Analysis and the Different Splitting Strate-
gies Work for Symbolic Execution?

Evaluation Plan We aim to analyze the performance of symbolic execution in a
composition of ranged analyses. Therefore, we compare the effectiveness and efficiency
of the composition of ranged program analyses with two ranged analyses each using a
symbolic execution with symbolic execution running standalone. Therein, we use one
of the four splitters from Section 5.3.1. For efficiency, we focus on the (real) time taken
to solve the task (wall time). Thereby, we take the advantages of the parallelization
employed within the ranged program analysis into account.

Experimental Results We report the experimental results regarding effectiveness in
Table 5.1. Each row contains the number of overall correctly solved tasks, the number
of correctly computed proofs and alarms, and the number of tasks correctly solved only
by parallel combinations but not by symbolic execution.
Therein, we observe that Ra-Se using the splitter based on loop-bounds (Lb3 and
Lb10) correctly solves 1 639 respectively 1 638 tasks and symbolic execution 1 593 tasks,
meaning that Ra-Se-Lb3 and Ra-Se-Lb10 can solve 46 and 45 tasks more than sym-
bolic execution, an increase of 3%. In addition, there are 113 tasks for Ra-Se-Lb3 and
117 tasks for Ra-Se-Lb10 that are not solved by the basic analysis. In all these cases,
the ranged program analysis has raised valid alarms. For computing an alarm, it suffices
to find a single path that violates the specification. Thus, using two symbolic execution

13We evaluated configurations using three ranged analyses in parallel in [HJRW23b].
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Figure 5.11: Comparison of efficiency of Ra-Se-Lb3 and symbolic execution

analyses in parallel, working on different parts of the program increases the chance of
finding such a violating path. The number of reported proofs is nearly constant, as
Se, Ra-Se-Lb3, and Ra-Se-Lb10 have to check all paths in the program leading to a
property violation for infeasibility. The splitting strategies that randomly select a path
for generating the ranges do not perform as well as the loop-based splitting strategies.
Nevertheless, both allow the ranged program analyses to raise alarms not found by the
basic analysis. All configurations of ranged analyses compute a few more false alarms.
For these tasks, symbolic execution runs into a timeout and would also compute a false
alarm, if its time limit would be increased.

For comparing the efficiency of compositions of ranged analyses, we compare the
wall time taken to compute a correct solution by Se and the configuration Ra-Se-Lb3,
as we have already seen that Lb3 leads to the best effectiveness. We excluded all tasks
where the generation of the ranges fails, as symbolic execution and the Ra-Se-Lb3
behave equally in these cases. The scatter plot in Figure 5.11a visualizes the wall time
consumed to compute a result in a log-scale by Se (on the x-axis) and by Ra-Se-Lb3
(on the y-axis), for tasks solved correctly by both analyses. It indicates that for tasks
solved quickly, Ra-Se-Lb3 requires more time than symbolic execution, as the points
are in most cases above the diagonal, and that the difference gets smaller the longer
the analyses run.

We present a more detailed analysis of the efficiency in Figure 5.11b. Each of the
bar plots represents the median factor of the increase in the run time for tasks that
are solved by Se within the time interval that is given on the x-axis. If for example
Se solves all tasks in five seconds and Ra-Se-Lb3 in six seconds, the factor would be
1.2, if symbolic execution takes five seconds and Ra-Se-Lb3 only three, the factor is
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0.6. The width of the bars corresponds to the number of tasks within the interval.
For Ra-Se-Lb3, the median increase is 1.7 for all tasks. Taking a closer look, in the
median it takes twice as long to solve tasks that are solved by Se within at most ten
seconds. Most importantly, the impact of the influence of the additional overhead gets
smaller the longer the analyses need to compute the result (the factor is decreasing).
For the more complex tasks requiring more time, ranged program analysis and symbolic
execution are equally fast.

3.7
6.94.6

3.0

38

Figure 5.12: Wall time
in seconds to compute a
test case using Lb3

To analyze why the ranged program analysis needs more
overall time to compute a solution compared to symbolic
execution, especially for tasks that can be solved fast, we
have a more detailed look at the time needed to compute the
ranges. Therefore, we measured the wall time taken by Lb3
to compute a test case separately for all tasks and depicted
the results as a boxplot in Figure 5.12. In the median, Lb3
needs overall 4.6 seconds to compute the bounds, visualized
using the orange line. The boxes contain the median values
for 25% resp. 75% of the tasks. Hence, 75% of all bounds
are computed within 6.9 seconds of wall time. The whisker
contains 99% of all tasks, hence there are only very few cases
where Lb3 needs more than 38 seconds.

As computing the test cases takes in the median 4.6 sec-
onds wall time, this additional computational effort is a main factor for the time in-
crease. As the time taken to compute a range is approximately the same for most of
the tasks, it influences the overall wall time for complex tasks only to a small extent.
For these tasks, the advantages of ranged program analysis, namely analyzing different
parts of the program in parallel, become visible. Unfortunately, the additional overhead
of ranged program analysis, e.g., caused by the range reduction, exceeds the advantages
of parallelization, as the ranged program analysis is nearly as fast as the basic analysis
for complex tasks, but not faster.

Results
The use of ranged program analysis for symbolic execution increases its effec-
tiveness for finding violations of the specification, whereas using Lb3 yields the
best results. The overall time consumed to compute the result does not increase
for large or complex tasks due to the parallelization employed. Nevertheless,
the initial overhead caused by generating the ranges is observable especially for
simple tasks.

137



5.5 Evaluation

5.5.3 RQ 2: Can Ranged Program Analysis Increase the Efficiency
and Effectiveness of Off-the-shelf Analyses?

Evaluation Plan To analyze the performance of using the seven basic analyses within
ranged program analysis, we compare the effectiveness and efficiency of the ranged
program analysis with the basic analysis running standalone. For efficiency, we again
focus on the wall time.

Table 5.2: Number of correct and incorrect verdicts reported by the seven basic anal-
yses and the combination of ranged program analysis using Lb3. The column par.
only (parallel only) contains the number of tasks that are correctly solved by a ranged
program analysis (Ra, Ws) but not by the basic analysis employed within the config-
uration.

correct incorrect
overall proof alarm par.only proof alarm

Se 1 593 584 1 009 - 5 27
Value 3 231 2 324 907 - 4 20
Pred 3 741 2 354 1 387 - 10 40
Bmc 3 282 1 376 1 906 - 5 63
Klee 2 982 1 294 1 688 - 77 3
Symbiotic 3 918 2 232 1 686 - 77 1
UA 4 240 3 096 1 144 - 23 0
Ra-Se 1 639 583 1 056 113 5 57
Ra-Value 2 972 1 972 1 000 218 15 48
Ra-Pred 3 560 2 298 1 262 67 6 50
Ra-Bmc 3 217 1 363 1 854 117 5 63
Ra-Klee 2 968 1 293 1 675 7 77 2
Ra-Symb 3 881 2 185 1 696 78 95 1
Ra-UA 3 964 2 925 1 039 24 22 0
Ra-Se-Pred 2 515 1 248 1 267 33 5 40
Ra-Value-Pred 3 250 2 134 1 116 32 5 52
Ra-Bmc-Pred 3 394 1 725 1 669 29 5 63
Ra-Symb-UA 3 981 2 728 1 253 25 13 0
Ra-Klee-UA 3 912 2 657 1 255 24 13 0
Ws-Se-Pred 3 460 1 996 1 464 33 6 40
Ws-Value-Pred 3 930 2 593 1 337 39 6 52
Ws-Bmc-Pred 4 240 2 493 1 747 34 6 63
Ws-Symb-UA 4 939 3 223 1 716 62 85 0
Ws-Klee-UA 4 924 3 185 1 739 21 74 0

Experimental Results The results of our evaluation are shown in the first two seg-
ments of Table 5.2, where we report the number of overall solved tasks, the correct
proofs and alarms, as well as incorrectly computed proofs and raised alarms. In ad-
dition, we report in column par.only the number of tasks that are only solved using
ranged program analysis but not by the basic analysis running standalone.
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Figure 5.13: Scatter plots comparing the wall time of the basic analyses and ranged
program analysis using two instances of the same analysis

Having a look at the total numbers of correctly solved tasks, we first observe, as in
Section 5.5.2, that symbolic execution benefits from being used within ranged program
analysis. For the other six basic analyses, the total number of tasks correctly solved by
the ranged program analyses does not increase.

For Klee, the second symbolic execution, we observe a comparable effectiveness, as
it solves 2 968 tasks, that are 14 fewer than Klee standalone, solving 2 982 tasks. The
tasks that are only solved by Klee standalone could not be solved by Ra-Klee within
the given resource limits. If we double these limits, all of them could be solved. There
are 7 tasks uniquely solved by Ra-Klee. In all cases, Ra-Klee detects the property
violation within the given resource limits, as using a ranged program analysis allows it
to search in different parts of the program in parallel. Value analysis is also a path-
based analysis, but in contrast to the former two, the effectiveness decreases slightly,
as Ra-Value solves 2 972 tasks compared to 3 231 tasks that are solved by the basic
analysis. Having a look at the 259 tasks, we notice that Ra-Value-Pred either exceeds
the memory or the CPU time limits given. When value analysis is used within ranged
program analysis, 218 task can be solved that could not be solved before. The vast
majority of them are correctly raised alarms. There are also a few cases, where sharing
the work among two instances simplifies the task, such that Ra-Value successfully
proves the task correct.

Next, we have a look at BMC, predicate abstraction, Symbiotic, and UA, all four
being non-path-based analyses, where the latter three aim to find abstractions. The
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corresponding instances of ranged program analyses that use two instances of these
analyses can solve 67 tasks fewer for Ra-Pred, 117 for Ra-Bmc, 37 for Ra-Symb and
276 for Ra-UA. This decrease is most likely caused by the fact that the analyses consider
multiple paths of the program at once, either through abstraction or full program
encoding. Nevertheless, the instances of ranged program analysis can compute correct
proofs and alarms that are not computed by the basic analysis running standalone,
namely 67 for Ra-Pred, 117 for Ra-Bmc, 78 for Ra-Symb and 24 for Ra-UA.

Lastly, we discuss the number of incorrectly computed results. We observe that
especially the CPA-based combinations Ra-Se, Ra-Value, and Ra-Pred raise more
incorrect alarms compared to the basic analyses and Ra-Symb computes more incor-
rect proofs. To validate that the additional incorrect alarms are not caused by an error
in the implementation of the ranged program analysis, especially in the range reduc-
tion, we analyzed a set of randomly selected tasks and restricted the basic analyses
to explore only the path encoded in the reported violation. For all tasks, the basic
analyses now also raised the alarms instead of running into a timeout. In addition, we
randomly selected and analyzed tasks where Ra-Symb computes additional incorrect
proofs manually, validated that the range program contains a property violation, and
cross-verified them using UA and Klee.

After having discussed the effectiveness, we have a closer look at the efficiency
of ranged program analysis. We depict the scatter plots comparing the wall time of
the basic analyses (on the x-axis) and the ranged program analysis (on the y-axis) in
Figure 5.13. We obtain similar results as in RQ 1: The ranged program analysis needs
approximately twice as long for simple tasks that can be solved within less than ten
seconds, showing the overhead of the generation of the ranges. For complex tasks, the
ranged program analysis has a comparable overall run time.

Results
All seven combinations of analyses can benefit from being used within ranged
program analysis, as each solves tasks not solved by the respective standalone
analysis. Again, path-based analyses benefit the most. The overhead caused by
ranged analysis reduces for more complex tasks.

5.5.4 RQ3: Does Combining Different Off-the-shelf Analyses Pays
Off?

Evaluation Plan To analyze the performance of combining different basic analy-
ses within ranged program analysis, we build in total five different combinations: For
the CPA-based analyses, we combine predicate abstraction, a technique that can effec-
tively compute proofs, with symbolic execution, value analysis, and BMC, which are
good at detecting property violations. Thereby, we get the three configurations Ra-
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Se-Pred, Ra-Value-Pred, and Ra-Bmc-Pred. For the off-the-shelf tools, we com-
bine UltimateAutomizer, the tool having the best performance overall in SV-COMP’
23 with Klee and Symbiotic, yielding the two configurations Ra-Symb-UA and Ra-
Klee-UA. As we are moreover interested in evaluating the effect of work stealing (cf.
Section 5.3.6), we also evaluate each of the five configurations with work stealing, indi-
cated by using Ws instead of Ra as a prefix. Again, we compare the effectiveness and
efficiency.

Experimental Results At first, we analyze the results for the instances of ranged
program analysis without work stealing and compare the first and third blocks of Ta-
ble 5.2. The column par.only now contains the tasks that neither of the two basic
analyses can solve but the ranged program analysis.

For all five combinations, we make the same observation when comparing the total
number of correctly solved tasks with the two basic analyses. In each of the combina-
tions, one basic analysis has a higher effectiveness than the other one, in our configu-
rations these basic analyses are predicate abstraction and UltimateAutomizer. Each
of the instances of ranged program analysis can now solve more tasks than the basic
analysis with lower effectiveness (symbolic execution, BMC or value analysis for Ra-Se-
Pred, Ra-Value-Pred, and Ra-Bmc-Pred and Klee or Symbiotic for Ra-Klee-UA
and Ra-Symb-UA). Compared to predicate abstraction or UltimateAutomizer, the
ranged program analyses have lower effectiveness, as they compute fewer correct so-
lutions. For many of these tasks, either predicate abstraction or UltimateAutomizer
successfully verifies the assigned range, but the other analysis does not succeed. Then,
the ranged program analysis does not return a result, as one range is not successfully
verified14.

Encouragingly, we can again observe the positive effect of combining two conceptu-
ally different off-the-shelf analyses, as all five configurations solve tasks for which none
of the two employed basic analyses can compute a solution: Ra-Se-Pred solves 33
tasks not solved by both basic analyses, Ra-Value-Pred 32 tasks, Ra-Bmc-Pred 29
tasks, Ra-Symb-UA 25 task and Ra-Klee-UA 24 tasks, again showing the advantages
of cooperative software verification.

The Effect Of Work Stealing Motivated by the fact that the combination of dif-
ferent analyses within ranged program analyses has overall no positive effect on the
effectiveness, we next employ work stealing in the five configurations. We compare the
results of the configurations using work stealing given in the last block of Table 5.2
to the basic analyses (the first block) and to ranged program analyses without work
stealing (the third block).

First and foremost, we observe that work stealing has a huge positive effect. In
14There are also cases where we observe that predicate abstraction or UltimateAutomizer do

not finish the assigned range, but the other analysis does.
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Figure 5.14: Venn diagrams comparing the total number of correctly solved tasks using
ranged program analysis with and without work stealing

comparison to the basic analyses, four of the five combinations of ranged program
analysis now outperform both employed basic analyses. Only the combination Ws-Se-
Pred can solve in total 3 460 tasks, that are 281 tasks fewer than predicate abstraction
(3 741), but in total 1 867 tasks more than symbolic execution.

For the other four combinations, each employed basic analysis benefits significantly
from being combined with another analysis: Ws-Bmc-Pred solves in total 4 240 tasks,
that are 958 tasks more than BMC (3 282) and 499 more than predicate abstraction
(3 741), increasing the effectiveness by 29% respectively 13%. For Ws-Value-Pred,
that solves overall 3 930 tasks, we notice an increase by 699 respectively 189 tasks
compared to value analysis and predicate abstraction, an increase by 22% respectively
5%. For the configuration Ws-Klee-UA, that solves in total 4 924 tasks using two basic
analyses from off-the-shelf tools, we observe an increased effectiveness by 1 942 tasks
(65%) compared to Klee (2 982) and 684 tasks (16%) compared to UltimateAutomizer
(4 240). A similar situation is noticed for Ws-Symb-UA, which combines the strengths
of Symbiotic and UltimateAutomizer to increase the effectiveness by 1 021 tasks (26%)
and 699 tasks (16%) compared to Symbiotic respectively UltimateAutomizer.

Although work stealing can increase the overall performance, there might also be
some negative effects. As we execute three ranged analyses instead of two when em-
ploying work stealing, the resources additionally consumed by the ranged analysis that
tries to steal the work may cause the complete ranged program analysis to run into a
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timeout or increase the wall time taken for computing a solution. To analyze them, we
now compare our five instances once with work stealing enabled and once without.

We present in Figure 5.14 Venn diagrams comparing the numbers of correct solved
tasks for the five configurations. Each Venn diagram shown depicts on the left (in green)
the number of tasks solved exclusively when using ranged program analysis without
work stealing, on the right (in blue) the number of tasks solved exclusively when using
work stealing and the intersection is labeled with the number of tasks solved by both.
The positive effect of work stealing becomes again visible, as the instances using work
stealing have a significantly higher effectiveness.

To also analyze, if work stealing leads to any negative effects, we have a look at the
tasks that are solved only when work stealing is not employed. Then, the additional
overhead of work stealing, i.e., of the third analysis instance running, has caused the
ranged program analysis to exceed their memory or time limitations. Having a look at
Figure 5.14, we observe that instances not using work stealing do only solve between 20
and 86 tasks, that are not solved when using work stealing. Compared to the increase
of 702 to 1 098 tasks, when using work stealing, the few tasks not solved are negligible.

Finally, we summarize the results of the detailed analysis of the efficiency of ranged
program analyses using conceptual different analyses given in Appendix A.3.2: In some
cases, using work stealing increases the efficiency compared to one of the basic analyses
employed, if the other one is significantly faster, as the faster analysis completes the
analysis of both ranges faster than the slower basic analysis. For simple tasks, the
overhead of ranged program analysis is observable but the effect decreases for more
complex tasks. The two configurations Ws-Symb-UA and Ws-Klee-UA are for complex
tasks faster than both employed basic analyses. Thus, enabling work stealing does
not influence the efficiency of ranged program analysis negatively, but rather slightly
increases it for some configurations.

Results
Combining two conceptually different analyses within a ranged program analysis
pays off, in case that work stealing is used. With respect to effectiveness, we
see that the combination of two best-performing basic analyses within ranged
program analysis now outperforms the two basic analyses by 26% respectively
16%. Again, all five configurations of ranged program analysis can solve tasks
that are not solved by both basic analyses. Moreover, work stealing has no sig-
nificant negative effect in terms of efficiency compared to default ranged program
analysis.

143



5.5 Evaluation

Table 5.3: Number of correct and incorrect verdicts reported by Ws-Symb-UA and
the parallel portfolio Portf(Symb,UA) in comparison to the two basic analyses. The
column par. only (parallel only) contains the number of tasks that are correctly solved
by a Ws-Symb-UA and Portf(Symb,UA) but not by the basic analysis employed.

correct incorrect
overall proof alarm par. only proof alarm

Symbiotic 3 918 2 232 1 686 - 77 1
UA 4 240 3 096 1 144 - 23 0
Ws-Symb-UA 4 939 3 223 1 716 62 85 0
Portf(Symb,UA) 5 724 3 789 1 935 0 77 1

5.5.5 RQ 4: How Does Ranged Program Analysis Compare to a Par-
allel Portfolio?

Evaluation Plan Next, we compare ranged program analysis with a parallel port-
folio. Therefore, we build in CoVeriTeam a parallel portfolio running Symbiotic and
UltimateAutomizer in parallel, called Portf(Symb,UA), and compare the effective-
ness and efficiency with Ws-Symb-UA, the best-performing instance of ranged program
analysis using work stealing.

Experimental Results We present in Table 5.3 the results of our experimental
evaluation. When comparing the best-performing configuration of ranged program
analysis and the parallel portfolio, we observe that the parallel portfolio solves 5 724
tasks, an increase of 785 tasks compared to Ws-Symb-UA (4 939). For 601 of these 785
tasks no range was generated and Ws-Symb-UA uses UltimateAutomizer as default
analysis, which solves only 4 of these tasks. For the 184 tasks a range is generated, there
are 81 tasks neither Ra-UA nor Ra-Symb solve, thus we do not expect Ws-Symb-UA
to solve these tasks.

Although the overall effectiveness of Ws-Symb-UA is 16% lower than the parallel
portfolio, one advantage of ranged program analysis becomes visible when comparing
the number of tasks that are only solved by Ws-Symb-UA or the portfolio but not
by any of the basic analysis. There are 62 tasks that are only solved by the ranged
program analysis but not by the basic analyses. As the parallel portfolio executes both
basic analyses in parallel, it solves no tasks not solved by one of the basic analysis. This
result emphasizes the main difference between the two approaches: Ranged program
analysis is a technique that uses cooperation to actually enable a combination of tools
to solve tasks, that none can solve standalone. In contrast, the portfolio cannot solve
any additional tasks, as the tools run side-by-side rather than working in cooperation.
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Figure 5.15: Scatter plot comparing the
wall time of Ws-Symb-UA and the paral-
lel portfolio

To analyze the efficiency of the par-
allel portfolio, we present in Figure 5.15
a scatter plot comparing the wall time of
Ws-Symb-UA and the parallel portfolio.
Clearly, the parallel portfolio, returning
the first answer computed is faster than
the ranged program analysis and the ad-
ditional overhead caused by using ranged
program analysis is again observable. For
small tasks solved by the portfolio in less
than ten seconds, Ws-Symb-UA takes in
the median the 2.6-fold time, for tasks
solved in more than 20 seconds wall time
the 1.4-fold time.

Results
The parallel portfolio is on the benchmark even more effective than ranged pro-
gram analysis. Nevertheless, the parallel portfolio does not solve any tasks not
solved by the basic analyses, in contrast to the ranged program analysis.

5.5.6 RQ 5: Does Joining Witnesses Work?

Evaluation Plan Finally, we want to analyze whether the novel algorithm for witness
joining generates correctness witnesses that can be validated. For witness validation,
we follow the schema used in the SV-COMP and call a witness validated, if there is
at least one validator accepting the witness. We employed the two best-performing
correctness witness validators in SV-COMP’23, namely UA and CPAchecker. We are
again interested in effectiveness and efficiency. As Algorithm 6 only joins correctness
witnesses (violation witnesses do not need to be merged), we selected all correct tasks
from the category ReachSafety for which the splitter Lb3 generates a range. From
the remaining tasks, we select these tasks where both value analysis and predicate
abstraction generate a correctness witness that is validated, yielding in total 469 tasks.

Experimental Results The ranged program analysis using value and predicate ab-
straction solve 463 tasks, the remaining 6 tasks are not solved by Ra-Value-Pred. We
validated all generated witnesses using CPAchecker and UA, whereby 460 (99.4%)
of the joined correctness witnesses where validated. The remaining 3 tasks are not
validated, as the validator reaches the memory limitations during the validation. A
manual inspection of the witnesses shows that these witnesses are also valid.

When comparing the effectiveness of Ws-Value-Pred to predicate abstraction and
value analysis (cf. Table 5.2), we notice that there are 32 tasks only solved by the
ranged program analysis, whereas 5 are additional proofs. Out of these 5 additional
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Figure 5.16: Comparison of Ra-Value-Pred with and without witness joining

proofs 4 are validated. One additional proof is not validated by the validators, as they
reach the memory limitations during validation.15

Beneath the quality of the joined verification witnesses, we are also interested in
the additional overhead caused by the application of the witness join. We compare in
Figure 5.16a the overall time taken by Ra-Value-Pred, where we depict on the x-axis
the time of the analysis when the joining of the witnesses is disabled and on the y-
axis with enabled witness joining. As expected, we observe that computing the joined
correctness witness increases the overall time. For a more detailed analysis, we group
the tasks by the time taken by the analysis without witness join and compute for each
group the median increase in the run time, visualized in Figure 5.16b. We notice that
the additional overhead caused by joining the witnesses decreases for tasks that need
more time to solve. For tasks that take more than 100 seconds to solve, the additional
time needed to compute a solution is only around 10% of the overall computation time.

Results
The algorithm for witness joining proposed in Algorithm 6 works, as it generates
witnesses that are in more than 99% of the cases successfully validated.

5.6 Discussion

Our experimental evaluation of ranged program analysis demonstrates that dividing
the verification task using ranges is possible for arbitrary off-the-shelf verifiers, thereby
allowing them to cooperate in solving the verification task. Using conceptually differ-
ent approaches within ranged program analysis allows for solving tasks, none of the
basic analysis can solve standalone. Especially the use of work stealing within ranged

15Due to the size of the generated witness, a manual inspection is infeasible.
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program analysis allows for building cooperative analyses that have a higher effective-
ness compared to the basic analyses employed. Next, we first discuss the validity of
our experimental evaluation before discussing the concept of ranged program analysis
itself.

We have conducted the experiments on the SV-Benchmarks from 2023 [SVB23].
Although it is widely used, especially in the SV-COMP, our findings may not com-
pletely carry over to other real-world C programs or to other programming languages.
Currently, the instrumentation does not cover concurrent programs. Moreover, we do
not support external functions, as the source code is needed for instrumentation.

It is unlikely that the implementation suffer from bugs. We randomly selected a
subset of the tasks for which the ranged program analyses compute incorrect results,
that are not computed by the basic analyses employed. For all tasks, we confirmed
that the incorrect result was not caused by the ranged program analysis. In addi-
tion, we evaluated in [HJRW23c] symbolic execution in ranged program analysis using
instrumentation and range reduction, obtaining comparable results.

As observed in Section 5.5.2, the splitting strategy used can have a significant effect
on the performance of ranged program analysis. We did not evaluate each of the
four splitting strategies for all configurations of ranged program analysis. In addition,
we did not evaluate the effect of a different assignment of the ranges for instances of
ranged program analysis using two different analyses. It might be the case that certain
combinations of ranged program analyses perform even better when a different splitting
strategy is used. In that case, the findings from our evaluation and conclusions drawn
still remain valid.

The Algorithm 6 for joining witnesses is currently only applicable in combination
with range reduction. As the justification generated by verifiers used in combination
with instrumentation refers to program location in the instrumented program, joining
them directly is currently not supported. Combining correctness witnesses when using
instrumentation is planned as future work.

The comparison of ranged program analysis and the parallel portfolio has shown
that the parallel portfolio is currently more effective. Nevertheless, ranged program
analysis opens up new possibilities compared to a parallel portfolio, as it does not only
execute several ranged analyses in parallel but let them cooperate. In fact, ranged
program analysis can be seen as a novel form of cooperation. First, it may ease the
verification of tasks, such that tasks can be solved that are not solvable by the basic
analyses. Second, it allows for using different splitting strategies and allows for par-
allelization of analyses that do not offer such a mechanism by default. Siddiqui and
Khurshid successfully scaled symbolic execution by using up to 20 instances in parallel
and not limiting the overall consumed CPU time [SK12]. We used in our evaluation the
same resource limitations for each tool. In case the available resources are not limited,
ranged program analysis allows for using ten, 20, or even more instances in parallel.
Investigating to which extent such a heavy parallelization positively influences the ef-
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fectiveness when using other off-the-shelf analysis techniques is another interesting line
of future work.

In general, the experimental evaluation shows that using two instances of the same
analysis within a ranged program analysis is only beneficial for analysis techniques that
work path-based. For analyses that employ abstraction, the effectiveness decreases
when using two instances in parallel. An in-depth analysis to identify causes for the
reduced effectiveness may allow circumventing such situations, e.g., investigating to
which extent the ranged analyses are influenced by the instrumentation.

In some cases we observe that one range generated by Lb3 is easy or even trivial to
solve, hence one analysis is significantly faster than the other one. Work stealing can
reduce the effect of trivial ranges but does not solve the underlying problem. Hence,
defining a splitter that can generate more balanced ranges may further increase the
positive effect of using ranged program analysis. To be able to employ multiple ranged
analyses in parallel, novel splitting strategies allowing to generate multiple bounds
are needed. Developing and evaluating these novel splitting strategies is another line
of future work: Currently, the splitter does not use additional information obtained
when analyzing the program. For example, generating ranges using constants from
the program or generating ranges that contain certain features allows for using more
specialized analysis techniques. Moreover, using algorithm selection to select the most
promising ranged analysis per range is another possibility for increasing the performance
of ranged program analysis.

5.7 Related Work

In this chapter, we focus on generalizing the idea of ranged symbolic execution as
a general cooperative verification approach. In the following, we discuss other (non-
cooperative) parallel software verification approaches and have a look at methods for
partitioning the search space of analyses, load balancing, aggregation of analysis results,
and program instrumentation.

5.7.1 Parallel Combinations

Next, we discuss concepts that combine the strengths of different approaches and ex-
change information between them in parallel, either cooperatively or using conceptual
integration.

5.7.1.1 Conceptual Integrations

Many approaches [TFNM11; BL19a; Gro+12; Hol+16; HJG08; YDLW19; CH23;
BKR22; Luc+16] employ a parallel portfolio, the easiest way of combing different tech-
niques. Therein, all tools work on the same task in parallel without cooperation and
the available resources are shared among them. The portfolio usually returns the first
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answer computed. In [MH21], four different strategies for portfolio-based SMT-solving
are presented, e.g., using the fastest result, majority vote, or conditioned verdict vali-
dation.

More advanced concepts let the components work together by exchanging and us-
ing information. Sage [GLM08] uses a similar idea as ranged symbolic execution, but
instead of using random paths, work is shared among the instances of a dynamic sym-
bolic execution engine dynamically. Starting with an initial test input, the program is
executed and the conditions on the path are collected. Next, the conditions are sys-
tematically negated and all resulting test cases are processed in parallel. The dynamic
symbolic execution instances share the unprocessed inputs, where each defines an un-
explored program path. A combination of dynamic symbolic execution and fuzzing can
be found in tools like Driller [Ste+16] or HyDiff [Nol+20], where both tools are ex-
ecuted in parallel and exchange information on computed inputs periodically. Parallel
execution of multiple analyses, where each analysis can access and use the information
computed by other analyses is theoretically proposed by Cousot and Cousot [CC79],
and realized in different verification tools as CPAchecker [BHT07], especially its k-
induction [BDW15], or Astrèe [Cou+06]. In contrast to these parallel approaches,
ranged program analysis uses the ranges to avoid program paths being analyzed by
several analyses. Additionally, using program instrumentation, arbitrary off-the-shelf
tools can be used within the ranged program analysis.

5.7.1.2 Cooperative Approaches

Inspired by the idea of ranged program analysis, Chalupa and Richter propose Bubaak-
SpLit [CR24], a tool that dynamically splits the program. Instead of computing
bounds in advance, Bubaak-SpLit splits the program on demand, i.e., in case Klee,
a lightweight and fast analysis that is employed first, fails to solve the verification
(sub-)task in a given time limit. Thereafter, the program is split at the first branching
node into two parts and two range programs are generated using instrumentation. The
lightweight analysis again tries to verify the two range programs. In case it fails, the
programs are split again. This process is repeated until a fixed number of programs that
are not solved by Klee and thus claimed to be hard to verify are generated. These pro-
grams are then analyzed by Bubaak and Slowbeast in parallel. Compared to ranged
program analysis, the dynamic splitting strategy of Bubaak-SpLit works without a
splitter and aims at generating ranges that are hard to verify, avoiding trivial ranges.

Orthogonal to the idea of range program analysis and based on CMC, Franke pro-
poses parallel conditional model checking with multiple ranged conditions [Fra23]. In-
stead of executing several conditional model checkers sequentially, the condition au-
tomata are generated based on paths, allowing for an analysis of the program with all
condition automata in parallel. Compared to ranged program analysis, the condition
automata have the same function as test cases or sequences of branching decisions.
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5.7.2 Search Space Partitioning

Partitioning the search space allows for a parallel execution of multiple tools exploring
different parts of the program and thereby avoids redundant computations. To be able
to partition the search space, it has to be dividable into a finite number of partitions,
e.g., if the search space has finitely many elements or a total order. Then, a partition
can either be computed dynamically during the analysis based on intermediate results
or statically in advance. In the former case, the search space is usually partitioned based
on intermediate results into an already processed and a remaining part that needs to
be analyzed. To be able to dynamically define the remaining parts, a characteriza-
tion of the search space is needed. Among others, test goals [BL19a; AABC21], open
proof obligations [Hus+17], program paths [BJ20; BJ21; BJLW18; CMW16; CMW12;
CJW15; DGH16; FWCD17; GD19; JVSJ06; CR24], or the already explored symbolic
execution tree [BUZC11; Cio+09; Qiu+18; SK12; ZGQH13; Wei+23] can be used for
partitioning the space. In contrast to the dynamic splitting strategies, ranged program
analysis uses a splitter for computing static splits of the program.

Static partitioning aims to divide the overall task in advance, such that each element
can (potentially) be solved in parallel. Such a partitioning can be realized by defining
subtasks [PW19; YDW15; BL19a], according to special analysis capabilities [PW19],
or use a static functions for state partitioning [BF18; SD97; LS99; BBC03]. Split-
ting the program paths is another way of statically partitioning a program. Therefore,
an ordering or characterization of a set of paths is needed. Conditional static analy-
sis [SD18] uses the order of executed program branches, some approaches that aim for
scaling symbolic execution define path prefixes [SK20; SK21; FSK12]. The approach
proposed by Staats and Pasareanu [SP10] uses an initial run of symbolic execution to
collect path constraints, that are next used to define input constraints. Each symbolic
execution running in parallel uses a specific input constraint. Similarly, Korat uses
input ranges defined via predicates for partitioning, where several instances of Korat
process the input ranges in parallel in order to generate test inputs using a system-
atic search [Mis+07]. Ranged symbolic execution employs path ranges for defining the
ranges. In contrast to path ranges, input ranges are not guaranteed to induce a set of
ordered paths. Hence the range reduction may not work. In contrast to path prefixes,
path ranges are more precise and can express ranges not expressible using a path pre-
fix. Path ranges are also employed by different approaches employing ranged symbolic
execution, either generated using an initial, shallow symbolic execution [SK20; SK21],
random selection [SK12] or tests [Qiu+18; Yan+19]. In contrast, ranged program anal-
ysis introduces a splitter as an individual component, allowing it to realize different
strategies as limiting the number of loop unrollings. Moreover, we also allow using
sequences of branching decisions to describe ranges.
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5.7.3 Load Balancing

Having an even distribution of work among the analyses running in parallel allows for a
faster computation of the final result. One way is using a static partitioning [Mis+07;
SD97; LS99; GMS01; BBC03]. As estimating the workload in advance is a challenging
task, several approaches [SK20; SK12; SK21; Yan+19] assign new tasks to idle work-
ers, just as our work stealing. Dynamic range refinement [Yan+19] computes the range
that is not explored and splits it into two ranges, where one of these ranges is reas-
signed to an idle worker. Other approaches do not simply reassign a predefined task as
work stealing does but rather divide assigned tasks into multiple subtasks and reassign
some subtasks that are not completed. For example, these approaches redistribute the
analysis of one subtree [SK20; SK12; SK21], several subtrees [BUZC11; Cio+09] or
several states [KM04] that need to be analyzed. All of the approaches that reassign
work make use of a white-box integration and employ only one specific verification
technique, mostly symbolic execution. Thereby, they are able to access the internal
state of a worker and can identify parts of the state space that are assigned to the
worker but not analyzed so far. This insight allows for a redistribution of unexplored
program parts. In contrast, ranged program analysis goes beyond these concepts, as
it is able to use arbitrary off-the-shelf verifiers and distribute the ranges among them.
As a downside, we are not able to access their internal states and know how the em-
ployed tools work, prohibiting a dynamic load balancing that is more fine grain than
the predefined ranges.

5.7.4 Result Aggregation

Whenever verification approaches jointly work on a verification task, the (partial) re-
sults need to be aggregated. Most important and rather simple is the aggregation of
verdicts. In case the combination only employs techniques that under-approximate
the behavior of the program, as in [Hol+16; ARCB14; Ngu+17; IT20], the only result
typically reported are property violations found by one of the employed analyses. The
counterexample reported is also typically forwarded from the analysis that raises the
alarm, as this requires no aggregation. In contrast, combinations employing under- and
over-approximating tools [BNRS08; Gul+06; MPV15; AGC12] report the counterex-
amples computed by the under-approximating components and the proofs generated by
the over-approximating once. In case parallel portfolios are employed [CH23; BKR22;
Luc+16; BL19a; Gro+12; HJG08], the first computed result is returned. Whenever
the search space is partitioned among different analyses [BHKW12; BJLW18; CMW16;
CMW12; CJW15; DGH16; FWCD17; GD19; HJRW23c], as we also do in ranged pro-
gram analysis, found errors are returned directly, while the program is reported correct
only in case that all analyses have succeeded. In contrast, Scar [YDLW19] outputs a
quantitative value that describes the (in)correctness for each of the computed results.

Instead of only combing computed verdicts and forwarding computed counterexam-
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ples, combining partial justifications of the correctness of a program is discussed rarely.
Jakobs proposes a method for combining partial analysis results in the form of partial
ARGs [Jak17]. The combined ARG can be used for generating a correctness witness.
Garavel et al. propose a method for combining partial labeled transition systems, that
are obtained by distributive explicit state space exploration [GMS01]. In contrast to
these two concepts, the witness join presented in Algorithm 6 allows for combining
correctness witnesses generated for program ranges. It is independent of the ranges
and can thus be employed for the combination of arbitrary partial witnesses, especially
for tools that do not generate ARGs.

5.7.5 Program Instrumentation

Program instrumentation is used in several areas of software verification or testing.
In testing and test case generation, instrumentation allows for collecting information
on executed parts of a program when running test cases to compute their test cover-
age. The collected information and measured coverage are then used for guiding the
execution, e.g., in gray-box fuzzers as Afl [Zal13; FMMB23], libFuzzer [Pro24], or
Fizzer [JSTU24a; JSTU24b], or to rate the quality of the set of test cases, e.g., in
competitions as TEST-Comp [BL19b; Bey22a].

In contrast to testing, instrumentation allows in the area of software verification
not only to guide certain components but is also employed to ease the verification
task, e.g., by Symbiotic. Symbiotic uses the idea of instrumenting the code with runs
of state machines that represent the safety properties to retain only the statements
affecting the state machine using program slicing [SST12]. By reducing the number of
statements or paths in the program, thus the verification task is simplified. The sliced
program is then analyzed by Klee [SST13] or a composition of different LLVM-based
tools [CS19]. In contrast, ranged program analysis employs instrumentation to split the
work among different analyses, rather than removing non-relevant code fragments. In
[CMW16], program instrumentation is used for guiding dynamic symbolic execution,
e.g., to abort the exploration of program parts that are already verified or to guide
it to not fully verified parts. The information employed for instrumenting and thus
guiding the dynamic symbolic execution is inferred from partial verification results
computed by a verifier, which is then annotated in the program code. In comparison
to ranged program analysis, this approach uses partial results for guiding tools rather
than sharing the work among different verifiers working in parallel.
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Conclusion
6

The goal of this thesis was to conduct a systematic analysis of the forms of coopera-
tive software verification and their potential benefits. Therefore, we developed three
different concepts for cooperative verification, one that sequentially combines the ac-
tors, one that cyclically combines them, and one that combines them in parallel. In
the following, we summarize the results in Section 6.1 of this thesis, discuss them, and
provide an outlook for future work in Section 6.2, and present a resume in Section 6.3.

6.1 Summary

The first contribution of this thesis is CoVEGI, a concept for sequentially combining
actors in a cooperative manner. More precisely, it enables a main verifier to request
and receive invariants generated by helper invariant generators. The invariants are
exchanged using invariant witnesses. In order to use arbitrary off-the-shelf invariant
generators, CoVEGI foresees the use of a mapper and an encoder to transform the
invariants given in tool-dependent formats into invariant witnesses. The experimental
evaluation demonstrated that the use of CoVEGI can increase the effectiveness of the
two main verifiers, resulting in an increased number of correctly solved tasks. More-
over, it does not significantly negatively influence efficiency. Furthermore, we presented
MIGml, a modular framework that allows for generating loop invariants through ma-
chine learning, and experimentally demonstrated its feasibility.

As a second contribution, we have developed a modular version of the verification
schema CEGAR. The decomposed version C-CEGAR comprises three standalone com-
ponents that are cooperatively solving the verification task and communicating via the
verification artifacts invariant witness, violation witness, and path witness. For the
experimental evaluation, we decomposed an existing CEGAR instance into three stan-
dalone components. This demonstrated that the decomposition is indeed possible. The
evaluation showed that the effectiveness of the decomposed version and the white-box
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instance are comparable, in case formats without loss of information are used. The
decomposition entails additional overhead, which is found to be bounded by a constant
factor. The effectiveness of the decomposed version decreases by around 20% in case
standardized verification artifacts are used, as not all information computed is encoded
within the artifacts. More importantly, we demonstrated that C-CEGAR makes the
integration of novel, off-the-shelf components a configuration task, allowing us to easily
integrate novel ideas and thereby solve tasks that could not be solved before. Fur-
thermore, we developed and evaluated a novel verification artifact called GIA, which is
applicable in many different scenarios in cooperative software verification and testing
while maintaining one fixed semantics.

The third contribution of this thesis is ranged program analysis, an approach for
a parallel cooperation of several verifiers. The approach is based on the concept of
divide-and-conquer and allows for dividing the verification task along path ranges into
independent subtasks, each solvable in parallel by ranged analyses. We proposed two
different techniques for restricting an off-the-shelf analysis to a given range. The first
uses range reduction for CPA-based analyses, the other program instrumentation. The
experimental evaluation showed that using two instances of the same verifier allows for
solving tasks that could not be solved before and increases the overall effectiveness of
symbolic execution. Combinations of two conceptually different analyses in parallel,
especially when using work stealing, leads to an increased effectiveness. The best-
performing instance yields an increase of 26% respectively 16% compared to the two
verifiers running standalone.

In summary, we conclude that cooperative software verification can employ se-
quential, cyclic, and parallel forms of cooperation. Moreover, we see combining
different approaches with individual strengths in a cooperative way is beneficial,
as all three concepts can solve tasks that cannot be solved without cooperation.

6.2 Discussion and Outlook

As shown by using the three defined concepts, the use of cooperative software verifica-
tion is beneficial, especially as it allows to solve tasks that cannot be solved without
cooperation. Finally, we discuss the concepts on a high level, highlight directions for
future work, and point out open challenges.

GraphML-based and Yaml-based Exchange Formats As shown within this
thesis, the use of cooperative software verification is beneficial. In order to successfully
establish cooperation, communication and information exchange is the key to success.
Missing information or the inability of a participant to process the information is there-
fore a major obstacle. Hence, the use of well-suited exchange formats plays a crucial
role in the design of cooperative software verification concepts.
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CoVEGI and C-CEGAR use GraphML-based correctness witnesses and violation
witnesses for the information exchange. The witnesses and GIAs establish the connec-
tion between the information encoded in the artifacts and the program based on the
CFA. Although the GraphML format has been used in SV-COMP since 2015, there is
no standardized transformation from a C program to a CFA, and thus the semantics
of the format have some ambiguities [Aya+24; Str22]. To avoid these ambiguities, the
recently published Yaml-based witness format 2.0 is no longer graph-based, its seman-
tics are formulated directly using terms and concepts from the programming language.
It associates invariants directly with program location and its semantics require that
these invariants hold on all executions [Aya+24]. In particular, in C-CEGAR, we do not
use correctness witnesses, but invariant witnesses, which have different semantics than
correctness witnesses. An invariant witness does not necessarily have to contain a proof
that the complete program is correct, it suffices to prove the infeasibility of a single
path. For example, such a path can contain multiple loop iterations and the computed
precision increment is valid only in the second iteration (e.g., as in Figure 4.19a). Using
the Yaml-based witness format is hardly possible in this specific situation. The same
is true for GIAs, where encoding information about the safety of a single path is a key
property. This is the main reason why we decided to use graph-based exchange formats
in this thesis. Note that the semantics of no versions of correctness and violation wit-
nesses allow encoding partial results and that we use modified semantics for invariant
and path witnesses. Thus, the Yaml-based format may also be used in cooperative
verification if formats with modified semantics are designed.

Using Artifacts with Off-the-shelf Tools Another major challenge in coopera-
tive software verification is the use of off-the-shelf tools. Most of the artifacts used
are graph-based and establish the connection to the program via the CFA, such as the
GraphML-based correctness and violation witnesses, condition automata, or GIAs. In
contrast, off-the-shelf tools can (usually) only work with C programs as inputs. Thus,
there are several concepts, e.g., reducer as in Section 4.2.4 and [BJLW18], program
instrumentation as in Section 5.3.4 and [CR24], or MetaVal [BS20] to encode the
information from verification artifacts into the program. The results of these transfor-
mations are residual programs, reduced programs, path programs, or range programs.
Unlike the graph-based formats, the Yaml-based witness format “attaches” informa-
tion to the program and Christakis et al. store the assumptions directly in the program
code [CMW12]. Chalupa and Richter exchange range programs that only contain the
remaining task [CR24]. In our point of view, it is worth studying whether it is pos-
sible and beneficial to encode all computed information directly into the program (or
“attach” it, as in the Yaml-based witnesses) instead of designing additional artifacts.
Then, each component working in cooperative verification returns an (annotated) pro-
gram that contains the remaining task as output along with verdict and justification.
Such a significant reformulation of the concept of cooperative verification leads to new
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challenges. One challenge is to ensure that all transformations performed during co-
operative verification, such as instrumentation, are reverted, in order to compute a
justification that is valid for the original program.

Combination of Artifacts In general, most actors in cooperative verification ap-
proaches communicate partial results, e.g., a loop invariant, the successful verification
of a range, or a precision increment for a specific path. To be able to provide a proper
justification for the cooperatively computed verdict, the information computed by each
actor needs to be collected and combined. As new concepts for cooperative verification
may necessitate joining any artifact used, it is useful to design methods for combining
them, especially as such methods are specific to the format used and independent of
the use case. In this thesis, we already proposed methods for joining GIAs and cor-
rectness witnesses in the GraphML format, in order to generate justifications in ranged
program analysis when using range reduction. In case the program is instrumented,
joining correctness witnesses is only described conceptually in Section 5.3.5. For other
formats, there currently exists no method for joining them. In general, artifacts as-
sociating information directly to source code locations, like Yaml-based correctness
witnesses, are well-suited for being joined, as joining them does not require computing
a combination of two automata. As the Yaml-based witness format has been included
in SV-COMP since 2024 and there are already eight participants who generate these
witnesses, a method for joining the Yaml-based witness format can be developed in
the future. Additionally, the combination of correctness witnesses generated for instru-
mented programs in ranged program analysis is another direction of future work.

Information Exchange in General Beneath the format used for exchanging infor-
mation, another crucial point in cooperative verification is the exchanged information
itself. Clearly, if tools do not produce meaningful information as output, they are not
well-suited for being used in cooperative approaches. For example, invariant genera-
tors that produce only trivial invariants or precision refiners that do not include the
computed precision increment in the invariant witness hamper cooperative verification.
Thus, exchange formats that provide an easy way to encode all computed information
can lead to higher-quality artifacts. In the future, competition may also motivate tool
developers to enhance the output of their tools, e.g., by giving higher scores to more
meaningful outputs. Recently, Beyer et al. showed that a too precise description of a
counterexample can impede the validation of violation witnesses [BKL24b]. Thus, it
is worth investigating whether these findings also carry over to cooperative verifica-
tion approaches, i.e., to analyze which level of precision of computed information in
verification artifacts leads to the best results.

Alternatives to Loop Invariants in CoVEGI In CoVEGI, invariants are ex-
changed among the main verifier and helper invariant generator. As helpful (loop)

156



Chapter 6. Conclusion

invariants ease the verification task, they are widely used and ideal for showing the
program’s correctness [BS22]. Thus, they are well-suited in CoVEGI. Nevertheless,
we could also design CoVEGI to exchange different analysis information as arbitrary
location invariants that are not related to loops, as in the Yaml-based witness for-
mat [Aya+24] or summaries of loops or functions [SM12; SFS11; BS19; BKL24a]. Such
summaries do not take the current program state when entering the loop or a function
into account, but describe the effect of their execution on the variables more gener-
ally. Thus, loop or function summaries can be used for all occurrences of a loop or
function call in the program, whereas loop invariants have to be computed for each
loop. As a downside, there is currently no standardized format for exchanging loop or
function summaries, and expressing them in terms of C expressions is more difficult
than expressing invariants. Nevertheless, it is interesting to analyze, if CoVEGI can
be updated to also use externally generated loop or function summaries.

Range Generation within Ranged Program Analysis The idea of ranged pro-
gram analysis employs static slitting to generate the ranges. This allows us to generate
the ranges upfront and solve them in parallel.

Dynamic splitting strategies identify parts of the program that are hard to solve
based on the internal progress of a verifier. Using such strategies in a cooperative set-
ting is not possible for two reasons. First, all components are used as black-box, hence
accessing their internal state is not possible. Second, they typically do not output inter-
mediate results. Based on the idea of ranged program analysis, Chalupa and Richter
use a different concept for dynamic splitting with program instrumentation [CR24].
Instead of splitting the task based on the internal states of the verifier, they split the
program in advance and let a verifier try to solve the task for a short time. If no result
is computed, the task is considered hard and is split again. By repeating this process
until a fixed number of hard tasks is generated, several off-the-shelf verifiers can be
used in parallel afterward. The main advantage of their approach is that no trivial
ranges are generated. As a disadvantage, the splitting strategy employed is simple,
namely splitting the program at the first branching point. In ranged program analysis,
the number of ranges that need to be generated by the splitter is known in advance.
Hence, we can define a splitter that generates ranges containing a specific number of
loop iterations.

Other Safety Properties Throughout this thesis, we have focused on the verifica-
tion of the (non)-reachability of error locations. There are also other safety properties
that can be verified. For example, the SV-COMP defines for C programs a total of six
different properties, namely (1) unreachability of error functions, (2) memory safety (no
invalid deallocations, pointer dereferences or untracked allocated memory), (3) mem-
ory cleanup (allocated memory is deallocated), (4) no overflow, (5) no data-race and
(6) termination. The termination and no overflow properties can be translated to an
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equivalent reachability task [SB05; Bai+24]. In our opinion, analyses aiming to show
memory-related properties can also be used within ranged program analysis, as long as
the program itself is sequential, as these properties are checked per path.

For parallel programs, e.g. for detecting data-race, there are some open challenges:
CoVEGI and C-CEGAR use invariant witnesses to exchange invariants or precision
increments. Beyer et al. argued that a concurrent CFA can be used for multi-threaded
programs [Bey+22]. To address these open problems, it can be analyzed whether
invariant generators and precision refiners compute invariants for concurrent programs,
encode them correctly in the invariant witness, and whether the main verifier and model
explorer can use this information. Using ranged program analysis for parallel programs
is more challenging. The program execution tree for defining the ranges does currently
not take the execution of multiple threads in parallel into account. In addition, the
ordering relation ≤ is also defined for programs with a non-parallel CFA. Investigating,
whether ranged program analysis can be modified to work with parallel programs, e.g.,
modifying ≤ to work with concurrent CFAs, is another challenge for the future. Ideally,
ranged program analysis allows the analysis of different interleavings of multiple threads
by different off-the-shelf verifiers.

Use of LLMs in Cooperative Software Verification LLMs like ChatGPT have
made enormous progress in the last years and are used in many domains, e.g., for
the generation of invariants [JRW24; Cha+23; Kam+23]. As these approaches show
promising results, it is an interesting topic for future work to investigate to which extent
these invariant generators are also applicable in CoVEGI. In addition, there are also
other tasks for LLMs that may be useful apart from invariant generation. For example,
ChatGPT is able to explain the program code given as input. Thus, certain LLMs
may also be able to explain why a location of a program is unreachable. Thus, it is
worth investigating, to which extent LLMs can be used as a precision refiner within
C-CEGAR or to generate ranges for ranged program analysis.

6.3 Resume

In this thesis, we presented a systematic analysis of potential forms of cooperative
verification and the advantages of using them. We developed three different concepts for
cooperative software verification: The sequential concept CoVEGI, the cyclic concept
C-CEGAR, and the parallel concept of ranged program analysis. The experimental
evaluation demonstrates that the combination of actors in a black-box manner allows
for solving tasks that could not be solved without cooperation. Hence, the results of this
thesis provide a fundamental contribution towards cooperative software verification.
Open challenges and directions for future work identified may lead to novel forms of
cooperative verification or further increase the effectiveness and efficiency of existing
approaches.
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Appendix
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A.1 Appendix for CoVEGI and MIGml

A.1.1 Encoder for LLVM-based Helper Invariant Generators

Our encoder follows the general construction depicted in Figure A.1. The LLVM-IR
is a low-level, SSA-based representation of programs [LLV23]. A program consists of
functions and basic blocks inside the functions. A basic block is a code fragment having
a single entry location (the first) and does not contain branching, i.e. the control flow
is linear. The last statement of a basic block is called the terminator and can contain
branching or function returns. Loops are realized in LLVM using multiple basic blocks,
whereas the loop condition is checked in the terminator of each basic block leading to
the first block of the loop body1. Thus, tools often associate invariants to LLVM basic
blocks, i.e. the beginning of the first basic block corresponding to the loop body.

Our encoder follows the general construction depicted in Figure A.1.

Invariants over
IR-variables with

IR-locations

Invariants over
C variables with

C locations

Invariant
Witness

translate construct

Figure A.1: Workflow of an encoder for a helper working on an IR

To construct an invariant witness, we need to translate the invariants and find the
matching C code location for the basic block. For this, we generate the LLVM-IR
equipped with debug information, obtained when using the compiler with launch pa-
rameter -g. We exemplify the process on the running example from Figure 2.3. First,
we generate the LLVM-IR fragment, shown in simplified form in Figure A.2, containing
the most important debug information as comments. Note that we used the function

1https://llvm.org/docs/LoopTerminology.html
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entry:
0 %_0 = bitcast i16 (...)* @__VERIFIER_nondet_short to i16 ()*
1 %_1 = tail call signext i16 %_0() #4, !dbg !8
2 %_2 = icmp slt i16 %_1, 0, !dbg !21
3 %_3 = sub i16 0, %_1, !dbg !23
4 %..i = select i1 %_2, i16 %_3, i16 %_1, !dbg !25
5 %_4 = sext i16 %..i to i32, !dbg !26 ▷ input
6 %_5 = icmp sgt i16 %..i, 1, !dbg !29
7 br i1 %_5, label %_bb, label %error, !dbg !30
8
9 _bb: ; preds = %.lr.ph, %_bb

10 %.0.i2 = phi i32 [ 0, %.lr.ph ], [ %_8, %_bb ] ▷ res
11 %.02.i1 = phi i32 [ %_4, %.lr.ph ], [ %_7, %_bb ] ▷ rem
12 %_7 = add nsw i32 %.02.i1, -2, !dbg !31
13 %_8 = add nsw i32 %.0.i2, 1, !dbg !33
14 %_9 = icmp sgt i32 %.02.i1, 3, !dbg !29
15 br i1 %_9, label %_bb, label %error.loopexit, !dbg !30, !llvm.loop !34
16
17 error.loopexit: ; preds = %_bb
18 %.lcssa8 = phi i32 [ %_7, %_bb ]
19 %.lcssa = phi i32 [ %_8, %_bb ]
20 %phitmp = mul i32 %.lcssa, 2, !dbg !36
21 br label %error, !dbg !36
22
23 error: ; preds = %error.loopexit, %entry
24 %.02.i.lcssa = phi i32 [ %_4, %entry ], [ %.lcssa8, %error.loopexit ]
25 %.0.i.lcssa = phi i32 [ 0, %entry ], [ %phitmp, %error.loopexit ]
26 %_10 = add nsw i32 %.0.i.lcssa, %.02.i.lcssa, !dbg !36
27 %_11 = icmp eq i32 %_10, %_4, !dbg !36
28 [...]

Figure A.2: Part of the LLVM-IR code for the running example

__VERIFIER_nondet_short to model a random input of type short. The example con-
tains four basic blocks, entry, _bb, verifier.error.loopexit and verifier.error.

The helper invariant generator used computes the invariant invLLVM ≡ %_4 − 2∗
%.0.i2 − 1 ∗ %.02.i1 = 0 for the example and associates it with the basic block _bb. As
explained in Figure A.1, we first need to find the relation between variables defined in
the scope of LLVM-IR and C variables, i.e. we need the relation for all variables present
in the generated invariant invLLVM . In our example, the debug information can directly
be used for establishing the relation. As annotated within the comments, the relation
contains the information (%_4 7→input), (%.0.i2 7→res) and (%.02.i17→rem). Thus,
the translated invariant generated by the helper is invC ≡ input− 2 ∗ res− rem = 0.
In general, a more sophisticated procedure is needed, as LLVM-IR uses a three-address
code. Therein, complex expressions (e.g. the if-condition in line 9 of the running
example) are split into several statements using intermediate variables, that first need
to be resolved to C expressions.

Afterward, the transformed invariant needs to be associated with the correct lo-
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cation in the C code. We analyze the LLVM IR program structure to map the basic
blocks back to C locations. For this, we employed some basic functions provided by
Phaser [SHB19] in our encoder. As the program in Figure 2.3 contains mostly simple
arithmetic operations and assignments, the relation is easily human-readable: The ba-
sic block entry contains the if-branch in lines 0 to 2 and a check, whether the loop body
needs to be entered, the block _bb contains the statements from the loop body, and the
blocks error.loopexit and error the evaluation of the condition of the if-branch in
line 9, stored in %_11. The code blocks corresponding to the last program statements
are left out for representation purposes.

Finally, we construct an invariant witness for the invariants and the locations.
Therefore, we build a protocol automaton using the CFA of the C program and store
the invariants at the corresponding nodes. The final result is identical to the correctness
witness depicted in Figure 2.9, where φ5 ≡ invC holds.

A.1.2 Additional Results for CoVEGI

We present in Figure A.3 the scatter plots to analyze the effectiveness of CoVEGI when
using two helper invariant generators in parallel. With respect to efficiency, it turns out
that using two helpers in parallel yields a higher CPU time for correctly solved tasks,
whereas the overall consumed time does not change when using one or two helpers in
parallel.

A.1.3 Existing Approaches for Invariant Generation within MIGml

The modular structure of MIGml allows its instantiation with existing concepts for
machine learning-based invariant generation. Thereby, it facilitates a conceptual com-
parison of different approaches as well as an experimental evaluation of them on equal
grounds. We selected four existing and conceptually different approaches, published
by Sharma, Nori and Aiken (SNA12) [SNA12], Garg, Neider, Madhusudan and Roth
(GNMR16) [GNMR16], Krishna, Puhrsch and Wies (KPW15) [KPW15] and Zhu,
Magill and Jagannathan (ZMJ18) [ZMJ18]. The four approaches have slightly dif-
ferent objectives and employ different techniques for example generation (execution-
based vs. logic-based), model validation (logic-based vs. none), predicate generation
(template-based vs. classification-based), and classification (SVM vs. DT learner). Due
to the conceptual differences, we consider our selection to be reasonable w.r.t. the vari-
ety of existing machine learning approaches for invariant generation. Next, we shortly
introduce each of the four approaches. We summarize the results in Table 3.1.

SNA12 Sharma, Nori, and Aiken proposed in 2012 one of the earliest ideas on learn-
ing interpolants and likely invariants using ML. Therefore, two formulae are generated
for programs with a single loop using the strongest postcondition semantics, assuming
that the programs are correct. The first formula, representing establishment (cf. (2.4))
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Figure A.3: Scatter plots comparing the wall time of CoVEGI instances using two
helper invariant generators with the main verifier running standalone

and preservation (cf. (2.5)), summarizes the path from the program entry with one
loop iteration. The second one encodes the paths from the loop head to the assertion
at the program’s end, used for generating helpful loop invariants (cf. (2.7)). These for-
mulae are used for model validation and example generation. For the initial example
generation, a logic-based example generator is used: It samples ten data points, using
satisfying assignments of each of the two formulas. Data points generated using the first
formula are labeled positively, the others negatively. For model validation, a candidate
invariant is checked for being a valid interpolant [Cra57b] for the two formulae. In case
it is not a valid interpolant, new data points are generated using satisfying assignments
of the violated condition. Within the Learner, an SVM is used as classifier, learning
predicates from the Polyhedra domain [CH78; DKW08]. In case the training data is
not linearly separable, a combination of SVMs is used, as explained in Section 3.2.1.
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The approach does not use additional predicates as input to the SVM.

GNMR16 In 2014, Garg et al. proposed the idea of ICE learning [GLMN14], ex-
tended in 2016 [GNMR16], aiming at generating loop invariants that help in proving
the program correct. Thus, this approach also assumes that the program is correct.
As introduced in Section 3.2, it comprises a Learner and a Teacher. For model valida-
tion and example generation three formulas representing establishment (2.4), preser-
vation (2.5), and check (2.7) are generated. Initially, an empty set of training data is
used. In the candidate generated by the Learner violates establishment respectively
check a new positively respectively negatively labeled data point is generated. The
main novelty of the ICE approach is their handling of the preservation condition re-
alized by also including implication data points into the training data. Whenever an
ML-model violates the preservation condition, the dataset is extended with a new im-
plication point. On the Learner side, the approach employs a decision tree learner. As
the use of implication points is by default not supported by a decision tree learner,
an enhanced learning algorithm that is able to handle implications points is presented
in [GNMR16]. The classifier is also able to handle predicates as additional input. In
this approach, all predicates from the octagon domain [Min06] are generated using a
template.

KPW15 The idea presented by Krishna et al. employs a similar Learner instantiation
as in the ICE learning approach: It also applies a decision tree as classifier and generates
predicates from the octagon domain. In contrast, the Teacher is realized differently than
in all other approaches: The main idea of this approach is to generate a single, rich set
of training data and use the decision tree learner only once, not iteratively as in the
other approaches. In more detail, the example generator is execution based, meaning
that it executes the program with variable values from a predefined interval [−L,L].
Program states observed at the loop head during program execution with a bounded
number of loop iterations are labeled positively. As the approach assumes that the
program is correct, negative points are generated by mutating the positive once and
checking, if executing the program with the mutated state leads to a property violation.
If the model validator confirms that an ML-model is a valid loop invariant, an invariant
witness is generated. Otherwise, the process aborts without a result.

ZMJ18 In contrast to the former three approaches, Zhu et al. aim for program
verification, by solving CHCs using machine learning. The CHCs that are generated
for the program, as explained in Section 2.4.6, contains uninterpreted functions. The
machine learning approach is asked to learn a predicate for each uninterpreted function
symbol. For programs with loops, the CHCs introduce an uninterpreted function for
each loop, modeling the loop invariant and contains conditions similar to establishment
and preservation using this function. Hence, it also learns loop invariants.

191



A.1 Appendix for CoVEGI and MIGml

Initially, an empty set of training data is used. In the validation step, the learned
interpretations for the uninterpreted function in the CHCs are checked. A Counterex-
ample may be generated in two situations: If the loop invariant learned is too restrictive,
e.g. if it violates the initialization condition (2.4), additional positive data points are
generated and all negative data points are removed. Otherwise, if a CHC representing
establishment (2.5) or check (2.7) is violated with the current interpretation and it
cannot be decided using the set of training data if the new data point is observable at
the loop head, it is labeled negatively. A Counterexample violating check (2.7) that
is observable at the loop head means that the program violates the specification. For
the Learner, a decision tree is used as classifier. Predicates are generated using an
octagon-based template and an SVM. At first, an SVM is asked for a classification
of the training data, where the predicates from the ML-model are also used2. Using
a combination of two concepts for generating predicates may lead to more complex
predicates that depend on the training data.

Conceptual comparison Realizing the four existing approaches as instances of
MIGml allow us to easily compare them on a conceptual level: Although the ap-
proaches ZMJ18 and GNMR16 pursue different objectives and look completely differ-
ent at first, our instantiation shows that they differ only in two points: First, they
employ different techniques for representing the program and generating new elements
for the training data within the Teacher, and second, ZMJ18 uses an SVM as second,
additional predicate generator. A comparison of GNMR16 and KPW15 shows that
both approaches use the same conceptual components within the Learner and the main
difference between them lies in the Teacher. Especially in the non-iterative manner of
KPW15 and the facts, that GNMR16 employs training data including implication data
points but initially do not generate any training data.

In addition, we state in Table 3.1, if the approach is able to detect property vio-
lations or is assuming that the program given is correct. In general, loop invariants
help to prove the correctness of a program, hence assuming that the program the in-
variant is generated for adheres to the specification is reasonable. Nevertheless, in
case the program contains a property violation, data-driven approaches like KPW15
may generate a set of training data that is inconsistent, i.e. that contains duplicated
data points, once labeled positively and once negatively. As tasks violating the safety
property are not foreseen in some approaches, they do not provide a mechanism for
detecting inconsistent training data. As the classifier is not able to correctly classify all
data points, the approaches may run into problems, as the learning process may either
fail or produce unreliable results. The approach presented by ZMJ18 is the only one
that is also able to detect property violations by design.

2The authors told us that the template-based generation is also employed, which is only mentioned
implicitly in their paper.
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Artifact Availability of the Approaches As we aim to use existing approaches off
the shelf, we are interested in the availability and reusability of the provided software
artifacts. Hence, we provide a summary next: For ZMJ18, the artifact is available at
GitHub [ZGNK18], but we were not able to execute the tool due to issues while building
it. Both artifacts of KPW15 and GNMR16 are not publicly available anymore, but
the authors provided them and we included them in our own artifact [HW21c]. The
tool developed by Krishna et al. is only applicable to the benchmark used in their
evaluation, as it requires some manual transformation. The implementation of Garg
et al. is applicable to Boogie programs only and the tool is only executable on Windows-
32Bit. For SNA12, no artifact is available anymore. Our re-implementations do not
suffer from any of these restrictions.

A.1.4 Implementation Details of MIGml

Utility Functions The utility functions are mainly used to generate information on
the variables present in the program and their values at loop heads. All functions are
realized using CPAchecker [BK11]. The Default variable collector collects the variable
names as well as information on the variable (like domain, or if value is constant). The
Interval-based program executor is given an integer interval. It executes the program,
setting the values of input variables to values from the interval, and collects all variable
values at loop heads. The novel Symbolic execution based program executor uses the
symbolic execution tool Klee [CDE08; CN20] for data generation. The last function
is the Injectable value analysis. It determines whether a given state observed at a loop
head may result in a property violation. It extends the Value Analysis of CPAchecker,
which is introduced in Section 2.2.2.

The utility functions are mainly used to generate information on the variables
present in the program and their values at loop heads. All functions are realized using
CPAchecker [BK11]. The Default variable collector collects the variable names as well
as information on the variable (like domain, or if value is constant). The Interval-based
program executor is given an integer interval. It executes the program, setting the
values of input variables to values from the interval, and collects all variable values at
loop heads. The novel Symbolic execution based program executor uses the symbolic
execution tool Klee [CDE08; CN20] for data generation. The last function is the In-
jectable value analysis. It determines whether a given state observed at a loop head
may result in a property violation. It extends the Value Analysis of CPAchecker,
which is introduced in Section 2.2.2.

A.1.4.1 Learner

In many areas where machine learning techniques are applied, the training data may be
noisy and generally does not perfectly represent all data. Therefore, the techniques are
configured to not classify all training data correctly to avoid overfitting. In contrast,
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in this setting the models have to correctly classify all data points that are present in
the training data, which we require for all used techniques. Moreover, a precise trans-
formation of the learned model to a boolean representation is needed. In MIGml, we
currently provide two different classification algorithms, namely SVMs and decision tree
learner. Both learned models are relatively easily transformable into boolean formulae.
In addition, both can be configured to generate a classification which overfits to the
training data, i.e. instead of trying to generalize the training data the classifiers should
at best generate a model correctly classifying all training data. In the following, we
explain for both how to generate a boolean representation for the ML-Model learned,
i.e. the conditions that need to be fulfilled by a point to be classified positively. This
condition is used as the potential loop invariant.

SVM We have already exemplified in Section 3.2.1, how to represent a model learned
by an SVM using boolean formulae. Due to the learning algorithm employed by the
SVM, the coefficients present in the learned model are real values, where the variables
present in the program are (in most cases) integers. Consequently, an invariant con-
taining integer coefficients like 2 or reals like 0.5 is more likely correct than an invariant
containing 1.999974 or 0.5192. The resulting problem of rounding coefficients during
transformation is often addressed with too little detail in the publication, although be-
ing a major influencing factor. Using the information present in the articles as well as
existing available implementations, we implement two different rounding approaches,
both using the SVM implementation from the scikit-learn library [Sci20]. The close
rounding technique, denoted by Svm-C, is used by SNA12 and only rounds the real
values that are close to an integer to the next integer. In MIGml, close is defined
by a configurable parameter denoting the maximal distance to the nearest integer, by
default 0.1. For example, 1.999974 is rounded to 2, but 1.48 is not rounded. An
enhancement of the close rounding called scaled rounding (Svm-S), that is used by
ZMJ18. It searches for a scaling factor of the form n+1

n , n ∈ N, s.t. all coefficients in
the scaled model are close to the next integer. For example, 0.497 ∗ rem+ res is scaled
by 2 to 0, 994 ∗ rem + 2 ∗ res and rounded to rem + 2 ∗ res. As the SVM’s model
contains only a single linear equation, we apply the algorithm proposed by ZMJ18 for
Svm-S to split the dataset during learning, to be able to learn an arbitrary boolean
combination of predicates and the simpler algorithm applied by SNA12 for Svm-C. A
SVM offers a set of hyper-parameters, containing among others a C-value. The higher
the C-value, the more data points are tried to be classified correctly by the learned
model. For Svm-C, we use a C-value of 1 000 “forcing” the SVM to classify all training
data correctly, whereas Svm-S may learn a more general model (C-value of 10).

Decision Tree Learner The decision trees are generated by decision tree learners
from the scikit-learn library, called Dt-Skl. The boolean formula generated out of a
tree is the disjunction of the formulae for every path from the root to a leaf which them-
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selves are conjunctions of the boolean conditions on the nodes. Additional predicates
are integrated using the transformation of the training data described in [KPW15]: The
concrete value for an additional predicate is computed for each data point and added
as an additional column to the training data by introducing a temporary variable ti for
a predicate pi. When a decision node contains ti, it is replaced by pi when generating
the boolean formula for the Decision Tree. To be able to employ implication points,
we integrated the existing decision tree learner (called Dt-Ice) proposed in 2016 by
Garg et al. [GNMR16], that makes use of the latest freely available version of the C5.0
algorithm [Qui93].

Predicate Generator To generate predicates for the classifier, MIGml offers the
option to either use the predicates generated by any ML-classifier or generate the pred-
icates using a template. Currently, a template-based predicate generator for predicates
from the octagon domain (Pg-Oct) is implemented.

A.1.4.2 Teacher

The teacher’s main task is to guide the learner towards finding an invariant. It com-
prises two components, model validator and example generator.

Model Validator MIGml provides three different implementations of Model Val-
idators, each employing a different technique for abstracting the program: Inspired by
SNA12, Val-Ip generates two formulae for validation, one abstracting the path from
the program entry to the loop head with one loop iteration, and the second from the
loop head to the program exit, using the strongest postcondition operator. The Val-
SP, used by GNMR16, generates the establishment, preservation, and check conditions
(see (2.4), (2.5) and (2.7)) using the strongest postcondition operator. It is tailored to
find models with small values, iteratively adding the condition that all variable values
are smaller or equal to 2, 5, 10, ∞. Both, Val-Ip and Val-SP are realized using
CPAchecker. Val-CHC is based on CHCs, which is used by ZMJ18. The CHCs are
generated using the tool Korn [Ern20; Ern23], being, to the best of our knowledge,
the only tool generating CHCs for C programs directly and exporting them as SMT-
2-LIB-code. Korn generates additional predicates for each if-branch, increasing the
complexity of finding suitable interpretations for the predicates. We applied a simple
but efficient heuristic to resolve the additional branching predicates. Indeed, there are
few cases where we are not able to resolve the predicates, meaning that the validation
fails. All three model validators additionally classify, if the generated model was gen-
erated while validating the positive, negative, or implication conditions, information
useful for the example generator. For Val-SP and Val-Ip, this information is already
present. For Val-CHC, we use the algorithm presented by ZMJ18. We employ the
Java-SMT library [KFB16; BBF21], providing support for widely used solvers like Z3
or MathSAT5, where we currently use Z3.
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Table A.1: Comparison of the two main verifiers running standalone, using two helper
invariant generators with and without a restart of the main verifier

restart inject
k-induction alone SH-UA SH-VA UA-VA SH-UA SH-VA UA-VA

cor. overall 146 153 156 163 156 155 161
cor. proof 102 109 112 119 112 111 118
add. proof - 7 11 19 10 9 16
cor. alarm 44 44 44 44 44 44 43
add. alarm - 0 0 0 0 0 0
incor. overall 1 1 1 1 1 1 1

restart inject
pred alone SH-UA SH-VA UA-VA SH-UA SH-VA UA-VA

cor. overall 116 130 130 136 132 132 136
cor. proof 78 92 92 98 94 94 98
add. proof - 9 9 15 11 11 15
cor. alarm 38 38 38 38 38 38 38
add. alarm - 0 0 0 0 0 0
incor. overall 1 1 1 1 1 1 1

Example Generator For the initial example generation, MIGml contains a logic-
based (EX-Log) and execution-based example generator (EX-Exec). The logic-based
example generator asks the model validator to generate a fixed number of satisfying
assignments for each formula and extracts the data points. In contrast, EX-Exec first
calls either the interval-based (EX-I) or symbolic execution-based program executor
(EX-S) to generate a set of positive data points. Thereafter, these points are mutated
by changing some variable values, resulting in a set of candidate negative points. For
each candidate, the injectable value analysis is used to check whether the postcondition
is violated. This approach was proposed by KPW15. Note that EX-I is not guaranteed
to be sound when bounding the number of loop executions. Thereby, the training data
may contain points labeled negatively which could also be labeled positively using a
greater bound. As EX-S does not limit the loop executions, this problem does not
occur.

A.1.5 Analysis Results for Restarted Main Verifier

In addition to the result presented in Sec. 3.1, we additionally evaluated the effectiveness
of the two main verifiers using the option restartMain to false. We present the results
in Table A.1. The last three columns contain the results obtained when injecting the
computed witnesses into the running main verifier. When comparing the overall number
of correct results, we observe that restarting the main verifier has nearly no effect. In
case predicate analysis is used, the two instances of CoVEGIusing SeaHorn can solve
in total two tasks more than the combination that are restarted and in case that
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Table A.2: Results for the Reproduction using MIGml

Benchmark-Tasks Results
reported used helpful valid invalid other

SNA12 10 3 0 0 3 0
GNMR16 58 35 15 1 0 19
KPW15 22 13 0 0 11 2
ZMJ18 199 143 26 3 1 113

UltimateAutomizer and VeriAbs are used, no difference is found. For k-induction,
we see that injecting the witnesses is not beneficial when using the best performing
combination of UltimateAutomizer and VeriAbs compared to a restart of the main
verifier.

A.1.6 Reproducing experiments using MIGml

After having build a framework that allows for being instantiated with existing ap-
proaches, namely those presented in [SNA12; KPW15; ZMJ18; PSM16], we want to
use it to reproduce the experiments to confirm the authors findings.

Evaluation Plan: To inspect the reproducibility of the reported results, we evaluate
our re-implementations on the tasks used in the respective publications. As MIGml
uses the same configuration for all tasks in the benchmark, we always employ the
configurations described in Tab. 3.3.

Benchmark Tasks. A comparison of tools based on the existing evaluations was difficult
due to only partially overlapping sets of verification tasks. We collected the tasks which
are still available and published this set as unified benchmark in our artifact [HW21c].
As not all tool artifacts are online, the sets are unfortunately incomplete. In summary,
147 tasks from the four approaches presented are available and usable in MIGml.
Therein, 3 are used by SNA12, 35 by GNMR16, 13 by KPW15 and 109 by ZMJ18,
where tasks from GNMR16 and KPW15 are also used by ZMJ18.

Computing Resources. The evaluation is conducted on virtual machines, having an Intel
Xeon E5-2695 v4 CPU with eight cores, a frequency of 2.10 GHz and 16GB memory,
running an Ubuntu 20.04 LTS with Linux Kernel 5.4. Each run is limited to 5 minutes
of CPU time on 8 cores, having 15GB of memory available, which is the largest timeout
used within the four evaluations.

Experimental Results Table A.2 summarizes the results of the reproduction. It
contains the number of benchmark-cases used in the original paper and used in the
reproduction study. Moreover, the result of the experiments are given, reporting the
number of task for which at least one helpful, valid or invalid invariant is generated.
The column "other" summarizes timeouts, exceptions and the outcome "unknown".
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For SNA12, MIGml is not able to generate valid or helpful invariants for the three
tasks reconstructed, whereas the paper reports that the approach can compute such
invariants. The invariants generated are invalid, as they violate the preservation condi-
tion. As this configuration employs Svm-C, some predicates present in the invariants
contain non-rounded real coefficients. In addition, Val-Ip encodes only the first loop
iteration, which may also lead to learning invalid invariants. The implementation used
is not available anymore, hence we are not able to analyze the difference to the re-
implementation.

For GNMR16, the re-implementation is able to generate 15 helpful invariants, where
one invariant is helpful for falsification. The publication reports that helpful invariants
are generated for all tasks. When analyzing the runs with different results, it turns out
that the MIGml Teacher adds different datapoints for the same ML-model learned,
compared to the original implementation. Thereby, the Learner generates different
models. This diverging behavior is caused by different ways to compute the formulae for
validation (weakest precondition in GNMR16 and strongest postcondition in MIGml)
and due to different solvers used to generate the models, also confirmed by the authors
as likely explanation.

For KPW15, MIGml is also not able to generate valid or helpful invariants, although
reported in the paper. In most of the cases, the invariant generated is not valid, as it also
violates the preservation condition. In two cases, the initial training data computation
takes longer than five minutes, resulting in a timeout. The low performance is mainly
caused by the choice of the configurable parameter and additional tunings per task not
applied. MIGml is able to learn for some tasks at least valid invariants, if started with
the values for L, I and M used in the original evaluation. Four tasks can only be solved
using predicates not from the octagon domain, e.g. modulo operations, stated by the
authors. These and other task dependent optimizations are not applied by MIGml.

For ZMJ18, the re-implementation is able to solve 26 tasks, where one invariant for
falsification and in three cases a counterexample are generated. The authors reported
that their tool is able to compute a solution for more than 95% of the tasks. For
the vast majority of the tasks (93), MIGml is not able to compute an answer within
the time limit. These differences reside most likely in the fact that (1) the original
implementation calls the Svm-S only in each n-th iteration and (2) a different tool for
generating the CHCs is used. As different values for n are used for difference subsets
of tasks, MIGml calls the Svm-S in each iteration (n = 1). Although the original
implementations source code is available, we were not able to rerun the experiments.
Therefore, there might be additional reasons also causing the different results obtained.

Results
In summary, MIGml can reproduce the experiments and is able to partially
confirm the reported results.
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Threads to validity Our reproducibility study has shown that we were only partially
able to reproduce the results. This does not imply that the reported results in the
original papers are invalid. The most plausible explanations for the deviation for each
approach given in RQ1.

A.2 Appendix for component-based CEGAR and GIA

A.2.1 Using GIAs in Cooperative Scenarios

The basic idea of cooperation is to store analysis results computed by one tool in an
artifact and let another tool start its work using this additional information. Next, We
briefly summarize existing approaches of cooperative validation and explain how they
could make use of GIAs. Note that not all forms of cooperation make use of OA and
UA components, some may combine only OA or only UA tools. In these cases, we are
still able to use GIAs as an exchange format within the cooperation.

A.2.1.1 Cooperative Test Case Generation

Tester VerifierC, S

Program & Property

A

A

Figure A.4: Cooperative Test Case Generation using GIA as exchange formats

The goal of test case generation is the computation of a test suite leading to paths
covering all target nodes. This can be implemented as a cooperation of an UA analysis
Tester (e.g. concolic execution) with an OA analysis Verifier (e.g. bounded model
checking) as depicted in Figure A.4. Tester is responsible for generating the test suite
and Verifier for identifying unreachable target nodes. Hence, Tester reports in a GIA
within Prt the set of already found paths to targets, where the concrete variable values
used for following this path are added as assumptions, and in Pcand the set of not
yet covered target paths; Verifier tries to show infeasibility of paths in Pcand and if it
succeeds, moves these into Put . Next, Tester continues on the remaining targets, and
this cycle continues until all target nodes are covered by the test suite. In addition,
Verifier might add assumptions on program transitions to guide Tester to uncovered
targets.

This form of analysis has been proposed by Daca et al. [DGH16] as a conceptual
integration using an ARG for information exchange, and can be realized using GIA in
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a cooperative setting. There exist other cooperative approaches for test case gener-
ation, namely CoVeriTest [BJ19; Jak20; JR21] and conditional testing [BL19a]. In
contrast to the approach depicted in Figure A.4, conditional testing runs two different
UA approaches either cyclic or in a sequence. Although it is strictly speaking not a
combination of OA and UA approaches, we can also realize the cooperation using GIA
as an exchange format following the same idea and encoding all found test cases in Prt .
In CoVeriTest, two OA analyses are combined for test case generation, each of them
reporting the candidate test cases in Pcand and explored paths in Put . Each of them is
equipped with a UA tool that validates all candidates and stores them in Prt .

A.2.1.2 Cooperative Verification via Conditional Model Checking

C, S

Program &
Property

Conditional
Model

Checker 1

Conditional
Model

Checker 2
. . .

A A

Figure A.5: CMC using GIA as exchange formats

In contrast to the approaches discussed earlier, the concept of Conditional Model
Checking [BJLW18; BHKW12] foresees a sequential combination of multiple conditional
model checkers, where each of them is an OA tool. Information is exchanged using
condition automata. Although the original combination consists of OA tools only, we
can realize CMC using GIA, as depicted in Figure A.5. Each conditional verifier reports
the partial verification result within Put using conditions. The next one continues
working on the remaining target nodes. In [CJW15], the second conditional verifier is
replaced by a testing tool, yielding a cooperation between OA and UA tools.

A.2.1.3 Cooperation on Invariant Generation

Main
Verifier

Helper
Invariant
Generator

C, S

Program &
Property

A

A

Figure A.6: CoVEGI using GIA as exchange formats

The concept of CoVEGI, presented in Section 3.1 can also be realized using only
GIAs. Summarizing the core idea, an OA analysis (the Main Verifier) is supported by a
Helper Invariant Generator, as depicted in Figure A.6. The task of the Helper Invariant
Generator is to compute loop invariants for specific locations. As a loop invariant is
an over-approximation of the concrete loop executions, the Helper Invariant Generator

200



Chapter A. Appendix

is also an OA component. The Main Verifier generates a GIA, where it reports Pcand
all paths from the program entry via the loop, for which the invariant is requested.
Thereby, these paths are marked as a candidate for leading to a target node. The
Helper Invariant Generator is now asked to compute predicates, showing that the
paths are in fact infeasible. These invariants are encoded as state invariants for the
head of the loop. By encoding the task of invariant generation in this way, we see that
a Helper Invariant Generator solves the same task as a Precision Refiner in CEGAR.

A.2.1.4 Using GIAs in Other Forms of Cooperation

For using GIAs to either decompose an existing conceptual integration or to build a
novel form of cooperation, a component-wise procedure is advisable. First, each compo-
nent needs to be classified either being OA or UA. In general, each component within
the cooperation solves a certain task, e.g. proving that certain paths are infeasible,
finding a concrete execution or a concrete path to a specific location, or generating a
new abstraction in the form of predicates for a set of paths. For using GIAs as an
exchange format between the components, (1) the tasks that should be solved need to
be encoded within a GIA with respect to reachability and (2) the computed answer
has to be stored within the GIA. For the former, one can use a set of paths within
Pcand, either by using all target states or only a specific one, if the component should
focus on a specific path while completing the task. For the latter, the component can
either move (some paths) to Put respectively Prt , depending on whether it is OA or
UA, or it does not change the paths and only adds additional information in form of
path constraints or state invariants to it.

A.2.2 Full Algorithm for the X-Reducer for GIAs

The full construction of X-Reducer is given in Algorithm 7, extending the construction
given in [BJLW18]. Intuitively, we have to ensure that all paths that are X-covered are
not present in the reduced program. We therefore adapt the existing reducer presented
in [BJLW18]. As in their work, we compute all paths of the CFA C X-covered by
the GIA A. We therefore iteratively build a new CFA Cr which locations are pairs of
locations from C and states from A. We then iteratively construct all pairs reachable
from the element (ℓ0, (q0, φ0)) using a waitlist. For the current element retrieved from
the waitlist, we stop the exploration of its successors if all paths that start in the
successor are X-covered (see lines 9-10 and 15-16). As we now may have non-trivial
state invariants, we also need to account for the case that a path does not meet a state
invariant. We thus split the path into two sub-paths for non-trivial state invariants in
lines 8-13 using an if-then-else like structure: We create one that is taken only if the
state invariant is met, assumes the state invariant and that may lead to a state in Frt ,
the other in case that the state invariant does not hold, leading to the temporary node
(qt, true), for which it is guaranteed that it will never be removed and that contains the
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Algorithm 7 X-Reducer (extended)
Input: CFA C = (L, ℓ0, G) ▷ CFA

GIA A = (Q,Σ, δ, (q0, φ0), Fut , Frt , Fcand) ▷ GIA
qt /∈ Q ▷ additional state

Output: CFA Cr = (Lr, ℓr0, Gr) ▷ reduced CFA

1: Lr := {(ℓ0, (q0, φ0))}; ℓr0 := (ℓ0, (q0, φ0));Gr := ∅;
2: waitlist := Lr;
3: while waitlist ̸= ∅ do
4: choose and remove (ℓi, (qi, φi)) from waitlist;
5: for each g = (ℓi, op, ℓi+1) ∈ G do
6: if (qi, φi) ∈ Q ∧ ∃((qi, φi), (Gi, true), (qi+1, φi+1)) ∈ δ s.t. g ∈ Gi then
7: for each ((qi, φi), (Gi, true), (qi+1, φi+1)) ∈ δ s.t. g ∈ Gi do
8: if φi+1 ̸= true then
9: if ¬allReachX(qi+1) ∧ (ℓi+1, (qi+1, φi)) /∈ L then

10: waitlist := waitlist ∪(ℓi+1, (qi+1, φi));
11: if (ℓi+1, (qt, true)) /∈L then waitlist:=waitlist∪(ℓi+1, (qt, true)); end if
12: Lr := Lr ∪ {(ℓi+1, (q′

i, φi)), (ℓi+1, (qi+1, φi+1), (ℓi+1, (qt, true))};
// Create intermediate node and realize state invariant using if-else-construct

13: Gr := Gr ∪ {
(
(ℓi, (qi, φi)), op , (ℓi+1, (q′

i, φi))
)
,(

((ℓi+1, (q′
i, φi)), φi+1 , (ℓi+1, (qi+1, φi+1))

)
,(

((ℓi+1, (q′
i, φi)), ¬φi+1 , (ℓi+1, (qt, true))

)
};

14: else
15: if ¬allReachX(qi+1)) ∧ (ℓi+1, (qi+1, φi+1)) /∈ L then
16: waitlist := waitlist ∪{(ℓi+1, (qi+1, φi+1))};
17: Lr := Lr ∪ {(ℓi+1, (qi+1, φi+1))};
18: Gr := Gr ∪ {

(
((ℓi, (qi, φi)), op , ((ℓi+1, (qi+1, φi+1))

)
};

19: else
20: if (ℓi+1, (qt, true)) /∈ L then waitlist := waitlist ∪{(ℓi+1, (qt, true))} end if
21: Lr := Lr ∪ {(ℓi+1, (qt, true))};
22: Gr := Gr ∪ {

(
((ℓi, (qi, φi)), op, (ℓi+1, (qt, true))

)
};

23: if Fcand ̸= ∅ then: ▷ Over-approximate paths cand-covered
24: toKeep := ∅;
25: for each ℓ = (ℓi, (qi, φi)) ∈ Lr s.t. (qi, φi) ∈ Fcand do
26: add all predecessors and successors of ℓ in Lr to toKeep;
27: for each ℓ ∈ Lr do ▷ Remove paths not cand-covered
28: if ℓ /∈ toKeep then
29: Remove ℓ from Lr;
30: Remove all (ℓ, ·, ·), (·, ·, ℓ) from Gr;
31: return (Lr, ℓr0, Gr);

where allReachX(qi)= true if all paths starting in qi leads to FX , X ∈ {ut, rt}

remaining parts of the CFA. Taking this line of argument into account, we can conclude
that X-Reducer is in fact a reducer, following the proof structure from [BJLW18].
Again, the resulting CFA is deterministic.

202



Chapter A. Appendix

A.2.3 Algorithm for Merge for GIAs

Algorithm 5 consists of five different cases to ensure that paths from Put and Prt are
preserved and additional conditions for paths in Fcand are also preserved by splitting
paths. It makes use of additional functions:

• ◦, • are placeholder that are not processed,

• trueCond(qi)= true if all pah starting in qi only contain true conditions,

• reachcand(qi)= true if no path starting in qi leads to Fut ∪Frt and at least one to
Fcand,

• reachut,rt(qi)= true if at least one path starting in qi leads to Fut ∪Frt .

Next, we briefly summarize the five cases:

(a) Case line 1: State invariants and conditions of t1 and t2 are equal ⇒ Path is not
split.

(b) Case line 6: Both paths lead only to states from Fcand, one contains conditions,
the other one does not ⇒ Keep the non-true assumption

(c) Case line 11: At least one path starting in pi+1 eventually leads to F 1
ut ∪F 1

rt and
none starting in sj+1 reach F 2

ut ∪F 2
rt ⇒ Ignore sj+1.

(d) Case line 15: At least one path starting in sj+1 eventually leads to F 2
ut ∪F 2

rt and
none starting in pi+1 reach F 1

ut ∪F 1
rt ⇒ Ignore pi+1.

(e) Case line 19: Otherwise split the path into two paths.

A.2.4 Proof of Theorem 4.10

Recall the Theorem 4.10: Algorithm 4 is a combiner according to Definition 4.9.

Proof. Intuitively, we have to show that for the combination AO of two GIAs AI and A′
I

each path rt-covered by either AI or A′
I is also rt-covered by AO and that the reverse

holds (and analogously, that both properties hold for ut-covered paths). We therefore
inductively construct an accepting run of AO for a path π that is rt-covered by either
AI or A′

I and vice versa. We will prove this property by induction on the length of the
run of the automaton AO respectively AI and A′

I .
We assume wlog. that Put(AI) ∪ Prt(A′

I) = ∅ = Prt(AI) ∪ Put(A′
I). As Algorithm 4

and Algorithm 5 works in the same way for states from Fut and Frt and a GIA requires
that neither states in Fut nor Frt can be left, it suffices to show that for two arbitrary
GIA AI ,A′

I and AO = comb(AI ,A′
I) it holds that:

Put(AI) ∪ Put(A′
I) ⊆ Put(AO) (A.1)

and Put(AI) ∪ Put(A′
I) ⊇ Put(AO) (A.2)
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Let πi denote the prefix of length i of π for a path or run. We say that a run ρ =
(q0, φ0) −(G1,ψ1)−−−−→ . . . −(Gk,ψk)−−−−→ (qk, φk), of a GIA AO = (Q,Σ, δ, q0, Fut , Frt , Fcand) follows
a path π = ⟨ℓ, σ⟩−g1−→ . . . −gn−→ ⟨ℓn, σn⟩ if

1. ∀i, 1 ≤ i ≤ k : gi ∈ Gi,

2. ∀i, 1 ≤ i ≤ k : σi |= φi,

3. ∀i, 0 ≤ i ≤ k : σi |= ψi.

For (A.1), given a path π = ⟨ℓ0, σ0⟩ −g1−→ . . . −gn−→ ⟨ℓn, σn⟩ assume wlog. π ∈ Put(AI).
Hence, there is a run ρ = (q0, φ0) −g1,ψ1−−−→ . . . −gk,ψk−−−→ (qk, φk) of AI . Note that the transi-
tions of ρ could contain more than one edge, which we can ignore in the following and
thus directly write gi. We inductively construct a run τ = (p0, φ0) −g1,ψ1−−−→ . . . −gk,ψk−−−→
(pk, φk) of AO accepting π, where pi = (qi, si).
Induction start: (q0, true)∈ρ, ((q0, s0), true)∈τ0, hence τ0 follows π0.
Induction step:
Given i ∈ N, s.t. 0 ≤ i ≤ k. We know by induction hypothesis that τ i follows πi.
The next transition of ρ is −gi+1,ψi+1−−−−−→ (qi+1, φi+1). We distinguish, if δ2 also contains a
transition ((si, φi) −

gi+1,ψ′
i+1−−−−−→ (si+1, φ

′
i+1)):

If there is no ((si, φi) −
gi+1,ψ′

i+1−−−−−→ (si+1, φ
′
i+1)) ∈ δ2 or si ∈ {◦, •} then τ i is extended by

−gi+1ψi+1−−−−−→ ((qi+1, ◦), φi+1) (by line 5-9 of Algorithm 4) and accepts πi+1.
Otherwise, if there is ((si, φi) −

gi+1,ψ′
i+1−−−−−→ (si+1, φ

′
i+1)) ∈ δ2, then τ is extended either by

−gi+1,ψi+1−−−−−→ ((qi+1, si+1), φi+1) in line 1-4 of Algorithm 5 by −gi+1,ψi+1−−−−−→ ((qi+1, ◦), φi+1) in
line 9-12 of Algorithm 5 or by −gi+1,ψi+1−−−−−→ ((qi+1, •), φi+1) and by −

gi+1,ψ′
i+1−−−−−→ ((•, si+1), φ′

i+1)
in line 18-20 of Algorithm 5. In all cases, τ i+1 covers πi+1.

As (qk, φk) ∈ F 1
ut and ((qk, sk), φk) ∈ Fut , we know that τ ∈ AO and AO covers π. Thus

we can conclude that Put(AI) ∪ Put(A′
I) ⊆ Put(AO) holds.

For (A.2), given a path π= ⟨ℓ0, σ0⟩ −g1−→ . . .−gn−→ ⟨ℓn, σn⟩ from Put(AO), accepted by a
run τ = ((q0, s0), φ0) −g1,ψ1−−−→ . . . −gk,ψk−−−→ ((qk, sk), φk). We inductively construct a run
ρ = (p0, φ0) −g1,ψ1−−−→ . . . −gk,ψk−−−→ (pk, φk) ∈ AI or A′

I accepting π. As both AI and A′
I may

contain such a run, we start with constructing two runs ρ1 ∈ AI and ρ2 ∈ A′
I and show

that at least one of them accepts π.
Induction start: ((q0, s0), true) ∈ τ0, (q0, true) ∈ ρ0

1 and (s0, true) ∈ ρ0
2. Hence, both ρ0

1
and ρ0

2 follow π0.
Induction step: Let 0 ≤ i ≤ k be arbitrary but fixed. τ has the transition ((qi, si), φi)−gi+1,ψi+1−−−−−→
((qi+1, si+1), φi+1). We now distinguish, if both runs are still under construction (
case2.1 ) or not ( case2.2 ).

Case 2.1: By induction hypothesis, we know that there are two runs ρi1 ∈ AI and
ρi2 ∈ A′

I following πi. The next transition of τ , t =−gi+1,ψi+1−−−−−→ ((qi+1, si+1), φi+1) is
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either added by line 5 to 8 (2.1.1) of Algorithm 4, by line 14 (2.1.2) of Algorithm 4 or
by Algorithm 5 (2.1.3).
Case 2.1.1: There is a transition ((qi, φi) −gi+1,ψi+1−−−−−→ (qi+1, φi+1)) ∈ δ1, but no transition
((si, φi) −

gi+1,ψ′
i+1−−−−−→ (si+1, φ

′
i+1)) ∈ δ2 (or si ∈ {◦, •}). Hence, the construction of ρ2 stops

and si+1 ∈ {◦, •}. ρi1 can be extended by −gi,ψi−−→ (qi+1, φi+1)), and follows πi+1.
Case 2.1.2: works analogously to Case 2.1.1.
Case 2.1.3: If t is added by line 1-4, ρi1 and ρi2 can be extended using t, and both follow
πi+1. We know that t cannot be added using line 5-8, as either reachcand(qi+1) or
reachcand(si+1) is false. If t is added by line 9-12, then ρi1 can be extended using t, and
follows πi+1, whereas ρ2 cannot be extended, as si+1 = ◦. If t is added by line 13-16,
then ρi2 can be extended using t, and follows πi+1, whereas ρ1 cannot be extended, as
qi+1 = ◦. Otherwise, τ i is extended in line 18-30. There are t1 = ((qi, φi) −

gi+1,ψ′
i+1−−−−−→

(qi+1, φ
′
i+1)) ∈ δ1 and t2 = ((si, φi) −

gi+1,ψ′′
i+1−−−−−→ (si+1, φ

′′
i+1)) ∈ δ2. As τ is constructed

using t1 or t2, ρi1 or ρi2 can be extended, depending whether φi+1 = φ′
i+1 ∧ψi+1 = ψ′

i+1
(τ is in AI) or φi+1 = φ′′

i+1 ∧ ψi+1 = ψ′′
i+1 (τ is in A′

I). As paths accepted by a run
with true condition are also accepted with any condition, we know that the extended
run accepts πi+1.
Case 2.2: Wlog. assume that ρ1 is still under construction. As the construction
of ρ2 has stopped, si ∈ {◦, •} (follows from Case 2.1.1). Thus, the next transition
−gi+1,ψi+1−−−−−→ ((qi+1, si), φi+1) ∈ τ must be added by line 5 to 9 of Algorithm 4. This
works analogously to Case 2.1.1 ✓

As ((qk, sk), φk) ∈ Fut , (qk, φk) ∈ F 1
ut for ρ1 or (sk, φk) ∈ F 2

ut for ρ2, at least one of
them accepts π, concluding the proof.

A.2.5 Additional GIAs for the Example Application

A.2.5.1 Additional Example of a GIA

Figure A.7 depicts an example of a GIA for the program of Figure 2.3b with target
nodes TN = {ℓ1, ℓ2, ℓ6, ℓ9, ℓ10, ℓ11}, that is generated during test case generation with
the criterion branch coverage.

We have Frt = {q1}, Fut = {q10} and Fcand = {q3, q6, q9, q11} and φ5 ≡ input ==
2 ∗ res + rem. It contains the information that ℓ1 is reachable when the condition
input = −1 holds, ℓ10 is unreachable and that ℓ3, ℓ6, ℓ9 and ℓ11 are candidates for being
reached when the condition input = 2 holds. Additionally, to justify the unreachability
of ℓ10, it contains the state invariant φ5 ≡ input == 2 ∗ res+ rem.

A.2.5.2 Example of Combining two GIAs

Next, we exemplify the application of Combiner on the two GIAs A7, depicted in
Figure A.8a, and A8, depicted in Figure A.8b generated for the running example from
Figure 2.3 with target nodes TN = {ℓ1, ℓ2, ℓ6, ℓ9, ℓ10, ℓ11}. The result is depicted in
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* *
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Figure A.7: A GIA generated during cooperative test case generation for the example
program of Fig. 2.3 with states of Fut marked green, of Frt blue and of Fcand yellow.
We elide state invariants that are true and depict for transitions only the operation
and non-true conditions.

Figure A.8c. Both GIAs used as input could be generated during a cooperative test
case generation(cf. Appendix A.2.1.1), where A7 is generated by the tester (UA) and
A8 by the Verifier (OA). A7 encodes the information that ℓ1 is reachable with the
condition input = −1. A8 is produced by an OA tool, that marks the target node ℓ10
as unreachable. In addition, it contains the information that if the program is started
with input = 2.

As both, A7 and A8, contain a path to ℓ10, but q10 ∈ Fcand in A7 and s10 ∈ Fut in
A8, the combiner generated a successor using ’•’ instead of q10 for A9 to maintain the
information that ℓ10 is unreachable. In contrast, one successor of the state (q9,s9) is
(q10, ◦), as q9 has a successor q10 but s9 does not. Using ’◦’ instead of ’•’ ensures that
(q10, ◦) is not in Fcand in A9 (cf. line 18 in Alg. 4), because A8 contains the information
that this node is unreachable. Thereby, it is ensured that all paths of the CFA that
contain ℓ10 are ut-covered.

Additionally, Combiner maintains more precise information on paths from Pcand:
If a path π is present in Pcand(A7) and Pcand(A8), once with and once without condition,
the condition is also present on the path in the combined GIA. In our example, both
A7 and A8 contain a path covering among others ℓ3. A7 has a path (q0, q3, . . .) with
the condition true and A8 a path (s0, s3, . . .) labeled with input = 2. As a result A9

contains the non-true condition input = 2 as for the transition from (q0, s0) to (q3, s3)
and thus maintains the more precise information.
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Figure A.8: Application of Combine(A7,A8) = A9 for the program from Figure 2.3

A.2.5.3 CFA generated by Reducer

Figure A.9 contains the CFA obtained when starting Algorithm 7 using the CFA from
Figure 4.6 and the GIA A3 from Figure 4.16 as input.
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Figure A.9: The CFA C3 obtained when starting Algorithm 7 using the CFA C2 from
Figure 4.6 and the GIA A3 from Figure 4.16 as input

A.2.6 Using GIAs in Cooperative Test Case Generation

We also realized cooperative test case generation using GIAs for the information ex-
change, as depicted in Figure A.4. We follow the tooling used by Daca et al. [DGH16],
employing the concolic tester Crest [BS08] as UA tool and CPAchecker’s predicate
abstraction using CEGAR as OA analysis.

A.2.6.1 Implementation

Crest [BS08] is a concolic tester. Hence, test cases used as inputs are generated by
computing solutions to the path conditions that use symbolic inputs and solved by an
SMT-solver, in this case Yices [Dut14]. As Crest is computing an under-approximation
of the state space, it will only report violations of the safety property. By default, Crest
first generates up to 100 000 different inputs. Hence, Crest will eventually generate test
inputs covering all reachable branches. As Crest is a testing tool under-approximating
the state space, it is not able to identify paths of the program as unreachable. We
therefore combine it with a predicate abstraction from CPAchecker. The predicate
abstraction over-approximates the reachable state space and can thus mark target nodes
as unreachable. Due to the precisely defined and uniformly applicable semantics of the
GIA, we reuse the modules in CPAchecker that we built for CC-Pred-Gia, hence we
do not need to employ combiner or reducer in this setting.

We use Crest as off-the-shelf tool, hence it can neither process nor produce GIAs,
hence we build and employed combiner and reducer, resulting in the cooperative test
case generator depicted in Figure A.10.

For running Crest, we employed parts of TBF [BL17] to let Crest generate test
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Figure A.10: Cooperative Test Case Generation using GIA as exchange formats

inputs in the TEST-Comp test case format3 and generated a GIA for them. We addi-
tionally optimized the resulting GIA by removing duplicate paths, i.e. paths traversing
the same nodes but are labeled with different assumptions. Within each iteration,
Crest is started and generates at most 100 test inputs, before the predicate abstrac-
tion is called to identify unreachable target nodes. The computation is complete, if all
target nodes are ut-covered or rt-covered by the generated GIA. In the last step, we
extract a test suite from that GIA by traversing its path leading to Frt and collecting
all assumptions on the return values from nondet(). The resulting cooperative test
case generation approach is called CoTest.

We additionally used Crest standalone for comparison with CoTest. In the first
step, Crest is used in the default configuration, generating at most 100 000 test cases
in its internal format. Afterwards, TBF is used to remove duplicate tests and transform
the test cases into a test suite in the TEST-Comp format, that is needed to measure
the coverage of the generated test suite. To ensure that the test suite is generated, we
stopped Crest after 80% of the available time and start the transformation.

A.2.6.2 Evaluation

Test case generation aims at finding program inputs, such that either a certain state-
ment (statement coverage) or all branching points (branch coverage) are visited at least
once when executing the program with the given inputs. As we want to evaluate the
cooperation of a tester and an OA analysis technique, we focus on branch coverage,
as this yields in general several target nodes for a program. We compare the branch
coverage of the test cases generated for our cooperative test case generation approach
(called CoTest) with Crest as a standalone tool.

Evaluation Setup We used the same evaluation machines as in RQ 1, but limited
the time for test case generation to 5 minutes. We evaluated both approaches on a small
subset of the SV-Benchmarks, in the version used for the TEST-Comp’224. As we are
interested in exemplarily showing the usefulness of GIAs in the cooperative test case
generation setting, we selected a subset of the tasks from the ControlFlow category of

3https://gitlab.com/sosy-lab/test-comp/test-format/blob/testcomp22/doc/Format.md
4https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp22
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Table A.3: Results of test case generation for CoTest and Crest. Note that TestCov
was not able to analyze the full test suite generated by Crest in the given time limit.

CoTest Crest
Task #tests coverage time(s) #tests coverage time(s)

a1 2 75.0 % 32 33 335 75.0% 237
a2 5 87.5 % 63 18 183 37.5% 225
l5 7 84.9 % 50 50 447 84.9% 251
l6 8 84.6 % 50 50 266 84.6% 253
l7 19 84.4 % 120 50 180 84.4% 256
l8 10 84.3 % 56 50 072 84.3% 251
l9 11 84.2 % 55 50 036 84.2% 266
l10 12 84.1 % 57 50 035 81.0% 266
l11 13 84.1 % 67 50 022 84.1% 265
l12 14 84.0 % 72 50 020 84.0% 254
l13 15 84.0 % 76 50 019 84.0% 254

l14.1 16 83.9 % 78 50 015 83.9% 268
l14.2 - - T.O. 50 015 70.1% 259
l15.1 - - T.O. 50 019 69.9% 268
l15.2 17 83.9 % 81 50 019 83.9% 271

TEST-Comp (tasks l5-l15.2) and used the running example of [HW24] (task a1) and
an extended version, also shown in [HW24] (task a2). The selected tasks work with
simple integer variables and do not make use of arrays or pointers. The tasks selected
from the SV-Benchmarks contain an infinite loop, where all variables have the same
value at the start of each iteration. Thus, the loop does not affect the reachability of
the target nodes. As our reducer implementation works best for loop-free programs
and to avoid infinite computation for the coverage measurement, we removed the loop.

To compute the coverage of the generated test suites, we used TestCov [BL19b],
the tool also used in the TEST-Comp. We use TestCov with a 30 minutes timeout, in
contrast to TEST-Comp, where only a five-minute timeout is used.

Evaluation Results Table A.3 contains the experimental results for Crest and our
cooperative test case generation approach CoTest. It contains the size of the test
suite generated in the column #tests, the coverage achieved with each test suite and
the CPU time taken to compute the test suite for each task.

We generally observe that both tools generate test suites with nearly the same code
coverage, especially the size of the test suite generated by CoTest is significantly
smaller than for Crest. On average, the test suite generated by CoTest has only
0.024% of the size of the test suite generated by Crest, the largest difference is 0.006%
and the smallest difference is 0.038%. In other words, the test suite that is generated
by Crest within the given time limits contains on average 4 100 times more test cases
than the test suite generated by CoTest.
Another significant difference between the test suites generated by Crest and those
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generated by CoTest is their size, i.e. the number of generated test cases in the suite.
Each GIA contains the information which target nodes are reached for each test input.
Hence, detecting test cases following the same path within the CFA and thus leading
to the same target nodes is easy. This allows us to reduce the number of paths within
the GIA and thereby the test suite extracted in the end. Although Crest used within
CoTest generates up to 100 test cases per iteration, the evaluation indicates that using
GIA allows for a reduction of the test suite by at most 80% on the benchmark set used,
as for test cases following the same path within the CFA and hence covering exactly
the same target nodes only one per path is exported. We also observe the advantage of
the significantly smaller test suite, as TestCov is not able to process the full test suite
generated by Crest within the time limit of five minutes.
For two tasks (a2, l10) CoTest can cover more branching points than Crest. Due to
the size of the test suites generated by Crest, TestCov can only analyze around 10%
of it before reaching the given time limit, which is most likely the reason for the lower
coverage measured. For two tasks (l14.2 and l15.1), CoTest was not able to cover
all target nodes within the given time restrictions. As we transform the GIA into a test
suite only if all target nodes are covered, no test suite is generated in these two cases.

When comparing the CPU time consumed to generate the test suite, we observe
that CoTest can complete the test case generation task faster than Crest. In the
median, CoTest can finish the computation in only 28% of the time that is taken by
Crest. As GIAs allow to precisely encode information on reachable and non reachable
target nodes in a single artifact, predicate abstraction can mark all unreachable target
nodes as such and Crest can report all paths to target nodes within the same GIA.
Thereby, the computation can be stopped in case all target nodes are either ut-covered
or rt-covered. In contrast, Crest running standalone cannot detect that all target
nodes are covered, in case some of them are unreachable. Thus, it continues the test
case generation, until it reaches its internal timeout of 240 seconds.

In summary, GIAs are also suited as an exchange format for cooperative test case
generation, allowing encoding information of reachable and unreachable target nodes
within a single artifact. Due to the precisely defined semantics, it can be easily detected
whether the task is already completed. Thereby, cooperative test case generation also
benefits from using GIAs as an exchange format.
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A.3 Appendix for Ranged Program Analysis

A.3.1 Additional Examples of Instrumented Programs

0 unsigned int on_lpath = 1;
1 unsigned int on_rpath = 1;
2 unsigned int rcntr = 0;
3 unsigned int lcntr = 0;
4
5 int rredout(int pos){
6 return pos >= 4 || pos == 1;}
7 int lredout(int pos){
8 return pos >= 4 || !(pos==2||pos==3);}
9

10 int div2WithReminderAbs(short input){
11 if (input < 0){
12 if (on_lpath){
13 if (!lredout(lcntr))
14 return;
15 lcntr++;
16 if (on_lpath && lcntr >= 4)
17 on_lpath = 0;
18 }
19 if (on_rpath){
20 on_rpath = rredout(rcntr);
21 rcntr++;
22 if (on_rpath && rcntr >= 4)
23 return;
24 }
25 input = -input;
26 }else{
27 if (on_lpath){
28 on_lpath = !lredout(lcntr);
29 lcntr++;
30 }
31 if (on_rpath){
32 if (rredout(rcntr))
33 return;
34 rcntr++;
35 }
36 }
37 int rem = input;
38 int res = 0;
39 while (rem > 1){
40 if (on_lpath){
41 if (!lredout(lcntr))
42 return;
43 lcntr++;
44 if (on_lpath && lcntr >= 4)
45 on_lpath = 0;
46 }

47 if (on_rpath){
48 on_rpath = rredout(rcntr);
49 rcntr++;
50 if (on_rpath && rcntr >= 4)
51 return;
52 }
53 rem -= 2;
54 res++;
55 }
56 if (on_lpath){
57 on_lpath = !lredout(lcntr);
58 lcntr++;
59 }
60 if (on_rpath){
61 if (rredout(rcntr))
62 return;
63 rcntr++;
64 }
65 if (input != 2 * res + rem){
66 if (on_lpath){
67 if (!lredout(lcntr))
68 return;
69 lcntr++;
70 if (on_lpath && lcntr >= 4)
71 on_lpath = 0;
72 }
73 if (on_rpath){
74 on_rpath = rredout(rcntr);
75 rcntr++;
76 if (on_rpath && rcntr >= 4)
77 return;
78 }
79 abort();
80 }else{
81 if (on_lpath){
82 on_lpath = !lredout(lcntr);
83 lcntr++;
84 }
85 if (on_rpath){
86 if (rredout(rcntr))
87 return;
88 rcntr++;
89 }
90 }
91 return res;
92 }

Figure A.11: Range programs generated using instrumentation for the lower bound and
upper bound and the running example C1
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0 unsigned int on_lpath = 1;
1 unsigned int lcntr = 0;
2 int lredout(int pos) {return pos >= 4 || pos == 1; }
3
4 int div2WithReminderAbs(short input){
5 if (input < 0){
6 if (on_lpath){
7 if (!lredout(lcntr)){return;}
8 lcntr++;
9 if (on_lpath && lcntr >= 4){on_lpath = 0;}

10 }
11 input = -input;
12 }else{
13 if (on_lpath){
14 on_lpath = !lredout(lcntr);
15 lcntr++;
16 }
17 }
18 int rem = input;
19 int res = 0;
20 while (rem > 1){
21 if (on_lpath){
22 if (!lredout(lcntr)){return;}
23 lcntr++;
24 if (on_lpath && lcntr >= 4){on_lpath = 0;}
25 }
26 rem -= 2;
27 res++;
28 }
29 if (on_lpath){
30 on_lpath = !lredout(lcntr);
31 lcntr++;
32 }
33 if (input != 2 * res + rem){
34 if (on_lpath){
35 if (!lredout(lcntr)){return;}
36 lcntr++;
37 if (on_lpath && lcntr >= 4){on_lpath = 0;}
38 }
39 abort();
40 }else{
41 if (on_lpath){
42 on_lpath = !lredout(lcntr);
43 lcntr++;
44 }
45 }
46 return res;
47 }

Figure A.12: Range programs generated using instrumentation with the lower bound
πτ , where τ = {input 7→ 2} or the running example C1 called rangeProg2
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A.3.2 Detailed Analysis of the Efficiency of Ranged Program Analysis

In the following we have a more detailed look at the efficiency of ranged program
analysis using two different analyses within the ranged analyses. As we employ two
different analyses, we compare the wall time of the ranged program analysis separately
with both basic analyses.
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Figure A.13: Scatter plots comparing the wall time of the basic analyses and Ws-Se-
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Figure A.14: Runtime increase for Ws-
Se-Pred compared to the basic analy-
ses

In Figure A.13, we compare the execu-
tion time of Ws-Se-Pred with symbolic ex-
ecution and predicate abstraction. In general,
the scatter plots are more diverse, meaning
that some tasks are solved faster than the ba-
sic analysis, but others are solved slower by
Ws-Se-Pred. As we employ work stealing,
Ws-Se-Pred can solve tasks faster than the
basic analyses. For example, if predicate ab-
straction is rather slow for solving a task but
symbolic execution finds a solution fast, Ws-
Se-Pred is faster than predicate abstraction
due to the fact that symbolic execution steals
the second range. When looking at the run-
time increase given in Figure A.14, we get a similar result as for the configurations of
ranged program analysis employing two instances of the same analysis: We again see
the initial overhead, that has a huge impact for tasks that are solved fast. For larger
and more complex tasks, the median increase in the wall time becomes smaller. Ws-
Se-Pred is for the most complex tasks taking more than 100 seconds to be solved still
slightly slower than symbolic execution but faster than predicate abstraction running
standalone.

In Figure A.15, we compare the execution time of Ws-Value-Pred with value
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Figure A.15: Scatter plots comparing the wall time of the basic analyses and Ws-
Value-Pred
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Figure A.16: Scatter plots comparing the wall time of the basic analyses and Ws-Bmc-
Pred

analysis and predicate abstraction and in Figure A.16 Ws-Bmc-Pred with BMC and
predicate abstraction. We make the similar observations as for Ws-Se-Pred. Again,
the scatter plots are more diverse, meaning that some tasks are solved faster than
the basic analysis, but others are solved slower by Ws-Value-Pred or Ws-Bmc-Pred.
When looking at the runtime increase given in Figure A.17, the same observations as
for Ws-Se-Pred are made.

Lastly, we compare the efficiency of the two configurations of ranged program analy-
sis using off-the-shelf tools. Now, the results look slightly different. In general, we make
the same observations as before for Ws-Klee-UA compared to Klee and Ws-Symb-UA
compared to Symbiotic. The main difference now is that in the UltimateAutomizer is
in the experiments by far the slowest basic analysis. For example, it does not compute
any result in 20 seconds or faster. Thus, a configuration of ranged program analysis
employing work stealing is in many cases faster than UltimateAutomizer, but espe-
cially for small tasks slower than the other basic analysis running, as the the other
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Figure A.17: Runtime increase for Ws-Value-Pred and Ws-Bmc-Pred compared to
the basic analyses.
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Figure A.18: Scatter plots comparing the wall time of the basic analyses and Ws-Symb-
UA

analysis solves both ranges one after another. Interestingly, for complex tasks, both
Ws-Symb-UA and Ws-Klee-UA are faster than both basic analyses employed.

Finally, we compare the efficiency of instances of ranged program analysis that use
work stealing with those who do not use this feature. For all five configurations we first
of all observe that nearly all points are below the diagonal, meaning that the instances
using work stealing are not slower than those not using work stealing. More precisely,
we see for all configurations some tasks, where the instance using work stealing is faster
than the other configuration. As mentioned above, UltimateAutomizer is slower than
Klee and Symbiotic. Thus, Ws-Symb-UA and Ws-Klee-UA outperform Ra-Symb-UA
and Ra-Klee-UA on some tasks.
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Figure A.19: Scatter plots comparing the wall time of the basic analyses and Ws-Klee-
UA
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Figure A.20: Runtime increase for Ws-Symb-UA and Ws-Klee-UA compared to the
basic analyses.

Results
In summary, using ranged program analysis can in some cases increase the ef-
ficiency compared to one of the basic analyses employed, if the other one is
significantly faster. For simple tasks, the overhead of ranged program analysis
is observable but the effect decreases for more complex tasks. The two configu-
rations Ws-Symb-UA and Ws-Klee-UA are for complex tasks faster than both
employed basic analyses. In addition, using work stealing has no negative effect
on the efficiency of ranged program analysis.
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Figure A.21: Scatter plots comparing the wall time of instance of ranged program
analysis having work stealing disabled and enabled
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