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Übersicht
Die Fähigkeit zur Handhabung, Montage und Inspektion von mikro- und nano-
skaligen Objekten und Strukturen schafft derzeit die Voraussetzung für die Ent-
wicklung einer Vielzahl von neuen Produkten, Verfahren sowie Werkstoffen.
Dabei ist die Automatisierung dieser Vorgänge in der jüngeren Vergangenheit
weit vorangeschritten. Die Auswertung von Bilddaten hat sich hierbei als geeig-
nete Methode zur automatischen Positionsbestimmung von Werkzeugen und
Werkstücken erwiesen. Die meisten bekannten Verfahren müssen manuell mit
Position, Art und Ausrichtung von Objekten initialisiert werden, um deren Be-
wegung kontinuierlich verfolgen zu können. Dadurch ist der maximal erreichbare
Automatisierungsgrad begrenzt. Im Rahmen der vorliegenden Arbeit wird diese
Einschränkung durch die Einführung von zwei neuen Verfahren zur Bildauswer-
tung überwunden.

Das erste Verfahren beschäftigt sich mit dem Problem, in einer komplexen Bild-
szene einzelne Objekte aufzufinden und zu klassifizieren. In diesem Bereich kom-
men oft so genannte Template Matching Verfahren zum Einsatz, deren Fähigkeit
zur Generalisierung jedoch stark begrenzt ist. Stattdessen nutzt das vorgeschla-
gene Verfahren Methoden der statistischen Mustererkennung und lernt optimale
Entscheidungsregeln. Die Strategie zur Merkmalsauswahl stellt sicher, dass die
problemspezifischen Charakteristika berücksichtigt werden. Die Klassifizierung
basiert auf Support Vector Machines. Anhand von drei verschiedenen Anwen-
dungsszenarien und Bildmodalitäten wird das Verfahren validiert. Bei der ersten
Anwendung werden Kohlenstoffnanoröhren unter Nutzung des Rasterelektronen-
mikroskops auf der Oberfläche eines Siliziumwafers erkannt. Die zweite Anwen-
dung ist die Erkennung von biologischen Zellen in einem mikrofluidischen Kanal,
wobei das Lichtmikroskop Anwendung findet. Zuletzt werden magnetische Par-
tikel unter Verwendung der Magnetresonanztomographie detektiert.

Das zweite Verfahren widmet sich dem Problem, den örtlichen Zusammen-
hang zwischen mehreren Aufnahmen zu rekonstruieren. Die Aufnahmen wurden
von heterogenen Bildsensoren erzeugt. Im Allgemeinen können zwei Strategien
verfolgt werden. Bei der merkmalsbasierten Strategie wird in allen Aufnah-
men nach lokalen Strukturen gesucht, zwischen denen dann eine Korrespon-
denz ermittelt wird. Bei der flächenbasierten Strategie wird ein Ähnlichkeits-
maß zwischen den Aufnahmen optimiert. Beide Ansätze unterscheiden sich hin-
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sichtlich Konvergenzeigenschaften, maximaler Genauigkeit und Rechenaufwand.
Das neue Verfahren kombiniert die Vorzüge beider Ansätze, indem es zunächst
eine merkmalsbasierte Ausrichtung vornimmt und das Ergebnis dann der flächen-
basierten Strategie folgend verbessert. Dadurch wird die Konvergenz gegen die
bestmögliche Ausrichtung bei gleichzeitig geringer Verarbeitungszeit sichergestellt.
Eine große Zahl an Merkmalsdetektoren zur Erkennung lokaler Bildstrukturen
wurde integriert. Je nach vorherrschendem Bildinhalt wird mit einer geeigneten
Teilmenge an Detektoren gearbeitet. Eine weitere wichtige Eigenschaft ist die
Fähigkeit, ein variables Maß an Vorwissen im Abgleichverfahren zu berücksichti-
gen. Das neue Verfahren wurde anhand der Bilddatenfusion zwischen Rasterkraft-
mikroskop und Rasterelektronenmikroskop validiert. Eine vollautomatisierte
Bilddatenfusion wurde erfolgreich an einer großen Auswahl von Probenober-
flächen demonstriert.
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Abstract
The ability to handle, assemble and inspect micro- and nanoscale objects and
structures currently enables the development of a multitude of new products,
procedures and materials. Automation of these tasks made significant progress
in the recent past. Especially the automatic interpretation of image data turned
out to be a very useful form of sensory feedback. Most methods known in this
field deal with the problem of continuous pose estimation of micro- and nanoscale
tools and workpieces. A common drawback of these methods is the need for a
manual initialization step, which prevents fully automated assembly or inspection
processes. In this work, two methods for automatic image analysis are introduced
which will help to increase the level of automation.

The first method faces the problem of locating and classifying objects in a com-
plex image scene. Template matching algorithms are a popular solution to this
task, but they suffer from a poor generalization capability. Instead, the proposed
method makes use of statistical pattern recognition by learning optimal classifi-
cation rules from a set of training samples. The feature selection and training
strategy makes sure, the specific problem’s characteristics are taken into account.
Classification is based on a support vector machine classifier. The method is val-
idated using three different application scenarios and imaging modalities. First,
carbon nanotubes are localized on the surface of a silicon wafer, inspected by the
scanning electron microscope. Next, biological cells in a micro fluidic channel are
inspected for mechanical damage using the optical microscope. The last appli-
cation is the detection of magnetic particles using magnetic resonance imaging.
In all scenarios, the proposed method has been applied successfully.

The second method is designed for the spatial alignment of images acquired by
multiple heterogeneous sensors. Generally, two strategies can be followed. One
strategy is the detection of local image structures and the identification of cor-
responding structure (feature-based approach). The other strategy optimizes a
similarity measure between images (area-based approach). Both approaches are
different in terms of accuracy, convergence properties and execution time. The
new method combines the benefits of both approaches by performing a feature-
based alignment first, followed by an area-based refinement step. This assures
convergence towards the best alignment and a low processing time. A large
number of feature detection methods have been integrated. Depending on the
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prevailing image contents, the method works with a suitable subset of detectors.
Another important feature is the incorporation of a variable level of prior knowl-
edge. For the validation of the new procedure, it has been applied to the task
of fusing scans acquired by the atomic force microscope and scanning electron
microscope. Fully automatic image fusion has been demonstrated successfully
on a multitude of sample surfaces.
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1 Introduction
Micro- and nanotechnology play a key role in many areas of research and indus-
try. Structures and objects with dimensions in the micro- and nanometer range
exhibit unique electrical, mechanical and optical properties. These properties
are exploited already in a multitude of novel products and applications such as
displays or sensors for mobile phones. Nevertheless, the production technology
is improving continuously, making applications of micro- and nanotechnology
better and more available. Robotic manipulations enable characterization, as-
sembly, handling and structuring of micro- and nanoscale components [1, 24].
Therefore, micro- and nanorobotics provide important tools for basic research
but also for optimizing existing and establishing new production technologies.

Common application scenarios of microrobotics include the inspection and
manipulation of biological cells and also the assembly of microelectromechanical
systems. Performing these tasks imposes difficulties originating from the scaling
effects of the governing forces such as surface forces or weight. On the nanoscale,
managing the scaling effects becomes even more important. Possible applications
for nanorobots are bending experiments for testing the mechanical properties of
nanoscale objects. Also, nanoelectromechanical systems can be assembled by
nanorobots.

Many setups for micro- and nanorobotic manipulations have been presented,
including commercially available nanomanipulators and positioning stages. A
more flexible solution is the construction of mobile platforms for micro- and
nanorobotic tasks. The components of a micro- or nanorobotic system typically
include a set of sensors and actuators and also a control system. Frequently used
types of end-effectors are tips for indentation and grippers for pick-and-place
handling of objects. Sensors for multiple quantities are available, exploiting
electrical, optical or mechanical principles of measurement. One of the most im-
portant forms of sensory feedback is obtained by image analysis. Image material
provided by microscopes is not only valuable for visual inspection of micro- and
nanoscale objects and structures. It can also be used for the automatic extraction
of object positions and indirect measurements such as optical force measurement.

In the context of micro- and nanorobotics, most prior work on computer vision
focuses on the problems of object tracking and depth estimation. Object tracking
refers to the task of continuously following the movement of an object such as
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a microgripper or a nanowire. Together with methods for depth estimation,
the introduction of object tracking helped to tremendously increase the level of
automation in micro- and nanorobotic tasks. Two of the most advanced methods
which have been successfully applied are the active contours algorithm and rigid-
body tracking based on a geometric model. Both require a manual initialization
step and in the latter case also a model of the object geometry. This limits the
possible level of automation which can be achieved, and also the applicability to
targets with high variations in visual appearance.

A special application of micro- and nanorobotic systems is the preparation and
execution of material inspections. An example is the identification of targets and
preparation of lamellae for an examination using the transmission electron mi-
croscope. However, the characteristics of imaging modalities with the capability
of image acquisition at the micro- or nanoscale are very different. These include
features such as the maximal magnification or also the type of contrast. The
different nature of the imaging modalities motivates their side-by-side use. By
using principles of micro- and nanorobotics, fully automated multimodal surface
inspections seem possible. This might include sample preparation, the selection
of a region of interest, setting of the imaging parameters and presentation of a
fused view of all collected data. While most of these task can be carried out with
state-of-the-art components of micro- and nanorobotic systems, there is a lack
of a suitable strategy for fusion of the collected data.

1.1 Objective
The goal of this thesis is to further increase the level of automation in micro-
and nanorobotics by providing new methods for computer vision. Specifically,
two problems must be solved:

• Localization and classification of micro- and nanoscale objects from image
scenes,

• Data fusion between heterogeneous sensors with imaging capabilities at the
micro- and nanoscale.

Both procedures will supersede manual image interpretation steps such as la-
beling objects or landmark points which are common in state-of-the-art processes.
A requirement is a high level of integration with existing control architectures,
enabling fully automated manipulation and inspection procedures at the micro-
and nanoscale.
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1.2 Thesis outline
This thesis is structured into eight chapters. In the following chapters, the au-
thor contributes to the field of image registration and object classification at the
micro- and nanoscale. Chapter 2 describes application scenarios and state-of-the-
art methods used for image-based object detection in micro- and nanorobotics.
The problem of multimodal image fusion and the most important fields of ap-
plication are explained in Chapter 3. Also, state-of-the-art methods for image
registration are categorized. In Chapter 4, a system for micro- and nanoscale
object classification is developed. It is based on statistical pattern recognition
and designed for being integrated into fully automated micro- and nanorobotic
setups. Chapter 5 introduces a new strategy for multimodal image registration.
It combines the benefits of area-based and feature-based registration schemes.
The system for micro- and nanoscale object classification is validated in Chapter
6. Three experimental setups with different imaging modalities are used. The
tasks carried out are the localization of carbon nanotubes on the surface of a
silicon wafer, a quality check for biological cells and the detection of magnetic
particles using magnetic resonance imaging. Chapter 7 validates the new strategy
for multimodal image registration by registering scans obtained from the atomic
force microscope and scanning electron microscope. The thesis is summarized
and an outlook is provided in Chapter 8.
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2 Image-based object detection in
micro- and nanorobotics

Transferring computer vision methods to micro- and nanorobotic applications
imposes a multitude of difficulties. Those are arising from the characteristics of
sensors with imaging capabilities at the micro- and nanoscale but also from the
high variation in appearance of the target objects. Nevertheless, image analysis
provides a valuable form of feedback for process automation. This chapter pro-
vides an overview on methods, which are used for image-based object detection
in micro- and nanorobotics.

2.1 Problem statement
In the recent past the interpretation of image data turned out to be one of the
most important forms of sensory feedback in micro- and nanorobotic tasks. A
well-established application scenario is the analysis of image scenes showing a
number of usually movable objects. The most relevant types of objects are tools
and workpieces. Typical tasks to be carried out are the inspection, manipula-
tion or assembly of objects. A common difficulty is that image scenes can also
contain other contents such as acquisition-related artifacts or contaminations of
the setup. Although this configuration shows some similarities with macroscale
robotic tasks, the characteristics of the imaging sensors used and also the behav-
ior of the objects is very different in micro- and nanorobotics.

The problem targeted here is the detection of micro- and nanoscale objects in
an image scene. Object detection is the process of localizing objects belonging
to a given class of objects [15]. It is closely related to a number of other tasks.
Object recognition refers to the localization of a specific object instance. On the
other hand the success of automatic image analysis on the micro- and nanoscale
strongly relies on the formulation of prior knowledge about the setup. In cases
dealing with unique objects such as a microgripper, the distinction between the
different tasks might vanish. Pattern recognition is the process of recognizing
patterns by analyzing object features. Pattern recognition can be used for object
detection. Object tracking is the continuous position determination of a specific
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object instance. Generally, the object tracking procedure needs to be initialized
with the initial object position and sometimes also orientation.

The following section describes a collection of state-of-the-art methods cur-
rently in use in the field of micro and nanorobotics. Some applications have a
strong focus on object tracking and thus need an initialization. However, in most
cases the same methods can also be used for object detection by reformulating
the search space or the optimization criterion. For example, correlation-based
techniques are currently in use for both, object detection and object tracking.

2.2 State-of-the-art object detection methods in
micro- and nanorobotics

2.2.1 Marker-based position determination
The problem of determining object locations can be ill-posed, depending on the
viewing perspective and amount of visible object detail. A possible solution is
to mark objects with a unique label, which can be recognized easily in an image
scene. This approach is very popular in macroscale robotics. However, attaching
markers to micro- and nanoscale objects is much more difficult and not possible
for all applications. On the other hand, it strongly simplifies the localization
procedure.

An example of active markers has been shown using light-emitting diodes
(LEDs) [18]. The LEDs are positioned at the bottom of a mobile robotic plat-
form. As the LEDs are the only source of illumination in this setup, the camera
image acquired from the bottom view shows nothing else but bright spots at the
location of the LEDs. By computing the center of gravity of these bright spots,
the location of the LEDs and therefore the position and orientation of the mobile
platform can be concluded.

In [61], a system for automated microassembly is presented. Localization of the
microobjects is carried out using a three-dimensional optical vision sensor, based
on a miniature camera. The microobjects have been created in a lithographic
process. Therefore it was possible to attach special circular positioning marks
already in the manufacturing process. For improved visibility, the positioning
marks have been created using a fluorescent substance. If appropriate illumina-
tion is chosen, the camera image will show an almost perfect segmentation of
the positioning marks. Object localization is now based on the known object
geometry and location of the positioning marks. Besides the very high speed of
computation, this approach also hardly suffers from unwanted reflections. The
authors report a high accuracy and repeatability of the optical vision sensor.
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A system for fast object tracking in the scanning electron microscope (SEM)
is presented in [53]. In contrast to [83], the system is not working with full
images but works with line scans along arbitrarily shaped patterns. Avoiding the
time-expensive full image acquisition in the SEM, the system works with update
rates in the kHz range. For successful object tracking, it needs to be initialized
with the object location. In order to achieve the very high update rate and
arbitrarily-shaped scan patterns, custom-built hardware has been used. Several
marker geometries have been tested. The markers have been manufactured using
a focused ion beam (FIB).

2.2.2 Position detection from known scene arrangement
In automated microassembly tasks there can be situations where objects need
to be localized in an image scene of which the general arrangement is known a
priori. This can be the case if workpieces and tools have been moved to the field
of view by means of a non-vision-based position control or even in open-loop
mode. The constellation can also be known from prior assembly steps. In some
cases the general arrangement of the image scene may be formulated by a set of
rules. A set of rules might look as follows:

• There are 4 separated objects in the scene.

• Three of them are tools (T1, T2, T3), one of them is a workpiece (W1).

• T1 is located above all other objects.

• T3 is located lower than all other objects.

• W1 is the leftmost object and is connected to the left image border.

• T2 is the rightmost object and is connected to the right image border.

From such a set of rules, individual objects can be identified in the image scene.
The recognition of the gripping arms of a microgripper has been successfully
demonstrated [117]. Initially, objects are segmented using Canny edge detection
[13]. The objects are identified by computing their centers of gravity and by using
the prior knowledge about the scene arrangement. In a subsequent assembly step,
it is known from the context that the microobject will randomly adhere to one
of the gripping arms. This is detected automatically by observing a reduction in
the number of contours and by comparing their centers of gravity.
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2.2.3 Correlation-based approaches
When assembly tasks on the micro- and nanoscale are performed, available tools
such as grippers or probes are often reused multiple times or tools of similar
shape are used. Additionally, the workpieces used in an assembly setup will
often also show similarities. Therefore, in some application scenarios explicit
search patterns are available for the detection of objects from an image scene.
The direct way of measuring the image similarity is to compute the normalized
cross-correlation. For a given input image I (x, y) and a search pattern P (x, y),
the correlation coefficient matrix C (x, y) can be computed from

C = F−1 [F [I] · F [P]∗] , (2.1)

where F denotes the Fourier transform and ∗ the conjugate complex. The
normalized cross-correlation matrix CN (x, y) is derived as follows:

CN = C√∑
x,y

I (x, y) · ∑
x,y

P (x, y)
. (2.2)

Figures 2.1 and 2.2 depict how cross-correlation can be utilized for object
detection. The input image scene can be seen in Figure 2.1. It shows an electro-
thermally actuated microgripper approaching a silicon wafer. The scene was
captured using the SEM. Figure 2.2 shows the cross-correlation coefficients and
the search pattern, which shows the gripper jaws. A sharp tip can be observed
in the correlation matrix at the actual position of the jaws.

The technique has been applied to SEM images with a focus on processing
speed [98]. Initially, the authors localize the object in a full image scene. This
can be speeded up by downsampling of image scene and search pattern. Once
the object is found, it’s position can be continuously followed by performing
correlation only in the local neighborhood of the last known object position.
This neighborhood is referred to as region of interest (ROI). A big benefit of
using ROIs in SEM imaging is the speedup not only in image processing but
also in image acquisition. Unlike other image sensors, the SEM is capable of
scanning small selected areas of an image scene. The acquisition time is reduced
proportional to the scanning area. Using these extensions of the direct cross-
correlation method the authors demonstrate real-time object tracking. The high
robustness of the correlation method to image noise is identified as the crucial
factor for the success in SEM image processing.

Correlation-based object detection in the direct form as shown in Equations 2.1
and 2.2 is sensitive to a number of effects. Any difference in scaling or rotation
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Figure 2.1: Electro-thermally actuated microgripper approaching a silicon
wafer with carbon nanotubes.

between input image and search pattern will dramatically decrease the corre-
lation coefficient at the target position. Even small differences can reduce the
correlation coefficient below the noise level, making successful object detection
impossible. Also, the correlation coefficient will suffer from variations in image
signal intensity. The authors in [98] target the problem of object rotation by
generating multiple rotated search patterns. In object tracking mode, not only
limited object displacements but also a limited object rotation can be assumed
between consecutive images. By limiting the search space to small rotations, the
method preserves it’s real-time capability.

Extending the orientation estimation procedure from object tracking to a full-
frame object detection increases the computational burden by orders of magni-
tude. Another effect is that due to the large search space, additional peaks in the
correlation coefficient will accidently show up and complicate the identification
of the true object position. Therefore, correlation-based object detection can be
regarded as a tradeoff between detection performance, size of the search space
and computation time. Methods for the design of optimal detectors with respect
to a variety of criteria can be found in [63]. The idea of making correlation-based
detectors robust to rotation can be extended to cover three-dimensional rotation,
scaling and also multiple types of objects in one detector. These extensions are
generally paid for by a loss in detector performance.
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Figure 2.2: Result of cross-correlation between a new image scene and a search
pattern (upper-right corner). The search pattern was obtained by
temporal averaging of images showing the gripper in relaxed state.
A sharp tip can be seen at the actual jaw position.

2.2.4 Object localization based on model fitting

Depending on the application scenario, the geometry of micro- and nanoscale
tools and workpieces can be described in the form of a mathematical model. This
is especially the case if the object has been created by a manufacturing method
which itself relies on computer-assisted design (CAD) modeling. An example
are microgrippers which have been produced using a lithographic process. As an
alternative, the model can be extracted from multiple views of an object by means
of a contour description. If the object model is not known from the manufacturing
process and cannot be extracted, there is still the option to describe it manually
using basic geometric shapes. The model can then be used for the localization
of objects in an image scene.

Microscale object tracking in the SEM has been demonstrated using the active
contour algorithm [99]. An active contour (also referred to as snake) is a param-
eterized contour of an object. The contour is modified iteratively with the aim
of minimizing an assigned energy E∗

snake. The optimization can take place in a
single image or also in a sequence of images. In the original formulation given
in [60], the energy of a parameterized snake v (s) = (x (s) , y (s)) is obtained from

E∗
snake =

1∫
0

Esnake (v (s)) ds =
1∫

0

Eint (v (s)) + Eimage (v (s)) + Econ (v (s)) ds.

(2.3)
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The behavior of the snake is determined by the choice of the energy terms Eint,
Eimage and Econ. These terms need to be adapted for special applications and
imaging sensors. The internal energy Eint is derived only from the shape of the
snake but not from the image contents. Eint usually penalizes a high number of
windings in the contour and preserves smoothness. Eimage is based on the image
contents in the surrounding of the snake. One popular choice is to favor contours
which align to image edges. Econ depends on external constraint forces such as
user interaction.

By changing the energy terms during an application, the algorithm can switch
between different modes of operation. For example, the active contour can be
initialized with a basic shape (e.g. a rectangle) for iterative adaption towards
the target object shape. This shape is locked when switching to object tracking
mode. In tracking mode, only a combination of rotation, scale and translation
is allowed to update to active contour. This behavior can be implemented by
making other changes prohibitively expensive in terms of Eint. The described
method has been applied to microscale object tracking inside the SEM using a
special formulation of Eimage which is adapted to the noise distribution of the
SEM [97].

Generally, active contours can also be utilized for object detection by initializ-
ing v (s) with the targeted shape. Changes in object appearance can be handled
by extracting contours from a set of training images [16]. This set of training
shapes is fused into a representative shape which can be used for object detection.
The idea covers only the aspect of contour shape but has also been extended to
image contents inside the contour such as texture.

Another approach to microscale object tracking in the SEM is based on pre-
defined three-dimensional CAD models [62]. Initialized with an estimate of the
three-dimensional object pose, the algorithm computes a two-dimensional projec-
tion image which simulates the actual SEM view. The projection view contains
only the visible edges of the CAD model, and ideally model edges and object
edges from the SEM image should align. With any movement of the microob-
ject, model and image edges will not match any longer. Assuming only small
movements are possible between consecutive frames, the algorithm detects ob-
ject edges in the local neighborhood of the model edges. With the new edge
positions the object pose can be updated. This procedure is applied iteratively
for continuous object pose estimation.
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2.3 Limitations of the state of the art
In summary, it can be said that the methods described helped increasing the
level of automation in micro- and nanorobotics substantially. The marker-based
solutions are reliable and fast and should be used wherever permitted by the
application. Exploiting knowledge about the scene arrangement is also a good
option, if available. Correlation-based methods can be used efficiently for object
detection tasks in cases where sufficient constraints concerning object orientation
and scale can be made. The probably most flexible method is the model fitting
approach.

However, many micro- and nanorobotic procedures still contain multiple user
interaction steps. A main reason is that the image processing routines described
so far suffer from two types of limitations. The first group is limited to spe-
cial application cases, inherent to the functional principle. This group includes
marker-based detection and the exploitation of knowledge about the scene ar-
rangement. The second group is limited by a weak capability of generalization.
This applies to correlation-based and model fitting techniques. Both are mainly
good for finding objects of known geometry. All attempts to make these meth-
ods robust to a variety of geometric transformations mainly aim at compensating
for acquisition-related effects such as viewpoint or illumination. Unlike in most
macroscale robotic tasks, micro- and nanoscale tools and especially workpieces
can exhibit a strongly variable outer appearance.

Both, correlation-based and model fitting techniques can be extended with
generalized search patterns created out of multiple training images. The problem
is that the more general a search pattern becomes, the more the detector tends
to respond to arbitrary image patterns. Another problem is the definition of
decision rules: each detector must not only detect the presence but also the
absence of objects of interest. These rules must be specified explicitly by means
of minimum correlation coefficients or a minimum similarity measure for model
fitting. The limitations of state-of-the-art micro- and nanoscale object detection
methods become most obvious in applications where objects of interest exhibit a
high intra-class variability not only in shape but also in other object properties
such as texture or color.
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3 Multimodal image fusion
For the inspection of micro- and nanoscale structures, multiple imaging modali-
ties are available. Each is providing special imaging capabilities but also imposing
restrictions. Micro- and nanorobotics can help to combine the benefits of multi-
ple imaging modalities by assisting sample preparation, identification of regions
of interest and also by supporting data fusion. This chapter gives an overview
of the state of the art in multimodal image fusion. It presents common methods
used in material inspection and other important application fields of multimodal
image fusion.

3.1 Problem statement
Image fusion is a special case of sensor data fusion. In contrast to many other
applications of data fusion, the sensors deliver multi-dimensional data sets. The
motivation for image data fusion is to create a spatially aligned view of an image
scene which is better in a certain sense. In comparison to the separate images,
the fused view allows a deeper understanding of the image contents. A popular
example is image stitching [110], where multiple overlapping views of a large-
area scene are fused to an overview. Image stitching is a form of unimodal image
fusion, as only a single imaging modality is incorporated. In multimodal image
fusion, heterogeneous image sensors with different imaging characteristics are
used. Multimodal image fusion is in most cases motivated by complementary
image information obtained from the different sensors. The spatially aligned
view simplifies the combined interpretation of the sensor data.

An image fusion procedure typically requires at least two processing steps
which are spatial alignment and visualization of the image data. The process of
spatially aligning images is also referred to as image registration [42]. Because
registration is by far the most complex task of image fusion, both expressions
are often used interchangeably. In some cases, multimodal image acquisition can
be carried out in a pre-registered setup. An example is the use of multispectral
sensors in a camera, where both sensors use the same optical system simulta-
neously. In all other cases, registration must be carried out using additional
position sensors or directly, by evaluating the image contents.
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According to [42], the result of an image registration is a point-to-point cor-
respondence between two images of a scene. The point-to-point correspondence
is formulated in a transformation function, which is of the form T (x, y) for two-
dimensional image data. It has to be noted that image registration is not a
commutative operation. One of the images is named the reference or base image
and it is kept unchanged. The other image is referred to as target image. The
task of image registration is to transform point coordinates from the target im-
age to the coordinate system of the base image. T (x, y) can most efficiently be
described with the help of a parameterized transformation model. In probably
the most simple case this would be a shift of the image coordinates (x, y) by a
translation vector t:

T (x, y) =
(

x
y

)
+ t. (3.1)

The transformation model should reflect the type of geometric differences
which can be expected between the images.

3.2 Application fields of multimodal image fusion
With the increasing number of imaging techniques it has become more and more
difficult for a human observer to have an overview of multi-dimensional data,
showing complementary but also redundant information. Therefore, the demand
for multimodal image fusion has grown rapidly over many fields of application.
A number of recent developments is summarized in [118]. In the following, three
of the most important application fields of multimodal image fusion are sketched.

3.2.1 Medical image processing
Medical diagnosis holds a huge repertoire of imaging modalities with strongly
different imaging capabilities. In [92], the distinction between primarily mor-
phological modalities and primarily functional modalities has been proposed.
Primarily morphological modalities highlight mainly anatomical structure. Ex-
amples include magnetic resonance imaging (MRI), computed tomography (CT)
or conventional X-ray. Primarily functional modalities such as functional mag-
netic resonance imaging (fMRI) or positron emission tomography (PET) are
capable of highlighting functionally active areas, for example in the brain. A
popular application of medical image fusion is the combination of primary mor-
phological and primary functional modalities, allowing the precise localization of
(mal-)functional areas in relation to the surrounding tissue. Another common
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usage of medical image fusion is the combination of primarily morphological
modalities with complementary imaging characteristics. An example is the fu-
sion of MRI (good soft-tissue contrast) and CT (good contrast on bones and
calcifications).

For some widely used combinations of modalities such as PET and CT, inte-
grated imaging equipment is commercially available. This brings the benefit of
working in a pre-registered coordinate system. If this is not possible, the use
of markers such as screws with good visibility in both imaging modalities is a
customary. The latter method is usually referred to as extrinsic registration. In
contrast, intrinsic registration relies purely on the image data and is by far the
most challenging task. A common difficulty in medical image fusion is the regis-
tration of elastic tissue, which requires a non-rigid transformation model [45]. It
has been pointed out that many of these registration problems are ill-posed and
require proper measures of regularization [33].

3.2.2 Remote sensing
The interpretation of remote sensing data is essential in various areas of applica-
tions including cartography, detection of land usage or emergency management.
In most cases, imaging sensors are mounted on aircrafts or earth observation
satellites. Multispectral scanners are able to highlight different surface proper-
ties [7, 52]. Other principles of measurement such as interferometric synthetic
aperture radar (InSAR) or laser altimetry provide a good contrast on surface
topography. Most remote sensing data are referenced with information about
position and viewing direction of the sensor as provided by the navigation sys-
tem of the aircraft or satellite. However, due to the high travelling speed and
the comparably small field of view this information usually does not allow pixel-
accurate registration. An appropriate procedure for image registration is needed
to further improve the transformation parameters [42]. Although the nature
of the problem suggests using rigid transformation models, sometimes a correc-
tion of sensor-specific distortions is integrated into the transformation model.
Marker-based registration is not a relevant topic in remote sensing applications.

3.2.3 Material inspection
Some main motivations for material inspection in industry are defect detection
and measurement of material quality during or after a production process. It
is also closely related to material analysis performed in research. Image-based
material inspection includes methods for surface investigations, projection images
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and also tomography. Although most image-based testing methods are non-
destructive, sometimes objects are sliced and surface inspections are performed
on the cut faces. Some popular modalities in material inspection are industrial
CT, ultrasound testing and optical coherence tomography (OCT). An example
of combined usage of ultrasound testing, thermography and X-ray inspection
has been reported [38]. For image-based surface investigations a high number of
techniques for microscopy is available, covering many different forms of contrast.

Multimodal microscopy, also referred to as correlative microscopy, is in most
cases carried out during separate investigations [90]. However, some techniques
of microscopy allow different forms of image contrast which can be integrated in
a single device. For example SEMs nearly always integrate electron detectors for
secondary electrons (SE) and back-scattered electrons (BSE). Both types of scans
can be obtained in the same frame of reference. If this is not possible, usually
time-consuming re-locating of the area of interest is needed after changing the
microscope. Recently there have been attempts to automate this workflow by
introducing sample holders equipped with dedicated markers [39]. The sample
holders can be used in the optical microscope first. When moving it to the SEM,
the field of view position with respect to the markers is saved. The SEM stage
control recognized the markers and relocates the field of view with an accuracy
in the micron range. Exact registration of optical microscope and SEM scan is
performed interactively.

3.3 Basic strategies for image registration

In the previous sections, image fusion tasks have been categorized according
to the type of input data and type of alignment. Types of input data include
uni-/multimodal and two-/higher-dimensional. Pre-calibrated and marker-based
alignment have been discussed as well as image content-based registration. Image
content-based registration is the most complex task but also the only option in
many application scenarios.

A multitude of approaches to the problem of image content-based registration
have been reported but no universally best solution could be identified. The
methods can be categorized into feature-based and area-based methods [120].
The basic working principles are depicted in Figure 3.1. Feature-based methods
try to estimate the transformation model parameters by a set of correspond-
ing image features. The area-based approach starts with an estimate of the
transformation model parameters and iteratively improves them by maximizing
a similarity measure between the images.
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Figure 3.1: Basic types of image registration strategies. The upper image shows
corresponding pairs of features which are used to derive transfor-
mation model parameters (feature-based registration). In the lower
image, two views of an image scene are registered by iteratively
modifying the transformation model parameters and evaluating a
similarity measure (area-based registration).

3.3.1 Feature-based methods

Feature-based image registration has some similarities with registration based
on markers or manually selected landmark points. In all cases, the transfor-
mation parameters are estimated by fitting the transformation model into a set
of corresponding features. Unlike in marker-based registration or manual land-
mark labeling, theses features must be identified automatically from the image
contents. Features which are reproduced in both, base- and target image, can
potentially be used for feature-based registration. These features can represent
physical structure but should not be caused by modality-specific imaging artifacts
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or reflections. Feature points should be available in a sufficient number, allowing
the computation of the model parameters and the compensation of measurement
uncertainty. Besides the reproducibility and quantity requirement, features must
be distinct and allow the determination of feature correspondence.

Many methods for the detection of suitable image features for feature-based
registration have been reported [42]. Naturally, image contents vary strongly
between different applications. In contrast to the object detection methods de-
scribed in Chapter 2, the goal of feature detection is not the localization of
compact objects or functionally linked structures. Instead, a reliable source of
anchor points for geometric registration is needed. Feature detectors can be
specialized on given applications or constructed for general usage.

If prior knowledge about the scene contents is available, shape-based detection
methods as they have been described in Section 2.2 can also be used in the con-
text of feature detection. It has to be noted that this approach is strongly tailored
to a specific application and requires well-defined geometries of the structures.
Feature detection by shape-matching is further described in [78]. The idea of
shape detection can be generalized by detecting basic geometric shapes such as
circles, lines or line intersections. Image registration has also been demonstrated
using arbitrarily-shaped regions with closed boundaries [43]. A reason why fea-
ture detectors mostly focus on shapes is that shapes are reproduced much more
reliably under a change in viewpoint, illumination or modality than for instance
color or texture features.

One of the most prominent feature detectors is the combined corner and edge
detector also known as Harris corner detector [48]. For a two-dimensional inten-
sity image I, initially a structure tensor M is computed:

M =

⎡
⎢⎣

(
∂I
∂x

)2 ∗ w ∂I
∂x

∂I
∂y

∗ w
∂I
∂x

∂I
∂y

∗ w
(

∂I
∂y

)2 ∗ w

⎤
⎥⎦ . (3.2)

w denotes an appropriate smoothing kernel such as the Gaussian function. ∗
is the convolution operator. With a tunable parameter k, the corner response R
is obtained from:

R = det (M) − k · trace (M) . (3.3)

In the surrounding of corners, positive values of R are obtained. Negative
values indicate edge regions and small values are found in flat regions. Points
around edge regions are usually unstable feature points, as their position along
the edge is not well defined. Therefore, corner points are generally the preferred
feature points.
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Another source of features are line segments. In [87], a modified variant of
the snake algorithm (see Section 2.2) has been used to detect straight line seg-
ments. The authors use a formulation of Eint which favors straight lines. Another
frequently used method for straight line detection is the so called Hough trans-
form [36]. Each point in Hough space corresponds to a line object in the input
image, defined by angle and offset. Peaks in Hough space are used to iden-
tify dominant line objects. A disadvantage of the Hough transform is its high
computational cost.

Depending on the type of detected features, a suitable method for establishing
feature correspondence must be selected [42]. Direct point-matching methods
rely purely on feature point coordinates and typically try to exploit scene co-
herence. Similar methods are available for line matching. Better results can be
obtained, if additional information about the features is incorporated into the
matching procedure. If regions are used as features, invariant shape descrip-
tors such as the Fourier descriptors provide a way to measure feature similarity.
Fourier descriptors interpret the contour of a region as a complex signal. The
magnitude of the coefficients obtained from the Fourier transform of this signal
serve as region descriptor and are invariant to rotations of the region.

The elimination of incorrect feature matches can be carried out using robust
model fitting algorithms such as the Random Sample Consensus (RANSAC) [34].
RANSAC checks an initial set of matched features for consistency with the trans-
formation model. In each iteration, a subset is randomly chosen from the initial
set of feature matches. The subset has the minimal size necessary for comput-
ing the transformation model parameters. All remaining feature pairs are then
checked for geometric consistency with the model parameters derived from the
subset. A feature pair is referred to as inlier, if it fits with the transformation
model within the limits of a given error threshold. The inliers form a geomet-
rically consistent set, the consensus set. Finally, the transformation parameters
are computed by linear regression from the consensus set with highest cardinality
over all iterations. RANSAC extensions such as m-estimator sample consensus
(MSAC) or maximum likelihood sample consensus (MLESAC) define a loss func-
tion also for inliers or fit a combined error model to inliers and outliers.

3.3.2 Area-based methods
Area-based image registration is also known as intensity-based registration or
direct method. The basic idea behind area-based registration is to measure and
optimize the image similarity directly over the image area or a subimage. Start-
ing from an initial estimate of the transformation model parameters, the target
image is registered to the base image. The quality of the registration is then
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evaluated using an appropriate similarity measure. By iteratively modifying the
transformation model parameters, the similarity measure is optimized. Besides
the transformation model, two components are required in order to perform area-
based registration: a similarity measure and an optimization strategy.

A large number of similarity measures has been put to the test [46]. They
differ in the assumptions made about the image signal. Most methods neglect
the aspect of color and work on single-channel intensity images. The direct way of
comparing image intensities is to compute the normalized cross-correlation which
has been already introduced in the context of object detection (see Section 2.2).
Correlation-based registration can also be carried out in Fourier domain [72]. If
the image signal in target- and base image shows a sufficient degree of similarity,
the correlation coefficient will show a maximum for the best image alignment. A
further simplification is to compute the sum of squared differences between pixel
intensities. This method is limited to unimodal applications with highly similar
values of signal intensity.

Multimodal registration requires a similarity measure which tolerates different
intensity levels in the single imaging modalities. Correlation ratio is an extended
variant of cross-correlation which is explicitly suitable for multimodal registration
[86]. Correlation ratio does not require similarity between intensity levels but
assumes a functional relationship between intensity levels in each modality. An
alternative similarity measure for multimodal registration is mutual information
(MI). MI is a measure of statistical dependency between two data sources [69].
The underlying assumption is that if target- and base image are well-aligned, it is
likely that there is a high co-occurrence between corresponding pixel values. This
means that image parts with a given intensity in the target image are probably
mapped to a limited but not necessarily equal intensity range in the base image.
MI for an image pair I1 (x, y) and I2 (x, y) can be computed from

MI (I1, I2) =
∑

a

∑
b

PI1I2 (a, b) log PI1I2 (a, b)
PI1 (a) PI2 (b)

, (3.4)

where the probabilities PI1 and PI2 can be estimated from the image intensity
histograms and the joint probability PI1I2 from the co-occurrence histogram. At
the best alignment, the value of MI is assumed to have a maximum.

Area-based image registration can be regarded as an optimization problem of
which generally no closed-form solution can be found. Common iterative opti-
mization schemes include variants of the Gauß-Newton algorithm, which requires
an estimate of the local gradients of the target function. The downhill-simplex
method [64] works without the explicit computation of gradients. Generally, the
optimization problem can be ill-conditioned. This problem increases with the
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degrees of freedom of the transformation model. To assure convergence towards
the optimal solution, proper measures of regularization are needed.

A further improvement of area-based image registration has been reported
in [94]. The author targets the task of surface reconstruction from scans obtained
by using the atomic force microscope (AFM) and SEM, which is a multimodal
registration problem. Instead of directly registering the image data obtained
from AFM and SEM, a further step of preprocessing is introduced. The AFM
image is converted into a simulated SEM image by modeling parts of the image
acquisition process. As a result, the images to be registered look more alike,
making successful registration more likely.

3.4 The coarse-to-fine approach
Multimodal image registration based purely on image contents is a computation-
ally expensive procedure. In medical image registration where three-dimensional
scans are registered, processing times in the range of multiple hours are not
unusual. A common difficulty especially in area-based registration is the high
amount of data to be processed. Given the case that all options for parallel
processing are exhausted, data reduction is another means of speeding up the
registration procedure. On the other hand, in contrast to parallel processing,
data reduction will probably have a negative effect on the registration accuracy.

One of the simplest registration schemes which exploits data reduction works
with a single reduced copy of target and base image [88]. The data reduction has
been performed by block averaging, which is a form of subsampling. The authors
suggest usage of the subsampled copies first. If registration leads to sufficiently
high similarity values, the procedure terminates. Otherwise, registration is car-
ried out using the original copies of target- and base image. This idea can be
extended by applying the subsampling step multiple times. The resulting struc-
ture is a multigrid representation of the images [55], also called image pyramid.
Usually, subsampling procedures with spectrally more favorable properties than
block averaging are applied. Two common examples are the Gaussian pyramid
and the Laplacian pyramid.

The resulting registration scheme is an implementation of the coarse-to-fine
registration strategy [42]. Figure 3.2 shows a multigrid representation of a pair
of multispectral aerial photographs. Coarse-to-fine registration can be performed
by consecutively registering each level of the pyramid and thereby iteratively im-
proving the transformation model parameters. The procedure ideally transfers
both from coarse to fine: image resolution and transformation model param-
eters. Although most coarse-to-fine registration schemes work with multiscale
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Figure 3.2: The traditional coarse-to-fine approach. Registration is carried out
in a series of subsampled copies of target- and base image. Multiple
subsampled copies of a pair of multispectral aerial photographs are
shown.

representations, the idea of determining a coarse estimate the registration and
then improving it can be exploited in different ways. For instance, an initial reg-
istration obtained by feature-matching and edge alignment has been improved by
optimizing feature correspondences [51]. Improving a manual registration result
by a simulation-based fine registration step [94] is another implementation of the
coarse-to-fine idea.

3.5 Limitations of the state of the art
It has been shown throughout the chapter that a wide variety of registration
methods is well-established and used in daily practice in a multitude of applica-
tions. The most difficult applications are those containing multimodal registra-
tion based purely on image contents. The methods which have been mentioned
differ significantly under multiple aspects of performance. It has to be noted that
the number of available methods is comparably high and a lot of application-
specific improvements have been proposed. Nevertheless, the different categories
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of algorithms can be characterized with respect to computational complexity,
convergence properties and maximal precision.

Due to high computational complexity of measuring image similarity over an
area, area-based registration schemes are generally require more execution time
than feature-based methods. Depending on the transformation model, feature-
based methods can work with a small number of feature correspondences which
is beneficial under the aspect of processing speed. The number of features can
usually be controlled with the help of a detector threshold. Once, feature corre-
spondence is known, registration can be carried out in a single step, avoiding the
time-consuming iterative optimization procedure common in area-based registra-
tion. Feature-based methods generally do not require an initialization but can
work directly in an unconstrained search space of transformation model parame-
ters. Area-based methods need an initial estimate of the parameters and usually,
the radius of convergence is small. Generally, they tend to have a problem with
managing larger differences in scale.

On the other hand, area-based registration schemes measure image similarity
directly. If an appropriate similarity measure is chosen, the perceived similarity
is maximized and optimal results are obtained. Feature-based registration can
suffer from incorrect feature correspondences. Even if model fitting procedures
such as RANSAC are incorporated, there is no guarantee that systematic errors in
feature localization will be compensated. Therefore, generally the most accurate
results are obtained by area-based registration procedures.

In combination with multiscale representations and the coarse-to-fine approach,
area-based registration can be significantly speeded up. Anyways, the conver-
gence properties do not benefit from this modification but are more likely to
degrade. Both registration strategies can be made more alike by either working
with a large number of features or by performing area-based registration on a
large number of sub-patches. In these cases, the strict separation between the
two categories of methods will vanish. However, instead of combining the benefits
this approach merely combines the drawbacks of both registration strategies.

The state of the art lacks a universally applicable method for multimodal
image registration which overcomes the conceptual limitations of feature- and
area-based registration.
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4 Development of an SPR-based
system for micro- and nanoscale
object classification

Performing automated manipulation or assembly tasks at the micro- and nanoscale
requires awareness of workpiece and tool locations and state. Visual feedback
has been proven to be one of the most important sources of such information.
This chapter presents a system for micro- and nanoscale object classification,
which extends the capabilities of the state-of-the-art procedures mentioned in
Chapter 2. It incorporates statistical pattern recognition for determining the
class membership of micro- and nanoscale objects.

4.1 Object classification in automated micro- and
nanorobotic tasks

The state-of-the-art methods for micro- and nanoscale object detection described
in Chapter 2 suffer from two types of limitations. They are limited to a special
arrangement of the setup and they show a low generalization capability. Another
problem is the manual setting of decision thresholds. The proposed procedure
overcomes these limitations by incorporating methods of statistical pattern recog-
nition (SPR) for the classification of individual objects. This brings the benefit
that instead of explicitly specifying decision rules, a machine learning procedure
performs this task. In contrast to other methods, the proposed system can be
trained for a large range of problem settings. Thereby, object inspection is not
limited to the object shape, but can cover all object properties which can be
extracted from the image material or measured by other means.

In the targeted application scenario, the proposed system is integrated into an
automated environment for micro- and nanorobotic tasks. For being universally
applicable, the system is required to be remotely configurable by the high-level
controller. Depending on the actual subtask carried out, components of the
system can be selected automatically. The system is required to handle a large
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range of possible micro- and nanoscale objects. Those will be imaged with highly
different image sensors, providing two- or (pseudo-)three-dimensional image data.

Another requirement to the proposed system is the capability of real-time
processing of the image data during execution of an assembly or inspection task.
In this context, the capability of real-time processing is defined to be the ability
to process the incoming amount of image data continuously. Naturally, this rate
is varying strongly between different applications.

4.2 Modular system for object classification at the
micro- and nanoscale

The proposed system includes four processing steps, which implement SPR for
the classification of micro and nanoscale objects. In order to assure versatile
applicability, the functionality of each processing step can be exchanged mod-
ularly. The processing starts with acquisition and preprocessing of the image
data. This step includes reformatting of the image data, selection of a region
of interest and optional conversions of the color space. Next, objects are seg-
mented from the image background and a list of connected objects is created.
The following processing steps are carried out separately for each object. A set
of object features relevant for object classification is extracted for each object.
Finally, the object class is determined by the classifier. The system output is a
list of object locations and their class memberships. In the following, the four
processing steps will be described in more detail.

4.2.1 Acquisition and preprocessing
Imaging sensors used in micro- and nanorobotics have different characteristics
than those used in other fields of machine vision, for instance industrial product
inspection. The acquisition and preprocessing step capsules all tasks necessary to
create a uniform representation of the image data obtained from different sensors.
Also noise and other sensor-specific sources of image degradation are handled in
this step. Some characteristics of four image sensors which are frequently used
in micro- and nanorobotics are summarized in Table 4.1.

In microrobotics, a widely used source of image data is the optical microscope
(OM), equipped with a digital image sensor. The resolving capacity is limited to
some hundreds of nanometers. Also the depth of field is traded off with the field
of view size and is generally a limiting factor. On the other hand, the acquisition
speed is high and is only limited by the capabilities of the digital image sensor.
Depending on th actual type of image sensor used, the optical microscope is able
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Figure 4.1: Overview of the modular system for object classification. The first
processing block performs image acquisition and image preprocess-
ing. In the image segmentation step, candidate objects are located.
For each object, a set of features is extracted and serves as input
for object classification.

to acquire color images. This is in contrast to the other imaging techniques,
which acquire intensity images.

The SEM forms an electron beam, which is used to scan the sample surface [84].
An electron gun equipped with a tungsten filament or a field emission gun is used
as an electron source. The electron beam is accelerated by an electric field and
focused by condenser lenses. Another set of lenses performs the beam deflection
in a raster-like fashion. From the electrons or photons emitted by the sample, a
signal can be measured that is used in order to form an image. In contrast to the
optical microscope, the SEM has a higher resolving capacity and also a higher
depth of field.

The AFM is a special form of the scanning probe microscope (SPM). It probes
the sample surface with the tip of a cantilever [8]. From the deflection of a laser
beam pointing at the cantilever, the force between tip an surface is concluded.
An alternative approach to measurement of the cantilever bending incorporates
piezoresistive elements into the cantilever. Generally, three modes of AFM op-
eration can be distinguished, based on the tip-sample interaction: contact mode,
intermittent contact mode and non-contact mode. These modes differ in envi-
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OM SEM AFM MRI
dim. of image data 2D 2D pseudo 3D 2D, 3D
type of image data intensity/color intensity intensity intensity
typical FOV width 0.5 - 5 mm 20 - 200 μm 10 - 50 μm 5 - 30 cm
typical Tacq 50ms 1s 5 - 10 min 1s - 10min

Table 4.1: Image sensors with imaging capabilities at the micro- and nanoscale

ronmental requirements, signal quality and the risk of causing damage to the tip
or sample. The resulting AFM scan is a pseudo-three-dimensional view of the
scanned surface. It can be stored in the form of an intensity image.

MRI exploits the effect of magnetic resonance with the help of a spatial cod-
ing mechanism. In contrast to the other imaging techniques which have been
mentioned, MRI is able to acquire true three-dimensional image data. MRI
can be applied in order to guide medical interventions performed by micro- and
nanorobotic devices. Clinical MRI scanners have a resolving capacity in the
range of hundreds of microns. However, with the help of contrast agents, also
smaller structures can be localized.

The proposed system for micro- and nanoscale object classification is not lim-
ited to these four image sensors. By modifying the acquisition and preprocessing
routine, the system can be prepared to work with additional sensors with imag-
ing capabilities on the micro- and nanoscale. These might include a transmission
electron microscope (TEM), equipped with a digital image sensor. Also, addi-
tional forms of SPM can be supported.

A goal of preprocessing the raw image data is to remove sensor-specific arti-
facts and simultaneously preserve all information relevant for the classification
task. Preprocessing also supports subsequent image segmentation. It has to be
noted that in contrast to image enhancement routines, the preprocessing incor-
porated here does not aim at producing detailed and realistic images for visual
inspection. Instead, the preprocessing is carried out in order to support a con-
crete segmentation and classification task. In contrast to enhanced micrographs
usually used in manual image interpretation, the preprocessed images will look
comparably poor in image detail.

The probably most important preprocessing task is the removal of image noise.
An effective method for noise reduction is frame averaging. However, in time-
critical applications and also in scenes captured in motion, frame averaging is
not an option. An alternative method which can be applied in a single frame
is filtering using a Gaussian low-pass filter. This method is applicable, if high-
frequency components of object shapes are irrelevant for object classification.
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Another preprocessing step needed for AFM scans is fitting of a common ground
level.

4.2.2 Segmentation
Once, the preprocessed image is available, candidate objects can be segmented
from the image background. The result of the image segmentation step is a set
of mask images of similar size as the preprocessed image. The masks indicate
the position of all segmented objects in the image scene. Together with the
preprocessed image, the mask of each segmented object is delivered separately
as input to the following processing steps.

Image segmentation is carried out by exploiting specific properties of the micro-
or nanorobotic setup. If possible, the aspect of image segmentation should be
taken into account already when arranging the setup. In many cases, a favorable
arrangement is easier to create than to solve a difficult segmentation problem re-
sulting from an unfavorable arrangement. An example of this behavior is found
in setups, where background subtraction can be considered. Background sub-
traction is probably the most simple form of image segmentation. It requires
an image background which can be modeled by a simple statistical model and
which is not effected by foreground objects. The perfect background for back-
ground subtraction is constant over time and is not changed by shadows or other
effects caused by foreground objects. If such a behavior can be created by re-
arranging the setup, this should be the preferred solution rather than composing
a sophisticated segmentation algorithm.

In application cases where the image background is not constant over time,
image thresholding techniques can be considered [95]. A requirement is that
objects of interest can be differentiated from the image background by their in-
tensity values. The concept can also be transferred to color image segmentation.
The simplest way of performing image thresholding is to define a threshold value
Tth and to assign a constant value to it. The segmentation result is obtained
by performing the ≤ Tth or ≥ Tth operation on each image pixel. On the other
hand, for most sensors with imaging capabilities on the micro- and nanoscale,
a stationary level of pixel intensities cannot be guaranteed. Therefore, adaptive
thresholding techniques are a better choice.

Adaptive thresholding techniques analyze the histogram of image intensities
and determine an individual threshold value Tth in each image frame. A multi-
tude of different strategies for determining the threshold value are in use [95].
Some of the most popular methods are based on clustering [79] or entropy of
the foreground an background signal source [59]. These methods allow a fast
computation of a global threshold value.
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An adaptive procedure widely used in medical image processing is the expecta-
tion maximization (EM) algorithm [77]. The EM algorithm requires a statistical
model and aims at iterative estimation of the model parameters. A Gaussian
mixture model (GMM) is a common choice of such a model [36]. The model
assumes that each segmentation zone in the image is a random process with a
Gaussian characteristic. In contrast to the thresholding techniques mentioned
before, the number of segmentation zones is not limited to two. Image pixels gen-
erated by each source must be described by a feature vector, which can include
image intensity or also color information. For each random process, mean value
and standard deviation are the model parameters. Also a-priory probabilities
for a pixel originating from each source must be specified. In each iteration, two
steps are carried out:

• The expectation step computes the a-posteriori probabilities of each pixel
belonging to each process. For obtaining an intermediate result, each pixel
can be assigned to the process with highest a-posteriori probability.

• In the maximization step, the parameter vector is updated by pretending,
the results from the expectation step were new measurement data.

If image segmentation cannot be carried out based on image intensities, ob-
ject edges can be exploited in order to detect the outer object boundaries. For
example, the Canny edge detector [13] can be utilized for object segmentation.
However, this approach requires a low number of edges in the image background.
Also, additional processing will be needed in order to handle edges inside object
regions.

In many applications, none of the segmentation methods which have been
described will directly lead to a satisfying segmentation result. A common prob-
lem are regions inside an object region, which have been incorrectly classified
as image background. This problem can be overcome by applying region filling.
Initially, connected components are identified in the segmented image. Region
filling is then performed separately for each connected component, by including
all regions which are completely enclosed by the connected component. The re-
sulting regions indicate the candidate object location and can be described in
the form of a mask image or by the outer enclosing contour.
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4.2.3 Feature Extraction
The goal of the feature extraction step is to compute a feature vector v for each
candidate object. The feature vector contains object features which are relevant
for object classification. Good object features are invariant to the viewing per-
spective and other acquisition-related settings. On the other hand, in micro-
and nanorobotic setups the acquisition conditions can normally be controlled
to a certain degree. Therefore, the level of invariance needed must be chosen
according to the actual application. A minimum requirement for most setups
is feature invariance to translation and rotation. Naturally, the success of the
SPR-based approach strongly depends on the selection of meaningful features
and an appropriate method for feature reduction, if needed [44]. The selection of
features should show a high discriminative power with a high inter-class variance
and a low intra-class variance of the feature values. Some broad categories of
object features are geometric-, densitometric-, texture- and color features.

Geometric features are obtained by analyzing object shape. Simple geometric
features such as area, perimeter, or largest diameter are variant to scale. Nev-
ertheless they are useful for feature description for two reasons. They serve as
building blocks for composing invariant features. Also, in applications with a
fixed setup arrangement, these quantities can be meaningful features and can be
used directly. A scale-invariant feature composed out of two basic shape features
is object roundness R as described in [49]:

R2D =
4π · Area

Perimeter2 . (4.1)

A similar measure can be derived for three-dimensional objects:

R3D =
6 · √

π · Volume
SurfaceArea1.5 . (4.2)

Other geometric features can be obtained by directly processing the enclosing
contour of the object. BE2D is a scalar value expressing the energy that is stored
in an object’s contour [49]. The 2D bending energy is calculated by integrating
squared curvature values along the object contour. κ is defined as the derivative
of contour direction θc with respect to arc length s:

κ = dθc

ds
BE2D =

∫
contour

κ2ds. (4.3)

Normalizing BE2D by the contour length yields a translation, rotation and scaling
invariant descriptor of object shape.
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The length and shape of the enclosing object contour can be sensitive to varia-
tions in the segmentation and preprocessing procedure. High-frequency compo-
nents of the contour may be filtered out by the noise removal filter. A measure
of object straightness which is insensitive to these variations can be derived from
the geometrical distribution of the object points X = [x1, x2, . . . , xn]. It requires
computation of the scatter matrix Sc which is an estimate of the covariance
matrix:

Sc =
n∑

i=1
(xi − x) (xi − x)′ where x =

1
n

n∑
j=1

xj . (4.4)

Since Sc is positive semidefinite, two non-negative eigenvalues λ1,2 and corre-
sponding eigenvectors can be computed. The absolute values of λ1,2 depend on
scale and object elongation. A normalized score indicating object straightness is
obtained from

PCE =
2 · λ1

λ1 + λ2
− 1 . (4.5)

Not only object shape but also object surface properties can be relevant to
object classification. Densitometric features are extracted from the statistical
distribution of the intensity values found on the object surface. They include
statistical moments and also entropy measures of the intensity histogram. Tex-
ture features additionally take into account the spatial distribution of the in-
tensity patterns. A common method generates surface texture features from a
two-dimensional histogram of co-occurring intensity values [47].

If the image sensor provides color information which is also relevant for the
classification task, color features can be included in the feature vector. Color
features are especially important in biological cell classification. Color images
are most likely available in RGB color space, which is a three-channel image with
spectral components for red, green and blue color components. These color values
change with illumination and many other effects and are unlikely to reproduce.
Color features with better reproducibility can be obtained by transforming the
RGB values into another color space, which partly separates color properties
from illumination intensity. One of the simplest forms of such a color space
transforms RGB value pairs into hue, saturation, value (HSV) color space [41].
The hue value is a characteristic property of a color and shows much better
reproducibility than the RGB values.
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4.2.4 Classification

The feature vector v obtained for each object is the basis for determining the
object class membership ω. This assignment is performed by the classifier, which
is a mapping between feature space and object category space. Training is the
process of adapting the classifier to the actual problem characteristics. The
proposed system for micro- and nanoscale object classification requires training
to be carried out as a preparation step. In an automated assembly or inspection
operation, appropriately trained classifiers are selected by the control system in
order to carry out the specific classification task.

A multitude of methods are known for the construction of classifiers [25, 93].
Besides others, two of the most popular classifiers are artificial neural networks
(ANN) and support vector machines (SVM). For a number of reasons, SVMs
have been selected as the exclusive classifier in the proposed system. SVMs pro-
vide a high level of performance while having a minimum number of open design
parameters [12, 100, 106]. This makes SVMs easily adoptable to most classifica-
tion problems found in automated assembly or inspection tasks on the micro- and
nanoscale. SVMs automatically find a balance between two concurring require-
ments: the capability to abstract from the training data (generalization) and to
classify the training data correctly (reclassification). Another benefit of SVMs is
the convex nature of the optimization problem, leading to a unique solution.

Training an SVM for a classicication task requires a set of prelabeled data
points. For instance, SPM tips can be categorized manually as suitable or defect.
The most basic form of SVMs assumes two object categories which are linearly
separable in feature space. Linear refers to the existence of a hyperplane, sepa-
rating the training data points of both object classes. If such a hyperplane exists,
it is most likely not unique. During the training procedure, the SVM searches
for the hyperplane surrounded by the largest margin free of training points. This
hyperplane is unique and serves as the decision boundary. The non-linearly sep-
arable case is depicted in Figure 4.2 a). The training point lying on the border
of the margin are referred to as support vectors. Another benefit of SVMs is
that adding training points which do not touch the margin does not affect the
training result.

Linear SVMs can be extended to work on non-linearly separable data by re-
laxing the constraints on the margin. The optimization problem for finding the
optimal hyperplane is extended by penalty terms for data points, falling into or
beyond the margin. The non-linearly separable case is depicted in Figure 4.2 b).
Training SVMs includes a training parameter C, which allows balancing training
error and margin width. For linear SVMs, C is the only parameter to be selected
before training.
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Figure 4.2: Working principle of the SVM in a two-dimensional feature space.
The linear SVM places the decision boundary between two classes
by maximizing the size of a margin which is free of samples (a).
The two lines parallel to the decision boundary indicate this margin.
Soft-margin SVMs allow samples inside the margin and even beyond
the decision boundary (b). These contribute to the optimization
problem with a penalty term. By applying the kernel trick, SVMs
can be extended for nonlinear decision boundaries (c).

Many classification problems cannot be solved satisfactorily by means of a lin-
ear decision boundary. SVMs solve this problem with the help of the so-called
kernel trick. A reformulation of the optimization problem causes the data points
to occur only in the form of dot products. It can be shown that exchanging
these dot products with a kernel function meeting some requirements is equiv-
alent to transforming the data points into a higher-dimensional space, where
linear SVMs are applied. The huge benefit of this procedure is that the trans-
form does not need to be specified or executed explicitly. Practically, only a
limited number of kernel functions are used, including polynomials and radial
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basis functions (RBF). The kernel function usually depends on a second design
parameter. Figure 4.2 c) depicts a decision boundary for a non-linearly separable
data set, obtained by training an SVM with an RBF kernel function.

In summary, SVMs automatically generate a classifier of appropriate complex-
ity and depend on only few open design parameters. Practically, these parameters
can be selected by training the SVM repeatedly and varying C and the kernel
parameter by a power sequence. These properties led to the selection of SVMs as
the exclusive classifier used in the proposed system. Although SVMs are origi-
nally formulated for classification problems with only two object categories, they
can easily be combined for multi-class problems [85].

4.3 System Integration
The proposed system has been designed for being integrated into an automated
setup for robotic tasks at the micro- and nanoscale. Typical tasks carried out in
such a setup are inspection, manipulation or assembly of micro- and nanoscale
objects and structures. Process automation is performed by a control system.
The control system collects all available sensor data and computes signals for
controlling all actuators. Thereby, the proposed system for micro- and nanoscale
object classification is used in the function of a sensor, providing location and
object class information. Other typical sensors include position sensors and force
sensors. Common actuators include microgrippers and measurement probes.

A simplified view of the proposed system integrated into an automated setup
is depicted in Figure 4.3. The proposed system has two types of inputs. It
receives image signals from a global visual sensor, observing the sample holder
and the manipulation instruments. It also receives configuration commands from
the control system. This allows switching of the classification task, depending
on the actual stage of the automated procedure. In a usual application case,
the automation procedure is implemented as a sequence of tasks including tool
calibration, target localization, assembly or manipulation and quality control.
The proposed system for object classification can be incorporated at multiple of
these steps, especially target localization and quality control. All four processing
steps performed by the proposed system are configured by the control system
according to the requirements of the actual subtask carried out.

The proposed system can be configured manually with the help of a graphical
user interface (GUI). This type of usage is needed mainly for testing a configura-
tion and tuning the algorithm parameters. Also, the data for training the SVM
can be generated in manual mode. The four processing steps the proposed system
is composed of are implemented in the form of processing nodes. These nodes
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Figure 4.3: Integration of the SPR-based system for micro- and nanoscale ob-
ject classification into an automated setup. A global imaging sensor
provides images of the micro- and nanoscale objects and structures.
The classification system performs object classification and trans-
mits classification results and object locations to the control system.
The control system configures the classification system and controls
all operations performed by the micro- or nanorobot.

are combined in the form of a data flow graph. This method brings a number
of advantages. The building blocks can be composed and configured graphically
from a set of pre-implemented and pre-tested algorithms. The configuration can
be restored conveniently by the control system by saving and loading the data
flow graph. Also, the abstraction of processing nodes simplifies parallel process-
ing. Figure 4.4 shows the GUI used for manual composition and configuration of
the processing steps. The implementation of the processing graph is described
in more detail in references [18] and [114].
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Figure 4.4: Screenshot of the GUI used to compose the components of the SPR-
based system for micro- and nanoscale object classification. The
system configuration is stored in the form of a data flow graph.
These graphs are restored dynamically by the control system.
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5 Development of a new
multimodal image registration
strategy

In this chapter, a new coarse-to-fine image registration strategy for multimodal
contents is presented. The proposed method initially performs a feature-based
coarse registration and refines the result in an area-based registration step,
thereby combining the benefits of both approaches. Main novelties are the us-
age of scale-invariant local features for multimodal registration, the combination
of multiple feature detectors and regularization in the feature-based registration
step.

5.1 Multistage procedure for image registration

5.1.1 Overview of the proposed registration scheme
In Chapter 3, the distinction between feature- and area-based registration has
been introduced. Both approaches differ under multiple aspects. While feature-
based registration schemes tend to show better convergence and shorter execu-
tion times, area-based registration usually provides the most accurate results. A
combination of both approaches can be achieved by area-based registration of
small sub-patches. However, this procedure strongly increases the degrees of free-
dom and will probably decrease the overall performance. Instead, the proposed
registration procedure combines the benefits of feature-based and area-based
registration by executing them subsequently. It results in a fast and accurate
registration scheme with good global convergence.

An overview of the proposed registration scheme is depicted in Figure 5.1. It
assumes two imaging modalities, which provide overlapping image scenes. In the
initial step, features are extracted from both image scenes. For each feature,
a location and a feature description must be obtained. Next, correspondence
between the two sets of features is established, based on the feature descriptors.
The initial feature correspondence is checked for consistency in a refinement
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step. This is also the most likely point, where failure of the registration can
be detected. If the image scenes do not overlap, no consistent subset of feature
correspondences with adequate size will be found in this step. From the consis-
tent subset, initial transformation parameters are derived. These parameters are
improved in the area-based registration step, which is likely to converge now. At
last, the image data is fused and displayed, based on the final transformation
parameters.

By an appropriate choice of feature detectors, descriptors and a similarity
measure, the aspect of multimodality is covered. The detectors must produce
comparable responses on structures imaged by both imaging modalities. Also,
the feature descriptors must show enough similarity to allow matching between
both modalities. In the proposed registration scheme, a comparably young class
of feature detectors and descriptors is used for multimodal registration. These
methods are known as local image features [103]. Although local features are
mostly known in the context of image retrieval and unimodal registration, sur-
prisingly good results were obtained during initial multimodal registration ex-
periments. This was the motivation for further pursuing local features as a
component in the proposed registration scheme. For the area-based fine regis-
tration step, the MI criterion is a promising candidate for handling the aspect of
multimodality. Nevertheless, also other criteria have been tested.

The proposed registration scheme can be regarded as an implementation of the
coarse-to-fine registration strategy. In the traditional coarse-to-fine approach,
the transformation parameters are improved from the coarse to the fine level of a
multiscale representation. In contrast, the proposed registration scheme improves
the transformation parameters by changing to another registration strategy. This
does not imply that the proposed scheme cannot handle differences in scale or
does not benefit from a multiscale representation. The opposite is the case.
Local features extensively make use of a scale-invariant feature representation.
In the following it will be shown how the proposed registration scheme enables
fully automatic registration while making only few assumptions about the image
contents.

5.1.2 Registration using local image features
Local features are image contents which can be distinguished from surrounding
image contents. The difference can be in any measurable image property. Local
features emerged in the context of image retrieval, where the main task is to
identify somehow similar images from a database. A concurring form of image
features are global features such as image histograms or other statistics obtained
over the whole image area. Global features are usually expressed by a descriptor
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Figure 5.1: Overview of proposed registration scheme. Initially, local features
are extracted from both imaging modalities. The features are
matched against each other and the match is checked for consis-
tency in a refinement step. Based on the feature correspondence,
the transformation model parameters are computed. In the follow-
ing step, area-based fine alignment is performed. The final fused
view is generated and then displayed.

vector. In contrast, each local feature is defined by a 2-tuple, consisting of a
region A and a descriptor D. Similar to global features, local features can be
grouped and be used to retrieve similar images. The problem of image retrieval
can also be reformulated in order to solve object detection tasks [116]. In these
contexts, images are described by distributions obtained from the descriptors of
all local features found in the image scenes. The local feature location is of minor
importance.

On the other hand, the algorithms used for the computation of A and D are
powerful tools in the context of feature-based image registration. For example,
local features originally developed for image retrieval have been successfully used
for photograph stitching [11]. In contrast to application-specific feature detectors
(streets, houses in remote sensing applications), local features generally do not
provide an interpretation of the physical structure that they have been produced
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by. Instead, they should meet a number of ideal properties which have been
stated in the literature [103] and will be summarized in the following.

Feature detection should be repeatable, which means that features are repeat-
edly detected under changes in viewpoint, illumination or other imaging con-
ditions. Local features should show distinctive image contents, which enable
feature matching. The detected features should be local and not be effected by
distant image contents. Also, the quantity should be sufficient for the targeted
application. Feature location and extent should be detected accurately. The
computation should be efficient. If any severe deformations are expected these
should be modeled by mathematical transformations, so that the detected fea-
tures become invariant to these deformations. Features should also be robust to
small deformations which are not modeled.

Most algorithms used for the computation of A and D have been developed
in the context of image retrieval and content-based object recognition [73]. The
vast majority of images used in this context are camera images showing for
instance landscape photography or portraits. Therefore, the properties stated in
the previous paragraph were optimized with respect to the prevailing forms of
geometric and photometric transformations found between corresponding pairs
of camera images. Those are mainly:

• Changes in scale or rotation, for instance due to varying object distances
and orientations,

• Changes in viewing direction or viewpoint, typically found in photography
and mobile robot vision,

• Changes in illumination, in type and/or direction,

• Compression artifacts, as most images stored in databases are compressed
and

• Image blur, as different objects may be focused in multiple images of the
same scene.

The development of algorithms for local feature extraction makes the implicit
assumption, that image acquisition of the same scene under identical viewpoint,
illumination, etc., will result in identical images, optionally corrupted by addi-
tive noise. This assumption is clearly violated in the case of multimodal image
registration. Even for identical image scenes, the change in imaging modality
itself can already be regarded as a geometric and photometric transformation.
It will be shown, that multimodal registration based on local features can yield
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good results anyways. Apparently, many of the geometric and photometric trans-
formations the algorithms are optimized for are also relevant to the problem of
multimodal image registration.

5.1.3 Local feature detectors
The detection of local features is the process of determining a list of regions Ai

from a given image. From the properties required of these regions, repeatability
is probably the most important. In the context of multimodal image registration,
repeatability means that if a region is detected in one modality, a corresponding
region is also detected in the other modality. On the other hand, repeatability
is concurring with the requirement of distinctiveness. A trivial detector which
returns a complete list of image positions and region shapes will show a perfect
repeatability but little use for the task of image registration. Especially homo-
geneous regions will not show any distinctive information which can be used for
feature matching.

Detectors based on 1st and 2nd order derivatives

In order to meet the desirable properties, the associated region A of a local
feature should somehow differ from the surrounding image area. A way of directly
measuring changes in image intensity is to compute local derivatives of the image
intensity I (x, y). For example, the Harris corner detector which has been already
introduced in Section 3.3 makes use of partial derivatives. As the image intensity
is a discrete function, the derivatives are approximated by local differences. In
Figure 5.2, local derivatives are shown using the example of a tin-coated surface,
imaged by the SEM. Derivatives are generally signed and therefore absolute
values are used for visualization. 1st order derivatives highlight image edges
and highest responses can be seen around the tin spheres. 2nd order derivatives
produce double peaks along edges. The lowest response can be seen in the dark
areas which are cavities in the carbon surface.

Besides the Harris detector, two other important detectors are exploiting local
derivatives directly: The Determinant of Hessian (DoH) and the Laplacian of
Gaussian (LoG) detectors. Both detectors work purely on 2nd order derivatives
and can be derived from the Hessian matrix H:

H =

⎡
⎣ ∂2I

∂x2 ∗ w ∂2I
∂x∂y

∗ w
∂2I

∂x∂y
∗ w ∂2I

∂y2 ∗ w

⎤
⎦ . (5.1)

Again, w can be a Gaussian smoothing kernel and ∗ is the convolution opera-
tor. The DoH detector response is obtained by computing the determinant of H.
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Figure 5.2: SEM scan of a tin-coated carbon surface. The field of view width is
2.84 μm. Besides the original scan I, a selection of discrete deriva-
tives absolute values are shown.

The LoG response is given by the trace of H. Figure 5.3 shows some peaks in
the detector responses of the native Harris detector (tuning parameter k = 0.04),
the DoH and the LoG detector. The Gaussian parameter is σ = 2 in all cases.
It can be seen that the Harris detector responds mainly to corner-like structures
between the tin spheres. The DoH mainly responds to the spheres. Most of the
LoG responses are found along the edges of bigger tin spheres.

All detectors fulfill the locality requirement because each peak in the detector
responses is caused by a locally limited region of support. Due to the use of the
Gaussian smoothing function, the borders of the region of support are unsharp
and depend on the discrete approximations actually used. An estimate of the
size of this region can be obtained by assuming the following approximation of
the local derivatives in each direction:
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Figure 5.3: Peaks in detector responses of native Harris (a), Determinant of
Hessian (b) and Laplacian of Gaussian (c) detector. The image
scene is identical with Figure 5.2.

Dx =

⎡
⎢⎣

0 0 0
−1 0 1
0 0 0

⎤
⎥⎦ , Dy =

⎡
⎢⎣
0 −1 0
0 0 0
0 1 0

⎤
⎥⎦ . (5.2)

With a 7×7 approximation of the Gaussian kernel, the region of support will
cover an area of 9×9 pixels. On the other hand, the contribution to the detector
response of pixels at the corners of this region is minimal. A better approximation
of the region of support is the incircle of this square neighborhood.

When the image is rescaled, the region of support will cover a bigger or smaller
physical area. Compared to the area covered in the original image, the new region
of support will probably cover a different amount of image structure. As a result,
the detector response of all three detectors is scale-variant. It can be seen very
well in Figure 5.3 (b), that the DoH preferably detects tin spheres of medium
size. Although smaller or bigger spheres appear as a rescaled version of the
medium-sized spheres, they produce lower detector responses. Figure 5.4 shows
the scale-variance of the Harris detector response for a given point in the image
scene. As the image scene is rescaled, the detector response reaches two peaks.

The two peaks of the detector response shown in Figure 5.4 are actually peaks
not only over image area but in scale-space. Regardless of the actual scale in
which an image scene is presented, the regions of support associated with these
peaks can be repeatedly detected. It has been shown that the Harris and DoH
detectors deliver responses which are spatially most stable [74]. On the other
hand, the LoG responses are most stable over scale. As a result, the Harris-
Laplace and Hessian-Laplace detectors have been proposed [73, 74]. The idea
is to work with peaks obtained by the Harris and DoH detectors in a coarsely
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Figure 5.4: A feature point has been detected using the Harris detector (left).
Cavities in a tin-coated carbon surface are shown. The field of
view width is 14.45 μm. The diagram shows the detector response
for the marked position in relation to scale. Scale=0 corresponds
to the original image resolution which was 1024×1024 pixels. The
detector response shows two peaks.

sampled scale-space. The scale-detection is then refined by interpolating the
peaks of the LoG detector.

Maximally stable extremal regions (MSER)

Thresholding an image scene is a standard method in image segmentation. Each
image pixel is classified as being of higher or smaller (or equal) intensity than
a given threshold value. By switching between the < and > operation, con-
nected regions which are darker or brighter than the surrounding image area can
be segmented. Based on this principle, a local feature detector has been con-
structed [70]. Instead of using a global threshold value for all segmented regions,
the maximally stable extremal regions (MSER) detector varies the threshold value
for each segmented region and both thresholding variants (< and >). By mod-
ifying the threshold value, the region size will likely either increase or decrease.
For meeting the repeatability and robustness requirement, the MSER detector
is looking for threshold values which lead to a maximally stable region size. The
resulting list of regions can be repeatedly detected under a number of geomet-
ric and photometric transformations. Generally, the detector output can be an
arbitrarily-shaped connected image region. However, this shape is unlikely to
reproduce exactly under image transformations and especially in the multimodal
application case. For this reason and better comparability with the other detec-
tors, an ellipse is fitted into each output region and used as the final detector
output.
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Intensity-based regions (IBR)

There is little hope that image intensities will be reproduced under photomet-
ric transformations. On the other hand, the position of local extrema in image
intensity can be stable under several transformations. Intensity-based regions
(IBR) is a local feature detector which is based on this assumption [104]. The
IBR detector starts with a list of local extrema of image intensity in scale-space.
From each extremum, a set of radial straight lines is sampled and sudden changes
in image intensity are detected. The area enclosed by connecting these points
form a region, which is stable under changes in scale and other transformations.
The working principle is depicted in Figure 5.5. Again, the region can be ap-
proximated by fitting an ellipse to the boundary points.

Figure 5.5: Working principle of the IBR detector. Starting from an inten-
sity extremum (center point), straight lines are sampled and sud-
den changes in image intensity are detected. The image shows an
oocyte of Xenopus Laevis, imaged using an optical microscope. The
diameter is approximately 1mm.

Salient region detector

A requirement to local feature detectors is the distinctiveness or informativeness
of the detected image region. The Salient region detector is based on directly
measuring the informativeness in the form of an entropy measure over a candidate
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region [58]. Therefore, a grid of circular candidate regions is placed over the
complete image area. By varying the region radius, the detection is carried out
at multiple scales. The entropy measure is based on the probability density
function (PDF) of image intensities in the enclosed area. For this reason, peaks
in entropy are widely invariant to many geometric transformations. A problem of
the entropy measure is the bad localization of extrema over scale. This problem
is solved by adding a second criterion, which is the derivative of the PDF of a
candidate point with respect to scale. Both criteria are combined for computing
a saliency score. This score serves as the detection threshold value.

Scale-invariant feature transform (SIFT) feature detector

The Scale-invariant feature transform (SIFT) uses a very efficient implementa-
tion of the LoG detector [68]. Instead of creating a multiscale representation of
the input image first and then computing the LoG detector response for each
point in scale-space, the SIFT detector combines both steps. The SIFT detector
uses the Gaussian smoothing kernel with the scale-space parameter σ. For an
input image I (x, y), the scale-space is defined by the function

L (x, y, σ) = G (x, y, σ) ∗ I (x, y) , (5.3)
with the Gaussian smoothing kernel

G (x, y, σ) = 1
2πσ2 e−(x2+y2)/2σ2

. (5.4)

The LoG detector response can be approximated by the Difference of Gaussian
(DoG) detector:

D (x, y, σ) =
(

G (x, y, kσ) − G (x, y, σ)
)

∗ I (x, y) = L (x, y, kσ) − L (x, y, σ) .

(5.5)
k is a constant factor separating two close-by scales. Practically, only a limited

number of scales is explicitly computed and maxima in D (x, y, σ) are interpo-
lated. Because the LoG as well as the DoG give strong responses along image
edges, The SIFT feature detector computes the local Hessian matrix for candi-
date feature points. The Hessian helps to eliminate edge responses and needs to
be computed only for a limited number of candidate points.

Speeded-up robust feature (SURF) feature detector

Similar to the LoG detector, the DoH detector can also be simplified and inte-
grated with the scale-space construction. The speeded-up robust feature (SURF)
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Figure 5.6: Construction of the box filters used in SURF feature detection. The
second-order Gaussian derivatives (discretized, cropped) ∂2G(x,y,σ)

∂y2

(a) and ∂2G(x,y,σ)
∂x∂y

(b) are approximated by the box filters Dyy (c)
and Dxy (d). All filters are signed. Zero value is indicated by grey
color. The smallest box filter has a size of 9 ×9 pixels.

[4] feature detector follows this approach, which results in a very efficient imple-
mentation. An important concept exploited by the SURF detector is the usage
of integral images. For each position, an integral image stores the sum of all im-
age pixels with lower or equal image indices. Once the integral image is stored,
integrals over rectangular areas of arbitrary size can be computed with a con-
stant effort of two subtractions and one addition operation. The integral image
is reused in the construction of the scale space, the approximation of the DoH
and also later in the computation of the feature descriptor.

The SURF detector approximates the DoH detector with the help of so-called
box filters. Figure 5.6 depicts two of the Gaussian derivatives and their box
filter approximation. The rectangular areas the box-filters are composed of are
evaluated efficiently using the integral image. Also, the coefficients (-2, -1, 0,
1) are computationally friendly. The scale-space is not constructed explicitly in
the form of an image pyramid but instead implemented implicitly by varying
the box filter size. Thereby, the smallest box size of 9×9 pixels corresponds to
a scale of σ = 1.2. Detector responses can be estimated continuously for any
scale by interpolating the detector responses of box filters with corresponding
neighboring scales.

Random sampling

With respect to the desirable properties of a local feature such as repeatability
and distinctiveness, randomly selecting points in scale-space promises the lowest
probability of success. On the other hand, randomly selected points may cover
areas which other detector do not respond to. Also, the number of points and
range of detected scales may be controlled very easily. However, in most cases
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randomly selected points are used only for performance comparison with other
detectors. Figure 5.7 shows a number of detected regions in an SEM scan, in
which clusters of melamine spheres can be seen. For IBR and MSER, the ellipse-
fitting approach has been used. It can be seen clearly, that the detectors respond
to different formations of melamine spheres. Also the detected region sizes are
very different.

Figure 5.7: Comparison of all detector responses on an SEM micrograph, show-
ing melamine spheres. The field of view width is 127.1 μm.
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5.1.4 Local feature descriptors
From each detected region a descriptor needs to be extracted, which can be
used to establish a feature correspondence. Similar to the region detector, the
ideal descriptor should reproduce under a number of transformations and also
in different imaging modalities. On the other hand, the descriptor must contain
enough information, allowing to distinguish between features which have a high
degree of similarity. The ideal descriptor will extract information relevant for
the identification of the feature and discard modality-specific imaging artifacts,
noise and other irrelevant information. Naturally, a clear separation is impossible
and all descriptors implement a trade-off between these concurring requirements.
Additionally, the descriptor must be robust to positioning inaccuracies of the
feature detectors. Corresponding regions in both imaging modalities will rarely
cover exactly the same physical area but always be biased in position and/or
scale. A good descriptor will show small variations to this sort of inaccuracies.

In order to allow a simple measurement of similarity, the descriptor should
produce an output in the form of a vector of scalar values. Many descriptors
are rotation-variant. They can be computed invariant to rotation by aligning
them with a dominant orientation of the region. The SIFT and SURF feature
description method each include a procedure for determining dominant feature
orientations. For all descriptors without such a procedure, the SIFT method has
been applied. In order to compensate for differences in intensity levels, image
intensities inside each region are normalized.

Moment invariants

Geometric moments can be used to describe the shape and intensity distribution
of local features. However, they are variant to geometric and photometric trans-
formations. Originally proposed for color images [105], moment invariants are
an invariant feature descriptor which can be used in the context of feature-based
registration. For an intensity image I (x, y) and a region A, the centered shape-
and intensity moments are obtained from

MSApq =
∫ ∫

A
xpyqdxdy and MIApq =

∫ ∫
A

I (x, y) xpyqdxdy. (5.6)

The most simple invariant is given by MI00/MS00. More complex invariants
include higher-order moments. Instead of directly computing the intensity mo-
ments on the intensity pattern of the image, derivatives of I (x, y) can be used
instead [76].
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Steerable filters

The local derivatives of an image patch with respect to the image coordinates
are variant with rotation and have no use for feature description. It has been
demonstrated, that orthogonal filters can serve as a basis for composing arbi-
trarily oriented filters. This procedure is referred to as steerable filters [37].
Two examples of Gaussian derivatives are shown in Figure 5.6 a) and b). By
steering Gaussian derivatives in the direction of the dominant feature orienta-
tion, rotation-invariant derivatives are obtained. Computing all derivatives up
to fourth order yields a descriptor vector with 14 entries.

Complex filters

Similar to the steerable filters method, complex filters construct a filter bank
which delivers the entries for the descriptor vector [91]. The filters use complex
convolution kernels derived from the following formula:

Kmn (x, y) = (x + iy)m (x − iy)n G (x, y) . (5.7)

Thereby, G (x, y) is the Gaussian smoothing kernel. Rotation by an angle of
θ has the same effect as multiplying the filter response by the complex number
ei(m−n)θ. This changes the phase, but not the magnitude of the filter response.
The absolute value of the filter responses for different combinations of m and n
form the rotation-invariant descriptor. Using all combinations with m + n <= 6
and m > n leads to 16 descriptor entries.

Spin images

Intensity histograms discard all information about feature geometry and there-
fore are of limited use for feature description. However, multi-dimensional his-
tograms can combine information about intensity and location. Spin images
follow this approach by creating a two-dimensional histogram over intensity and
distance from the center point [65]. The histogram is vectorized and forms a
rotation-invariant descriptor. The descriptor length can be varied by modifying
the number of histogram bins. Figure 5.8 shows three examples of normalized
image patches and corresponding spin images.

Scale-invariant feature transform (SIFT) feature descriptor

The SIFT algorithm includes a feature descriptor which is equipped with a pro-
cedure for determining the dominant orientation of a feature point [68]. Initially,
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Figure 5.8: Feature description using spin images. The upper row shows three
image patches, where the circle indicates the normalized distance
d=1 from the center point of the patch. The lower row shows the
extracted spin images.

the smoothed image copy L (x, y) which best fits with the detected scale is se-
lected from the multiscale representation (Equation 5.3). Next, gradient magni-
tudes and orientations are computed in a neighborhood of the feature point:

m (x, y) =
√

(L (x + 1, y) − L (x − 1, y))2 + (L (x, y + 1) − L (x, y − 1))2 (5.8)

θ (x, y) = tan−1
(

L (x, y + 1) − L (x, y − 1)
L (x + 1, y) − L (x − 1, y)

)
(5.9)

Additionally, the gradient magnitudes are weighted by a Gaussian kernel, cen-
tered at the feature point location. The weighted gradient magnitudes are col-
lected in a 36-bin histogram, covering all 360 degrees of possible orientations.
Figure 5.9 a) shows an example of an orientation histogram. The peak in the
histogram corresponds to the dominant feature orientation. However, if another
orientation exceeds 80% of the peak strength, a further descriptor is assigned to
the feature point.

The construction of the SIFT descriptor is depicted in Figure 5.9 b) and c).
Gradient magnitudes and orientations for a grid of locations are computed using
Equations 5.8 and 5.9. Again, the magnitudes are weighted by a Gaussian,
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Figure 5.9: Generation of the SIFT descriptor. Initially, local gradient magni-
tudes and orientations in the neighborhood of a feature point are
weighted with a Gaussian window centered at the feature position.
From the results an orientation histogram (a) is computed. For all
orientations with a magnitude of >80% of the highest peak (indi-
cated by the circle), a descriptor is assigned. Therefore, a grid (b)
is placed around the feature point, and local gradient magnitudes
and orientations with respect to the assigned direction are com-
puted and weighted by a Gaussian window. From the gradients in
each sector of the grid, an orientation histogram is computed (c).

centered at the feature point location. The grid is divided into a number of
sectors and the weighted gradients are grouped into orientation histograms for
each sector. The original SIFT descriptor uses a grid of 4×4 sectors and 8-bin
orientation histograms, resulting in a descriptor vector with 128 components.
The vector is normalized in order to compensate for changes in illumination.

Gradient location and orientation histogram (GLOH)

The Gradient location and orientation histogram (GLOH) is a modified version
of the SIFT descriptor [76]. Instead of using the rectangular grid of 4×4 sectors
in which the orientation histograms are computed, a log-polar grid of 17 sectors
is introduced. With an increased number of orientation histogram bins, the de-
scriptor length becomes 272. Using principle component analysis, the descriptor
length is reduced to 128.
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Shape context

Shape context is a descriptor with similarities to SIFT and GLOH [6]. However,
instead of gradient locations and orientations, shape contexts use edge points
obtained by an appropriate detector such as the Canny edge detector [13]. The
original version computes a two-dimensional histogram of log-polar edge point
locations. This histogram is referred to as the shape context. An extended ver-
sion computes one shape context for each edge orientation (horizontal, vertical,
two diagonals) [76].

Speeded-up robust feature (SURF) descriptor

The descriptor included in the Speeded-up robust feature (SURF) algorithm in-
cludes a separate procedure for determining the dominant feature orientation [4].
Similar to the detector, the feature orientation estimation and also the descriptor
generation rely on the evaluation of integral images. Both steps compute two-
dimensional Haar-wavelet responses, which can be evaluated at constant time
with the help of integral images. Figure 5.10 a) depicts the SURF method for
determining the dominant feature orientation. In the neighborhood of a feature
point, the horizontal and vertical Haar-wavelet responses are computed and sum-
marized in a two dimensional coordinate system. A sliding window of size π/3
is rotated around the center of the coordinate system. For each position of the
window, the vector sum of all wavelet responses inside the window is computed.
The orientation corresponding to the highest vector sum found is the dominant
orientation of the feature point.

Once the feature orientation has been determined, wavelet responses are com-
puted in a rectangular location grid which is oriented along the dominant ori-
entation (see Figure 5.10 b)). Instead of computing orientation histograms, the
SURF descriptor groups the wavelet responses in a sector of the grid by com-
puting local sums. Again, the responses are weighted by a Gaussian, centered
at the feature point location. For each sector, the signed sum and sum of abso-
lute values is computed in horizontal and vertical direction. With a grid of 4×4
sectors, a descriptor length of 64 is obtained. The descriptor is normalized to
make it invariant to changes in contrast. An extended version of the descriptor
separates positive and negative components of each sum and thereby doubles the
descriptor length.

Cross correlation

The direct way of expressing an image patch is to sample a scaled and rotated
copy of it and to vectorize the obtained pixel grid. If cross-correlation is used to
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Figure 5.10: The SURF feature descriptor. Wavelet responses for the x any
y direction are computed in the neighborhood of a feature point
and weighted with a Gaussian window centered at the feature po-
sition. The feature orientation is assigned with the help of a sliding
window (a). A grid of wavelet responses relative to the assigned
feature orientation (b) is then used to compute a descriptor entry.
The descriptor entry for each block (c) is built of the sum and the
sum of absolute values of the local wavelet responses. Finally, the
SURF descriptor is composed out of all block entries.

measure the vector similarity, the method becomes equivalent to the correlation-
based object detection methods mentioned in Chapter 2. Differences in the
intensity levels of the imaging modalities can be compensated for by normaliza-
tion. The density of the sampling grid trades off the level of feature detail and
descriptor robustness.

5.1.5 Feature matching
By establishing the feature correspondence between the two feature sets, the
spatial transformation parameters can be estimated. Generally, feature corre-
spondence can be determined by a nearest neighbor search using the invariant
descriptor vectors. However, no algorithm is known for solving the exact near-
est neighbor problem in high-dimensional space which is faster than exhaustive
search. The Best-Bin-First algorithm [5] is a common approximation of the near-
est neighbor search, which gives a speedup by about 2 orders of magnitude. Also,
unstable feature matches where the nearest neighbor distance is too close to the
second nearest neighbor distance can be excluded. The approximation brings the
risk of not finding the exact nearest neighbor. On the other hand, even for true
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Figure 5.11: Successfully matched corresponding regions in an AFM scan (left)
and SEM scan (right) of a nanocluster sample. SIFT detector and
descriptor have been used. The circle diameter indicates the scale
on which the region has been detected. The field of view width is
10μm for the AFM scan and 13.3μm for the SEM scan.

nearest neighbors there is no guarantee for feature correspondence, especially if
ambiguous image structure is present in the scene. A number of successfully
matches regions on a nanoscale sample can be seen in Figure 5.11.

5.1.6 Area-based improvement
For a number of reasons, the transformation parameters can still be suboptimal.
This can happen, if feature points are rare or cover only a small part of the image
scenes. Also, the computed location of distinct image features can be slightly
different between the two imaging modalities. For instance, the reproduction
of edges and corners can be affected by shadowing, depending on the sensor
arrangement. For further improvement of the registration result, area-based fine
registration is applied.

As the similarity measure to be optimized, mutual information MI as intro-
duced in Section 3.3.2 has been considered. However, a bias of the MI mea-
sure has been reported regarding the proportion of image foreground and back-
ground [101]. The authors propose an improved measure called normalized mu-
tual information (NMI), which is used instead of MI. Equation 3.4 can be re-
formulated by computing the image entropies H (I1) and H (I2) and the joint
entropy H (I1, I2):
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H (I1) = − ∑
a

PI1 (a) log PI1 (a) , (5.10)

H (I2) = − ∑
b

PI2 (b) log PI2 (b) , (5.11)

H (I1, I2) = − ∑
a

∑
b

PI1I2 (a, b) log PI1I2 (a, b) . (5.12)

MI is then defined by:

MI (I1, I2) = H (I1) + H (I2) − H (I1, I2) . (5.13)

A drawback of MI is that the absolute entropy values change with the propor-
tion of foreground and background. NMI on the other hand is largely invariant
to this effect:

NMI (I1, I2) = H (I1) + H (I2)
H (I1, I2)

(5.14)

For optimization, the downhill-simplex method is used [64]. It is a direct
search method for multidimensional unconstrained minimization of scalar-valued
functions. The downhill-simplex method works on function values only and does
not require any derivative information. Each processing step of the iterative
optimization maintains a simplex, which is a geometric figure in n dimensions,
where n is the number of model parameters. The simplex is the convex hull of
n + 1 vertices. The downhill-simplex method is as follows:

1. Select the starting point as the transformation model parameters obtained
by the feature-based registration.

2. Choose n + 1 mutated versions of starting point.

3. Compute all function values.

4. Identify best and worst value.

5. Quit if the best value satisfies the termination criterion, else replace worst
point according to rules and continue with step 3.

Replacing the worst point first requires reflection of the point at the center of
the simplex.

• If this point beats all others then expand simplex and reflect further.
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• If this point brings just an improvement accept it and continue.

• If this point brings a degradation shrink simplex and start again.

Typical termination criteria are a targeted function value or a limit in the
variation of the function value over the last iterations.

5.1.7 Visualization
Once, the spatial interrelationship between the scans of both imaging modalities
is known, a fused image can be computed. Three methods have been discussed
in the context of AFM and SEM image fusion [109]: color space fusion, multires-
olution fusion and surface rendering. Color space fusion is one of the simplest
forms of image fusion, in which the available data sets are copied into the dif-
ferent color channels of a color image. A drawback is that small changes in
color are hardly visible. Multiresolution fusion performs fusion in all levels of
a scale-space representation and then reconstructs an assembled image out of
it. This procedure can cause a loss of image detail but is a good solution if a
monochromatic planar fused scan is desired. The preferred method for (pseudo-)
three-dimensional imaging modalities is surface rendering.

5.2 Multiple detectors for feature extraction

5.2.1 Motivation for combining detectors
It has been discussed already that the feature detectors differ in their capability
of reproducing similar detection results in different imaging modalities. This is
due to different imaging characteristics of the single modalities. On the other
hand, image contents will also vary between different applications. The feature
detectors which have been presented respond to corners, blob-like structures or
arbitrarily-shaped regions. Naturally, most real-world scenes will show not only
a single category of these features. Also, the distinction between these categories
is rather fuzzy. Figure 5.12 shows that additionally to preferring different image
structures, the feature detectors also prefer regions of different sizes.

The question arises, which feature detector to choose. Unlike application-
specific detectors such as street detectors in aerial photography, the detectors
considered here focus on basic structures found in most types of image ma-
terial. Some requirements such as repeatability and distinctiveness of the de-
tected regions have been mentioned. The performance of the detectors with
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respect to these criteria varies with the image contents. For a collection of natu-
ral photographs, highest repeatability and robustness has been reported for the
Harris-Laplace detector [103]. However, for image contents with mostly blob-like
structures, other detectors will be superior.

For a given set of images with known spatial orientation, the best detector
can be identified. If the targeted application and image contents can be nar-
rowed down sufficiently, this detector can be chosen to be the best and be used
exclusively in the future. A similar approach can be applied for determining the
best feature descriptor. On the other hand, the targeted image contents can be
numerous, appear simultaneously in a single image scene and also change over
time. A good example of this behavior can be found in microscopy, where differ-
ent samples and the high range of magnifications produce strongly variant image
contents.

Often, the requirement is not to find the best detector for a given application
scenario but a good detector for a large number of known and unknown image
contents. In this case, it can be argued why detection should be limited to
a single detector. The expression of the detection result in the form of a set of
ellipses makes the fusion of detection results very simple. The combined detector
response of two detectors D1 and D2 is obtained by forming the union set:

D1,2 = D1
⋃

D2 (5.15)
It has to be noted that this procedure is not applicable to descriptors, as

similarity cannot be measured between different description schemes. Once, the
combined detector response is known it can be treated like a single detector
response: a descriptor is computed for each region in the set and used for match-
ing. In the following, strategies for the selection of detector combinations will be
presented.

5.2.2 Strategies for selecting detector combinations
Two application scenarios for the selection of a combination of detectors for the
automated registration scheme can be distinguished:

• Sample image pairs of a targeted application are given and future images
to be registered are assumed to show a degree of similarity in the type of
image contents presented.

• No prior knowledge of image contents is available.

In the first scenario, the available sample image data is used to select a com-
bination of detectors, which is optimal with respect to a set of quality criteria.
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Figure 5.12: SEM scan of FIB-milled structures in elliptical shape (left). The
diagrams show the probability density functions (PDFs) of region
sizes obtained by the different detectors.

In the second scenario, an optimal combination of detectors is selected automat-
ically for the given pair of images.

Application-specific detector combinations

In the context of feature detection and matching, the ratio between finally re-
sulting correct and total matches is often used as the only performance indicator.
This has the benefit of being well defined, easy to compute, and also helps to
estimate the chance of success of model-fitting tools such as RANSAC. On the
other hand, it does not provide a measure on how many existing correspondences
are rejected incorrectly and are finally unavailable for the transformation model
parameter estimation. This can be pointed up with a simple example: A de-
tector failing to reproduce responses under minimal variations of the imaging
conditions and a strongly transformation-variant descriptor (e.g. binary equality
check of the surrounding image patch). This detector/descriptor combination
will find a small number of feature correspondences, but probably most of them
will be correct matches. Although this method obtains a high correct ratio, it is
useless for most applications.

This problem can be overcome by establishing a ground truth feature corre-
spondence for a given pair of images, based on a ground truth spatial transfor-
mation. By projecting the interest points of the target image to the coordinate
system of the base image, corresponding points can be identified. A simple way of
testing for correspondence is to define a fixed-level distance threshold: projected
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Figure 5.13: Overlap error between two regions mapped onto each other as a
function of difference in region size (proportional to scale) and
location. For overlap errors < 50% region correspondence is
assumed.

points with a lower distance are defined to be corresponding points. In fact, this
method has been used for the performance evaluation of early feature extraction
algorithms. However, it is not invariant to scale. A scale-invariant definition of
feature correspondence should allow a variable displacement between projected
features. Additionally, projected feature pairs with large differences in scale
should not be defined as corresponding features, because successful matching
cannot be expected in this case.

A method integrating all these needs is based on the idea of not establishing
an interest point correspondence but instead a correspondence of regions [76].
The region size of detector window and descriptor window is proportional to the
feature scale. Figure 5.11 shows successfully matched corresponding regions in an
AFM and SEM scan detected on a nanocluster sample using the SIFT detector
and descriptor. The region size has been selected to be the circumcircle of the
descriptor window. Region correspondence can be defined with the help of the
overlap error εS for two regions A and B:

εS = 1 − A ∩ T (B)
A ∪ T (B)

. (5.16)

The formula is based on the ratio between intersection and union of the regions
and returns an overlap error of zero for identical regions. T (x) is the ground truth
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transformation function. According to [76], region correspondence is assumed
for overlap errors < 50%. In this case, strong descriptors are still able to detect
feature correspondence. The overlap error εS between two regions mapped onto
each other as a function of difference in region size (proportional to scale) and
location can be seen in Figure 5.13.

A measure of detector performance is obtained by computing the repeatability
score for an image pair. It is the ratio between the number of feature correspon-
dences and the smaller number of features detected in one of the scans. Only the
image areas present in both scans are regarded here. A good detector will repro-
duce responses in both modalities and therefore yield high repeatability scores.
Although the repeatability score provides a realistic view on the expected abil-
ity to reproduce results in a different modality, for detector comparison it has
a drawback. Using the above definition of εS , detectors returning large regions
are privileged. To avoid this behavior, the detected regions can be rescaled so
that each base region is normalized to the same size and the size ratio between
corresponding regions remains untouched.

The repeatability criterion allows ranking of a set of detectors by their mean
repeatability for a set of sample images. A simple strategy for selecting a suitable
combination of feature detectors is to combine the two or more detectors which
obtained the highest ranking position. However, this procedure does not guar-
antee complementary behavior of the set of detectors. For instance, a slightly
modified variant of the detector with the highest rank will be ranked on position
two. The union set of both detector responses will contain a lot of double entries.
This detector combination does not bring a benefit over the single detectors, nei-
ther in terms of repeatability nor in the ability to generalize and being applicable
to a broader range of image contents.

The problem of detector similarity can be overcome by measuring detector
similarity using the repeatability criterion. This idea is depicted in Figure 5.14.
The illustration is limited to two detectors but the principle can be extended
to an arbitrary number of detectors. The detector response of detector D1 ap-
plied on an image scene acquired by modality M1 is denoted M1D1. The ground
truth transformation functions are used to compute inter-modal repeatabilities.
Inter-modal repeatability is depicted in horizontal direction and high values of
Rep(M1D1, M2D1) and Rep(M1D2, M2D2) are a desirable property. The inter-
detector repeatabilities Rep(M1D1, M1D2) and Rep(M2D1, M2D2) measure sim-
ilarity between the detectors and therefore small values are favorable if a combi-
nation of D1 and D2 is considered.

Unfortunately, repeatability is a necessary but not a sufficient requirement
to a detector or combination of detectors. A reason is the bias towards large
numbers of features. A good detector obtains a high repeatability, regardless of
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Figure 5.14: Repeatability between modalities and detectors. Repeatability of
a feature detector applied using multiple imaging modalities is a
requirement for the success of the feature-based registration stage.
Repeatability can also be computed between the responses of two
different detectors, applied to a single image. The result is a
similarity measure between detectors which can be used to select
complementary rather than similar detectors.

the number of features. For high numbers of features, the detector responses
of a bad detector are likely to repeat just because of the limited image area.
This effect is demonstrated in Figure 5.15. The SIFT detector shows a high
repeatability which remains almost constant when the detection threshold is
lowered and more features are detected. A detector which is based on randomly
selecting points and scales starts with a very low repeatability. As the number of
randomly selected regions is increased, the repeatability also increases. It has to
be noted that feature matching becomes more difficult and also time-consuming
for higher numbers of features. Including the number of features in a quality
measure is misleading, as the number is highly variable with image contents.
Practically, the number of features should be in the range of some tens to some
thousands of features per megapixel and all detectors which do not meet this
requirement can be excluded.

A second reason why repeatability is a necessary but not a sufficient require-
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Figure 5.15: Bias of the repeatability with respect to the number of features.
A good detector shows a high repeatability for any number of
features. As the number increases, all detectors will obtain higher
repeatability values - even a random detector. The values have
been computed on the image scene shown in Figure 5.11

ment is the problem of informativeness of the detected regions. The image con-
tents shown in the detected region must be sufficient in order to allow feature
matching based solely on the descriptor extracted from it. If the region does not
contain enough salient contents which are reproduced in both imaging modal-
ities, matching becomes infeasible. Practically, it is difficult to measure the
informativeness of a detected region, because informative image structure can-
not be distinguished from modality-specific imaging artifacts. Therefore, the
best way of assuring feature informativeness is to perform feature matching ex-
periments. This requires a proven and tested feature descriptor to be specified
already. A simple performance measure is the matching score [76], which is the
ratio between the number of correct matches and the smaller number of features
detected in one of the images. Detectors with low informativeness obtain low
matching scores.

Although the repeatability criterion is biased in multiple ways it can still be
considered as the best criterion available, if a number of necessary precautions are
taken. The strategy for the selection of a combination of detectors is summarized
in the following. It is assumed that a number of image pairs with known ground
truth transformation are available. The procedure is described for combining
two detectors but can be extended to higher numbers.
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1. Compute all detector responses and descriptors on all image material avail-
able.

2. Remove all detector responses which do not meet the required minimal
number of features.

3. Compute all inter-modal repeatabilities Rep(M1Di, M2Di) for all image
pairs and rank detectors in decreasing order of the mean value.

4. Select a subset of detectors which obtain the highest ranks.

5. Form all 2-combinations of the detectors in the subset.

6. Compute all inter-detector repeatabilities Rep(M1Dl, M1Dm) and
Rep(M2Dl, M2Dm) and rank detector combination in increasing order of
the mean value.

7. Select a subset of detector combinations which obtain the highest ranks

8. Compute the matching scores for all detector combinations in the subset.

9. Select the detector combination with the highest matching score.

The resulting combination of detectors produces a high number of finally re-
sulting correct matches in the sample image material. At the same time, a too
high degree of specialization on the image contents included in the training ma-
terial is avoided by assuring dissimilarity of the detectors. It has to be noted
that in general it cannot be expected that combining detectors will lead to a
performance gain in terms of mean repeatability. Rather, the combined detector
becomes applicable to a broader range of image contents. The performance gain
is in terms of minimal repeatability.

Automatic profile selection

The method for selecting a combination of detectors based on inter-modal and
inter-detector repeatability requires an amount of sample image material. In
contrast, there are application scenarios where the type of image contents cannot
be narrowed down sufficiently or where no sample image material is available
in advance. Also, the selection procedure and especially the computation of
the repeatability is a time-consuming task. However, the proposed registration
scheme can also be applied to a new application without prior search for on
optimal combination of detectors. It requires pre-computed ranking results from
a generic image data set. If no multimodal data set is available, the ranking
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results reported in Mikolajczyk et al. [76] can be re-computed for combinations
of detectors. The resulting combinations can be regarded as profiles, which are
chosen in dependency of the actual image contents. In the application case, the
procedure is as follows:

1. Specify minimum number of consistent matches nmin and maximal number
of iterations imax.

2. Start with detector combination of highest rank.

3. Compute detectors and descriptors, perform matching.

4. Apply RANSAC to compute cardinality of consensus set.

5. Terminate if number of consistent matches exceeds nmin or imax. Else
repeat with next lower-ranked combination of detectors.

6. Proceed with area-based registration step.

This run-time selection procedure requires the choice of a descriptor in ad-
vance. However, the loop (Steps 2 to 5) can also be extended to optimize over
several descriptors. On the other hand, the execution time will suffer severely.

5.3 New feature matching strategies

5.3.1 Integration of prior knowledge
In many application scenarios, the transformation model parameters do not need
to be optimized in an infinite search space. Often, some prior knowledge is avail-
able about the range of each model parameter. For instance, the initialization
vector an area-based registration scheme is started with implies, that the final
registration result will be found in a limited neighborhood of the initialization
vector. In other applications, the difference in scale is known to a certain accu-
racy. The integration of this knowledge into the iterative optimization procedure
in area-based registration is a form of regularization. It means that the solution
is driven into a plausible direction. The cost function to be optimized can be
extended by a regularization term:

CR (x) = C (x) + R (x) (5.17)

A possible choice of R (x) is an inverted Gaussian kernel centered at the initial-
ization vector and giving penalty to large displacements. In other applications,
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Figure 5.16: Two penalty functions for steering the iterative optimization pro-
cedure in area-based registration towards a plausible direction.
R1 (x) is an inverted Gaussian kernel centered at the initialization
vector xi. Depending on the kernel parameters, R1 (x) penalizes
large displacements from the initial transformation parameters.
R2 (x) is an expanded variant with a constant zero-level region
centered around xi. This region is the plausible subspace in which
the solution is expected. Leaving this region is penalized. For
simplicity, only two model parameters are displayed, although the
principle can easily be transferred to higher-dimensional space.

the search space is limited by a soft border, driving the solution back towards a
sound subspace. These approaches are depicted in Figure 5.16. In most appli-
cations, extreme differences in scale are impossible due to the digital nature of
the image contents: extremely subsampled structures do not show enough image
detail for successful registration. Also, the translation vectors are limited by the
image geometry.

The proposed registration scheme starts with a feature-based registration step.
This prohibits the direct use of a regularization term as described in Equation
5.17. Nevertheless, prior information about the transformation parameters can
be integrated into the feature-based registration step.

5.3.2 Geometric consistency
The proposed registration scheme establishes feature correspondence based solely
on the descriptor vector of each local feature. This creates a conflict between the
requirement of the detector to be robust under the aspect of multimodality but
at the same time highly distinctive and preventing accidental feature matches.
As a result, the set of feature correspondences obtained after the initial feature
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Figure 5.17: Scale and Orientation of a local feature. Two regions have been
detected in different images. Region scale σ and orientation α
with respect to the image grid are different. For a geometrically
consistent set of feature correspondences, the scale ratios and dif-
ferences in orientation can be expected to cluster around the true
transformation parameters.

matching will contain a non-negligible percentage of incorrect entries. With the
help of model-fitting tools such as RANSAC, a geometrically consistent subset
of this correspondence of features can be determined. However, for very high
percentages of outliers, RANSAC and derivatives of this algorithm are not likely
to succeed. The percentage of outliers for which failure must be expected depends
on the algorithm parameters and the level of measurement noise. For the targeted
application it can be assumed to be > 80%.

By incorporating prior knowledge about the transformation model parameters,
the probability of success for the model fitting algorithm can be increased. The
idea exploited in the following requires a transformation model which can be
globally approximated by a combination of rotation, scaling and translation. It
is applied as a postmatching step after the initial feature matching but before
determination of the largest geometrically consistent subset. By reducing the
percentage of outliers, the success rate of the complete registration scheme can
be increased. The proposed postmatching step implies a limitation of the search
space and under this aspect is comparable to the penalty functions R (x). In
contrast, it uses a hard- rather than a soft border.

In the application case, the detected scale σ and orientation α with respect to
the originating image grid are known for each detected feature. For each pair
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of matched features, these properties can be compared. Figure 5.17 depicts two
detected regions and a geometric interpretation of scale and orientation. With
the detected scales σ1,2 and orientations α1,2, two quantities can be derived:

s =
σ1

σ2
, (5.18)

θ = (α1 − α2) mod 2π (5.19)

A perfect combination of feature detector and descriptor would produce per-
fectly localized and oriented regions and no incorrect feature correspondences.
With such a combination of detector and descriptor, a single pair of correspond-
ing features would be sufficient for image registration. If image 1 is defined to
be the base image and image 2 is the reference image, then s is the scale factor
and θ the rotation required in order to perform registration. However, in real
applications all measurements of scale and orientation will be inaccurate. Due to
the locality of the detectors, this cannot be avoided. The geometric consistency
in single pairs of features is also referred to as weak geometric consistency. It has
been exploited in the context of image retrieval from databases for re-ranking of
query results [54].

Without the postmatching step, scale and orientation of a feature are only
determined in order to compute the invariant feature descriptor. The geometric
consistency is assured by model-fitting tools such as RANSAC, based purely
on the feature locations. Nevertheless, feature scale and orientation contain
valuable information. This will be demonstrated with the help of an example.
Figure 5.18 shows a multimodal pair of images which are rich of distinctive
structures. Feature detection and descriptor computation both have been carried
out using the SIFT algorithm. The initial set of feature matches contained 1422
correspondences of which only 117 are correct. Figure 5.19 shows histograms
of the computed values of s and θ. The histograms show clusters around the
true transformation parameters which are a rescaling factor of s = 1.1451 and
a rotation by θ = 88.0442°. On the other hand, many correspondences deviate
strongly from these values. Especially the histogram of θ shows a second cluster
in reverse direction. This is mostly caused by ambiguity of the dominant feature
orientation in symmetric image structures. For this reason, a previously reported
exploitation of differences in scale for SIFT feature matching in video scenes
cannot be applied [3]. It relies on the presence of unique peaks in the matching
histograms and resamples the target image accordingly.

If a range of plausible values for s or θ can be specified, correspondences falling
out of this range can be eliminated from the list. A way of specifying this range
is to start from an estimate ŝ or θ̂ of the transformation parameters and to define
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Figure 5.18: Surface of a DVD imaged by AFM (left) and SEM (right). The
AFM scan is shown as a rendered surface.

a margin around these estimates. For example a window with a width of π/8
centered around θ̂ can be chosen. The window for the scaling factor is best
chosen relative to the amount of ŝ, e.g. ŝ ± 25%. The window width chosen will
also depend on the expected accuracy of the estimates ŝ and θ̂. If the estimates
are believed to be inaccurate a large window width may be selected. According
to the low level of prior knowledge included in this case, the matching procedure
will benefit only moderately from this step. On the other hand, if scaling and
rotation are known precisely from the imaging setup and the task of registration
reduces to the problem of translation, narrow windows can be selected.

It has to be noted, that the proposed postmatching procedure is not capable
of increasing the total number of correct feature correspondences, because no
new correspondences are established. The goal of the procedure is the removal
of incorrect correspondences. This brings the risk of also removing true feature
correspondences, mainly due to two reasons. On the one hand, the detection
of scale and orientation is inaccurate but there are cases where features can be
matched successfully, even with scale and orientation detected inaccurately. An
example are isolated corner-like structures appearing almost identical over scale.
The second reason is the inaccuracy of the estimates ŝ or θ̂ in combination with
a narrow window width in the postmatching step.

The postmatching procedure has been applied to the initial 1422 feature cor-
respondences extracted from the image pair shown in Figure 5.18 with accurate
estimates ŝ or θ̂ and the window parameters chosen as mentioned above. If the
postmatching steps for scale and rotation are carried out separately, 1114 corre-
spondences are inliers with respect to scale and 431 are inliers with respect to
rotation. Executing both steps subsequently, leaves 395 inliers. These include
109 of the 117 correct matches or in other words, 8 true correspondences have
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Figure 5.19: Histogram of scale ratios and differences in orientation for matched
features of the image pair shown in Figure 5.18. The SIFT al-
gorithm has been used for both, feature detection and descrip-
tion. With the AFM scan as base image and the SEM scan se-
lected as reference image, the histograms show clusters around the
true transformation parameters. These are a rescaling factor of
s = 1.1451 and a rotation by θ = 88.0442°.

been removed incorrectly. On the other hand, the correct ratio in the correspon-
dence set has been improved tremendously, which was the intended effect.
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6 Experimental validation of the
system for object classification

The proposed system for micro- and nanoscale object classification (Chapter 4)
has been validated in three application scenarios. These differ in the type and
scale of objects and also in the imaging modalities used. The applications origi-
nate from three EU-funded projects. Classification of nanoscale objects in SEM
scans has been performed in the context of the project Micro-nano system for
automatic handling of nano-objects (NANOHAND). In the context of Hybrid
ultra-precision manufacturing process based on positional- and self-assembly for
complex micro-products (HYDROMEL), quality monitoring and defect detection
of Xenopus Laevis oocytes using an optical microscope has been implemented.
Localization of magnetic particles using the MRI was part of the project Nano-
actuators and nano-sensors for medical applications (NANOMA). This chapter
describes the characteristics of all three tasks and shows how the proposed system
can be applied successfully.

6.1 Recognition of carbon nanotubes (SEM)
For automatic manipulation, testing or assembly of carbon nanotubes (CNTs), a
nanorobotic system needs to be aware of the locations of individual CNTs. Due
to imperfect cleanroom conditions and also complex assembly setups, CNTs will
be not the only type of structures found on a substrate. For this reason, the
proposed system has been applied in order to identify isolated CNTs, which can
be handled automatically in subsequent processing steps. The results have been
published before [27, 115].

6.1.1 Automated handling of carbon nanotubes
CNTs are one of the most promising materials in nanotechnologic applications.
Their most interesting nanoelectric properties are the ballistic (scattering-free)
and spin-conserving transport of electrons and their ability to show metallic
as well as semiconductive behavior. Also, CNTs can handle a current density
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Figure 6.1: Sequence of SEM images of a multi-walled CNT with increasing
level of magnification ranging from 800× (top) up to 4000× (bot-
tom). The full-frame image acquisition time is 90ms/640ms/40.3s
(left to right). The length of the CNT is 12.75μm.

1000 times higher than copper. This makes CNTs the perfect candidate for
novel interconnects in the fabrication of integrated circuits [80]. Furthermore,
nanoelectric components such as the CNT field effect transistor have been built
and show superior characteristics compared to silicon-based transistors [2, 50].
Besides their nanoelectric properties, CNTs are also an auspicious material in
nanomechanic applications.

Before these properties can be exploited in the large-scale production of nan-
odevices, reliable methods for automated handling and assembly of CNTs are
needed. These differ significantly from the techniques used in conventional
robotics, because the behavior of nanoscale objects such as CNTs is consider-
ably less predictable than that of macroscale objects. Visual feedback from SEM
scans turned out to be the most important type of sensory feedback for this task.

Today, CNTs are commercially available and three different production meth-
ods are well-established: arc discharge, laser ablation and chemical vapor deposi-
tion (CVD). In the following, the focus is on multi-walled CNTs grown by plasma
enhanced CVD with a typical length of 10 - 20 μm and diameter of 150 - 350 nm.
Nevertheless, the results can be easily transferred to other types of CNTs. Elec-
trothermal microgrippers have shown to be a useful tool for mechanical handling
of individual CNTs. Latest approaches demonstrated pick-and-place handling of
single CNTs following different goals including their electrical and mechanical
characterization and the assembly of sensory devices [89].
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Figure 6.2: CNT rising out of the focus plane (a), material attached to CNT
(b), conical shaped CNT (c), debris (d-f)

The main portion of noise in SEM images is caused by the secondary electron
detector and is usually reduced using temporal averaging. This is why real-time
processing of SEM images is always a tradeoff between image acquisition time
and image quality. Figure 6.1 depicts this relationship showing multiple SEM
images of an isolated CNT grown by CVD onto a silicon wafer. An acceptable
acquisition time for full-frame CNT search is <1s. Another source of image
degradation is grey level fluctuation which arises due to electrostatic charge and
due to changes in the alignment of target, electron beam and detector.

There are multiple requirements to a CNT detection algorithm for the search
of CNTs that are located at the surface of a silicon wafer. The algorithm must
be fast enough for automation procedures and therefore handle a high level of
image noise. It must detect CNTs at a wide range of different magnifications,
different lengths and in any orientation. Depending on the fabrication process,
multi-walled CNTs may be conically shaped. Evaporation of the electrothermal
gripper may also lead to the deposition of material on the CNT surface. Although
the SEM is considered to be an image sensor with high depth of field, a CNT
may partly rise out of the focus plane. The algorithm must provide orientation
and endpoints of CNTs and finally reliably reject any non-CNT particles that
cannot be avoided if working under low cleanroom standards. Some of these
requirements are illustrated in Figure 6.2.
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Combined with a scanning procedure, the proposed system is able to provide
a complete map of the wafer surface including CNTs and non-CNT objects. This
information is intended to be used for the initialization of tracking algorithms
that are needed for automated CNT handling. Additionally, it may be used as
an error recovery sequence.

6.1.2 Application of the new system
Depending on the imaging conditions, CNT fabrication process and manipula-
tion history, only few assumption can be made regarding the appearance of CNTs
in SEM images. One assumption that holds in many cases is the idea that the
outline of a CNT can be approximated by a straight line. Since other objects or
structures found on the substrate tend to arrange and shape in a chaotic or spher-
ical way, this property will be exploited for CNT detection. Three commonly
used methods for straight line detection were considered.

The active contour algorithm can be reformulated for straight line detection
[87]. It uses an inner contour energy depending on line straightness and an outer
contour energy derived from the image gradient perpendicular to the contour.
This method is not suitable for the targeted problem since the image gradient is
highly sensitive to noise and because thick lines result in double hits. Another
algorithm for straight line detection is the Hough transform. Each point in
Hough space corresponds to a line object in the input image, defined by angle
and offset. Peaks in Hough space are used to identify dominant line objects. A
disadvantage of the Hough transform is its high computational cost.

The principle component analysis (PCA) is a tool well-known in multivariate
statistics. In the context of pattern recognition it is mainly used for dimension
reduction of the input feature space. However, applied to the geometrical distri-
bution of an object, it may also be utilized for straight line detection [67]. An
ideal straight line in two-dimensional space has a principle component, which
can be calculated from the eigenvectors and eigenvalues of its scatter matrix.
This leads to the elongation measure PCE, which has been introduced in Equa-
tion 4.5. In the following, the components selected for the application of the
proposed system will be explained in detail.

Noise reduction SEM image noise is assumed to be Poisson-distributed due to
the small number of secondary electrons measured by the detector. The median
filter is expected to provide good results in this case because it is capable of
edge preservation and shot noise removal. In this application, median filtering
is critical because it removes thin lines from the image, e.g. CNTs that are
the scope of this experiment. Therefore, Gaussian low-pass filtering is used in
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Figure 6.3: Masked CNT image after segmentation (middle), detected princi-
pal and secondary component of CNT’s geometrical distribution
(lower). The original scan can be seen in the upper image.

addition to temporal averaging. Gaussian filtering also removes high-frequency
image detail, which is irrelevant to the problem of CNT detection.

Image segmentation It has to be noted that the CNT detection presented
here does not rely on a perfect object segmentation from the background. Lo-
cally adaptive thresholding techniques turned out to be sensitive to slight vari-
ations in substrate brightness. Consequently, a global thresholding strategy is
chosen. By experiment, three methods which derive a threshold value from the
image grey level histogram [95] have been compared: Gaussian mixture modeling
(GMM), within-class variance minimization and class-entropy maximization. All
methods successfully separate CNT and debris objects from the substrate at a
wide range of brightness. However, in image scenes showing only the substrate,
the GMM and variance-based approaches fail to grade the whole image as back-
ground. For this reason, class-entropy maximization has been selected for image
segmentation.
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Individual objects are identified in the binary segmented image as 8-connected
pixel-clouds. Object holes are filled afterwards. As this problem has a unique
solution and is solved by any naive approach in acceptable time the actual imple-
mentation is irrelevant. An exterior contour retrieval algorithm with additional
region filling is used. For m objects, m object point sets X1 . . . Xm are received.

Feature extraction PCA is applied to every point set X1 . . . Xm individually
and the principle component energy scores PC1

E . . . PCm
E are obtained. A score

of PCE = 1 corresponds to an ideal straight line whereas if the score is PCE = 0,
no dominant direction is found. This would be the case if the object is a circular
disc. Single point objects are excluded because the corresponding scatter matrix
Sc is singular. The eigenvectors v1,2 of each object form a rotation matrix, which
is used to transform each set of object points X1 . . . Xm into its own PCA space.
The transformed coordinates are denoted X̂1 . . . X̂m.

Endpoint retrieval From each set of transformed object points X̂, two peak
positions are calculated:

p̂1 =
[

min
i∈ 1...n

{
x̂i ·

(
1
0

)}
, 0

]T

(6.1)

p̂2 =
[

max
i∈ 1...n

{
x̂i ·

(
1
0

)}
, 0

]T

. (6.2)

By transforming p̂1,2 back to image coordinates, an estimate of the CNT end-
points p1,2 is obtained. Figure 6.3 depicts the working principle of PCA applied
to the geometrical distribution of a CNT image.

Object classification The principle component energy based score PCE is a
meaningful indicator for CNT objects. However, if an object is formed by only
a few points the result becomes arbitrary. For this reason, the object size also
needs to be taken into account. A rough measure of object size is computed
by using the relative projection area n, an appropriate scaling factor kPA

and
magnification scale M :

PA = kPA
· √

n/M. (6.3)

The decision boundary is learned automatically by training a SVM based on PCE
and PA.
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Figure 6.4: Statistics of principle component energy score PCE for debris and
CNT objects. Values of CNT objects cluster close to PCE = 1 while
debris objects fill the whole range.

6.1.3 Results of carbon nanotube detection
The majority of experiments have been carried out using a LEO 1450 by Carl
Zeiss. For comparison, additional tests have been made using a Quanta 600
by FEI. Both SEMs are equipped with additional image acquisition hardware
by Point Electronic. The silicon wafer is movable by piezoelectric actuators.
Initially, the influence of imaging conditions on the outcome of the segmentation
procedure has been investigated. Both SEMs come with an automated brightness
and contrast adjustment which aims at best usage of the dynamic range. The
effect of variations in brightness has been studied. The segmentation procedure
was found largely insensitive to variations in brightness, as long as the object
contrast remains sufficient.

In Chapter 4, the importance of feature invariance to rotation, scaling and
translation has been pointed out. These properties have been evaluated using
a representative CNT object. For this purpose a sequence of 60 images was
taken. The orientation was changed using electron beam rotation. Magnifi-
cation was varied from 800× to 4000×. As expected, the features are almost
invariant to translation and scale within the limits of numerical calculations and
noise (σ2 (PCE) = 4.79 · 10−8, σ2 (PA) = 6.12 · 10−4). Changing the object
orientation relative to the scanning direction effects contrast and shadows intro-
ducing a higher level of variation which is still uncritical for object classification
(σ2 (PCE) = 5.61 · 10−7, σ2 (PA) = 6.70 · 10−3).

A collection of 300 image scenes was used to generate statistics of possible
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Figure 6.5: Image scene assessed by the proposed algorithm. Principle compo-
nent directions are indicated. The two CNTs obtain a PCE of 0.9988
and 0.9987, whereas the debris object obtains a PCE of 0.1457.

object shapes. Some of them can be seen from Figures 6.5 and 6.6. 1177 objects
have been identified manually, which included 432 CNTs. Small parts broken
from CNTs were marked as debris, because they are useless for further processing.
Figure 6.4 shows the histogram of PCE for CNT and debris objects. All CNTs
obtain high values of PCE. This also includes conically shaped CNTs and those
with material attached to them. Small debris objects come in arbitrary shape,
which occasionally results in high values of PCE.

The algorithm has been fully integrated into a pre-existing distributed control
architecture for automated nanohandling of CNTs. All actuators as well as the
SEM control are available via a common interface. This allows testing the de-
tection algorithm in its dedicated application environment without any manual
interaction. An automation script has been written which scans the wafer surface
through the SEMs field of view. Only if CNTs are detected, the object endpoint
coordinates are transmitted to the controller. The controller uses its knowledge
of the wafer position to translate the image coordinates to world coordinates.

For testing, the wafer used in training has been exchanged in order to provide
a new set of objects. The scan was performed along multiple straight lines
which are 500 μm in length. Throughout multiple test sequences, no CNT was
detected incorrectly (false positive). However, a few CNTs were ignored which
were attached to or occluded by large debris objects. Also, the algorithm is not



6.1 Recognition of carbon nanotubes (SEM) 81

Figure 6.6: Selection of image scenes collected during the experiments at mag-
nifications ranging from 800× to 4000×. A total number of 1177
objects were identified in the complete set and used for training:
432 CNTs and 745 debris objects.

able to separate CNTs crossing each other (Figure 6.6, lower right scene). This
is not contrary to the aim of this procedure which is the detection of isolated
CNTs on the substrate that can be revisited for automated nanohandling.

The accuracy of the CNT endpoint coordinates could not be evaluated due
to the lack of a measurement method for comparison. By manually inspecting
the collected data, most endpoints are found at the correct position. Some
misplacements occur if the CNT tip is out of focus. In that case, the detected tip
position is shifted towards the CNT center. The system shows a data-dependent
processing time which was below the image acquisition time for all real-world
experiments. It has to be noted that the magnifications mentioned in this section
are calibrated for a 17" display with a resolution of 1280×1024 pixels.
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6.2 Defect detection for biological cells (optical
microscope)

Automated microinjection of biological cells can potentially speed-up drug dis-
covery or production by orders of magnitude. The success rate of this procedure
can be significantly increased by adding an automated quality check prior to the
automated microinjection. In this context, the proposed system has been applied
in order to detect defects such as mechanical damage in the input cell material.
Defect cells can be sorted out automatically and will be removed from further
processing. The results have been published before [18, 31, 114].

6.2.1 Automated injection of fluids into biological cells
Xenopus Laevis are very popular in research because they proliferate rapidly
and their oocytes and embryos are very robust to experimental manipulation.
Fully automated microinjection would simplify large scale studies and provide
an important tool for research. As the oocytes are manually separated from
the frog, their quality cannot be guaranteed. Defects include oocyte death,
inadequate oocyte separation and external damage. The proposed system is
applied in a preparation step for later micro injection of fluids into the oocytes.

Automatic characterization of biological cells is successfully performed in flow
cytometry since around 40 years. Traditional flow cytometry is based on the
measurement of laser light scatter and can monitor several thousands of cells
per minute, e.g. in a blood stream. In contrast, image cytometry measures cell
properties from image data [108]. It enables quantification of complex staining
patterns but comes with a throughput far below laser flow cytometry. Some
commercially available devices combine multispectral laser flow cytometry with
additional microscope cameras [9]. However, these systems are not designed for
single cell characterization and not suitable for large cells such as Xenopus Laevis
oocytes with a diameter of approximately 1mm. Instead, the proposed system
is applied for cell classification.

6.2.2 Application of the new system
An experimental setup has been built for oocyte monitoring, which can be seen
in Figure 6.7. The oocyte suspension flows through a glass tube where it is
in the scope of the macro lens system (reproduction scale 0.75). A FireWire
camera with a 1/4" CCD is used for image acquisition. The proposed system
performs image segmentation, feature retrieval and the actual object classifica-
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Figure 6.7: Experimental setup: the oocyte stream flows through a glass tube,
which is in the scope of the macro lens

tion. Finally, the classification result is transmitted to the sensor server and may
cause the controller to remove defect oocytes or particles from the stream using
a downstream pump. In order to reduce the effect of motion blur, the exposure
time has been set to 3ms at a frame rate of 60fps. The stream speed is 30mm/s
in average and the field of view width is 4.74mm. The objects are in scope for
up to 10 frames. Two white LEDs have been used for illumination.

Segmentation In this well defined environment, image segmentation can be
performed by background subtraction in combination with fixed-level threshold-
ing. Assuming that there are no changes in setup arrangement or illumination,
a background image (or a time averaged series of n images) may be captured for
calibration. Two aspects have to be considered:

• The image background is of white color. Illumination and exposure time
are chosen so that background pixels are in saturation. This yields an
almost noise-free background in the difference image and hence produces
sharp contours after fixed-level thresholding.

• Shadows might appear when objects pass the field of view. Illumination
may be arranged so that shadows only show up around the glass tube
walls. These parts may be excluded from thresholding by initially setting
the image region of interest to the inner part of the tube.

Figure 6.8 illustrates the process of image segmentation. The captured image
(top row) is subtracted from the background image and the result (middle row) is
thresholded, yielding a well-segmented image. By applying an additional thresh-
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Figure 6.8: Passage of a single oocyte: original scene (upper row), difference
image (middle row) and labeled poles (lower row). The field of view
width is 4.74mm for each image.

olding procedure in the detected cell area, the dark and bright cell poles can be
differentiated (lower row).

Feature extraction A variety of damaged oocytes and fragments can be seen in
Figure 6.9. For the separation of viable oocytes (cp. Figure 6.8) from damaged
oocytes or particles, two shape features have been selected:

1. Object size obtained by the number of object pixels. As the distance be-
tween object and camera is fixed by the pipe, no scale-invariant descriptor
is needed.

2. Object roundness R2D as introduced in Equation 4.1
These two measurement results may be rescaled in order to influence their impact
on the classifier design. Object size has been normalized to half the ROI size.
The influence of R2D is outweighted by a factor of 18. This choice has shown
best performance in experiments. For large objects, R2D is a reliable feature
for detecting defects. In contrast, the roundness of a small particle of only a
few pixels is arbitrary and not suitable for proper discrimination. Therefore the
object size feature is needed additionally.

Classifier training A nonlinear SVM classifier was trained using 130 represen-
tative samples, where 95 of them were negative. The regularization parameter
has been set to C = 0.5. The RBF kernel function

K (xi, xj) = e−||xi−xj||2 (6.4)



6.2 Defect detection for biological cells (optical microscope) 85

Figure 6.9: Oocytes with external damage and particles of blasted oocytes. The
field of view width is 4.74mm for each image.

has been chosen. Training has been performed using SVMlight software [56]. A
list of Ns = 56 support vectors si with associated Lagrange multipliers αi and
the hyperplane threshold b were obtained, which together serve as input to the
classification module.

6.2.3 Results of cell defect detection

The classifier output can be seen in Figure 6.10. An output ≥ 0 signals positive
samples (viable oocytes), whereas an output < 0 corresponds to objects that
have to be removed. As intended, objects of deficient size or improper roundness
are rejected. The classifier is far less tolerant to deviations in roundness than to
little object dimensions. It has to be noted that perfect roundness corresponds
to a value of R2D = 1 which will never be reached by spherical oocytes, because
the image is distorted by the glass tube surface.

A test series with 10 oocytes and particles has been performed multiple times.
The classification results matched user judgment in all cases. Nevertheless the
current setup brings some limitations:

• For a clear assignment of classification results, only single objects are ex-
pected to be in scope.

• Only defects which can be seen from the shape are detected. Cell death
results in discoloration and cannot be detected.
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Figure 6.10: Classifier output to parts of the input space (features have been
rescaled). The classifier rejects objects (output < 0) which are
too small or deviate too much from optimal roundness.

6.3 Localization of magnetic particles (MRI)
The gradient fields of a clinical MRI scanner have the capability of inducing a
force effect on magnetic particles. This property can potentially be exploited for
applications such as targeted drug delivery or catheter navigation. With the help
of a dedicated pulse sequence, the MRI can perform imaging and force effect in
a time-interleaved way. The proposed system has been applied for the detection
of magnetic particles in MRI scans. Combined with a suitable routine for object
tracking and a controller, closed-loop position control of magnetic objects is
enabled. Results have been partly published before with a focus on force effect
[20], the overall setup [17, 19, 21] and navigation and imaging [35, 112, 113].

6.3.1 Navigation of magnetic particles using MRI
MRI is based on the effect of magnetic resonance (MR). If a strong external
magnetic field B0 is applied to a specimen, the nuclear magnetic moments (spins)
align with the external field. Specially-shaped radio frequency (RF) pulses are
capable of changing the orientation of the spins (excitation). The magnetization
then starts a precession movement with a frequency ωL, which depends on the
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Figure 6.11: Relaxation trajectory of a nuclear magnetic moment (spin), ob-
tained by evaluating Equation 6.5. Initially, the spin has been
flipped into the xy-plane by applying a 90◦ excitation pulse. The
B0 field is aligned with the z-direction.

strength of B0. After some time, the spin realigns with B0. This process is
referred to as relaxation and is governed by two timing constants T1,2, which are
material constants of the surrounding material. From a macroscopic view, the
relaxation can be described by the Bloch equation [26], which has been evaluated
in Figure 6.11:

�M(t) =

⎛
⎝ e−t/T2 0 0

0 e−t/T2 0
0 0 e−t/T1

⎞
⎠ ·

⎛
⎝ B A 0

−A B 0
0 0 1

⎞
⎠ · M(t0) +

⎛
⎝ 0

0
M0 · C

⎞
⎠ , (6.5)

with A = sin(ωL · t), B = cos(ωL · t) and C = 1 − e−t/T1 .
Most imaging modes are based on visualizing local differences in T1 and T2.

While B0 is spatially and temporally constant, MRI scanners allow setting three
gradient fields GX , GY and GZ dynamically. As the gradient fields are capable of
locally changing ωL, they are required for spatial coding. Also, they are capable
of aligning spins and causing an echo, which is a measurable RF signal. All
excitation, signal acquisition and gradient switching events are listed in a so-
called pulse sequence. Depending on the method of creating an echo, spin-echo
and gradient-echo sequences can be distinguished.

Besides the importance of GX , GY and GZ for the purpose of image acqui-
sition, they also cause a force effect on magnetic objects. In common imaging
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Figure 6.12: Application of the SPR-based system for micro- and nanoscale ob-
ject classification for magnetic particle navigation using MRI. The
MRI scanner serves as both, imaging modality and actuator. In
addition to the object classification system, a tracking procedure
is incorporated.

modes, this effect is minimal due to the frequent changes of gradient directions.
On the other hand, the force effect can be utilized by switching the gradient
fields in a controlled way. This method can potentially be exploited in appli-
cations such as steering magnetic drug carriers or actuating magnetic catheter
tips. Figure 6.12 depicts, how the proposed system can be applied in such a
scenario. Initially, one or multiple magnetic target objects are localized by the
proposed system. The initial positions are transferred to a tracking procedure,
which follows the movement of the objects in subsequent scans. Based on the
actual object positions and the path-planning, the control system computes a
propulsion strength and direction. The gradient controller interleaves propulsion
gradients with the imaging sequence.

An alternative method for object localization has been reported, which does
not reconstruct complete scans but is based on one-dimensional signal projections
[32]. The method shown in Figure 6.12 is generally slower but on the other hand
delivers updated image material of surrounding tissue, which can be used for
path-planning. The detection of magnetic objects is based on the exploitation of
magnetic susceptibility artifacts, which will be explained in the following.

6.3.2 Susceptibility artifacts
MRI scanners rely on the assumption of a set of well-defined magnetic fields which
are the base field B0 and gradient fields GX , GY and GZ for each direction. Much
effort is spent during the scanner’s construction to ensure, that those fields match
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their theoretical shape as perfectly as possible. Therefore, a uniform magnetic
susceptibility χ is needed inside the field of view. This requirement is violated to
a small extent by the human body, which shows tissue and gas-filled cavities with
different χ. Insertion of magnetic material into the field of view of a MRI scanner
causes a tremendous impact on a number of image formation principles, because
χ will vary by many orders of magnitude. The resulting image artifacts are
called susceptibility artifacts. Nevertheless, a thorough knowledge about their
occurrence and scaling laws may be exploited for the localization of magnetic
capsules or nanoparticles inside the MRI. The size and shape of susceptibility
artifacts strongly varies with the actual imaging sequence used.

There are two dominant effects caused by strong local susceptibility differences.
These are spatial misregistration and intravoxel dephasing. Spatial misregistra-
tion results from the spatial coding principle of most MRI sequences. They rely
on uniform gradient fields GX , GY and GZ to enable slice selection, frequency-
and phase encoding as well as signal acquisition. Distortion of the gradient fields
caused by susceptibility differences leads to incorrect frequency and phase of the
spins surrounding the magnetic object. As a result, magnetic resonance signals
are cancelled or misregistered in the image reconstruction [22]. The second ef-
fect is intravoxel dephasing, which is caused by the local gradient field around a
magnetic object. Spins inside a specific voxel are usually assumed to behave uni-
formly and align at echo time. An additional dephasing dampens the echo signal
and can lead to a complete loss of signal. This effect can be partly corrected in
spin-echo sequences, due to the refocusing 180◦ RF pulse, which is characteris-
tic to all spin-echo sequences. Gradient-echo sequences lack the 180◦ refocusing
pulse and can only compensate for the systematic dephasing caused by GX , GY

and GZ . Therefore, the effect of intravoxel dephasing can be considered to be
severe in gradient-echo sequences.

Most studies about susceptibility artifacts focus on their avoidance in clinical
examinations. A typical source of susceptibility artifacts are medical implants,
for instance dental casting alloys [96] or intervertebral spacers [29]. Artifacts
caused by three different metallic screws have been studied with respect to object
size and orientation [66]. Ferromagnetic steel screws produced bigger artifacts
as compared to paramagnetic titanium screws, a more severe signal cancellation
was observed in gradient-echo sequences. The screws have been oriented along
the direction of B0. A comparable setup but with perpendicular screw orien-
tation was presented in [71]. The artifacts show a larger extension along the
B0 direction. This is a result of the varying magnetic field shapes obtained for
anisotropic objects with different orientations against an external magnetic field.
Again, the artifact size varies with the material used. In medical examinations,
susceptibility artifact occurrence can be reduced by modifying the patient ori-
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entation [82]. This phenomenon may be exploited to localize objects with large
aspect ratios such as needles [23].

For imaging of magnetic capsules, low aspect ratios may be assumed and
therefore orientation against the B0 field will be of minor importance. Instead,
imaging sequence specific parameters are expected to play a key role. From the
observations reported in clinical examinations, four parameters are supposed to
have the strongest influence on artifact occurrence: echo type, due to the presence
or absence of the 180◦ refocusing pulse, echo time, which is critical for the amount
of dephasing, voxel size in frequency encoding direction and flip angle, which is
the angle between the B0 field and spins after excitation.

6.3.3 Application of the new system
Application of the proposed system requires a sufficient amount of training ma-
terial. Therefore, magnetic particles have been imaged using different pulse se-
quences with variations in echo type, echo time, voxel size and flip angle. Fur-
thermore, particles of varying size and material have been studied. A General
Electric Signa 3T and a SIEMENS Verio 3T scanner have been used to perform
the experiments. Isolated metallic objects cannot be imaged using MRI, due to
the absence of the MR effect. Therefore, an additional signal source is needed.
Agarose gel has been chosen because it combines two beneficial properties. First,
it is a good source of signal due to the high water content. Second, is shows suf-
ficient stiffness for fixation of the samples when they are introduced into the B0
field. Strong field gradients (> 1T/m) and hence force effect is observed there.

A collection of small solid metallic objects and Ferrofluids were used as samples
for the systematic experiments. Ferrofluids are superparamagnetic nanoparticles

Figure 6.13: Heavy distortions caused by Ferrofluid, embedded into a 0.5l con-
tainer of agar in gradient-echo (left) and spin-echo (middle). Right
side: Spin-echo scan of agar phantom without Ferrofluid.
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Object No. Material Shape Dimensions Total Vol.
1 Steel Cube 1 mm × 1 mm × 0.5 mm 0.50 mm3

2 Steel Cube 1mm × 1mm × 1mm 1.00 mm3

3 Steel Cube 1mm × 1mm × 2mm 2.00 mm3

4 NdFeB Disc Diam.: 2 mm, Ht.: 1 mm 3.14 mm3

5 Steel Sphere Diameter: 1.0 mm 0.52 mm3

6 Steel Sphere Diameter: 1.2 mm 0.91 mm3

7 Steel Sphere Diameter: 1.5 mm 1.77 mm3

8 Steel Sphere Diameter: 2.0 mm 4.19 mm3

9 Steel Sphere Diameter: 2.5 mm 8.18 mm3

10 Steel Sphere Diameter: 3.0 mm 14.10 mm3

Table 6.1: Summary of solid objects used during experiments

of approximately 10nm in a suspension with a synthetic carrier oil. The solid
samples are of steel and NdFeB, one of the strongest permanent magnets. The
aim of this investigation was to study isolated susceptibility artifacts without
superposition of tissue structure or additional objects. Therefore, each sample
has been embedded into an individual agar container. Depending on the sample
mass and material, 1l, 2l or 4l containers have been used. Figure 6.13 shows two
sagittal scans of a 0.5l container of agar with approximately 0.5ml of Ferrofluid
embedded and a container with pure agarose gel for comparison. The dispropor-
tion leads to a heavy distortion of the image in both cases. For a systematical
study, the artifacts are supposed not to extend past the walls of the container.
The solid objects are summarized in Table 6.1. A selection of typical artifacts
for the three main sequence classes used during the experiments, can be seen
in Figure 6.14. Three sequence types have been used: native 3D gradient-echo
(GRE) and 2D spin-echo (SE) as the two sequence base-types, 2D single-shot fast
spin-echo (SSFSE) as a representative real-time sequence. For the experiments,
the real-time sequence was operated at 1 frame per second. Depending on the
imaging parameters, 10 frames per second or more are possible.

For the detection of the susceptibility artifacts, a segmentation between arti-
fact and image background is needed. In general, an artifact is defined to be a
deviation between image and real structure that results from the imaging prin-
ciple. Therefore, subtraction of a background image from the actual scan is an
option to be considered. For the agarose phantoms, a homogeneous background
signal may be assumed. On the other hand, usually no background information
will be available in real-tissue scans. Instead of the background subtraction ap-
proach, the EM algorithm with a Gaussian mixture model (see Section 4.2.2)
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Figure 6.14: Typical artifacts in sagittal plane for gradient-echo (left), spin-
echo (middle) and single-shot spin-echo (right) resulting from a
3mm steel sphere (upper row) and Ferrofluid (lower row), embed-
ded into containers filled with agarose gel. The vertical lines result
from the Ferrofluid sample preparation and are not an imaging ar-
tifact. The field of view width is 20cm for all scans.

is applied. A fixed number of segmentation zones is assumed to be present in
the scan. The EM algorithm iteratively modifies the class centers, variances and
proportions. In contrast to binary segmentation schemes, this procedure allows
including the volume parts of signal loss into the artifact quantification as well as
the high signal peaks caused by spatial misregistration. 3D objects are retrieved
by 26-connected component search. Segmentation results for steel sphere sam-
ples can be seen in Figure 6.15. All sequence types show a characteristic shape
of the artifact. Artifact size scales down with object size.

The artifact volume can be computed from the 3D object pixel mass and the
voxel volume. Because different sequences have been used, the voxel volume
needs to be derived for each examination using the following entries from the
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Figure 6.15: EM segmentation results for single-shot fast spin-echo (top) spin-
echo (middle) and gradient-echo (bottom) for steel spheres. Di-
ameter: 3mm, 2.5mm, 2.0mm, 1.5mm, 1.2mm, 1mm (left to right)

scan meta data:

V oxelV olume [mm3] = P ixelSpacing1 · P ixelSpacing2 · SpacingBetweenSlices
(6.6)

SpacingBetweenSlides is supposed to be the sum of slice sickness and slice
spacing. Measurement results for the 2mm steel sphere and all sequences can
be seen in Figure 6.16. Gradient-echo artifacts are generally much larger than
spin-echo artifacts. This is due to the general principle of echo formation of
both techniques. As the refocusing pulse that is characteristic to all spin-echo
sequences corrects for constant field inhomogeneities, generally smaller distor-
tions can be expected. A long echo time increases artifact size for all spin-echo
sequences. It has to be noted that Figure 6.16 gives a comparison in volume but
the perceived difference in artifact size in a 2D slice is less severe.

Figure 6.17 provides further comparisons of artifact volume for selected se-
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Figure 6.16: Artifact volume comparison of all sequences used for 2mm steel
sphere with varying echo time (TE), flip angle (FA) and voxel size
in frequency encoding direction (FM)

quences. As expected, the artifact volume is closely related to the magnetic
object size and several orders of magnitude above the object volume. The ar-
tifacts observed for the Ferrofluid samples are comparable in shape and size to
the solid samples. In contrast to medical contrast agents, they do not only lead
to a local loss of signal but create heavy distortions. This is probably because of
the high concentration of superparamagnetic particles and the high saturation
magnetization (30 mT) of pure Ferrofluid.

For demonstrating the reproducibility of the results in a real-tissue environ-
ment, the steel sphere with a diameter of 1mm has been embedded into an animal
tissue sample. Figure 6.18 shows corresponding MRI scans using different imag-
ing sequences: fast low angle shot (FLASH), turbo spin-echo (TSE) and true
fast imaging with steady state precession (TRUFI). The EM segmentation pro-
cedure can be applied in a similar way as for segmenting the agarose gel phantom
scans. Intensity levels in MRI scans typically cover a larger range as compared
to the usual 8-bit image data. Prior to display, a contrast stretch is normally
performed. Instead, the segmentation procedure is working on the raw image
data and can benefit from the high dynamic range. The areas of signal loss
caused by a susceptibility artifact reliably produce low signal intensity values.

The proposed system for object classification has been tested with the help
of a selection of scans from phantom experiments and full 3D head imaging.
All scans have been acquired using gradient-echo sequences. After applying the
segmentation procedure, three types of objects have been identified:
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Figure 6.17: Artifact volume comparison for different sequences. The volume
is derived by a fixed threshold 3D segmentation.

• The surrounding air produces low signal intensities and can be confused
with the areas of signal loss caused by magnetic objects. Typically, the
segmented background is the largest object in the volume of interest.

• Susceptibility artifacts caused by magnetic objects. The characteristics
have been studied above.

• Cavities, bones and other anatomical structure can show object sizes com-
parable to those of susceptibility artifacts.

A scatter plot of all indentified objects can be seen in Figure 6.19, where
positive samples (susceptibility artifacts) and negative samples (background and
anatomical structure) have been marked. The feature vector for each sample
is composed of the segmented object volume and the mean signal intensity in-
side the object. The plot shows that the EM segmentation can indeed converge
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Figure 6.18: Steel sphere embedded into real-tissue environment. The image
scenes have been captured using a FLASH (left), Turbo spin-echo
(middle) and TRUFI (right). On the left side of each scan, a
steel sphere with a diameter of 1mm has been embedded into two
duck legs. The right side of each scan shows gel phantoms for
comparison.

towards intensity levels above the mean level found in susceptibility artifacts.
Nevertheless, the object classes can be distinguished based on the proposed fea-
ture vector and are in fact linearly separable. The decision boundaries of three
classifiers have been indicated: a quadratic Bayes classifier, a back-propagation
trained feed-forward neural network and a linear SVM. For the given classifi-
cation task, the quadratic Bayes classifier is underfitted but ANN and SVM
perform similarly well.

6.3.4 Closed-loop position control
A simplified setup has been used in order to demonstrate closed-loop position
control. For this purpose, a swimming capsule has been filled with Ferrofluid
and navigated along a parcours. The setup can be seen in Figure 6.20. The
side length of the acrylic box is 30cm. In order to enhance optical visibility,
a dark marker has been attached to the capsule. Propulsion and imaging has
been carried out using a modified FLASH sequence. Position control has been
performed by a two-dimensional PI controller. A list of waypoints has been set
manually in order to define the travelling path of the capsule. The travelling
speed of the capsule is mainly influenced by the gradient strength and the duty
cycle. A maximal gradient strength of 20mT/m has been used. By optimizing
the FLASH sequence parameters with respect to acquisition time, a complete
cycle time around the parcours of 37s has been achieved.
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Figure 6.19: Scatter plot of segmented volumes with respect to size and mean
intensity. The decision boundaries of three different classifiers are
indicated.

6.4 Conclusion
This chapter presented three very dissimilar applications of the proposed system
for micro- and nanoscale object classification. The applications cover three imag-
ing modalities and also strongly different types of objects. Also, the classification
tasks to be carried out are unequal. Workpiece detection has been demonstrated
by performing the SEM-based CNT search. Defect detection of biological cells
using the optical microscope implements a quality check. Localization of the
magnetic particles in the MRI is a form of actuator detection. Another dissimi-
larity of the three setups are the real-time constraints. While the oocyte quality
check is performed in motion and requires a system response within <<0.5s,
the CNT search and magnetic capsule detection are performed in static image
scenes, which do not impose strict timing requirements.

It can be concluded that the proposed system presented in Chapter 4 solves
the three tasks successfully, whereas the state-of-the-art methods described in
Chapter 2 are hardly applicable. The main reason for the success of the proposed
system is the idea of not focusing on direct similarity between a new image and
some training images. Instead, the problem characteristics are learned and also
the decision boundaries are chosen automatically. The proposed system does not
replace the state-of-the-art methods described in Chapter 2. It rather extends the
capabilities of automatic image analysis in micro- and nanorobotic applications
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Figure 6.20: Experimental setup for closed-loop position control. Upright walls
are mounted on the base plate (upper right), which has been
placed inside a water-filled acrylic box (upper left, camera view).
A capsule filled with Ferrofluids is travelling along a pre-planned
path around the obstacles (lower row, MRI view).

and thereby increases the level of automation.
A clear benefit of the proposed system is the high level of integration into a

control- and automation environment. By using a GUI, the proposed system can
be configured flexibly for any new classification task. During automated micro-
and nanohandling procedures, the control system then restores the configura-
tions. The side-by-side use of the proposed system with other image processing
routines and also other forms of sensory feedback enables fully automated han-
dling or assembly procedure at the micro- and nanoscale.
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7 Experimental validation of the
image registration strategy

A new scheme for multimodal image registration has been presented in Chap-
ter 5. The proposed registration scheme has been implemented and applied to
the problem of registering images obtained from AFM and SEM. This chapter
presents the implementation details and performance results obtained during the
experimental validation of the proposed registration scheme. The results partly
originate from the EU-funded research project Building an Analyzing Focused Ion
Beam for Nanotechnology (FIBLYS) and have been partly published before [111].

7.1 Registration of AFM and SEM images

7.1.1 Motivation for combining AFM and SEM

AFM and SEM have been introduced already in Chapter 4 in the context of
micro- and nanoscale object detection. Both modalities bring the necessary ca-
pability of imaging objects and structures at the micro- and nanoscale. On the
other hand, working principle and imaging characteristics of AFM and SEM are
strongly different. Many arguments motivate using AFM or SEM not alterna-
tively but to combine the benefits of both imaging modalities. Therefore, AFM
and SEM will be revisited with a focus on complementary properties.

The AFM probes the sample surface with the tip of a cantilever. From the
deflection of a laser beam pointing at the cantilever, the force between tip and
surface is derived. An alternative method of measuring the cantilever bending
uses piezoresistive elements integrated into the cantilever. Generally, three modes
of AFM operation can be distinguished based on the tip-sample interaction:
contact mode, intermittent contact mode and non-contact mode. Besides the
ability to reconstruct the specimen topography, the AFM can also be used to
measure physical properties of a sample surface. These include magnetic and
Coulomb forces, friction and chemical interaction. The working principle of the
conventional AFM is depicted in Figure 7.1.
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Figure 7.1: Working principle of the AFM. The sample is mounted onto a piezo-
electrically driven stage and scanned below the tip of the cantilever.
By measuring the laser beam deflection, the controller reconstructs
the sample surface.

The SEM generates an electron beam which is used to scan the sample sur-
face [84]. An electron gun equipped with a tungsten filament or a field emission
gun is used as electron source. From the electrons emitted by the sample, a
signal can be measured that is used to form an image. The resulting SEM image
displays a mixture of different types of image contrast. Contrary to AFM, a
pure representation of the specimen topography by image intensity is difficult in
the SEM. Because the electron beam does not only interact with the specimen
surface but also with subjacent material, the measured signal is influenced by the
three-dimensional structure of the specimen. The imaging modes of the SEM can
be distinguished depending on the type of the detected signal. The secondary
electrons emitted by the sample are the most frequently used source of signal.
Secondary electron (SE) scans are strongly influenced by the specimen topogra-
phy. From the primary electrons that are backscattered from the sample, the
backscattered electron (BSE) signal can be detected. These images are mostly
influenced by the material composition of the sample. The working principle of
the SEM is depicted in Figure 7.2.

Combined AFM and SEM studies can provide a thorough view of a specimen
surface and material properties. Dual studies have been reported in several
applications, indicating a clear benefit of the side-by-side use of AFM and SEM.
Some examples are human hair analysis [81], imaging of Bacillus spores [102],
nanofibres [107] and studies on porous anodic alumina [119]. An example of an
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Figure 7.2: Working principle of the SEM. The focused electron beam scans
the sample surface. In standard imaging mode, backscattered or
secondary electrons are detected and the measured signal is used to
form a two-dimensional image. More specialized analysis techniques
detect X-rays or cathodoluminescence.

AFM and SEM image pair can be seen in Figure 7.3. The AFM can provide
a higher vertical resolution than the SEM, ranging down to < 0.5 Å. With a
number of precautions, true atomic resolution is possible with the AFM. The
maximal lateral resolution of AFM and SEM is approximately equal and falls in
the range of a few nanometers. On the other hand, SEMs can be operated at low
magnifications with a field of view of several millimeters. The largest AFM scans
typically cover an area of 100 μm × 100 μm. Due to the high depth of field of
the SEM, which can be in the range of millimeters, it can image rough surfaces.
The imaging height of the AFM is limited by the vertical range of the scanner,
which is typically < 20 μm.

Due to the complementary nature of AFM and SEM in regard to maximal
resolution and field of view, combined studies do not only benefit from successive
but also from simultaneous AFM and SEM imaging. In this case, the SEM
also helps to guide the AFM cantilever to the designated location. Some effort
has been made towards the integration of an AFM inside the vacuum chamber
of the SEM [28, 57], where the focus has been on the mechanical setup. The
proposed registration scheme provides a method for automatically generating
a more meaningful view of the obtained image data. This can be employed
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Figure 7.3: Example of AFM and SEM image pair, showing FIB-milled struc-
tures on a silicon wafer. The left scan shows the AFM topography
view. The right scan shows a secondary electron SEM image, cov-
ering a larger scanning area than the AFM scan.

for either retroperspectively analyzing the outcome of a combined AFM and
SEM study or for guiding successive AFM scans during the examination. The
proposed registration scheme is applicable to hybrid AFM and SEM setups as
well as successively acquired scans from separate devices.

7.1.2 Transformation model
The description of the spatial correspondence between AFM and SEM scan re-
quires a transformation model T (x, y). For any image coordinates (x, y) in the
target image, T (x, y) are the image coordinates in the base image. In many
applications, the SEM scan covers a larger area than the AFM scan. This is
a reason why the SEM scan has been chosen as the base image. However, this
choice is arbitrary and all methods presented will also function with the AFM
scan as the base image. A general consideration when chosing the transforma-
tion model is which aspects to include into the model and which to exclude from
the optimization and tread as a preprocessing step. The only preprocessing step
applied here is fitting of a polynomial curve, in order to assure a uniform ground
level in the AFM scans. The curve

P (x, y) =
2∑

i=0

2∑
j=0

αij xi yj (7.1)

has been fitted into the ground regions and subtracted from the original scan
data. Additionally, the method proposed in [40] could be used to compensate for
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local distortions in the SEM scan. Similar to [30], where a linear model is used
to register contact- and intermittent contact mode AFM scans, the transform is
chosen to be a combination of scaling S, rotation R and translation t:

T (x, y) = S · R ·
(

x
y

)
+ t, (7.2)

where

S =
(

sx 0
0 sy

)
, R =

(
cos θ − sin θ
sin θ cos θ

)
and t =

(
tx

ty

)
. (7.3)

The use of this simple transformation model can be justified by two arguments.
First, the rigid nature of specimens such as a silicon wafer makes deformations
during or between the acquisition procedures unlikely. Second, global distortions
originating from the acquisition procedure can be assumed to be mostly constant
over time. Those can be corrected for prior to the registration procedure.

7.2 Selection of samples for performance evaluation

7.2.1 Requirements to the image material
Testing the proposed registration scheme requires a selection of samples which
provide a large spectrum of image contents. This includes all basic geometric
shapes such as corners, edges and blob-like structures. Some samples should
contain deep structures and also rough surfaces. Ambiguous structures are simple
to detect but hard to distinguish. Those structures are good for testing the
descriptor performance. Another type of structures reproduces over changes in
scale. This includes especially isolated corners and junctions. While these are
usually not a problem to the area-based registration step, the scale detection in
feature-based registration is likely to become unstable at these points.

Besides these requirements to the structures to be imaged, the scans should
also include some sensor-specific imaging artifacts. For the SEM these can be
the occurrence of shadows in the direction facing away from the detector. Also
depending on the viewing angle, thin structures and edges tend to appear bright
in the SEM scan. Frequent artifacts in AFM scans include line artifacts origi-
nating from a malfunction of the height control. Also, inaccuracies of fitting a
ground level into the scan area can lead to an intensity ramp superimposed to
the ground level.
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Figure 7.4: Samples used during systematical performance evaluation, scanned
by SEM (left column) and AFM (right column): CD surface (a),
DVD surface (b), FIB-milled pattern (c), gold nanoclusters (d),
gold on silicon test pattern (e).
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7.2.2 Sample preparation
The image material has been acquired using a Tescan LYRA 3 FEG/XMH
(SEM), a Carl Zeiss LEO 1450 (SEM) and a custom-built AFM setup, which
can be integrated into the vacuum chamber of the SEM [28]. If not stated other-
wise, SEM scans are based on the SE detector signal. The AFM scans measure
surface topography in intermittent contact mode. All types of samples used dur-
ing systematical performance evaluation can be seen in Figure 7.4. The goal has
been to cover a range of different image contents for obtaining a meaningful per-
formance estimation of the proposed registration scheme. Compact Disc (CD)
and Digital Versatile Disc (DVD) samples have been prepared for inspection by
separating pieces of the data layer. The data layer surface shows structures in
blob and dash shape. For obtaining edge-like structures, letters have been milled
into a silicon substrate using the focused ion beam (FIB) column of the Tescan
LYRA. Gold nanoclusters of varying size have been imaged on a silicon substrate.
A test pattern made of gold on a silicon substrate exhibits a lot of square-shaped
structure, which is highly ambiguous.

In addition to the samples used during systematical performance evaluation,
the FIB-milling has been applied to produce a number of especially challenging
samples. The procedure is the same applied in the production of the pattern
seen in Figure 7.4 c), but the structures show a lack of distinctive image detail.

7.2.3 Artificial image material
Multimodal image registration can be regarded as a registration task with two
different sensor characteristics. In unimodal image registration, the main diffi-
culty is to handle geometric differences in the arrangement of sensor and image
scene. The assumption is that without any change in scene arrangement or sen-
sor settings, images acquired multiple times are either identical or eventually
degraded by additive noise. However, this assumption does not hold in multi-
modal image registration and especially not in AFM and SEM registration. The
registration problem can be understood more clearly by considering that there is
only one physical sample surface both imaging modalities are working on. The
AFM and SEM scan are influenced by the sample (which is identical), the sen-
sor arrangement and imaging characteristics (which are both different). Imaging
characteristics can be modeled by a number of geometric and photometric trans-
formations. Therefore, not only the process of imaging the sample but also the
transition from AFM to SEM scan can be modeled by a series of transformations.

The benefit of using artificially generated images for testing the registration
scheme is that the effects of different imaging characteristics can be studied in
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Figure 7.5: Construction of objects for generating artificial image material. The
targets are parameterized by width, height and curvature. This
series shows objects with a fixed and identical width and height
and varying curvature ranging from 0% to 95%.

an isolated way. When using real AFM and SEM scans, the registration scheme
needs to manage a number of differences in imaging characteristics simultane-
ously. Isolating these effects in synthetic images allows to study effects such as
differences in contrast level separately. For this reason, a simple method of gener-
ating synthetic image pairs with well-defined properties has been established. A
requirement to the image material is the diversity of image structures presented.
Synthetic image material can be generated with the help of any pseudo-random
number generator and the help of parameterized geometrical objects. The ob-
jects incorporated here are rectangles and ellipses. Object parameters are object
height, width, location, intensity and curvature. The curvature parameter states
the percentage of the object side formed by the quarter-pieces of ellipses. The
remaining side length is a straight line. This means that 0% of curvature pro-
duces a rectangle and 100% of curvature produces an ellipse. The principle is
depicted in Figure 7.5.

Figure 7.6 shows an example of an artificially generated image. Object po-
sitions have been specified using an equidistant grid, all other object parame-
ters are obtained by the random process. This type of image material shows
structures ranging from spherical to string-like and also different strength of
background contrast. It should cause all feature detectors to respond and also
provides enough structure for area-based registration. Image pairs for testing
the registration scheme can be constructed by applying different transforms to
an artificially generated image. Those can include morphological operations,
variations in contrast or intensity level or also adding noise.
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Figure 7.6: Artificial image showing 200 basis objects. Object parameters in-
cluding width, height, curvature and intensity have been generated
using a pseudo-random number generator. These artificially gener-
ated images are used in order to study the effect of isolated differ-
ences in imaging conditions on the registration performance.

7.3 Performance analysis of the new registration
strategy

The proposed registration strategy has been validated component-wise and also
as a complete system. Initially, the performance of the feature-based registration
step has been studied systematically by registering scans obtained from AFM
and SEM. Next, the gain in performance caused by combining detectors and
applying the new feature matching strategy is discussed. It is shown, how area-
based refinement of the result leads to an improvement of registration accuracy.
Finally, the registration strategy is discussed in its entirety.

7.3.1 Feature-based registration
Performance criteria

In Section 5.2.2, the repeatability criterion and matching score have been in-
troduced in the context of combining detectors. Repeatability is used here as a
measure of how well a detector reproduces results in AFM and SEM scans. The
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Figure 7.7: Feature correspondences between an image pair showing the surface
of a DVD. Only correct matches are displayed. The left image shows
the AFM scan; the right image shows the SEM scan.

matching score is a simple measure of how well a description scheme transfers
initially detected regions into correct region correspondences. It is a good indica-
tor for directly comparing multiple descriptors. A deeper insight into descriptor
and matching performance can be obtained with the help of the recall versus
1-precision plot [75]. It measures the ability to detect correct feature correspon-
dences and to reject incorrect matches. Recall and 1-precision are defined as
follows:

recall =
#correct matches

#correspondences
, (7.4)

1 − precision = #false matches

#correct matches + #false matches
. (7.5)

For a series of varying matching thresholds the values are plotted on a curve.
A good descriptor and matching strategy obtains a high recall rate (detects many
of the existing feature correspondences) and a low 1-precision value (returns few
incorrect correspondences). Such a results allows model fitting tools such as
RANSAC to identify the correct subset of matches and to accurately determine
the transformation model parameters. Correct feature correspondences between
AFM and SEM scan of a DVD surface can be seen in Figure 7.7.
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Feature detectors

The result of the detector performance analysis is shown in Figure 7.8 for all
detectors. The repeatability values are comparable to those obtained in natu-
ral photography under transformations such as a change in viewpoint. Random
sampling is added for comparison only and is not considered as a detector actu-
ally used in the proposed registration scheme. It has to be noticed, that region
sizes have been normalized prior to computing the repeatability score. There-
fore, the region sizes produced by the detectors do not have an influence on the
repeatability score.

For the DVD and FIB-pattern sample, the detector performance is comparably
uniform. For the other samples, there are high variations in repeatability. The
best detector in average repeatability is the Hessian-Laplace detector, followed
by SIFT and Harris-Laplace detector. MSER and SURF detector reside in the
medium range. The average results for the salient region detector and the IBR
are noticeably low. It can be expected that this is due to violation of the basic
assumptions these detectors are built on. For the IBR detector, this is the re-
peatability of peaks in image intensity. The salient regions detector is based on
the idea that peaks in an entropy measure reproduce. It seems that the assump-
tions, the other detectors are based on better meet the actual conditions found
in AFM and SEM image registration. Those are the repeatability of segmented
regions (MSER) and basic geometric shapes (Hessian-Laplace, Harris-Laplace,
SIFT, SURF).

Principally, feature-based registration can be performed with all detectors and
no repeatability score is prohibitively low. However, applying the proposed regis-
tration scheme under exclusive usage of the salient region detector or IBR should
be avoided.

Feature descriptors

The performance of the feature descriptors is analyzed in terms of the matching
score. Because this measure is obtained by building a correct ratio, also the
total number of correct matches is stated. A descriptor can only be tested if
regions have been detected before. The question arises, which region detector to
choose for descriptor evaluation. Feature detectors and descriptors can be tested
independently in wide parts [75]. Nevertheless, the actual results obtained in
descriptor evaluation will vary with the choice of a detector. What remains
mostly untouched is the ranking of the descriptors. Here, the best (Hessian-
Laplace), the second best (SIFT) and the fastest detector (SURF) have been
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Figure 7.8: Detector performance in terms of repeatability for all samples. A
high repeatability means that if a feature is detected in the AFM
scan, it is likely to find a corresponding feature in the SEM scan.
Feature correspondence is defined by an overlap error < 50%. Due
to the aspect of multimodality, a lower repeatability is obtained here
as compared to unimodal registration (e.g. photograph stitching).

selected for comparing descriptor performance. The results can be seen in Figures
7.9 and 7.10.

It can be seen that the performance varies significantly between the different
samples. This behavior is due to the different characteristics of the samples in
terms of richness of image structure and also distinctiveness. In other words, the
registration task is of different difficulty. It can also be seen, that the number
of correct matches varies between the different detectors. This is caused by the
different detection behavior and the different set of regions the descriptors are
extracted from.
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Figure 7.9: Performance of the feature descriptors in terms of total correct
matches. Results for regions obtained by the SIFT (top), SURF
(middle) and Hessian-Laplace (lower row) detector are shown.
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Figure 7.10: Performance of the feature descriptors in terms of matching score.
Results for regions obtained by the SIFT (top), SURF (middle)
and Hessian-Laplace (lower row) detector are shown.
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However, when fixing the setup and detector, the ranking of the descriptors
can be seen clearly. The performance of moment invariants, steerable filters,
complex filters and spin images is far below the performance of the other de-
scriptors. The information extracted by these descriptors does not reproduce
sufficiently in corresponding regions scanned by AFM and SEM. In average, the
SIFT descriptor performs best, followed by the GLOH descriptor. Shape context
and the SURF descriptor show a slightly lower performance. Cross-correlation
performs on a medium level, although it is the most simple descriptor.

In contrast to feature detectors, combination of multiple description schemes
implies much computational effort and also the fusion of the results is unclear. If
one exclusive descriptor is selected, the SIFT detector proved best performance
in the test setup. However, the SURF algorithm execution speed benefits from
reusing integral images. If those are available from the detection phase, the SURF
descriptor is still a choice worth considering. The GLOH descriptor has been
introduced as an improved SIFT descriptor mainly for photography. However,
for the registration of AFM and SEM scans, only one example could be found
where a marginal improvement has been achieved (CD sample, SURF regions).
For this reason, usage of the GLOH descriptor is not considered for AFM and
SEM registration.

Synthetic image material

Synthetic image material has been generated in order to further study the be-
havior of multimodal registration based on local features. Figure 7.11 shows
examples of the image material used. The base image has been superimposed
with an intensity ramp IR with ramp intensity iR. It is constructed with the help
of the dyadic product of vector vR which is equal in length to the side length of
the base image.

vR = (0 . . . 1)T IR = iRvRvR
T (7.6)

Such a behavior can be found around exposed structures in the SEM or also
in AFM scans where the surface fit has been carried out imperfectly. Another
operation used is grey-level dilation with a rectangular structuring element. This
mostly reflects the imaging capabilities of the AFM, which tends to expand deep
edges. The third operation displayed in Figure 7.11 is a flip in image contrast.
Initially, a random value between -1 and 1 is assigned to each object intensity.
The background level is zero. This produces objects which are of higher or lower
intensity than the background level. For generating a series of images, object
intensities are multiplied with a varying contrast factor, which is also of range
-1 to 1. Before analysis, each image is mapped to the positive range of image
intensities. Images with contrast factor < 0 will show inverse contrast. This
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Figure 7.11: Synthetic image material for studying multiple effects. In (b), an
intensity ramp has been added to image (a), simulating nonflat
background regions. Image (c) shows a dilated version of (a),
simulating the imaging characteristics of the AFM. Between (d)
and (e), the contrast has been inverted.

means that gradient directions from object to the background are flipped by
180°. Such a behavior can be expected if special imaging modes of AFM or SEM
are used and no monotonic mapping between AFM and SEM scan intensities
can be assumed.

The performance results for the intensity ramp and the dilation experiment
can be seen in Figure 7.12. Starting with a ramp intensity of 0, the matching
score is 100 %. In this case, identical images are registered. As the ramp intensity
increases, the matching score decreases moderately, almost monotonically. The
dilation experiment shows a similar behavior, as dilation in x and y direction are
increased. This behavior can be classified as beneficial, because the registration
procedure is not over-sensitive to variations in background intensity or shapes of
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Figure 7.12: Synthetic image matching performance in terms of matching score.
The left plot shows falling of the matching score as the gradient
of the intensity ramp is increased. The right plot shows falling
of the matching score as dilation in both directions is increased.
SIFT detector and descriptor have been used.

Figure 7.13: Results for the registration experiment with inverse contrast. A
contrast level of 1 corresponds to identical images. -1 corresponds
to inverse contrast. 0 corresponds to no contrast. The detector
repeatability falls to zero where the image contrast vanishes. It is
high for all other contrast strength. The matching score is low for
all negative contrast values. SIFT detector and descriptor have
been used.

corresponding objects.
On the other hand, Figure 7.13 depicts a general limitation of feature descrip-

tors which make use of gradient directions. For a contrast level of 1, the images
are identical and best repeatability and matching scores are obtained. As the
level of contrast is decreased, both values are degraded only slightly. This shows
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the tolerance of both, detector and descriptor to changes in contrast level. For
a contrast level of 0, registration fails because no image information is available.
For negative contrast values, two effects can be observed. High repeatability
values are obtained. The detector is tolerant to inverse contrast. On the other
hand, matching mostly fails. This is due to failure of the orientation estimation
step of the description scheme. Descriptors are now computed in a coordinate
system, which is flipped by 180° with respect to the base image features.

Additional application cases

The samples used in the systematical performance analysis (Figure 7.4) represent
multiple realistic application scenarios for AFM and SEM image registration.
Additionally, two samples have been prepared in order to further demonstrate
capabilities and limitations of multimodal registration based on local features.
These samples can be seen in Figure 7.14. They have been created as especially
difficult cases, by FIB-milling patterns into the surface of a silicon substrate.

The upper row shows a sample which is composed of rectangles of varying side
lengths. Starting from the upper left side, rectangle sidelengths are increased
column and row-wise until the maximum size is reached in the lower right cor-
ner. This setup is especially difficult to register, because the only distinct local
information about a rectangle is the size. Due to the different imaging character-
istics of AFM and SEM, the rectangles can appear slightly resized. On the other
hand, the exact size is the only way of distinguishing between the rectangles. A
second difficulty is the repetition of patterns. If looking at any rectangular sub-
pattern of the sample, an identical pattern with slightly smaller rectangles can
be observed by moving the subpatch diagonally to the top left direction. This
way, the sample produces not only a high number of incorrect matches but also
incorrect geometrically consistent subsets of matches. Nevertheless, using the
SIFT feature detector and descriptor, RANSAC manages to identify the correct
subset of matches.

In the lower row of Figure 7.14, the second challenging sample can be seen. It
is composed out of structures, which reproduce under changes of scale. Those
are corners and junctions. A problem with these structures occurring in an
isolated location is the functionality of the automatic scale selection. No stable
peaks in the detector response can be expected around these structures. As a
result, the information extracted by the descriptor is mostly modality-specific
imaging artifact at an arbitrary scale. The descriptor hardly reproduces between
AFM and SEM. SIFT-based registration of these scans leads to a high number
of incorrect matches and failure of the RANSAC procedure.
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Figure 7.14: Samples imposing special difficulty on the feature-based registra-
tion step. The SEM scans (left side) and AFM scans (right side)
show a lack of distinct image detail. In the upper sample, the rect-
angular structures vary only slightly in size. In the lower sample,
most features cannot be located well over scale.

7.3.2 Combined detectors

In Section 5.2, a strategy for combining multiple region detectors has been pre-
sented. It is based on maximizing the repeatability of the detector responses in
the different imaging modalities, while at the same time minimizing the similar-
ity of the detectors. This section shows, how the proposed selection strategy can
be applied in order to compose more robust region detectors.

The functionality of the proposed scheme can be demonstrated by applying it
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to the regions detected on the DVD sample (see Figure 7.7). In the beginning,
a list of candidate detectors is selected, which are the highest-ranked detectors
of the previous section:

• Hessian-Laplace detector (Hes)

• Harris-Laplace detector (Har)

• SIFT feature detector (DoG)

• SURF feature detector (Surf)

In the next step, the inter-modality repeatabilities are determined:

Rep(AFM‖Hes, SEM‖Hes) = 84.48%

Rep(AFM‖Har , SEM‖Har) = 81.77%

Rep(AFM‖DoG, SEM‖DoG) = 72.20%

Rep(AFM‖Surf , SEM‖Surf ) = 78.26%

Due to the lowest rank of the DoG detector, it is removed from the proce-
dure. Next, all 2-combinations of the remaining detectors are identified. Those
are Hes-Har, Hes-Surf and Har-Surf. The selection criterion is the detector dis-
similarity. It is checked by computing the inter-detector repeatabilities for all
detector combinations:

Rep(AFM‖Hes, AFM‖Har) = 83.43%

Rep(SEM‖Hes, SEM‖Har) = 93.08%

Rep(AFM‖Hes, AFM‖Surf ) = 44.32%

Rep(SEM‖Hes, SEM‖Surf ) = 20.95%

Rep(AFM‖Har , AFM‖Surf ) = 43.18%

Rep(SEM‖Har , SEM‖Surf ) = 41.77%

This means that there is a high degree of similarity between the Hessian-
Laplace and Harris-Laplace detector. Using the combined detector Hes-Har will
bring only a limited benefit. The remaining combinations are Hes-Surf and Har-
Surf. It has been pointed out in Section 5.2 that the repeatability criterion is
not sufficient in order to assure region informativeness. This criterion is tested
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Figure 7.15: Selection of fused detector responses of Hessian-Laplace and SURF
region detector, applied on the AFM scan of the DVD sample sur-
face. The regions marked by solid lines originate from the Hessian-
Laplace detector, while the dashed lines mark regions obtained
using the SURF detector. The field of view width is 15μm.

by performing a matching experiment. Because matching can only be carried
out between similar feature descriptors, the SIFT descriptor is chosen for the
matching experiment. Following Equation 5.15, the fused detector responses
are obtained. The Hes-Surf detector leads to a matching score of 20.6 and a
total number of correct correspondences of 1635. The Har-Surf detector obtains
a matching score of 10.8 and a total number of 1078 correct correspondences.
Hence, Hes-Surf is the preferred detector combination. Hes-Surf regions are
displayed in Figure 7.15.

For the task of AFM and SEM image registration, the fused Hes-Surf detector
is not as such superior to the single detectors. The benefit is in the capability of
better handling variations in image contents. Figure 7.16 shows corresponding
AFM and SEM scans of a FIB-milled structure with Hessian-Laplace and SURF
regions indicated. The Hessian-Laplace detector faces problems with reproduc-
ing responses in scale-space. Inter-modality repeatabilities are 10.3% (Hessian-
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Figure 7.16: Selection of fused detector responses of Hessian-Laplace (solid
lines) and SURF region detector (dashed lines), applied on the
AFM scan (left) and SEM scan (right) of a FIB-milled structure.
The FIB-milled region has a size of 10μm×3.5μm.

Laplace) and 38.4% (SURF). The fused Hes-Surf detector obtains 34.6% and
thus falls between the single detector values. When repeating the matching ex-
periment, a total number of correct matches of 8 (Hessian-Laplace), 20 (SURF)
and 38 (Hes-Surf) are obtained. This means that correct correspondences have
been established between Hessian-Laplace and SURF regions or in other words,
the detectors complement each other.

Fusion of region detectors has some similarities with the selection of an ap-
propriate classifier in SPR. For a set of input data, an optimal region detector
can clearly be identified. The question is how it will perform under variations
of the input data. It has been shown that the highest-ranked detector (Hessian-
Laplace) on the DVD sample faces strong difficulties in reproducing responses
on the FIB-milled structure. In this sense, the fused Hes-Surf detector is more
general as it enables successful registration in a broader range of target samples.
A dissimilarity between the selection of a region detector and the selection of an
appropriate classifier in SPR is the possibility of testing the result during appli-
cation time. While the classifier output in a classification task must be accepted,
the geometric consistency of a registration result can be tested. This enables the
automatic profile selection introduced in Section 5.2.2, which is a type of trial
and error method.

7.3.3 The new feature matching strategies
The performance of the new feature matching strategy has been evaluated using
the SIFT and SURF feature detector and descriptor packages. This selection
is representative because most other descriptors use the SIFT procedure for
computing the dominant feature orientation. Therefore, all results concerning
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Figure 7.17: Performance of the scale ratio restriction approach, depicted by
the recall 1-precision plot for SIFT features computed on the DVD
sample. A moderate restriction allowing 25% of deviation from the
ground truth reproduction scale slightly improves the performance
in comparison to the unrestricted case (allowing ∞ deviation).
By further increasing the restrictions, the performance decreases,
because correct matches with imprecisely detected scale are incor-
rectly rejected then.

matching restrictions on feature orientation are directly transferable. In addition
to the regular SURF descriptor (SURF64), also the extended SURF descriptor
(SURF128) has been used for comparison. For the experiments it has been as-
sumed that the registration task has to be carried out with a varying level of
prior knowledge. Without applying the postmatching step by imposing match-
ing restrictions, the application case is similar to the experiments presented in
Section 7.3.1. Additionally, the transformation model components scale S, rota-
tion R or both can be given prior to the registration step. Initially, both types
of matching restrictions have been studied separately. The effect of the window
size for matching restrictions is critical for the success of the postmatching step.

Figure 7.17 studies the effect of restricting differences in the scale ratio during
the matching procedure. SIFT-features computed on the DVD sample have been
used for this experiment. Although the 1-precision values can be improved by
this postmatching step, the recall rate decreases noticably. An improvement of
the overall performance is only observed for a moderate restriction of scale ratios
by allowing 25% of deviation from the ground truth scale ratio. On the other
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Figure 7.18: Performance of orientation difference restriction approach, de-
picted by the recall 1-precision plot for SIFT features computed
on the DVD sample. Even low restrictions such as a deviation
of π/2 from the ground truth rotation result in a significant gain
in performance. For very high restrictions such as a deviation of
π/32 the performance falls below the restriction-free case.

hand, introducing restrictions on the allowed difference in orientation leads to a
strong gain of performance. Figure 7.18 shows the recall vs. 1-precision plot for
a different amount of deviation from the ground truth difference in angle. The
level of π corresponds to the absence of any restrictions. At the very restrict level
of π/32 the performance falls below the unrestricted case. It has to be noted that
the ground truth rotation R is accurate in this case. Using a biased estimate of
R the performance gain caused by orientation restrictions will be smaller.

In the following, a moderate restriction level has been chosen to study the
effect of the new feature matching strategy in more detail for each sample. The
overall matching performance is compared in Figures 7.19 - 7.23. Experiments
have been carried out using regions detected by the SIFT and SURF detector.
Therefore, the number of ground truth correspondences used to compute the
recall rate is different for SIFT and SURF matching. Generally, the SIFT algo-
rithm outperforms the SURF algorithm. The performance is best for the CD,
DVD and nanocluster matching. These are the samples with blob- and dash-
shaped structures. The FIB-milled pattern and the gold on silicon test pattern
exhibit mostly edge- or corner-like structure and the matching performance is
comparably low in both cases. For the FIB-milled pattern, the 1-precision can be
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improved significantly by using matching restrictions. In contrast, the improve-
ment is moderate for the gold on silicon test pattern sample. In this case, the
algorithm performance suffers from the highly ambiguous image structure. No
application could be identified where the extended SURF descriptor is superior
to the regular descriptor.

Both algorithms benefit from the reuse of computation results between de-
scriptor and detector and are among the fastest and at the same time most
accurate algorithms. Although the SIFT algorithm is superior to SURF under
many aspects, SURF clearly shows shorter execution times. Table 7.1 shows the
execution times measured on an Intel Core i5-750 with 4GB RAM. Only the regu-
lar SIFT and SURF algorithm have been evaluated under the aspect of execution
time. The values strongly depend on the scene contents and also the scan size. In
average, the SIFT-based registration takes 3.21 times more computation time.
The values have been split up into feature extraction (detection and descrip-
tion), initial matching and refinement (RANSAC). The computational burden of
matching restrictions is negligible and has not been taken into account.
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Figure 7.19: Matching performance for the CD sample and multiple detec-
tor/descriptor combinations and matching restrictions on scale
ratio (S, 25%) and orientation (O, π/16). The SIFT algorithm
clearly outperforms the SURF algorithm. The regular-sized SURF
descriptor (64) outperforms the extended (128) SURF descriptor.
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Figure 7.20: Matching performance for the DVD sample and multiple detec-
tor/descriptor combinations and matching restrictions on scale
ratio (S, 25%) and orientation (O, π/16).
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Figure 7.21: Matching performance for the FIB-milled pattern and multiple de-
tector/descriptor combinations and matching restrictions on scale
ratio (S, 25%) and orientation (O, π/16).
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Figure 7.22: Matching performance for the nanocluster sample and multiple de-
tector/descriptor combinations and matching restrictions on scale
ratio (S, 25%) and orientation (O, π/16).
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Figure 7.23: Matching performance for the gold on silicon test pattern and mul-
tiple detector/descriptor combinations and matching restrictions
on scale ratio (S, 25%) and orientation (O, π/16). Matching re-
strictions on SURF features bring moderate gains in performance
but have been left out for clarity reasons.
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Table 7.1: Average computation times of the different setups for SIFT and
SURF feature extraction, matching and refinement step.

Setup SIFT SIFT SIFT SURF SURF SURF
extr. match refine extr. match refine

CD 5.33s 0.11s 0.14s 1.81s 0.60s 0.14s
DVD 7.55s 1.07s 0.11s 3.53s 1.05s 0.17s
FIB 22.3s 1.21s 0.44s 2.66s 0.08s 0.49s
Nanocluster 4.84s 0.02s 1.03s 0.69s 0.01s 0.38s
Au-Pattern 8.71s 5.61s 1.08s 1.19s 0.44s 5.30s

7.3.4 Area-based refinement step
Once, feature-based registration including optional improvement steps is com-
pleted, an initial set of transformation model parameters is available. The aim
of the area-based registration step is to further improve the accuracy of the reg-
istration. Area-based registration optimizes a similarity measure between AFM
and SEM scan, which is a type of quality criterion. However, since this quality
criterion is objective of the optimization procedure it cannot be used for judging
the registration performance at the same time. Also the question would arise,
which similarity measure to select as the quality criterion. Instead, an external
ground truth transformation T (x, y) is used for determining the accuracy of a
set of transformation model parameters. The ground truth transformation is
obtained by manually labeling landmark points in corresponding AFM and SEM
scans.

The accuracy of the area-based registration is examined by comparing the
obtained transformation with the ground truth transformation. A direct com-
parison of the transformation parameters in terms of absolute differences does
not provide a good measure of the expected error, due to the different nature of
the single model parameters. Another problem is the dependency between the
alignment error and the scan area: In the center of rotation and scale, errors in
R and S have no impact. A better performance criterion is described in [14].
The displacement errors between an estimated transformation T̂ (x, y) and the
ground truth transformation T (x, y) can be computed from:

δ1 = T (x1, y1) − T̂ (x1, y1) , (7.7)

δ2 = T −1 (x2, y2) − T̂ −1 (x2, y2) . (7.8)
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Figure 7.24: Performance results of the area-based registration in terms of erms.
Values for SIFT and SURF show the remaining error after feature-
based registration. MI, NMI and CC are the errors after area-
based refinement of the registration.

For symmetry reasons, the displacement error is computed in forward (δ1) and
inverse (δ2) direction. Over a region of interest Ω, the vector field of displacement
errors is averaged, which results in the root mean square transfer error erms of
T̂ (x, y):

erms =
√

1
2Ω

∫
Ω

‖δ1‖2 + ‖δ2‖2dΩ . (7.9)

Ω is selected to be the entire overlap area between AFM and SEM scan. For the
experiments, the transformation parameters obtained after feature-based regis-
tration using SIFT detector and descriptor with additional RANSAC refinement
have been used as initialization. However, convergence towards identical optima
has been observed using the output of different detector/descriptor combinations
as initialization. The results of the area-based registration refinement can be seen
in Figure 7.24. For comparison, the normalized cross-correlation (see Equation
2.2) has also been used as optimization criterion.

The results show that the area-based registration step helps to increase the reg-
istration accuracy. This gain in accuracy ranges from a moderate improvement
to a substantial improvement. Nevertheless, all procedures leave a residual reg-
istration error. The difference between MI and NMI is minimal for all scenarios
tested. However, for the nanocluster sample, MI brings a marginal degradation
while NMI leads to a moderate improvement of the SIFT registration result. The
performance of the normalized cross-correlation measure is surprisingly high in
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Figure 7.25: Fusion result for the DVD sample. The AFM scan has been ren-
dered as a three-dimensional surface and is textured by the cor-
rectly registered SEM scan.

most cases. For the FIB-milled pattern on the other hand, the MI and NMI
performance is clearly better.

7.3.5 Output of the proposed registration scheme
The final output of the system is the fused representation of AFM and SEM
scan. It enables the inspection of corresponding surface scans in a single view.
Figure 7.25 shows a three-dimensional view of the DVD surface, textured with
the correctly registered SEM scan of the corresponding area. In Figure 7.26, a
similar results is shown for the FIB-milled pattern. A high-intensity SE signal can
be seen at the edges of the FIB-milled structure, which are facing the direction
of the SEM electron detector. Figures 7.25 and 7.26 show the fusion results of
standard SE SEM scan and intermittent contact mode AFM scan. Nevertheless,
the same methods can also be used in order to create fused views of special
imaging modes for material inspection.

7.4 Conclusion
The proposed procedure has been implemented and tested on a variety of different
sample and equipment combinations. In summary, the registration succeeded
in all application scenarios. A major benefit of the proposed method over the
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Figure 7.26: Fusion result for the FIB-milled structure. At the edges of the
structure which are facing the SEM’s electron detector, a high-
intensity SE signal is visible.

registration scheme described in [94] is the total absence of manual working steps
and a minimum number of parameters. In the application scenarios presented
here, the feature-based registration faces two imaging modalities with strongly
different imaging characteristics and artifacts. These include different intensity
levels, morphological changes, shadows, AFM cantilever control-related artifacts
and scanner noise. Under these conditions, generally weaker matching results
must be expected as compared to those reported by [76] or [68] for natural
photography. Nevertheless, the correspondence analysis of pairs of scans is still
successful, despite the lower absolute number of correct feature matches.

All feature detectors and descriptors included in the investigation have been
designed mainly for the registration of natural photographs or video, where the
main challenge is to handle changes in illumination or viewpoint and occlusions.
It seems that for the higher-ranked detectors and descriptors, these requirements
correspond well with the requirements of AFM and SEM image registration. The
aspect of different intensity levels between AFM and SEM is compensated by the
normalization of feature vectors. A reduction of the level of sensor noise is inte-
grated in the scale-space approach. Sensor-specific artifacts such as local charg-
ing in the SEM scan show the same effect as occlusions in natural photography:
Features cannot be matches in this local neighborhood, but the performance in
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the remaining image area is stable.
It has been shown, that incorporating prior knowledge on the difference in scan

orientation or magnification ratio helps to improve the matching performance
significantly. Also, the performance of the detectors and descriptors for different
target structures has been analyzed extensively and the possibility of combining
detectors has been pointed out. It must be decided in the actual application
case, how many of these additions are implemented and how much effort is spent
on identifying optimal detectors and descriptors. Although not superior under
all aspects, the SIFT and SURF detector and descriptor bundles perform well
in many applications cases. Additionally, highly optimized implementations are
available, making SIFT and SURF superior to most other algorithms under the
aspect of execution time.

A limitation of most description schemes in the presence of multiple forms of
contrast is the computation of the local gradients or wavelet responses respec-
tively (cf. Figures 5.9 and 5.10). The determination of the dominant feature
orientation and local gradient orientations assume a nearly monotonically in-
creasing mapping between AFM and SEM intensity values and therefore identi-
cal gradient orientations in both modalities. Violations of this assumption lead
to a total failure of the matching procedure, as the feature orientation and there-
fore the assignment of local gradients or wavelet responses are incorrect. This
limitation can be overcome by adding descriptor copies with inverse orientation
to the feature set. However, the negative effect in terms of 1-precision has not
been studied yet.

Due to shadowing and morphological differences between the modalities, the
feature detectors do not reproduce exact feature locations for an image pair. The
area-based refinement of the registration result brings an improvement but still
leaves a significant transfer error. This can potentially be compensated for by im-
plementing alternative similarity measures or means of regularization. However,
all methods considered here work directly on the scan data and it is possible that
the residual error cannot be removed by means of a direct method. An alterna-
tive approach is to model the process of AFM and SEM image formation and
to compensate for sensor specific artifacts in order to create an alike image pair
for registration. In trade for the potential gain in registration accuracy, a multi-
tude of assumptions have to be made about the imaging process and equipment
parameters.
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8 Summary and outlook

8.1 Summary
This thesis presented two new procedures which help to increase the level of
automation in robotic tasks on the micro- and nanoscale. Image analysis can be
regarded as one of the most important forms of sensory feedback in micro- and
nanorobotics. Due to the small dimensions of the target objects and structures,
the image material is acquired using microscopes and miniature cameras. In
the past, visual feedback in micro- and nanorobotics has been used mainly for
continuously following the movement of individual objects and also for depth
estimation. This helped to increase the level of automation but nevertheless left
initialization and labeling steps for manual user interaction.

Two tasks have been identified which can help to further increase the level of
automation. The first task is the localization and classification of micro- and
nanoscale objects from a new image scene. Examples of such objects are tools or
workpieces for characterization or assembly operations. The second task is the
determination of the spatial relationship between multiple images, originating
from heterogeneous image sensors. Such a procedure is also referred to as image
registration and allows to automatically acquire and fuse micrographs of differ-
ent imaging modalities. The fused representation benefits from complementary
imaging characteristics, providing a more thorough view on specimen geometry
and material properties. Both tasks are different by nature and therefore demand
for distinct solutions.

The first task has been faced by developing a new system for micro- and
nanoscale object classification. Instead of extending earlier object tracking pro-
cedures to the task of object classification, the new system is based on statistical
pattern recognition. This brings the advantage that decision rules are learned
automatically. Also, the classification rules are not limited to geometric object
properties. The system is composed out of four processing steps. It starts with
the image acquisition and preprocessing step which provides a unique interface to
the different type of microscopes used. In the next step, objects are segmented
from the image background and a list of connected objects is established. A
meaningful descriptor is extracted from each object in the next step, taking into
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account the characteristic object properties. In the last step, the class member-
ship of each object is determined with the help of a SVM classifier. The system
is designed for being highly integrated into setups for automated micro- and
nanorobotic operations.

Validation of the proposed system for micro- and nanoscale object classifica-
tion has been carried out in three different application scenarios and imaging
modalities. The first application is the localization of carbon nanotubes on the
surface of a silicon wafer. Due to the dimensions of the nanotubes, the SEM is
used as image sensor. Other objects introduced by contamination of the vacuum
must be rejected. The second application is a quality check for biological cells,
carried out using an optical microscope. Defect cells are recognized automatically
and excluded from further processing steps. The last application is the detec-
tion of magnetic particles using MRI. Magnetic objects can potentially be used
in medical interventions by carrying drugs or guiding catheter operations. The
proposed system succeeds in all three applications for which the state-of-the-art
methods can hardly be adapted for.

The second task targeted in this thesis has been faced with the help of a newly
developed scheme for multimodal image registration. Generally, two types of
registration schemes are distinguished. Feature-based registration establishes
correspondences between image features and derives parameters for a coordi-
nate transformation model. Area-based registration varies the model parameters
and optimizes a similarity measure between the images. Both strategies typi-
cally have differences in accuracy, execution time and properties of convergence.
The proposed scheme initially performs feature-based registration and refines
the resulting model parameters in an area-based registration step. Thereby, the
benefits of both methods are combined. Two optional strategies for improving
the feature-based registration step are introduced. It is shown, how multiple
feature detectors can be combined in order to avoid too much specialization on
a particular kind of image contents. The second improvement integrates prior
knowledge about the scene alignment into the feature matching procedure.

For validation of the proposed registration scheme, surface scans obtained from
the SEM and AFM have been registered. The experiments included multiple
specimens with strongly different surface structures. Additionally, artificial im-
age material has been generated. A total number of eight feature detectors and
nine feature descriptors have been tested. Area-based registration has been car-
ried out using three different similarity measures. The performance data clearly
show a preferred subset of feature detection and description methods, although
none is superior for all applications. Area-based registration further improves
the registration accuracy in all applications, thereby justifies the multi-stage
registration scheme. Combining multiple feature-detectors can lead to increased
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performance under varying image contents. Also prior knowledge about the
transformation model parameters should be incorporated into the feature-based
registration step, leading to a considerable gain in performance.

The goals stated in Section 1.1 have been attained entirely. The new methods
presented in this thesis have been applied successfully in the context of multiple
research projects and helped to increase the level of automation significantly.

8.2 Outlook
Both approaches presented in this thesis have been tested in multiple scenarios
and will support automation in future applications of micro- and nanorobotics
as well. Nevertheless, some limitations have been indicated already and both
approaches leave opportunities for future research.

The system for micro- and nanoscale object classification provides sensor data
to the control system and works side-by-side with other sensors. One possibility
of improving the classification capabilities of the system is to include additional
sensor data as objects features. For instance, such object features could be
provided by electrical or mechanical measurements and not be extracted from
the image contents. From the perspective of the SVM, the origin of the features is
transparent. Therefore, features extracted from images and further features can
be used simultaneously. Another promising approach is to use object properties
in order to assign unequal weights to each training sample [10]. Following this
idea the training procedure is told, which samples are more or less important for
determining the decision boundary.

Until now, the new strategy for multimodal image registration has been applied
to scans obtained from the AFM and SEM directly. It has been pointed out by
experiments with synthetic image data that the registration compensates for
differences in the imaging characteristics of both modalities to a certain degree.
However, knowledge about the imaging characteristics can also be used in order
to create a more similar pair of scans in a preprocessing step. This approach
could help to further decrease the residual error observed after registration. On
the other hand, additional assumptions and knowledge about the process of
image acquisition must be incorporated, changing the registration scheme from
a general solution to a more application-specific procedure.

In the future, the proposed registration scheme should be applied in other areas
of microscopy. For applications with limited requirements to optical resolution,
optical microscopy can be included. Also, alternative imaging modes of AFM and
SEM can be incorporated in order to obtain a more thorough view on material
properties such as magnetic or electrical properties. As an example, Figure 8.1
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Figure 8.1: Series of SEM scans of electrodes (field of view width = 28μm).
The voltage between upper and lower two electrodes is rising from
0V (left) to 30V (right).

shows an SEM scan of four electrodes with different voltages applied. However,
functionality of the proposed registration scheme under special imaging modes
has not been studied extensively. It has been shown, that the feature-based
registration step is robust to changes in contrast level but sensitive to flips in
gradient direction. The occurrence of such effects and the construction of robust
features is left as a topic for future investigations.
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